WorldWideScience

Sample records for spin valve devices

  1. Local spin valve effect in lateral (Ga,MnAs/GaAs spin Esaki diode devices

    Directory of Open Access Journals (Sweden)

    M. Ciorga

    2011-06-01

    Full Text Available We report here on a local spin valve effect observed unambiguously in lateral all-semiconductor all-electrical spin injection devices, employing p+ −(Ga,MnAs/n+ −GaAs Esaki diode structures as spin aligning contacts. We discuss the observed local spin-valve signal as a result of the interplay between spin-transport-related contribution and the tunneling anisotropic magnetoresistance of the magnetic contacts. The magnitude of the spin-related magnetoresistance change is equal to 30 Ω which is twice the magnitude of the measured non-local signal.

  2. Large spin-valve effect in a lateral spin-valve device based on ferromagnetic semiconductor GaMnAs

    Science.gov (United States)

    Asahara, Hirokatsu; Kanaki, Toshiki; Ohya, Shinobu; Tanaka, Masaaki

    2018-03-01

    We investigate the spin-dependent transport properties of a lateral spin-valve device based on the ferromagnetic semiconductor GaMnAs. This device is composed of a GaMnAs channel layer grown on GaAs with a narrow trench across the channel. Its current-voltage characteristics show tunneling behavior. Large magnetoresistance (MR) ratios of more than ˜10% are obtained. These values are much larger than those (˜0.1%) reported for lateral-type spin metal-oxide-semiconductor field-effect transistors. The magnetic field direction dependence of the MR curve differs from that of the anisotropic magnetoresistance of GaMnAs, which confirms that the MR signal originates from the spin-valve effect between the GaMnAs electrodes.

  3. Inverse spin valve effect in multilayer graphene device

    International Nuclear Information System (INIS)

    Goto, H; Tanaka, S; Tomori, H; Ootuka, Y; Kanda, A; Tsukagoshi, K

    2010-01-01

    We report the gate-voltage dependence of the spin transport in multilayer graphene (MLG) studied experimentally by the local measurement. The sample consists of a Ni/MLG/Ni junction, where the thickness of the MLG is 9 nm and the spacing of two Ni electrodes is 300 nm. At zero gate voltage, we observed the normal spin valve effect, in which the resistance for the antiparallel alignment of magnetization in ferromagnetic electrodes is larger than that for the parallel alignment. By applying a large gate voltage, on the other hand, the spin valve effect is reversed: the resistance for the antiparallel alignment becomes smaller than that for the parallel alignment. The result is qualitatively interpreted as a quantum interference effect, indicating that the mean free path and the spin relaxation length of the MLG are longer than the electrode spacing (300 nm).

  4. Magnetoresistance Effect in NiFe/BP/NiFe Vertical Spin Valve Devices

    Directory of Open Access Journals (Sweden)

    Leilei Xu

    2017-01-01

    Full Text Available Two-dimensional (2D layered materials such as graphene and transition metal dichalcogenides are emerging candidates for spintronic applications. Here, we report magnetoresistance (MR properties of a black phosphorus (BP spin valve devices consisting of thin BP flakes contacted by NiFe ferromagnetic (FM electrodes. The spin valve effect has been observed from room temperature to 4 K, with MR magnitudes of 0.57% at 4 K and 0.23% at 300 K. In addition, the spin valve resistance is found to decrease monotonically as temperature is decreased, indicating that the BP thin film works as a conductive interlayer between the NiFe electrodes.

  5. A review on organic spintronic materials and devices: II. Magnetoresistance in organic spin valves and spin organic light emitting diodes

    Directory of Open Access Journals (Sweden)

    Rugang Geng

    2016-09-01

    Full Text Available In the preceding review paper, Paper I [Journal of Science: Advanced Materials and Devices 1 (2016 128–140], we showed the major experimental and theoretical studies on the first organic spintronic subject, namely organic magnetoresistance (OMAR in organic light emitting diodes (OLEDs. The topic has recently been of renewed interest as a result of a demonstration of the magneto-conductance (MC that exceeds 1000% at room temperature using a certain type of organic compounds and device operating condition. In this report, we will review two additional organic spintronic devices, namely organic spin valves (OSVs where only spin polarized holes exist to cause magnetoresistance (MR, and spin organic light emitting diodes (spin-OLEDs where both spin polarized holes and electrons are injected into the organic emissive layer to form a magneto-electroluminescence (MEL hysteretic loop. First, we outline the major advances in OSV studies for understanding the underlying physics of the spin transport mechanism in organic semiconductors (OSCs and the spin injection/detection at the organic/ferromagnet interface (spinterface. We also highlight some of outstanding challenges in this promising research field. Second, the first successful demonstration of spin-OLEDs is reviewed. We also discuss challenges to achieve the high performance devices. Finally, we suggest an outlook on the future of organic spintronics by using organic single crystals and aligned polymers for the spin transport layer, and a self-assembled monolayer to achieve more controllability for the spinterface.

  6. Gate-tunable large magnetoresistance in an all-semiconductor spin valve device.

    Science.gov (United States)

    Oltscher, M; Eberle, F; Kuczmik, T; Bayer, A; Schuh, D; Bougeard, D; Ciorga, M; Weiss, D

    2017-11-27

    A large spin-dependent and electric field-tunable magnetoresistance of a two-dimensional electron system is a key ingredient for the realization of many novel concepts for spin-based electronic devices. The low magnetoresistance observed during the last few decades in devices with lateral semiconducting transport channels between ferromagnetic source and drain contacts has been the main obstacle for realizing spin field effect transistor proposals. Here, we show both a large two-terminal magnetoresistance in a lateral spin valve device with a two-dimensional channel, with up to 80% resistance change, and tunability of the magnetoresistance by an electric gate. The enhanced magnetoresistance is due to finite electric field effects at the contact interface, which boost spin-to-charge conversion. The gating scheme that we use is based on switching between uni- and bidirectional spin diffusion, without resorting to spin-orbit coupling. Therefore, it can also be employed in materials with low spin-orbit coupling.

  7. High efficiency spin-valve and spin-filter in a doped rhombic graphene quantum dot device

    Science.gov (United States)

    Silva, P. V.; Saraiva-Souza, A.; Maia, D. W.; Souza, F. M.; Filho, A. G. Souza; Meunier, V.; Girão, E. C.

    2018-04-01

    Spin-polarized transport through a rhombic graphene quantum dot (rGQD) attached to armchair graphene nanoribbon (AGNR) electrodes is investigated by means of the Green's function technique combined with single-band tight-binding (TB) approach including a Hubbard-like term. The Hubbard repulsion was included within the mean-field approximation. Compared to anti-ferromagnetic (AFM), we show that the ferromagnetic (FM) ordering of the rGQD corresponds to a smaller bandgap, thus resulting in an efficient spin injector. As a consequence, the electron transport spectrum reveals a spin valve effect, which is controlled by doping with B/N atoms creating a p-n-type junction. The calculations point out that such systems can be used as spin-filter devices with efficiency close to a 100 % .

  8. Electron-electron interaction, weak localization and spin valve effect in vertical-transport graphene devices

    Energy Technology Data Exchange (ETDEWEB)

    Long, Mingsheng; Gong, Youpin; Wei, Xiangfei; Zhu, Chao; Xu, Jianbao; Liu, Ping; Guo, Yufen; Li, Weiwei; Liu, Liwei, E-mail: lwliu2007@sinano.ac.cn [Key Laboratory of Nanodevices and Applications-CAS and Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Liu, Guangtong [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-04-14

    We fabricated a vertical structure device, in which graphene is sandwiched between two asymmetric ferromagnetic electrodes. The measurements of electron and spin transport were performed across the combined channels containing the vertical and horizontal components. The presence of electron-electron interaction (EEI) was found not only at low temperatures but also at moderate temperatures up to ∼120 K, and EEI dominates over weak localization (WL) with and without applying magnetic fields perpendicular to the sample plane. Moreover, spin valve effect was observed when magnetic filed is swept at the direction parallel to the sample surface. We attribute the EEI and WL surviving at a relatively high temperature to the effective suppress of phonon scattering in the vertical device structure. The findings open a way for studying quantum correlation at relatively high temperature.

  9. Device properties of the spin-valve transistor and the magnetic tunnel transistor

    NARCIS (Netherlands)

    van 't Erve, O.M.J.

    Spin electronics is a new research area, which not only uses the electron’s charge but also its spin. By using the electron spin dependent properties of magnetic materials one can make devices with a new functionality. This has lead to magnetoresistive devices that can change their resistance by 10

  10. Enhanced magnetoresistance in graphene spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan)

    2017-05-01

    Graphene has been explored as a promising candidate for spintronics due to its atomically flat structure and novel properties. Here we fabricate two spin valve junctions, one from directly grown graphene on Ni electrode (DG) and other from transferred graphene (TG). The magnetoresistance (MR) ratio for DG device is found to be higher than TG device i.e. ~0.73% and 0.14%, respectively. Also the spin polarization of Ni electrode is determined to be 6.03% at room temperature in case of DG device, however it reduces to 2.1% for TG device. From this analysis, we infer how environmental exposure of the sample degrades the spin properties of the magnetic junctions. Moreover, the transport measurements reveal linear behavior for current-voltage (I-V) characteristics, indicating ohmic behavior of the junctions. Our findings unveil the efficiency of direct growth of graphene for spin filtering mechanism in spin valve devices.

  11. Film edge nonlocal spin valves.

    Science.gov (United States)

    McCallum, Andrew T; Johnson, Mark

    2009-06-01

    Spintronics is a new paradigm for integrated digital electronics. Recently established as a niche for nonvolatile magnetic random access memory (MRAM), it offers new functionality while demonstrating low-power and high-speed performance. However, to reach high density spintronic technology must make a transition to the nanometer scale. Prototype devices are presently made using a planar geometry and have an area determined by the lithographic feature size, currently about 100 nm. Here we present a new nonplanar geometry in which one lateral dimension is given by a film thickness, on the order of 10 nm. With this new approach, cell sizes can shrink by an order of magnitude. The geometry is demonstrated with a nonlocal spin valve, where we study devices with an injector/detector separation much less than the spin diffusion length.

  12. Interlayer quality dependent graphene spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, 23640 Pakistan (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, 23640 Pakistan (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul, 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan); Murtaza, Ghulam [Centre for Advanced Studies in Physics, Government College University, Lahore 54000 (Pakistan); Ramay, Shahid Mahmood [Physics & Astronomy Department, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia)

    2017-01-15

    It is possible to utilize the new class of materials for emerging two-dimensional (2D) spintronic applications. Here, the role of defects in the graphene interlayer and its influence on the spin valve signal is reported. The emergence of D peak in Raman spectrum reveals defects in the graphene layer. The linear I-V curve for defective and non-defective graphene samples indicate the ohmic nature of NiFe and graphene contact. A non-uniform magnetoresistive effect with a bump is persistently observed for defective graphene device at various temperatures, while a smooth and symmetric signal is detected for non-defective graphene spin valve. Parallel and antiparallel alignments of magnetization of magnetic materials shows low and high resistance states, respectively. The magnetoresistance (MR) ratio for defective graphene NiFe/graphene/NiFe spin valve is measured to be ~0.16% at 300 K which progresses to ~0.39% for non-defective graphene device at the same temperature. Similarly at 4.2 K the MR ratios are reported to be ~0.41% and ~0.78% for defective and non-defective graphene devices, respectively. Our investigation provides an evidence for relatively better response of the spin valve signal with high quality graphene interlayer.

  13. Spin-Valve Effect in a Ni-C60-Ni Device

    National Research Council Canada - National Science Library

    He, Haiying; Pandey, Ravindra; Karna, Shashi P

    2006-01-01

    .... The magnitude of the junction magnetoresistance (JMR) is found to be significantly large for the device, which makes it a promising candidate for realistic applications in molecular spintronics...

  14. Spin Switching via Quantum Dot Spin Valves

    Science.gov (United States)

    Gergs, N. M.; Bender, S. A.; Duine, R. A.; Schuricht, D.

    2018-01-01

    We develop a theory for spin transport and magnetization dynamics in a quantum dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot. Our theory is able to take into account effects of strong correlations. We demonstrate that, as a result of these strong correlations, the dot gate voltage enables control over the current-induced torques on the magnets and, in particular, enables voltage-controlled magnetic switching. The electrical resistance of the structure can be used to read out the magnetic state. Our model may be realized by a number of experimental systems, including magnetic scanning-tunneling microscope tips and artificial quantum dot systems.

  15. Spin transport in benzofurane bithiophene based organic spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Palosse, Mathieu; Séguy, Isabelle; Bedel-Pereira, Élena [CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse (France); Université de Toulouse (France); UPS, INSA, INP, ISAE (France); LAAS (France); CEMES, F-31077 Toulouse (France); Villeneuve-Faure, Christina [Université de Toulouse (France); UPS, INSA, INP, ISAE (France); LAAS (France); CEMES, F-31077 Toulouse (France); LAPLACE, Université Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9 (France); Mallet, Charlotte; Frère, Pierre [MOLTECH-Anjou, UMR CNRS 6200, Université d’Angers, 2 Bd Lavoisier 49045 ANGERS Cedex (France); Warot-Fonrose, Bénédicte; Biziere, Nicolas [Université de Toulouse (France); UPS, INSA, INP, ISAE (France); LAAS (France); CEMES, F-31077 Toulouse (France); CNRS, CEMES-CNRS UPR 8011, 29 rue Jeanne Marvig, BP 94347, FR-31055 Toulouse Cedex 4 (France); Bobo, Jean-François, E-mail: jfbobo@cemes.fr [Université de Toulouse (France); UPS, INSA, INP, ISAE (France); LAAS (France); CEMES, F-31077 Toulouse (France); CNRS, CEMES-ONERA, NMH, 2 avenue Edouard Belin, FR-31055 Toulouse Cedex 4 (France)

    2014-01-15

    In this paper we present spin transport in organic spin-valves using benzofurane bithiophene (BF3) as spacer layer between NiFe and Co ferromagnetic electrodes. The use of an AlO{sub x} buffer layer between the top electrode and the organic layer is discussed in terms of improvements of stacking topology, electrical transport and oxygen contamination of the BF3 layer. A study of magnetic hysteresis cycles evidences spin-valve behaviour. Transport properties are indicative of unshorted devices with non-linear I-V characteristics. Finally we report a magnetoresistance of 3% at 40 K and 10 mV in a sample with a 50 nm thick spacer layer, using an AlO{sub x} buffer layer.

  16. Two-dimensional spin diffusion in multiterminal lateral spin valves

    Science.gov (United States)

    Saha, D.; Basu, D.; Holub, M.; Bhattacharya, P.

    2008-01-01

    The effects of two-dimensional spin diffusion on spin extraction in lateral semiconductor spin valves have been investigated experimentally and theoretically. A ferromagnetic collector terminal of variable size is placed between the ferromagnetic electron spin injector and detector of a conventional lateral spin valve for spin extraction. It is observed that transverse spin diffusion beneath the collector terminal plays an important role along with the conventional longitudinal spin diffusion in describing the overall transport of spin carriers. Two-dimensional spin diffusion reduces the perturbation of the channel electrochemical potentials and improves spin extraction.

  17. The spin-valve transistor: a preview and outlook

    NARCIS (Netherlands)

    Jansen, R.

    2003-01-01

    Combining ferromagnetic and semiconductor materials is a challenging route to create new options for electronic devices in which the spin of the electron is employed. The spin-valve transistor (SVT) is the first of such hybrid devices shown to work successfully. This review describes the basic

  18. Spin-dependent Seebeck coefficients of Ni80Fe20 and Co in nanopillar spin valves

    NARCIS (Netherlands)

    Dejene, F. K.; Flipse, J.; van Wees, B. J.

    2012-01-01

    We have experimentally determined the spin-dependent Seebeck coefficient of permalloy (Ni80Fe20) and cobalt (Co) using nanopillar spin valve devices, a stack of two ferromagnetic layers separated by a nonmagnetic layer. The devices were specifically designed to separate heat-related effects from

  19. Influence of DC-biasing on the performance of graphene spin valve

    Science.gov (United States)

    Iqbal, Muhammad Zahir; Hussain, Ghulam; Siddique, Salma; Hussain, Tassadaq; Iqbal, Muhammad Javaid

    2018-04-01

    Generating and controlling the spin valve signal are key factors in 'spintronics', which aims to utilize the spin degree of electrons. For this purpose, spintronic devices are constructed that can detect the spin signal. Here we investigate the effect of direct current (DC) on the magnetoresistance (MR) of graphene spin valve. The DC input not only decreases the magnitude of MR but also distorts the spin valve signal at higher DC inputs. Also, low temperature measurements revealed higher MR for the device, while the magnitude is noticed to decrease at higher temperatures. Furthermore, the spin polarization associated with NiFe electrodes is continuously increased at low DC bias and low temperatures. We also demonstrate the ohmic behavior of graphene spin valve by showing linear current-voltage (I-V) characteristics of the junction. Our findings may contribute significantly in modulating and controlling the spin transport properties of vertical spin valve structures.

  20. Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes

    Science.gov (United States)

    Avsar, Ahmet; Tan, Jun Y.; Kurpas, Marcin; Gmitra, Martin; Watanabe, Kenji; Taniguchi, Takashi; Fabian, Jaroslav; Özyilmaz, Barbaros

    2017-09-01

    Two-dimensional materials offer new opportunities for both fundamental science and technological applications, by exploiting the electron's spin. Although graphene is very promising for spin communication due to its extraordinary electron mobility, the lack of a bandgap restricts its prospects for semiconducting spin devices such as spin diodes and bipolar spin transistors. The recent emergence of two-dimensional semiconductors could help overcome this basic challenge. In this letter we report an important step towards making two-dimensional semiconductor spin devices. We have fabricated a spin valve based on ultrathin (~5 nm) semiconducting black phosphorus (bP), and established fundamental spin properties of this spin channel material, which supports all electrical spin injection, transport, precession and detection up to room temperature. In the non-local spin valve geometry we measure Hanle spin precession and observe spin relaxation times as high as 4 ns, with spin relaxation lengths exceeding 6 μm. Our experimental results are in a very good agreement with first-principles calculations and demonstrate that the Elliott-Yafet spin relaxation mechanism is dominant. We also show that spin transport in ultrathin bP depends strongly on the charge carrier concentration, and can be manipulated by the electric field effect.

  1. Inverse Magnetoresistance in Polymer Spin Valves.

    Science.gov (United States)

    Ding, Shuaishuai; Tian, Yuan; Li, Yang; Mi, Wenbo; Dong, Huanli; Zhang, Xiaotao; Hu, Wenping; Zhu, Daoben

    2017-05-10

    In this work, both negative and positive magnetoresistance (MR) in solution-processed regioregular poly(3-hexylthiophene) (RR-P3HT) is observed in organic spin valves (OSVs) with vertical La 2/3 Sr 1/3 MnO 3 (LSMO)/P3HT/AlO x /Co configuration. The ferromagnetic (FM) LSMO electrode with near-atomic flatness is fabricated by a DC facing-target magnetron sputtering method. This research is focused on the origin of the MR inversion. Two types of devices are investigated in details: One with Co penetration shows a negative MR of 0.2%, while the other well-defined device with a nonlinear behavior has a positive MR of 15.6%. The MR measurements in LSMO/AlO x /Co and LSMO/Co junctions are carried to exclude the interference of insulating layer and two FM electrodes themselves. By examining the Co thicknesses and their corresponding magnetic hysteresis loops, a spin-dependent hybrid-interface-state model by Co penetration is induced to explain the MR sign inversion. These results proven by density functional theory (DFT) calculations may shed light on the controllable interfacial properties in designing novel OSV devices.

  2. The spin-valve transistor: Fabrication, characterization and physics

    NARCIS (Netherlands)

    Jansen, R.; van 't Erve, O.M.J.; Kim, S.D.; Vlutters, R.; Anil Kumar, P.S.; Lodder, J.C.

    2001-01-01

    An overview is given of the fabrication, basic properties, and physics of the spin-valve transistor. We describe the layout of this three-terminal ferromagnet/semiconductor hybrid device, as well as the operating principle. Fabrication technologies are discussed, including vacuum metal bonding. We

  3. Enhanced magnetoresistance in lateral spin-valves

    Science.gov (United States)

    Adari, R.; Patil, T.; Murthy, M.; Maheshwari, R.; Vaidya, G.; Ganguly, S.; Saha, D.

    2010-09-01

    The effect of feature sizes on the characteristics of lateral spintronic devices have been investigated experimentally and theoretically. It is demonstrated that confining spin-transport in the active region of a device enhances magnitude of the spin-dependent response substantially. Numerical simulation of spin-transport corroborates the experimental observations. Device characteristics are found to be a strong function of spin-polarizer and analyzer dimensions. The response is observed to attain a peak value for an optimum device feature size, and this is seen to be a function of temperature. Spin dependent effects become weaker for very small and very large devices.

  4. Spin Valve Systems for Angle Sensor Applications

    OpenAIRE

    Johnson, Andrew

    2004-01-01

    A contact-less sensor with the ability to measure over a 360° range has been long sought after in the automotive industry. Such a sensor could be realized by utilizing the angle dependence of the Giant Magneto Resistance (GMR) Effect in a special type of magnetic multilayer called a spin valve arranged in a wheatstone bridge circuit [Spo96]. A spin valve consists of two ferromagnetic layers separated by nonmagnetic spacer layer where the magnetization of one of the ferromagnetic layers is pin...

  5. Valve device for handling materials

    International Nuclear Information System (INIS)

    Macleod, Hugh; Webster, A.W.

    1986-01-01

    A valve device employs a flexibly deformable sleeve mounted in a support body and encircled by a ring which is rotatable about a diametral axis so that it can be turned into a position in which it pinches the sleeve at spaced positions along the length of the sleeve and thereby cuts off flow of material through the sleeve. (author)

  6. Graphene spin valve: An angle sensor

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan)

    2017-06-15

    Graphene spin valves can be optimized for various spintronic applications by tuning the associated experimental parameters. In this work, we report the angle dependent magnetoresistance (MR) in graphene spin valve for different orientations of applied magnetic field (B). The switching points of spin valve signals show a clear shift towards higher B for each increasing angle of the applied field, thus sensing the response for respective orientation of the magnetic field. The angular variation of B shifts the switching points from ±95 G to ±925 G as the angle is varied from 0° to 90° at 300 K. The observed shifts in switching points become more pronounced (±165 G to ±1450 G) at 4.2 K for similar orientation. A monotonic increase in MR ratio is observed as the angle of magnetic field is varied in the vertical direction at 300 K and 4.2 K temperatures. This variation of B (from 0° to 90°) increases the magnitude of MR ratio from ∼0.08% to ∼0.14% at 300 K, while at 4.2 K it progresses to ∼0.39% from ∼0.14%. The sensitivity related to angular variation of such spin valve structure can be employed for angle sensing applications.

  7. Spin current through quantum-dot spin valves

    International Nuclear Information System (INIS)

    Wang, J; Xing, D Y

    2006-01-01

    We report a theoretical study of the influence of the Coulomb interaction on the equilibrium spin current in a quantum-dot spin valve, in which the quantum dot described by the Anderson impurity model is coupled to two ferromagnetic leads with noncollinear magnetizations. In the Kondo regime, electrons transmit through the quantum dot via higher-order virtual processes, in which the spin of either lead electrons or a localized electron on the quantum dot may reverse. It is found that the magnitude of the spin current decreases with increasing Coulomb interactions due to spin flip effects on the dot. However, the spatial direction of the spin current remains unchanged; it is determined only by the exchange coupling between two noncollinear magnetizations

  8. Independent gate control of injected and detected spin currents in CVD graphene nonlocal spin valves

    Science.gov (United States)

    Anugrah, Yoska; Hu, Jiaxi; Stecklein, Gordon; Crowell, Paul A.; Koester, Steven J.

    2018-01-01

    Graphene is an ideal material for spintronic devices due to its low spin-orbit coupling and high mobility. One of the most important potential applications of graphene spintronics is for use in neuromorphic computing systems, where the tunable spin resistance of graphene can be used to apply analog weighting factors. A key capability needed to achieve spin-based neuromorphic computing systems is to achieve distinct regions of control, where injected and detected spin currents can be tuned independently. Here, we demonstrate the ability to achieve such independent control using a graphene spin valve geometry where the injector and detector regions are modulated by two separate bottom gate electrodes. The spin transport parameters and their dependence on each gate voltage are extracted from Hanle precession measurements. From this analysis, local spin transport parameters and their dependence on the local gate voltage are found, which provide a basis for a spatially-resolved spin resistance network that simulates the device. The data and model are used to calculate the spin currents flowing into, through, and out of the graphene channel. We show that the spin current flowing through the graphene channel can be modulated by 30% using one gate and that the spin current absorbed by the detector can be modulated by 50% using the other gate. This result demonstrates that spin currents can be controlled by locally tuning the spin resistance of graphene. The integration of chemical vapor deposition (CVD) grown graphene with local gates allows for the implementation of large-scale integrated spin-based circuits.

  9. Magnetic structure of the spin valve interface

    International Nuclear Information System (INIS)

    Nicholson, D.M.C.; Butler, W.H.; Zhang, X.; MacLaren, J.M.; Gurney, B.A.; Speriosu, V.S.

    1994-01-01

    Nonferromagnetic atoms present at Ni/Cu and Permalloy/Cu interfaces in sputtered spin valve magnetoresistive layered structures have been shown to cause reduced magnetoresistance. Here we show that a model in which the moments on the Ni atoms in the interfacial region of Ni/Cu are reduced substantially by interdiffusion with Cu is consistent with the experimental results. In contrast, we believe that moments persist at the permalloy/Cu interface, which first principle total energy calculations suggest will be disordered at finite temperatures. These reduced or disordered moments are expected to significantly reduce the GMR

  10. Spin Hall effect devices

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Wunderlich, Joerg; Olejník, Kamil

    2012-01-01

    Roč. 11, č. 5 (2012), s. 382-390 ISSN 1476-1122 EU Projects: European Commission(XE) 268066 - 0MSPIN; European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 35.749, year: 2012

  11. The effect of electrodes on 11 acene molecular spin valve: Semi-empirical study

    Science.gov (United States)

    Aadhityan, A.; Preferencial Kala, C.; John Thiruvadigal, D.

    2017-10-01

    A new revolution in electronics is molecular spintronics, with the contemporary evolution of the two novel disciplines of spintronics and molecular electronics. The key point is the creation of molecular spin valve which consists of a diamagnetic molecule in between two magnetic leads. In this paper, non-equilibrium Green's function (NEGF) combined with Extended Huckel Theory (EHT); a semi-empirical approach is used to analyse the electron transport characteristics of 11 acene molecular spin valve. We examine the spin-dependence transport on 11 acene molecular junction with various semi-infinite electrodes as Iron, Cobalt and Nickel. To analyse the spin-dependence transport properties the left and right electrodes are joined to the central region in parallel and anti-parallel configurations. We computed spin polarised device density of states, projected device density of states of carbon and the electrode element, and transmission of these devices. The results demonstrate that the effect of electrodes modifying the spin-dependence behaviours of these systems in a controlled way. In Parallel and anti-parallel configuration the separation of spin up and spin down is lager in the case of iron electrode than nickel and cobalt electrodes. It shows that iron is the best electrode for 11 acene spin valve device. Our theoretical results are reasonably impressive and trigger our motivation for comprehending the transport properties of these molecular-sized contacts.

  12. Spin diffusion length of Permalloy using spin absorption in lateral spin valves

    Science.gov (United States)

    Sagasta, Edurne; Omori, Yasutomo; Isasa, Miren; Otani, YoshiChika; Hueso, Luis E.; Casanova, Fèlix

    2017-08-01

    We employ the spin absorption technique in lateral spin valves to extract the spin diffusion length of Permalloy (Py) as a function of temperature and resistivity. A linear dependence of the spin diffusion length with the conductivity of Py is observed, evidencing that the Elliott-Yafet mechanism is the dominant spin relaxation mechanism in Permalloy. Completing the dataset with additional data found in the literature, we obtain λPy = (0.91 ± 0.04) (fΩm2)/ρPy.

  13. Interplay of Peltier and Seebeck Effects in Nanoscale Nonlocal Spin Valves

    NARCIS (Netherlands)

    Bakker, F. L.; Slachter, A.; Adam, J-P; van Wees, B. J.

    2010-01-01

    We have experimentally studied the role of thermoelectric effects in nanoscale nonlocal spin valve devices. A finite element thermoelectric model is developed to calculate the generated Seebeck voltages due to Peltier and Joule heating in the devices. By measuring the first, second, and third

  14. Aging effect of spin accumulation in non-local spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bing; Zhang, Ziyu; Chen, Xiaobing; Zhang, Xiaohan; Pan, Jiahui; Ma, Jiajun; Li, Juan; Wang, Zhicheng [State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Le, E-mail: wangle@ruc.edu.cn [Department of Physics, Renmin University of China, Beijing 100872 (China); Xu, Xiaoguang, E-mail: xgxu@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Jiang, Yong [State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2017-06-15

    Highlights: • First time to reveal the whole temporal evolution life of spintronics devices. • The gradual oxidation of the junctions’ areas and that of the channel are confirmed to be the predominant factors to determine the temporal evolution. • Physically, the temporal evolution can be evaluated by theories of S. Takahashi and A. Fert. • This study may offer some useful advice for the design and protection of future industrial spintronics devices. - Abstract: A temporal evolution of spin accumulation of Co/MgO/Ag spin valves have been studied by using the nonlocal spin detection technique over almost a 3-month period in the ambient environment after the fabrication of the devices. Three different stages of the spin accumulation are first observed due to aging effect. The aging effect comes from two contributions–the gradual oxidation of the Ag/MgO and MgO/Co interfaces at the junctions’ areas which arises from the annealing process and the oxidation of the side surfaces of the Ag channels. The theories of S. Takahashi and A. Fert are introduced to evaluate the different evolution stages of spin accumulation.

  15. Aging effect of spin accumulation in non-local spin valves

    International Nuclear Information System (INIS)

    Zhao, Bing; Zhang, Ziyu; Chen, Xiaobing; Zhang, Xiaohan; Pan, Jiahui; Ma, Jiajun; Li, Juan; Wang, Zhicheng; Wang, Le; Xu, Xiaoguang; Jiang, Yong

    2017-01-01

    Highlights: • First time to reveal the whole temporal evolution life of spintronics devices. • The gradual oxidation of the junctions’ areas and that of the channel are confirmed to be the predominant factors to determine the temporal evolution. • Physically, the temporal evolution can be evaluated by theories of S. Takahashi and A. Fert. • This study may offer some useful advice for the design and protection of future industrial spintronics devices. - Abstract: A temporal evolution of spin accumulation of Co/MgO/Ag spin valves have been studied by using the nonlocal spin detection technique over almost a 3-month period in the ambient environment after the fabrication of the devices. Three different stages of the spin accumulation are first observed due to aging effect. The aging effect comes from two contributions–the gradual oxidation of the Ag/MgO and MgO/Co interfaces at the junctions’ areas which arises from the annealing process and the oxidation of the side surfaces of the Ag channels. The theories of S. Takahashi and A. Fert are introduced to evaluate the different evolution stages of spin accumulation.

  16. Spin-polarized light-emitting diodes based on organic bipolar spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Vardeny, Zeev Valentine; Nguyen, Tho Duc; Ehrenfreund, Eitan Avraham

    2017-10-25

    Spin-polarized organic light-emitting diodes are provided. Such spin-polarized organic light-emitting diodes incorporate ferromagnetic electrodes and show considerable spin-valve magneto-electroluminescence and magneto-conductivity responses, with voltage and temperature dependencies that originate from the bipolar spin-polarized space charge limited current.

  17. Spin valve sensor for biomolecular identification: Design, fabrication, and characterization

    Science.gov (United States)

    Li, Guanxiong

    Biomolecular identification, e.g., DNA recognition, has broad applications in biology and medicine such as gene expression analysis, disease diagnosis, and DNA fingerprinting. Therefore, we have been developing a magnetic biodetection technology based on giant magnetoresistive spin valve sensors and magnetic nanoparticle (developed for the magnetic nanoparticle detection, assuming the equivalent average field of magnetic nanoparticles and the coherent rotation of spin valve free layer magnetization. Micromagnetic simulations have also been performed for the spin valve sensors. The analytical model and micromagnetic simulations are found consistent with each other and are in good agreement with experiments. The prototype spin valve sensors have been fabricated at both micron and submicron scales. We demonstrated the detection of a single 2.8-mum magnetic microbead by micron-sized spin valve sensors. Based on polymer-mediated self-assembly and fine lithography, a bilayer lift-off process was developed to deposit magnetic nanoparticles onto the sensor surface in a controlled manner. With the lift-off deposition method, we have successfully demonstrated the room temperature detection of monodisperse 16-nm Fe3O 4 nanoparticles in a quantity from a few tens to several hundreds by submicron spin valve sensors, proving the feasibility of the nanoparticle detection. As desired for quantitative biodetection, a fairly linear dependence of sensor signal on the number of nanoparticles has been confirmed. The initial detection of DNA hybridization events labeled by magnetic nanoparticles further proved the magnetic biodetection concept.

  18. Spin filter effect of hBN/Co detector electrodes in a 3D topological insulator spin valve

    Science.gov (United States)

    Vaklinova, Kristina; Polyudov, Katharina; Burghard, Marko; Kern, Klaus

    2018-03-01

    Topological insulators emerge as promising components of spintronic devices, in particular for applications where all-electrical spin control is essential. While the capability of these materials to generate spin-polarized currents is well established, only very little is known about the spin injection/extraction into/out of them. Here, we explore the switching behavior of lateral spin valves comprising the 3D topological insulator Bi2Te2Se as channel, which is separated from ferromagnetic Cobalt detector contacts by an ultrathin hexagonal boron nitride (hBN) tunnel barrier. The corresponding contact resistance displays a notable variation, which is correlated with a change of the switching characteristics of the spin valve. For contact resistances below ~5 kΩ, the hysteresis in the switching curve reverses upon reversing the applied current, as expected for spin-polarized currents carried by the helical surface states. By contrast, for higher contact resistances an opposite polarity of the hysteresis loop is observed, which is independent of the current direction, a behavior signifying negative spin detection efficiency of the multilayer hBN/Co contacts combined with bias-induced spin signal inversion. Our findings suggest the possibility to tune the spin exchange across the interface between a ferromagnetic metal and a topological insulator through the number of intervening hBN layers.

  19. Transcatheter tricuspid valve-in-valve in patients with transvalvular device leads.

    Science.gov (United States)

    Eleid, Mackram F; Asirvatham, Samuel J; Cabalka, Allison K; Hagler, Donald J; Noseworthy, Peter A; Taggart, Nathaniel W; Rihal, Charanjit S

    2016-03-01

    To describe the effects of percutaneously implanted valve-in-valve in the tricuspid position for patients with pre-existing transvalvular device leads. In this case series, we describe implantation of the Melody valve and SAPIEN XT valve within dysfunctional bioprosthetic tricuspid valves in three patients with transvalvular device leads. In all cases, the valve was successfully deployed and device lead function remained unchanged. In 1/3 cases with 6-month follow-up, device lead parameters remain unchanged and transcatheter valve-in-valve function remains satisfactory. Transcatheter tricuspid valve-in-valve is feasible in patients with pre-existing transvalvular devices leads. Further study is required to determine the long-term clinical implications of this treatment approach. © 2015 Wiley Periodicals, Inc.

  20. Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2014-05-28

    Current-driven spin torques in metallic spin valves composed of antiferromagnets are theoretically studied using the nonequilibrium Green\\'s function method implemented on a tight-binding model. We focus our attention on G-type and L-type antiferromagnets in both clean and disordered regimes. In such structures, spin torques can either rotate the magnetic order parameter coherently (coherent torque) or compete with the internal antiferromagnetic exchange (exchange torque). We show that, depending on the symmetry of the spin valve, the coherent and exchange torques can either be in the plane, ∝n×(q×n) or out of the plane ∝n×q, where q and n are the directions of the order parameter of the polarizer and the free antiferromagnetic layers, respectively. Although disorder conserves the symmetry of the torques, it strongly reduces the torque magnitude, pointing out the need for momentum conservation to ensure strong spin torque in antiferromagnetic spin valves.

  1. High frequency spin torque oscillators with composite free layer spin valve

    International Nuclear Information System (INIS)

    Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda

    2016-01-01

    We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.

  2. Spin valve effect in single-atom contacts

    International Nuclear Information System (INIS)

    Ziegler, M; Neel, N; Berndt, R; Lazo, C; Ferriani, P; Heinze, S; Kroeger, J

    2011-01-01

    Magnetic single-atom contacts have been controllably fabricated with a scanning tunnelling microscope. A voltage-dependent spin valve effect with conductance variations of ∼40% is reproducibly observed from contacts comprising a Cr-covered tip and Co and Cr atoms on ferromagnetic nanoscale islands on W(110) with opposite magnetization. The spin-dependent conductances are interpreted from first-principles calculations in terms of the orbital character of the relevant electronic states of the junction.

  3. Role of the magnetic anisotropy in organic spin valves

    Directory of Open Access Journals (Sweden)

    V. Kalappattil

    2017-09-01

    Full Text Available Magnetic anisotropy plays an important role in determining the magnetic functionality of thin film based electronic devices. We present here, the first systematic study of the correlation between magnetoresistance (MR response in organic spin valves (OSVs and magnetic anisotropy of the bottom ferromagnetic electrode over a wide temperature range (10 K–350 K. The magnetic anisotropy of a La0.67Sr0.33MnO3 (LSMO film epitaxially grown on a SrTiO3 (STO substrate was manipulated by reducing film thickness from 200 nm to 20 nm. Substrate-induced compressive strain was shown to drastically increase the bulk in-plane magnetic anisotropy when the LSMO became thinner. In contrast, the MR response of LSMO/OSC/Co OSVs for many organic semiconductors (OSCs does not depend on either the in-plane magnetic anisotropy of the LSMO electrodes or their bulk magnetization. All the studied OSV devices show a similar temperature dependence of MR, indicating a similar temperature-dependent spinterface effect irrespective of LSMO thickness, resulting from the orbital hybridization of carriers at the OSC/LSMO interface.

  4. Quasiclassical theory of spin-valve magnetoresistance: role of spin-flip scattering

    International Nuclear Information System (INIS)

    Baksalary, O.M.; Barnas, J.

    1997-01-01

    The Boltzmann kinetic equation is used to analyse the in-plane electronic transport in magnetic multilayers. Both diffuse and electron-momentum-conserving spin-flip scattering processes are included. Numerical results show that the momentum-conserving scattering processes reduce the spin-valve magnetoresistance. (author)

  5. Valve packing leakage monitoring device

    International Nuclear Information System (INIS)

    Ezekoye, L.I.

    1985-01-01

    A device for monitoring leakage of fluid across a seal in a component connected to a pressurized fluid system including a housing having a chamber with an inlet for receiving fluid leaking across the seal and an outlet. A positioning means is connected to an orifice plug so as to move the plug for permitting the fluid to be discharged through the orifice at the same rate at which it enters the first chamber and means for detecting the movement of the plug is provided to produce and output signal corresponding to the distance moved by the plug and thereby indicate flow rate. The positioning means compromise a piston attached to the plug by a hollow tube and springs, which at low flow rates locate the piston. When flow increases sufficiently pressure increases and urges the piston upwards. A magnetic portion of tube actuates a succession of proximity switches to indicate flow rate. (author)

  6. Development of the spin valve transistor (invited paper)

    NARCIS (Netherlands)

    Monsma, D.J.; Vlutters, R.; Shimatsu, T.; Shimatsu, T.; Keim, Enrico G.; Mollema, R.H.; Lodder, J.C.

    1997-01-01

    As the easiest experimental approach, GMR (giant magnetoresistance) is usually measured using the current in plane (CIP)-GMR. The spin-valve transistor has previously been presented as a spectroscopic tool to measure current perpendicular to the planes (CPP)-GMR. Hot electrons cross the magnetic

  7. Control of spin injection by direct current in lateral spin valves

    OpenAIRE

    Casanova, Fèlix; Sharoni, Amos; Erekhinsky, Mikhail; Schuller, Ivan K.

    2008-01-01

    The spin injection and accumulation in metallic lateral spin valves with transparent interfaces is studied using d.c. injection current. Unlike a.c.-based techniques, this allows investigating the effects of the direction and magnitude of the injected current. We find that the spin accumulation is reversed by changing the direction of the injected current, whereas its magnitude does not change. The injection mechanism for both current directions is thus perfectly symmetric, leading to the sam...

  8. Spin-dependent thermoelectric effects in graphene-based spin valves.

    Science.gov (United States)

    Zeng, Minggang; Huang, Wen; Liang, Gengchiau

    2013-01-07

    Using first-principles calculations combined with non-equilibrium Green's function (NEGF), we investigate spin-dependent thermoelectric effects in a spin valve which consists of zigzag graphene nanoribbon (ZGNR) electrodes with different magnetic configurations. We find that electron transport properties in the ZGNR-based spin valve are strongly dependent on the magnetic configurations. As a result, with a temperature bias, thermally-induced currents can be controlled by switching the magnetic configurations, indicating a thermal magnetoresistance (MR) effect. Moreover, based on the linear response assumption, our study shows that the remarkably different Seebeck coefficients in the various magnetic configurations lead to a very large and controllable magneto Seebeck ratio. In addition, we evaluate thermoelectric properties, such as the power factor, electron thermal conductance and figure of merit (ZT), of the ZGNR-based spin valve. Our results indicate that the power factor and the electron thermal conductance are strongly related to the transmission gap and electron-hole symmetry of the transmission spectrum. Moreover, the value of ZT can reach 0.15 at room temperature without considering phonon scattering. In addition, we investigate the thermally-controlled magnetic distributions in the ZGNR-based spin valve and find that the magnetic distribution, especially the local magnetic moment around the Ni atom, is strongly related to the thermal bias. The very large, multi-valued and controllable thermal magnetoresistance and Seebeck effects indicate the strong potential of ZGNR-based spin valves for extremely low-power consuming spin caloritronics applications. The thermally-controlled magnetic moment in the ZGNR-based spin valve indicates its possible applications for information storage.

  9. Spin-resolved electron waiting times in a quantum-dot spin valve

    Science.gov (United States)

    Tang, Gaomin; Xu, Fuming; Mi, Shuo; Wang, Jian

    2018-04-01

    We study the electronic waiting-time distributions (WTDs) in a noninteracting quantum-dot spin valve by varying spin polarization and the noncollinear angle between the magnetizations of the leads using the scattering matrix approach. Since the quantum-dot spin valve involves two channels (spin up and down) in both the incoming and outgoing channels, we study three different kinds of WTDs, which are two-channel WTD, spin-resolved single-channel WTD, and cross-channel WTD. We analyze the behaviors of WTDs in short times, correlated with the current behaviors for different spin polarizations and noncollinear angles. Cross-channel WTD reflects the correlation between two spin channels and can be used to characterize the spin-transfer torque process. We study the influence of the earlier detection on the subsequent detection from the perspective of cross-channel WTD, and define the influence degree quantity as the cumulative absolute difference between cross-channel WTDs and first-passage time distributions to quantitatively characterize the spin-flip process. We observe that influence degree versus spin-transfer torque for different noncollinear angles as well as different polarizations collapse into a single curve showing universal behaviors. This demonstrates that cross-channel WTDs can be a pathway to characterize spin correlation in spintronics system.

  10. Magneto-resistive and spin valve heads fundamentals and applications

    CERN Document Server

    Mallinson, John C

    2002-01-01

    This book is aims to be a comprehensive source on the physics and engineering of magneto-resistive heads. Most of the material is presented in a nonmathematical manner to make it more digestible for researchers, students, developers, and engineers.In addition to revising and updating material available in the first edition, Mallinson has added nine new chapters dealing with various aspects concerning spin valves, the electron spin tunneling effect, the electrostatic discharge effects, read amplifiers, and signal-to-noise ratios, making this a completely up-to-date reference.Th

  11. Four-state ferroelectric spin-valve

    Czech Academy of Sciences Publication Activity Database

    Quindeau, A.; Fina, I.; Martí, Xavier; Apachitei, G.; Ferrer, P.; Nicklin, C.; Pippel, E.; Hesse, D.; Alexe, M.

    2015-01-01

    Roč. 5, May (2015), 09749 ISSN 2045-2322 Institutional support: RVO:68378271 Keywords : electronic and spintronic devices * ferroelectrics and multiferroics Subject RIV: BE - Theoretical Physics Impact factor: 5.228, year: 2015

  12. Transcatheter Aortic Valve Replacement With Early- and New-Generation Devices in Bicuspid Aortic Valve Stenosis

    DEFF Research Database (Denmark)

    Yoon, Sung Han; Lefèvre, Thierry; Ahn, Jung Ming

    2016-01-01

    Background Few studies have evaluated the clinical outcomes of transcatheter aortic valve replacement (TAVR) in patients with bicuspid aortic valve stenosis (AS). Particularly, limited data exist comparing the results of TAVR with new-generation devices versus early-generation devices.  Objective...

  13. Effects of oxygen concentration in Co/CoO exchange-coupled spin valves

    International Nuclear Information System (INIS)

    Eckert, J.C.; Stern, N.P.; Snowden, D.S.; Checkelsky, J.G.; Sparks, P.D.; Carey, M.J.

    2004-01-01

    The properties of Co/CoO x exchange-coupled spin valves are explored at temperatures to 5 K. The spin valve structure is: 100 A CoO x /30 A Co/30 A Cu/10 A Co/50 A NiFe/50 A Ti. Our discovery is the considerable differences between the properties of the spin valves for which the CoO x layer is prepared in different O 2 concentrations

  14. On the temperature dependence of spin pumping in ferromagnet–topological insulator–ferromagnet spin valves

    Directory of Open Access Journals (Sweden)

    A.A. Baker

    Full Text Available Topological insulators (TIs have a large potential for spintronic devices owing to their spin-polarized, counter-propagating surface states. Recently, we have investigated spin pumping in a ferromagnet–TI–ferromagnet structure at room temperature. Here, we present the temperature-dependent measurement of spin pumping down to 10 K, which shows no variation with temperature. Keywords: Topological insulator, Spin pumping, Spintronics, Ferromagnetic resonance

  15. Temperature dependence of magnetoresistive properties in bottom spin valve films employing very thin Cu spacers

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Soonchul [School of Electronic Engineering, Soongsil University, Seoul 156-743 (Korea, Republic of)]. E-mail: jschul@ssu.ac.kr; Seigler, Michael A. [Seagate Research, Pittsburgh, PA 15222 (United States)

    2007-09-15

    Temperature dependence of magnetoresistive properties in bottom spin valve films having very thin Cu spacers are reported. NiFeCr55 A/NiFe10 A/IrMn70 A/CoFetA/Ru4 A/CoFe(t+3)A/Cu/CoFe tA/NiFe10 A/Ta50 A bottom spin valve films were deposited using a DC magnetron sputter deposition system. Magnetoresistance (MR) ratio reached a maximum of 13.5% and 11.9% at the Cu thickness of 10.4 A, when the thickness of the CoFe layers t was 20 and 10 A, respectively. Unlike the top spin valves reported earlier, the dip in the MR ratio was not observed when the interlayer coupling between the free layer and reference layer became zero. Sheet resistance change (DR{sub s}) reached a maximum of 4.22 {omega}/{open_square} at the Cu spacer thickness of 10 A when the CoFe thickness t was 10 A. Temperature dependences of MR ratio, DR{sub s}, interlayer coupling field (H {sub i}), and sensitivity showed mostly monotonic decrease as the temperature was increased up to 200 deg. C. It turns out that DR{sub s} for the film having 10.4 A of Cu spacer thickness at 200 deg. C was larger than the DR{sub s} for the film having 20 A of Cu spacer thickness at 40 deg. C. This suggests a high output voltage of the spin valve sensor made of the thin Cu spacer even at high operating temperature. These very thin Cu spacers could be utilized for very small devices where the interlayer coupling field is dominated by high demagnetizing fields.

  16. Vortex Flipping in Superconductor-Ferromagnet Spin Valve Structures

    Science.gov (United States)

    Patino, Edgar J.; Aprili, Marco; Blamire, Mark; Maeno, Yoshiteru

    2014-03-01

    We report in plane magnetization measurements on Ni/Nb/Ni/CoO and Co/Nb/Co/CoO spin valve structures with one of the ferromagnetic layers pinned by an antiferromagnetic layer. In samples with Ni, below the superconducting transition Tc, our results show strong evidence of vortex flipping driven by the ferromagnets magnetization. This is a direct consequence of proximity effect that leads to vortex supercurrents leakage into the ferromagnets. Here the polarized electron spins are subject to vortices magnetic field occasioning vortex flipping. Such novel mechanism has been made possible for the first time by fabrication of the F/S/F/AF multilayered spin valves with a thin-enough S layer to barely confine vortices inside as well as thin-enough F layers to align and control the magnetization within the plane. When Co is used there is no observation of vortex flipping effect. This is attributed to Co shorter coherence length. Interestingly instead a reduction in pinning field of about 400 Oe is observed when the Nb layer is in superconducting state. This effect cannot be explained in terms of vortex fields. In view of these facts any explanation must be directly related to proximity effect and thus a remarkable phenomenon that deserves further investigation. Programa Nacional de Ciencias Basicas COLCIENCIAS (No. 120452128168).

  17. Strain effects on anisotropic magnetoresistance in a nanowire spin valve

    Science.gov (United States)

    Hossain, Md I.; Maksud, M.; Subramanian, A.; Atulasimha, J.; Bandyopadhyay, S.

    2016-11-01

    The longitudinal magnetoresistance of a copper nanowire contacted by two cobalt contacts shows broad spin-valve peaks at room temperature. However, when the contacts are slightly heated, the peaks change into troughs which are signature of anisotropic magnetoresistance (AMR). Under heating, the differential thermal expansion of the contacts and the substrate generates a small strain in the cobalt contacts which enhances the AMR effect sufficiently to change the peak into a trough. This shows the extreme sensitivity of AMR to strain. The change in the AMR resistivity coefficient due to strain is estimated to be a few m Ω -m/microstrain.

  18. Magnetic scanning gate microscopy of CoFeB lateral spin valve

    Directory of Open Access Journals (Sweden)

    Héctor Corte-León

    2017-05-01

    Full Text Available Devices comprised of CoFeB nanostructures with perpendicular magnetic anisotropy and non-magnetic Ta channel were operated in thermal lateral spin valve (LSV mode and studied by magnetotransport measurements and magnetic scanning gate microscopy (SGM. Due to the short spin diffusion length of Ta, the spin diffusion signal was suppressed, allowing the study of the contribution from the anomalous Nernst (ANE and anomalous Hall effects (AHE. The magnetotransport measurements identified the switching fields of the CoFeB nanostructures and demonstrated a combination of AHE and ANE when the devices were operated in thermally-driven spin-injection mode. Modified scanning probe microscopy probes were fabricated by placing a NdFeB magnetic bead (MB on the apex of a commercial Si probe. The dipole magnetic field distribution around the MB was characterized by using differential phase contrast technique and direct measurement of the switching field induced by the bead in the CoFeB nanodevices. Using SGM we demonstrate the influence of localized magnetic field on the CoFeB nanostructures near the non-magnetic channel. This approach provides a promising route towards the study of thermal and spin diffusion effects using local magnetic fields.

  19. Magnetic scanning gate microscopy of CoFeB lateral spin valve

    Science.gov (United States)

    Corte-León, Héctor; Scarioni, Alexander Fernandez; Mansell, Rhodri; Krzysteczko, Patryk; Cox, David; McGrouther, Damien; McVitie, Stephen; Cowburn, Russell; Schumacher, Hans W.; Antonov, Vladimir; Kazakova, Olga

    2017-05-01

    Devices comprised of CoFeB nanostructures with perpendicular magnetic anisotropy and non-magnetic Ta channel were operated in thermal lateral spin valve (LSV) mode and studied by magnetotransport measurements and magnetic scanning gate microscopy (SGM). Due to the short spin diffusion length of Ta, the spin diffusion signal was suppressed, allowing the study of the contribution from the anomalous Nernst (ANE) and anomalous Hall effects (AHE). The magnetotransport measurements identified the switching fields of the CoFeB nanostructures and demonstrated a combination of AHE and ANE when the devices were operated in thermally-driven spin-injection mode. Modified scanning probe microscopy probes were fabricated by placing a NdFeB magnetic bead (MB) on the apex of a commercial Si probe. The dipole magnetic field distribution around the MB was characterized by using differential phase contrast technique and direct measurement of the switching field induced by the bead in the CoFeB nanodevices. Using SGM we demonstrate the influence of localized magnetic field on the CoFeB nanostructures near the non-magnetic channel. This approach provides a promising route towards the study of thermal and spin diffusion effects using local magnetic fields.

  20. A molecular spin-photovoltaic device.

    Science.gov (United States)

    Sun, Xiangnan; Vélez, Saül; Atxabal, Ainhoa; Bedoya-Pinto, Amilcar; Parui, Subir; Zhu, Xiangwei; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E

    2017-08-18

    We fabricated a C 60 fullerene-based molecular spin-photovoltaic device that integrates a photovoltaic response with the spin transport across the molecular layer. The photovoltaic response can be modified under the application of a small magnetic field, with a magnetophotovoltage of up to 5% at room temperature. Device functionalities include a magnetic current inverter and the presence of diverging magnetocurrent at certain illumination levels that could be useful for sensing. Completely spin-polarized currents can be created by balancing the external partially spin-polarized injection with the photogenerated carriers. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  1. Transcatheter Mitral Valve Devices - Functional Mechanical Designs.

    Science.gov (United States)

    Kliger, Chad

    2014-03-01

    Mitral regurgitation is a complex disorder involving a multitude of components of the mitral apparatus. With the desire for less invasive treatment approaches, transcatheter mitral valve therapies (TMVT) are directed at these components and available at varying stages of development. Therapeutic advancements and the potential to combine technologies may further improve their efficacy and safety. Transcatheter mitral valve replacement, while preserving the mitral apparatus, may emerge as an alternative or even a more suitable treatment option. In addition, early data on transcatheter mitral valve-in-valve and valve-in-ring implantation are encouraging and this approach may be an alternative to reoperation in the high-risk patient. This review details the expanding functional mechanical designs of current active TMVT.

  2. Dynamic stability analysis of spring loaded safety valves elements for improved valve performance through assistance device

    International Nuclear Information System (INIS)

    Catalani, L.

    1984-08-01

    For a given valve design (internal profile and ring setting), the dynamic performance which depends strongly on the piping t/h response can be judged only in terms of a coupled problem between valve and piping hydraulic transient. To fulfill this aim an analytical model was developed (valve dynamic model coupled with an existing thermal-hydraulics code for the upstream piping) that provides the means to assess the influence of the main parameters on the valve stability: ring setting, upstream fluid conditions (vapour or liquid discharge), upstream piping length (between pressurizer and safety valves). At last, the performance of a spring loaded safety valve may be greatly improved by the introduction of a pneumatic or electromagnetic assistance device

  3. Multi-terminal spin valve in a strong Rashba channel exhibiting three resistance states.

    Science.gov (United States)

    Lee, Joo-Hyeon; Kim, Hyung-Jun; Chang, Joonyeon; Han, Suk Hee; Koo, Hyun Cheol; Sayed, Shehrin; Hong, Seokmin; Datta, Supriyo

    2018-02-21

    In a strong spin-orbit interaction system, the existence of three resistance states were observed when two ferromagnetic (FM) contacts were used as current terminals while a separate normal metal contact pair was used as voltage terminals. This result is strikingly different from ordinary spin valve or magnetic tunnel junction devices, which have only two resistance states corresponding to parallel (R P ) and antiparallel (R AP ) alignments of the FM contacts. Our experimental results on a quantum well layer with a strong Rashba effect clearly exhibit unequal antiparallel states, i.e., R AP(1) > R P  > R AP(2) , up to room temperature. The three-states are observed without any degradation when the distance between the non-magnetic voltage probe and the ferromagnetic current probe was increased up to 1.6 mm.

  4. Pseudo spin-valve behavior in oxide ferromagnet/superconductor/ferromagnet trilayers

    Energy Technology Data Exchange (ETDEWEB)

    Pang, B.S.H. [Device Materials Group, Department of Materials Science and Metallurgy, University of Cambridge, New Museum Site, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)]. E-mail: brianpang@cantab.net; Bell, C. [Device Materials Group, Department of Materials Science and Metallurgy, University of Cambridge, New Museum Site, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Tomov, R.I. [Device Materials Group, Department of Materials Science and Metallurgy, University of Cambridge, New Museum Site, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Durrell, J.H. [Device Materials Group, Department of Materials Science and Metallurgy, University of Cambridge, New Museum Site, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Blamire, M.G. [Device Materials Group, Department of Materials Science and Metallurgy, University of Cambridge, New Museum Site, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)

    2005-06-20

    La{sub 0.7}Ca{sub 0.3}MnO{sub 3}/YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}/La{sub 0.67}Sr{sub 0.33}MnO{sub 3} heterostructural devices with double coercivity have been fabricated. The superconducting critical current (I{sub c}) and critical temperature in both parallel (P) and antiparallel (AP) magnetic configurations remained unchanged within our measurement limits. This observation is contrary to results obtained elsewhere using similar metallic systems. A pseudo spin-valve magnetoresistive (MR) characteristic was observed at bias current (I{sub bias}){approx}I{sub c} at temperatures below the onset of superconductivity. The effect increased with decreasing temperature and I{sub bias} and can be explained using the assumption of the electron spin-charge separation.

  5. Dynamics of spin torque switching in all-perpendicular spin valve nanopillars

    International Nuclear Information System (INIS)

    Liu, H.; Bedau, D.; Sun, J.Z.; Mangin, S.; Fullerton, E.E.; Katine, J.A.; Kent, A.D.

