WorldWideScience

Sample records for spin subsystems participating

  1. Space power subsystem sizing

    International Nuclear Information System (INIS)

    Geis, J.W.

    1992-01-01

    This paper discusses a Space Power Subsystem Sizing program which has been developed by the Aerospace Power Division of Wright Laboratory, Wright-Patterson Air Force Base, Ohio. The Space Power Subsystem program (SPSS) contains the necessary equations and algorithms to calculate photovoltaic array power performance, including end-of-life (EOL) and beginning-of-life (BOL) specific power (W/kg) and areal power density (W/m 2 ). Additional equations and algorithms are included in the spreadsheet for determining maximum eclipse time as a function of orbital altitude, and inclination. The Space Power Subsystem Sizing program (SPSS) has been used to determine the performance of several candidate power subsystems for both Air Force and SDIO potential applications. Trade-offs have been made between subsystem weight and areal power density (W/m 2 ) as influenced by orbital high energy particle flux and time in orbit

  2. Noise in tunneling spin current across coupled quantum spin chains

    OpenAIRE

    Aftergood, Joshua; Takei, So

    2017-01-01

    We theoretically study the spin current and its dc noise generated between two spin-1/2 spin chains weakly coupled at a single site in the presence of an over-population of spin excitations and a temperature elevation in one subsystem relative to the other, and compare the corresponding transport quantities across two weakly coupled magnetic insulators hosting magnons. In the spin chain scenario, we find that applying a temperature bias exclusively leads to a vanishing spin current and a conc...

  3. Regional transmission subsystem planning

    Energy Technology Data Exchange (ETDEWEB)

    Costa Bortoni, Edson da [Quadrante Softwares Especializados Ltda., Itajuba, MG (Brazil); Bajay, Sergio Valdir; Barros Correia, Paulo de [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica; Santos, Afonso Henriques Moreira; Haddad, Jamil [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    This work presents an approach for the planning of transmission systems by employing mixed--integer linear programming to obtain a cost and operating characteristics optimized system. The voltage loop equations are written in a modified form, so that, at the end of the analysis, the model behaves as a DC power flow, with the help of the two Kirchhoff`s laws, exempting the need of interaction with an external power flow program for analysis of the line loading. The model considers the occurrence of contingencies, so that the final result is a network robust to the most severe contingencies. This whole technique is adapted to the regional electric power transmission subsystems. (author) 9 refs., 4 figs.

  4. Novel Design Aspects of the Space Technology 5 Mechanical Subsystem

    Science.gov (United States)

    Rossoni, Peter; McGill, William

    2003-01-01

    This paper describes several novel design elements of the Space Technology 5 (ST5) spacecraft mechanical subsystem. The spacecraft structure itself takes a significant step in integrating electronics into the primary structure. The deployment system restrains the spacecraft during launch and imparts a predetermined spin rate upon release from its secondary payload accommodations. The deployable instrument boom incorporates some traditional as well as new techniques for lightweight and stiffness. Analysis and test techniques used to validate these technologies are described. Numerous design choices were necessitated due to the compact spacecraft size and strict mechanical subsystem requirements.

  5. The Digital Electronic Subsystem of Marsis

    Science.gov (United States)

    Maltecca, L.; Pecora, M.; Scandelli, L.

    MARSIS (Mars Advanced Radar for Subsurface and Ionospheric Sounding) is one of the Instrument of the ESA Mars Express mission, to be launched in June 2003 with a Soyuz/Fregate. Its primary objective is to map the distribution of water, both liquid and solid, in the upper portions of the crust of Mars. Secondary objectives are subsurface geologic probing, surface characterisation and ionosphere sounding. The MARSIS instrument is a low-frequency nadir-looking pulse limited radar sounder and altimeter with ground penetration capabilities, which uses synthetic aperture techniques and a secondary-receiving antenna to isolate subsurface reflections. Functionally and also from the responsibility point of view of each organisation involved in MARSIS, the instrument can be split into three subsystems: - Antenna: ANT - Radio Frequency Subsystem: RFS (TX+RX) - Digital Electronics Subsystem: DES MARSIS is an international co-operation between Italian Space Agency (ASI) and National Aeronautics and Space Administration (NASA). The experiment has an Italian Principal investigator (from Infocom Dept. of University of Rome "La Sapienza"), an U.S. Co-PI (from Jet Propulsion Laboratory), and Co-I~@~Ys from Italy, the U.S. and other countries. Italy is the lead for the experiment definition with the participation of the U.S.. In particular Alenia Spazio/Rome is the Prime Contractor of the industrial team and also supplier of part of the RF subsystem. Laben (a company of Finmeccanica) is the supplier of the Digital Electronic Subsystem (DES), including its basic and application SW, as subcontractor of ALS. The purpose of this paper is to describe the DES from HW and SW point of view, including the Test Equipment and the special simulator developed used for DES validation.

  6. Participation

    African Journals Online (AJOL)

    chifaou.amzat

    2011-08-02

    Aug 2, 2011 ... Theorising the Intersection of Public Policy and. Personal Lives through the Lens of. 'Participation'. Nana Akua Anyidoho*. Abstract. The continued interest in political economy-inspired perspectives on economic and social policies is an attempt to understand policymakers as human beings who are ...

  7. Robotics-Components and Subsystems

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 12. Robotics - Components and Subsystems. J R Vengateswaran. General Article Volume 4 Issue 12 December 1999 pp 76-82. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/004/12/0076-0082 ...

  8. Block storage subsystem performance analysis

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    You feel that your service is slow because of the storage subsystem? But there are too many abstraction layers between your software and the raw block device for you to debug all this pile... Let's dive on the platters and check out how the block storage sees your I/Os! We can even figure out what those patterns are meaning.

  9. MITS Data Acquisition Subsystem Acceptance Test procedure

    International Nuclear Information System (INIS)

    Allison, R.

    1980-01-01

    This is an acceptance procedure for the Data Acquisition Subsystem of the Machine Interface Test System (MITS). Prerequisites, requirements, and detailed step-by-step instruction are presented for inspecting and performance testing the subsystem

  10. FLPP NGL Structural Subsystems Activity

    Science.gov (United States)

    Jaredson, D.; Ramusat, G.; Appel, S.; Cardone, T.; Persson, J.; Baiocco, P.; Lavelle, F.; Bouilly, Th.

    2012-07-01

    The ESA Future Launchers Preparatory Programme (FLPP) is the basis for new paradigms, investigating the key elements, logic and roadmaps to prepare the development of the safe, reliable and low cost next European Launch Vehicle (LV) for access to space (dubbed NGL - Next Generation LV), with an initial operational capability mid-next decade. In addition to carry cargo to conventional GTO or SSO, the European NGL has to be flexible enough to cope with new pioneering institutional missions as well as the evolving commercial payloads market. This achievement is broached studying three main areas relevant to ELVs: System concepts, Propulsion and Core Technology During the preliminary design activity, a number of design alternatives concerning NGL main structural subsystems have been investigated. Technology is one of the ways to meet the NGL challenges to either improve the performances or to reduce the cost or both. The relevant requirements allow to steer a ‘top-down’ approach for their conception and to propose the most effective technologies. Furthermore, all these technology developments represent a significant ‘bottom-up’ approach investment and concern a large range of activities. The structural subsystems portfolio of the FLPP ‘Core Technology’ activity encompasses major cutting-edge challenges for maturation of the various subsystems leading to reduce overall structural mass, increasing structural margins for robustness, metallic and composite containment of cryogenic propellants, significantly reducing fabrication and operations cost, etc. to derive performing upper and booster stages. Application of concurrent engineering methods will allow developments of performing technology demonstrators in terms of need, demonstration objective, size and cost yielding to safe, low-risk technical approaches for a future development. Potential ability of these advanced structural LV technologies to satisfy the system requirements of the NGL and their current

  11. Noise in tunneling spin current across coupled quantum spin chains

    Science.gov (United States)

    Aftergood, Joshua; Takei, So

    2018-01-01

    We theoretically study the spin current and its dc noise generated between two spin-1 /2 spin chains weakly coupled at a single site in the presence of an over-population of spin excitations and a temperature elevation in one subsystem relative to the other, and we compare the corresponding transport quantities across two weakly coupled magnetic insulators hosting magnons. In the spin chain scenario, we find that applying a temperature bias exclusively leads to a vanishing spin current and a concomitant divergence in the spin Fano factor, defined as the spin current noise-to-signal ratio. This divergence is shown to have an exact analogy to the physics of electron scattering between fractional quantum Hall edge states and not to arise in the magnon scenario. We also reveal a suppression in the spin current noise that exclusively arises in the spin chain scenario due to the fermion nature of the spin-1/2 operators. We discuss how the spin Fano factor may be extracted experimentally via the inverse spin Hall effect used extensively in spintronics.

  12. Comb entanglement in quantum spin chains

    International Nuclear Information System (INIS)

    Keating, J. P.; Mezzadri, F.; Novaes, M.

    2006-01-01

    Bipartite entanglement in the ground state of a chain of N quantum spins can be quantified either by computing pairwise concurrence or by dividing the chain into two complementary subsystems. In the latter case the smaller subsystem is usually a single spin or a block of adjacent spins and the entanglement differentiates between critical and noncritical regimes. Here we extend this approach by considering a more general setting: our smaller subsystem S A consists of a comb of L spins, spaced p sites apart. Our results are thus not restricted to a simple area law, but contain nonlocal information, parametrized by the spacing p. For the XX model we calculate the von Neumann entropy analytically when N→∞ and investigate its dependence on L and p. We find that an external magnetic field induces an unexpected length scale for entanglement in this case

  13. Cassini Mission Sequence Subsystem (MSS)

    Science.gov (United States)

    Alland, Robert

    2011-01-01

    This paper describes my work with the Cassini Mission Sequence Subsystem (MSS) team during the summer of 2011. It gives some background on the motivation for this project and describes the expected benefit to the Cassini program. It then introduces the two tasks that I worked on - an automatic system auditing tool and a series of corrections to the Cassini Sequence Generator (SEQ_GEN) - and the specific objectives these tasks were to accomplish. Next, it details the approach I took to meet these objectives and the results of this approach, followed by a discussion of how the outcome of the project compares with my initial expectations. The paper concludes with a summary of my experience working on this project, lists what the next steps are, and acknowledges the help of my Cassini colleagues.

  14. Operationally Responsive Spacecraft Subsystem, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Saber Astronautics proposes spacecraft subsystem control software which can autonomously reconfigure avionics for best performance during various mission conditions....

  15. Private quantum subsystems and quasiorthogonal operator algebras

    International Nuclear Information System (INIS)

    Levick, Jeremy; Kribs, David W; Pereira, Rajesh; Jochym-O’Connor, Tomas; Laflamme, Raymond

    2016-01-01

    We generalize a recently discovered example of a private quantum subsystem to find private subsystems for Abelian subgroups of the n-qubit Pauli group, which exist in the absence of private subspaces. In doing so, we also connect these quantum privacy investigations with the theory of quasiorthogonal operator algebras through the use of tools from group theory and operator theory. (paper)

  16. LTE RF subsystem power consumption modeling

    DEFF Research Database (Denmark)

    Musiige, Deogratius; Vincent, Laulagnet; Anton, François

    2012-01-01

    This paper presents a new power consumption emulation model, for all possible scenarios of the RF subsystem, when transmitting a LTE signal. The model takes the logical interface parameters, Tx power, carrier frequency and bandwidth between the baseband and RF subsystem as inputs to compute...

  17. ACCESS Sub-system Performance

    Science.gov (United States)

    Kaiser, Mary Elizabeth; Morris, Matthew J.; Aldoroty, Lauren Nicole; Godon, David; Pelton, Russell; McCandliss, Stephan R.; Kurucz, Robert L.; Kruk, Jeffrey W.; Rauscher, Bernard J.; Kimble, Randy A.; Wright, Edward L.; Benford, Dominic J.; Gardner, Jonathan P.; Feldman, Paul D.; Moos, H. Warren; Riess, Adam G.; Bohlin, Ralph; Deustua, Susana E.; Dixon, William Van Dyke; Sahnow, David J.; Lampton, Michael; Perlmutter, Saul

    2016-01-01

    ACCESS: Absolute Color Calibration Experiment for Standard Stars is a series of rocket-borne sub-orbital missions and ground-based experiments designed to leverage significant technological advances in detectors, instruments, and the precision of the fundamental laboratory standards used to calibrate these instruments to enable improvements in the precision of the astrophysical flux scale through the transfer of laboratory absolute detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35 to 1.7 micron bandpass.A cross wavelength calibration of the astrophysical flux scale to this level of precision over this broad a bandpass is relevant for the data used to probe fundamental astrophysical problems such as the SNeIa photometry based measurements used to constrain dark energy theories.We will describe the strategy for achieving this level of precision, the payload and calibration configuration, present sub-system test data, and the status and preliminary performance of the integration and test of the spectrograph and telescope. NASA APRA sounding rocket grant NNX14AH48G supports this work.

  18. Periodic subsystem density-functional theory

    Science.gov (United States)

    Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele

    2014-11-01

    By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn-Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn-Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.

  19. The evaluation subsystem of RODOS

    International Nuclear Information System (INIS)

    Niculae, C.; Treitz, M.; Geldermann, J.

    2003-01-01

    Full text: The evaluation subsystem (ESY) of the RODOS aims to rank countermeasure strategies according to their potential benefit and preference weights provided by the decision makers (DMS). In the previous version of the ESY, the structure of the decision problem (attributes, strategies, etc.) had to be largely defined by the early modules in the RODOS chain (ASY-CSYESY). For this reason, the ESY runs would be initiated with a list of strategies, a comprehensive attribute tree and a consequence table giving the impacts for each attribute under each strategy. The first sub-module of the ESY allows the user to select the attributes to be analyzed and then filters out the remaining attributes. For instance, the CSY module LCMT passes over 100 attributes to the ESY, from which one would expect the analyst/DMS to select maybe 10 to 15 for the evaluation. This sub-module also adds a sub-tree of subjective attributes (qualitative information) to the attribute tree provided by the CSY and allows the user to select which of these should be passed forward for further analysis. In addition, data from the economic and health modules (e.g. costs, health effects, etc.) can be grafted on as a sub-tree. The second sub-module performs the ranking of the alternative strategies and outputs a short list of best strategies. The last component of the ESY contains an explanation facility that uses a fine set of rules to reason about the ranking of the strategies. Due to the complexity of the nuclear emergency management and the wide range of DMS and stakeholders involved in the decision process, it is difficult to predetermine the range of strategies they will consider. The current strategies or groups of strategies included in the system are only driven by radiological factors. Research in the field of multicriteria decision aid has shown that value focused approaches could result in new sets of alternatives, new criteria to be considered or different decision tree structures

  20. Higher spin gauge theories

    CERN Document Server

    Henneaux, Marc; Vasiliev, Mikhail A

    2017-01-01

    Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...

  1. Primary electric propulsion thrust subsystem definition

    Science.gov (United States)

    Masek, T. D.; Ward, J. W.; Kami, S.

    1975-01-01

    A review is presented of the current status of primary propulsion thrust subsystem (TSS) performance, packaging considerations, and certain operational characteristics. Thrust subsystem related work from recent studies by Jet Propulsion Laboratories (JPL), Rockwell and Boeing is discussed. Existing performance for 30-cm thrusters, power processors and TSS is present along with projections for future improvements. Results of analyses to determine (1) magnetic field distributions resulting from an array of thrusters, (2) thruster emitted particle flux distributions from an array of thrusters, and (3) TSS element failure rates are described to indicate the availability of analytical tools for evaluation of TSS designs.

  2. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  3. Integrating the autonomous subsystems management process

    Science.gov (United States)

    Ashworth, Barry R.

    1992-01-01

    Ways in which the ranking of the Space Station Module Power Management and Distribution testbed may be achieved and an individual subsystem's internal priorities may be managed within the complete system are examined. The application of these results in the integration and performance leveling of the autonomously managed system is discussed.

  4. The charged particle accelerators subsystems modeling

    Science.gov (United States)

    Averyanov, G. P.; Kobylyatskiy, A. V.

    2017-01-01

    Presented web-based resource for information support the engineering, science and education in Electrophysics, containing web-based tools for simulation subsystems charged particle accelerators. Formulated the development motivation of Web-Environment for Virtual Electrophysical Laboratories. Analyzes the trends of designs the dynamic web-environments for supporting of scientific research and E-learning, within the framework of Open Education concept.

  5. Electronic Subsystems For Laser Communication System

    Science.gov (United States)

    Long, Catherine; Maruschak, John; Patschke, Robert; Powers, Michael

    1992-01-01

    Electronic subsystems of free-space laser communication system carry digital signals at 650 Mb/s over long distances. Applicable to general optical communications involving transfer of great quantities of data, and transmission and reception of video images of high definition.

  6. National Ingition Facility subsystem design requirements optics subsystems SSDR 1.6

    International Nuclear Information System (INIS)

    English, R.E.

    1996-01-01

    This Subsystems Design Requirement (SSDR) document specifies the functions to be performed and the subsystems design requirements for the major optical components. These optical components comprise those custom designed and fabricated for amplification and transport of the full aperture NIF beam and does not include those off-the-shelf components that may be part of other optical sub-systems (i.e. alignment or diagnostic systems). This document also describes the optical component processing requirements and the QA/damage testing necessary to ensure that the optical components meet or exceed the requirements

  7. Partitioning a macroscopic system into independent subsystems

    Science.gov (United States)

    Delle Site, Luigi; Ciccotti, Giovanni; Hartmann, Carsten

    2017-08-01

    We discuss the problem of partitioning a macroscopic system into a collection of independent subsystems. The partitioning of a system into replica-like subsystems is nowadays a subject of major interest in several fields of theoretical and applied physics. The thermodynamic approach currently favoured by practitioners is based on a phenomenological definition of an interface energy associated with the partition, due to a lack of easily computable expressions for a microscopic (i.e. particle-based) interface energy. In this article, we outline a general approach to derive sharp and computable bounds for the interface free energy in terms of microscopic statistical quantities. We discuss potential applications in nanothermodynamics and outline possible future directions.

  8. The charged particle accelerators subsystems modeling

    International Nuclear Information System (INIS)

    Averyanov, G P; Kobylyatskiy, A V

    2017-01-01

    Presented web-based resource for information support the engineering, science and education in Electrophysics, containing web-based tools for simulation subsystems charged particle accelerators. Formulated the development motivation of Web-Environment for Virtual Electrophysical Laboratories. Analyzes the trends of designs the dynamic web-environments for supporting of scientific research and E-learning, within the framework of Open Education concept. (paper)

  9. Optical Subsystems for Next Generation Access Networks

    DEFF Research Database (Denmark)

    Lazaro, J.A; Polo, V.; Schrenk, B.

    2011-01-01

    Recent optical technologies are providing higher flexibility to next generation access networks: on the one hand, providing progressive FTTx and specifically FTTH deployment, progressively shortening the copper access network; on the other hand, also opening fixed-mobile convergence solutions...... in next generation PON architectures. It is provided an overview of the optical subsystems developed for the implementation of the proposed NG-Access Networks....

  10. Space reactor system and subsystem investigations: assessment of technology issues for the reactor and shield subsystem. SP-100 Program

    International Nuclear Information System (INIS)

    Atkins, D.F.; Lillie, A.F.

    1983-01-01

    As part of Rockwell's effort on the SP-100 Program, preliminary assessment has been completed of current nuclear technology as it relates to candidate reactor/shield subsystems for the SP-100 Program. The scope of the assessment was confined to the nuclear package (to the reactor and shield subsystems). The nine generic reactor subsystems presented in Rockwell's Subsystem Technology Assessment Report, ESG-DOE-13398, were addressed for the assessment

  11. Space-reactor electric systems: subsystem technology assessment

    International Nuclear Information System (INIS)

    Anderson, R.V.; Bost, D.; Determan, W.R.

    1983-01-01

    This report documents the subsystem technology assessment. For the purpose of this report, five subsystems were defined for a space reactor electric system, and the report is organized around these subsystems: reactor; shielding; primary heat transport; power conversion and processing; and heat rejection. The purpose of the assessment was to determine the current technology status and the technology potentials for different types of the five subsystems. The cost and schedule needed to develop these potentials were estimated, and sets of development-compatible subsystems were identified

  12. Space-reactor electric systems: subsystem technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.V.; Bost, D.; Determan, W.R.

    1983-03-29

    This report documents the subsystem technology assessment. For the purpose of this report, five subsystems were defined for a space reactor electric system, and the report is organized around these subsystems: reactor; shielding; primary heat transport; power conversion and processing; and heat rejection. The purpose of the assessment was to determine the current technology status and the technology potentials for different types of the five subsystems. The cost and schedule needed to develop these potentials were estimated, and sets of development-compatible subsystems were identified.

  13. National Ignition Facility subsystem design requirements target area auxiliary subsystem SSDR 1.8.6

    International Nuclear Information System (INIS)

    Reitz, T.

    1996-01-01

    This Subsystem Design Requirement (SSDR) establishes the performance, design, development, and test requirements for the Target Area Auxiliary Subsystems (WBS 1.8.6), which is part of the NIF Target Experimental System (WBS 1.8). This document responds directly to the requirements detailed in NIF Target Experimental System SDR 003 document. Key elements of the Target Area Auxiliary Subsystems include: WBS 1.8.6.1 Local Utility Services; WBS 1.8.6.2 Cable Trays; WBS 1.8.6.3 Personnel, Safety, and Occupational Access; WBS 1.8.6.4 Assembly, Installation, and Maintenance Equipment; WBS 1.8.6.4.1 Target Chamber Service System; WBS 1.8.6.4.2 Target Bay Service Systems

  14. Predicting Early Bulbar Decline in Amyotrophic Lateral Sclerosis: A Speech Subsystem Approach

    Directory of Open Access Journals (Sweden)

    Panying Rong

    2015-01-01

    Full Text Available Purpose. To develop a predictive model of speech loss in persons with amyotrophic lateral sclerosis (ALS based on measures of respiratory, phonatory, articulatory, and resonatory functions that were selected using a data-mining approach. Method. Physiologic speech subsystem (respiratory, phonatory, articulatory, and resonatory functions were evaluated longitudinally in 66 individuals with ALS using multiple instrumentation approaches including acoustic, aerodynamic, nasometeric, and kinematic. The instrumental measures of the subsystem functions were subjected to a principal component analysis and linear mixed effects models to derive a set of comprehensive predictors of bulbar dysfunction. These subsystem predictors were subjected to a Kaplan-Meier analysis to estimate the time until speech loss. Results. For a majority of participants, speech subsystem decline was detectible prior to declines in speech intelligibility and speaking rate. Among all subsystems, the articulatory and phonatory predictors were most responsive to early bulbar deterioration; and the resonatory and respiratory predictors were as responsive to bulbar decline as was speaking rate. Conclusions. The articulatory and phonatory predictors are sensitive indicators of early bulbar decline due to ALS, which has implications for predicting disease onset and progression and clinical management of ALS.

