WorldWideScience

Sample records for spin trapping compositions

  1. High-spin nuclear traps

    International Nuclear Information System (INIS)

    Walker, P.; Dracoulis, G.

    1994-01-01

    The reaction pathways in stars, where all the heavy elements in the Universe were formed, are inextricably linked with isomers that live long enough to capture a neutron or proton before they decay. These isomers usually have excitation energies below 0.1 MeV. It is also possible to find highly excited isomers, with several MeV of excitation energy, that are trapped because of their large angular momentum (or spin). But attempts to understand the long-lived highly excited isomers, sometimes known as ''spin traps'', have been hampered by the difficulty of producing this exotic form of nuclear matter. Now, a new generation of radioactive ion beams promises a revolution in the study of high-spin nuclear traps. (author)

  2. Spin trapping in γ-irradiated system

    International Nuclear Information System (INIS)

    Taniguchi, Hitoshi

    1998-01-01

    Spin trapping techniques, allowing one to visualize transient free radical populations by reacting short-lived radicals with a spin trap to produce persistent spin adduct radicals, require that the rate constant for parent radical addition to the spin trap be sufficiently large. The study on the rate of spin trapping reactions, dependent upon steric and electronic (polar) interactions in the complex, has been extended to nitrone spin trapping using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap. We concentrated on the trapping of carboxyalkyl radicals which feature strong hydrogen bonding between the hydroxyl group of the spin addend carboxyl function and the aminosyl oxygen, and a strongly electron withdrawing effect of the spin addend on the DMPO ring. These two features in these radicals, enhancing the polarization of the N 1 -C 2 bond to produce spin adduct fragmentation, were found to be significantly more pronounced than in the case of hydroxylalkyl radical adducts to DMPO. (J.P.N.)

  3. Spin-polarized deuterium in magnetic traps

    International Nuclear Information System (INIS)

    Koelman, J.M.V.A.; Stoof, H.T.C.; Verhaar, B.J.; Walraven, J.T.M.

    1987-01-01

    We have calculated the spin-exchange two-body rate constants associated with the population dynamics of the hyperfine levels of atomic deuterium as a function of magnetic field in the Boltzmann zero-temperature limit. Results indicate that a gas of low-field--seeking deuterium atoms trapped in a static magnetic field minimum decays rapidly into an ultrastable gas of doubly spin-polarized deuterium. We also discuss the temperature dependence of various effects

  4. EPR spin trapping of protein radicals

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan; Hawkins, Clare Louise

    2004-01-01

    Electron paramagnetic resonance (EPR) spin trapping was originally developed to aid the detection of low-molecular-mass radicals formed in chemical systems. It has subsequently found widespread use in biology and medicine for the direct detection of radical species formed during oxidative stress ...

  5. Controlling spin flips of molecules in an electromagnetic trap

    Science.gov (United States)

    Reens, David; Wu, Hao; Langen, Tim; Ye, Jun

    2017-12-01

    Doubly dipolar molecules exhibit complex internal spin dynamics when electric and magnetic fields are both applied. Near magnetic trap minima, these spin dynamics lead to enhancements in Majorana spin-flip transitions by many orders of magnitude relative to atoms and are thus an important obstacle for progress in molecule trapping and cooling. We conclusively demonstrate and address this with OH molecules in a trap geometry where spin-flip losses can be tuned from over 200 s-1 to below our 2 s-1 vacuum-limited loss rate with only a simple external bias coil and with minimal impact on trap depth and gradient.

  6. Nonequilibrium Spin Dynamics in a Trapped Fermi Gas with Effective Spin-Orbit Interactions

    International Nuclear Information System (INIS)

    Stanescu, Tudor D.; Zhang Chuanwei; Galitski, Victor

    2007-01-01

    We consider a trapped atomic system in the presence of spatially varying laser fields. The laser-atom interaction generates a pseudospin degree of freedom (referred to simply as spin) and leads to an effective spin-orbit coupling for the fermions in the trap. Reflections of the fermions from the trap boundaries provide a physical mechanism for effective momentum relaxation and nontrivial spin dynamics due to the emergent spin-orbit coupling. We explicitly consider evolution of an initially spin-polarized Fermi gas in a two-dimensional harmonic trap and derive nonequilibrium behavior of the spin polarization. It shows periodic echoes with a frequency equal to the harmonic trapping frequency. Perturbations, such as an asymmetry of the trap, lead to the suppression of the spin echo amplitudes. We discuss a possible experimental setup to observe spin dynamics and provide numerical estimates of relevant parameters

  7. Finding traps in nonlinear spin arrays

    International Nuclear Information System (INIS)

    Wiesniak, Marcin; Markiewicz, Marcin

    2010-01-01

    Precise knowledge of the Hamiltonian of a system is a key to many of its applications. Tasks such as the state transfer or quantum computation have been well studied with a linear chain, but rarely with systems, which do not possess a linear structure. While this difference does not disturb the end-to-end dynamics of a single excitation, the evolution is significantly changed in other subspaces. Here we quantify the difference between a linear chain and a pseudochain, which have more than one spin at some site (in such a case we will call the site a block). We show how to estimate a number of all spins in the system and the intrablock coupling constants. We also suggest how it is possible to eliminate excitations trapped in such blocks, which may disturb the state transfer. Importantly, one uses only at-ends data and needs to be able to put the system to either the maximally magnetized or the maximally mixed state. This can obtained by controlling a global decoherence parameter, such as temperature.

  8. Lipid radicals: Properties and detection by spin trapping

    International Nuclear Information System (INIS)

    Stolze, K.; Udilova, N.; Nohl, H.

    2000-01-01

    Unsaturated lipids are rapidly oxidized to toxic products such as lipid hydroperoxides, especially when transition metals such as iron or copper are present. In a Fenton-type reaction Fe 2+ converts lipid hydroperoxides to the very short-lived lipid alkoxyl radicals. The reaction was started upon the addition of Fe 2+ to an aqueous linoleic acid hydroperoxide (LOOH) emulsion and the spin trap in the absence of oxygen. Even when high concentrations of spin traps were added to the incubation mixture, only secondary radical adducts were detected, probably due to the rapid rearrangement of the primary alkoxyl radicals. With the commercially available nitroso spin trap MNP we observed a slightly immobilized ESR spectrum with only one hydrogen splitting, indicating the trapping of a methinyl fragment of a lipid radical. With DMPO or 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) adducts were detected with carbon-centered lipid radical, with acyl radical, and with the hydroxyl radical. We also synthesized lipophilic derivatives of the spin trap DEPMPO in order to detect lipid radical species generated in the lipid phase. With all spin traps studied a lipid-derived carbon-centered radical was obtained in the anaerobic incubation system Fe 2+ /LOOH indicating the trapping of a lipid radical, possibly generated as a secondary reaction product of the primary lipid alkoxyl radical formed. Under aerobic conditions an SOD-insensitive oxygen-centered radical adduct was formed with DEPMPO and its lipophilic derivatives. The observed ESR parameters were similar to those of alkoxyl radical adducts, which were independently synthesized in model experiments using Fe 3+ -catalyzed nucleophilic addition of methanol or t-butanol to the respective spin trap. (author)

  9. Spin squeezing and light entanglement in Coherent Population Trapping

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Cviklinski, Jean; Giacobino, Elisabeth

    2006-01-01

    We show that strong squeezing and entanglement can be generated at the output of a cavity containing atoms interacting with two fields in a coherent population trapping situation, on account of a nonlinear Faraday effect experienced by the fields close to a dark-state resonance in a cavity....... Moreover, the cavity provides a feedback mechanism allowing to reduce the quantum fluctuations of the ground state spin, resulting in strong steady state spin squeezing....

  10. Spin-polarized deuterium : stabilization in magnetic traps

    NARCIS (Netherlands)

    Koelman, J.M.V.A.; Stoof, H.T.C.; Verhaar, B.J.; Walraven, J.T.M.

    1987-01-01

    We report on a calculation of the spin-exchange two-body rate constants associated with the population dynamics of the hyperfine levels of atomic deuterium as a function of magnetic field in the Boltzmann zero temperature limit. We find that a gas of low field seeking deuterium atoms trapped in a

  11. Characterization of beer flavour stability (EPR - spin trapping)

    International Nuclear Information System (INIS)

    Stasko, A.; Liptakova, M.; Malik, F.

    1999-01-01

    The beer flavour stability is coupled with free radical degradation processes. Probably, aldehydes produced during the brewery but also generated by stalling are responsible for beer flavour as well as for its breaking down. The storing beer at the lower temperatures and in the dark place inhibits, and otherwise the rising temperature and illumination accelerate the rate of such radical processes. Beers contain naturally occurring radical scavengers - antioxidants which inhibit such unwanted reactions. Then depleting of scavengers results in the breaking down of the beer stability. EPR spin trapping technique was used as monitor such processes and for characterising so the flavour stability of beer. The probe was temperated at 60 grad C in the cavity of EPR spectrometer in the presence of spin trapping agent, N-tert.-butyl-α-phenyl nitrone (PBN) and EPR spectra were recorded for few hours. After beer antioxidants become depleted, free radicals formed by the beer degradation are scavenged by PBN spin trap and this point is characterised with a dramatically increased concentration of the free radicals trapped

  12. Mobile quantum sensing with spins in optically trapped nanodiamonds

    Science.gov (United States)

    Awschalom, David D.

    2013-03-01

    The nitrogen-vacancy (NV) color center in diamond has emerged as a powerful, optically addressable, spin-based probe of electromagnetic fields and temperature. For nanoscale sensing applications, the NV center's atom-like nature enables the close-range interactions necessary for both high spatial resolution and the detection of fields generated by proximal nuclei, electrons, or molecules. Using a custom-designed optical tweezers apparatus, we demonstrate three-dimensional position control of nanodiamonds in solution with simultaneous optical measurement of electron spin resonance (ESR)[3]. Despite the motion and random orientation of NV centers suspended in the optical trap, we observe distinct peaks in the ESR spectra from the ground-state spin transitions. Accounting for the random dynamics of the trapped nanodiamonds, we model the ESR spectra observed in an applied magnetic field and estimate the dc magnetic sensitivity based on the ESR line shapes to be 50 μT/√{ Hz }. We utilize the optically trapped nanodiamonds to characterize the magnetic field generated by current-carrying wires and ferromagnetic structures in microfluidic circuits. These measurements provide a pathway to spin-based sensing in fluidic environments and biophysical systems that are inaccessible to existing scanning probe techniques, such as the interiors of living cells. This work is supported by AFOSR and DARPA.

  13. Linear spin waves in a trapped Bose gas

    International Nuclear Information System (INIS)

    Nikuni, T.; Williams, J.E.; Clark, C.W.

    2002-01-01

    An ultracold Bose gas of two-level atoms can be thought of as a spin-1/2 Bose gas. It supports spin-wave collective modes due to the exchange mean field. Such collective spin oscillations have been observed in recent experiments at JILA with 87 Rb atoms confined in a harmonic trap. We present a theory of the spin-wave collective modes based on the moment method for trapped gases. In the collisionless and hydrodynamic limits, we derive analytic expressions for the frequencies and damping rates of modes with dipole and quadrupole symmetry. We find that the frequency for a given mode is given by a temperature-independent function of the peak density n, and falls off as 1/n. We also find that, to a very good approximation, excitations in the radial and axial directions are decoupled. We compare our model to the numerical integration of a one-dimensional version of the kinetic equation and find very good qualitative agreement. The damping rates, however, show the largest deviation for intermediate densities, where one expects Landau damping--which is unaccounted for in our moment approach--to play a significant role

  14. Non-thermalization in trapped atomic ion spin chains

    Science.gov (United States)

    Hess, P. W.; Becker, P.; Kaplan, H. B.; Kyprianidis, A.; Lee, A. C.; Neyenhuis, B.; Pagano, G.; Richerme, P.; Senko, C.; Smith, J.; Tan, W. L.; Zhang, J.; Monroe, C.

    2017-10-01

    Linear arrays of trapped and laser-cooled atomic ions are a versatile platform for studying strongly interacting many-body quantum systems. Effective spins are encoded in long-lived electronic levels of each ion and made to interact through laser-mediated optical dipole forces. The advantages of experiments with cold trapped ions, including high spatio-temporal resolution, decoupling from the external environment and control over the system Hamiltonian, are used to measure quantum effects not always accessible in natural condensed matter samples. In this review, we highlight recent work using trapped ions to explore a variety of non-ergodic phenomena in long-range interacting spin models, effects that are heralded by the memory of out-of-equilibrium initial conditions. We observe long-lived memory in static magnetizations for quenched many-body localization and prethermalization, while memory is preserved in the periodic oscillations of a driven discrete time crystal state. This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.

  15. The composite insect trap: an innovative combination trap for biologically diverse sampling.

    Directory of Open Access Journals (Sweden)

    Laura Russo

    Full Text Available Documentation of insect diversity is an important component of the study of biodiversity, community dynamics, and global change. Accurate identification of insects usually requires catching individuals for close inspection. However, because insects are so diverse, most trapping methods are specifically tailored to a particular taxonomic group. For scientists interested in the broadest possible spectrum of insect taxa, whether for long term monitoring of an ecosystem or for a species inventory, the use of several different trapping methods is usually necessary. We describe a novel composite method for capturing a diverse spectrum of insect taxa. The Composite Insect Trap incorporates elements from four different existing trapping methods: the cone trap, malaise trap, pan trap, and flight intercept trap. It is affordable, resistant, easy to assemble and disassemble, and collects a wide variety of insect taxa. Here we describe the design, construction, and effectiveness of the Composite Insect Trap tested during a study of insect diversity. The trap catches a broad array of insects and can eliminate the need to use multiple trap types in biodiversity studies. We propose that the Composite Insect Trap is a useful addition to the trapping methods currently available to ecologists and will be extremely effective for monitoring community level dynamics, biodiversity assessment, and conservation and restoration work. In addition, the Composite Insect Trap will be of use to other insect specialists, such as taxonomists, that are interested in describing the insect taxa in a given area.

  16. Spin trapping studies of essential oils in lipid systems

    Directory of Open Access Journals (Sweden)

    Makarova Katerina

    2015-07-01

    Full Text Available In the present work, we report the results of a spin trapping ESR study of four essential oils widely used for skin care products such as creams and bath salts. The studied essential oils are Rosmarini aetheroleum (rosemary, Menthae piperitae aetheroleum (mint, Lavandulae aetheroleum (lavender, and Thymi aetheroleum (thyme. Fenton reaction in the presence of ethanol was used to generate free radicals. The N-tert-butyl-α-phenylnitrone (PBN was used as a spin trap. In the Fenton reaction, the rosemary oil had the lowest effect on radical adduct formation as compared to the reference Fenton system. Since essential oils are known to be lipid soluble, we also conducted studies of essential oils in Fenton reaction in the presence of lipids. Two model lipids were used, namely 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC. The obtained results suggested that in the presence of DOPC lipids, the •OH and PBN/•CHCH3(OH radicals are formed in both phases, that is, water and lipids, and all the studied essential oils affected the Fenton reaction in a similar way. Whereas, in the DPPC system, the additional type of PBN/X (aN = 16.1 G, aH = 2.9 G radical adduct was generated. DFT calculations of hyperfine splittings were performed at B3LYP/6-311+G(d,p/EPR-II level of theory for the set of c-centered PBN adducts in order to identify PBN/X radical.

  17. Spinning magnetic trap for automated microfluidic assay systems†

    Science.gov (United States)

    Verbarg, Jasenka; Kamgar-Parsi, Kian; Shields, Adam R.; Howell, Peter B.; Ligler, Frances S.

    2012-01-01

    While sophisticated analyses have been performed using lab-on-chip devices, in most cases the sample preparation is still performed off chip. The global need for easy-to-use, disposable testing devices necessitates that sample processing is automated and that transport complexity between the processing and analytical components is minimal. We describe a complete sample manipulation unit for performing automated target capture, efficient mixing with reagents, and controlled target release in a microfluidic channel, using an array of spinning magnets. The “MagTrap” device consists of 6 pairs of magnets in a rotating wheel, situated immediately beneath the microchannel. Rotation of the wheel in the direction opposite to the continuous flow entraps and concentrates the bead-target complexes and separates them from the original sample matrix. As the wheel rotates and the active pair of magnets moves away from the microchannel, the beads are released and briefly flow downstream before being trapped and pulled upstream by the next pair of magnets. This dynamic and continuous movement of the beads ensures that the full surface area of each bead is exposed to reagents and prevents aggregation. The release of the target-bead complexes for further analysis is facilitated by reversing the rotational direction of the wheel to sweep the beads downstream. Sample processing with the MagTrap was demonstrated for the detection of E. coli in a range of concentrations (1 × 103, 1 × 104 and 1 × 106 cells ml−1). Results show that sample processing with the MagTrap outperformed the standard manual protocols, improving the detection capability while simultaneously reducing the processing time. PMID:22344487

  18. Quantum simulation of spin models on an arbitrary lattice with trapped ions

    International Nuclear Information System (INIS)

    Korenblit, S; Kafri, D; Campbell, W C; Islam, R; Edwards, E E; Monroe, C; Gong, Z-X; Lin, G-D; Duan, L-M; Kim, J; Kim, K

    2012-01-01

    A collection of trapped atomic ions represents one of the most attractive platforms for the quantum simulation of interacting spin networks and quantum magnetism. Spin-dependent optical dipole forces applied to an ion crystal create long-range effective spin–spin interactions and allow the simulation of spin Hamiltonians that possess nontrivial phases and dynamics. Here we show how the appropriate design of laser fields can provide for arbitrary multidimensional spin–spin interaction graphs even for the case of a linear spatial array of ions. This scheme uses currently available trap technology and is scalable to levels where the classical methods of simulation are intractable. (paper)

  19. Use of isotopically labelled spin-traps to determine definitively the presence or absence of non-radical addition artefacts in EPR spin-trapping systems.

    Science.gov (United States)

    Timmins, G S; Barlow, G K; Silvester, J A; Wei, X; Whitwood, A C

    1997-04-01

    EPR spin-trapping, although a powerful, sensitive technique for the study of free radicals, can be susceptible to artefacts; one of the most intractable to determine has been the non-radical addition of a substrate to a spin-trap followed by oxidation of the product to an EPR-detectable nitroxide. This work details how differentially isotopically labelled spin-traps (either nitroso or nitrone) may be used to determine the presence (or absence) of such artefacts, and provide a semi-quantitative measure of the extent of their contribution to the total EPR spectra in spin-trapping reactions. Artefactual 'ene' addition of the nitroso spin-trap 3,5-dibromo-4-nitroso-benzenesulphonic acid (DBNBS) to tryptophan followed by oxidation to EPR-detectable products has been confirmed, as has its nucleophilic addition to the thiol of glutathione to give non-EPR detectable products. The nitrone α-phenyl-N-tert-butylnitrone (PBN) exhibited no such reactivity.

  20. Methodological considerations of electron spin resonance spin trapping techniques for measuring reactive oxygen species generated from metal oxide nanomaterials.

    Science.gov (United States)

    Jeong, Min Sook; Yu, Kyeong-Nam; Chung, Hyun Hoon; Park, Soo Jin; Lee, Ah Young; Song, Mi Ryoung; Cho, Myung-Haing; Kim, Jun Sung

    2016-05-19

    Qualitative and quantitative analyses of reactive oxygen species (ROS) generated on the surfaces of nanomaterials are important for understanding their toxicity and toxic mechanisms, which are in turn beneficial for manufacturing more biocompatible nanomaterials in many industrial fields. Electron spin resonance (ESR) is a useful tool for detecting ROS formation. However, using this technique without first considering the physicochemical properties of nanomaterials and proper conditions of the spin trapping agent (such as incubation time) may lead to misinterpretation of the resulting data. In this report, we suggest methodological considerations for ESR as pertains to magnetism, sample preparation and proper incubation time with spin trapping agents. Based on our results, each spin trapping agent should be given the proper incubation time. For nanomaterials having magnetic properties, it is useful to remove these nanomaterials via centrifugation after reacting with spin trapping agents. Sonication for the purpose of sample dispersion and sample light exposure should be controlled during ESR in order to enhance the obtained ROS signal. This report will allow researchers to better design ESR spin trapping applications involving nanomaterials.

  1. Inhomogeneous Spin Diffusion in Traps with Cold Atoms

    DEFF Research Database (Denmark)

    Heiselberg, Henning

    2012-01-01

    The spin diusion and damped oscillations are studied in the collision of two spin polarized clouds of cold atoms with resonant interactions. The strong density dependence of the diusion coecient leads to inhomogeneous spin diusion that changes from central to surface spin ow as the temperature...

  2. ESR-spin trapping studies on the interaction between anthraquinone triplets and aromatic compounds

    International Nuclear Information System (INIS)

    Moger, G.; Rockenbauer, A.; Simon, P.

    1980-01-01

    The ESR spin trapping technique was used for the detection of transient C-centered radicals in the photochemical interaction between triplet anthraquinone and aromatic hydroperoxide and alcohol. (author)

  3. Repulsively interacting fermions in a two-dimensional deformed trap with spin-orbit coupling

    DEFF Research Database (Denmark)

    Marchukov, O. V.; Fedorov, D. V.; Jensen, A. S.

    2015-01-01

    We investigate a two-dimensional system of fermions with two internal (spin) degrees of freedom. It is confined by a deformed harmonic trap and subject to a Zeeman field, Rashba or Dresselhaus one-body spin-orbit couplings and two-body short range repulsion. We obtain self-consistent mean-field $N...

  4. Mapping trapped atomic gas with spin-orbit coupling to quantum Rabi-like model

    OpenAIRE

    Hu, Haiping; Chen, Shu

    2013-01-01

    We construct a connection of the ultracold atomic system in a harmonic trap with Raman-induced spin-orbit coupling to the quantum Rabi-like model. By mapping the trapped atomic system to a Rabi-like model, we can get the exact solution of the Rabi-like model following the methods to solve the quantum Rabi model. The existence of such a mapping implies that we can study the basic model in quantum optics by using trapped atomic gases with spin-orbit coupling.

  5. An EPR spin-probe and spin-trap study of the free radicals produced by plant plasma membranes

    Directory of Open Access Journals (Sweden)

    GORAN BACIC

    2005-02-01

    Full Text Available Plant plasma membranes are known to produce superoxide radicals, while the production of hydroxyl radical is thought to occur only in the cell wall. In this work it was demonstrated using combined spin-trap and spin-probe EPR spectroscopic techniques, that plant plasma membranes do produce superoxide and hydroxyl radicals but by kinetically different mechanisms. The results show that superoxide and hydroxyl radicals can be detected by DMPO spin-trap and that the mechanisms and location of their production can be differentiated using the reduction of spin-probes Tempone and 7-DS. It was shown that the mechanism of production of oxygen reactive species is NADH dependent and diphenylene iodonium inhibited. The kinetics of the reduction of Tempone, combined with scavengers or the absence of NADH indicates that hydroxyl radicals are produced by a mechanism independent of that of superoxide production. It was shown that a combination of the spin-probe and spin-trap technique can be used in free radical studies of biological systems, with a number of advantages inherent to them.

  6. Potential Use of Spin Traps to Control ROS in Antipollution Cosmetics—A Review

    Directory of Open Access Journals (Sweden)

    Prashant D. Sawant

    2018-01-01

    Full Text Available Pollution from air and sunlight has adverse effects on human health, particularly skin health. It creates oxidative stress, which results in skin diseases, including skin cancer and aging. Different types of antioxidants are used as preventative actives in skin-care products. However, they have some limitations as they also scavenge oxygen. Recently, spin traps are being explored to trap free radicals before these radicals generating more free radicals (cascading effect and not the oxygen molecules. However, not all spin traps can be used in the topical cosmetic skin-care products due to their toxicity and regulatory issues. The present review focuses on the different pathways of reactive oxygen species (ROS generation due to pollution and the potential use of spin traps in anti-pollution cosmetics to control ROS.

  7. Imaging free radicals in organelles, cells, tissue, and in vivo with immuno-spin trapping.

    Science.gov (United States)

    Mason, Ronald Paul

    2016-08-01

    The accurate and sensitive detection of biological free radicals in a reliable manner is required to define the mechanistic roles of such species in biochemistry, medicine and toxicology. Most of the techniques currently available are either not appropriate to detect free radicals in cells and tissues due to sensitivity limitations (electron spin resonance, ESR) or subject to artifacts that make the validity of the results questionable (fluorescent probe-based analysis). The development of the immuno-spin trapping technique overcomes all these difficulties. This technique is based on the reaction of amino acid- and DNA base-derived radicals with the spin trap 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) to form protein- and DNA-DMPO nitroxide radical adducts, respectively. These adducts have limited stability and decay to produce the very stable macromolecule-DMPO-nitrone product. This stable product can be detected by mass spectrometry, NMR or immunochemistry by the use of anti-DMPO nitrone antibodies. The formation of macromolecule-DMPO-nitrone adducts is based on the selective reaction of free radical addition to the spin trap and is thus not subject to artifacts frequently encountered with other methods for free radical detection. The selectivity of spin trapping for free radicals in biological systems has been proven by ESR. Immuno-spin trapping is proving to be a potent, sensitive (a million times higher sensitivity than ESR), and easy (not quantum mechanical) method to detect low levels of macromolecule-derived radicals produced in vitro and in vivo. Anti-DMPO antibodies have been used to determine the distribution of free radicals in cells and tissues and even in living animals. In summary, the invention of the immuno-spin trapping technique has had a major impact on the ability to accurately and sensitively detect biological free radicals and, subsequently, on our understanding of the role of free radicals in biochemistry, medicine and toxicology. Published by

  8. Inverse engineering for fast transport and spin control of spin-orbit-coupled Bose-Einstein condensates in moving harmonic traps

    Science.gov (United States)

    Chen, Xi; Jiang, Ruan-Lei; Li, Jing; Ban, Yue; Sherman, E. Ya.

    2018-01-01

    We investigate fast transport and spin manipulation of tunable spin-orbit-coupled Bose-Einstein condensates in a moving harmonic trap. Motivated by the concept of shortcuts to adiabaticity, we design inversely the time-dependent trap position and spin-orbit-coupling strength. By choosing appropriate boundary conditions we obtain fast transport and spin flip simultaneously. The nonadiabatic transport and relevant spin dynamics are illustrated with numerical examples and compared with the adiabatic transport with constant spin-orbit-coupling strength and velocity. Moreover, the influence of nonlinearity induced by interatomic interaction is discussed in terms of the Gross-Pitaevskii approach, showing the robustness of the proposed protocols. With the state-of-the-art experiments, such an inverse engineering technique paves the way for coherent control of spin-orbit-coupled Bose-Einstein condensates in harmonic traps.

  9. Polar-core spin vortex of quasi-2D ferromagnetic spin-1 condensate in a flat-bottomed optical trap with a weak magnetic field

    Science.gov (United States)

    Zheng, Gong-Ping; Li, Pin; Li, Ting; Xue, Ya-Jie

    2018-02-01

    Motivated by the recent experiments realized in a flat-bottomed optical trap (Navon et al., 2015; Chomaz et al., 2015), we study the ground state of polar-core spin vortex of quasi-2D ferromagnetic spin-1 condensate in a finite-size homogeneous trap with a weak magnetic field. The exact spatial distribution of local spin is obtained with a variational method. Unlike the fully-magnetized planar spin texture with a zero-spin core, which was schematically demonstrated in previous studies for the ideal polar-core spin vortex in a homogeneous trap with infinitely large boundary, some plateaus and two-cores structure emerge in the distribution curves of spin magnitude in the polar-core spin vortex we obtained for the larger effective spin-dependent interaction. More importantly, the spin values of the plateaus are not 1 as expected in the fully-magnetized spin texture, except for the sufficiently large spin-dependent interaction and the weak-magnetic-field limit. We attribute the decrease of spin value to the effect of finite size of the system. The spin values of the plateaus can be controlled by the quadratic Zeeman energy q of the weak magnetic field, which decreases with the increase of q.

  10. Radical Intermediates in Photoinduced Reactions on TiO2 (An EPR Spin Trapping Study

    Directory of Open Access Journals (Sweden)

    Dana Dvoranová

    2014-10-01

    Full Text Available The radical intermediates formed upon UVA irradiation of titanium dioxide suspensions in aqueous and non-aqueous environments were investigated applying the EPR spin trapping technique. The results showed that the generation of reactive species and their consecutive reactions are influenced by the solvent properties (e.g., polarity, solubility of molecular oxygen, rate constant for the reaction of hydroxyl radicals with the solvent. The formation of hydroxyl radicals, evidenced as the corresponding spin-adducts, dominated in the irradiated TiO2 aqueous suspensions. The addition of 17O-enriched water caused changes in the EPR spectra reflecting the interaction of an unpaired electron with the 17O nucleus. The photoexcitation of TiO2 in non-aqueous solvents (dimethylsulfoxide, acetonitrile, methanol and ethanol in the presence of 5,5-dimethyl-1-pyrroline N-oxide spin trap displayed a stabilization of the superoxide radical anions generated via electron transfer reaction to molecular oxygen, and various oxygen- and carbon-centered radicals from the solvents were generated. The character and origin of the carbon-centered spin-adducts was confirmed using nitroso spin trapping agents.

  11. The combined field emission-spin trapping method for studying reactions of electrons in organic solutions

    International Nuclear Information System (INIS)

    Noda, Shoji; Ohta, Yasunari; Yoshida, Hiroshi

    1979-01-01

    The reactions of electrons injected by field emission into solutions have been investigated. Free radicals generated by the dissociative electron attachment to chlorinated solutes in benzene solutions were detected by the spin trapping-ESR method, using pentamethylnitrosobenzene as a spin trapping agent. Nondissociative electron attachment to styrene caused by the field emission was also evidenced by detecting the α-methylbenzyl radical generated secondarily from the styrene radical anion. The electrons field-emitted into the solutions are captured almost quantitatively by the electron scavenging solutes. The field emission method has been found to be useful for generating authentically free radicals and for studying the anionic reaction induced by electrons without interference of countercations and of any reaction intermediates from solvent molecules. As an example of the chemical utilization of the field emission technique, the ESR parameters of the spin adducts of several hydrocarbon radicals have been collected by this technique. (author)

  12. E.s.r. of spin-trapped radicals in aqueous solutions of amino acids

    International Nuclear Information System (INIS)

    Rustgi, S.; Joshi, A.; Rieze, P.; Friedberg, F.

    1977-01-01

    The reactions of hydrated electrons (esub(aq) - ) with amino acids were investigated by the spin-trapping method and by electron spin resonance. Tertiary nitrosobutane was used as a spin-trap to stabilize the short-lived radicals. Hydrated electrons were produced by X-radiolysis of de-aerated aqueous solutions of amino acids in the presence of sodium formate or tertiary butanol to scavenge OH. Radicals produced by reductive deamination of 19 amino acids were identified. Radicals formed by scission of the CH 3 -S- and -S-CH 2 bonds of methionine as well as deamination were observed. In the case of phenylalanine the radical formed by electron addition followed by proton transfer was identified. The reaction of proline and of hydroxyproline with esub(aq) - resulted in the opening of the cyclic structure. (author)

  13. Chiral spin currents in a trapped-ion quantum simulator using Floquet engineering

    Science.gov (United States)

    Graß, Tobias; Celi, Alessio; Pagano, Guido; Lewenstein, Maciej

    2018-01-01

    The most typical ingredient of topologically protected quantum states is magnetic fluxes. In a system of spins, complex-valued interaction parameters give rise to a flux, if their phases do not add up to zero along a closed loop. Here we apply periodic driving, a powerful tool for quantum engineering, to a trapped-ion quantum simulator in order to generate such spin-spin interactions. We consider a simple driving scheme, consisting of a repeated series of locally quenched fields, and demonstrate the feasibility of this approach by studying the dynamics of a small system. An emblematic hallmark of the flux, accessible in experiments, is the appearance of chiral spin currents. Strikingly, we find that in parameter regimes where, in the absence of fluxes, phonon excitations dramatically reduce the fidelity of the spin model simulation, the spin dynamics remains widely unaffected by the phonons when fluxes are present. Our work provides a realistic experimental recipe to engineer the minimal building block of a topological quantum system with a currently existing ion trap apparatus.

  14. Engineered Two-Dimensional Ising Interactions on a Trapped-Ion Quantum Simulator with Hundreds of Spins

    Science.gov (United States)

    2012-01-01

    this approach [6–14]. However, simulations of quantum magnetism allow- ing controlled, tunable interactions between spins localized on 2D and 3D ...antiferromagnetic Heisenberg interaction. The spin-liquid’s Figure 1. The Penning trap confines hundreds of spin-1/2 particles (qubits) on a two...simulations of quantum Ising and Heisenberg inter- actions with localized spins were done with neutral atoms in optical lattices [6, 11], atomic ions in Paul

  15. On the Equivalence of Trapped Colloids, Pinned Vortices, and Spin Ice

    Energy Technology Data Exchange (ETDEWEB)

    Nisoli, Cristiano [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-04-23

    We investigate the recently reported analogies between pinned vortices in nano-structured superconductors or colloids in optical traps, and spin ice materials. The frustration of the two models, one describing colloids and vortices, the other describing spin ice, differs essentially. However, their effective energetics is made identical by the contribution of an emergent field associated to a topological charge. This equivalence extends to the local low-energy dynamics of the ice manifold, yet breaks down in lattices of mixed coordination, because of topological charge transfer between sub-latices.

  16. Spin Diffusion in Trapped Clouds of Cold Atoms with Resonant Interactions

    DEFF Research Database (Denmark)

    Bruun, Georg Morten; Pethick, C. J.

    2011-01-01

    We show that puzzling recent experimental results on spin diffusion in a strongly interacting atomic gas may be understood in terms of the predicted spin diffusion coefficient for a generic strongly interacting system. Three important features play a central role: (a) Fick’s law for diffusion mus...... be modified to allow for the trapping potential; (b) the diffusion coefficient is inhomogeneous, due to the density variations in the cloud; and (c) the diffusion approximation fails in the outer parts of the cloud, where the mean free path is long....

  17. High frequency spin torque oscillators with composite free layer spin valve

    International Nuclear Information System (INIS)

    Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda

    2016-01-01

    We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.

  18. Spin dynamics of large-spin fermions in a harmonic trap

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Junjun; Feng, Tongtong; Gu, Qiang, E-mail: qgu@ustb.edu.cn

    2017-04-15

    Understanding the collective dynamics in a many-body system has been a central task in condensed matter physics. To achieve this task, we develop a Hartree–Fock theory to study the collective oscillations of spinor Fermi system, motivated by recent experiment on spin-9/2 fermions. We observe an oscillation period shoulder for small rotation angles. Different from previous studies, where the shoulder is found connected to the resonance from periodic to running phase, here the system is always in a running phase in the two-body phase space. This shoulder survives even in the many-body oscillations, which could be tested in the experiments. We also show how these collective oscillations evolve from two- to many-body. Our theory provides an alternative way to understand the collective dynamics in large-spin Fermi systems.

  19. Detection of individual spin transitions of a single proton confined in a cryogenic Penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Kracke, Holger

    2013-02-27

    The presented experiment for the determination of the magnetic moment of the proton is based on the measurement of the ratio of cyclotron frequency and Larmor frequency of a single proton confined in a cryogenic double-Penning trap. In the course of this thesis, the simultaneous non-destructive measurement of two of the three eigenfrequencies of the proton in thermal equilibrium with corresponding detection systems was demonstrated, which reduces the measurement time of the cyclotron frequency by a factor of two. Furthermore, this thesis presents the first detection of individual spin transitions of a single proton, which allows for the determination of the Larmor frequency. The continuous Stern-Gerlach effect is utilized to couple the magnetic moment to the axial mode of the trapped proton by means of a magnetic bottle. Thus, a spin flip causes a jump of the axial frequency, which can be measured non-destructively with highly-sensitive detection systems. However, not only the spin momentum is coupled to the axial motion but also the angular momentum. Thus, the main experimental challenge is the elimination of energy fluctuations in the radial modes in order to maintain spin flip resolution. Due to systematic studies on the stability of the axial frequency and a complete revision of the experimental setup, this goal was achieved. The spin state of the proton can be determined with very high fidelity for the very first time. Thus, this thesis represents an important step towards a high-precision determination of the magnetic moment of the proton.

  20. Kinetics and Mechanism of Ultrasonic Activation of Persulfate: An in Situ EPR Spin Trapping Study.

    Science.gov (United States)

    Wei, Zongsu; Villamena, Frederick A; Weavers, Linda K

    2017-03-21

    Ultrasound (US) was shown to activate persulfate (PS) providing an alternative activation method to base or heat as an in situ chemical oxidation (ISCO) method. The kinetics and mechanism of ultrasonic activation of PS were examined in aqueous solution using an in situ electron paramagnetic resonance (EPR) spin trapping technique and radical trapping with probe compounds. Using the spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), hydroxyl radical ( • OH) and sulfate radical anion (SO 4 •- ) were measured from ultrasonic activation of persulfate (US-PS). The yield of • OH was up to 1 order of magnitude greater than that of SO 4 •- . The comparatively high • OH yield was attributed to the hydrolysis of SO 4 •- in the warm interfacial region of cavitation bubbles formed from US. Using steady-state approximations, the dissociation rate of PS in cavitating bubble systems was determined to be 3 orders of magnitude greater than control experiments without sonication at ambient temperature. From calculations of the interfacial volume surrounding cavitation bubbles and using the Arrhenius equation, an effective mean temperature of 340 K at the bubble-water interface was estimated. Comparative studies using the probe compounds tert-butyl alcohol and nitrobenzene verified the bubble-water interface as the location for PS activation by high temperature with • OH contributing a minor role in activating PS to SO 4 •- . The mechanisms unveiled in this study provide a basis for optimizing US-PS as an ISCO technology.

  1. Strong coupling between a single nitrogen-vacancy spin and the rotational mode of diamonds levitating in an ion trap

    Science.gov (United States)

    Delord, T.; Nicolas, L.; Chassagneux, Y.; Hétet, G.

    2017-12-01

    A scheme for strong coupling between a single atomic spin and the rotational mode of levitating nanoparticles is proposed. The idea is based on spin readout of nitrogen-vacancy centers embedded in aspherical nanodiamonds levitating in an ion trap. We show that the asymmetry of the diamond induces a rotational confinement in the ion trap. Using a weak homogeneous magnetic field and a strong microwave driving we then demonstrate that the spin of the nitrogen-vacancy center can be strongly coupled to the rotational mode of the diamond.

  2. Performance improvement of charge trap flash memory by using a composition-modulated high-k trapping layer

    International Nuclear Information System (INIS)

    Tang Zhen-Jie; Li Rong; Yin Jiang

    2013-01-01

    A composition-modulated (HfO 2 ) x (Al 2 O3) 1−x charge trapping layer is proposed for charge trap flash memory by controlling the Al atom content to form a peak and valley shaped band gap. It is found that the memory device using the composition-modulated (HfO 2 ) x (Al 2 O 3 ) 1−x as the charge trapping layer exhibits a larger memory window of 11.5 V, improves data retention even at high temperature, and enhances the program/erase speed. Improvements of the memory characteristics are attributed to the special band-gap structure resulting from the composition-modulated trapping layer. Therefore, the composition-modulated charge trapping layer may be useful in future nonvolatile flash memory device application. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. In vivo spin-trapping of the metabolites of 3,3'-dichlorobenzidine

    International Nuclear Information System (INIS)

    Iba, M.M.; Ghoshal, A.; Poyer, J.L.; Downs, P.; Massion, W.H.

    1990-01-01

    The carcinogen 3,3'-dichlorobenzidine (DCB) is bioactivated by liver enzymes to lipid-binding derivatives. To characterize the intermediates involved, male rats were treated with 14 C[U]DCB (100 mg, po and ip), followed 4 hr later by the spin trap ∝ phenyl-N-tert-butyl nitrone [(PBN), 50 mg, po and ip]. The rats were sacrificed 30 min after PBN treatment and the livers isolated and homogenized in CHCl 3 :CH 3 OH (2:1, v:v). The Folch extracts were analyzed by electron spin resonance (esr) spectroscopy, TLC and HPLC. The solvent extract yielded a 6-line spectrum by esr spectroscopy characteristic of a PBN adduct of an aryl radical. HPLC analysis of the extract revealed the presence of benzidine and a paramagnetic fraction which contained a PBN adduct of a DCB derivative. It is concluded that DCB undergoes reductive dehalogenation with aryl radicals as intermediates

  4. Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds

    Science.gov (United States)

    Horowitz, Viva R.; Alemán, Benjamín J.; Christle, David J.; Cleland, Andrew N.; Awschalom, David D.

    2012-01-01

    Using an optical tweezers apparatus, we demonstrate three-dimensional control of nanodiamonds in solution with simultaneous readout of ground-state electron-spin resonance (ESR) transitions in an ensemble of diamond nitrogen-vacancy color centers. Despite the motion and random orientation of nitrogen-vacancy centers suspended in the optical trap, we observe distinct peaks in the measured ESR spectra qualitatively similar to the same measurement in bulk. Accounting for the random dynamics, we model the ESR spectra observed in an externally applied magnetic field to enable dc magnetometry in solution. We estimate the dc magnetic field sensitivity based on variations in ESR line shapes to be approximately . This technique may provide a pathway for spin-based magnetic, electric, and thermal sensing in fluidic environments and biophysical systems inaccessible to existing scanning probe techniques. PMID:22869706

  5. Spectral Gaps of Spin-orbit Coupled Particles in Deformed Traps

    DEFF Research Database (Denmark)

    V. Marchukov, O.; G. Volosniev, A.; V. Fedorov, D.

    2013-01-01

    the spectrum. The effect of a Zeeman term is also considered. Our results demonstrate that variable spectral gaps occur as a function of strength of the Rashba interaction and deformation of the harmonic trapping potential. The single-particle density of states and the critical strength for superfluidity vary...... tremendously with the interaction parameter. The strong variations with Rashba coupling and deformation implies that the few- and many-body physics of spin-orbit coupled systems can be manipulated by variation of these parameters....

  6. Use of the Spin-Trapping method to establish the radical steps in the reactions of organic compounds of zinc, cadmium, and mercury with various peroxides

    International Nuclear Information System (INIS)

    Dodonov, V.A.; Grishin, D.F.

    1985-01-01

    This paper uses the spin trapping method to investigate the homolytic reactions of group II organometallic compounds (OMC) with organic and heteroorganic peroxides. The radical reactions of the OMC with peroxides was investigated and the reactivity of the spin traps was examined with respect to compounds of zinc, cadmium, and mercury. Phenyl-tert-butylnitron (I), 2-methyl-2-nitrosopropane (II), and tri-bromonitrobenzene (III) were chosen as spin traps. The radicals formed are aable to initiate the polymerization of vinyl monomers

  7. In Vivo and In Situ Detection of Macromolecular Free Radicals Using Immuno-Spin Trapping and Molecular Magnetic Resonance Imaging.

    Science.gov (United States)

    Towner, Rheal A; Smith, Nataliya

    2017-12-11

    In vivo free radical imaging in preclinical models of disease has become a reality. Free radicals have traditionally been characterized by electron spin resonance (ESR) or electron paramagnetic resonance (EPR) spectroscopy coupled with spin trapping. The disadvantage of the ESR/EPR approach is that spin adducts are short-lived due to biological reductive and/or oxidative processes. Immuno-spin trapping (IST) involves the use of an antibody that recognizes macromolecular 5,5-dimethyl-pyrroline-N-oxide (DMPO) spin adducts (anti-DMPO antibody), regardless of the oxidative/reductive state of trapped radical adducts. Recent Advances: The IST approach has been extended to an in vivo application that combines IST with molecular magnetic resonance imaging (mMRI). This combined IST-mMRI approach involves the use of a spin-trapping agent, DMPO, to trap free radicals in disease models, and administration of an mMRI probe, an anti-DMPO probe, which combines an antibody against DMPO-radical adducts and an MRI contrast agent, resulting in targeted free radical adduct detection. The combined IST-mMRI approach has been used in several rodent disease models, including diabetes, amyotrophic lateral sclerosis (ALS), gliomas, and septic encephalopathy. The advantage of this approach is that heterogeneous levels of trapped free radicals can be detected directly in vivo and in situ to pin point where free radicals are formed in different tissues. The approach can also be used to assess therapeutic agents that are either free radical scavengers or generate free radicals. Smaller probe constructs and radical identification approaches are being considered. The focus of this review is on the different applications that have been studied, advantages and limitations, and future directions. Antioxid. Redox Signal. 00, 000-000.

  8. Spin trapping of free radical products of CCl4 activation using pulse radiolysis and high energy radiation procedures

    International Nuclear Information System (INIS)

    Tomasi, A.; Albano, E.; Lott, K.A.K.; Slater, T.F.

    1980-01-01

    The authors have studied the interaction of CCl 3 with the spin-trap phenylbutylnitrone in a simplified model system where the CCl 3 radicals are produced by a pulse of high energy electrons. They have previously obtained kinetic data on the reactivity of CCl 3 and its peroxy-derivative CCl 3 O 2 in this model system. These data, together with ESR analysis with 13 CCl 4 , allow them to unequivocally identify the spin-trap adducts of CCl 3 and CCl 3 O 2 ; identical spectra are also reported for microsomal systems, intact hepatocytes and under conditions in vivo. (Auth.)

  9. Use of a cocktail of spin traps for fingerprinting large range of free radicals in biological systems.

    Science.gov (United States)

    Marchand, Valérie; Charlier, Nicolas; Verrax, Julien; Buc-Calderon, Pedro; Levêque, Philippe; Gallez, Bernard

    2017-01-01

    It is well established that the formation of radical species centered on various atoms is involved in the mechanism leading to the development of several diseases or to the appearance of deleterious effects of toxic molecules. The detection of free radical is possible using Electron Paramagnetic Resonance (EPR) spectroscopy and the spin trapping technique. The classical EPR spin-trapping technique can be considered as a "hypothesis-driven" approach because it requires an a priori assumption regarding the nature of the free radical in order to select the most appropriate spin-trap. We here describe a "data-driven" approach using EPR and a cocktail of spin-traps. The rationale for using this cocktail was that it would cover a wide range of biologically relevant free radicals and have a large range of hydrophilicity and lipophilicity in order to trap free radicals produced in different cellular compartments. As a proof-of-concept, we validated the ability of the system to measure a large variety of free radicals (O-, N-, C-, or S- centered) in well characterized conditions, and we illustrated the ability of the technique to unambiguously detect free radical production in cells exposed to chemicals known to be radical-mediated toxic agents.

  10. Radiolysis of liquid cyclohexanol. Determination of yields and reactivity of radicals by spin traps method

    International Nuclear Information System (INIS)

    Val'ter, A.I.; Zubarev, V.E.; Bugaenko, L.T.

    1986-01-01

    Using C-phenyl-N-tretbutylnitron (PBN) spin trap total yield of radicals Gsub(σR)=3.2+-0.2 rad/100 eV during cyclohexanol radiolysis ( 60 Co) in liquid phase is measured. 1-hydroxycyclohexyl RC[OH)R radical yield is Gsub(RC(OH)R)=1.2+-0.1 rad/100 eV, RC-HR radicals of H atom scission from the ones of C 2 , C 3 , C 4 -cyclohexane ring are formed with the yield Gsub(RC-HR)=2.0+-0.1 rad/100 eV. RC-HR radicals react with cyclohexanol molecules forming RC[OH)R. The rate constant ratio of RC-HR reactions with alcohol and PBN:Rsub(al)/ksub(PBN)=(3.6+-0.4)x10sup(-4) is determined

  11. Observation of Hopping and Blockade of Bosons in a Trapped Ion Spin Chain

    Science.gov (United States)

    Debnath, S.; Linke, N. M.; Wang, S.-T.; Figgatt, C.; Landsman, K. A.; Duan, L.-M.; Monroe, C.

    2018-02-01

    The local phonon modes in a Coulomb crystal of trapped ions can represent a Hubbard system of coupled bosons. We selectively prepare single excitations at each site and observe free hopping of a boson between sites, mediated by the long-range Coulomb interaction between ions. We then implement phonon blockades on targeted sites by driving a Jaynes-Cummings interaction on individually addressed ions to couple their internal spin to the local phonon mode. The resulting dressed states have energy splittings that can be tuned to suppress phonon hopping into the site. This new experimental approach opens up the possibility of realizing large-scale Hubbard systems from the bottom up with tunable interactions at the single-site level.

  12. Spin trapping study on the nature of radicals generated by X radiolysis and peroxidation of linolenic acid

    International Nuclear Information System (INIS)

    Azizova, O.A.; Osipov, A.N.; Zubarev, V.E.; Yakhyaev, A.V.; Vladimirov, Yu.A.; Savov, V.M.; Kagan, V.E.

    1983-01-01

    The radicals of linolenic acid and their spin adducts (SA) with PBN formed during X radiolysis of linolenic acid and in lipid peroxidation with ferrous ions were investigated and identified. It was found that in the absence of oxygen in pure linolenic acid at 77 K X irradiation produces alkyl and carboxyl radicals. In the presence of the spin trap alkyl radical spin adducts were formed. Irradiation of linolenic acid in the presence of oxygen at 77 K also resulted in the formation of alkyl radicals. These radicals were transformed into peroxy radicals in the interaction of alkyl radical with oxygen upon heating to 117 K. In the presence of spin trap X irradiation of linolenic acid and heating of the sample up to 300 K gave rise to EPR spectra of SA alkyl and unidentified radicals. Lipid peroxidation of linolenic acid induced by ferrous ions in the presence of spin trap also formed radicals and SA of linolenic acid. The spectral parameters of SA generated with ferrous ions in lipid peroxidation and of those generated during X radiolysis do not differ. The similarity of spectral parameters of SA in these two cases suggests a similarity in the structure of linolenic acid radicals. (author)

  13. Electron spin resonance characterization of trapping centers in Unibond reg-sign buried oxides

    International Nuclear Information System (INIS)

    Conley, J.F. Jr.; Lenahan, P.M.; Wallace, B.D.

    1996-01-01

    Electron spin resonance and capacitance vs. voltage measurements are used to evaluate the radiation response of Unibond buried oxides. When damaged by hole injection, it is found that Unibond reg-sign buried oxides exhibit a rough correspondence between E' centers and positive charge as well as generation of P b centers at the Unibond buried oxide/Si interface. In these respects, Unibond buried oxides qualitatively resemble thermal SiO 2 . However, a hydrogen complexed E' center known as the 74 G doublet is also detected in the Unibond buried oxides. This defect is not detectable in thermal SiO 2 under similar circumstances. Since the presence of 74 G doublet center is generally indicative of very high hydrogen content and since hydrogen is clearly a significant participant in radiation damage, this result suggests a qualitative difference between the radiation response of Unibond and thermal SiO 2 . Unibond results are also compared and contrasted with similar investigations on separation-by-implanted-oxygen (SIMOX) buried oxides. Although the charge trapping response of Unibond buried oxides may be inferior to that of radiation hardened thermal SiO 2 , it appears to be more simple and superior to that of SIMOX buried oxides

  14. Spin-Orbit-Coupled Interferometry with Ring-Trapped Bose-Einstein Condensates

    Science.gov (United States)

    Helm, J. L.; Billam, T. P.; Rakonjac, A.; Cornish, S. L.; Gardiner, S. A.