    2014-01-01

    We present a systematic experimental study of the spin-torque-induced magnetic switching statistics at room temperature, using all-perpendicularly magnetized spin-valves as a model system. Three physical regimes are distinguished: a short-time ballistic limit below a few nanoseconds, where spin-torque dominates the reversal dynamics from a thermal distribution of initial conditions; a long time limit, where the magnetization reversal probability is determined by spin-torque-amplified thermal activation; and a cross-over regime, where the spin-torque and thermal agitation both contribute. For a basic quantitative understanding of the physical processes involved, an analytical macrospin model is presented which contains both spin-torque dynamics and finite temperature effects. The latter was treated rigorously using a Fokker–Plank formalism, and solved numerically for specific sets of parameters relevant to the experiments to determine the switching probability behavior in the short-time and cross-over regimes. This analysis shows that thermal fluctuations during magnetization reversal greatly affect the switching probability over all the time scales studied, even in the short-time limit

  6. Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructures

    Directory of Open Access Journals (Sweden)

    Daniel Lenk

    2016-07-01

    Full Text Available Background: In nanoscale layered S/F1/N/F2/AF heterostructures, the generation of a long-range, odd-in-frequency spin-projection one triplet component of superconductivity, arising at non-collinear alignment of the magnetizations of F1 and F2, exhausts the singlet state. This yields the possibility of a global minimum of the superconducting transition temperature Tc, i.e., a superconducting triplet spin-valve effect, around mutually perpendicular alignment.Results: The superconducting triplet spin valve is realized with S = Nb a singlet superconductor, F1 = Cu41Ni59 and F2 = Co ferromagnetic metals, AF = CoOx an antiferromagnetic oxide, and N = nc-Nb a normal conducting (nc non-magnetic metal, which serves to decouple F1 and F2. The non-collinear alignment of the magnetizations is obtained by applying an external magnetic field parallel to the layers of the heterostructure and exploiting the intrinsic perpendicular easy-axis of the magnetization of the Cu41Ni59 thin film in conjunction with the exchange bias between CoOx and Co. The magnetic configurations are confirmed by superconducting quantum interference device (SQUID magnetic moment measurements. The triplet spin-valve effect has been investigated for different layer thicknesses, dF1, of F1 and was found to decay with increasing dF1. The data is described by an empirical model and, moreover, by calculations using the microscopic theory.Conclusion: The long-range triplet component of superconducting pairing is generated from the singlet component mainly at the N/F2 interface, where the amplitude of the singlet component is suppressed exponentially with increasing distance dF1. The decay length of the empirical model is found to be comparable to twice the electron mean free path of F1 and, thus, to the decay length of the singlet component in F1. Moreover, the obtained data is in qualitative agreement with the microscopic theory, which, however, predicts a (not investigated breakdown of the

  7. Thickness dependence of the triplet spin-valve effect in superconductor-ferromagnet-ferromagnet heterostructures.

    Science.gov (United States)

    Lenk, Daniel; Zdravkov, Vladimir I; Kehrle, Jan-Michael; Obermeier, Günter; Ullrich, Aladin; Morari, Roman; Krug von Nidda, Hans-Albrecht; Müller, Claus; Kupriyanov, Mikhail Yu; Sidorenko, Anatolie S; Horn, Siegfried; Deminov, Rafael G; Tagirov, Lenar R; Tidecks, Reinhard

    2016-01-01

    In nanoscale layered S/F1/N/F2/AF heterostructures, the generation of a long-range, odd-in-frequency spin-projection one triplet component of superconductivity, arising at non-collinear alignment of the magnetizations of F1 and F2, exhausts the singlet state. This yields the possibility of a global minimum of the superconducting transition temperature T c, i.e., a superconducting triplet spin-valve effect, around mutually perpendicular alignment. The superconducting triplet spin valve is realized with S = Nb a singlet superconductor, F1 = Cu41Ni59 and F2 = Co ferromagnetic metals, AF = CoO x an antiferromagnetic oxide, and N = nc-Nb a normal conducting (nc) non-magnetic metal, which serves to decouple F1 and F2. The non-collinear alignment of the magnetizations is obtained by applying an external magnetic field parallel to the layers of the heterostructure and exploiting the intrinsic perpendicular easy-axis of the magnetization of the Cu41Ni59 thin film in conjunction with the exchange bias between CoO x and Co. The magnetic configurations are confirmed by superconducting quantum interference device (SQUID) magnetic moment measurements. The triplet spin-valve effect has been investigated for different layer thicknesses, d F1, of F1 and was found to decay with increasing d F1. The data is described by an empirical model and, moreover, by calculations using the microscopic theory. The long-range triplet component of superconducting pairing is generated from the singlet component mainly at the N/F2 interface, where the amplitude of the singlet component is suppressed exponentially with increasing distance d F1. The decay length of the empirical model is found to be comparable to twice the electron mean free path of F1 and, thus, to the decay length of the singlet component in F1. Moreover, the obtained data is in qualitative agreement with the microscopic theory, which, however, predicts a (not investigated) breakdown of the triplet spin-valve effect for d F1 smaller

  8. Effective suppression of thermoelectric voltage in nonlocal spin-valve measurement

    Science.gov (United States)

    Ariki, Taisei; Nomura, Tatsuya; Ohnishi, Kohei; Kimura, Takashi

    2017-06-01

    We demonstrate that the background signal in the nonlocal spin-valve measurement can be sufficiently suppressed by optimizing the electrode design of the lateral spin valve. A relatively long length scale of heat propagation produces spin-independent thermoelectric signals under the combination of the Peltier and Seebeck effects. These unfavorable signals can be reduced by mixing the Peltier effects in two transparent ferromagnetic/nonmagnetic junctions. Proper understanding of the contribution from the heat current in no spin-current area is a key for effective reduction of the spin-independent background signal.

  9. Influence of mechanical strain on magnetic characteristics of spin valves

    Science.gov (United States)

    Áč, V.; Anwarzai, B.; Luby, S.; Majkova, E.

    2008-03-01

    Giant magnetoresistance (GMR) of Co and Fe-Co based e-beam evaporated spin valves with Cu and Au spacers was studied. The effect of strain on samples, which is detrimental in standard GMR sensors, was measured in a bending configuration. The different dependences of coercivity Hc and magnetic field Hip in the point of inflection of MR loops vs. strain were found. For sample with Co/Au/Co core, Hc, Hip increase with increasing compressive stress, whereas for sample with FeCo/Cu/Co core they increase with tensile stress. The highest relative change of MR ratio vs. bending in the strain interval ± 300 × 10-6 is 1-2 % of the basic magnetoresistance and, practically, it does not influence the SV output.

  10. Influence of mechanical strain on magnetic characteristics of spin valves

    International Nuclear Information System (INIS)

    Ac, V; Anwarzai, B; Luby, S; Majkova, E

    2008-01-01

    Giant magnetoresistance (GMR) of Co and Fe-Co based e-beam evaporated spin valves with Cu and Au spacers was studied. The effect of strain on samples, which is detrimental in standard GMR sensors, was measured in a bending configuration. The different dependences of coercivity H c and magnetic field H ip in the point of inflection of MR loops vs. strain were found. For sample with Co/Au/Co core, H c , H ip increase with increasing compressive stress, whereas for sample with FeCo/Cu/Co core they increase with tensile stress. The highest relative change of MR ratio vs. bending in the strain interval ± 300 x 10 -6 is 1-2 % of the basic magnetoresistance and, practically, it does not influence the SV output

  11. Contact induced spin relaxation in graphene spin valves with Al2O3 and MgO tunnel barriers

    Directory of Open Access Journals (Sweden)

    Walid Amamou

    2016-03-01

    Full Text Available We investigate spin relaxation in graphene by systematically comparing the roles of spin absorption, other contact-induced effects (e.g., fringe fields, and bulk spin relaxation for graphene spin valves with MgO barriers, Al2O3 barriers, and transparent contacts. We obtain effective spin lifetimes by fitting the Hanle spin precession data with two models that include or exclude the effect of spin absorption. Results indicate that additional contact-induced spin relaxation other than spin absorption dominates the contact effect. For tunneling contacts, we find reasonable agreement between the two models with median discrepancy of ∼20% for MgO and ∼10% for Al2O3.

  12. Spin transport and spin torque in antiferromagnetic devices

    Science.gov (United States)

    Železný, J.; Wadley, P.; Olejník, K.; Hoffmann, A.; Ohno, H.

    2018-03-01

    Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets, which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here, we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum-mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.

  13. Experimental study of the feasibility of a spin valve based on superconductor/ferromagnet proximity effect

    International Nuclear Information System (INIS)

    Garifullin, I. A.; Garif'yanov, N. N.; Salikhov, R. I.; Westerholt, K.; Sprungmann, D.; Zabel, H.; Brucas, R.; Hjoervarsson, B.

    2007-01-01

    The feasibility of a superconducting spin valve based on superconductor/ferromagnet proximity effect is discussed. Experimental results obtained by the authors to date in studies of this problem are presented

  14. Epitaxially grown MnAs /GaAs lateral spin valves

    Science.gov (United States)

    Saha, D.; Holub, M.; Bhattacharya, P.; Liao, Y. C.

    2006-10-01

    The authors report magnetoresistance of lateral spin valves fabricated from an epitaxially grown MnAs /GaAs heterostructure and utilizing a Schottky tunnel barrier for efficient spin injection. A coercive field difference between the two ferromagnetic MnAs contacts is obtained by a difference in aspect ratio. Peak magnetoresistances of 3.6% at 10K and 1.1% at 125K are measured for a 0.5μm channel length spin valve. The authors observe an exponential decay of the peak magnetoresistance with increasing channel length, which is indicative of diffusive spin transport. The magnetoresistance increases with increasing bias and with decreasing temperature. Control experiments have been carried out to confirm the spin-valve effect.

  15. Memory and Spin Injection Devices Involving Half Metals

    Directory of Open Access Journals (Sweden)

    M. Shaughnessy

    2011-01-01

    Full Text Available We suggest memory and spin injection devices fabricated with half-metallic materials and based on the anomalous Hall effect. Schematic diagrams of the memory chips, in thin film and bulk crystal form, are presented. Spin injection devices made in thin film form are also suggested. These devices do not need any external magnetic field but make use of their own magnetization. Only a gate voltage is needed. The carriers are 100% spin polarized. Memory devices may potentially be smaller, faster, and less volatile than existing ones, and the injection devices may be much smaller and more efficient than existing spin injection devices.

  16. Theory of electrically controlled resonant tunneling spin devices

    Science.gov (United States)

    Ting, David Z. -Y.; Cartoixa, Xavier

    2004-01-01

    We report device concepts that exploit spin-orbit coupling for creating spin polarized current sources using nonmagnetic semiconductor resonant tunneling heterostructures, without external magnetic fields. The resonant interband tunneling psin filter exploits large valence band spin-orbit interaction to provide strong spin selectivity.

  17. Resistive switching and voltage induced modulation of tunneling magnetoresistance in nanosized perpendicular organic spin valves

    Directory of Open Access Journals (Sweden)

    Robert Göckeritz

    2016-04-01

    Full Text Available Nanoscale multifunctional perpendicular organic spin valves have been fabricated. The devices based on an La0.7Sr0.3MnO3/Alq3/Co trilayer show resistive switching of up to 4-5 orders of magnitude and magnetoresistance as high as -70% the latter even changing sign when voltage pulses are applied. This combination of phenomena is typically observed in multiferroic tunnel junctions where it is attributed to magnetoelectric coupling between a ferromagnet and a ferroelectric material. Modeling indicates that here the switching originates from a modification of the La0.7Sr0.3MnO3 surface. This modification influences the tunneling of charge carriers and thus both the electrical resistance and the tunneling magnetoresistance which occurs at pinholes in the organic layer.

  18. Resistive switching and voltage induced modulation of tunneling magnetoresistance in nanosized perpendicular organic spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Göckeritz, Robert; Homonnay, Nico; Müller, Alexander [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale) (Germany); Fuhrmann, Bodo [Interdisziplinäres Zentrum für Materialwissenschaften, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale) (Germany); Schmidt, Georg, E-mail: georg.schmidt@physik.uni-halle.de [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale) (Germany); Interdisziplinäres Zentrum für Materialwissenschaften, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale) (Germany)

    2016-04-15

    Nanoscale multifunctional perpendicular organic spin valves have been fabricated. The devices based on an La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/Alq3/Co trilayer show resistive switching of up to 4-5 orders of magnitude and magnetoresistance as high as -70% the latter even changing sign when voltage pulses are applied. This combination of phenomena is typically observed in multiferroic tunnel junctions where it is attributed to magnetoelectric coupling between a ferromagnet and a ferroelectric material. Modeling indicates that here the switching originates from a modification of the La{sub 0.7}Sr{sub 0.3}MnO{sub 3} surface. This modification influences the tunneling of charge carriers and thus both the electrical resistance and the tunneling magnetoresistance which occurs at pinholes in the organic layer.

  19. The multi-step tunneling analogue of conductivity mismatch in organic spin valves

    NARCIS (Netherlands)

    Tran, T. Lan Ahn; Le, T.Q.; Sanderink, Johannes G.M.; van der Wiel, Wilfred Gerard; de Jong, Machiel Pieter

    Carbon-based, molecular semiconductors offer several attractive attributes for spintronics, such as exceptionally weak spin-orbit coupling and compatibility with bottom-up nanofabrication. In spite of the promising properties of organic spin valves, however, the physical mechanisms governing

  20. Electric field-induced magnetoresistance in spin-valve/piezoelectric multiferroic laminates for low-power spintronics

    International Nuclear Information System (INIS)

    Huong Giang, D.T.; Thuc, V.N.; Duc, N.H.

    2012-01-01

    Electric field-induced magnetic anisotropy has been realized in the spin-valve-based {Ni 80 Fe 20 /Cu/Fe 50 Co 50 /IrMn}/piezoelectric multiferroic laminates. In this system, electric-field control of magnetization is accomplished by strain mediated magnetoelectric coupling. Practically, the magnetization in the magnetostrictive FeCo layer of the spin-valve structure rotates under an effective compressive stress caused by the inverse piezoelectric effect in external electrical fields. This phenomenon is evidenced by the magnetization and magnetoresistance changes under the electrical field applied across the piezoelectric layer. The result shows great potential for advanced low-power spintronic devices. - Highlights: ► Investigate electric field-induced magnetic anisotropy in spin-valve/piezoelectric. ► Magnetization, magnetoresistance changes under electric field across piezoelectric. ► Magnetization in magnetostrictive FeCo-layer rotates under a compressive stress. ► This advance shows great implications for low-power electronics and spintronics.

  1. Electrical and magnetic properties of nano-oxide added spin valves

    International Nuclear Information System (INIS)

    Li Kebin; Wu Yihong; Han Guchang; Qiu Jinjun; Zheng Yuankai; Guo Zaibing; An Lihua; Luo Ping

    2006-01-01

    The nano-oxide layer (NOL) inside the spin valve can smooth the surface topography, which results in two effects: suppressing the ferromagnetic Neel magnetostatic coupling and enhancing the RKKY exchange coupling between the free layer and the pinned layer. As a consequence, MR ratio is increased in the spin valve with NOL layer inside the pinned layer or on top of the free layer. Because of the enhancement of the specular reflectivity in the NOL added spin valves, the oscillation of the interlayer coupling field with respect to the thickness of the spacer layer and even the thickness of the cap layer has been observed. In terms of the performance of both electrical and magnetic properties of the spin valves, CoFe-O turns out to be the best materials inside the pinned layer. But, as a cap layer, ZnO is the best choice because of its crystalline growth on top of the free layer CoFe, which causes the enhancement of the MR ratio. About 4.5% of MR ratio has been achieved in a NOL added spin valve in the current-perpendicular-to-plane configuration. Large MR ratio observed in the NOL added CPP sensor is due to the increment of the interface scattering and current confined path in the NOL added pinned layer

  2. Electrically-Actuated Valves for Woven Fabric Lateral Flow Devices.

    Science.gov (United States)

    Narahari, Tanya; Dendukuri, Dhananjaya; Murthy, Shashi K

    2017-04-18

    The integration of flow control elements into low-cost biosensors presents a significant engineering challenge. This Article describes the development and integration of active, chemical valves into lateral flow devices, using a scalable, single-step, weaving-based manufacturing approach. The valve was constructed from an electrically conductive polymer, polypyrrole. The polymer switches between wetting and nonwetting states when it is reduced and oxidized via the application of an electrochemical potential. In this work, yarns were first coated with polypyrrole and integrated into fabric lateral flow sensors. The coated yarns were stimulated in situ via integrated electrodes. Coated textiles were characterized for their response to variations in the applied electrical potential, the duration for which the potential is applied, and the chemical composition of the polymer. Among these tuning parameters, the concentration of iron (iii) chloride utilized to catalyze the synthesis of the polymer, was found to be a significant determinant in the wetting range of the polymer. Complete ON/OFF flow control was achieved at applied potentials of 20 V.cm -1 , within 120 s of stimulation, using 0.1 M iron (iii) chloride, making the valve fairly easy to incorporate into point-of-care format. The practical utility of the valve was demonstrated by performing a Lowry protein assay in the device, wherein fluid flow was deactivated to allow individual reaction steps to go to completion prior to reactivation. Significant improvements in the sensitivity and linear range of the devices are reported in a simple straight-channel, lateral flow device, with the potential to develop more complex channel geometries via the weaving-based approach.

  3. Dual function armchair graphene nanoribbon-based spin-photodetector: Optical spin-valve and light helicity detector

    Energy Technology Data Exchange (ETDEWEB)

    Ostovari, Fatemeh [Department of Physics, Tarbiat Modares University, P.O. Box 14115-335, Tehran 1411713116 (Iran, Islamic Republic of); Moravvej-Farshi, Mohammad Kazem, E-mail: Farshi-k@modares.ac.ir [Department of Physics, Tarbiat Modares University, P.O. Box 14115-335, Tehran 1411713116 (Iran, Islamic Republic of); Faculty of Electrical and Computer Engineering, Advanced Devices Simulation Lab (ADSL), Tarbiat Modares University, P.O. Box 14115-194, Tehran 1411713116 (Iran, Islamic Republic of)

    2014-08-18

    We show an armchair graphene nanoribbon channel connected between asymmetric ferromagnetic source-drain structure—i.e., p-type Co/Au/graphene source and n-type Co/Cu/graphene drain—can operate as dual function spin-photodetector, under zero external biases at room temperature. It can function as an optical spin-valve with magnetoresistance of greater than 60% and responsivity as high as 25.12 A/mW, when irradiated by an un-polarized light of energy ∼3.03 eV. Under a circularly polarized illumination, this optical spin-valve can also operate as a light helicity detector. The calculated magnetoresistances for right and left circularly polarized lights are both greater than 60%.

  4. Spin thermoelectric effects in organic single-molecule devices

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Wang, M.X.; Qian, C.; Hong, X.K.; Zhang, D.B.; Liu, Y.S.; Yang, X.F., E-mail: xfyang@cslg.edu.cn

    2017-05-25

    Highlights: • A stronger spin thermoelectric performance in a polyacetylene device is observed. • For the antiferromagnetic (AFM) ordering, a transport gap is opened. Thus the thermoelectric effects are largely enhanced. - Abstract: The spin thermoelectric performance of a polyacetylene chain bridging two zigzag graphene nanoribbons (ZGNRs) is investigated based on first principles method. Two different edge spin arrangements in ZGNRs are considered. For ferromagnetic (FM) ordering, transmission eigenstates with different spin indices distributed below and above Fermi level are observed, leading directly to a strong spin thermoelectric effect in a wide temperature range. With the edge spins arranged in the antiferromagnetic (AFM) ordering, an obvious transport gap appears in the system, which greatly enhances the thermoelectric effects. The presence of a small spin splitting also induces a spin thermoelectric effect greater than the charge thermoelectric effect in certain temperature range. In general, the single-molecule junction exhibits the potential to be used for the design of perfect thermospin devices.

  5. Evidence for triplet superconductivity in a superconductor-ferromagnet spin valve.

    Science.gov (United States)

    Leksin, P V; Garif'yanov, N N; Garifullin, I A; Fominov, Ya V; Schumann, J; Krupskaya, Y; Kataev, V; Schmidt, O G; Büchner, B

    2012-08-03

    We have studied the dependence of the superconducting (SC) transition temperature on the mutual orientation of magnetizations of Fe1 and Fe2 layers in the spin valve system CoO(x)/Fe1/Cu/Fe2/Pb. We find that this dependence is nonmonotonic when passing from the parallel to the antiparallel case and reveals a distinct minimum near the orthogonal configuration. The analysis of the data in the framework of the SC triplet spin valve theory gives direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the two magnetizations.

  6. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Luping [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zhan, Qingfeng, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Li, Run-Wei, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Tan, Xiaohua [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China)

    2016-03-15

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  7. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    International Nuclear Information System (INIS)

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Li, Run-Wei; Tan, Xiaohua

    2016-01-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  8. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Science.gov (United States)

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Tan, Xiaohua; Li, Run-Wei

    2016-03-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  9. Spin and tunneling dynamics in an asymmetrical double quantum dot with spin-orbit coupling: Selective spin transport device

    Science.gov (United States)

    Singh, Madhav K.; Jha, Pradeep K.; Bhattacherjee, Aranya B.

    2017-09-01

    In this article, we study the spin and tunneling dynamics as a function of magnetic field in a one-dimensional GaAs double quantum dot with both the Dresselhaus and Rashba spin-orbit coupling. In particular, we consider different spatial widths for the spin-up and spin-down electronic states. We find that the spin dynamics is a superposition of slow as well as fast Rabi oscillations. It is found that the Rashba interaction strength as well as the external magnetic field strongly modifies the slow Rabi oscillations which is particularly useful for implementing solid state selective spin transport device.

  10. Anomalous Nernst and anisotropic magnetoresistive heating in a lateral spin valve

    NARCIS (Netherlands)

    Slachter, Abraham; Bakker, Frank Lennart; van Wees, Bart Jan

    2011-01-01

    We measured the anomalous Nernst effect and anisotropic magnetoresistive heating in a lateral multiterminal permalloy/copper spin valve using all-electrical lock-in measurements. To interpret the results, a threedimensional thermoelectric finite-element model is developed. Using this model, we

  11. Materials for giant spin Hall effect devices

    Science.gov (United States)

    Jayanthinarasimham, Avyaya

    Studies presented in this thesis are an effort to control the growth of beta W and explore the in-plane current induced effects in a beta W and CoFeB bilayer. Physical vapor deposited W films beyond 5 nm transform from beta to the stable bulk alpha phase. beta W films with 5 nm thickness when integrated with the other films for large scale fabrication presents a small process window for etch and deposition errors. Also, CoFeB on W does not generate perpendicular magnetic anisotropy (PMA) even when it is capped with MgOjTa(Capping) layers. The beta W with larger thickness process window and a CoFeB with PMA deposited on top of W is necessary for an ideal functioning spin Hall effect (SHE) device. This thesis will focus on overcoming the above mentioned challenges. 2 sccm of O2 gas was introduced during the growth of beta W, this resulted in thicker films with beta W. If a large amount of O2 was introduced, it resulted in complete oxidation and loss of crystallinity. Thus an optimum amount of oxygen is necessary. However, introducing O2 during the deposition can effect other metals present on the wafer, which is not ideal. N2 was utilized to achieve thicker beta W films. Upon introducing N with similar concentration of O, it lead to amorphization of W, thus revealing a kinetic control. A pulsed N2 of 1 sccm at 2-second period was used to kinetically control the growth of beta W. Both the techniques were able to grow beta W from 5 nm up to 20 nm thick films. Films with N-assisted growth exhibited lower resistance and higher metallic character. 1 nm Ta, Mo and CoFe were used as insert layers between beta W and CoFeB to induce PMA. 1 nm Mo insert layer and 5 nm Mo under layer have largely different interfaces with CoFeB even when annealed in ultra high vacuum (UHV) environment. Thus, 1 nm Mo layer does not show any PMA. The CoFe insert layer adds to the bulk anisotropy and dominates the interface anisotropy, and does not lead to any PMA. The 1 nm Ta insert exhibits

  12. Spin Transport Measurements in Hydrogenated Graphene Devices

    Science.gov (United States)

    Koon, Gavin; Balakrishnan, Jayakumar; Oezyilmaz, Barbaros

    2013-03-01

    Graphene with all its extraordinary properties still fall short when it comes to manipulation of electron spins. Chemically modified Graphene has been explored by many to further enhance Graphene properties, tailoring it to suit desired application purposes. Here we study the effects of hydrogenation rate on graphene spin transport, spin relaxation time and length in this defected system. These findings are important for future theoretical and experimental studies on other adatoms modified Graphene.

  13. Fluid flow device, comprising a valv member and a valve seat defining a fluid flow surface area, as well as method of manufacturing the same

    NARCIS (Netherlands)

    Groen, Maarten; Brouwer, Dannis Michel; Brookhuis, Robert Anton; Wiegerink, Remco J.

    2015-01-01

    The invention relates to a fluid flow regulator device, comprising a valve member and a valve seat arranged to be movable with respect to each other such that a fluid flow surface area defined by the valve member and the valve seat can be changed. Furthermore, sensor means are provided for measuring

  14. Fluid flow regulator device, comprising a valve member and a valve seat defining a fluid flow surface area, as well as method of using the same

    NARCIS (Netherlands)

    Groen, Maarten; Brouwer, Dannis Michel; Brookhuis, Robert Anton; Wiegerink, Remco J.

    2014-01-01

    The invention relates to a fluid flow regulator device, comprising a valve member and a valve seat arranged to be movable with respect to each other such that a fluid flow surface area defined by the valve member and the valve seat can be changed. Furthermore, sensor means are provided for measuring

  15. Josephson magnetic rotary valve

    NARCIS (Netherlands)

    Soloviev, I.I.; Klenov, N.V.; Bakurskiy, S.V.; Bol’ginov, V.V.; Ryazanov, V.V.; Kupriyanov, M..Y.; Golubov, Alexandre Avraamovitch

    2014-01-01

    We propose a control element for a Josephson spin valve. It is a complex Josephson device containing ferromagnetic (F) layer in the weak-link area consisting of two regions, representing 0 and π Josephson junctions, respectively. The valve's state is defined by mutual orientations of the F-layer

  16. Fast electrical switching of spin injection in nonlocal spin transport devices

    Science.gov (United States)

    Fuhrer, A.; Alvarado, S. F.; Salis, G.; Allenspach, R.

    2011-05-01

    We present spin-injection experiments in a nonlocal spin transport device where spin is injected from a ferromagnetic FeCo electrode into a GaAs epilayer. The magnetization of the injection contact is switched by Oersted fields generated by alternating current pulses. This enables fast and offset-free measurements of nonlocal spin signals. Due to a negligible time-averaged electron spin polarization, dynamic nuclear polarization effects are small and Hanle curves measured down to T =3 K can be fit very accurately by drift-diffusion theory if a small constant Overhauser field BN=0.4 mT is accounted for.

  17. Nanoscale magnetic characterization of tunneling magnetoresistance spin valve head by electron holography.

    Science.gov (United States)

    Park, Hyun Soon; Hirata, Kei; Yanagisawa, Keiichi; Ishida, Yoichi; Matsuda, Tsuyoshi; Shindo, Daisuke; Tonomura, Akira

    2012-12-07

    Nanostructured magnetic materials play an important role in increasing miniaturized devices. For the studies of their magnetic properties and behaviors, nanoscale imaging of magnetic field is indispensible. Here, using electron holography, the magnetization distribution of a TMR spin valve head of commercial design is investigated without and with a magnetic field applied. Characterized is the magnetic flux distribution in complex hetero-nanostructures by averaging the phase images and separating their component magnetic vectors and electric potentials. The magnetic flux densities of the NiFe (shield and 5 nm-free layers) and the CoPt (20 nm-bias layer) are estimated to be 1.0 T and 0.9 T, respectively. The changes in the magnetization distribution of the shield, bias, and free layers are visualized in situ for an applied field of 14 kOe. This study demonstrates the promise of electron holography for characterizing the magnetic properties of hetero-interfaces, nanostructures, and catalysts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. FY1995 study of high density near-contact magnetic recording using spin valve head; 1995 nendo spin valve head ni yoru chokomitsudo near contact jiki kiroku no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Development of high performance spin valves formed by amorphous magnetic layer and head-medium interface with nano-thickness molecular film for realizing an ultra-high density of 20 Gbit/in{sup 2} using contact recording. The giant magnetoresistance effect was investigated for spin valves using very thin amorphous magnetic layer. In amorphous-CoFeB/Cu/ Co spin valves, the maximum MR ratio of 6% was achieved at the thickness of the amorphous layer of 2 nm. The spin valves with the amorphous layer exhibit very good thermal stability. Design guideline for molecularly thin lubricant was established using newly derived lubrication equation considering lubricant porosity. Novel method for accurately measuring surface force due to molecularly thin lubricant was developed by using Michelson interferometry to detect cantilever displacement, which enabled two-dimensional transient force measurement. (NEDO)

  19. Growth and Electronic Structure of Heusler Compounds for Use in Electron Spin Based Devices

    Science.gov (United States)

    Patel, Sahil Jaykumar

    states, with an approximate crossing point 240meV above the Fermi level, suggests that PtLuSb (001) films are topologically non-trivial. PtLuBi films also display a Fermi level position approximately 500meV below the valence band maximum. Co2MnSi and Co2FeSi were also grown by MBE on GaAs (001) for use as spin injectors into GaAs lateral spin valve devices. By the growth of the quaternary alloy Co2FexMn1-- xSi and varying x, electron doping of the full Heusler compound was demonstrated by observation of a crossover from a majority spin polarization of Co2MnSi to a minority spin polarization in Co2FeSi. Co2MnSi films were studied as a function of the nucleation sequence, using either Co-- or MnSi-- initiated films on c(4x4) GaAs. Studies using x-ray photoemission spectroscopy (XPS), STM/STS, and transmission electron microscopy (TEM) suggest that the bulk of the Co2MnSi films and the interfacial structure between Co 2MnSi and GaAs is not modified by the nucleation sequence, but a change in spin transport characteristics suggests a modification of semiconductor band structure at the Co2MnSi/GaAs interface due to diffusion of Mn leading to compensation of the Schottky barrier contact. Diffusion of Mn into the GaAs was confirmed by secondary ion mass spectrometry (SIMS) measurements. The proposed mechanism for the modified spin transport characteristics for MnSi initiated films is that additional diffusion of Mn into the GaAs, widens the Schottky barrier contact region. These studies suggest that the ideal initiation sequence for Co2MnSi/GaAs (001) lateral spin valve devices is achieved by deposition of Co first.

  20. Correlations between atomic structure and giant magnetoresistance ratio in Co2(Fe,Mn)Si spin valves

    International Nuclear Information System (INIS)

    Lari, L; Sizeland, J; Gilks, D; Uddin, G M; Nedelkoski, Z; Hasnip, P J; Lazarov, V K; Yoshida, K; Galindo, P L; Sato, J; Oogane, M; Ando, Y; Hirohata, A

    2014-01-01

    We show that the magnetoresistance of Co 2 Fe x Mn 1−x Si-based spin valves, over 70% at low temperature, is directly related to the structural ordering in the electrodes and at the electrodes/spacer (Co 2 Fe x Mn 1−x Si/Ag) interfaces. Aberration-corrected atomic resolution Z-contrast scanning transmission electron microscopy of device structures reveals that annealing at 350 °C and 500 °C creates partial B2/L2 1 and fully L2 1 ordering of electrodes, respectively. Interface structural studies show that the Ag/Co 2 Fe x Mn 1−x Si interface is more ordered compared to the Co 2 Fe x Mn 1−x Si/Ag interface. The release of interface strain is mediated by misfit dislocations that localize the strain around the dislocation cores, and the effect of this strain is assessed by first principles electronic structure calculations. This study suggests that by improving the atomic ordering and strain at the interfaces, further enhancement of the magnetoresistance of CFMS-based current-perpendicular-to-plane spin valves is possible. (fast track communication)

  1. 49 CFR 178.337-9 - Pressure relief devices, piping, valves, hoses, and fittings.

    Science.gov (United States)

    2010-10-01

    ..., and fittings. 178.337-9 Section 178.337-9 Transportation Other Regulations Relating to Transportation....337-9 Pressure relief devices, piping, valves, hoses, and fittings. (a) Pressure relief devices. (1... encountered. (b) Piping, valves, hose, and fittings. (1) The burst pressure of all piping, pipe fittings, hose...

  2. 49 CFR 178.338-8 - Pressure relief devices, piping, valves, and fittings.

    Science.gov (United States)

    2010-10-01

    ... fittings. 178.338-8 Section 178.338-8 Transportation Other Regulations Relating to Transportation PIPELINE....338-8 Pressure relief devices, piping, valves, and fittings. (a) Pressure relief devices. Each tank... subchapter. (b) Piping, valves, and fittings. (1) The burst pressure of all piping, pipe fittings, hoses and...

  3. Device for disassembling and reassembling a main steam isolation valve of a nuclear reactor

    International Nuclear Information System (INIS)

    Yokohama, T.M.; Fujsawa, T.I.

    1986-01-01

    A device is described for disassembling and reassembling a main steam isolation valve of the type in which the isolation valve installed at an angle relative to a main steam pipe extended from a nuclear reactor is withdrawn along an axis of the isolation valve from the main steam pipe and then the isolation valve is reinserted into the main steam pipe. The device consists of a supporting stand mounted on a stationary member thermatically isolated from the isolation valve and adapted to move toward or away from the isolation valve; guide bars each mounted on the supporting stand such that an angle of inclination of the guide bar can be arbitrarily adjusted, the guide bars being extended in parallel with the axis of the isolation valve; a supporting member mounted on the isolation valve for supporting the isolation valve such that the isolation valve can be freely moved over the guide bars; and drive means mounted on the guide bar and engaged with the isolation valve so as to cause upward or downward movement of the isolation valve along the guide bars

  4. Magnetoresistance in hybrid organic spin valves at the onset of multiple-step tunneling.

    Science.gov (United States)

    Schoonus, J J H M; Lumens, P G E; Wagemans, W; Kohlhepp, J T; Bobbert, P A; Swagten, H J M; Koopmans, B

    2009-10-02

    By combining experiments with simple model calculations, we obtain new insight in spin transport through hybrid, CoFeB/Al2O3(1.5 nm)/tris(8-hydroxyquinoline)aluminium (Alq3)/Co spin valves. We have measured the characteristic changes in the I-V behavior as well as the intrinsic loss of magnetoresistance at the onset of multiple-step tunneling. In the regime of multiple-step tunneling, under the condition of low hopping rates, spin precession in the presence of hyperfine coupling is conjectured to be the relevant source of spin relaxation. A quantitative analysis leads to the prediction of a symmetric magnetoresistance around zero magnetic field in addition to the hysteretic magnetoresistance curves, which are indeed observed in our experiments.

  5. Giant tunneling electroresistance effect driven by an electrically controlled spin valve at a complex oxide interface.

    Science.gov (United States)

    Burton, J D; Tsymbal, E Y

    2011-04-15

    A giant tunneling electroresistance effect may be achieved in a ferroelectric tunnel junction by exploiting the magnetoelectric effect at the interface between the ferroelectric barrier and a magnetic La(1-x)Sr(x)MnO3 electrode. Using first-principles density-functional theory we demonstrate that a few magnetic monolayers of La(1-x)Sr(x)MnO3 near the interface act, in response to ferroelectric polarization reversal, as an atomic-scale spin valve by filtering spin-dependent current. This produces more than an order of magnitude change in conductance, and thus constitutes a giant resistive switching effect.

  6. Stretchable Spin Valve with Stable Magnetic Field Sensitivity by Ribbon-Patterned Periodic Wrinkles.

    Science.gov (United States)

    Li, Huihui; Zhan, Qingfeng; Liu, Yiwei; Liu, Luping; Yang, Huali; Zuo, Zhenghu; Shang, Tian; Wang, Baomin; Li, Run-Wei

    2016-04-26

    A strain-relief structure by combining the strain-engineered periodic wrinkles and the parallel ribbons was employed to fabricate flexible dual spin valves onto PDMS substrates in a direct sputtering method. The strain-relief structure can accommodate the biaxial strain accompanying with stretching operation (the uniaxial applied tensile strain and the induced transverse compressive strain due to the Poisson effect), thus significantly reducing the influence of the residual strain on the giant magnetoresistance (GMR) performance. The fabricated GMR dual spin-valve sensor exhibits the nearly unchanged MR ratio of 9.9%, magnetic field sensitivity up to 0.69%/Oe, and zero-field resistance in a wide range of stretching strain, making it promising for applications on a conformal shape or a movement part.

  7. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices.

    Science.gov (United States)

    Toley, Bhushan J; Wang, Jessica A; Gupta, Mayuri; Buser, Joshua R; Lafleur, Lisa K; Lutz, Barry R; Fu, Elain; Yager, Paul

    2015-03-21

    Failure to utilize valving and automation techniques has restricted the complexity of fluidic operations that can be performed in paper microfluidic devices. We developed a toolkit of paper microfluidic valves and methods for automatic valve actuation using movable paper strips and fluid-triggered expanding elements. To the best of our knowledge, this is the first functional demonstration of this valving strategy in paper microfluidics. After introduction of fluids on devices, valves can actuate automatically after a) a certain period of time, or b) the passage of a certain volume of fluid. Timing of valve actuation can be tuned with greater than 8.5% accuracy by changing lengths of timing wicks, and we present timed on-valves, off-valves, and diversion (channel-switching) valves. The actuators require ~30 μl fluid to actuate and the time required to switch from one state to another ranges from ~5 s for short to ~50 s for longer wicks. For volume-metered actuation, the size of a metering pad can be adjusted to tune actuation volume, and we present two methods - both methods can achieve greater than 9% accuracy. Finally, we demonstrate the use of these valves in a device that conducts a multi-step assay for the detection of the malaria protein PfHRP2. Although slightly more complex than devices that do not have moving parts, this valving and automation toolkit considerably expands the capabilities of paper microfluidic devices. Components of this toolkit can be used to conduct arbitrarily complex, multi-step fluidic operations on paper-based devices, as demonstrated in the malaria assay device.

  8. Feedback control of noise in spin valves by the spin-transfer torque

    NARCIS (Netherlands)

    Bandopadyay, S.; Brataas, A.; Bauer, G.E.W.

    2011-01-01

    The miniaturization of magnetic read heads and random access memory elements makes them vulnerable to thermal fluctuations. We demonstrate how current-induced spin-transfer torques can be used to suppress the effects of thermal fluctuations. This enhances the fidelity of perpendicular magnetic spin

  9. Spin coating of passive electroactive ceramic devices

    CERN Document Server

    Carson, E

    2001-01-01

    ferrite inductor paste materials as powders before and after thermal processing in the range 150, 500, 850 and 1150 deg C indicates a high carbon content in the surface region. By comparison, spin coated layers of each of these systems on alumina substrates before and after heating in the same temperature range as that used for the residual powders, showed a marked decrease in the carbon content in the surface region. In addition, deposition of the dielectric onto a ferrite surface which itself had been spin coated on alumina indicated no merging of the different layers. Thermal processing of this bi-layer system up to 850 deg C provides evidence that there may be some channelling of the bismuth photoelectrons through suitably sized pores in the dielectric layer. The commercial doctor blading method has also been used to produce dielectric layers and these are shown to be somewhat different to those produced by spin coating. In particular, the doctor bladed material contains more carbonaceous material in the ...

  10. Towards building a prototype spin-logic device

    Science.gov (United States)

    Penumatcha, Ashish Verma

    Since the late 1980s, several key discoveries, such as Giant and Tunneling Magne- toresistance, and advances in magnetic materials have paved the way for exponentially higher bit-densities in magnetic storage. In particular, the discovery of Spin-Transfer Torque (STT) has allowed information to be written to individual magnets using spin-currents. This has replaced the more traditional Oersted-field control used in field-MRAMs and allowed further scaling of magnetic-memories. A less obvious con- sequence of STT is that it has made possible a logic-technology based on magnets controlled by spin-polarized currents. Charge-coupled Spin Logic (CSL) is one such device proposal that couples a giant spin Hall effect(GSHE) write-unit with a Mag- netic Tunnel Junction read-unit. Several theoretical reports have demonstrated that a CSL-style device can function as a fundamental building block for neuromorphic computing by harnessing the intrinsic properties of magnets. This thesis describes the working of a CSL device. Experimental progress towards building the individual components of CSL and also our efforts to integrate these components into a CSL prototype will be presented. In addition to the integration effort, this work also explores spin-injection from a GSHE metal to a nanoscale magnet through an intermediate non-magnetic metal. Our results indicate that with the right choice of intermediate layers, the spin-angular mo- mentum absorbed by the magnet can be increased without engineering the intrinsic spin Hall angle of the GSHE metal. Finally, this work also proposes a Schottky-barrier model to describe the current flow through low-dimensional semiconductors and uses it to extract the band gap of black-phosphorus thin-films in an attempt to characterize novel 2D-materials.

  11. Spin valve heterostructures built using the shadowing effect: Setting NiFe and Co magnetization directions for non-collinear couplings

    Science.gov (United States)

    Krohling, A. C.; Bueno, T. E. P.; Nascimento, V. P.; Larica, C.; Krambrock, K.; Menzel, D.; Litterst, F. J.; Passamani, E. C.

    2017-12-01

    An experimental method was developed to set the magnetization direction in ferromagnetic layers of Si(100)/Cu/NiFe/Cu/Co/IrMn/Cu morphologically modified spin valves. Large uniaxial anisotropies emerged in the NiFe and Co layers due to modifications of their morphologies induced by the shadowing effect that arises from oblique depositions. Therefore, we set the uniaxial anisotropy axes in pre-set directions by controlling the sputtered beam direction relative to the sample reference. We were able to tune the angle between the magnetization directions of the NiFe and Co layers in a continuous interval from 0° to 90° due to the interplay between the Co and NiFe uniaxial anisotropies and the unidirectional anisotropy at the Co/IrMn interface. This type of non-collinear coupling cannot be found in conventional spin valve devices with passive spacers through which the coupling is governed by bilinear and biquadratic couplings. The methodology of preparation proposed here allows an extra control over the magnetism of the spin valves, which can be promising for technological applications.

  12. Evaluation of one-way valves used in medical devices for prevention of cross-contamination.

    Science.gov (United States)

    Nandy, Poulomi; Young, Megan; Haugen, Shanil P; Katzenmeyer-Pleuss, Kristy; Gordon, Edward A; Retta, Stephen M; Wood, Steven C; Lucas, Anne D

    2017-07-01

    One-way valves used in day use devices (used on multiple patients throughout a day without reprocessing between patients) are intended to reduce the potential for cross-contamination between patients resulting from the backflow of patient fluids. One-way valves are typically designed to withstand high levels of back pressure before failure; however, they may not be explicitly designed as a means of infection control as used in medical device applications. Five different medical grade one-way valves were placed in low pressure configurations. After flushing in the intended direction of flow, bacteriophage, bacteria, or dye was placed patient side for 24 hours. The upstream device side of the valve was then evaluated for microbial growth or presence of visible dye. Leakage (ie, backflow) of the microorganisms occurred with a variety of one-way valve designs across a range of fluid properties tested. This study describes testing of the one-way valves (component-level testing) for the potential of cross-contamination. Although day use medical device systems may use numerous other factors to prevent patient cross-contamination, this work demonstrates that one-way valves themselves may not prevent leakage of contaminated fluid if the fluid is able to reach the upstream side of the one-way valve. Published by Elsevier Inc.

  13. 49 CFR 179.100-13 - Venting, loading and unloading valves, measuring and sampling devices.

    Science.gov (United States)

    2010-10-01

    ....314(j), 179.102 or 179.103, may be equipped with excess flow valves of approved design. (c) Gauging... withstand the tank test pressure without leakage. Interior pipes of the gauging device and sampling valve... would exist under the same internal pressure in the wall of a tank of circular cross section designed in...

  14. Organic light-emitting devices using spin-dependent processes

    Science.gov (United States)

    Vardeny, Z. Valy; Wohlgenannt, Markus

    2010-03-23

    The maximum luminous efficiency of organic light-emitting materials is increased through spin-dependent processing. The technique is applicable to all electro-luminescent processes in which light is produced by singlet exciton decay, and all devices which use such effects, including LEDs, super-radiant devices, amplified stimulated emission devices, lasers, other optical microcavity devices, electrically pumped optical amplifiers, and phosphorescence (Ph) based light emitting devices. In preferred embodiments, the emissive material is doped with an impurity, or otherwise modified, to increase the spin-lattice relaxation rate (i.e., decrease the spin-lattice time), and hence raise the efficiency of the device. The material may be a polymer, oligomer, small molecule, single crystal, molecular crystal, or fullerene. The impurity is preferably a magnetic or paramagnetic substance. The invention is applicable to IR, UV, and other electromagnetic radiation generation and is thus not limited to the visible region of the spectrum. The methods of the invention may also be combined with other techniques used to improve device performance.

  15. Magnetic field devices for neutron spin transport and manipulation in precise neutron spin rotation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado-Velázquez, M. [Posgrado en Ciencias Físicas, Universidad Nacional Autónoma de México, 04510 (Mexico); Barrón-Palos, L., E-mail: libertad@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 (Mexico); Crawford, C. [University of Kentucky, Lexington, KY 40506 (United States); Snow, W.M. [Indiana University, Bloomington, IN 47405 (United States)

    2017-05-11

    The neutron spin is a critical degree of freedom for many precision measurements using low-energy neutrons. Fundamental symmetries and interactions can be studied using polarized neutrons. Parity-violation (PV) in the hadronic weak interaction and the search for exotic forces that depend on the relative spin and velocity, are two questions of fundamental physics that can be studied via the neutron spin rotations that arise from the interaction of polarized cold neutrons and unpolarized matter. The Neutron Spin Rotation (NSR) collaboration developed a neutron polarimeter, capable of determining neutron spin rotations of the order of 10{sup −7} rad per meter of traversed material. This paper describes two key components of the NSR apparatus, responsible for the transport and manipulation of the spin of the neutrons before and after the target region, which is surrounded by magnetic shielding and where residual magnetic fields need to be below 100 μG. These magnetic field devices, called input and output coils, provide the magnetic field for adiabatic transport of the neutron spin in the regions outside the magnetic shielding while producing a sharp nonadiabatic transition of the neutron spin when entering/exiting the low-magnetic-field region. In addition, the coils are self contained, forcing the return magnetic flux into a compact region of space to minimize fringe fields outside. The design of the input and output coils is based on the magnetic scalar potential method.

  16. Role of the antiferromagnetic pinning layer on spin wave properties in IrMn/NiFe based spin-valves

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G., E-mail: gubbiotti@fisica.unipg.it; Tacchi, S. [Istituto Officina dei Materiali del CNR (IOM-CNR), Unità di Perugia, I-06123 Perugia (Italy); Del Bianco, L. [Department of Physics and Astronomy, University of Bologna, I-40127 Bologna (Italy); Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Bonfiglioli, E.; Giovannini, L.; Spizzo, F.; Zivieri, R. [Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Tamisari, M. [Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, I-06123 Perugia (Italy)

    2015-05-07

    Brillouin light scattering (BLS) was exploited to study the spin wave properties of spin-valve (SV) type samples basically consisting of two 5 nm-thick NiFe layers (separated by a Cu spacer of 5 nm), differently biased through the interface exchange coupling with an antiferromagnetic IrMn layer. Three samples were investigated: a reference SV sample, without IrMn (reference); one sample with an IrMn underlayer (10 nm thick) coupled to the bottom NiFe film; one sample with IrMn underlayer and overlayer of different thickness (10 nm and 6 nm), coupled to the bottom and top NiFe film, respectively. The exchange coupling with the IrMn, causing the insurgence of the exchange bias effect, allowed the relative orientation of the NiFe magnetization vectors to be controlled by an external magnetic field, as assessed through hysteresis loop measurements by magneto-optic magnetometry. Thus, BLS spectra were acquired by sweeping the magnetic field so as to encompass both the parallel and antiparallel alignment of the NiFe layers. The BLS results, well reproduced by the presented theoretical model, clearly revealed the combined effects on the spin dynamic properties of the dipolar interaction between the two NiFe films and of the interface IrMn/NiFe exchange coupling.

  17. Interface-engineered templates for molecular spin memory devices

    NARCIS (Netherlands)

    Raman, Karthik V.; Kamerbeek, Alexander M.; Mukherjee, Arup; Atodiresei, Nicolae; Sen, Tamal K.; Lazic, Predrag; Caciuc, Vasile; Michel, Reent; Stalke, Dietmar; Mandal, Swadhin K.; Bluegel, Stefan; Muenzenberg, Markus; Moodera, Jagadeesh S.

    2013-01-01

    The use of molecular spin state as a quantum of information for storage, sensing and computing has generated considerable interest in the context of next-generation data storage and communication devices(1,2), opening avenues for developing multifunctional molecular spintronics(3). Such ideas have

  18. Tunneling Planar Hall Effect in Topological Insulators: Spin Valves and Amplifiers.

    Science.gov (United States)

    Scharf, Benedikt; Matos-Abiague, Alex; Han, Jong E; Hankiewicz, Ewelina M; Žutić, Igor

    2016-10-14

    We investigate tunneling across a single ferromagnetic barrier on the surface of a three-dimensional topological insulator. In the presence of a magnetization component along the bias direction, a tunneling planar Hall conductance (TPHC), transverse to the applied bias, develops. Electrostatic control of the barrier enables a giant Hall angle, with the TPHC exceeding the longitudinal tunneling conductance. By changing the in-plane magnetization direction, it is possible to change the sign of both the longitudinal and transverse differential conductance without opening a gap in the topological surface state. The transport in a topological-insulator-ferromagnet junction can, thus, be drastically altered from a simple spin valve to an amplifier.

  19. 2D Waveguides as spin devices: spin-orbit and lead effects

    Science.gov (United States)

    Meza-Montes, Lilia

    2011-03-01

    Straight waveguides with different shapes have been proposed as devices to control the spin polarized transport, with Rahsba spin-orbit interaction as the mechanism to induce spin mixing. Several theoretical approaches have been applied, mostly based on transfer-matrix method. Here, the Schroedinger equation is solved by means of the Finite-Element Method,finding good agreement with previous calculations. It is known that positions of the leads influence the ballistic transport in this sort of cavities due to changes in the spatial symmetry. The role of the lead positions on the transmission and, in turn on the spin polarization, will be discussed for several geometries. The linear Dresselhaus interaction is taken into account to consider zincblende structure. Implications for quantum dots is also addresed. Partially supported by VIEP-BUAP.

  20. Flow visualization of a monoleaflet and bileaflet mechanical heart valve in a pneumatic ventricular assist device using a PIV system.

    Science.gov (United States)

    Lee, Hwansung; Tatsumi, Eisuke; Taenaka, Yoshiyuki

    2010-01-01

    Our group is developing a new type of pulsatile pneumatic ventricular assist device (PVAD) that uses the Medtronic Hall tilting disc valve (M-H valve). Although tilting disc valves have good washout effect inside the blood pump, they are no longer in common clinical use and may be difficult to obtain in the future. To investigate the stability of the Sorin Bicarbon valve (S-B valve) in our PVAD, we constructed a model pump made of an acrylic resin with the same configuration as our PVAD and attempted to compare the flow visualization upstream and downstream of the outlet position valve between the M-H valve and the S-B valve using a particle image velocimetry (PIV) method. The outlet S-B valve had faster closure than the M-H valve. The maximum flow velocity was greater than with the M-H valve. The maximum Reynolds shear stress (RSS) of the M-H valve reached 150 N/m(2) and that of the S-B valve reached 300 N/m(2) upstream during the end-systolic and early-diastolic phases. In both valves, the maximum RSS upstream of the valve was higher than downstream of the valve because of the regurgitation flow during valve closure. In addition, the maximum viscous shear stress reached above 2 N/m(2), which occupied only about 1%-1.5% of the maximum RSS.

  1. Influence of growth conditions on exchange bias of NiMn-based spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Wienecke, Anja; Kruppe, Rahel; Rissing, Lutz [Institute for Microproduction Technology, Leibniz Universität Hannover, 30823 Garbsen (Germany)

    2015-05-07

    As shown in previous investigations, a correlation between a NiMn-based spin valve's thermal stability and its inherent exchange bias exists, even if the blocking temperature of the antiferromagnet is clearly above the heating temperature and the reason for thermal degradation is mainly diffusion and not the loss of exchange bias. Samples with high exchange bias are thermally more stable than samples with low exchange bias. Those structures promoting a high exchange bias are seemingly the same suppressing thermally induced diffusion processes (A. Wienecke and L. Rissing, “Relationship between thermal stability and layer-stack/structure of NiMn-based GMR systems,” in IEEE Transaction on Magnetic Conference (EMSA 2014)). Many investigations were carried out on the influence of the sputtering parameters as well as the layer thickness on the magnetoresistive effect. The influence of these parameters on the exchange bias and the sample's thermal stability, respectively, was hardly taken into account. The investigation described here concentrates on the last named issue. The focus lies on the influence of the sputtering parameters and layer thickness of the “starting layers” in the stack and the layers forming the (synthetic) antiferromagnet. This paper includes a guideline for the evaluated sputtering conditions and layer thicknesses to realize a high exchange bias and presumably good thermal stability for NiMn-based spin valves with a synthetic antiferromagnet.

  2. Magnetic transport property of NiFe/WSe2/NiFe spin valve structure

    International Nuclear Information System (INIS)

    Zhao, Kangkang; Xing, Yanhui; Han, Jun; Feng, Jiafeng; Shi, Wenhua; Zhang, Baoshun; Zeng, Zhongming

    2017-01-01

    Highlight: • Two-dimensional (2D) materials have been proposed as promising candidate for spintronic applications due to their atomic crystal structure and physical properties. • In this article, we introduce exfoliated few-layer tungsten diselenide (WSe 2 ) as spacer in a Py/WSe 2 /Py vertical spin valve. • In this junction, the WSe 2 spacer exhibits metallic behavior. • We observed negative magnetoresistance (MR) with a ratio of −1.1% at 4 K and −0.21% at 300 K. • A general phenomenological analysis of the negative MR property is discussed. • Our result is anticipated to be beneficial for future spintronic applications. - Abstract: Two-dimensional (2D) materials have been proposed as promising candidate for spintronic applications due to their atomic crystal structure and physical properties. Here, we introduce exfoliated few-layer tungsten diselenide (WSe 2 ) as spacer in a Py/WSe 2 /Py vertical spin valve. In this junction, the WSe 2 spacer exhibits metallic behavior. We observed negative magnetoresistance (MR) with a ratio of −1.1% at 4 K and −0.21% at 300 K. A general phenomenological analysis of the negative MR property is discussed. Our result is anticipated to be beneficial for future spintronic applications.

  3. Magnetic transport property of NiFe/WSe{sub 2}/NiFe spin valve structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Kangkang [Key Lab of Opto-electronics Technology, Ministry of Education, College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Xing, Yanhui, E-mail: xingyanhui@bjut.edu.cn [Key Lab of Opto-electronics Technology, Ministry of Education, College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Han, Jun [Key Lab of Opto-electronics Technology, Ministry of Education, College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Feng, Jiafeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190 (China); Shi, Wenhua; Zhang, Baoshun [Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Zeng, Zhongming, E-mail: zmzeng2012@sinano.ac.cn [Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China)

    2017-06-15

    Highlight: • Two-dimensional (2D) materials have been proposed as promising candidate for spintronic applications due to their atomic crystal structure and physical properties. • In this article, we introduce exfoliated few-layer tungsten diselenide (WSe{sub 2}) as spacer in a Py/WSe{sub 2}/Py vertical spin valve. • In this junction, the WSe{sub 2} spacer exhibits metallic behavior. • We observed negative magnetoresistance (MR) with a ratio of −1.1% at 4 K and −0.21% at 300 K. • A general phenomenological analysis of the negative MR property is discussed. • Our result is anticipated to be beneficial for future spintronic applications. - Abstract: Two-dimensional (2D) materials have been proposed as promising candidate for spintronic applications due to their atomic crystal structure and physical properties. Here, we introduce exfoliated few-layer tungsten diselenide (WSe{sub 2}) as spacer in a Py/WSe{sub 2}/Py vertical spin valve. In this junction, the WSe{sub 2} spacer exhibits metallic behavior. We observed negative magnetoresistance (MR) with a ratio of −1.1% at 4 K and −0.21% at 300 K. A general phenomenological analysis of the negative MR property is discussed. Our result is anticipated to be beneficial for future spintronic applications.

  4. Ultra-low-pressure sputtering to improve exchange bias and tune linear ranges in spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Tang, XiaoLi, E-mail: tangtang1227@163.com; Yu, You; Liu, Ru; Su, Hua; Zhang, HuaiWu; Zhong, ZhiYong; Jing, YuLan

    2017-05-01

    A series of CoFe/IrMn exchange bilayers was grown by DC-sputtering at different ultra-low argon pressures ranging from 0.008 to 0.1 Pa. This pressure range was one to two orders lower than the normal sputtering pressure. Results revealed that the exchange bias increased from 140 to 250 Oe in CoFe(10 nm)/IrMn (15 nm) bilayers of fixed thickness because of the improved crystalline structure and morphological uniformity of films. Since ferromagnetic /antiferromagnetic (FM/AF) bilayers are always used in linear magnetic sensors as detection layers, the varying exchange bias can successfully achieve tunable linear range in a crossed pinning spin valve. The linear range could be adjustable from −80 Oe – +80 Oe to −150 Oe – +150 Oe on the basis of giant magnetoresistance responses. Therefore, this method provides a simple method to tune the operating range of magnetic field sensors. - Highlights: • Increasing exchange bias was achieved in bilayer at ultra-low-pressure sputtering. • The low void density and smooth surface were achieved in low pressure. • Varying exchange bias achieved tunable linear range in spin valve.

  5. Spin-splitting in p-type Ge devices

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, S. N., E-mail: s.holmes@crl.toshiba.co.uk; Newton, P. J.; Llandro, J.; Mansell, R.; Barnes, C. H. W. [Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Morrison, C.; Myronov, M. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2016-08-28

    Compressively strained Ge quantum well devices have a spin-splitting in applied magnetic field that is entirely consistent with a Zeeman effect in the heavy hole valence band. The spin orientation is determined by the biaxial strain in the quantum well with the relaxed SiGe buffer layers and is quantized in the growth direction perpendicular to the conducting channel. The measured spin-splitting in the resistivity ρ{sub xx} agrees with the predictions of the Zeeman Hamiltonian where the Shubnikov-deHaas effect exhibits a loss of even filling factor minima in the resistivity ρ{sub xx} with hole depletion from a gate field, increasing disorder or increasing temperature. There is no measurable Rashba spin-orbit coupling irrespective of the structural inversion asymmetry of the confining potential in low p-doped or undoped Ge quantum wells from a density of 6 × 10{sup 10} cm{sup −2} in depletion mode to 1.7 × 10{sup 11} cm{sup −2} in enhancement.