  15. Structure of the Galaxy and its subsystems

    International Nuclear Information System (INIS)

    Ruprecht, J.

    1979-01-01

    Current knowledge is summed up of the structure of our galaxy consisting of more than 100 thousand million stars of an overal mass of 10 44 g, and of interstellar dust and gas. The galaxy comprises several subsystems, the oldest of which being of a spherical shape while the younger ones are more-or-less oblate rotational ellipsoids. It is considered on the basis of visual and radio observations that the galaxy has a spiral structure with many arms, similar to other galaxies. The structure of the galaxy nucleus has not yet been fully explained. (Ha)

  16. Optical fiber telecommunications components and subsystems

    CERN Document Server

    Kaminow, Ivan; Willner, Alan E

    2013-01-01

    Optical Fiber Telecommunications VI (A&B) is the sixth in a series that has chronicled the progress in the R&D of lightwave communications since the early 1970s. Written by active authorities from academia and industry, this edition brings a fresh look to many essential topics, including devices, subsystems, systems and networks. A central theme is the enabling of high-bandwidth communications in a cost-effective manner for the development of customer applications. These volumes are an ideal reference for R&D engineers and managers, optical systems implementers, university researchers and s

  17. Building the IOOS data management subsystem

    Science.gov (United States)

    de La Beaujardière, J.; Mendelssohn, R.; Ortiz, C.; Signell, R.

    2010-01-01

    We discuss progress to date and plans for the Integrated Ocean Observing System (IOOS??) Data Management and Communications (DMAC) subsystem. We begin by presenting a conceptual architecture of IOOS DMAC. We describe work done as part of a 3-year pilot project known as the Data Integration Framework and the subsequent assessment of lessons learned. We present work that has been accomplished as part of the initial version of the IOOS Data Catalog. Finally, we discuss near-term plans for augmenting IOOS DMAC capabilities.

  18. Power Subsystem Approach for the Europa Mission

    Directory of Open Access Journals (Sweden)

    Ulloa-Severino Antonio

    2017-01-01

    Full Text Available NASA is planning to launch a spacecraft on a mission to the Jovian moon Europa, in order to conduct a detailed reconnaissance and investigation of its habitability. The spacecraft would orbit Jupiter and perform a detailed science investigation of Europa, utilizing a number of science instruments including an ice-penetrating radar to determine the icy shell thickness and presence of subsurface oceans. The spacecraft would be exposed to harsh radiation and extreme temperature environments. To meet mission objectives, the spacecraft power subsystem is being architected and designed to operate efficiently, and with a high degree of reliability.

  19. FireSignal application Node for subsystem control

    Czech Academy of Sciences Publication Activity Database

    Duarte, A.S.; Santos, B.; Pereira, T.; Carvalho, B.B.; Fernandes, H.; Neto, A.; Janky, Filip; Cahyna, Pavel; Písačka, Jan; Hron, Martin

    2010-01-01

    Roč. 85, 3-4 (2010), s. 496-499 ISSN 0920-3796. [IAEA Technical Meeting on Control, Data Acquisition and Remote Participation for Fusion Research/7th./. Aix – en – Provence, 15.06.2009-19.06.2009] Institutional research plan: CEZ:AV0Z20430508 Keywords : Subsystems * CODAC * FireSignal * Java * Remote operation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.143, year: 2010 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V3C-4YYGPR8-4&_user=6542793&_coverDate=07%2F31%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000070123&_version=1&_urlVersion=0&_userid=6542793&md5=899631b6e2f4d05b21b04bde3cfb8e65&searchtype=a

  20. The Sentinel 4 focal plane subsystem

    Science.gov (United States)

    Hohn, Rüdiger; Skegg, Michael P.; Hermsen, Markus; Hinger, Jürgen; Williges, Christian; Reulke, Ralf

    2017-09-01

    The Sentinel 4 instrument is an imaging spectrometer, developed by Airbus under ESA contract in the frame of the joint European Union (EU)/ESA COPERNICUS program with the objective of monitoring trace gas concentrations. Sentinel 4 will provide accurate measurements of key atmospheric constituents such as ozone, nitrogen dioxide, sulfur dioxide, formaldehyde, as well as aerosol and cloud properties. Sentinel 4 is unique in being the first geostationary UVN mission. The SENTINEL 4 space segment will be integrated on EUMETSAT's Meteosat Third Generation Sounder satellite (MTG-S). Sentinel 4 will provide coverage of Europe and adjacent regions. The Sentinel 4 instrument comprises as a major element two Focal Plane Subsystems (FPS) covering the wavelength ranges 305 nm to 500 nm (UVVIS) and 750 nm to 775 nm (NIR) respectively. The paper describes the Focal Plane Subsystems, comprising the detectors, the optical bench and the control electronics. Further the design and development approach will be presented as well as first measurement results of FPS Qualification Model.

  1. Local subsystems in gauge theory and gravity

    Science.gov (United States)

    Donnelly, William; Freidel, Laurent

    2016-09-01

    We consider the problem of defining localized subsystems in gauge theory and gravity. Such systems are associated to spacelike hypersurfaces with boundaries and provide the natural setting for studying entanglement entropy of localized subsystems. We present a general formalism to associate a gauge-invariant classical phase space to a spatial slice with boundary by introducing new degrees of freedom on the boundary. In Yang-Mills theory the new degrees of freedom are a choice of gauge on the boundary, transformations of which are generated by the normal component of the nonabelian electric field. In general relativity the new degrees of freedom are the location of a codimension-2 surface and a choice of conformal normal frame. These degrees of freedom transform under a group of surface symmetries, consisting of diffeomorphisms of the codimension-2 boundary, and position-dependent linear deformations of its normal plane. We find the observables which generate these symmetries, consisting of the conformal normal metric and curvature of the normal connection. We discuss the implications for the problem of defining entanglement entropy in quantum gravity. Our work suggests that the Bekenstein-Hawking entropy may arise from the different ways of gluing together two partial Cauchy surfaces at a cross-section of the horizon.

  2. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2017-01-01

    Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.

  3. Spin Electronics

    Science.gov (United States)

    2003-08-01

    applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a...physical phenomena in II-VI and III-V semiconductors. In II-VI systems, the Mn2+ ions act to boost the electron spin precession up to terahertz ...conductors, proximity effect between ferromagnets and superconductors , and the effects of spin injection on the physical properties of the

  4. Spin doctoring

    OpenAIRE

    Vozková, Markéta

    2011-01-01

    1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...

  5. HYBRID FUEL CELL-SOLAR CELL SPACE POWER SUBSYSTEM CAPABILITY.

    Science.gov (United States)

    This report outlines the capabilities and limitations of a hybrid solar cell- fuel cell space power subsystem by comparing the proposed hybrid system...to conventional power subsystem devices. The comparisons are based on projected 1968 capability in the areas of primary and secondary battery, fuel ... cell , solar cell, and chemical dynamic power subsystems. The purpose of the investigation was to determine the relative merits of a hybrid power

  6. Plant development, auxin, and the subsystem incompleteness theorem.

    Science.gov (United States)

    Niklas, Karl J; Kutschera, Ulrich

    2012-01-01

    Plant morphogenesis (the process whereby form develops) requires signal cross-talking among all levels of organization to coordinate the operation of metabolic and genomic subsystems operating in a larger network of subsystems. Each subsystem can be rendered as a logic circuit supervising the operation of one or more signal-activated system. This approach simplifies complex morphogenetic phenomena and allows for their aggregation into diagrams of progressively larger networks. This technique is illustrated here by rendering two logic circuits and signal-activated subsystems, one for auxin (IAA) polar/lateral intercellular transport and another for IAA-mediated cell wall loosening. For each of these phenomena, a circuit/subsystem diagram highlights missing components (either in the logic circuit or in the subsystem it supervises) that must be identified experimentally if each of these basic plant phenomena is to be fully understood. We also illustrate the "subsystem incompleteness theorem," which states that no subsystem is operationally self-sufficient. Indeed, a whole-organism perspective is required to understand even the most simple morphogenetic process, because, when isolated, every biological signal-activated subsystem is morphogenetically ineffective.

  7. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  8. Does Normal Processing Provide Evidence of Specialised Semantic Subsystems?

    Science.gov (United States)

    Shapiro, Laura R.; Olson, Andrew C.

    2005-01-01

    Category-specific disorders are frequently explained by suggesting that living and non-living things are processed in separate subsystems (e.g. Caramazza & Shelton, 1998). If subsystems exist, there should be benefits for normal processing, beyond the influence of structural similarity. However, no previous study has separated the relative…

  9. Subsystem cost data for the tritium systems test assembly

    International Nuclear Information System (INIS)

    Bartlit, J.R.; Anderson, J.L.; Rexroth, V.G.

    1983-01-01

    Details of subsystem costs are among the questions most frequently asked about the $14.4 million Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. This paper presents a breakdown of cost components for each of the 20 major subsystems of TSTA. Also included are details to aid in adjusting the costs to other years, contracting conditions, or system sizes

  10. Double Shell Tank (DST) Monitor and Control Subsystem Definition Report

    International Nuclear Information System (INIS)

    BAFUS, R.R.

    2000-01-01

    The system description of the Double-Shell Tank (DST) Monitor and Control Subsystem establishes the system boundaries and describes the interface of the DST Monitor and Control Subsystem with new and existing systems that are required to accomplish the Waste Feed Delivery (WFD) mission

  11. Subsystem cost data for the tritium systems test assembly

    Energy Technology Data Exchange (ETDEWEB)

    Bartlit, J.R.; Anderson, J.L.; Rexroth, V.G.

    1983-01-01

    Details of subsystem costs are among the questions most frequently asked about the $14.4 million Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. This paper presents a breakdown of cost components for each of the 20 major subsystems of TSTA. Also included are details to aid in adjusting the costs to other years, contracting conditions, or system sizes.

  12. Thermal energy storage subsystems. A collection of quarterly reports

    Science.gov (United States)

    1978-01-01

    The design, development, and progress toward the delivery of three subsystems is discussed. The subsystem used a salt hydrate mixture for thermal energy storage. The program schedules, technical data, and other program activities from October 1, 1976, through December 31, 1977 are presented.

  13. Giada improved calibration of measurement subsystems

    Science.gov (United States)

    Della Corte, V.; Rotundi, A.; Sordini, R.; Accolla, M.; Ferrari, M.; Ivanovski, S.; Lucarelli, F.; Mazzotta Epifani, E.; Palumbo, P.

    2014-12-01

    GIADA (Grain Impact Analyzer and Dust Accumulator) is an in-situ instrument devoted to measure the dynamical properties of the dust grains emitted by the comet. An Extended Calibration activity using the GIADA Flight Spare Model has been carried out taking into account the knowledge gained through the analyses of IDPs and cometary samples returned from comet 81P/Wild 2. GIADA consists of three measurement subsystems: Grain Detection System, an optical device measuring the optical cross-section for individual dust; Impact Sensor an aluminum plate connected to 5 piezo-sensors measuring the momentum of impacting single dust grains; Micro Balance System measuring the cumulative deposition in time of dust grains smaller than 10 μm. The results of the analyses on data acquired with the GIADA PFM and the comparison with calibration data acquired during the pre-launch campaign allowed us to improve GIADA performances and capabilities. We will report the results of the following main activities: a) definition of a correlation between the 2 GIADA Models (PFM housed in laboratory and In-Flight Model on-board ROSETTA); b) characterization of the sub-systems performances (signal elaboration, sensitivities, space environment effects); c) new calibration measurements and related curves by means of the PFM model using realistic cometary dust analogues. Acknowledgements: GIADA was built by a consortium led by the Univ. Napoli "Parthenope" & INAF-Oss. Astr. Capodimonte, IT, in collaboration with the Inst. de Astrofisica de Andalucia, ES, Selex-ES s.p.a. and SENER. GIADA is presently managed & operated by Ist. di Astrofisica e Planetologia Spaziali-INAF, IT. GIADA was funded and managed by the Agenzia Spaziale Italiana, IT, with a support of the Spanish Ministry of Education and Science MEC, ES. GIADA was developed from a University of Kent, UK, PI proposal; sci. & tech. contribution given by CISAS, IT, Lab. d'Astr. Spat., FR, and Institutions from UK, IT, FR, DE and USA. We thank

  14. Preliminary systems design study assessment report. Volume 7, Subsystem concepts

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex`s Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each. This volume contains the descriptions and other relevant information of the four subsystems required for most of the ex situ processing systems. This volume covers the metal decontamination and sizing subsystem, soils processing subsystem, low-level waste subsystem, and retrieval subsystem.

  15. Simulating the Various Subsystems of a Coal Mine

    Directory of Open Access Journals (Sweden)

    V. Okolnishnikov

    2016-06-01

    Full Text Available A set of simulation models of various subsystems of a coal mine was developed with the help of a new visual interactive simulation system of technological processes. This paper contains a brief description of this simulation system and its possibilities. The main possibilities provided by the simulation system are: the quick construction of models from library elements, 3D representation, and the communication of models with actual control systems. These simulation models were developed for the simulation of various subsystems of a coal mine: underground conveyor network subsystems, pumping subsystems and coal face subsystems. These simulation models were developed with the goal to be used as a quality and reliability assurance tool for new process control systems in coal mining.

  16. TOPICAL REVIEW: Spin current, spin accumulation and spin Hall effect

    Directory of Open Access Journals (Sweden)

    Saburo Takahashi and Sadamichi Maekawa

    2008-01-01

    Full Text Available Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1 and detector (F2 electrodes connected to a normal conductor (N is studied. We reveal how the spin transport depends on interface resistance, electrode resistance, spin polarization and spin diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and spin current in the device. It is demonstrated that the spin Hall effect is caused by spin–orbit scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge currents in a nonlocal device. A method of evaluating spin–orbit coupling in nonmagnetic metals is proposed.

  17. Presence in the IP Multimedia Subsystem

    Directory of Open Access Journals (Sweden)

    Ling Lin

    2007-01-01

    Full Text Available With an ever increasing penetration of Internet Protocol (IP technologies, the wireless industry is evolving the mobile core network towards all-IP network. The IP Multimedia Subsystem (IMS is a standardised Next Generation Network (NGN architectural framework defined by the 3rd Generation Partnership Project (3GPP to bridge the gap between circuit-switched and packet-switched networks and consolidate both sides into on single all-IP network for all services. In this paper, we provide an insight into the limitation of the presence service, one of the fundamental building blocks of the IMS. Our prototype-based study is unique of its kind and helps identifying the factors which limit the scalability of the current version of the presence service (3GPP TS 23.141 version 7.2.0 Release 7 [1], which will in turn dramatically limit the performance of advanced IMS services. We argue that the client-server paradigm behind the current IMS architecture does not suite the requirements of the IMS system, which defies the very purpose of its introduction. We finally elaborate on possible avenues for addressing this problem.

  18. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  19. Spin glasses

    International Nuclear Information System (INIS)

    Fischer, K.H.; Hertz, J.A.

    1993-01-01

    Spin glasses, simply defined by the authors as a collection of spins (i.e., magnetic moments) whose low-temperature state is a frozen disordered one, represent one of the fascinating new fields of study in condensed matter physics, and this book is the first to offer a comprehensive account of the subject. Included are discussions of the most important developments in theory, experimental work, and computer modeling of spin glasses, all of which have taken place essentially within the last two decades. The first part of the book gives a general introduction to the basic concepts and a discussion of mean field theory, while the second half concentrates on experimental results, scaling theory, and computer simulation of the structure of spin glasses

  20. Spin-dependent shot noise in semiconductor and graphene nanostructures

    Science.gov (United States)

    Dragomirova, Ralitsa L.

    Shot noise is the name given to the time-dependent non-equilibrium current (or voltage) fluctuations which persist down to zero temperature and are fundamentally related to the discrete nature of the electron charge. Over the past two decades it has become a major tool for gathering information about microscopic mechanisms of transport and correlations between charges which cannot be extracted from traditional conductance measurements. Recently a handful of theoretical and experimental studies have suggested that shot noise in systems with spin-dependent interactions provides a sensitive probe to differentiate between scattering from magnetic impurities, spin-flip scattering, and continuous spin precession effects on semiclassical or quantum transport of injected spin-polarized currents. This is due to the fact that any spin flip converts spin-↑ subsystem particle into a spin-↓ subsystem particle, where the two subsystems differ when spin degeneracy is lifted. Thus, the nonconservation of the number of particles in each subsystem generates additional source of current fluctuations. Here we generalize the scattering theory of quantum shot noise to include the full spin-density matrix of electrons. This formalism yields the spin-resolved shot noise power applicable for a generic spintronic device where partially polarized charge current or even pure spin current is injected from a spin-filtering or ferromagnetic electrode into a quantum-coherent nanostructure governed by arbitrary spin-dependent interactions. The developed formalism [2, 5] is applied in Chapter 5 to diffusive multichannel quantum wires with the Rashba spin-orbit (SO) coupling sandwiched between ferromagnetic source and ferromagnetic or normal drain electrodes. The crucial role played by the SO interactions in all-electrical control of spin in semiconductor nanostructures has ignited recent studies of their signatures on the shot noise. We investigate what is the effect of the Rahsba SO coupling

  1. Subsystem response analysis for the Seismic Safety Margins Research Program

    International Nuclear Information System (INIS)

    Chuang, T.Y.

    1981-01-01

    A review of the state-of-the-art of seismic qualification methods of subsystem has been completed. This task assesses the accuracy of seismic analysis techniques to predict dynamic response, and also identifies and quantifies sources of random and modeling undertainty in subsystem response determination. The subsystem has been classified as two categories according to the nature of support: multiply supported subsystems (e.g., piping systems) and singly supported subsystems (e.g., pumps, turbines, electrical control panels, etc.). The mutliply supported piping systems are analyzed by multisupport input time history method. The input motions are the responses of major structures. The dynamic models of the subsystems identified by the event/fault tree are created. The responses calculated by multisupport input time history method are consistent with the fragility parameters. These responses are also coordinated with the event/fault tree description. The subsystem responses are then evaluated against the fragility curves of components and systems and incorporated in the event/fault tree analysis. (orig./HP)

  2. Shuttle Orbiter Active Thermal Control Subsystem design and flight experience

    Science.gov (United States)

    Bond, Timothy A.; Metcalf, Jordan L.; Asuncion, Carmelo

    1991-01-01

    The paper examines the design of the Space Shuttle Orbiter Active Thermal Control Subsystem (ATCS) constructed for providing the vehicle and payload cooling during all phases of a mission and during ground turnaround operations. The operation of the Shuttle ATCS and some of the problems encountered during the first 39 flights of the Shuttle program are described, with special attention given to the major problems encountered with the degradation of the Freon flow rate on the Orbiter Columbia, the Flash Evaporator Subsystem mission anomalies which occurred on STS-26 and STS-34, and problems encountered with the Ammonia Boiler Subsystem. The causes and the resolutions of these problems are discussed.

  3. Subsystem response review. Seismic Safety Margins Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, R. P.; Campbell, R. D.; Wesley, D. A.; Kamil, H.; Gantayat, A.; Vasudevan, R.

    1981-02-01

    A study was conducted to document the state of the art in seismic qualification of nuclear power plant components and subsystems by analysis and testing and to identify the sources and magnitude of the uncertainties associated with analysis and testing methods. The uncertainties are defined in probabilistic terms for use in probabilistic seismic risk studies. Recommendations are made for the most appropriate subsystem response analysis methods to minimize response uncertainties. Additional studies, to further quantify testing uncertainties, are identified. Although the general effect of non-linearities on subsystem response is discussed, recommendations and conclusions are based principally on linear elastic analysis and testing models.

  4. Subsystem response review. Seismic safety margins research program

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Campbell, R.D.; Wesley, D.A.; Kamil, H.; Gantayat, A.; Vasudevan, R.

    1981-07-01

    A study was conducted to document the state of the art in seismic qualification of nuclear power plant components and subsystems by analysis and testing and to identify the sources and magnitude of the uncertainties associated with analysis and testing methods. The uncertainties are defined in probabilistic terms for use in probabilistic seismic risk studies. Recommendations are made for the most appropriate subsystem response analysis methods to minimize response uncertainties. Additional studies, to further quantify testing uncertainties, are identified. Although the general effect of non-linearities on subsystem response is discussed, recommendations and conclusions are based principally on linear elastic analysis and testing models. (author)

  5. ngVLA Cryogenic Subsystem Concept

    Science.gov (United States)

    Wootten, Al; Urbain, Denis; Grammer, Wes; Durand, S.

    2018-01-01

    The VLA’s success over 35 years of operations stems in part from dramatically upgraded components over the years. The time has come to build a new array to lead the radio astronomical science into its next 40 years. To accomplish that, a next generation VLA (ngVLA) is envisioned to have 214 antennas with diameters of 18m. The core of the array will be centered at the current VLA location, but the arms will extend out to 1000km.The VLA cryogenic subsystem equipment and technology have remained virtually unchanged since the early 1980s. While adequate for a 27-antenna array, scaling the current system for an array of 214 antennas would be prohibitively expensive in terms of operating cost and maintenance. The overall goal is to limit operating cost to within three times the current level, despite having 8 times the number of antennas. To help realize this goal, broadband receivers and compact feeds will be utilized to reduce both the size and number of cryostats required. The current baseline front end concept calls for just two moderately-sized cryostats for the entire 1.2-116 GHz frequency range, as opposed to 8 in the VLA.For the ngVLA cryogenics, our objective is a well-optimized and efficient system that uses state-of-the-art technology to minimize per-antenna power consumption and maximize reliability. Application of modern technologies, such as variable-speed operation for the scroll compressors and cryocooler motor drives, allow the cooling capacity of the system to be dynamically matched to thermal loading in each cryostat. Significantly, power savings may be realized while the maintenance interval of the cryocoolers is also extended.Finally, a receiver designed to minimize thermal loading can produce savings directly translating to lower operating cost when variable-speed drives are used. Multi-layer insulation (MLI) on radiation shields and improved IR filters on feed windows can significantly reduce heat loading.Measurements done on existing cryogenic

  6. Development of Pattern Recognition Options for Combining Safeguards Subsystems

    Energy Technology Data Exchange (ETDEWEB)

    Burr, Thomas L. [Los Alamos National Laboratory; Hamada, Michael S. [Los Alamos National Laboratory

    2012-08-24

    This talk reviews project progress in combining process monitoring data and nuclear material accounting data to improve the over nuclear safeguards system. Focus on 2 subsystems: (1) nuclear materials accounting (NMA); and (2) process monitoring (PM).