    2018-02-01

    We propose a method of atom interferometry using a spinor Bose-Einstein condensate with a time-varying magnetic field acting as a coherent beam splitter. Our protocol creates long-lived superpositional counterflow states, which are of fundamental interest and can be made sensitive to both the Sagnac effect and magnetic fields on the sub-μ G scale. We split a ring-trapped condensate, initially in the mf=0 hyperfine state, into superpositions of internal mf=±1 states and condensate superflow, which are spin-orbit coupled. After interrogation, the relative phase accumulation can be inferred from a population transfer to the mf=±1 states. The counterflow generation protocol is adiabatically deterministic and does not rely on coupling to additional optical fields or mechanical stirring techniques. Our protocol can maximize the classical Fisher information for any rotation, magnetic field, or interrogation time and so has the maximum sensitivity available to uncorrelated particles. Precision can increase with the interrogation time and so is limited only by the lifetime of the condensate.

  15. Electron Spin Resonance study of charge trapping in α-ZnMoO.sub.4./sub. single crystal scintillator

    Czech Academy of Sciences Publication Activity Database

    Buryi, Maksym; Spassky, D.A.; Hybler, Jiří; Laguta, Valentyn; Nikl, Martin

    2015-01-01

    Roč. 47, Sep (2015), 244-250 ISSN 0925- 3467 R&D Projects: GA MŠk LO1409; GA MŠk(CZ) LM2011029; GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : Electron Spin Resonance * scintillator * charge traps * zinc molybdate Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2015

  16. EPR investigation of zinc/iodine exchange between propargyl iodides and diethylzinc: detection of propargyl radical by spin trapping.

    Science.gov (United States)

    Maury, Julien; Jammi, Suribabu; Vibert, François; Marque, Sylvain R A; Siri, Didier; Feray, Laurence; Bertrand, Michèle

    2012-10-19

    The production of propargyl radicals in the reaction of dialkylzincs with propargyl iodides in nondegassed medium was investigated by EPR using tri-tert-butylnitrosobenzene (TTBNB) as a spin trap. The radical mechanism and the nature of the observed species were confirmed by the trapping of propargyl radicals generated by an alternative pathway: i.e., upon irradiation of propargyl iodides in the presence of hexa-n-butyldistannane. In dialkylzinc-mediated experiments a high concentration of adduct was instantaneously observed, whereas no spontaneous production of spin adduct was detected in a blank experiment performed with the propargylic iodide and TTBNB in the absence of diethylzinc. Under irradiation in the presence of distannane, two different species were observed at the very beginning of the irradiation; the nitroxide resulting from the trapping of propargyl radical at the propargyl carbon remained the only species detected after irradiating for several minutes. The absence of adducts resulting from the trapping of allenyl canonical forms was supported by DFT calculations and by the preparation of an authentic sample.

  17. OH-induced free radicals in purine nucleoside monophosphates: e.s.r. and spin-trapping

    International Nuclear Information System (INIS)

    Hiraoka, W.; Kuwabara, M.; Sato, F.

    1989-01-01

    Free radicals produced by the reactions of OH radicals with six purine nucleoside monophosphates (3'-AMP, 5'-AMP, 5'-dAMP, 3'-GMP, 5'GMP and 5'-dGMP) were investigated by a method combining e.s.r. spin-trapping and high-performance liquid chromatography (HPLC). The N 2 O-saturated aqueous solutions of purine nucleoside monophosphates, containing 2-methyl-2-nitrosopropane as a spin-trap, were X-irradiated and the resulting spin-adducts were separated by reverse-phase HPLC in the ion suppression mode. The separated spin-adducts were characterized by e.s.r. spectrometry and UV spectrophotometry. Consequently, the radicals due to H-abstraction at the C4' position of the sugar moiety were identified arising from 5'-dAMP and 5'-dGMP. In all cases, e.s.r. spectra consisting of a secondary doublet were observed and assigned to the radical due to H-abstraction at the C5' position of the sugar moiety. (author)

  18. Electrochemical and Spin-Trapping Properties of para-substituted α-Phenyl-N-tert-butyl Nitrones

    International Nuclear Information System (INIS)

    Rosselin, Marie; Tuccio, Béatrice; Pério, Pierre; Villamena, Frederick A.; Fabre, Paul-Louis; Durand, Grégory

    2016-01-01

    Nitrones are known both as therapeutic antioxidants and efficient spin-traps. In this work, the redox behavior of various para-substituted α-phenyl-N-tert-butyl nitrones (PBN) was studied by cyclic voltammetry. The polar effect of the substituents was found to correlate with the electrochemical properties of the nitronyl function. Compounds bearing an electron-withdrawing group were more easily reduced than those having an electron-donating group and an opposite trend was observed for the oxidation. Ease of oxidation was also computationally rationalized using DFT approach showing increased ease of oxidation with electron donating functionalities. Since electrochemical properties of nitrones are known to correlate with biological properties, this work provides insights in the design of potent nitrone antioxidants. Using cyclic voltammetry the relative rate of superoxide trapping by nitrones was investigated and compared to the classical antioxidant BHT. The determination of the relative rate of phenyl radical trapping was also carried out but showed no clear correlation with the nature of the substituents. This indicates the absence of a polar effect in agreement with previous data and further supports the intermediate nature, that is, non- or weakly nucleophile, of phenyl radical. On the contrary kinetics of hydroxymethyl radical trapping was found to correlate with the nature of the substituents, demonstrating the nucleophilic nature of its addition onto nitrones.

  19. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching

    DEFF Research Database (Denmark)

    Lemke, Henrik T.; Kjær, Kasper Skov; Hartsock, Robert

    2017-01-01

    is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic...

  20. Observation of ESR spin flip satellite lines of trapped hydrogen atoms in solid H2 at 4.2 K

    International Nuclear Information System (INIS)

    Miyazaki, Tetsuo; Iwata, Nobuchika; Fueki, Kenji; Hase, Hirotomo

    1990-01-01

    ESR spectra of H atoms, produced in γ-irradiated solid H 2 , were studied at 4.2 K. Two main lines of the ESR spectra of H atoms that are separated by about 500 G accompanied two weak satellite lines. Both satellite lines and main lines decrease with the same decay rate. In the D 2 -H 2 mixtures, the satellite-line intensity depends upon the number of matrix protons. The spacing of the satellites from the main lines is equal to that of the NMR proton resonance frequency. It was concluded that the satellite lines were not ascribable to paired atoms but to spin flip lines due to an interaction of H atoms with matrix protons. The analysis of the spin flip lines and the main lines suggests that H atoms in solid H 2 are trapped in the substitutional site

  1. The control mechanism of surface traps on surface charge behavior in alumina-filled epoxy composites

    International Nuclear Information System (INIS)

    Li, Chuanyang; Hu, Jun; Lin, Chuanjie; He, Jinliang

    2016-01-01

    To investigate the role surface traps play in the charge injection and transfer behavior of alumina-filled epoxy composites, surface traps with different trap levels are introduced by different surface modification methods which include dielectric barrier discharges plasma, direct fluorination, and Cr 2 O 3 coating. The resulting surface physicochemical characteristics of experimental samples were observed using atomic force microscopy, scanning electron microscopy and fourier transform infrared spectroscopy. The surface potential under dc voltage was detected and the trap level distribution was measured. The results suggest that the surface morphology of the experimental samples differs dramatically after treatment with different surface modification methods. Different surface trap distributions directly determine the charge injection and transfer property along the surface. Shallow traps with trap level of 1.03–1.11 eV and 1.06–1.13 eV introduced by plasma and fluorination modifications are conducive for charge transport along the insulating surface, and the surface potential can be modified, producing a smoother potential curve. The Cr 2 O 3 coating can introduce a large number of deep traps with energy levels ranging from 1.09 to 1.15 eV. These can prevent charge injection through the reversed electric field formed by intensive trapped charges in the Cr 2 O 3 coatings. (paper)

  2. {alpha}-Tocopherol impact on oxy-radical induced free radical decomposition of DMSO: Spin trapping EPR and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Jerzykiewicz, Maria, E-mail: Mariaj@wchuwr.pl [Faculty of Chemistry, Wroclaw University, 14 F. Joliot-Curie St., 50-383 Wroclaw (Poland); Cwielag-Piasecka, Irmina; Witwicki, Maciej; Jezierski, Adam [Faculty of Chemistry, Wroclaw University, 14 F. Joliot-Curie St., 50-383 Wroclaw (Poland)

    2011-05-26

    Graphical abstract: {alpha}-Tocopherol inhibits the oxidation of {center_dot}CH{sub 3} to {center_dot}OCH{sub 3}. Display Omitted Highlights: {yields} {alpha}-Tocopherol does not inhibit the oxidation of DMSO to {center_dot}CH{sub 3}. {yields} {alpha}-Tocopherol inhibits the oxidation of {center_dot}CH{sub 3} to {center_dot}OCH{sub 3}. {yields} {alpha}-Tocopherol does not inhibit the oxidation of PBN. {yields} The structures of observed spin adducts were theoretically confirmed. - Abstract: EPR spin trapping and theoretical methods such as density functional theory (DFT) as well as combined DFT and quadratic configuration interaction approach (DFT/QCISD) were used to identify the radicals produced in the reaction of oxy-radicals and dimethyl sulfoxide (DMSO) in the presence and absence of {alpha}-tocopherol. Additionally, the mixtures of {alpha}-tocopherol with linolenic acid and glyceryl trilinoleate as well as bioglycerols (glycerol fractions from biodiesel production) were tested. {alpha}-Tocopherol inhibited oxidation of the main decomposition product of DMSO, {center_dot}CH{sub 3} to {center_dot}OCH{sub 3} but did not prevent the transformation process of N-t-butyl-{alpha}-phenylnitrone (PBN) into 2-methyl-2-nitrosopropane (MNP). Theoretical investigations confirmed the structures of proposed spin adducts and allowed to correlate the EPR parameters observed in the experiment with the spin adducts electronic structure.

  3. Statistical properties of spectra in harmonically trapped spin-orbit coupled systems

    DEFF Research Database (Denmark)

    V. Marchukov, O.; G. Volosniev, A.; V. Fedorov, D.

    2014-01-01

    distributions. The Brody and Wigner distributions characterize irregular motion and help identify quantum chaotic systems. We present a special choices of deformation and spin-orbit strengths without the Zeeman term which provide a fair reproduction of the fourth-power repelling Wigner distribution. By adding...

  4. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2016-01-01

    Electron paramagnetic resonance (EPR) spectroscopy (also known as electron spin resonance, ESR, or electron magnetic resonance, EMR, spectroscopy) is often described as the “gold standard” for the detection and characterisation of radicals in chemical, biological and medical systems. The article...

  5. In vivo detection of free radicals in mouse septic encephalopathy using molecular MRI and immuno-spin trapping.

    Science.gov (United States)

    Towner, Rheal A; Garteiser, Philippe; Bozza, Fernando; Smith, Nataliya; Saunders, Debra; d' Avila, Joana C P; Magno, Flora; Oliveira, Marcus F; Ehrenshaft, Marilyn; Lupu, Florea; Silasi-Mansat, Robert; Ramirez, Dario C; Gomez-Mejiba, Sandra E; Mason, Ronald P; Castro Faria-Neto, Hugo C

    2013-12-01

    Free radicals are known to play a major role in sepsis. Combined immuno-spin trapping and molecular magnetic resonance imaging (MRI) was used to detect in vivo and in situ levels of free radicals in murine septic encephalopathy after cecal ligation and puncture (CLP). DMPO (5,5-dimethyl pyrroline N-oxide) was injected over 6h after CLP, before administration of an anti-DMPO probe (anti-DMPO antibody bound to albumin-gadolinium-diethylene triamine pentaacetic acid-biotin MRI targeting contrast agent). In vitro assessment of the anti-DMPO probe in oxidatively stressed mouse astrocytes significantly decreased T1 relaxation (p free radicals in murine septic encephalopathy. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Composite Fibers from Recycled Plastics Using Melt Centrifugal Spinning.

    Science.gov (United States)

    Zander, Nicole E; Gillan, Margaret; Sweetser, Daniel

    2017-09-06

    New methods are being developed to enable the production of value-added materials from high-volume, low-cost feedstocks arising from domestic recycling streams. In this work, recycled bottle-grade polyethylene terephthalate, polystyrene, and polypropylene were spun into fibers from the melt using a centrifugal spinning technique. Mono-component fibers and 50/50 blends of each polymer and a 33/33/33 blend of all three polymers were evaluated. Fiber morphology, chemistry, thermal, and mechanical properties were probed. Fiber diameters ranged from ca. 1 to over 12 µm, with polypropylene fibers having the smallest fiber diameters. Mono-component fibers were generally defect-free, while composite fibers containing polypropylene were beady. Fibers made from polyethylene terephthalate had the highest tensile strength, and the addition of polyethylene terephthalate to the other polymers improved the mechanical properties of the blends. Nano- and micro-fibers from both pure and mixed waste streams are expected to have applications in myriad areas such as ultra/micro-filtration, composites, and insulation.

  7. Electron spin resonance of paramagnetic defects and related charge carrier traps in complex oxide scintillators

    Czech Academy of Sciences Publication Activity Database

    Laguta, Valentyn; Nikl, Martin

    2013-01-01

    Roč. 250, č. 2 (2013), s. 254-260 ISSN 0370-1972 R&D Projects: GA MŠk(CZ) LM2011029; GA ČR GAP204/12/0805; GA AV ČR IAA100100810 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : scintillators * point defects * electron spin resonance * polarons Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.605, year: 2013

  8. An in situ radiolysis EPR study of spin trapping by 2-methyl-2-nitrosopropane: steric and electronic effects influencing the trapping of hydroxyalkyl radicals derived from pentanols and substituted pentanols

    International Nuclear Information System (INIS)

    Madden, K.P.; Taniguchi, Hitoshi

    1993-01-01

    The spin adducts formed by reaction of bulky hydroxyalkyl radicals with the nitroso spin trap 2-methyl-2-nitrosopropane (MNP) were studied using in-situ radiolysis EPR. Parent hydroxyalkyl radicals were produced in aqueous solution either by hydroxyl-radical reaction with unsubstituted and methyl-substituted alcohols (propanols, pentanols and cyclohexanols) or by reaction of the corresponding ketone with the hydrated electron. All but the bulkiest radicals reacted with MNP by addition at the nitroso nitrogen site to form the MNP-C(OH)RR' spin adduct. Steric interactions strongly modulated the yields of the spin adducts produced. Strongly reducing hydroxyalkyl radicals also reacted with MNP to produce the MNP-H adduct by direct reduction of MNP. Steric hindrance between the parent radical and MNP was sufficient in the most extreme case to shut off MNP-R production with concomitant production of MNP-H. Spin-adduct persistence was measured for the MNP-hydroxyalkyl and MNP-alkyl spin adducts. Hydroxyalkyl spin adduct lifetimes varied from seconds (MNP-1 -hydroxy-1-methylbutyl) to one year (MNP-1-hydroxycyclohexyl), correlating with the level of aminoxyl function shielding afforded by its substituent groups. MNP spin adducts formed from other non-hydroxyalkyl alcohol radicals had short lifetimes of less than 18 hours. (Author)

  9. Combined molecular MRI and immuno-spin-trapping for in vivo detection of free radicals in orthotopic mouse GL261 gliomas.

    Science.gov (United States)

    Towner, Rheal A; Smith, Nataliya; Saunders, Debra; De Souza, Patricia Coutinho; Henry, Leah; Lupu, Florea; Silasi-Mansat, Robert; Ehrenshaft, Marilyn; Mason, Ronald P; Gomez-Mejiba, Sandra E; Ramirez, Dario C

    2013-12-01

    Free radicals play a major role in gliomas. By combining immuno-spin-trapping (IST) and molecular magnetic resonance imaging (mMRI), in vivo levels of free radicals were detected within mice bearing orthotopic GL261 gliomas. The nitrone spin trap DMPO (5,5-dimethyl pyrroline N-oxide) was administered prior to injection of an anti-DMPO probe (anti-DMPO antibody covalently bound to a bovine serum albumin (BSA)-Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-biotin MRI contrast agent) to trap tumor-associated free radicals. mMRI detected the presence of anti-DMPO adducts by either a significant sustained increase (pfree radicals from a glioma model. © 2013.

  10. On the composition of an arbitrary collection of SU(2) spins: an enumerative combinatoric approach

    Science.gov (United States)

    Gyamfi, J. A.; Barone, V.

    2018-03-01

    The whole enterprise of spin compositions can be recast as simple enumerative combinatoric problems. We show here that enumerative combinatorics (Stanley 2011 Enumerative Combinatorics (Cambridge Studies in Advanced Mathematics vol 1) (Cambridge: Cambridge University Press)) is a natural setting for spin composition, and easily leads to very general analytic formulae—many of which hitherto not present in the literature. Based on it, we propose three general methods for computing spin multiplicities; namely, (1) the multi-restricted composition, (2) the generalized binomial and (3) the generating function methods. Symmetric and anti-symmetric compositions of SU(2) spins are also discussed, using generating functions. Of particular importance is the observation that while the common Clebsch–Gordan decomposition—which considers the spins as distinguishable—is related to integer compositions, the symmetric and anti-symmetric compositions (where one considers the spins as indistinguishable) are obtained considering integer partitions. The integers in question here are none other than the occupation numbers of the Holstein–Primakoff bosons. The pervasiveness of q-analogues in our approach is a testament to the fundamental role they play in spin compositions. In the appendix, some new results in the power series representation of Gaussian polynomials (or q-binomial coefficients)—relevant to symmetric and antisymmetric compositions—are presented.

  11. Critical current density for spin transfer torque switching with composite free layer structure

    OpenAIRE

    You, Chun-Yeol

    2009-01-01

    Critical current density of composite free layer (CFL) in magnetic tunneling junction is investigated. CFL consists of two exchange coupled ferromagnetic layers, where the coupling is parallel or anti-parallel. Instability condition of the CFL under the spin transfer torque, which is related with critical current density, is obtained by analytic spin wave excitation model and confirmed by macro-spin Landau-Lifshitz-Gilbert equation. The critical current densities for the coupled two identical...

  12. Light-front wave function of composite system with spin

    International Nuclear Information System (INIS)

    Karmanov, V.A.

    1979-01-01

    The method to construct the relativistic wave function with spin on the light front is developed. The spin structure of the deuteron wave function in relativistic range is found. The calculation methods are illustrated by the calculation of elastic pd-scattering cross section. The consideration carried out is equivalent to the solution of the problem of taking into account the spins and angular momenta in the parton wave functions in the infinite momentum frame

  13. E.s.r. of spin-trapped radicals in γ-irradiated polycrystalline amino acids, N-acetyl amino acids and dipeptides

    International Nuclear Information System (INIS)

    Minegishi, A.; Bergene, R.; Riesz, P.

    1980-01-01

    The radicals produced in several polycrystalline amino acids, N-acetyl amino acids and dipeptides by γ-radiolysis at room temperature were investigated by spin-trapping. After irradiation in the solid state, the samples were dissolved in aqueous solutions of t-nitrosobutane and the trapped radicals identified by e.s.r. For α-amino acids, deamination radicals were found, and in some cases H-abstraction radicals were also observed. No decarboxylation radicals could be detected. For N-acetyl amino acids, except for N-acetylglycine, the major radical was the decarboxylation radical. For N-acetylglycine the H-abstraction radical from the glycine residue was observed. For dipeptides of the type x-glycine, the radical formed by removal of H from the α-carbon of the carboxyl-terminal residue was always spin-trapped. Some primary deamination radicals and minor amounts of decarboxylation radicals could also be observed. For dipeptides of the type x-alanine, glycine-x and alanine-x, the decarboxylation radical was always the major spin-trapped radical. Some primary and secondary deamination radicals were also detected. (author)

  14. Make it spin: individual trapping of sperm for analysis and recovery using micro-contact printing.

    Science.gov (United States)

    Frimat, J-P; Bronkhorst, M; de Wagenaar, B; Bomer, J G; van der Heijden, F; van den Berg, A; Segerink, L I

    2014-08-07

    In this article, we describe the development of a high throughput platform to spatially manipulate viable sperm for motility measurements and recovery of the best single sperm for fertilization purposes. Micro-contact printing was used to pattern islands of adhesive proteins (fibronectin) separated by sperm repellent species (Pluronic acid F-127) on commercially available polystyrene substrates. Following washing, arrays of viable single sperm were captured onto the islands demonstrating for the first time that sperm can be trapped by micro-contact printing with patterning efficiency of 90% while retaining 100% viability. These were then subjected to motility analysis whilst remaining spatially confined to the islands. Single sperm motility was assessed (n = 37) by software analysis measuring the number of rotations per second (degrees s⁻¹). The assignment of array coordinates allows the more active single sperm to be easily identified and recovered by a simple micromanipulator pipette aspiration step with automated possibility for assisted reproductive technologies or further quality correlation analysis. Taken together, we show for the first time a technique to simultaneously screen thousands of viable single sperm for motility assessment while retaining the ability for single species recovery for enhanced fertilization purposes.

  15. In vivo detection of free radicals using molecular MRI and immuno-spin trapping in a mouse model for amyotrophic lateral sclerosis.

    Science.gov (United States)

    Towner, Rheal A; Smith, Nataliya; Saunders, Debra; Lupu, Florea; Silasi-Mansat, Robert; West, Melinda; Ramirez, Dario C; Gomez-Mejiba, Sandra E; Bonini, Marcelo G; Mason, Ronald P; Ehrenshaft, Marilyn; Hensley, Kenneth

    2013-10-01

    Free radicals associated with oxidative stress play a major role in amyotrophic lateral sclerosis (ALS). By combining immuno-spin trapping and molecular magnetic resonance imaging, in vivo trapped radical adducts were detected in the spinal cords of SOD1(G93A)-transgenic (Tg) mice, a model for ALS. For this study, the nitrone spin trap DMPO (5,5-dimethyl-1-pyrroline N-oxide) was administered (ip) over 5 days before administration (iv) of an anti-DMPO probe (anti-DMPO antibody covalently bound to an albumin-gadolinium-diethylenetriamine pentaacetic acid-biotin MRI contrast agent) to trap free radicals. MRI was used to detect the presence of the anti-DMPO radical adducts by a significant sustained increase in MR signal intensities (p radical adducts in an ALS model. This novel, noninvasive, in vivo diagnostic method can be applied to investigate the involvement of free radical mechanisms in ALS rodent models. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Charting molecular composition of phosphatidylcholines by fatty acid scanning and ion trap MS3 fragmentation

    DEFF Research Database (Denmark)

    Ekroos, Kim; Ejsing, Christer S.; Bahr, Ute

    2003-01-01

    preliminary separation of lipid classes or of individual molecular species, enzymatic digestion, or chemical derivatization. The approach was validated by the comparative analysis of the molecular composition of PCs from human red blood cells. In the total lipid extract of Madin-Darby canine kidney II cells......The molecular composition of phosphatidylcholines (PCs) in total lipid extracts was characterized by a combination of multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer and MS3 fragmentation on an ion trap mass spectrometer. Precursor ion spectra for 50 acyl...... spectrometer quantified the relative amount of their positional isomers, thus providing the most detailed and comprehensive characterization of the molecular composition of the pool of PCs at the low-picomole level. The method is vastly simplified, compared with conventional approaches, and does not require...

  17. Fabrication and characterization of poly(vinyl alcohol/carbon nanotube melt-spinning composites fiber

    Directory of Open Access Journals (Sweden)

    Zhiqian Yang

    2015-10-01

    Full Text Available A composite fiber based on carbon nanotube (CNT and poly(vinyl alcohol (PVA was prepared by melt-spinning. Structural features and the mechanical performances of the PVA/CNT composite fiber were investigated as a function of draw condition. Initial moduli and tensile strengths of the drawn composite fibers are much higher than those of undrawn composite fiber. It is identified from XRD and 2D XRD that the composite fiber exhibits enhanced crystallinity and orientation degree with increasing the draw ratio. Accordingly, finger-like pores distributed along the axial direction homogeneous on the melt-spinning PVA fiber surface. After dry and hot-drawn, the hydrophobicity of PVA/CNT composites fiber decreased gradually.

  18. Effect of temperature on thermal oxidation of palmitic acid studied by combination of EPR spin trapping technique and SPME-GC-MS/MS.

    Science.gov (United States)

    Chen, Hongjian; Wang, Yong; Cao, Peirang; Liu, Yuanfa

    2017-11-01

    Effect of temperatures on thermal oxidation of palmitic acid was studied by the combination of EPR and GC-MS/MS. DMPO was used as the spin trap. The experimental spectrum was simulated with alkyl and alkoxyl spin adducts. Total amount of spins, a parameter to indicate radical concentrations, detected at 180°C was nearly 10 times higher than that at 175°C. Besides, total amounts of spins detected at 180°C decreased rapidly because of the reaction between radical adducts and newly formed radicals. Signal intensities of alkyl radical adducts increased rapidly from 0.405 to 4.785 from 175°C to 180°C. Besides, more palmitic acid degraded to oxidized compounds from 175°C to 180°C than that of other temperature ranges. The C-C linkages between carbons 2 to 6 were easier to be oxidized at 180°C. The results all implied that oxidation rates of palmitic acid samples increased rapidly from 175°C to 180°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Tensile strength of ramie yarn (spinning by machine)/HDPE thermoplastic matrix composites

    International Nuclear Information System (INIS)

    Banowati, Lies; Hadi, Bambang K.; Suratman, Rochim; Faza, Aulia

    2016-01-01

    Technological developments should be trooped to prevent a gap between technology and environmental sustainability, then it needs to be developed “Green technology”. In this research is making of green composites which use natural fiber ramie as reinforcement. Whereas the matrix used was HDPE (High Density Polyethylene) thermoplastic polymer which could be recycled and had a good formability and flexibility. The ramie yarns and fibers for unidirectional (0°) direction respectively were mixed with HDPE powder and processed using hot compression molding. The surface morphology was observed by SEM (Scanning Electrone Microscopy). Results showed that both tensile strength of the ramie fiber/HDPE composites increased in comparison with the ramie yarn (spinning by machine)/HDPE composites. However, the ramie yarn (spinning by machine)/HDPE composites have a good producibility for wider application. Analysis of the test results using the Weibull distribution as approaches to modeling the reliability of the specimens.

  20. Fermi wave vector for the partially spin-polarized composite-fermion Fermi sea

    Science.gov (United States)

    Balram, Ajit C.; Jain, J. K.

    2017-12-01

    The fully spin-polarized composite-fermion (CF) Fermi sea at the half-filled lowest Landau level has a Fermi wave vector kF*=√{4 π ρe } , where ρe is the density of electrons or composite fermions, supporting the notion that the interaction between composite fermions can be treated perturbatively. Away from ν =1 /2 , the area is seen to be consistent with kF*=√{4 π ρe } for ν 1 /2 , where ρh is the density of holes in the lowest Landau level. This result is consistent with particle-hole symmetry in the lowest Landau level. We investigate in this article the Fermi wave vector of the spin-singlet CF Fermi sea (CFFS) at ν =1 /2 , for which particle-hole symmetry is not a consideration. Using the microscopic CF theory, we find that for the spin-singlet CFFS the Fermi wave vectors for up- and down-spin CFFSs at ν =1 /2 are consistent with kF*↑,↓=√{4 π ρe↑,↓ } , where ρe↑=ρe↓=ρe/2 , which implies that the residual interactions between composite fermions do not cause a nonperturbative correction for spin-singlet CFFS either. Our results suggest the natural conjecture that for arbitrary spin polarization the CF Fermi wave vectors are given by kF*↑=√{4 π ρe↑ } and kF*↓=√{4 π ρe↓ } .

  1. Free radical generation by non-equilibrium atmospheric pressure plasma in alcohol–water mixtures: an EPR-spin trapping study

    Science.gov (United States)

    Uchiyama, Hidefumi; Ishikawa, Kenji; Zhao, Qing-Li; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Krishna, Murali C.; Ishijima, Tatsuo; Matsuya, Yuji; Hori, Masaru; Noguchi, Kyo; Kondo, Takashi

    2018-03-01

    Free radical species in aqueous solution—various alcohol–water reaction mixtures—by exposure to non-equilibrium cold atmospheric pressure Ar plasma (CAP), were monitored using electron paramagnetic resonance spin-trapping techniques with 3, 5-dibromo-4-nitrosobenzene sulfonate as a water soluble nitroso spin trap. The major radical species were formed by H-abstraction from alcohol molecules due to ·OH radicals. In the ethanol–water mixture ·CH2CH2OH produced by H abstraction from CH3 group of the ethanol and ·CH3 radicals were detected. The latter was due to the decomposition of unstable CH3·CHOH to form the ·CH3 radicals and the stable formaldehyde by C–C bond fission. These intermediates are similar to those observed by reaction with ·OH radicals generation in the H2O2–UV photolysis of the reaction mixtures. The evidence of ·CH3 radical formation in the pyrolytic decomposition of the reaction mixtures by exposure to ultrasound or in methane irradiated with microwave plasma have been reported previously. However, the pyrolytic ·CH3 radicals were not found in both plasma and H2O2–UV photolysis condition. These results suggests that free radicals produced by Ar-CAP are most likely due to the reaction between abundant ·OH radicals and alcohol molecules.

  2. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Luping [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zhan, Qingfeng, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Li, Run-Wei, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Tan, Xiaohua [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China)

    2016-03-15

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  3. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    International Nuclear Information System (INIS)

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Li, Run-Wei; Tan, Xiaohua

    2016-01-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  4. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Science.gov (United States)

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Tan, Xiaohua; Li, Run-Wei

    2016-03-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  5. Spin-coating: A new approach for improving dispersion of cellulose nanocrystals and mechanical properties of poly (lactic acid) composites.

    Science.gov (United States)

    Shojaeiarani, Jamileh; Bajwa, Dilpreet S; Stark, Nicole M

    2018-06-15

    This study systematically evaluated the influence of masterbatch preparation techniques, solvent casting and spin-coating methods, on composite properties. Composites were manufactured by combining CNCs masterbatches and PLA resin using twin screw extruder followed by injection molding. Different microscopy techniques were used to investigate the dispersion of CNCs in masterbatches and composites. Thermal, thermomechanical, and mechanical properties of composites were evaluated. Scanning electron microscopy (SEM) images showed superior dispersion of CNCs in spin-coated masterbatches compared to solvent cast masterbatches. At lower CNCs concentrations, both SEM and optical microscope images confirmed more uniform CNCs dispersion in spin-coated composites than solvent cast samples. Degree of crystallinity of PLA exhibited a major enhancement by 147% and 380% in solvent cast and spin-coated composites, respectively. Spin-coated composites with lower CNCs concentration exhibited a noticeable improvement in mechanical properties. However, lower thermal characteristics in spin-coated composites were observed, which could be attributed to the residual solvents in masterbatches. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu.

    Science.gov (United States)

    Uchiyama, Hidefumi; Zhao, Qing-Li; Hassan, Mariame Ali; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi

    2015-01-01

    Electron paramagnetic resonance (EPR)-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP) in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH) radicals and hydrogen (H) atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO), and phenyl N-t-butylnitrone (PBN). The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and an

  7. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu.

    Directory of Open Access Journals (Sweden)

    Hidefumi Uchiyama

    Full Text Available Electron paramagnetic resonance (EPR-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH radicals and hydrogen (H atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO, 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO, and phenyl N-t-butylnitrone (PBN. The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and

  8. Preparation and performance of novel polyvinylpyrrolidone/polyethylene glycol phase change materials composite fibers by centrifugal spinning

    Science.gov (United States)

    Zhang, Xiaoguang; Qiao, Jiaxin; Zhao, Hang; Huang, Zhaohui; Liu, Yangai; Fang, Minghao; Wu, Xiaowen; Min, Xin

    2018-01-01

    Currently, phase change materials (PCMs) composite fibers are typically prepared by electrospinning. However, electrospinning exhibits safety concerns and a low production rate, which limit its practical applications as a cost-effective fiber fabrication approach. Therefore, a novel, and simple centrifugal spinning technology is employed to extrude fibers from composite solutions using a high-speed rotary and perforated spinneret. The composite fibers based on polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) were prepared by centrifugal spinning. The SEM of PVP/PEG composite fibers indicated that the fibrous morphology is well preserved. The DSC and TGA indicated that PVP/PEG composite fibers exhibit good thermal properties.

  9. Fabrication of high strength PVA/SWCNT composite fibers by gel spinning

    OpenAIRE

    Xu, Xuezhu; Uddin, Ahmed Jalal; Aoki, Kenta; Gotoh, Yasuo; Saito, Takeshi; Yumura, Motoo

    2010-01-01

    High-strength composite fibers were prepared from polyvinyl alcohol (PVA) (Degree of polymerization: 1500) reinforced by single-walled carbon nanotubes (SWCNTs) containing few defects. The SWCNTs were dispersed in a 10 wt.% PVA/dimethylsulfoxide solution using a mechanical homogenizer that reduced the size of SWCNT aggregations to smaller bundles. The macroscopically homogeneous dispersion was extruded into cold methanol to form fibers by gel spinning followed by a hot-drawing. The tensile st...

  10. Thomas-Fermi-von Weizsäcker theory for a harmonically trapped, two-dimensional, spin-polarized dipolar Fermi gas

    Science.gov (United States)

    van Zyl, B. P.; Zaremba, E.; Pisarski, P.

    2013-04-01

    We systematically develop a density functional description for the equilibrium properties of a two-dimensional, harmonically trapped, spin-polarized dipolar Fermi gas based on the Thomas-Fermi-von Weizsäcker approximation. We pay particular attention to the construction of the two-dimensional kinetic energy functional, where corrections beyond the local density approximation must be motivated with care. We also present an intuitive derivation of the interaction energy functional associated with the dipolar interactions and provide physical insight into why it can be represented as a local functional. Finally, a simple and highly efficient self-consistent numerical procedure is developed to determine the equilibrium density of the system for a range of dipole interaction strengths.

  11. Potential of EPR spin-trapping to investigate in situ free radicals generation from skin allergens in reconstructed human epidermis: cumene hydroperoxide as proof of concept.

    Science.gov (United States)

    Kuresepi, Salen; Vileno, Bertrand; Turek, Philippe; Lepoittevin, Jean-Pierre; Giménez-Arnau, Elena

    2018-02-01

    The first step in the development of skin sensitisation to a chemical, and in the elicitation of further allergic contact dermatitis (ACD), is the binding of the allergen to skin proteins after penetrating into the epidermis. The so-formed antigenic adduct is then recognised by the immune system as foreign to the body. Sensitising organic hydroperoxides derived from autoxidation of natural terpenes are believed to form antigens through radical-mediated mechanisms, although this has not yet been established. So far, in vitro investigations on reactive radical intermediates derived from these skin sensitisers have been conducted in solution, yet with experimental conditions being far away from real-life sensitisation. Herein, we report for the first time, the potential use of EPR spin-trapping to study the in situ generation of free radicals derived from cumene hydroperoxide CumOOH in a 3D reconstructed human epidermis (RHE) model, thus much closer to what may happen in vivo. Among the undesirable effects associated with dermal exposure to CumOOH, it is described to cause allergic and irritant dermatitis, being reported as a significant sensitiser. We considered exploiting the usage of spin-trap DEPMPO as an extensive view of all sort of radicals derived from CumOOH were observed all at once in solution. We showed that in the Episkin TM RHE model, both by incubating in the assay medium and by topical application, carbon radicals are mainly formed by redox reactions suggesting the key role of CumOOH-derived carbon radicals in the antigen formation process.

  12. Spin trapping of radicals formed in gamma-irradiated methanol: effect of the irradiation temperature from 77K to 300K

    International Nuclear Information System (INIS)

    Schlick, S.; Kevan, L.

    1976-01-01

    The neutral radicals formed in gamma-irradiated methanol were studied by spin trapping with phenyl-t-butylnitrone (PBN) in an attempt to probe the primary neutral radicals formed. In the temperature range from approximately 157 K to 300 K both CH 2 OH and CH 3 O spin adducts are observed and their limiting ratio at high PBN concentrations is CH 2 OH/CH 3 O=1.5 over this temperature range. Below approximately 157 K this ratio increases exponentially with decreasing temperature with an apparent activation energy of 5.8 kJ/mole (1.4 kcal/mole); this is consistent with the finding that only CH 2 OH radicals are formed by gamma radiolysis at 77 K. Several possible models for the primary neutral radicals formed in gamma-irradiated methanol and their subsequent reactions as a function of irradiation temperature are discussed. It is suggested that the primary radical formation mechanisms are similar in the gas and liquid phases and become temperature dependent when molecular motion is arrested in the solid. (Auth.)

  13. One-loop effects from spin-1 resonances in Composite Higgs models

    CERN Document Server

    Contino, Roberto

    2015-01-01

    We compute the 1-loop correction to the electroweak observables from spin-1 resonances in SO(5)/SO(4) composite Higgs models. The strong dynamics is modeled with an effective description comprising the Nambu-Goldstone bosons and the lowest-lying spin-1 resonances. A classification is performed of the relevant operators including custodially-breaking effects from the gauging of hypercharge. The 1-loop contribution of the resonances is extracted in a diagrammatic approach by matching to the low-energy theory of Nambu-Goldstone bosons. We find that the correction is numerically important in a significant fraction of the parameter space and tends to weaken the bounds providing a negative shift to the S parameter.

  14. Wet spinning of PVA composite fibers with a large fraction of multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Dengpan Lai

    2015-10-01

    Full Text Available PVA composites fibers with a large fraction of multi-walled carbon nanotubes modified by both covalent and non-covalent functionalization were produced by a wet-spinning process. Model XQ-1 tensile tester, thermogravimetric analysis, scanning electron microscopy, differential scanning calorimetry, and wide-angle X-ray diffraction were used to characterize the properties of PVA/MWNT composite fibers. The TGA results suggested that MWNTs content in composite fibers were ranged from 5.3 wt% to 27.6 wt%. The mechanical properties of PVA/MWNT composite fibers were obviously superior to pure PVA fiber. The Young׳s modulus of composite fibers enhanced with increasing the content of MWNTs, and it rised gradually from 6.7 GPa for the pure PVA fiber to 12.8 GPa for the composite fibers with 27.6 wt% MWNTs. Meanwhile, the tensile strength increased gradually from 0.39 GPa for the pure PVA fiber to 0.74 GPa for the composite fibers with 14.4 wt% MWNTs. Nevertheless, the tensile strength of the composite fibers decreased as the MWNTs content up to 27.6 wt%. SEM results indicated that the MWNTs homogeneously dispersed in the composite fibers, however some agglomerates also existed when the content of MWNTs reached 27.6 wt%. DSC results proved strong interfacial interaction between MWNTs and PVA chain, which benefited composite fibers in the efficient stress-transfer. WXAD characterization showed that the orientation of PVA molecules declined from 94.1% to 90.9% with the increasing of MWNTs content. The good dispersibility of MWNTs throughout PVA matrix and efficient stress-transfer between MWNTs and PVA matrix may contributed to significant enhancement in the mechanical properties.

  15. A spin-statistics theorem for composites containing both electric and magnetic charges

    International Nuclear Information System (INIS)

    Friedman, J.L.; Sorkin, R.D.

    1980-01-01

    The present paper states and proves an asymptotic spin-statistics theorem for composites consisting of electrically and magnetically charged particles. We work in the framework of a nonrelativistic theory, taking as the classical configuration space a U(1) bundle over the space of physical configurations, and as the quantum hilbert space the homogeneous square integrable functions on that bundle. The theorems are proved using a formalism we develop here for treating 'gauge spaces' - U(1) bundles with connections; in particular, two products related to tensor products of vector bundles prove to be extremely useful in displaying the structure of the gauge spaces that naturally arise in this theory. (orig.)

  16. Fused-Ring Derivatives of Quinoxalines: Spectroscopic Characterization and Photoinduced Processes Investigated by EPR Spin Trapping Technique

    Directory of Open Access Journals (Sweden)

    Zuzana Barbieriková

    2014-08-01

    Full Text Available 10-Ethyl-7-oxo-7,10-dihydropyrido[2,3-f]quinoxaline derivatives, synthesized as promising biologically/photobiologically active compounds were characterized by UV/vis, FT-IR and fluorescent spectroscopy. Photoinduced processes of these derivatives were studied by EPR spectroscopy, monitoring in situ the generation of reactive intermediates upon UVA (λmax = 365 nm irradiation. The formation of reactive oxygen species and further oxygen- and carbon-centered radical intermediates was detected and possible reaction routes were suggested. To quantify the investigated processes, the quantum yields of the superoxide radical anion spin-adduct and 4-oxo-2,2,6,6-tetramethylpiperidine N-oxyl generation were determined, reflecting the activation of molecular oxygen by the excited state of the quinoxaline derivative.

  17. Spin-wave mode profiles versus surface/interface conditions in ferromagnetic Fe/Ni layered composites

    CERN Document Server

    Krawczyk, M; Levy, J C S; Mercier, D

    2003-01-01

    Spin-wave excitations in ferromagnetic layered composite (AB centre dot centre dot centre dot BA; A and B being different homogeneous ferromagnetic materials) are analysed theoretically, by means of the transfer matrix approach. The properties of multilayer spin-wave mode profiles are discussed in relation to multilayer characteristics, such as the filling fraction and the exchange or magnetization contrast; also, surface spin pinning conditions and dipolar interactions are taken into account. The interface conditions are satisfied by introducing an effective exchange field expressed by interface gradients of the exchange constant and the magnetization. This approach provides an easy way to find frequencies and amplitudes of standing spin waves in the multilayer. The developed theory is applied to interpretation of spin wave resonance (SWR) spectra obtained experimentally by Chambers et al in two systems: a bilayer Fe/Ni and a trilayer Ni/Fe/Ni, in perpendicular (to the multilayer surface) configuration of th...

  18. Immuno-spin trapping detection of antioxidant/pro-oxidant properties of zinc or selenium on DNA and protein radical formation via hydrogen peroxide.

    Science.gov (United States)

    Deletioglu, Vedia; Tuncay, Erkan; Toy, Aysegul; Atalay, Mustafa; Turan, Belma

    2015-11-01

    Trace elements can participate in the catalysis of group-transfer reactions and can serve as their structural components. However, most of them including zinc and selenium have multifunctional roles in biological environments such as antioxidant and/or pro-oxidant effects, as concentration-dependent manner. Although it has been demonstrated the antioxidant actions of either selenium or zinc compounds, there are several documents pointing out their pro-oxidant/oxidant roles in biological systems. Here we have used ELISA-based immuno-spin trapping, a method for detection of free radical formation, to detect whether or not a zinc compound, Zn3(PO4)2, or a selenium compound, Na2SeO3, has antioxidant and/or pro-oxidant effect on 5,5-Dimethyl-1-Pyrroline-N-Oxide (DMPO)-DNA nitrone adducts induced with Cu(II)-H2O2-oxidizing system in in vitro preparations. Second, we examined whether this technique is capable to demonstrate the different DMPO-protein nitrone adduct productions in isolated protein crude of hearts from normal rats (CON) or rats with metabolic syndrome (MetS). Our data demonstrated that either Zn(2+) (100 µM) or SeO3(-2) (50 nM) has very strong antioxidant action against 200 µM H2O2-induced DMPO-DNA nitrone adduct production, whereas their higher concentrations have apparent pro-oxidant actions. We also used verification by Western blotting analysis whether immuno-spin trapping can be used to assess H2O2-induced DMPO-protein nitrone adducts in heart protein crudes. Our Western blot data further confirmed the ELISA-data from proteins and demonstrated how Zn(2+) or SeO3(-2) are dual-functioning ions such as antioxidant at lower concentrations while pro-oxidant at higher concentrations. Particularly, our present data with SeO3(-2) in DMPO-protein nitrone adducts, being in line with our previous observation on its dual-actions in ischemia/reperfusion-induced damaged heart, have shown that this ion has higher pro-oxidant actions over 50 nM in Met

  19. Bed Bug (Cimex lectularius L. Population Composition as Determined by Baited Traps

    Directory of Open Access Journals (Sweden)

    Elizabeth J. Schaafsma

    2012-04-01

    Full Text Available Two established field populations of bed bugs were sampled using host-mimicking traps baited with a combination of CO2, heat and a synthetic kairomone. The proportion of first instar nymphs (between 52% and 78% of all captured insects was significantly higher than reported in previous studies, which had employed different sampling methods. The proportion of adults was correspondingly much lower than previously reported, between 5% and 7% of total capture. As many as 120 bed bugs were captured in a single trap in one night; the variation in catches between sampling locations within the same room and between days at the same location indicates that multiple nights of trapping may be required to obtain an accurate representation of population structure.

  20. Modelling the molecular composition and nuclear-spin chemistry of collapsing prestellar sources

    Science.gov (United States)

    Hily-Blant, P.; Faure, A.; Rist, C.; Pineau des Forêts, G.; Flower, D. R.

    2018-04-01

    We study the gravitational collapse of prestellar sources and the associated evolution of their chemical composition. We use the University of Grenoble Alpes Astrochemical Network (UGAN), which includes reactions involving the different nuclear-spin states of H2, H+3, and of the hydrides of carbon, nitrogen, oxygen, and sulfur, for reactions involving up to seven protons. In addition, species-to-species rate coefficients are provided for the ortho/para interconversion of the H_3^+ + H2 system and isotopic variants. The composition of the medium is followed from an initial steady state through the early phase of isothermal gravitational collapse. Both the freeze-out of the molecules on to grains and the coagulation of the grains were incorporated in the model. The predicted abundances and column densities of the spin isomers of ammonia and its deuterated forms are compared with those measured recently towards the prestellar cores H-MM1, L16293E, and Barnard B1. We find that gas-phase processes alone account satisfactorily for the observations, without recourse to grain-surface reactions. In particular, our model reproduces both the isotopologue abundance ratios and the ortho:para ratios of NH2D and NHD2 within observational uncertainties. More accurate observations are necessary to distinguish between full scrambling processes—as assumed in our gas-phase network—and direct nucleus- or atom-exchange reactions.

  1. Nanostructures on spin-coated polymer films controlled by solvent composition and polymer molecular weight

    Energy Technology Data Exchange (ETDEWEB)

    Dario, Aline F.; Macia, Henrique B.; Petri, Denise F.S., E-mail: dfsp@iq.usp.br

    2012-12-01

    In this study we systematically investigated how the solvent composition used for polymer dissolution affects the porous structures of spin-coated polymers films. Cellulose acetate butyrate (CAB) and poly(methyl methacrylate) with low (PMMA-L) and high (PMMA-H) molecular weights were dissolved in mixtures of acetone (AC) and ethyl acetate (EA) at constant polymer concentration of 10 g/L The films were spin-coated at a relative air humidity of 55 {+-} 5%, their thickness and index of refraction were determined by means of ellipsometry and their morphology was analyzed by atomic force microscopy. The dimensions and frequency of nanocavities on polymer films increased with the acetone content ({phi}{sub AC}) in the solvent mixture and decreased with increasing polymer molecular weight. Consequently, as the void content increased in the films, their apparent thicknesses increased and their indices of refraction decreased, creating low-cost anti-reflection surface. The void depth was larger for PMMA-L than for CAB. This effect was attributed to different activities of EA and AC in CAB or PMMA-L solution, the larger mobility of chains and the lower polarity of PMMA-L in comparison to CAB. - Highlights: Black-Right-Pointing-Pointer Nanostructures in spin-coated polymer films depend on the solvent vapor pressure. Black-Right-Pointing-Pointer Anti-reflection polymer films are produced at high solvent vapor pressure. Black-Right-Pointing-Pointer Only shallow cavities are obtained in films of polymers with high molecular weight.

  2. Traps of carnivorous pitcher plants as a habitat: composition of the fluid, biodiversity and mutualistic activities.

    Science.gov (United States)

    Adlassnig, Wolfram; Peroutka, Marianne; Lendl, Thomas

    2011-02-01

    Carnivorous pitcher plants (CPPs) use cone-shaped leaves to trap animals for nutrient supply but are not able to kill all intruders of their traps. Numerous species, ranging from bacteria to vertrebrates, survive and propagate in the otherwise deadly traps. This paper reviews the literature on phytotelmata of CPPs. Fluid as a Habitat The volumes of pitchers range from 0·2 mL to 1·5 L. In Nepenthes and Cephalotus, the fluid is secreted by the trap; the other genera collect rain water. The fluid is usually acidic, rich in O(2) and contains digestive enzymes. In some taxa, toxins or detergents are found, or the fluid is extremely viscous. In Heliamphora or Sarracenia, the fluid differs little from pure water. Diversity Pitcher inquilines comprise bacteria, protozoa, algae, fungi, rotifers, crustaceans, arachnids, insects and amphibia. The dominant groups are protists and Dipteran larvae. The various species of CPPs host different sets of inquilines. Sarracenia purpurea hosts up to 165 species of inquilines, followed by Nepenthes ampullaria with 59 species, compared with only three species from Brocchinia reducta. Reasons for these differences include size, the life span of the pitcher as well as its fluid. MUTUALISTIC: Activities Inquilines closely interact with their host. Some live as parasites, but the vast majority are mutualists. Beneficial activities include secretion of enzymes, feeding on the plant's prey and successive excretion of inorganic nutrients, mechanical break up of the prey, removal of excessive prey and assimilation of atmospheric N(2). There is strong evidence that CPPs influence their phytotelm. Two strategies can be distinguished: (1) Nepenthes and Cephalotus produce acidic, toxic or digestive fluids and host a limited diversity of inquilines. (2) Genera without efficient enzymes such as Sarracenia or Heliamphora host diverse organisms and depend to a large extent on their symbionts for prey utilization.

  3. Synthesis of PVDF/SBT composite thin films by spin coating technology and their ferroelectric properties

    Directory of Open Access Journals (Sweden)

    Chen Changchun

    2016-09-01

    Full Text Available Ferroelectric composite thin films of x-SBT/PVDF with different SBT content (weight ratios of SBT to PVDF, x = 0 %, 5 %, 10 %, 15 %, 20 % were prepared by spin-coating method. The crystal structures of x-SBT/PVDF films were analyzed by X-ray diffraction (XRD measurements and Fourier transform-infrared spectroscopy (FT-IR, respectively. Experimental results demonstrated that both α, β-phases PVDF and the layered perovskite SBT co-existed in the x-SBT/PVDF samples. With an increase of SBT content in the x-SBT/PVDF thin films, both the dielectric constant and the saturated polarization were also increased, compared with those of pure PVDF thin film. More importantly, when the SBT content in the x-SBT/PVDF thin films was larger than 15 %, the coercive field of x-SBT/PVDF thin films was also decreased.