  6. Ferromagnetic resonance study of the half-Heusler alloy NiMnSb. The benefit of using NiMnSb as a ferromagnetic layer in pseudo-spin-valve based spin-torque oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Riegler, Andreas

    2011-11-25

    Since the discovery of spin torque in 1996, independently by Berger and Slonczewski, and given its potential impact on information storage and communication technologies, (e.g. through the possibility of switching the magnetic configuration of a bit by current instead of a magnetic field, or the realization of high frequency spin torque oscillators (STO)), this effect has been an important field of spintronics research. One aspect of this research focuses on ferromagnets with low damping. The lower the damping in a ferromagnet, the lower the critical current that is needed to induce switching of a spin valve or induce precession of its magnetization. In this thesis ferromagnetic resonance (FMR) studies of NiMnSb layers are presented along with experimental studies on various spin-torque (ST) devices using NiMnSb. NiMnSb, when crystallized in the half-Heusler structure, is a half-metal which is predicted to have 100% spin polarization, a consideration which further increases its potential as a candidate for memory devices based on the giant magnetoresistance (GMR) effect. The FMR measurements show an outstandingly low damping factor for NiMnSb, in low 10{sup -3} range. This is about a factor of two lower than permalloy and well comparable to lowest damping for iron grown by molecular beam epitaxy (MBE). According to theory the 100% spin polarization properties of the bulk disappear at interfaces where the break in translational symmetry causes the gap in the minority spin band to collapse but can remain in other crystal symmetries such as (111). Consequently NiMnSb layers on (111)(In,Ga)As buffer are characterized in respect of anisotropies and damping. The FMR measurements on these samples indicates a higher damping that for the 001 samples, and a thickness dependent uniaxial in-plane anisotropy. Investigations of the material for device use is pursued by considering sub-micrometer sized elements of NiMnSb on 001 substrates, which were fabricated by electron

  7. Microbeads detection using Planar Hall effect in spin-valve structure

    International Nuclear Information System (INIS)

    Thanh, N.T.; Kim, K.W.; Kim, C.O.; Shin, K.H.; Kim, C.G.

    2007-01-01

    The Planar Hall effect in a spin-valve structure of Ta/NiFe/CoFe/Cu/CoFe/IrMn/Ta has been applied as a biosensor being capable of detecting Dynabeads ( R) M-280. The patterns with a size of 50x100μm 2 were prepared by lithography methods, and the biosensor performance was tested under the application of a DC magnetic field where the output signals were obtained from a nanovoltmeter. The sensor signal has produced high sensitivity results; especially, the real-time profiles revealed stable and significant signals at external applied magnetic field of around 7.0Oe with the resolution of 0.04 beads per μm 2 . With these results, it could be feasible to detect some commercial Dynabeads ( R) M-280 which can be used for recognition force and biomolecular interaction measurements

  8. Measurement of variable magnetic reversal paths in electrically contacted pseudo-spin-valve rings

    International Nuclear Information System (INIS)

    Hayward, T J; Llandro, J; Schackert, F D O; Morecroft, D; Balsod, R B; Bland, J A C; Castano, F J; Ross, C A

    2007-01-01

    In this work we show that the measurement of single magnetic reversal events is of critical importance in order to correctly characterize the switching of magnetic microstructures. Magnetoresistance measurements are performed on two pseudo-spin-valve ring structures with high enough signal to noise to allow the probing of single reversal events. Using this technique we acquire 'switching spectra' which demonstrate that the rings exhibit a range of variable reversal paths, including a bistable reversal mechanism of the hard layer, where the two switching routes have substantially different switching fields. The signature of the variable reversal paths would have been obscured in field cycle averaged data and in the bistable case would cause a fundamental misinterpretation of the reversal behaviour

  9. Effect of the strong coupling on the exchange bias field in IrMn/Py/Ru/Co spin valves

    Science.gov (United States)

    Tarazona, H. S.; Alayo, W.; Landauro, C. V.; Quispe-Marcatoma, J.

    2018-01-01

    The IrMn/Py/Ru/Co (Py = Ni81Fe19) spin valves have been produced by sputtering deposition and analyzed by magnetization measurements and a theoretical modelling of their exchange interactions, based on the macro-spin model. The Ru thickness was grown between 6 and 22 Å, which is small enough to promote strong indirect coupling between Py and Co. Results of measurements showed a large and gradual change in the shape of hysteresis loops when the Ru thickness was varied. The theoretical analysis, using numerical calculations based on the gradient conjugate method, provides the exchange coupling constants (bilinear and biquadratic), the exchange anisotropy fields and the magnetic anisotropy fields (uniaxial and rotatable). The exchange bias fields of spin valves were compared to that of a IrMn/Py bilayer. We found that the difference between these fields oscillates with Ru thickness in the same manner as the bilinear coupling constants.

  10. Spin-valves with modified synthetic antiferromagnets exhibiting an enhanced bias point control capability at submicrometer dimensions

    International Nuclear Information System (INIS)

    Park, J.-S.; Lee, S.-R.; Kim, Y.K.

    2004-01-01

    Bias point control is of practical importance for operating read sensors for magnetic recording and magnetic random access memory devices. To attain bias point control capability, in particular, at submicrometer cell size, a modified synthetic antiferromagnet-based spin-valve (MSSV) structure was devised. A series of calculations were carried out to investigate the effect of size variation on their MR transfer behaviors. The cell dimension was varied from 10 to 0.05 μm. The typical MSSV comprises IrMn (9.0)/CoFe (P1, 1.5)/Ru (0.7)/CoFe (P2, 3.0)/Ru (0.7)/CoFe (P3, 1.5)/Cu (2.8)/CoFe (1.6)/NiFe (3.2) (in nm). As the cell size decreased, the bias point in the MSSV maintained nearly zero regardless of the cell size. The bias point was further tuned by varying the P3 layer thickness. Moreover, the effective exchange field (H ex.eff ) of the MSSV was much larger than that of the conventional SSV. The field sensitivity of the MSSV was very high indicating that the free layer can rotate more sharply

  11. Spin-valves with modified synthetic antiferromagnets exhibiting an enhanced bias point control capability at submicrometer dimensions

    Science.gov (United States)

    Park, Jeong-Suk; Lee, Seong-Rae; Kim, Young Keun

    2004-08-01

    Bias point control is of practical importance for operating read sensors for magnetic recording and magnetic random access memory devices. To attain bias point control capability, in particular, at submicrometer cell size, a modified synthetic antiferromagnet-based spin-valve (MSSV) structure was devised. A series of calculations were carried out to investigate the effect of size variation on their MR transfer behaviors. The cell dimension was varied from 10 to 0.05 μm. The typical MSSV comprises IrMn (9.0)/CoFe (P1, 1.5)/Ru (0.7)/CoFe (P2, 3.0)/Ru (0.7)/CoFe (P3, 1.5)/Cu (2.8)/CoFe (1.6)/NiFe (3.2) (in nm). As the cell size decreased, the bias point in the MSSV maintained nearly zero regardless of the cell size. The bias point was further tuned by varying the P3 layer thickness. Moreover, the effective exchange field ( Hex.eff) of the MSSV was much larger than that of the conventional SSV. The field sensitivity of the MSSV was very high indicating that the free layer can rotate more sharply.

  12. Experimental study on the Reynolds and viscous shear stress of bileaflet mechanical heart valves in a pneumatic ventricular assist device.

    Science.gov (United States)

    Lee, Hwansung; Tatsumi, Eisuke; Taenaka, Yoshiyuki

    2009-01-01

    Our group is currently developing a pneumatic ventricular assist device (PVAD). In general, the major causes of hemolysis in a pulsatile VAD are cavitation, and Reynolds shear stress (RSS) in the mechanical heart valve (MHV). In a previous study, we investigated MHV cavitation. To select the optimal bileaflet valve for our PVAD, in the current study, we investigated RSS and viscous shear stress (VSS) downstream of three different types of commercial bileaflet valves by means of 2D particle image velocimetry (PIV). To carry out flow visualization inside the blood pump and near the valve, we designed a model pump with the same configuration as that of our PVAD. Three types of bileaflet valves (i.e., the ATS valve, the St. Jude valve, and the Sorin Bicarbon valve) were mounted at the aortic position of the model pump, and flow was visualized according to the PIV method. The maximum flow velocity and RSS of the Sorin Bicarbon valve were lower than those of the other two bileaflet valves. The maximum VSS was only 1% of the maximum RSS. Thus, the effect of VSS on blood cell trauma was neglected. The Sorin Bicarbon valve exhibited relatively low levels of RSS, and was therefore considered to be the best valve for our PVAD among the three valves tested.

  13. Magnetic-adhesive based valves for microfluidic devices used in low-resource settings.

    Science.gov (United States)

    Harper, Jason C; Andrews, Jenna M; Ben, Candice; Hunt, Andrew C; Murton, Jaclyn K; Carson, Bryan D; Bachand, George D; Lovchik, Julie A; Arndt, William D; Finley, Melissa R; Edwards, Thayne L

    2016-10-18

    Since the introduction of micro total analytical systems (μTASs), significant advances have been made toward development of lab-on-a-chip platforms capable of performing complex biological assays that can revolutionize public health, among other applications. However, use of these platforms in low-resource environments (e.g. developing countries) has yet to be realized as the majority of technologies used to control microfluidic flow rely on off-device hardware with non-negligible size, cost, power requirements and skill/training to operate. In this paper we describe a magnetic-adhesive based valve that is simple to construct and operate, and can be used to control fluid flow and store reagents within a microfluidic device. The design consists of a port connecting two chambers on different planes in the device that is closed by a neodymium disk magnet seated on a thin ring of adhesive. Bringing an external magnet into contact with the outer surface of the device unseats and displaces the valve magnet from the adhesive ring, exposing the port. Using this configuration, we demonstrate on-device reagent storage and on-demand transport and reaction of contents between chambers. This design requires no power or external instrumentation to operate, is extremely low cost ($0.20 materials cost per valve), can be used by individuals with no technical training, and requires only a hand-held magnet to actuate. Additionally, valve actuation does not compromise the integrity of the completely sealed microfluidic device, increasing safety for the operator when toxic or harmful substances are contained within. This valve concept has the potential to simplify design of μTASs, facilitating development of lab-on-a-chip systems that may be practical for use in point-of-care and low-resource settings.

  14. Fluid flow device, comprising a valve unit, as well as method of manufacturing the same

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Groen, Maarten; Wiegerink, Remco J.; Brouwer, Dannis Michel; Brookhuis, Robert Anton; Meutstege, E.

    2016-01-01

    The invention relates to a fluid flow device (1), comprising a system chip (11) having a substrate (12), a flow channel (21) defined within said substrate, and a sensor unit (41) connected to said flow channel for determining a property of a fluid in said flow channel. Furthermore, a valve unit (30)

  15. Towards Optimization of a Novel Trileaflet Polymeric Prosthetic Heart Valve Via Device Thrombogenicity Emulation (DTE)

    Science.gov (United States)

    Claiborne, Thomas E.; Xenos, Michalis; Sheriff, Jawaad; Chiu, Wei-Che; Soares, Joao; Alemu, Yared; Gupta, Shikha; Judex, Stefan; Slepian, Marvin J.; Bluestein, Danny

    2013-01-01

    Aortic stenosis the is most prevalent and life threatening form of valvular heart disease. It is primarily treated via open-heart surgical valve replacement with either a tissue or mechanical prosthetic heart valve (PHV), each prone to degradation and thrombosis, respectively. Polymeric PHVs may be optimized to eliminate these complications, and they may be more suitable for the new transcatheter aortic valve replacement (TAVR) procedure and in devices like the Total Artificial Heart. However, the development of polymer PHVs has been hampered by persistent in vivo calcification, degradation, and thrombosis. To address these issues, we have developed a novel surgically implantable polymer PHV comprised of a new thermoset polyolefin called xSIBS, in which key parameters were optimized for superior functionality via our Device Thrombogenicity Emulation (DTE) methodology. In this parametric study, we compared our homogeneous optimized polymer PHV to a prior composite polymer PHV and to a benchmark tissue valve. Our results show significantly improved hemodynamics and reduced thrombogenicity in the optimized polymer PHV compared to the other valves. These results indicate that our new design may not require anticoagulants and may be more durable than its predecessor, and validates the improvement, towards optimization, of this novel polymeric PHV design. PMID:23644615

  16. Linear scaling between momentum and spin scattering in graphene

    NARCIS (Netherlands)

    Jozsa, C.; Maassen, T.; Popinciuc, M.; Zomer, P. J.; Veligura, A.; Jonkman, H. T.; van Wees, B. J.

    2009-01-01

    Spin transport in graphene carries the potential of a long spin-diffusion length at room temperature. However, extrinsic relaxation processes limit the current experimental values to 1-2 mu m. We present Hanle spin precession measurements in gated lateral spin valve devices in the low to high (up to

  17. Chemical properties and GMR improvement of specular spin valves with nano-oxide layers, formed in ambient mixed gases

    International Nuclear Information System (INIS)

    Quang, H D; Hien, N T; Oh, S K; Sinh, N H; Yu, S C

    2004-01-01

    Specular spin valves (SVs) containing nano-oxide layers (NOLs) structured as substrate/seed/AF/P 1 /NOL/P 2 /Cu/F/NOL, have been fabricated. The NOLs were formed by natural oxidation in different ambient atmospheres of pure oxygen, oxygen/nitrogen and oxygen/argon gas mixtures. The fabrication conditions were optimized to enhance the magnetoresistance (MR) ratio, to suppress the interlayer coupling fields (H f ) between the free and pinned layers, to suppress the high interface density of the NOL, to ease the control of the NOL thickness and to form a smooth NOL/P 2 interface for promoting specular electron scattering. The characteristics of our specular SVs are the MR ratio of 14.1%, the exchange bias field of 44-45 mT, and H f weaker than 1.0 mT. The optimal conditions for oxidation time, total oxidation pressure and the annealing temperature were found to be 300 s, 0.14 Pa (oxygen/argon = 80/20) and 250 deg. C, respectively. Also, the origin of thermal stability of MMn-based (M = Fe, Pt, Ir, etc) specular SVs has been explained in detail by chemical properties of NOL using secondary-ion mass spectroscopy and x-ray photoelectron spectroscopy depth profile analyses. Thermal stability turns out to be caused by a decrease in MR ratios at high temperatures (>250 deg. C), which is a serious problem for device applications using the SV structure as a high density read head device

  18. Use of an Automated Suture Fastening Device in Minimally Invasive Aortic Valve Replacement.

    Science.gov (United States)

    Beute, Tyler J; Orem, Matthew D; Schiller, Timothy M; Goehler, Matthew; Parker, Jessica; Willekes, Charles L; Timek, Tomasz

    2018-03-01

    Minimally invasive aortic valve replacement (mAVR) is gaining clinical acceptance, however, it is associated with increased operative times due to limited surgical field and access. The Cor-Knot is an automated fastening device designed to facilitate suture fastening, but clinical data in mAVR are lacking. From May 2014 to February 2017, 92 patients underwent mAVR at our center with 39 valves secured with manually-tied (MT) sutures and 53 valves entirely secured with the Cor-Knot (CK). Pre-operative characteristics and 30-day outcomes data were extracted from our local Society of Thoracic Surgeons database and the electronic medical record. Survival data were obtained from the Michigan State Social Security Death Index. No significant difference in pre-operative characteristics were noted between the two groups. Aortic cross-clamp time (72±12 min vs 82±15 min, p=0.001) was significantly shorter with CK. There was no difference in post-operative mortality (0% vs 0%), stroke (0% vs 1.9%), atrial fibrillation (28% vs 33%), renal failure (0% vs 3.8%), or pacemaker implantation (5.1% vs 5.7%) between MT and CK. Valve function on post-operative echocardiography and 1-year patient survival were similar. In minimally invasive aortic valve replacement, the Cor-Knot device was associated with reduced aortic cross-clamp time while providing equivalent clinical outcomes. Larger studies are needed to confirm efficacy, safety, and cost-effectiveness of the Cor-Knot device in minimally invasive aortic valve surgery. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Spin injection into silicon in three-terminal vertical and four-terminal lateral devices with Fe/Mg/MgO/Si tunnel junctions having an ultrathin Mg insertion layer

    Science.gov (United States)

    Sato, Shoichi; Nakane, Ryosho; Hada, Takato; Tanaka, Masaaki

    2017-12-01

    We demonstrate that the spin injection/extraction efficiency is enhanced by an ultrathin Mg insertion layer (⩽2 nm) in Fe /Mg /MgO /n+-Si tunnel junctions. In diode-type vertical three-terminal devices fabricated on a Si substrate, we observe the narrower three-terminal Hanle (N-3TH) signals indicating true spin injection into Si and estimate the spin polarization in Si to be 16% when the thickness of the Mg insertion layer is 1 nm, whereas no N-3TH signal is observed without the Mg insertion. This means that the spin injection/extraction efficiency is enhanced by suppressing the formation of a magnetically dead layer at the Fe/MgO interface. We also observe clear spin transport signals, such as nonlocal Hanle signals and spin-valve signals, in a lateral four-terminal device with the same Fe /Mg /MgO /n+-Si tunnel junctions fabricated on a Si-on-insulator substrate. It is found that both the intensity and linewidth of the spin signals are affected by the geometrical effects (device geometry and size). We have derived analytical functions taking into account the device structures, including channel thickness and electrode size, and estimated important parameters: spin lifetime and spin polarization. Our analytical functions explain the experimental results very well. Our study shows the importance of suppressing a magnetically dead layer and provides a unified understanding of spin injection/detection signals in different device geometries.

  20. Catheterization Laboratory: Structural Heart Disease, Devices, and Transcatheter Aortic Valve Replacement.

    Science.gov (United States)

    Fiorilli, Paul N; Anwaruddin, Saif; Zhou, Elizabeth; Shah, Ronak

    2017-12-01

    The cardiac catheterization laboratory is advancing medicine by performing procedures on patients who would usually require sternotomy and cardiopulmonary bypass. These procedures are done percutaneously, allowing them to be performed on patients considered inoperable. Patients have compromised cardiovascular function or advanced age. An anesthesiologist is essential for these procedures in case of hemodynamic compromise. Interventionalists are becoming more familiar with transcatheter aortic valve replacement and the device has become smaller, both contributing to less complications. Left atrial occlusion and the endovascular edge-to-edge mitral valve repair devices were approved. Although these devices require general anesthesia, an invasive surgery and cardiopulmonary bypass machine are not necessary for deployment. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Nanostructures based on superconducting Nb and ferromagnetic CuNi alloy for elaboration of spin-valve core

    International Nuclear Information System (INIS)

    Morari, Roman

    2013-01-01

    The main goal of our research group is the elaboration of superconducting spin-switch (valve) based on Ferromagnetic/Superconductor/Ferromagnetic core. We could realize all building blocks necessary for the fabrication of the core structure of the superconducting spin valve, consisting of two mirror symmetric bilayers. In other words, the spin valve consists of a F/S * /F trilayer, which can be regarded as a package of a F/S and S/F bilayer so that S * =2S in the trilayer. For such a trilayer, the theory predicts that the critical temperature depends on the relative orientation of the magnetization of the ferromagnetic layers. To enable a reversal of one of the magnetizations of the layers with respect to the other by an external magnetic field, the coercive forces of the F layers have to be different due to either intrinsic properties or to an antiferromagnetic pinning layer delivering an exchange bias. The main points of our study are presented here. (author)

  2. An Engineering Analysis of the Aortic Valve Dynamics in Patients with Rotary Left Ventricular Assist Devices

    Directory of Open Access Journals (Sweden)

    George Faragallah

    2013-01-01

    Full Text Available The use of a rotary Left Ventricular Assist Device (LVAD as a bridge-to-recovery treatment is gaining considerable attention in the LVAD research community. Using a mathematical model of the cardiovascular-LVAD system, this paper intends to define the critical control parameters in terms of power and rotational speed of the LVAD to ensure normal dynamics of the aortic valve for different levels of patient's activity and severity of heart failure. The effects of permanent closure of the aortic valve on the hemodynamics of the patient and the pump flow characteristics, if the critical control values are exceeded, are also examined. Additionally, LVAD power and speed control parameters that yield a given percentage of the cardiac cycle during which the aortic valve remains open are examined indicating that the severity of the heart failure is a very important factor in deciding the appropriateness of the LVAD as a bridge-to recovery treatment.

  3. Spin Transport in High-Quality Suspended Graphene Devices

    NARCIS (Netherlands)

    Guimaraes, Marcos H. D.; Veligura, A.; Zomer, P. J.; Maassen, T.; Vera-Marun, I. J.; Tombros, N.; van Arees, B. J.; Wees, B.J. van

    We measure spin transport in high mobility suspended graphene (mu approximate to 10(5)cm(2)/(V s)), obtaining a (spin) diffusion coefficient of 0.1 m(2)/s and giving a lower bound on the spin relaxation time (tau(s) approximate to 150 ps) and spin relaxation length (lambda(s) = 4.7 mu m) for

  4. Thickness dependence of the triplet spin-valve effect in superconductor-ferromagnet heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Daniel; Zdravkov, Vladimir I.; Kehrle, Jan; Obermeier, Guenther; Krug von Nidda, Hans-Albrecht; Mueller, Claus; Horn, Siegfried; Tidecks, Reinhard [Institut fuer Physik, Universitaet Augsburg (Germany); Morari, Roman [Institut fuer Physik, Universitaet Augsburg (Germany); D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Kishinev (Moldova, Republic of); Sidorenko, Anatolie S. [D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Kishinev (Moldova, Republic of); Tagirov, Lenar [Solid State Physics Department, Kazan Federal University (Russian Federation)

    2015-07-01

    We investigated the triplet spin-valve effect in nanoscale layered S/F{sub 1}/N/F{sub 2}/AF heterostructures with varying F{sub 1}-layer thickness (where S=Nb is a singlet superconducting, F{sub 1}=Cu{sub 41}Ni{sub 59} and F{sub 2}=Co a ferromagnetic, and N a normal-conducting, non-magnetic layer). The theory predicts a long-range, odd-in-frequency triplet component of superconductivity at non-collinear alignment of the magnetizations of F{sub 1} and F{sub 2}. This triplet component exhausts the singlet state and, thus, lowers the superconducting transition temperature, T{sub c}, yielding a global minimum of T{sub c} close to the perpendicular mutual orientations of the magnetizations. We found an oscillating decay of T{sub c} suppression, due to the generation of the triplet component, with increasing F{sub 1} layer thickness, which we discuss in the framework of recent theories.

  5. Investigations of the polymer/magnetic interface of organic spin-valves

    Energy Technology Data Exchange (ETDEWEB)

    Morley, N.A., E-mail: n.a.morley@sheffield.ac.uk [Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Dost, R.; Lingam, A.S.V. [Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Barlow, A.J. [National EPSRC XPS Users’ Service, School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2015-12-30

    Graphical abstract: - Highlights: • Metal carbide and sulphide species are detected at a polymer–magnetic interface. • Top magnetic electrodes on P3HT have uniaxial anisotropy. • Top magnetic electrodes on PBTTT are isotropic. - Abstract: This work investigates the top interface of an organic spin-valve, to determine the interactions between the polymer and top magnetic electrode. The polymers studied are regio-regular poly(3-hexylthiophene) (RR-P3HT) and poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and the magnetic top electrodes are NiFe and Fe. X-ray photoelectron spectroscopy (XPS) is used to determine the bonding at the interface, along with the extent of how oxidised the magnetic layers are, while atomic force microscopy (AFM) is used to determine the surface roughness. A magneto-optic Kerr effect (MOKE) magnetometer is used to study the magnetic properties of the top electrode. It is shown that at the organic–magnetic interface the magnetic atoms interact with the polymer, as metallic–sulphide and metallic-carbide species are present at the interface. It is also shown that the structure of the polymer influences the anisotropy of the magnetic electrode, such that the magnetic electrodes grown on RR-P3HT have uniaxial anisotropy, while those grown on PBTTT are isotropic.

  6. Template-grown NiFe/Cu/NiFe nanowires for spin transfer devices

    DEFF Research Database (Denmark)

    Piraux, L.; Renard, K.; Guillemet, R.

    2007-01-01

    We have developed a new reliable method combining template synthesis and nanolithography-based contacting technique to elaborate current perpendicular-to-plane giant magnetoresistance spin valve nanowires, which are very promising for the exploration of electrical spin transfer phenomena....... The method allows the electrical connection of one single nanowire in a large assembly of wires embedded in anodic porous alumina supported on Si substrate with diameters and periodicities to be controllable to a large extent. Both magnetic excitations and switching phenomena driven by a spin...

  7. High-performance spinning device for DVD-based micromechanical signal transduction

    DEFF Research Database (Denmark)

    Hwu, En-Te; Chen, Ching-Hsiu; Bosco, Filippo

    2013-01-01

    Here we report a high-throughput spinning device for nanometric scale measurements of microstructures with instrumentation details and experimental results. The readout technology implemented in the designed disc-like device is based on a DVD data storage optical pick-up unit (OPU). With a spinning...

  8. Reversal mode instability and magnetoresistance in perpendicular (Co/Pd)/Cu/(Co/Ni) pseudo-spin-valves

    Science.gov (United States)

    Davies, J. E.; Gilbert, D. A.; Mohseni, S. M.; Dumas, R. K.; Åkerman, J.; Liu, Kai

    2013-07-01

    We have observed distinct temperature-dependent magnetization reversal modes in a perpendicular (Co/Pd)4/Co/Cu/(Co/Ni)4/Co pseudo-spin-valve, which are correlated with spin-transport properties. At 300 K, magnetization reversal occurs by vertically correlated domains. Below 200 K the hysteresis loop becomes bifurcated due to laterally correlated reversal of the individual stacks. The magnetic configuration change also leads to higher spin disorders and a significant increase in the giant magnetoresistance effect. First order reversal curve measurements reveal that the coupled state can be re-established through field cycling and allow direct determination of the interlayer coupling strength as a function of temperature.

  9. Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices.

    Science.gov (United States)

    Bezuidenhout, Deon; Williams, David F; Zilla, Peter

    2015-01-01

    Efficient function and long-term durability without the need for anticoagulation, coupled with the ability to be accommodated in many different types of patient, are the principal requirements of replacement heart valves. Although the clinical use of valves appeared to have remained steady for several decades, the evolving demands for the elderly and frail patients typically encountered in the developed world, and the needs of much younger and poorer rheumatic heart disease patients in the developing world have now necessitated new paradigms for heart valve technologies and associated materials. This includes further consideration of durable elastomeric materials. The use of polymers to produce flexible leaflet valves that have the benefits of current commercial bioprosthetic and mechanical valves without any of their deficiencies has been held desirable since the mid 1950s. Much attention has been focused on thermoplastic polyurethanes in view of their generally good physico-chemical properties and versatility in processing, coupled with the improving biocompatibility and stability of recent formulations. Accelerated in vitro durability of between 600 and 1000 million cycles has been achieved using polycarbonate urethanes, and good resistance to degradation, calcification and thrombosis in vivo has been shown with some polysiloxane-based polyurethanes. Nevertheless, polymeric valves have remained relegated to use in temporary ventricular assist devices for bridging heart failure patients to transplantation. Some recent studies suggest that there is a greater degree of instability in thermoplastic materials than hitherto believed so that significant challenges remain in the search for the combination of durability and biocompatibility that would allow polymeric valves to become a clinical reality for surgical implantation. Perhaps more importantly, they could become candidates for use in situations where minimally invasive transcatheter procedures are used to

  10. Magnon Valve Effect between Two Magnetic Insulators

    Science.gov (United States)

    Wu, H.; Huang, L.; Fang, C.; Yang, B. S.; Wan, C. H.; Yu, G. Q.; Feng, J. F.; Wei, H. X.; Han, X. F.

    2018-03-01

    The key physics of the spin valve involves spin-polarized conduction electrons propagating between two magnetic layers such that the device conductance is controlled by the relative magnetization orientation of two magnetic layers. Here, we report the effect of a magnon valve which is made of two ferromagnetic insulators (YIG) separated by a nonmagnetic spacer layer (Au). When a thermal gradient is applied perpendicular to the layers, the inverse spin Hall voltage output detected by a Pt bar placed on top of the magnon valve depends on the relative orientation of the magnetization of two YIG layers, indicating the magnon current induced by the spin Seebeck effect at one layer affects the magnon current in the other layer separated by Au. We interpret the magnon valve effect by the angular momentum conversion and propagation between magnons in two YIG layers and conduction electrons in the Au layer. The temperature dependence of the magnon valve ratio shows approximately a power law, supporting the above magnon-electron spin conversion mechanism. This work opens a new class of valve structures beyond the conventional spin valves.

  11. Melanin: spin behaviour and implications for bioelectronic devices (Presentation Recording)

    Science.gov (United States)

    Meredith, Paul; Sheliakina, Margarita; Mostert, Bernard

    2015-10-01

    The melanins are a broad class of pigmentary macromolecules found through nature that perform a wide range of functions including photo-protection [1]. The most common melanin - the brown, black pigment eumelanin, has been much studied because of its role in melanoma and also for its functional material properties [2]. Synthetic eumelanin has been shown to be photoconductive in the solid state and also possess a water content dependent dark conductivity [3]. It is now well established that these electrical properties arise from hybrid ionic-electronic behaviour, leading to the proposition that melanins could be model biocompatible systems for ion-to-electron transduction in bioelectronics. In my talk, I will discuss the basic science behind these bioelectronics properties - electrical and optical. In this context I will also describe recent electron paramagnetic spin studies which isolate the role of the various chemical moieties responsible for the hybrid ionic-electronic behaviour. I will also highlight preliminary results on prototype melanin-based bioelectronics devices and discuss possible architectures to realise elements such as solid-state switches and transducers. [1] "The physical and chemical properties of eumelanin", P. Meredith and T. Sarna, Pigment Cell Research, 19(6), pp572-594 (2006). [2] "Electronic and optoelectronic materials and devices inspired by nature", P Meredith, C.J. Bettinger, M. Irimia-Vladu, A.B. Mostert and P.E. Schwenn, Reports on Progress in Physics, 76, 034501 (2013). [3] "Is melanin a semiconductor: humidity induced self doping and the electrical conductivity of a biopolymer", A.B. Mostert, B.J. Powell, F.L. Pratt, G.R. Hanson, T. Sarna, I.R. Gentle and P. Meredith, Proceedings of the National Academy of Sciences of the USA, 109(23), 8943-8947 (2012).

  12. Spin-filter scanning tunneling microscopy : a novel technique for the analysis of spin polarization on magnetic surfaces and spintronic devices

    NARCIS (Netherlands)

    Vera Marun, I.J.

    2010-01-01

    This thesis deals with the development of a versatile technique to measure spin polarization with atomic resolution. A microscopy technique that can measure electronic spin polarization is relevant for characterization of magnetic nanostructures and spintronic devices. Scanning tunneling microscopy

  13. Strong spin-filtering and spin-valve effects in a molecular V–C60–V contact

    Directory of Open Access Journals (Sweden)

    Mohammad Koleini

    2012-08-01

    Full Text Available Motivated by the recent achievements in the manipulation of C60 molecules in STM experiments, we study theoretically the structure and electronic properties of a C60 molecule in an STM tunneljunction with a magnetic tip and magnetic adatom on a Cu(111 surface using first-principles calculations. For the case of a vanadium tip/adatom, we demonstrate how spin coupling between the magnetic V atoms, mediated by the C60, can be observed in the electronic transport, which display a strong spin-filtering effect, allowing mainly majority-spin electrons to pass (>95%. Moreover, we find a significant change in the conductance between parallel and anti-parallel spin polarizations in the junction (86% which suggests that STM experiments should be able to characterize the magnetism and spin coupling for these systems.

  14. Strong spin-filtering and spin-valve effects in a molecular V-C-60-V contact

    DEFF Research Database (Denmark)

    Koleini, Mohammad; Brandbyge, Mads

    2012-01-01

    Motivated by the recent achievements in the manipulation of C-60 molecules in STM experiments, we study theoretically the structure and electronic properties of a C-60 molecule in an STM tunneljunction with a magnetic tip and magnetic adatom on a Cu(111) surface using first-principles calculations....... For the case of a vanadium tip/adatom, we demonstrate how spin coupling between the magnetic V atoms, mediated by the C-60, can be observed in the electronic transport, which display a strong spin-filtering effect, allowing mainly majority-spin electrons to pass (>95%). Moreover, we find a significant change...... in the conductance between parallel and anti-parallel spin polarizations in the junction (86%) which suggests that STM experiments should be able to characterize the magnetism and spin coupling for these systems....

  15. Modeling of thermal spin transport and spin-orbit effects in ferromagnetic/nonmagnetic mesoscopic devices

    NARCIS (Netherlands)

    Slachter, Abraham; Bakker, Frank Lennart; van Wees, Bart Jan

    2011-01-01

    In this article we extend the currently established diffusion theory of spin-dependent electrical conduction by including spin-dependent thermoelectricity and thermal transport. Using this theory, we propose experiments aimed at demonstrating novel effects such as the spin-Peltier effect, the

  16. Spin-dependent tunneling transport into CrO2 nanorod devices with nonmagnetic contacts.

    Science.gov (United States)

    Song, Yipu; Schmitt, Andrew L; Jin, Song

    2008-08-01

    Single-crystal nanorods of half-metallic chromium dioxide (CrO2) were synthesized and structurally characterized. Spin-dependent electrical transport was investigated in individual CrO2 nanorod devices contacted with nonmagnetic metallic electrodes. Negative magnetoresistance (MR) was observed at low temperatures due to the spin-dependent direct tunneling through the contact barrier and the high spin polarization in the half-metallic nanorods. The magnitude of this negative magnetoresistance decreases with increasing bias voltage and temperature due to spin-independent inelastic hopping through the barrier, and a small positive magnetoresistance was found at room temperature. It is believed that the contact barrier and the surface state of the nanorods have great influence on the spin-dependent transport limiting the magnitude of MR effect in this first attempt at spin filter devices of CrO2 nanorods with nonmagnetic contacts.

  17. Effect of uniaxial strain on the tunnel magnetoresistance of T-shaped graphene nanoribbon based spin-valve

    Science.gov (United States)

    Fouladi, A. Ahmadi

    2016-07-01

    We theoretically investigated the spin-dependent transport through a T-shaped graphene nanoribbon (TsGNR) based spin-valve consisting of armchair graphene sandwiched between two semi-infinite ferromagnetic armchair graphene nanoribbon leads in the presence of an applied uniaxial strain. Based on a tight-binding model and standard nonequilibrium Green's function technique, it is demonstrated that the tunnel magnetoresistance (TMR) for the system can be increased about 98% by tuning the uniaxial strain. Our results show that the absolute values of TMR around the zero bias voltage for compressive strain are larger than tensile strain. In addition, the TMR of the system can be nicely controlled by GNR width.

  18. Spin Hall conductance in a Y-shaped junction device in presence of tunable spin-orbit coupling

    Science.gov (United States)

    Ganguly, Sudin; Basu, Saurabh

    2017-06-01

    We study spin Hall effect in a three terminal Y-shaped device in presence of tunable spin-orbit (SO) interactions via Landauer-Büttiker formalism. We have evolved a fabrication technique for creating different angular separation between the two arms of the Y-shaped device so as to investigate the effect of angular width on the spin Hall conductance (SHC). A smaller angular separation yields a larger conductance. Also arbitrary orientation of the spin quantization axes yields interesting three dimensional contour maps for the SHC corresponding to different angular separation of the Y-shaped device. In addition to the GSH demonstrating bounded behaviour for different angular separations, there are distinct symmetry axes about which SHC demonstrates reflection symmetry. The results explicitly show breaking of the spin rotational symmetry. Further a systematic study is carried out to compare and contrast between the different SO terms, such as Rashba and Dresselhaus SO interactions and the interplay of the angular separation therein.

  19. Verification of the Thomson-Onsager reciprocity relation for spin caloritronics

    NARCIS (Netherlands)

    Dejene, F. K.; Flipse, J.; van Wees, B. J.

    2014-01-01

    We investigate the Thomson-Onsager relation between the spin-dependent Seebeck and spin-dependent Peltier effect. To maintain identical device and measurement conditions we measure both effects in a single Ni80Fe20/Cu/Ni80Fe20 nanopillar spin valve device subjected to either an electrical or a

  20. Spin transport in metal and oxide devices at the nanoscale

    NARCIS (Netherlands)

    Parui, Subir; Rana, Kumari Gaurav; Banerjee, Tamalika

    2012-01-01

    Here we discuss a non-destructive technique that characterizes spin and charge transport at the nanometer scale, across buried layers and interfaces, in magnetic memory elements as used in spin transfer torque based Magnetic Random Access Memory (STT-MRAM). While probing in the

  1. Spin-dependent transport and functional design in organic ferromagnetic devices

    Directory of Open Access Journals (Sweden)

    Guichao Hu

    2017-09-01

    Full Text Available Organic ferromagnets are intriguing materials in that they combine ferromagnetic and organic properties. Although challenges in their synthesis still remain, the development of organic spintronics has triggered strong interest in high-performance organic ferromagnetic devices. This review first introduces our theory for spin-dependent electron transport through organic ferromagnetic devices, which combines an extended Su–Schrieffer–Heeger model with the Green’s function method. The effects of the intrinsic interactions in the organic ferromagnets, including strong electron–lattice interaction and spin–spin correlation between π-electrons and radicals, are highlighted. Several interesting functional designs of organic ferromagnetic devices are discussed, specifically the concepts of a spin filter, multi-state magnetoresistance, and spin-current rectification. The mechanism of each phenomenon is explained by transmission and orbital analysis. These works show that organic ferromagnets are promising components for spintronic devices that deserve to be designed and examined in future experiments.

  2. Soft magnetic characteristics of an ultrathin CoFeNi free layer in spin-valve films

    International Nuclear Information System (INIS)

    Fukuzawa, Hideaki; Iwasaki, Hitoshi; Koi, Katsuhiko; Sahashi, Masashi

    2006-01-01

    We have investigated the soft magnetic characteristics of an ultrathin Co-rich CoFeNi free layer in spin-valve films. By addition of Ni to a Co-rich CoFe free layer, magnetostriction (λ) of the films increased positively with Ni concentration, in contrast to which a Co 90 Fe 10 free layer showed a negatively large λ. However, Ni addition also caused an increase in coercivity of the easy axis direction (H c e.a. ). To avoid this problem, a slight decrease in the Co contents of a CoFeNi free layer was found to be effective for decreasing H c e.a. . In order to satisfy both the small λ and H c e.a. , a free layer of (Co 86 Fe 14 ) 88-94 Ni 12-6 proved to be an optimum composition in spin-valve films. Moreover, the zero λ composition of the CoFeNi free layer was changed by a high-conductance Cu layer deposited on the free layer, which was considered to come from the lattice strain of a free layer

  3. Spin Transfer Torque in Graphene

    Science.gov (United States)

    Lin, Chia-Ching; Chen, Zhihong

    2014-03-01

    Graphene is an idea channel material for spin transport due to its long spin diffusion length. To develop graphene based spin logic, it is important to demonstrate spin transfer torque in graphene. Here, we report the experimental measurement of spin transfer torque in graphene nonlocal spin valve devices. Assisted by a small external in-plane magnetic field, the magnetization reversal of the receiving magnet is induced by pure spin diffusion currents from the injector magnet. The magnetization switching is reversible between parallel and antiparallel configurations by controlling the polarity of the applied charged currents. Current induced heating and Oersted field from the nonlocal charge flow have also been excluded in this study. Next, we further enhance the spin angular momentum absorption at the interface of the receiving magnet and graphene channel by removing the tunneling barrier in the receiving magnet. The device with a tunneling barrier only at the injector magnet shows a comparable nonlocal spin valve signal but lower electrical noise. Moreover, in the same preset condition, the critical charge current density for spin torque in the single tunneling barrier device shows a substantial reduction if compared to the double tunneling barrier device.

  4. Role of coherence in transport through engineered atomic spin devices

    Science.gov (United States)

    Shakirov, Alexey M.; Shchadilova, Yulia E.; Rubtsov, Alexey N.; Ribeiro, Pedro

    2016-12-01

    We give a further step in the quantum mechanical description of engineered atomic spin structures by deriving a master equation of the Redfield type that governs the dynamics of the atomic spin density matrix. By generalizing this approach to charge-specific density matrices, we are able to describe magnetic transport quantities, such as the average inelastic current and the shot noise, accessible by tunneling spectroscopy. Our method suitably describes moderate lead-atom coupling regimes where quantum coherence effects cannot be disregarded. We contrast our approach with the existing descriptions in terms of rate equations and show examples where coherence effects are crucial to understand the physics of spin-polarized tunnel current through spin structures.

  5. The Leaflex™ Catheter System - a viable treatment option alongside valve replacement? Preclinical feasibility of a novel device designed for fracturing aortic valve.

    Science.gov (United States)

    Jonas, Michael; Rozenman, Yoseph; Moshkovitz, Yaron; Hamdan, Ashraf; Kislev, Yael; Tirosh, Nitzan; Sax, Sharon; Trumer, Dror; Golan, Erez; Raanani, Ehud

    2015-09-01

    To demonstrate the feasibility of the Leaflex™ Catheter System, a novel percutaneous device for fracturing valve calcification using mechanical impact in order to regain leaflet mobility. Radiographic analysis of calcium patterns in 90 ex vivo human aortic valve leaflets demonstrated that 82% of leaflets had a typical "bridge" or "half-bridge" pattern, which formed the basis for the catheter design. The therapeutic effect was quantified in 13 leaflets showing a reduction of 49±16% in leaflet resistance to folding after treatment. A pulsatile flow simulator was then used with 11 ex vivo valves demonstrating an increase in aortic valve area of 35±12%. Using gross pathology and histology on fresh calcified leaflets, we then verified that mechanical impacts do not entail excessive risk of embolisation. In vivo safety and usability were then confirmed in the ovine model. We demonstrated preclinically that it is feasible to improve valve function using the Leaflex™ technology. Once demonstrated clinically, such an approach may have an important role as preparation for or bridging to TAVI, as destination treatment for patients where TAVI is clinically or economically questionable and, in the future, maybe even as a means to slow disease progression in asymptomatic patients.

  6. Fabrication of magnetic tunnel junctions connected through a continuous free layer to enable spin logic devices

    Science.gov (United States)

    Wan, Danny; Manfrini, Mauricio; Vaysset, Adrien; Souriau, Laurent; Wouters, Lennaert; Thiam, Arame; Raymenants, Eline; Sayan, Safak; Jussot, Julien; Swerts, Johan; Couet, Sebastien; Rassoul, Nouredine; Babaei Gavan, Khashayar; Paredis, Kristof; Huyghebaert, Cedric; Ercken, Monique; Wilson, Christopher J.; Mocuta, Dan; Radu, Iuliana P.

    2018-04-01

    Magnetic tunnel junctions (MTJs) interconnected via a continuous ferromagnetic free layer were fabricated for spin torque majority gate (STMG) logic. The MTJs are biased independently and show magnetoelectric response under spin transfer torque. The electrical control of these devices paves the way to future spin logic devices based on domain wall (DW) motion. In particular, it is a significant step towards the realization of a majority gate. To our knowledge, this is the first fabrication of a cross-shaped free layer shared by several perpendicular MTJs. The fabrication process can be generalized to any geometry and any number of MTJs. Thus, this framework can be applied to other spin logic concepts based on magnetic interconnect. Moreover, it allows exploration of spin dynamics for logic applications.

  7. Spin orbit torques in W(O) based three terminal magnetic memory devices

    Science.gov (United States)

    Zhang, Jie; Phung, Timothy; Garg, Chirag; Rettner, Charles; Hughes, Brian. P.; Yang, See-Hun; Parkin, Stuart. S. P.

    Recently, there has been a large interest in using spin orbit torques to controllably manipulate the magnetic order parameter in several promising magnetic memory devices such as racetrack memory and spin transfer torque MRAM. The efficient operation of such devices necessitates the finding of materials which exhibit efficient conversion of charge currents to spin orbit torques. This is typically quantified by the so-called spin Hall angle. The most efficient spin orbit torque generator to date based on the use of conventional metallic materials is W(O), wherein the effective spin hall angle is found to be -0.5. Here, we explore the use of W(O) to manipulate magnetization in three terminal magnetic memory devices. We find, consistent with the large spin orbit torques, observed in W(O), that the critical current required for switching a magnetic element is significantly smaller than compared to other metallic systems such as Pt, β-W, and Ta. Lastly, we shall discuss the technologically important high speed ( ns time scale) switching dynamics in these devices and the role of complex micromagnetic states upon the switching process.

  8. In situ scanning tunneling microscope tip treatment device for spin polarization imaging

    Science.gov (United States)

    Li, An-Ping [Oak Ridge, TN; Jianxing, Ma [Oak Ridge, TN; Shen, Jian [Knoxville, TN

    2008-04-22

    A tip treatment device for use in an ultrahigh vacuum in situ scanning tunneling microscope (STM). The device provides spin polarization functionality to new or existing variable temperature STM systems. The tip treatment device readily converts a conventional STM to a spin-polarized tip, and thereby converts a standard STM system into a spin-polarized STM system. The tip treatment device also has functions of tip cleaning and tip flashing a STM tip to high temperature (>2000.degree. C.) in an extremely localized fashion. Tip coating functions can also be carried out, providing the tip sharp end with monolayers of coating materials including magnetic films. The device is also fully compatible with ultrahigh vacuum sample transfer setups.

  9. Comment on ''Giant magnetocurrent exceeding 3400% in magnetic tunnel transistors with spin-valve base layers'' [Appl. Phys. Lett. 83, 951

    NARCIS (Netherlands)

    Jansen, R.; van 't Erve, O.M.J.; Postma, F.M.; Lodder, J.C.

    2004-01-01

    In a recent letter,1 it was reported that a magnetic tunnel transistor ~MTT! with a spin-valve base can exhibit high magnetocurrent ~MC! as well as output collector current in the microampere regime. While the presented experimental results are sound and unambiguous, the comparison with the

  10. Superconducting spin valves based on epitaxial Fe/V-hybrid thin film heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Gregor

    2010-12-10

    This study presents a systematic investigation of the SSV effect in FM/SC/FM and FM/N/FM/SC heterostructures. Before investigating the actual SSV effect, we first pre-analyzed structural, magnetic and superconducting properties of the Fe/V system. In these preliminary studies we demonstrated, that epitaxial Fe/V heterostructures of superior crystalline quality can be grown by DC sputter deposition. With a Fe/V interface thickness of only one monolayer, the chemical separation of the Fe and V layers is extremely sharp. Moreover, the magnetic investigation showed that from thicknesses of two Fe(001) monolayers on the Fe layers in the superlattice possess a magnetic moment. Furthermore, we demonstrated the interlayer exchange coupling as oscillatory function of the V interlayer thickness. The investigations of the superconducting parameters of the Fe/V system revealed a non-monotonic T{sub S} vs. d{sub Fe} dependence in sample series (1). This observation proves the presence of the FM/SC proximity effect. The studies of various heterostructures of the design AFM/FM/SC/FM revealed a strong counteracting influence on the SSV effect, the stray field effect. The sample containing Fe{sub 25}V{sub 75} alloy layers, has the highest ratio of Cooper pair coherence length and superconductor thickness (ξ{sub S})/(d{sub S}), and its superconducting transition temperature is comparable to the sample with Fe{sub 35}V{sub 65} alloy layers. Nevertheless, the SSV effect in sample Fe{sub 25}V{sub 75} with alloy layers is much smaller than in sample with Fe{sub 35}V{sub 65} alloy layers. For a high-performance superconducting spin valve based on a FM1/SC/FM2 heterostructure at least four parameters have to be optimized simultaneously. 1. The magnetic domain size in FM1 and FM2 has to be as large as possible in order to reduce the stray field effect resulting from magnetization components in the FM domain walls perpendicular to the SC layer. 2. When using ferromagnetic alloys as

  11. EXPERIENCES IN THE AIR SPINNING TO MANUFACTURE MEDICAL DEVICES

    Directory of Open Access Journals (Sweden)

    MARSAL Feliu

    2015-05-01

    Full Text Available The work aims to determine, with scientific rigor, differences in key parameters of the yarns produced by conventional ring spinning systems, open-end and air spinning and its interrelation with the main parameters of those products that are intended for medical-sanitary sector. The experiences have been made in a Spanish company from short fibers sector that has three spinning systems, with tradition and prestige in world market, validating the results in Innotex Center laboratories of the Polytechnic University of Catalonia. Considering the results, it shows that the technology of manufacture of yarns by air is suitable for yarn, woven fabrics and knitting, structures to textile medical-sanitary application, by specific properties as well as enhanced competitiveness, due to the high production rate and shortened spinning process. The viscose yarns manufactured by air mass are more mass regular. The new DR parameter clearly indicates a better look of the finished fabric when we work with yarns produced by air technology.The significant reduction of the hairiness means less formation of loose fibres by friction, very important in the application of these yarns in the manufacture of textile structures for medical-sanitary use. Also no-table increase of about 15% in the absorption capacity of the fluids, especially water, from the yarns made by air. In the functionalization of fabrics obtained from spun yarn by air will need to apply a permanent smoothing.

  12. Towards real-time cardiovascular magnetic resonance-guided transarterial aortic valve implantation: In vitro evaluation and modification of existing devices

    OpenAIRE

    Kahlert, Philipp; Eggebrecht, Holger; Plicht, Bj?rn; Kraff, Oliver; McDougall, Ian; Decker, Brad; Erbel, Raimund; Ladd, Mark E; Quick, Harald H

    2010-01-01

    Abstract Background Cardiovascular magnetic resonance (CMR) is considered an attractive alternative for guiding transarterial aortic valve implantation (TAVI) featuring unlimited scan plane orientation and unsurpassed soft-tissue contrast with simultaneous device visualization. We sought to evaluate the CMR characteristics of both currently commercially available transcatheter heart valves (Edwards SAPIEN™, Medtronic CoreValve®) including their dedicated delivery devices and of a custom-built...

  13. A non-invasive thermal drift compensation technique applied to a spin-valve magnetoresistive current sensor.

    Science.gov (United States)

    Sánchez Moreno, Jaime; Ramírez Muñoz, Diego; Cardoso, Susana; Casans Berga, Silvia; Navarro Antón, Asunción Edith; Peixeiro de Freitas, Paulo Jorge

    2011-01-01

    A compensation method for the sensitivity drift of a magnetoresistive (MR) Wheatstone bridge current sensor is proposed. The technique was carried out by placing a ruthenium temperature sensor and the MR sensor to be compensated inside a generalized impedance converter circuit (GIC). No internal modification of the sensor bridge arms is required so that the circuit is capable of compensating practical industrial sensors. The method is based on the temperature modulation of the current supplied to the bridge, which improves previous solutions based on constant current compensation. Experimental results are shown using a microfabricated spin-valve MR current sensor. The temperature compensation has been solved in the interval from 0 °C to 70 °C measuring currents from -10 A to +10 A.

  14. Formation of CCP-NOL in CPP-GMR spin valve structure for the enhancement of magnetoresistance

    International Nuclear Information System (INIS)

    Kang, Y.M.; Isogami, S.; Tsunoda, M.; Takahashi, M.; Yoo, S.I.

    2007-01-01

    For the MR enhancement in current perpendicular to plane-giant magetoresistance spin valve (CPP-GMR SV), a current-confined path-nano-oxide layer (CCP-NOL)-AlO x was formed on the Cu spacer of half SV structure. In order to form effective current-confining paths, an ultra-thin AlO x layer was deposited on a Cu spacer layer by O 2 reactive sputtering of Al with infra-red (IR) heat treatment on the substrate, and that enable to form an island-structured insulating AlO x layer having holes between AlO x islands. By controlling PO 2 and substrate temperature in the NOL deposition, AlO x layer formation without an oxidizing bottom layer could be achieved

  15. A Non-Invasive Thermal Drift Compensation Technique Applied to a Spin-Valve Magnetoresistive Current Sensor

    Directory of Open Access Journals (Sweden)

    Paulo Jorge Peixeiro de Freitas

    2011-02-01

    Full Text Available A compensation method for the sensitivity drift of a magnetoresistive (MR Wheatstone bridge current sensor is proposed. The technique was carried out by placing a ruthenium temperature sensor and the MR sensor to be compensated inside a generalized impedance converter circuit (GIC. No internal modification of the sensor bridge arms is required so that the circuit is capable of compensating practical industrial sensors. The method is based on the temperature modulation of the current supplied to the bridge, which improves previous solutions based on constant current compensation. Experimental results are shown using a microfabricated spin-valve MR current sensor. The temperature compensation has been solved in the interval from 0 °C to 70 °C measuring currents from −10 A to +10 A.

  16. The Application of Bileaflet Mechanical Heart Valves in the Polish Ventricular Assist Device: Physical and Numerical Study and First Clinical Usage.

    Science.gov (United States)

    Malota, Zbigniew; Sadowski, Wojciech; Krzyskow, Marek; Stolarzewicz, Bogdan

    2016-03-01

    The Polish ventricular assist device (Polvad) has been used successfully in clinical contexts for many years. The device contains two single-disc valves, one at the inlet and one at the outlet connector of the pneumatic pump. Unfortunately, in recent years, a problem has occurred with the availability of single-disc valves. This article presents the possibility of using bileaflet mechanical heart valve prostheses in the Polvad to avoid a discontinuity in clinical use. The study is based on experimental and numerical simulations and comparison of the distribution of flow, pressure, and stress (wall, shear, and turbulent) inside the Polvad chamber and the inlet/outlet connectors fitted with Sorin Monodisc and Sorin Bicarbon Fitline valves. The type and orientation of the inlet valve affects valve performance and flow distribution inside the chamber. Near-wall flow is observed for single-disc valves. In the case of bileaflet valves, the main jet is directed more centrally, with lower shear stress but higher turbulent stress in comparison with single-disc valves. For clinical usage, a 45° orientation of the bileaflet inlet valve was chosen, as this achieves good washing of the inlet area near the membrane paste surface. The Polvad with bileaflet valves has now been used successfully in our clinic for over a year and will continue to be used until new assist devices for heart support are developed. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  17. Nanosecond-timescale spin transfer using individual electrons in a quadruple-quantum-dot device

    Energy Technology Data Exchange (ETDEWEB)

    Baart, T. A.; Jovanovic, N.; Vandersypen, L. M. K. [QuTech and Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Reichl, C.; Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)

    2016-07-25

    The ability to coherently transport electron-spin states between different sites of gate-defined semiconductor quantum dots is an essential ingredient for a quantum-dot-based quantum computer. Previous shuttles using electrostatic gating were too slow to move an electron within the spin dephasing time across an array. Here, we report a nanosecond-timescale spin transfer of individual electrons across a quadruple-quantum-dot device. Utilizing enhanced relaxation rates at a so-called hot spot, we can upper bound the shuttle time to at most 150 ns. While actual shuttle times are likely shorter, 150 ns is already fast enough to preserve spin coherence in, e.g., silicon based quantum dots. This work therefore realizes an important prerequisite for coherent spin transfer in quantum dot arrays.

  18. Dynamic detection of spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance (Conference Presentation)

    Science.gov (United States)

    Crowell, Paul A.; Liu, Changjiang; Patel, Sahil; Peterson, Tim; Geppert, Chad C.; Christie, Kevin; Stecklein, Gordon; Palmstrøm, Chris J.

    2016-10-01

    A distinguishing feature of spin accumulation in ferromagnet-semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this new approach enables a measurement of short spin lifetimes (C. Liu, S. J. Patel, T. A. Peterson, C. C. Geppert, K. D. Christie, C. J. Palmstrøm, and P. A. Crowell, "Dynamic detection of electron spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance," Nature Communications 7, 10296 (2016). http://dx.doi.org/10.1038/ncomms10296

  19. Cardiac implantable electronic device and associated risk of infective endocarditis in patients undergoing aortic valve replacement

    DEFF Research Database (Denmark)

    Østergaard, Lauge; Valeur, Nana; Bundgaard, Henning

    2017-01-01

    Aims: Patients undergoing aortic valve replacement (AVR) are at increased risk of infective endocarditis (IE) as are patients with a cardiac implantable electronic device (CIED). However, few data exist on the IE risk after AVR surgery in patients with a CIED. Methods and results: Using the Danish...... administrative registries, we identified patients undergoing AVR from January 1996 to December 2015. Patients were categorized by CIED and non-CIED and followed up till hospitalization due to IE, death, 10 years after AVR discharge, end of study period (December 2015) or emigration, whichever came first. Using...... multivariable-adjusted Cox proportional hazard analysis with time-varying exposure, we investigated whether CIED was associated with an increased risk of IE. We included 15 538 patients (median age 71.4 years, 25th-75th percentiles 63.7-77.1, and 65.2% male). There were 890 patients with a CIED; 531...

  20. Atrophy of the Heart After Insertion of a Left Ventricular Assist Device and Closure of the Aortic Valve.

    Science.gov (United States)

    Roberts, William C; Hall, Shelley A; Ko, Jong M; McCullough, Peter A; Lima, Brian

    2016-03-01

    Described are findings in a 70-year-old man who had heart transplantation 4 years after treatment with a left ventricular assist device, and surgical closure of his previously replaced aortic valve. The result was a totally nonfunctioning left ventricle resulting in severe atrophy. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Spin dependent disorder in a junction device with spin orbit couplings

    International Nuclear Information System (INIS)

    Ganguly, Sudin; Basu, Saurabh

    2016-01-01

    Using the multi-probe Landauer-BUttiker formula and Green's function approach, we calculate the longitudinal conductance (LC) and spin Hall conductance (SHC) numerically in a two-dimensional junction system with the Rashba and Dresselhaus spin orbit coupling (SOC) and spin dependent disorder (SDD) in presence of both random onsite and hopping disorder strengths. It has been found that when the strengths of the RSOC and DSOC are same, the SHC vanishes. Further in presence of random onsite or hopping disorder, the SHC is still zero when the strengths of the two types of SOC, that is Rashba and Dressselhaus are the same. This indicates that the cancellation of SHC is robust even in the presence of random disorder. Only with the inclusion of SDD (onsite or hopping), a non-zero SHC is found and it increases as the strength of SDD increases. The physical implication of the existence of a non-zero SHC has been explored in this work. Finally, we have compared the effect of onsite SDD and hopping SDD on both longitudinal and spin Hall conductances. (paper)

  2. Quantum interference effect in electron tunneling through a quantum-dot-ring spin valve.

    Science.gov (United States)

    Ma, Jing-Min; Zhao, Jia; Zhang, Kai-Cheng; Peng, Ya-Jing; Chi, Feng

    2011-03-28

    Spin-dependent transport through a quantum-dot (QD) ring coupled to ferromagnetic leads with noncollinear magnetizations is studied theoretically. Tunneling current, current spin polarization and tunnel magnetoresistance (TMR) as functions of the bias voltage and the direct coupling strength between the two leads are analyzed by the nonequilibrium Green's function technique. It is shown that the magnitudes of these quantities are sensitive to the relative angle between the leads' magnetic moments and the quantum interference effect originated from the inter-lead coupling. We pay particular attention on the Coulomb blockade regime and find the relative current magnitudes of different magnetization angles can be reversed by tuning the inter-lead coupling strength, resulting in sign change of the TMR. For large enough inter-lead coupling strength, the current spin polarizations for parallel and antiparallel magnetic configurations will approach to unit and zero, respectively.PACS numbers:

  3. Quantum interference effect in electron tunneling through a quantum-dot-ring spin valve

    Directory of Open Access Journals (Sweden)

    Ma Jing-Min

    2011-01-01

    Full Text Available Abstract Spin-dependent transport through a quantum-dot (QD ring coupled to ferromagnetic leads with noncollinear magnetizations is studied theoretically. Tunneling current, current spin polarization and tunnel magnetoresistance (TMR as functions of the bias voltage and the direct coupling strength between the two leads are analyzed by the nonequilibrium Green's function technique. It is shown that the magnitudes of these quantities are sensitive to the relative angle between the leads' magnetic moments and the quantum interference effect originated from the inter-lead coupling. We pay particular attention on the Coulomb blockade regime and find the relative current magnitudes of different magnetization angles can be reversed by tuning the inter-lead coupling strength, resulting in sign change of the TMR. For large enough inter-lead coupling strength, the current spin polarizations for parallel and antiparallel magnetic configurations will approach to unit and zero, respectively. PACS numbers:

  4. Minimally Invasive Implantation of HeartWare Assist Device and Simultaneous Tricuspid Valve Reconstruction Through Partial Upper Sternotomy.