  7. Triple3 Redundant Spacecraft Subsystems (T3RSS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — T3RSS is the system engineer's tool that allows a systematic approach to ensuring that even if one or more failures occur in a single component or subsystem, then...

  8. Measurement system as a subsystem of the quality management system

    OpenAIRE

    Ľubica Floreková; Ján Terpák; Marcela Čarnogurská

    2006-01-01

    Each measurement system and a control principle must be based on certain facts about the system behaviour (what), operation (how) and structure (why). Each system is distributed into subsystems that provide an input for the next subsystem. For each system, start is important the begin, that means system characteristics, collecting of data, its hierarchy and the processes distribution.A measurement system (based on the chapter 8 of the standard ISO 9001:2000 Quality management system, requirem...

  9. Opto-mechanical subsystem with temperature compensation through isothemal design

    Science.gov (United States)

    Goodwin, F. E. (Inventor)

    1977-01-01

    An opto-mechanical subsystem for supporting a laser structure which minimizes changes in the alignment of the laser optics in response to temperature variations is described. Both optical and mechanical structural components of the system are formed of the same material, preferably beryllium, which is selected for high mechanical strength and good thermal conducting qualities. All mechanical and optical components are mounted and assembled to provide thorough thermal coupling throughout the subsystem to prevent the development of temperature gradients.

  10. An Algorithm for Integrated Subsystem Embodiment and System Synthesis

    Science.gov (United States)

    Lewis, Kemper

    1997-01-01

    Consider the statement,'A system has two coupled subsystems, one of which dominates the design process. Each subsystem consists of discrete and continuous variables, and is solved using sequential analysis and solution.' To address this type of statement in the design of complex systems, three steps are required, namely, the embodiment of the statement in terms of entities on a computer, the mathematical formulation of subsystem models, and the resulting solution and system synthesis. In complex system decomposition, the subsystems are not isolated, self-supporting entities. Information such as constraints, goals, and design variables may be shared between entities. But many times in engineering problems, full communication and cooperation does not exist, information is incomplete, or one subsystem may dominate the design. Additionally, these engineering problems give rise to mathematical models involving nonlinear functions of both discrete and continuous design variables. In this dissertation an algorithm is developed to handle these types of scenarios for the domain-independent integration of subsystem embodiment, coordination, and system synthesis using constructs from Decision-Based Design, Game Theory, and Multidisciplinary Design Optimization. Implementation of the concept in this dissertation involves testing of the hypotheses using example problems and a motivating case study involving the design of a subsonic passenger aircraft.

  11. Grueneisen-approach for the experimental determination of transient spin and phonon energies from ultrafast x-ray diffraction data: gadolinium.

    Science.gov (United States)

    Koc, A; Reinhardt, M; von Reppert, A; Rössle, M; Leitenberger, W; Gleich, M; Weinelt, M; Zamponi, F; Bargheer, M

    2017-07-05

    We study gadolinium thin films as a model system for ferromagnets with negative thermal expansion. Ultrashort laser pulses heat up the electronic subsystem and we follow the transient strain via ultrafast x-ray diffraction. In terms of a simple Grueneisen approach, the strain is decomposed into two contributions proportional to the thermal energy of spin and phonon subsystems. Our analysis reveals that upon femtosecond laser excitation, phonons and spins can be driven out of thermal equilibrium for several nanoseconds.

  12. Interference Spins

    DEFF Research Database (Denmark)

    Popovski, Petar; Simeone, Osvaldo; Nielsen, Jimmy Jessen

    2015-01-01

    on traffic load and interference condition leads to performance gains. In this letter, a general network of multiple interfering two-way links is studied under the assumption of a balanced load in the two directions for each link. Using the notion of interference spin, we introduce an algebraic framework...

  13. Spinning worlds

    NARCIS (Netherlands)

    Schwarz, H.

    2017-01-01

    The thesis "Spinning Worlds" is about the characterisation of two types of gas-giant exoplanets: Hot Jupiters, with orbital periods of fewer than five days, and young, wide-orbit gas giants, with orbital periods as long as thousands of years. The thesis is based on near-infrared observations of 1

  14. Evading Quantum Mechanics: Engineering a Classical Subsystem within a Quantum Environment

    Directory of Open Access Journals (Sweden)

    Mankei Tsang

    2012-09-01

    Full Text Available Quantum mechanics is potentially advantageous for certain information-processing tasks, but its probabilistic nature and requirement of measurement backaction often limit the precision of conventional classical information-processing devices, such as sensors and atomic clocks. Here we show that, by engineering the dynamics of coupled quantum systems, it is possible to construct a subsystem that evades the measurement backaction of quantum mechanics, at all times of interest, and obeys any classical dynamics, linear or nonlinear, that we choose. We call such a system a quantum-mechanics-free subsystem (QMFS. All of the observables of a QMFS are quantum-nondemolition (QND observables; moreover, they are dynamical QND observables, thus demolishing the widely held belief that QND observables are constants of motion. QMFSs point to a new strategy for designing classical information-processing devices in regimes where quantum noise is detrimental, unifying previous approaches that employ QND observables, backaction evasion, and quantum noise cancellation. Potential applications include gravitational-wave detection, optomechanical-force sensing, atomic magnetometry, and classical computing. Demonstrations of dynamical QMFSs include the generation of broadband squeezed light for use in interferometric gravitational-wave detection, experiments using entangled atomic-spin ensembles, and implementations of the quantum Toffoli gate.

  15. Spin crossover in an elastic chain of exchange clusters beyond mean field approximation.

    Science.gov (United States)

    Morozov, Vitaly; Lukzen, Nikita; Ovcharenko, Victor

    2010-11-07

    Exact analysis of spin crossover in infinite elastic chain of two-spin exchange clusters was performed theoretically beyond mean-field approximation. Statistical mechanics of the system was exactly calculated by means of the transfer matrix technique. A possibility of spin-Peierls-like magneto-structural transition in a one-dimensional chain was shown as a result of interrelation of spin and elastic subsystems of the chain. The importance of the boundary conditions for spin crossover to occur was shown. The smoothness of spin crossover depends on the parameters of chain elasticity and the crossover position on the temperature scale is defined by the dependence of exchange integral on the cluster deformation. The proposed model qualitatively describes the main scenario of spin crossover effect in the chain polymer heterospin complex of copper(ii) hexafluoroacetylacetonate with methyl pyrazol-substituted nitronyl nitroxide containing two-spin exchange clusters.

  16. The effect of doping with Zn and Ni on the YBa sub 2 Cu sub 3 O sub 7 electron subsystem

    CERN Document Server

    Stolbov, S V

    1997-01-01

    The electron structure, Stoner parameters, and exchange-enhanced local contributions to the spin susceptibility have been calculated for pure, Zn-doped, and Ni-doped YBa sub 2 Cu sub 3 O sub 7 (YBCO7) within the local density approximation, using a self-consistent T-scattering matrix method. It has been found that the Zn impurity causes a breaking of p-d covalence bonds in its vicinity, and gives rise to an island of reduced spin susceptibility and density of states at the Fermi level. This leads to the destruction of spin fluctuations near the impurity. The influence of Ni doping on the YBCO7 electron subsystem is much smaller than that of Zn doping. On the basis of the present results and the spin-fluctuation model, the effects of Zn and Ni doping on the critical temperature and NMR spectra of YBCO7 have been explained. (author)

  17. In a spin at Brookhaven spin physics

    CERN Document Server

    Makdisi, Y I

    2003-01-01

    The mysterious quantity that is spin took centre stage at Brookhaven for the SPIN2002 meeting last September. The 15th biennial International Spin Physics Symposium (SPIN2002) was held at Brookhaven National Laboratory on 9-14 September 2002. Some 250 spin enthusiasts attended, including experimenters and theorists in both nuclear and high-energy physics, as well as accelerator physicists and polarized target and polarized source experts. The six-day symposium included 23 plenary talks and 150 parallel talks. SPIN2002 was preceded by a one-day spin physics tutorial for students, postdocs, and anyone else who felt the need for a refresher course. (2 refs).

  18. Preprototype vapor compression distillation subsystem. [recovering potable water from wastewater

    Science.gov (United States)

    Ellis, G. S.; Wynveen, R. A.; Schubert, F. H.

    1979-01-01

    A three-person capacity preprototype vapor compression distillation subsystem for recovering potable water from wastewater aboard spacecraft was designed, assembled, and tested. The major components of the subsystem are: (1) a distillation unit which includes a compressor, centrifuge, central shaft, and outer shell; (2) a purge pump; (3) a liquids pump; (4) a post-treat cartridge; (5) a recycle/filter tank; (6) an evaporator high liquid level sensor; and (7) the product water conductivity monitor. A computer based control monitor instrumentation carries out operating mode change sequences, monitors and displays subsystem parameters, maintains intramode controls, and stores and displays fault detection information. The mechanical hardware occupies 0.467 m3, requires 171 W of electrical power, and has a dry weight of 143 kg. The subsystem recovers potable water at a rate of 1.59 kg/hr, which is equivalent to a duty cycle of approximately 30% for a crew of three. The product water has no foul taste or odor. Continued development of the subsystem is recommended for reclaiming water for human consumption as well as for flash evaporator heat rejection, urinal flushing, washing, and other on-board water requirements.

  19. Spin-Circuit Representation of Spin Pumping

    Science.gov (United States)

    Roy, Kuntal

    2017-07-01

    Circuit theory has been tremendously successful in translating physical equations into circuit elements in an organized form for further analysis and proposing creative designs for applications. With the advent of new materials and phenomena in the field of spintronics and nanomagnetics, it is imperative to construct the spin-circuit representations for different materials and phenomena. Spin pumping is a phenomenon by which a pure spin current can be injected into the adjacent layers. If the adjacent layer is a material with a high spin-orbit coupling, a considerable amount of charge voltage can be generated via the inverse spin Hall effect allowing spin detection. Here we develop the spin-circuit representation of spin pumping. We then combine it with the spin-circuit representation for the materials having spin Hall effect to show that it reproduces the standard results as in the literature. We further show how complex multilayers can be analyzed by simply writing a netlist.

  20. Spin Coherence in Semiconductor Nanostructures

    National Research Council Canada - National Science Library

    Flatte, Michael E

    2006-01-01

    ... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...

  1. The Main Subsystems Involved in Defining the Quality Management System in a Hospital

    Directory of Open Access Journals (Sweden)

    Dobrea Valentina Alina

    2010-06-01

    Full Text Available The hospital is the most important organization in health field, so they have to improve the quality in all the activities deployed. A very suitable way to show the hospital’s preoccupation for quality of health services is the quality management system certificate according ISO 9001/2000. In understanding the architecture of the hospital quality management system is necessary to decompose this system in subsystems and analyze each separately: the managerial subsystem, the human subsystem, the social subsystem, thetechnical subsystem, the informative subsystem. The relationship between those subsystems leads to the continuous improvement of quality in health services.

  2. The definition of input parameters for modelling of energetic subsystems

    Directory of Open Access Journals (Sweden)

    Ptacek M.

    2013-06-01

    Full Text Available This paper is a short review and a basic description of mathematical models of renewable energy sources which present individual investigated subsystems of a system created in Matlab/Simulink. It solves the physical and mathematical relationships of photovoltaic and wind energy sources that are often connected to the distribution networks. The fuel cell technology is much less connected to the distribution networks but it could be promising in the near future. Therefore, the paper informs about a new dynamic model of the low-temperature fuel cell subsystem, and the main input parameters are defined as well. Finally, the main evaluated and achieved graphic results for the suggested parameters and for all the individual subsystems mentioned above are shown.

  3. The definition of input parameters for modelling of energetic subsystems

    Science.gov (United States)

    Ptacek, M.

    2013-06-01

    This paper is a short review and a basic description of mathematical models of renewable energy sources which present individual investigated subsystems of a system created in Matlab/Simulink. It solves the physical and mathematical relationships of photovoltaic and wind energy sources that are often connected to the distribution networks. The fuel cell technology is much less connected to the distribution networks but it could be promising in the near future. Therefore, the paper informs about a new dynamic model of the low-temperature fuel cell subsystem, and the main input parameters are defined as well. Finally, the main evaluated and achieved graphic results for the suggested parameters and for all the individual subsystems mentioned above are shown.

  4. The complete Heyting algebra of subsystems and contextuality

    Energy Technology Data Exchange (ETDEWEB)

    Vourdas, A. [Department of Computing, University of Bradford, Bradford BD7 1DP (United Kingdom)

    2013-08-15

    The finite set of subsystems of a finite quantum system with variables in Z(n), is studied as a Heyting algebra. The physical meaning of the logical connectives is discussed. It is shown that disjunction of subsystems is more general concept than superposition. Consequently, the quantum probabilities related to commuting projectors in the subsystems, are incompatible with associativity of the join in the Heyting algebra, unless if the variables belong to the same chain. This leads to contextuality, which in the present formalism has as contexts, the chains in the Heyting algebra. Logical Bell inequalities, which contain “Heyting factors,” are discussed. The formalism is also applied to the infinite set of all finite quantum systems, which is appropriately enlarged in order to become a complete Heyting algebra.

  5. Designing organic spin filters in the coherent tunneling regime.

    Science.gov (United States)

    Herrmann, Carmen; Solomon, Gemma C; Ratner, Mark A

    2011-06-14

    Spin filters, that is, systems which preferentially transport electrons of a certain spin orientation, are an important element for spintronic schemes and in chemical and biological instances of spin-selective electronic communication. We study the relation between molecular structure and spin filtering functionality employing a theoretical analysis of both model and stable organic radicals based on substituted benzene, which are bound to gold electrodes, with a combination of density functional theory and the Landauer-Imry-Büttiker approach. We compare the spatial distribution of the spin density and of the frontier central subsystem molecular orbitals, and local contributions to the transmission. Our results suggest that the delocalization of the singly occupied molecular orbital and of the spin density onto the benzene ring connected to the electrodes, is a good, although not the sole indicator of spin filtering functionality. The stable radicals under study do not effectively act as spin filters, while the model phenoxy-based radicals are effective due to their much larger spin delocalization. These conclusions may also be of interest for electron transfer experiments in electron donor-bridge-acceptor complexes.

  6. Embedded Thermal Control for Subsystems for Next Generation Spacecraft Applications

    Science.gov (United States)

    Didion, Jeffrey R.

    2015-01-01

    Thermal Fluids and Analysis Workshop, Silver Spring MD NCTS 21070-15. NASA, the Defense Department and commercial interests are actively engaged in developing miniaturized spacecraft systems and scientific instruments to leverage smaller cheaper spacecraft form factors such as CubeSats. This paper outlines research and development efforts among Goddard Space Flight Center personnel and its several partners to develop innovative embedded thermal control subsystems. Embedded thermal control subsystems is a cross cutting enabling technology integrating advanced manufacturing techniques to develop multifunctional intelligent structures to reduce Size, Weight and Power (SWaP) consumption of both the thermal control subsystem and overall spacecraft. Embedded thermal control subsystems permit heat acquisition and rejection at higher temperatures than state of the art systems by employing both advanced heat transfer equipment (integrated heat exchangers) and high heat transfer phenomena. The Goddard Space Flight Center Thermal Engineering Branch has active investigations seeking to characterize advanced thermal control systems for near term spacecraft missions. The embedded thermal control subsystem development effort consists of fundamental research as well as development of breadboard and prototype hardware and spaceflight validation efforts. This paper will outline relevant fundamental investigations of micro-scale heat transfer and electrically driven liquid film boiling. The hardware development efforts focus upon silicon based high heat flux applications (electronic chips, power electronics etc.) and multifunctional structures. Flight validation efforts include variable gravity campaigns and a proposed CubeSat based flight demonstration of a breadboard embedded thermal control system. The CubeSat investigation is technology demonstration will characterize in long-term low earth orbit a breadboard embedded thermal subsystem and its individual components to develop

  7. Optomechanical design of TMT NFIRAOS Subsystems at INO

    Science.gov (United States)

    Lamontagne, Frédéric; Desnoyers, Nichola; Grenier, Martin; Cottin, Pierre; Leclerc, Mélanie; Martin, Olivier; Buteau-Vaillancourt, Louis; Boucher, Marc-André; Nash, Reston; Lardière, Olivier; Andersen, David; Atwood, Jenny; Hill, Alexis; Byrnes, Peter W. G.; Herriot, Glen; Fitzsimmons, Joeleff; Véran, Jean-Pierre

    2017-08-01

    The adaptive optics system for the Thirty Meter Telescope (TMT) is the Narrow-Field InfraRed Adaptive Optics System (NFIRAOS). Recently, INO has been involved in the optomechanical design of several subsystems of NFIRAOS, including the Instrument Selection Mirror (ISM), the NFIRAOS Beamsplitters (NBS), and the NFIRAOS Source Simulator system (NSS) comprising the Focal Plane Mask (FPM), the Laser Guide Star (LGS) sources, and the Natural Guide Star (NGS) sources. This paper presents an overview of these subsystems and the optomechanical design approaches used to meet the optical performance requirements under environmental constraints.

  8. Interconnection of subsystems in closed-loop systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2009-01-01

    The focus in this paper is analysis of stability and controller design for interconnected systems. This includes both the case with known and unknown interconnected sub-system. The key element in both the stability analysis and controller design is the application of the Youla-Jabr-Bongiorno-Kuce......The focus in this paper is analysis of stability and controller design for interconnected systems. This includes both the case with known and unknown interconnected sub-system. The key element in both the stability analysis and controller design is the application of the Youla...

  9. Ground test facility for nuclear testing of space reactor subsystems

    International Nuclear Information System (INIS)

    Quapp, W.J.; Watts, K.D.

    1985-01-01

    Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs

  10. Software Testbed for Developing and Evaluating Integrated Autonomous Subsystems

    Science.gov (United States)

    Ong, James; Remolina, Emilio; Prompt, Axel; Robinson, Peter; Sweet, Adam; Nishikawa, David

    2015-01-01

    To implement fault tolerant autonomy in future space systems, it will be necessary to integrate planning, adaptive control, and state estimation subsystems. However, integrating these subsystems is difficult, time-consuming, and error-prone. This paper describes Intelliface/ADAPT, a software testbed that helps researchers develop and test alternative strategies for integrating planning, execution, and diagnosis subsystems more quickly and easily. The testbed's architecture, graphical data displays, and implementations of the integrated subsystems support easy plug and play of alternate components to support research and development in fault-tolerant control of autonomous vehicles and operations support systems. Intelliface/ADAPT controls NASA's Advanced Diagnostics and Prognostics Testbed (ADAPT), which comprises batteries, electrical loads (fans, pumps, and lights), relays, circuit breakers, invertors, and sensors. During plan execution, an experimentor can inject faults into the ADAPT testbed by tripping circuit breakers, changing fan speed settings, and closing valves to restrict fluid flow. The diagnostic subsystem, based on NASA's Hybrid Diagnosis Engine (HyDE), detects and isolates these faults to determine the new state of the plant, ADAPT. Intelliface/ADAPT then updates its model of the ADAPT system's resources and determines whether the current plan can be executed using the reduced resources. If not, the planning subsystem generates a new plan that reschedules tasks, reconfigures ADAPT, and reassigns the use of ADAPT resources as needed to work around the fault. The resource model, planning domain model, and planning goals are expressed using NASA's Action Notation Modeling Language (ANML). Parts of the ANML model are generated automatically, and other parts are constructed by hand using the Planning Model Integrated Development Environment, a visual Eclipse-based IDE that accelerates ANML model development. Because native ANML planners are currently

  11. Seismic Safety Margins Research Program. Phase 1. Project V. Structural sub-system response: subsystem response review

    International Nuclear Information System (INIS)

    Fogelquist, J.; Kaul, M.K.; Koppe, R.; Tagart, S.W. Jr.; Thailer, H.; Uffer, R.

    1980-03-01

    This project is directed toward a portion of the Seismic Safety Margins Research Program which includes one link in the seismic methodology chain. The link addressed here is the structural subsystem dynamic response which consists of those components and systems whose behavior is often determined decoupled from the major structural response. Typically the mathematical model utilized for the major structural response will include only the mass effects of the subsystem and the main model is used to produce the support motion inputs for subsystem seismic qualification. The main questions addressed in this report have to do with the seismic response uncertainty of safety-related components or equipment whose seismic qualification is performed by (a) analysis, (b) tests, or (c) combinations of analysis and tests, and where the seismic input is assumed to have no uncertainty

  12. Modeling and simulation of a 100 kWe HT-PEMFC subsystem integrated with an absorption chiller subsystem

    DEFF Research Database (Denmark)

    Arsalis, Alexandros

    2012-01-01

    electrical power output of 100 kWe. The heat exhausted to the absorption chiller subsystem is 107 kW and can satisfy a cooling duty of up to 128 or 64.5 kW for a LiBr-water double-effect system or a water-NH3 single-effect system, respectively. Finally, the projected total cost is comparable to conventional......A 100 kWe liquid-cooled HT-PEMFC subsystem is integrated with an absorption chiller subsystem to provide electricity and cooling. The system is designed, modeled and simulated to investigate the potential of this technology for future novel energy system applications. Liquid-cooling can provide...

  13. Heat and spin interconversion

    International Nuclear Information System (INIS)

    Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji

    2017-01-01

    Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)

  14. Communication Regarding Sustainability: Conceptual Perspectives and Exploration of Societal Subsystems

    Directory of Open Access Journals (Sweden)

    Marco Rieckmann

    2013-07-01

    Full Text Available Sustainability issues are typically characterized by high complexity and uncertainty. In light of this, communication plays a crucial role in coping with these challenges. The previous debate on sustainability communication has largely focused on how to communicate sustainability issues to others. Sustainability communication, however, involves more than sender oriented communication to persuade others (“communication of sustainability”; it also embraces processes of dialogue and discourse (“communication about sustainability”. Based on this distinction, we develop a typology of communication modes, including communication for sustainability. Inspired by the notion of functional communication systems, we explore sustainability communication in six societal subsystems, applying the typology of communication modes. Drawing mostly on examples from Germany, we find a shift from “communication of” towards “communication about” sustainability in most subsystems. While communication subsystems have a tendency towards operational closure, a variety of interlinkages exist. We discuss three key areas of “opening up” communication subsystems, leading to transdisciplinarity, societal deliberation and governance, each meeting one of sustainability’s core challenges.