  4. Hierarchically porous composites fabricated by hydrogel templating and viscous trapping techniques

    NARCIS (Netherlands)

    Thompson, Benjamin R.; Horozov, Tommy S.; Stoyanov, Simeon D.; Paunov, Vesselin N.

    2018-01-01

    Two methods for the preparation of hierarchically porous composites have been developed and explored. The first involved templating mixed slurries of hydrogel beads with two different average bead size distributions with gypsum slurry which allows for precise control over the porosity, pore size

  5. Spin-wave mode profiles versus surface/interface conditions in ferromagnetic Fe/Ni layered composites

    International Nuclear Information System (INIS)

    Krawczyk, M; Puszkarski, H; Levy, J-C S; Mercier, D

    2003-01-01

    Spin-wave excitations in ferromagnetic layered composite (AB · · · BA; A and B being different homogeneous ferromagnetic materials) are analysed theoretically, by means of the transfer matrix approach. The properties of multilayer spin-wave mode profiles are discussed in relation to multilayer characteristics, such as the filling fraction and the exchange or magnetization contrast; also, surface spin pinning conditions and dipolar interactions are taken into account. The interface conditions are satisfied by introducing an effective exchange field expressed by interface gradients of the exchange constant and the magnetization. This approach provides an easy way to find frequencies and amplitudes of standing spin waves in the multilayer. The developed theory is applied to interpretation of spin wave resonance (SWR) spectra obtained experimentally by Chambers et al in two systems: a bilayer Fe/Ni and a trilayer Ni/Fe/Ni, in perpendicular (to the multilayer surface) configuration of the applied magnetic field. By fitting the SWR spectra obtained experimentally and those found numerically, the surface anisotropies are estimated on multilayer surfaces; then, the observed resonance lines are identified as associated with bulk, surface or interface modes. The theory can be extended to a general case of any multi-component layered system

  6. Charge trapping and storage by composite P3HT/PC60BM nanoparticles investigated by fluorescence-voltage/single particle spectroscopy.

    Science.gov (United States)

    Hu, Zhongjian; Gesquiere, Andre J

    2011-12-28

    Fluorescence-voltage/single particle spectroscopy (F-V/SPS) was employed to study exciton-hole polaron interactions and interfacial charge transfer processes for pure poly(3-hexylthiophene) (P3HT) nanoparticles (NPs) and composite P3HT/PC(60)BM NPs in functioning hole-injection devices. F-V/SPS data collected on a particle-by-particle basis reveal an apparent bistability in the fluorescence-voltage modulation curves for composite NPs of P3HT and [6,6]-phenyl-C(61)-butyric acid methyl ester (PC(60)BM) that is absent for pure P3HT NPs. A pronounced deep trapping of free electrons photogenerated from the composite P3HT/PC(60)BM NPs at the NP/dielectric interface and hole trapping by fullerene anions in composite P3HT/PC(60)BM NPs under photoexcitation lies at the basis of this finding. The deep electron trapping effect reported here for composite conjugated polymer/fullerene NPs presents an opportunity for future application of these NPs in nanoscale memory and imaging devices. © 2011 American Chemical Society

  7. Shrew trap efficiency

    DEFF Research Database (Denmark)

    Gambalemoke, Mbalitini; Mukinzi, Itoka; Amundala, Drazo

    2008-01-01

    We investigated the efficiency of four trap types (pitfall, Sherman LFA, Victor snap and Museum Special snap traps) to capture shrews. This experiment was conducted in five inter-riverine forest blocks in the region of Kisangani. The total trapping effort was 6,300, 9,240, 5,280 and 5,460 trap......-nights for the pitfall, Sherman, Victor and Museum Special traps, respectively. In total, we captured 366 shrews. The use of pitfall traps yielded the highest trapping success (4.1) with at least 18 shrew species identified. Trapping success and the number of species collected was lower for the Sherman (0.6, at least 11...... species), Victor (0.6, at least 8 species) and Museum Special (0.5, at least 6 species) traps. Although Crocidura olivieri and C. denti were caught using all four trap types, captures with different trap types did not produce a sample with the same taxonomic composition. In agreement with previous studies...

  8. Immuno-spin-trapping of a post-translational carboxypeptidase B1 radical formed by a dual role of xanthine oxidase and endothelial nitric oxide synthase in acute septic mice

    Science.gov (United States)

    Chatterjee, Saurabh; Ehrenshaft, Marilyn; Bhattacharjee, Suchandra; Deterding, Leesa J.; Bonini, Marcelo G.; Corbett, Jean; Kadiiska, Maria; Tomer, Kenneth B; Mason, Ronald P

    2009-01-01

    Post-translational modification of proteins due to exposure to radicals and other reactive species are markers of metabolic and inflammatory oxidative stress such as sepsis. This study uses the nitrone spin-trap DMPO and a combination of immuno-spin trapping and mass spectrometry to identify in vivo products of radical reactions in mice. We report the detection of dose-dependent production of DMPO-carboxypeptidase B1 (CPB1) adducts in the spleen of mice treated with lipopolysaccharide (LPS). Additionally, we report significant detection of DMPO-CPB1 adducts in mice experiencing normal physiological conditions. Treatments with inhibitors and experiments with knock-out mice indicate that xanthine oxidase and endothelial nitric oxide synthase are important sources of the reactive species that lead to CPB1 adduct formation. We also report a significant loss of CPB1 activity following LPS challenge in conjunction with an increase in CPB1 protein accumulation. This suggests the presence of a possible mechanism for CPB1 activity loss with compensatory protein production. PMID:19049863

  9. Low temperature spin-glass-like phases in magnetic nano-granular composites

    KAUST Repository

    Zhang, Bei

    2012-09-01

    It is a common understanding that the dipole-dipole interaction among the magnetic nanoparticles may result in a low-temperature spin-glass phase, which has been evidenced by observation of aging effect and memory effect. However, several studies on the nano-particles systems showed that some of the observed spin-glass-like phenomena could be due to the existence of spin-glasslike shells surrounding the ferrimagnetic cores. Therefore, it is very important to understand that how the dipole-dipole interaction induce the spin-glass phase. In order to address this issue, we have fabricated Co-SiO 2 and Fe-SiO 2 nano-granular thin films and measured the memory effect for them. Spin-glass-like phase has been observed at low temperatures. We found that, after annealing, the size of the clusters increased significantly. Based on a simple model, the dipole-dipole interaction between the clusters must be increased accordingly for the annealed samples. Interestingly, the memory effect is greatly weakened in the annealed films, which strongly suggested that the dipole-dipole interaction may not be the major factor for the formation of the low-temperature spin-glass-like phase. Copyright © 2012 American Scientific Publishers All rights reserved.

  10. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  11. Characteristics of trapped electrons and electron traps in single crystals

    International Nuclear Information System (INIS)

    Budzinski, E.E.; Potter, W.R.; Potienko, G.; Box, H.C.

    1979-01-01

    Two additional carbohydrates are reported whose crystal structures trap electrons intermolecularly in single crystals x irradiated at low temperature, namely sucrose and rhamnose. Five carbohydrate and polyhydroxy compounds are now known which exhibit this phenomenon. The following characteristics of the phenomenon were investigated: (1) the hyperfine couplings of the electron with protons of the polarized hydroxy groups forming the trap; (2) the distances between these protons and the trapped electron; (3) the spin density of the electron at the protons and (4) the relative stabilities of the electron trapped in various crystal structures

  12. Study of the mechanism of the gamma radiolysis of saccharose and its derivatives in aqueous or solid phase. Study by spin trapping

    International Nuclear Information System (INIS)

    Triolet, J.

    1991-01-01

    Powder or aqueous solutions of saccharose, deoxysaccharose and fructanes are irradiated. Radicals created during gamma radiolysis are converted into sugar-nitroxide radicals by reaction with 2 methyl 2 nitroso-propane. They are stable enough to be studied in solution by electron paramagnetic resonance (EPR) coupled or not to high performance liquid chromatography. EPR spectra obtained are simulated with the Voyons program for the determination of spectrocopic characteristics of trapped species. The study of glucosides, disaccharides and sugar labelled with carbon 13 allows to suggest a chemical structure for 5 out of the 7 species trapped during saccharose radiolysis. Influence of irradiation conditions is studied and mechanisms are proposed [fr

  13. Effect of Spin Transition onComposition and Seismic Structure of the Lower Mantle

    Science.gov (United States)

    Wu, Z.

    2015-12-01

    Spin transition of iron in ferropericlase (Fp) causes a significant softening in bulk modulus [e.g.,1,2], which leads to unusual dVP/dT>0. Because dVP/dT>0 in Fp cancels out with dVP/dTMao, Z., Marquardt, H., 2013. . Rev Geophys 51, 244-275 (2013). [3] Wu, Z.Q., Wentzcovitch, R.M., 2014. Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle. Proc. Natl. Acad. Sci. U. S. A. 111, 10468-10472. [4] Zhao, D.P., 2007. Seismic images under 60 hotspots: Search for mantle plumes. Gondwana Res 12, 335-355. [5] van der Hilst, R.D., Karason, H., 1999. Science 283, 1885-1888. [6] Huang,C., Leng, W., Wu, Z. Q., 2015. Iron-spin transition controls structure and stability of LLSVPs in the lower mantle, Earth Planet. Sci. Lett. 423, 173-181.

  14. High-Performance Stretchable Conductive Composite Fibers from Surface-Modified Silver Nanowires and Thermoplastic Polyurethane by Wet Spinning.

    Science.gov (United States)

    Lu, Ying; Jiang, Jianwei; Yoon, Sungho; Kim, Kyung-Shik; Kim, Jae-Hyun; Park, Sanghyuk; Kim, Sang-Ho; Piao, Longhai

    2018-01-17

    Highly stretchable and conductive fibers have attracted great interest as a fundamental building block for the next generation of textile-based electronics. Because of its high conductivity and high aspect ratio, the Ag nanowire (AgNW) has been considered one of the most promising conducting materials for the percolation network-based conductive films and composites. However, the poor dispersibility of AgNWs in hydrophobic polymers has hindered their application to stretchable conductive composite fibers. In this paper, we present a highly stretchable and conductive composite fiber from the co-spinning of surface-modified AgNWs and thermoplastic polyurethane (PU). The surface modification of AgNWs with a polyethylene glycol derivative improved the compatibility of PU and AgNWs, which allowed the NWs to disperse homogeneously in the elastomeric matrix, forming effective percolation networks and causing the composite fiber to show enhanced electrical and mechanical performance. The maximum AgNW mass fraction in the composite fiber was 75.9 wt %, and its initial electrical conductivity was as high as 14 205 S/cm. The composite fibers also exhibited superior stretchability: the maximum rupture strain of the composite fiber with 14.6 wt % AgNW was 786%, and the composite fiber was also conductive even when it was stretched up to 200%. In addition, 2-dimensional (2-D) Ag nanoplates were added to the AgNW/PU composite fibers to increase the stability of the conductive network under repeated stretching and releasing. The Ag nanoplates acted as a bridge to effectively prevent the AgNWs from slippage and greatly improved the stability of the conductive network.

  15. Gel spinning of PVA composite fibers with high content of multi-walled carbon nanotubes and graphene oxide hybrids

    International Nuclear Information System (INIS)

    Wei, Yizhe; Lai, Dengpan; Zou, Liming; Ling, Xinlong; Lu, Hongwei; Xu, Yongjing

    2015-01-01

    In this report, poly (vinyl alcohol) (PVA) composite fibers with high content of multi-walled carbon nanotubes and graphene oxide (MWCNTs-GO) hybrids were prepared by gel spinning, and were characterized by TGA, DSC, SEM, XL-2 yarn strength tester and electrical conductivity measurement. The total content of MWCNTs-GO hybrids in the PVA composite fibers, which is up to 25 wt%, was confirmed by TGA analysis. The DSC measurement shows that the melting and crystallization peaks decreased after the addition of nano-fillers. This is due to the reason that the motion of PVA chains is completely confined by strong hydrogen bonding interaction between PVA and nano-fillers. After the addtion of GO, the dispersibility of MWCNTs in composite fibers improved slightly. And the tensile strength and Young's modulus increased by 38% and 67%, respectively. This is caused by the increased hydrogen bonding interaction and synergistic effect through hybridization of MWCNTs and GO. More significantly, the electrical conductivity of PVA/MWCNTs/GO composite fibers enhanced by three orders of magnitude with the addition of GO. (paper)

  16. Centrifugal Spinning: An Alternative for Large Scale Production of Silicon-Carbon Composite Nanofibers for Lithium Ion Battery Anodes.

    Science.gov (United States)

    Nava, Rocío; Cremar, Lee; Agubra, Victor; Sánchez, Jennifer; Alcoutlabi, Mataz; Lozano, Karen

    2016-11-02

    Composites made of silicon nanostructures in carbon matrixes are promising materials for anodes in Li ion batteries given the synergistic storage capacity of silicon combined with the chemical stability and electrical conductivity of carbonaceous materials. This work presents the development of Si/C composite fine fiber mats produced by carbonization of poly(vinyl alcohol) (PVA)/Si composites. PVA has a high carbon content (ca. 54.5%) and, being water-soluble, it promotes the development of environmentally friendly materials. Si nanoparticles were dispersed in PVA solutions and transformed into fine fibers using a centrifugal spinning technique given its potential for large scale production. The Si/PVA fibers mats were then subjected to dehydration by exposing them to sulfuric acid vapor. The dehydration improved the thermal and chemical stability of the PVA matrix, allowing further carbonization at 800 °C. The resulting Si/C composite fibers produced binder-free anodes for lithium ion batteries that delivered specific discharge and charge capacities of 952 mA h g -1 and 862 mA g -1 , respectively, with a Columbic efficiency of 99% after 50 cycles.

  17. COLD TRAPS

    Science.gov (United States)

    Thompson, W.I.

    1958-09-30

    A cold trap is presented for removing a condensable component from a gas mixture by cooling. It consists of a shell, the exterior surface of which is chilled by a refrigerant, and conductive fins welded inside the shell to condense the gas, and distribute the condensate evenly throughout the length of the trap, so that the trap may function until it becomes completely filled with the condensed solid. The contents may then be removed as either a gas or as a liquid by heating the trap. This device has particuinr use as a means for removing uranium hexafluoride from the gaseous diffusion separation process during equipment breakdown and repair periods.

  18. Depolarization of UCN stored in material traps

    CERN Document Server

    Serebrov, A; Lasakov, M; Rudnev, Y; Krasnoschekova, I A; Geltenbort, P; Butterworth, J; Bowles, T; Morris, C; Seestrom, S; Smith, D; Young, A R

    2000-01-01

    Depolarization of ultra-cold neutrons (UCN) stored in material traps was first observed. The probability of UCN spin flip per reflection depends on the trap material and varies from 7x10 sup - sup 6 (beryllium) to 10 sup - sup 4 (glass).

  19. Depolarization of UCN stored in material traps

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A.; Vasiliev, A.; Lasakov, M.; Rudnev, Yu.; Krasnoshekova, I.; Geltenbort, P.; Butterworth, J.; Bowles, T.; Morris, C.; Seestrom, S.; Smith, D.; Young, A.R

    2000-02-11

    Depolarization of ultra-cold neutrons (UCN) stored in material traps was first observed. The probability of UCN spin flip per reflection depends on the trap material and varies from 7x10{sup -6} (beryllium) to 10{sup -4} (glass)

  20. Measuring sunscreen protection against solar-simulated radiation-induced structural radical damage to skin using ESR/spin trapping: development of an ex vivo test method.

    Science.gov (United States)

    Haywood, Rachel; Volkov, Arsen; Andrady, Carima; Sayer, Robert

    2012-03-01

    The in vitro star system used for sunscreen UVA-testing is not an absolute measure of skin protection being a ratio of the total integrated UVA/UVB absorption. The in vivo persistent-pigment-darkening method requires human volunteers. We investigated the use of the ESR-detectable DMPO protein radical-adduct in solar-simulator-irradiated skin substitutes for sunscreen testing. Sunscreens SPF rated 20+ with UVA protection, reduced this adduct by 40-65% when applied at 2 mg/cm(2). SPF 15 Organic UVA-UVB (BMDBM-OMC) and TiO(2)-UVB filters and a novel UVA-TiO(2) filter reduced it by 21, 31 and 70% respectively. Conventional broad-spectrum sunscreens do not fully protect against protein radical-damage in skin due to possible visible-light contributions to damage or UVA-filter degradation. Anisotropic spectra of DMPO-trapped oxygen-centred radicals, proposed intermediates of lipid-oxidation, were detected in irradiated sunscreen and DMPO. Sunscreen protection might be improved by the consideration of visible-light protection and the design of filters to minimise radical leakage and lipid-oxidation.

  1. ROS production in homogenate from the body wall of sea cucumber Stichopus japonicus under UVA irradiation: ESR spin-trapping study.

    Science.gov (United States)

    Qi, Hang; Dong, Xiu-fang; Zhao, Ya-ping; Li, Nan; Fu, Hui; Feng, Ding-ding; Liu, Li; Yu, Chen-xu

    2016-02-01

    Sea cucumber Stichopus japonicus (S. japonicus) shows a strong ability of autolysis, which leads to severe deterioration in sea cucumber quality during processing and storage. In this study, to further characterize the mechanism of sea cucumber autolysis, hydroxyl radical production induced by ultraviolet A (UVA) irradiation was investigated. Homogenate from the body wall of S. japonicas was prepared and subjected to UVA irradiation at room temperature. Electron Spin Resonance (ESR) spectra of the treated samples were subsequently recorded. The results showed that hydroxyl radicals (OH) became more abundant while the time of UVA treatment and the homogenate concentration were increased. Addition of superoxide dismutase (SOD), catalase, EDTA, desferal, NaN3 and D2O to the homogenate samples led to different degrees of inhibition on OH production. Metal cations and pH also showed different effects on OH production. These results indicated that OH was produced in the homogenate with a possible pathway as follows: O2(-) → H2O2 → OH, suggesting that OH might be a critical factor in UVA-induced S. japonicus autolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Origin of the linear term in the pseudo-spin Hamiltonian of compositionally graded ferroelectrics

    Czech Academy of Sciences Publication Activity Database

    Klíč, Antonín; Marvan, M.

    2007-01-01

    Roč. 20, - (2007), s. 59-64 ISSN 1385-3449 Institutional research plan: CEZ:AV0Z10100520 Keywords : compositionally graded ferroelectrics * long-range forces * transverse Ising model Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.503, year: 2007

  3. Method of determining lithological composition and effective capacity of volcanogenic-sedimentary traps according to data of industrial geophysics

    Energy Technology Data Exchange (ETDEWEB)

    Shnurman, G.A.; Krylova, O.V.

    1981-01-01

    Described are the properties of volcanogenic-sedimentary rocks clearly reflected in the diagrams of geophysical investigations of boreholes. The rocks have high specific electric resistance of about 120 Ohm x m. The absence of penetration of the filtrate of wash liquid suggests the absence of porous traps. According to gamma-gamma logging we note the presence in the cross section of rocks with low mineralogical density. According to neutron logging curves we can form a conclusion about the wide distribution in the cross section of rocks with low mineralogical density. According to the same curves we can also conclude the wide distribution in the cross section of finely dispersed minerals with high bound water saturation. Developed in the rocks are caverns and fracturing. The trap is characterized by effective capacity of the fracture-cavern type. A model of a Middle Eocene trap is established which defines the method of interpreting logging data. A lithological triangle is constructed which permits us to use the scales plotted on it to calculate the content of light and heavy tuff, quartz, and find the true mineralogical density of the interpreted intervals. The overall porosity is determined according to gamma-gamma logging. We have established a linear connection between the corrected values of porosity and time interval. The established statistical link between porosity and total hydrogen content of the rock permits us to determine roughly only according to neutron logging the overall porosity of the rock and the content of bound water. The formation temperature and overall porosity can be found according to sonic logging, gamma-gamma loggin-P, and neutron logging diagrams. The block porosity is determined according to relative resistance. A formula is presented by which we calculate the effective fracture-cavern porosity.

  4. Characterization of the chemical composition of white chrysanthemum flowers of Hangzhou by using high-performance ion trap mass spectrometry.

    Science.gov (United States)

    Zhou, Xiahui; Chen, Xiaocheng; Wu, Xin; Cao, Gang; Zhang, Junjie

    2016-04-01

    In this study, high-performance liquid chromatography coupled with amaZon SL high-performance ion trap mass spectrometry was used to analyze the target components in white chrysanthemum flowers of Hangzhou. Twenty-one components were detected and identified in both white chrysanthemum flowers of Hangzhou samples by using target compound analysis. Furthermore, seven new compounds in white chrysanthemum flowers of Hangzhou were found and identified by analyzing the fragment ion behavior in the mass spectra. The established method can be expedient for the global quality investigation of complex components in herbal medicines and food. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. HPN-07, a free radical spin trapping agent, protects against functional, cellular and electrophysiological changes in the cochlea induced by acute acoustic trauma.

    Directory of Open Access Journals (Sweden)

    Donald Ewert

    Full Text Available Oxidative stress is considered a major cause of the structural and functional changes associated with auditory pathologies induced by exposure to acute acoustic trauma AAT. In the present study, we examined the otoprotective effects of 2,4-disulfophenyl-N-tert-butylnitrone (HPN-07, a nitrone-based free radical trap, on the physiological and cellular changes in the auditory system of chinchilla following a six-hour exposure to 4 kHz octave band noise at 105 dB SPL. HPN-07 has been shown to suppress oxidative stress in biological models of a variety of disorders. Our results show that administration of HPN-07 beginning four hours after acoustic trauma accelerated and enhanced auditory/cochlear functional recovery, as measured by auditory brainstem responses (ABR, distortion product otoacoustic emissions (DPOAE, compound action potentials (CAP, and cochlear microphonics (CM. The normally tight correlation between the endocochlear potential (EP and evoked potentials of CAP and CM were persistently disrupted after noise trauma in untreated animals but returned to homeostatic conditions in HPN-07 treated animals. Histological analyses revealed several therapeutic advantages associated with HPN-07 treatment following AAT, including reductions in inner and outer hair cell loss; reductions in AAT-induced loss of calretinin-positive afferent nerve fibers in the spiral lamina; and reductions in fibrocyte loss within the spiral ligament. These findings support the conclusion that early intervention with HPN-07 following an AAT efficiently blocks the propagative ototoxic effects of oxidative stress, thereby preserving the homeostatic and functional integrity of the cochlea.

  6. HPN-07, a free radical spin trapping agent, protects against functional, cellular and electrophysiological changes in the cochlea induced by acute acoustic trauma.

    Science.gov (United States)

    Ewert, Donald; Hu, Ning; Du, Xiaoping; Li, Wei; West, Matthew B; Choi, Chul-Hee; Floyd, Robert; Kopke, Richard D

    2017-01-01

    Oxidative stress is considered a major cause of the structural and functional changes associated with auditory pathologies induced by exposure to acute acoustic trauma AAT). In the present study, we examined the otoprotective effects of 2,4-disulfophenyl-N-tert-butylnitrone (HPN-07), a nitrone-based free radical trap, on the physiological and cellular changes in the auditory system of chinchilla following a six-hour exposure to 4 kHz octave band noise at 105 dB SPL. HPN-07 has been shown to suppress oxidative stress in biological models of a variety of disorders. Our results show that administration of HPN-07 beginning four hours after acoustic trauma accelerated and enhanced auditory/cochlear functional recovery, as measured by auditory brainstem responses (ABR), distortion product otoacoustic emissions (DPOAE), compound action potentials (CAP), and cochlear microphonics (CM). The normally tight correlation between the endocochlear potential (EP) and evoked potentials of CAP and CM were persistently disrupted after noise trauma in untreated animals but returned to homeostatic conditions in HPN-07 treated animals. Histological analyses revealed several therapeutic advantages associated with HPN-07 treatment following AAT, including reductions in inner and outer hair cell loss; reductions in AAT-induced loss of calretinin-positive afferent nerve fibers in the spiral lamina; and reductions in fibrocyte loss within the spiral ligament. These findings support the conclusion that early intervention with HPN-07 following an AAT efficiently blocks the propagative ototoxic effects of oxidative stress, thereby preserving the homeostatic and functional integrity of the cochlea.

  7. Simultaneous determination of components released from dental composite resins in human saliva by liquid chromatography/multiple-stage ion trap mass spectrometry.

    Science.gov (United States)

    Hsu, Wei-Yi; Wang, Ven-Shing; Lai, Chien-Chen; Tsai, Fuu-Jen

    2012-02-01

    Dental composite resins are widely used for fixing teeth; however, the monomers used in dental composite resins have been found to be cytotoxic and genotoxic, namely triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), and bisphenol A glycol dimethacrylate (Bis-GMA). In this study, we incubated dental composite resins with human saliva for demonstrating the released monomers and biodegradation products. A simple saliva sample dilution method without purification or derivatization was used for quantification. We found that liquid chromatography coupled with multiple-stage ion trap mass spectrometry (LC-MS(n) ) operated in selected reaction monitoring (SRM) mode was able to separate the three monomers within 10 min. The calibration curves were linear (R² >0.996) over a wide range for each monomer in saliva: TEGDMA, 5-500 ppb; UDMA, 5-100 ppb, and Bis-GMA, 5-700 ppb. Furthermore, several biodegradation products were discovered with data-dependent MS/MS scan techniques. Although TEGMA degradation products have previously been reported, we identified two previously unknown UDMA degradation products. The LC-MS/MS method developed in this study was able to successfully quantify monomers and their principal biodegradation products from dental composite resins in human saliva. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Polymer composite electrolytes having core-shell silica fillers with anion-trapping boron moiety in the shell layer for all-solid-state lithium-ion batteries.

    Science.gov (United States)

    Shim, Jimin; Kim, Dong-Gyun; Kim, Hee Joong; Lee, Jin Hong; Lee, Jong-Chan

    2015-04-15

    Core-shell silica particles with ion-conducting poly(ethylene glycol) and anion-trapping boron moiety in the shell layer were prepared to be used as fillers for polymer composite electrolytes based on organic/inorganic hybrid branched copolymer as polymer matrix for all-solid-state lithium-ion battery applications. The core-shell silica particles were found to improve mechanical strength and thermal stability of the polymer matrix and poly(ethylene glycol) and boron moiety in the shell layer increase compatibility between filler and polymer matrix. Furthermore, boron moiety in the shell layer increases both ionic conductivity and lithium transference number of the polymer matrix because lithium salt can be more easily dissociated by the anion-trapping boron. Interfacial compatibility with lithium metal anode is also improved because well-dispersed silica particles serve as protective layer against interfacial side reactions. As a result, all-solid-state battery performance was found to be enhanced when the copolymer having core-shell silica particles with the boron moiety was used as solid polymer electrolyte.

  9. Shift in the species composition of the diatom community in the eutrophic Mauritanian coastal upwelling: Results from a multi-year sediment trap experiment (2003-2010)

    Science.gov (United States)

    Romero, Oscar E.; Fischer, Gerhard

    2017-12-01

    A multiannual, continuous sediment trap experiment was conducted at the mooring site CBeu (Cape Blanc eutrophic, ca. 20 °N, ca. 18 °W; trap depth = 1256-1296 m) in the high-productive Mauritanian coastal upwelling. Here we present fluxes and the species-specific composition of the diatom assemblage, and fluxes of biogenic silica (BSi, opal) and total organic carbon (TOC) for the time interval June 2003-Feb 2010. Flux ranges of studied parameters are (i) total diatoms = 1.2 ∗ 108-4.7 ∗ 104 valves m-2 d-1 (average = 5.9 × 106 valves ± 1.4 × 107); (ii) BSi = 296-0.5 mg m-2 d-1 (average = 41.1 ± 53.5 mg m-2 d-1), and (iii) TOC = 97-1 mg m-2 d-1 (average = 20.5 ± 17.8 mg m-2 d-1). Throughout the experiment, the overall good match of total diatom, BSi and TOC fluxes is reasonably consistent and reflects well the temporal occurrence of the main Mauritanian upwelling season. Spring and summer are the most favorable seasons for diatom production and sedimentation: out of the recorded 14 diatom maxima of different magnitude, six occurred in spring and four in summer. The diverse diatom community at site CBeu is composed of four main assemblages: benthic, coastal upwelling, coastal planktonic and open-ocean diatoms, reflecting different productivity conditions and water masses. A striking feature of the temporal variability of the diatom populations is the persistent pattern of seasonal groups' contribution: benthic and coastal upwelling taxa dominated during the main upwelling season in spring, while open-ocean diatoms were more abundant in fall and winter, when the upper water column becomes stratified, upwelling relaxes and productivity decreases. The relative abundance of benthic diatoms strongly increased after 2006, yet their spring-summer contribution remained high until the end of the trap experiment. The occurrence of large populations of benthic diatoms at the hemipelagic CBeu site is interpreted to indicate transport from shallow waters via nepheloid

  10. Preparation and characterization of chitosan/Aloe Vera composite nanofibers generated by electrostatic spinning

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Illani; Sekak, Khairunnadim Ahmad; Hasbullah, Norazurean [Center of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi Mara (UiTM) 40450 Shah Alam, Selangor (Malaysia)

    2015-08-28

    Researches on the fabrication of nanostructured based membrane have attracted great attention amongst scientists due to their wide potential applications on medical application. In this work, Chitosan and Aloe Vera sol-gel solution were electrospun using 20 kV DC supply at room temperature. Morphological structure and functional group of nanofibers were characterized using field emission scanning electron microscopy (FESEM) and Fourier-transform infrared spectroscopy (FT-IR) respectively. The optimum parameter obtained at 90% concentration of acetic acid, 0.3 ml/h of solution flow rate and 10 cm distance of nozzle to collector. The fiber diameters were analyzed using the ImageJ software. Average diameters of the Chitosan/Aloe Vera composite nanofibers is 183nm in ranges of 140–260nm.

  11. Preparation and characterization of chitosan/Aloe Vera composite nanofibers generated by electrostatic spinning

    Science.gov (United States)

    Ibrahim, Illani; Sekak, Khairunnadim Ahmad; Hasbullah, Norazurean

    2015-08-01

    Researches on the fabrication of nanostructured based membrane have attracted great attention amongst scientists due to their wide potential applications on medical application. In this work, Chitosan and Aloe Vera sol-gel solution were electrospun using 20 kV DC supply at room temperature. Morphological structure and functional group of nanofibers were characterized using field emission scanning electron microscopy (FESEM) and Fourier-transform infrared spectroscopy (FT-IR) respectively. The optimum parameter obtained at 90% concentration of acetic acid, 0.3 ml/h of solution flow rate and 10 cm distance of nozzle to collector. The fiber diameters were analyzed using the ImageJ software. Average diameters of the Chitosan/Aloe Vera composite nanofibers is 183nm in ranges of 140-260nm.

  12. Preparation and characterization of chitosan/Aloe Vera composite nanofibers generated by electrostatic spinning

    International Nuclear Information System (INIS)

    Ibrahim, Illani; Sekak, Khairunnadim Ahmad; Hasbullah, Norazurean

    2015-01-01

    Researches on the fabrication of nanostructured based membrane have attracted great attention amongst scientists due to their wide potential applications on medical application. In this work, Chitosan and Aloe Vera sol-gel solution were electrospun using 20 kV DC supply at room temperature. Morphological structure and functional group of nanofibers were characterized using field emission scanning electron microscopy (FESEM) and Fourier-transform infrared spectroscopy (FT-IR) respectively. The optimum parameter obtained at 90% concentration of acetic acid, 0.3 ml/h of solution flow rate and 10 cm distance of nozzle to collector. The fiber diameters were analyzed using the ImageJ software. Average diameters of the Chitosan/Aloe Vera composite nanofibers is 183nm in ranges of 140–260nm

  13. Thermoelectrically cooled water trap

    Science.gov (United States)

    Micheels, Ronald H [Concord, MA

    2006-02-21

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  14. Generation of new Agm Ten clusters via laser ablation synthesis using Ag-Te nano-composite as precursor. Quadrupole ion trap time-of-flight mass spectrometry.

    Science.gov (United States)

    Mawale, Ravi Madhukar; Amato, Filippo; Alberti, Milan; Havel, Josef

    2014-12-30

    Silver tellurides find applications in the development of infrared detection, imaging, magnetics, sensors, memory devices, and optic materials. However, only a limited number of silver tellurides have been described to date. Laser ablation synthesis (LAS) was selected to generate new Ag-Te clusters. Isothermal adsorption was used to study the formation of silver nano-particles-tellurium aggregates. Laser desorption ionization quadrupole ion trap time-of-flight mass spectrometry (LDI-QIT-TOFMS) was used for the generation and analysis of Agm Ten clusters. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to visualize the structure of materials. The stoichiometry of the generated clusters was determined by computer modeling of isotopic patterns. A simple, one-pot method for the preparation of Ag-Te nano-composite was developed and found suitable for LAS of silver tellurides. The LDI of Ag-Te nano-composite leads to the formation of 11 unary and 52 binary clusters. The stoichiometry of the 34 novel Agm Ten clusters is reported here for the first time. LAS with TOFMS detection was proven to be a powerful technique for the generation of silver telluride clusters. Knowledge of the stoichiometry of the generated clusters might facilitate the further development of novel high-tech silver tellurium nano-materials. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Squid pen-inspired chitinous functional materials: Hierarchical chitin fibers by centrifugal jet-spinning and transparent chitin fiber-reinforced composite

    Science.gov (United States)

    Jeong, Seung-Hwan; Kim, Joong-Kwon; Lim, Young-Woo; Hwang, Hyun-Bin; Kwon, Hee-Young; Bae, Byeong-Soo; Jin, Jungho

    2018-01-01

    Here, inspired by the fibrous composite structure of a squid pen, we introduce hierarchical chitin fibers (herein, termed "Chiber") and their transparent composites and demonstrate the potential of these chitinous functional materials as a sustainable separation-membrane and reinforcing filler for composites. We employ a centrifugal jet-spinning process to fabricate Chiber with aligned chitin nanofibrillar architectures, for which we discuss the processing-morphology relationship. A nonwoven fiber-mat made of Chiber exhibits excellent adsorbing performance for a toxic ionic dye (Congo Red), and has a low coefficient of thermal expansion comparable to that of glass fibers. Finally, we demonstrate a squid pen-mimetic transparent composite using Chiber and investigate its optical property.

  16. Dielectric properties of nanosilica/low-density polyethylene composites: The surface chemistry of nanoparticles and deep traps induced by nanoparticles

    Directory of Open Access Journals (Sweden)

    S. Ju

    2014-09-01

    Full Text Available Four kinds of nanosilica particles with different surface modification were employed to fabricate low-density polyethylene (LDPE composites using melt mixing and hot molding methods. The surface chemistry of modified nanosilica was analyzed by X-ray photoelectron spectroscopy. All silica nanoparticles were found to suppress the space charge injection and accumulation, increase the volume resistivity, decrease the permittivity and dielectric loss factor at low frequencies, and decrease the dielectric breakdown strength of the LDPE polymers. The modified nanoparticles, in general, showed better dielectric properties than the unmodified ones. It was found that the carrier mobility, calculated from J–V curves using the Mott-Gurney equation, was much lower for the nanocomposites than for the neat LDPE.

  17. Trapped antihydrogen

    CERN Document Server

    Butler, E; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jonsell, S; Jørgensen, L V; Kemp, S L; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Seif el Nasr, S; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki,Y

    2012-01-01

    Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only ∼1 T (∼0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be ‘born’ inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 104 times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been ...

  18. Wet-spinning of PEDOT:PSS/Functionalized-SWNTs Composite: a Facile Route Toward Production of Strong and Highly Conducting Multifunctional Fibers

    Science.gov (United States)

    Jalili, Rouhollah; Razal, Joselito M.; Wallace, Gordon G.

    2013-12-01

    With the aim of fabricating multifunctional fibers with enhanced mechanical properties, electrical conductivity and electrochemical performance, we develop wet-spinning of composite formulation based on functionalized PEG-SWNT and PEDOT:PSS. The method of addition and loading are directly correlated to the quality and the ease of spinnability of the formulation and to the mechanical and electrical properties of the resultant fibers. Both the fiber modulus (Y) and strength (σ) scaled linearly with PEG-SWNT volume fraction (Vf). A remarkable reinforcement rate of dY/dVf = 417 GPa and dσ/dVf = 4 GPa were obtained when PEG-SWNTs at Vf stress, respectively. We also show the enhancement of electrochemical supercapacitor performance of composite fibers. These outstanding mechanical, electrical and electrochemical performances place these fibers among the best performing multifunctional composite fibers.

  19. VACUUM TRAP

    Science.gov (United States)

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  20. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  1. Out-of-Phase Electron Spin Echo Studies of Light-Induced Charge-Transfer States in P3HT/PCBM Composite.

    Science.gov (United States)

    Lukina, Ekaterina A; Popov, Alexander A; Uvarov, Mikhail N; Kulik, Leonid V

    2015-10-29

    The light-induced charge-transfer (CT) state in the composite of the conductive polymer poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) has been studied by electron spin echo (ESE) spectroscopy. The out-of-phase ESE signal corresponding to the spin-correlated radical pair P3HT(+)/PCBM(-) has been observed in this composite material. The time-domain ESE shape for different delays between the laser flash and the microwave pulse sequence has been analyzed. In order to explain the evolution of the out-of-phase ESE signal as a function of the delay between the microwave pulses, a model of the CT state is proposed. The hole is assumed to be delocalized on the P3HT chain over several thiophene subunits, while the point-dipole approximation is used to describe the interaction with the electron on PCBM. The distribution of distances between the positive and negative charges in the CT state has been evaluated.

  2. Sediment Trapping in Estuaries

    Science.gov (United States)

    Burchard, Hans; Schuttelaars, Henk M.; Ralston, David K.

    2018-01-01

    Estuarine turbidity maxima (ETMs) are generated by a large suite of hydrodynamic and sediment dynamic processes, leading to longitudinal convergence of cross-sectionally integrated and tidally averaged transport of cohesive and noncohesive suspended particulate matter (SPM). The relative importance of these processes for SPM trapping varies substantially among estuaries depending on topography, fluvial and tidal forcing, and SPM composition. The high-frequency dynamics of ETMs are constrained by interactions with the low-frequency dynamics of the bottom pool of easily erodible sediments. Here, we use a transport decomposition to present processes that lead to convergent SPM transport, and review trapping mechanisms that lead to ETMs at the landward limit of the salt intrusion, in the freshwater zone, at topographic transitions, and by lateral processes within the cross section. We use model simulations of example estuaries to demonstrate the complex concurrence of ETM formation mechanisms. We also discuss how changes in SPM trapping mechanisms, often caused by direct human interference, can lead to the generation of hyperturbid estuaries.

  3. Quantum logic gates using coherent population trapping states

    Indian Academy of Sciences (India)

    A scheme is proposed for achieving a controlled phase gate using interaction between atomic spin dipoles. Further, the spin states are prepared in coherent population trap states (CPTs), which are robust against perturbations, laser fluctuations etc. We show that one-qubit and two-qubit operations can easily be obtained in ...

  4. Two-component spin-coated Ag/CNT composite films based on a silver heterogeneous nucleation mechanism adhesion-enhanced by mechanical interlocking and chemical grafting

    Science.gov (United States)

    Zhang, Yang; Kang, Zhixin; Bessho, Takeshi

    2017-03-01

    In this paper, a new method for the synthesis of silver carbon nanotube (Ag/CNT) composite films as conductive connection units for flexible electronic devices is presented. This method is about a two-component solution process by spin coating with an after-treatment annealing process. In this method, multi-walled carbon nanotubes (MWCNTs) act as the core of silver heterogeneous nucleation, which can be observed and analyzed by a field-emission scanning electron microscope. With the effects of mechanical interlocking, chemical grafting, and annealing, the interfacial adhesive strength between films and PET sheets was enhanced to 12 N cm-1. The tensile strength of the Ag/CNT composite films was observed to increase by 38% by adding 5 g l-1 MWCNTs. In the four-probe method, the resistivity of Ag/CNT-5 declined by 78.2% compared with pristine Ag films. The anti-fatigue performance of the Ag/CNT composite films was monitored by cyclic bending deformation and the results revealed that the growth rate of electrical resistance during the deformation was obviously retarded. As for industrial application, this method provides an efficient low-cost way to prepare Ag/CNT composite films and can be further applied to other coating systems.

  5. Multi-Valued Spin Switch in a Semiconductor Microcavity

    Science.gov (United States)

    Paraïso, T. K.; Wouters, M.; Léger, Y.; Morier-Genoud, F.; Deveaudhyphen; Plédran, B.

    2011-12-01

    In this work, we report on the first realization of multi-valued spin switching in the solid-state. We investigate the physics of spinor bistability with microcavity polaritons in a trap. Spinor interactions lead to special bistability regimes with decoupled thresholds for spin-up and spin-down polaritons. This allows us to establish state-of-the-art spin switching operations. We evidence polarization hysteresis and determine appropriate conditions to achieve spin multistability. For a given excitation condition, three stable spin states coexist for the system. These results open new pathways for the development of innovative spin-based logic gates and memory devices.

  6. Globalisation Trapped

    Directory of Open Access Journals (Sweden)

    João Caraça

    2017-05-01

    Full Text Available The promise of making society progress through the direct applications of science was finally fulfilled in the mid-20th century. Science progressed immensely, propelled by the effects of the two world wars. The first science-based technologies saw the daylight during the 1940s and their transformative power was such that neither the military, nor subsequently the markets, allowed science to return intact to its curiosity-driven nest. Technoscience was born then and (being progressively pulled away from curiosity-driven science was able to grow enormously, erecting a formidable structure of networks of institutions that impacted decisively on the economy. It is a paradox, or maybe a trap, that the fulfillment of science’s solemn promise of ‘transforming nature’ means seeing ourselves and our Western societies entangled in crises after crises with no clear outcome in view. A redistribution of geopolitical power is under way, along with the deployment of information and communication technologies, forcing dominant structures to oscillate, as knowledge about organization and methods, marketing, design, and software begins to challenge the role of technoscience as the main vector of economic growth and wealth accumulation. What ought to be done?

  7. Quantum plasmon and Rashba-like spin splitting in self-assembled Co x C60 composites with enhanced Co content (x > 15)

    Science.gov (United States)

    Lavrentiev, Vasily; Chvostova, Dagmar; Stupakov, Alexandr; Lavrentieva, Inna; Vacik, Jiri; Motylenko, Mykhaylo; Barchuk, Mykhailo; Rafaja, David; Dejneka, Alexandr

    2018-04-01

    Driving by interplay between plasmonic and magnetic effects in organic composite semiconductors is a challenging task with a huge potential for practical applications. Here, we present evidence of a quantum plasmon excited in the self-assembled Co x C60 nanocomposite films with x > 15 (interval of the Co cluster coalescence) and analyse it using the optical absorption (OA) spectra. In the case of Co x C60 film with x = 16 (LF sample), the quantum plasmon generated by the Co/CoO clusters is found as the 1.5 eV-centred OA peak. This finding is supported by the establishment of four specific C60-related OA lines detected at the photon energies E p > 2.5 eV. Increase of the Co content up to x = 29 (HF sample) leads to pronounced enhancement of OA intensity in the energy range of E p > 2.5 eV and to plasmonic peak downshift of 0.2 eV with respect to the peak position in the LF spectrum. Four pairs of the OA peaks evaluated in the HF spectrum at E p > 2.5 eV reflect splitting of the C60-related lines, suggesting great change in the microscopic conditions with increasing x. Analysis of the film nanostructure and the plasmon-induced conditions allows us to propose a Rashba-like spin splitting effect that suggests valuable sources for spin polarization.

  8. Cryogenic surface ion traps

    International Nuclear Information System (INIS)

    Niedermayr, M.

    2015-01-01

    Microfabricated surface traps are a promising architecture to realize a scalable quantum computer based on trapped ions. In principle, hundreds or thousands of surface traps can be located on a single substrate in order to provide large arrays of interacting ions. To this end, trap designs and fabrication methods are required that provide scalable, stable and reproducible ion traps. This work presents a novel surface-trap design developed for cryogenic applications. Intrinsic silicon is used as the substrate material of the traps. The well-developed microfabrication and structuring methods of silicon are utilized to create simple and reproducible traps. The traps were tested and characterized in a cryogenic setup. Ions could be trapped and their life time and motional heating were investigated. Long ion lifetimes of several hours were observed and the measured heating rates were reproducibly low at around 1 phonon per second at a trap frequency of 1 MHz. (author) [de

  9. Trap Fishery and Reproductive Biology of the Whitespotted ...

    African Journals Online (AJOL)

    Abstract—Fish samples and catch data were collected monthly from traditional basket fish traps set on reefs within the Dar es Salaam Marine Reserves (DMRs) to evaluate trap catch dynamics and reproductive biology of the rabbit fish Siganus sutor (Valenciennes 1835). Trap catch composition was 85% rabbitfishes by ...

  10. Spinning out a star.

    Science.gov (United States)

    Lord, Michael D; Mandel, Stanley W; Wager, Jeffrey D

    2002-06-01

    Spinouts rarely take off; most, in fact, fall into one or more of four traps that doom them from the start. Some companies spin out ventures that are too close to the core of their businesses, in effect selling off their crown jewels. Sometimes, a parent company uses the spinout primarily to pawn off debt or expenses or to quickly raise external capital for itself. Other times, a company may try to spin out an area of its business that lacks one or more of the critical legs of a successful company--a coherent business model, say, or a solid financial base. And in many cases, parent companies can't bring themselves to sever their ownership ties and give up control of their spinouts. R.J. Reynolds, the tobacco giant, managed to avoid these traps when it successfully spun out a most unlikely venture, the pharmaceutical company Targacept. As the story illustrates, the problem with spinouts is similar to the problem of rich children. Their parents have the wherewithal to spoil them or shelter them or cling to them, but what they need is tough love and discipline--much the same discipline that characterizes successful start-ups. R.J. Reynolds recognized that it didn't know that much about the pharmaceutical business and couldn't merely try to spin out a small clone of itself. It had to treat the venture as if it were essentially starting from scratch, with a passionate entrepreneurial leader, a solid business plan, help from outside partners in the industry, and ultimately substantial venture backing. That these lessons are less obvious to executives contemplating spinning out ventures closer to their core businesses may be why so many spinouts fail.

  11. Silver Doped TiO2 Nanostructure Composite Photocatalyst Film Synthesized by Sol-Gel Spin and Dip Coating Technique on Glass

    Directory of Open Access Journals (Sweden)

    Mojtaba Nasr-Esfahani

    2008-01-01

    Full Text Available New composite films (P25SGF-MC-Ag, MPC500SGF-MC-Ag, and ANPSGF-MC-Ag have been synthesized by a modified sol-gel method using different particle sizes of TiO2 powder and silver addition. Nanostructure TiO2/Ag composite thin films were prepared by a sol-gel spin and dip coating technique. while, by introducing methyl cellulose (MC porous, TiO2/Ag films were obtained after calcining at a temperature of 500°C. The as-prepared TiO2 and TiO2/Ag films were characterized by X-ray diffractometry, and scanning electron microscopy to reveal the structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methyl orange (MO under UV irradiation. After 500°C calcination, the microstructure of MC-TiO2 film without Ag addition exhibited a microstructure, while significant sintering effect was noticed with Ag additions and the films exhibited a porous microstructure. Nanostructure anatase-phase TiO2 can be observed with respect to the sharpening of XRD diffraction peaks. The photodegradation of porous TiO2 deposited with 5×10−4 mol Ag exhibited the best photocatalytic efficiency, where 69% methyl orange can be decomposed after UV exposure for 1 hour.

  12. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2017-01-01

    Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.

  13. Spin Electronics

    Science.gov (United States)

    2003-08-01

    applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a...physical phenomena in II-VI and III-V semiconductors. In II-VI systems, the Mn2+ ions act to boost the electron spin precession up to terahertz ...conductors, proximity effect between ferromagnets and superconductors , and the effects of spin injection on the physical properties of the

  14. Spin doctoring

    OpenAIRE

    Vozková, Markéta

    2011-01-01

    1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...

  15. Modelling of thermo-chemical properties over the sub-solidus MgO-FeO binary, as a function of iron spin configuration, composition and temperature

    Science.gov (United States)

    Merli, Marcello; Sciascia, Luciana; Pavese, Alessandro; Diella, Valeria

    2015-05-01

    Thermo-chemical properties and T- X phase relations diagram of the (Mg,Fe)O solid solution are modelled using mixing Helmholtz energy, Δ F( T, x)mixing, calculated by quantum mechanical and semi-empirical techniques. The sub-solidus MgO-FeO binary has been explored as a function of composition, with iron either in high-spin (HS) or low-spin (LS) configuration. Only the HS model provides physically sound results at room pressure, yielding a correct trend of cell edge versus composition, whereas LS's issues are at variance with observations. Mixing Helmholtz energy has been parametrized by the following relationship: Δ F( T, x)mixing = x × y × [U0( T) + U1( T) × ( x - y) + U2( T) × ( x - y)2]- T × S( x, y)config, where y = 1- x and U j( T) are polynomials in T of the second order. Δ F( T, x)mixing exhibits a quasi-symmetric behaviour and allows one to build the T- X phase relations diagram over the MgO-FeO join. The HS model including vibrational contribution to the Helmholtz energy predicts a solid solution's critical temperature of some 950 K, remarkably larger than olivine's and Mg-Fe garnet's. All this points to a more difficult Mg-Fe mixing in periclase-like structure than olivine and garnet, which, in turn, provide more structure degrees of freedom for atomic relaxation. From Δ F( T, x)mixing, we have then derived Δ H( T, x)excess and Δ S( T, x)excess. The former, characterized by a quasi-regular behaviour, has been parametrized through W × x × (1- x), obtaining W H,Mg-Fe of 17.7(5) kJ/mol. Δ S( T, x)excess, in turn, increases as a function of temperature, showing absolute figures confined within 0.1 J/mol/K. Mixing Gibbs energy, calculated combining the present issues with earlier theoretical determinations of the magnesio-wüstite's elastic properties, has shown that the HS configuration is stable and promote Mg-Fe solid solution up to ≈15 GPa.