    Science.gov (United States)

    Hillebrand, Julia; Hoffmeier, Andreas; Djie Tiong Tjan, Tonny; Sindermann, Juergen R; Schmidt, Christoph; Martens, Sven; Scherer, Mirela

    2017-05-01

    Left ventricular assist device (LVAD) implantation is a well-established therapy to support patients with end-stage heart failure. However, the operative procedure is associated with severe trauma. Third generation LVADs like the HeartWare assist device (HeartWare, Inc., Framingham, MA, USA) are characterized by enhanced technology despite smaller size. These devices offer new minimally invasive surgical options. Tricuspid regurgitation requiring valve repair is frequent in patients with the need for mechanical circulatory support as it is strongly associated with ischemic and nonischemic cardiomyopathy. We report on HeartWare LVAD implantation and simultaneous tricuspid valve reconstruction through minimally invasive access by partial upper sternotomy to the fifth left intercostal space. Four male patients (mean age 51.72 ± 11.95 years) suffering from chronic heart failure due to dilative (three patients) and ischemic (one patient) cardiomyopathy and also exhibiting concomitant tricuspid valve insufficiency due to annular dilation underwent VAD implantation and tricuspid valve annuloplasty. Extracorporeal circulation was established via the ascending aorta, superior vena cava, and right atrium. In all four cases the LVAD implantation and tricuspid valve repair via partial median sternotomy was successful. During the operative procedure, no conversion to full sternotomy was necessary. One patient needed postoperative re-exploration because of pericardial effusion. No postoperative focal neurologic injury was observed. New generation VADs are advantageous because of the possibility of minimally invasive implantation procedure which can therefore minimize surgical trauma. Concomitant tricuspid valve reconstruction can also be performed simultaneously through partial upper sternotomy. Nevertheless, minimally invasive LVAD implantation is a challenging operative technique. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals

  5. Retrograde transcatheter device closure of a complex paravalvular leak after bioprosthetic pulmonary valve replacement in a pediatric patient.

    Science.gov (United States)

    Chikkabyrappa, Sathish; Mosca, Ralph S; McElhinney, Doff B

    2016-06-01

    We report a case of retrograde transcatheter device closure of a complex paravalvular leak (PVL) after bioprosthetic pulmonary valve replacement (PVR) in a 13-year-old patient with congenital pulmonary valve stenosis. There are prior reports of pulmonary PVL closure after PVR in adults (Seery and Slack, Congenit Heart Dis 2014;9:E19-F22), but indications for and technical considerations in PVL closure after bioprosthetic PVR, particularly in children, are not well defined. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  6. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    Science.gov (United States)

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; Heremans, Jean J.

    2015-03-01

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biological functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.

  7. Adjustable cerebrospinal fluid shunt valves in 3.0-Tesla MRI: a phantom study using explanted devices.

    Science.gov (United States)

    Akbar, M; Aschoff, A; Georgi, J C; Nennig, E; Heiland, S; Abel, R; Stippich, C

    2010-07-01

    Considering the rapidly increasing number of clinical high-field MR imagers and the lack of data regarding interference with magnetically adjustable cerebrospinal fluid (CSF) shunt valves, valve safety was assessed with regard to magnetic field interactions: imaging artifacts, heating, magnetic forces, and functional changes in a phantom study at 3.0 Tesla using explanted devices as a realistic model for in vivo conditions. Sixteen explanted Codman-Medos and Sophy-SU8 shunt valves, all in perfect working order, were selected and exposed to a 3.0 T static magnetic field. Valve-induced imaging artifacts and signal drop-outs and the heating experiments were evaluated using standard diagnostic MR sequences with different SAR values. Translational attraction for the adjustable valves was assessed using the deflection angle method. To test adjustability and function, the spherical phantom containing the valve was placed in the isocenter of the MR scanner and exposed to a static magnetic field of 3.0 T for 0.25 to 12 hours (repeated exposure 1-12 times), including typical entrance and move-out procedures. The diameters of imaging artifacts ranged from 10-70 mm and were most prominent on T2*w sequences. There was no relevant MR-imaging-related heating. Magnetic forces were not critical. Reproducible adjustment failures occurred in 6 valves. Until suggestions can be made concerning the exposure of hydrocephalic patients to 3.0 T-MRI, further testing is necessary. Copyright (c) Georg Thieme Verlag KG Stuttgart-New York.

  8. Spin-Based Devices for Magneto-Optoelectronic Integrated Circuits

    Science.gov (United States)

    2009-04-29

    Nanostructures to Nanosensing Applications, Proceedings of the International School of Physics " Enrico Fermi ," Course CLX, edited by A. D’Amico, G...parameter B which correlates nt(i) with u.^ through Fermi - Dirac distribution and density-of-states functions, and which is approximated by a linear...in these devices [17]. The model parameters, determined at 10 K, are as follows: (1) from Hall measurements, \\i = 3000 cm2/V.s; (2) from the Fermi

  9. Magnetotransport in spin-valve systems with amorphous magnetic and superconducting partial layers; Magnetotransport in Spinventil-Systemen mit amorphen magnetischen und supraleitenden Teilschichten

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Roland Johannes

    2006-04-27

    The first part of this work deals with the fabrication and characterisation of spin valves with an amorphous FeB layer acting as a weak ferromagnet embedded into the structure. In the second part of this work ferromagnet/superconductor hybrid structures are fabricated and the relevant magnetic field dependent transport phenomena are analyzed. The interlayer of a conventional spin valve was replaced by a superconducting niobium layer. Small applied fields close to the coercivity field of the involved ferromagnets - and thus far below the critical magnetic field of the superconductor - affected the critical temperature of the niobium layer. Measurements of the field dependent resistance and the critical temperature of a FM/SC/FMsystem showed a local maximum in the T{sub c}(H)- and the R(H)-curve. (orig.)

  10. Integrated nozzle - flapper valve with piezoelectric actuator and isothermal chamber: a feedback linearization multi control device

    Energy Technology Data Exchange (ETDEWEB)

    Kamali, Mohammadreza; Jazayeri, Seyed Ali [K. N.Toosi University of Technology, Tehran (Iran, Islamic Republic of); Najafi, Farid [University of Guilan, Rasht (Iran, Islamic Republic of); Kawashima, Kenji [Tokyo Medical and Dental University, Tokyo (Japan); Kagawa, Toshiharu [Tokyo Institute of Technology, Tokyo (Japan)

    2016-05-15

    This paper introduces a new nozzle-flapper valve with isothermal chamber using piezoelectric actuator. It controls the pressure and flow rate simply, effectively and separately. The proposed valve uses isothermal chamber presenting practical isothermal condition due to its large heat transfer interfaces filled by metal wool. The valve uses stacked type piezoelectric actuator with unique advantages. By using this valve, a simple method has been fulfilled to control flow rate or pressure of ideal gases in a pneumatic actuators. Experimental results demonstrated applications of the proposed valve to control either pressure or flow rate in pneumatic circuits. This valve can be also used in the pilot stage valve to actuate the main stage of a much bigger pneumatic valve. Designated structure contains only one pressure sensor installed on the isothermal control chamber, capable of controlling both pressure and flow rate. The desired output mass flow rate of the valve is controlled by the pressure changes during positioning of piezoelectric actuator at proper position. The proposed valve can control steady and unsteady oscillatory flow rate and pressure effectively, using nonlinear control method such as feedback linearization approach. Its effectiveness is demonstrated and validated through simulation and experiments.

  11. Towards real-time cardiovascular magnetic resonance-guided transarterial aortic valve implantation: in vitro evaluation and modification of existing devices.

    Science.gov (United States)

    Kahlert, Philipp; Eggebrecht, Holger; Plicht, Björn; Kraff, Oliver; McDougall, Ian; Decker, Brad; Erbel, Raimund; Ladd, Mark E; Quick, Harald H

    2010-10-13

    Cardiovascular magnetic resonance (CMR) is considered an attractive alternative for guiding transarterial aortic valve implantation (TAVI) featuring unlimited scan plane orientation and unsurpassed soft-tissue contrast with simultaneous device visualization. We sought to evaluate the CMR characteristics of both currently commercially available transcatheter heart valves (Edwards SAPIEN™, Medtronic CoreValve®) including their dedicated delivery devices and of a custom-built, CMR-compatible delivery device for the Medtronic CoreValve® prosthesis as an initial step towards real-time CMR-guided TAVI. The devices were systematically examined in phantom models on a 1.5-Tesla scanner using high-resolution T1-weighted 3D FLASH, real-time TrueFISP and flow-sensitive phase-contrast sequences. Images were analyzed for device visualization quality, device-related susceptibility artifacts, and radiofrequency signal shielding. CMR revealed major susceptibility artifacts for the two commercial delivery devices caused by considerable metal braiding and precluding in vivo application. The stainless steel-based Edwards SAPIEN™ prosthesis was also regarded not suitable for CMR-guided TAVI due to susceptibility artifacts exceeding the valve's dimensions and hindering an exact placement. In contrast, the nitinol-based Medtronic CoreValve® prosthesis was excellently visualized with delineation even of small details and, thus, regarded suitable for CMR-guided TAVI, particularly since reengineering of its delivery device toward CMR-compatibility resulted in artifact elimination and excellent visualization during catheter movement and valve deployment on real-time TrueFISP imaging. Reliable flow measurements could be performed for both stent-valves after deployment using phase-contrast sequences. The present study shows that the Medtronic CoreValve® prosthesis is potentially suited for real-time CMR-guided placement in vivo after suggested design modifications of the delivery

  12. Towards real-time cardiovascular magnetic resonance-guided transarterial aortic valve implantation: In vitro evaluation and modification of existing devices

    Directory of Open Access Journals (Sweden)

    Ladd Mark E

    2010-10-01

    Full Text Available Abstract Background Cardiovascular magnetic resonance (CMR is considered an attractive alternative for guiding transarterial aortic valve implantation (TAVI featuring unlimited scan plane orientation and unsurpassed soft-tissue contrast with simultaneous device visualization. We sought to evaluate the CMR characteristics of both currently commercially available transcatheter heart valves (Edwards SAPIEN™, Medtronic CoreValve® including their dedicated delivery devices and of a custom-built, CMR-compatible delivery device for the Medtronic CoreValve® prosthesis as an initial step towards real-time CMR-guided TAVI. Methods The devices were systematically examined in phantom models on a 1.5-Tesla scanner using high-resolution T1-weighted 3D FLASH, real-time TrueFISP and flow-sensitive phase-contrast sequences. Images were analyzed for device visualization quality, device-related susceptibility artifacts, and radiofrequency signal shielding. Results CMR revealed major susceptibility artifacts for the two commercial delivery devices caused by considerable metal braiding and precluding in vivo application. The stainless steel-based Edwards SAPIEN™ prosthesis was also regarded not suitable for CMR-guided TAVI due to susceptibility artifacts exceeding the valve's dimensions and hindering an exact placement. In contrast, the nitinol-based Medtronic CoreValve® prosthesis was excellently visualized with delineation even of small details and, thus, regarded suitable for CMR-guided TAVI, particularly since reengineering of its delivery device toward CMR-compatibility resulted in artifact elimination and excellent visualization during catheter movement and valve deployment on real-time TrueFISP imaging. Reliable flow measurements could be performed for both stent-valves after deployment using phase-contrast sequences. Conclusions The present study shows that the Medtronic CoreValve® prosthesis is potentially suited for real-time CMR-guided placement

  13. Thermoelectric spin voltage in graphene.

    Science.gov (United States)

    Sierra, Juan F; Neumann, Ingmar; Cuppens, Jo; Raes, Bart; Costache, Marius V; Valenzuela, Sergio O

    2018-02-01

    In recent years, new spin-dependent thermal effects have been discovered in ferromagnets, stimulating a growing interest in spin caloritronics, a field that exploits the interaction between spin and heat currents 1,2 . Amongst the most intriguing phenomena is the spin Seebeck effect 3-5 , in which a thermal gradient gives rise to spin currents that are detected through the inverse spin Hall effect 6-8 . Non-magnetic materials such as graphene are also relevant for spin caloritronics, thanks to efficient spin transport 9-11 , energy-dependent carrier mobility and unique density of states 12,13 . Here, we propose and demonstrate that a carrier thermal gradient in a graphene lateral spin valve can lead to a large increase of the spin voltage near to the graphene charge neutrality point. Such an increase results from a thermoelectric spin voltage, which is analogous to the voltage in a thermocouple and that can be enhanced by the presence of hot carriers generated by an applied current 14-17 . These results could prove crucial to drive graphene spintronic devices and, in particular, to sustain pure spin signals with thermal gradients and to tune the remote spin accumulation by varying the spin-injection bias.

  14. Partial spin absorption induced magnetization switching and its voltage-assisted improvement in an asymmetrical all spin logic device at the mesoscopic scale

    Science.gov (United States)

    Zhang, Yue; Zhang, Zhizhong; Wang, Lezhi; Nan, Jiang; Zheng, Zhenyi; Li, Xiang; Wong, Kin; Wang, Yu; Klein, Jacques-Olivier; Khalili Amiri, Pedram; Zhang, Youguang; Wang, Kang L.; Zhao, Weisheng

    2017-07-01

    Beyond memory and storage, future logic applications put forward higher requirements for electronic devices. All spin logic devices (ASLDs) have drawn exceptional interest as they utilize pure spin current instead of charge current, which could promise ultra-low power consumption. However, relatively low efficiencies of spin injection, transport, and detection actually impede high-speed magnetization switching and challenge perspectives of ASLD. In this work, we study partial spin absorption induced magnetization switching in asymmetrical ASLD at the mesoscopic scale, in which the injector and detector have the nano-fabrication compatible device size (>100 nm) and their contact areas are different. The enlarged contact area of the detector is conducive to the spin current absorption, and the contact resistance difference between the injector and the detector can decrease the spin current backflow. Rigorous spin circuit modeling and micromagnetic simulations have been carried out to analyze the electrical and magnetic features. The results show that, at the fabrication-oriented technology scale, the ferromagnetic layer can hardly be switched by geometrically partial spin current absorption. The voltage-controlled magnetic anisotropy (VCMA) effect has been applied on the detector to accelerate the magnetization switching by modulating magnetic anisotropy of the ferromagnetic layer. With a relatively high VCMA coefficient measured experimentally, a voltage of 1.68 V can assist the whole magnetization switching within 2.8 ns. This analysis and improving approach will be of significance for future low-power, high-speed logic applications.

  15. Mental health status of patients with mechanical aortic valves, with ventricular assist devices and after heart transplantation.

    Science.gov (United States)

    Heilmann, Claudia; Kaps, Josefine; Hartmann, Armin; Zeh, Wolfgang; Anjarwalla, Anna Lena; Beyersdorf, Friedhelm; Siepe, Matthias; Joos, Andreas

    2016-08-01

    Mental health is a complex construct, in which emotional aspects and quality of life are central. It has been assessed in patients after heart transplantation (HTX) and occasionally in those with ventricular assist devices (VADs). However, there are no studies that compare patients with primary HTX with those with HTX ending VAD support. Evidence for patients with mechanical aortic valve replacement is also limited. We compared mental outcome for these four groups for the first time. We also focused on the question of an artificial device, i.e. VAD or mechanical aortic valve, as distinct from a biological graft, i.e. HTX. Two questionnaires were applied: The Hospital Anxiety and Depression Scale, the German version consists of two subscales for anxiety and for depression, and the 12-item Short Form Health Survey, the German version contains two subscales for physical and for mental performance measuring quality of life. We included 46 patients with mechanical aortic valve replacement, 55 after HTX and 22 on support by a long-term VAD. The HTX group consisted of 38 patients with primary HTX and 17 recipients who were on VAD support before transplantation. The index operation was at least 6 months ago. HTX patients suffered less from anxiety and depression than patients with mechanical aortic valve replacement or those on VAD. HTX patients had higher scores on the physical scale but not on the mental component scale of the 12-item Short Form Health Survey compared with VAD patients. Conversely, patients with mechanical aortic valve replacement did worse with regard to mental but not physical performance compared with HTX patients. VAD and mechanical aortic valve replacement patients differed only with regard to physical condition, but not with regard to anxiety, depression and mental status. HTX patients with and without VAD support before transplantation achieved similar values on all scales. Mental scales did not correlate with age or time after surgery. HTX

  16. Exploring Spin-transfer-torque devices and memristors for logic and memory applications

    Science.gov (United States)

    Pajouhi, Zoha

    As scaling CMOS devices is approaching its physical limits, researchers have begun exploring newer devices and architectures to replace CMOS. Due to their non-volatility and high density, Spin Transfer Torque (STT) devices are among the most prominent candidates for logic and memory applications. In this research, we first considered a new logic style called All Spin Logic (ASL). Despite its advantages, ASL consumes a large amount of static power; thus, several optimizations can be performed to address this issue. We developed a systematic methodology to perform the optimizations to ensure stable operation of ASL. Second, we investigated reliable design of STT-MRAM bit-cells and addressed the conflicting read and write requirements, which results in overdesign of the bit-cells. Further, a Device/Circuit/Architecture co-design framework was developed to optimize the STT-MRAM devices by exploring the design space through jointly considering yield enhancement techniques at different levels of abstraction. Recent advancements in the development of memristive devices have opened new opportunities for hardware implementation of non-Boolean computing. To this end, the suitability of memristive devices for swarm intelligence algorithms has enabled researchers to solve a maze in hardware. In this research, we utilized swarm intelligence of memristive networks to perform image edge detection. First, we proposed a hardware-friendly algorithm for image edge detection based on ant colony. Next, we designed the image edge detection algorithm using memristive networks.

  17. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    Science.gov (United States)

    Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun; Wang, Xianghao; Zhu, Benpeng; Chen, Shi; Yang, Xiaofei

    2016-01-01

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 104 J/m3 and 10 × 104 J/m3, the output performance can be significantly manipulated: The linear range alters from between -330 Oe and 330 Oe to between -650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2-20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance.

  18. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction

    Czech Academy of Sciences Publication Activity Database

    Park, B.G.; Wunderlich, Joerg; Martí, X.; Holý, V.; Kurosaki, Y.; Yamada, M.; Yamamoto, H.; Nishide, A.; Hayakawa, J.; Takahashi, H.; Shick, Alexander; Jungwirth, Tomáš

    2011-01-01

    Roč. 10, č. 5 (2011), s. 347-351 ISSN 1476-1122 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510; GA MŠk(CZ) 7E08087 EU Projects: European Commission(XE) 268066 - 0MSPIN; European Commission(XE) 214499 - NAMASTE; European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100520 Keywords : spintronics * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 32.841, year: 2011

  19. Management of severe aortic regurgitation in a patient with cardiogenic shock using a percutaneous left ventricular assist device and transcatheter occlusion of the failed aortic valve homograft as a bridge to surgical valve replacement.

    Science.gov (United States)

    Pollak, Peter; Lim, D Scott; Kern, John

    2014-01-01

    Acute hemodynamic compromise due to severe aortic regurgitation remains a difficult problem. The optimal management strategy and timing of surgery continues to evolve as new technologies become available. Here, we report the case of a young woman presenting with severe regurgitation of an aortic homograft who developed precipitous cardiogenic shock and multi-organ dysfunction. Her mortality risk with emergent surgery was prohibitive, and no percutaneous valve-in-valve device was available. We stabilized her condition by placing an Amplatz-type Atrial Septal Defect (ASD) occluder across her aortic valve in conjunction with a percutaneous left ventricular assist device as a bridge to surgical valve replacement. She went on to a successful surgery and recovered well. Copyright © 2013 Wiley Periodicals, Inc.

  20. Microfluidic sieve valves

    Science.gov (United States)

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L

    2015-01-13

    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  1. Prevention of device-related tissue damage during percutaneous deployment of tissue-engineered heart valves.

    Science.gov (United States)

    Stock, U A; Degenkolbe, I; Attmann, T; Schenke-Layland, K; Freitag, S; Lutter, G

    2006-06-01

    Endovascular application of pulmonary heart valves has been recently introduced clinically. A tissue-engineering approach was pursued to overcome the current limitations of bovine jugular vein valves (degeneration and limited longevity). However, deployment of the delicate tissue-engineered valves resulted in severe tissue damage. Therefore the objective of this study was to prevent tissue damage during the folding and deployment maneuver. Porcine pulmonary heart valves, small intestinal submucosa, and ovine carotid arteries were obtained from a slaughterhouse. After dissection and antimicrobial incubation, the valves were trimmed (removal of sinus and most of the muscular ring) to fit into the deployment catheter. The inside (in-stent group, n = 6) or outside (out-stent group, n = 6) of a nitinol stent was covered by an acellular small intestinal submucosa, and the valves were sutured into the stent. The valves were folded, tested for placement in the deployment catheter, and decellularized enzymatically. Myofibroblasts were obtained from carotid artery segments and seeded onto the scaffolds. The seeded constructs were placed in a dynamic bioreactor system and cultured for 16 consecutive days. After endothelial cell seeding, the constructs were folded, deployed, and processed for histology and surface electron microscopy. The valves opened and closed competently throughout the entire dynamic culture. Surface electron microscopy revealed an almost completely preserved tissue in the in-stent group. Stents covered with small intestinal submucosa on the outside, however, showed severe damage. This study demonstrates that small intestinal submucosa covering of the inside of a pulmonary valved stent can prevent stent strut-related tissue damage.

  2. Novel spintronics devices for memory and logic: prospects and challenges for room temperature all spin computing

    Science.gov (United States)

    Wang, Jian-Ping

    An energy efficient memory and logic device for the post-CMOS era has been the goal of a variety of research fields. The limits of scaling, which we expect to reach by the year 2025, demand that future advances in computational power will not be realized from ever-shrinking device sizes, but rather by innovative designs and new materials and physics. Magnetoresistive based devices have been a promising candidate for future integrated magnetic computation because of its unique non-volatility and functionalities. The application of perpendicular magnetic anisotropy for potential STT-RAM application was demonstrated and later has been intensively investigated by both academia and industry groups, but there is no clear path way how scaling will eventually work for both memory and logic applications. One of main reasons is that there is no demonstrated material stack candidate that could lead to a scaling scheme down to sub 10 nm. Another challenge for the usage of magnetoresistive based devices for logic application is its available switching speed and writing energy. Although a good progress has been made to demonstrate the fast switching of a thermally stable magnetic tunnel junction (MTJ) down to 165 ps, it is still several times slower than its CMOS counterpart. In this talk, I will review the recent progress by my research group and my C-SPIN colleagues, then discuss the opportunities, challenges and some potential path ways for magnetoresitive based devices for memory and logic applications and their integration for room temperature all spin computing system.

  3. Spin-Polarized Tunneling through Chemical Vapor Deposited Multilayer Molybdenum Disulfide.

    Science.gov (United States)

    Dankert, André; Pashaei, Parham; Kamalakar, M Venkata; Gaur, Anand P S; Sahoo, Satyaprakash; Rungger, Ivan; Narayan, Awadhesh; Dolui, Kapildeb; Hoque, Md Anamul; Patel, Ram Shanker; de Jong, Michel P; Katiyar, Ram S; Sanvito, Stefano; Dash, Saroj P

    2017-06-27

    The two-dimensional (2D) semiconductor molybdenum disulfide (MoS 2 ) has attracted widespread attention for its extraordinary electrical-, optical-, spin-, and valley-related properties. Here, we report on spin-polarized tunneling through chemical vapor deposited multilayer MoS 2 (∼7 nm) at room temperature in a vertically fabricated spin-valve device. A tunnel magnetoresistance (TMR) of 0.5-2% has been observed, corresponding to spin polarization of 5-10% in the measured temperature range of 300-75 K. First-principles calculations for ideal junctions result in a TMR up to 8% and a spin polarization of 26%. The detailed measurements at different temperature, bias voltages, and density functional theory calculations provide information about spin transport mechanisms in vertical multilayer MoS 2 spin-valve devices. These findings form a platform for exploring spin functionalities in 2D semiconductors and understanding the basic phenomena that control their performance.

  4. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun; Zhu, Benpeng; Chen, Shi; Yang, Xiaofei, E-mail: hust-yangxiaofei@163.com [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wang, Xianghao [School of Information Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2016-01-28

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 10{sup 4 }J/m{sup 3} and 10 × 10{sup 4 }J/m{sup 3}, the output performance can be significantly manipulated: The linear range alters from between −330 Oe and 330 Oe to between −650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2–20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance.

  5. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    International Nuclear Information System (INIS)

    Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun; Zhu, Benpeng; Chen, Shi; Yang, Xiaofei; Wang, Xianghao

    2016-01-01

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 10 4  J/m 3 and 10 × 10 4  J/m 3 , the output performance can be significantly manipulated: The linear range alters from between −330 Oe and 330 Oe to between −650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2–20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance

  6. Process and device for in situ replacing sealing faces in large valves

    International Nuclear Information System (INIS)

    Francois, M.; Garit, J.; Mantes, G.

    1995-01-01

    A milling machine is fitted in the interior of the valve and first machines the sealing face of the opposite seat of the seat to be replaced so that this face can act as a reference for the tool and then machines out the seat ending up by machining a new recess for the replacement seat which is then inserted in position and fixed to the body of the valve by a circular welded joint. 23 figs

  7. Nipro extra-corporeal left ventricular assist device fitting after left ventricular reconstruction with mitral valve plasty.

    Science.gov (United States)

    Arakawa, Mamoru; Yamaguchi, Atsushi; Nishimura, Takashi; Itoh, Satoshi; Yuri, Koichi; Kyo, Shunei; Adachi, Hideo

    2015-12-01

    Both left ventricular assist device and left ventricular reconstruction are treatment choices for severe heart failure conditions. Our institution performed a left ventricular assist device installation following a left ventricular reconstruction procedure on a 42-year-old male patient who presented with dilated cardiomyopathy and low cardiac output syndrome. A mitral valve plasty was used to correct the acute mitral valve regurgitation and we performed a Nipro extra-corporeal left ventricular assist device installation on post-operative day 14. Due to the left ventricular reconstruction that the patient had in a previous operation, we needed to attach an apical cuff on posterior apex, insert the inflow cannula with a large curve, and shift the skin insertion site laterally to the left. We assessed the angle between the cardiac longitudinal axis and the inflow cannula using computed tomography. The patient did not complain of any subjective symptoms of heart failure. Although Nipro extra-corporeal left ventricular assist device installation after left ventricular reconstruction has several difficulties historically, we have experienced a successful case.

  8. [Coupled Analysis of Fluid-Structure Interaction of a Micro-Mechanical Valve for Glaucoma Drainage Devices].

    Science.gov (United States)

    Siewert, S; Sämann, M; Schmidt, W; Stiehm, M; Falke, K; Grabow, N; Guthoff, R; Schmitz, K-P

    2015-12-01

    Glaucoma is the leading cause of irreversible blindness worldwide. In therapeutically refractory cases, alloplastic glaucoma drainage devices (GDD) are being increasingly used to decrease intraocular pressure. Current devices are mainly limited by fibrotic encapsulation and postoperative hypotension. Preliminary studies have described the development of a glaucoma microstent to control aqueous humour drainage from the anterior chamber into the suprachoroidal space. One focus of these studies was on the design of a micro-mechanical valve placed in the anterior chamber to inhibit postoperative hypotension. The present report describes the coupled analysis of fluid-structure interaction (FSI) as basis for future improvements in the design micro-mechanical valves. FSI analysis was carried out with ANSYS 14.5 software. Solid and fluid geometry were combined in a model, and the corresponding material properties of silicone (Silastic Rx-50) and water at room temperature were assigned. The meshing of the solid and fluid domains was carried out in accordance with the results of a convergence study with tetrahedron elements. Structural and fluid mechanical boundary conditions completed the model. The FSI analysis takes into account geometric non-linearity and adaptive remeshing to consider changing geometry. A valve opening pressure of 3.26 mmHg was derived from the FSI analysis and correlates well with the results of preliminary experimental fluid mechanical studies. Flow resistance was calculated from non-linear pressure-flow characteristics as 8.5 × 10(-3) mmHg/µl  · min(-1) and 2.7 × 10(-3) mmHg/µl  · min(-1), respectively before and after valve opening pressure is exceeded. FSI analysis indicated leakage flow before valve opening, which is due to the simplified model geometry. The presented bidirectional coupled FSI analysis is a powerful tool for the development of new designs of micro-mechanical valves for GDD and may help to minimise the time and cost

  9. Spin transport in fully hexagonal boron nitride encapsulated graphene

    NARCIS (Netherlands)

    Gurram, M.; Omar, S.; Zihlmann, S.; Makk, P.; Schoenenberger, C.; van Wees, B. J.

    2016-01-01

    We study fully hexagonal boron nitride (hBN) encapsulated graphene spin valve devices at room temperature. The device consists of a graphene channel encapsulated between two crystalline hBN flakes: thick-hBN flake as a bottom gate dielectric substrate which masks the charge impurities from SiO2/Si

  10. Impact of aortic valve closure on adverse events and outcomes with the HeartWare ventricular assist device.

    Science.gov (United States)

    Dobarro, David; Urban, Marian; Booth, Karen; Wrightson, Neil; Castrodeza, Javier; Jungschleger, Jerome; Robinson-Smith, Nicola; Woods, Andrew; Parry, Gareth; Schueler, Stephan; MacGowan, Guy A

    2017-01-01

    This study examined whether aortic valve opening (AVO) and other echocardiographic parameters influence outcomes in patients on left ventricular (LV) assist device (LVAD) support. Pump thrombosis (PT) and ischemic stroke (IS) are known complications of LVAD, but mechanisms that could influence them are not completely understood. This was a retrospective analysis of 147 patients who received a HeartWare Ventricular Assist Device ( HeartWare International) as a bridge to transplant or to candidacy between July 2009 and August 2015, of whom 126 had at least 30 days of follow-up before the first event (30-days-out cohort). Outcomes included survival, PT, IS, and PT+IS (combined thrombotic event; CTE). Median time on support was 518 days. Of the 30-days-out cohort, 29% had a first PT and 19% a first IS. AVO was associated with longer survival on device (1,081 vs 723 days; p = 0.01) in the entire cohort. In the 30-days-out cohort, the aortic valve was more frequently closed in patients with lower ejection fractions on support (14% ± 6% vs 18% ± 9%; p = 0.009), more dilated pre-event echocardiogram (LV end-diastolic diameter, 66 ± 12 mm vs 62 ± 10 mm; p = 0.04), and pre-implant LV end-diastolic diameter (70 ± 10 mm vs 66 ± 9 mm; p = 0.06). CTE-free survival on the device was lower with a closed aortic valve (897 vs 1,314 days; p = 0.003) as was PT-free survival on the device (1,070 vs 1,457 days; p = 0.02). Cox regression analysis showed that AVO was an independent predictor of CTE (p = 0.03) CONCLUSIONS: Thrombotic events are relatively frequent in patients on long-term LVAD support. A closed aortic valve was associated with decreased overall survival, thrombosis-free survival, and poorer LV function on support. These are high-risk patients, so whether they require more intense anti-coagulation or prioritizing for transplantation requires further research. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All

  11. Engineered spin-valve type magnetoresistance in Fe$_3$O$_4$-CoFe$_2$O$_4$ core-shell nanoparticles

    OpenAIRE

    Kumar, P. Anil; Ray, Sugata; Chakraverty, S.; Sarma, D. D.

    2013-01-01

    Naturally occurring spin-valve-type magnetoresistance (SVMR), recently observed in Sr2FeMoO6 samples, suggests the possibility of decoupling the maximal resistance from the coercivity of the sample. Here we present the evidence that SVMR can be engineered in specifically designed and fabricated core-shell nanoparticle systems, realized here in terms of soft magnetic Fe3O4 as the core and hard magnetic insulator CoFe2O4 as the shell materials. We show that this provides a magnetically switchab...

  12. A device for maintenance of large diameter metal seat plug valve; Dispositivo para manutencao de valvula macho de grande diametro com sede metal-metal

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Osmar Jose Leite da [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2003-07-01

    The present work is a PETROBRAS S.A. patent request, which presents an alternative for national technology in the metal seat Plug Valve maintenance area, widely used in Petrochemical plants. Before this device, the only alternative for national companies to accomplish a reliable maintenance was to ship of the valves to their makers abroad. However, the high cost and long shipping time made this kind of maintenance unfeasible. These factors led to the beginning of the research resulting in the device described here. The device assures the valves' seat-sealing reliability. This device has been successfully used by two national Refineries : 'Presidente Bernardes' Refinery and 'Planalto Paulista' Refinery. (author)

  13. Exercise Training in a Patient With a Left Ventricular Assist Device and Large Aortic Valve Thrombus.

    Science.gov (United States)

    Wuliya, Mijiti; Peyrot, Sandrine; Radu, Costin; Deux, Jean-François; Ben Elhaj, Habib; Lellouche, Nicolas; Damy, Thibaud; Guendouz, Soulef; Gellen, Barnabas

    2017-11-01

    An aortic valve thrombus (AVT) is a rare complication after HeartMate II implantation. In a 44-year-old man, a large AVT was discovered 6 weeks after implantation of a HeartMate II for severe dilated cardiomyopathy. The aortic valve was permanently closed. After a followup of 3 months without embolic events, the patient started a cardiac rehabilitation (CR) program involving aerobic exercise, resistance exercises, group gymnastics, and relaxation exercise, and completed the program without any complications, resulting in a significant functional benefit. CR might not be systematically contraindicated in patients with HeartMate II and an AVT, in particular, if there is no opening of the aortic valve at rest.

  14. Direct Nanoscale Sensing of the Internal Electric Field in Operating Semiconductor Devices Using Single Electron Spins.

    Science.gov (United States)

    Iwasaki, Takayuki; Naruki, Wataru; Tahara, Kosuke; Makino, Toshiharu; Kato, Hiromitsu; Ogura, Masahiko; Takeuchi, Daisuke; Yamasaki, Satoshi; Hatano, Mutsuko

    2017-02-28

    The electric field inside semiconductor devices is a key physical parameter that determines the properties of the devices. However, techniques based on scanning probe microscopy are limited to sensing at the surface only. Here, we demonstrate the direct sensing of the internal electric field in diamond power devices using single nitrogen-vacancy (NV) centers. The NV center embedded inside the device acts as a nanoscale electric field sensor. We fabricated vertical diamond p-i-n diodes containing the single NV centers. By performing optically detected magnetic resonance measurements under reverse-biased conditions with an applied voltage of up to 150 V, we found a large splitting in the magnetic resonance frequencies. This indicated that the NV center senses the transverse electric field in the space-charge region formed in the i-layer. The experimentally obtained electric field values are in good agreement with those calculated by a device simulator. Furthermore, we demonstrate the sensing of the electric field in different directions by utilizing NV centers with different N-V axes. This direct and quantitative sensing method using an electron spin in a wide-band-gap material provides a way to monitor the electric field in operating semiconductor devices.

  15. Transesophageal echocardiographic guidance of transcatheter closure of the aortic valve in a patient with left ventricular assist device-related severe aortic regurgitation

    Directory of Open Access Journals (Sweden)

    Preetham R Muskala

    2017-04-01

    Full Text Available A 68-year-old man with a severe ischemic cardiomyopathy underwent left ventricular assist device (LVAD implantation (Heart Mate II device for destination therapy. He presented 49 months after LVAD implantation with worsening heart failure symptoms and new severe aortic regurgitation. Given high risk for both surgical and transcatheter aortic valve replacement, he was admitted for transcatheter closure of the aortic valve under transesophageal echocardiographic (TEE guidance. TEE imaging revealed severe aortic regurgitation (Fig. 1A and B and Videos 1 and 2. Under TEE and fluoroscopic guidance, a 25 mm Amplatzer cribriform atrial septal defect closure device was advanced across the aortic valve (Fig. 1C and D and Videos 3 and 4. Immediately after device deployment, TEE revealed a well-seated device with complete aortic valve closure and trivial aortic regurgitation (Fig. 2A, B, C and D and Videos 5, 6, 7 and 8. Subsequent transthoracic echocardiograms obtained from 74 to 172 days after the procedure revealed no residual aortic regurgitation. The patient awoke with diffuse urticaria 244 days after the procedure and died en route to the emergency department, presumably secondary to a systemic allergic reaction. De novo aortic regurgitation is increasingly recognized in patients with LVADs (1. TEE-guided transcatheter aortic valve closure is an option in these high-risk patients (2.

  16. Spin-polarized transport properties of a pyridinium-based molecular spintronics device

    Science.gov (United States)

    Zhang, J.; Xu, B.; Qin, Z.

    2018-05-01

    By applying a first-principles approach based on non-equilibrium Green's functions combined with density functional theory, the transport properties of a pyridinium-based "radical-π-radical" molecular spintronics device are investigated. The obvious negative differential resistance (NDR) and spin current polarization (SCP) effect, and abnormal magnetoresistance (MR) are obtained. Orbital reconstruction is responsible for novel transport properties such as that the MR increases with bias and then decreases and that the NDR being present for both parallel and antiparallel magnetization configurations, which may have future applications in the field of molecular spintronics.

  17. Training and recovery behaviors of exchange bias in FeNi/Cu/Co/FeMn spin valves at high field sweep rates

    Energy Technology Data Exchange (ETDEWEB)

    Yang, D.Z. [Institutt for fysikk, NTNU, NO-7491 Trondheim (Norway); Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Kapelrud, A.; Saxegaard, M. [Institutt for fysikk, NTNU, NO-7491 Trondheim (Norway); Wahlstroem, E., E-mail: erik.wahlstrom@ntnu.no [Institutt for fysikk, NTNU, NO-7491 Trondheim (Norway)

    2012-09-15

    Training and recovery of exchange bias in FeNi/Cu/Co/FeMn spin valves have been studied by magnetoresistance curves with field sweep rates from 1000 to 4800 Oe/s. It is found that training and recovery of exchange field are proportional to the logarithm of the training cycles and recovery time, respectively. These behaviors are explained within the model based on thermal activation. For the field sweep rates of 1000, 2000 and 4000 Oe/s, the relaxation time of antiferromagnet spins are 61.4, 27.6, and 11.5 in the unit of ms, respectively, much shorter than the long relaxation time ({approx}10{sup 2}s) in conventional magnetometry measurements. - Highlights: Black-Right-Pointing-Pointer We measure antiferromagnet (AFM) spin dynamic behaviors at high field sweep rates. Black-Right-Pointing-Pointer Increasing the field sweep rates will reduce the AFM recovery and relaxation time. Black-Right-Pointing-Pointer AFM spin is in millisecond timescale, shorter the conventional report ({approx}10{sup 2}-10{sup 4}).

  18. Time-resolved pure spin fractionalization and spin-charge separation in helical Luttinger liquid based devices

    OpenAIRE

    Calzona, Alessio; Carrega, Matteo; Dolcetto, Giacomo; Sassetti, Maura

    2015-01-01

    Helical Luttinger liquids, appearing at the edge of two-dimensional topological insulators, represent a new paradigm of one-dimensional systems, where peculiar quantum phenomena can be investigated. Motivated by recent experiments on charge fractionalization, we propose a setup based on helical Luttinger liquids that allows to time-resolve, in addition to charge fractionalization, also spin-charge separation and pure spin fractionalization. This is due to the combined presence of spin-momentu...

  19. Transcatheter Tricuspid Valve-in-Valve Intervention for Degenerative Bioprosthetic Tricuspid Valve Disease.

    Science.gov (United States)

    Praz, Fabien; George, Isaac; Kodali, Susheel; Koulogiannis, Konstantinos P; Gillam, Linda D; Bechis, Mary Z; Rubenson, David; Li, Wei; Duncan, Alison

    2017-08-23

    Isolated reoperative tricuspid valve replacement is one of the highest risk operations classified in the Society of Thoracic Surgeons registry, particularly in the setting of preexisting right ventricular dysfunction. Transcatheter tricuspid valve-in-valve implantation represents an attractive alternative to redo surgery in patients with tricuspid bioprosthetic valve degeneration who are considered high-risk or unsuitable surgical candidates. In this review article, the authors discuss the emergence of transcatheter tricuspid valve-in-valve therapy, preprocedural echocardiographic assessment of tricuspid bioprosthetic valve dysfunction, periprocedural imaging required for tricuspid valve-in-valve implantation, and postprocedural assessment of tricuspid transcatheter device function. Copyright © 2017 American Society of Echocardiography. All rights reserved.

  20. Effects of non-latching blast valves on the source term and consequences of the design-basis accidents in the Device Assembly Facility (DAF)

    International Nuclear Information System (INIS)

    Nguyen, D.H.

    1993-08-01

    The analysis of the Design-Basis Accidents (DBA) involving high explosives (HE) and Plutonium (Pu) in the assembly cell of the Device Assembly Facility (DAF), which was completed earlier, assumed latching blast valves in the ventilation system of the assembly cell. Latching valves effectively sealed a release path through the ventilation duct system. However, the blast valves in the assembly cell, as constructed are actually non-latching valves, and would reopen when the gas pressure drops to 0.5 psi above one atmosphere. Because the reopening of the blast valves provides an additional release path to the environment, and affects the material transport from the assembly cell to other DAF buildings, the DOE/NV DAF management has decided to support an additional analysis of the DAF's DBA to account for the effects of non-latching valves. Three cases were considered in the DAF's DBA, depending on the amount of HE and Pu involved, as follows: Case 1 -- 423 number-sign HE, 16 kg Pu; Case 2 -- 150 number-sign HE 10 kg Pu; Case 3 -- 55 number-sign HE 5 kg Pu. The results of the analysis with non-latching valves are summarized

  1. Spin relaxation through lateral spin transport in heavily doped n -type silicon

    Science.gov (United States)

    Ishikawa, M.; Oka, T.; Fujita, Y.; Sugiyama, H.; Saito, Y.; Hamaya, K.

    2017-03-01

    We experimentally study temperature-dependent spin relaxation including lateral spin diffusion in heavily doped n -type silicon (n+-Si ) layers by measuring nonlocal magnetoresistance in small-sized CoFe/MgO/Si lateral spin-valve (LSV) devices. Even at room temperature, we observe large spin signals, 50-fold the magnitude of those in previous works on n+-Si . By measuring spin signals in LSVs with various center-to-center distances between contacts, we reliably evaluate the temperature-dependent spin diffusion length (λSi) and spin lifetime (τSi). We find that the temperature dependence of τSi is affected by that of the diffusion constant in the n+-Si layers, meaning that it is important to understand the temperature dependence of the channel mobility. A possible origin of the temperature dependence of τSi is discussed in terms of the recent theories by Dery and co-workers.

  2. Valve monitoring ITI-MOVATS

    International Nuclear Information System (INIS)

    Moureau, S.

    1993-01-01

    ITI-MOVATS provides a wide range of test devices to monitor the performance of valves: motor operated gate or globe valve, butterfly valve, air operated valve, and check valve. The ITI-MOVATS testing equipment is used in the following three areas: actuator setup/baseline testing, periodic/post-maintenance testing, and differential pressure testing. The parameters typically measured with the MOVATS diagnostic system as well as the devices used to measure them are described. (Z.S.)

  3. Pacemaker implantation rate after transcatheter aortic valve implantation with early and new-generation devices: a systematic review.

    Science.gov (United States)

    van Rosendael, Philippe J; Delgado, Victoria; Bax, Jeroen J

    2018-02-06

    The incidence of new-onset conduction abnormalities requiring permanent pacemaker implantation (PPI) after transcatheter aortic valve implantation (TAVI) with new-generation prostheses remains debated. This systematic review analyses the incidence of PPI after TAVI with new-generation devices and evaluates the electrical, anatomical, and procedural factors associated with PPI. In addition, the incidence of PPI after TAVI with early generation prostheses was reviewed for comparison. According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist, this systematic review screened original articles published between October 2010 and October 2017, reporting on the incidence of PPI after implantation of early and new-generation TAVI prostheses. Of the 1406 original articles identified in the first search for new-generation TAVI devices, 348 articles were examined for full text, and finally, 40 studies (n = 17 139) were included. The incidence of a PPI after the use of a new-generation TAVI prosthesis ranged between 2.3% and 36.1%. For balloon-expandable prostheses, the PPI rate remained low when using an early generation SAPIEN device (ranging between 2.3% and 28.2%), and with the new-generation SAPIEN 3 device, the PPI rate was between 4.0% and 24.0%. For self-expandable prostheses, the PPI rates were higher with the early generation CoreValve device (16.3-37.7%), and despite a reduction in PPI rates with the new Evolut R, the rates remained relatively higher (14.7-26.7%). When dividing the studies according to the highest (>26.0%) and the lowest (left ventricular outflow tract (anatomical factor), and balloon valvuloplasty and depth of implantation (procedural factors) were associated with increased risk of PPI. The rate of PPI after TAVI with new-generation devices is highly variable. Specific recommendations for implantation of each prosthesis, taking into consideration the presence of pre-existent conduction abnormalities and

  4. Studies of magnetization reversals about two kinds of MR curves observed in the spin valve using the (110) magnetite pinning layer

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, H., E-mail: matsuda.hiroshi01@ms.naist.jp [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0101 (Japan); Sakakima, H. [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0101 (Japan)

    2012-05-15

    In the spin valves composed of Co/Cu/Co on the epitaxial (110) Fe{sub 3}O{sub 4} as the pinning layer, we found out that shapes of magnetoresistance (MR) curves depended on thickness of the cobalt pinned layer (PL) with the field applied in the Left-Pointing-Angle-Bracket 110 Right-Pointing-Angle-Bracket direction of Fe{sub 3}O{sub 4}: (1) the flat-shaped MR curve showed low MR ratio under 2 nm thickness of cobalt pinned layer (PL): (2) the unusually shaped MR curve showed high MR ratio over 5 nm thickness of PL in spite of the hard direction of Co layers. We assumed that the synchronous magnetization reversal (SR) of PL and Fe{sub 3}O{sub 4} would occur at the MR switching field due to 90 Degree-Sign coupling between PL and Fe{sub 3}O{sub 4} layers. Then, only occurrence of SR of PL cause the drastic change of the magnetization relative angle between FL and PL, indicating the observation of the unusually shaped MR curve having high MR ratio. On the other hand, the SR of cobalt free layer (FL) together with the PL flip also occur due to the large contribution of Neel-type ferromagnetic coupling between FL and PL, which lead to less changing the relative angle of FL and PL during magnetization processes, indicating the observation of a flat-shaped MR curve having low MR ratio. This dependence of PL thickness on MR curves might come from the balance of Neel (ferromagnetic) and stray field (antiferromagnetic) coupling due to magnetic free pole at edge of PL. - Highlights: Black-Right-Pointing-Pointer 90 Degree-Sign Coupling between two magnetic layers giving rise to interested magnetization reversals in magnetic multi-layers. Black-Right-Pointing-Pointer Synchronous magnetization reversals during magnetization processes of spin valves. Black-Right-Pointing-Pointer Competing effects of Neel (orange peel), stray field coupling between ferromagnetic pinned and free layers in Fe{sub 3}O{sub 4} spin valves. Black-Right-Pointing-Pointer Interested magnetoresistance (MR

  5. Effect of resistance feedback on spin torque-induced switching of nanomagnets

    International Nuclear Information System (INIS)

    Garzon, Samir; Webb, Richard A.; Covington, Mark; Kaka, Shehzaad; Crawford, Thomas M.

    2009-01-01

    In large magnetoresistance devices spin torque-induced changes in resistance can produce GHz current and voltage oscillations which can affect magnetization reversal. In addition, capacitive shunting in large resistance devices can further reduce the current, adversely affecting spin torque switching. Here, we simultaneously solve the Landau-Lifshitz-Gilbert equation with spin torque and the transmission line telegrapher's equations to study the effects of resistance feedback and capacitance on magnetization reversal of both spin valves and magnetic tunnel junctions. While for spin valves parallel (P) to anti-parallel (AP) switching is adversely affected by the resistance feedback due to saturation of the spin torque, in low resistance magnetic tunnel junctions P-AP switching is enhanced. We study the effect of resistance feedback on the switching time of magnetic tunnel junctions, and show that magnetization switching is only affected by capacitive shunting in the pF range.

  6. Half-metallic superconducting triplet spin multivalves

    Science.gov (United States)

    Alidoust, Mohammad; Halterman, Klaus

    2018-02-01

    We study spin switching effects in finite-size superconducting multivalve structures. We examine F1F2SF3 and F1F2SF3F4 hybrids where a singlet superconductor (S) layer is sandwiched among ferromagnet (F) layers with differing thicknesses and magnetization orientations. Our results reveal a considerable number of experimentally viable spin-valve configurations that lead to on-off switching of the superconducting state. For S widths on the order of the superconducting coherence length ξ0, noncollinear magnetization orientations in adjacent F layers with multiple spin axes leads to a rich variety of triplet spin-valve effects. Motivated by recent experiments, we focus on samples where the magnetizations in the F1 and F4 layers exist in a fully spin-polarized half-metallic phase, and calculate the superconducting transition temperature, spatially and energy resolved density of states, and the spin-singlet and spin-triplet superconducting correlations. Our findings demonstrate that superconductivity in these devices can be completely switched on or off over a wide range of magnetization misalignment angles due to the generation of equal-spin and opposite-spin triplet pairings.

  7. TOPICAL REVIEW: Highly spin-polarized materials and devices for spintronics

    Directory of Open Access Journals (Sweden)

    Koichiro Inomata et al.

    2008-01-01

    Full Text Available The performance of spintronics depends on the spin polarization of the current. In this study half-metallic Co-based full-Heusler alloys and a spin filtering device (SFD using a ferromagnetic barrier have been investigated as highly spin-polarized current sources. The multilayers were prepared by magnetron sputtering in an ultrahigh vacuum and microfabricated using photolithography and Ar ion etching. We investigated two systems of Co-based full-Heusler alloys, Co2Cr1 ? xFexAl (CCFA(x and Co2FeSi1 ? xAlx (CFSA(x and revealed the structure and magnetic and transport properties. We demonstrated giant tunnel magnetoresistance (TMR of up to 220% at room temperature and 390% at 5 K for the magnetic tunnel junctions (MTJs using Co2FeSi0.5Al0.5 (CFSA(0.5 Heusler alloy electrodes. The 390% TMR corresponds to 0.81 spin polarization for CFSA(0.5 at 5 K. We also investigated the crystalline structure and local structure around Co atoms by x-ray diffraction (XRD and nuclear magnetic resonance (NMR analyses, respectively, for CFSA films sputtered on a Cr-buffered MgO (001 substrate followed by post-annealing at various temperatures in an ultrahigh vacuum. The disordered structures in CFSA films were clarified by NMR measurements and the relationship between TMR and the disordered structure was discussed. We clarified that the TMR of the MTJs with CFSA(0.5 electrodes depends on the structure, and is significantly higher for L21 than B2 in the crystalline structure. The second part of this paper is devoted to a SFD using a ferromagnetic barrier. The Co ferrite is investigated as a ferromagnetic barrier because of its high Curie temperature and high resistivity. We demonstrate the strong spin filtering effect through an ultrathin insulating ferrimagnetic Co-ferrite barrier at a low temperature. The barrier was prepared by the surface plasma oxidization of a CoFe2 film deposited on a MgO (001 single crystal substrate, wherein the spinel structure of CoFe2O4 (CFO

  8. Validation of the spin-T goniometer, a cervical range of motion device.

    Science.gov (United States)

    Agarwal, Shabnam; Allison, Garry T; Singer, Kevin P

    2005-10-01

    To test the validity of the Spin-T goniometer for the assessment of cervical range of movement. A linear regression analysis for paired neck movements using first a foam head model and then human subjects was performed to quantify the differences between the measurements obtained from the MotionStar, a movement-tracking device, and the Spin-T. A within-subject repeated measures design using simultaneous data acquisition was completed. The coefficient of determination (R2) for all planes of cervical range of motion for both model and human data sets was higher than 0.99. The regression equations for the model data showed no significant (P > .05) intercept for flexion-extension and lateral rotation. Human data showed statistically significant intercept for flexion-extension (mean, -0.52 degrees) and lateral flexion (mean, 0.81 degrees) at P goniometer and documents the systematic error between the measures. Where the error reached statistical significance, the magnitude of the error was very small (goniometer may be used as a valid measuring instrument for cervical range of movement.

  9. Achieving perpendicular anisotropy in half-metallic Heusler alloys for spin device applications

    Science.gov (United States)

    Munira, Kamaram; Romero, Jonathon; Butler, William H.

    2014-05-01

    Various full Heusler alloys are interfaced with MgO and the magnetic properties of the Heusler-MgO junctions are studied. Next to MgO, the cubic Heusler system distorts to a tetragonal one, thereby inducing an anisotropy. The half-metallicity and nature of anisotropy (in-plane or perpendicular) in the Heusler-MgO system is governed mostly by the interface Heusler layers. There is a trend that Mn-O bonding near the MgO-Heusler junction results in perpendicular anisotropy. The ability to remain half-metallic and have perpendicular anisotropy makes some of these alloys potential candidates as free-layers in Spin Transfer Torque Random Access Memory (STT-RAM) devices, particularly, Cr2MnAs-MgO system with MnAs interface layers and Co2MnSi-MgO system with Mn2 interface layers.

  10. Microscopic understanding of spin current probed by shot noise

    Science.gov (United States)

    Arakawa, Tomonori

    The spin currents is one of key issue in the spintronics field and the generation and detection of those have been intensively studied by using various materials. The analysis of experiments, however, relies on phenomenological parameters such as spin relaxation length and spin flip time. The microscopic nature of the spin current such as energy distribution and energy relaxation mechanism, has not yet well understood. To establish a better microscopic understanding of spin currents, I focused on the shot noise measurement which is well established technique in the field of mesoscopic physics [Y. M. Blanter and M. B üttiker, Phys. Rep. 336, 1 (2000).]. Although there are many theoretically works about shot noise in the presence of spin currents, for example detection of spin accumulation [J. Meair, P. Stano, and P. Jacquod, Phys. Rev. B 84 (2011).], estimation of spin flip currents, and so on, these predictions have never been experimentally confirmed. In this context, we reported the first experimental detention of shot noise in the presence of the spin accumulation in a (Ga,Mn)As/tunnel barrier/n-GaAs based lateral spin valve device [T. Arakawa et al., Phys. Rev. Lett. 114, 016601 (2015).]. Together with this result, we found however that the effective temperature of the spin current drastically increases due to the spin injection process. This heating of electron system could be a big problem to realize future spin current devices by using quantum coherence, because the effective temperature rise directly related to the destruction of the coherence of the spin current. Therefore, then we focused on the mechanism of this heating and the energy relaxation in a diffusive channel. By measuring current noise and the DC offset voltage in the usual non-local spin valve signal as a function of the spin diffusion channel length, we clarified that the electron-electron interaction length, which is the characteristic length for the relaxation of the electron system, is

  11. PREFACE: Spin Electronics

    Science.gov (United States)

    Dieny, B.; Sousa, R.; Prejbeanu, L.

    2007-04-01

    Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic

  12. Engineered spin-valve type magnetoresistance in Fe3O4-CoFe2O4 core-shell nanoparticles

    Science.gov (United States)

    Anil Kumar, P.; Ray, Sugata; Chakraverty, S.; Sarma, D. D.

    2013-09-01

    Naturally occurring spin-valve-type magnetoresistance (SVMR), recently observed in Sr2FeMoO6 samples, suggests the possibility of decoupling the maximal resistance from the coercivity of the sample. Here we present the evidence that SVMR can be engineered in specifically designed and fabricated core-shell nanoparticle systems, realized here in terms of soft magnetic Fe3O4 as the core and hard magnetic insulator CoFe2O4 as the shell materials. We show that this provides a magnetically switchable tunnel barrier that controls the magnetoresistance of the system, instead of the magnetic properties of the magnetic grain material, Fe3O4, and thus establishing the feasibility of engineered SVMR structures.

  13. Novel room-temperature spin-valve-like magnetoresistance in magnetically coupled nano-column Fe3O4/Ni heterostructure.

    Science.gov (United States)

    Xiao, Wen; Song, Wendong; Herng, Tun Seng; Qin, Qing; Yang, Yong; Zheng, Ming; Hong, Xiaoliang; Feng, Yuan Ping; Ding, Jun

    2016-08-25

    Herein, we design a room-temperature spin-valve-like magnetoresistance in a nano-column Fe3O4/Ni heterostructure without using a non-magnetic spacer or pinning layer. An Fe3O4 nano-column film is self-assembled on a Ni underlayer by the thermal decomposition method. The wet-chemical self-assembly is facile, economical and scalable. The magnetoresistance (MR) response of the Ni underlayer in the heterostructure under positive and negative out-of-plane magnetic fields differ by ∼0.25 at room temperature and ∼0.43 at 100 K. We attribute the spin-valve-like magnetoresistance to the unidirectional magnetic anisotropy of the Ni underlayer when being magnetically coupled by the Fe3O4 nano-column film. The out-of-plane negative-field magnetization is higher than the positive-field magnetization, affirming the unidirectional magnetic anisotropy of the Fe3O4/Ni heterostructure. Temperature-dependent magnetic and resistivity studies illustrate a close correlation between the magnetization transition of Fe3O4 and resistivity transition of Ni and prove a magnetic coupling between the Fe3O4 and Ni. First-principles calculations reveal that the Fe3O4/Ni model under a negative magnetic field is energetically more stable than that under a positive magnetic field. Furthermore, partial density of states (PDOS) analysis demonstrates the unidirectional magnetic anisotropy of the Ni 3d orbital. This is induced by the strong ferromagnetic coupling between Fe3O4 and Ni via oxygen-mediated Fe 3d-O 2p-Ni 3d hybridizations.