  15. Electric Propulsion Electronics And Thrusters As A Satellite Subsystem

    Science.gov (United States)

    Gollor, Matthais

    2011-10-01

    The integration of electrical thrusters with an electronic into a subsystem and with this establishing an integrated design providing full function and performance is critical task. It starts with the proper specification of the electrical interfaces between thrusters and electronics, including a proper definition of the thrusters as an electric load. Furthermore the use of high voltage needs specific knowledge in design and is increasing the subsystem complexity due to obsolesce of suitable disconnect-able harness and of redundancy switching means. EMC is rising to a couple of questions, i.e. about possible interference of magnetic field emission with the satellites attitude control system or about the thruster plasma affecting RF transmission of communication links. End-to-end testing of the propulsion subsystem is limited as it is not possible to run the thruster together with the spacecraft in a vacuum facility. Therefore testing of the subsystem has to be "sliced": typically, the thruster is first characterized with the aid of lab power supplies and is later tested coupled with the "space" electronics. Finally system checkout on satellite level is performed with the using simulators.

  16. Subsystem Design Guidelines for Extensible General-Purpose Software

    NARCIS (Netherlands)

    Grefen, P.W.P.J.; Wieringa, Roelf J.; Magee, J.N.; Perry, D.E.

    1998-01-01

    We discuss subsystem design for extensible general-purpose information systemswe extract guidelines from a case study of the redesign and extension of an advanced workflow management system and place them into the context of existing software engineering research. Key aspect is the distinction

  17. The prison subsystem culture: its attitudinal effects on operatives ...

    African Journals Online (AJOL)

    The penal institutions subsystems; the justice, the police, prison yard and the operatives ways of administering justice is believed to bring about breeding and enhancing criminal behavior and recidivicists than serving; deterrence, repentance, reformatory and reconciliatory attitudes between ex-convicts and people in free ...

  18. Image Processing In Laser-Beam-Steering Subsystem

    Science.gov (United States)

    Lesh, James R.; Ansari, Homayoon; Chen, Chien-Chung; Russell, Donald W.

    1996-01-01

    Conceptual design of image-processing circuitry developed for proposed tracking apparatus described in "Beam-Steering Subsystem For Laser Communication" (NPO-19069). In proposed system, desired frame rate achieved by "windowed" readout scheme in which only pixels containing and surrounding two spots read out and others skipped without being read. Image data processed rapidly and efficiently to achieve high frequency response.

  19. A Generic Multi-node State Monitoring Subsystem

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, James A

    2003-06-02

    The BaBar online data acquisition (DAQ) system includes approximately fifty Unix systems that collectively implement the level-three trigger. These systems all run the same code. Each of these systems has its own state, and this state is expected to change in response to changes in the overall DAQ system. A specialized subsystem has been developed to initiate processing on this collection of systems, and to monitor them both for error conditions and to ensure that they all follow the same state trajectory within a specifiable period of time. This subsystem receives start commands from the main DAQ run control system, and reports major coherent state changes, as well as error conditions, back to the run control system. This state monitoring subsystem has the novel feature that it does not know anything about the state machines that it is monitoring, and hence does not introduce any fundamentally new state machine into the overall system. This feature makes it trivially applicable to other multi-node subsystems. Indeed it has already found a second application beyond the level-three trigger, within the BaBar experiment.

  20. Emerging Network Storage Management Standards for Intelligent Data Storage Subsystems

    Science.gov (United States)

    Podio, Fernando; Vollrath, William; Williams, Joel; Kobler, Ben; Crouse, Don

    1998-01-01

    This paper discusses the need for intelligent storage devices and subsystems that can provide data integrity metadata, the content of the existing data integrity standard for optical disks and techniques and metadata to verify stored data on optical tapes developed by the Association for Information and Image Management (AIIM) Optical Tape Committee.

  1. Cascade Distillation Subsystem Development: Progress Toward a Distillation Comparison Test

    Science.gov (United States)

    Callahan, M. R.; Lubman, A.; Pickering, Karen D.

    2009-01-01

    Recovery of potable water from wastewater is essential for the success of long-duration manned missions to the Moon and Mars. Honeywell International and a team from NASA Johnson Space Center (JSC) are developing a wastewater processing subsystem that is based on centrifugal vacuum distillation. The wastewater processor, referred to as the Cascade Distillation Subsystem (CDS), utilizes an innovative and efficient multistage thermodynamic process to produce purified water. The rotary centrifugal design of the system also provides gas/liquid phase separation and liquid transport under microgravity conditions. A five-stage subsystem unit has been designed, built, delivered and integrated into the NASA JSC Advanced Water Recovery Systems Development Facility for performance testing. A major test objective of the project is to demonstrate the advancement of the CDS technology from the breadboard level to a subsystem level unit. An initial round of CDS performance testing was completed in fiscal year (FY) 2008. Based on FY08 testing, the system is now in development to support an Exploration Life Support (ELS) Project distillation comparison test expected to begin in early 2009. As part of the project objectives planned for FY09, the system will be reconfigured to support the ELS comparison test. The CDS will then be challenged with a series of human-gene-rated waste streams representative of those anticipated for a lunar outpost. This paper provides a description of the CDS technology, a status of the current project activities, and data on the system s performance to date.

  2. Realistic Free-Spins Features Increase Preference for Slot Machines.

    Science.gov (United States)

    Taylor, Lorance F; Macaskill, Anne C; Hunt, Maree J

    2017-06-01

    Despite increasing research into how the structural characteristics of slot machines influence gambling behaviour there have been no experimental investigations into the effect of free-spins bonus features-a structural characteristic that is commonly central to the design of slot machines. This series of three experiments investigated the free-spins feature using slot machine simulations to determine whether participants allocate more wagers to a machine with free spins, and, which components of free-spins features drive this preference. In each experiment, participants were exposed to two computer-simulated slot machines-one with a free-spins feature or similar bonus feature and one without. Participants then completed a testing phase where they could freely switch between the two machines. In Experiment 1, participants did not prefer the machine with a simple free-spins feature. In Experiment 2 the free-spins feature incorporated additional elements such as sounds, animations, and an increased win frequency; participants preferred to gamble on this machine. The Experiment 3 "bonus feature" machine resembled the free spins machine in Experiment 2 except spins were not free; participants showed a clear preference for this machine also. These findings indicate that (1) free-spins features have a major influence over machine choice and (2) the "freeness" of the free-spins bonus features is not an important driver of preference, contrary to self-report and interview research with gamblers.

  3. Subsystems in Nearby Solar-type Wide Binaries

    Science.gov (United States)

    Tokovinin, Andrei; Hartung, Markus; Hayward, Thomas L.

    2010-08-01

    We conducted a deep survey of resolved subsystems among wide binaries with solar-type components within 67 pc of the Sun. Images of 61 stars in the K and H bands were obtained with the Near-Infrared Coronagraphic Imager adaptive-optics instrument on the 8 m Gemini-South telescope. Our maximum detectable magnitude difference is about 5 mag and 7.8 mag at 0farcs15 and 0farcs9 separations, respectively. This enables a complete census of subsystems with stellar companions in the projected separation range from 5 to 100 AU. Out of seven such companions found in our sample, only one was previously known. We determine that the fraction of subsystems with projected separations above 5 AU is 0.12 ± 0.04 and that the distribution of their mass ratio is flat, with a power-law index of 0.2 ± 0.5. Comparing this with the properties of closer spectroscopic subsystems (separations below 1 AU), it appears that the mass-ratio distribution does not depend on the separation. The frequency of subsystems in the separation ranges below 1 AU and between 5 and 100 AU is similar, about 0.15. Unbiased statistics of multiplicity higher than 2, advanced by this work, provide constraints on star formation theory. Based on observations obtained at the Gemini Observatory (Program ID GS-2009B-Q-49), which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  4. Characterization of the power and efficiency of Stirling engine subsystems

    International Nuclear Information System (INIS)

    García, D.; González, M.A.; Prieto, J.I.; Herrero, S.; López, S.; Mesonero, I.; Villasante, C.

    2014-01-01

    Highlights: • We review experimental data from a V160 engine developed for cogeneration. • We also investigate the V161 solar engine. • The possible margin of improvement is evaluated for each subsystem. • The procedure is based on similarity models and thermodynamic models. • The procedure may be of general interest for other prototypes. - Abstract: The development of systems based on Stirling machines is limited by the lack of data about the performance of the various subsystems that are located between the input and output power sections. The measurement of some of the variables used to characterise these internal subsystems presents difficulties, particularly in the working gas circuit and the drive mechanism, which causes experimental reports to rarely be comprehensive enough for analysing the whole performance of the machine. In this article, we review experimental data from a V160 engine developed for cogeneration to evaluate the general validity; we also investigate one of the most successful prototypes used in dish-Stirling systems, the V161 engine, for which a seemingly small mechanical efficiency value has been recently predicted. The procedure described in this article allows the possible margin of improvement to be evaluated for each subsystem. The procedure is based on similarity models, which have been previously developed through experimental data from very different prototypes. Thermodynamic models for the gas circuit are also considered. Deduced characteristic curves show that both prototypes have an advanced degree of development as evidenced by relatively high efficiencies for each subsystem. The analyses are examples that demonstrate the qualities of dimensionless numbers in representing physical phenomena with maximum generality and physical meaning

  5. Nuclear spin pumping and electron spin susceptibilities

    NARCIS (Netherlands)

    Danon, J.; Nazarov, Y.V.

    2011-01-01

    In this work we present a new formalism to evaluate the nuclear spin dynamics driven by hyperfine interaction with nonequilibrium electron spins. To describe the dynamics up to second order in the hyperfine coupling it suffices to evaluate the susceptibility and fluctuations of the electron spin.

  6. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  7. Spin Superfluidity and Magnone BEC in He-3

    Science.gov (United States)

    Bunkov, Yury

    2011-03-01

    The spin superfluidity -- superfluidity in the magnetic subsystem of a condensed matter -- is manifested as the spontaneous phase-coherent precession of spins first discovered in 1984 in 3 He-B. This superfluid current of spins -- spin supercurrent -- is one more representative of superfluid currents known or discussed in other systems, such as the superfluid current of mass and atoms in superfluid 4 He; superfluid current of electric charge in superconductors; superfluid current of hypercharge in Standard Model of particle physics; superfluid baryonic current and current of chiral charge in quark matter; etc. Spin superfluidity can be described in terms of the Bose condensation of spin waves -- magnons. We discuss different states of magnon superfluidity with different types of spin-orbit coupling: in bulk 3 He-B; magnetically traped `` Q -balls'' at very low temperatures; in 3 He-A and 3 He-B immerged in deformed aerogel; etc. Some effects in normal 3 He can also be treated as a magnetic BEC of fermi liquid. A very similar phenomena can be observed also in a magnetic systems with dinamical frequensy shift, like MnC03 . We will discuss the main experimental signatures of magnons superfluidity: (i) spin supercurrent, which transports the magnetization on a macroscopic distance more than 1 cm long; (ii) spin current Josephson effect which shows interference between two condensates; (iii) spin current vortex -- a topological defect which is an analog of a quantized vortex in superfluids, of an Abrikosov vortex in superconductors, and cosmic strings in relativistic theories; (iv) Goldstone modes related to the broken U (1) symmetry -- phonons in the spin-superfluid magnon gas; etc. For recent review see Yu. M. Bunkov and G. E. Volovik J. Phys. Cond. Matter. 22, 164210 (2010) This work is partly supported by the Ministry of Education and Science of the Russian Federation (contract N 02.740.11.5217).

  8. System integration of marketable subsystems. [for residential solar heating and cooling

    Science.gov (United States)

    1979-01-01

    Progress is reported in the following areas: systems integration of marketable subsystems; development, design, and building of site data acquisition subsystems; development and operation of the central data processing system; operation of the MSFC Solar Test Facility; and systems analysis.

  9. Double Shell Tank (DST) Transfer Pump Subsystem Specification

    International Nuclear Information System (INIS)

    GRAVES, C.E.

    2001-01-01

    This specification establishes the performance requirements and provides the references to the requisite codes and standards to be applied during the design of the Double-Shell Tank (DST) Transfer Pump Subsystem that supports the first phase of waste feed delivery (WFD). The DST Transfer Pump Subsystem consists of a pump for supernatant and/or slurry transfer for the DSTs that will be retrieved during the Phase 1 WFD operations. This system is used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. It also will deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Waste Treatment Plant where it will be processed into an immobilized waste form. This specification is intended to be the basis for new projects/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  10. Subsystem software for TSTA [Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Mann, L.W.; Claborn, G.W.; Nielson, C.W.

    1987-01-01

    The Subsystem Control Software at the Tritium System Test Assembly (TSTA) must control sophisticated chemical processes through the physical operation of valves, motor controllers, gas sampling devices, thermocouples, pressure transducers, and similar devices. Such control software has to be capable of passing stringent quality assurance (QA) criteria to provide for the safe handling of significant amounts of tritium on a routine basis. Since many of the chemical processes and physical components are experimental, the control software has to be flexible enough to allow for trial/error learning curve, but still protect the environment and personnel from exposure to unsafe levels of radiation. The software at TSTA is implemented in several levels as described in a preceding paper in these proceedings. This paper depends on information given in the preceding paper for understanding. The top level is the Subsystem Control level

  11. Measurement system as a subsystem of the quality management system

    Directory of Open Access Journals (Sweden)

    Ľubica Floreková

    2006-12-01

    Full Text Available Each measurement system and a control principle must be based on certain facts about the system behaviour (what, operation (how and structure (why. Each system is distributed into subsystems that provide an input for the next subsystem. For each system, start is important the begin, that means system characteristics, collecting of data, its hierarchy and the processes distribution.A measurement system (based on the chapter 8 of the standard ISO 9001:2000 Quality management system, requirements defines the measurement, analysis and improvement for each organization in order to present the products conformity, the quality management system conformity guarantee and for the continuously permanent improvement of effectivity, efficiency and economy of quality management system.

  12. [The innovative dynamic of the mechanics, electronics and materials subsystem].

    Science.gov (United States)

    Maldonado, José; Gadelha, Carlos Augusto Grabois; Costa, Laís Silveira; Vargas, Marco

    2012-12-01

    The mechanics, electronics and materials subsystem, one of the subsystems of the health care productive complex, encompasses different activities, usually clustered in what is called the medical, hospital and dental equipment and materials industry. This is a strategic area for health care, since it represents a continuous source of changes in care practices, and influences the provision of health care services. It has, moreover, potential for promoting the progress of Brazil's system of innovation and for increasing the competitiveness of the industry as a whole, given that it articulates future technologies. Despite the significant growth of this industry in Brazil in recent years, such equipment and materials have been presenting a growing deficit in the balance of trade. This incompatibility between national health care needs and the productive and innovative basis of the industry points to structural fragilities in the system. Using the framework of political economy, the article aims to discuss the development of this industry in Brazil and its challenges.

  13. Electrical power generation subsystem for Space Shuttle Orbiter

    Science.gov (United States)

    Blaski, M. F.; Owens, S. L.

    1974-01-01

    The requirements, capabilities, and design of the Space Shuttle Orbiter electrical power generation (EPG) subsystem are presented. The Orbiter EPG subsystem is designed to have the flexibility to supply the basic Orbiter electrical loads and the power requirements of the payloads which, in some cases, are completely dependent on the Orbiter for both power and heat rejection. These needs are supplied by three hydrogen/oxygen fuel cell powerplants (FCPs), having the capability of providing a total of 14 kW average and up to 24 kW peak in the basic Orbiter configuration. Kits permit dedication of one FCP to the payload by providing an additional reactant tank pair for a seven-day mission and additional heat rejection capability.

  14. Muon spin relaxation study of spin dynamics in the extended kagome systems YBaCo4O7 +δ (δ =0 ,0.1 )

    Science.gov (United States)

    Lee, S.; Lee, Wonjun; Lee, K. J.; Kim, ByungJun; Suh, B. J.; Zheng, H.; Mitchell, J. F.; Choi, K.-Y.

    2018-03-01

    We present muon spin relaxation (μ SR ) measurements of the extended kagome systems YBaCo4O7 +δ (δ =0 ,0.1 ), comprising two interpenetrating kagome sublattice of Co (I) 3 + (S =3 /2 ) and a triangle sublattice of Co (II) 2 + (S =2 ). The zero- and longitudinal-field μ SR spectra of the stoichiometric compound YBaCo4O7 unveil that the triangular subsystem orders at TN=101 K. In contrast, the muon spin relaxation rate pertaining to the kagome subsystem shows persistent spin dynamics down to T =20 K and then a sublinear decrease λ (T ) ˜T0.66 (5 ) on cooling towards T =4 K. In addition, the introduction of interstitial oxygen (δ =0.1 ) is found to drastically affect the magnetism. For the fast-cooling experiment (>10 K/min), YBaCo4O7.1 enters a regime characterized by persistent spin dynamics below 90 K. For the slow-cooling experiment (1 K/min), evidence is obtained for the phase separation into interstitial oxygen-poor and oxygen-rich regions with distinct correlation times. The observed temperature, cooling rate, and oxygen content dependencies of spin dynamics are discussed in terms of a broad range of spin-spin correlation times, relying on a different degree of frustration between the kagome and triangle sublattices as well as of oxygen migration.

  15. Frozen density embedding with non-integer subsystems' particle numbers.

    Science.gov (United States)

    Fabiano, Eduardo; Laricchia, Savio; Della Sala, Fabio

    2014-03-21

    We extend the frozen density embedding theory to non-integer subsystems' particles numbers. Different features of this formulation are discussed, with special concern for approximate embedding calculations. In particular, we highlight the relation between the non-integer particle-number partition scheme and the resulting embedding errors. Finally, we provide a discussion of the implications of the present theory for the derivative discontinuity issue and the calculation of chemical reactivity descriptors.

  16. Functional Analysis for Double Shell Tank (DST) Subsystems

    Energy Technology Data Exchange (ETDEWEB)

    SMITH, D.F.

    2000-08-22

    This functional analysis identifies the hierarchy and describes the subsystem functions that support the Double-Shell Tank (DST) System described in HNF-SD-WM-TRD-007, System Specification for the Double-Shell Tank System. Because of the uncertainty associated with the need for upgrades of the existing catch tanks supporting the Waste Feed Delivery (WFD) mission, catch tank functions are not addressed in this document. The functions identified herein are applicable to the Phase 1 WFD mission only.

  17. Stability of subsystem solutions in agent-based models

    Science.gov (United States)

    Perc, Matjaž

    2018-01-01

    The fact that relatively simple entities, such as particles or neurons, or even ants or bees or humans, give rise to fascinatingly complex behaviour when interacting in large numbers is the hallmark of complex systems science. Agent-based models are frequently employed for modelling and obtaining a predictive understanding of complex systems. Since the sheer number of equations that describe the behaviour of an entire agent-based model often makes it impossible to solve such models exactly, Monte Carlo simulation methods must be used for the analysis. However, unlike pairwise interactions among particles that typically govern solid-state physics systems, interactions among agents that describe systems in biology, sociology or the humanities often involve group interactions, and they also involve a larger number of possible states even for the most simplified description of reality. This begets the question: when can we be certain that an observed simulation outcome of an agent-based model is actually stable and valid in the large system-size limit? The latter is key for the correct determination of phase transitions between different stable solutions, and for the understanding of the underlying microscopic processes that led to these phase transitions. We show that a satisfactory answer can only be obtained by means of a complete stability analysis of subsystem solutions. A subsystem solution can be formed by any subset of all possible agent states. The winner between two subsystem solutions can be determined by the average moving direction of the invasion front that separates them, yet it is crucial that the competing subsystem solutions are characterised by a proper composition and spatiotemporal structure before the competition starts. We use the spatial public goods game with diverse tolerance as an example, but the approach has relevance for a wide variety of agent-based models.

  18. Subsystem for control of isotope production with linear electron accelerator

    International Nuclear Information System (INIS)

    Karasyov, S.P.; Pomatsalyuk, R.I.; Uvarov, V.L.

    2001-01-01

    In this report the high-current LINAC subsystem for diagnostic and monitoring the basic technological parameters of isotope production (energy flux of Bremsstrahlung photons and absorbed doze in the target,target activity, temperature and consumption of water cooling the converter and target) is described.T he parallel printer port (LPT) of the personal computer is proposed to use as an interface with the measurement channels

  19. Subsystem for control of isotope production with linear electron accelerator

    CERN Document Server

    Karasyov, S P; Uvarov, V L

    2001-01-01

    In this report the high-current LINAC subsystem for diagnostic and monitoring the basic technological parameters of isotope production (energy flux of Bremsstrahlung photons and absorbed doze in the target,target activity, temperature and consumption of water cooling the converter and target) is described.T he parallel printer port (LPT) of the personal computer is proposed to use as an interface with the measurement channels.

  20. Photovoltaic subsystem optimization and design tradeoff study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, W.J.

    1982-03-01

    Tradeoffs and subsystem choices are examined in photovoltaic array subfield design, power-conditioning sizing and selection, roof- and ground-mounted structure installation, energy loss, operating voltage, power conditioning cost, and subfield size. Line- and self-commutated power conditioning options are analyzed to determine the most cost-effective technology in the megawatt power range. Methods for reducing field installation of flat panels and roof mounting of intermediate load centers are discussed, including the cost of retrofit installations.

  1. CAMAC subsystem and user context utilities in ngdp framework

    International Nuclear Information System (INIS)

    Isupov, A.Yu.

    2010-01-01

    The ngdp framework advanced topics are described. Namely, we consider work with CAMAC hardware, 'selfflow' nodes for the data acquisition systems with the As-Soon-As-Possible policy, ng m m(4) as an alternative to ng s ocket(4), the control subsystem, user context utilities, events representation for the ROOT package, test and debug nodes, possible advancements for netgraph(4), etc. It is shown that the ngdp is suitable for building lightweight DAQ systems to handle CAMAC

  2. Photonics in switching: enabling technologies and subsystem design

    DEFF Research Database (Denmark)

    Vlachos, K.; Raffaelli, C.; Aleksic, S.