  16. Strong spin-photon coupling in silicon.

    Science.gov (United States)

    Samkharadze, N; Zheng, G; Kalhor, N; Brousse, D; Sammak, A; Mendes, U C; Blais, A; Scappucci, G; Vandersypen, L M K

    2018-03-09

    Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot-based spin qubit registers. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Quantum Spin Lenses in Atomic Arrays

    Directory of Open Access Journals (Sweden)

    A. W. Glaetzle

    2017-09-01

    Full Text Available We propose and discuss quantum spin lenses, where quantum states of delocalized spin excitations in an atomic medium are focused in space in a coherent quantum process down to (essentially single atoms. These can be employed to create controlled interactions in a quantum light-matter interface, where photonic qubits stored in an atomic ensemble are mapped to a quantum register represented by single atoms. We propose Hamiltonians for quantum spin lenses as inhomogeneous spin models on lattices, which can be realized with Rydberg atoms in 1D, 2D, and 3D, and with strings of trapped ions. We discuss both linear and nonlinear quantum spin lenses: in a nonlinear lens, repulsive spin-spin interactions lead to focusing dynamics conditional to the number of spin excitations. This allows the mapping of quantum superpositions of delocalized spin excitations to superpositions of spatial spin patterns, which can be addressed by light fields and manipulated. Finally, we propose multifocal quantum spin lenses as a way to generate and distribute entanglement between distant atoms in an atomic lattice array.

  18. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  19. Resonant quantum transitions in trapped antihydrogen atoms.

    Science.gov (United States)

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Capra, A; Cesar, C L; Charlton, M; Deller, A; Donnan, P H; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Shields, C R; Silveira, D M; Stracka, S; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-03-07

    The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and--by comparison with measurements on its antimatter counterpart, antihydrogen--the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves.

  20. Effects of Confinement on Conventional Spin Problems

    DEFF Research Database (Denmark)

    Marchukov, Oleksandr

    2015-01-01

    , Hubbard model, etc., which are nevertheless used to describe physical phenomena in various fields, such as condensed matter physics, nuclear physics, etc. This dissertation discusses the effects of the external confinement on some con- ventional spin problems. It consists of two parts: In the first part...... the effects of spin-orbit coupling on particles trapped in a two-dimensional harmonic oscilla- tor are considered. The influences of the deformation of the trap, interparticle interaction and external magnetic field are analyzed. The statistical analysis of the single-particle energy spectrum and its relation...

  1. Enhancement of spin orbit torques in a Tb-Co alloy magnetic wire by controlling its Tb composition

    Directory of Open Access Journals (Sweden)

    Yuichiro Kurokawa

    2017-05-01

    Full Text Available We investigated the current-induced domain wall motion (CIDWM in Pt(3 nm/TbxCo1-x(6 nm alloy wires with various Tb composition (x. We found that the threshold current density (Jth for the CIDWM in the TbxCo1-x alloy wires decreases with increasing x. In particular, the Jth with x = 0.37 is almost 3 times smaller than that with x = 0.23. We estimated Dzyaloshinskii-Moriya interaction (DMI effective field (HDMI by measuring CIDWM in a longitudinal magnetic field. We found that DMI constant (D estimated by the HDMI also strongly depends on x. The size of the DMI may be modified by changing electronegativity or local atomic arrangement in Tb-Co alloy. These results suggest that Tb can induce strong HDMI and effectively affect CIDWM in TbxCo1-x alloy wires.

  2. Impurity beam-trapping instability in tokamaks

    International Nuclear Information System (INIS)

    Hogan, J.T.; Howe, H.C.

    1976-12-01

    The sensitivity of neutron energy production to the trapping by impurities by injected neutral beams is considered. The beam-trapping process is affected by inherent low-Z contamination of the tritium plasma, by the species composition of the neutral beam, and by the entrance angle of the beam. The sensitivities of the process are compared to these variables and to the variation with wall material. One finds that use of a low-Z, low sputtering material could retard a possible beam trapping instability

  3. TOPICAL REVIEW: Spin current, spin accumulation and spin Hall effect

    Directory of Open Access Journals (Sweden)

    Saburo Takahashi and Sadamichi Maekawa

    2008-01-01

    Full Text Available Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1 and detector (F2 electrodes connected to a normal conductor (N is studied. We reveal how the spin transport depends on interface resistance, electrode resistance, spin polarization and spin diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and spin current in the device. It is demonstrated that the spin Hall effect is caused by spin–orbit scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge currents in a nonlocal device. A method of evaluating spin–orbit coupling in nonmagnetic metals is proposed.

  4. Trapping Ions in an optical lattice for quantum simulation

    Science.gov (United States)

    Grau, Matt; Fischer, Christoph; Wipfli, Oliver; Home, Jonathan

    2017-04-01

    Quantum many-body spin Hamiltonians are important tools for describing condensed matter systems, but many such Hamiltonians are difficult to simulate on classical computers. Quantum simulation offers an avenue for overcoming these limitations. Arrays of trapped ions are an attractive platform for quantum simulation due to the high level of control combined with the intrinsic long-range Coulomb interaction that can be used to engineer tunable spin-spin couplings. However, varying lattice geometry is challenging with current trapping techniques. We are developing a new apparatus to trap arrays of ions in optical lattices for the purpose of quantum simulation. This should allow trapping two and three-dimensional crystals with a designed geometry. I will present results of simulations of equilibrium positions and normal modes of such a system, which indicate that in a first design arrays of around 40 ions could be trapped with ion-ion distances of under 10 microns, and also with low residual heating rates due to off-resonant scattering and laser fluctuations. By using Magnesium ions, we expect to be able to cool and image the ions while trapped in a deep optical lattice formed by a high finesse optical cavity. Experimental progress towards these goals will be described.

  5. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  6. Spin glasses

    International Nuclear Information System (INIS)

    Fischer, K.H.; Hertz, J.A.

    1993-01-01

    Spin glasses, simply defined by the authors as a collection of spins (i.e., magnetic moments) whose low-temperature state is a frozen disordered one, represent one of the fascinating new fields of study in condensed matter physics, and this book is the first to offer a comprehensive account of the subject. Included are discussions of the most important developments in theory, experimental work, and computer modeling of spin glasses, all of which have taken place essentially within the last two decades. The first part of the book gives a general introduction to the basic concepts and a discussion of mean field theory, while the second half concentrates on experimental results, scaling theory, and computer simulation of the structure of spin glasses

  7. Spin-orbit coupling in periodically driven optical lattices

    Science.gov (United States)

    Struck, J.; Simonet, J.; Sengstock, K.

    2014-09-01

    We propose a method for the emulation of artificial spin-orbit coupling in a system of ultracold, neutral atoms trapped in a tight-binding lattice. This scheme does not involve near-resonant laser fields, avoiding the heating processes connected to the spontaneous emission of photons. In our case, the necessary spin-dependent tunnel matrix elements are generated by a rapid, spin-dependent, periodic force, which can be described in the framework of an effective, time-averaged Hamiltonian. An additional radio-frequency coupling between the spin states leads to a mixing of the spin bands.

  8. Trap style influences wild pig behavior and trapping success

    Science.gov (United States)

    Williams, B.L.; Holtfreter, R.W.; Ditchkoff, S.S.; Grand, J.B.

    2011-01-01

    Despite the efforts of many natural resource professionals, wild pig (Sus scrofa) populations are expanding in many areas of the world. Although many creative techniques for controlling pig populations are being explored, trapping has been and still is themost commonly usedmethod of population control formany public and private land managers. We conducted an observational study to examine the efficiency of 2 frequently used trap styles: a small, portable box-style trap and a larger, semi-permanent, corral-style trap.We used game cameras to examine patterns of trap entry by wild pigs around each style of trap, and we conducted a trapping session to compare trapping success between trap styles. Adult female and juvenile wild pigs entered both styles of trap more readily than did adult males, and adult males seemed particularly averse to entering box traps. Less than 10% of adult male visits to box traps resulted in entries, easily the least percentage of any class at any style of trap. Adult females entered corral traps approximately 2.2 times more often per visit than box traps and re-entered corral traps >2 times more frequently. Juveniles entered and reentered both box and corral traps at similar rates. Overall (all-class) entry-per-visit rates at corral traps (0.71) were nearly double that of box traps (0.37). Subsequent trapping data supported these preliminary entry data; the capture rate for corral traps was >4 times that of box traps. Our data suggest that corral traps are temporally and economically superior to box traps with respect to efficiency; that is, corral traps effectively trap more pigs per trap night at a lower cost per pig than do box traps. ?? 2011 The Wildlife Society.

  9. Neutral atom traps.

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  10. Spin-trapping radikálových produktů přenosu vodíku z uhlíkatých donorů

    OpenAIRE

    Krkošková, Petra

    2008-01-01

    Na příkladu vhodně zvolených substituovaných kumarínů a také několika látek charakteru esterů a diesterů byla zkoumána možnost detekce uhlíkatých radikálů vznikajících odštěpením vodíku z -CHR- skupiny nacházející se mezi dvěma karbonylovými skupinami nebo mezi karbonylovou a imino skupinou. Jako vhodná látka, na jejímž povrchu se tyto sloučeniny rozkládají, byl použit PbO2.Využitím metody spin-trappingu byl stanoven charakter vznikajících nestabilních C-radikálů porovnáním experimentálních a...

  11. The investigation of structure, chemical composition, hydrogen isotope trapping and release processes in deposition layers on surfaces exposed to DIII-D divertor plasma

    International Nuclear Information System (INIS)

    Buzhinskij, O.I.; Opimach, I.V.; Barsuk, V.A.; Arkhipov, I.I.; Whyte, D.; Wampler, W.R.

    1998-05-01

    The exposure of ATG graphite sample to DIII-D divertor plasma was provided by the DiMES (Divertor Material Evaluation System) mechanism. The graphite sample arranged to receive the parallel heat flux on a small region of the surface was exposed to 600ms of outer strike point plasma. The sample was constructed to collect the eroded material directed downward into a trapping zone onto s Si disk collector. The average heat flux onto the graphite sample during the exposure was about 200W/cm 2 , and the parallel heat flux was about 10 KW/cm 2 . After the exposure the graphite sample and Si collector disk were analyzed using SEM, NRA, RBS, Auger spectroscopy. IR and Raman spectroscopy. The thermal desorption was studied also. The deposited coating on graphite sample is amorphous carbon layer. Just upstream of the high heat flux zone the redeposition layer has a globular structure. The deposition layer on Si disk is composed also from carbon but has a diamond-like structure. The areal density of C and D in the deposited layer on Si disk varied in poloidal and toroidal directions. The maximum D/C areal density ratio is about 0.23, maximum carbon density is about 3.8 x 10 18 cm -2 , maximum D area density is about 3 x 10 17 cm 2 . The thermal desorption spectrum had a peak at 1,250K

  12. Averaging out magnetic forces with fast rf sweeps in an optical trap for metastable chromium atoms

    Science.gov (United States)

    Beaufils, Q.; Chicireanu, R.; Pouderous, A.; de Souza Melo, W.; Laburthe-Tolra, B.; Maréchal, E.; Vernac, L.; Keller, J. C.; Gorceix, O.

    2008-05-01

    We introduce a time-averaged trap in which the internal state of the atoms is rapidly modulated to modify the magnetic trapping potential. In our experiment, fast radio-frequency linear sweeps flip the spins of atoms at a fast rate, which averages out the magnetic forces. We use this procedure to optimize the accumulation of metastable chromium atoms in an optical dipole trap from a magneto-optical trap. The potential experienced by the metastable atoms is identical to the bare optical dipole potential, so that this procedure allows for trapping all magnetic sublevels, hence increasing by up to 80% the final number of accumulated atoms.

  13. Torque and optical traps

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... Optical traps are an important tool for research in the field of single molecule biophysics. Recent advances in optical trapping have extended their functionality from simple linear manipulation and measurement of forces, to now the ability to rotate objects and measure torques. This mini review summarizes ...

  14. Versatile electrostatic trap

    NARCIS (Netherlands)

    van Veldhoven, J.; Bethlem, H.L.; Schnell, M.; Meijer, G.

    2006-01-01

    A four electrode electrostatic trap geometry is demonstrated that can be used to combine a dipole, quadrupole, and hexapole field. A cold packet of ND315 molecules is confined in both a purely quadrupolar and hexapolar trapping field and additionally, a dipole field is added to a hexapole field to

  15. Quadrupole Ion Traps

    Indian Academy of Sciences (India)

    electron bound to the gravitational field, the 'geonium atom'. The first atomic hyperfine structure experiment on trapped ions was performed by Dehmelt's group using the stored-ion exchange-collision technique in a Paul trap which paved the way for some of the subsequent experiment for atomic frequency. A single atom at.

  16. Loading an Optical Trap with Diamond Nanocrystals Containing Nitrogen-Vacancy Centers from a Surface

    Science.gov (United States)

    Hsu, Jen-Feng; Ji, Peng; Dutt, M. V. Gurudev; D'Urso, Brian R.

    2015-03-01

    We present a simple and effective method of loading particles into an optical trap. Our primary application of this method is loading photoluminescent material, such as diamond nanocrystals containing nitrogen-vacancy (NV) centers, for coupling the mechanical motion of the trapped crystal with the spin of the NV centers. Highly absorptive material at the trapping laser frequency, such as tartrazine dye, is used as media to attach nanodiamonds and burn into a cloud of air-borne particles as the material is swept near the trapping laser focus on a glass slide. Particles are then trapped with the laser used for burning or transferred to a second laser trap at a different wavelength. Evidence of successful loading diamond nanocrystals into the trap presented includes high sensitivity of the photoluminecscence (PL) to the excitation laser and the PL spectra of the optically trapped particles

  17. Study of mosquito attractants for photo catalytic mosquito trap

    OpenAIRE

    Dewi Tristantini; Slamet -; Angela Jessica Stephanie

    2014-01-01

    Photo catalytic mosquito trap is made of TiO2-Activated Carbon (AC) with a certain composition of AC. Research concerns on the heat spectrum which is produced by combination process of existing CO2 and humid air. The purpose of performance testing is to observe capability of this device in trapping mosquitoes related to the air temperature profile for heat spectrum is play important role for attracting mosquitoes. Result shows photo catalytic mosquito trap is more effective than devices which...

  18. Interference Spins

    DEFF Research Database (Denmark)

    Popovski, Petar; Simeone, Osvaldo; Nielsen, Jimmy Jessen

    2015-01-01

    on traffic load and interference condition leads to performance gains. In this letter, a general network of multiple interfering two-way links is studied under the assumption of a balanced load in the two directions for each link. Using the notion of interference spin, we introduce an algebraic framework...

  19. Spinning worlds

    NARCIS (Netherlands)

    Schwarz, H.

    2017-01-01

    The thesis "Spinning Worlds" is about the characterisation of two types of gas-giant exoplanets: Hot Jupiters, with orbital periods of fewer than five days, and young, wide-orbit gas giants, with orbital periods as long as thousands of years. The thesis is based on near-infrared observations of 1

  20. Generation of Au(p)Ag(q)Te(r) clusters via laser ablation synthesis using Au-Ag-Te nano-composite as precursor: quadrupole ion-trap time-of-flight mass spectrometry.

    Science.gov (United States)

    Mawale, Ravi Madhukar; Amato, Filippo; Alberti, Milan; Havel, Josef

    2014-07-30

    Metal tellurides have applications in various fields of science and technology but only a few gold-silver tellurides have been reported. The laser ablation synthesis (LAS) method allows the preparation of nano-materials from solid substrates. Therefore, this method was selected to synthesise some gold-silver tellurides. Laser desorption ionisation quadrupole ion trap time-of-flight mass spectrometry (LDI QIT TOF MS) was used for the generation of new Au(p)Ag(q)Te(r) clusters. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were used to characterise the materials. The stoichiometry of the clusters generated was determined via collision-induced dissociation (CID) and modeling of isotopic patterns. Chemisorption of gold and silver nano-particles on tellurium powder led to the formation of a new kind of Au-Ag-Te nano-composite. The LDI of this nano-composite yielded nine unary (Ag(q), Te(r)), 40 binary (Au(p)Te(r) and Ag(p)Te(r)) and 78 ternary clusters. The stoichiometry of these novel Au(p)Ag(q)Te(r) clusters is reported here for the first time. The new Au-Ag-Te nano-composite was found to be a more suitable precursor for the generation of clusters than the mixtures of the elements. TOF MS was shown to be a useful technique for following the generation of gold-silver tellurides. Knowledge of the cluster stoichiometry could accelerate the further development of novel high-tech materials such as chalcogenide glasses. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Nematode-Trapping Fungi.

    Science.gov (United States)

    Jiang, Xiangzhi; Xiang, Meichun; Liu, Xingzhong

    2017-01-01

    Nematode-trapping fungi are a unique and intriguing group of carnivorous microorganisms that can trap and digest nematodes by means of specialized trapping structures. They can develop diverse trapping devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-trapping fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-trapping fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.

  2. Composites

    OpenAIRE

    Zhao, Hanqing; Guo, Yuanzheng

    2014-01-01

    This thesis was a literature study concerning composites. With composites becoming increasingly popular in various areas such as aerospace industry and construction, the research about composites has a significant meaning accordingly. This thesis was aim at introducing some basic information of polymer matrix composites including raw mate-rial, processing, testing, applications and recycling to make a rough understanding of this kind of material for readers. Polymeric matrices, fillers,...

  3. Numerical evidences of universal trap-like aging dynamics

    Science.gov (United States)

    Cammarota, Chiara; Marinari, Enzo

    2018-04-01

    Trap models have been initially proposed as toy models for dynamical relaxation in extremely simplified rough potential energy landscapes. Their importance has recently grown considerably thanks to the discovery that the trap-like aging mechanism directly controls the out-of-equilibrium relaxation processes of more sophisticated spin models, that are considered as the solvable counterpart of real disordered systems. Further establishing the connection between these spin models, out-of-equilibrium behavior and the trap like aging mechanism could shed new light on the properties, which are still largely mysterious, for the activated out-of-equilibrium dynamics of disordered systems. In this work we discuss numerical evidence based on the computations of the permanence times of an emergent trap-like aging behavior in a variety of very simple disordered models—developed from the trap model paradigm. Our numerical results are backed by analytic derivations and heuristic discussions. Such exploration reveals some of the tricks needed to reveal the trap behavior in spite of the occurrence of secondary processes, of the existence of dynamical correlations and of strong finite system’s size effects.

  4. Spin and Madelung fluid

    International Nuclear Information System (INIS)

    Salesi, G.

    1995-07-01

    Starting from the Pauli current the decomposition of the non-relativistic local velocity has been obtained in two parts (in the ordinary tensorial language): one parallel and the other orthogonal to the impulse. The former is recognized to be the classical part, that is, the center-of-mass (CM) velocity, and the latter the quantum one, that is, the velocity of the motion in the CM frame (namely, the internal spin motion or Zitterbewegung). Inserting this complete, composite expression of the velocity into the kinetic energy term of the classical non-relativistic (i.e. Newtonian) Lagrangian, the author straightforwardly get the appearance of the so called quantum potential associates as it is known, to the Madelung fluid. In such a way, the quantum mechanical behaviour of particles appears to be strictly correlated to the existence of spin and Zitterbewegung

  5. Lithium transference number measurements and complex abilities in anion trapping triphenyloborane-poly(ethylene oxide) dimethyl ether-lithium trifluoromethanesulfonate composite electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Ciosek, M. [Warsaw University of Technology, Faculty of Chemistry Technology, ul. Noakowskiego 3, 00-664 Warsaw (Poland); Marcinek, M. [Warsaw University of Technology, Faculty of Chemistry Technology, ul. Noakowskiego 3, 00-664 Warsaw (Poland)], E-mail: marekm_prv@yahoo.com; Zukowska, G.; Wieczorek, W. [Warsaw University of Technology, Faculty of Chemistry Technology, ul. Noakowskiego 3, 00-664 Warsaw (Poland)

    2009-07-30

    In this paper we report the combined, positive effect of triphenyloborane (BPh{sub 3}) additive on conductivity and lithium cation transference numbers in poly(ethylene oxide) dimethyl ether (PEODME)-lithium trifluoromethanesulfonate (LiCF{sub 3}SO{sub 3}, LiTf) electrolytes. The transport mechanism is discussed on the basis of impedance measurements, restricted diffusion t{sup +} measurements, ionic association semi-empirical quantitative estimation and spectroscopic studies. A substantial increase in the lithium transference number values in triphenylborane enriched composite electrolytes was observed in comparison with the pure PEODME-LiCF{sub 3}SO{sub 3} electrolyte. This effect is assisted by ionic conductivity enhancement.

  6. Spin Structure Analyses of Antiferromagnets

    International Nuclear Information System (INIS)

    Chung, Jae Ho; Song, Young Sang; Lee, Hak Bong

    2010-05-01

    We have synthesized series of powder sample of incommensurate antiferromagnetic multiferroics, (Mn, Co)WO 4 and Al doped Ba 0.5 Sr 1.5 Zn 2 Fe 12 O 22 , incommensurate antiferromagnetic multiferroics. Their spin structure was studied by using the HRPD. In addition, we have synthesized series of crystalline samples of incommensurate multiferroics, (Mn, Co)WO 4 and olivines. Their spin structure was investigated using neutron diffraction under high magnetic field. As a result, we were able to draw the phase diagram of (Mn, Co)WO 4 as a function of composition and temperature. We learned the how the spin structure changes with increased ionic substitution. Finally we have drawn the phase diagram of the multicritical olivine Mn2SiS4/Mn2GeS4 as a function of filed and temperature through the spin structure studies

  7. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2011-01-01

    Strategies are open compositions to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them in full...

  8. Composition

    DEFF Research Database (Denmark)

    2014-01-01

    Memory Pieces are open compositions to be realised solo by an improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them...

  9. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2010-01-01

    New Year is an open composition to be realised by improvising musicians. It is included in "From the Danish Seasons" (see under this title). See more about my composition practise in the entry "Composition - General Introduction". This work is licensed under a Creative Commons "by-nc" License. You...

  10. Planetary fertility during the past 400 ka based on the triple isotope composition of O2 in trapped gases from the Vostok ice core

    Directory of Open Access Journals (Sweden)

    J. C. von Fischer

    2012-10-01

    Full Text Available The productivity of the biosphere leaves its imprint on the isotopic composition of atmospheric oxygen. Ultimately, atmospheric oxygen, through photosynthesis, originates from seawater. Fractionations during the passage from seawater to atmospheric O2 and during respiration affect δ17O approximately half as much as δ18O. An "anomalous" (also termed mass independent fractionation process changes δ17O about 1.7 times as much as δ18O during isotope exchange between O2 and CO2 in the stratosphere. The relative rates of biological O2 production and stratospheric processing determine the relationship between δ17O and δ18O of O2 in the atmosphere. Variations of this relationship thus allow us to estimate changes in the rate of O2 production by photosynthesis versus the rate of O2–CO2 isotope exchange in the stratosphere. However, the analysis of the 17O anomaly is complicated because each hydrological and biological process fractionates δ17O and δ18O in slightly different proportions. In this study we present O2 isotope data covering the last 400 ka (thousand years from the Vostok ice core. We reconstruct oxygen productivities from the triple isotope composition of atmospheric oxygen with a box model. Our steady state model for the oxygen cycle takes into account fractionation during photosynthesis and respiration by the land and ocean biosphere, fractionation during the hydrologic cycle, and fractionation when oxygen passes through the stratosphere. We consider changes of fractionation factors linked to climate variations, taking into account the span of estimates of the main factors affecting our calculations. We find that ocean oxygen productivity was within 20% of the modern value throughout the last 400 ka. Given the presumed reduction in terrestrial oxygen productivity, the total oxygen production during glacials was likely reduced.

  11. Electrical Spin Generation and Transport in Spin-Orbit Coupled Systems

    Science.gov (United States)

    Niu, Qian

    2005-03-01

    We consider spin generation and transport in bands with built-in spin-orbit coupling. A number of fundamental issues will be discussed: (1) the existence of spin-dipole and torque-dipole of wave packets which model the carriers; (2) source terms in the continuity equation (spin generation and relaxation); (3) the composition of the spin current (Berry phase and more); (4) spin Hall conductivity and its reciprocal; (5) the spin current responsible for spin accumulation. *References: *1 D. Culcer, J. Sinova, N. A. Sinitsyn, T. Jungwirth, A. H.MacDonald, Q. Niu, `Semiclassical theory of spin transport in spin-orbit coupled systems', Phys. Rev. Lett. 93, 046602 (2004). *2 P. Zhang and Q. Niu, `Charge-Hall effect driven by spin force: reciprocal of the spin-Hall effect' Cond-mat/0406436. *3 D. Culcer, Y. G. Yao, A. H. MacDonald, and Q. Niu, `Electric generation of spin in crystals with reduced symmetry', Cond-mat/0408020.

  12. Ultrafast laser-driven Rabi oscillations of a trapped atomic vapor.

    Science.gov (United States)

    Lee, Han-gyeol; Kim, Hyosub; Ahn, Jaewook

    2015-02-15

    We consider the Rabi oscillation of an atom ensemble of Gaussian spatial distribution interacting with ultrafast laser pulses. Based on an analytical model calculation, we show that its dephasing dynamics is solely governed by the size ratio between the atom ensemble and the laser beam, and that every oscillation peak of the inhomogeneously broadened Rabi flopping falls on the homogeneous Rabi oscillation curve. The results are verified experimentally with a cold rubidium vapor in a magneto-optical trap. As a robust means to achieve higher-fidelity population inversion of the atom ensemble, we demonstrate a spin-echo type R(x)(π/2)R(y)(π)R(x)(π/2) composite interaction as well.

  13. Majorana spin in magnetic atomic chain systems

    Science.gov (United States)

    Li, Jian; Jeon, Sangjun; Xie, Yonglong; Yazdani, Ali; Bernevig, B. Andrei

    2018-03-01

    In this paper, we establish that Majorana zero modes emerging from a topological band structure of a chain of magnetic atoms embedded in a superconductor can be distinguished from trivial localized zero energy states that may accidentally form in this system using spin-resolved measurements. To demonstrate this key Majorana diagnostics, we study the spin composition of magnetic impurity induced in-gap Shiba states in a superconductor using a hybrid model. By examining the spin and spectral densities in the context of the Bogoliubov-de Gennes (BdG) particle-hole symmetry, we derive a sum rule that relates the spin densities of localized Shiba states with those in the normal state without superconductivity. Extending our investigations to a ferromagnetic chain of magnetic impurities, we identify key features of the spin properties of the extended Shiba state bands, as well as those associated with a localized Majorana end mode when the effect of spin-orbit interaction is included. We then formulate a phenomenological theory for the measurement of the local spin densities with spin-polarized scanning tunneling microscopy (STM) techniques. By combining the calculated spin densities and the measurement theory, we show that spin-polarized STM measurements can reveal a sharp contrast in spin polarization between an accidental-zero-energy trivial Shiba state and a Majorana zero mode in a topological superconducting phase in atomic chains. We further confirm our results with numerical simulations that address generic parameter settings.

  14. In a spin at Brookhaven spin physics

    CERN Document Server

    Makdisi, Y I

    2003-01-01

    The mysterious quantity that is spin took centre stage at Brookhaven for the SPIN2002 meeting last September. The 15th biennial International Spin Physics Symposium (SPIN2002) was held at Brookhaven National Laboratory on 9-14 September 2002. Some 250 spin enthusiasts attended, including experimenters and theorists in both nuclear and high-energy physics, as well as accelerator physicists and polarized target and polarized source experts. The six-day symposium included 23 plenary talks and 150 parallel talks. SPIN2002 was preceded by a one-day spin physics tutorial for students, postdocs, and anyone else who felt the need for a refresher course. (2 refs).

  15. Ion Trap Quantum Computing

    Science.gov (United States)

    2011-12-01

    stored ions,” Adv. Atom Mol. Phys., vol. Volume 3, pp. 53–72 1968. [48] P. H. Dawson, Quadrupole Mass Spectometry and Its Applications, Melville, NY... DATE December 2011 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Ion trap Quantum Computing 5. FUNDING NUMBERS 6...researcher [30] that introduced the concept of ion traps in the 1950s. His experiments focused on separating atoms with different masses in order to

  16. Nuclear spin polarization of targets

    International Nuclear Information System (INIS)

    Happer, W.

    1990-01-01

    Lasers can be used to produce milligrams to grams of noble gas nuclei with spin polarizations in excess of 50%. These quantities are sufficient to be very useful targets in nuclear physics experiments. Alkali-metal atoms are used to capture the angular momentum of circularly polarized laser photons, and the alkali-metal atoms transfer their angular momentum to noble gas atoms in binary or three-body collisions. Non-radiative collisions between the excited alkali atoms and molecular quenching gases are essential to avoid radiation trapping. The spin exchange can involve gas-phase van der Waals molecules, consisting of a noble gas atom and an alkali metal atom. Surface chemistry is also of great importance in determining the wall-induced relaxation rates of the noble gases

  17. Spin-Circuit Representation of Spin Pumping

    Science.gov (United States)

    Roy, Kuntal

    2017-07-01

    Circuit theory has been tremendously successful in translating physical equations into circuit elements in an organized form for further analysis and proposing creative designs for applications. With the advent of new materials and phenomena in the field of spintronics and nanomagnetics, it is imperative to construct the spin-circuit representations for different materials and phenomena. Spin pumping is a phenomenon by which a pure spin current can be injected into the adjacent layers. If the adjacent layer is a material with a high spin-orbit coupling, a considerable amount of charge voltage can be generated via the inverse spin Hall effect allowing spin detection. Here we develop the spin-circuit representation of spin pumping. We then combine it with the spin-circuit representation for the materials having spin Hall effect to show that it reproduces the standard results as in the literature. We further show how complex multilayers can be analyzed by simply writing a netlist.

  18. Crystal field splitting and spin states of Co ions in cobalt ferrite with composition Co{sub 1.5}Fe{sub 1.5}O{sub 4} using magnetization and X-ray absorption spectroscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A.K., E-mail: anil@rrcat.gov.in [HXAL, Synchrotrons Utilization Section, RRCAT, Indore 452013 (India); Homi Bhabha National Institute, RRCAT, Indore 452013 (India); Singh, M.N. [HXAL, Synchrotrons Utilization Section, RRCAT, Indore 452013 (India); Achary, S.N. [Chemistry Division, BARC, Anushaktinagar, Mumbai 400085 (India); Sagdeo, A. [HXAL, Synchrotrons Utilization Section, RRCAT, Indore 452013 (India); Homi Bhabha National Institute, RRCAT, Indore 452013 (India); Shukla, D.K.; Phase, D.M. [UGC-DAE Consortium for Scientific Research, Indore 452010 (India)

    2017-08-01

    Highlights: • Co ions in Co{sub 1.5}Fe{sub 1.5}O{sub 4} are found to be in high spin states. • XAS measurements have been used to estimate TM crystal field and core hole contributions to 3d orbital splitting. • The polycrystalline Co{sub 1.5}Fe{sub 1.5}O{sub 4} sample show two pinning centers and large magneto crystalline anisotropy. - Abstract: Structural, magnetic and electronic properties of partially inverted Cobalt Ferrite with composition Co{sub 1.5}Fe{sub 1.5}O{sub 4} is discussed in the present work. Single phase (SG: Fd3m) sample is synthesized by co-precipitation technique and subsequent air annealing. The values of saturation magnetization obtained from careful analysis of approach to saturation in initial M(H) curves are used to determine spin states of Co ions in tetrahedral (T{sub H}) and octahedral (O{sub H}) sites. Spin states of Co{sup 3+} ions in T{sub H} sites, which has not been reported in literature, were found to be in high spin state. Temperature variation of magnetic parameters has been studied. The sample shows magneto-crystalline anisotropy with two clearly distinct pinning centers. Oxygen K-edge and Fe as well as Co L{sub 2,3}-edge X-ray absorption (XAS) spectra have been used as complementary measurements to study crystal field splitting and core hole effects on transition metal (TM) 3d orbitals. The ratio of intensities of t{sub 2g} and e{sub g} absorption bands in O-K edge XAS spectrum is used to estimate the spin states of Co ions at O{sub H} and T{sub H} sites. The results are in agreement with those obtained from magnetization data, and favors Co{sup 3+} ions in T{sub H} sites in high spin states. Normalized areas of the satellite peaks in TM L{sub 2},{sub 3}-edge XAS spectra have been used to estimate 3d{sub n+1}L contribution in ground state wave function and the contributions were found to be significant.

  19. Spin Coherence in Semiconductor Nanostructures

    National Research Council Canada - National Science Library

    Flatte, Michael E

    2006-01-01

    ... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...

  20. Search For Trapped Antihydrogen

    CERN Document Server

    Andresen, Gorm B.; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D.; Bray, Crystal C.; Butler, Eoin; Cesar, Claudio L.; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C.; Gill, David R.; Hangst, Jeffrey S.; Hardy, Walter N.; Hayano, Ryugo S.; Hayden, Michael E.; Humphries, Andrew J.; Hydomako, Richard; Jonsell, Svante; Jorgensen, Lars V.; Kurchaninov, Lenoid; Lambo, Ricardo; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Nasr, Sarah Seif El; Silveira, Daniel M.; So, Chukman; Storey, James W.; Thompson, Robert I.; van der Werf, Dirk P.; Wilding, Dean; Wurtele, Jonathan S.; Yamazaki, Yasunori

    2011-01-01

    We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9 positrons to produce 6 10^5 antihydrogen atoms, we have identified six antiproton annihilation events that are consist...

  1. Trapped electrons in irradiated single crystals of polyhydroxy compounds

    International Nuclear Information System (INIS)

    Box, H.C.; Budzinski, E.E.; Freund, H.G.; Potter, W.R.

    1979-01-01

    The intermolecular trapping of electrons has been observed in single crystals of dulcitol and L(+) arabinose x-irradiated at 4.2 0 K. Attribution of a major component of the ESR absorption to trapped electrons is based upon the character of the hyperfine pattern, which arises from multiple anisotropic hyperfine interactions with exchangeable protons, and on the g value of the absorption, which is always less than the free spin value. The removal of the trapped electron absorption upon irradiation with visible light has also been demonstrated. In these experiments all of the electrons are trapped in identical sites. This circumstance provides some important advantages in the study of the factors affecting the stabilization of charge in an environment of polarizable molecules

  2. Counter-Propagating Optical Trapping System for Size and Refractive Index Measurement of Microparticles

    National Research Council Canada - National Science Library

    Flynn, Richard A; Shao, Bing; Chachisvilis, Mirianas; Ozkan, Mihrimah; Esener, Sadik C

    2005-01-01

    .... Different from the current best technique for microparticles refractive index measurement, refractometry, a bulk technique requiring changing the fluid composition of the sample, our optical trap...

  3. Ferromagnetic insulating and spin glass properties of La{sub 0.7}Sr{sub 0.3}MnO{sub 3}-TiO{sub 2} composites

    Energy Technology Data Exchange (ETDEWEB)

    Phong, P.T., E-mail: ptphong.nh@khanhhoa.edu.vn [Department of Advanced Materials Chemistry, Dongguk University, 707 Suckjang-dong, Gyeongju-Si, Gyeonbuk 780-714 (Korea, Republic of); Nha Trang Pedagogic College, 01 Nguyen Chanh Street, Nha Trang City, Khanh Hoa Province (Viet Nam); Manh, D.H.; Phuc, N.X. [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Ha Noi (Viet Nam); Lee, I.-J. [Department of Advanced Materials Chemistry, Dongguk University, 707 Suckjang-dong, Gyeongju-Si, Gyeonbuk 780-714 (Korea, Republic of)

    2013-01-01

    In this study, the effect of TiO{sub 2} doping on the electro-magnetic properties of (1-x)La{sub 0.7}Sr{sub 0.3}MnO{sub 3}+xTiO{sub 2} (with 0%{<=}x{<=}6%, in wt%) composites has been investigated. X-ray diffraction observations show the evidence of reaction between the La{sub 0.7}Sr{sub 0.3}MnO{sub 3} and TiO{sub 2} grains. Also the results show that by increasing TiO{sub 2} doping levels, the metal insulator transition temperatures decrease and the system becomes an insulator. Furthermore, the paramagnetic-ferromagnetic transition temperature also decreases as TiO{sub 2} content increases. The spin glass state exists in the composites with x=5% and 6%. The dynamic properties of the magnetic properties are investigated by temperature dependence of dc magnetization and frequency dependence of ac susceptibilities. A dynamic scaling analysis of ac susceptibility data using conventional critical slowing down indicates that a finite spin-glass phase-transition temperature (T{sub g}) and a dynamic exponent (zv) change from 103 K and 9.30 correspondingly for 0.95La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/0.05TiO{sub 2} to 133 K and 9.10, for 0.94La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/0.06TiO{sub 2}. In addition, MR in low temperature of these samples decline simultaneously with occur spin-glass behavior. These results are interpreted as the dilution of Mn{sup 3+}/Mn{sup 4+} interactions by the random Ti substitution on the Mn site considerably reduces the ferromagnetic double exchange interaction within the manganese lattice.

  4. Nonlinear spectroscopy of trapped ions

    Science.gov (United States)

    Schlawin, Frank; Gessner, Manuel; Mukamel, Shaul; Buchleitner, Andreas

    2014-08-01

    Nonlinear spectroscopy employs a series of laser pulses to interrogate dynamics in large interacting many-body systems, and it has become a highly successful method for experiments in chemical physics. Current quantum optical experiments approach system sizes and levels of complexity that require the development of efficient techniques to assess spectral and dynamical features with scalable experimental overhead. However, established methods from optical spectroscopy of macroscopic ensembles cannot be applied straightforwardly to few-atom systems. Based on the ideas proposed in M. Gessner et al., (arXiv:1312.3365), we develop a diagrammatic approach to construct nonlinear measurement protocols for controlled quantum systems, and we discuss experimental implementations with trapped ion technology in detail. These methods, in combination with distinct features of ultracold-matter systems, allow us to monitor and analyze excitation dynamics in both the electronic and vibrational degrees of freedom. They are independent of system size, and they can therefore reliably probe systems in which, e.g., quantum state tomography becomes prohibitively expensive. We propose signals that can probe steady-state currents, detect the influence of anharmonicities on phonon transport, and identify signatures of chaotic dynamics near a quantum phase transition in an Ising-type spin chain.

  5. Antihydrogen formation and trapping

    CERN Document Server

    Madsen, Niels

    2014-01-01

    Antihydrogen, the bound state of a positron and an antiproton, is the only neutral pure antimatter system available to date, and as such provides an excellent testbed for probing fundamental symmetries between matter and antimatter. In this chapter we will concentrate on the physics issues that were addressed in order to achieve the first trapping of antihydrogen. Antihydrogen can be created by merging antiprotons and positrons in a Penning–Malmberg trap. However, traps for antihydrogen are at best about ∼50 μeV deep and, as no readily available cooling techniques exist, the antihydrogen must be formed trapped. Antiprotons are sourced from an accelerator and arrive with a typical energy of 5.3 MeV. The large numbers of positrons needed means that the self-potential of the positrons are of order 2–5 V. With such energetic ingredients a range of plasma control and diagnostic techniques must be brought to bear on the particles to succeed in making any antihydrogen cold enough to be trapped.

  6. An Atomic Abacus: Trapped ion quantum computing experiments at NIST

    Science.gov (United States)

    Demarco, Brian

    2003-03-01

    Trapped atomic ions are an ideal system for exploring quantum information science because deterministic state preparation and efficient state detection are possible and coherent manipulation of atomic systems is relatively advanced. In our experiment, a few singly charged Be ions are confined by static and radio-frequency electric fields in a micro-machined linear Paul trap. The internal and motional states of the ions are coherently manipulated using applied laser light. Our current work focuses on demonstrating the necessary ingredients to produce a scalable quantum computing scheme and on simplifying and improving quantum logic gates. I will speak about a new set of experiments that was made possible by recent improvements in trap technology. A novel trap with multiple trapping regions was used to demonstrate the first steps towards a fully scalable quantum computing scheme. Single ions were ``shuttled" between trapping regions without disturbing the ion's motional and internal state, and two ions were separated from a single to two different trapping zones. Improvements in the trap manufacturing process has led to a reduction of nearly two orders of magnitude in the ion's motional heating rate, making possible two new improved logic gates. The first gate utilizes the wave-packet nature of the ions to tune the laser-atom interaction and achieve a controlled-NOT gate between a single ion's spin and motional states. The second, a two-ion phase gate, uses phase-space dynamics to produce a state-sensitive geometric phase. I will end with a quick look at experiments using a Mg ion to sympathetically cool a simultaneously trapped Be ion and a glimpse of the next generation of ions traps currently under construction.

  7. Weak Interaction Measurements with Optically Trapped Radioactive Atoms

    International Nuclear Information System (INIS)

    Vieira, D.J.; Crane, S.G.; Guckert, R.; Zhao, X.; Brice, S.J.; Goldschmidt, A.; Hime, A.; Tupa, D.

    1999-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project is to apply the latest in magneto-optical and pure magnetic trapping technology to concentrate, cool, confine, and polarize radioactive atoms for precise electroweak interaction measurements. In particular, the authors have concentrated their efforts on the trapping of 82 Rb for a parity-violating, beta-asymmetry measurement. Progress has been made in successfully trapping of up to 6 million 82 Rb(t 1/2 =75s) atoms in a magneto-optical trap coupled to a mass separator. This represents a two order of magnitude improvement in the number trapped radioactive atoms over all previous work. They have also measured the atomic hyperfine structure of 82 Rb and demonstrated the MOT-to-MOT transfer and accumulation of atoms in a second trap. Finally, they have constructed and tested a time-orbiting-potential magnetic trap that will serve as a rotating beacon of spin-polarized nuclei and a beta-telescope detection system. Prototype experiments are now underway with the initial goal of making a 1% measurements of the beta-asymmetry parameter A which would match the world's best measurements

  8. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2014-01-01

    Cue Rondo is an open composition to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound/video files will in some cases only provide a few minutes' sample, or the visuals will not appear at all....... Please DOWNLOAD them to see/hear them in full length! This work is licensed under a Creative Commons "by-nc" License. You may for non-commercial purposes use and distribute it, performance instructions as well as specially designated recordings, as long as the author is mentioned. Please see http...

  9. Influence of composition, many-body effects, spin-orbit coupling, and disorder on magnetism of Co-Pt solid-state systems

    Czech Academy of Sciences Publication Activity Database

    Šipr, Ondřej; Minár, J.; Mankovsky, S.; Ebert, H.

    2008-01-01

    Roč. 78, č. 14 (2008), 144403/1-144403/2 ISSN 1098-0121 R&D Projects: GA ČR GA202/08/0106 Institutional research plan: CEZ:AV0Z10100521 Keywords : CoPt * magnetism * spin-orbit coupling * dynamical mean field theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008

  10. Heat and spin interconversion

    International Nuclear Information System (INIS)

    Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji

    2017-01-01

    Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)

  11. Single-Camera Trap Survey Designs Miss Detections: Impacts on Estimates of Occupancy and Community Metrics

    OpenAIRE

    Pease, Brent S.; Nielsen, Clayton K.; Holzmueller, Eric J.

    2016-01-01

    The use of camera traps as a tool for studying wildlife populations is commonplace. However, few have considered how the number of detections of wildlife differ depending upon the number of camera traps placed at cameras-sites, and how this impacts estimates of occupancy and community composition. During December 2015-February 2016, we deployed four camera traps per camera-site, separated into treatment groups of one, two, and four camera traps, in southern Illinois to compare whether estimat...

  12. Proposal for Verification of the Haldane Phase Using Trapped Ions

    Science.gov (United States)

    Cohen, I.; Retzker, A.

    2014-01-01

    A proposal to use trapped ions to implement spin-one XXZ antiferromagnetic chains as an experimental tool to explore the Haldane phase is presented. We explain how to reach the Haldane phase adiabatically, demonstrate the robustness of the ground states to noise in the magnetic field and Rabi frequencies, and propose a way to detect them using their characteristics: an excitation gap and exponentially decaying correlations, a nonvanishing nonlocal string order, and a double degenerate entanglement spectrum. Scaling up to higher dimensions and more frustrated lattices, we obtain richer phase diagrams, and we can reach spin liquid phase, which can be detected by its entanglement entropy which obeys the boundary law.

  13. Impurity Trapping of Positive Muons in Metals

    CERN Multimedia

    2002-01-01

    Polarized positive muons are implanted into metal samples. In an applied magnetic field the muon spin precession is studied. The line width in the precession frequency spectrum gives information about the static and dynamic properties of muons in a metal lattice. At temperatures where the muon is immobile within its lifetime the line width gives information about the site of location. At temperatures where the muon is mobile, the line width gives information on the diffusion process. It is known from experiments on quasi-elastic neutron scattering on hydrogen in niobium that interstitial impurities like nitrogen tend to act as traps for hydrogen. These trapping effects have now been studied systematically for muons in both f.c.c. metals (aluminium and copper) and b.c.c. metals (mainly niobium). Direct information on the trapping rates and the nature of the diffusion processes can be obtained since the muonic lifetime covers a time range where many of these processes occur.\\\\ \\\\ Mathematical models are set up ...

  14. Redesigning octopus traps

    Directory of Open Access Journals (Sweden)

    Eduarda Gomes

    2014-06-01

    In order to minimise the identified problems in the actual traps, the present work proposes a new design with the aim of reducing the volume and weight during transport, and also during onshore storage. Alternative materials to avoid corrosion and formation of encrustations were also proposed.

  15. Nuclear spin pumping and electron spin susceptibilities

    NARCIS (Netherlands)

    Danon, J.; Nazarov, Y.V.

    2011-01-01

    In this work we present a new formalism to evaluate the nuclear spin dynamics driven by hyperfine interaction with nonequilibrium electron spins. To describe the dynamics up to second order in the hyperfine coupling it suffices to evaluate the susceptibility and fluctuations of the electron spin.

  16. Electron spin control and spin-libration coupling of a levitated nanodiamond

    Science.gov (United States)

    Hoang, Thai; Ma, Yue; Ahn, Jonghoon; Bang, Jaehoon; Robicheaux, Francis; Gong, Ming; Yin, Zhang-Qi; Li, Tongcang

    2017-04-01

    Hybrid spin-mechanical systems have great potentials in sensing, macroscopic quantum mechanics, and quantum information science. Recently, we optically levitated a nanodiamond and demonstrated electron spin control of its built-in nitrogen-vacancy (NV) centers in vacuum. We also observed the libration (torsional vibration) of a nanodiamond trapped by a linearly polarized laser beam in vacuum. We propose to achieve strong coupling between the electron spin of a NV center and the libration of a levitated nanodiamond with a uniform magnetic field. With a uniform magnetic field, multiple spins can couple to the torsional vibration at the same time. We propose to use this strong coupling to realize the Lipkin-Meshkov-Glick (LMG) model and generate rotational superposition states. This work is supported by the National Science Foundation under Grant No. 1555035-PHY.

  17. Trapping metastable chromium atoms in a crossed optical dipole trap

    Science.gov (United States)

    Beaufils, Q.; Chicireanu, R.; Pouderous, A.; Laburthe-Tolra, B.; Maréchal, E.; Vernac, L.; Keller, J.-C.; Gorceix, O.

    We report the fast accumulation of up to 1 million 52Cr metastable atoms in a mixed trap formed by the superposition of a quadrupolar magnetic trap and a strongly confining optical trap. The cloud is at a temperature of 100 μK with a peak density of 1018 atoms/m3, which is a promising starting point to reach quantum degeneracy by forced evaporation in an optical trap.

  18. A live-trap and trapping technique for fossorial mammals

    African Journals Online (AJOL)

    injuries, the trauma involved in such capture does not promote acclimatization ... involved in the evolution of trap design for use in various field conditions and live capture of other fossorial mammals are discussed. Materials and Methods. Constructing the .... work of setting traps halved by placing only one trap instead of the ...

  19. Higher spin black holes with soft hair

    Energy Technology Data Exchange (ETDEWEB)

    Grumiller, Daniel [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, Vienna, A-1040 (Austria); Pérez, Alfredo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Prohazka, Stefan [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, Vienna, A-1040 (Austria); Tempo, David; Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)

    2016-10-21

    We construct a new set of boundary conditions for higher spin gravity, inspired by a recent “soft Heisenberg hair”-proposal for General Relativity on three-dimensional Anti-de Sitter space. The asymptotic symmetry algebra consists of a set of affine û(1) current algebras. Its associated canonical charges generate higher spin soft hair. We focus first on the spin-3 case and then extend some of our main results to spin-N, many of which resemble the spin-2 results: the generators of the asymptotic W{sub 3} algebra naturally emerge from composite operators of the û(1) charges through a twisted Sugawara construction; our boundary conditions ensure regularity of the Euclidean solutions space independently of the values of the charges; solutions, which we call “higher spin black flowers”, are stationary but not necessarily spherically symmetric. Finally, we derive the entropy of higher spin black flowers, and find that for the branch that is continuously connected to the BTZ black hole, it depends only on the affine purely gravitational zero modes. Using our map to W-algebra currents we recover well-known expressions for higher spin entropy. We also address higher spin black flowers in the metric formalism and achieve full consistency with previous results.

  20. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  1. Composition.

    Science.gov (United States)

    Communication: Journalism Education Today, 2002

    2002-01-01

    Considers how photography is more than just pointing a camera in the right direction. Explains that good pictures use elements of composition such as the Rule of Thirds, leading lines, framing and repetition of shapes. Presents 16 photographs from college and secondary school publications, and describes the techniques that makes them effective.…

  2. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trapped...... in air using a 1064 nm laser. The positions visited by the trapped gold nano-particle were quantified using a quadrant photo diode placed in the back focal plane. The time traces were analyzed and the trapping stiffness characterizing gold aerosol trapping determined and compared to aerosol trapping...... of nanometer sized silica and polystyrene particles. Based on our analysis, we concluded that gold nano-particles trap more strongly in air than similarly sized polystyrene and silica particles. We found that, in a certain power range, the trapping strength of polystyrene particles is linearly decreasing...

  3. Feedback trap using optical force

    Science.gov (United States)

    Jun, Yonggun; Pak, Hyuk Kyu

    Recently, the feedback trap using electrophoretic force (ABEL trap) has been used in the experimental study of non-equilibrium thermodynamics such as Landauer's erasure principle. This trap can trap and manipulate a small particle in solution by canceling the Brownian fluctuations. Here, we propose a simple way to control a bead using optical force with feedback and show the dynamics of a single particle in the virtual potential.