  14. Simulation study of ballistic spin-MOSFET devices with ferromagnetic channels based on some Heusler and oxide compounds

    Science.gov (United States)

    Graziosi, Patrizio; Neophytou, Neophytos

    2018-02-01

    Newly emerged materials from the family of Heuslers and complex oxides exhibit finite bandgaps and ferromagnetic behavior with Curie temperatures much higher than even room temperature. In this work, using the semiclassical top-of-the-barrier FET model, we explore the operation of a spin-MOSFET that utilizes such ferromagnetic semiconductors as channel materials, in addition to ferromagnetic source/drain contacts. Such a device could retain the spin polarization of injected electrons in the channel, the loss of which limits the operation of traditional spin transistors with non-ferromagnetic channels. We examine the operation of four material systems that are currently considered some of the most prominent known ferromagnetic semiconductors: three Heusler-type alloys (Mn2CoAl, CrVZrAl, and CoVZrAl) and one from the oxide family (NiFe2O4). We describe their band structures by using data from DFT (Density Functional Theory) calculations. We investigate under which conditions high spin polarization and significant ION/IOFF ratio, two essential requirements for the spin-MOSFET operation, are both achieved. We show that these particular Heusler channels, in their bulk form, do not have adequate bandgap to provide high ION/IOFF ratios and have small magnetoconductance compared to state-of-the-art devices. However, with confinement into ultra-narrow sizes down to a few nanometers, and by engineering their spin dependent contact resistances, they could prove promising channel materials for the realization of spin-MOSFET transistor devices that offer combined logic and memory functionalities. Although the main compounds of interest in this paper are Mn2CoAl, CrVZrAl, CoVZrAl, and NiFe2O4 alone, we expect that the insight we provide is relevant to other classes of such materials as well.

  15. TOPICAL REVIEW: Spin current, spin accumulation and spin Hall effect

    Directory of Open Access Journals (Sweden)

    Saburo Takahashi and Sadamichi Maekawa

    2008-01-01

    Full Text Available Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1 and detector (F2 electrodes connected to a normal conductor (N is studied. We reveal how the spin transport depends on interface resistance, electrode resistance, spin polarization and spin diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and spin current in the device. It is demonstrated that the spin Hall effect is caused by spin–orbit scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge currents in a nonlocal device. A method of evaluating spin–orbit coupling in nonmagnetic metals is proposed.

  16. Application of polymer-mesh device to remodel left ventricular-mitral valve apparatus in ischemic mitral regurgitation.

    Science.gov (United States)

    Kataoka, Akihisa; Zeng, Xin; Guerrero, J Luis; Kozak, Adam; Braithwaite, Gavin; Levine, Robert A; Vlahakes, Gus J; Hung, Judy

    2018-04-01

    Ischemic mitral regurgitation (IMR) results from ischemic left ventricular (LV) distortion and remodeling, which displaces the papillary muscles and tethers the mitral valve leaflets apically. The aim of this experimental study was to examine efficacy of an adjustable novel polymer filled mesh (poly-mesh) device to reverse LV remodeling and reduce IMR. Acute (N = 8) and chronic (8 weeks; N = 5) sheep models of IMR were studied. IMR was produced by ligation of circumflex branches to create myocardial infarction. An adjustable poly-mesh device was attached to infarcted myocardium in acute and chronic IMR models and compared with untreated sham sheep. Two- and 3-dimensional echocardiography and hemodynamic measurements were performed at baseline, post IMR, and post poly-mesh (humanely killed). In acute models, moderate IMR developed in all sheep and decreased to trace/mild (vena contracta: 0.50 ± 0.09 cm to 0.26 ± 0.12 cm; P euthanasia stage with poly-mesh compared with sham group (%end-diastolic volume change -20 ± 11 vs 15% ± 16%, P < .01; %end-systolic volume change -14% ± 19% vs 22% ± 22%, P < .05; poly-mesh vs sham group) consistent with reverse remodeling. An adjustable polymer filled mesh device reduces IMR and prevents continued LV remodeling during chronic follow-up. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  17. Spin transport in lateral structures with semiconducting channel

    Science.gov (United States)

    Zainuddin, Abu Naser

    Spintronics is an emerging field of electronics with the potential to be used in future integrated circuits. Spintronic devices are already making their mark in storage technologies in recent times and there are proposals for using spintronic effects in logic technologies as well. So far, major improvement in spintronic effects, for example, the `spin-valve' effect, is being achieved in metals or insulators as channel materials. But not much progress is made in semiconductors owing to the difficulty in injecting spins into them, which has only very recently been overcome with the combined efforts of many research groups around the world. The key motivations for semiconductor spintronics are their ease in integration with the existing semiconductor technology along with the gate controllability. At present semiconductor based spintronic devices are mostly lateral and are showing a very poor performance compared to their metal or insulator based vertical counterparts. The objective of this thesis is to analyze these devices based on spin-transport models and simulations. At first a lateral spin-valve device is modeled with the spin-diffusion equation based semiclassical approach. Identifying the important issues regarding the device performance, a compact circuit equivalent model is presented which would help to improve the device design. It is found that the regions outside the current path also have a significant influence on the device performance under certain conditions, which is ordinarily neglected when only charge transport is considered. Next, a modified spin-valve structure is studied where the spin signal is controlled with a gate in between the injecting and detecting contacts. The gate is used to modulate the rashba spin-orbit coupling of the channel which, in turn, modulates the spin-valve signal. The idea of gate controlled spin manipulation was originally proposed by Datta and Das back in 1990 and is called 'Datta-Das' effect. In this thesis, we have

  18. Ultrathin Epitaxial Ferromagneticγ-Fe2O3Layer as High Efficiency Spin Filtering Materials for Spintronics Device Based on Semiconductors

    KAUST Repository

    Li, Peng

    2016-06-01

    In spintronics, identifying an effective technique for generating spin-polarized current has fundamental importance. The spin-filtering effect across a ferromagnetic insulating layer originates from unequal tunneling barrier heights for spin-up and spin-down electrons, which has shown great promise for use in different ferromagnetic materials. However, the low spin-filtering efficiency in some materials can be ascribed partially to the difficulty in fabricating high-quality thin film with high Curie temperature and/or partially to the improper model used to extract the spin-filtering efficiency. In this work, a new technique is successfully developed to fabricate high quality, ferrimagnetic insulating γ-Fe2O3 films as spin filter. To extract the spin-filtering effect of γ-Fe2O3 films more accurately, a new model is proposed based on Fowler–Nordheim tunneling and Zeeman effect to obtain the spin polarization of the tunneling currents. Spin polarization of the tunneled current can be as high as −94.3% at 2 K in γ-Fe2O3 layer with 6.5 nm thick, and the spin polarization decays monotonically with temperature. Although the spin-filter effect is not very high at room temperature, this work demonstrates that spinel ferrites are very promising materials for spin injection into semiconductors at low temperature, which is important for development of novel spintronics devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  19. The efficacy of Ahmed glaucoma valve drainage devices in cases of adult refractory glaucoma in Indian eyes

    Science.gov (United States)

    Parihar, Jitendra K S; Vats, Devendra P; Maggon, Rakesh; Mathur, Vijay; Singh, Anirudh; Mishra, Sanjay K

    2009-01-01

    Aim: To evaluate the efficacy of Ahmed glaucoma valve (AGV) drainage devices in cases of adult refractory glaucoma in Indian eyes. Settings and Design: Retrospective interventional case series study. Materials and Methods: Fifty two eyes of 32 patients of refractory glaucoma in the age group of 35 to 60 years who underwent AGV implantation with or without concomitant procedures from January 2003 to Jan 2007 were studied. Of these, 46 eyes (88%) had undergone filtering surgery earlier whereas remaining eyes underwent primary AGV implantation following failure of maximal medical therapy. The follow up ranged between 12 months to 48 months Results: Eighteen eyes (35%) had undergone phacoemulsification with AGV implantation, penetrating keratoplasty (PK) with AGV and intraocular lens (IOL) implantation in 13 eyes (25%), AGV over preexisting IOL in eight eyes (15%). AGV implantation alone was done in six (11%) eyes. Anterior chamber (AC) reconstruction with secondary IOL and AGV was performed in the remaining eyes. The mean intra ocular pressure (IOP) decreased from 36.3 ± 15.7 mm Hg to 19.6 ± 9.2 mm Hg. Complete success as per criteria was achieved in 46 eyes (88%). None of the eyes had failure to maintain IOP control following AGV. Conclusion: The AGV resulted in effective and sustained control of IOP in cases of adult refractory glaucoma in intermediate follow up. PMID:19700871

  20. The efficacy of Ahmed glaucoma valve drainage devices in cases of adult refractory glaucoma in Indian eyes

    Directory of Open Access Journals (Sweden)

    Parihar Jitendra

    2009-01-01

    Full Text Available Aim: To evaluate the efficacy of Ahmed glaucoma valve (AGV drainage devices in cases of adult refractory glaucoma in Indian eyes. Settings and Design: Retrospective interventional case series study. Materials and Methods : Fifty two eyes of 32 patients of refractory glaucoma in the age group of 35 to 60 years who underwent AGV implantation with or without concomitant procedures from January 2003 to Jan 2007 were studied. Of these, 46 eyes (88% had undergone filtering surgery earlier whereas remaining eyes underwent primary AGV implantation following failure of maximal medical therapy. The follow up ranged between 12 months to 48 months Results: Eighteen eyes (35% had undergone phacoemulsification with AGV implantation, penetrating keratoplasty (PK with AGV and intraocular lens (IOL implantation in 13 eyes (25%, AGV over preexisting IOL in eight eyes (15%. AGV implantation alone was done in six (11% eyes. Anterior chamber (AC reconstruction with secondary IOL and AGV was performed in the remaining eyes. The mean intra ocular pressure (IOP decreased from 36.3 ± 15.7 mm Hg to 19.6 ± 9.2 mm Hg. Complete success as per criteria was achieved in 46 eyes (88%. None of the eyes had failure to maintain IOP control following AGV. Conclusion: The AGV resulted in effective and sustained control of IOP in cases of adult refractory glaucoma in intermediate follow up.

  1. Mitral Valve Regurgitation with a Rotary Left Ventricular Assist Device: The Haemodynamic Effect of Inlet Cannulation Site and Speed Modulation.

    Science.gov (United States)

    Gregory, Shaun D; Stevens, Michael C; Wu, Eric L; Pauls, Jo P; Kleinheyer, Matthias; Fraser, John F

    2016-09-01

    Mitral valve regurgitation (MVR) is common in patients receiving left ventricular assist device (LVAD) support, however the haemodynamic effect of MVR is not entirely clear. This study evaluated the haemodynamic effect of MVR with LVAD support and the influence of inflow cannulation site and LVAD speed modulation. Left atrial (LAC) and ventricular (LVC) cannulation was evaluated in a mock circulation loop with no, mild, moderate and severe MVR with constant speed and speed modulation (±600 RPM) modes. The use of an LVAD relieved pulmonary congestion during severe MVR, by reducing left atrial pressure from 20.5 to 10.8 (LAC) and 11.5 (LVC) mmHg. However, LAC resulted in decreased left ventricular stroke work (-0.08 J), ejection fraction (-7.9%) and higher MVR volume (+12.7 mL) and pump speed (+100 RPM) compared to LVC. This suggests that LVC, in addition to reducing MVR severity, also improves ventricular washout over LAC. LVAD speed modulation in synchrony with ventricular systole reduced MVR volume and increased ejection fraction with LAC and LVC, thus demonstrating the potential benefits of this mode, despite a reduction in cardiac output.

  2. The Johannesburg A-D circuit switch. A valve device for converting a co-axial Mapleson D into a co-axial Mapleson A system.

    Science.gov (United States)

    Manicom, A W; Schoonbee, C G

    1979-12-01

    A simple valve device is described for a co-axial tubing anaesthetic system which enables selection of the circuit characteristics of either a modified Mapleson A system for spontaneous breathing or a modified Mapleson D system for controlled ventilation. Thus, the system allows an economical fresh gas flow to be used during either controlled or spontaneous ventilation. The mode of ventilation may be changed during anaesthesia without adjusting the patient tubing or the attachment of the system to the anaesthetic machine.

  3. Low noise control valve

    International Nuclear Information System (INIS)

    Christie, R.S.

    1975-01-01

    Noise is one of the problems associated with the use of any type of control valve in systems involving the flow of fluids. The advent of OSHA standards has prompted control valve manufacturers to design valves with special trim to lower the sound pressure level to meet these standards. However, these levels are in some cases too high, particularly when a valve must be located in or near an area where people are working at tasks requiring a high degree of concentration. Such locations are found around and near research devices and in laboratory-office areas. This paper describes a type of fluid control device presently being used at PPL as a bypass control valve in deionized water systems and designed to reduce sound pressure levels considerably below OSHA standards. Details of the design and construction of this constant pressure drop variable flow control valve are contained in the text and are shown in photographs and drawings. Test data taken are included

  4. Spin-torque transistor

    NARCIS (Netherlands)

    Bauer, G.E.W.; Brataas, A.; Tserkovnyak, Y.; Van Wees, B.J.

    2003-01-01

    A magnetoelectronic thin-film transistor is proposed that can display negative differential resistance and gain. The working principle is the modulation of the soure–drain current in a spin valve by the magnetization of a third electrode, which is rotated by the spin-torque created by a control spin

  5. Spin valve-like magnetic tunnel diode exhibiting giant positive junction magnetoresistance at low temperature in Co2MnSi/SiO2/p-Si heterostructure

    Science.gov (United States)

    Maji, Nilay; Kar, Uddipta; Nath, T. K.

    2018-02-01

    The rectifying magnetic tunnel diode has been fabricated by growing Co2MnSi (CMS) Heusler alloy film carefully on a properly cleaned p-Si (100) substrate with the help of electron beam physical vapor deposition technique and its structural, electrical and magnetic properties have been experimentally investigated in details. The electronic- and magneto-transport properties at various isothermal conditions have been studied in the temperature regime of 78-300 K. The current-voltage ( I- V) characteristics of the junction show an excellent rectifying magnetic tunnel diode-like behavior throughout that temperature regime. The current ( I) across the junction has been found to decrease with the application of a magnetic field parallel to the plane of the CMS film clearly indicating positive junction magnetoresistance (JMR) of the heterostructure. When forward dc bias is applied to the heterostructure, the I- V characteristics are highly influenced on turning on the field B = 0.5 T at 78 K, and the forward current reduces abruptly (99.2% current reduction at 3 V) which is nearly equal to the order of the magnitude of the current observed in the reverse bias. Hence, our Co2MnSi/SiO2/p-Si heterostructure can perform in off ( I off)/on ( I on) states with the application of non-zero/zero magnetic field like a spin valve at low temperature (78 K).

  6. Direct observation of the spin-dependent Peltier effect.

    Science.gov (United States)

    Flipse, J; Bakker, F L; Slachter, A; Dejene, F K; van Wees, B J

    2012-02-05

    The Peltier coefficient describes the amount of heat that is carried by an electrical current when it passes through a material. When two materials with different Peltier coefficients are placed in contact with one another, the Peltier effect causes a net flow of heat either towards or away from the interface between them. Spintronics describes the transport of electric charge and spin angular momentum by separate spin-up and spin-down channels in a device. The observation that spin-up and spin-down charge transport channels are able to transport heat independently of each other has raised the possibility that spin currents could be used to heat or cool the interface between materials with different spin-dependent Peltier coefficients. Here, we report the direct observation of the heating and cooling of such an interface by a spin current. We demonstrate this spin-dependent Peltier effect in a spin-valve pillar structure that consists of two ferromagnetic layers separated by a non-ferromagnetic metal. Using a three-dimensional finite-element model, we extract spin-dependent Peltier coefficients in the range -0.9 to -1.3 mV for permalloy. The magnetic control of heat flow could prove useful for the cooling of nanoscale electronic components or devices.

  7. Optothermally actuated capillary burst valve

    DEFF Research Database (Denmark)

    Eriksen, Johan; Bilenberg, Brian; Kristensen, Anders

    2017-01-01

    We demonstrate the optothermal actuation of individual capillary burst valves in an all-polymer microfluidic device. The capillary burst valves are realised in a planar design by introducing a fluidic constriction in a microfluidic channel of constant depth. We show that a capillary burst valve can...

  8. The effect of output-input isolation on the scaling and energy consumption of all-spin logic devices

    Science.gov (United States)

    Hu, Jiaxi; Haratipour, Nazila; Koester, Steven J.

    2015-05-01

    All-spin logic (ASL) is a novel approach for digital logic applications wherein spin is used as the state variable instead of charge. One of the challenges in realizing a practical ASL system is the need to ensure non-reciprocity, meaning the information flows from input to output, not vice versa. One approach described previously, is to introduce an asymmetric ground contact, and while this approach was shown to be effective, it remains unclear as to the optimal approach for achieving non-reciprocity in ASL. In this study, we quantitatively analyze techniques to achieve non-reciprocity in ASL devices, and we specifically compare the effect of using asymmetric ground position and dipole-coupled output/input isolation. For this analysis, we simulate the switching dynamics of multiple-stage logic devices with FePt and FePd perpendicular magnetic anisotropy materials using a combination of a matrix-based spin circuit model coupled to the Landau-Lifshitz-Gilbert equation. The dipole field is included in this model and can act as both a desirable means of coupling magnets and a source of noise. The dynamic energy consumption has been calculated for these schemes, as a function of input/output magnet separation, and the results show that using a scheme that electrically isolates logic stages produces superior non-reciprocity, thus allowing both improved scaling and reduced energy consumption.

  9. Transcatheter Tricuspid Valve Replacement.

    Science.gov (United States)

    Krishnaswamy, Amar; Navia, Jose; Kapadia, Samir R

    2018-01-01

    Tricuspid regurgitation (TR) is a common entity, most commonly functional in nature due to right-sided dysfunction in the setting of concomitant cardiac disease or pulmonary hypertension. Patients living with TR often experience numerous limitations as a result of right-sided heart failure symptoms, including functional decline, frequent hospitalizations, liver failure, and kidney failure. Furthermore, patients with significant TR demonstrate worse survival, although a cause-and-effect relationship has not been proven. For patients with a degenerated surgical bioprosthesis or valve ring, placement of a transcatheter aortic valve prosthesis in a valve-in-valve or valve-in-ring fashion may provide symptomatic benefit. For patients with native valve regurgitation, novel devices for treatment are currently under development. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The spin-dependent electronic transport properties of M(dcdmp)2 (M = Cu, Au, Co, Ni) molecular devices based on zigzag graphene nanoribbon electrodes

    Science.gov (United States)

    Li, Dongde; Wu, Di; Zhang, Xiaojiao; Zeng, Bowen; Li, Mingjun; Duan, Haiming; Yang, Bingchu; Long, Mengqiu

    2018-05-01

    The spin-dependent electronic transport properties of M(dcdmp)2 (M = Cu, Au, Co, Ni; dcdmp = 2,3-dicyano-5,6-dimercaptopyrazyne) molecular devices based on zigzag graphene nanoribbon (ZGNR) electrodes were investigated by density functional theory combined nonequilibrium Green's function method (DFT-NEGF). Our results show that the spin-dependent transport properties of the M(dcdmp)2 molecular devices can be controlled by the spin configurations of the ZGNR electrodes, and the central 3d-transition metal atom can introduce a larger magnetism than that of the nonferrous metal one. Moreover, the perfect spin filtering effect, negative differential resistance, rectifying effect and magnetic resistance phenomena can be observed in our proposed M(dcdmp)2 molecular devices.

  11. Percutaenous mitral valve: A non-stented coronary sinus device for the treatment of functional mitral regurgitation in heart failure patients.

    Science.gov (United States)

    Sack, Stefan; Kahlert, Philipp; Erbel, Raimund

    2009-01-01

    Functional mitral regurgitation in heart failure limits survival in a severity-graded fashion. Even mild mitral regurgitation doubles mortality risk. We report the use of a non-stented coronary sinus device to reduce mitral annulus dimension in order to re-establish mitral valve competence. The device (PTMA, Viacor, Inc., Wilmington, MA, USA) consists of a multi-lumen PTFE (Teflon) PTMA catheter in which Nitinol (nickel-titanium alloy) treatment rods are advanced. For individual use up to three rods of different length and stiffness can be used. Therefore dimension reduction can be performed in an incremental fashion. Fluoroscopy and 3 D echocardiography are performed throughout the procedure to visiualize the positioning and confirm maximum treatment effect. The case describes the use and the effect of PTMA treatment. Safety and efficacy of the PTMA device will be investigated in the upcoming PTOLEMY 2 trial.

  12. Developments in mechanical heart valve prosthesis

    Indian Academy of Sciences (India)

    Artificial heart valves are engineered devices used for replacing diseased or damaged natural valves of the heart. Most commonly used for replacement are mechanical heart valves and biological valves. This paper briefly outlines the evolution, designs employed, materials being used,. and important factors that affect the ...

  13. Double MgO-based Perpendicular Magnetic-Tunnel-Junction Spin-valve Structure with a Top Co2Fe6B2Free Layer using a Single SyAF [Co/Pt]nLayer.

    Science.gov (United States)

    Choi, Jin-Young; Lee, Dong-Gi; Baek, Jong-Ung; Park, Jea-Gun

    2018-02-01

    A new perpendicular spin-transfer-torque magnetic-tunnel-junction (p-MTJ) spin-valve was developed to achieve a high tunneling magnetoresistance (TMR) ratio. It had a double MgO-based spin-valve structure with a top Co 2 Fe 6 B 2 free layer and incorporated a single SyAF [Co(0.4 nm)/Pt(0.3 nm)] 3 layer and a new buffer layer of Co(0.6)/Pt(0.3)/Co(0.4). It had a TMR ratio of 180% and anisotropy exchange field (H ex ) of 3.44 kOe after ex-situ annealing of 350 °C for 30 min under a vacuum below 10 -6 torr and a perpendicular magnetic field of 3 tesla, thereby ensuring a memory margin and avoiding read disturbance failures. Its high level of performance was due to the face-center-cubic crystallinity of the MgO tunneling barrier being significantly improved by decreasing its surface roughness (i.e., peak-to-valley length of 1.4 nm).

  14. Circuit Simulation of All-Spin Logic

    KAUST Repository

    Alawein, Meshal

    2016-05-01

    With the aggressive scaling of complementary metal-oxide semiconductor (CMOS) nearing an inevitable physical limit and its well-known power crisis, the quest for an alternative/augmenting technology that surpasses the current semiconductor electronics is needed for further technological progress. Spintronic devices emerge as prime candidates for Beyond CMOS era by utilizing the electron spin as an extra degree of freedom to decrease the power consumption and overcome the velocity limit connected with the charge. By using the nonvolatility nature of magnetization along with its direction to represent a bit of information and then manipulating it by spin-polarized currents, routes are opened for combined memory and logic. This would not have been possible without the recent discoveries in the physics of nanomagnetism such as spin-transfer torque (STT) whereby a spin-polarized current can excite magnetization dynamics through the transfer of spin angular momentum. STT have expanded the available means of switching the magnetization of magnetic layers beyond old classical techniques, promising to fulfill the need for a new generation of dense, fast, and nonvolatile logic and storage devices. All-spin logic (ASL) is among the most promising spintronic logic switches due to its low power consumption, logic-in-memory structure, and operation on pure spin currents. The device is based on a lateral nonlocal spin valve and STT switching. It utilizes two nanomagnets (whereby information is stored) that communicate with pure spin currents through a spin-coherent nonmagnetic channel. By using the well-known spin physics and the recently proposed four-component spin circuit formalism, ASL can be thoroughly studied and simulated. Previous attempts to model ASL in the linear and diffusive regime either neglect the dynamic characteristics of transport or do not provide a scalable and robust platform for full micromagnetic simulations and inclusion of other effects like spin Hall

  15. The combination of a programmable valve and a subclavicular anti-gravity device in hydrocephalus patients at high risk for hygromas.

    Science.gov (United States)

    Zachenhofer, Iris; Donat, Markus; Roessler, Karl

    2012-04-01

    In order to avoid occurrence of post-operative hygromas in specific hydrocephalus patients being at high risk of overdrainage, a combination of programmable valve and anti-gravity device is widely recommended. We analyzed our series of hydrocephalus patients implanted with such a shunt configuration focusing on complications in relation to over-/underdrainage and neurological outcome. In 28 hydrocephalic patients (14 women and 14 men; mean age 65 years, range from 14 to 82 years; 11 normal pressure, 7 post-traumatic, and 4 post-hemorrhagic hydrocephalus), a Codman Medos programmable valve combined with a Miethke shunt assistant (SA) was implanted at the Department of Neurosurgery of the Academic Teaching Hospital Feldkirch. Implantation was performed simultaneously in 20 patients during the primary procedure: in five patients, SA was placed during revision surgery, and in three patients, the patent system was completed by additional implantation of an SA. Subdural hematoma occurred in one out of 20 patients with SA implantation during primary procedure and in two out of eight patients with SA implantation as secondary procedure, respectively. Shunt occlusion occurred in one patient out of the patients with SA implantation during primary procedure, but was seen in three patients with pre-existing shunt without SA. Shunt infection occurred in one case. Our results suggest the combination of an adjustable valve and SA as an effective treatment for a specific group of hydrocephalus patients being at high risk for overdrainage.

  16. Aortic Valve Regurgitation

    Science.gov (United States)

    ... correct direction. These valves include the mitral valve, tricuspid valve, pulmonary valve and aortic valve. Each valve has ... Causes of aortic valve regurgitation include: Congenital heart valve disease. You may have been born with an aortic ...

  17. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  18. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, David W.; Sears, Jesse A.; Turcu, Romulus V. F.; Rosso, Kevin M.; Hu, Jian Zhi

    2017-12-05

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  19. Outcomes in patients with contained ruptures of the aortic annulus after transcatheter aortic valve implantation with balloon-expandable devices

    DEFF Research Database (Denmark)

    Breitbart, Philipp; Minners, Jan; Pache, Gregor

    2017-01-01

    ) at three centers in Germany and Denmark. CR were identified in 12 patients (1.2%, 80.7+5.0 years, STS-Score 4.1+1.4%). All 12 patients had received a balloon-expandable valve. In 3 patients periprocedural transesophageal echocardiography revealed findings suggestive of aortic dissection, an aortic...

  20. Spin excitations in systems with hopping electron transport and strong position disorder in a large magnetic field

    Science.gov (United States)

    Shumilin, A. V.

    2016-10-01

    We discuss the spin excitations in systems with hopping electron conduction and strong position disorder. We focus on the problem in a strong magnetic field when the spin Hamiltonian can be reduced to the effective single-particle Hamiltonian and treated with conventional numerical technics. It is shown that in a 3D system with Heisenberg exchange interaction the spin excitations have a delocalized part of the spectrum even in the limit of strong disorder, thus leading to the possibility of the coherent spin transport. The spin transport provided by the delocalized excitations can be described by a diffusion coefficient. Non-homogenous magnetic fields lead to the Anderson localization of spin excitations while anisotropy of the exchange interaction results in the Lifshitz localization of excitations. We discuss the possible effect of the additional exchange-driven spin diffusion on the organic spin-valve devices.

  1. 46 CFR 64.67 - Shutoff valve.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Shutoff valve. 64.67 Section 64.67 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.67 Shutoff valve. A shutoff valve...

  2. Room-Temperature Spin-Mediated Coupling in Hybrid Magnetic, Organic, and Oxide Structures and Devices

    Science.gov (United States)

    2015-12-07

    17013 Tianyu Liu, G. Vignale. Flexoelectric phase shifter for spin waves, Journal of Applied Physics, (04 2012): 0. doi: 10.1063/1.4703925 F. J...in magnetic materials , Nature Materials , (04 2012): 0. doi: 10.1038/nmat3311 F. Macia, P. Warnicke, D. Bedau, M.-Y. Im, P. Fischer, D.A. Arena...microspectroscopy, Journal of Magnetism and Magnetic Materials , (03 2012): 3629. doi: Nicholas J. Harmon, Michael E. Flatté. Theory of Organic

  3. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  4. Stem clutch for motor driven valve

    Science.gov (United States)

    Blum, D. E.; Wiltens, J. F.

    1972-01-01

    Development of mechanical device to reduce possibility of damage to motor driven needle valve is discussed. Mechanical clutch is employed to allow slippage when needle valve reaches limit of travel. Operation of system for various conditions is described.

  5. Tunneling-Magnetoresistance Ratio Comparison of MgO-Based Perpendicular-Magnetic-Tunneling-Junction Spin Valve Between Top and Bottom Co2Fe6B2 Free Layer Structure.

    Science.gov (United States)

    Lee, Du-Yeong; Lee, Seung-Eun; Shim, Tae-Hun; Park, Jea-Gun

    2016-12-01

    For the perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a nanoscale-thick bottom Co2Fe6B2 free layer ex situ annealed at 400 °C, which has been used as a common p-MTJ structure, the Pt atoms of the Pt buffer layer diffused into the MgO tunneling barrier. This transformed the MgO tunneling barrier from a body-centered cubic (b.c.c) crystallized layer into a mixture of b.c.c, face-centered cubic, and amorphous layers and rapidly decreased the tunneling-magnetoresistance (TMR) ratio. The p-MTJ spin valve with a nanoscale-thick top Co2Fe6B2 free layer could prevent the Pt atoms diffusing into the MgO tunneling barrier during ex situ annealing at 400 °C because of non-necessity of a Pt buffer layer, demonstrating the TMR ratio of ~143 %.

  6. Homoepitaxial graphene tunnel barriers for spin transport

    Directory of Open Access Journals (Sweden)

    Adam L. Friedman

    2016-05-01

    Full Text Available Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  7. 21 CFR 870.3945 - Prosthetic heart valve sizer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Prosthetic heart valve sizer. 870.3945 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3945 Prosthetic heart valve sizer. (a) Identification. A prosthetic heart valve sizer is a device used to measure the size of the...

  8. 21 CFR 870.3935 - Prosthetic heart valve holder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Prosthetic heart valve holder. 870.3935 Section... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3935 Prosthetic heart valve holder. (a) Identification. A prosthetic heart valve holder is a device used to hold a...

  9. On the use of ultracentrifugal devices for routine sample preparation in biomolecular magic-angle-spinning NMR.

    Science.gov (United States)

    Mandal, Abhishek; Boatz, Jennifer C; Wheeler, Travis B; van der Wel, Patrick C A

    2017-03-01

    A number of recent advances in the field of magic-angle-spinning (MAS) solid-state NMR have enabled its application to a range of biological systems of ever increasing complexity. To retain biological relevance, these samples are increasingly studied in a hydrated state. At the same time, experimental feasibility requires the sample preparation process to attain a high sample concentration within the final MAS rotor. We discuss these considerations, and how they have led to a number of different approaches to MAS NMR sample preparation. We describe our experience of how custom-made (or commercially available) ultracentrifugal devices can facilitate a simple, fast and reliable sample preparation process. A number of groups have since adopted such tools, in some cases to prepare samples for sedimentation-style MAS NMR experiments. Here we argue for a more widespread adoption of their use for routine MAS NMR sample preparation.

  10. On the use of ultracentrifugal devices for routine sample preparation in biomolecular magic-angle-spinning NMR

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Abhishek; Boatz, Jennifer C. [University of Pittsburgh School of Medicine, Department of Structural Biology (United States); Wheeler, Travis B. [University of Pittsburgh School of Medicine, Department of Cell Biology (United States); Wel, Patrick C. A. van der, E-mail: vanderwel@pitt.edu [University of Pittsburgh School of Medicine, Department of Structural Biology (United States)

    2017-03-15

    A number of recent advances in the field of magic-angle-spinning (MAS) solid-state NMR have enabled its application to a range of biological systems of ever increasing complexity. To retain biological relevance, these samples are increasingly studied in a hydrated state. At the same time, experimental feasibility requires the sample preparation process to attain a high sample concentration within the final MAS rotor. We discuss these considerations, and how they have led to a number of different approaches to MAS NMR sample preparation. We describe our experience of how custom-made (or commercially available) ultracentrifugal devices can facilitate a simple, fast and reliable sample preparation process. A number of groups have since adopted such tools, in some cases to prepare samples for sedimentation-style MAS NMR experiments. Here we argue for a more widespread adoption of their use for routine MAS NMR sample preparation.

  11. Influence of surgical implantation angle of left ventricular assist device outflow graft and management of aortic valve opening on the risk of stroke in heart failure patients

    Science.gov (United States)

    Chivukula, V. Keshav; McGah, Patrick; Prisco, Anthony; Beckman, Jennifer; Mokadam, Nanush; Mahr, Claudius; Aliseda, Alberto

    2016-11-01

    Flow in the aortic vasculature may impact stroke risk in patients with left ventricular assist devices (LVAD) due to severely altered hemodynamics. Patient-specific 3D models of the aortic arch and great vessels were created with an LVAD outflow graft at 45, 60 and 90° from centerline of the ascending aorta, in order to understand the effect of surgical placement on hemodynamics and thrombotic risk. Intermittent aortic valve opening (once every five cardiac cycles) was simulated and the impact of this residual native output investigated for the potential to wash out stagnant flow in the aortic root region. Unsteady CFD simulations with patient-specific boundary conditions were performed. Particle tracking for 10 cardiac cycles was used to determine platelet residence times and shear stress histories. Thrombosis risk was assessed by a combination of Eulerian and Lagrangian metrics and a newly developed thrombogenic potential metric. Results show a strong influence of LVAD outflow graft angle on hemodynamics in the ascending aorta and consequently on stroke risk, with a highly positive impact of aortic valve opening, even at low frequencies. Optimization of LVAD implantation and management strategies based on patient-specific simulations to minimize stroke risk will be presented

  12. Defect-enhanced Rashba spin-polarized currents in carbon nanotubes

    Science.gov (United States)

    Santos, Hernán; Chico, Leonor; Alvarellos, J. E.; Latgé, A.

    2017-10-01

    The production of spin-polarized currents in pristine carbon nanotubes with Rashba spin-orbit interactions has been shown to be very sensitive to the symmetry of the tubes and the geometry of the setup. Here we analyze the role of defects on the spin quantum conductances of metallic carbon nanotubes due to an external electric field. We show that localized defects, such as adsorbed hydrogen atoms or pentagon-heptagon pairs, increase the Rashba spin-polarized current. Moreover, this enhancement takes place for energies closer to the Fermi energy as compared to the response of pristine tubes. Such increments can be even larger when several equally spaced defects are introduced into the system. We explore different arrangements of defects, showing that for certain geometries there are flips of the spin-polarized current and even transport suppression. Our results indicate that spin valve devices at the nanoscale may be achieved via defect engineering in carbon nanotubes.

  13. Slope of the Anterior Mitral Valve Leaflet: A New Measurement of Left Ventricular Unloading for Left Ventricular Assist Devices and Systolic Dysfunction

    Science.gov (United States)

    Bradley, Elisa A.; Novak, Eric L.; Rasalingam, Ravi; Cedars, Ari M.; Ewald, Gregory A.; Silvestry, Scott C.; Joseph, Susan M.

    2014-01-01

    Left ventricular assist device (LVAD)-supported patients are evaluated routinely with use of transthoracic echocardiography. Values of left ventricular unloading in this unique patient population are needed to evaluate LVAD function and assist in patient follow-up. We introduce a new M-mode measurement, the slope of the anterior mitral valve leaflet (SLAM), and compare its efficacy with that of other standard echocardiographically evaluated values for left ventricular loading, including E/e′ and pulmonary artery systolic pressures. Average SLAM values were determined retrospectively for cohorts of random, non-LVAD patients with moderately to severely impaired left ventricular ejection fraction (LVEF) (ventricular unloading in LVAD patients remains challenging. Our novel M-mode value correlates with echocardiographic values of left ventricular filling in patients with moderate-to-severe systolic function and dynamically improves with the ventricular unloading of an LVAD. PMID:24955040

  14. Tricuspid valve and percutaneous approach: No longer the forgotten valve!

    Science.gov (United States)

    Bouleti, Claire; Juliard, Jean-Michel; Himbert, Dominique; Iung, Bernard; Brochet, Eric; Urena, Marina; Dilly, Marie-Pierre; Ou, Phalla; Nataf, Patrick; Vahanian, Alec

    2016-01-01

    Tricuspid valve disease is mainly represented by tricuspid regurgitation (TR), which is a predictor of poor outcome. TR is usually secondary, caused by right ventricle pressure or volume overload, the leading cause being left-sided heart valve diseases. Tricuspid surgery for severe TR is recommended during left valve surgery, and consists of either a valve replacement or, most often, a tricuspid repair with or without prosthetic annuloplasty. When TR persists or worsens after left valvular surgery, redo isolated tricuspid surgery is associated with high mortality. In addition, a sizeable proportion of patients present with tricuspid surgery deterioration over time, and need a reintervention, which is associated with high morbi-mortality rates. In this context, and given the recent major breakthrough in the percutaneous treatment of aortic and mitral valve diseases, the tricuspid valve appears an appealing challenge, although it raises specific issues. The first applications of transcatheter techniques for tricuspid valve disease were valve-in-valve and valve-in-ring implantation for degenerated bioprosthesis or ring annuloplasty. Some concerns remain regarding prosthesis sizing, rapid ventricular pacing and the best approach, but these procedures appear to be safe and effective. More recently, bicuspidization using a transcatheter approach for the treatment of native tricuspid valve has been published, in two patients. Finally, other devices are in preclinical development. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Procedural Outcome and Midterm Survival of Lower Risk Transfemoral Transcatheter Aortic Valve Implantation Patients Treated With the SAPIEN XT or SAPIEN 3 Device.

    Science.gov (United States)

    Vendrik, Jeroen; van Kesteren, Floortje; van Mourik, Martijn S; Piek, Jan J; Tijssen, Jan G; Henriques, Jose P S; Wykrzykowska, Joanna J; de Winter, Rob J; Driessen, Antoine H G; Kaya, Abdullah; Vis, M Marije; Koch, Karel T; Baan, Jan

    2018-04-01

    Over the years increasing experience and technical device improvements in transcatheter aortic valve implantation (TAVI) have led to treatment of patients with lower surgical risks. Specifically for this population, device performance and longer term outcome are of great importance. In this single center, we performed a retrospective analysis of 515 consecutive patients with low- to intermediate surgical risk (STS-PROM ≤8), who underwent transfemoral TAVI between January 2009 and February 2017 with the SXT and ES3 prostheses, and we assessed procedural outcome and procedural and 3-year survival. Mean age (82 years in both groups, p = 0.344) and STS-PROM risk score (3.862 vs 3.992, p = 0.154) did not differ between the ES3 and SXT group. ES3-treated patients showed favorable procedural outcomes, with significantly higher device success (90% vs 73%, p Procedural mortality (0.87% vs 1.45%, p = 0.245) and the very low rate of permanent pacemaker implantations (7.4% vs 6.1%, p = 0.234) did not differ significantly. Three-year survival was 87% in the ES3 vs 80% in the SXT group (log-rank p = 0.385). In conclusion, we showed excellent survival and procedural outcomes in patients receiving a transfemoral TAVI with either the SAPIEN 3 or the SAPIEN XT device. The newer SAPIEN 3 even outperforms the SAPIEN XT in terms of less major bleeding complications, substantially higher device success rates, and less paravalvular leakage, with the permanent pacemaker implantation rate being very low in both groups. Survival curves show a nonsignificant trend toward better midterm survival in the ES3 group. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Valve Disease

    Science.gov (United States)

    ... phen and Redux, which were removed from the market after being linked to heart valve disease. An ... have a prosthetic valve made of synthetic material. Beta-blockers control your heart rate and lower your ...

  17. Control Valve

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Wayne R.

    2018-03-20

    A control valve includes a first conduit having a first inlet and a first outlet and defining a first passage; a second conduit having a second inlet and a second outlet and defining a second passage, the second conduit extending into the first passage such that the second inlet is located within the first passage; and a valve plate disposed pivotably within the first passage, the valve plate defining a valve plate surface. Pivoting of the valve plate within the first passage varies flow from the first inlet to the first outlet and the valve plate is pivotal between a first position and a second position such that in the first position the valve plate substantially prevents fluid communication between the first passage and the second passage and such that in the second position the valve plate permits fluid communication between the first passage and the second passage.

  18. Effect of post annealing on spin accumulation and transport signals in Co{sub 2}FeSi/MgO/n{sup +}-Si on insulator devices

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Ajay, E-mail: ajay1.tiwari@toshiba.co.jp; Inokuchi, Tomoaki; Ishikawa, Mizue; Sugiyama, Hideyuki; Saito, Yoshiaki [Corporate Research & Development Center, Toshiba Corporation, 1 Komukai-Toshiba, Kawasaki, Kanagawa 212-8582 (Japan); Tezuka, Nobuki [Department of Materials Science, Tohoku University, 6-6-02 Aramaki-Aza-Aoba, 980-8579 Sendai (Japan)

    2016-07-15

    The post annealing temperature dependence of spin accumulation and transport signals in Co{sub 2}FeSi/MgO/n{sup +}-Si on insulator were investigated. The spin signals were detected using 3- and 4-terminal Hanle, 2-terminal local and 4-terminal nonlocal magnetoresistance measurements. The post annealing temperature (T{sub A}) dependence of the magnitude in 3-terminal narrow Hanle signals is nearly constant up to T{sub A} < 400°C, however a slight decrease above T{sub A} ≥ 400°C is observed. This behavior is consistent with the T{sub A} dependence of the magnitude of 4-terminal nonlocal magnetoresistance (MR) signals. The spin polarization estimated from the 3-terminal narrow Hanle signals and the magnitude of 2-terminal local MR signals show a slight improvement with increasing post annealing temperature with a peak at around 325°C and then start reducing slowly. The slight increase in the spin signal would be due to high spin polarization of Co{sub 2}FeSi as a result of structural ordering. The 2-terminal local MR signals do not vary significantly by annealing between as-deposited and T{sub A} = 400°C, indicating the robustness of our device. This result would be useful for future Si spintronics devices.

  19. Valve assembly

    International Nuclear Information System (INIS)

    Sandling, M.

    1981-01-01

    An improved valve assembly, used for controlling the flow of radioactive slurry, is described. Radioactive contamination of the air during removal or replacement of the valve is prevented by sucking air from the atmosphere through a portion of the structure above the valve housing. (U.K.)

  20. Problem: Heart Valve Stenosis

    Science.gov (United States)

    ... Understanding Problems and Causes Heart Murmurs and Valve Disease "Innocent" Heart Murmur Problem: Valve Stenosis - Problem: Aortic Valve Stenosis - Problem: Mitral Valve Stenosis - Problem: Tricuspid Valve Stenosis - Problem: Pulmonary Valve Stenosis Problem: Mitral ...

  1. Spin transport and Hanle effect in silicon nanowires using graphene tunnel barriers

    Science.gov (United States)

    van't Erve, O. M. J.; Friedman, A. L.; Li, C. H.; Robinson, J. T.; Connell, J.; Lauhon, L. J.; Jonker, B. T.

    2015-06-01

    Spin-based devices offer non-volatile, scalable, low power and reprogrammable functionality for emerging device technologies. Here we fabricate nanoscale spintronic devices with ferromagnetic metal/single-layer graphene tunnel barriers used to generate spin accumulation and spin currents in a silicon nanowire transport channel. We report the first observation of spin precession via the Hanle effect in both local three-terminal and non-local spin-valve geometries, providing a direct measure of spin lifetimes and confirmation of spin accumulation and pure spin transport. The use of graphene as the tunnel barrier provides a low-resistance area product contact and clean magnetic switching characteristics, because it smoothly bridges the nanowire and minimizes complicated magnetic domains that otherwise compromise the magnetic behaviour. Utilizing intrinsic two-dimensional layers such as graphene or hexagonal boron nitride as tunnel contacts on nanowires offers many advantages over conventional materials deposited by vapour deposition, enabling a path to highly scaled electronic and spintronic devices.

  2. Period-doubling bifurcation cascade observed in a ferromagnetic nanoparticle under the action of a spin-polarized current

    Energy Technology Data Exchange (ETDEWEB)

    Horley, Paul P., E-mail: paul.horley@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico); Kushnir, Mykola Ya. [Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky str., 58012 Chernivtsi (Ukraine); Morales-Meza, Mishel [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico); Sukhov, Alexander [Institut für Physik, Martin-Luther Universität Halle-Wittenberg, 06120 Halle (Saale) (Germany); Rusyn, Volodymyr [Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky str., 58012 Chernivtsi (Ukraine)

    2016-04-01

    We report on complex magnetization dynamics in a forced spin valve oscillator subjected to a varying magnetic field and a constant spin-polarized current. The transition from periodic to chaotic magnetic motion was illustrated with bifurcation diagrams and Hausdorff dimension – the methods developed for dissipative self-organizing systems. It was shown that bifurcation cascades can be obtained either by tuning the injected spin-polarized current or by changing the magnitude of applied magnetic field. The order–chaos transition in magnetization dynamics can be also directly observed from the hysteresis curves. The resulting complex oscillations are useful for development of spin-valve devices operating in harmonic and chaotic modes.

  3. [OBSERVANT II: OBservational Study of Effectiveness of transcatheter aortic valve implantation with new geneRation deVices for severe Aortic steNosis Treatment. Study protocol].

    Science.gov (United States)

    Seccareccia, Fulvia; Tarantini, Giuseppe; Bedogni, Francesco; Berti, Sergio; Santoro, Gennaro; Tamburino, Corrado; Ussia, Gian Paolo; Barbanti, Marco; Baiocchi, Massimo; Ranucci, Marco; D'Errigo, Paola; Rosato, Stefano; Musumeci, Giuseppe

    2017-06-01

    The rapid spread of transcatheter aortic valve implantation (TAVI) for the treatment of severe symptomatic aortic stenosis in the last decade in Italy has led to a gradually increasing use of TAVI procedures also in patients potentially eligible for aortic valve replacement (AVR). For this subset of patients, the OBSERVANT study (2011-2012) evaluated the short- and medium term outcome of TAVI vs AVR, at least for the first generations of TAVI devices, but failed to gather information on all the technological innovations occurred in recent years. The launch of a phase II of the study will allow to recruit a new series of TAVI, with different risk profiles compared with the historical OBSERVANT TAVI cohort, in order to assess whether and how much the use of new-generation devices mitigate the differences in outcomes recorded in the OBSERVANT study. OBSERVANT II is an observational multicenter, prospective, cohort study collecting data on patients with severe symptomatic aortic stenosis undergoing TAVI in Italian hospitals since December 15, 2016, for at least 12 months. For each patient, data on demographic characteristics, health status, type of intervention and presence of comorbidities will be collected. Mortality and incidence of in-hospital major adverse cardiac and cerebrovascular events (MACCE) within 36 months of intervention will be the primary adverse outcome. Secondary outcomes will include 30-day mortality and the incidence of MACCE at 12 and 24 months. The statistical hypotheses were formulated considering the results from the OBSERVANT study. Testing these hypotheses will require the recruitment of at least 823 new TAVI. The risk/propensity-adjustment techniques will be used to comparatively evaluate the effectiveness of TAVI vs AVR. Safety and efficacy profiles of the new-generation TAVI prosthesis; comparative effectiveness of the new TAVI prosthesis as compared to TAVI procedures of the OBSERVANT historical cohort; comparative effectiveness of the

  4. Mitral Valve Prolapse

    Science.gov (United States)

    ... Aortic Valve Regurgitation - Problem: Mitral Valve Regurgitation - Problem: Tricuspid Valve Regurgitation - Problem: Pulmonary ... Heart Valve Disease Symptoms Dr. Robert Bonow describes the symptoms that ...

  5. The influence of pump rotation speed on hemodynamics and myocardial oxygen metabolism in left ventricular assist device support with aortic valve regurgitation.

    Science.gov (United States)

    Iizuka, Kei; Nishinaka, Tomohiro; Takewa, Yoshiaki; Yamazaki, Kenji; Tatsumi, Eisuke

    2017-09-01

    Aortic valve regurgitation (AR) is a serious complication under left ventricular assist device (LVAD) support. AR causes LVAD-left ventricular (LV) recirculation, which makes it difficult to continue LVAD support. However, the hemodynamics and myocardial oxygen metabolism of LVAD support with AR have not been clarified, especially, how pump rotation speed influences them. An animal model of LVAD with AR was newly developed, and how pump rotation speed influences hemodynamics and myocardial oxygen metabolism was examined in acute animal experiments. Five goats (55 ± 9.3 kg) underwent centrifugal type LVAD, EVAHEART implantation. The AR model was established by placing a vena cava filter in the aortic valve. Hemodynamic values and the myocardial oxygen consumption, delivery, and oxygen extraction ratio (O 2 ER) were evaluated with changing pump rotation speeds with or without AR (AR+, AR-). AR+ was defined as Sellers classification 3 or greater. AR was successfully induced in five goats. Diastolic aortic pressure was significantly lower in AR+ than AR- (p = 0.026). Central venous pressure, mean left atrial pressure, and diastolic left ventricular pressure were significantly higher in AR+ than AR- (p = 0.010, 0.047, and 0.0083, respectively). Although systemic flow did not improve with increasing pump rotation speed, LVAD pump flow increased over systemic flow in AR+, which meant increasing pump rotation speed increased LVAD-LV recirculation and did not contribute to effective systemic circulation. O 2 ER in AR- decreased with increasing pump rotation speed, but O 2 ER in AR+ was hard to decrease. The O 2 ER in AR+ correlated positively with the flow rate of LVAD-LV recirculation (p = 0.012). AR caused LVAD-LV recirculation that interfered with the cardiac assistance of LVAD support and made it ineffective to manage with high pump rotation speed.

  6. Transcatheter Aortic Valve Replacement With Different Valve Types in Elliptic Aortic Annuli.

    Science.gov (United States)

    Maeno, Yoshio; Abramowitz, Yigal; Yoon, Sung-Han; Jilaihawi, Hasan; Raul, Sharma; Israr, Sharjeel; Miyasaka, Masaki; Kawamori, Hiroyuki; Kazuno, Yoshio; Rami, Tanya; Takahashi, Nobuyuki; Mangat, Geeteshwar; Kashif, Mohammad; Chakravarty, Tarun; Nakamura, Mamoo; Cheng, Wen; Makkar, Raj R

    2017-06-23

    The aim of this study was to determine the influence of an elliptic annulus on acute device success rates following self-expanding (SE) transcatheter aortic valve replacement (TAVR) vs. balloon-expandable (BE) TAVR.Methods and Results:Outcomes were assessed using Valve Academic Research Consortium-2 definitions. Aortic annulus ratio (AAR) was measured as short axis diameter/long axis diameter. Mean AAR was 0.81±0.06. Patients were therefore divided into 2 groups: AAR elliptic annuli, SE-TAVR was an independent predictor of unsuccessful device implantation (OR, 6.34, Pelliptic annuli was associated with an exponential rise in device success (threshold ≥17.5%; area under the curve, 0.83) but not for BE-TAVR. Furthermore, optimally oversized SE valves and BE valves had a similarly high device success for elliptic annuli (SE valve, 96.2% vs. BE valve, 95.3%). For circular annuli, similarly high device success was achieved for the 2 valve types. Conversely, for elliptic annuli, SE valves had a lower device success than BE valves. Device success following optimal oversizing of SE valves, however, was similar to that for BE valves.

  7. Evaluating Graphene as a Channel Material in Spintronic Logic Devices

    Science.gov (United States)

    Anugrah, Yoska

    Spintronics, a class of devices that exploit the spin properties of electrons in addition to the charge properties, promises the possibility for nonvolatile logic and memory devices that operate at low power. Graphene is a material in which the spin orientation of electrons can be conserved over a long distance, which makes it an attractive channel material in spintronics devices. In this dissertation, the properties of graphene that are interesting for spintronics applications are explored. A robust fabrication process is described for graphene spin valves using Al2O3 tunnel tunnel barriers and Co ferromagnetic contacts. Spin transport was characterized in both few-layer exfoliated and single-layer graphene, and spin diffusion lengths and spin relaxation times were extracted using the nonlocal spin valve geometry and Hanle measurements. The effect of input-output asymmetry on the spin transport was investigated. The effect of an applied drift electric field on spin transport was investigated and the spin diffusion length was found to be tunable by a factor of 8X (suppressed to 1.6 microm and enhanced to 13 microm from the intrinsic length of 4.6 microm using electric field of +/-1800 V/cm). A mechanism to induce asymmetry without excess power dissipation is also described which utilizes a double buried-gate structure to tune the Fermi levels on the input and output sides of a graphene spin logic device independently. It was found that different spin scattering mechanisms were at play in the two halves of a small graphene strip. This suggests that the spin properties of graphene are strongly affected by its local environment, e.g. impurities, surface topography, defects. Finally, two-dimensional materials beyond graphene have been explored as spin channels. One such material is phosphorene, which has low spin-orbit coupling and high mobility, and the interface properties of ferromagnets (cobalt and permalloy) with this material were explored. This work could

  8. Impact of Disorder on Spin Dependent Transport Phenomena

    KAUST Repository

    Saidaoui, Hamed

    2016-07-03

    The impact of the spin degree of freedom on the transport properties of electrons traveling through magnetic materials has been known since the pioneer work of Mott [1]. Since then it has been demonstrated that the spin angular momentum plays a key role in the scattering process of electrons in magnetic multilayers. This role has been emphasized by the discovery of the Giant Magnetoresistance in 1988 by Fert and Grunberg [2, 3]. Among the numerous applications and effects that emerged in mesoscopic devices two mechanisms have attracted our attention during the course of this thesis: the spin transfer torque and the spin Hall effects. The former consists in the transfer of the spin angular momentum from itinerant carriers to local magnetic moments [4]. This mechanism results in the current-driven magnetization switching and excitations, which has potential application in terms of magnetic data storage and non-volatile memories. The latter, spin Hall effect, is considered as well to be one of the most fascinating mechanisms in condensed matter physics due to its ability of generating non-equilibrium spin currents without the need for any magnetic materials. In fact the spin Hall effect relies only on the presence of the spin-orbit interaction in order to create an imbalance between the majority and minority spins. The objective of this thesis is to investigate the impact of disorder on spin dependent transport phenomena. To do so, we identified three classes of systems on which such disorder may have a dramatic influence: (i) antiferromagnetic materials, (ii) impurity-driven spin-orbit coupled systems and (iii) two dimensional semiconducting electron gases with Rashba spin-orbit coupling. Antiferromagnetic materials - We showed that in antiferromagnetic spin-valves, spin transfer torque is highly sensitive to disorder, which prevents its experimental observation. To solve this issue, we proposed to use either a tunnel barrier as a spacer or a local spin torque using

  9. Spin and Valley Physics in Two Dimensional Systems: Graphene and Superconducting Transition Metal Dichalcogenides

    Science.gov (United States)

    Sosenko, Evan Boyd

    Recent focus on two dimensional materials and spin-coupled phenomena holds future potential for fast, efficient, flexible, and transparent devices. The fundamental operation of a spintronic device depends on the injection, transmission, and detection of spins in a conducting channel. Long spin lifetimes during transit are critical for realizing this technology. An attractive platform for this purpose is graphene, which has high mobilities and low spin-orbit coupling. Unfortunately, measured spin lifetimes are orders of magnitude smaller than theoretically expected. A source of spin loss is the resistance mismatch between the ferromagnetic electrodes and graphene. While this has been studied numerically, here we provide a closed form expression for Hanle spin precession which is the standard method of measuring spin lifetimes. This allows for a detailed characterization of the nonlocal spin valve device. Strong spin-orbit interaction has the potential to engender unconventional superconducting states. A cousin to graphene, two dimensional transition metal dichalcogenides entwine interaction, spin-orbit coupling, and topology. The noninteracting electronic states have multiple valleys in the energy dispersion and are topologically nontrivial. We report on the possible superconducting states of hole-doped systems, and analyze to what extent the correlated phase inherits the topological aspects of the parent crystal. We find that local attractive interactions or proximal coupling to s-wave superconductors lead to a pairing which is an equal mixture of a spin singlet and the m = 0 spin triplet. Its topology allows quasiparticle excitations of net nonzero Berry curvature via pair-breaking by circularly polarized light. The valley contrasting optical response, where oppositely circularly polarized light couples to different valleys, is present even in the superconducting state, though with smaller magnitude.

  10. Sliding pressure control valve for pneumatic hammer drill

    Science.gov (United States)

    Polsky, Yarom [Albuquerque, NM

    2011-08-30

    A pneumatic device control apparatus and method comprising a ported valve slidably fitted over a feed tube of the pneumatic device, and using a compliant biasing device to constrain motion of the valve to provide asymmetric timing for extended pressurization of a power chamber and reduced pressurization of a return chamber of the pneumatic device. The pneumatic device can be a pneumatic hammer drill.

  11. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    Science.gov (United States)

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  12. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes.

    Science.gov (United States)

    Ma, X; Fang, F; Li, Q; Zhu, J; Yang, Y; Wu, Y Z; Zhao, H B; Lüpke, G

    2015-10-28

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  13. Valve Repair or Replacement

    Science.gov (United States)

    ... Replacement Menu Topics Topics FAQs Valve Repair or Replacement Heart valves play a key role in this ... leaflets with a tissue patch. What is valve replacement? Severe valve damage means the valve must be ...

  14. Amplification of spin-current polarization

    Science.gov (United States)

    Saha, D.; Holub, M.; Bhattacharya, P.

    2007-08-01

    A ferromagnet/semiconductor based electrically controlled spin-current amplifier using a dual-drain nonlocal lateral spin valve is demonstrated. The spin polarization injected by the source into the channel is amplified at the second drain contact. An amplified current spin polarization of 100% is measured. The controlled variation of amplifier gain with bias is also demonstrated. The observations are explained in the framework of the spin drift-diffusion model.

  15. ESPINTRÓNICA, LA ELECTRONICA DEL ESPÍN SPINTRONICS, SPIN ELECTRONICS

    KAUST Repository

    Monteblanco, Elmer

    2017-03-14

    Current technology seeks to develop nanoscale devices capable of storing and processing information. These devices would be difficult to make in the area of electronics, which is based on the manipulation of electric charge. However, thanks to advances in experimental and theoretical physics in the field of condensed matter, these devices are already a reality, belonging to the field of what we now call spintronics, which bases its functionality on the control of the electron’s spin, a property that can only be conceived at the quantum level. In this article we review this new perspective, describing giant- and tunneling- magnetoresistance, the spin transfer torque, and their applications such as MRAM memories, nano-oscillators and lateral spin valves.

  16. Electrically Driven Spin Dynamics of Paramagnetic Impurities

    Science.gov (United States)

    Saha, D.; Siddiqui, L.; Bhattacharya, P.; Datta, S.; Basu, D.; Holub, M.

    2008-05-01

    The spin dynamics of dilute paramagnetic impurities embedded in a semiconductor GaAs channel of a conventional lateral spin valve has been investigated. It is observed that the electron spin of paramagnetic Mn atoms can be polarized electrically when driven by a spin valve in the antiparallel configuration. The transient current through the MnAs/GaAs/MnAs spin valve bears the signature of the underlying spin dynamics driven by the exchange interaction between the conduction band electrons in GaAs and the localized Mn electron spins. The time constant for this interaction is observed to be dependent on temperature and is estimated to be 80 ns at 15 K.