    2009-01-01

    This paper describes recent research activities and results in the area of photonic switching carried out within the framework of the EU-funded e-Photon/ONe + network of excellence, Virtual Department on Optical Switching. Technology aspects of photonics in switching and, in particular, recent...... advances in wavelength conversion, ring resonators, and packet switching and processing subsystems are presented as the building blocks for the implementation of a high-performance router for the next-generation Internet....

  3. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    International Nuclear Information System (INIS)

    King, D.A.

    1994-01-01

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan

  4. Requirements for Risk Assessment Tools for Aircraft Electrical Interconnection Subsystems

    Science.gov (United States)

    2003-02-01

    vieillissants et le controle] [Reunions des specialistes des techniques de estion du cycle de vie pour vehicules aeriens vieillissants ] To order the...safety analysis prior to an aircraft’s introduction to service, changing service profiles, subsystem modification , and unanticipated failure modes may...action may come in the form of operational restrictions, maintenance or inspection requirements, or aircraft modification . In any case, the remedy must

  5. Decoherence dynamics of a single spin versus spin ensemble

    NARCIS (Netherlands)

    Dobrovitski, V.V.; Feiguin, A.E.; Awschalom, D.D.; Hanson, R.

    2008-01-01

    We study decoherence of central spins by a spin bath, focusing on the difference between measurement of a single central spin and measurement of a large number of central spins (as found in typical spin-resonance experiments). For a dilute spin bath, the single spin demonstrates Gaussian

  6. Spin-polarized spin excitation spectroscopy

    International Nuclear Information System (INIS)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2010-01-01

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  7. Magnons, Spin Current and Spin Seebeck Effect

    Science.gov (United States)

    Maekawa, Sadamichi

    2012-02-01

    When metals and semiconductors are placed in a temperature gradient, the electric voltage is generated. This mechanism to convert heat into electricity, the so-called Seebeck effect, has attracted much attention recently as the mechanism for utilizing wasted heat energy. [1]. Ferromagnetic insulators are good conductors of spin current, i.e., the flow of electron spins [2]. When they are placed in a temperature gradient, generated are magnons, spin current and the spin voltage [3], i.e., spin accumulation. Once the spin voltage is converted into the electric voltage by inverse spin Hall effect in attached metal films such as Pt, the electric voltage is obtained from heat energy [4-5]. This is called the spin Seebeck effect. Here, we present the linear-response theory of spin Seebeck effect based on the fluctuation-dissipation theorem [6-8] and discuss a variety of the devices. [4pt] [1] S. Maekawa et al, Physics of Transition Metal Oxides (Springer, 2004). [0pt] [2] S. Maekawa: Nature Materials 8, 777 (2009). [0pt] [3] Concept in Spin Electronics, eds. S. Maekawa (Oxford University Press, 2006). [0pt] [4] K. Uchida et al., Nature 455, 778 (2008). [0pt] [5] K. Uchida et al., Nature Materials 9, 894 (2010) [0pt] [6] H. Adachi et al., APL 97, 252506 (2010) and Phys. Rev. B 83, 094410 (2011). [0pt] [7] J. Ohe et al., Phys. Rev. B (2011) [0pt] [8] K. Uchida et al., Appl. Phys. Lett. 97, 104419 (2010).

  8. Predicting Speech Intelligibility with a Multiple Speech Subsystems Approach in Children with Cerebral Palsy

    Science.gov (United States)

    Lee, Jimin; Hustad, Katherine C.; Weismer, Gary

    2014-01-01

    Purpose: Speech acoustic characteristics of children with cerebral palsy (CP) were examined with a multiple speech subsystems approach; speech intelligibility was evaluated using a prediction model in which acoustic measures were selected to represent three speech subsystems. Method: Nine acoustic variables reflecting different subsystems, and…

  9. On DESTINY Science Instrument Electrical and Electronics Subsystem Framework

    Science.gov (United States)

    Kizhner, Semion; Benford, Dominic J.; Lauer, Tod R.

    2009-01-01

    Future space missions are going to require large focal planes with many sensing arrays and hundreds of millions of pixels all read out at high data rates'' . This will place unique demands on the electrical and electronics (EE) subsystem design and it will be critically important to have high technology readiness level (TRL) EE concepts ready to support such missions. One such omission is the Joint Dark Energy Mission (JDEM) charged with making precise measurements of the expansion rate of the universe to reveal vital clues about the nature of dark energy - a hypothetical form of energy that permeates all of space and tends to increase the rate of the expansion. One of three JDEM concept studies - the Dark Energy Space Telescope (DESTINY) was conducted in 2008 at the NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland. This paper presents the EE subsystem framework, which evolved from the DESTINY science instrument study. It describes the main challenges and implementation concepts related to the design of an EE subsystem featuring multiple focal planes populated with dozens of large arrays and millions of pixels. The focal planes are passively cooled to cryogenic temperatures (below 140 K). The sensor mosaic is controlled by a large number of Readout Integrated Circuits and Application Specific Integrated Circuits - the ROICs/ASICs in near proximity to their sensor focal planes. The ASICs, in turn, are serviced by a set of "warm" EE subsystem boxes performing Field Programmable Gate Array (FPGA) based digital signal processing (DSP) computations of complex algorithms, such as sampling-up-the-ramp algorithm (SUTR), over large volumes of fast data streams. The SUTR boxes are supported by the Instrument Control/Command and Data Handling box (ICDH Primary and Backup boxes) for lossless data compression, command and low volume telemetry handling, power conversion and for communications with the spacecraft. The paper outlines how the JDEM DESTINY concept

  10. Managing the development of plant subsystems for a large international project

    International Nuclear Information System (INIS)

    Gurd, D.

    2012-01-01

    ITER is an international collaborative project under development by nations representing over one half of the world's population. Major components will be supplied by 'Domestic Agencies' representing the various participating countries. While the supervisory control system, known as CODAC, will be developed 'in fund' by the International Organization at the project site in the south of France, the EPICS and PLC-based plant control subsystems are to be developed and tested locally, where the subsystems themselves are being built. This is similar to the model used for the development of the Spallation Neutron Source, which was a US national collaboration. However the much more complex constraints of an international collaboration preclude the use of many specifics of the SNS collaboration approach. Moreover, procedures for final system integration and commissioning at ITER are not yet well defined. This paper will outline the particular issues either inherent in an international collaboration or specific to ITER, and will suggest approaches to mitigate those problems with the goal of assuring a successful and timely integration and commissioning phase. (author)

  11. Constructive episodic simulation of the future and the past: distinct subsystems of a core brain network mediate imagining and remembering.

    Science.gov (United States)

    Addis, Donna Rose; Pan, Ling; Vu, Mai-Anh; Laiser, Noa; Schacter, Daniel L

    2009-09-01

    Recent neuroimaging studies demonstrate that remembering the past and imagining the future rely on the same core brain network. However, findings of common core network activity during remembering and imagining events and increased activity during future event simulation could reflect the recasting of past events as future events. We experimentally recombined event details from participants' own past experiences, thus preventing the recasting of past events as imagined events. Moreover, we instructed participants to imagine both future and past events in order to disambiguate whether future-event-specific activity found in previous studies is related specifically to prospection or a general demand of imagining episodic events. Using spatiotemporal partial-least-squares (PLS), a conjunction contrast confirmed that even when subjects are required to recombine details into imagined events (and prevented from recasting events), significant neural overlap between remembering and imagining events is evident throughout the core network. However, the PLS analysis identified two subsystems within the core network. One extensive subsystem was preferentially associated with imagining both future and past events. This finding suggests that regions previously associated with future events, such as anterior hippocampus, medial prefrontal cortex and inferior frontal gyrus, support processes general to imagining events rather than specific to prospection. This PLS analysis also identified a subsystem, including hippocampus, parahippocampal gyrus and extensive regions of posterior visual cortex that was preferentially engaged when remembering past events rich in contextual and visuospatial detail.

  12. Systems and methods for an integrated electrical sub-system powered by wind energy

    Science.gov (United States)

    Liu, Yan [Ballston Lake, NY; Garces, Luis Jose [Niskayuna, NY

    2008-06-24

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  13. National Ignition Facility, subsystem design requirements beam control and laser diagnostics SSDR 1.7

    International Nuclear Information System (INIS)

    Bliss, E.

    1996-01-01

    This Subsystem Design Requirement document is a development specification that establishes the performance, design, development, and test requirements for the Alignment subsystem (WBS 1.7.1), Beam Diagnostics (WBS 1.7.2), and the Wavefront Control subsystem (WBS 1.7. 3) of the NIF Laser System (WBS 1.3). These three subsystems are collectively referred to as the Beam Control ampersand Laser Diagnostics Subsystem. The NIF is a multi-pass, 192-beam, high-power, neodymium-glass laser that meets requirements set forth in the NIF SDR 002 (Laser System). 3 figs., 3 tabs

  14. PREFACE: SPIN2010 - Preface for Conference Proceedings

    Science.gov (United States)

    Ströher, Hans; Rathmann, Frank

    2011-03-01

    SPIN2010, the 19th International Spin Physics Symposium, took place between 27 September and 2 October, 2010 on the campus of Forschungszentrum Jülich GmbH (FZJ) in Jülich, Germany. The scientific program of this Symposium included many topics related to spin phenomena in particle and nuclear physics as well as those in related fields. The International Spin Physics Symposium series has combined the High Energy Spin Symposia and the Nuclear Polarization Conferences since 2000. The most recent two Symposia were held in Virginia, USA (October 2008) and in Kyoto, Japan (October 2006). The meeting was opened by the chairman of the Board of Management of Jülich Forschungszentrum, Professor Achim Bachem, who cordially welcomed the participants from all over the world and gave a brief introduction to the Center and the research conducted there. The scientific program consisted of plenary sessions and parallel sessions and included the following topics: Fundamental symmetries and spin Spin structure of hadrons Spin physics beyond the Standard Model Spin in hadronic reactions Spin physics with photons and leptons Spin physics in nuclear reactions and nuclei Acceleration, storage, and polarimetry of polarized beams Polarized ion and lepton sources and targets Future facilities and experiments Medical and technological applications of spin physics The 6-day symposium had about 300 participants. In total 35 plenary talks (including 3 summaries of other spin physics meetings) and 163 contributed talks were given. The contents of many of these can be found in the present contributions, arranged according to the above topics and the time sequence. In addition, a public lecture on "Drall in der Quantenwelt", presented by H O Meyer (Bloomington) was received very well. Participants had the option to visit the Cooler synchrotron COSY at the Nuclear Physics Institute (IKP) and the 9.4 T MRT-PET hybrid scanner at the Institute of Neuroscience and Medicine (INM), two unique

  15. Spin-Mechatronics

    Science.gov (United States)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  16. A subsystem identification method based on the path concept with coupling strength estimation

    Science.gov (United States)

    Magrans, Francesc Xavier; Poblet-Puig, Jordi; Rodríguez-Ferran, Antonio

    2018-02-01

    For complex geometries, the definition of the subsystems is not a straightforward task. We present here a subsystem identification method based on the direct transfer matrix, which represents the first-order paths. The key ingredient is a cluster analysis of the rows of the powers of the transfer matrix. These powers represent high-order paths in the system and are more affected than low-order paths by damping. Once subsystems are identified, the proposed approach also provides a quantification of the degree of coupling between subsystems. This information is relevant to decide whether a subsystem may be analysed in a computer model or measured in the laboratory independently of the rest or subsystems or not. The two features (subsystem identification and quantification of the degree of coupling) are illustrated by means of numerical examples: plates coupled by means of springs and rooms connected by means of a cavity.

  17. Classical description of dynamical many-body systems with central forces, spin-orbit forces and spin-spin forces

    International Nuclear Information System (INIS)

    Goepfert, A.

    1994-01-01

    This thesis develops a new model, and related numerical methods, to describe classical time-dependent many-body systems interacting through central forces, spin-orbit forces and spin-spin forces. The model is based on two-particle interactions. The two-body forces consist of attractive and repulsive parts. In this model the investigated multi-particle systems are self-bound. Also the total potential of the whole ensemble is derived from the two-particle potential and is not imposed 'from outside'. Each particle has the three degrees of freedom of its centre-of-mass motion and the spin degree of freedom. The model allows for the particles to be either charged or uncharged. Furthermore, each particle has an angular momentum, an intrinsic spin, and a magnetic dipole moment. Through the electromagnetic forces between these charges and moments there arise dynamical couplings between them. The internal interactions between the charges and moments are well described by electromagnetic coupling mechanisms. In fact, compared to conventional classical molecular dynamics calculations in van der Waals clusters, which have no spin degrees of freedom, or for Heisenberg spin Systems, which have no orbital degrees of freedom, the model presented here contains both types of degrees of freedom with a highly non-trivial coupling. The model allows to study the fundamental effects resulting from the dynamical coupling of the spin and the orbital-motion sub-systems. In particular, the dynamics of the particle mass points show a behaviour basically different from the one of particles in a potential with only central forces. Furthermore, a special type of quenching procedure was invented, which tends to drive the multi-particle Systems into states with highly periodic, non-ergodic behaviour. Application of the model to cluster simulations has provided evidence that the model can also be used to investigate items like solid-to-liquid phase transitions (melting), isomerism and specific heat

  18. Two-dimensional spin diffusion in multiterminal lateral spin valves

    Science.gov (United States)

    Saha, D.; Basu, D.; Holub, M.; Bhattacharya, P.

    2008-01-01

    The effects of two-dimensional spin diffusion on spin extraction in lateral semiconductor spin valves have been investigated experimentally and theoretically. A ferromagnetic collector terminal of variable size is placed between the ferromagnetic electron spin injector and detector of a conventional lateral spin valve for spin extraction. It is observed that transverse spin diffusion beneath the collector terminal plays an important role along with the conventional longitudinal spin diffusion in describing the overall transport of spin carriers. Two-dimensional spin diffusion reduces the perturbation of the channel electrochemical potentials and improves spin extraction.

  19. Development of the CsI Calorimeter Subsystem for AMEGO

    Science.gov (United States)

    Grove, J. Eric; Woolf, Richard; Johnson, W. Neil; Phlips, Bernard

    2018-01-01

    We report on the development of the thallium-doped cesium iodide (CsI:Tl) calorimeter subsystem for the All-Sky Medium-Energy Gamma-ray Observatory (AMEGO). The CsI calorimeter is one of the three main subsystems that comprise the AMEGO instrument suite; the others include the double-sided silicon strip detector (DSSD) tracker/converter and a cadmium zinc telluride (CZT) calorimeter. Similar to the LAT instrument on Fermi, the hodoscopic calorimeter consists of orthogonally layered CsI bars. Unlike the LAT, which uses PIN photodiodes, the scintillation light readout from each end of the CsI bar is done with recently developed large-area silicon photomultiplier (SiPM) arrays. We currently have an APRA program to develop the calorimeter technology for a larger, future space-based gamma-ray observatory. Under this program, we are building and testing a prototype calorimeter consisting of 24 CsI bars (16.7 mm x 16.7 mm x 100 mm) arranged in 4 layers with 6 bars per layer. The ends of each bar are read out with a 2 x 2 array of 6 mm x 6 mm SensL J series SiPMs. Signal readout and processing is done with the IDEAS SIPHRA (IDE3380) ASIC. Performance testing of this prototype will be done with laboratory sources, a beam test, and a balloon flight in conjunction with the other subsystems led by NASA GSFC. Additionally, we will test 16.7 mm x 16.7 mm x 450 mm CsI bars with SiPM readout to understand the performance of longer bars in advance of the developing the full instrument.Acknowledgement: This work was sponsored by the Chief of Naval Research (CNR) and NASA-APRA (NNH15ZDA001N-APRA).

  20. Architecture of the software for LAMOST fiber positioning subsystem

    Science.gov (United States)

    Peng, Xiaobo; Xing, Xiaozheng; Hu, Hongzhuan; Zhai, Chao; Li, Weimin

    2004-09-01

    The architecture of the software which controls the LAMOST fiber positioning sub-system is described. The software is composed of two parts as follows: a main control program in a computer and a unit controller program in a MCS51 single chip microcomputer ROM. And the function of the software includes: Client/Server model establishment, observation planning, collision handling, data transmission, pulse generation, CCD control, image capture and processing, and data analysis etc. Particular attention is paid to the ways in which different parts of the software can communicate. Also software techniques for multi threads, SOCKET programming, Microsoft Windows message response, and serial communications are discussed.

  1. Data Management Applications for the Service Preparation Subsystem

    Science.gov (United States)

    Luong, Ivy P.; Chang, George W.; Bui, Tung; Allen, Christopher; Malhotra, Shantanu; Chen, Fannie C.; Bui, Bach X.; Gutheinz, Sandy C.; Kim, Rachel Y.; Zendejas, Silvino C.; hide

    2009-01-01

    These software applications provide intuitive User Interfaces (UIs) with a consistent look and feel for interaction with, and control of, the Service Preparation Subsystem (SPS). The elements of the UIs described here are the File Manager, Mission Manager, and Log Monitor applications. All UIs provide access to add/delete/update data entities in a complex database schema without requiring technical expertise on the part of the end users. These applications allow for safe, validated, catalogued input of data. Also, the software has been designed in multiple, coherent layers to promote ease of code maintenance and reuse in addition to reducing testing and accelerating maturity.

  2. Bistatic passive radar simulator with spatial filtering subsystem

    Science.gov (United States)

    Hossa, Robert; Szlachetko, Boguslaw; Lewandowski, Andrzej; Górski, Maksymilian

    2009-06-01

    The purpose of this paper is to briefly introduce the structure and features of the developed virtual passive FM radar implemented in Matlab system of numerical computations and to present many alternative ways of its performance. An idea of the proposed solution is based on analytic representation of transmitted direct signals and reflected echo signals. As a spatial filtering subsystem a beamforming network of ULA and UCA dipole configuration dedicated to bistatic radar concept is considered and computationally efficient procedures are presented in details. Finally, exemplary results of the computer simulations of the elaborated virtual simulator are provided and discussed.

  3. Information measuring subsystem oil pumping station “Parabel”

    Directory of Open Access Journals (Sweden)

    Nyashina Galina S.

    2014-01-01

    Full Text Available Information-measurement subsystem oil pumping station (OPS “Parabel”, located on the site of the main pipeline “Alexandrov-Anzhero” (OJSC “AK” Transneft "”. Developed on the basis of a modern microprocessor equipment, automation, as well as high-speed digital data channels. The simple solution to meet the requirements set out in the guidance document "Automation and remote control of trunk pipelines. «General provisions» (RD-35.240.0000-KTN-207-08.

  4. The New York Public Library Automated Book Catalog Subsystem

    Directory of Open Access Journals (Sweden)

    S. Michael Malinconico

    1973-03-01

    Full Text Available A comprehensive automated bibliographic control system has been developed by the New York Public Library. This system is unique in its use of an automated authority system and highly sophisticated machine filing algorithms. The primary aim was the rigorous control of established forms and their cross-reference structure. The original impetus for creation of the system, and its most highly visible product, is a photocomposed book catalog. The book catalog subsystem supplies automatic punctuation of condensed entries and contains the ability to pmduce cumulation/ supplement book catalogs in installments without loss of control of the crossreferencing structure.

  5. Electric and hybrid vehicle environmental control subsystem study

    Science.gov (United States)

    Heitner, K. L.

    1980-01-01

    An environmental control subsystem (ECS) in electric and hybrid vehicles is studied. A combination of a combustion heater and gasoline engine (Otto cycle) driven vapor compression air conditioner is selected. The combustion heater, the small gasoline engine, and the vapor compression air conditioner are commercially available. These technologies have good cost and performance characteristics. The cost for this ECS is relatively close to the cost of current ECS's. Its effect on the vehicle's propulsion battery is minimal and the ECS size and weight do not have significant impact on the vehicle's range.

  6. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  7. Spin at Lausanne

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    From 25 September to 1 October, some 150 spin enthusiasts gathered in Lausanne for the 1980 International Symposium on High Energy Physics with Polarized Beams and Polarized Targets. The programme was densely packed, covering physics interests with spin as well as the accelerator and target techniques which make spin physics possible

  8. Spin-torque transistor

    NARCIS (Netherlands)

    Bauer, G.E.W.; Brataas, A.; Tserkovnyak, Y.; Van Wees, B.J.

    2003-01-01

    A magnetoelectronic thin-film transistor is proposed that can display negative differential resistance and gain. The working principle is the modulation of the soure–drain current in a spin valve by the magnetization of a third electrode, which is rotated by the spin-torque created by a control spin

  9. Revealing electronic open quantum systems with subsystem TDDFT.

    Science.gov (United States)

    Krishtal, Alisa; Pavanello, Michele

    2016-03-28

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.

  10. Optimisation study of a vehicle bumper subsystem with fuzzy parameters

    Science.gov (United States)

    Farkas, L.; Moens, D.; Donders, S.; Vandepitte, D.

    2012-10-01

    This paper deals with the design and optimisation for crashworthiness of a vehicle bumper subsystem, which is a key scenario for vehicle component design. The automotive manufacturers and suppliers have to find optimal design solutions for such subsystems that comply with the conflicting requirements of the regulatory bodies regarding functional performance (safety and repairability) and regarding the environmental impact (mass). For the bumper design challenge, an integrated methodology for multi-attribute design engineering of mechanical structures is set up. The integrated process captures the various tasks that are usually performed manually, this way facilitating the automated design iterations for optimisation. Subsequently, an optimisation process is applied that takes the effect of parametric uncertainties into account, such that the system level of failure possibility is acceptable. This optimisation process is referred to as possibility-based design optimisation and integrates the fuzzy FE analysis applied for the uncertainty treatment in crash simulations. This process is the counterpart of the reliability-based design optimisation used in a probabilistic context with statistically defined parameters (variabilities).

  11. Subsystem eigenstate thermalization hypothesis for entanglement entropy in CFT

    Science.gov (United States)

    He, Song; Lin, Feng-Li; Zhang, Jia-ju

    2017-08-01

    We investigate a weak version of subsystem eigenstate thermalization hypothesis (ETH) for a two-dimensional large central charge conformal field theory by comparing the local equivalence of high energy state and thermal state of canonical ensemble. We evaluate the single-interval Rényi entropy and entanglement entropy for a heavy primary state in short interval expansion. We verify the results of Rényi entropy by two different replica methods. We find nontrivial results at the eighth order of short interval expansion, which include an infinite number of higher order terms in the large central charge expansion. We then evaluate the relative entropy of the reduced density matrices to measure the difference between the heavy primary state and thermal state of canonical ensemble, and find that the aforementioned nontrivial eighth order results make the relative entropy unsuppressed in the large central charge limit. By using Pinsker's and Fannes-Audenaert inequalities, we can exploit the results of relative entropy to yield the lower and upper bounds on trace distance of the excited-state and thermal-state reduced density matrices. Our results are consistent with subsystem weak ETH, which requires the above trace distance is of power-law suppression by the large central charge. However, we are unable to pin down the exponent of power-law suppression. As a byproduct we also calculate the relative entropy to measure the difference between the reduced density matrices of two different heavy primary states.