  4. Measuring the neutron lifetime using magnetically trapped neutrons

    Energy Technology Data Exchange (ETDEWEB)

    O' Shaughnessy, C.M.; Golub, R.; Schelhammer, K.W.; Swank, C.M.; Seo, P.-N. [North Carolina State University, 2401 Stinson Drive, Raleigh, NC (United States); Huffman, P.R., E-mail: Paul_Huffman@ncsu.ed [North Carolina State University, 2401 Stinson Drive, Raleigh, NC (United States); Dzhosyuk, S.N.; Mattoni, C.E.H.; Yang, L.; Doyle, J.M. [Harvard University, 17 Oxford Street, Cambridge, MA (United States); Coakley, K.J.; Thompson, A.K.; Mumm, H.P. [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD (United States); Lamoreaux, S.K.; McKinsey, D.N. [Yale University, 217 Prospect Street, New Haven, CT (United States); Yang, G. [University of Maryland, College Park, MD (United States)

    2009-12-11

    The neutron beta-decay lifetime plays an important role both in understanding weak interactions within the framework of the Standard Model and in theoretical predictions of the primordial abundance of {sup 4}He in Big Bang Nucleosynthesis. In previous work, we successfully demonstrated the trapping of ultracold neutrons in a conservative potential magnetic trap. A major upgrade of the apparatus is nearing completion at the National Institute of Standards and Technology Center for Neutron Research (NCNR). In our approach, a beam of 0.89 nm neutrons is incident on a superfluid {sup 4}He target within the minimum field region of an Ioffe-type magnetic trap. A fraction of the neutrons is downscattered in the helium to energies <200neV, and those in the appropriate spin state become trapped. The inverse process is suppressed by the low phonon density of helium at temperatures less than 200 mK, allowing the neutron to travel undisturbed. When the neutron decays the energetic electron ionizes the helium, producing scintillation light that is detected using photomultiplier tubes. Statistical limitations of the previous apparatus will be alleviated by significant increases in field strength and trap volume resulting in twenty times more trapped neutrons.

  5. The compositional, structural, and magnetic properties of a Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN spin injecting hetero-structure grown by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhonghua; Huang, Shimin [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Tang, Kun, E-mail: ktang@nju.edu.cn [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Gu, Shulin, E-mail: slgu@nju.edu.cn [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Zhu, Shunming [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Ye, Jiandong [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Nanjing University Institute of Optoelectronics at Yangzhou, Yangzhou 225009 (China); Xu, Mingxiang [Department of Physics, Southeast University, Nanjing 210096 (China); Wang, Wei; Zheng, Youdou [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China)

    2016-12-01

    Highlights: • The Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN hetero-structure has been fabricated by MOCVD successfully. • The formation mechanism of different layers in sample was revealed in details. • The properties of the hetero-structure have been presented and discussed extensively. • The effect of Ga diffusion on the magnetic properties of Fe{sub 3}O{sub 4} film has been shown. - Abstract: In this article, the authors have designed and fabricated a Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN spin injecting hetero-structure by metal-organic chemical vapor deposition. The compositional, structural, and magnetic properties of the hetero-structure have been characterized and discussed. From the characterizations, the hetero-structure has been successfully grown generally. However, due to the unintentional diffusion of Ga ions from Ga{sub 2}O{sub 3}/GaN layers, the most part of the nominal Fe{sub 3}O{sub 4} layer is actually in the form of Ga{sub x}Fe{sub 3−x}O{sub 4} with gradually decreased x values from the Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3} interface to the Fe{sub 3}O{sub 4} surface. Post-annealing process can further aggravate the diffusion. Due to the similar ionic radius of Ga and Fe, the structural configuration of the Ga{sub x}Fe{sub 3−x}O{sub 4} does not differ from that of pure Fe{sub 3}O{sub 4}. However, the ferromagnetism has been reduced with the incorporation of Ga into Fe{sub 3}O{sub 4}, which has been explained by the increased Yafet-Kittel angles in presence of considerable amount of Ga incorporation. A different behavior of the magnetoresistance has been found on the as-grown and annealed samples, which could be modelled and explained by the competition between the spin-dependent and spin-independent conduction channels. This work has provided detailed information on the interfacial properties of the Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN spin injecting hetero-structure, which is the solid basis for further improvement and application of

  6. Mass of a spin vortex in a Bose-Einstein condensate.

    Science.gov (United States)

    Turner, Ari M

    2009-08-21

    In contrast with charge vortices, spin vortices in a two-dimensional ferromagnetic condensate move inertially (if the condensate has zero magnetization along an axis). The Magnus force, which prevents the inertial motion of the charge vortices, cancels for spin vortices, because they are composed of two oppositely rotating vortices. The inertial mass of spin vortices varies inversely with the strength of spin-dependent interactions and directly with the width of the condensate layer, and can be measured as a part of experiments on how spin vortices orbit one another. For Rb87 in a 1 microm thick trap, mv approximately 10(-21) kg.

  7. Coupling a Surface Acoustic Wave to an Electron Spin in Diamond via a Dark State

    Directory of Open Access Journals (Sweden)

    D. Andrew Golter

    2016-12-01

    Full Text Available The emerging field of quantum acoustics explores interactions between acoustic waves and artificial atoms and their applications in quantum information processing. In this experimental study, we demonstrate the coupling between a surface acoustic wave (SAW and an electron spin in diamond by taking advantage of the strong strain coupling of the excited states of a nitrogen vacancy center while avoiding the short lifetime of these states. The SAW-spin coupling takes place through a Λ-type three-level system where two ground spin states couple to a common excited state through a phonon-assisted as well as a direct dipole optical transition. Both coherent population trapping and optically driven spin transitions have been realized. The coherent population trapping demonstrates the coupling between a SAW and an electron spin coherence through a dark state. The optically driven spin transitions, which resemble the sideband transitions in a trapped-ion system, can enable the quantum control of both spin and mechanical degrees of freedom and potentially a trapped-ion-like solid-state system for applications in quantum computing. These results establish an experimental platform for spin-based quantum acoustics, bridging the gap between spintronics and quantum acoustics.

  8. Escaping the tolerance trap

    International Nuclear Information System (INIS)

    Hammoudeh, S.; Madan, V.

    1994-01-01

    In order to examine the implications of the weakening of OPEC's responsiveness in adjusting its production levels, this paper explicitly incorporates rigidity in the quantity adjustment mechanism, thereby extending previous research which assumed smooth quantity adjustments. The rigidity is manifested in a tolerance range for the discrepancy between the declared target price and that of the market. This environment gives rise to a 'tolerance trap' which impedes the convergence process and inevitably brings the market to a standstill before its reaches the targeted price and revenue objectives. OPEC's reaction to the standstill has important implications for the achievement of the target-based equilibrium and for the potential collapse of the market price. This paper examines OPEC's policy options in the tolerance trap and reveals that the optional policy in order to break this impasse and move closer to the equilibrium point is gradually to reduce output and not to flood the market. (Author)

  9. Trapped Ion Qubits

    Energy Technology Data Exchange (ETDEWEB)

    Maunz, Peter Lukas Wilhelm

    2017-04-01

    Qubits can be encoded in clock states of trapped ions. These states are well isolated from the environment resulting in long coherence times [1] while enabling efficient high-fidelity qubit interactions mediated by the Coulomb coupled motion of the ions in the trap. Quantum states can be prepared with high fidelity and measured efficiently using fluorescence detection. State preparation and detection with 99.93% fidelity have been realized in multiple systems [1,2]. Single qubit gates have been demonstrated below rigorous fault-tolerance thresholds [1,3]. Two qubit gates have been realized with more than 99.9% fidelity [4,5]. Quantum algorithms have been demonstrated on systems of 5 to 15 qubits [6–8].

  10. Decoherence dynamics of a single spin versus spin ensemble

    NARCIS (Netherlands)

    Dobrovitski, V.V.; Feiguin, A.E.; Awschalom, D.D.; Hanson, R.

    2008-01-01

    We study decoherence of central spins by a spin bath, focusing on the difference between measurement of a single central spin and measurement of a large number of central spins (as found in typical spin-resonance experiments). For a dilute spin bath, the single spin demonstrates Gaussian

  11. Quantum computing with trapped ions, atoms and light

    International Nuclear Information System (INIS)

    Steane, Andrew M.

    2001-01-01

    We consider experimental issues relevant to quantum computing, and discuss the best way to achieve the essential requirements of reliable quantum memory and gate operations. Nuclear spins in trapped ions or atoms are a very promising candidate for the qubits. We estimate the parameters required to couple atoms using light via cavity QED in order to achieve quantum gates. We briefly comment on recent improvements to the Cirac-Zoller method for coupling trapped ions via their vibrational degree of freedom. Error processes result in a trade-off between quantum gate speed and failure probability. A useful quantum computer does appear to be feasible using a combination of ion trap and optical methods. The best understood method to stabilize a large computer relies on quantum error correction. The essential ideas of this are discussed, and recent estimates of the noise requirements in a quantum computing device are given

  12. Spin-polarized spin excitation spectroscopy

    International Nuclear Information System (INIS)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2010-01-01

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  13. Magnons, Spin Current and Spin Seebeck Effect

    Science.gov (United States)

    Maekawa, Sadamichi

    2012-02-01

    When metals and semiconductors are placed in a temperature gradient, the electric voltage is generated. This mechanism to convert heat into electricity, the so-called Seebeck effect, has attracted much attention recently as the mechanism for utilizing wasted heat energy. [1]. Ferromagnetic insulators are good conductors of spin current, i.e., the flow of electron spins [2]. When they are placed in a temperature gradient, generated are magnons, spin current and the spin voltage [3], i.e., spin accumulation. Once the spin voltage is converted into the electric voltage by inverse spin Hall effect in attached metal films such as Pt, the electric voltage is obtained from heat energy [4-5]. This is called the spin Seebeck effect. Here, we present the linear-response theory of spin Seebeck effect based on the fluctuation-dissipation theorem [6-8] and discuss a variety of the devices. [4pt] [1] S. Maekawa et al, Physics of Transition Metal Oxides (Springer, 2004). [0pt] [2] S. Maekawa: Nature Materials 8, 777 (2009). [0pt] [3] Concept in Spin Electronics, eds. S. Maekawa (Oxford University Press, 2006). [0pt] [4] K. Uchida et al., Nature 455, 778 (2008). [0pt] [5] K. Uchida et al., Nature Materials 9, 894 (2010) [0pt] [6] H. Adachi et al., APL 97, 252506 (2010) and Phys. Rev. B 83, 094410 (2011). [0pt] [7] J. Ohe et al., Phys. Rev. B (2011) [0pt] [8] K. Uchida et al., Appl. Phys. Lett. 97, 104419 (2010).

  14. Ultrafast optical control of individual quantum dot spin qubits

    International Nuclear Information System (INIS)

    De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa

    2013-01-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a ‘flying’ photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin–spin entanglement can be generated if each spin can emit a photon that is

  15. Spin and charge transport study in single crystal organic semiconductors

    Science.gov (United States)

    Raman, Karthik V.; Mulder, Carlijn L.; Baldo, Marc A.; Moodera, Jagadeesh S.

    2009-03-01

    Spin transport studies in amorphous rubrene films have shown exciting and promising results [1]. A large spin diffusion length in these amorphous films has increased the motivation to perform spin transport study in high purity single crystal rubrene. This will provide the fundamental understanding on the spin transport behavior in OS; not influenced by defects or traps. We will present work on small channel single crystal rubrene FET device with magnetic electrodes. For example, our preliminary studies have show mobility for FET with Co electrode to be 0.014cm^2/V-s. A study on the spin and charge transport properties in single crystals of OS with magnetic electrodes is being done and the results will be reported. The influence of gate voltage and applied magnetic field on the transport properties will be discussed. [1] J.H. Shim et al., PRL 100, 226603 (2008)

  16. Production of highly spin-polarized atomic hydrogen and deuterium by spin-exchange

    International Nuclear Information System (INIS)

    Redsun, S.G.

    1990-01-01

    The first part of this work is a study of the production of highly spin-polarized atomic hydrogen and deuterium by spin-exchange optical pumping. A tunable ring dye laser is used to polarize rubidium atoms by optical pumping. The cell containing the rubidium vapor is coated with paraffin in order to reduce spin relaxation due to wall collisions. Hydrogen gas is dissociated in an inductive discharge and flows continuously through the cell, in which the hydrogen atoms are polarized by spin-exchange collisions with the polarized rubidium atoms. The hydrogen polarization is determined by a combination of fluorescence monitoring and magnetic resonance spectroscopy. Atomic hydrogen polarization as high as 2 z > H = 0.72(6) has been observed, which is the highest degree of polarization yet produced by this method. However, the polarization may be limited to this value due to the depolarization of the rubidium by radiation trapping. The spin-relaxation rate of atomic hydrogen on a paraffin-coated cell is also measured for the first time, and corresponds to about 3,800 wall bounces before electron-spin randomization. The second part of this work is a theoretical analysis of the problem of radiation trapping in a dense optically pumped alkali vapor. A Monte Carlo routine is used to simulate the trajectories of multiply scattered photons. The average spin angular momentum transfer from the photons to the vapor is used to determine the equilibrium polarization of the vapor as a function of the alkali density and the frequency of the pumping light

  17. Spin Light

    Science.gov (United States)

    Bordovitsyn, V. A.; Gushchina, V. S.

    1999-07-01

    The following sections are included: * Introduction * Classical Theory of μ-Radiation * Equations of an Electromagnetic Field * Potentials and Fields of a Relativistic Magneton * Wave Zone and Radiation Field * Total Radiation Power in a Uniform Motion of a Magneton * Radiation of the Relativistic Magnetic Moment in Uniform Fields * Angular Distribution and Frequency of Radiation * Linear and Circular Polarization of the Radiation * Ultrarelativistic Case * Spectral Composition of the Radiation * Relativistic Semiclassical Radiation Theory * Recoil Effects and Mixed eμ-Radiation * Mixed eμL- and eμTh-Radiation of Relativistic Electron * The Structure of Quantum Corrections to SR * `True' Magnetic Moment Radiation * Bibliography

  18. Spin-Mechatronics

    Science.gov (United States)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  19. Electric field control of emergent electrodynamics in quantum spin ice

    Science.gov (United States)

    Lantagne-Hurtubise, Étienne; Bhattacharjee, Subhro; Moessner, R.

    2017-09-01

    We study the coupling between conventional (Maxwell) and emergent electrodynamics in quantum spin ice, a 3+1-dimensional U (1 ) quantum spin liquid. We find that a uniform electric field can be used to tune the properties of both the ground state and excitations of the spin liquid. In particular, it induces emergent birefringence, rendering the speed of the emergent light anisotropic and polarization-dependent. A sufficiently strong electric field triggers a quantum phase transition into new U (1 ) quantum spin liquid phases, which trap emergent electric π fluxes. The flux patterns of these new phases depend on the direction of the electric field. Strikingly, some of the canonical pinch points in the spin structure factor, characteristic of classical spin ice, emerge near the phase transition, while they are absent in the quantum spin liquid phases. Estimating the electric field strength required, we find that this transition is potentially accessible experimentally. Finally, we propose a minimal mechanism by which an oscillating electric field can generate emergent radiation inside a quantum spin ice material with non-Kramers spin doublets.

  20. The Honey Trap

    DEFF Research Database (Denmark)

    Wagner, Michael

    Michael F. Wagner: The Honey Trap –The democratization of leisure through automobilism The automobile has achieved a central position in modern everyday life as an essential artefact to mobility. This raises the question how automobiles have been mediated for mass consumption? The central thesis...... demonstrates the manner in which automobilism in Denmark was invented, constructed, represented, and appropriated as a leisure culture after 1900 through a mediation and consumption junction that was initiated and promoted by FDM. This is basically the story of unlimited access to Sunday driving or the daytrip...

  1. Atom trap trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O' Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  2. Magnetic traps with a spherical separatrix: Tornado traps

    International Nuclear Information System (INIS)

    Peregood, B.P.; Lehnert, B.

    1981-01-01

    A review is given on the features of magnetic traps with a spherical separatrix, with special emphasis on Tornado spiral coil configurations. The confinement and heating of static plasms in Tornado traps is treated, including the topology of the magnetic field structure, the magneto-mechanical properties of the magnetic coil system, as well as the particle orbits and plasma behaviour in these traps. In addition, the mode of rotating plasma operation by crossed electric and magnetic fields is described. The results of experiments on static and rotating plasmas are summarized, and conclusions are drawn about future possibilities of Tornado traps in the creation and containment of hot plasmas. (orig.)

  3. Two-dimensional spin diffusion in multiterminal lateral spin valves

    Science.gov (United States)

    Saha, D.; Basu, D.; Holub, M.; Bhattacharya, P.

    2008-01-01

    The effects of two-dimensional spin diffusion on spin extraction in lateral semiconductor spin valves have been investigated experimentally and theoretically. A ferromagnetic collector terminal of variable size is placed between the ferromagnetic electron spin injector and detector of a conventional lateral spin valve for spin extraction. It is observed that transverse spin diffusion beneath the collector terminal plays an important role along with the conventional longitudinal spin diffusion in describing the overall transport of spin carriers. Two-dimensional spin diffusion reduces the perturbation of the channel electrochemical potentials and improves spin extraction.

  4. MOS Capacitance—Voltage Characteristics: IV. Trapping Capacitance from 3-Charge-State Impurities

    Science.gov (United States)

    Binbin, Jie; Chihtang, Sah

    2012-01-01

    Metal—Oxide—Semiconductor Capacitance—Voltage (MOSCV) characteristics containing giant carrier trapping capacitances from 3-charge-state or 2-energy-level impurities are presented for not-doped, n-doped, p-doped and compensated silicon containing the double-donor sulfur and iron, the double-acceptor zinc, and the amphoteric or one-donor and one-acceptor gold and silver impurities. These impurities provide giant trapping capacitances at trapping energies from 200 to 800 meV (50 to 200 THz and 6 to 1.5 μm), which suggest potential sub-millimeter, far-infrared and spin electronics applications.

  5. Discrete interferometer with individual trapped atoms

    Science.gov (United States)

    Steffen, Andreas; Alberti, Andrea; Alt, Wolfgang; Belmechri, Noomen; Hild, Sebastian; Karski, Michal; Widera, Artur; Meschede, Dieter; Quantum Technology Team

    2011-05-01

    Coherent control and delocalization of individual atoms is a pivotal challenge in quantum technologies. As a new step on this road, we present an individual atom interferometer that is capable of splitting a trapped Cs atom by up to 10 μm , allowing us to measure potential gradients on the microscale. The atom is confined in a 1D optical lattice, which is capable of performing discrete state-dependent shifts to split the atom by the desired number of sites. We establish a high degree of control, as the initial atom position, vibrational state and spin state can all be prepared with above 95% fidelity. To unravel decoherence effects and phase influences, we have explored several basic interferometer geometries, among other things demonstrating a positional spin echo to cancel background effects. As a test case, an inertial force has been applied and successfully measured using the atomic phase. This will offer us a new tool to investigate the interaction between two atoms in a controlled model system.

  6. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  7. Spin Complicates Eccentric BH-NS Mergers

    Science.gov (United States)

    Kohler, Susanna

    2015-08-01

    When a neutron star (NS) has a glancing encounter with a black hole (BH), its spin has a significant effect on the outcome, according to new simulations run by William East of Stanford University and his collaborators. Spotting an Eccentric Merger. In a traditional BH-NS merger, the two objects orbit each other quasi-circularly as they spiral in. But there's another kind of merger that's possible in high-density environments like galactic nuclei or globular clusters: a dynamical capture merger, in which a NS and BH pass each other just close enough that the gravity of the black hole "catches" the NS, leading the two objects to merge with very eccentric orbits. During an eccentric merger, the NS can be torn apart -- at which point some fraction of the tidally-disrupted material will escape the system, while some fraction instead accretes back onto the BH. Knowing these fractions is important for being able to model the expected electromagnetic signatures for the merger: the unbound material can power transients like kilonovae, whereas the accreting material may be the cause of short gamma-ray bursts. The amount of material available for events like these would change their observable strengths. Testing the Effects of Spin. To see whether NS spin has an impact on the behavior of the merger, East and collaborators use a general-relativistic hydrodynamic code to simulate the glancing encounter of a BH and a NS with dimensionless spin between a=0 (non-spinning) and a=0.756 (rotation period of 1 ms). They also vary the separation of the first encounter. The group finds that changing the NS's spin can change a number of outcomes of the merger. To start with, it can affect whether the NS is captured by the BH, or if the encounter is glancing and then both objects carry on their merry way. And if the NS is trapped by the BH and torn apart, then the higher the NS's spin, the more matter outside of the BH ends up unbound, instead of getting trapped into an accretion disk

  8. A catalytic reactor for the trapping of free radicals from gas phase oxidation reactions

    Science.gov (United States)

    Conte, Marco; Wilson, Karen; Chechik, Victor

    2010-10-01

    A catalytic reactor for the trapping of free radicals originating from gas phase catalytic reactions is described and discussed. Radical trapping and identification were initially carried out using a known radical generator such as dicumyl peroxide. The trapping of radicals was further demonstrated by investigating genuine radical oxidation processes, e.g., benzaldehyde oxidation over manganese and cobalt salts. The efficiency of the reactor was finally proven by the partial oxidation of cyclohexane over MoO3, Cr2O3, and WO3, which allowed the identification of all the radical intermediates responsible for the formation of the products cyclohexanol and cyclohexanone. Assignment of the trapped radicals was carried out using spin trapping technique and X-band electron paramagnetic resonance spectroscopy.

  9. Spin at Lausanne

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    From 25 September to 1 October, some 150 spin enthusiasts gathered in Lausanne for the 1980 International Symposium on High Energy Physics with Polarized Beams and Polarized Targets. The programme was densely packed, covering physics interests with spin as well as the accelerator and target techniques which make spin physics possible

  10. Spin-torque transistor

    NARCIS (Netherlands)

    Bauer, G.E.W.; Brataas, A.; Tserkovnyak, Y.; Van Wees, B.J.

    2003-01-01

    A magnetoelectronic thin-film transistor is proposed that can display negative differential resistance and gain. The working principle is the modulation of the soure–drain current in a spin valve by the magnetization of a third electrode, which is rotated by the spin-torque created by a control spin

  11. Synthesis of Lead Sulfide Nanocrystals and Their Two-Dimensional Electronic Spectra in a Spinning Cell

    Science.gov (United States)

    Baranov, Dmitry

    This thesis describes new aspects of the synthesis and ultrafast spectroscopy of PbS nanocrystals. The first part of the thesis investigates two aspects of PbS nanocrystal synthesis: the identity and composition of oleylamine reagent and the nature of sulfur species in sulfur solutions in long-chain amines. Oleylamine, formally cis-9-octadecyl-1-amine, is a solvent, a reactant, and a ligand in the synthesis of high-quality PbS nanocrystals and other nanomaterials. It is shown that commercial oleylamine samples contain elaidylamine, trans-9-octadecen-1-amine. Sulfur solutions in long-chain amines (n-octylamine and oleylamine) are common precursors in metal sulfide nanomaterial synthesis. Resonance Raman experiments on sulfur-amine solutions established the presence of various polysulfide anions, which slowly equilibrate on the timescale of days, causing a change in reactivity of the sulfur precursor. This aging of sulfur-amine solutions is shown to be strongly correlated with irreproducibility in PbS nanocrystal syntheses. The second part of the thesis deals with non-linear optical experiments on sensitive samples, where vibrational stability, repetitive excitation, and sensitivity to air and moisture constitute a set of challenges often preventing an experiment without photoproduct contamination. As a solution to this problem, we designed, constructed and characterized a compact spinning sample cell suitable for liquid and thin film samples. The spinning sample cell, enclosed in a copper gasket sealed enclosure, enables complete sample exchange in optical experiments with up to 100 kHz repetition rates while maintaining an oxygen and water free environment at the 1 ppm level for over a month. The spinning sample cell was successfully used in a two-dimensional electronic spectroscopy experiment on PbS nanocrystals in solution, eliminating the buildup of the long-lived photoproducts and reducing trap emission in the spinning sample.

  12. Vortices in spin-orbit-coupled Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Radic, J.; Sedrakyan, T. A.; Galitski, V.; Spielman, I. B.

    2011-01-01

    Realistic methods to create vortices in spin-orbit-coupled Bose-Einstein condensates are discussed. It is shown that, contrary to common intuition, rotation of the trap containing a spin-orbit condensate does not lead to an equilibrium state with static vortex structures but gives rise instead to nonequilibrium behavior described by an intrinsically time-dependent Hamiltonian. We propose here the following alternative methods to induce thermodynamically stable static vortex configurations: (i) to rotate both the lasers and the anisotropic trap and (ii) to impose a synthetic Abelian field on top of synthetic spin-orbit interactions. Effective Hamiltonians for spin-orbit condensates under such perturbations are derived for most currently known realistic laser schemes that induce synthetic spin-orbit couplings. The Gross-Pitaevskii equation is solved for several experimentally relevant regimes. The new interesting effects include spatial separation of left- and right-moving spin-orbit condensates, the appearance of unusual vortex arrangements, and parity effects in vortex nucleation where the topological excitations are predicted to appear in pairs. All these phenomena are shown to be highly nonuniversal and depend strongly on a specific laser scheme and system parameters.

  13. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    Directory of Open Access Journals (Sweden)

    Brandon Redding

    2015-08-01

    Full Text Available The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field.

  14. Segmented trapped vortex cavity

    Science.gov (United States)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  15. Spin physics in semiconductors

    CERN Document Server

    2017-01-01

    This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.

  16. Injection into electron plasma traps

    International Nuclear Information System (INIS)

    Gorgadze, Vladimir; Pasquini, Thomas A.; Fajans, Joel; Wurtele, Jonathan S.

    2003-01-01

    Computational studies and experimental measurements of plasma injection into a Malmberg-Penning trap reveal that the number of trapped particles can be an order of magnitude higher than predicted by a simple estimates based on a ballistic trapping model. Enhanced trapping is associated with a rich nonlinear dynamics generated by the space-charge forces of the evolving trapped electron density. A particle-in-cell simulation is used to identify the physical mechanisms that lead to the increase in trapped electrons. The simulations initially show strong two-stream interactions between the electrons emitted from the cathode and those reflected off the end plug of the trap. This is followed by virtual cathode oscillations near the injection region. As electrons are trapped, the initially hollow longitudinal phase-space is filled, and the transverse radial density profile evolves so that the plasma potential matches that of the cathode. Simple theoretical arguments are given that describe the different dynamical regimes. Good agreement is found between simulation and theory

  17. Electromagnetic trapping of neutral atoms

    International Nuclear Information System (INIS)

    Metcalf, H.J.

    1986-01-01

    Cooling and trapping of neutral atoms is a new branch of applied physics that has potential for application in many areas. The authors present an introduction to laser cooling and magnetic trapping. Some basic ideas and fundamental limitations are discussed, and the first successful experiments are reviewed. Trapping a neutral object depends on the interaction between an inhomogeneous electromagnetic field and a multiple moment that results in the exchange of kinetic for potential energy. In neutral atom traps, the potential energy must be stored as internal atomic energy, resulting in two immediate and extremely important consequences. First, the atomic energy levels will necessarily shift as the atoms move in the trap, and, second, practical traps for ground state neutral atoms atr necessarily very shallow compared to thermal energy. This small depth also dictates stringent vacuum requirements because a trapped atom cannot survive a single collision with a thermal energy background gas molecule. Neutral trapping, therefore, depends on substantial cooling of a thermal atomic sample and is inextricably connected with the cooling process

  18. Quantum computing with trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.J.

    1998-01-01

    The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.

  19. Impurity beam-trapping instability in tokamaks

    International Nuclear Information System (INIS)

    Hogan, J.T.; Howe, H.C.

    1976-01-01

    The sensitivity of neutron energy production to the impurity trapping of injected neutral beams is considered. This process is affected by inherent low-Z contamination of the tritium pre-heat plasma, by the species composition of the neutral beam, and by the entrance angle of the beam. The sensitivities of the process to these variables, and to the variation of wall material are compared. One finds that successful use of a low-Z, low-sputtering material can appreciably lengthen the useful pulse length

  20. Using malaise traps to sample ground beetles (Coleoptera: Carabidae).

    Energy Technology Data Exchange (ETDEWEB)

    Ulyshen, Michael D., James L. Hanula, and Scott Horn

    2005-01-01

    Pitfall traps provide an easy and inexpensive way to sample ground-dwelling arthropods (Spence and Niemela 1994; Spence et al. 1997; Abildsnes and Tommeras 2000) and have been used exclusively in many studies of the abundance and diversity of ground beetles (Coleoptera: Carabidae). Despite the popularity of this trapping technique, pitfall traps have many disadvantages. For example, they often fail to collect both small (Spence and Niemela 1994) and trap-shy species (Benest 1989), eventually deplete the local carabid population (Digweed et al. 1995), require a species to be ground-dwelling in order to be captured (Liebherr and Mahar 1979), and produce different results depending on trap diameter and material, type of preservative used, and trap placement (Greenslade 1964; Luff 1975; Work et al. 2002). Further complications arise from seasonal patterns of movement among the beetles themselves (Maelfait and Desender 1990), as well as numerous climatic factors, differences in plant cover, and variable surface conditions (Adis 1979). Because of these limitations, pitfall trap data give an incomplete picture of the carabid community and should be interpreted carefully. Additional methods, such as use of Berlese funnels and litter washing (Spence and Niemela 1994), collection from lights (Usis and MacLean 1998), and deployment of flight intercept devices (Liebherr and Mahar 1979; Paarmann and Stork 1987), should be incorporated in surveys to better ascertain the species composition and relative numbers of ground beetles. Flight intercept devices, like pitfall traps, have the advantage of being easy to use and replicate, but their value to carabid surveys is largely unknown. Here we demonstrate the effectiveness of Malaise traps for sampling ground beetles in a bottomland hardwood forest.

  1. Using malaise traps to sample ground beetles (Coleoptera. Carabidae)

    Energy Technology Data Exchange (ETDEWEB)

    Ulyshen, Michael D. [USDA Forest Service, Savannah River, New Ellenton, SC (United States); Hanula, James L. [USDA Forest Service, Savannah River, New Ellenton, SC (United States); Horn, Scott [USDA Forest Service, Savannah River, New Ellenton, SC (United States)

    2012-04-02

    Pitfall traps provide an easy and inexpensive way to sample ground-dwelling arthropods (Spence and Niemela 1994; Spence et al. 1997; Abildsnes and Tommeras 2000) and have been used exclusively in many studies of the abundance and diversity of ground beetles (Coleoptera: Carabidae). Despite the popularity of this trapping technique, pitfall traps have many disadvantages. For example, they often fail to collect both small (Spence and Niemela 1994) and trap-shy species (Benest 1989), eventually deplete the local carabid population (Digweed et al. 1995), require a species to be ground-dwelling in order to be captured (Liebherr and Mahar 1979), and produce different results depending on trap diameter and material, type of preservative used, and trap placement (Greenslade 1964; Luff 1975; Work et al. 2002). Further complications arise from seasonal patterns of movement among the beetles themselves (Maelfait and Desender 1990), as well as numerous climatic factors, differences in plant cover, and variable surface conditions (Adis 1979). Because of these limitations, pitfall trap data give an incomplete picture of the carabid community and should be interpreted carefully. Additional methods, such as use of Berlese funnels and litter washing (Spence and Niemela 1994), collection from lights (Usis and MacLean 1998), and deployment of flight intercept devices (Liebherr and Mahar 1979; Paarmann and Stork 1987), should be incorporated in surveys to better ascertain the species composition and relative numbers of ground beetles. Flight intercept devices, like pitfall traps, have the advantage of being easy to use and replicate, but their value to carabid surveys is largely unknown. Here we demonstrate the effectiveness of Malaise traps for sampling ground beetles in a bottomland hardwood forest.

  2. Electromagnetic trapping of cold atoms

    International Nuclear Information System (INIS)

    Balykin, V.I.; Minogin, V.G.; Letokhov, V.S.

    2000-01-01

    This review describes the methods of trapping cold atoms in electromagnetic fields and in the combined electromagnetic and gravity fields. We discuss first the basic types of the dipole radiation forces used for cooling and trapping atoms in the laser fields. We outline next the fundamentals of the laser cooling of atoms and classify the temperature limits for basic laser cooling processes. The main body of the review is devoted to discussion of atom traps based on the dipole radiation forces, dipole magnetic forces, combined dipole radiation-magnetic forces, and the forces combined of the dipole radiation-magnetic and gravity forces. Physical fundamentals of atom traps operating as waveguides and cavities for cold atoms are also considered. The review ends with the applications of cold and trapped atoms in atomic, molecular and optical physics. (author)

  3. Cross-Polarized Magic-Angle Spinning (sup13)C Nuclear Magnetic Resonance Spectroscopic Characterization of Soil Organic Matter Relative to Culturable Bacterial Species Composition and Sustained Biological Control of Pythium Root Rot.

    Science.gov (United States)

    Boehm, M J; Wu, T; Stone, A G; Kraakman, B; Iannotti, D A; Wilson, G E; Madden, L V; Hoitink, H

    1997-01-01

    We report the use of a model system that examines the dynamics of biological energy availability in organic matter in a sphagnum peat potting mix critical to sustenance of microorganism-mediated biological control of pythium root rot, a soilborne plant disease caused by Pythium ultimum. The concentration of readily degradable carbohydrate in the peat, mostly present as cellulose, was characterized by cross-polarized magic-angle spinning (sup13)C nuclear magnetic resonance spectroscopy. A decrease in the carbohydrate concentration in the mix was observed during the initial 10 weeks after potting as the rate of hydrolysis of fluorescein diacetate declined below a critical threshold level required for biological control of pythium root rot. Throughout this period, total microbial biomass and activity, based on rates of [(sup14)C]acetate incorporation into phospholipids, did not change but shifts in culturable bacterial species composition occurred. Species capable of inducing biocontrol were succeeded by pleomorphic gram-positive genera and putative oligotrophs not or less effective in control. We conclude that sustained efficacy of naturally occurring biocontrol agents was limited by energy availability to this microflora within the organic matter contained in the potting mix. We propose that this critical role of organic matter may be a key factor explaining the variability in efficacy typically encountered in the control of pythium root rot with biocontrol agents.

  4. Electron spin resonance characterization of a multi-nitrogen complex in diamond

    CERN Document Server

    Iakoubovskii, K

    2002-01-01

    The W27 centre has been characterized by means of electron spin resonance in natural diamond. The centre exhibits spin S=1, a large spin-spin coupling constant D=99 mT, and a complex hyperfine interaction structure interpreted as originating from interaction of an S=1 electronic system with five nitrogen atoms: two of these sites are equivalent and are located near the S = 1 electrons; three others are nearly equivalent and more remote. The centre is suggested to include a divacancy, where one vacancy, bound to two nitrogen atoms and one carbon atom, has trapped an extra electron, while the second vacancy is bound to three substitutional nitrogen atoms.

  5. Muon spin relaxation in random spin systems

    International Nuclear Information System (INIS)

    Toshimitsu Yamazaki

    1981-01-01

    The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)

  6. Trapped quintessential inflation

    International Nuclear Information System (INIS)

    Bueno Sanchez, J.C.; Dimopoulos, K.

    2006-01-01

    Quintessential inflation is studied using a string modulus as the inflaton-quintessence field. The modulus begins its evolution at the steep part of its scalar potential, which is due to non-perturbative effects (e.g. gaugino condensation). It is assumed that the modulus crosses an enhanced symmetry point (ESP) in field space. Particle production at the ESP temporarily traps the modulus resulting in a brief period of inflation. More inflation follows, due to the flatness of the potential, since the ESP generates either an extremum (maximum or minimum) or a flat inflection point in the scalar potential. Eventually, the potential becomes steep again and inflation is terminated. After reheating the modulus freezes due to cosmological friction at a large value, such that its scalar potential is dominated by contributions due to fluxes in the extra dimensions or other effects. The modulus remains frozen until the present, when it can become quintessence and account for the dark energy necessary to explain the observed accelerated expansion

  7. Planar quark diagrams and binary spin processes

    International Nuclear Information System (INIS)

    Grigoryan, A.A.; Ivanov, N.Ya.

    1986-01-01

    Contributions of planar diagrams to the binary scattering processes are analyzed. The analysis is based on the predictions of quark-gluon picture of strong interactions for the coupling of reggeons with quarks as well as on the SU(6)-classification of hadrons. The dependence of contributions of nonplanar corrections on spins and quark composition of interacting particles is discussed

  8. Characterization of Polycaprolactone and Rice Husk Silica Composite (PCL-SiO2) by E-Spinning to Apply Supporter for Drug Release

    Science.gov (United States)

    Song, Sinae; Hilonga, Askwar; Taik Kim, Hee

    2018-03-01

    Polycaprolactone (PCL) is an interesting material to apply biomedical field owing to its biodegradability and biocompatibility which is suitable for a specific site with longer healing times. Blending the polymer with other materials has degradation property improved with the effective and economic method. This study was conducted to fabricate supporter based on Polycaprolactone and Rice husk silica (PCL-SiO2) by using electrospinning. Nano-porous silica in the composite was synthesized from rice husk having properties of economic, eco-friendly and high surface area. It drew to enhance the amount of drug loading in the carrier. Electrospinning technique is used to fabricate fibrous component by optimization condition obtained from previous mechanical properties experiments. Release experiment was carried out by the degree of dye absorbance at 544nm by ultraviolet–visible spectroscopy, the RhB in SiO2 alternative drug for modelling of drug release was released for 1 ~ 20 days at 37°C in phosphate buffer. Furthermore, the Mechanical property was confirmed by DSC, TGA. Morphology and degree of biodegradation were shown as SEM images and EDS.

  9. Trap-mulching Argentine ants.

    Science.gov (United States)

    Silverman, Jules; Sorenson, Clyde E; Waldvogel, Michael G

    2006-10-01

    Argentine ant, Linepithema humile (Mayr), management is constrained, in large part, by polydomy where nestmates are distributed extensively across urban landscapes, particularly within mulch. Management with trap-mulching is a novel approach derived from trap-cropping where ants are repelled from a broad domain of nest sites to smaller defined areas, which are subsequently treated with insecticide. This concept was field-tested with mulch surrounding ornamental trees replaced with a narrow band of pine (Pinus spp.) needle mulch (trap) within a much larger patch of repellent aromatic cedar (Juniperus spp.) mulch. After ants reestablished around the trees, the pine needle mulch band was treated with 0.06% fipronil (Termidor). Poor results were obtained when the trap extended from the tree trunk to the edge of the mulched area. When the trap was applied as a circular band around the tree trunk reductions in the number of foraging ants were recorded through 14 d compared with an untreated mulch control, but not for longer periods. Reductions in the number of ant nests within mulch were no different between the trap mulch and any of the other treatments. We conclude that trap-mulching offers limited benefits, and that successful management of Argentine ants will require implementation of complementary or perhaps alternative strategies.

  10. Spin-Orbital Entanglement and Violation of the Goodenough-Kanamori Rules

    Science.gov (United States)

    Oleś, Andrzej M.; Horsch, Peter; Feiner, Louis Felix; Khaliullin, Giniyat

    2006-04-01

    We point out that large composite spin-orbital fluctuations in Mott insulators with t2g orbital degeneracy are a manifestation of quantum entanglement of spin and orbital variables. This results in a dynamical nature of the spin superexchange interactions, which fluctuate over positive and negative values, and leads to an apparent violation of the Goodenough-Kanamori rules.

  11. The susceptibilities in the spin-S Ising model

    International Nuclear Information System (INIS)

    Ainane, A.; Saber, M.

    1995-08-01

    The susceptibilities of the spin-S Ising model are evaluated using the effective field theory introduced by Tucker et al. for studying general spin-S Ising model. The susceptibilities are studied for all spin values from S = 1/2 to S = 5/2. (author). 12 refs, 4 figs

  12. A System For High Flexibility Entangling Gates With Trapped Ions

    Science.gov (United States)

    Milne, Alistair; Edmunds, Claire; Mavadia, Sandeep; Green, Todd; Biercuk, Michael

    Trapped ion qubits may be entangled via coupling to shared modes of motion using spin-dependent forces generated by optical fields. Residual qubit-motional coupling at the conclusion of the entangling operation is the dominant source of infidelity in this type of gate. For synchronously entangling increasing numbers of ions, longer gate times are required to minimise this residual coupling. We present a scheme that enables the state of each qubit to be simultaneously decoupled from all motional modes in an arbitrarily chosen gate time, increasing the gate fidelity and scalability. This is achieved by implementing discrete phase shifts in the optical field moderating the entangling operation. We describe an experimental system based on trapped ytterbium ions and demonstrate this scheme for two-qubit entangling gates on ytterbium ion pairs.

  13. Robust quantum gates between trapped ions using shaped pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ping, E-mail: zouping@m.scnu.edu.cn; Zhang, Zhi-Ming, E-mail: zmzhang@scnu.edu.cn

    2015-12-18

    We improve two existing entangling gate schemes between trapped ion qubits immersed in a large linear crystal. Based on the existing two-qubit gate schemes by applying segmented forces on the individually addressed qubits, we present a systematic method to optimize the shapes of the forces to suppress the dominant source of infidelity. The spin-dependent forces in the scheme can be from periodic photon kicks or from continuous optical pulses. The entangling gates are fast, robust, and have high fidelity. They can be used to implement scalable quantum computation and quantum simulation. - Highlights: • We present a systematic method to optimize the shape of the pulses to decouple qubits from intermediary motional modes. • Our optimized scheme can be applied to both the ultrafast gate and fast gate. • Our optimized scheme can suppress the dominant source of infidelity to arbitrary order. • When the number of trapped ions increase, the number of needed segments increases slowly.

  14. A reservoir trap for antiprotons

    CERN Document Server

    Smorra, Christian; Franke, Kurt; Nagahama, Hiroki; Schneider, Georg; Higuchi, Takashi; Van Gorp, Simon; Blaum, Klaus; Matsuda, Yasuyuki; Quint, Wolfgang; Walz, Jochen; Yamazaki, Yasunori; Ulmer, Stefan

    2015-01-01

    We have developed techniques to extract arbitrary fractions of antiprotons from an accumulated reservoir, and to inject them into a Penning-trap system for high-precision measurements. In our trap-system antiproton storage times > 1.08 years are estimated. The device is fail-safe against power-cuts of up to 10 hours. This makes our planned comparisons of the fundamental properties of protons and antiprotons independent from accelerator cycles, and will enable us to perform experiments during long accelerator shutdown periods when background magnetic noise is low. The demonstrated scheme has the potential to be applied in many other precision Penning trap experiments dealing with exotic particles.

  15. ESR study on free radicals trapped in crosslinked polytetrafluoroethylene (PTFE)

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Tabata, Yoneho; Seguchi, Tadao

    1997-01-01

    Free radicals in crosslinked PTFE which formed by 60 Co γ-rays irradiation at 77 K and at room temperature were studied by electron spin resonance (ESR) spectroscopy. The crosslinked PTFE specimens with different crosslinking density were prepared by electron beam irradiation in the molten state. The ESR spectra observed in the irradiated crosslinked PTFE are much different from those in non-crosslinked PTFE (virgin); a broad singlet component increases with increasing the crosslinking density, G-value of radicals is much higher in crosslinked PTFE than in non-crosslinked one. Free radicals related to the broad component are trapped in the non-crystalline region of crosslinked PTFE and rather stable at room temperature, whereas radicals trapped in amorphous non-crosslinked PTFE are unstable at room temperature. It is thought that most of free radicals trapped in the crosslinked PTFE are formed in the crosslinked amorphous region. The trapped radicals decays around 383 K (110 o C) due to the molecular motion of α-relaxation. (Author)

  16. Trapping ultracold atoms in a sub-micron-period triangular magnetic lattice

    Science.gov (United States)

    Wang, Y.; Tran, T.; Surendran, P.; Herrera, I.; Balcytis, A.; Nissen, D.; Albrecht, M.; Sidorov, A.; Hannaford, P.

    2017-07-01

    We report the trapping of ultracold 87Rb atoms in a 0.7-μ m-period two-dimensional triangular magnetic lattice on an atom chip. The magnetic lattice is created by a lithographically patterned magnetic Co/Pd multilayer film plus bias fields. Rubidium atoms in the |F =1 , mF=-1 > low-field seeking state are trapped at estimated distances down to about 100 nm from the chip surface and with calculated mean trapping frequencies up to about 800 kHz . The measured lifetimes of the atoms trapped in the magnetic lattice are in the range 0.4-1.7 ms , depending on distance from the chip surface. Model calculations suggest the trap lifetimes are currently limited mainly by losses due to one-dimensional thermal evaporation following loading of the atoms from the Z -wire trap into the very tight magnetic lattice traps, rather than by fundamental loss processes such as surface interactions, three-body recombination, or spin flips due to Johnson magnetic noise. The trapping of atoms in a 0.7 -μ m -period magnetic lattice represents a significant step toward using magnetic lattices for quantum tunneling experiments and to simulate condensed matter and many-body phenomena in nontrivial lattice geometries.

  17. Higher spin gauge theories

    CERN Document Server

    Henneaux, Marc; Vasiliev, Mikhail A

    2017-01-01

    Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...

  18. Spin caloritronics in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Angsula; Frota, H. O. [Department of Physics, Federal University of Amazonas, Av. Rodrigo Octavio 3000-Japiim, 69077-000 Manaus, AM (Brazil)

    2015-06-14

    Spin caloritronics, the combination of spintronics with thermoelectrics, exploiting both the intrinsic spin of the electron and its associated magnetic moment in addition to its fundamental electronic charge and temperature, is an emerging technology mainly in the development of low-power-consumption technology. In this work, we study the thermoelectric properties of a Rashba dot attached to two single layer/bilayer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current, which depends on the temperature and chemical potential. We demonstrate that the Rashba dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature, and also the Rashba term have been observed.

  19. Spin caloritronics in graphene

    Science.gov (United States)

    Frota, H. O.; Ghosh, Angsula

    2014-08-01

    Spin caloritronics, the combination of spintronics with thermoelectrics, based on spin and heat transport has attracted a great attention mainly in the development of low-power-consumption technology. In this work we study the thermoelectric properties of a quantum dot attached to two single layer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current which depends on the temperature and chemical potential. We demonstrate that the quantum dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature and also the Coulomb repulsion due to the double occupancy of an energy level have been observed.

  20. Reducing Motional Decoherence in Ion Traps with Surface Science Methods

    Science.gov (United States)

    Haeffner, Hartmut

    2014-03-01

    Many trapped ions experiments ask for low motional heating rates while trapping the ions close to trapping electrodes. However, in practice small ion-electrode distances lead to unexpected high heating rates. While the mechanisms for the heating is still unclear, it is now evident that surface contamination of the metallic electrodes is at least partially responsible for the elevated heating rates. I will discuss heating rate measurements in a microfabricated surface trap complemented with basic surface science studies. We monitor the elemental surface composition of the Cu-Al alloy trap with an Auger spectrometer. After bake-out, we find a strong Carbon and Oxygen contamination and heating rates of 200 quanta/s at 1 MHz trap frequency. After removing most of the Carbon and Oxygen with Ar-Ion sputtering, the heating rates drop to 4 quanta/s. Interestingly, we still measure the decreased heating rate even after the surface oxidized from the background gas throughout a 40-day waiting time in UHV.

  1. Microstructured segmented Paul trap with tunable magnet field gradient; Mikrostrukturierte segmentierte Paul-Falle mit einstellbarem Magnetfeldgradienten

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, Delia

    2012-02-03

    Strings of laser cooled ions stored in microstructured Paul traps (microtraps) have promising potential for quantum information science. They provide a system which can be screened from a decohering environment, accurately prepared, manipulated and state selectively detected with efficiency close to unity. Magnetic field gradients allow for addressing trapped ions in frequency space. Furthermore, coupling of the ions' motional and spin states and long range spin-spin coupling of the ions' internal states are induced by such a gradient. This method is called Magnetic Gradient Induced Coupling, MAGIC. In this thesis, the design, construction and first characterization of a novel microtrap with an integrated solenoid is reported. The solenoid is designed to create a high magnetic field gradient per dissipated heat. The microtrap consists of three layers stacked onto each other. The outer layers provide a trapping potential, while the inner layer creates the switchable magnetic field gradient. Another specialty of this trap is the 33 pairs of DC-electrodes, allowing to move the ions along the trap axis and to adjust the range and the strength of the ions' spin-spin interactions. The microtrap is fixed on top of a ceramic block that provides the necessary electrical connections via thick film printed wires, a technique adopted in the context of microtraps for the first time, and in addition acts as a vacuum interface. The volume of the vacuum chamber is quite small, allowing for pressures in the low 10{sup -11} mbar range. In this microtrap, {sup 172}Yb{sup +}-ions are trapped, cooled and shuttled over a distance of about 2 mm. Trapped ions are used as magnetic field gradient probes, with a relative magnetic field precision of {delta}B/B{sub 0}=7.10{sup -6}. The addressing of two ions with the MAGIC method in the solenoid's magnetic field gradient is demonstrated.

  2. Quantum simulations of quantum magnetism with hundreds of trapped ions

    Science.gov (United States)

    Gilmore, Kevin; Bohnet, Justin; Jordan, Elena; Gaerttner, Martin; Safavi-Naini, Arghavan; Rey, Ana Maria; Bollinger, John

    2017-04-01

    Quantum simulators, where one well-controlled physical system mimics another complex system, may enable understanding of quantum many-body physics that cannot be fully studied using conventional techniques on classical computers. We describe quantum simulations of a network of interacting magnetic spins performed with 2-dimensional arrays of hundreds Be+ ions crystallized in a Penning trap. We discuss how we engineer a tunable transverse Ising model, and explain how we generate and observe far-from-equilibrium quantum spin dynamics, including signatures of entanglement. We summarize progress exploring optimized adiabatic protocols for preparing low energy states of the transverse Ising Hamiltonian and implementing a sub-Doppler cooling scheme for the drumhead modes of the ion array.

  3. Spin and Maximal Acceleration

    Directory of Open Access Journals (Sweden)

    Giorgio Papini

    2017-12-01

    Full Text Available We study the spin current tensor of a Dirac particle at accelerations close to the upper limit introduced by Caianiello. Continual interchange between particle spin and angular momentum is possible only when the acceleration is time-dependent. This represents a stringent limit on the effect that maximal acceleration may have on spin physics in astrophysical applications. We also investigate some dynamical consequences of maximal acceleration.

  4. Spin Hall effect devices

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Wunderlich, Joerg; Olejník, Kamil

    2012-01-01

    Roč. 11, č. 5 (2012), s. 382-390 ISSN 1476-1122 EU Projects: European Commission(XE) 268066 - 0MSPIN; European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 35.749, year: 2012

  5. Spin coating apparatus

    Science.gov (United States)

    Torczynski, John R.

    2000-01-01

    A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.