  17. Proposal for a graphene-based all-spin logic gate

    Science.gov (United States)

    Su, Li; Zhao, Weisheng; Zhang, Yue; Querlioz, Damien; Zhang, Youguang; Klein, Jacques-Olivier; Dollfus, Philippe; Bournel, Arnaud

    2015-02-01

    In this work, we present a graphene-based all-spin logic gate (G-ASLG) that integrates the functionalities of perpendicular anisotropy magnetic tunnel junctions (p-MTJs) with spin transport in graphene-channel. It provides an ideal integration of logic and memory. The input and output states are defined as the relative magnetization between free layer and fixed layer of p-MTJs. They can be probed by the tunnel magnetoresistance and controlled by spin transfer torque effect. Using lateral non-local spin valve, the spin information is transmitted by the spin-current interaction through graphene channels. By using a physics-based spin current compact model, the operation of G-ASLG is demonstrated and its performance is analyzed. It allows us to evaluate the influence of parameters, such as spin injection efficiency, spin diffusion length, contact area, the device length, and their interdependence, and to optimize the energy and dynamic performance. Compared to other beyond-CMOS solutions, longer spin information transport length (˜μm), higher data throughput, faster computing speed (˜ns), and lower power consumption (˜μA) can be expected from the G-ASLG.

  18. Proposal for a graphene-based all-spin logic gate

    International Nuclear Information System (INIS)

    Su, Li; Zhao, Weisheng; Zhang, Yue; Querlioz, Damien; Klein, Jacques-Olivier; Dollfus, Philippe; Bournel, Arnaud; Zhang, Youguang

    2015-01-01

    In this work, we present a graphene-based all-spin logic gate (G-ASLG) that integrates the functionalities of perpendicular anisotropy magnetic tunnel junctions (p-MTJs) with spin transport in graphene-channel. It provides an ideal integration of logic and memory. The input and output states are defined as the relative magnetization between free layer and fixed layer of p-MTJs. They can be probed by the tunnel magnetoresistance and controlled by spin transfer torque effect. Using lateral non-local spin valve, the spin information is transmitted by the spin-current interaction through graphene channels. By using a physics-based spin current compact model, the operation of G-ASLG is demonstrated and its performance is analyzed. It allows us to evaluate the influence of parameters, such as spin injection efficiency, spin diffusion length, contact area, the device length, and their interdependence, and to optimize the energy and dynamic performance. Compared to other beyond-CMOS solutions, longer spin information transport length (∼μm), higher data throughput, faster computing speed (∼ns), and lower power consumption (∼μA) can be expected from the G-ASLG

  19. Spin pumping through a topological insulator probed by x-ray detected ferromagnetic resonance

    Science.gov (United States)

    Figueroa, A. I.; Baker, A. A.; Collins-McIntyre, L. J.; Hesjedal, T.; van der Laan, G.

    2016-02-01

    In the field of spintronics, the generation of a pure spin current (without macroscopic charge flow) through spin pumping of a ferromagnetic (FM) layer opens up the perspective of a new generation of dissipation-less devices. Microwave driven ferromagnetic resonance (FMR) can generate a pure spin current that enters adjacent layers, allowing for both magnetization reversal (through spin-transfer torque) and to probe spin coherence in non-magnetic materials. However, standard FMR is unable to probe multilayer dynamics directly, since the measurement averages over the contributions from the whole system. The synchrotron radiation-based technique of x-ray detected FMR (XFMR) offers an elegant solution to this drawback, giving access to element-, site-, and layer-specific dynamical measurements in heterostructures. In this work, we show how XFMR has provided unique information to understand spin pumping and spin transfer torque effects through a topological insulator (TI) layer in a pseudo-spin valve heterostructure. We demonstrate that TIs function as efficient spin sinks, while also allowing a limited dynamic coupling between ferromagnetic layers. These results shed new light on the spin dynamics of this novel class of materials, and suggest future directions for the development of room temperature TI-based spintronics.

  20. Safety Testing of Left Ventricular Vent Valves.

    Science.gov (United States)

    Gavin, Caroline; Coblentz, John; Acsell, Jeffrey R; Shackelford, Anthony G; Sistino, Joseph J

    2015-03-01

    Vent vacuum relief valves (VRVs) are used to limit the negative pressure at the ventricular vent catheter tip as well as prevent reversal of blood flow and prevention of air embolism. The purpose of this study was to evaluate the performance of three commercially available ventricular vent valves. The negative pressure at which the vent valve opened was measured at the valve inlet using high-fidelity pressure transducers. Also, the flow rate at which air entrainment occurred due to valve opening was recorded. Using a 51.5 cm column of saline, the resistance for each valve was calculated. The mean ± SD opening negative pressures were -231.3 ± 35.2 mmHg for the Quest Medical valve, -219.8 mmHg ± 17.2 for the Sorin valve, and -329.6 · 38.0 mmHg for the Terumo valve. The red Quest Medical valve opened at a lower flow (1.44 ± .03 L/min) than the dark blue Sorin valve (2.93 ± .01 L/min) and light blue LH130 Terumo valve (2.36 ± .02 L/min). The Sorin valve had the least resistance of 34.1 dyn-s/cm, followed by the Terumo LH130 valve resistance of 58.1 dyn·s/cm5, and the Quest Medical VRV-II valve with a resistance of 66.5 dyn·s/cm. We found that the valves are significantly different in the negative pressure generated. Understanding the limitations of these devices is important to reduce the occurrence of adverse events associated with venting and to select the best device for a specific clinical application.

  1. 3D Printed Multimaterial Microfluidic Valve.

    Directory of Open Access Journals (Sweden)

    Steven J Keating

    Full Text Available We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.

  2. Antiferromagnetic spin-orbitronics

    KAUST Repository

    Manchon, Aurelien

    2015-05-01

    Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.

  3. Structural and magnetic properties of Ni{sub 78}Fe{sub 22} thin films sandwiched between low-softening-point glasses and application in spin devices

    Energy Technology Data Exchange (ETDEWEB)

    Misawa, Takahiro; Mori, Sumito [Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020 (Japan); Komine, Takashi [Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511 (Japan); Fujioka, Masaya; Nishii, Junji [Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020 (Japan); Kaiju, Hideo, E-mail: kaiju@es.hokudai.ac.jp [Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020 (Japan)

    2016-12-30

    Graphical abstract: This paper presents the first demonstration of the formation of Ni{sub 78}Fe{sub 22} thin films sandwiched between low-softening-point (LSP) glasses used in spin quantum cross (SQC) devices and the theoretical prediction of spin filter effect in Ni{sub 78}Fe{sub 22}-based SQC devices. The fomation of the LSP-glass/Ni{sub 78}Fe{sub 22}/LSP-glass structures was successfully demonstrated using a newly proposed thermal pressing technique. Interestingly, this technique gives rise to both a highly-oriented crystal growth in Ni{sub 78}Fe{sub 22} thin films and a 100-fold enhancement in coercivity, in contrast to those of as-deposited Ni{sub 78}Fe{sub 22} thin films. This remarkable increase in coercivity can be explained by the calculation based on two-dimensional random anisotropy model. These excellent features on structural and magnetic properties allowed us to achieve that the stray magnetic field was uniformly generated from the Ni{sub 78}Fe{sub 22} thin-film edge in the direction perpendicular to the cross section of the LSP-glass/Ni{sub 78}Fe{sub 22}/LSP-glass structures. As we calculated the stray magnetic field generated between the two edges of Ni{sub 78}Fe{sub 22} thin-film electrodes in SQC devices, a high stray field of approximately 5 kOe was generated when the gap distance between two edges of the Ni{sub 78}Fe{sub 22} thin-film electrodes was less than 5 nm and the thickness of Ni{sub 78}Fe{sub 22} was greater than 20 nm. These experimental and calculated results suggest that Ni{sub 78}Fe{sub 22} thin films sandwiched between LSP glasses can be used as electrodes in SQC devices, providing a spin-filter effect, and also our proposed techniques utilizing magnetic thin-film edges will open up new opportunities for the creation of high performance spin devices, such as large magnetoresistance devices and nanoscale spin injectors. Our paper is of strong interest to the broad audience of Applied Surface Science, as it demonstrates that the

  4. A controllable spin prism

    International Nuclear Information System (INIS)

    Hakioglu, T

    2009-01-01

    Based on Khodas et al (2004 Phys. Rev. Lett. 92 086602), we propose a device acting like a controllable prism for an incident spin. The device is a large quantum well where Rashba and Dresselhaus spin-orbit interactions are present and controlled by the plunger gate potential, the electric field and the barrier height. A totally destructive interference can be manipulated externally between the Rashba and Dresselhaus couplings. The spin-dependent transmission/reflection amplitudes are calculated as the control parameters are changed. The device operates as a spin prism/converter/filter in different regimes and may stimulate research in promising directions in spintronics in analogy with linear optics.

  5. Electron spin and nuclear spin manipulation in semiconductor nanosystems

    International Nuclear Information System (INIS)

    Hirayama, Yoshiro; Yusa, Go; Sasaki, Satoshi

    2006-01-01

    Manipulations of electron spin and nuclear spin have been studied in AlGaAs/GaAs semiconductor nanosystems. Non-local manipulation of electron spins has been realized by using the correlation effect between localized and mobile electron spins in a quantum dot- quantum wire coupled system. Interaction between electron and nuclear spins was exploited to achieve a coherent control of nuclear spins in a semiconductor point contact device. Using this device, we have demonstrated a fully coherent manipulation of any two states among the four spin levels of Ga and As nuclei. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Continuous Flow Left Ventricular Assist Device Implant Significantly Improves Pulmonary Hypertension, Right Ventricular Contractility, and Tricuspid Valve Competence

    Science.gov (United States)

    Atluri, Pavan; Fairman, Alexander S.; MacArthur, John W.; Goldstone, Andrew B.; Cohen, Jeffrey E.; Howard, Jessica L.; Zalewski, Christyna M.; Shudo, Yasuhiro; Woo, Y. Joseph

    2014-01-01

    Background Continuous flow left ventricular assist devices (CF LVAD) are being implanted with increasing frequency for end-stage heart failure. At the time of LVAD implant, a large proportion of patients have pulmonary hypertension, right ventricular (RV) dysfunction, and tricuspid regurgitation (TR). RV dysfunction and TR can exacerbate renal dysfunction, hepatic dysfunction, coagulopathy, edema, and even prohibit isolated LVAD implant. Repairing TR mandates increased cardiopulmonary bypass time and bicaval cannulation, which should be reserved for the time of orthotopic heart transplantation. We hypothesized that CF LVAD implant would improve pulmonary artery pressures, enhance RV function, and minimize TR, obviating need for surgical tricuspid repair. Methods One hundred fourteen continuous flow LVADs implanted from 2005 through 2011 at a single center, with medical management of functional TR, were retrospectively analyzed. Pulmonary artery pressures were measured immediately prior to and following LVAD implant. RV function and TR were graded according to standard echocardiographic criteria, prior to, immediately following, and long-term following LVAD. Results There was a significant improvement in post-VAD mean pulmonary arterial pressures (26.6 ± 4.9 vs. 30.2 ± 7.4 mmHg, p = 0.008) with equivalent loading pressures (CVP = 12.0 ± 4.0 vs. 12.1 ± 5.1 p = NS). RV function significantly improved, as noted by right ventricular stroke work index (7.04 ± 2.60 vs. 6.05 ± 2.54, p = 0.02). There was an immediate improvement in TR grade and RV function following LVAD implant, which was sustained long term. Conclusion Continuous flow LVAD implant improves pulmonary hypertension, RV function, and tricuspid regurgitation. TR may be managed nonoperatively during CF LVAD implant. PMID:24118109

  7. Multifunctional four-port directional control valve constructed from logic valves

    International Nuclear Information System (INIS)

    Lisowski, E.; Czyżycki, W.; Rajda, J.

    2014-01-01

    Highlights: • Directional valve with standard ISO 440-08 has been constructed from logic valves. • Only one innovative valve may replace whole family of the standard valves. • CFD analysis and bench tests of the innovative valve has been carried. • Parameters of the innovative valve are equaling or surpassing the standard ones. • The innovative valve has additional possibilities of pressure and flow control. - Abstract: The paper refers to four-port solenoid pilot operated valves, which are subplate mounted in a hydraulic system in accordance with the ISO 4401 standard. Their widespread use in many machines and devices causes a continuing interest in the development of their design by both the scientific centers and the industry. This paper presents an innovative directional control valve based on the use of logic valves and a methodology followed for the design of it by using Solid Edge CAD and ANSYS/Fluent CFD software. The valve design methodology takes into account the need to seek solutions that minimize flow resistance through the valve. For this purpose, the flow paths are prepared by means of CAD software and pressure-flow curves are determined as a result of CFD analysis. The obtained curves are compared with the curves available in the catalogs of spool type directional control valves. The new solution allows to replace the whole family of spool type four-port directional control valves by one valve built of logic valves. In addition, the innovative directional control valve provides leak-proof shutting the flow paths off and also it can control flow rate and even pressure of working liquid. A prototype of the valve designed by the presented method has been made and tested on the test bench. The results quoted in the paper confirm that the developed logic type directional control valve is able to meet all designed connection configurations, and the obtained pressure-flow curves show very good conformity with the results of CFD analysis

  8. Nuclear radiation actuated valve

    Science.gov (United States)

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  9. Percutaneous mitral valve annuloplasty for functional mitral regurgitation: acute results of the first patient treated with the Viacor permanent device and future perspectives.

    Science.gov (United States)

    Bertrand, Olivier F; Philippon, François; St Pierre, André; Nguyen, Can M; Larose, Eric; Bilodeau, Sylvie; Dagenais, François; Charbonneau, Eric; Rodés-Cabau, Josep; Sénéchal, Mario

    2010-01-01

    There is a need to develop less invasive techniques to manage moderate or severe functional mitral regurgitation in patients at high surgical risk. We report the acute results of the first patient treated with the permanent Viacor percutaneous transvenous mitral annuloplasty (PTMA) device in North America, introduce the PTOLEMY-2 protocol, and briefly discuss the current status of transvenous mitral valve techniques. After several episodes of pulmonary edema, an 87-year-old woman was referred for hemodynamic evaluation. Angiography revealed normal coronary arteries and severe mitral regurgitation. Baseline echocardiography showed severe (4+) functional mitral regurgitation. The coronary sinus was cannulated with a 9.5-Fr introducer from a left subclavian approach. After distal positioning of a coronary wire, the 7-Fr PTMA Viacor catheter was advanced to the anterior interventricular vein. Two 130 g/cm rods were then inserted resulting in an acute and dramatic reduction in mitral regurgitation as assessed by continuous transoesophageal echocardiography and which was associated with a sudden rise in arterial blood pressure. The next day, transthoracic echocardiogram showed a significant reduction in effective regurgitant orifice area (EROA) from 41 to 10 mm(2). The patient was discharged home the day following the procedure without complication. In accordance with the PTOLEMY-2 protocol, she will undergo 3-D transthoracic echocardiograms, quality of life assessments, and 6-min walk tests at regular intervals for the next 5 years. PTMA is a promising technique for the treatment of severe mitral regurgitation in selected patients. Further ongoing research will determine the predictors of success and long-term safety and performance of this technique. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Spin pumping through a topological insulator probed by x-ray detected ferromagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, A.I., E-mail: aifigueg@gmail.com [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Baker, A.A. [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Collins-McIntyre, L.J.; Hesjedal, T. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Laan, G. van der [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom)

    2016-02-15

    In the field of spintronics, the generation of a pure spin current (without macroscopic charge flow) through spin pumping of a ferromagnetic (FM) layer opens up the perspective of a new generation of dissipation-less devices. Microwave driven ferromagnetic resonance (FMR) can generate a pure spin current that enters adjacent layers, allowing for both magnetization reversal (through spin-transfer torque) and to probe spin coherence in non-magnetic materials. However, standard FMR is unable to probe multilayer dynamics directly, since the measurement averages over the contributions from the whole system. The synchrotron radiation-based technique of x-ray detected FMR (XFMR) offers an elegant solution to this drawback, giving access to element-, site-, and layer-specific dynamical measurements in heterostructures. In this work, we show how XFMR has provided unique information to understand spin pumping and spin transfer torque effects through a topological insulator (TI) layer in a pseudo-spin valve heterostructure. We demonstrate that TIs function as efficient spin sinks, while also allowing a limited dynamic coupling between ferromagnetic layers. These results shed new light on the spin dynamics of this novel class of materials, and suggest future directions for the development of room temperature TI-based spintronics. - Highlights: • X-ray detected ferromagnetic resonance is used to study the spin pumping phenomenon. • We show a powerful way to get information of spin transfer between magnetic layers. • We observe spin pumping through a topological insulators at room temperature. • Topological insulators function as efficient spin sinks.

  11. Spin pumping through a topological insulator probed by x-ray detected ferromagnetic resonance

    International Nuclear Information System (INIS)

    Figueroa, A.I.; Baker, A.A.; Collins-McIntyre, L.J.; Hesjedal, T.; Laan, G. van der

    2016-01-01

    In the field of spintronics, the generation of a pure spin current (without macroscopic charge flow) through spin pumping of a ferromagnetic (FM) layer opens up the perspective of a new generation of dissipation-less devices. Microwave driven ferromagnetic resonance (FMR) can generate a pure spin current that enters adjacent layers, allowing for both magnetization reversal (through spin-transfer torque) and to probe spin coherence in non-magnetic materials. However, standard FMR is unable to probe multilayer dynamics directly, since the measurement averages over the contributions from the whole system. The synchrotron radiation-based technique of x-ray detected FMR (XFMR) offers an elegant solution to this drawback, giving access to element-, site-, and layer-specific dynamical measurements in heterostructures. In this work, we show how XFMR has provided unique information to understand spin pumping and spin transfer torque effects through a topological insulator (TI) layer in a pseudo-spin valve heterostructure. We demonstrate that TIs function as efficient spin sinks, while also allowing a limited dynamic coupling between ferromagnetic layers. These results shed new light on the spin dynamics of this novel class of materials, and suggest future directions for the development of room temperature TI-based spintronics. - Highlights: • X-ray detected ferromagnetic resonance is used to study the spin pumping phenomenon. • We show a powerful way to get information of spin transfer between magnetic layers. • We observe spin pumping through a topological insulators at room temperature. • Topological insulators function as efficient spin sinks.

  12. Spin-Current and Spin-Splitting in Helicoidal Molecules Due to Spin-Orbit Coupling

    Science.gov (United States)

    Caetano, R. A.

    2016-03-01

    The use of organic materials in spintronic devices has been seriously considered after recent experimental works have shown unexpected spin-dependent electrical properties. The basis for the confection of any spintronic device is ability of selecting the appropriated spin polarization. In this direction, DNA has been pointed out as a potential candidate for spin selection due to the spin-orbit coupling originating from the electric field generated by accumulated electrical charges along the helix. Here, we demonstrate that spin-orbit coupling is the minimum ingredient necessary to promote a spatial spin separation and the generation of spin-current. We show that the up and down spin components have different velocities that give rise to a spin-current. By using a simple situation where spin-orbit coupling is present, we provide qualitative justifications to our results that clearly point to helicoidal molecules as serious candidates to integrate spintronic devices.

  13. Spin-transport-phenomena in metals, semiconductors, and insulators

    Energy Technology Data Exchange (ETDEWEB)

    Althammer, Matthias Klaus

    2012-07-19

    Assuming that one could deterministically inject, transport, manipulate, store and detect spin information in solid state devices, the well-established concepts of charge-based electronics could be transferred to the spin realm. This thesis explores the injection, transport, manipulation and storage of spin information in metallic conductors, semiconductors, as well as electrical insulators. On the one hand, we explore the spin-dependent properties of semiconducting zinc oxide thin films deposited via laser-molecular beam epitaxy (laser-MBE). After demonstrating that the zinc oxide films fabricated during this thesis have excellent structural, electrical, and optical properties, we investigate the spin-related properties by optical pump/probe, electrical injection/optical detection, and all electrical spin valve-based experiments. The two key results from these experiments are: (i) Long-lived spin states with spin dephasing times of 10 ns at 10 K related to donor bound excitons can be optically addressed. (ii) The spin dephasing times relevant for electrical transport-based experiments are {<=} 2 ns at 10 K and are correlated with structural quality. On the other hand we focus on two topics of current scientific interest: the comparison of the magnetoresistance to the magnetothermopower of conducting ferromagnets, and the investigation of pure spin currents generated in ferromagnetic insulator/normal metal hybrid structures. We investigate the magnetoresistance and magnetothermopower of gallium manganese arsenide and Heusler thin films as a function of external magnetic field orientation. Using a series expansion of the resistivity and Seebeck tensors and the inherent symmetry of the sample's crystal structure, we show that a full quantitative extraction of the transport tensors from such experiments is possible. Regarding the spin currents in ferromagnetic insulator/normal metal hybrid structures we studied the spin mixing conductance in yttrium iron garnet

  14. Non-local electrical spin injection and detection in germanium at room temperature

    Science.gov (United States)

    Rortais, F.; Vergnaud, C.; Marty, A.; Vila, L.; Attané, J.-P.; Widiez, J.; Zucchetti, C.; Bottegoni, F.; Jaffrès, H.; George, J.-M.; Jamet, M.

    2017-10-01

    Non-local carrier injection/detection schemes lie at the very foundation of information manipulation in integrated systems. This paradigm consists in controlling with an external signal the channel where charge carriers flow between a "source" and a well separated "drain." The next generation electronics may operate on the spin of carriers in addition to their charge and germanium appears as the best hosting material to develop such a platform for its compatibility with mainstream silicon technology and the predicted long electron spin lifetime at room temperature. In this letter, we demonstrate injection of pure spin currents (i.e., with no associated transport of electric charges) in germanium, combined with non-local spin detection at 10 K and room temperature. For this purpose, we used a lateral spin valve with epitaxially grown magnetic tunnel junctions as spin injector and spin detector. The non-local magnetoresistance signal is clearly visible and reaches ≈15 mΩ at room temperature. The electron spin lifetime and diffusion length are 500 ps and 1 μm, respectively, the spin injection efficiency being as high as 27%. This result paves the way for the realization of full germanium spintronic devices at room temperature.

  15. Efficient spin-filtering, magnetoresistance and negative differential resistance effects of a one-dimensional single-molecule magnet Mn(dmit2-based device with graphene nanoribbon electrodes

    Directory of Open Access Journals (Sweden)

    N. Liu

    2017-12-01

    Full Text Available We present first-principle spin-dependent quantum transport calculations in a molecular device constructed by one single-molecule magnet Mn(dmit2 and two graphene nanoribbon electrodes. Our results show that the device could generate perfect spin-filtering performance in a certain bias range both in the parallel configuration (PC and the antiparallel configuration (APC. At the same time, a magnetoresistance effect, up to a high value of 103%, can be realized. Moreover, visible negative differential resistance phenomenon is obtained for the spin-up current of the PC. These results suggest that our one-dimensional molecular device is a promising candidate for multi-functional spintronics devices.

  16. Compare and contrast tricuspid and mitral valve anatomy: interventional perspectives for transcatheter tricuspid valve therapies.

    Science.gov (United States)

    Taramasso, Maurizio; Pozzoli, Alberto; Basso, Cristina; Thiene, Gaetano; Denti, Paolo; Kuwata, Shingo; Nietlispach, Fabian; Alfieri, Ottavio; Hahn, Rebecca T; Nickenig, Georg; Schofer, Joachim; Leon, Martin B; Reisman, Mark; Maisano, Francesco

    2018-03-20

    Moving transcatheter valve intervention towards atrioventricular (AV) valves implies increasing complexity. Some of the knowledge that has been generated during the development of mitral devices can be applied to the tricuspid valve (TV). A deep understanding of the peculiar anatomy of the TV and of the right heart chambers, with differences and similarities between the two AV valves, is fundamental to overcoming the specific challenges related to transcatheter TV therapies. The aim of this report is to explore similarities and differences between the mitral and tricuspid valve apparatus, and their interventional implications.

  17. Transcatheter aortic valve-in-valve implantation of a CoreValve in a JenaValve prosthesis: a case report.

    Science.gov (United States)

    Lotfi, Shahram; Becker, Michael; Moza, Ajay; Autschbach, Rüdiger; Marx, Nikolaus; Schröder, Jörg

    2017-09-10

    Transcatheter aortic valve implantation has become an accepted treatment modality for inoperable or high-risk surgical patients with symptomatic severe aortic stenosis. We report the case of a 70-year-old white man who was treated for severe symptomatic aortic regurgitation using transcatheter aortic valve implantation from the apical approach. Because of recurrent cardiac decompensation 4 weeks after implantation he underwent the implantation of a left ventricular assist device system. A year later echocardiography showed a severe transvalvular central insufficiency. Our heart team decided to choose a valve-in-valve approach while reducing the flow rate of left ventricular assist device to minimum and pacing with a frequency of 140 beats/minute. There was an excellent result and our patient is doing well with no relevant insufficiency of the aortic valve at 12-month follow-up. This is the first report about a successful treatment of a stenotic JenaValve using a CoreValve Evolut R; the use of a CoreValve Evolut R prosthesis may be an optimal option for valve-in-valve procedures.

  18. Electron-Spin Filters Would Offer Spin Polarization Greater than 1

    Science.gov (United States)

    Ting, David Z.

    2009-01-01

    A proposal has been made to develop devices that would generate spin-polarized electron currents characterized by polarization ratios having magnitudes in excess of 1. Heretofore, such devices (denoted, variously, as spin injectors, spin polarizers, and spin filters) have typically offered polarization ratios having magnitudes in the approximate range of 0.01 to 0.1. The proposed devices could be useful as efficient sources of spin-polarized electron currents for research on spintronics and development of practical spintronic devices.

  19. Characteristic analysis of servo valve

    International Nuclear Information System (INIS)

    Ko, J. H.; Ryu, D. R.; Lee, J. H.; Kim, Y. S.; Na, J. C.; Kim, D. S.

    2008-01-01

    Electro-pneumatic servo valve is an electro-mechanical device which converts electric signals into a proper pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristics, no air leakage at a null point, and can be fabricated at a low-cost. The first objective of this research is to design and to fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In order to design the mechanism of the servo valve optimally, the flow inside the valve depending upon the position of spool was analyzed variously, and on the basis of such analysis results, the valve mechanism, which was formed by combination of the spool and the sleeve, was designed and manufactured. And a tester for conducting an overall performance test was designed and manufactured, and as a result of conducting the flow rate test, the pressure test and the frequency test on the developed pneumatic servo valve

  20. Innovations in tricuspid valve intervention.

    Science.gov (United States)

    El-Eshmawi, Ahmed; Tang, Gilbert H L; Verma, Subodh; Yanagawa, Bobby; Ruel, Marc; Adams, David H

    2017-03-01

    Tricuspid valve disease has received much less attention in terms of intervention. The main reason for this is the widely held belief that treatment of left-sided valve disease leads to resolution of functional tricuspid regurgitation. Recent data show that tricuspid regurgitation is not benign and that many patients will benefit from intervention at the time of left-sided valve surgery, or in isolated tricuspid disease. This review describes the latest surgical and interventional options and strategies. Latest valve guidelines now recommend a more aggressive surgical approach to the treatment of moderate or severe tricuspid regurgitation, with annuloplasty being the preferred technique. Guidelines now also promote treatment of isolated significant tricuspid dilatation even without significant regurgitation, as a prophylactic strategy to prevent disease progression. This renewed interest in surgical repair has been accompanied by development of newer tricuspid annuloplasty rings. For patients in whom surgery would be high risk, transcatheter therapies are emerging as a promising alternative. Various repair devices have reported early experience. Recent surgical and transcatheter innovations in the treatment of tricuspid valve disease are promising and have the potential of removing the stigma of the tricuspid valve as the 'forgotten valve'.

  1. Surgical removal of atrial septal defect occlusion device and mitral valve replacement in a 39-year-old female patient with infective endocarditis

    Directory of Open Access Journals (Sweden)

    A S Zotov

    2018-02-01

    Full Text Available Atrial septal defects represent the second most frequent congenital heart disease after ventricular septal defects. Transcatheter closure of an atrial septal defect is usually performed following strict indications on patients with significant left-to-right shunt. Infective endocarditis after transcatheter implantation of atrial septal defect occluder is an extremely rare complication. We report a case of infective endocarditis of the mitral valve (with severe mitral valve insufficiency in a 39-year-old female patient 13 years after transcatheter closure of an atrial septal defect. Complex prophylactic antibiotic coverage was performed prior to surgical intervention. Surgical removal of atrial septal defect occluder, mitral valve replacement, atrial septal defect closure and left atrial appendage resection were performed. Postoperative course was uneventful.

  2. The future of transcatheter mitral valve interventions

    DEFF Research Database (Denmark)

    Maisano, Francesco; Alfieri, Ottavio; Banai, Shmuel

    2015-01-01

    of transcatheter mitral valve interventions will be. The purpose of the present report is to review the current state-of-the-art of mitral valve intervention, and to identify the potential future scenarios, which might benefit most from the transcatheter repair and replacement devices under development....

  3. The influence of interlayer exchange coupling in giant-magnetoresistive devices on spin diode effect in wide frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Ziętek, Sławomir, E-mail: zietek@agh.edu.pl; Skowroński, Witold; Wiśniowski, Piotr; Czapkiewicz, Maciej; Stobiecki, Tomasz [Department of Electronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków (Poland); Ogrodnik, Piotr [Department of Electronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków (Poland); Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa (Poland); Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland); Barnaś, Józef [Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland); Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland)

    2015-09-21

    Spin diode effect in a giant magnetoresistive strip is measured in a broad frequency range, including resonance and off-resonance frequencies. The off-resonance dc signal is relatively strong and also significantly dependent on the exchange coupling between magnetic films through the spacer layer. The measured dc signal is described theoretically by taking into account magnetic dynamics induced by Oersted field created by an ac current flowing through the system.

  4. Diseases of the Tricuspid Valve

    Science.gov (United States)

    ... Valve Menu Topics Topics FAQs Diseases of the Tricuspid Valve Diseases of the heart valves are grouped according to ... heart valves , tricuspid incompetence , tricuspid insufficiency , tricuspid regurgitation , tricuspid ... Links MedlinePlus | Tricuspid Regurgitation Valve Disease Valve ...

  5. Spin-torque oscillation in large size nano-magnet with perpendicular magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Linqiang, E-mail: LL6UK@virginia.edu [Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States); Kabir, Mehdi [Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Dao, Nam; Kittiwatanakul, Salinporn [Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Cyberey, Michael [Department of Electrical Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Wolf, Stuart A. [Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States); Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Institute of Defense Analyses, Alexandria, VA 22311 (United States); Stan, Mircea [Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Lu, Jiwei [Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States)

    2017-06-15

    Highlights: • 500 nm size nano-pillar device was fabricated by photolithography techniques. • A magnetic hybrid structure was achieved with perpendicular magnetic fields. • Spin torque switching and oscillation was demonstrated in the large sized device. • Micromagnetic simulations accurately reproduced the experimental results. • Simulations demonstrated the synchronization of magnetic inhomogeneities. - Abstract: DC current induced magnetization reversal and magnetization oscillation was observed in 500 nm large size Co{sub 90}Fe{sub 10}/Cu/Ni{sub 80}Fe{sub 20} pillars. A perpendicular external field enhanced the coercive field separation between the reference layer (Co{sub 90}Fe{sub 10}) and free layer (Ni{sub 80}Fe{sub 20}) in the pseudo spin valve, allowing a large window of external magnetic field for exploring the free-layer reversal. A magnetic hybrid structure was achieved for the study of spin torque oscillation by applying a perpendicular field >3 kOe. The magnetization precession was manifested in terms of the multiple peaks on the differential resistance curves. Depending on the bias current and applied field, the regions of magnetic switching and magnetization precession on a dynamical stability diagram has been discussed in details. Micromagnetic simulations are shown to be in good agreement with experimental results and provide insight for synchronization of inhomogeneities in large sized device. The ability to manipulate spin-dynamics on large size devices could be proved useful for increasing the output power of the spin-transfer nano-oscillators (STNOs).

  6. Valve's Way

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Dobrajska, Magdalena

    2015-01-01

    Puranam and Håkonsson (2015) challenge us to ponder what we as organization design theorists make of Valve’s way (see also Jeppesen, 2008). We believe that Valve, in spite of its radical vision, does not represent a challenge to fundamental organization design theory and that it is questionable...

  7. Vacuum Valve

    CERN Multimedia

    1974-01-01

    This valve was used in the Intersecting Storage Rings (ISR) to protect against the shock waves that would be caused if air were to enter the vacuum tube. Some of the ISR chambers were very fragile, with very thin walls - a design required by physicists on the lookout for new particles.

  8. Magnons, Spin Current and Spin Seebeck Effect

    Science.gov (United States)

    Maekawa, Sadamichi

    2012-02-01

    When metals and semiconductors are placed in a temperature gradient, the electric voltage is generated. This mechanism to convert heat into electricity, the so-called Seebeck effect, has attracted much attention recently as the mechanism for utilizing wasted heat energy. [1]. Ferromagnetic insulators are good conductors of spin current, i.e., the flow of electron spins [2]. When they are placed in a temperature gradient, generated are magnons, spin current and the spin voltage [3], i.e., spin accumulation. Once the spin voltage is converted into the electric voltage by inverse spin Hall effect in attached metal films such as Pt, the electric voltage is obtained from heat energy [4-5]. This is called the spin Seebeck effect. Here, we present the linear-response theory of spin Seebeck effect based on the fluctuation-dissipation theorem [6-8] and discuss a variety of the devices. [4pt] [1] S. Maekawa et al, Physics of Transition Metal Oxides (Springer, 2004). [0pt] [2] S. Maekawa: Nature Materials 8, 777 (2009). [0pt] [3] Concept in Spin Electronics, eds. S. Maekawa (Oxford University Press, 2006). [0pt] [4] K. Uchida et al., Nature 455, 778 (2008). [0pt] [5] K. Uchida et al., Nature Materials 9, 894 (2010) [0pt] [6] H. Adachi et al., APL 97, 252506 (2010) and Phys. Rev. B 83, 094410 (2011). [0pt] [7] J. Ohe et al., Phys. Rev. B (2011) [0pt] [8] K. Uchida et al., Appl. Phys. Lett. 97, 104419 (2010).

  9. Pulse Duplicator Hydrodynamic Testing of Bioengineered Biological Heart Valves.

    Science.gov (United States)

    Buse, Eric E; Hilbert, Stephen L; Hopkins, Richard A; Converse, Gabriel L

    2016-12-01

    There are many heart valve replacements currently available on the market; however, these devices are not ideal for pediatric patients with congenital heart valve defects. Decellularized valve substitutes offer potential for improved clinical outcomes and require pre-clinical testing guidelines and testing systems suitable for non-crosslinked, biological heart valves. The objective of this study was to assess the hydrodynamic performance of intact, bioengineered pulmonary valves using a custom pulse duplicator capable of testing intact biological valved conduits. The mechanical behavior of valve associated sinus and arterial tissue was also evaluated under biaxial loading. Cryopreserved, decellularized, extracellular matrix (ECM) conditioned and glutaraldehyde fixed valves showed reduced pressure gradients and increased effective orifice area for decellularized and ECM conditioned valves. ECM conditioning resulted in increased elastic modulus but decreased stretch in circumferential and longitudinal directions under biaxial loading. Overall, decellularization and ECM conditioning did not compromise the scaffolds, which exhibited satisfactory bench top performance.

  10. High-pressure, high-temperature magic angle spinning nuclear magnetic resonance devices and processes for making and using same

    Science.gov (United States)

    Hu, Jian Zhi; Hu, Mary Y.; Townsend, Mark R.; Lercher, Johannes A.; Peden, Charles H. F.

    2015-10-06

    Re-usable ceramic magic angle spinning (MAS) NMR rotors constructed of high-mechanic strength ceramics are detailed that include a sample compartment that maintains high pressures up to at least about 200 atmospheres (atm) and high temperatures up to about least about 300.degree. C. during operation. The rotor designs minimize pressure losses stemming from penetration over an extended period of time. The present invention makes possible a variety of in-situ high pressure, high temperature MAS NMR experiments not previously achieved in the prior art.

  11. Aortic valve bypass

    DEFF Research Database (Denmark)

    Lund, Jens T; Jensen, Maiken Brit; Arendrup, Henrik

    2013-01-01

    In aortic valve bypass (AVB) a valve-containing conduit is connecting the apex of the left ventricle to the descending aorta. Candidates are patients with symptomatic aortic valve stenosis rejected for conventional aortic valve replacement (AVR) or transcatheter aortic valve implantation (TAVI). ...

  12. Electrical spin transport in cylindrical silicon nanowires with CoFeB/MgO contacts

    Science.gov (United States)

    Park, Tae-Eon; Min, Byoung-Chul; Park, Hee Gyum; Lee, Jaejun; Jo, Moon-Ho; Jang, Chaun; Koo, Hyun Cheol; Choi, Heon-Jin; Chang, Joonyeon

    2017-08-01

    We examined electrical spin transport in cylindrical silicon nanowires (Si NWs) using the lateral nonlocal spin-valve (NLSV) geometry with CoFeB/MgO contacts. The use of a thin MgO layer as the tunnel barrier in the NLSV devices provided an optimum resistance-area product for spin transport measurements in the Si NWs. A robust NLSV spin signal of over 3.95 kΩ and clear minor loops were observed at 1.8 K in the Si NWs heavily doped with phosphorous. Furthermore, the NLSV magnetoresistance was strongly influenced by the local magnetizations resulting from the ferromagnetic (FM) electrodes being attached to the cylindrically shaped Si NW, with these magnetizations differing from those of bulk ferromagnets. These local micro-magnetic configurations of the FM electrodes led to intriguing NLSV spin signals associated with the Hanle effect. Our study of spin transport in the heavily doped Si NWs provides a sound basis for developing applications of nanoscale semiconductor spintronic devices.

  13. Influence of face-centered-cubic texturing of Co2Fe6B2 pinned layer on tunneling magnetoresistance ratio decrease in Co2Fe6B2/MgO-based p-MTJ spin valves stacked with a [Co/Pd](n)-SyAF layer.

    Science.gov (United States)

    Takemura, Yasutaka; Lee, Du-Yeong; Lee, Seung-Eun; Chae, Kyo-Suk; Shim, Tae-Hun; Lian, Guoda; Kim, Moon; Park, Jea-Gun

    2015-05-15

    The TMR ratio of Co2Fe6B2/MgO-based p-MTJ spin valves stacked with a [Co/Pd]n-SyAF layer decreased rapidly when the ex situ magnetic annealing temperature (Tex) was increased from 275 to 325 °C, and this decrease was associated with degradation of the Co2Fe6B2 pinned layer rather than the Co2Fe6B2 free layer. At a Tex above 325 °C the amorphous Co2Fe6B2 pinned layer was transformed into a face-centered-cubic (fcc) crystalline layer textured from [Co/Pd]n-SyAF, abruptly reducing the Δ1 coherence tunneling of perpendicular-spin-torque electrons between the (100) MgO tunneling barrier and the fcc Co2Fe6B2 pinned layer.

  14. Spin transport in graphene nanostructures

    NARCIS (Netherlands)

    Guimaraes, M. H. D.; van den Berg, J. J.; Vera-Marun, I. J.; Zomer, P. J.; van Wees, B. J.

    2014-01-01

    Graphene is an interesting material for spintronics, showing long spin relaxation lengths even at room temperature. For future spintronic devices it is important to understand the behavior of the spins and the limitations for spin transport in structures where the dimensions are smaller than the

  15. Automated control of the laser welding process of heart valve scaffolds

    OpenAIRE

    Weber Moritz; Hoheisel Anna L.; Glasmacher Birgit

    2016-01-01

    Using the electrospinning process the geometry of a heart valve is not replicable by just one manufacturing process. To produce heart valve scaffolds the heart valve leaflets and the vessel have to be produced in separated spinning processes. For the final product of a heart valve they have to be mated afterwards. In this work an already existing three-axes laser was enhanced to laser weld those scaffolds. The automation control software is based on the robot operating system (ROS). The mecha...

  16. Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction

    KAUST Repository

    Ortiz Pauyac, Christian

    2016-06-19

    In the present thesis we introduce the reader to the field of spintronics and explore new phenomena, such as spin transfer torques, spin filtering, and three types of spin-orbit torques, Rashba, spin Hall, and spin swapping, which have emerged very recently and are promising candidates for a new generation of memory devices in computer technology. A general overview of these phenomena is presented in Chap. 1. In Chap. 2 we study spin transfer torques in tunnel junctions in the presence of spin filtering. In Chap. 3 we discuss the Rashba torque in ferromagnetic films, and in Chap. 4 we study spin Hall effect and spin swapping in ferromagnetic films, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives are summarized in Chap. 5.

  17. Transcatheter aortic valve replacement

    Science.gov (United States)

    ... gov/ency/article/007684.htm Transcatheter aortic valve replacement To use the sharing features on this page, please enable JavaScript. Transcatheter aortic valve replacement (TAVR) is surgery to replace the aortic valve. ...

  18. Aortic Valve Disease

    Science.gov (United States)

    ... It is then replaced with an artificial valve (prosthesis). There are two valve options for aortic valve ... place, the catheter will be withdrawn from your body through the original access point. Because not all ...

  19. What Is Heart Valve Disease?

    Science.gov (United States)

    ... Heart Valves Sometimes heart valves can’t be repaired and must be replaced. This surgery involves removing the faulty valve and replacing it with a man-made or biological valve. Biological valves are made ...

  20. Resonant Tunneling Spin Pump

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  1. Percutaneous Treatment of the Tricuspid Valve Disease: New Hope for the "Forgotten" Valve.

    Science.gov (United States)

    Campelo-Parada, Francisco; Lairez, Olivier; Carrié, Didier

    2017-10-01

    Tricuspid valve disease is a frequent condition but is currently undertreated. A limited number of patients undergo an isolated surgical tricuspid repair, and this intervention is associated with poor outcomes, especially in patients with previous cardiac surgery. Most patients are only medically treated, despite the impact of severe tricuspid regurgitation on functional status and long-term survival. Transcatheter therapies represent a promising alternative for patients with severe tricuspid regurgitation and high surgical risk. In the last few years, several percutaneous alternatives have been developed for the treatment of functional tricuspid regurgitation. Imaging techniques play an indispensable role in patient selection, procedural guidance and follow-up. The current available transcatheter options for native tricuspid valve disease can be divided into 3 main groups: heterotopic caval valve implantation, annuloplasty devices, and coaptation devices. In patients with previous tricuspid valve surgery, transcatheter valve-in-valve and valve-in-ring procedures have been reported. This review provides a detailed analysis of the novel transcatheter alternatives for the treatment of tricuspid valve disease that have already been successfully implanted in humans, as well as the most important aspects of tricuspid valve anatomy and imaging assessment. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  2. Magnetic resonance imaging of prosthetic heart valves.

    Science.gov (United States)

    Soulen, R L; Budinger, T F; Higgins, C B

    1985-03-01

    To evaluate the safety of magnetic resonance (MR) imaging of prosthetic heart valves, nine different synthetic and tissue valves were studied ex vivo. Deflection was measured in 0.35-tesla (T) and 1.5-T superconducting magnets and at the edge of the bore of a 2.35-T electromagnet in field gradients of 5, 1.1, and 6.3 mT/cm, respectively. No valve deflected in the 0.35-T magnet; six synthetic valves deflected 0.25 degrees-3 degrees in the 1.5-T magnet; all valves deflected 1 degree-27 degrees at the edge of the 2.35-T magnet. Each valve was then submerged in a vial of water and the temperature was measured immediately before and after each of two spin-echo imaging sequences in the two superconducting magnets. No significant temperature rise followed exposure in either magnet. Image distortion varied from negligible to severe in both imagers; magnitude of distortion paralleled magnitude of deflection. These data suggest that patients with present-day prosthetic heart valves can be safely imaged in present-day MR imagers and that prosthesis-induced artifacts will not interfere with interpretation in most instances.

  3. A general circuit model for spintronic devices under electric and magnetic fields

    KAUST Repository

    Alawein, Meshal

    2017-10-25

    In this work, we present a circuit model of diffusive spintronic devices capable of capturing the effects of both electric and magnetic fields. Starting from a modified version of the well-established drift-diffusion equations, we derive general equivalent circuit models of semiconducting/metallic nonmagnets and metallic ferromagnets. In contrast to other models that are based on steady-state transport equations which might also neglect certain effects such as thermal fluctuations, spin dissipation in the ferromagnets, and spin precession under magnetic fields, our model incorporates most of the important physics and is based on a time-dependent formulation. An application of our model is shown through simulations of a nonlocal spin-valve under the presence of a magnetic field, where we reproduce experimental results of electrical measurements that demonstrate the phenomena of spin precession and dephasing (“Hanle effect”).

  4. Spin tunneling and manipulation in nanostructures.

    Science.gov (United States)

    Sherman, E Ya; Ban, Yue; Gulyaev, L V; Khomitsky, D V

    2012-09-01

    The results for joint effects of tunneling and spin-orbit coupling on spin dynamics in nanostructures are presented for systems with discrete and continuous spectra. We demonstrate that tunneling plays the crucial role in the spin dynamics and the abilities of spin manipulation by external electric field. This result can be important for design of nanostructures-based spintronics devices.

  5. Spin diffusion and torques in disordered antiferromagnets

    KAUST Repository

    Manchon, Aurelien

    2017-02-01

    We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.

  6. Remote actuated valve implant

    Energy Technology Data Exchange (ETDEWEB)

    McKnight, Timothy E.; Johnson, Anthony; Moise, Kenneth J.; Ericson, Milton Nance; Baba, Justin S.; Wilgen, John B.; Evans, Boyd Mccutchen

    2016-05-10

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  7. Remote actuated valve implant

    Science.gov (United States)

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

    2014-02-25

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  8. Tissue engineered aortic valve

    OpenAIRE

    Dohmen, P M

    2012-01-01

    Several prostheses are available to replace degenerative diseased aortic valves with unique advantages and disadvantages. Bioprotheses show excellent hemodynamic behavior and low risk of thromboembolic complications, but are limited by tissue deterioration. Mechanical heart valves have extended durability, but permanent anticoagulation is mandatory. Tissue engineering created a new generation heart valve, which overcome limitations of biological and mechanical heart valves due to remodelling,...

  9. A review of design and modeling of magnetorheological valve

    Science.gov (United States)

    Abd Fatah, Abdul Yasser; Mazlan, Saiful Amri; Koga, Tsuyoshi; Zamzuri, Hairi; Zeinali, Mohammadjavad; Imaduddin, Fitrian

    2015-01-01

    Following recent rapid development of researches in utilizing Magnetorheological (MR) fluid, a smart material that can be magnetically controlled to change its apparent viscosity instantaneously, a lot of applications have been established to exploit the benefits and advantages of using the MR fluid. One of the most important applications for MR fluid in devices is the MR valve, where it uses the popular flow or valve mode among the available working modes for MR fluid. As such, MR valve is widely applied in a lot of hydraulic actuation and vibration reduction devices, among them are dampers, actuators and shock absorbers. This paper presents a review on MR valve, discusses on several design configurations and the mathematical modeling for the MR valve. Therefore, this review paper classifies the MR valve based on the coil configuration and geometrical arrangement of the valve, and focusing on four different mathematical models for MR valve: Bingham plastic, Herschel-Bulkley, bi-viscous and Herschel-Bulkley with pre-yield viscosity (HBPV) models for calculating yield stress and pressure drop in the MR valve. Design challenges and opportunities for application of MR fluid and MR valve are also highlighted in this review. Hopefully, this review paper can provide basic knowledge on design and modeling of MR valve, complementing other reviews on MR fluid, its applications and technologies.

  10. Electron spin resonance study of interface states induced by electron injection in metal-oxide-semiconductor devices

    Science.gov (United States)

    Mikawa, R. E.; Lenahan, P. M.

    1986-03-01

    We find that electrons emitted from silicon into the oxide of metal-oxide-silicon devices generate amphoteric trivalent silicon (Pb center) defects at the Si/SiO2 interface. The Pb centers are generated in numbers approximately equal to that of the electron injection induced interface states. The effects of electron injection are similar to those of ionizing radiation to the extent that in both cases Pb centers are generated at the Si/SiO2 interface. However, the effects are not identical; ionizing radiation creates another trivalent silicon defect, termed E', in the oxide. We are unable to observe any E' generation in oxides subjected to electron injection. There appears to be a strong correlation between the number of trapped electrons and the electron injection induced Pb center interface states; this observation suggests that the trapping of electrons in the bulk of the oxides is in some way related to the creation of the Pb center interface state defects. We find that dry oxides subjected to a deuterium/nitrogen anneal exhibit less electron trapping than otherwise identical oxides which have been subjected to a hydrogen/nitrogen anneal. This observation is consistent with the idea that a hydrogen bond breaking event may be involved in electron capture.

  11. Electroluminescence color tuning between green and red from metal-oxide-semiconductor devices fabricated by spin-coating of rare-earth (terbium + europium) organic compounds on silicon

    Science.gov (United States)

    Matsuda, Toshihiro; Hattori, Fumihiro; Iwata, Hideyuki; Ohzone, Takashi

    2018-04-01

    Color tunable electroluminescence (EL) from metal-oxide-semiconductor devices with the rare-earth elements Tb and Eu is reported. Organic compound liquid sources of (Tb + Ba) and Eu with various Eu/Tb ratios from 0.001 to 0.4 were spin-coated on an n+-Si substrate and annealed to form an oxide insulator layer. The EL spectra had only peaks corresponding to the intrashell Tb3+/Eu3+ transitions in the spectral range from green to red, and the intensity ratio of the peaks was appropriately tuned using the appropriate Eu/Tb ratios in liquid sources. Consequently, the EL emission colors linearly changed from yellowish green to yellowish orange and eventually to reddish orange on the CIE chromaticity diagram. The gate current +I G current also affected the EL colors for the medium-Eu/Tb-ratio device. The structure of the surface insulator films analyzed by cross-sectional transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, and X-ray photoelectron spectroscopy (XPS) has four layers, namely, (Tb4O7 + Eu2O3), [Tb4O7 + Eu2O3 + (Tb/Eu/Ba)SiO x ], (Tb/Eu/Ba)SiO x , and SiO x -rich oxide. The EL mechanism proposed is that electrons injected from the Si substrate into the SiO x -rich oxide and Tb/Eu/Ba-silicate layers become hot electrons accelerated in a high electric field, and then these hot electrons excite Tb3+ and Eu3+ ions in the Tb4O7/Eu2O3 layers resulting in EL emission from Tb3+ and Eu3+ intrashell transitions.

  12. Landau-Zener tunneling of a single Tb3+ magnetic moment allowing the electronic read-out of a nuclear spin

    Science.gov (United States)

    Urdampilleta, M.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W.

    2013-05-01

    A multiterminal device based on a carbon nanotube quantum dot was used at very low temperature to probe a single electronic and nuclear spin embedded in a bis-(phthalocyaninato) terbium (III) complex (TbPc2). A spin-valve signature with large conductance jumps was found when two molecules were strongly coupled to the nanotube. The application of a transverse field separated the magnetic signal of both molecules and enabled single-shot read-out of the terbium nuclear spin. The Landau-Zener (LZ) quantum tunneling probability was studied as a function of field sweep rate, establishing a good agreement with the LZ equation and yielding the tunnel splitting Δ. It was found that Δ increased linearly as a function of the transverse field. These studies are an essential prerequisite for the coherent manipulation of a single nuclear spin in TbPc2.

  13. Patients without prolonged QRS after TAVI with CoreValve device do not experience high-degree atrio-ventricular block.

    Science.gov (United States)

    Mouillet, Gauthier; Lellouche, Nicolas; Lim, Pascal; Meguro, Kentaro; Yamamoto, Masanori; Deux, Jean-François; Monin, Jean-Luc; Bergoënd, Eric; Dubois-Randé, Jean-Luc; Teiger, Emmanuel

    2013-04-01

    To identify clinical and electrical factors predicting delayed high-degree atrio-ventricular block (AVB) after transcatheter aortic valve implantation (TAVI). TAVI is a new technique for treating severe aortic valve stenosis in patients at high surgical risk but can be followed by high-grade AVB requiring permanent pacing (PP). The study included 79 patients (82 ± 17 years, Euroscore = 23% ± 10%) free of PP need before and immediately after TAVI procedure. Delayed high-degree AVB was defined by types 2 or 3 AVB diagnosed at least 24 hr after the index procedure. Permanent pacemaker implantation was performed for all these patients. We compared clinical and electrical variables before and after TAVI in patients with delayed AVB or not. TAVI was performed successfully in all patients. The 21 (26%) patients who exhibited delayed high-grade AVB had significantly deeper prosthesis implantation (12 ± 4 mm vs. 9 ± 5 mm, P = 0.03) and wider post-TAVI QRS duration (155 ± 17 msec vs. 131 ± 25 msec, P = 0.0004), with no difference in baseline QRS duration. Post-TAVI QRS duration was the only independent predictor of post-TAVI permanent for delayed high-degree AVB (P = 0.02). After a mean follow-up of 10 ± 8 months, all 21 patients with post-TAVI QRS ≤ 128 msec were free of high-grade AVB, whereas 21/55 (38%) patients with post-TAVI QRS >128 msec had PP (P = 0.0016). Delayed (>24 hr after the procedure) high-grade AVB necessitating PP is common after TAVI. QRS duration measured immediately after TAVI was the best independent predictor of PP in this population. Patients with QRS ≤ 128 msec immediately after TAVI had no risk of requiring PP. Copyright © 2012 Wiley Periodicals, Inc.

  14. Progressive breathlessness post mitral valve replacement

    OpenAIRE

    Conor McQuillan; Judith Tweedie

    2016-01-01

    Paravalvular leak occurs in 1–5% patients following surgical valve replacement and is associated with complications including haemolysis, heart failure and endocarditis. Re-do surgery is difficult with mortality rates approaching 16%. Percutaneous closure of mitral valve leaks with occluder devices is a viable alternative to repeat sternotomy; however, clinicians should be aware of contra-indications which include active endocarditis. Management of paravalvular leak is complex and success req...

  15. Added inspiratory work of breathing during CPAP ventilation: comparison of two demand-valve devices with a continuous flow-system.

    Science.gov (United States)

    Viale, J P; Annat, G; Percival, C; Bertrand, O; Motin, J

    1986-01-01

    Measurements of added inspiratory work (AIW) of breathing imposed by three different CPAP systems were performed in 10 patients. One system was a continuous flow system while the two others were demand flow systems separated from respirators (Ohmeda VD 101 and Draeger CPAP 800 devices). AIW was calculated from pressure and flow signals recorded at the mouthpiece level. The AIW calculated with the two demand-flow systems was found to be the same as the AIW calculated with the continuous flow system although the results obtained by the Draeger device were less constant. The results obtained with the Ohmeda device in our patients conflicted with data previously published using a lung model.

  16. Hybrid superconducting-magnetic memory device using competing order parameters.

    Science.gov (United States)

    Baek, Burm; Rippard, William H; Benz, Samuel P; Russek, Stephen E; Dresselhaus, Paul D

    2014-05-28

    In a hybrid superconducting-magnetic device, two order parameters compete, with one type of order suppressing the other. Recent interest in ultra-low-power, high-density cryogenic memories has spurred new efforts to simultaneously exploit superconducting and magnetic properties so as to create novel switching elements having these two competing orders. Here we describe a reconfigurable two-layer magnetic spin valve integrated within a Josephson junction. Our measurements separate the suppression in the superconducting coupling due to the exchange field in the magnetic layers, which causes depairing of the supercurrent, from the suppression due to the stray magnetic field. The exchange field suppression of the superconducting order parameter is a tunable and switchable behaviour that is also scalable to nanometer device dimensions. These devices demonstrate non-volatile, size-independent switching of Josephson coupling, in magnitude as well as phase, and they may enable practical nanoscale superconducting memory devices.

  17. Microfluidic valve array control system integrating a fluid demultiplexer circuit

    International Nuclear Information System (INIS)

    Kawai, Kentaro; Shoji, Shuichi; Arima, Kenta; Morita, Mizuho

    2015-01-01

    This paper proposes an efficient control method for the large-scale integration of microvalves in microfluidic systems. The proposed method can control 2 n individual microvalves with 2n + 2 control lines (where n is an integer). The on-chip valves are closed by applying pressure to a control line, similar to conventional pneumatic microvalves. Another control line closes gate valves between the control line to the on-chip valves and the on-chip valves themselves, to preserve the state of the on-chip valves. The remaining control lines select an activated gate valve. While the addressed gate valve is selected by the other control lines, the corresponding on-chip valve is actuated by applying input pressure to the control line to the on-chip valves. Using this method would substantially reduce the number of world-to-chip connectors and off-chip valve controllers. Experiments conducted using a fabricated 2 8 microvalve array device, comprising 256 individual on-chip valves controlled with 18 (2   ×   8 + 2) control lines, yielded switching speeds for the selected on-chip valve under 90 ms. (paper)

  18. Spin-polarized transport through single-molecule magnet Mn6 complexes

    KAUST Repository

    Cremades, Eduard

    2013-01-01

    The coherent transport properties of a device, constructed by sandwiching a Mn6 single-molecule magnet between two gold surfaces, are studied theoretically by using the non-equilibrium Green\\'s function approach combined with density functional theory. Two spin states of such Mn6 complexes are explored, namely the ferromagnetically coupled configuration of the six MnIII cations, leading to the S = 12 ground state, and the low S = 4 spin state. For voltages up to 1 volt the S = 12 ground state shows a current one order of magnitude larger than that of the S = 4 state. Furthermore this is almost completely spin-polarized, since the Mn6 frontier molecular orbitals for S = 12 belong to the same spin manifold. As such the high-anisotropy Mn6 molecule appears as a promising candidate for implementing, at the single molecular level, both spin-switches and low-temperature spin-valves. © 2013 The Royal Society of Chemistry.

  19. A high performance magnetorheological valve with a meandering flow path

    International Nuclear Information System (INIS)

    Imaduddin, Fitrian; Amri Mazlan, Saiful; Azizi Abdul Rahman, Mohd; Zamzuri, Hairi; Ubaidillah; Ichwan, Burhanuddin

    2014-01-01

    The huge developments in the field of magnetorheological (MR) fluid-based devices will have a great influence on the future of mechatronic applications due to the ease of interfacing between electronic controls and the mechanical components that they provide. Among various MR fluid-based devices, an MR valve would be particularly significant for the development of other devices, if it could be successfully achieved. One of the most challenging obstacles to MR valve development is the difficulty of achieving device miniaturization while, at the same time, improving the achievable performance. This study demonstrates a novel design for an MR valve, using the meandering flow path approach in order to increase the effective area so that the MR fluid can be regulated within a small-sized valve. The meandering flow path is formed by combining multiple annular, radial and orifice flow channels. In order to analyze the valve performance, a mathematical model of the proposed MR valve is derived and combined with numerical simulation using the finite element method, with the intention of predicting the achievable pressure drop that can be generated by the valve. The predicted MR valve performances are then experimentally evaluated using an oscillation-disturbed bypass hydraulic cylinder. The simulation results show that the proposed MR valve design could yield substantial pressure drop improvement, which is confirmed by the experiment

  20. Spin-photon entangling diode

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A. S.; Lukin, M. D.