  12. APPLICATION OF SUBSYSTEMS CHANGE RANKING METHODOLOGY IN AIRCRAFT REDESIGN PROCESS

    Directory of Open Access Journals (Sweden)

    Fairuz Izzuddin Romli

    2011-12-01

    Full Text Available Redesigning an aircraft is hardly a straightforward task. Due to its high susceptibility to change effects propagation, it becomes very important to select the right initiating change components to minimize redesign development risks. With realization that there are often several different ways to redesign an existing aircraft for satisfying similar requirements, designers might require assistance in selecting suitable initiating change components in their redesign plan. A methodology that systematically ranks the subsystems of the chosen baseline design according to their estimated redesign risk is proposed here. It is strongly believed that making this information available to designers during the early redesign stages will help them to make a better redesign plan. KEY WORDS: subsystems ranking, aircraft redesign, redesign plan ABSTRAK: Reka semula sesebuah pesawat udara bukanlah satu tugas yang jelas dan mudah. Memandangkan ia mudah rentan terhadap perubahan rambatan, amatlah penting untuk memilih penukaran komponen yang sesuai pada peringkat awal untuk mengurangkan masalah pembangunan reka semula. Menyedari bahawa terdapat beberapa cara untuk mereka semula pesawat udara yang sedia ada, demi memperolehi keputusan keperluan yang serupa dan memberansangkan, pereka wajar mendapatkan bantuan dari segi penukaran komponen yang sesuai pada peringkat awal pembangunan reka semula yang menepati rangka pelan reka bentuk mereka. Metodologi yang sistematik meletakkan subsistem dasar reka bentuk yang dipilih, berdasarkan anggaran risiko reka bentuk semula dicadangkan di dalam kertas kerja ini. Adalah diyakini bahawa dengan memperolehi informasi ini di peringkat permulaan reka bentuk, ia dapat menolong pereka merangka pelan reka cipta yang lebih baik.

  13. On the subsystem formulation of linear-response time-dependent DFT.

    Science.gov (United States)

    Pavanello, Michele

    2013-05-28

    A new and thorough derivation of linear-response subsystem time-dependent density functional theory (TD-DFT) is presented and analyzed in detail. Two equivalent derivations are presented and naturally yield self-consistent subsystem TD-DFT equations. One reduces to the subsystem TD-DFT formalism of Neugebauer [J. Chem. Phys. 126, 134116 (2007)]. The other yields Dyson type equations involving three types of subsystem response functions: coupled, uncoupled, and Kohn-Sham. The Dyson type equations for subsystem TD-DFT are derived here for the first time. The response function formalism reveals previously hidden qualities and complications of subsystem TD-DFT compared with the regular TD-DFT of the supersystem. For example, analysis of the pole structure of the subsystem response functions shows that each function contains information about the electronic spectrum of the entire supersystem. In addition, comparison of the subsystem and supersystem response functions shows that, while the correlated response is subsystem additive, the Kohn-Sham response is not. Comparison with the non-subjective partition DFT theory shows that this non-additivity is largely an artifact introduced by the subjective nature of the density partitioning in subsystem DFT.

  14. Spin physics in semiconductors

    CERN Document Server

    2017-01-01

    This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.

  15. Interrater and Test-Retest Reliability and Minimal Detectable Change of the Balance Evaluation Systems Test (BESTest) and Subsystems With Community-Dwelling Older Adults.

    Science.gov (United States)

    Wang-Hsu, Elizabeth; Smith, Susan S

    2017-01-10

    Falls are a common cause of injuries and hospital admissions in older adults. Balance limitation is a potentially modifiable factor contributing to falls. The Balance Evaluation Systems Test (BESTest), a clinical balance measure, categorizes balance into 6 underlying subsystems. Each of the subsystems is scored individually and summed to obtain a total score. The reliability of the BESTest and its individual subsystems has been reported in patients with various neurological disorders and cancer survivors. However, the reliability and minimal detectable change (MDC) of the BESTest with community-dwelling older adults have not been reported. The purposes of our study were to (1) determine the interrater and test-retest reliability of the BESTest total and subsystem scores; and (2) estimate the MDC of the BESTest and its individual subsystem scores with community-dwelling older adults. We used a prospective cohort methodological design. Community-dwelling older adults (N = 70; aged 70-94 years; mean = 85.0 [5.5] years) were recruited from a senior independent living community. Trained testers (N = 3) administered the BESTest. All participants were tested with the BESTest by the same tester initially and then retested 7 to 14 days later. With 32 of the participants, a second tester concurrently scored the retest for interrater reliability. Testers were blinded to each other's scores. Intraclass correlation coefficients [ICC(2,1)] were used to determine the interrater and test-retest reliability. Test-retest reliability was also analyzed using method error and the associated coefficients of variation (CVME). MDC was calculated using standard error of measurement. Interrater reliability (N = 32) of the BESTest total score was ICC(2, 1) = 0.97 (95% confidence interval [CI], 0.94-0.99). The ICCs for the individual subsystem scores ranged from 0.85 to 0.94. Test-retest reliability (N = 70) of the BESTest total score was ICC(2,1) = 0.93 (95% CI, 0.89-0.96). ICCs for the

  16. Internet use during childhood and the ecological techno-subsystem

    Directory of Open Access Journals (Sweden)

    Genevieve Marie Johnson

    2008-12-01

    Full Text Available Research findings suggest both positive and negative developmental consequences of Internet use during childhood (e.g., playing video games have been associated with enhanced visual skills as well as increased aggression. Several studies have concluded that environmental factors mediate the developmental impact of childhood online behaviour. From an ecological perspective, we propose the techno-subsystem, a dimension of the microsystem (i.e., immediate environments. The techno-subsystem includes child interaction with both living (e.g., peers and nonliving (e.g., hardware elements of communication, information, and recreation technologies in direct environments. By emphasizing the role of technology in child development, the ecological techno-subsystem encourages holistic exploration of the developmental consequences of Internet use (and future technological advances during childhood. L’usage d’Internet chez les enfants et le sous-système Techno écologique Résumé : Les résultats de recherche semblent indiquer que l’usage d’Internet chez les enfants aurait des conséquences développementales qui soit à la fois positives et négatives (ex. : l’usage des jeux vidéo auraient été associés à un accroissement des habileté visuelles ainsi qu’à un accroissement de l’agressivité. Plusieurs études ont aussi conclue que l’impact du comportement des enfants quand il sont en ligne sur leur développement serait affecté par des facteurs environnementaux. Dans une perspective écologique, nous proposons le sous-système Techno, une dimension du microsystème (ex :. les environnements immédiats. Le sous-système Techno comprend l’interaction de l’enfant avec des éléments vivants (e. : les paires et non vivants (ex; les ordinateurs de communication, d’information et de technologie de jeux dans des environnements directes.

  17. A development and integration analysis of commercial and in-house control subsystems

    International Nuclear Information System (INIS)

    Moore, D.M.; Dalesio, L.R.

    1998-01-01

    The acquisition and integration of commercial automation and control subsystems in physics research is becoming more common. It is presumed these systems present lower risk and less cost. This paper studies four subsystems used in the Accelerator Production of Tritium (APT) Low Energy Demonstration Accelerator (LEDA) at the Los Alamos National Laboratory (LANL). The radio frequency quadrupole (RFQ) resonance-control cooling subsystem (RCCS), the high-power RF subsystem and the RFQ vacuum subsystem were outsourced; the low-level RF (LLRF) subsystem was developed in-house. Based on the authors experience a careful evaluation of the costs and risks in acquisition, implementation, integration, and maintenance associated with these approaches is given

  18. The Main Subsystems Involved in Defining the Quality Management System in a Hospital

    OpenAIRE

    Dobrea Valentina Alina

    2010-01-01

    The hospital is the most important organization in health field, so they have to improve the quality in all the activities deployed. A very suitable way to show the hospital’s preoccupation for quality of health services is the quality management system certificate according ISO 9001/2000. In understanding the architecture of the hospital quality management system is necessary to decompose this system in subsystems and analyze each separately: the managerial subsystem, the human subsystem, th...

  19. Stabilization of Long-Range Order by Additional Anisotropic Spins in Two-Dimensional Isotropic Heisenberg Antiferromagnets —A Possible Model of an Organic Compound with Magnetic Anions—

    Science.gov (United States)

    Shimahara, Hiroshi; Ito, Kazuhiro

    2014-11-01

    We examine a two-dimensional (2D) coupled antiferromagnetic (AF) Heisenberg model that consists of two subsystems: an isotropic S = 1/2 spin subsystem with strong AF exchange interactions (main system), and a uniaxial S = 5/2 spin subsystem with weak exchange interactions. This model is an example in which additional semiclassical degrees of freedom affect a quantum system; it also describes a possible stabilization mechanism of AF long-range order (LRO) in the 2D organic compound λ-(BETS)2FeCl4, where BETS stands for bis(ethylenedithio)tetraselenafulvalene. Previous experimental studies have revealed that 3d spins on FeCl4 anions passively follow the AF LRO of the π-electron system in the BETS layers, although the AF LRO is stabilized by the 3d spins themselves. To explain this paradoxical behavior, we examine a scenario in which the uniaxial anisotropy of the 3d spins stabilizes the AF LRO on an isotropic 2D π-spin system. We extend Green's function theory, called the Tyablikov approximation, to the present system, which describes spin-wave excitations and is consistent with the Mermin-Wagner theorem. It is shown that even extremely weak interactions with the uniaxial subsystem efficiently stabilize the AF LRO in the main system, even in the absence of AF exchange interactions in the uniaxial subsystem. The AF LRO is triggered by the uniaxial subsystem, but the sublattice magnetization remains smaller than that of the main system in the high-temperature region. These results are consistent with experimental data for λ-(BETS)2FeCl4 and λ-(BETS)2GaCl4; the latter does not have the 3d spins and does not exhibit the AF LRO.

  20. Analysis of subsystems in wavelength-division-multiplexing networks

    DEFF Research Database (Denmark)

    Liu, Fenghai

    2001-01-01

    Wavelength division multiplexing (WDM) technology together with optical amplification has created a new era for optical communication. Transmission capacity is greatly increased by adding more and more wavelength channels into a single fiber, as well as by increasing the line rate of each channel....... WDM not only can be used to increase transmission capacity, but also to introduce a new dimension to design and implement flexible, reliable, cost effective optical networks. Optical signals may pass through several nodes in the optical network without being terminated and converted into an electrical...... signal. The impairments from the subsystems in an optical network, such as interferometric crosstalk, filtering effect, dispersion in optical components, fiber dispersion and non-linearity, will accumulate and degrade the signal, hence limit the size of the network. Therefore, the study...

  1. Progress report for the scintillator plate calorimeter subsystem

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report covers the work completed in FY90 by ANL staff and those of Westinghouse STC and BICRON Corporation under subcontract to ANL towards the design of a compensating calorimeter based on the use of scintillator plate as the sensitive medium. It is presented as five task sections dealing with respectively mechanical design; simulation studies; optical system design; electronics development; development of rad hard plastic scintillator and wavelength shifter and a summary. The work carried out by the University of Tennessee under a subcontract from ANL is reported separately. Finally, as principal institution with responsibility for the overall management of this subsystem effort, the summary here reports the conclusions resulting from the work of the collaboration and their impact on our proposed direction of effort in FY91. This proposal, for obvious reasons is given separately.

  2. Design and construction of the 'Solar One' thermal storage subsystem

    Science.gov (United States)

    Friefeld, J. M.; Moore, A. E.; Morgan, G. R.

    The Solar One solar tower power plant thermal storage subsystem for generation during clouded periods and in the evening is detailed. A sensible heat storage technique was selected from various candidates, and consists of a low-cost, stationary rock bed. Charging proceeds by pumping the lower temperature heat transfer fluid (Caloria HT 43) from the bottom of the bed, routing it through a heat exchanger to gain thermal energy from the receiver steam, and returning the fluid to the top of the tank. Temperatures in the tank are maintained at 425-575 F with a pressure of 1465 psia. Design goals include a 148 MWt storage, with a capacity to alloy 7 MWe generation for 4 hr. The tank is 63 ft in diam, 44 ft tall, and contains granite rocks and sand. The flow rate can be varied by a factor of 20 through the use of variable speed pumps. Shakedown tests were being run in 1982.

  3. Mid Infrared Instrument cooler subsystem test facility overview

    Science.gov (United States)

    Moore, B.; Zan, J.; Hannah, B.; Chui, T.; Penanen, K.; Weilert, M.

    2017-12-01

    The Cryocooler for the Mid Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST) provides cooling at 6.2K on the instrument interface. The cooler system design has been incrementally documented in previous publications [1][2][3][4][5]. It has components that traverse three primary thermal regions on JWST: Region 1, approximated by 40K; Region 2, approximated by 100K; and Region 3, which is at the allowable flight temperatures for the spacecraft bus. However, there are several sub-regions that exist in the transition between primary regions and at the heat reject interfaces of the Cooler Compressor Assembly (CCA) and Cooler Control Electronics Assembly (CCEA). The design and performance of the test facility to provide a flight representative thermal environment for acceptance testing and characterization of the complete MIRI cooler subsystem are presented.

  4. SSC detector muon sub-system beam tests

    International Nuclear Information System (INIS)

    Downing, R.; Errede, S.; Gauthier, A.; Haney, M.; Karliner, I.; Liss, T.; O'Halloran, T.; Sheldon, P.; Simiatis, V.; Thaler, J.; Wiss, J.; Kunori, S.; Skuja, A.; Davisson, R.; Liang, G.; Lubatti, H.; Wilkes, R.; Zhao, T.; Carlsmith, D.

    1993-01-01

    We propose to start a test-beam experiment at Fermilab studying the problems associated with tracking extremely high energy muons through absorbers. We anticipate that in this energy range the observation of the muons will be complicated by associated electromagnetic radiation Monte Carlo simulations of this background need to be tuned by direct observations. These beam tests are essential to determine important design parameters of a SSC muon detector, such as the choice of the tracking, geometry, hardware triggering schemes, the number of measuring stations, the amount of iron between measuring stations, etc. We intend to begin the first phase of this program in November of 1990 utilizing the Tevatron muon beam. We plan to measure the multiplicity, direction, and separation of secondary particles associated with the primary muon track as it emerges from an absorber. The second phase of beam test in 1992 or later will be a full scale test for the final design chosen in our muon subsystem proposal

  5. Fragmented network subsystem with traffic filtering for microkernel environment

    Directory of Open Access Journals (Sweden)

    Anna Urievna Budkina

    2016-06-01

    Full Text Available The TCP/IP stack in a microkernel operating system executed in a user space, which requires the development of a distributed network infrastructure within a single software environment. Its functions are the organization of interaction between the components of the stack with different processes, as well as the organization of filtering mechanisms and routing of internal network traffic. Use of architectural approaches applicable in monolithic-modular systems is impossible, because the network stack is not a shareable component of the system. As a consequence, the microkernel environment requires development of special network subsystem. In this work we provide overview of major conceptions of network architectures in microkernel environments. Also, we provide own architecture which supports filtering of internal network traffic. We evaluate the architecture by development of high-performance "key-value" store.

  6. An inverter/controller subsystem optimized for photovoltaic applications

    Science.gov (United States)

    Pickrell, R. L.; Merrill, W. C.; Osullivan, G.

    1978-01-01

    Conversion of solar array dc power to ac power stimulated the specification, design, and simulation testing of an inverter/controller subsystem tailored to the photovoltaic power source characteristics. This paper discusses the optimization of the inverter/controller design as part of an overall Photovoltaic Power System (PPS) designed for maximum energy extraction from the solar array. The special design requirements for the inverter/controller include: (1) a power system controller (PSC) to control continuously the solar array operating point at the maximum power level based on variable solar insolation and cell temperatures; and (2) an inverter designed for high efficiency at rated load and low losses at light loadings to conserve energy. It must be capable of operating connected to the utility line at a level set by an external controller (PSC).

  7. LightNVM: The Linux Open-Channel SSD Subsystem

    DEFF Research Database (Denmark)

    Bjørling, Matias; Gonzalez, Javier; Bonnet, Philippe

    2017-01-01

    resource utilization. We propose that SSD management trade-offs should be handled through Open-Channel SSDs, a new class of SSDs, that give hosts control over their internals. We present our experience building LightNVM, the Linux Open-Channel SSD subsystem. We introduce a new Physical Page Ad- dress I....../O interface that exposes SSD parallelism and storage media characteristics. LightNVM integrates into traditional storage stacks, while also enabling storage engines to take advantage of the new I/O interface. Our experimental results demonstrate that LightNVM has modest host overhead, that it can be tuned...... to limit read latency variability and that it can be customized to achieve predictable I/O latencies....

  8. Muon spin relaxation in random spin systems

    International Nuclear Information System (INIS)

    Toshimitsu Yamazaki

    1981-01-01

    The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)

  9. Functional Performance of an Enabling Atmosphere Revitalization Subsystem Architecture for Deep Space Exploration Missions

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Frederick, Kenneth R.; Greenwood, Zachary W.; Kayatin, Matthew J.; Newton, Robert L.; Parrish, Keith J.; Roman, Monsi C.; Takada, Kevin C.; Miller, Lee A.; hide

    2013-01-01

    A subsystem architecture derived from the International Space Station's (ISS) Atmosphere Revitalization Subsystem (ARS) has been functionally demonstrated. This ISS-derived architecture features re-arranged unit operations for trace contaminant control and carbon dioxide removal functions, a methane purification component as a precursor to enhance resource recovery over ISS capability, operational modifications to a water electrolysis-based oxygen generation assembly, and an alternative major atmospheric constituent monitoring concept. Results from this functional demonstration are summarized and compared to the performance observed during ground-based testing conducted on an ISS-like subsystem architecture. Considerations for further subsystem architecture and process technology development are discussed.

  10. Solar Pilot Plant, Phase I. Preliminary design report. Volume V. Thermal storage subsystem. CDRL item 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    Design, specifications, and diagrams for the thermal storage subsystem for the 10-MW pilot tower focus power plant are presented in detail. The Honeywell thermal storage subsystem design features a sensible heat storage arrangement using proven equipment and materials. The subsystem consists of a main storage containing oil and rock, two buried superheater tanks containing inorganic salts (Hitec), and the necessary piping, instrumentation, controls, and safety devices. The subsystem can provide 7 MW(e) for three hours after twenty hours of hold. It can be charged in approximately four hours. Storage for the commercial-scale plant consists of the same elements appropriately scaled up. Performance analysis and tradeoff studies are included.

  11. Impact of Disorder on Spin Dependent Transport Phenomena

    KAUST Repository

    Saidaoui, Hamed

    2016-07-03

    spin-orbit coupling. In both cases, we demonstrated that the torque is much more robust against impurities, which opens appealing venues for its experimental observation. Extrinsic spin-orbit coupled systems - In disordered metals accommodating spin orbit coupled impurities, it is well-known that spin Hall effect emerges due to spin dependent Mott scattering. Following a recent prediction, we showed that another effect coexists: the spin swapping effect, that converts an incoming spin current into another spin current by "swapping" the momentum and spin directions. We showed that this effect can generate peculiar spin torque in ultrathin magnetic bilayers. Semiconductors spintronics - This last field of research has attracted a massive amount of hope in the past fifteen years, due to the ability of coherently manipulating the spin degree of freedom through interfacial, so-called Rashba, spin-orbit coupling. However, numerical simulations failed reproducing experimental results due to coherent interferences between the very large number of modes present in the system. We showed that spin-independent disorder can actually wash out these interferences and promote the conservation of the spin signal. In the course of this PhD, we showed that while disorder-induced dephasing is usually detrimental to the transmission of spin information, in selected situation, it can actually promote spin transport mechanisms and participate to the enhancement of the desired spintronics phenomenon.

  12. The susceptibilities in the spin-S Ising model

    International Nuclear Information System (INIS)

    Ainane, A.; Saber, M.

    1995-08-01

    The susceptibilities of the spin-S Ising model are evaluated using the effective field theory introduced by Tucker et al. for studying general spin-S Ising model. The susceptibilities are studied for all spin values from S = 1/2 to S = 5/2. (author). 12 refs, 4 figs

  13. Spin caloritronics in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Angsula; Frota, H. O. [Department of Physics, Federal University of Amazonas, Av. Rodrigo Octavio 3000-Japiim, 69077-000 Manaus, AM (Brazil)

    2015-06-14

    Spin caloritronics, the combination of spintronics with thermoelectrics, exploiting both the intrinsic spin of the electron and its associated magnetic moment in addition to its fundamental electronic charge and temperature, is an emerging technology mainly in the development of low-power-consumption technology. In this work, we study the thermoelectric properties of a Rashba dot attached to two single layer/bilayer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current, which depends on the temperature and chemical potential. We demonstrate that the Rashba dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature, and also the Rashba term have been observed.

  14. Spin caloritronics in graphene

    Science.gov (United States)

    Frota, H. O.; Ghosh, Angsula

    2014-08-01

    Spin caloritronics, the combination of spintronics with thermoelectrics, based on spin and heat transport has attracted a great attention mainly in the development of low-power-consumption technology. In this work we study the thermoelectric properties of a quantum dot attached to two single layer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current which depends on the temperature and chemical potential. We demonstrate that the quantum dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature and also the Coulomb repulsion due to the double occupancy of an energy level have been observed.

  15. Investigation of Liquid Sloshing in Spin-Stabilized Satellites.

    Science.gov (United States)

    1993-01-31

    of minimum moment of inertia include a spinning top or a The INTELSAT IV communications satellite also expert- football . However, systems containing a...result in the veiocity square term as :’ H "A. r" r0,, q Ia Cte & W’w :zI - - t’G, ~q.) -0.5,2 20iO,,~ - %ll[t -i::.:O, , 3v defining the following...expressed in matrix form is first gie algorithm. In the time integration of structure- media problems.mapped to a subsystem in which the specified

  16. Spin and Maximal Acceleration

    Directory of Open Access Journals (Sweden)

    Giorgio Papini

    2017-12-01

    Full Text Available We study the spin current tensor of a Dirac particle at accelerations close to the upper limit introduced by Caianiello. Continual interchange between particle spin and angular momentum is possible only when the acceleration is time-dependent. This represents a stringent limit on the effect that maximal acceleration may have on spin physics in astrophysical applications. We also investigate some dynamical consequences of maximal acceleration.