  6. Urban fall traps

    Directory of Open Access Journals (Sweden)

    Vera Lucia de Almeida Valsecchi

    2007-06-01

    Full Text Available Objectives: To evaluate the repercussion of falls in the elderly peoplewho live in the city of São Paulo and address - though synthetically- some questions regarding the city and its relation to aging and thequality of life of the elderly. Methods: This is a qualitative study. As fordata collection, “in-depth individual interviews” were applied. Selectionof subjects was guided by a procedure named as “network”. Results:Ten interviews were performed, nine with elderly individuals who werevictims of falls and one with a public authority representative. Dataresulting from interviews confirmed that significant changes occurin live of the elderly, who are victims of what has been called “urbantraps”, and that, by extrapolating mobility and dependence contexts,invade feelings, emotions and desires. The inappropriate environmentprovided by the city of São Paulo is confirmed by absence of adequateurban planning and lack of commitment of public authorities. It alsorevealed that the particular way of being old and living an elderlylife, in addition to right to citizenship, is reflected by major or lesserdifficulties imposed to the elderly to fight for their rights and have theirpublic space respected. Conclusion: The city of São Paulo is not anideal locus for an older person to live in. To the traps that are found inpublic places one can add those that are found in private places andthat contribute to the hard experience of falls among the elderly, anexperience that is sometimes fatal. In Brazil, the attention is basicallyfocused on the consequences of falls and not on prevention, by meansof urban planning that should meet the needs of the most vulnerablegroups - the physically disabled and the elderly.

  7. Innovation: the classic traps.

    Science.gov (United States)

    Kanter, Rosabeth Moss

    2006-11-01

    these traps.

  8. A controllable spin prism

    International Nuclear Information System (INIS)

    Hakioglu, T

    2009-01-01

    Based on Khodas et al (2004 Phys. Rev. Lett. 92 086602), we propose a device acting like a controllable prism for an incident spin. The device is a large quantum well where Rashba and Dresselhaus spin-orbit interactions are present and controlled by the plunger gate potential, the electric field and the barrier height. A totally destructive interference can be manipulated externally between the Rashba and Dresselhaus couplings. The spin-dependent transmission/reflection amplitudes are calculated as the control parameters are changed. The device operates as a spin prism/converter/filter in different regimes and may stimulate research in promising directions in spintronics in analogy with linear optics.

  9. Quantum spin Hall phases

    International Nuclear Information System (INIS)

    Murakami, Shuichi

    2009-01-01

    We review our recent theoretical works on the quantum spin Hall effect. First we compare edge states in various 2D systems, and see whether they are robust or fragile against perturbations. Through the comparisons we see the robust nature of edge states in 2D quantum spin Hall phases. We see how it is protected by the Z 2 topological number, and reveal the nature of the Z 2 topological number by studying the phase transition between the quantum spin Hall and insulator phases. We also review our theoretical proposal of the ultrathin bismuth film as a candidate to the 2D quantum spin Hall system. (author)

  10. PREFACE: Spin Electronics

    Science.gov (United States)

    Dieny, B.; Sousa, R.; Prejbeanu, L.

    2007-04-01

    Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic

  11. Local Noncollinear Spin Analysis.

    Science.gov (United States)

    Abate, Bayileyegn A; Joshi, Rajendra P; Peralta, Juan E

    2017-12-12

    In this work, we generalize the local spin analysis of Clark and Davidson [J. Chem. Phys. 2001 115 (16), 7382] for the partitioning of the expectation value of the molecular spin square operator, ⟨Ŝ 2 ⟩, into atomic contributions, ⟨Ŝ A ·Ŝ B ⟩, to the noncollinear spin case in the framework of density functional theory (DFT). We derive the working equations, and we show applications to the analysis of the noncollinear spin solutions of typical spin-frustrated systems and to the calculation of magnetic exchange couplings. In the former case, we employ the triangular H 3 He 3 test molecule and a Mn 3 complex to show that the local spin analysis provides additional information that complements the standard one-particle spin population analysis. For the calculation of magnetic exchange couplings, J AB , we employ the local spin partitioning to extract ⟨Ŝ A ·Ŝ B ⟩ as a function of the interatomic spin orientation given by the angle θ. This, combined with the dependence of the electronic energy with θ, provides a methodology to extract J AB from DFT calculations that, in contrast to conventional energy differences based methods, does not require the use of ad hoc S A and S B values.

  12. Spin glasses (II)

    International Nuclear Information System (INIS)

    Fischer, K.H.

    1985-01-01

    Experimental results of spin glass studies are reviewed and related to existing theories. Investigations of spin glasses are concentrated on atomic structure, metallurgical treatment, and high-temperature susceptibility of alloys, on magnetic properties at low temperature and near the freezing temperature, on anisotropy behaviour measured by ESR, NMR and torque, on specific heat, Moessbauer effect, neutron scattering and muon-spin depolarization experiments, ultrasound and transport properties. Some new theories of spin glasses are discussed which have been developed since Part I appeared

  13. Funnel traps capture a higher proportion of juvenile Great Tits Parus major than automatic traps

    Science.gov (United States)

    Senar, J.C.; Domenech, J.; Conroy, M.J.

    1999-01-01

    We compared capture rates of Great Tits at funnel traps, where several birds can be captured at once so that some decoy effect may appear, to those obtained at automatic traps, where only one bird can be trapped at a time, at trapping stations in northeastern Spain. Juvenile birds were mainly captured at funnel traps (79% of juvenile captures), whereas adult plumaged birds were captured at both types of traps (51% of captures were at the funnel traps) (test between ages, Pfunnel traps, which may be acting as decoy traps, and thus are vulnerable to the same kinds of biases (eg age or body condition) that have been previously documented for decoy traps.

  14. Trapping Triatominae in Silvatic Habitats

    Directory of Open Access Journals (Sweden)

    Noireau François

    2002-01-01

    Full Text Available Large-scale trials of a trapping system designed to collect silvatic Triatominae are reported. Live-baited adhesive traps were tested in various ecosystems and different triatomine habitats (arboreal and terrestrial. The trials were always successful, with a rate of positive habitats generally over 20% and reaching 48.4% for palm trees of the Amazon basin. Eleven species of Triatominae belonging to the three genera of public health importance (Triatoma, Rhodnius and Panstrongylus were captured. This trapping system provides an effective way to detect the presence of triatomines in terrestrial and arboreal silvatic habitats and represents a promising tool for ecological studies. Various lines of research are contemplated to improve the performance of this trapping system.

  15. Evaporative cooling of trapped atoms

    International Nuclear Information System (INIS)

    Ketterle, W.; Van Druten, N.J.

    1996-01-01

    This report discusses the following topics on evaporative cooling of trapped atoms: Theoretical models for evaporative cooling; the role of collisions for real atoms; experimental techniques and summary of evaporative cooling experiments. 166 refs., 6 figs., 3 tabs

  16. Measurements of Trapped Air from Mullins Valley, Dry Valleys, Antarctica, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — These data describe the analyses of the elemental and isotopic composition of O2, N2, and Ar and total air content made on the trapped air from three shallow ice...

  17. Thermal detection of trapped charge carriers in organic transport materials

    Science.gov (United States)

    von Malm, Norwin; Steiger, Juergen; Finnberg, Torsten; Schmechel, Roland; von Seggern, Heinz

    2003-03-01

    The effect of trap states on the transport and luminescence properties of organic light emitting diodes (OLEDs) is studied. For trap level detection energy resolved thermally stimulated current (TSC) measurements known as fractional glow are utilized to determine the density of occupied states (DOOS) in various organic semiconductors such as the small molecule systems Alq3 [aluminum tris(8-hydroxyquinoline)], 1-NaphDATA {4,4',4"-tris-[N-(1-naphtyl)-N-phenylamino]-triphenylamine} and α-NPD [N,N'-di-(1-naphthyl)-N,N'-diphenylbenzidine] and the polymeric semiconductor MDMO-PPV {poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene]}. Characteristic differences in the trap spectra are obtained and interpreted in terms of possible structural and compositional origins of the investigated materials. In order to judge the formation process of traps and their practical consequences on the charge carrier transport I-V and L-V characteristics of 1-NaphDATA doped α-NPD devices and α-NPD doped 1-NaphDATA devices were compared to respective non-doped samples. A clearly reduced current and luminescence was found only in the former case. It was possible to conclude that the detected electronic trap states either act as hole traps or as scattering centers. Furthermore, pulsed transport studies on ITO/α-NPD/Alq3/Al devices show thte critical influence of traps on the dynamical performance of the charge transport. In a two-pulse experiment the carrier injection and trap depletion can be separated.

  18. A nonlinear model for surface segregation and solute trapping during planar film growth

    International Nuclear Information System (INIS)

    Han, Xiaoying; Spencer, Brian J.

    2007-01-01

    Surface segregation and solute trapping during planar film growth is one of the important issues in molecular beam epitaxy, yet the study on surface composition has been largely restricted to experimental work. This paper introduces some mathematical models of surface composition during planar film growth. Analytical solutions are obtained for the surface composition during growth

  19. Noise in tunneling spin current across coupled quantum spin chains

    OpenAIRE

    Aftergood, Joshua; Takei, So

    2017-01-01

    We theoretically study the spin current and its dc noise generated between two spin-1/2 spin chains weakly coupled at a single site in the presence of an over-population of spin excitations and a temperature elevation in one subsystem relative to the other, and compare the corresponding transport quantities across two weakly coupled magnetic insulators hosting magnons. In the spin chain scenario, we find that applying a temperature bias exclusively leads to a vanishing spin current and a conc...

  20. Science, conservation, and camera traps

    Science.gov (United States)

    Nichols, James D.; Karanth, K. Ullas; O'Connel, Allan F.; O'Connell, Allan F.; Nichols, James D.; Karanth, K. Ullas

    2011-01-01

    Biologists commonly perceive camera traps as a new tool that enables them to enter the hitherto secret world of wild animals. Camera traps are being used in a wide range of studies dealing with animal ecology, behavior, and conservation. Our intention in this volume is not to simply present the various uses of camera traps, but to focus on their use in the conduct of science and conservation. In this chapter, we provide an overview of these two broad classes of endeavor and sketch the manner in which camera traps are likely to be able to contribute to them. Our main point here is that neither photographs of individual animals, nor detection history data, nor parameter estimates generated from detection histories are the ultimate objective of a camera trap study directed at either science or management. Instead, the ultimate objectives are best viewed as either gaining an understanding of how ecological systems work (science) or trying to make wise decisions that move systems from less desirable to more desirable states (conservation, management). Therefore, we briefly describe here basic approaches to science and management, emphasizing the role of field data and associated analyses in these processes. We provide examples of ways in which camera trap data can inform science and management.

  1. Effect of spin rotation coupling on spin transport

    International Nuclear Information System (INIS)

    Chowdhury, Debashree; Basu, B.

    2013-01-01

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied

  2. The World is Spinning: Constraining the Origin of Supermassive Gas Giant Planets at Wide Separations Using Planetary Spin

    Science.gov (United States)

    Bryan, Marta; Knutson, Heather; Batygin, Konstantin; Benneke, Björn; Bowler, Brendan

    2017-01-01

    Planetary spin can inform our understanding of planet accretion histories, which determine final masses and atmospheric compositions, as well as the formation of moons and rings. At present, the physics behind how gas giant planets spin up is still very poorly understood. We know that when giant planets form, they accrete material and angular momentum via a circumplanetary disk, causing the planet to spin up. In order to prevent planet spins from reaching break-up velocity, some mechanism must regulate these spins. However, there is currently no well-formulated picture for how planet spins evolve. This is in part due to the fact that there are very few measurements of giant planet spin rates currently available. Outside the solar system, to date there has only been one published spin measurement of a directly imaged planet, beta Pic b. We use Keck/NIRSPEC to measure spin rates for a sample of bound and free-floating directly imaged planetary mass objects, providing a first look at the distribution of spin rates for these objects.

  3. Spin labels. Applications in biology

    International Nuclear Information System (INIS)

    Frangopol, T.P.; Frangopol, M.; Ionescu, S.M.; Pop, I.V.; Benga, G.

    1980-11-01

    The main applications of spin labels in the study of biomembranes, enzymes, nucleic acids, in pharmacology, spin immunoassay are reviewed along with the fundamentals of the spin label method. 137 references. (author)

  4. Spin evolution in a radio frequency field studied through muon spin resonance.

    Science.gov (United States)

    Clayden, Nigel J; Cottrell, Stephen P; McKenzie, Iain

    2012-01-01

    The application of composite inversion pulses to a novel area of magnetic resonance, namely muon spin resonance, is demonstrated. Results confirm that efficient spin inversion can readily be achieved using this technique, despite the challenging experimental setup required for beamline measurements and the short lifetime (≈2.2μs) associated with the positive muon probe. Intriguingly, because the muon spin polarisation is detected by positron emission, the muon magnetisation can be monitored during the radio-frequency (RF) pulse to provide a unique insight into the effect of the RF field on the spin polarisation. This technique is used to explore the application of RF inversion sequences under the non-ideal conditions typically encountered when setting up pulsed muon resonance experiments. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Spin Switching via Quantum Dot Spin Valves

    Science.gov (United States)

    Gergs, N. M.; Bender, S. A.; Duine, R. A.; Schuricht, D.

    2018-01-01

    We develop a theory for spin transport and magnetization dynamics in a quantum dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot. Our theory is able to take into account effects of strong correlations. We demonstrate that, as a result of these strong correlations, the dot gate voltage enables control over the current-induced torques on the magnets and, in particular, enables voltage-controlled magnetic switching. The electrical resistance of the structure can be used to read out the magnetic state. Our model may be realized by a number of experimental systems, including magnetic scanning-tunneling microscope tips and artificial quantum dot systems.

  6. Spin, mass, and symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E. [Stanford Univ., CA (United States)

    1994-12-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.

  7. Physics lab in spin

    CERN Multimedia

    Hawkes, N

    1999-01-01

    RAL is fostering commerical exploitation of its research and facilities in two main ways : spin-out companies exploit work done at the lab, spin-in companies work on site taking advantage of the facilities and the expertise available (1/2 page).

  8. More spinoff from spin

    International Nuclear Information System (INIS)

    Masaike, Akira

    1993-01-01

    Despite playing a major role in today's Standard Model, spin - the intrinsic angular momentum carried by particles - is sometimes dismissed as an inessential complication. However several major spin questions with important implications for the Standard Model remain unanswered, and recent results and new technological developments made the 10th International Symposium on High Energy Spin Physics, held in Nagoya, Japan, in November, highly topical. The symposium covered a wide range of physics, reflecting the diversity of spin effects, however four main themes were - the spin content of the nucleon, tests of symmetries and physics beyond standard models, intermediate energy physics, and spin technologies. Opening the meeting, T. Kinoshita reviewed the status of measurements of the anomalous magnetic moment (g-2) of the electron and the muon. The forthcoming experiment at Brookhaven (September 1991, page 23) will probe beyond the energy ranges open to existing electronpositron colliders. For example muon substructure will be opened up to 5 TeV and Ws to 2 TeV. R.L. Jaffe classified quark-parton distributions in terms of their spin dependence, pointing out their leftright attributes, and emphasized the importance of measuring transverse spin distributions through lepton pair production

  9. Spin Hall noise

    NARCIS (Netherlands)

    Kamra, A.; Witek, F.P.; Meyer, S.; Huebl, H.; Geprägs, S.; Gross, R.; Bauer, G.E.W.; Goennenwein, S.T.B.

    2014-01-01

    We measure the low-frequency thermal fluctuations of pure spin current in a platinum film deposited on yttrium iron garnet via the inverse spin Hall effect (ISHE)-mediated voltage noise as a function of the angle ? between the magnetization and the transport direction. The results are consistent

  10. Antiferromagnetic spin Seebeck effect.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand

    2016-03-03

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2. A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF2(110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2–80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9T) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.

  11. Spin, mass, and symmetry

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1994-01-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics

  12. Development and evaluation of a trapping system for Anoplophora glabripennis (Coleoptera: Cerambycidae) in the United States.

    Science.gov (United States)

    Nehme, M E; Trotter, R T; Keena, M A; McFarland, C; Coop, J; Hull-Sanders, H M; Meng, P; De Moraes, C M; Mescher, M C; Hoover, K

    2014-08-01

    Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), commonly known as the Asian longhorned beetle, is an invasive wood-boring pest that infests a number of hardwood species and causes considerable economic losses in North America, several countries in Europe, and in its native range in Asia. The success of eradication efforts may depend on early detection of introduced populations; however, detection has been limited to identification of tree damage (oviposition pits and exit holes), and the serendipitous collection of adults, often by members of the public. Here we describe the development, deployment, and evaluation of semiochemical-baited traps in the greater Worcester area in Massachusetts. Over 4 yr of trap evaluation (2009-2012), 1013 intercept panel traps were deployed, 876 of which were baited with three different families of lures. The families included lures exhibiting different rates of release of the male-produced A. glabripennis pheromone, lures with various combinations of plant volatiles, and lures with both the pheromone and plant volatiles combined. Overall, 45 individual beetles were captured in 40 different traps. Beetles were found only in traps with lures. In several cases, trap catches led to the more rapid discovery and management of previously unknown areas of infestation in the Worcester county regulated area. Analysis of the spatial distribution of traps and the known infested trees within the regulated area provides an estimate of the relationship between trap catch and beetle pressure exerted on the traps. Studies continue to optimize lure composition and trap placement.

  13. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden; Bjerrum Møller, Hans

    1975-01-01

    with increasing temperatures implies that the two-ion coupling is effectively isotropic above ∼ 150 K. We present arguments for concluding that, among the mechanisms which may introduce anisotropic two-ion couplings in the rare-earth metals, the modification of the indirect exchange interaction by the spin......The energies of spin waves propagating in the c direction of Tb have been studied by inelastic neutron scattering, as a function of a magnetic field applied along the easy and hard directions in the basal plane, and as a function of temperature. From a general spin Hamiltonian, consistent...... with the symmetry, we deduce the dispersion relation for the spin waves in a basal-plane ferromagnet. This phenomenological spin-wave theory accounts for the observed behavior of the magnon energies in Tb. The two q⃗-dependent Bogoliubov components of the magnon energies are derived from the experimental results...

  14. Composition Directed Generation of Reactive Oxygen Species in Irradiated Mixed Metal Sulfides Correlated with Their Photocatalytic Activities.

    Science.gov (United States)

    He, Weiwei; Jia, Huimin; Yang, Dongfang; Xiao, Pin; Fan, Xiaoli; Zheng, Zhi; Kim, Hyun-Kyung; Wamer, Wayne G; Yin, Jun-Jie

    2015-08-05

    The ability of nanostructures to facilitate the generation of reactive oxygen species and charge carriers underlies many of their chemical and biological activities. Elucidating which factors are essential and how these influence the production of various active intermediates is fundamental to understanding potential applications of these nanostructures, as well as potential risks. Using electron spin resonance spectroscopy coupled with spin trapping and spin labeling techniques, we assessed 3 mixed metal sulfides of varying compositions for their abilities to generate reactive oxygen species, photogenerate electrons, and consume oxygen during photoirradiation. We found these irradiated mixed metal sulfides exhibited composition dependent generation of ROS: ZnIn2S4 can generate (•)OH, O2(-•) and (1)O2; CdIn2S4 can produce O2(-•) and (1)O2, while AgInS2 only produces O2(-•). Our characterizations of the reactivity of the photogenerated electrons and consumption of dissolved oxygen, performed using spin labeling, showed the same trend in activity: ZnIn2S4 > CdIn2S4 > AgInS2. These intrinsic abilities to generate ROS and the reactivity of charge carriers correlated closely with the photocatalytic degradation and photoassisted antibacterial activities of these nanomaterials.

  15. Spin Hall and spin swapping torques in diffusive ferromagnets

    KAUST Repository

    Pauyac, C. O.

    2017-12-08

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  16. A magnetic particle micro-trap for large trapping surfaces

    KAUST Repository

    Gooneratne, Chinthaka P.

    2012-01-08

    Manipulation of micron-size magnetic particles of the superparamagnetic type contributes significantly in many applications like controlling the antibody/antigen binding process in immunoassays. Specifically, more target biomolecules can be attached/tagged and analyzed since the three dimensional structure of the magnetic particles increases the surface to volume ratio. Additionally, such biomolecular-tagged magnetic particles can be easily manipulated by an external magnetic field due to their superparamagnetic behavior. Therefore, magnetic particle- based immunoassays are extensively applied in micro-flow cytometry. The design of a square-loop micro-trap as a magnetic particle manipulator as well as numerical and experimental analysis is presented. Experimental results showed that the micro-trap could successfully trap and concentrate magnetic particles from a large to a small area with a high spatial range.

  17. Island of high-spin isomers near N = 82

    International Nuclear Information System (INIS)

    Pedersen, J.; Back, B.B.; Bernthal, F.M.; Bjornholm, S.; Borggreen, J.; Christensen, O.; Folkmann, F.; Herskind, B.; Khoo, T.L.; Neiman, M.; Puehlhofer, F.; Sletten, G.

    1977-01-01

    Experiments aimed at testing for the existence of yrast traps are reported. A search for delayed γ radiation of lifetimes longer than approx. 10 ns and of high multiplicity has been performed by producing more than 100 compound nuclei between Ba and Pb in bombardments with 40 Ar, 50 Ti, and 65 Cu projectiles. An island of high-spin isomers is found to exist in the region 64 or approx. = 71 and N < or approx. = 82

  18. Dynamics of the conservative and dissipative spin-orbit problem

    CERN Document Server

    Celletti, A; Lega, E

    2006-01-01

    We investigate the dynamics of the spin--orbit coupling under different settings. First we consider the conservative problem, and then we add a dissipative torque as provided by MacDonald's or Darwin's models. By means of frequency analysis and of the computation of the maximum Lyapunov indicator we explore the different dynamical behaviors associated to the main resonances. In particular we focus on the 1:1 and 3:2 resonances in which the Moon and Mercury are actually trapped.

  19. Detecting moisture in composite honeycomb panels

    Science.gov (United States)

    Culp, J. D.; Sapp, J. W., Jr.

    1979-01-01

    Radiographic inspection technique detects liquids trapped in cells of honeycomb composite panels constructed with porous fiber-reinforced plastic skins. Procedure is of use in industries such as aerospace or automotive engineering where honeycomb composites are being used or studied.

  20. Resonant Tunneling Spin Pump

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  1. Nuclear spins in nanostructures

    International Nuclear Information System (INIS)

    Coish, W.A.; Baugh, J.

    2009-01-01

    We review recent theoretical and experimental advances toward understanding the effects of nuclear spins in confined nanostructures. These systems, which include quantum dots, defect centers, and molecular magnets, are particularly interesting for their importance in quantum information processing devices, which aim to coherently manipulate single electron spins with high precision. On one hand, interactions between confined electron spins and a nuclear-spin environment provide a decoherence source for the electron, and on the other, a strong effective magnetic field that can be used to execute local coherent rotations. A great deal of effort has been directed toward understanding the details of the relevant decoherence processes and to find new methods to manipulate the coupled electron-nuclear system. A sequence of spectacular new results have provided understanding of spin-bath decoherence, nuclear spin diffusion, and preparation of the nuclear state through dynamic polarization and more general manipulation of the nuclear-spin density matrix through ''state narrowing.'' These results demonstrate the richness of this physical system and promise many new mysteries for the future. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  2. Phase transitions and spin excitations of spin-1 bosons in optical lattice

    Science.gov (United States)

    Zhu, Min-Jie; Zhao, Bo

    2018-03-01

    For spin-1 bosonic system trapped in optical lattice, we investigate two main problems, including MI-SF phase transition and magnetic phase separations in MI phase, with extended standard basis operator (SBO) method. For both ferromagnetic (U2 0) systems, we analytically figure out the symmetry properties in Mott-insulator and superfluid phases, which would provide a deeper insight into the MI-SF phase transition process. Then by applying self-consistent approach to the method, we include the effect of quantum and thermal fluctuations and derive the MI-SF transition phase diagram, which is in quantitative agreement with recent Monte-Carlo simulation at zero temperature, and at finite temperature, we find the underestimation of finite-temperature-effect in the mean-field approximation method. If we further consider the spin excitations in the insulating states of spin-1 system in external field, distinct spin phases are expected. Therefore, in the Mott lobes with n = 1 and n = 2 atoms per site, we give analytical and numerical boundaries of the singlet, nematic, partially magnetic and ferromagnetic phases in the magnetic phase diagrams.

  3. Spin drift and spin diffusion currents in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)], E-mail: m.miah@griffith.edu.au

    2008-09-15

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  4. Spin drift and spin diffusion currents in semiconductors

    Directory of Open Access Journals (Sweden)

    M Idrish Miah

    2008-01-01

    Full Text Available On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  5. Spin drift and spin diffusion currents in semiconductors

    International Nuclear Information System (INIS)

    Idrish Miah, M

    2008-01-01

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  6. Higher spins and holography

    Science.gov (United States)

    Kraus, Per; Ross, Simon F.

    2013-05-01

    The principles of quantum mechanics and relativity impose rigid constraints on theories of massless particles with nonzero spin. Indeed, Yang-Mills theory and General Relativity are the unique solution in the case of spin-1 and spin-2. In asymptotically flat spacetime, there are fundamental obstacles to formulating fully consistent interacting theories of particles of spin greater than 2. However, indications are that such theories are just barely possible in asymptotically anti-de Sitter or de Sitter spacetimes, where the non-existence of an S-matrix provides an escape from the theorems restricting theories in Minkowski spacetime. These higher spin gravity theories are therefore of great intrinsic interest, since they, along with supergravity, provide the only known field theories generalizing the local invariance principles of Yang-Mills theory and General Relativity. While work on higher spin gravity goes back several decades, the subject has gained broader appeal in recent years due to its appearance in the AdS/CFT correspondence. In three and four spacetime dimensions, there exist duality proposals linking higher spin gravity theories to specific conformal field theories living in two and three dimensions respectively. The enlarged symmetry algebra of the conformal field theories renders them exactly soluble, which makes them excellent laboratories for understanding in detail the holographic mechanism behind AdS/CFT duality. Steady progress is also being made on better understanding the space of possible higher spin gravity theories and their physical content. This work includes classifying the possible field multiplets and their interactions, constructing exact solutions of the nonlinear field equations, and relating higher spin theories to string theory. A full understanding of these theories will involve coming to grips with the novel symmetry principles that enlarge those of General Relativity and Yang-Mills theory, and one can hope that this will provide

  7. Neutral atom traps of radioactives

    International Nuclear Information System (INIS)

    Behr, J.A.

    2003-01-01

    Neutral atoms trapped with modern laser cooling techniques offer the promise of improving several broad classes of experiments with radioactive isotopes. In nuclear β decay, neutrino spectroscopy from beta-recoil coincidences, along with highly polarized samples, enable experiments to search for non-Standard Model interactions, test whether parity symmetry is maximally violated, and search for new sources of time reversal violation. Ongoing efforts at TRIUMF, Los Alamos and Berkeley will be highlighted. The traps also offer bright sources for Doppler-free spectroscopy, particularly in high-Z atoms where precision measurements could measure the strength of weak neutral nucleon-nucleon and electron-nucleon interactions. Physics with francium atoms has been vigorously pursued at Stony Brook. Several facilities plan work with radioactive atom traps; concrete plans and efforts at KVI Groningen and Legnaro will be among those summarized. Contributions to the multidisciplinary field of trace analysis will be left up to other presenters

  8. Neutral atom traps of radioactives

    CERN Document Server

    Behr, J A

    2003-01-01

    Neutral atoms trapped with modern laser cooling techniques offer the promise of improving several broad classes of experiments with radioactive isotopes. In nuclear beta decay, neutrino spectroscopy from beta-recoil coincidences, along with highly polarized samples, enable experiments to search for non-Standard Model interactions, test whether parity symmetry is maximally violated, and search for new sources of time reversal violation. Ongoing efforts at TRIUMF, Los Alamos and Berkeley will be highlighted. The traps also offer bright sources for Doppler-free spectroscopy, particularly in high-Z atoms where precision measurements could measure the strength of weak neutral nucleon-nucleon and electron-nucleon interactions. Physics with francium atoms has been vigorously pursued at Stony Brook. Several facilities plan work with radioactive atom traps; concrete plans and efforts at KVI Groningen and Legnaro will be among those summarized. Contributions to the multidisciplinary field of trace analysis will be left...

  9. Laser traps for radioactive isotopes

    International Nuclear Information System (INIS)

    Voytas, P.A.; Behr, J.A.; Ghosh, A.; Gwinner, G.; Orozco, L.A.; Simsarian, J.E.; Sprouse, G.D.; Xu, F.

    1996-01-01

    The techniques of laser cooling and trapping now make it possible to observe large samples of stable atoms in a small volume at low temperature. This capability was recently extended to radioactive isotopes. This opens up new opportunities for the investigation of fundamental symmetries through measurements using radioactive atoms. In this paper we will discuss several fundamental measurements in atomic systems and how the ability to trap radioactive atoms will play an important role in improving the precision of such measurements. Measurements of the effects of the weak interaction are of particular note since they are becoming quite precise. In particular, we will describe in detail the system developed at Stony Brook to trap radioactive alkali atoms and measure weak interaction effects in francium isotopes. (orig.)

  10. Rabi lattice models with discrete gauge symmetry: Phase diagram and implementation in trapped-ion quantum simulators

    Science.gov (United States)

    Nevado, Pedro; Porras, Diego

    2015-07-01

    We study a spin-boson chain that exhibits a local Z2 symmetry. We investigate the quantum phase diagram of the model by means of perturbation theory, mean-field theory, and the density matrix renormalization group method. Our calculations show the existence of a first-order phase transition in the region where the boson quantum dynamics is slow compared to the spin-spin interactions. Our model can be implemented with trapped-ion quantum simulators, leading to a realization of minimal models showing local gauge invariance and first-order phase transitions.

  11. Spin transfer torque with spin diffusion in magnetic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2012-08-09

    Spin transport in magnetic tunnel junctions in the presence of spin diffusion is considered theoretically. Combining ballistic tunneling across the barrier and diffusive transport in the electrodes, we solve the spin dynamics equation in the metallic layers. We show that spin diffusion mixes the transverse spin current components and dramatically modifies the bias dependence of the effective spin transfer torque. This leads to a significant linear bias dependence of the out-of-plane torque, as well as a nonconventional thickness dependence of both spin torque components.

  12. Electron spin and nuclear spin manipulation in semiconductor nanosystems

    International Nuclear Information System (INIS)

    Hirayama, Yoshiro; Yusa, Go; Sasaki, Satoshi

    2006-01-01

    Manipulations of electron spin and nuclear spin have been studied in AlGaAs/GaAs semiconductor nanosystems. Non-local manipulation of electron spins has been realized by using the correlation effect between localized and mobile electron spins in a quantum dot- quantum wire coupled system. Interaction between electron and nuclear spins was exploited to achieve a coherent control of nuclear spins in a semiconductor point contact device. Using this device, we have demonstrated a fully coherent manipulation of any two states among the four spin levels of Ga and As nuclei. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Spins in chemistry

    CERN Document Server

    McWeeny, Roy

    2004-01-01

    Originally delivered as a series of lectures, this volume systematically traces the evolution of the ""spin"" concept from its role in quantum mechanics to its assimilation into the field of chemistry. Author Roy McWeeny presents an in-depth illustration of the deductive methods of quantum theory and their application to spins in chemistry, following the path from the earliest concepts to the sophisticated physical methods employed in the investigation of molecular structure and properties. Starting with the origin and development of the spin concept, the text advances to an examination of sp

  14. Frustrated spin systems

    CERN Document Server

    2013-01-01

    This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can - within a single book - obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated

  15. Spin Hall effect transistor

    Czech Academy of Sciences Publication Activity Database

    Wunderlich, Joerg; Park, B.G.; Irvine, A.C.; Zarbo, Liviu; Rozkotová, E.; Němec, P.; Novák, Vít; Sinova, Jairo; Jungwirth, Tomáš

    2010-01-01

    Roč. 330, č. 6012 (2010), s. 1801-1804 ISSN 0036-8075 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510 EU Projects: European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 31.364, year: 2010

  16. Spin tracking in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luccio, A.U. [Brookhaven National Lab., Upton, NY (United States); Katayama, T. [Univ. of Tokyo (Japan); Wu, H. [Riken Inst., Tokyo (Japan)

    1997-07-01

    In the acceleration of polarized protons in RHIC many spin depolarizing resonances are encountered. Helical Siberian snakes will be used to overcome depolarizing effects. The behavior of polarization can be studied by numerical tracking in a model accelerator. That allows one to check the strength of the resonances, to study the effect of snakes, to find safe lattice tune regions, and finally to study the operation of special devices like spin flippers. In this paper the authors describe numerical spin tracking. Results show that, for the design corrected distorted orbit and the design beam emittance, the polarization of the beam will be preserved in the whole range of proton energies in RHIC.

  17. SPINning parallel systems software

    International Nuclear Information System (INIS)

    Matlin, O.S.; Lusk, E.; McCune, W.

    2002-01-01

    We describe our experiences in using Spin to verify parts of the Multi Purpose Daemon (MPD) parallel process management system. MPD is a distributed collection of processes connected by Unix network sockets. MPD is dynamic processes and connections among them are created and destroyed as MPD is initialized, runs user processes, recovers from faults, and terminates. This dynamic nature is easily expressible in the Spin/Promela framework but poses performance and scalability challenges. We present here the results of expressing some of the parallel algorithms of MPD and executing both simulation and verification runs with Spin

  18. Spectroscopy and thermometry of drumhead modes in a mesoscopic trapped-ion crystal using entanglement

    CSIR Research Space (South Africa)

    Sawyer, BC

    2012-05-01

    Full Text Available ) for a 2D crystal of 331 9Be? ions. Mode frequencies, !m, decrease as the effective wavelength gets shorter. The arbitrary color scale indicates relative ion displace- ment amplitude. One example of an ion spin state with similar symmetry is given... thermometry [26]. The Penning trap used for this work is detailed in a previous publication [27]. The application of static volt- ages to a stack of cylindrical electrodes provides harmonic confinement along z^ (the trap symmetry axis) with a 9Be? center...

  19. Sound trapping and dredging barriers.

    Science.gov (United States)

    Wang, Xu; Wang, Xiaonan; Yu, Wuzhou; Jiang, Zaixiu; Mao, Dongxing

    2017-06-01

    When sound barriers are installed on both sides of a noise source, degradation in performance is observed. Barriers having negative-phase-gradient surfaces successfully eliminate this drawback by trapping sound energy in between the barriers. In contrast, barriers can also be designed to "dredge" the energy flux out. An extended model considering higher-order diffractions, which resulted from the interplay of the induced surface wave and barrier surface periodicity, is presented. It is found that the sound dredging barriers provide a remarkable enhancement over the trapping ones, and hence have the potential to be widely used in noise control engineering.

  20. A live-trap and trapping technique for fossorial mammals

    African Journals Online (AJOL)

    comer of the door and prevents reopening by sliding into the slit at the top of the door. A hole is drilled through the back of the door housing unit and the door to accommodate an L-shaped wire (bent bicycle spoke) measuring 185 mm along the top of the trap, and a 60 mm portion which extends down into the interior.

  1. Ion trap architectures and new directions

    Science.gov (United States)

    Siverns, James D.; Quraishi, Qudsia

    2017-12-01

    Trapped ion technology has seen advances in performance, robustness and versatility over the last decade. With increasing numbers of trapped ion groups worldwide, a myriad of trap architectures are currently in use. Applications of trapped ions include: quantum simulation, computing and networking, time standards and fundamental studies in quantum dynamics. Design of such traps is driven by these various research aims, but some universally desirable properties have lead to the development of ion trap foundries. Additionally, the excellent control achievable with trapped ions and the ability to do photonic readout has allowed progress on quantum networking using entanglement between remotely situated ion-based nodes. Here, we present a selection of trap architectures currently in use by the community and present their most salient characteristics, identifying features particularly suited for quantum networking. We also discuss our own in-house research efforts aimed at long-distance trapped ion networking.

  2. Nonadiabatic production of spinor condensates with a quadrupole-Ioffe-configuration trap

    International Nuclear Information System (INIS)

    Zhang, P.; Xu, Z.; You, L.

    2006-01-01

    Motivated by the recent experimental observation of multicomponent spinor condensates via a time-dependent quadrupole-Ioffe-configuration trap, we provide a general framework for the investigation of nonadiabatic Landau-Zener dynamics of a hyperfine spin, e.g., from an atomic magnetic dipole moment coupled to a weak time-dependent magnetic (B-) field. The spin flipped population distribution, or the so-called Majorona formula, is expressed in terms of system parameters and experimental observables; thus, the distribution provides much needed insight into the underlying mechanism for the production of spinor condensates due to nonadiabatic level crossings

  3. Spin squeezing and quantum correlations

    Indian Academy of Sciences (India)

    2 states. A coherent spin-s state. (CSS) θ φ can then be thought of as having no quantum correlations as the constituent. 2s elementary spins point in the same direction ˆn(θ φ) which is the mean spin direction. 2. State classification and squeezing. In order to discuss squeezing, we begin with the squeezing condition itself.

  4. Geometry of spin coherent states

    Science.gov (United States)

    Chryssomalakos, C.; Guzmán-González, E.; Serrano-Ensástiga, E.

    2018-04-01

    Spin states of maximal projection along some direction in space are called (spin) coherent, and are, in many respects, the ‘most classical’ available. For any spin s, the spin coherent states form a 2-sphere in the projective Hilbert space \

  5. Spin Hall effect and spin swapping in diffusive superconductors

    Science.gov (United States)

    Espedal, Camilla; Lange, Peter; Sadjina, Severin; Mal'shukov, A. G.; Brataas, Arne

    2017-02-01

    We consider the spin-orbit-induced spin Hall effect and spin swapping in diffusive superconductors. By employing the nonequilibrium Keldysh Green's function technique in the quasiclassical approximation, we derive coupled transport equations for the spectral spin and particle distributions and for the energy density in the elastic scattering regime. We compute four contributions to the spin Hall conductivity, namely, skew scattering, side jump, anomalous velocity, and the Yafet contribution. The reduced density of states in the superconductor causes a renormalization of the spin Hall angle. We demonstrate that all four of these contributions to the spin Hall conductivity are renormalized in the same way in the superconducting state. In its simplest manifestation, spin swapping transforms a primary spin current into a secondary spin current with swapped current and polarization directions. We find that the spin-swapping coefficient is not explicitly but only implicitly affected by the superconducting gap through the renormalized diffusion coefficients. We discuss experimental consequences for measurements of the (inverse) spin Hall effect and spin swapping in four-terminal geometries. In our geometry, below the superconducting transition temperature, the spin-swapping signal is increased an order of magnitude while changes in the (inverse) spin Hall signal are moderate.

  6. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  7. MOHOS-type memory performance using HfO2 nanoparticles as charge trapping layer and low temperature annealing

    International Nuclear Information System (INIS)

    Molina, Joel; Ortega, Rafael; Calleja, Wilfrido; Rosales, Pedro; Zuniga, Carlos; Torres, Alfonso

    2012-01-01

    Highlights: ► HfO 2 nanoparticles used as charge trapping layer in MOHOS memory devices. ► Increasing HfO 2 nanoparticles concentration enhances charge injection and trapping. ► Enhancement of memory performance with low temperature annealing. ► Charge injection is done without using any hot-carrier injection mechanism. ► Using injected charge density is better for comparison of scaled memory devices. - Abstract: In this work, HfO 2 nanoparticles (np-HfO 2 ) are embedded within a spin-on glass (SOG)-based oxide matrix and used as a charge trapping layer in metal–oxide–high-k–oxide–silicon (MOHOS)-type memory applications. This charge trapping layer is obtained by a simple sol–gel spin coating method after using different concentrations of np-HfO 2 and low temperature annealing (down to 425 °C) in order to obtain charge–retention characteristics with a lower thermal budget. The memory's charge trapping characteristics are quantized by measuring both the flat-band voltage shift of MOHOS capacitors (writing/erasing operations) and their programming retention times after charge injection while correlating all these data to np-HfO 2 concentration and annealing temperature. Since a large memory window has been obtained for our MOHOS memory, the relatively easy injection/annihilation (writing/erasing) of charge injected through the substrate opens the possibility to use this material as an effective charge trapping layer. It is shown that by using lower annealing temperatures for the charge trapping layer, higher densities of injected charge are obtained along with enhanced retention times. In conclusion, by using np-HfO 2 as charge trapping layer in memory devices, moderate programming and retention characteristics have been obtained by this simple and yet low-cost spin-coating method.

  8. Synthesis of dark orange montmorillonite/g-C3N4 composites and their applications in the environment

    Science.gov (United States)

    Li, Pengpeng; Huang, Liying; Li, Yeping; Xu, Yuanguo; Huang, Shuquan; Yuan, Ding; Xu, Hui; Li, Huaming

    2017-08-01

    Dark orange montmorillonite/g-C3N4 composites were prepared through a conventional calcination route. The obtained samples were analyzed by XRD, TEM, TG, XPS, FT-IR, DRS, Photocurrent-time and PL measurements. The photocatalytic performance of montmorillonite/g-C3N4 composites was assessed by the methylene blue (MB) degradation. Compared to pure g-C3N4, the obtained photocatalysts displayed outstanding photocatalytic activity. The improved photocatalytic activity was ascribed to the improved absorbance in the visible light range and favorable adsorptive capacity to MB dye. The electron spin resonance (ESR) analysis and trapping experiment showed that •O2- and h+ played a major role in the decomposition of MB. In addition, it was found that montmorillonite/g-C3N4 (0.5) composite had a new property, which showed that it can be applied as a sensor in the photoelectrochemical detection of trace amount of Cu2+.

  9. Fully Automated Quantum-Chemistry-Based Computation of Spin-Spin-Coupled Nuclear Magnetic Resonance Spectra.

    Science.gov (United States)

    Grimme, Stefan; Bannwarth, Christoph; Dohm, Sebastian; Hansen, Andreas; Pisarek, Jana; Pracht, Philipp; Seibert, Jakob; Neese, Frank

    2017-11-13

    We present a composite procedure for the quantum-chemical computation of spin-spin-coupled 1 H NMR spectra for general, flexible molecules in solution that is based on four main steps, namely conformer/rotamer ensemble (CRE) generation by the fast tight-binding method GFN-xTB and a newly developed search algorithm, computation of the relative free energies and NMR parameters, and solving the spin Hamiltonian. In this way the NMR-specific nuclear permutation problem is solved, and the correct spin symmetries are obtained. Energies, shielding constants, and spin-spin couplings are computed at state-of-the-art DFT levels with continuum solvation. A few (in)organic and transition-metal complexes are presented, and very good, unprecedented agreement between the theoretical and experimental spectra was achieved. The approach is routinely applicable to systems with up to 100-150 atoms and may open new avenues for the detailed (conformational) structure elucidation of, for example, natural products or drug molecules. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  10. Higher Spins & Strings

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The conjectured relation between higher spin theories on anti de-Sitter (AdS) spaces and weakly coupled conformal field theories is reviewed. I shall then outline the evidence in favour of a concrete duality of this kind, relating a specific higher spin theory on AdS3 to a family of 2d minimal model CFTs. Finally, I shall explain how this relation fits into the framework of the familiar stringy AdS/CFT correspondence.

  11. Quantum spin quadrumer

    Science.gov (United States)

    Khatua, Subhankar; Shankar, R.; Ganesh, R.

    2018-02-01

    A fundamental motif in frustrated magnetism is the fully mutually coupled cluster of N spins, with each spin coupled to every other spin. Clusters with N =2 and 3 have been extensively studied as building blocks of square and triangular lattice antiferromagnets. In both cases, large-S semiclassical descriptions have been fruitfully constructed, providing insights into the physics of macroscopic magnetic systems. Here, we develop a semiclassical theory for the N =4 cluster. This problem has rich mathematical structure with a ground-state space that has nontrivial topology. We show that ground states are appropriately parametrized by a unit vector order parameter and a rotation matrix. Remarkably, in the low-energy description, the physics of the cluster reduces to that of an emergent free spin-S spin and a rigid rotor. This successfully explains the spectrum of the quadrumer and its associated degeneracies. However, this mapping does not hold in the vicinity of collinear ground states due to a subtle effect that arises from the nonmanifold nature of the ground-state space. We demonstrate this by an analysis of soft fluctuations, showing that collinear states have a larger number of soft modes. Nevertheless, as these singularities only occur on a subset of measure zero, the mapping to a spin and a rotor provides a good description of the quadrumer. We interpret thermodynamic properties of the quadrumer that are accessible in molecular magnets, in terms of the rotor and spin degrees of freedom. Our study paves the way for field theoretic descriptions of systems such as pyrochlore magnets.

  12. Spider Spinning for Dummies

    Science.gov (United States)

    Bird, Richard S.

    Spider spinning is a snappy name for the problem of listing the ideals of a totally acyclic poset in such a way that each ideal is computed from its predecessor in constant time. Such an algorithm is said to be loopless. Our aim in these lectures is to show how to calculate a loopless algorithm for spider spinning. The calculation makes use of the fundamental laws of functional programming and the real purpose of the exercise is to show these laws in action.

  13. Microfabricated linear Paul-Straubel ion trap

    Science.gov (United States)

    Mangan, Michael A [Albuquerque, NM; Blain, Matthew G [Albuquerque, NM; Tigges, Chris P [Albuquerque, NM; Linker, Kevin L [Albuquerque, NM

    2011-04-19

    An array of microfabricated linear Paul-Straubel ion traps can be used for mass spectrometric applications. Each ion trap comprises two parallel inner RF electrodes and two parallel outer DC control electrodes symmetric about a central trap axis and suspended over an opening in a substrate. Neighboring ion traps in the array can share a common outer DC control electrode. The ions confined transversely by an RF quadrupole electric field potential well on the ion trap axis. The array can trap a wide array of ions.

  14. Indeterminacy, sunspots, and development traps

    Czech Academy of Sciences Publication Activity Database

    Slobodyan, Sergey

    2005-01-01

    Roč. 29, 1-2 (2005), s. 159-185 ISSN 0165-1889 Institutional research plan: CEZ:AV0Z70850503 Keywords : indeterminacy * development trap * stochastic stability Subject RIV: AH - Economics Impact factor: 0.691, year: 2005 http://dx.doi.org/10.1016/j.jedc.2003.04.011

  15. Efficiency of antlion trap construction.

    Science.gov (United States)

    Fertin, Arnold; Casas, Jérôme

    2006-09-01

    Assessing the architectural optimality of animal constructions is in most cases extremely difficult, but is feasible for antlion larvae, which dig simple pits in sand to catch ants. Slope angle, conicity and the distance between the head and the trap bottom, known as off-centring, were measured using a precise scanning device. Complete attack sequences in the same pits were then quantified, with predation cost related to the number of behavioural items before capture. Off-centring leads to a loss of architectural efficiency that is compensated by complex attack behaviour. Off-centring happened in half of the cases and corresponded to post-construction movements. In the absence of off-centring, the trap is perfectly conical and the angle is significantly smaller than the crater angle, a physical constant of sand that defines the steepest possible slope. Antlions produce efficient traps, with slopes steep enough to guide preys to their mouths without any attack, and shallow enough to avoid the likelihood of avalanches typical of crater angles. The reasons for the paucity of simplest and most efficient traps such as theses in the animal kingdom are discussed.

  16. Quantum computing with trapped ions

    International Nuclear Information System (INIS)

    Haeffner, H.; Roos, C.F.; Blatt, R.

    2008-01-01

    Quantum computers hold the promise of solving certain computational tasks much more efficiently than classical computers. We review recent experimental advances towards a quantum computer with trapped ions. In particular, various implementations of qubits, quantum gates and some key experiments are discussed. Furthermore, we review some implementations of quantum algorithms such as a deterministic teleportation of quantum information and an error correction scheme

  17. Efficiency of subaquatic light traps

    Czech Academy of Sciences Publication Activity Database

    Ditrich, Tomáš; Čihák, P.

    2017-01-01

    Roč. 38, č. 3 (2017), s. 171-184 ISSN 0165-0424 R&D Projects: GA ČR(CZ) GA14-29857S Institutional support: RVO:60077344 Keywords : Heteroptera * Diptera * light trap Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 0.524, year: 2016

  18. Quantum Games in ion traps

    International Nuclear Information System (INIS)

    Buluta, Iulia Maria; Fujiwara, Shingo; Hasegawa, Shuichi

    2006-01-01

    We propose a general, scalable framework for implementing two-choices-multiplayer Quantum Games in ion traps. In particular, we discuss two famous examples: the Quantum Prisoners' Dilemma and the Quantum Minority Game. An analysis of decoherence due to intensity fluctuations in the applied laser fields is also provided

  19. The rise of trapped populations

    Directory of Open Access Journals (Sweden)

    April T Humble

    2014-02-01

    Full Text Available As border security increases and borders become less permeable, cross-border migration is becoming increasingly difficult, selective and dangerous. Growing numbers of people are becoming trapped in their own countries or in transit countries, or being forced to roam border areas, unable to access legal protection or basic social necessities.

  20. Quantum Games in ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Buluta, Iulia Maria [Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)]. E-mail: noa@lyman.q.t.u-tokyo.ac.jp; Fujiwara, Shingo [Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)]. E-mail: fujiwara@lyman.q.t.u-tokyo.ac.jp; Hasegawa, Shuichi [Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)]. E-mail: hasegawa@q.t.u-tokyo.ac.jp

    2006-10-09

    We propose a general, scalable framework for implementing two-choices-multiplayer Quantum Games in ion traps. In particular, we discuss two famous examples: the Quantum Prisoners' Dilemma and the Quantum Minority Game. An analysis of decoherence due to intensity fluctuations in the applied laser fields is also provided.

  1. Spin-engineered quantum dots

    OpenAIRE

    Fleurov, V.; Ivanov, V. A.; Peeters, F. M.; Vagner, I. D.

    2001-01-01

    Spatially nonhomogeneously spin polarized nuclei are proposed as a new mechanism to monitor electron states in a nanostructure, or as a means to createn and, if necessary, reshape such nanostructures in the course of the experiment. We found that a polarization of nulear spins may lift the spin polarization of the electron states in a nanostructure and, if sufficiently strong, leads to a polarization of the electron spins. Polarized nuclear spins may form an energy landscape capable of bindin...

  2. Theory of spin Hall effect

    OpenAIRE

    Chudnovsky, Eugene M.

    2007-01-01

    An extension of Drude model is proposed that accounts for spin and spin-orbit interaction of charge carriers. Spin currents appear due to combined action of the external electric field, crystal field and scattering of charge carriers. The expression for spin Hall conductivity is derived for metals and semiconductors that is independent of the scattering mechanism. In cubic metals, spin Hall conductivity $\\sigma_s$ and charge conductivity $\\sigma_c$ are related through $\\sigma_s = [2 \\pi \\hbar...

  3. Approach to the study of flavone di-C-glycosides by high performance liquid chromatography-tandem ion trap mass spectrometry and its application to characterization of flavonoid composition in Viola yedoensis.