    2007-01-01

    We propose a semiconductor device that can electrically generate entangled electron spin-photon states, providing a building block for entanglement of distant spins. The device consists of a p-i-n diode structure that incorporates a coupled double quantum dot. We show that electronic control...... of the diode bias and local gating allow for the generation of single photons that are entangled with a robust quantum memory based on the electron spins. Practical performance of this approach to controlled spin-photon entanglement is analyzed....

  1. Metallic spintronic devices

    CERN Document Server

    Wang, Xiaobin

    2014-01-01

    Metallic Spintronic Devices provides a balanced view of the present state of the art of metallic spintronic devices, addressing both mainstream and emerging applications from magnetic tunneling junction sensors and spin torque oscillators to spin torque memory and logic. Featuring contributions from well-known and respected industrial and academic experts, this cutting-edge work not only presents the latest research and developments but also: Describes spintronic applications in current and future magnetic recording devicesDiscusses spin-transfer torque magnetoresistive random-access memory (STT-MRAM) device architectures and modelingExplores prospects of STT-MRAM scaling, such as detailed multilevel cell structure analysisInvestigates spintronic device write and read optimization in light of spintronic memristive effectsConsiders spintronic research directions based on yttrium iron garnet thin films, including spin pumping, magnetic proximity, spin hall, and spin Seebeck effectsProposes unique solutions for ...

  2. Spin tracking in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luccio, A.U. [Brookhaven National Lab., Upton, NY (United States); Katayama, T. [Univ. of Tokyo (Japan); Wu, H. [Riken Inst., Tokyo (Japan)

    1997-07-01

    In the acceleration of polarized protons in RHIC many spin depolarizing resonances are encountered. Helical Siberian snakes will be used to overcome depolarizing effects. The behavior of polarization can be studied by numerical tracking in a model accelerator. That allows one to check the strength of the resonances, to study the effect of snakes, to find safe lattice tune regions, and finally to study the operation of special devices like spin flippers. In this paper the authors describe numerical spin tracking. Results show that, for the design corrected distorted orbit and the design beam emittance, the polarization of the beam will be preserved in the whole range of proton energies in RHIC.

  3. Experimental Realization of a Quantum Spin Pump

    DEFF Research Database (Denmark)

    Watson, Susan; Potok, R.; M. Marcus, C.

    2003-01-01

    We demonstrate the operation of a quantum spin pump based on cyclic radio-frequency excitation of a GaAs quantum dot, including the ability to pump pure spin without pumping charge. The device takes advantage of bidirectional mesoscopic fluctuations of pumped current, made spin......-dependent by the application of an in-plane Zeeman field. Spin currents are measured by placing the pump in a focusing geometry with a spin-selective collector....

  4. Which valve is which?

    Directory of Open Access Journals (Sweden)

    Pravin Saxena

    2015-01-01

    Full Text Available A 25-year-old man presented with a history of breathlessness for the past 2 years. He had a history of operation for Tetralogy of Fallot at the age of 5 years and history suggestive of Rheumatic fever at the age of 7 years. On echocardiographic examination, all his heart valves were severely regurgitating. Morphologically, all the valves were irreparable. The ejection fraction was 35%. He underwent quadruple valve replacement. The aortic and mitral valves were replaced by metallic valve and the tricuspid and pulmonary by tissue valve.

  5. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  6. Perpendicularly magnetized Mn x Ga films: promising materials for future spintronic devices, magnetic recording and permanent magnets

    Science.gov (United States)

    Zhu, Lijun; Zhao, Jianhua

    2013-05-01

    In this article, we review the recent progress in synthesis, characterization and related spintronic devices of tetragonal Mn x Ga alloys with L10 or D022 ordering. After a brief introduction to the growing demands for perpendicularly magnetized materials and the prospective candidate of Mn x Ga, we focus on lattice structures and synthesis of Mn x Ga bulks, and epitaxial growth, structural characterization and magnetic properties of Mn x Ga films. Then we discuss effective ways to tailor and improve the structure and magnetism for possible applications in spintronics, magnetic recording and permanent magnets. Finally, we outline the recent progress in spin polarization, magnetic damping, magneto-optical and magneto-transport behaviors and thermal and chemical stability of Mn x Ga films and related spintronic devices like magnetic tunneling junctions, spin valves and spin injectors into semiconductors.

  7. Spin transport and relaxation in graphene

    International Nuclear Information System (INIS)

    Han Wei; McCreary, K.M.; Pi, K.; Wang, W.H.; Li Yan; Wen, H.; Chen, J.R.; Kawakami, R.K.

    2012-01-01

    We review our recent work on spin injection, transport and relaxation in graphene. The spin injection and transport in single layer graphene (SLG) were investigated using nonlocal magnetoresistance (MR) measurements. Spin injection was performed using either transparent contacts (Co/SLG) or tunneling contacts (Co/MgO/SLG). With tunneling contacts, the nonlocal MR was increased by a factor of ∼1000 and the spin injection/detection efficiency was greatly enhanced from ∼1% (transparent contacts) to ∼30%. Spin relaxation was investigated on graphene spin valves using nonlocal Hanle measurements. For transparent contacts, the spin lifetime was in the range of 50-100 ps. The effects of surface chemical doping showed that for spin lifetimes in the order of 100 ps, charged impurity scattering (Au) was not the dominant mechanism for spin relaxation. While using tunneling contacts to suppress the contact-induced spin relaxation, we observed the spin lifetimes as long as 771 ps at room temperature, 1.2 ns at 4 K in SLG, and 6.2 ns at 20 K in bilayer graphene (BLG). Furthermore, contrasting spin relaxation behaviors were observed in SLG and BLG. We found that Elliot-Yafet spin relaxation dominated in SLG at low temperatures whereas Dyakonov-Perel spin relaxation dominated in BLG at low temperatures. Gate tunable spin transport was studied using the SLG property of gate tunable conductivity and incorporating different types of contacts (transparent and tunneling contacts). Consistent with theoretical predictions, the nonlocal MR was proportional to the SLG conductivity for transparent contacts and varied inversely with the SLG conductivity for tunneling contacts. Finally, bipolar spin transport in SLG was studied and an electron-hole asymmetry was observed for SLG spin valves with transparent contacts, in which nonlocal MR was roughly independent of DC bias current for electrons, but varied significantly with DC bias current for holes. These results are very important for

  8. Antiferromagnetic spin Seebeck effect.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand

    2016-03-03

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2. A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF2(110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2–80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9T) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.

  9. Dependency of tunneling magnetoresistance ratio on Pt seed-layer thickness for double MgO perpendicular magnetic tunneling junction spin-valves with a top Co2Fe6B2 free layer ex-situ annealed at 400 °C.

    Science.gov (United States)

    Takemura, Yasutaka; Lee, Du-Yeong; Lee, Seung-Eun; Park, Jea-Gun

    2016-12-02

    For the double MgO based perpendicular magnetic tunneling junction (p-MTJ) spin-valves with a top Co 2 Fe 6 B 2 free layer ex situ annealed at 400 °C, the tunneling-magnetoresistance ratio (TMR) strongly depended on the platinum (Pt) seed layer thickness (t Pt ): it peaked (∼134%) at a specific t Pt (3.3 nm). The TMR ratio was initially and slightly increased from 113%-134% by the enhancement of the magnetic moment of the Co 2 Fe 6 B 2 pinned layer when t Pt increased from 2.0-3.3 nm, and then rapidly decreased from 134%-38.6% by the degrading face-centered-cubic crystallinity of the MgO tunneling barrier when t Pt increased from 3.3-14.3 nm.

  10. Spin-Precession Organic Magnetic Sensor

    Science.gov (United States)

    2012-09-26

    with the voltage and we get a value of ~200 per tesla for the quantity [V -1 (dV/dB)], which roughly translates into a sensitivity of 14 nT/Hz 1/2...Ideally, the response should be similar to the spin- valve measurements—the resistance changes as the magnetization of each of the contacts flips as we...strips. Typical spin- valve measurements employ strip widths of ~10-20 nm. However, the smallest width achievable in our FIB process is 500 nm, and the

  11. What Is Heart Valve Surgery?

    Science.gov (United States)

    ... working correctly. Most valve replacements involve the aortic Tricuspid valve and mitral valves. The aortic valve separates the ... in life and cause problems. •Aging can make valves weaken or harden. • Certain diseases can scar or destroy a valve. What can ...

  12. Miniaturization of environmental chemical assays in flowing systems: The lab-on-a-valve approach vis-a-vis lab-on-a-chip microfluidic devices

    International Nuclear Information System (INIS)

    Miro, Manuel; Hansen, Elo Harald

    2007-01-01

    The analytical capabilities of the microminiaturized lab-on-a-valve (LOV) module integrated into a microsequential injection (μSI) fluidic system in terms of analytical chemical performance, microfluidic handling and on-line sample processing are compared to those of the micro total analysis systems (μTAS), also termed lab-on-a-chip (LOC). This paper illustrates, via selected representative examples, the potentials of the LOV scheme vis-a-vis LOC microdevices for environmental assays. By means of user-friendly programmable flow and the exploitation of the interplay between the thermodynamics and the kinetics of the chemical reactions at will, LOV allows accommodation of reactions which, at least at the present stage, are not feasible by application of microfluidic LOC systems. Thus, in LOV one may take full advantage of kinetic discriminations schemes, where even subtle differences in reactions are utilized for analytical purposes. Furthermore, it is also feasible to handle multi-step sequential reactions of divergent kinetics; to conduct multi-parametric determinations without manifold reconfiguration by utilization of the inherent open-architecture of the micromachined unit for implementation of peripheral modules and automated handling of a variety of reagents; and most importantly, it offers itself as a versatile front end to a plethora of detection schemes. Not the least, LOV is regarded as an emerging downscaled tool to overcome the dilemma of LOC microsystems to admit real-life samples. This is nurtured via its intrinsic flexibility for accommodation of sample pre-treatment schemes aimed at the on-line manipulation of complex samples. Thus, LOV is playing a prominent role in the environmental field, whenever the monitoring of trace level concentration of pollutants is pursued, because both matrix isolation and preconcentration of target analytes is most often imperative, or in fact necessary, prior to sample presentation to the detector

  13. Improved Pig Model to Evaluate Heart Valve Thrombosis.

    Science.gov (United States)

    Payanam Ramachandra, Umashankar; Shenoy, Sachin J; Arumugham, Sabareeswaran

    2016-09-01

    Although the sheep is the most acceptable animal model for heart valve evaluation, it has severe limitations for detecting heart valve thrombosis during preclinical studies. While the pig offers an alternative model and is better for detecting prosthetic valve thrombogenicity, it is not often used because of inadvertent valve thrombosis or bleeding complications. The study aim was to develop an improved pig model which can be used reliably to evaluate mechanical heart valve thrombogenicity. Mechanical heart valves were implanted in the mitral position of indigenous pigs administered aspirin-clopidogrel, and compared with similar valves implanted in control pigs to which no antiplatelet therapy had been administered. The pigs were observed for six months to study their overall survivability, inadvertent bleeding/valve thrombosis and pannus formation. The efficacy of aspirinclopidogrel on platelet aggregation and blood coagulation was also recorded and compared between test and control animals. In comparison to controls, pigs receiving anti-platelet therapy showed an overall better survivability, an absence of inadvertent valve thrombosis/ bleeding, and less obstructive pannus formation. Previously unreported inhibitory effects of aspirin-clopidogrel on the intrinsic pathway of blood coagulation were also observed in the pig model. Notably, with aspirin-clopidogrel therapy inadvertent thrombus formation or bleeding can be prevented. The newly developed pig model can be successfully used to evaluate heart valve thrombosis following chronic orthotopic valve implantation. The model may also be utilized to evaluate other bloodcontacting implantable devices.

  14. Novel Magnetic Devices

    National Research Council Canada - National Science Library

    Schuller, Ivan

    2007-01-01

    ...: ballistic magnetoresistance, magnetic field proximity effect and spin drag. These three phenomena would then be exploited for the design of novel device architectures and to investigate the physical principles behind these devices...

  15. Corrosion of valve metals

    International Nuclear Information System (INIS)

    Draley, J.E.

    1976-01-01

    A general survey related to the corrosion of valve metals or film-forming metals. The way these metals corrode with some general examples is described. Valve metals form relatively perfect oxide films with little breakdown or leakage when anodized

  16. Excitation of coherent propagating spin waves by pure spin currents.

    Science.gov (United States)

    Demidov, Vladislav E; Urazhdin, Sergei; Liu, Ronghua; Divinskiy, Boris; Telegin, Andrey; Demokritov, Sergej O

    2016-01-28

    Utilization of pure spin currents not accompanied by the flow of electrical charge provides unprecedented opportunities for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. It was recently shown that pure spin currents can be used to excite coherent magnetization dynamics in magnetic nanostructures. However, because of the intrinsic nonlinear self-localization effects, magnetic auto-oscillations in the demonstrated devices were spatially confined, preventing their applications as sources of propagating spin waves in magnonic circuits using these waves as signal carriers. Here, we experimentally demonstrate efficient excitation and directional propagation of coherent spin waves generated by pure spin current. We show that this can be achieved by using the nonlocal spin injection mechanism, which enables flexible design of magnetic nanosystems and allows one to efficiently control their dynamic characteristics.

  17. A case of SAPIEN XT valve fallen into left ventricle during valve-in-valve transcatheter aortic valve implantation.

    Science.gov (United States)

    Koizumi, Shigeki; Ehara, Natsuhiko; Nishiya, Kenta; Koyama, Tadaaki

    2017-06-24

    Late transcatheter heart valve embolization is a rare but life-threatening complication of transcatheter aortic valve implantation. Surgical intervention is performed for most cases, but some cases were treated by valve-in-valve transcatheter aortic valve implantation. We describe a patient in whom a 29-mm Edwards SAPIEN XT valve migrated into the left ventricular outflow tract 41 days after the initial implantation. We tried to perform valve-in-valve transcatheter aortic valve implantation using a transfemoral approach. As soon as the second transcatheter heart valve touched the first implanted valve, it fell into the left ventricle. Immediate surgical intervention was required. The first valve was removed, and surgical aortic valve replacement was successfully performed. In conclusion, we should choose surgical aortic valve replacement for late transcatheter heart valve embolization. Even if we need to treat by catheter intervention, transapical approach may be better.

  18. Pressure-actuated monolithic acrylic microfluidic valves and pumps.

    Science.gov (United States)

    Guevara-Pantoja, Pablo E; Jiménez-Valdés, Rocío J; García-Cordero, Jose L; Caballero-Robledo, Gabriel A

    2018-02-13

    In this article, we describe a microfluidic device with embedded valves and pumps made exclusively of layers of acrylic glass. Flat acrylic sheets are carved out with a micromilling machine and bonded together by solvent bonding. The working principle of the valves is based on a thin flexible membrane (≈100 μm) machined on one acrylic sheet and actuated with pneumatic pressure. A completely closed valve resists a pressure difference of ≈17 kPa (≈2.5 psi), and when open, it can sustain flow rates of up to 100 μL s -1 . Pumping is achieved by combining two valves and a pumping chamber in series, which is also based on the bending of a thin acrylic membrane. The maximum flow rate obtained with this pumping mechanism is 20 μL min -1 . Acrylic is a popular rigid thermoplastic because it is inexpensive, making it ideal for mass production of disposable devices, and also because it has demonstrated compatibility with different biochemical assays. The physical and optical properties it shares with other thermoplastics could lead to this material being implemented for similar valves and pumps. As a proof-of-concept of our technology, we implemented a controlled cell-staining assay in two parallel incubation chambers integrating four valves and one pump into one device. Our monolithic acrylic valves can enable the mass production of disposable microfluidic devices that require fluid control with pressure-actuated valves and aid in the automation of biochemical assays.

  19. Inpile honing of Sizewell primary selector valve housings

    International Nuclear Information System (INIS)

    Grindrod, A.; Ward, R.G.

    1976-03-01

    Difficulties have been experienced at Sizewell power station with the removal and replacement of several of the primary selector valves fitted in the reactors, during the annual maintenance programme. An inpile honing device is described which was specifically designed and developed to facilitate the restoration of the inner sealing faces of the valve housings. (author)

  20. Glovebox pressure relief and check valve

    International Nuclear Information System (INIS)

    Blaedel, K.L.

    1986-01-01

    This device is a combined pressure relief valve and check valve providing overpressure protection and preventing back flow into an inert atmosphere enclosure. The pressure relief is embodied by a submerged vent line in a mercury reservior, the releif pressure being a function of the submerged depth. The pressure relief can be vented into an exhaust system and the relieving pressure is only slightly influenced by the varying pressure in the exhaust system. The check valve is embodied by a ball which floats on the mercury column and contacts a seat whenever vacuum exists within the glovebox enclosure. Alternatively, the check valve is embodied by a vertical column of mercury, the maximum back pressure being a function of the height of the column of mercury

  1. Glovebox pressure relief and check valve

    Energy Technology Data Exchange (ETDEWEB)

    Blaedel, K.L.

    1986-03-17

    This device is a combined pressure relief valve and check valve providing overpressure protection and preventing back flow into an inert atmosphere enclosure. The pressure relief is embodied by a submerged vent line in a mercury reservior, the releif pressure being a function of the submerged depth. The pressure relief can be vented into an exhaust system and the relieving pressure is only slightly influenced by the varying pressure in the exhaust system. The check valve is embodied by a ball which floats on the mercury column and contacts a seat whenever vacuum exists within the glovebox enclosure. Alternatively, the check valve is embodied by a vertical column of mercury, the maximum back pressure being a function of the height of the column of mercury.

  2. Spin-inversion in nanoscale graphene sheets with a Rashba spin-orbit barrier

    Directory of Open Access Journals (Sweden)

    Somaieh Ahmadi

    2012-03-01

    Full Text Available Spin-inversion properties of an electron in nanoscale graphene sheets with a Rashba spin-orbit barrier is studied using transfer matrix method. It is found that for proper values of Rashba spin-orbit strength, perfect spin-inversion can occur in a wide range of electron incident angle near the normal incident. In this case, the graphene sheet with Rashba spin-orbit barrier can be considered as an electron spin-inverter. The efficiency of spin-inverter can increase up to a very high value by increasing the length of Rashba spin-orbit barrier. The effect of intrinsic spin-orbit interaction on electron spin inversion is then studied. It is shown that the efficiency of spin-inverter decreases slightly in the presence of intrinsic spin-orbit interaction. The present study can be used to design graphene-based spintronic devices.

  3. Determination of the spin diffusion length in germanium by spin optical orientation and electrical spin injection

    Science.gov (United States)

    Rinaldi, C.; Bertoli, S.; Asa, M.; Baldrati, L.; Manzoni, C.; Marangoni, M.; Cerullo, G.; Bianchi, M.; Sordan, R.; Bertacco, R.; Cantoni, M.

    2016-10-01

    The measurement of the spin diffusion length and/or lifetime in semiconductors is a key issue for the realisation of spintronic devices, exploiting the spin degree of freedom of carriers for storing and manipulating information. In this paper, we address such parameters in germanium (0 0 1) at room temperature (RT) by three different measurement methods. Exploiting optical spin orientation in the semiconductor and spin filtering across an insulating MgO barrier, the dependence of the resistivity on the spin of photo-excited carriers in Fe/MgO/Ge spin photodiodes (spin-PDs) was electrically detected. A spin diffusion length of 0.9  ±  0.2 µm was obtained by fitting the photon energy dependence of the spin signal by a mathematical model. Electrical techniques, comprising non-local four-terminal and Hanle measurements performed on CoFeB/MgO/Ge lateral devices, led to spin diffusion lengths of 1.3  ±  0.2 µm and 1.3  ±  0.08 µm, respectively. Despite minor differences due to experimental details, the order of magnitude of the spin diffusion length is the same for the three techniques. Although standard electrical methods are the most employed in semiconductor spintronics for spin diffusion length measurements, here we demonstrate optical spin orientation as a viable alternative for the determination of the spin diffusion length in semiconductors allowing for optical spin orientation.

  4. Aortic valve surgery - open

    Science.gov (United States)

    ... while you are connected to this machine. This machine does the work of your heart while your heart is stopped. If your aortic valve is too damaged, you will need a new valve. This is called replacement surgery. Your surgeon will remove your aortic valve ...

  5. Bicuspid Aortic Valve

    Science.gov (United States)

    2006-08-01

    with tricuspid aortic valves matched for age, gender and grade of valvular disease . These studies suggest that the predisposition for aortic...enlargement in healthy patients with normally functioning BAV when compared to healthy subjects with normally functioning tricuspid aortic valves ...ascending aorta but also in the pulmonary arteries of patients with BAV, compared to that of patients with tricuspid aortic valves . These studies

  6. Heart Valve Diseases

    Science.gov (United States)

    Your heart has four valves. Normally, these valves open to let blood flow through or out of your heart, and then shut to keep it from flowing ... close tightly. It's one of the most common heart valve conditions. Sometimes it causes regurgitation. Stenosis - when ...

  7. When a Heart Murmur Signals Valve Disease

    Science.gov (United States)

    ... Understanding Problems and Causes Heart Murmurs and Valve Disease "Innocent" Heart Murmur Problem: Valve Stenosis - Problem: Aortic Valve Stenosis - Problem: Mitral Valve Stenosis - Problem: Tricuspid Valve Stenosis - Problem: Pulmonary Valve Stenosis Problem: Mitral ...

  8. Spin Injection in Indium Arsenide

    Directory of Open Access Journals (Sweden)

    Mark eJohnson

    2015-08-01

    Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.

  9. Spin Transport in Semiconductor heterostructures

    International Nuclear Information System (INIS)

    Marinescu, Domnita Catalina

    2011-01-01

    The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

  10. Reduced-impact sliding pressure control valve for pneumatic hammer drill

    Science.gov (United States)

    Polsky, Yarom [Oak Ridge, TN; Grubelich, Mark C [Albuquerque, NM; Vaughn, Mark R [Albuquerque, NM

    2012-05-15

    A method and means of minimizing the effect of elastic valve recoil in impact applications, such as percussive drilling, where sliding spool valves used inside the percussive device are subject to poor positioning control due to elastic recoil effects experienced when the valve impacts a stroke limiting surface. The improved valve design reduces the reflected velocity of the valve by using either an energy damping material, or a valve assembly with internal damping built-in, to dissipate the compression stress wave produced during impact.

  11. Transcatheter Aortic Valve Replacement: A Review Article

    Directory of Open Access Journals (Sweden)

    Juan A Siordia

    2016-06-01

    Full Text Available Transcatheter aortic valve replacement (TAVR is a novel therapeutic intervention for the replacement of severely stenotic aortic valves in high-risk patients for standard surgical procedures. Since the initial PARTNER trial results, use of TAVR has been on the rise each year. New delivery methods and different valves have been developed and modified in order to promote the minimally invasive procedure and reduce common complications, such as stroke. This review article focuses on the current data on the indications, risks, benefits, and future directions of TAVR. Recently, TAVR has been considered as a standard-of-care procedure. While this technique is used frequently in high-risk surgical candidates, studies have been focusing on the application of this method for younger patients with lower surgical risk. Moreover, several studies have proposed promising results regarding the use of valve-in-valve technique or the procedure in which the valve is placed within a previously implemented bioprosthetic valve. However, ischemic strokes and paravalvular leak remain a matter of debate in these surgeries. New methods and devices have been developed to reduce the incidence of post-procedural stroke. While the third generation of TAVR valves (i.e., Edwards Sapien 3 and Medtronic Evolut R addresses the issue of paravalvular leak structurally, results on their efficacy in reducing the risk of paravalvular leak are yet to be obtained. Furthermore, TAVR enters the field of hybrid methods in the treatment of cardiac issues via both surgical and catheter-based approaches. Finally, while TAVR is primarily performed on cases with aortic stenosis, new valves and methods have been proposed regarding the application of this technique in aortic regurgitation, as well as other aortic pathologies. TAVR is a suitable therapeutic approach for the treatment of aortic stenosis in high-risk patients. Considering the promising results in the current patient population

  12. Vascular complications associated with transcatheter aortic valve replacement.

    Science.gov (United States)

    Sardar, M Rizwan; Goldsweig, Andrew M; Abbott, J Dawn; Sharaf, Barry L; Gordon, Paul C; Ehsan, Afshin; Aronow, Herbert D

    2017-06-01

    Transcatheter aortic valve replacement (TAVR) is now an accepted pathway for aortic valve replacement for patients who are at prohibitive, severe and intermediate risk for traditional aortic valve surgery. However, with this rising uptrend and adaptation of this new technology, vascular complications and their management remain an Achilles heel for percutaneous aortic valve replacement. The vascular complications are an independent predictor of mortality for patients undergoing TAVR. Early recognition of these complications and appropriate management is paramount. In this article, we review the most commonly encountered vascular complications associated with currently approved TAVR devices and their optimal percutaneous management techniques.

  13. Designed pneumatic valve actuators for controlled droplet breakup and generation.

    Science.gov (United States)

    Choi, Jae-Hoon; Lee, Seung-Kon; Lim, Jong-Min; Yang, Seung-Man; Yi, Gi-Ra

    2010-02-21

    The dynamic breakup of emulsion droplets was demonstrated in double-layered microfluidic devices equipped with designed pneumatic actuators. Uniform emulsion droplets, produced by shearing at a T-junction, were broken into smaller droplets when they passed downstream through constrictions formed by a pneumatically actuated valve in the upper control layer. The valve-assisted droplet breakup was significantly affected by the shape and layout of the control valves on the emulsion flow channel. Interestingly, by actuating the pneumatic valve immediately above the T-junction, the sizes of the emulsion droplets were controlled precisely in a programmatic manner that produced arrays of uniform emulsion droplets in various sizes and dynamic patterns.

  14. Transcatheter aortic valve implantation in bicuspid anatomy: procedural results with two different types of valves.

    Science.gov (United States)

    Presbitero, Patrizia; Iannetta, Loredana; Pagnotta, Paolo; Reimers, Bernhard; Rossi, Marco L; Zavalloni Parenti, Dennis; Bianchi, Giovanni; Bedogni, Francesco

    2018-04-01

    It is well known that bicuspid valve stenosis can be treated with transcatheter aortic valve implantation (TAVI) even if specific issues can cause problems: dilatation of ascending aorta, possible aorthopathy, eccentricity of the valve and calcium distribution in leaflets and in commissures. We classified Bicuspid aortic valve (BAV) in type 0 (2 cusps and no raphe), and type 1 (2 cusps and one or more raphes). The aim of the present study was to report the results of two types of valve (CoreValve from 2009 to 2016 and Lotus valve from 2014 to 2017) in a consecutive series of BAV patients treated in 2 Italian centers. A total of 30 patients with BAV underwent TAVI from September 2009 to March 2017. Mean age was 78±8 years, 54.5% were males and 7.4% had peripheral vasculopathy, 6.5% previous stroke or TIA, 15.6% previous PCI and 9.4% previous coronary artery bypass grafting. Ten patients (30.3%) had a type 1; mean aortic valvular gradient was 57.7±17.7 mmHg; aortic valvular area was 0.7±0.2 mm2, left ventricular ejection fraction was 51.4±10.0% and ascending aorta was 41.0±5.6 mm. Among these 30 patients, 16 of them (group 1) undergone CoreValve implantation and 14 (group 2) undergone Lotus valve implantation. Patients in the first group had a higher Logistic Euroscore (P<0.001) and higher AVA (P=0.026) and valve area CT (P=0.003). Device size in group1 was more often bigger than in group 2 (P<0.001) and postdilatation was never used in the last group. Group 1 had a significant more frequent aortic regurgitation ≥2 assessed with angiography (28.6% vs. 0%; P=0.05). A non-statistically significant higher rate of second valve implantation (6.2% vs. 0%; P=1.00) was also observed. New permanent pacemaker implantation (40.0% vs. 35.7%; P=0.812) was equal in both valves. Postprocedural aortic regurgitation is still an issue in BAV undergone TAVI when: 1) the annulus is big; 2) when we are using self-expandable valves; and 3) in type 0 valves. Lotus valve, with a

  15. Transcatheter mitral valve repair in osteogenesis imperfecta associated mitral valve regurgitation.

    Science.gov (United States)

    van der Kley, Frank; Delgado, Victoria; Ajmone Marsan, Nina; Schalij, Martin J

    2014-08-01

    Osteogenesis imperfecta is associated with increased prevalence of significant mitral valve regurgitation. Surgical mitral valve repair and replacement are feasible but are associated with increased risk of bleeding and dehiscence of implanted valves may occur more frequently. The present case report describes the outcomes of transcatheter mitral valve repair in a patient with osteogenesis imperfecta. A 60 year-old patient with osteogenesis imperfecta and associated symptomatic moderate to severe mitral regurgitation underwent transthoracic echocardiography which showed a nondilated left ventricle with preserved systolic function and moderate to severe mitral regurgitation. On transoesophageal echocardiography the regurgitant jet originated between the anterolateral scallops of the anterior and posterior leaflets (A1-P1). Considering the comorbidities associated with osteogenesis imperfecta the patient was accepted for transcatheter mitral valve repair using the Mitraclip device (Abbott vascular, Menlo, CA). Under fluoroscopy and 3D transoesophageal echocardiography guidance, a Mitraclip device was implanted between the anterolateral and central scallops with significant reduction of mitral regurgitation. The postoperative evolution was uneventful. At one month follow-up, transthoracic echocardiography showed a stable position of the Mitraclip device with no mitral regurgitation. Transcatheter mitral valve repair is feasible and safe in patients with osteogenesis imperfecta and associated symptomatic significant mitral regurgitation. Copyright © 2014 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  16. Next generation spin torque memories

    CERN Document Server

    Kaushik, Brajesh Kumar; Kulkarni, Anant Aravind; Prajapati, Sanjay

    2017-01-01

    This book offers detailed insights into spin transfer torque (STT) based devices, circuits and memories. Starting with the basic concepts and device physics, it then addresses advanced STT applications and discusses the outlook for this cutting-edge technology. It also describes the architectures, performance parameters, fabrication, and the prospects of STT based devices. Further, moving from the device to the system perspective it presents a non-volatile computing architecture composed of STT based magneto-resistive and all-spin logic devices and demonstrates that efficient STT based magneto-resistive and all-spin logic devices can turn the dream of instant on/off non-volatile computing into reality.

  17. The External Nasal Valve.

    Science.gov (United States)

    Hamilton, Grant S

    2017-05-01

    The external nasal valve is a complex entity comprised of multiple structures and tissue types. As such, there is no single operation that can address all problems of the external valve. This article reviews the relevant anatomy, pathologic conditions, and treatments for external nasal valve dysfunction, including a detailed review of the nasal muscles and their contribution to external nasal valve patency. Surgical and nonsurgical options for treatment and the evidence supporting the importance of proper external nasal valve function on quality-of-life measures are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Tricuspid valve interventions in 2015.

    Science.gov (United States)

    Lauten, Alexander; Figulla, Hans R

    2015-09-01

    When the incidence of tricuspid regurgitation is taken into account, along with its impact on functional status and long-term survival, tricuspid regurgitation is currently undertreated. Today, though transcatheter therapy of aortic, mitral- and pulmonic valve disease is well established, interventional treatment of tricuspid valve disease is still in its early stages. Currently, various promising devices are in different stages of development, but it is still too early to clarify which interventional approach in the future might result in functional and clinical success. Similarly, it is yet unclear which type of patient subpopulation will benefit from this type of treatment. Seen in the current context of the overall evolution in the adoption of catheter-based treatments for other types of structural heart disease, the need for and interest in effective interventional treatments for tricuspid regurgitation is growing.

  19. An active magnetic regenerator device

    DEFF Research Database (Denmark)

    2015-01-01

    A rotating active magnetic regenerator (AMR) device comprising two or more regenerator beds, a magnet arrangement and a valve arrangement. The valve arrangement comprises a plurality of valve elements arranged substantially immovably with respect to the regenerator beds along a rotational direction....... A cam surface is arranged substantially immovably with respect to the magnet arrangement along the rotational direction, and comprises a plurality of cam elements arranged to cooperate with the valve elements in order to control opening degrees of the valve elements, in accordance with a relative...... position of the cam elements and the valve elements. Thereby the opening degree of each valve element is controlled in accordance with a relative angular position of the regenerator beds and the magnet arrangement....

  20. Nuclear spins in nanostructures

    International Nuclear Information System (INIS)

    Coish, W.A.; Baugh, J.

    2009-01-01

    We review recent theoretical and experimental advances toward understanding the effects of nuclear spins in confined nanostructures. These systems, which include quantum dots, defect centers, and molecular magnets, are particularly interesting for their importance in quantum information processing devices, which aim to coherently manipulate single electron spins with high precision. On one hand, interactions between confined electron spins and a nuclear-spin environment provide a decoherence source for the electron, and on the other, a strong effective magnetic field that can be used to execute local coherent rotations. A great deal of effort has been directed toward understanding the details of the relevant decoherence processes and to find new methods to manipulate the coupled electron-nuclear system. A sequence of spectacular new results have provided understanding of spin-bath decoherence, nuclear spin diffusion, and preparation of the nuclear state through dynamic polarization and more general manipulation of the nuclear-spin density matrix through ''state narrowing.'' These results demonstrate the richness of this physical system and promise many new mysteries for the future. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  1. Selective patient experience with the Blom-Singer Dual Valve voice prosthesis.

    Science.gov (United States)

    Brownlee, Ben; Ahmad, Saniya; Grammer, Tracy; Krempl, Greg

    2018-02-01

    This study compares the overall durability, phonation effort, and speech quality achieved by the Blom-Singer Dual Valve prosthesis to the same characteristics achieved by the single-valve prosthesis used in a select population of total laryngectomy patients who have demonstrated single-valve prosthesis failure within 3 months of placement. Prospective phase IV study. Fourteen patients who had previously experienced early valve failure using a single-valve prosthesis had a Dual Valve placed by a speech language pathologist. A total of seventeen Dual Valves were inserted during routine clinical visits for valve replacement. Time intervals from insertion to replacement of the Dual Valve, as well as the average lifespan of patients' three previous single valves were collected. Subjective, categorical responses to speech quality and phonation effort for the Dual Valve compared to the single valve were collected on a questionnaire upon failure of the device. The mean duration of the single valve was 60 days, with a median of 51 days, whereas the mean duration of the Dual Valve was 164 days, with a median duration of 84 days. Both sets of data were statistically significant, with a P value of .0131. Valve life was increased in 86% of patients, with 43% experiencing greater than 150 days improvement in valve duration when using the Dual Valve. Phonation effort was increased in 14% of patients, and speech quality was not significantly affected in any patients. In this select population, the Dual Valve offers improved durability over the single valve without sacrificing speech quality, making it a preferred prosthesis option for patients experiencing single-valve failure in less than 3 months. 4. Laryngoscope, 128:422-426, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  2. Spin gating electrical current

    Science.gov (United States)

    Ciccarelli, C.; Zârbo, L. P.; Irvine, A. C.; Campion, R. P.; Gallagher, B. L.; Wunderlich, J.; Jungwirth, T.; Ferguson, A. J.

    2012-09-01

    The level of the chemical potential is a fundamental parameter of the electronic structure of a physical system, which consequently plays an important role in defining the properties of active electrical devices. We directly measure the chemical potential shift in the relativistic band structure of the ferromagnetic semiconductor (Ga,Mn)As, controlled by changes in its magnetic order parameter. Our device comprises a non-magnetic aluminum single electron channel capacitively coupled to the (Ga,Mn)As gate electrode. The chemical potential shifts of the gate are directly read out from the shifts in the Coulomb blockade oscillations of the single electron transistor. The experiments introduce a concept of spin gating electrical current. In our spin transistor spin manipulation is completely removed from the electrical current carrying channel.

  3. Durability Tests of Ball Valve Prototype with Flowmeter Operation

    Science.gov (United States)

    Rogula, J.; Romanik, G.

    2018-02-01

    The results of the investigation of the prototypical ball valve are presented in this article. The innovation of the tested valve is a ball with a built-in measuring orifice. The valve has been subjected to durability tests. Leakage under three temperatures: ambient, -30°C and +100°C was analyzed. Sealing elements of the valve were tested for roughness and deviation of shape before and after the cycles of operation. Ball valve operation means cycles of open/close. It was planned to perform 1000 cycles at each temperature condition accordingly. Tests of the valve were performed under gas pressure equal to 10 MPa. The research was carried out under the Operational Program "Intelligent Development" (POIR 01.01.01-00-0013 / 15 "Development of devices for measurement of media flow on industrial trunk-lines".

  4. Spin-dependent transport and current-induced spin transfer torque in a disordered zigzag silicene nanoribbon

    International Nuclear Information System (INIS)

    Zhou, Benliang; Zhou, Benhu; Liu, Guang; Guo, Dan; Zhou, Guanghui

    2016-01-01

    We study theoretically the spin-dependent transport and the current-induced spin transfer torque (STT) for a zigzag silicene nanoribbon (ZSiNR) with Anderson-type disorders between two ferromagnetic electrodes. By using the nonequilibrium Green's function method, it is predicted that the transport property and STT through the junction depend sensitively on the disorder, especially around the Dirac point. As a result, the conductance decreases and increases for two electrode in parallel and antiparallel configurations, respectively. Due to the disorder, the magnetoresistance (MR) decreases accordingly even within the energy regime for the perfect plateau without disorders. In addition, the conductance versus the relative angle of the magnetization shows a cosine-like behavior. The STT per unit of the bias voltage versus the angle of the magnetization exhibits a sine-like behavior, and versus the Fermi energy is antisymmetrical to the Dirac point and exhibits sharp peaks. Furthermore, the peaks of the STT are suppressed much as the disorder strength increases, especially around the Dirac point. The results obtained here may provide a valuable suggestion to experimentally design spin valve devices based on ZSiNR.

  5. Quantum spin transport in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Christoph

    2012-05-15

    In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.

  6. Quantum spin transport in semiconductor nanostructures

    International Nuclear Information System (INIS)

    Schindler, Christoph

    2012-01-01

    In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.

  7. First results with the Blom-Singer adjustable tracheostoma valve.

    Science.gov (United States)

    Grolman, W; Schouwenburg, P F; de Boer, M F; Knegt, P P; Spoelstra, H A; Meeuwis, C A

    1995-01-01

    The Blom-Singer adjustable tracheostoma valve (ATV) is a new tracheostoma valve, introduced in 1992 to improve voice rehabilitation after total laryngectomy. Little research has been done to evaluate the benefits of this valve. Our study evaluates the advantages and disadvantages of using this device. Eighteen laryngectomized patients with a low-resistance Provox voice prosthesis received an ATV, using minimal selection criteria. The patients are evaluated according to a specific protocol. The effectiveness of the humidifilter, valve and fixation method and the benefits are evaluated. Approximately 66% of the 18 patients are still using the ATV. We report the differences between the current users and the dropout group. Patient factors are discussed that seem to have an impact on the effective use of the valve, such as age and mucus production. We consider the ATV to be a valuable device for fingerless speech in the laryngectomized patient.

  8. Aortic or Mitral Valve Replacement With the Biocor and Biocor Supra

    Science.gov (United States)

    2017-04-26

    Aortic Valve Insufficiency; Aortic Valve Regurgitation; Aortic Valve Stenosis; Aortic Valve Incompetence; Mitral Valve Insufficiency; Mitral Valve Regurgitation; Mitral Valve Stenosis; Mitral Valve Incompetence

  9. Experimental study of asymmetric heart valve prototype

    Science.gov (United States)

    Vukicevic, M.; Fortini, S.; Querzoli, G.; Cenedese, A.; Pedrizzetti, G.

    2011-11-01

    The mechanical heart valves (MHVs) are extremely important medical devices, commonly used for diseased heart valves replacement. Despite the long term of use and constant design refinement, the MHVs are very far from ideal and their performance is very diverse from that of the native ones. It has been approved that small variations in geometry of valvular leaflets influence the significant change in the intraventricular vortical flow, known as one of the most important factors for the overall functionality of the heart. We have experimentally examined the home-made heart valve prototypes, exclusively modeled for the mitral valve replacement. The performance and energetic properties of the prototypes have been compared with those in the presence of standard MHVs. The analysis was based on the testing of intraventricular fluid dynamics, usually missing criteria for the quality of the valve performance. It has been shown that the asymmetric prototype, with unequal leaflets and D-shaped orifice produces flow patterns and energetic properties close to those found in the healthy subjects. Thus, the break of symmetry in the standard bi-leaflet MHV prosthesis, at least from the fluid dynamics point of view, is worthwhile to be considered for the design of MHVs for the mitral valve replacement.

  10. Antithrombotic Treatment after Transcatheter Heart Valves Implant.

    Science.gov (United States)

    Sorrentino, Sabato; Giustino, Gennaro; Moalem, Kamilia; Indolfi, Ciro; Mehran, Roxana; Dangas, George D

    2018-02-01

    Transcatheter heart valve replacement technology was introduced as alternative to surgery for the growing high-risk profile population. Developed first, aortic valve replacement (TAVR) became a standard of care for patients with severe aortic stenosis at high operative risk, with a potential future use also for low-risk subjects. In the last decade, a multitude of transcatheter mitral valve replacement (TMVR) devices have been developed for the treatment of severe mitral regurgitation, with encouraging results coming from first-in-man and feasibility studies. As for biological surgical-type valves, transcatheter implanted valves still preserve the risk of thrombosis and embolic events and anticoagulation- or antiplatelet-based strategies are the most widely used options. Unfortunately, these last remain recommended on the basis of empirical or not widely validated evidence. Therefore, given the exponential rise of TAVR and TMVR procedures, it is important to identify the optimal antithrombotic strategies that best fit the risk of thromboembolic and bleeding events. Hereafter, this review evaluates the current guidelines, trials, and observational data discussing antithrombotic strategy after transcatheter aortic or mitral valve replacement. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. Spin transport in epitaxial graphene

    Science.gov (United States)

    Tbd, -

    2014-03-01

    Spintronics is a paradigm focusing on spin as the information vector in fast and ultra-low-power non volatile devices such as the new STT-MRAM. Beyond its widely distributed application in data storage it aims at providing more complex architectures and a powerful beyond CMOS solution for information processing. The recent discovery of graphene has opened novel exciting opportunities in terms of functionalities and performances for spintronics devices. We will present experimental results allowing us to assess the potential of graphene for spintronics. We will show that unprecedented highly efficient spin information transport can occur in epitaxial graphene leading to large spin signals and macroscopic spin diffusion lengths (~ 100 microns), a key enabler for the advent of envisioned beyond-CMOS spin-based logic architectures. We will also show that how the device behavior is well explained within the framework of the Valet-Fert drift-diffusion equations. Furthermore, we will show that a thin graphene passivation layer can prevent the oxidation of a ferromagnet, enabling its use in novel humide/ambient low-cost processes for spintronics devices, while keeping its highly surface sensitive spin current polarizer/analyzer behavior and adding new enhanced spin filtering property. These different experiments unveil promising uses of graphene for spintronics.

  12. Self-activated device

    International Nuclear Information System (INIS)

    Hecht, S.L.

    1982-01-01

    A self-actuated device is described which is of particular use as a valve or an orifice for nuclear reactor fuel and blanket assemblies. A gas, produced by a neutron irradiation-induced nuclear reaction, gradually accumulates as a function of neutron fluence. The gas pressure increase occasioned by such accumulation of gas is used to actuate the device. (author)

  13. Intelligent Flow Control Valve

    Science.gov (United States)

    Kelley, Anthony R (Inventor)

    2015-01-01

    The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.

  14. Modeling the Mitral Valve

    Science.gov (United States)

    Kaiser, Alexander

    2016-11-01

    The mitral valve is one of four valves in the human heart. The valve opens to allow oxygenated blood from the lungs to fill the left ventricle, and closes when the ventricle contracts to prevent backflow. The valve is composed of two fibrous leaflets which hang from a ring. These leaflets are supported like a parachute by a system of strings called chordae tendineae. In this talk, I will describe a new computational model of the mitral valve. To generate geometry, general information comes from classical anatomy texts and the author's dissection of porcine hearts. An MRI image of a human heart is used to locate the tips of the papillary muscles, which anchor the chordae tendineae, in relation to the mitral ring. The initial configurations of the valve leaflets and chordae tendineae are found by solving solving an equilibrium elasticity problem. The valve is then simulated in fluid (blood) using the immersed boundary method over multiple heart cycles in a model valve tester. We aim to identify features and mechanisms that influence or control valve function. Support from National Science Foundation, Graduate Research Fellowship Program, Grant DGE 1342536.

  15. Prosthetic heart valves.

    Science.gov (United States)

    Chambers, J

    2014-10-01

    Heart valve replacements improve symptoms and life expectancy but may have potential problems. Biological replacements have limited durability but do not require anticoagulation and are usually used for the relatively elderly. Mechanical valves have a virtually zero primary failure rate but require anticoagulation and are usually used for the relatively younger patient. Transcatheter valves are used for patients in whom conventional surgery is not technically feasible or who have significant comorbidities. This article discusses the management of patients after valve replacement and discusses future developments. © 2014 John Wiley & Sons Ltd.

  16. Biological heart valves.

    Science.gov (United States)

    Ciubotaru, Anatol; Cebotari, Serghei; Tudorache, Igor; Beckmann, Erik; Hilfiker, Andres; Haverich, Axel

    2013-10-01

    Cardiac valvular pathologies are often caused by rheumatic fever in young adults, atherosclerosis in elderly patients, or by congenital malformation of the heart in children, in effect affecting almost all population ages. Almost 300,000 heart valve operations are performed worldwide annually. Tissue valve prostheses have certain advantages over mechanical valves such as biocompatibility, more physiological hemodynamics, and no need for life-long systemic anticoagulation. However, the major disadvantage of biological valves is related to their durability. Nevertheless, during the last decade, the number of patients undergoing biological, rather than mechanical, valve replacement has increased from half to more than three-quarters for biological implants. Continuous improvement in valve fabrication includes development of new models and shapes, novel methods of tissue treatment, and preservation and implantation techniques. These efforts are focused not only on the improvement of morbidity and mortality of the patients but also on the improvement of their quality of life. Heart valve tissue engineering aims to provide durable, "autologous" valve prostheses. These valves demonstrate adaptive growth, which may avoid the need of repeated operations in growing patients.

  17. Options for Heart Valve Replacement

    Science.gov (United States)

    ... are the most commonly replaced valves. Pulmonary and tricuspid valve replacements are fairly uncommon in adults. Replacing a ... Problems and Causes • Risks, Signs and Symptoms • Accurate Diagnosis • Treatment Options ... Repair Valve Replacement - Ross Procedure - Newer Surgery Options - ...

  18. Automated control of the laser welding process of heart valve scaffolds

    Directory of Open Access Journals (Sweden)

    Weber Moritz

    2016-09-01

    Full Text Available Using the electrospinning process the geometry of a heart valve is not replicable by just one manufacturing process. To produce heart valve scaffolds the heart valve leaflets and the vessel have to be produced in separated spinning processes. For the final product of a heart valve they have to be mated afterwards. In this work an already existing three-axes laser was enhanced to laser weld those scaffolds. The automation control software is based on the robot operating system (ROS. The mechatronically control is done by an Arduino Mega. A graphical user interface (GUI is written with Python and Kivy.

  19. Progressive breathlessness post mitral valve replacement

    Directory of Open Access Journals (Sweden)

    Conor McQuillan

    2016-12-01

    Full Text Available Paravalvular leak occurs in 1–5% patients following surgical valve replacement and is associated with complications including haemolysis, heart failure and endocarditis. Re-do surgery is difficult with mortality rates approaching 16%. Percutaneous closure of mitral valve leaks with occluder devices is a viable alternative to repeat sternotomy; however, clinicians should be aware of contra-indications which include active endocarditis. Management of paravalvular leak is complex and success requires multi-disciplinary approach with cardiothoracic surgeons, clinical, imaging and interventional cardiologists.

  20. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2017-01-01

    Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.

  1. Quantum size effects on spin-transfer torque in a double barrier magnetic tunnel junction with a nonmagnetic-metal (semiconductor) spacer

    International Nuclear Information System (INIS)

    Daqiq, Reza; Ghobadi, Nader

    2016-01-01

    We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching. - Highlights: • The quantum size effects are studied in double barrier magnetic tunnel junctions. • Spin torque (ST) components oscillate for increasing of middle spacer thicknesses. • Due to the resonant tunneling in the quantum well, oscillations have appeared. • By replacement a metal spacer with a semiconductor (ZnO) ST has increased. • The ST components vs. bias show gradually decreasing unlike spin valves or MTJs.

  2. Spin Electronics

    Science.gov (United States)

    2003-08-01

    applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a...physical phenomena in II-VI and III-V semiconductors. In II-VI systems, the Mn2+ ions act to boost the electron spin precession up to terahertz ...conductors, proximity effect between ferromagnets and superconductors , and the effects of spin injection on the physical properties of the

  3. Spin doctoring

    OpenAIRE

    Vozková, Markéta

    2011-01-01

    1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...

  4. Reduction of ballistic spin scattering in a spin-FET using stray electric fields

    International Nuclear Information System (INIS)

    Nemnes, G A; Manolescu, A; Gudmundsson, V

    2012-01-01

    The quasi-bound states which appear as a consequence of the Rashba spin-orbit (SO) coupling, introduce a strongly irregular behavior of the spin-FET conductance at large Rashba parameter. Moreover, the presence of the bulk inversion asymmetry, i.e. the Dresselhaus SO coupling, may compromise the spin-valve effect even at small values of the Rashba parameter. However, by introducing stray electric fields in addition to the SO couplings, we show that the effect of the SO induced quasi-bound states can be tuned. The oscillations of the spin-resolved conductance become smoother and the control of the spin-FET characteristics becomes possible. For the calculations we employ a multi-channel scattering formalism, based on the R-matrix method extended to spin transport, in the presence of Rashba and Dresselhaus SO couplings.

  5. Interfacial spin-orbit splitting and current-driven spin torque in anisotropic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2011-05-17

    Spin transport in magnetic tunnel junctions comprising a single magnetic layer in the presence of interfacial spin-orbit interaction (SOI) is investigated theoretically. Due to the presence of interfacial SOI, a current-driven spin torque can be generated at the second order in SOI, even in the absence of an external spin polarizer. This torque possesses two components, one in plane and one perpendicular to the plane of rotation, that can induce either current-driven magnetization switching from an in-plane to out-of-plane configuration or magnetization precessions, similar to spin transfer torque in spin valves. Consequently, it appears that it is possible to control the magnetization steady state and dynamics by either varying the bias voltage or electrically modifying the SOI at the interface.

  6. Transcatheter treatment of tricuspid regurgitation by caval valve implantation--experimental evaluation of decellularized tissue valves in central venous position.

    Science.gov (United States)

    Lauten, Alexander; Laube, Adrian; Schubert, Harald; Bischoff, Sabine; Nietzsche, Sandor; Horstkötter, Kim; Poudel-Bochmann, Bhawana; Franz, Marcus; Lichtenberg, Artur; Figulla, Hans R; Akhyari, Payam

    2015-01-01

    Caval valve implantation has been suggested for transcatheter treatment of severe tricuspid regurgitation (TR). Combining the interventional technique with the promising surgical experience with decellularized valves, we sought to evaluate the functional and structural outcome of decellularized pericardial tissue valves (dTVs) in the low-pressure venous circulation in a chronic model of TR. Sixteen pericardial tissue valves were heterotopically implanted in the inferior and superior vena cava in a sheep model (54-98 kg; median 74.5 kg, n = 8) of severe TR. The devices were assembled using self-expanding nitinol stents and bovine pericardia decellularized by a detergent-based protocol (group dTV; n = 8). Glutaraldehyde-fixed pericardial tissue valves served as control (GaTV, n = 8). After 6 months, device function and structural maturation were analyzed using echocardiographic, histologic, immunohistologic, and electron microscopic approaches. After implantation, cardiac output increased significantly from 3.7 ± 1.1 l/min to 4.8 ± 1.1 l/min (P < 0.05) and competent valve function was verified by angiography. At 6 months, angiographic and echocardiographic evaluation revealed moderate to severe regurgitation in all GaTV. In contrast, five of the eight dTVs functioned well with only minor regurgitation. In these animals, autopsy revealed preserved valve structure with tender leaflets without signs of thrombosis or calcification. Conversely, GaTV showed severe degeneration with large calcification areas. Microscopic and histologic analysis confirmed endothelial repopulation in both valve types. However, additional interstitial reseeding was observed in decellularized valves. In the venous circulation in severe TR, decellularized valves show superior functional performance compared to Ga-fixed tissue valves. Macroscopic and microscopic analyses suggest preserved structural integrity and advanced endothelial and interstitial repopulation with

  7. Spin Currents and Spin Orbit Torques in Ferromagnets and Antiferromagnets

    Science.gov (United States)

    Hung, Yu-Ming

    This thesis focuses on the interactions of spin currents and materials with magnetic order, e.g., ferromagnetic and antiferromagnetic thin films. The spin current is generated in two ways. First by spin-polarized conduction-electrons associated with the spin Hall effect in heavy metals (HMs) and, second, by exciting spin-waves in ferrimagnetic insulators using a microwave frequency magnetic field. A conduction-electron spin current can be generated by spin-orbit coupling in a heavy non-magnetic metal and transfer its spin angular momentum to a ferromagnet, providing a means of reversing the magnetization of perpendicularly magnetized ultrathin films with currents that flow in the plane of the layers. The torques on the magnetization are known as spin-orbit torques (SOT). In the first part of my thesis project I investigated and contrasted the quasistatic (slowly swept current) and pulsed current-induced switching characteristics of micrometer scale Hall crosses consisting of very thin (thesis project studies and considers applications of SOT-driven domain wall (DW) motion in a perpendicularly magnetized ultrathin ferromagnet sandwiched between a heavy metal and an oxide. My experiment results demonstrate that the DW motion can be explained by a combination of the spin Hall effect, which generates a SOT, and Dzyaloshinskii-Moriya interaction, which stabilizes chiral Neel-type DW. Based on SOT-driven DW motion and magnetic coupling between electrically isolated ferromagnetic elements, I proposed a new type of spin logic devices. I then demonstrate the device operation by using micromagnetic modeling which involves studying the magnetic coupling induced by fringe fields from chiral DWs in perpendicularly magnetized nanowires. The last part of my thesis project reports spin transport and spin-Hall magnetoresistance (SMR) in yttrium iron garnet Y3Fe5O 12 (YIG)/NiO/Pt trilayers with varied NiO thickness. To characterize the spin transport through NiO we excite

  8. Mitral Valve Disease

    Science.gov (United States)

    ... clots, but they also are less durable than mechanical valves and may need to be replaced in the future. Like mitral valve repair, replacement can be done minimally invasively or with traditional open heart surgery. Your medical team will discuss the advantages ...

  9. Roles of Surface and Interface Spins in Exchange Coupled Nanostructures

    Science.gov (United States)

    Phan, Manh-Huong

    Exchange bias (EB) in magnetic nanostructures has remained a topic of global interest because of its potential use in spin valves, MRAM circuits, magnetic tunnel junctions, and spintronic devices. The exploration of EB on the nanoscale provides a novel approach to overcoming the superparamagnetic limit and increasing the thermoremanence of magnetic nanoparticles, a critical bottleneck for magnetic data storage applications. Recent advances in chemical synthesis have given us a unique opportunity to explore the EB in a variety of nanoparticle systems ranging from core/shell nanoparticles of Fe/γFe2O3, Co/CoO,and FeO/Fe3O4 to hollow nanoparticles of γFe2O3 and hybrid composite nanoparticles of Au/Fe3O4. Our studies have addressed the following fundamental and important questions: (i) Can one decouple collective contributions of the interface and surface spins to the EB in a core/shell nanoparticle system? (ii) Can the dynamic and static response of the core and shell be identified separately? (iii) Can one tune ``minor loop'' to ``exchange bias'' effects in magnetic hollow nanoparticles by varying the number of surface spins? (iv) Can one decouple collective contributions of the inner and outer surface spins to the EB in a hollow nanoparticle system? (v) Can EB be induced in a magnetic nanoparticle by forming its interface with a non-magnetic metal? Such knowledge is essential to tailor EB in magnetic nanostructures for spintronics applications. In this talk, we will discuss the aforementioned findings in terms of our experimental and atomistic Monte Carlo studies. The work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-07ER46438.

  10. Compact UHV valve with field replaceable windows

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.D. (Brookhaven National Lab., Upton, NY (United States)); Freeman, J. (VAT, Inc., Woburn, MA (United States)); Powell, F. (Luxel, Inc., Friday Harbor, WA (United States))

    1991-01-01

    There are many applications in synchrotron radiation research where window valves can be usefully employed. Examples include gas cells for monochromator calibration, filters for high order light rejection, and as vacuum isolation elements between machine and experimental vacua. Often these devices are fairly expensive, and have only fixed (ie non-removable) windows. The development of a new type of seal technology by VAT for their series 01 valves provides a gate surface which is free from obstructions due to internal mechanical elements. This feature allows a threaded recess to be machined into the gate to receive a removable window frame which can carry standard size Luxel thin film windows. The combination of these features results in a DN 40 (2.75in. conflat flange) valve which provides a clear aperture of 21mm diameter for the window material. 8 refs., 2 figs.

  11. Compact UHV valve with field replaceable windows

    International Nuclear Information System (INIS)

    Johnson, E.D.; Freeman, J.; Powell, F.

    1991-01-01

    There are many applications in synchrotron radiation research where window valves can be usefully employed. Examples include gas cells for monochromator calibration, filters for high order light rejection, and as vacuum isolation elements between machine and experimental vacua. Often these devices are fairly expensive, and have only fixed (ie non-removable) windows. The development of a new type of seal technology by VAT for their series 01 valves provides a gate surface which is free from obstructions due to internal mechanical elements. This feature allows a threaded recess to be machined into the gate to receive a removable window frame which can carry standard size Luxel thin film windows. The combination of these features results in a DN 40 (2.75in. conflat flange) valve which provides a clear aperture of 21mm diameter for the window material. 8 refs., 2 figs

  12. ULTRA HIGH VACUUM VALVE

    Science.gov (United States)

    Fry, W.A.

    1962-05-29

    A valve for high vacuum applications such as the CStellarator where chamber pressures as low as 2 x 10/sup -10/ mm Hg are necessary is designed with a line-of-sight path through the valve for visual inspection of the contents of reactants in such chambers. The valve comprises a turnable resilient metal ball having an aperture therethrough, means for selectively turning the ball to rotate the axis of its line-of-sight path, and soft, deformable opposing orifices that are movable relatively toward said ball to seal with opposite ball surfaces upon said movement of said axis of said line-of-sight path. The valve also includes a bellows seal connected between said orifices and internal actuating means that eliminates the requirement for gasketed turnable valve closing stems. (AEC)

  13. Multiple-port valve

    International Nuclear Information System (INIS)

    Doody, T.J.