  17. Spin Hall effect devices

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Wunderlich, Joerg; Olejník, Kamil

    2012-01-01

    Roč. 11, č. 5 (2012), s. 382-390 ISSN 1476-1122 EU Projects: European Commission(XE) 268066 - 0MSPIN; European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 35.749, year: 2012

  18. Spin coating apparatus

    Science.gov (United States)

    Torczynski, John R.

    2000-01-01

    A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.

  19. A controllable spin prism

    International Nuclear Information System (INIS)

    Hakioglu, T

    2009-01-01

    Based on Khodas et al (2004 Phys. Rev. Lett. 92 086602), we propose a device acting like a controllable prism for an incident spin. The device is a large quantum well where Rashba and Dresselhaus spin-orbit interactions are present and controlled by the plunger gate potential, the electric field and the barrier height. A totally destructive interference can be manipulated externally between the Rashba and Dresselhaus couplings. The spin-dependent transmission/reflection amplitudes are calculated as the control parameters are changed. The device operates as a spin prism/converter/filter in different regimes and may stimulate research in promising directions in spintronics in analogy with linear optics.

  20. Quantum spin Hall phases

    International Nuclear Information System (INIS)

    Murakami, Shuichi

    2009-01-01

    We review our recent theoretical works on the quantum spin Hall effect. First we compare edge states in various 2D systems, and see whether they are robust or fragile against perturbations. Through the comparisons we see the robust nature of edge states in 2D quantum spin Hall phases. We see how it is protected by the Z 2 topological number, and reveal the nature of the Z 2 topological number by studying the phase transition between the quantum spin Hall and insulator phases. We also review our theoretical proposal of the ultrathin bismuth film as a candidate to the 2D quantum spin Hall system. (author)

  1. PREFACE: Spin Electronics

    Science.gov (United States)

    Dieny, B.; Sousa, R.; Prejbeanu, L.

    2007-04-01

    Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic

  2. Local Noncollinear Spin Analysis.

    Science.gov (United States)

    Abate, Bayileyegn A; Joshi, Rajendra P; Peralta, Juan E

    2017-12-12

    In this work, we generalize the local spin analysis of Clark and Davidson [J. Chem. Phys. 2001 115 (16), 7382] for the partitioning of the expectation value of the molecular spin square operator, ⟨Ŝ 2 ⟩, into atomic contributions, ⟨Ŝ A ·Ŝ B ⟩, to the noncollinear spin case in the framework of density functional theory (DFT). We derive the working equations, and we show applications to the analysis of the noncollinear spin solutions of typical spin-frustrated systems and to the calculation of magnetic exchange couplings. In the former case, we employ the triangular H 3 He 3 test molecule and a Mn 3 complex to show that the local spin analysis provides additional information that complements the standard one-particle spin population analysis. For the calculation of magnetic exchange couplings, J AB , we employ the local spin partitioning to extract ⟨Ŝ A ·Ŝ B ⟩ as a function of the interatomic spin orientation given by the angle θ. This, combined with the dependence of the electronic energy with θ, provides a methodology to extract J AB from DFT calculations that, in contrast to conventional energy differences based methods, does not require the use of ad hoc S A and S B values.

  3. Spin glasses (II)

    International Nuclear Information System (INIS)

    Fischer, K.H.

    1985-01-01

    Experimental results of spin glass studies are reviewed and related to existing theories. Investigations of spin glasses are concentrated on atomic structure, metallurgical treatment, and high-temperature susceptibility of alloys, on magnetic properties at low temperature and near the freezing temperature, on anisotropy behaviour measured by ESR, NMR and torque, on specific heat, Moessbauer effect, neutron scattering and muon-spin depolarization experiments, ultrasound and transport properties. Some new theories of spin glasses are discussed which have been developed since Part I appeared

  4. Thermal Entanglement in XXZ Heisenberg Model for Coupled Spin-Half and Spin-One Triangular Cell

    Science.gov (United States)

    Najarbashi, Ghader; Balazadeh, Leila; Tavana, Ali

    2018-01-01

    In this paper, we investigate the thermal entanglement of two-spin subsystems in an ensemble of coupled spin-half and spin-one triangular cells, (1/2, 1/2, 1/2), (1/2, 1, 1/2), (1, 1/2, 1) and (1, 1, 1) with the XXZ anisotropic Heisenberg model subjected to an external homogeneous magnetic field. We adopt the generalized concurrence as the measure of entanglement which is a good indicator of the thermal entanglement and the critical points in the mixed higher dimensional spin systems. We observe that in the near vicinity of the absolute zero, the concurrence measure is symmetric with respect to zero magnetic field and changes abruptly from a non-null to null value for a critical magnetic field that can be signature of a quantum phase transition at finite temperature. The analysis of concurrence versus temperature shows that there exists a critical temperature, that depends on the type of the interaction, i.e. ferromagnetic or antiferromagnetic, the anisotropy parameter and the strength of the magnetic field. Results show that the pairwise thermal entanglement depends on the third spin which affects the maximum value of the concurrence at absolute zero and at quantum critical points.

  5. Approaches and Tools Used to Teach the Computer Input/Output Subsystem: A Survey

    Science.gov (United States)

    Larraza-Mendiluze, Edurne; Garay-Vitoria, Nestor

    2015-01-01

    This paper surveys how the computer input/output (I/O) subsystem is taught in introductory undergraduate courses. It is important to study the educational process of the computer I/O subsystem because, in the curricula recommendations, it is considered a core topic in the area of knowledge of computer architecture and organization (CAO). It is…

  6. BEHAVE: fire behavior prediction and fuel modeling system-BURN Subsystem, part 1

    Science.gov (United States)

    Patricia L. Andrews

    1986-01-01

    Describes BURN Subsystem, Part 1, the operational fire behavior prediction subsystem of the BEHAVE fire behavior prediction and fuel modeling system. The manual covers operation of the computer program, assumptions of the mathematical models used in the calculations, and application of the predictions.

  7. Independent operation by subsystems: Strategic behavior for the Brazilian electricity sector

    International Nuclear Information System (INIS)

    Guido Tapia Carpio, Lucio; Olimpio Pereira, Amaro

    2006-01-01

    This article describes the competitive strategies of the subsystems in the Brazilian electricity sector. The objective is to present a model in which the operation of each subsystem is managed independently. As the subsystems correspond to the country's geographic regions, the adoption of this model creates conditions for each region to develop according to its own peculiarities. The decision-making process is described based Game Theory. As such, the players or operators of each subsystem carry out their strategies based on the quantities produced, which results in Nash-Cournot equilibrium. In this model, the importance of the proper transmission line dimensioning is highlighted. It determines the competition level among subsystems and allows for optimization of the whole system without requiring arrangements for managing the congestion of the energy transportation grid. The model was programmed in FORTRAN, using IBM's optimization subroutine library (OSL) package

  8. The Design and Analysis Program for the Development of LEO Satellite Electrical Power Subsystem

    Directory of Open Access Journals (Sweden)

    Sang-Kon Lee

    2007-06-01

    Full Text Available The design and analysis of satellite power subsystem is an important driver for the mass, size, and capability of the satellite. Every other satellite subsystem is affected by the power subsystem, and in particular, important issues such as launch vehicle selection, thermal design, and structural design are largely influenced by the capabilities and limitations of the power system. This paper introduces a new electrical power subsystem design program for the rapid development of LEO satellite and shows an example of design results using other LEO satellite design data. The results shows that the proposed design program can be used the optimum sizing and the analytical prediction of the on-orbit performance of satellite electrical power subsystem.

  9. Effect of spin rotation coupling on spin transport

    International Nuclear Information System (INIS)

    Chowdhury, Debashree; Basu, B.

    2013-01-01

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied

  10. Spin labels. Applications in biology

    International Nuclear Information System (INIS)

    Frangopol, T.P.; Frangopol, M.; Ionescu, S.M.; Pop, I.V.; Benga, G.

    1980-11-01

    The main applications of spin labels in the study of biomembranes, enzymes, nucleic acids, in pharmacology, spin immunoassay are reviewed along with the fundamentals of the spin label method. 137 references. (author)

  11. Three-electron spin qubits

    Science.gov (United States)

    Russ, Maximilian; Burkard, Guido

    2017-10-01

    The goal of this article is to review the progress of three-electron spin qubits from their inception to the state of the art. We direct the main focus towards the exchange-only qubit (Bacon et al 2000 Phys. Rev. Lett. 85 1758-61, DiVincenzo et al 2000 Nature 408 339) and its derived versions, e.g. the resonant exchange (RX) qubit, but we also discuss other qubit implementations using three electron spins. For each three-spin qubit we describe the qubit model, the envisioned physical realization, the implementations of single-qubit operations, as well as the read-out and initialization schemes. Two-qubit gates and decoherence properties are discussed for the RX qubit and the exchange-only qubit, thereby completing the list of requirements for quantum computation for a viable candidate qubit implementation. We start by describing the full system of three electrons in a triple quantum dot, then discuss the charge-stability diagram, restricting ourselves to the relevant subsystem, introduce the qubit states, and discuss important transitions to other charge states (Russ et al 2016 Phys. Rev. B 94 165411). Introducing the various qubit implementations, we begin with the exchange-only qubit (DiVincenzo et al 2000 Nature 408 339, Laird et al 2010 Phys. Rev. B 82 075403), followed by the RX qubit (Medford et al 2013 Phys. Rev. Lett. 111 050501, Taylor et al 2013 Phys. Rev. Lett. 111 050502), the spin-charge qubit (Kyriakidis and Burkard 2007 Phys. Rev. B 75 115324), and the hybrid qubit (Shi et al 2012 Phys. Rev. Lett. 108 140503, Koh et al 2012 Phys. Rev. Lett. 109 250503, Cao et al 2016 Phys. Rev. Lett. 116 086801, Thorgrimsson et al 2016 arXiv:1611.04945). The main focus will be on the exchange-only qubit and its modification, the RX qubit, whose single-qubit operations are realized by driving the qubit at its resonant frequency in the microwave range similar to electron spin resonance. Two different types of two-qubit operations are presented for the exchange

  12. Spin Switching via Quantum Dot Spin Valves

    Science.gov (United States)

    Gergs, N. M.; Bender, S. A.; Duine, R. A.; Schuricht, D.

    2018-01-01

    We develop a theory for spin transport and magnetization dynamics in a quantum dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot. Our theory is able to take into account effects of strong correlations. We demonstrate that, as a result of these strong correlations, the dot gate voltage enables control over the current-induced torques on the magnets and, in particular, enables voltage-controlled magnetic switching. The electrical resistance of the structure can be used to read out the magnetic state. Our model may be realized by a number of experimental systems, including magnetic scanning-tunneling microscope tips and artificial quantum dot systems.

  13. Magnetization dynamics of imprinted non-collinear spin textures

    Energy Technology Data Exchange (ETDEWEB)

    Streubel, Robert, E-mail: r.streubel@ifw-dresden.de; Kopte, Martin; Makarov, Denys, E-mail: d.makarov@ifw-dresden.de [Institute for Integrative Nanosciences, IFW Dresden, 01069 Dresden (Germany); Fischer, Peter [Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department, UC Santa Cruz, Santa Cruz, California 95064 (United States); Schmidt, Oliver G. [Institute for Integrative Nanosciences, IFW Dresden, 01069 Dresden (Germany); Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz (Germany)

    2015-09-14

    We study the magnetization dynamics of non-collinear spin textures realized via imprint of the magnetic vortex state in soft permalloy into magnetically hard out-of-plane magnetized Co/Pd nanopatterned heterostructures. Tuning the interlayer exchange coupling between soft- and hard-magnetic subsystems provides means to tailor the magnetic state in the Co/Pd stack from being vortex- to donut-like with different core sizes. While the imprinted vortex spin texture leads to the dynamics similar to the one observed for vortices in permalloy disks, the donut-like state causes the appearance of two gyrofrequencies characteristic of the early and later stages of the magnetization dynamics. The dynamics are described using the Thiele equation supported by the full scale micromagnetic simulations by taking into account an enlarged core size of the donut states compared to magnetic vortices.

  14. Default Mode Network Subsystems are Differentially Disrupted in Posttraumatic Stress Disorder.

    Science.gov (United States)

    Miller, Danielle R; Hayes, Scott M; Hayes, Jasmeet P; Spielberg, Jeffrey M; Lafleche, Ginette; Verfaellie, Mieke

    2017-05-01

    Posttraumatic stress disorder (PTSD) is a psychiatric disorder characterized by debilitating re-experiencing, avoidance, and hyperarousal symptoms following trauma exposure. Recent evidence suggests that individuals with PTSD show disrupted functional connectivity in the default mode network, an intrinsic network that consists of a midline core, a medial temporal lobe (MTL) subsystem, and a dorsomedial prefrontal cortex (dMPFC) subsystem. The present study examined whether functional connectivity in these subsystems is differentially disrupted in PTSD. Sixty-nine returning war Veterans with PTSD and 44 trauma-exposed Veterans without PTSD underwent resting state functional MRI (rs-fMRI). To examine functional connectivity, seeds were placed in the core hubs of the default mode network, namely the posterior cingulate cortex (PCC) and anterior medial PFC (aMPFC), and in each subsystem. Compared to controls, individuals with PTSD had reduced functional connectivity between the PCC and the hippocampus, a region of the MTL subsystem. Groups did not differ in connectivity between the PCC and dMPFC subsystem or between the aMPFC and any region within either subsystem. In the PTSD group, connectivity between the PCC and hippocampus was negatively associated with avoidance/numbing symptoms. Examination of the MTL and dMPFC subsystems revealed reduced anticorrelation between the ventromedial PFC (vMPFC) seed of the MTL subsystem and the dorsal anterior cingulate cortex in the PTSD group. Our results suggest that selective alterations in functional connectivity in the MTL subsystem of the default mode network in PTSD may be an important factor in PTSD pathology and symptomatology.

  15. Custom electronic subsystems for the Laboratory Telerobotic Manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Glassell, R.L.; Butler, P.L.; Rowe, J.C. (Oak Ridge National Lab., TN (USA)); Zimmermann, S.D. (TeleRobotics International, Inc., Knoxville, TN (USA))

    1990-01-01

    The National Aeronautics and Space Administration (NASA) Space Station Program presents new opportunities for the application of telerobotic and robotic systems. The Laboratory Telerobotic Manipulator (LTM) is a highly advanced 7 degrees-of-freedom (DOF) telerobotic/robotic manipulator. It was developed and built for the Automation Technology Branch at NASA's Langley Research Center (LaRC) for work in research and to demonstrate ground-based telerobotic manipulator system hardware and software systems for future NASA applications in the hazardous environment of space. The LTM manipulator uses an embedded wiring design with all electronics, motor power, and control and communication cables passing through the pitch-yaw differential joints. This design requires the number of cables passing through the pitch/yaw joint to be kept to a minimum. To eliminate the cables needed to carry each pitch-yaw joint's sensor data to the VME control computers, a custom-embedded electronics package for each manipulator joint was developed. The electronics package collects and sends the joint's sensor data to the VME control computers over a fiber optic cable. The electronics package consist of five individual subsystems: the VME Link Processor, the Joint Processor and the Joint Processor power supply in the joint module, the fiber optics communications system, and the electronics and motor power cabling. 3 refs., 3 figs.

  16. Verification of the SENTINEL-4 Focal Plane Subsystem

    Science.gov (United States)

    Williges, C.; Hohn, R.; Rossmann, H.; Hilbert, S.; Uhlig, M.; Buchwinkler, K.; Reulke, R.

    2017-05-01

    The Sentinel-4 payload is a multi-spectral camera system which is designed to monitor atmospheric conditions over Europe. The German Aerospace Center (DLR) in Berlin, Germany conducted the verification campaign of the Focal Plane Subsystem (FPS) on behalf of Airbus Defense and Space GmbH, Ottobrunn, Germany. The FPS consists, inter alia, of two Focal Plane Assemblies (FPAs), one for the UV-VIS spectral range (305 nm … 500 nm), the second for NIR (750 nm … 775 nm). In this publication, we will present in detail the opto-mechanical laboratory set-up of the verification campaign of the Sentinel-4 Qualification Model (QM) which will also be used for the upcoming Flight Model (FM) verification. The test campaign consists mainly of radiometric tests performed with an integrating sphere as homogenous light source. The FPAs have mainly to be operated at 215 K ± 5 K, making it necessary to exploit a thermal vacuum chamber (TVC) for the test accomplishment. This publication focuses on the challenge to remotely illuminate both Sentinel-4 detectors as well as a reference detector homogeneously over a distance of approximately 1 m from outside the TVC. Furthermore selected test analyses and results will be presented, showing that the Sentinel-4 FPS meets specifications.

  17. VERIFICATION OF THE SENTINEL-4 FOCAL PLANE SUBSYSTEM

    Directory of Open Access Journals (Sweden)

    C. Williges

    2017-05-01

    Full Text Available The Sentinel-4 payload is a multi-spectral camera system which is designed to monitor atmospheric conditions over Europe. The German Aerospace Center (DLR in Berlin, Germany conducted the verification campaign of the Focal Plane Subsystem (FPS on behalf of Airbus Defense and Space GmbH, Ottobrunn, Germany. The FPS consists, inter alia, of two Focal Plane Assemblies (FPAs, one for the UV-VIS spectral range (305 nm … 500 nm, the second for NIR (750 nm … 775 nm. In this publication, we will present in detail the opto-mechanical laboratory set-up of the verification campaign of the Sentinel-4 Qualification Model (QM which will also be used for the upcoming Flight Model (FM verification. The test campaign consists mainly of radiometric tests performed with an integrating sphere as homogenous light source. The FPAs have mainly to be operated at 215 K ± 5 K, making it necessary to exploit a thermal vacuum chamber (TVC for the test accomplishment. This publication focuses on the challenge to remotely illuminate both Sentinel-4 detectors as well as a reference detector homogeneously over a distance of approximately 1 m from outside the TVC. Furthermore selected test analyses and results will be presented, showing that the Sentinel-4 FPS meets specifications.

  18. Global Chassis Control System Using Suspension, Steering, and Braking Subsystems

    Directory of Open Access Journals (Sweden)

    Carlos A. Vivas-Lopez

    2015-01-01

    Full Text Available A novel Global Chassis Control (GCC system based on a multilayer architecture with three levels: top: decision layer, middle: control layer, and bottom: system layer is presented. The main contribution of this work is the development of a data-based classification and coordination algorithm, into a single control problem. Based on a clustering technique, the decision layer classifies the current driving condition. Afterwards, heuristic rules are used to coordinate the performance of the considered vehicle subsystems (suspension, steering, and braking using local controllers hosted in the control layer. The control allocation system uses fuzzy logic controllers. The performance of the proposed GCC system was evaluated under different standard tests. Simulation results illustrate the effectiveness of the proposed system compared to an uncontrolled vehicle and a vehicle with a noncoordinated control. The proposed system decreases by 14% the braking distance in the hard braking test with respect to the uncontrolled vehicle, the roll and yaw movements are reduced by 10% and 12%, respectively, in the Double Line Change test, and the oscillations caused by load transfer are reduced by 7% in a cornering situation.

  19. Separate valuation subsystems for delay and effort decision costs.

    Science.gov (United States)

    Prévost, Charlotte; Pessiglione, Mathias; Météreau, Elise; Cléry-Melin, Marie-Laure; Dreher, Jean-Claude

    2010-10-20

    Decision making consists of choosing among available options on the basis of a valuation of their potential costs and benefits. Most theoretical models of decision making in behavioral economics, psychology, and computer science propose that the desirability of outcomes expected from alternative options can be quantified by utility functions. These utility functions allow a decision maker to assign subjective values to each option under consideration by weighting the likely benefits and costs resulting from an action and to select the one with the highest subjective value. Here, we used model-based neuroimaging to test whether the human brain uses separate valuation systems for rewards (erotic stimuli) associated with different types of costs, namely, delay and effort. We show that humans devalue rewards associated with physical effort in a strikingly similar fashion to those they devalue that are associated with delays, and that a single computational model derived from economics theory can account for the behavior observed in both delay discounting and effort discounting. However, our neuroimaging data reveal that the human brain uses distinct valuation subsystems for different types of costs, reflecting in opposite fashion delayed reward and future energetic expenses. The ventral striatum and the ventromedial prefrontal cortex represent the increasing subjective value of delayed rewards, whereas a distinct network, composed of the anterior cingulate cortex and the anterior insula, represent the decreasing value of the effortful option, coding the expected expense of energy. Together, these data demonstrate that the valuation processes underlying different types of costs can be fractionated at the cerebral level.

  20. Advanced Space Suit Portable Life Support Subsystem Packaging Design

    Science.gov (United States)

    Howe, Robert; Diep, Chuong; Barnett, Bob; Thomas, Gretchen; Rouen, Michael; Kobus, Jack

    2006-01-01

    This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA s in-house 1998 study, which resulted in the "Flex PLSS" concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1. Bring the advanced space suit integrated Flex PLSS concept from its current state of development to a preliminary design level and build a proof of concept mockup of the proposed design, and; 2. "Design" a Design Process, which accommodates both the initial Flex PLSS design and the package modifications, required to accommodate new technology.

  1. Upgrade of ESO's FIERA CCD Controller and PULPO Subsystem

    Science.gov (United States)

    Reyes-Moreno, J.; Geimer, C.; Balestra, A.; Haddad, N.

    An overview of FIERA is presented with emphasis on its recent upgrade to PCI. The PCI board hosts two DSPs, one for real time control of the camera and another for on-the-fly processing of the incoming video data. In addition, the board is able to make DMA transfers, to synchronize to other boards alike, to be synchronized by a TIM bus and to control PULPO via RS232. The design is based on the IOP480 chip from PLX, for which we have developed a device driver for both Solaris and Linux. One computer is able to host more than one board and therefore can control an array of FIERA detector electronics. PULPO is a multifunctional subsystem widely used at ESO for the housekeeping of CCD cryostat heads and for shutter control. The upgrade of PULPO is based on an embedded PC running Linux. The upgraded PULPO is able to handle 29 temperature sensors, control 8 heaters and one shutter, read out one vacuum sensor and log any combination of parameters.