    Science.gov (United States)

    Cao, Jie; Yin, Chengle; Qin, Yan; Cheng, Zhihong; Chen, Daofeng

    2014-10-01

    The mass spectrometric (MS) analysis of flavone di-C-glycosides has been a difficult task due to pure standards being unavailable commercially and to that the reported relative intensities of some diagnostic ions varied with MS instruments. In this study, five flavone di-C-glycoside standards from Viola yedoensis have been systematically studied by high performance liquid chromatography-electrospray ionization-tandem ion trap mass spectrometry (HPLC-ESI-IT-MS(n)) in the negative ion mode to analyze their fragmentation patterns. A new MS(2) and MS(3) hierarchical fragmentation for the identification of the sugar nature (hexoses or pentoses) at C-6 and C-8 is presented based on previously established rules of fragmentation. Here, for the first time, we report that the MS(2) and MS(3) structure-diagnostic fragments about the glycosylation types and positions are highly dependent on the configuration of the sugars at C-6 and C-8. The base peak ((0,2) X1 (0,2) X(2)(-) ion) in MS(3) spectra of di-C-glycosides could be used as a diagnostic ion for flavone aglycones. These newly proposed fragmentation behaviors have been successfully applied to the characterization of flavone di-C-glycosides found in V. yedoensis. A total of 35 flavonoid glycosides, including 1 flavone mono-C-hexoside, 2 flavone 6,8-di-C-hexosides, 11 flavone 6,8-di-C-pentosides, 13 flavone 6,8-C-hexosyl-C-pentosides, 5 acetylated flavone C-glycosides and 3 flavonol O-glycosides, were identified or tentatively identified on the base of their UV profiles, MS and MS(n) (n = 5) data, or by comparing with reference substances. Among these, the acetylated flavone C-glycosides were reported from V. yedoensis for the first time. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Organic matter degradation in Lake Baikal - a sediment trap study

    DEFF Research Database (Denmark)

    Schubert, Carsten J.; Niggemann, Jutta; Lomstein, Bente Aagaard

    Lake Baikal offers a unique opportunity to study water column processes in a freshwater system with conditions similar to oceanic systems, e. g. great water depth and oxygenated water column. Investigations on sediment trap material provide information on the early stages of organic matter...... degradation in the water column. Sediment trap material from 18 different water depths has been analysed for bulk organic matter parameters, including organic carbon and nitrogen isotopic compositions, chlorin concentrations, and Chlorin Indices [1]. Detailed studies focused on the concentration...... and composition of amino acids and fatty acids. The extent of organic matter degradation in the water column of Lake Baikal is reflected in the fluxes of total organic carbon, chlorins, amino acids, and fatty acids at different water depths. In line with earlier studies in marine systems, the labile compounds...

  5. Spin-Current and Spin-Splitting in Helicoidal Molecules Due to Spin-Orbit Coupling

    Science.gov (United States)

    Caetano, R. A.

    2016-03-01

    The use of organic materials in spintronic devices has been seriously considered after recent experimental works have shown unexpected spin-dependent electrical properties. The basis for the confection of any spintronic device is ability of selecting the appropriated spin polarization. In this direction, DNA has been pointed out as a potential candidate for spin selection due to the spin-orbit coupling originating from the electric field generated by accumulated electrical charges along the helix. Here, we demonstrate that spin-orbit coupling is the minimum ingredient necessary to promote a spatial spin separation and the generation of spin-current. We show that the up and down spin components have different velocities that give rise to a spin-current. By using a simple situation where spin-orbit coupling is present, we provide qualitative justifications to our results that clearly point to helicoidal molecules as serious candidates to integrate spintronic devices.

  6. Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction

    KAUST Repository

    Ortiz Pauyac, Christian

    2016-06-19

    In the present thesis we introduce the reader to the field of spintronics and explore new phenomena, such as spin transfer torques, spin filtering, and three types of spin-orbit torques, Rashba, spin Hall, and spin swapping, which have emerged very recently and are promising candidates for a new generation of memory devices in computer technology. A general overview of these phenomena is presented in Chap. 1. In Chap. 2 we study spin transfer torques in tunnel junctions in the presence of spin filtering. In Chap. 3 we discuss the Rashba torque in ferromagnetic films, and in Chap. 4 we study spin Hall effect and spin swapping in ferromagnetic films, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives are summarized in Chap. 5.

  7. NMR studies of selective population inversion and spin clustering

    Energy Technology Data Exchange (ETDEWEB)

    Baum, J.S.

    1986-02-01

    This work describes the development and application of selective excitation techniques in Nuclear Magnetic Resonance. Composite pulses and multiple-quantum methods are used to accomplish various goals, such as broadband and narrowband excitation in liquids, and collective excitation of groups of spins in solids. These methods are applied to a variety of problems, including non-invasive spatial localization, spin cluster size characterization in disordered solids and solid state NMR imaging.

  8. NMR studies of selective population inversion and spin clustering

    International Nuclear Information System (INIS)

    Baum, J.S.

    1986-02-01

    This work describes the development and application of selective excitation techniques in Nuclear Magnetic Resonance. Composite pulses and multiple-quantum methods are used to accomplish various goals, such as broadband and narrowband excitation in liquids, and collective excitation of groups of spins in solids. These methods are applied to a variety of problems, including non-invasive spatial localization, spin cluster size characterization in disordered solids and solid state NMR imaging

  9. Scaling ion traps for quantum computing

    CSIR Research Space (South Africa)

    Uys, H

    2010-09-01

    Full Text Available The design, fabrication and preliminary testing of a chipscale, multi-zone, surface electrode ion trap is reported. The modular design and fabrication techniques used are anticipated to advance scalability of ion trap quantum computing architectures...

  10. Driven spin transitions in fluorinated single- and bilayer-graphene quantum dots

    Science.gov (United States)

    Żebrowski, D. P.; Peeters, F. M.; Szafran, B.

    2017-06-01

    Spin transitions driven by a periodically varying electric potential in dilute fluorinated graphene quantum dots are investigated. Flakes of monolayer graphene as well as electrostatic electron traps induced in bilayer graphene are considered. The stationary states obtained within the tight-binding approach are used as the basis for description of the system dynamics. The dilute fluorination of the top layer lifts the valley degeneracy of the confined states and attenuates the orbital magnetic dipole moments due to current circulation within the flake. The spin-orbit coupling introduced by the surface deformation of the top layer induced by the adatoms allows the spin flips to be driven by the AC electric field. For the bilayer quantum dots the spin flip times is substantially shorter than the spin relaxation. Dynamical effects including many-photon and multilevel transitions are also discussed.

  11. Electron spin control and torsional optomechanics of an optically levitated nanodiamond in vacuum

    Science.gov (United States)

    Li, Tongcang; Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon

    Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centers, indicating potential applications of NV centers in oxygen gas sensing. For spin-optomechanics, it is important to control the orientation of the nanodiamond and NV centers in a magnetic field. Recently, we have observed the angular trapping and torsional vibration of a levitated nanodiamond, which paves the way towards levitated torsional optomechanics in the quantum regime. NSF 1555035-PHY.

  12. Fictive-temperature-dependence of photoinduced self-trapped holes in a-SiO2

    International Nuclear Information System (INIS)

    Yamaguchi, M.; Saito, K.; Ikushima, A.J.

    2003-01-01

    Self-trapped hole (STH) induced by ArF laser irradiation in silica glass (a-SiO 2 ) was investigated by the electron-spin resonance method. In order to observe the relation between the yield of STH and structural disorder of the glass, samples with different fictive temperatures T f , were used. It has been found that the yield of STH increases with increasing T f , implying that structural disorder enhances the formation of STH

  13. Optical spin generation/detection and spin transport lifetimes

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  14. Optical spin generation/detection and spin transport lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-02-25

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  15. Stokes Trap: Multiplexed particle trapping and manipulation using fluidics

    Science.gov (United States)

    Shenoy, Anish; Schroeder, Charles

    We report the development of the Stokes Trap, which is a multiplexed microfluidic trap for control over an arbitrary number of small particles in a microfluidic device. Our work involves the design and implementation of ``smart'' flow-based devices by coupling feedback control with microfluidics, thereby enabling new routes for the fluidic-directed assembly of particles. Here, we discuss the development of a new method to achieve multiplexed microfluidic trapping of an arbitrary number of particles using the sole action of fluid flow. In particular, we use a Hele-Shaw microfluidic cell to generate hydrodynamic forces on particles in a viscous-dominated flow defined by the microdevice geometry and imposed peripheral flow rates. This platform allows for a high degree of flow control over individual particles and can be used for manufacturing novel particles for fundamental studies, using fluidic-directed assembly. From a broader perspective, our work provides a solid framework for guiding the design of next-generation, automated on-chip assays.

  16. Direct trace analysis of metals and alloys in a quadrupole ion-trap mass spectrometer

    CERN Document Server

    Song, K S; Yang, M; Cha, H K; Lee, J M; Lee, G H

    1999-01-01

    An ion-trap mass spectrometer adopting a quadrupole ion-trap and laser ablation/ionization method was constructed. The developed system was tested for composition analysis of some metals (Cu, stainless), and alloys (hastalloy C, mumetal) by mass spectrometry. Samples were analyzed by using laser ablation from a sample probe tip followed by a mass analysis with the quadrupole ion-trap. The quadrupole ion-trap was modified to enable laser ablation by a XeCl excimer laser pulse that passed radially through the ring electrode. A mass scan of the produced ions was performed in the mass selective instability mode wherein trapped ions were successively detected by increasing the rf voltage through the ring electrode. Factors affecting the mass resolution, such as pressure of buffer gas and ablation laser power, are discussed.

  17. The Use of Camera Traps in Wildlife

    OpenAIRE

    Yasin Uçarlı; Bülent Sağlam

    2013-01-01

    Camera traps are increasingly used in the abundance and density estimates of wildlife species. Camera traps are very good alternative for direct observation in case, particularly, steep terrain, dense vegetation covered areas or nocturnal species. The main reason for the use of camera traps is eliminated that the economic, personnel and time loss in a continuous manner at the same time in different points. Camera traps, motion and heat sensitive, can take a photo or video according to the mod...

  18. Sympathetic Cooling of Trapped Cd+ Isotopes

    OpenAIRE

    Blinov, B. B.; Deslauriers, L.; Lee, P.; Madsen, M. J.; Miller, R.; Monroe, C.

    2001-01-01

    We sympathetically cool a trapped 112Cd+ ion by directly Doppler-cooling a 114Cd+ ion in the same trap. This is the first demonstration of optically addressing a single trapped ion being sympathetically cooled by a different species ion. Notably, the experiment uses a single laser source, and does not require strong focusing. This paves the way toward reducing decoherence in an ion trap quantum computer based on Cd+ isotopes.

  19. Diffusion and trapping of muons in aluminium: New experiments and comparison with Kondo theory

    International Nuclear Information System (INIS)

    Hartmann, O.; Karlsson, E.; Waeckelgaard, E.; Waeppling, R.; Hempelmann, R.; Niinikoski, T.O.

    1987-03-01

    The diffusion and trapping of positive muons in aluminium has been studied using the method of muon spin rotation. New measurements have been performed on Al-samples doped with Mg, Si, Ga and Ge-impurities (which trap the muons), and for comparison also on an Ag-sample doped with Er. Trapping rates and trapping site information were obtained for temperatures between 0.05 K and 50 K. A global fit to these and earlier published data for trapping by other impurities (Li, Mn, Ag) and vacancies has made it possible to deduce the temperature dependence of the intrinsic diffusion in Al for the range 0.05 - 200 K and to compare it with the recently developed theory by Kondo for light interstitial diffusion in metals. In the low temperature range (0.05 - 2 K) it shows a T -0.7 dependence, followed by an approximately linear T-dependence (2 - 20 K) and an exponential (activated) behaviour at higher temperatures. The theory for the low-T diffusion, which is based on tunneling with energy dissipation through the screening electrons, describes the experimental data with reasonable parameters. For the intermediate range there are strong indications of one phonon assisted diffusion. The trapping sites close to the impurities are discused with reference to the elastic distortions and the electronic density modifications introduced by the different impurities. (with 52 refs.) (author)

  20. Thermoelectric spin voltage in graphene.

    Science.gov (United States)

    Sierra, Juan F; Neumann, Ingmar; Cuppens, Jo; Raes, Bart; Costache, Marius V; Valenzuela, Sergio O

    2018-02-01

    In recent years, new spin-dependent thermal effects have been discovered in ferromagnets, stimulating a growing interest in spin caloritronics, a field that exploits the interaction between spin and heat currents 1,2 . Amongst the most intriguing phenomena is the spin Seebeck effect 3-5 , in which a thermal gradient gives rise to spin currents that are detected through the inverse spin Hall effect 6-8 . Non-magnetic materials such as graphene are also relevant for spin caloritronics, thanks to efficient spin transport 9-11 , energy-dependent carrier mobility and unique density of states 12,13 . Here, we propose and demonstrate that a carrier thermal gradient in a graphene lateral spin valve can lead to a large increase of the spin voltage near to the graphene charge neutrality point. Such an increase results from a thermoelectric spin voltage, which is analogous to the voltage in a thermocouple and that can be enhanced by the presence of hot carriers generated by an applied current 14-17 . These results could prove crucial to drive graphene spintronic devices and, in particular, to sustain pure spin signals with thermal gradients and to tune the remote spin accumulation by varying the spin-injection bias.

  1. Dynamics of bright-bright solitons in Bose-Einstein condensate with Raman-induced one-dimensional spin-orbit coupling

    Science.gov (United States)

    Wen, Lin; Zhang, Xiao-Fei; Hu, Ai-Yuan; Zhou, Jing; Yu, Peng; Xia, Lei; Sun, Qing; Ji, An-Chun

    2018-03-01

    We investigate the dynamics of bright-bright solitons in one-dimensional two-component Bose-Einstein condensates with Raman-induced spin-orbit coupling, via the variational approximation and the numerical simulation of Gross-Pitaevskii equations. For the uniform system without trapping potential, we obtain two population balanced stationary solitons. By performing the linear stability analysis, we find a Goldstone eigenmode and an oscillation eigenmode around these stationary solitons. Moreover, we derive a general dynamical solution to describe the center-of-mass motion and spin evolution of the solitons under the action of spin-orbit coupling. The effects of a harmonic trap have also been discussed.

  2. FIB-SEM investigation of trapped intermetallic particles in anodic oxide films on AA1050 aluminium

    DEFF Research Database (Denmark)

    Jariyaboon, Manthana; Møller, Per; Dunin-Borkowski, Rafal E.

    2011-01-01

    Purpose - The purpose of this investigation is to understand the structure of trapped intermetallics particles and localized composition changes in the anodized anodic oxide film on AA1050 aluminium substrates. Design/methodology/approach - The morphology and composition of Fe-containing intermet...

  3. Optical control of the spin of a magnetic atom in a semiconductor quantum dot

    Directory of Open Access Journals (Sweden)

    Besombes L.

    2015-04-01

    Full Text Available The control of single spins in solids is a key but challenging step for any spin-based solid-state quantumcomputing device. Thanks to their expected long coherence time, localized spins on magnetic atoms in a semiconductor host could be an interesting media to store quantum information in the solid state. Optical probing and control of the spin of individual or pairs of Manganese (Mn atoms (S = 5/2 have been obtained in II-VI and IIIV semiconductor quantum dots during the last years. In this paper, we review recently developed optical control experiments of the spin of an individual Mn atoms in II-VI semiconductor self-assembled or strain-free quantum dots (QDs.We first show that the fine structure of the Mn atom and especially a strained induced magnetic anisotropy is the main parameter controlling the spin memory of the magnetic atom at zero magnetic field. We then demonstrate that the energy of any spin state of a Mn atom or pairs of Mn atom can be independently tuned by using the optical Stark effect induced by a resonant laser field. The strong coupling with the resonant laser field modifies the Mn fine structure and consequently its dynamics.We then describe the spin dynamics of a Mn atom under this strong resonant optical excitation. In addition to standard optical pumping expected for a resonant excitation, we show that the Mn spin population can be trapped in the state which is resonantly excited. This effect is modeled considering the coherent spin dynamics of the coupled electronic and nuclear spin of the Mn atom optically dressed by a resonant laser field. Finally, we discuss the spin dynamics of a Mn atom in strain-free QDs and show that these structures should permit a fast optical coherent control of an individual Mn spin.

  4. Dynamic array of dark optical traps

    DEFF Research Database (Denmark)

    Daria, V.R.; Rodrigo, P.J.; Glückstad, J.

    2004-01-01

    A dynamic array of dark optical traps is generated for simultaneous trapping and arbitrary manipulation of multiple low-index microstructures. The dynamic intensity patterns forming the dark optical trap arrays are generated using a nearly loss-less phase-to-intensity conversion of a phase-encode...

  5. 50 CFR 31.16 - Trapping program.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Trapping program. 31.16 Section 31.16 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE... Disposal § 31.16 Trapping program. Except as hereafter noted, persons trapping animals on wildlife refuge...

  6. An Open Standard for Camera Trap Data

    NARCIS (Netherlands)

    Forrester, Tavis; O'Brien, Tim; Fegraus, Eric; Jansen, P.A.; Palmer, Jonathan; Kays, Roland; Ahumada, Jorge; Stern, Beth; McShea, William

    2016-01-01

    Camera traps that capture photos of animals are a valuable tool for monitoring biodiversity. The use of camera traps is rapidly increasing and there is an urgent need for standardization to facilitate data management, reporting and data sharing. Here we offer the Camera Trap Metadata Standard as an

  7. The Aarhus Ion Micro-Trap Project

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Nielsen, Otto; Poulsen, Gregers

    and installed in an ultra high vacuum chamber, which includes an ablation oven for all-optical loading of the trap [2]. The next steps on the project are to demonstrate the operation of the micro-trap and the cooling of ions using fiber delivered light. [1] D. Grant, Development of Micro-Scale Ion traps, Master...

  8. Biased trapping issue on weighted hierarchical networks

    Indian Academy of Sciences (India)

    Using a method based on generating functions, we determine explicitly the mean first-passage time (MFPT) for the trapping issue. Let parameter (0 < < 1) be the weight factor. We show that the efficiency of the trapping process depends on the parameter a; the smaller the value of a, the more efficient is the trapping ...

  9. Revealing trap depth distributions in persistent phosphors

    NARCIS (Netherlands)

    Van den Eeckhout, K.; Bos, A.J.J.; Poelman, D.; Smet, P.F.

    2013-01-01

    Persistent luminescence or afterglow is caused by a gradual release of charge carriers from trapping centers. The energy needed to release these charge carriers is determined by the trap depths. Knowledge of these trap depths is therefore crucial in the understanding of the persistent luminescence

  10. Noise in tunneling spin current across coupled quantum spin chains

    Science.gov (United States)

    Aftergood, Joshua; Takei, So

    2018-01-01

    We theoretically study the spin current and its dc noise generated between two spin-1 /2 spin chains weakly coupled at a single site in the presence of an over-population of spin excitations and a temperature elevation in one subsystem relative to the other, and we compare the corresponding transport quantities across two weakly coupled magnetic insulators hosting magnons. In the spin chain scenario, we find that applying a temperature bias exclusively leads to a vanishing spin current and a concomitant divergence in the spin Fano factor, defined as the spin current noise-to-signal ratio. This divergence is shown to have an exact analogy to the physics of electron scattering between fractional quantum Hall edge states and not to arise in the magnon scenario. We also reveal a suppression in the spin current noise that exclusively arises in the spin chain scenario due to the fermion nature of the spin-1/2 operators. We discuss how the spin Fano factor may be extracted experimentally via the inverse spin Hall effect used extensively in spintronics.

  11. Overview of spin physics

    Energy Technology Data Exchange (ETDEWEB)

    Yokosawa, A.

    1992-12-23

    Spin physics activities at medium and high energies became significantly active when polarized targets and polarized beams became accessible for hadron-hadron scattering experiments. My overview of spin physics will be inclined to the study of strong interaction using facilities at Argonne ZGS, Brookhaven AGS (including RHIC), CERN, Fermilab, LAMPF, an SATURNE. In 1960 accelerator physicists had already been convinced that the ZGS could be unique in accelerating a polarized beam; polarized beams were being accelerated through linear accelerators elsewhere at that time. However, there was much concern about going ahead with the construction of a polarized beam because (i) the source intensity was not high enough to accelerate in the accelerator, (ii) the use of the accelerator would be limited to only polarized-beam physics, that is, proton-proton interaction, and (iii) p-p elastic scattering was not the most popular topic in high-energy physics. In fact, within spin physics, [pi]-nucleon physics looked attractive, since the determination of spin and parity of possible [pi]p resonances attracted much attention. To proceed we needed more data beside total cross sections and elastic differential cross sections; measurements of polarization and other parameters were urgently needed. Polarization measurements had traditionally been performed by analyzing the spin of recoil protons. The drawbacks of this technique are: (i) it involves double scattering, resulting in poor accuracy of the data, and (ii) a carbon analyzer can only be used for a limited region of energy.

  12. Microscale ion trap mass spectrometer

    Science.gov (United States)

    Ramsey, J. Michael; Witten, William B.; Kornienko, Oleg

    2002-01-01

    An ion trap for mass spectrometric chemical analysis of ions is delineated. The ion trap includes a central electrode having an aperture; a pair of insulators, each having an aperture; a pair of end cap electrodes, each having an aperture; a first electronic signal source coupled to the central electrode; a second electronic signal source coupled to the end cap electrodes. The central electrode, insulators, and end cap electrodes are united in a sandwich construction where their respective apertures are coaxially aligned and symmetric about an axis to form a partially enclosed cavity having an effective radius r.sub.0 and an effective length 2z.sub.0, wherein r.sub.0 and/or z.sub.0 are less than 1.0 mm, and a ratio z.sub.0 /r.sub.0 is greater than 0.83.

  13. Rotation sensing with trapped ions

    Science.gov (United States)

    Campbell, W. C.; Hamilton, P.

    2017-03-01

    We present a protocol for rotation measurement via matter-wave Sagnac interferometry using trapped ions. The ion trap based interferometer encloses a large area in a compact apparatus through repeated round-trips in a Sagnac geometry. We show how a uniform magnetic field can be used to close the interferometer over a large dynamic range in rotation speed and measurement bandwidth without contrast loss. Since this technique does not require the ions to be confined in the Lamb-Dicke regime, Doppler laser cooling should be sufficient to reach a sensitivity of { S }=1.4× {10}-6 {{rad}} {{{s}}}-1 {{{H}}{{z}}}-1/2. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Wes Campbell was selected by the Editorial Board of J. Phys. B as an Emerging Leader.

  14. Centrifugal trapping in the magnetotail

    Directory of Open Access Journals (Sweden)

    D. C. Delcourt

    1995-03-01

    Full Text Available Particles leaving the neutral sheet in the distant magnetotail at times display adiabatic trajectory sequences characterized by an inflection toward the equator and subsequent mirroring in its vicinity. We demonstrate that this low-latitude mirroring results primarily from a centrifugal deceleration due to the fast direction-changing E×B drift. This effect which we refer to as "centrifugal trapping" appears both in guiding centre and full particle treatments. It thus does not directly relate to nonadiabatic motion. However, pitch angle scattering due to nonadiabatic neutral sheet interaction does play a role in reducing the parallel speed of the particles. We show that centrifugal trapping is an important mechanism for the confinement of the slowest (typically below the equatorial E×B drift speed plasma sheet populations to the midplane vicinity.

  15. Poverty Traps and Climate Change

    OpenAIRE

    Tol, Richard S. J.

    2011-01-01

    PUBLISHED We use a demo-economic model to examine the question of whether climate change could widen or deepen poverty traps. The model includes two crucial mechanisms. Parents are risk averse when deciding how many children to have; fertility is high when infant survival is low. High fertility spreads scarce household resources thin, resulting in children being poorly educated. At the macro level, technological progress is slow because of decreasing returns to scale in agriculture. With h...

  16. Quantum spin transistor with a Heisenberg spin chain

    Science.gov (United States)

    Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.

    2016-01-01

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438

  17. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  18. Spin gating electrical current

    Science.gov (United States)

    Ciccarelli, C.; Zârbo, L. P.; Irvine, A. C.; Campion, R. P.; Gallagher, B. L.; Wunderlich, J.; Jungwirth, T.; Ferguson, A. J.

    2012-09-01

    The level of the chemical potential is a fundamental parameter of the electronic structure of a physical system, which consequently plays an important role in defining the properties of active electrical devices. We directly measure the chemical potential shift in the relativistic band structure of the ferromagnetic semiconductor (Ga,Mn)As, controlled by changes in its magnetic order parameter. Our device comprises a non-magnetic aluminum single electron channel capacitively coupled to the (Ga,Mn)As gate electrode. The chemical potential shifts of the gate are directly read out from the shifts in the Coulomb blockade oscillations of the single electron transistor. The experiments introduce a concept of spin gating electrical current. In our spin transistor spin manipulation is completely removed from the electrical current carrying channel.

  19. SPIN-selling

    CERN Document Server

    Rackham, Neil

    1995-01-01

    True or false? In selling high-value products or services: "closing" increases your chance of success; it is essential to describe the benefits of your product or service to the customer; objection handling is an important skill; and open questions are more effective than closed questions. All false, says Neil Rackham. He and his team studied more than 35,000 sales calls made by 10,000 sales people in 23 countries over 12 years. Their findings revealed that many of the methods developed for selling low-value goods just don't work for major sales. Rackham went on to introduce his SPIN-selling method, where SPIN describes the whole selling process - Situation questions, Problem questions, Implication questions, Need-payoff questions. SPIN-selling provides you with a set of simple and practical techniques which have been tried in many of today's leading companies with dramatic improvements to their sales performance.

  20. Chiral higher spin gravity

    Science.gov (United States)

    Krishnan, Chethan; Raju, Avinash

    2017-06-01

    We construct a candidate for the most general chiral higher spin theory with AdS3 boundary conditions. In the Chern-Simons language, on the left it has the Drinfeld-Sokolov reduced form, but on the right all charges and chemical potentials are turned on. Altogether (for the spin-3 case) these are 19 functions. Despite this, we show that the resulting metric has the form of the "most general" AdS3 boundary conditions discussed by Grumiller and Riegler. The asymptotic symmetry algebra is a product of a W3 algebra on the left and an affine s l (3 )k current algebra on the right, as desired. The metric and higher spin fields depend on all the 19 functions. We compare our work with previous results in the literature.

  1. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden

    1975-01-01

    The selection rules for the linear couplings between magnons and phonons propagating in the c direction of a simple basal-plane hcp ferromagnet are determined by general symmetry considerations. The acoustic-optical magnon-phonon interactions observed in the heavy-rare-earth metals have been...... explained by Liu as originating from the mixing of the spin states of the conduction electrons due to the spin-orbit coupling. We find that this coupling mechanism introduces interactions which violate the selection rules for a simple ferromagnet. The interactions between the magnons and phonons propagating...... in the c direction of Tb have been studied experimentally by means of inelastic neutron scattering. The magnons are coupled to both the acoustic- and optical-transverse phonons. By studying the behavior of the acoustic-optical coupling, we conclude that it is a spin-mixed-induced coupling as proposed...

  2. Vortex creation during magnetic trap manipulations of spinor Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Itin, A. P.; Morishita, T.; Satoh, M.; Watanabe, S.; Tolstikhin, O. I.

    2006-01-01

    We investigate several mechanisms of vortex creation during splitting of a spinor Bose-Einstein condensate (BEC) in a magnetic double-well trap controlled by a pair of current carrying wires and bias magnetic fields. Our study is motivated by a recent MIT experiment on splitting BECs with a similar trap [Y. Shin et al., Phys. Rev. A 72, 021604 (2005)], where an unexpected fork-like structure appeared in the interference fringes indicating the presence of a singly quantized vortex in one of the interfering condensates. It is well known that in a spin-1 BEC in a quadrupole trap, a doubly quantized vortex is topologically produced by a 'slow' reversal of bias magnetic field B z . Since in the experiment a doubly quantized vortex had never been seen, Shin et al. ruled out the topological mechanism and concentrated on the nonadiabatic mechanical mechanism for explanation of the vortex creation. We find, however, that in the magnetic trap considered both mechanisms are possible: singly quantized vortices can be formed in a spin-1 BEC topologically (for example, during the magnetic field switching-off process). We therefore provide a possible alternative explanation for the interference patterns observed in the experiment. We also present a numerical example of creation of singly quantized vortices due to 'fast' splitting; i.e., by a dynamical (nonadiabatic) mechanism

  3. Spin flexoelectricity and chiral spin structures in magnetic films

    OpenAIRE

    Pyatakov, A. P.; Sergeev, A. S.; Mikailzade, F. A.; Zvezdin, A. K.

    2015-01-01

    In this short review a broad range of chiral phenomena observed in magnetic films (spin cycloid and skyrmion structures formation as well as chirality dependent domain wall motion) is considered under the perspective of spin flexoelectricity, i.e. the relation between bending of magnetization pattern and electric polarization. The similarity and the difference between the spin flexoelectricity and the newly emerged notion of spin flexomagnetism is discussed. The phenomenological arguments bas...

  4. Positron trapping at dislocations in metals

    International Nuclear Information System (INIS)

    Bergersen, B.; McMullen, T.

    1977-01-01

    The trapping rate of positrons at dislocations in metals, and its temperature dependence, are calculated. Two different trapping processes, with the excess energy absorbed in either electron-hole pair formation or by phonon creation, are considered and the former is found to be the most important. An extension of the theory to include depletion of the positron density around the dislocations in a diffusion approximation is included. The trapping is found to be transition limited if the temperature is low or the trap potential shallow. At room temperature diffusion is important for deep traps. (author)

  5. Nonadiabatic transitions in electrostatically trapped ammonia molecules

    International Nuclear Information System (INIS)

    Kirste, Moritz; Schnell, Melanie; Meijer, Gerard; Sartakov, Boris G.

    2009-01-01

    Nonadiabatic transitions are known to be major loss channels for atoms in magnetic traps but have thus far not been experimentally reported upon for trapped molecules. We have observed and quantified losses due to nonadiabatic transitions for three isotopologues of ammonia in electrostatic traps by comparing the trapping times in traps with a zero and a nonzero electric field at the center. Nonadiabatic transitions are seen to dominate the overall loss rate even for the present samples that are at relatively high temperatures of 30 mK. It is anticipated that losses due to nonadiabatic transitions in electric fields are omnipresent in ongoing experiments on cold molecules.

  6. Spinning geodesic Witten diagrams

    International Nuclear Information System (INIS)

    Dyer, Ethan; Freedman, Daniel Z.; Massachusetts Institute of Technology; Massachusetts Institute of Technology; Sully, James; McGill University, Montreal, QC

    2017-01-01

    We present an expression for the four-point conformal blocks of symmetric traceless operators of arbitrary spin as an integral over a pair of geodesics in Anti-de Sitter space, generalizing the geodesic Witten diagram formalism of Hijano et al. to arbitrary spin. As an intermediate step in the derivation, we identify a convenient basis of bulk threepoint interaction vertices which give rise to all possible boundary three point structures. Lastly, we highlight a direct connection between the representation of the conformal block as geodesic Witten diagram and the shadow operator formalism.

  7. Spin gating electrical current

    Czech Academy of Sciences Publication Activity Database

    Ciccarelli, C.; Zarbo, Liviu; Irvine, A.C.; Campion, R. P.; Gallagher, B. L.; Wunderlich, Joerg; Jungwirth, Tomáš; Ferguson, A.J.

    2012-01-01

    Roč. 101, č. 12 (2012), , , "122411-1"-"122411-4" ISSN 0003-6951 R&D Projects: GA AV ČR KJB100100802; GA AV ČR KAN400100652 EU Projects: European Commission(XE) 268066 - 0MSPIN; European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic resonance * spin-orbit coupling * nanodevices Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.794, year: 2012 http://arxiv.org/abs/1203.2439

  8. Spin echo in synchrotrons

    Directory of Open Access Journals (Sweden)

    Alexander W. Chao

    2007-01-01

    Full Text Available As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency Δν_{spin} of the beam (particularly due to its energy spread is sufficiently large that the spin precession phases of individual particles smear out completely during the time τ between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference-overlap effect and a spin echo effect. This paper is to address these two effects. The interference-overlap effect occurs when Δν_{spin} is too small, or when τ is too short, to complete the smearing process. In this case, the two resonance crossings overlap each other, and the final polarization exhibits constructive or destructive interference patterns depending on the exact value of τ. Typically, the beam’s energy spread is large and this interference-overlap effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time τ after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when τ is very large, and could be a sensitive (albeit challenging way to experimentally test the intricate spin dynamics in a synchrotron

  9. Spin, gravity, and inertia.

    Science.gov (United States)

    Obukhov, Y N

    2001-01-08

    The gravitational effects in the relativistic quantum mechanics are investigated. The exact Foldy-Wouthuysen transformation is constructed for the Dirac particle coupled to the static spacetime metric. As a direct application, we analyze the nonrelativistic limit of the theory. The new term describing the specific spin (gravitational moment) interaction effect is recovered in the Hamiltonian. The comparison of the true gravitational coupling with the purely inertial case demonstrates that the spin relativistic effects do not violate the equivalence principle for the Dirac fermions.

  10. Spin-orbit evolution of Mercury revisited

    Science.gov (United States)

    Noyelles, Benoît; Frouard, Julien; Makarov, Valeri V.; Efroimsky, Michael

    2014-10-01

    Although it is accepted that the significant eccentricity of Mercury (0.206) favours entrapment into the 3:2 spin-orbit resonance, open are the questions of how and when the capture took place. A recent work by Makarov (Makarov, V.V. [2012]. Astrophys. J., 752, 73) has proven that trapping into this state is certain for eccentricities larger than 0.2, provided we use a realistic tidal model based on the Darwin-Kaula expansion of the tidal torque. While in Ibid. a Mercury-like planet had its eccentricity fixed, we take into account its evolution. To that end, a family of possible histories of the eccentricity is generated, based on synthetic time evolution consistent with the expected statistics of the distribution of eccentricity. We employ a model of tidal friction, which takes into account both the rheology and self-gravitation of the planet. As opposed to the commonly used constant time lag (CTL) and constant phase lag (CPL) models, the physics-based tidal model changes dramatically the statistics of the possible final spin states. First, we discover that after only one encounter with the spin-orbit 3:2 resonance this resonance becomes the most probable end-state. Second, if a capture into this (or any other) resonance takes place, the capture becomes final, several crossings of the same state being forbidden by our model. Third, within our model the trapping of Mercury happens much faster than previously believed: for most histories, 10-20 Myr are sufficient. Fourth, even a weak laminar friction between the solid mantle and a molten core would most likely result in a capture in the 2:1 or even higher resonance, which is confirmed both semi-analytically and by limited numerical simulations. So the principal novelty of our paper is that the 3:2 end-state is more ancient than the same end-state obtained when the constant time lag model is employed. The swift capture justifies our treatment of Mercury as a homogeneous, unstratified body whose liquid core had not

  11. Intrinsic electron trapping in amorphous oxide

    Science.gov (United States)

    Strand, Jack; Kaviani, Moloud; Afanas’ev, Valeri V.; Lisoni, Judit G.; Shluger, Alexander L.

    2018-03-01

    We demonstrate that electron trapping at intrinsic precursor sites is endemic in non-glass-forming amorphous oxide films. The energy distributions of trapped electron states in ultra-pure prototype amorphous (a)-HfO2 insulator obtained from exhaustive photo-depopulation experiments demonstrate electron states in the energy range of 2–3 eV below the oxide conduction band. These energy distributions are compared to the results of density functional calculations of a-HfO2 models of realistic density. The experimental results can be explained by the presence of intrinsic charge trapping sites formed by under-coordinated Hf cations and elongated Hf–O bonds in a-HfO2. These charge trapping states can capture up to two electrons, forming polarons and bi-polarons. The corresponding trapping sites are different from the dangling-bond type defects responsible for trapping in glass-forming oxides, such as SiO2, in that the traps are formed without bonds being broken. Furthermore, introduction of hydrogen causes formation of somewhat energetically deeper electron traps when a proton is immobilized next to the trapped electron bi-polaron. The proposed novel mechanism of intrinsic charge trapping in a-HfO2 represents a new paradigm for charge trapping in a broad class of non-glass-forming amorphous insulators.

  12. Algae commensal community in Genlisea traps

    Directory of Open Access Journals (Sweden)

    Konrad Wołowski

    2011-01-01

    Full Text Available The community of algae occurring in Genlisea traps and on the external traps surface in laboratory conditions were studied. A total of 29 taxa were found inside the traps, with abundant diatoms, green algae (Chlamydophyceae and four morphotypes of chrysophytes stomatocysts. One morphotype is described as new for science. There are two ways of algae getting into Genlisea traps. The majority of those recorded inside the traps, are mobile; swimming freely by flagella or moving exuding mucilage like diatoms being ablate to colonize the traps themselves. Another possibility is transport of algae by invertebrates such as mites and crustaceans. In any case algae in the Genlisea traps come from the surrounding environment. Two dominant groups of algae (Chladymonas div. and diatoms in the trap environment, show ability to hydrolyze phosphomonoseters. We suggest that algae in carnivorous plant traps can compete with plant (host for organic phosphate (phosphomonoseters. From the spectrum and ecological requirements of algal species found in the traps, environment inside the traps seems to be acidic. However, further studies are needed to test the relations between algae and carnivorous plants both in laboratory conditions and in the natural environment. All the reported taxa are described briefly and documented with 74 LM and SEM micrographs.

  13. Trapping Dust to Form Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Growing a planet from a dust grain is hard work! A new study explores how vortices in protoplanetary disks can assist this process.When Dust Growth FailsTop: ALMA image of the protoplanetary disk of V1247 Orionis, with different emission components labeled. Bottom: Synthetic image constructed from the best-fit model. [Kraus et al. 2017]Gradual accretion onto a seed particle seems like a reasonable way to grow a planet from a grain of dust; after all, planetary embryos orbit within dusty protoplanetary disks, which provides them with plenty of fuel to accrete so they can grow. Theres a challenge to this picture, though: the radial drift problem.The radial drift problem acknowledges that, as growing dust grains orbit within the disk, the drag force on them continues to grow as well. For large enough dust grains perhaps around 1 millimeter the drag force will cause the grains orbits to decay, and the particles drift into the star before they are able to grow into planetesimals and planets.A Close-Up Look with ALMASo how do we overcome the radial drift problem in order to form planets? A commonly proposed mechanism is dust trapping, in which long-lived vortices in the disk trap the dust particles, preventing them from falling inwards. This allows the particles to persist for millions of years long enough to grow beyond the radial drift barrier.Observationally, these dust-trapping vortices should have signatures: we would expect to see, at millimeter wavelengths, specific bright, asymmetric structures where the trapping occurs in protoplanetary disks. Such disk structures have been difficult to spot with past instrumentation, but the Atacama Large Millimeter/submillimeter Array (ALMA) has made some new observations of the disk V1247 Orionis that might be just what were looking for.Schematic of the authors model for the disk of V1247 Orionis. [Kraus et al. 2017]Trapped in a Vortex?ALMAs observations of V1247 Orionis are reported by a team of scientists led by Stefan

  14. A stochastic picture of spin

    International Nuclear Information System (INIS)

    Faris, W.G.

    1981-01-01

    Dankel has shown how to incorporate spin into stochastic mechanics. The resulting non-local hidden variable theory gives an appealing picture of spin correlation experiments in which Bell's inequality is violated. (orig.)

  15. Antiferromagnetic spin-orbitronics

    KAUST Repository

    Manchon, Aurelien

    2015-05-01

    Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.

  16. " The Story of Spin

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 11. The Story of Spin - From Spectroscopy to Relativistic Quantum Mechanics. N Mukunda. Book Review Volume 3 Issue 11 November 1998 pp 89-90. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Spin and isospin modes

    International Nuclear Information System (INIS)

    Suzuki, T.; Sagawa, H.

    2000-01-01

    Complete text of publication follows. Spin and isospin modes in nuclei are investigated. We discuss some of the following topics. 1. Spin-dipole excitations in 12 C and 16 O are studied (1). Effects of tensor and spin-orbit interactions on the distribution of the strengths are investigated, and neutral current neutrino scattering cross sections in 16 O are obtained for heavy-flavor neutrinos from the supernovae. 2. Gamow-Teller (GT) and spin-dipole (SD) modes in 208 Bi are investigated. Quenching and fragmentation of the GT strength are discussed (2). SD excitations and electric dipole (E1) transitions between the GT and SD states are studied (3). Calculated E1 strengths are compared with the sum rule values obtained within the 1p-1h and 1p-1h + 2p-2h configuration spaces. 3. Coulomb displacement energy (CDE) of the IAS of 14 Be is calculated, and the effects of the halo on the CDE and the configuration of the halo state are investigated. 4. Spreading width of IAS and isospin dependence of the width are investigated (4). Our formula for the width explains very well the observed isospin dependence (5). (author)

  18. On "spinning" membrane models

    NARCIS (Netherlands)

    Bergshoeff, E.; Sezgin, E.; Townsend, P.K.

    1988-01-01

    Several alternative actions for a bosonic membrane have recently been proposed. We show that a linearly realized locally world-volume-supersymmetric (spinning membrane) extension of any of these actions implies an analogous extension of the standard Dirac membrane action. We further show that a

  19. Nuclear spin-off

    International Nuclear Information System (INIS)

    1981-11-01

    This booklet gives examples of 'nuclear spin off', from research programmes carried out for the UKAEA, under the following headings; non destructive testing; tribology; environmental protection; flow measurement; material sciences; mechanical engineering; marine services; biochemical technology; electronic instrumentation. (U.K.)

  20. The invariance of spin

    International Nuclear Information System (INIS)

    Bramson, B.D.

    1978-01-01

    An isolated system in general relativity makes a transition between stationary states. It is shown that the spin vectors of the system, long before and long after the emission of radiation, are supertranslation invariant and, hence, independent of the choice of Minkowski observation space. (author)

  1. Distributions of self-trapped hole continuums in silica glass

    International Nuclear Information System (INIS)

    Wang, R. P.; Saito, K.; Ikushima, A. J.

    2006-01-01

    Photobleaching of self-trapped holes (STH) in low temperature UV-irradiated silica glass has been investigated by the electron spin resonance method. The bleaching time dependence of the decay of two kinds of STH, STH 1 , and STH 2 , could be well fitted by the stretched exponential function, and STH 2 has a quicker decay than STH 1 . On the other hand, the decay becomes significant large when the photon energy increases from 1.5 to 2.0 eV, and then keeps constant with a further increase of photon energy. The distributions of the STH continuums are estimated at the positions on top of the valence band, being 1.66±0.27 eV for STH 1 and 1.63±0.33 eV for STH 2 . A possible recombination mechanism is proposed to explain the decay of STH signals

  2. Spin Injection in Indium Arsenide

    Directory of Open Access Journals (Sweden)

    Mark eJohnson

    2015-08-01

    Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.

  3. Spin tunnelling in mesoscopic systems

    Indian Academy of Sciences (India)

    Spin tunnelling; spin path integrals; discrete phase integral method; diabolical points. ... technologies. Our purpose in this article is rather different. The molecular systems have total spin of the order of 10, and magnetocrystalline anisotropies of few tens of Kelvin ...... The point С' is of this new type, and here it may be said to.

  4. Spin transport in graphene nanostructures

    NARCIS (Netherlands)

    Guimaraes, M. H. D.; van den Berg, J. J.; Vera-Marun, I. J.; Zomer, P. J.; van Wees, B. J.

    2014-01-01

    Graphene is an interesting material for spintronics, showing long spin relaxation lengths even at room temperature. For future spintronic devices it is important to understand the behavior of the spins and the limitations for spin transport in structures where the dimensions are smaller than the

  5. Spin Transport in Bose Gases

    NARCIS (Netherlands)

    van Driel, H.J.

    2012-01-01

    In this Thesis, we show that in a rotating two-component Bose mixture, the spin drag between the two different spin species shows a Hall effect. This spin drag Hall effect can be observed experimentally by studying the out-of-phase dipole mode of the mixture. We determine the damping of this mode

  6. Spin Transport in Semiconductor heterostructures

    International Nuclear Information System (INIS)

    Marinescu, Domnita Catalina

    2011-01-01

    The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

  7. Spinning Them Off: Entrepreneuring Practices in Corporate Spin-Offs

    Directory of Open Access Journals (Sweden)

    Katja Maria Hydle

    2016-01-01

    Full Text Available This paper focuses on the practices between parent and child firms in corporate spinoffs. We uncover the enacted aspects of knowledge, called knowing, through theories from seven cases of incumbent-backed spin-offs and find that the management of the parent firms are highly involved in the spin-offs. The practices associated with spinning off are solving problems, involving multidisciplinary expertise and entrepreneuring management at the parent firm. We contribute to the spin-off literature by discussing the knowledge required for successfully spinning off child firms and to practice theory by empirically uncovering the practical understanding involved in the origin and perpetuation of an organization.

  8. Spin flexoelectricity and chiral spin structures in magnetic films

    Science.gov (United States)

    Pyatakov, A. P.; Sergeev, A. S.; Mikailzade, F. A.; Zvezdin, A. K.

    2015-06-01

    In this short review a broad range of chiral phenomena observed in magnetic films (spin cycloid and skyrmion structures formation as well as chirality dependent domain wall motion) is considered under the perspective of spin flexoelectricity, i.e. the relation between bending of magnetization pattern and electric polarization. The similarity and the difference between the spin flexoelectricity and the newly emerged notion of spin flexomagnetism are discussed. The phenomenological arguments based on the geometrical idea of curvature-induced effects are supported by analysis of the microscopic mechanisms of spin flexoelectricity based on three-site ion indirect exchange and twisted RKKY interaction models.

  9. Antibacterial properties of laser spinning glass nanofibers.

    Science.gov (United States)

    Echezarreta-López, M M; De Miguel, T; Quintero, F; Pou, J; Landin, M

    2014-12-30

    A laser-spinning technique has been used to produce amorphous, dense and flexible glass nanofibers of two different compositions with potential utility as reinforcement materials in composites, fillers in bone defects or scaffolds (3D structures) for tissue engineering. Morphological and microstructural analyses have been carried out using SEM-EDX, ATR-FTIR and TEM. Bioactivity studies allow the nanofibers with high proportion in SiO2 (S18/12) to be classified as a bioinert glass and the nanofibers with high proportion of calcium (ICIE16) as a bioactive glass. The cell viability tests (MTT) show high biocompatibility of the laser spinning glass nanofibers. Results from the antibacterial activity study carried out using dynamic conditions revealed that the bioactive glass nanofibers show a dose-dependent bactericidal effect on Sthaphylococcus aureus (S. aureus) while the bioinert glass nanofibers show a bacteriostatic effect also dose-dependent. The antibacterial activity has been related to the release of alkaline ions, the increase of pH of the medium and also the formation of needle-like aggregates of calcium phosphate at the surface of the bioactive glass nanofibers which act as a physical mechanism against bacteria. The antibacterial properties give an additional value to the laser-spinning glass nanofibers for different biomedical applications, such as treating or preventing surgery-associated infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Optically Driven Spin Based Quantum Dots for Quantum Computing - Research Area 6 Physics 6.3.2

    Science.gov (United States)

    2015-12-15

    SECURITY CLASSIFICATION OF: This program conducted experimental and theoretical research aimed at developing an optically driven quantum dot quantum ...computer, where, the qubit is the spin of the electron trapped in a self-assembled quantum dot in InAs. Optical manipulation using the trion state...reports. In this reporting period, we discovered the nuclear spin quieting first discovered in 2008 is present in vertically coupled quantum dots but

  11. Mats and LaSpec: High-precision experiments using ion traps and lasers at Fair

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, D.; Lallena, A.M.; Blaum, K.; Bohm, C.; Cakirli, R.B.; Crespo Lopez-Urrutia, J.R.; Eliseev, S.; Ketelaer, J.; Kreim, M.S.; Kowalska, M.; Litvinov, Y.A.; Nagy, S.; Neidherr, D.; Repp, J.; Roux, C.; Schabinger, B.; Ullrich, J.; Nortershauser, W.; Eberhardt, K.; Geppert, C.; Kramer, J.; Krieger, A.; Sanchez, R.; Ahammed, M.; Das, P.; Ray, A.; Algora, A.; Rubio, B.; Tain, J.L.; Audi, G.; Lunney, D.; Naimi, S.; Aysto, J.; Jokinen, A.; Kolhinen, V.; Moore, I.; Beck, D.; Block, M.; Geissel, H.; Heinz, S.; Herfurth, F.; Litvinov, Y.A.; Minaya-Ramirez, E.; Plab, W.R.; Quint, W.; Scheidenberger, C.; Winkler, M.; Bender, M.; Billowes, J.; Campbell, P.; Flanagan, K.T.; Schwarz, S.; Bollen, G.; Ferrer, R.; George, S.; Kester, O.; Brodeur, M.; Brunner, T.; Delheij, P.; Dilling, J.; Ettenauer, S.; Lapierre, A.; Bushaw, B.A.; Cano-Ott, D.; Martinez, T.; Cortes, G.; Gomez-Hornillos, M.B.; Dax, A.; Herlert, A.; Yordanov, D.; De, A.; Dickel, T.; Geissel, H.; Jesch, C.; Kuhl, T.; Petrick, M.; PlaB, W.R.; Scheidenberger, C.; Garcia-Ramos, J.E.; Gartzke, E.; Habs, D.; Szerypo, J.; Thirolf, P.G.; Weber, C.; Gusev, Y.; Nesterenko, D.; Novikov, Y.N.; Popov, A.; Seliverstov, M.; Vasiliev, A.; Vorobjev, G.; Heenen, P.H.; Marx, G.; Schweikhard, L.; Ziegler, F.; Hobein, M.; Schuch, R.; Solders, A.; Suhonen, M.; Huber, G.; Wendt, K.; Huyse, M.; Koudriavtsev, I.; Neyens, G.; Van Duppen, P.; Le Blanc, F.; Matos, M.; Reinhard, P.G.; Schneider, D.