    1978-01-01

    A multiple-port valve assembly is designed to direct flow from a primary conduit into any one of a plurality of secondary conduits as well as to direct a reverse flow. The valve includes two mating hemispherical sockets that rotatably receive a spherical valve plug. The valve plug is attached to the primary conduit and includes diverging passageways from that conduit to a plurality of ports. Each of the ports is alignable with one or more of a plurality of secondary conduits fitting into one of the hemispherical sockets. The other hemispherical socket includes a slot for the primary conduit such that the conduit's motion along that slot with rotation of the spherical plug about various axes will position the valve-plug ports in respect to the secondary conduits

  14. Spin Transport in Nondegenerate Si with a Spin MOSFET Structure at Room Temperature

    Science.gov (United States)

    Sasaki, Tomoyuki; Ando, Yuichiro; Kameno, Makoto; Tahara, Takayuki; Koike, Hayato; Oikawa, Tohru; Suzuki, Toshio; Shiraishi, Masashi

    2014-09-01

    Spin transport in nondegenerate semiconductors is expected to pave the way to the creation of spin transistors, spin logic devices, and reconfigurable logic circuits, because room-temperature (RT) spin transport in Si has already been achieved. However, RT spin transport has been limited to degenerate Si, which makes it difficult to produce spin-based signals because a gate electric field cannot be used to manipulate such signals. Here, we report the experimental demonstration of spin transport in nondegenerate Si with a spin metal-oxide-semiconductor field-effect transistor (MOSFET) structure. We successfully observe the modulation of the Hanle-type spin-precession signals, which is a characteristic spin dynamics in nondegenerate semiconductors. We obtain long spin transport of more than 20 μm and spin rotation greater than 4π at RT. We also observe gate-induced modulation of spin-transport signals at RT. The modulation of the spin diffusion length as a function of a gate voltage is successfully observed, which we attribute to the Elliott-Yafet spin relaxation mechanism. These achievements are expected to lead to the creation of practical Si-based spin MOSFETs.

  15. System for remotely servicing a top loading captive ball valve

    International Nuclear Information System (INIS)

    Berry, S.M.; Porter, M.L.

    1996-01-01

    An attachment for facilitating servicing of a valve is disclosed including: an assembly composed of a valve seat defining a flow path, a flow control member movable relative to the valve seat for blocking or unblocking the valve seat, and a control device including a stem coupled to the flow control member and operable for moving the flow control member relative to the valve se housing for receiving the assembly, the housing having an opening via which the assembly can be removed from, and installed in, the housing, and the housing having a plurality of threaded studs which surround the opening and project away from the housing; a valve housing cover for closing and sealing the opening in the housing, the cover having a first bore for passage of the stem of the control device when the assembly is installed in the housing and a plurality of second bores each located for passage of a respective stud when the cover closes the opening in the housing. A plurality of threaded nuts are engageable with the studs for securing the cover to the housing when the cover closes the opening in the housing, wherein the attachment comprises: a plurality of nut guide devices removable from the housing and each operatively associated with a respective stud for retaining a respective nut and guiding the respective nut into alignment with the respective stud to enable the respective nut to be rotated into engagement with the respective stud; and aligning the nut guide devices with the studs. 7 figs

  16. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  17. Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures

    Science.gov (United States)

    Savero Torres, W.; Sierra, J. F.; Benítez, L. A.; Bonell, F.; Costache, M. V.; Valenzuela, S. O.

    2017-12-01

    Spin Hall effects have surged as promising phenomena for spin logics operations without ferromagnets. However, the magnitude of the detected electric signals at room temperature in metallic systems has been so far underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the signal in monolayer graphene/Pt devices when compared to their fully metallic counterparts. The enhancement stems in part from efficient spin injection and the large spin resistance of graphene but we also observe 100% spin absorption in Pt and find an unusually large effective spin Hall angle of up to 0.15. The large spin-to-charge conversion allows us to characterise spin precession in graphene under the presence of a magnetic field. Furthermore, by developing an analytical model based on the 1D diffusive spin-transport, we demonstrate that the effective spin-relaxation time in graphene can be accurately determined using the (inverse) spin Hall effect as a means of detection. This is a necessary step to gather full understanding of the consequences of spin absorption in spin Hall devices, which is known to suppress effective spin lifetimes in both metallic and graphene systems.

  18. Spintronics in nanoscale devices

    CERN Document Server

    Hedin, Eric R

    2013-01-01

    By exploiting the novel properties of quantum dots and nanoscale Aharonov-Bohm rings together with the electronic and magnetic properties of various semiconductor materials and graphene, researchers have conducted numerous theoretical and computational modeling studies and experimental tests that show promising behavior for spintronics applications. Spin polarization and spin-filtering capabilities and the ability to manipulate the electron spin state through external magnetic or electric fields have demonstrated the promise of workable nanoscale devices for computing and memory applications.

  19. Spin-torque switching of a nano-magnet using giant spin hall effect

    Directory of Open Access Journals (Sweden)

    Ashish V. Penumatcha

    2015-10-01

    Full Text Available The Giant Spin Hall Effect(GSHE in metals with high spin-orbit coupling is an efficient way to convert charge currents to spin currents, making it well-suited for writing information into magnets in non-volatile magnetic memory as well as spin-logic devices. We demonstrate the switching of an in-plane CoFeB magnet using a combination of GSHE and an external magnetic field. The magnetic field dependence of the critical current is used to estimate the spin hall angle with the help of a thermal activation model for spin-transfer torque switching of a nanomagnet.

  20. Technology Reinvestment Program/Advanced ``Zero Emission'' Control Valve (Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    J. Napoleon

    1998-12-01

    The objectives of this effort are to determine, develop and demonstrate the feasibility of significantly reducing the cost and expanding the applications for a family of Advanced Zero Emissions Control Valves that meets the fugitive emissions requirements of the 1990 Amendments to the Clean Air Act. This program is a direct technology spin-off from the valve technology that is critical to the US Navy's Nuclear Powered Fleet. These zero emissions valves will allow the Hydrocarbon and Chemical Processing Industries, etc., to maintain their competitiveness and still meet environmental and safety requirements. Phase 2 is directed at refining the basic technologies developed during Phase 1 so that they can be more readily selected and utilized by the target market. In addition to various necessary certifications, the project will develop a full featured digital controller with ``smart valve'' growth capability, expanding valve sizes/applications and identifying valve materials to permit applications in severe operational environments.

  1. Fiber heart valve prosthesis: influence of the fabric construction parameters on the valve fatigue performances.

    Science.gov (United States)

    Vaesken, Antoine; Heim, Frederic; Chakfe, Nabil

    2014-12-01

    Transcatheter aortic valve replacement (TAVR) has become today a largely considered alternative technique to surgical valve replacement in patients who are not operable or patients with high risk for open chest surgery. However, the biological valve tissue used in the devices implanted clinically appears to be fragile material when folded for low diameter catheter insertion purpose and released in calcified environment with irregular geometry. Textile polyester material is characterized by outstanding folding and strength properties combined with proven biocompatibility. It could thereof be considered to replace biological valve leaflets in the TAVR procedure. The textile construction parameters must however be tuned to obtain a material compatible with the valve requested durability. In that context, one issue to be addressed is the friction effect that occurs between filaments and between yarns within a fabric under flexure loading. This phenomenon could be critical for the resistance of the material on the long term. The purpose of the present work is to assess the fatigue performances of textile valve prototypes made from different fabric constructions (monofilament, multifilament, calendered mutifilament) under accelerated cyclic loading. The goal is to identify, which construction is the best suited to long term fatigue stress. Results show that calendered multifilament and monofilament fabric constructions undergo strong ruptures already from 40 Mio cycles, while non calendered multifilament appears more durable. The rupture patterns observed point out that durability is directly related to the flexure stiffness level of the fibrous elements in the construction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Observation of transverse spin Nernst magnetoresistance induced by thermal spin current in ferromagnet/non-magnet bilayers.

    Science.gov (United States)

    Kim, Dong-Jun; Jeon, Chul-Yeon; Choi, Jong-Guk; Lee, Jae Wook; Surabhi, Srivathsava; Jeong, Jong-Ryul; Lee, Kyung-Jin; Park, Byong-Guk

    2017-11-09

    Electric generation of spin current via spin Hall effect is of great interest as it allows an efficient manipulation of magnetization in spintronic devices. Theoretically, pure spin current can be also created by a temperature gradient, which is known as spin Nernst effect. Here, we report spin Nernst effect-induced transverse magnetoresistance in ferromagnet/non-magnetic heavy metal bilayers. We observe that the magnitude of transverse magnetoresistance in the bilayers is significantly modified by heavy metal and its thickness. This strong dependence of transverse magnetoresistance on heavy metal evidences the generation of thermally induced pure spin current in heavy metal. Our analysis shows that spin Nernst angles of W and Pt have the opposite sign to their spin Hall angles. Moreover, our estimate implies that the magnitude of spin Nernst angle would be comparable to that of spin Hall angle, suggesting an efficient generation of spin current by the spin Nernst effect.

  3. Gate valve performance prediction

    International Nuclear Information System (INIS)

    Harrison, D.H.; Damerell, P.S.; Wang, J.K.; Kalsi, M.S.; Wolfe, K.J.

    1994-01-01

    The Electric Power Research Institute is carrying out a program to improve the performance prediction methods for motor-operated valves. As part of this program, an analytical method to predict the stem thrust required to stroke a gate valve has been developed and has been assessed against data from gate valve tests. The method accounts for the loads applied to the disc by fluid flow and for the detailed mechanical interaction of the stem, disc, guides, and seats. To support development of the method, two separate-effects test programs were carried out. One test program determined friction coefficients for contacts between gate valve parts by using material specimens in controlled environments. The other test program investigated the interaction of the stem, disc, guides, and seat using a special fixture with full-sized gate valve parts. The method has been assessed against flow-loop and in-plant test data. These tests include valve sizes from 3 to 18 in. and cover a considerable range of flow, temperature, and differential pressure. Stem thrust predictions for the method bound measured results. In some cases, the bounding predictions are substantially higher than the stem loads required for valve operation, as a result of the bounding nature of the friction coefficients in the method

  4. Spin transport studies in encapsulated CVD graphene

    Science.gov (United States)

    Avsar, Ahmet; You Tan, Jun; Ho, Yuda; Koon, Gavin; Oezyilmaz, Barbaros

    2013-03-01

    Spin transport studies in exfoliated graphene on SiO2/Si substrates have shown spin relaxation times that are orders of magnitude shorter than the theoretical predictions. Similar to the charge transport case, the underlying substrate is expected to be the limiting factor. The recent work Zomer, P. J. et al. shows that spin transport over lengths up to 20um is possible in high mobility exfoliated graphene devices on boron nitride (BN) substrates. Here we discuss our initial attempts to repeat such spin transport experiments with CVD graphene on BN substrates. The effect of encapsulation of such devices with an extra BN layer will be also discussed.

  5. Spin-crossover materials properties and applications

    CERN Document Server

    Halcrow, Malcolm A

    2013-01-01

    The phenomenon of spin-crossover has a large impact on the physical properties of a solid material, including its colour, magnetic moment, and electrical resistance. Some materials also show a structural phase change during the transition. Several practical applications of spin-crossover materials have been demonstrated including display and memory devices, electrical and electroluminescent devices, and MRI contrast agents. Switchable liquid crystals, nanoparticles, and thin films of spin-crossover materials have also been achieved. Spin-Crossover Materials: Properties and Applicat

  6. Pros and cons of transcatheter aortic valve implantation (TAVI).

    Science.gov (United States)

    Terré, Juan A; George, Isaac; Smith, Craig R

    2017-09-01

    Transcatheter aortic valve implantation (TAVI) or replacement (TAVR) was recently approved by the FDA for intermediate risk patients with severe aortic stenosis (AS). This technique was already worldwide adopted for inoperable and high-risk patients. Improved device technology, imaging analysis and operator expertise has reduced the initial worrisome higher complications rate associated with TAVR, making it comparable to surgical aortic valve replacement (SAVR). However, many answers need to be addressed before adoption in lower risk patients. This paper highlights the pros and cons of TAVI based mostly on randomized clinical trials involving the two device platforms approved in the United States. We focused our analysis on metrics that will play a key role in expanding TAVR indication in healthier individuals. We review the significance and gave a perspective on paravalvular leak (PVL), valve performance, valve durability, leaflet thrombosis, stroke and pacemaker requirement.

  7. Development of magnetic drive packless valves for commercial purpose

    International Nuclear Information System (INIS)

    Hwang, Sung Tai; Choi, J. H.; Jeong, K. C.; Jeong, J. Y.; Choi, Y. D.; Kwon, S. W.; Kim, B. H.

    1997-01-01

    A study on development of magnetic drive packless valves for commercial purpose showed the results as follows: 1) characteristics and principle of the valve 2) study on the radial rays effecting to the permanent magnets 3) effects of temperature on the magnetic driving device a) temperature-dependency of the Nd-casting magnets b) effects of temperature on the heat releasing fins of high-temperature valve 4) optimization of torque a) arranging method of permanent magnets b) measuring method and results of torque 5) enlargement of magnetic rotating force a) experiments for the torque enlargement 6) calculation and pressure test for the pressure-resisting structure of magnetic power transmitting device a) calculation for the flat circular plates under pressure b) pressure test of the separating plate 7) design and manufacture of the valve 8) patent application. (author). 1 ref., 18 tabs., 38 figs

  8. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring...

  9. GIANT PROSTHETIC VALVE THROMBUS

    Directory of Open Access Journals (Sweden)

    Prashanth Kumar

    2015-04-01

    Full Text Available Mechanical prosthetic valves are predisposed to bleeding, thrombosis & thromboembolic complications. Overall incidence of thromboembolic complications is 1% per year who are on oral anticoagulants, whereas bleeding complications incidence is 0.5% to 6.6% per year. 1, 2 Minimization of Scylla of thromboembolic & Charybdis of bleeding complication needs a balancing act of optimal antithrombotic therapy. We are reporting a case of middle aged male patient with prosthetic mitral valve presenting in heart failure. Patient had discontinued anticoagulants, as he had subdural hematoma in the past. He presented to our institute with a giant prosthetic valve thrombus.

  10. FLUID MECHANICS OF ARTIFICIAL HEART VALVES

    OpenAIRE

    Dasi, Lakshmi P; Simon, Helene A; Sucosky, Philippe; Yoganathan, Ajit P

    2009-01-01

    1. Artificial heart valves have been in use for over five decades to replace diseased heart valves. Since the first heart valve replacement performed with a caged-ball valve, more than 50 valve designs have been developed, differing principally in valve geometry, number of leaflets and material. To date, all artificial heart valves are plagued with complications associated with haemolysis, coagulation for mechanical heart valves and leaflet tearing for tissue-based valve prosthesis. For mecha...

  11. Classification of heart valve condition using acoustic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Prosthetic heart valves and the many great strides in valve design have been responsible for extending the life spans of many people with serious heart conditions. Even though the prosthetic valves are extremely reliable, they are eventually susceptible to long-term fatigue and structural failure effects expected from mechanical devices operating over long periods of time. The purpose of our work is to classify the condition of in vivo Bjork-Shiley Convexo-Concave (BSCC) heart valves by processing acoustic measurements of heart valve sounds. The structural failures of interest for Bscc valves is called single leg separation (SLS). SLS can occur if the outlet strut cracks and separates from the main structure of the valve. We measure acoustic opening and closing sounds (waveforms) using high sensitivity contact microphones on the patient`s thorax. For our analysis, we focus our processing and classification efforts on the opening sounds because they yield direct information about outlet strut condition with minimal distortion caused by energy radiated from the valve disc.

  12. Construction and characterization of valve for fast gas injection

    International Nuclear Information System (INIS)

    Ueda, M.; Rossi, J.O.; Aso, Y.; Mangueira, L.S.; Pereira, C.A.

    1989-01-01

    An electromagnetic valve for fast gas injection was built and characterized. This type of gas injection valve has been routinely applied to various plasma experiments: in magnetic confinement devices as TOKAMAK, RFP and Compact Toroids as well as intense ion beam and neutral particle generators. The valve is capable of injecting gas pulses with up to 80 m Torr peak pressure, rising time < 400 μs and duration time of 40 ms, in the present experimental set-up. It is easy to build and its components can be totally acquired in the country. (author)

  13. Transcatheter valve-in-valve implantation for failed bioprosthetic heart valves.

    Science.gov (United States)

    Webb, John G; Wood, David A; Ye, Jian; Gurvitch, Ronen; Masson, Jean-Bernard; Rodés-Cabau, Josep; Osten, Mark; Horlick, Eric; Wendler, O; Dumont, Eric; Carere, Ronald G; Wijesinghe, Namal; Nietlispach, Fabian; Johnson, Mark; Thompson, Chrisopher R; Moss, Robert; Leipsic, Jonathon; Munt, Brad; Lichtenstein, Samuel V; Cheung, Anson

    2010-04-27

    The majority of prosthetic heart valves currently implanted are tissue valves that can be expected to degenerate with time and eventually fail. Repeat cardiac surgery to replace these valves is associated with significant morbidity and mortality. Transcatheter heart valve implantation within a failed bioprosthesis, a "valve-in-valve" procedure, may offer a less invasive alternative. Valve-in-valve implantations were performed in 24 high-risk patients. Failed valves were aortic (n=10), mitral (n=7), pulmonary (n=6), or tricuspid (n=1) bioprostheses. Implantation was successful with immediate restoration of satisfactory valve function in all but 1 patient. No patient had more than mild regurgitation after implantation. No patients died during the procedure. Thirty-day mortality was 4.2%. Mortality was related primarily to learning-curve issues early in this high-risk experience. At baseline, 88% of patients were in New York Heart Association functional class III or IV; at the last follow-up, 88% of patients were in class I or II. At a median follow-up of 135 days (interquartile range, 46 to 254 days) and a maximum follow-up of 1045 days, 91.7% of patients remained alive with satisfactory valve function. Transcatheter valve-in-valve implantation is a reproducible option for the management of bioprosthetic valve failure. Aortic, pulmonary, mitral, and tricuspid tissue valves were amenable to this approach. This finding may have important implications with regard to valve replacement in high-risk patients.

  14. Study on high reliability safety valve for railway vehicle

    Science.gov (United States)

    Zhang, Xuan; Chen, Ruikun; Zhang, Shixi; Xu, BuDu

    2017-09-01

    Now, the realization of most of the functions of the railway vehicles rely on compressed air, so the demand for compressed air is growing higher and higher. This safety valve is a protection device for pressure limitation and pressure relief in an air supply system of railway vehicles. I am going to introduce the structure, operating principle, research and development process of the safety valve designed by our company in this document.

  15. Extrinsic spin Hall effect in graphene

    Science.gov (United States)

    Rappoport, Tatiana

    The intrinsic spin-orbit coupling in graphene is extremely weak, making it a promising spin conductor for spintronic devices. In addition, many applications also require the generation of spin currents in graphene. Theoretical predictions and recent experimental results suggest one can engineer the spin Hall effect in graphene by greatly enhancing the spin-orbit coupling in the vicinity of an impurity. The extrinsic spin Hall effect then results from the spin-dependent skew scattering of electrons by impurities in the presence of spin-orbit interaction. This effect can be used to efficiently convert charge currents into spin-polarized currents. I will discuss recent experimental results on spin Hall effect in graphene decorated with adatoms and metallic cluster and show that a large spin Hall effect can appear due to skew scattering. While this spin-orbit coupling is small if compared with what it is found in metals, the effect is strongly enhanced in the presence of resonant scattering, giving rise to robust spin Hall angles. I will present our single impurity scattering calculations done with exact partial-wave expansions and complement the analysis with numerical results from a novel real-space implementation of the Kubo formalism for tight-binding Hamiltonians. The author acknowledges the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.

  16. Modulation of pure spin currents with a ferromagnetic insulator

    Science.gov (United States)

    Villamor, Estitxu; Isasa, Miren; Vélez, Saül; Bedoya-Pinto, Amilcar; Vavassori, Paolo; Hueso, Luis E.; Bergeret, F. Sebastián; Casanova, Fèlix

    2015-01-01

    We propose and demonstrate spin manipulation by magnetically controlled modulation of pure spin currents in cobalt/copper lateral spin valves, fabricated on top of the magnetic insulator Y3F e5O12 (YIG). The direction of the YIG magnetization can be controlled by a small magnetic field. We observe a clear modulation of the nonlocal resistance as a function of the orientation of the YIG magnetization with respect to the polarization of the spin current. Such a modulation can only be explained by assuming a finite spin-mixing conductance at the Cu/YIG interface, as it follows from the solution of the spin-diffusion equation. These results open a path towards the development of spin logics.

  17. Spin glasses

    International Nuclear Information System (INIS)

    Fischer, K.H.; Hertz, J.A.

    1993-01-01

    Spin glasses, simply defined by the authors as a collection of spins (i.e., magnetic moments) whose low-temperature state is a frozen disordered one, represent one of the fascinating new fields of study in condensed matter physics, and this book is the first to offer a comprehensive account of the subject. Included are discussions of the most important developments in theory, experimental work, and computer modeling of spin glasses, all of which have taken place essentially within the last two decades. The first part of the book gives a general introduction to the basic concepts and a discussion of mean field theory, while the second half concentrates on experimental results, scaling theory, and computer simulation of the structure of spin glasses

  18. Blocked Urethral Valves

    Science.gov (United States)

    ... the penis. Rarely, small membranes form across the urethra in boys early in pregnancy, and they can block the flow of urine out of the bladder. These membranes are called posterior urethral valves and can have life-threatening consequences ...

  19. Dry product valve

    International Nuclear Information System (INIS)

    Greaves, James D.

    1984-01-01

    This invention provides a system for delivering particulate radioactive or other toxic wastes to a container in which they can be solidified. The system includes a set of valves that prevent the escape of dusty materials to the atmosphere

  20. Ball check valve

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1978-01-01

    A pressurized nuclear reactor having an instrument assembly sheathed in a metallic tube which is extended vertically upward into the reactor core by traversing a metallic guide tube which is welded to the wall of the vessel is described. Sensors in each instrument assembly are connected to instruments outside the vessel to manifest the conditions within the core. Each instrument assembly probe is moved into position within a metallic guide channel. The guide channel penetrates the wall of the vessel and forms part of the barrier to the environment within the pressure vessel. Each channel includes a ball check valve which is opened by the instrument assembly probe when the probe passes through the valve. A ball valve element is moved from its seat by the probe to a position lateral of the bore of the channel and is guided to its seat along a sloped path within the valve body when the probe is removed. 5 claims, 3 figures

  1. Aortic valve replacement

    DEFF Research Database (Denmark)

    Kapetanakis, Emmanouil I; Athanasiou, Thanos; Mestres, Carlos A

    2008-01-01

    BACKGROUND AND AIMS OF THE STUDY: Prompted by anecdotal evidence and observations by surgeons, an investigation was undertaken into the potential differences in implanted aortic valve prosthesis sizes, during aortic valve replacement (AVR) procedures, between northern and southern European...... assigned to the 'small' aortic size subset. Effective orifice area indices were calculated for all patients to assess the geographic distribution of patient-prosthesis mismatch. Univariable and multivariable logistic regression analyses adjusting for possible confounding variables were performed. RESULTS...

  2. Coanda effect in valves

    Directory of Open Access Journals (Sweden)

    Uruba Václav

    2017-01-01

    Full Text Available Coanda effect takes place in flow within valves diffuser for certain conditions. The valve plug in half-closed position forms wall-jet, which could be stable or instable, depending on geometry and other conditions. This phenomenon was subject of experimental study using time-resolved PIV technique. For the acquired data analysis the special spatio-temporal methods have been used.

  3. Vector spin modeling for magnetic tunnel junctions with voltage dependent effects

    International Nuclear Information System (INIS)

    Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A.

    2014-01-01

    Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects

  4. Superconducting spin-triplet-MRAM with infinite magnetoresistance ratio

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Daniel; Ullrich, Aladin; Obermeier, Guenter; Mueller, Claus; Krug von Nidda, Hans-Albrecht; Horn, Siegfried; Tidecks, Reinhard [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); Morari, Roman [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev (Moldova, Republic of); Solid State Physics Department, Kazan Federal University, 420008 Kazan (Russian Federation); Zdravkov, Vladimir I. [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev (Moldova, Republic of); Institute of Applied Physics and Interdisciplinary Nanoscience Center, Universitaet Hamburg, Jungiusstrasse 9A, D-20355 Hamburg (Germany); Sidorenko, Anatoli S. [D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev (Moldova, Republic of); Tagirov, Lenar R. [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); Solid State Physics Department, Kazan Federal University, 420008 Kazan (Russian Federation)

    2016-07-01

    We fabricated a nanolayered hybrid superconductor-ferromagnet spin-valve structure, i.e. the superconducting transition temperature of this structure depends on its magnetic history. The observed spin-valve effect is based on the generation of the long range odd in frequency triplet component, arising from a non-collinear relative orientation of the constituent ferromagnetic layers. We investigated the effect both as a function of the sweep amplitude of the magnetic field, determining the magnetic history, and the applied transport current. Moreover, we demonstrate the possibility of switching the system from the normal o the superconducting state by applying field pulses, yielding an infinite magnetoresistance ratio.

  5. Edwards valve-in-valve implantation in tricuspid position.

    Science.gov (United States)

    Álvarez-Fuente, Maria; Haas, Nikolaus A; Del Cerro, Maria Jesus

    2017-10-01

    We present two cases of percutaneous Sapien XT valve-in-valve implantation in the tricuspid position: a 20-year-old man with severe congenital pulmonary stenosis and percutaneous valvuloplasty, who required surgical implantation of two protheses, pulmonary and tricuspid, and a 12-year-old boy with CHD and a degenerated tricuspid prosthesis. We implanted three Sapien XT valve-in-valves, two in the tricuspid position and one in the pulmonic position. Sapien XT valve-in-valve implantation in the tricuspid position is feasible and can decrease the number of surgeries in CHD patients.

  6. Spin and Charge Transport in 2D Materials and Magnetic Insulator/Metal Heterostructures

    Science.gov (United States)

    Amamou, Walid

    Spintronic devices are very promising for future information storage, logic operations and computation and have the potential to replace current CMOS technology approaching the scaling limit. In particular, the generation and manipulation of spin current enables the integration of storage and logic within the same circuit for more powerful computing architectures. In this thesis, we examine the manipulation of spins in 2D materials such as graphene and metal/magnetic insulator heterostructures. In particular, we investigate the feasibility for achieving magnetization switching of a nanomagnet using graphene as a nonmagnetic channel material for All Spin Logic Device applications. Using in-situ MBE deposition of nanomagnet on graphene spin valve, we demonstrate the presence of an interfacial spin dephasing at the interface between the graphene and the nanomagnet. By introducing a Cu spacer between the nanomagnet and graphene, we demonstrate that this interfacial effect is related to an exchange interaction between the spin current and the disordered magnetic moment of the nanomagnet in the first monolayer. In addition to the newly discovered interfacial spin relaxation effect, the extracted contact resistance area product of the nanomagnet/graphene interface is relatively high on the order of 1Omicrom2. In practice, reducing the contact resistance will be as important as eliminating the interfacial relaxation in order to achieve magnetization switching. Furthermore, we examine spin manipulation in a nonmagnetic Pt using an internal magnetic exchange field produced by the adjacent magnetic insulator CoFe2O4 grown by MBE. Here, we report the observation of a strong magnetic proximity effect of Pt deposited on top of a perpendicular magnetic anisotropy (PMA) inverse spinel material Cobalt Ferrite (CFO, CoFe 2O4). The CFO was grown by MBE and its magnetization was characterized by Vibrating Sample Magnetometry (VSM) demonstrating the strong out of plane magnetic

  7. Spin Waves in the FCC Kagome Lattice

    Science.gov (United States)

    Leblanc, Martin; Southern, Byron; Plumer, Martin; Whitehead, John

    2014-03-01

    The impact of an effective local cubic anisotropy on the spin wave excitations and inelastic neutron scattering intensity peaks of the Heisenberg model on the 3D fcc kagome lattice are examined through a linear spin wave theory. Previous Monte Carlo simulations revealed that the addition of anisotropy to the fcc kagome lattice changes the order of the phase transition from weakly first order to continuous and restricts the T = 0 spin configuration to a number of discrete ground states, removing the continuous degeneracy. It is shown that the addition of anisotropy removes the number of zero energy modes in the excitation spectrum associated with the removed degeneracies. These results are relevant to Ir-Mn alloys which have been widely used by the magnetic storage industry in thin-film form as the antiferromagnetic pinning layer in GMR and TMR spin valves. Supported by NSERC of Canada.

  8. Multi-Valued Spin Switch in a Semiconductor Microcavity

    Science.gov (United States)

    Paraïso, T. K.; Wouters, M.; Léger, Y.; Morier-Genoud, F.; Deveaudhyphen; Plédran, B.

    2011-12-01

    In this work, we report on the first realization of multi-valued spin switching in the solid-state. We investigate the physics of spinor bistability with microcavity polaritons in a trap. Spinor interactions lead to special bistability regimes with decoupled thresholds for spin-up and spin-down polaritons. This allows us to establish state-of-the-art spin switching operations. We evidence polarization hysteresis and determine appropriate conditions to achieve spin multistability. For a given excitation condition, three stable spin states coexist for the system. These results open new pathways for the development of innovative spin-based logic gates and memory devices.

  9. Transcatheter tissue engineered heart valves.

    Science.gov (United States)

    Emmert, Maximilian Y; Weber, Benedikt; Falk, Volkmar; Hoerstrup, Simon P

    2014-01-01

    Valvular heart disease represents a leading cause of mortality worldwide. Transcatheter heart valve replacement techniques have been recently introduced into the clinical routine expanding the treatment options for affected patients. However, despite this technical progress toward minimally invasive, transcatheter strategies, the available heart valve prostheses for these techniques are bioprosthetic and associated with progressive degeneration. To overcome such limitations, the concept of heart valve tissue engineering has been repeatedly suggested for future therapy concepts. Ideally, a clinically relevant heart valve tissue engineering concept would combine minimally invasive strategies for both, living autologous valve generation as well as valve implantation. Therefore, merging transcatheter techniques with living tissue engineered heart valves into a trascatheter tissue engineered heart valve concept could significantly improve current treatment options for patients suffering from valvular heart disease. This report provides an overview on transcatheter tissue engineered heart valves and summarizes available pre-clinical data.

  10. Charge and spin transport in nanoscale junction from first principles

    Science.gov (United States)

    Mandal, Subhasish

    the metallic to semiconducting phase transition. Apart from studying one dimensional nanostructure, we also present transport properties in zero dimensional single molecular junctions. We proposed a new codoping approach in a single molecular carborane junction, where a cation and an anion are simultaneously doped to find the role of a single atom in the device. The main purpose was to build a molecular junction where a single atom can dictate the flow of electrons in a circuit. Recent observations of both positive and negative sign in tunneling magnetoresistance (TMR) the using same organic spin-valve structure has mystified researchers. From our spin dependent transport studies in a prototypical organic molecular tunneling device, we found that a 3% change in metal-molecule interfacial distance can alter the sign of TMR. Changing the interfacial distance by 3%, the number of participating eigenstates as well as their orbital characteristic changes for anti-parallel configuration of the magnetization at the two electrodes, leading to the sign reversal of the TMR. Apart from this, the magnetic proximity effect under applied bias is investigated quantitatively, which can be used to understand the observed unexpected magnetismin carbon basedmaterials when they are in close proximity with magnetic substrates.

  11. Percutaneous transfemoral-transseptal implantation of a second-generation CardiAQ™ mitral valve bioprosthesis

    DEFF Research Database (Denmark)

    Ussia, Gian Paolo; Quadri, Arshad; Cammalleri, Valeria

    2016-01-01

    echocardiography and fluoroscopy were utilised for device positioning and deployment. The mitral valve prosthesis was implanted with mild mitral regurgitation. The postoperative course was uneventful and at 30-day follow-up the patient is in NYHA Class I, with good function of the mitral valve bioprosthesis....... CONCLUSIONS: This procedure shows that percutaneous transfemoral transcatheter mitral valve implantation is feasible, safe and successful. Further experience is needed to render this procedure clinically available....

  12. Colombian experience with transcatheter aortic valve implantation of medtronic CoreValve.

    Science.gov (United States)

    Dager, Antonio E; Nuis, Rutger-Jan; Caicedo, Bernardo; Fonseca, Jaime A; Arana, Camilo; Cruz, Lidsa; Benitez, Luis M; Nader, Carlos A; Duenas, Eduardo; de Marchena, Eduardo J; O'Neill, William W; de Jaegere, Peter P

    2012-01-01

    At our institutions, increasing numbers of aortic stenosis patients were not candidates for surgical aortic valve replacement. Accordingly, we initiated the Cali Colombian Transcatheter Aortic Valve Implantation (TAVI) program. From March 2008 through January 2011, 53 consecutive patients (mean age, 79 ± 6 yr; men, 58%) underwent TAVI with the Medtronic CoreValve System, and data were prospectively collected. Our study's endpoints conformed with Valve Academic Research Consortium recommendations. We report our clinical results.Predicted mortality rates were 25% (interquartile range, 17%-34%) according to logistic EuroSCORE and 6% (interquartile range, 3%-8%) according to the Society of Thoracic Surgeons score. The 30-day mortality rate was 9% (3 intraprocedural deaths, 5 total). The combined 30-day safety endpoint was 30% (major vascular sequelae, 23%; life-threatening bleeding, 12%; myocardial infarction, 4%; major stroke, 4%; and acute kidney injury [stage 3], 2%). Eight patients (15%) required post-implantation balloon dilation and 2 (4%) required valve-in-valve implantation, for a technical device success rate of 77%. Mean peak transvalvular gradient decreased from 74 ± 29 to 17 ± 8 mmHg and mean transvalvular gradient from 40 ± 17 to 8 ± 4 mmHg (both P=0.001). Moderate or severe aortic regurgitation decreased from 32% to 18% (P=0.12) and mitral regurgitation from 32% to 13% (P=0.002). The 1-year survival rate was 81%.We found that TAVI with the CoreValve prosthesis was safe and feasible, with sustained long-term results, for treating aortic stenosis in patients at excessive surgical risk; nonetheless, serious adverse events occurred in 30% of the patients.

  13. Transcatheter Aortic Valve Replacement for Degenerative Bioprosthetic Surgical Valves

    DEFF Research Database (Denmark)

    Dvir, Danny; Webb, John; Brecker, Stephen

    2012-01-01

    Transcatheter aortic valve-in-valve implantation is an emerging therapeutic alternative for patients with a failed surgical bioprosthesis and may obviate the need for reoperation. We evaluated the clinical results of this technique using a large, worldwide registry....

  14. NRC valve performance test program - check valve testing

    International Nuclear Information System (INIS)

    Jeanmougin, N.M.

    1987-01-01

    The Valve Performance Test Program addresses the current requirements for testing of pressure isolation valves (PIVs) in light water reactors. Leak rate monitoring is the current method used by operating commercial power plants to survey the condition of their PIVs. ETEC testing of three check valves (4-inch, 6-inch, and 12-inch nominal diameters) indicates that leak rate testing is not a reliable method for detecting impending valve failure. Acoustic emission monitoring of check valves shows promise as a method of detecting loosened internals damage. Future efforts will focus on evaluation of acoustic emission monitoring as a technique for determining check valve condition. Three gate valves also will be tested to evaluate whether the check valve results are applicable to gate type PIVs

  15. Spin-wave propagation and spin-polarized electron transport in single-crystal iron films

    Science.gov (United States)

    Gladii, O.; Halley, D.; Henry, Y.; Bailleul, M.

    2017-11-01

    The techniques of propagating spin-wave spectroscopy and current-induced spin-wave Doppler shift are applied to a 20-nm-thick Fe/MgO(001) film. The magnetic parameters extracted from the position of the spin-wave resonance peaks are very close to those tabulated for bulk iron. From the zero-current propagating wave forms, a group velocity of 4 km/s and an attenuation length of about 6 μ m are extracted for 1.6-μ m -wavelength spin wave at 18 GHz. From the measured current-induced spin-wave Doppler shift, we extract a surprisingly high degree of spin polarization of the current of 83 % , which constitutes the main finding of this work. This set of results makes single-crystalline iron a promising candidate for building devices utilizing high-frequency spin waves and spin-polarized currents.

  16. [Usefulness of magnetic resonance imaging for managing patients with prosthetic carbon valve in the mitral position].

    Science.gov (United States)

    Koito, H; Imai, Y; Suzuki, J; Ohkubo, N; Nakamura, C; Takahashi, H; Iwasaka, T; Inada, M

    1997-11-01

    The safety, findings and clinical usefulness of magnetic resonance (MR) imaging were assessed in patients with a prosthetic carbon valve in the mitral position. In vitro deflection, heating and image distortion due to the magnetic field of a 1.5 tesla MR machine were examined in three carbon valves (CarboMedics, St. Jude Medical and Björk-Shiley valves). In vivo MR imaging of the left ventricular horizontal long-axis, vertical long-axis and short-axis views was performed by electrocardiographically synchronized spin echo and field (gradient) echo techniques in eight patients with prosthetic mitral carbon valves, consisting of six CarboMedics valves, one St. Jude Medical valve and one Björk-Shiley valve. No deflection and significant heating was seen in all three valves in vitro. Although little image distortion was shown in the CarboMedics and St. Jude Medical valves, a small distortion toward the frequency encoded direction was seen in the Björk-Shiley valve but caused no difficulty in assessing the surrounding images. Four of the eight patients had normal sinus rhythm and the other four had atrial fibrillation. The prosthetic valves were depicted as signal voids in the images taken by both spin echo and field echo techniques in vivo. Clear structural information with little image distortion of the adjacent tissues of the prosthetic valves were obtained in all patients, although the image of the Björk-Shiley valve which contained stainless steel in the frame had a slightly stronger distortion than those of the CarboMedics and St. Jude Medical valves which contained titanium. The stainless wire suture material used to close the sternal incision was depicted as a signal void, and the areas of the signal loss were larger in the images taken by the field echo technique than those by the spin echo technique. The images taken by the spin echo technique in patients with atrial fibrillation had reduced quality due to the irregularity of repetition time. Cine MR

  17. New safety valve addresses environmental concerns

    International Nuclear Information System (INIS)

    Taylor, J.; Austin, R.

    1992-01-01

    This paper reports that Conoco Pipeline is using a unique relief valve to reduce costs while improving environmental protection at its facilities. Conoco Pipeline Co. Inc. began testing new relief valves in 1987 to present over-pressuring its pipelines while enhancing the safety, environmental integrity and profitability of its pipelines. Conoco worked jointly with Rupture Pin Technology Inc., Oklahoma City, to seek a solution to a series of safety, environmental, and operational risks in the transportation of crude oil and refined products through pipelines. Several of the identified problems were traced to a single equipment source: the reliability of rupture discs used at pipeline stations to relieve pressure by diverting flow to tanks during over-pressure conditions. Conoco's corporate safety and environmental policies requires solving problems that deal with exposure to hydrocarbon vapors, chemical spills or the atmospheric release of fugitive emissions, such as during rupture disc maintenance. The company had used rupture pin valves as vent relief devices in conjunction with development by Rick Austin of inert gas methods to protect the inner casing wall and outer carrier pipeline wall in pipeline road crossings. The design relies on rupture pin valves set at 5 psi to isolate vent openings from the atmosphere prior to purging the annular space between the pipeline and casing with inert gas to prevent corrosion. Speciality Pipeline Inspection and Engineering Inc., Houston, is licensed to distribute the equipment for the new cased-crossing procedure

  18. Anaesthesia for transvenous transcatheter tricuspid valve-in-valve ...

    African Journals Online (AJOL)

    2011-02-27

    Feb 27, 2011 ... Keywords: transvenous, transcatheter, tricuspid prosthesis, valve-in-valve implantation. Abstract. The authors report and discuss the anaesthetic management of a transvenous transcatheter tricuspid valve replacement. The conduct of anaesthesia, the challenges encountered and the specific risks ...

  19. Mitral Valve Aneurysm: A Rare Complication of Aortic Valve Endocarditis

    Directory of Open Access Journals (Sweden)

    A Moaref

    2008-11-01

    Full Text Available A 20-year-old intravenous drug abuser man, refered to our hospital with dyspnea and orthopnea. Tranesophagealechocardiography revealed severe aortic regurgitation, healed vegetation of aortic valve and an aneurysm of theanterior leaflet of the mitral valve. The patient was discharged after aortic valve replacement and mitral valverepair.

  20. Thickness Dependent Structural and Dielectric Properties of Calcium Copper Titanate Thin Films Produced by Spin-Coating Method for Microelectronic Devices

    Science.gov (United States)

    Thiruramanathan, P.; Sankar, S.; Marikani, A.; Madhavan, D.; Sharma, Sanjeev K.

    2017-07-01

    Calcium copper titanate (CaCu3Ti4O12, CCTO) thin films have been deposited on platinized silicon [(111)Pt/Ti/SiO2/Si] substrate through a sol-gel spin coating technique and annealed at 600-900°C with a variation of 100°C per sample for 3 h. The activation energy for crystalline growth, as well as optimal annealing temperature (900°C) of the CCTO crystallites was studied by x-ray diffraction analysis (XRD). Thickness dependent structural, morphological, and optical properties of CCTO thin films were observed. The field emission scanning electron microscopy (FE-SEM) verified that the CCTO thin films are uniform, fully covered, densely packed, and the particle size was found to be increased with film thickness. Meanwhile, quantitative analysis of dielectric properties (interfacial capacitance, dead layers, and bulk dielectric constant) of CCTO thin film with metal-insulator-metal (M-I-M) structures has been investigated systematically using a series capacitor model. Room temperature dielectric properties of all the samples exhibit dispersion at low frequencies, which can be explained based on Maxwell-Wagner two-layer models and Koop's theory. It was found that the 483 nm thick CCTO film represents a high dielectric constant ( ɛ r = 3334), low loss (tan δ = 3.54), capacitance ( C = 4951 nF), which might satisfy the requirements of embedded capacitor.

  1. Piezoelectric valve for massive gas injection in ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Dibon, Mathias; Neu, Rudolf [Max-Planck-Institute for Plasmaphysics, Boltzmannstr. 2, 85748 Garching (Germany); Technical University Munich, Boltzmannstr. 15, 85748 Garching (Germany); Herrmann, Albrecht; Mank, Klaus; Mertens, Vitus; Pautasso, Gabriella; Ploeckl, Bernhard [Max-Planck-Institute for Plasmaphysics, Boltzmannstr. 2, 85748 Garching (Germany)

    2016-07-01

    A sudden loss of plasma temperature can cause a disruption, which poses a significant problem for current Tokamaks and future fusion devices. Hence, mitigating forces and thermal loads during disruptions is important for the integrity of the vessel and first wall components. Therefore, high speed gas valves are used to deliver a pulse of noble gas onto the plasma, which irradiates the thermal energy quickly, avoiding localized heat loads and mechanical stress due to induced currents. A new design for such a valve is currently under development. The valve plate is driven by two piezoelectric stack actuators. The stroke of the actuators (0.07 mm) is amplified by a monolithic titanium frame and reaches 2 mm. The frame also serves as spring to pre-load the actuators. In the idle state, it also presses the conical valve plate into the seal, closing the gas chamber (42 cm{sup 3}). The actuators accelerate the stem and the valve plate until it is fully opened after 2 ms. The orifice of the valve has a diameter of 14 mm. This allows a peak mass flow rate of the gas up to 8 . 10{sup 4} (Pa.m)/(s) after 1.8 ms and an average mass flow rate of 2 . 10{sup 4} (Pa.m)/(s) over the evacuation time of 10 ms. Therefore, one valve would be sufficient to deliver the required amount of gas to mitigate disruptions at ASDEX Upgrade.

  2. Ahmed glaucoma valve implant: surgical technique and complications

    Directory of Open Access Journals (Sweden)

    Riva I

    2017-02-01

    Full Text Available Ivano Riva,1 Gloria Roberti,1 Francesco Oddone,1 Anastasios GP Konstas,2 Luciano Quaranta3 1IRCCS “Fondazione GB Bietti per l’Oftalmologia”, Rome, Italy; 21st University Department of Ophthalmology, Glaucoma Unit, AHEPA Hospital, Thessaloniki, Greece; 3Department of Medical and Surgical Specialties, Section of Ophthalmology, University of Brescia, Brescia, Italy Abstract: Implantation of Ahmed glaucoma valve is an effective surgical technique to reduce intraocular pressure in patients affected with glaucoma. While in the past, the use of this device was reserved to glaucoma refractory to multiple filtration surgical procedures, up-to-date mounting experience has encouraged its use also as a primary surgery for selected cases. Implantation of Ahmed glaucoma valve can be challenging for the surgeon, especially in patients who already underwent previous multiple surgeries. Several tips have to be acquired by the surgeon, and a long learning curve is always needed. Although the valve mechanism embedded in the Ahmed glaucoma valve decreases the risk of postoperative hypotony-related complications, it does not avoid the need of a careful follow-up. Complications related to this type of surgery include early and late postoperative hypotony, excessive capsule fibrosis around the plate, erosion of the tube or plate edge, and very rarely infection. The aim of this review is to describe surgical technique for Ahmed glaucoma valve implantation and to report related complications. Keywords: glaucoma, surgical technique, glaucoma drainage devices, Ahmed glaucoma valve, complications

  3. What Is Heart Valve Disease?

    Science.gov (United States)

    ... is called a valve-in-valve procedure. Heart-Healthy Lifestyle Changes to Treat Other Related Heart Conditions To ... your doctor may advise you to make heart-healthy lifestyle changes, such as: Heart-healthy eating Aiming for ...

  4. Custom modification of the Blom-Singer tracheostoma valve housing.

    Science.gov (United States)

    Lemon, James C; Lewin, Jan S; Martin, Jack W; Chambers, Mark S

    2003-03-01

    A technique is presented for modifying the Blom-Singer tracheostoma valve housing to improve peristomal skin adherence for hands-free tracheoesophageal speech production following total laryngectomy. The finished product is thin, flexible, and maintains enhanced tear strength. The edges of a standard housing device for the Blom-Singer valve are trimmed to allow for better accommodation to the tissue surface without distortion. A punch biopsy instrument is used to cut uniform holes around the housing device to allow for permeation of the silicone mixture for better mechanical adherence of the materials. Copyright 2003 by The American College of Prosthodontists.

  5. Quantification and comparison of the mechanical properties of four human cardiac valves.

    Science.gov (United States)

    Pham, Thuy; Sulejmani, Fatiesa; Shin, Erica; Wang, Di; Sun, Wei

    2017-05-01

    Although having the same ability to permit unidirectional flow within the heart, the four main valves-the mitral valve (MV), aortic (AV), tricuspid (TV) and pulmonary (PV) valves-experience different loading conditions; thus, they exhibit different structural integrity from one another. Most research on heart valve mechanics have been conducted mainly on MV and AV or an individual valve, but none quantify and compare the mechanical and structural properties among the four valves from the same aged patient population whose death was unrelated to cardiovascular disease. A total of 114 valve leaflet samples were excised from 12 human cadavers whose death was unrelated to cardiovascular disease (70.1±3.7years old). Tissue mechanical and structural properties were characterized by planar biaxial mechanical testing and histological methods. The experimental data were then fitted with a Fung-type constitutive model. The four valves differed substantially in thickness, degree of anisotropy, and stiffness. The leaflets of the left heart (the AV leaflets and the anterior mitral leaflets, AML) were significantly stiffer and less compliant than their counterparts in the right heart. TV leaflets were the most extensible and isotropic, while AML and AV leaflets were the least extensible and the most anisotropic. Age plays a significant role in the reduction of leaflet stiffness and extensibility with nearly straightened collagen fibers observed in the leaflet samples from elderly groups (65years and older). Results from 114 human leaflet samples not only provided a baseline quantification of the mechanical properties of aged human cardiac valves, but also offered a better understanding of the age-dependent differences among the four valves. It is hoped that the experimental data collected and the associated constitutive models in this study can facilitate future studies of valve diseases, treatments and the development of interventional devices. Most research on heart valve

  6. 46 CFR 53.05-5 - Discharge capacities and valve markings.

    Science.gov (United States)

    2010-10-01

    ... BOILERS Pressure Relieving Devices (Article 4) § 53.05-5 Discharge capacities and valve markings. The discharge capacities and valve markings must be as indicated in HG-402 of section IV of the ASME Boiler and... certified by the National Board of Boiler and Pressure Vessel Inspectors. [USCG-2003-16630, 73 FR 65164, Oct...

  7. Keep pushing! Limiting interruptions to CPR; bag-valve mask versus ...

    African Journals Online (AJOL)

    This has led to first responders and paramedics performing single rescuer CPR using a bag-valve-mask (BVM) device as opposed to the historical practice of intubating and ventilating via an endotracheal tube. Bag-valve-mask ventilations, especially during single rescuer CPR, are however associated with complications ...

  8. An up-to-date overview of the most recent transcatheter implantable aortic valve prostheses

    NARCIS (Netherlands)

    Wiegerinck, Esther M. A.; van Kesteren, Floortje; van Mourik, Martijn S.; Vis, Marije M.; Baan, Jan

    2016-01-01

    Over the past decade transcatheter aortic valve implantation (TAVI) has evolved towards the routine therapy for high-risk patients with severe aortic valve stenosis. Technical refinements in TAVI are rapidly evolving with a simultaneous expansion of the number of available devices. This review will

  9. Intrinsic spin lifetimes in GaAs (110) quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Georg; Roemer, Michael; Huebner, Jens; Oestreich, Michael [Institut fuer Festkoerperphysik, Gottfried Wilhelm Leibniz Universitaet Hannover, Hannover (Germany); Schuh, Dieter; Wegscheider, Werner [Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg (Germany)

    2009-07-01

    GaAs(110) quantum wells attract great attention due to the long spin lifetime for electron spins along the growth axis and are, therefore, of interest for future spin based optoelectronic devices. At low temperatures, optical injection of a finite spin polarization yields strongly enhanced spin dephasing due to the Bir Aronov Pikus mechanism that arises from the exchange interaction between electrons and holes. Thus, the intrinsic spin lifetime in GaAs(110) quantum wells has been unknown. In this work, the non-demolition technique of spin noise spectroscopy, which only relies on statistical spin fluctuations, is applied to GaAs(110) quantum wells in order to measure the intrinsic spin lifetimes. Furthermore, the Brownian motion of the electrons modifies the linewidth of the measured spin noise spectra due to time of flight broadening. This effect uniquely allows to study electronic motion at thermal equilibrium.

  10. Pneumococcal pulmonary valve endocarditis

    Directory of Open Access Journals (Sweden)

    Apostolos Vrettos

    2017-07-01

    Full Text Available Pulmonary valve endocarditis is a rare type of infective endocarditis (IE. Streptococcus pneumoniae is a pathogen that is uncommonly associated with IE. A 50 year-old male was referred to us after an incidental echocardiographic finding of a pulmonary valve vegetation. The patient had a recent admission for drainage of a scrotal abscess from which S. pneumoniae was isolated, complicated by hospital acquired pneumonia and pulmonary embolism. Analysis using polymerase chain reaction of the surgically resected mass revealed signs of 16S ribosomal DNA consistent with S. pneumoniae infection. This was an extremely rare case of pneumococcal pulmonary valve IE presenting entirely asymptomatically in the absence of any known risk factors.

  11. Variable Valve Actuation

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Gutterman; A. J. Lasley

    2008-08-31

    Many approaches exist to enable advanced mode, low temperature combustion systems for diesel engines - such as premixed charge compression ignition (PCCI), Homogeneous Charge Compression Ignition (HCCI) or other HCCI-like combustion modes. The fuel properties and the quantity, distribution and temperature profile of air, fuel and residual fraction in the cylinder can have a marked effect on the heat release rate and combustion phasing. Figure 1 shows that a systems approach is required for HCCI-like combustion. While the exact requirements remain unclear (and will vary depending on fuel, engine size and application), some form of substantially variable valve actuation is a likely element in such a system. Variable valve actuation, for both intake and exhaust valve events, is a potent tool for controlling the parameters that are critical to HCCI-like combustion and expanding its operational range. Additionally, VVA can be used to optimize the combustion process as well as exhaust temperatures and impact the after treatment system requirements and its associated cost. Delphi Corporation has major manufacturing and product development and applied R&D expertise in the valve train area. Historical R&D experience includes the development of fully variable electro-hydraulic valve train on research engines as well as several generations of mechanical VVA for gasoline systems. This experience has enabled us to evaluate various implementations and determine the strengths and weaknesses of each. While a fully variable electro-hydraulic valve train system might be the 'ideal' solution technically for maximum flexibility in the timing and control of the valve events, its complexity, associated costs, and high power consumption make its implementation on low cost high volume applications unlikely. Conversely, a simple mechanical system might be a low cost solution but not deliver the flexibility required for HCCI operation. After modeling more than 200 variations of

  12. Spin transport in normal and superconducting nanowires

    OpenAIRE

    Poli, Ninos

    2007-01-01

    Todays conventional electronic devices are based on electron charge transport in semiconductor channels. Spintronics is a rapidly emerging technology, which exploits the spin degree of freedom as well as the charge of the electrons. It is believed that extending conventional electronics to spin-electronics can yield devices with new functionality and result in new large scale applications. Examples of already existing spintronic technology are the magnetic random access memory, magneto-resist...

  13. Designing magnetic droplet soliton nucleation employing spin polarizer

    Science.gov (United States)

    Mohseni, Morteza; Mohseni, Majid

    2018-04-01

    We show by means of micromagnetic simulations that spin polarizer in nano-contact (NC) spin torque oscillators as the representative of the fixed layer in an orthogonal pseudo-spin valve can be employed to design and to control magnetic droplet soliton nucleation and dynamics. We found that using a tilted spin polarizer layer decreases the droplet nucleation time which is more suitable for high speed applications. However, a tilted spin polarizer increases the nucleation current and decreases the frequency stability of the droplet. Additionally, by driving the magnetization inhomogenously at the NC region, it is found that a tilted spin polarizer reduces the precession angle of the droplet and through an interplay with the Oersted field of the DC current, it breaks the spatial symmetry of the droplet profile. Our findings explore fundamental insight into nano-scale magnetic droplet soliton dynamics with potential tunability parameters for future microwave electronics.

  14. Electrical spin injection into high mobility 2D systems.

    Science.gov (United States)

    Oltscher, M; Ciorga, M; Utz, M; Schuh, D; Bougeard, D; Weiss, D

    2014-12-05

    We report on spin injection into a high mobility 2D electron system confined at an (Al,Ga)As/GaAs interface, using (Ga,Mn)As Esaki diode contacts as spin aligners. We measured a clear nonlocal spin valve signal, which varies nonmonotonically with the applied bias voltage. The magnitude of the signal cannot be described by the standard spin drift-diffusion model, because at maximum this would require the spin polarization of the injected current to be much larger than 100%, which is unphysical. A strong correlation of the spin signal with contact width and electron mean free path suggests that ballistic transport in the 2D region below ferromagnetic contacts should be taken into account to fully describe the results.

  15. Magnetostatic Analysis of a Pinch Mode Magnetorheological Valve

    Directory of Open Access Journals (Sweden)

    Gołdasz Janusz

    2017-09-01

    Full Text Available The study deals with the pinch mode of magnetorheological (MR fluids’ operation and its application in MR valves. By applying the principle in MR valves a highly non-uniform magnetic field can be generated in flow channels in such a way to solidify the portion of the material that is the nearest to the flow channel’s walls. This is in contrary to well-known MR flow mode valves. The authors investigate a basic pinch mode valve in several fundamental configurations, and then examine their magnetic circuits through magnetostatic finite-element (FE analysis. Flux density contour maps are revealed and basic performance figures calculated and analysed. The FE analysis results yield confidence in that the performance of MR pinch mode devices can be effectively controlled through electromagnetic means.

  16. A Quantitative Study of Simulated Bicuspid Aortic Valves

    Science.gov (United States)

    Szeto, Kai; Nguyen, Tran; Rodriguez, Javier; Pastuszko, Peter; Nigam, Vishal; Lasheras, Juan

    2010-11-01

    Previous studies have shown that congentially bicuspid aortic valves develop degenerative diseases earlier than the standard trileaflet, but the causes are not well understood. It has been hypothesized that the asymmetrical flow patterns and turbulence found in the bileaflet valves together with abnormally high levels of strain may result in an early thickening and eventually calcification and stenosis. Central to this hypothesis is the need for a precise quantification of the differences in the strain rate levels between bileaflets and trileaflet valves. We present here some in-vitro dynamic measurements of the spatial variation of the strain rate in pig aortic vales conducted in a left ventricular heart flow simulator device. We measure the strain rate of each leaflet during the whole cardiac cycle using phase-locked stereoscopic three-dimensional image surface reconstruction techniques. The bicuspid case is simulated by surgically stitching two of the leaflets in a normal valve.

  17. Interference Spins

    DEFF Research Database (Denmark)

    Popovski, Petar; Simeone, Osvaldo; Nielsen, Jimmy Jessen

    2015-01-01

    on traffic load and interference condition leads to performance gains. In this letter, a general network of multiple interfering two-way links is studied under the assumption of a balanced load in the two directions for each link. Using the notion of interference spin, we introduce an algebraic framework...

  18. Spinning worlds

    NARCIS (Netherlands)

    Schwarz, H.

    2017-01-01

    The thesis "Spinning Worlds" is about the characterisation of two types of gas-giant exoplanets: Hot Jupiters, with orbital periods of fewer than five days, and young, wide-orbit gas giants, with orbital periods as long as thousands of years. The thesis is based on near-infrared observations of 1

  19. Cavitation problems in sodium valves

    International Nuclear Information System (INIS)

    Elie, X.

    1976-01-01

    Cavitation poses few problems for sodium valves, in spite of the fact that the loops are not pressurized. This is no doubt due to the low flow velocities in the pipes. For auxiliary loop valves we are attempting to standardize performances with respect to cavitation. For economic reasons cavitation thresholds are approached with large diameter valves. (author)

  20. Telocytes in human heart valves.

    Science.gov (United States)

    Yang, Yang; Sun, Wei; Wu, Sean M; Xiao, Junjie; Kong, Xiangqing

    2014-05-01

    Valve interstitial cells (VICs) are responsible for maintaining the structural integrity and dynamic behaviour of the valve. Telocytes (TCs), a peculiar type of interstitial cells, have been recently identified by Popescu's group in epicardium, myocardium and endocardium (visit www.telocytes.com). The presence of TCs has been identified in atria, ventricles and many other tissues and organ, but not yet in heart valves. We used transmission electron microscopy and immunofluorescence methods (double labelling for CD34 and c-kit, or vimentin, or PDGF Receptor-β) to provide evidence for the existence of TCs in human heart valves, including mitral valve, tricuspid valve and aortic valve. TCs are found in both apex and base of heart valves, with a similar density of 27-28 cells/mm(2) in mitral valve, tricuspid valve and aortic valve. Since TCs are known for the participation in regeneration or repair biological processes, it remains to be determined how TCs contributes to the valve attempts to re-establish normal structure and function following injury, especially a complex junction was found between TCs and a putative stem (progenitor) cell. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.