    2010-05-15

    Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. With MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10{sup -9} can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. Decay studies in ion traps will become possible with MATS. Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The accuracy of laser-spectroscopic-determined nuclear properties is very high while requirements concerning production rates are moderate. This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy. Since MATS and LaSpec require high-quality low

  12. Efficiency of small mammal trapping in an Atlantic Forest fragmented landscape: the effects of trap type and position, seasonality and habitat

    Directory of Open Access Journals (Sweden)

    ALM Vieira

    Full Text Available Trapping methods can strongly influence the sampling of mammal communities. This study compared the efficiency of the capture of small mammals in Sherman traps in two positions (at ground level and in trees and pitfall traps in a fragmented landscape. Trapping sessions were carried out between October 2008 and October 2009 at two fragments (8 and 17 ha, an agroforest corridor between them, and the adjacent pasture. A total effort of 4622 trap-nights resulted in 155 captures of 137 individuals from six species. Pitfalls had greater success (4.03%, followed by Shermans on the ground (2.98% and on trees (2.37%; χ2= 6.50, p = 0.04. Five species were caught in Sherman ground traps, four in pitfalls and just two on trees. There was no difference among trap types for marsupials (χ2 = 4.75; p = 0.09, while for rodents, pitfalls were more efficient than Shermans on the ground (Fisher's exact test, p = 0.02. As a result, the efficiency of each trap type differed among habitats, due to differences in their species composition. Pitfalls were more efficient in the rainy season (Fisher's exact test, p <0.0001 while Shermans on trees were more efficient in the dry season (Fisher's exact test, p = 0.009. There was no difference between seasons for Shermans on the ground (Fisher's exact test, p = 0.76. Considering the results found, we recommend that future studies of forest mammal communities, particularly those designed to test the effects of forest fragmentation, include combinations of different trap types.

  13. Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap

    CERN Document Server

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Kurchaninov, L; Jonsell, S; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-01-01

    Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilated. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly-identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antipr...

  14. Portable Pbars, traps that travel

    International Nuclear Information System (INIS)

    Howe, S.D.; Hynes, M.V.; Picklesimer, A.

    1987-10-01

    The advent of antiproton research utilizing relatively small scale storage devices for very large numbers of these particles opens the possibility of transporting these devices to a research site removed from the accelerator center that produced the antiprotons. Such a portable source of antiprotons could open many new areas of research and make antiprotons available to a new research community. At present antiprotons are available at energies down to 1 MeV. From a portable source these particles can be made available at energies ranging from several tens of kilovolts down to a few millielectron volts. These low energies are in the domain of interest to the atomic and condensed matter physicist. In addition such a source can be used as an injector for an accelerator which could increase the energy domain even further. Moreover, the availability of such a source at a university will open research with antiprotons to a broader range of students than possible at a centralized research facility. This report focuses on the use of ion traps, in particular cylindrical traps, for the antiproton storage device. These devices store the charged antiprotons in a combination of electric and magnet fields. At high enough density and low enough temperature the charged cloud will be susceptible to plasma instabilities. Present day ion trap work is just starting to explore this domain. Our assessment of feasibility is based on what could be done with present day technology and what future technology could achieve. We conclude our report with a radiation safety study that shows that about 10 11 antiprotons can be transported safely, however the federal guidelines for this transport must be reviewed in detail. More antiprotons than this will require special transportation arrangements. 28 refs., 8 figs

  15. Excitation of coherent propagating spin waves by pure spin currents.

    Science.gov (United States)

    Demidov, Vladislav E; Urazhdin, Sergei; Liu, Ronghua; Divinskiy, Boris; Telegin, Andrey; Demokritov, Sergej O

    2016-01-28

    Utilization of pure spin currents not accompanied by the flow of electrical charge provides unprecedented opportunities for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. It was recently shown that pure spin currents can be used to excite coherent magnetization dynamics in magnetic nanostructures. However, because of the intrinsic nonlinear self-localization effects, magnetic auto-oscillations in the demonstrated devices were spatially confined, preventing their applications as sources of propagating spin waves in magnonic circuits using these waves as signal carriers. Here, we experimentally demonstrate efficient excitation and directional propagation of coherent spin waves generated by pure spin current. We show that this can be achieved by using the nonlocal spin injection mechanism, which enables flexible design of magnetic nanosystems and allows one to efficiently control their dynamic characteristics.

  16. Spin-wave-induced spin torque in Rashba ferromagnets

    Science.gov (United States)

    Umetsu, Nobuyuki; Miura, Daisuke; Sakuma, Akimasa

    2015-05-01

    We study the effects of Rashba spin-orbit coupling on the spin torque induced by spin waves, which are the plane-wave dynamics of magnetization. The spin torque is derived from linear-response theory, and we calculate the dynamic spin torque by considering the impurity-ladder-sum vertex corrections. This dynamic spin torque is divided into three terms: a damping term, a distortion term, and a correction term for the equation of motion. The distorting torque describes a phenomenon unique to the Rashba spin-orbit coupling system, where the distorted motion of magnetization precession is subjected to the anisotropic force from the Rashba coupling. The oscillation mode of the precession exhibits an elliptical trajectory, and the ellipticity depends on the strength of the nesting effects, which could be reduced by decreasing the electron lifetime.

  17. Solar Trap for Banana Drying Method

    Directory of Open Access Journals (Sweden)

    Musa S.

    2017-01-01

    Full Text Available Food drying methods nowadays are mostly in high use of electricity and fuel which lead to high operational cost. This has resulted in a waste of energy and money due to the use of modern tools requires significant costs for implementation. Meanwhile, the traditional food drying process only uses sun rays in their process, where the process is far more efficient than the modern drying method. In this study, the test was conducted to determine the trapped solar heat energy requirements for the process of drying foods such as agricultural products, particularly bananas. The solar trap test by using solar trap container was carried out include determining the thermal energy requirement for drying, preparing equipment (solar trap container to trap solar energy, handling and drying tests on samples of bananas. The percentage amount of water removal and energy required for the drying process was found to be 48% and 134 J. The results of this study can determine that solar trap drying method is easier, quicker and more effective than the usual method of drying because it use natural solar energy. Several proposals have been suggested for improvement for future study, such as controlling the solar trap air in the container, replacing the trap solar wall with a darker color, examining the floors slope so that more solar traps collected and installing a small hose on the base of the container so that the water evaporated in the solar trap may exit through the route.

  18. Trapping leidenfrost drops with crenelations.

    Science.gov (United States)

    Dupeux, Guillaume; Le Merrer, Marie; Clanet, Christophe; Quéré, David

    2011-09-09

    Drops placed on very hot solids levitate on a cushion of their own vapor, as discovered by Leidenfrost. This confers to these drops a remarkable mobility, which makes problematic their control and manipulation. Here we show how crenelated surfaces can be used to increase the friction of Leidenfrost drops by a factor on the order of 100, making them decelerate and be trapped on centimetric distances instead of the usual metric ones. We measure and characterize the friction force as a function of the design of the crenelations.

  19. Bose condensation in (random traps

    Directory of Open Access Journals (Sweden)

    V.A. Zagrebnov

    2009-01-01

    Full Text Available We study a non-interacting (perfect Bose-gas in random external potentials (traps. It is shown that a generalized Bose-Einstein condensation in the random eigenstates manifests if and only if the same occurs in the one-particle kinetic-energy eigenstates, which corresponds to the generalized condensation of the free Bose-gas. Moreover, we prove that the amounts of both condensate densities are equal. This statement is relevant for justification of the Bogoliubov approximation} in the theory of disordered boson systems.

  20. Spin Structures in Magnetic Nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Brok, Erik; Frandsen, Cathrine

    2013-01-01

    Spin structures in nanoparticles of ferrimagnetic materials may deviate locally in a nontrivial way from ideal collinear spin structures. For instance, magnetic frustration due to the reduced numbers of magnetic neighbors at the particle surface or around defects in the interior can lead to spin...... canting and hence a reduced magnetization. Moreover, relaxation between almost degenerate canted spin states can lead to anomalous temperature dependences of the magnetization at low temperatures. In ensembles of nanoparticles, interparticle exchange interactions can also result in spin reorientation...

  1. Optical and microwave control of germanium-vacancy center spins in diamond

    Science.gov (United States)

    Siyushev, Petr; Metsch, Mathias H.; Ijaz, Aroosa; Binder, Jan M.; Bhaskar, Mihir K.; Sukachev, Denis D.; Sipahigil, Alp; Evans, Ruffin E.; Nguyen, Christian T.; Lukin, Mikhail D.; Hemmer, Philip R.; Palyanov, Yuri N.; Kupriyanov, Igor N.; Borzdov, Yuri M.; Rogers, Lachlan J.; Jelezko, Fedor

    2017-08-01

    A solid-state system combining a stable spin degree of freedom with an efficient optical interface is highly desirable as an element for integrated quantum-optical and quantum-information systems. We demonstrate a bright color center in diamond with excellent optical properties and controllable electronic spin states. Specifically, we carry out detailed optical spectroscopy of a germanium-vacancy (GeV ) color center demonstrating optical spectral stability. Using an external magnetic field to lift the electronic spin degeneracy, we explore the spin degree of freedom as a controllable qubit. Spin polarization is achieved using optical pumping, and a spin relaxation time in excess of 20 μ s is demonstrated. We report resonant microwave control of spin transitions, and use this as a probe to measure the Autler-Townes effect in a microwave-optical double-resonance experiment. Superposition spin states were prepared using coherent population trapping, and a pure dephasing time of about 19 ns was observed at a temperature of 2.0 K.

  2. Virtual potentials for feedback traps.

    Science.gov (United States)

    Jun, Yonggun; Bechhoefer, John

    2012-12-01

    The recently developed feedback trap can be used to create arbitrary virtual potentials, to explore the dynamics of small particles or large molecules in complex situations. Experimentally, feedback traps introduce several finite time scales: There is a delay between the measurement of a particle's position and the feedback response, the feedback response is applied for a finite update time, and a finite camera exposure integrates motion. We show how to incorporate such timing effects into the description of particle motion. For the test case of a virtual quadratic potential, we give the first accurate description of particle dynamics, calculating the power spectrum and variance of fluctuations as a function of feedback gain, testing against simulations. We show that for small feedback gains, the motion approximates that of a particle in an ordinary harmonic potential. Moreover, if the potential is varied in time, for example by varying its stiffness, the work that is calculated approximates that done in an ordinary changing potential. The quality of the approximation is set by the ratio of the update time of the feedback loop to the relaxation time of motion in the virtual potential.

  3. Production and trapping of francium atoms

    International Nuclear Information System (INIS)

    Atutov, S.N.; Biancalana, V.; Burchianti, A.; Calabrese, R.; Corradi, L.; Dainelli, A.; Guidi, V.; Khanbekyan, A.; Mai, B.; Marinelli, C.; Mariotti, E.; Moi, L.; Sanguinetti, S.; Stancari, G.; Tomassetti, L.; Veronesi, S.

    2004-01-01

    A new facility has been constructed at the INFN Legnaro National Laboratory (LNL) for the production of francium isotopes via a fusion-evaporation nuclear reaction and a laser laboratory has been set up for francium trapping. Francium is produced inside a gold target and after diffusion desorbs from its surface as an ion. A secondary beam line delivers the francium ions to the trapping cell where they are neutralized and trapped in a magneto-optical trap (MOT). Details on the production, delivery and neutralization methods are presented. Preliminary results on trapped francium are also shown. Production rate of ≅ 10 6 ions/s and a trap population of about 100 atoms have been achieved

  4. Determination of the spin diffusion length in germanium by spin optical orientation and electrical spin injection

    Science.gov (United States)

    Rinaldi, C.; Bertoli, S.; Asa, M.; Baldrati, L.; Manzoni, C.; Marangoni, M.; Cerullo, G.; Bianchi, M.; Sordan, R.; Bertacco, R.; Cantoni, M.

    2016-10-01

    The measurement of the spin diffusion length and/or lifetime in semiconductors is a key issue for the realisation of spintronic devices, exploiting the spin degree of freedom of carriers for storing and manipulating information. In this paper, we address such parameters in germanium (0 0 1) at room temperature (RT) by three different measurement methods. Exploiting optical spin orientation in the semiconductor and spin filtering across an insulating MgO barrier, the dependence of the resistivity on the spin of photo-excited carriers in Fe/MgO/Ge spin photodiodes (spin-PDs) was electrically detected. A spin diffusion length of 0.9  ±  0.2 µm was obtained by fitting the photon energy dependence of the spin signal by a mathematical model. Electrical techniques, comprising non-local four-terminal and Hanle measurements performed on CoFeB/MgO/Ge lateral devices, led to spin diffusion lengths of 1.3  ±  0.2 µm and 1.3  ±  0.08 µm, respectively. Despite minor differences due to experimental details, the order of magnitude of the spin diffusion length is the same for the three techniques. Although standard electrical methods are the most employed in semiconductor spintronics for spin diffusion length measurements, here we demonstrate optical spin orientation as a viable alternative for the determination of the spin diffusion length in semiconductors allowing for optical spin orientation.

  5. Case Study: Trap Crop with Pheromone Traps for Suppressing Euschistus servus (Heteroptera: Pentatomidae in Cotton

    Directory of Open Access Journals (Sweden)

    P. G. Tillman

    2012-01-01

    Full Text Available The brown stink bug, Euschistus servus (Say, can disperse from source habitats, including corn, Zea mays L., and peanut, Arachis hypogaea L., into cotton, Gossypium hirsutum L. Therefore, a 2-year on-farm experiment was conducted to determine the effectiveness of a sorghum (Sorghum bicolor (L. Moench spp. bicolor trap crop, with or without Euschistus spp. pheromone traps, to suppress dispersal of this pest to cotton. In 2004, density of E. servus was lower in cotton fields with sorghum trap crops (with or without pheromone traps compared to control cotton fields. Similarly, in 2006, density of E. servus was lower in cotton fields with sorghum trap crops and pheromone traps compared to control cotton fields. Thus, the combination of the sorghum trap crop and pheromone traps effectively suppressed dispersal of E. servus into cotton. Inclusion of pheromone traps with trap crops potentially offers additional benefits, including: (1 reducing the density of E. servus adults in a trap crop, especially females, to possibly decrease the local population over time and reduce the overwintering population, (2 reducing dispersal of E. servus adults from the trap crop into cotton, and (3 potentially attracting more dispersing E. servus adults into a trap crop during a period of time when preferred food is not prevalent in the landscape.

  6. Spin diffusion length of Permalloy using spin absorption in lateral spin valves

    Science.gov (United States)

    Sagasta, Edurne; Omori, Yasutomo; Isasa, Miren; Otani, YoshiChika; Hueso, Luis E.; Casanova, Fèlix

    2017-08-01

    We employ the spin absorption technique in lateral spin valves to extract the spin diffusion length of Permalloy (Py) as a function of temperature and resistivity. A linear dependence of the spin diffusion length with the conductivity of Py is observed, evidencing that the Elliott-Yafet mechanism is the dominant spin relaxation mechanism in Permalloy. Completing the dataset with additional data found in the literature, we obtain λPy = (0.91 ± 0.04) (fΩm2)/ρPy.

  7. Muon spin rotation studies

    Science.gov (United States)

    1984-01-01

    The bulk of the muon spin rotation research work centered around the development of the muon spin rotation facility at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL). The collimation system was both designed and fabricated at Virginia State University. This improved collimation system, plus improvements in detectors and electronics enabled the acquisition of spectra free of background out to 15 microseconds. There were two runs at Brookhaven in 1984, one run was devoted primarily to beam development and the other run allowed several successful experiments to be performed. The effect of uniaxial strain on an Fe(Si) crystal at elevated temperature (360K) was measured and the results are incorporated herein. A complete analysis of Fe pulling data taken earlier is included.

  8. Laser induced fluorescence of trapped molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Grieman, F.J.

    1979-10-01

    An experimental apparatus for obtaining the optical spectra of molecular ions is described. The experimental technique includes the use of three dimensional ion trapping, laser induced fluorescence, and gated photon counting methods. The ions, which are produced by electron impact, are confined in a radio-frequency quadrupole ion trap of cylindrical design. Because the quadrupole ion trap allows mass selection of the molecular ion desired for study, the analysis of the spectra obtained is greatly simplified. The ion trap also confines the ions to a region easily probed by a laser beam. 18 references.

  9. How to detect trap cluster systems?

    International Nuclear Information System (INIS)

    Mandowski, Arkadiusz

    2008-01-01

    Spatially correlated traps and recombination centres (trap-recombination centre pairs and larger clusters) are responsible for many anomalous phenomena that are difficult to explain in the framework of both classical models, i.e. model of localized transitions (LT) and the simple trap model (STM), even with a number of discrete energy levels. However, these 'anomalous' effects may provide a good platform for identifying trap cluster systems. This paper considers selected cluster-type effects, mainly relating to an anomalous dependence of TL on absorbed dose in the system of isolated clusters (ICs). Some consequences for interacting cluster (IAC) systems, involving both localized and delocalized transitions occurring simultaneously, are also discussed

  10. Laser cooling and trapping of atoms

    International Nuclear Information System (INIS)

    Chu, S.

    1995-01-01

    The basic ideas of laser cooling and atom trapping will be discussed. These techniques have applications in spectroscopy, metrology, nuclear physics, biophysics, geophysics, and polymer science. (author)

  11. Laser induced fluorescence of trapped molecular ions

    International Nuclear Information System (INIS)

    Grieman, F.J.

    1979-10-01

    An experimental apparatus for obtaining the optical spectra of molecular ions is described. The experimental technique includes the use of three dimensional ion trapping, laser induced fluorescence, and gated photon counting methods. The ions, which are produced by electron impact, are confined in a radio-frequency quadrupole ion trap of cylindrical design. Because the quadrupole ion trap allows mass selection of the molecular ion desired for study, the analysis of the spectra obtained is greatly simplified. The ion trap also confines the ions to a region easily probed by a laser beam. 18 references

  12. High Optical Access Trap 2.0.

    Energy Technology Data Exchange (ETDEWEB)

    Maunz, Peter Lukas Wilhelm [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-26

    The High Optical Access (HOA) trap was designed in collaboration with the Modular Universal Scalable Ion-trap Quantum Computer (MUSIQC) team, funded along with Sandia National Laboratories through IARPA's Multi Qubit Coherent Operations (MQCO) program. The design of version 1 of the HOA trap was completed in September 2012 and initial devices were completed and packaged in February 2013. The second version of the High Optical Access Trap (HOA-2) was completed in September 2014 and is available at IARPA's disposal.

  13. Pangaea, She No Spin

    Science.gov (United States)

    McDowell, M.

    2002-12-01

    Looking at lopsided Pangaea, shown imaginatively on many illustrated proposals, I wondered what would happen if the configuration were put in high relief on a globe and spun on axis. Then I wondered if the present configuration of land masses would itself balance as a spinning top. So I got two Replogle globes, two boxes of colored modeling clay sticks, and two fat knitting needles, to fit through the capped holes at the poles of the globes. The clay sticks I cut up into 3 mm. (1/8") slices, using a different color for each continent, and applied to the first globe, assuming the extreme exaggeration above the geoid, no matter how crude, would tell the story. Inserting one needle through the globe and securing it, I balanced the globe on the point of the needle and twirled it like a top. Result: Wobbly! Top end of needle gyrated unevenly, and here it was supposed to make a smooth precessional cone. Oh boy. For the second globe, I used a Scotese "free stuff" interpretation of Pangaea, which I had to augment considerably using USGS, DuToit, Irving and other references, fitting it on the globe and applying identical clay color slices to what I judged generally accepted land surfaces. Result: the thing would hardly stand up, let alone spin. Conclusion: Although a refinement of application on the "today" globe might eliminate nutation, creating a smoother spin, there is no way any refinement of Pangaea on the same size globe can come close. While the concept of a supercontinent may be viable, I theorize that it had to have evolved on a far smaller globe, where land mass could balance, and the "breakup" would not have caused us to wildly gyrate on our axis. Because Pangaea, she no spin.

  14. Spin Hall effect

    Czech Academy of Sciences Publication Activity Database

    Sinova, Jairo; Valenzuela, O.V.; Wunderlich, Joerg; Back, C.H.; Jungwirth, Tomáš

    2015-01-01

    Roč. 87, č. 4 (2015), s. 1213-1259 ISSN 0034-6861 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : spin Hall effect * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 33.177, year: 2015

  15. Spin and gravitation

    Science.gov (United States)

    Ray, J. R.

    1982-01-01

    The fundamental variational principle for a perfect fluid in general relativity is extended so that it applies to the metric-torsion Einstein-Cartan theory. Field equations for a perfect fluid in the Einstein-Cartan theory are deduced. In addition, the equations of motion for a fluid with intrinsic spin in general relativity are deduced from a special relativistic variational principle. The theory is a direct extension of the theory of nonspinning fluids in special relativity.

  16. Spinning Disk Confocal System

    Science.gov (United States)

    2006-06-01

    high temporal resolution. An instrument has been developed for exactly this type of live-cell imaging. This new instrument scans 1000 microbeams across...Imaging System. Instead of scanning a single laser beam across the cell, this new instrument scans 1000 microbeams simultaneously using a spinning...multipoint-excitation, multipoint- emission characteristics of UltraView RS, which confers three main advantages over traditional beam scanning LSCMs for

  17. Spin effects from quark and lepton substructure at future machines

    International Nuclear Information System (INIS)

    Rueckl, R.

    1985-01-01

    If quarks and leptons are composite on a distance scale Λ -1 the physics at energies larger than Λ will provide plenty of evidence for the new level of substructure. However, already at energies below Λ compositeness should become manifest in deviations from the standard model due to form factors, residual interactions and, possibly, new ''light'' states. I discuss the virtue of polarized lepton and hadron beams in searching for new interactions and exemplify the production of excited fermions and bosons focussing on spin properties. The detailed of the contact interactions and the spin of the excited fermions and bosons can give important clues on the basic preon structure and dynamics. Phenomenological studies show that polarization asymmetries and angular distributions of decay products probe most sensitively the chiral properties of contact interactions and the spin of new states. Thus, polarized beams and good angular coverage are of great advantage

  18. Spinning geometry = Twisted geometry

    International Nuclear Information System (INIS)

    Freidel, Laurent; Ziprick, Jonathan

    2014-01-01

    It is well known that the SU(2)-gauge invariant phase space of loop gravity can be represented in terms of twisted geometries. These are piecewise-linear-flat geometries obtained by gluing together polyhedra, but the resulting geometries are not continuous across the faces. Here we show that this phase space can also be represented by continuous, piecewise-flat three-geometries called spinning geometries. These are composed of metric-flat three-cells glued together consistently. The geometry of each cell and the manner in which they are glued is compatible with the choice of fluxes and holonomies. We first remark that the fluxes provide each edge with an angular momentum. By studying the piecewise-flat geometries which minimize edge lengths, we show that these angular momenta can be literally interpreted as the spin of the edges: the geometries of all edges are necessarily helices. We also show that the compatibility of the gluing maps with the holonomy data results in the same conclusion. This shows that a spinning geometry represents a way to glue together the three-cells of a twisted geometry to form a continuous geometry which represents a point in the loop gravity phase space. (paper)

  19. Spin Foam Models

    CERN Document Server

    Krasnov, K V

    1999-01-01

    The term ‘spin foam models’ was invented only a couple years ago by Baez to refer to a new approach to quantization of general relativity that appeared as an offsping of loop quantum gravity. Although this new approach was motivated, both logically and historically, by loop quantum gravity, it became clear by now that the two approaches are rather independent. While loop quantum gravity attempts to give a canonical quantization of general relativity, spin foam model approach is set to make sense of the path integral for gravity. Eventually, the two approaches will probably be shown to be equivalent, but no rigorous result to this effect exists as for now. In this thesis I develop the spin foam quantization of gravity from scratch, referring to results from loop quantum gravity only for comparison. I start from a review of 2 + 1 gravity and discuss different roots to quantize it. While some of them, as, for example, using Chern-Simons theory, only exist in 2 + 1, others can be generalized t...

  20. Interacting composite fermions

    DEFF Research Database (Denmark)

    nrc762, nrc762

    2016-01-01

    dominates. The interaction between composite fermions in the second Λ level (composite fermion analog of the electronic Landau level) satisfies this property, and recent studies have supported unconventional fractional quantum Hall effect of composite fermions at ν∗=4/3 and 5/3, which manifests...... are conventional. The underlying reason is that the interaction between composite fermions depends substantially on both the number and the direction of the vortices attached to the electrons. I also study in detail the states with different spin polarizations at 6/17 and 6/7 and predict the critical Zeeman...

  1. Laser-cooling and electromagnetic trapping of neutral atoms

    International Nuclear Information System (INIS)

    Phillips, W.D.; Migdall, A.L.; Metcalf, H.J.

    1986-01-01

    Until recently it has been impossible to confine and trap neutral atoms using electromagnetic fields. While many proposals for such traps exist, the small potential energy depth of the traps and the high kinetic energy of available atoms prevented trapping. We review various schemes for atom trapping, the advances in laser cooling of atomic beams which have now made trapping possible, and the successful magnetic trapping of cold sodium atoms

  2. Quantum Phase Transition in a Cold Atomic Spin-Boson Mixture

    Science.gov (United States)

    Orth, Peter P.; Stanic, Ivan; Le Hur, Karyn

    2008-03-01

    We theoretically implement a spin array in a tunable bosonic environment using cold bosonic atoms with two (hyperfine) ground states, trapped by different potentials [1]. The first specie lies in a deep optical lattice with tightly confining wells and forms a spin array; spin-up/down corresponds to occupation by one/no atom at each site. The second specie forms a superfluid reservoir. Different species are coupled coherently via laser transitions and collisions. Whereas the laser coupling mimics a transverse field for the spins, the coupling to the reservoir phonons (sound modes) induces a ferromagnetic (Ising) coupling as well as dissipation. This results in a peculiar ferro-paramagnetic quantum phase transition where the effect of dissipation can be studied in a controllable manner. [1] Peter P. Orth, Ivan Stanic, and Karyn Le Hur, arXiv:0711.2309 [cond-mat.other].

  3. Molecular transport network security using multi-wavelength optical spins.

    Science.gov (United States)

    Tunsiri, Surachai; Thammawongsa, Nopparat; Mitatha, Somsak; Yupapin, Preecha P

    2016-01-01

    Multi-wavelength generation system using an optical spin within the modified add-drop optical filter known as a PANDA ring resonator for molecular transport network security is proposed. By using the dark-bright soliton pair control, the optical capsules can be constructed and applied to securely transport the trapped molecules within the network. The advantage is that the dark and bright soliton pair (components) can securely propagate for long distance without electromagnetic interference. In operation, the optical intensity from PANDA ring resonator is fed into gold nano-antenna, where the surface plasmon oscillation between soliton pair and metallic waveguide is established.

  4. Spinning particle approach to higher spin field theory

    International Nuclear Information System (INIS)

    Corradini, Olindo

    2011-01-01

    We shortly review on the connection between higher-spin gauge field theories and supersymmetric spinning particle models. In such approach the higher spin equations of motion are linked to the first-class constraint algebra associated with the quantization of particle models. Here we consider a class of spinning particle models characterized by local O(N)-extended supersymmetry since these models are known to provide an alternative approach to the geometric formulation of higher spin field theory. We describe the canonical quantization of the models in curved target space and discuss the obstructions that appear in presence of an arbitrarily curved background. We then point out the special role that conformally flat spaces appear to have in such models and present a derivation of the higher-spin curvatures for maximally symmetric spaces.

  5. Entanglement entropy in random quantum spin-S chains

    International Nuclear Information System (INIS)

    Saguia, A.; Boechat, B.; Continentino, M. A.; Sarandy, M. S.

    2007-01-01

    We discuss the scaling of entanglement entropy in the random singlet phase (RSP) of disordered quantum magnetic chains of general spin S. Through an analysis of the general structure of the RSP, we show that the entanglement entropy scales logarithmically with the size of a block, and we provide a closed expression for this scaling. This result is applicable for arbitrary quantum spin chains in the RSP, being dependent only on the magnitude S of the spin. Remarkably, the logarithmic scaling holds for the disordered chain even if the pure chain with no disorder does not exhibit conformal invariance, as is the case for Heisenberg integer-spin chains. Our conclusions are supported by explicit evaluations of the entanglement entropy for random spin-1 and spin-3/2 chains using an asymptotically exact real-space renormalization group approach

  6. Spin current through quantum-dot spin valves

    International Nuclear Information System (INIS)

    Wang, J; Xing, D Y

    2006-01-01

    We report a theoretical study of the influence of the Coulomb interaction on the equilibrium spin current in a quantum-dot spin valve, in which the quantum dot described by the Anderson impurity model is coupled to two ferromagnetic leads with noncollinear magnetizations. In the Kondo regime, electrons transmit through the quantum dot via higher-order virtual processes, in which the spin of either lead electrons or a localized electron on the quantum dot may reverse. It is found that the magnitude of the spin current decreases with increasing Coulomb interactions due to spin flip effects on the dot. However, the spatial direction of the spin current remains unchanged; it is determined only by the exchange coupling between two noncollinear magnetizations

  7. Spin Transfer Torque in Graphene

    Science.gov (United States)

    Lin, Chia-Ching; Chen, Zhihong

    2014-03-01

    Graphene is an idea channel material for spin transport due to its long spin diffusion length. To develop graphene based spin logic, it is important to demonstrate spin transfer torque in graphene. Here, we report the experimental measurement of spin transfer torque in graphene nonlocal spin valve devices. Assisted by a small external in-plane magnetic field, the magnetization reversal of the receiving magnet is induced by pure spin diffusion currents from the injector magnet. The magnetization switching is reversible between parallel and antiparallel configurations by controlling the polarity of the applied charged currents. Current induced heating and Oersted field from the nonlocal charge flow have also been excluded in this study. Next, we further enhance the spin angular momentum absorption at the interface of the receiving magnet and graphene channel by removing the tunneling barrier in the receiving magnet. The device with a tunneling barrier only at the injector magnet shows a comparable nonlocal spin valve signal but lower electrical noise. Moreover, in the same preset condition, the critical charge current density for spin torque in the single tunneling barrier device shows a substantial reduction if compared to the double tunneling barrier device.

  8. Optimizing Trap Design and Trapping Protocols for Drosophila suzukii (Diptera: Drosophilidae).

    Science.gov (United States)

    Renkema, Justin M; Buitenhuis, Rosemarije; Hallett, Rebecca H

    2014-12-01

    Drosophila suzukii Matsumura (Diptera: Drosophilidae) is a recent invasive pest of fruit crops in North America and Europe. Carpophagous larvae render fruit unmarketable and may promote secondary rot-causing organisms. To monitor spread and develop programs to time application of controls, further work is needed to optimize trap design and trapping protocols for adult D. suzukii. We compared commercial traps and developed a new, easy-to-use plastic jar trap that performed well compared with other designs. For some trap types, increasing the entry area led to increased D. suzukii captures and improved selectivity for D. suzukii when populations were low. However, progressive entry area enlargement had diminishing returns, particularly for commercial traps. Unlike previous studies, we found putting holes in trap lids under a close-fitting cover improved captures compared with holes on sides of traps. Also, red and black traps outperformed yellow and clear traps when traps of all colors were positioned 10-15 cm apart above crop foliage. In smaller traps, attractant surface area and entry area, but not other trap features (e.g., headspace volume), appeared to affect D. suzukii captures. In the new, plastic jar trap, tripling attractant volume (360 vs 120 ml) and weekly attractant replacement resulted in the highest D. suzukii captures, but in the larger commercial trap these measures only increased by-catch of large-bodied Diptera. Overall, the plastic jar trap with large entry area is affordable, durable, and can hold high attractant volumes to maximize D. suzukii capture and selectivity. © 2014 Entomological Society of America.

  9. Sampling efficiency of pitfall traps and Winkler extractor for inventory of harvestmen (Arachnida: Opilionidae

    Directory of Open Access Journals (Sweden)

    Rodica Plăiaşu

    2009-01-01

    Full Text Available Most soil and leaf litter invertebrates lack efficient inventory methods. We evaluated the efficiency of the pitfall traps (or Barber method and Winkler extractor (or Winkler method in a beech forest on limestone in southwestern Romania using harvestmen (Arachnida: Opilionidae as target group. The aim was to test if the relative abundance, species richness and species composition differ between the two methods. The harvestmen relative abundance and species richness were different when assessed by the two sampling methods. Winkler extractor captured greater numbers of harvestmen than pitfall traps, whereas pitfall traps caught more harvestmen species. Harvestmen assemblages as determined by Winkler method were found to be more similar with natural harvestmen assemblages. If the aim of the study is to analyse the community patterns Winkler extractor could be more efficient then pitfall traps. Our study suggests that the choice of the sampling method should be applied depending on the type of the investigation.

  10. Spin waves and spin instabilities in quantum plasmas

    OpenAIRE

    Andreev, P. A.; Kuz'menkov, L. S.

    2014-01-01

    We describe main ideas of method of many-particle quantum hydrodynamics allows to derive equations for description of quantum plasma evolution. We also present definitions of collective quantum variables suitable for quantum plasmas. We show that evolution of magnetic moments (spins) in quantum plasmas leads to several new branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered. Inst...

  11. Hardy's argument and successive spin-s measurements

    International Nuclear Information System (INIS)

    Ahanj, Ali

    2010-01-01

    We consider a hidden-variable theoretic description of successive measurements of noncommuting spin observables on an input spin-s state. In this scenario, the hidden-variable theory leads to a Hardy-type argument that quantum predictions violate it. We show that the maximum probability of success of Hardy's argument in quantum theory is ((1/2)) 4s , which is more than in the spatial case.

  12. Structural and magnetic anomalies among the spin-chain ...

    Indian Academy of Sciences (India)

    Unknown

    sensitively depends on such crystallographic distortions. All the compositions exhibit spin-glass anomalies with an unusually large frequency dependence of the peak temperature in ac susceptibility in a temperature range below 50 K, interestingly obeying Vogel–Fulcher relationship even for the stoichiometric compounds.

  13. Secretion Trap Tagging of Secreted and Membrane-Spanning Proteins Using Arabidopsis Gene Traps

    Science.gov (United States)

    Andrew T. Groover; Joseph R. Fontana; Juana M. Arroyo; Cristina Yordan; W. Richard McCombie; Robert A. Martienssen

    2003-01-01

    Secreted and membrane-spanning proteins play fundamental roles in plant development but pose challenges for genetic identification and characterization. We describe a "secretion trap" screen for gene trap insertions in genes encoding proteins routed through the secretory pathway. The gene trap transposon encodes a ß-glucuronidase reporter enzyme...

  14. Bright soliton dynamics in spin orbit-Rabi coupled Bose-Einstein condensates

    Science.gov (United States)

    Vinayagam, P. S.; Radha, R.; Bhuvaneswari, S.; Ravisankar, R.; Muruganandam, P.

    2017-09-01

    We investigate the dynamics of a spin-orbit (SO) coupled BECs in a time dependent harmonic trap and show the dynamical system to be completely integrable by constructing the Lax pair. We then employ gauge transformation approach to witness the rapid oscillations of the condensates for a relatively smaller value of SO coupling in a time independent harmonic trap compared to their counterparts in a transient trap. Keeping track of the evolution of the condensates in a transient trap during its transition from confining to expulsive trap, we notice that they collapse in the expulsive trap. We further show that one can manipulate the scattering length through Feshbach resonance to stretch the lifetime of the confining trap and revive the condensate. Considering a SO coupled state as the initial state, the numerical simulation indicates that the reinforcement of Rabi coupling on SO coupled BECs generates the striped phase of the bright solitons and does not impact the stability of the condensates despite destroying the integrability of the dynamical system.

  15. Spin transport in spin filtering magnetic tunneling junctions.

    Science.gov (United States)

    Li, Yun; Lee, Eok Kyun

    2007-11-01

    Taking into account spin-orbit coupling and s-d interaction, we investigate spin transport properties of the magnetic tunneling junctions with spin filtering barrier using Landauer-Büttiker formalism implemented with the recursive algorithm to calculate the real-space Green function. We predict completely different bias dependence of negative tunnel magnetoresistance (TMR) between the systems composed of nonmagnetic electrode (NM)/ferromagnetic barrier (FB)/ferromagnet (FM) and NM/FB/FM/NM spin filtering tunnel junctions (SFTJs). Analyses of the results provide us possible ways of designing the systems which modulate the TMR in the negative magnetoresistance regime.

  16. Spin-orbit mediated control of spin qubits

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A.S; Flensberg, Karsten

    2006-01-01

    We propose to use the spin-orbit interaction as a means to control electron spins in quantum dots, enabling both single-qubit and two-qubit operations. Very fast single-qubit operations may be achieved by temporarily displacing the electrons. For two-qubit operations the coupling mechanism is based...... on a combination of the spin-orbit coupling and the mutual long-ranged Coulomb interaction. Compared to existing schemes using the exchange coupling, the spin-orbit induced coupling is less sensitive to random electrical fluctuations in the electrodes defining the quantum dots....

  17. High-field spin dynamics of antiferromagnetic quantum spin chains

    DEFF Research Database (Denmark)

    Enderle, M.; Regnault, L.P.; Broholm, C.

    2000-01-01

    present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights......The characteristic internal order of macroscopic quantum ground states in one-dimensional spin systems is usually not directly accessible, but reflected in the spin dynamics and the field dependence of the magnetic excitations. In high magnetic fields quantum phase transitions are expected. We...

  18. Visualizing spin states using the spin coherent state representation

    Science.gov (United States)

    Lee Loh, Yen; Kim, Monica

    2015-01-01

    Orbital angular momentum eigenfunctions are readily understood in terms of spherical harmonics. However, the quantum mechanical phenomenon of spin is often said to be mysterious and hard to visualize, with no classical analog. Many textbooks give a heuristic and somewhat unsatisfying picture of a precessing spin vector. Here, we show that the spin-coherent-state representation is a striking, elegant, and mathematically meaningful tool for visualizing spin states. We also demonstrate that cartographic projections such as the Hammer projection are useful for visualizing functions defined on spherical surfaces.

  19. Spin Currents and Spin Orbit Torques in Ferromagnets and Antiferromagnets

    Science.gov (United States)

    Hung, Yu-Ming

    This thesis focuses on the interactions of spin currents and materials with magnetic order, e.g., ferromagnetic and antiferromagnetic thin films. The spin current is generated in two ways. First by spin-polarized conduction-electrons associated with the spin Hall effect in heavy metals (HMs) and, second, by exciting spin-waves in ferrimagnetic insulators using a microwave frequency magnetic field. A conduction-electron spin current can be generated by spin-orbit coupling in a heavy non-magnetic metal and transfer its spin angular momentum to a ferromagnet, providing a means of reversing the magnetization of perpendicularly magnetized ultrathin films with currents that flow in the plane of the layers. The torques on the magnetization are known as spin-orbit torques (SOT). In the first part of my thesis project I investigated and contrasted the quasistatic (slowly swept current) and pulsed current-induced switching characteristics of micrometer scale Hall crosses consisting of very thin (thesis project studies and considers applications of SOT-driven domain wall (DW) motion in a perpendicularly magnetized ultrathin ferromagnet sandwiched between a heavy metal and an oxide. My experiment results demonstrate that the DW motion can be explained by a combination of the spin Hall effect, which generates a SOT, and Dzyaloshinskii-Moriya interaction, which stabilizes chiral Neel-type DW. Based on SOT-driven DW motion and magnetic coupling between electrically isolated ferromagnetic elements, I proposed a new type of spin logic devices. I then demonstrate the device operation by using micromagnetic modeling which involves studying the magnetic coupling induced by fringe fields from chiral DWs in perpendicularly magnetized nanowires. The last part of my thesis project reports spin transport and spin-Hall magnetoresistance (SMR) in yttrium iron garnet Y3Fe5O 12 (YIG)/NiO/Pt trilayers with varied NiO thickness. To characterize the spin transport through NiO we excite

  20. QED approach to the nuclear spin-spin coupling tensor

    International Nuclear Information System (INIS)

    Romero, Rodolfo H.; Aucar, Gustavo A.

    2002-01-01

    A quantum electrodynamical approach for the calculation of the nuclear spin-spin coupling tensor of nuclear-magnetic-resonance spectroscopy is given. Quantization of radiation fields within the molecule is considered and expressions for the magnetic field in the neighborhood of a nucleus are calculated. Using a generalization of time-dependent response theory, an effective spin-spin interaction is obtained from the coupling of nuclear magnetic moments to a virtual quantized magnetic field. The energy-dependent operators obtained reduce to usual classical-field expressions at suitable limits

  1. Spin Texture And Magnetic Properties Of Fe-Si-Co Alloys

    International Nuclear Information System (INIS)

    Schneeweiss, O.; Zak, T.; Jiraskova, Y.; Havlicek, S.; Solyom, A.; Marko, P.

    1998-01-01

    The Fe-13at.%Si alloys with 1, 3, and 5 at.% of Co were investigated. Spin texture, atomic configuration, and Curie temperature were studied in dependence on chemical composition and heat treatment. Data on atomic arrangements derived form Moessbauer spectra and Curie temperatures showed that Co atoms substituted regular positions of Fe atoms in the bcc lattice. Spin texture was found to be only slightly dependent on the chemical composition of the alloys, however, it varies with heat treatment considerably. (Authors)

  2. A comparison of solids collected in sediment traps and automated water samplers

    Science.gov (United States)

    Bartsch, L.A.; Rada, R.G.; Sullivan, J.F.

    1996-01-01

    Sediment traps are being used in some pollution monitoring programs in the USA to sample suspended solids for contaminant analyses. This monitoring approach assumes that the characteristics of solids obtained in sediment traps are the same as those collected in whole-water sampling devices. We tested this assumption in the upper Mississippi River, based on the inorganic particle-size distribution (determined with a laser particle- analyzer) and volatile matter content of solids (a surrogate for organic matter). Cylindrical sediment traps (aspect ratio 3) were attached to a rigid mooring device and deployed in a flowing side channel in Navigation Pool 7 of the upper Mississippi River. On each side of the mooring device, a trap was situated adjacent to a port of an autosampler that collected raw water samples hourly to form 2-d composite samples. Paired samples (one trap and one raw water, composite sample) were removed from each end of the mooring device at 2-d intervals during the 30-d study period and compared. The relative particle collection efficiency of paired samplers did not vary temporally. Particle-size distributions of inorganic solids from sediment traps and water samples were not significantly different. The volatile matter content of solids was lesser in sediment traps (mean, 9.5%) than in corresponding water samples (mean, 22.7%). This bias may have been partly due to under-collection of phytoplankton (mainly cyanobacteria), which were abundant in the water column during the study. The positioning of water samplers and sediment traps in the mooring device did not influence the particle-size distribution or total solids of samples. We observed a small difference in the amount of organic matter collected by water samplers situated at opposite ends of the mooring device.

  3. Rotation Sensing with Trapped Ions

    Science.gov (United States)

    2016-09-01

    mail: wes@physics.ucla.edu 2 California Institute for Quantum Emulation, Santa Barbara, California 93106, USA Abstract. We present a protocol for using...induce spin-orbit coupling to produce the entangled state |ψii〉 = 1√2(e iNkηIR(αx)|↓〉 ⊗ |αx + iNkη〉 + e−iNkηIR(αx)|↑〉 ⊗ |αx − iNkη〉)⊗ |αy〉 (7) where IR(α... relative phase (δ) is given by δ = 2Nkη ( yd 2x0 (1 + cos θ) sin θ + yd 2y0 (1− cos θ) sin θ + IR(αx)(1− cos θ)− IR(αy) sin θ ) . (12) (11) shows that

  4. ac spin-Hall effect

    International Nuclear Information System (INIS)

    Entin-Wohlman, O.

    2005-01-01

    Full Text:The spin-Hall effect is described. The Rashba and Dresselhaus spin-orbit interactions are both shown to yield the low temperature spin-Hall effect for strongly localized electrons coupled to phonons. A frequency-dependent electric field E(ω) generates a spin-polarization current, normal to E, due to interference of hopping paths. At zero temperature the corresponding spin-Hall conductivity is real and is proportional to ω 2 . At non-zero temperatures the coupling to the phonons yields an imaginary term proportional to ω. The interference also yields persistent spin currents at thermal equilibrium, at E = 0. The contributions from the Dresselhaus and Rashba interactions to the interference oppose each other

  5. Collective excitations of harmonically trapped ideal gases

    NARCIS (Netherlands)

    Van Schaeybroeck, B.; Lazarides, A.

    2009-01-01

    We theoretically study the collective excitations of an ideal gas confined in an isotropic harmonic trap. We give an exact solution to the Boltzmann-Vlasov equation; as expected for a single-component system, the associated mode frequencies are integer multiples of the trapping frequency. We show

  6. Modes of oscillation in radiofrequency Paul traps

    DEFF Research Database (Denmark)

    Landa, H.; Reznik, B.; Drewsen, M.

    2012-01-01

    We examine the time-dependent dynamics of ion crystals in radiofrequency traps. The problem of stable trapping of general threedimensional crystals is considered and the validity of the pseudopotential approximation is discussed. We analytically derive the micromotion amplitude of the ions...

  7. An Experimental Analysis of Social Traps

    Science.gov (United States)

    Brechner, Kevin C.

    1977-01-01

    Social traps, such as the overgrazing of pasturelands, overpopulation, and the extinction of species, are situations where individuals in a group respond for their own advantage in a manner damaging to the group. Alaboratory analog was devised to simulate conditions that produce social traps. The intent was to cause an immediate positive…

  8. Tunneling of trapped-atom Bose condensates

    Indian Academy of Sciences (India)

    Tunneling of trapped-atom Bose condensates. SUBODH R SHENOY. Abdus Salam International Centre for Theoretical Physics, P.O. Box 586, Trieste 34100, Italy. Abstract. We obtain the dynamics in number and phase difference, for Bose condensates that tun- nel between two wells of a double-well atomic trap, using the ...

  9. Biased trapping issue on weighted hierarchical networks

    Indian Academy of Sciences (India)

    hierarchical network. Here, we focus on a particular case with the trap located at the node with the highest degree. We derive rigorous solution to the MFPT that characterizes the trapping process. Moreover ..... The weighted networks can mimic some real-world natural and social systems to some extent [20–22]. We focus ...

  10. Lobster trap detection at the Saba Bank

    NARCIS (Netherlands)

    Beek, van I.J.M.

    2012-01-01

    According to previous studies and anecdotal evidence there are a lot of lost lobster traps at the Saba Bank. One study estimated the loss to be between 210 and 795 lobster traps per year. The Saba Bank is an approximately 2,200 km2 submerged area and spiny lobster (Panulirus argus) is one of the

  11. Astroturf seed traps for studying hydrochory

    NARCIS (Netherlands)

    Wolters, M; Geertsema, J; Chang, ER; Veeneklaas, RM; Carey, PD; Bakker, JP

    1. Astroturf mats can effectively trap diaspores dispersed by tidal water. 2. Within four tidal inundations, up to 745 propagules per m(2) and between three and eight different species per astroturf mat were trapped. Overall, 15 different species were collected on the astroturf mats, 10 of which

  12. Measuring oxide trapping parameters in MOS structure

    Science.gov (United States)

    Maserjian, J.

    1978-01-01

    System for controlled injection of electrons or holes into oxide layer of MOS capacitor can be used to measure oxide trapping parameters. Since trapping mechanisms can cause degradation and ultimate failure of MOS elements exposed to ionizing radiation, system can be helpful in predicting device tolerance.

  13. Insects in IBL-4 pine weevil traps

    Science.gov (United States)

    I. Skrzecz

    2003-01-01

    Pipe traps (IBL-4) are used in Polish coniferous plantations to monitor and control the pine weevil (Hylobius abietis L.). This study was conducted in a one-year old pine plantation established on a reforested clear-cut area in order to evaluate the impact of these traps on non-target insects. Evaluation of the catches indicated that species of

  14. Spectral intensity distribution of trapped fermions

    Indian Academy of Sciences (India)

    The temperature being very low, trapped cold atomic gases are in the quantum degener- acy regime. In this regime bosons ... that this ideal Fermi system, in the presence of an isotropic harmonic trapping potential, is very interesting and we consider ... function of the system as an example. The dynamical response function, ...

  15. Inelastic collision rates of trapped metastable hydrogen

    NARCIS (Netherlands)

    Landhuis, D; Matos, L; Moss, SC; Steinberger, JK; Vant, K; Willmann, L; Greytak, TJ; Kleppner, D

    We report the first detailed decay studies of trapped metastable (2S) hydrogen. By two-photon excitation of ultracold H samples, we have produced clouds of at least 5x10(7) magnetically trapped 2S atoms at densities greater than 4x10(10) cm(-3) and temperatures below 100 muK. At these densities and

  16. Optical trapping at low numerical aperture

    NARCIS (Netherlands)

    Stallinga, S.

    2011-01-01

    A theory of optical trapping at low Numerical Aperture (NA) is presented. The theory offers an analytical description of the competition between the stabilizing gradient and destabilizing scattering force. The trade-off can be characterized by a single dimensionless trapping parameter, which

  17. Influence of trap construction on mosquito capture

    Czech Academy of Sciences Publication Activity Database

    Šebesta, Oldřich; Peško, Juraj; Gelbič, Ivan

    2012-01-01

    Roč. 6, č. 2 (2012), s. 209-215 ISSN 1934-7391 R&D Projects: GA MŠk 2B08003 Institutional research plan: CEZ:AV0Z50070508 Institutional support: RVO:68081766 ; RVO:60077344 Keywords : CDC miniature light traps * baited lard-can traps * mosquitoes Subject RIV: EG - Zoology

  18. Cold and trapped metastable noble gases

    NARCIS (Netherlands)

    Vassen, W.; Cohen-Tannoudji, C.; Leduc, M.; Boiron, D.; Westbrook, C.I.; Truscott, A.; Baldwin, K.; Birkl, G.; Cancio, P.; Trippenbach, M.

    2012-01-01

    Experimental work on cold, trapped metastable noble gases is reviewed. The aspects which distinguish work with these atoms from the large body of work on cold, trapped atoms in general is emphasized. These aspects include detection techniques and collision processes unique to metastable atoms.

  19. Cryptography, quantum computation and trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Richard J.

    1998-03-01

    The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.

  20. Observation of the spin Nernst effect

    Science.gov (United States)

    Meyer, S.; Chen, Y.-T.; Wimmer, S.; Althammer, M.; Wimmer, T.; Schlitz, R.; Geprägs, S.; Huebl, H.; Ködderitzsch, D.; Ebert, H.; Bauer, G. E. W.; Gross, R.; Goennenwein, S. T. B.

    2017-10-01

    The observation of the spin Hall effect triggered intense research on pure spin current transport. With the spin Hall effect, the spin Seebeck effect and the spin Peltier effect already observed, our picture of pure spin current transport is almost complete. The only missing piece is the spin Nernst (-Ettingshausen) effect, which so far has been discussed only on theoretical grounds. Here, we report the observation of the spin Nernst effect. By applying a longitudinal temperature gradient, we generate a pure transverse spin current in a Pt thin film. For readout, we exploit the magnetization-orientation-dependent spin transfer to an adjacent yttrium iron garnet layer, converting the spin Nernst current in Pt into a controlled change of the longitudinal and transverse thermopower voltage. Our experiments show that the spin Nernst and the spin Hall effect in Pt are of comparable magnitude, but differ in sign, as corroborated by first-principles calculations.