  2. Remote Operations of the Deep Space Network Radio Science Subsystem

    Science.gov (United States)

    Caetta, J.; Asmar, S.; Abbate, S.; Connally, M.; Goltz, G.

    1998-04-01

    The capability for scientists to remotely control systems located at the Deep Space Network facilities only recently has been incorporated in the design and implementation of new equipment. However, time lines for the implementation, distribution, and operational readiness of such systems can extend much farther into the future than the users can wait. The Radio Science Systems Group was faced with just that circumstance; new hardware was not scheduled to become operational for several years, but the increasing number of experiments and configurations for Cassini, Galileo, Mars missions, and other flight projects made that time frame impractical because of the associated increasing risk of not acquiring critical data. Therefore, a method of interfacing with the current radio science subsystem has been developed and used with a high degree of success, although with occasional problems due to this capability not having been originally designed into the system. This article discusses both the method and the problems involved in integrating this new (remote) method of control with a legacy system.

  3. Gauge subsystems, separability and robustness in autonomous quantum memories

    International Nuclear Information System (INIS)

    Sarma, Gopal; Mabuchi, Hideo

    2013-01-01

    Quantum error correction provides a fertile context for exploring the interplay of feedback control, microscopic physics and non-commutative probability. In this paper we deepen our understanding of this nexus through high-level analysis of a class of quantum memory models that we have previously proposed, which implement continuous-time versions of well-known stabilizer codes in autonomous nanophotonic circuits that require no external clocking or control. We demonstrate that the presence of the gauge subsystem in the nine-qubit Bacon–Shor code allows for a loss-tolerant layout of the corresponding nanophotonic circuit that substantially ameliorates the effects of optical propagation losses, argue that code separability allows for simplified restoration feedback protocols, and propose a modified fidelity metric for quantifying the performance of realistic quantum memories. Our treatment of these topics exploits the homogeneous modeling framework of autonomous nanophotonic circuits, but the key ideas translate to the traditional setting of discrete time, measurement-based quantum error correction. (paper)

  4. The RAST Server: Rapid Annotations using Subsystems Technology

    Directory of Open Access Journals (Sweden)

    Overbeek Ross A

    2008-02-01

    Full Text Available Abstract Background The number of prokaryotic genome sequences becoming available is growing steadily and is growing faster than our ability to accurately annotate them. Description We describe a fully automated service for annotating bacterial and archaeal genomes. The service identifies protein-encoding, rRNA and tRNA genes, assigns functions to the genes, predicts which subsystems are represented in the genome, uses this information to reconstruct the metabolic network and makes the output easily downloadable for the user. In addition, the annotated genome can be browsed in an environment that supports comparative analysis with the annotated genomes maintained in the SEED environment. The service normally makes the annotated genome available within 12–24 hours of submission, but ultimately the quality of such a service will be judged in terms of accuracy, consistency, and completeness of the produced annotations. We summarize our attempts to address these issues and discuss plans for incrementally enhancing the service. Conclusion By providing accurate, rapid annotation freely to the community we have created an important community resource. The service has now been utilized by over 120 external users annotating over 350 distinct genomes.

  5. Spin, mass, and symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E. [Stanford Univ., CA (United States)

    1994-12-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.

  6. Physics lab in spin

    CERN Multimedia

    Hawkes, N

    1999-01-01

    RAL is fostering commerical exploitation of its research and facilities in two main ways : spin-out companies exploit work done at the lab, spin-in companies work on site taking advantage of the facilities and the expertise available (1/2 page).

  7. More spinoff from spin

    International Nuclear Information System (INIS)

    Masaike, Akira

    1993-01-01

    Despite playing a major role in today's Standard Model, spin - the intrinsic angular momentum carried by particles - is sometimes dismissed as an inessential complication. However several major spin questions with important implications for the Standard Model remain unanswered, and recent results and new technological developments made the 10th International Symposium on High Energy Spin Physics, held in Nagoya, Japan, in November, highly topical. The symposium covered a wide range of physics, reflecting the diversity of spin effects, however four main themes were - the spin content of the nucleon, tests of symmetries and physics beyond standard models, intermediate energy physics, and spin technologies. Opening the meeting, T. Kinoshita reviewed the status of measurements of the anomalous magnetic moment (g-2) of the electron and the muon. The forthcoming experiment at Brookhaven (September 1991, page 23) will probe beyond the energy ranges open to existing electronpositron colliders. For example muon substructure will be opened up to 5 TeV and Ws to 2 TeV. R.L. Jaffe classified quark-parton distributions in terms of their spin dependence, pointing out their leftright attributes, and emphasized the importance of measuring transverse spin distributions through lepton pair production

  8. Spin Hall noise

    NARCIS (Netherlands)

    Kamra, A.; Witek, F.P.; Meyer, S.; Huebl, H.; Geprägs, S.; Gross, R.; Bauer, G.E.W.; Goennenwein, S.T.B.

    2014-01-01

    We measure the low-frequency thermal fluctuations of pure spin current in a platinum film deposited on yttrium iron garnet via the inverse spin Hall effect (ISHE)-mediated voltage noise as a function of the angle ? between the magnetization and the transport direction. The results are consistent

  9. Antiferromagnetic spin Seebeck effect.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand

    2016-03-03

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2. A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF2(110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2–80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9T) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.

  10. Spin, mass, and symmetry

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1994-01-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics

  11. Unfolding Participation

    DEFF Research Database (Denmark)

    Saad-Sulonen, Joanna; Halskov, Kim; Eriksson, Eva

    2015-01-01

    The aim of the Unfolding Participation workshop is to outline an agenda for the next 10 years of participatory design (PD) and participatory human computer interaction (HCI) research. We will do that through a double strategy: 1) by critically interrogating the concept of participation (unfolding...... the concept itself), while at the same time, 2) reflecting on the way that participation unfolds across different participatory configurations. We invite researchers and practitioners from PD and HCI and fields in which information technology mediated participation is embedded (e.g. in political studies......, urban planning, participatory arts, business, science and technology studies) to bring a plurality of perspectives and expertise related to participation....

  12. PKU-RBRC Workshop on Transverse Spin

    Energy Technology Data Exchange (ETDEWEB)

    Avakian,H.; Bunce, G.; Yuan, F.

    2008-06-30

    Understanding the structure of the nucleon is a fundamental question in subatomic physics, and it has been under intensive investigation for the last several years. Modern research focuses in particular on the spin structure of the nucleon. Experimental and theoretical investigations worldwide over the last few decades have established that, contrary to nave quark model expectations, quarks carry only about 30% of the totd spin of the proton. The origin of the remaining spin is the key question in current hadronic physics and also the major driving forces for the current and future experiments, such as RHIC and CEBAF in US, JPARC in Japan, COMPASS at CERN in Europe, FAIR at GSI in Germany. Among these studies, the transverse-spin physics develops actively and rapidly in the last few years. Recent studies reveal that transverse-spin physics is closely related to many fundamental properties of the QCD dynamics such as the factorization, the non-trivial universality of the parton distribution and fragmentation functions. It was very timely to bring together the theorists and experimentalists in this field at this workshop to review and discuss the latest developments and future perspective in hadronic spin physics. This workshop was very success iu many aspects. First of all, it attracted almost every expert working in this field. We had more than eighty participants in total, among them 27 came from the US institutes, 13 from Europe, 3 from Korea, and 2 from Japan. The rest participants came from local institutes in China. Second, we arranged plenty physics presentations, and the program covers all recent progresses made in the last few years. In total, we had 47 physics presentations, and two round table discussions. The discussion sessions were especially very useful and very much appreciated by all participants. In addition, we also scheduled plenty time for discussion in each presentation, and the living discussions impressed and benefited all participants.

  13. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden; Bjerrum Møller, Hans

    1975-01-01

    with increasing temperatures implies that the two-ion coupling is effectively isotropic above ∼ 150 K. We present arguments for concluding that, among the mechanisms which may introduce anisotropic two-ion couplings in the rare-earth metals, the modification of the indirect exchange interaction by the spin......The energies of spin waves propagating in the c direction of Tb have been studied by inelastic neutron scattering, as a function of a magnetic field applied along the easy and hard directions in the basal plane, and as a function of temperature. From a general spin Hamiltonian, consistent...... with the symmetry, we deduce the dispersion relation for the spin waves in a basal-plane ferromagnet. This phenomenological spin-wave theory accounts for the observed behavior of the magnon energies in Tb. The two q⃗-dependent Bogoliubov components of the magnon energies are derived from the experimental results...

  14. Spin Hall and spin swapping torques in diffusive ferromagnets

    KAUST Repository

    Pauyac, C. O.

    2017-12-08

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  15. Dynamical magnetic susceptibility in the spin-fermion model for cuprate superconductors

    Science.gov (United States)

    Val'kov, V. V.; Dzebisashvili, D. M.

    2017-12-01

    Using the method of diagram techniques for the spin and Fermi operators in the framework of the SU(2)- invariant spin-fermion model of the electron structure of the CuO 2 plane of copper oxides, we obtain an exact representation of the Matsubara Green's function D ⊥( k, iω m ) of the subsystem of localized spins. This representation includes the Larkin mass operator ΣL( k, iω m ) and the strength and polarization operators P( k, iω m ) and Π( k, iω m ). The calculation in the one-loop approximation of the mass and strength operators for the Heisenberg spin system in the quantum spin-liquid state allows writing the Green's function D ⊥( k, iω m ) explicitly and establishing a relation to the result of Shimahara and Takada. An essential point in the developed approach is taking the spin-polaron nature of the Fermi quasiparticles in the spin-fermion model into account in finding the contribution of oxygen holes to the spin response in terms of the polarization operator Π( k, iω m ).

  16. Union Spinning Mills - Cleaner Production option report

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Schneider, Zsig

    In October and November 2002 meetings were held between Union Spinning Mills and external consultants from the South African – Danish Cleaner Textile Production Project. Project participants from USM were: • From USM: Operations Director Johan Ferreira, Finishing Manager Anrico (Andrej) Kritzinger...

  17. Improved Dynamic Modeling of the Cascade Distillation Subsystem and Integration with Models of Other Water Recovery Subsystems

    Science.gov (United States)

    Perry, Bruce; Anderson, Molly

    2015-01-01

    The Cascade Distillation Subsystem (CDS) is a rotary multistage distiller being developed to serve as the primary processor for wastewater recovery during long-duration space missions. The CDS could be integrated with a system similar to the International Space Station (ISS) Water Processor Assembly (WPA) to form a complete Water Recovery System (WRS) for future missions. Independent chemical process simulations with varying levels of detail have previously been developed using Aspen Custom Modeler (ACM) to aid in the analysis of the CDS and several WPA components. The existing CDS simulation could not model behavior during thermal startup and lacked detailed analysis of several key internal processes, including heat transfer between stages. The first part of this paper describes modifications to the ACM model of the CDS that improve its capabilities and the accuracy of its predictions. Notably, the modified version of the model can accurately predict behavior during thermal startup for both NaCl solution and pretreated urine feeds. The model is used to predict how changing operating parameters and design features of the CDS affects its performance, and conclusions from these predictions are discussed. The second part of this paper describes the integration of the modified CDS model and the existing WPA component models into a single WRS model. The integrated model is used to demonstrate the effects that changes to one component can have on the dynamic behavior of the system as a whole.

  18. Conceptualizing Participation

    DEFF Research Database (Denmark)

    Simovska, Venka; Bruun Jensen, Bjarne

    and society. It then describes different forms, modes or qualities of participation and proposes a specific model of facilitating participatory work with young people - the IVAC approach (Investigation-Vision-Action-Change). The concept of action, types of actions aimed at initiating change and corresponding...... types of knowledge necessary to equip young people to participate in meaningful ways are outlined before some dilemmas, challenges and participatory issues are considered. Regardless of the level or scope of participation, it is imperative that participation of young people in decision...

  19. Worker health and safety in solar thermal power systems. III. Thermal energy storage subsystems

    Energy Technology Data Exchange (ETDEWEB)

    Ullman, A.Z.; Sokolow, B.B.; Daniels, J.; Hurt, P.

    1979-10-01

    The effects of the use of thermal energy storage (TES) subsystems in solar thermal power systems (STPS) on operating failures and on worker health and safety are examined. Revelant near- and medium-term designs for TES subsystems are reviewed. Generic failure events are considered by an event tree methodology. Three generic categories of initiating events are identified which can lead to release of storage fluids and other hazards. Three TES subsystem designs are selected for, and subjected to, analysis. A fluid release event tree for a sensible heat TES subsystem using mixed media organic oil/crushed rock and sand, designed for the Barstow, CA, 10 MWe pilot plant, is developed. Toxicology and flammability hazards are considered. The effect of component failures, including ullage and fluid maintenance units, on subsystem safety is considered. A latent heat subsystem using NaNO/sub 3//NaOH as the working medium is studied, and relevant failure events delineated. Mechanical equipment failures including the scraped wall heat exchangers, are examined. Lastly, a thermochemical TES subsystem using SO/sub 2//SO/sub 3/ interconversion is considered. Principle hazards identified include mechanical failures and storage fluid release. The integrity of the system is found to depend on catalyst and heat exchanger reliability. Dynamic response to off-normal system events is considered.

  20. A Review of Singing Voice Subsystem Interactions-Toward an Extended Physiological Model of "Support".

    Science.gov (United States)

    Herbst, Christian T

    2017-03-01

    During phonation, the respiratory, the phonatory, and the resonatory parts of the voice organ can interact, where physiological action in one subsystem elicits a direct effect in another. Here, three major subsystems of these synergies are reviewed, creating a model of voice subsystem interactions: (1) Vocal tract adjustments can influence the behavior of the voice source via nonlinear source-tract interactions; (2) The type and degree of vocal fold adduction controls the expiratory airflow rate; and (3) The tracheal pull caused by the respiratory system affects the vertical larynx position and thus the vocal tract resonances. The relevance of the presented model is discussed, suggesting, among others, that functional voice building work concerned with a particular voice subsystem may evoke side effects or benefits on other subsystems, even when having a clearly defined and isolated physiological target. Finally, four seemingly incongruous historic definitions of the concept of singing voice "support" are evaluated, showing how each of these pertain to different voice subsystems at various levels of detail. It is argued that presumed discrepancies between these definitions can be resolved by putting them into the wider context of the subsystem interaction model presented here, thus offering a framework for reviewing and potentially refining some current and historical pedagogical approaches. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  1. A Simple Estimation of Coupling Loss Factors for Two Flexible Subsystems Connected via Discrete Interfaces

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2016-01-01

    Full Text Available A simple formula is proposed to estimate the Statistical Energy Analysis (SEA coupling loss factors (CLFs for two flexible subsystems connected via discrete interfaces. First, the dynamic interactions between two discretely connected subsystems are described as a set of intermodal coupling stiffness terms. It is then found that if both subsystems are of high modal density and meanwhile the interface points all act independently, the intermodal dynamic couplings become dominated by only those between different subsystem mode sets. If ensemble- and frequency-averaged, the intermodal coupling stiffness terms can simply reduce to a function of the characteristic dynamic properties of each subsystem and the subsystem mass, as well as the number of interface points. The results can thus be accommodated within the theoretical frame of conventional SEA theory to yield a simple CLF formula. Meanwhile, the approach allows the weak coupling region between the two SEA subsystems to be distinguished simply and explicitly. The consistency and difference of the present technique with and from the traditional wave-based SEA solutions are discussed. Finally, numerical examples are given to illustrate the good performance of the present technique.

  2. Resonant Tunneling Spin Pump

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  3. Nuclear spins in nanostructures

    International Nuclear Information System (INIS)

    Coish, W.A.; Baugh, J.

    2009-01-01

    We review recent theoretical and experimental advances toward understanding the effects of nuclear spins in confined nanostructures. These systems, which include quantum dots, defect centers, and molecular magnets, are particularly interesting for their importance in quantum information processing devices, which aim to coherently manipulate single electron spins with high precision. On one hand, interactions between confined electron spins and a nuclear-spin environment provide a decoherence source for the electron, and on the other, a strong effective magnetic field that can be used to execute local coherent rotations. A great deal of effort has been directed toward understanding the details of the relevant decoherence processes and to find new methods to manipulate the coupled electron-nuclear system. A sequence of spectacular new results have provided understanding of spin-bath decoherence, nuclear spin diffusion, and preparation of the nuclear state through dynamic polarization and more general manipulation of the nuclear-spin density matrix through ''state narrowing.'' These results demonstrate the richness of this physical system and promise many new mysteries for the future. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  4. Immunity-Based Accommodation of Aircraft Subsystem Failures

    Science.gov (United States)

    Togayev, Adil

    This thesis presents the design, development, and flight-simulation testing of an artificial immune system (AIS) based approach for accommodation of different aircraft subsystem failures. Failure accommodation is considered as part of a complex integrated AIS scheme that contains four major components: failure detection, identification, evaluation, and accommodation. The accommodation part consists of providing compensatory commands to the aircraft under specific abnormal conditions based on previous experience. In this research effort, the possibility of building an AIS allowing the extraction of pilot commands is investigated. The proposed approach is based on structuring the self (nominal conditions) and the non-self (abnormal conditions) within the AIS paradigm, as sets of artificial memory cells (mimicking behavior of T-cells, B-cells, and antibodies) consisting of measurement strings, over pre-defined time windows. Each string is a set of features values at each sample time of the flight including pilot inputs, system states, and other variables. The accommodation algorithm relies on identifying the memory cell that is the most similar to the in-coming measurements. Once the best match is found, control commands corresponding to this match will be extracted from the memory and used for control purposes. The proposed methodology is illustrated through simulation of simple maneuvers at nominal flight conditions, different actuators, and sensor failure conditions. Data for development and demonstration have been collected from West Virginia University 6-degrees-of-freedom motion-based flight simulator. The aircraft model used for this research represents a supersonic fighter which includes model following adaptive control laws based on non-linear dynamic inversion and artificial neural network augmentation. The simulation results demonstrate the possibility of extracting pilot compensatory commands from the self/non-self structure and the capability of the AIS

  5. Superconducting Super Collider silicon tracking subsystem research and development

    International Nuclear Information System (INIS)

    Miller, W.O.; Thompson, T.C.; Ziock, H.J.; Gamble, M.T.

    1990-12-01

    The Alamos National Laboratory Mechanical Engineering and Electronics Division has been investigating silicon-based elementary particle tracking device technology as part of the Superconducting Super Collider-sponsored silicon subsystem collaboration. Structural, materials, and thermal issues have been addressed. This paper explores detector structural integrity and stability, including detailed finite element models of the silicon wafer support and predictive methods used in designing with advanced composite materials. The current design comprises a magnesium metal matrix composite (MMC) truss space frame to provide a sparse support structure for the complex array of silicon detectors. This design satisfies the 25-μm structural stability requirement in a 10-Mrad radiation environment. This stability is achieved without exceeding the stringent particle interaction constraints set at 2.5% of a radiation length. Materials studies have considered thermal expansion, elastic modulus, resistance to radiation and chemicals, and manufacturability of numerous candidate materials. Based on optimization of these parameters, the MMC space frame will possess a coefficient of thermal expansion (CTE) near zero to avoid thermally induced distortions, whereas the cooling rings, which support the silicon detectors and heat pipe network, will probably be constructed of a graphite/epoxy composite whose CTE is engineered to match that of silicon. Results from radiation, chemical, and static loading tests are compared with analytical predictions and discussed. Electronic thermal loading and its efficient dissipation using heat pipe cooling technology are discussed. Calculations and preliminary designs for a sprayed-on graphite wick structure are presented. A hydrocarbon such as butane appears to be a superior choice of heat pipe working fluid based on cooling, handling, and safety criteria

  6. System, subsystem, hive: boundary problems in computational theories of consciousness

    Directory of Open Access Journals (Sweden)

    Tomer Fekete

    2016-07-01

    Full Text Available A computational theory of consciousness should include a quantitative measure of consciousness, or MoC, that (i would reveal to what extent a given system is conscious, (ii would make it possible to compare not only different systems, but also the same system at different times, and (iii would be graded, because so is consciousness. However, unless its design is properly constrained, such an MoC gives rise to what we call the boundary problem: an MoC that labels a system as conscious will do so for some – perhaps most – of its subsystems, as well as for irrelevantly extended systems (e.g., the original system augmented with physical appendages that contribute nothing to the properties supposedly supporting consciousness, and for aggregates of individually conscious systems (e.g., groups of people. This problem suggests that the properties that are being measured are epiphenomenal to consciousness, or else it implies a bizarre proliferation of minds. We propose that a solution to the boundary problem can be found by identifying properties that are intrinsic or systemic: properties that clearly differentiate between systems whose existence is a matter of fact, as opposed to those whose existence is a matter of interpretation (in the eye of the beholder. We argue that if a putative MoC can be shown to be systemic, this ipso facto resolves any associated boundary issues. As test cases, we analyze two recent theories of consciousness in light of our definitions: the Integrated Information Theory and the Geometric Theory of consciousness.

  7. Spin drift and spin diffusion currents in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)], E-mail: m.miah@griffith.edu.au

    2008-09-15

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  8. Spin drift and spin diffusion currents in semiconductors

    Directory of Open Access Journals (Sweden)

    M Idrish Miah

    2008-01-01

    Full Text Available On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  9. Spin drift and spin diffusion currents in semiconductors

    International Nuclear Information System (INIS)

    Idrish Miah, M

    2008-01-01

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  10. Higher spins and holography

    Science.gov (United States)

    Kraus, Per; Ross, Simon F.

    2013-05-01

    The principles of quantum mechanics and relativity impose rigid constraints on theories of massless particles with nonzero spin. Indeed, Yang-Mills theory and General Relativity are the unique solution in the case of spin-1 and spin-2. In asymptotically flat spacetime, there are fundamental obstacles to formulating fully consistent interacting theories of particles of spin greater than 2. However, indications are that such theories are just barely possible in asymptotically anti-de Sitter or de Sitter spacetimes, where the non-existence of an S-matrix provides an escape from the theorems restricting theories in Minkowski spacetime. These higher spin gravity theories are therefore of great intrinsic interest, since they, along with supergravity, provide the only known field theories generalizing the local invariance principles of Yang-Mills theory and General Relativity. While work on higher spin gravity goes back several decades, the subject has gained broader appeal in recent years due to its appearance in the AdS/CFT correspondence. In three and four spacetime dimensions, there exist duality proposals linking higher spin gravity theories to specific conformal field theories living in two and three dimensions respectively. The enlarged symmetry algebra of the conformal field theories renders them exactly soluble, which makes them excellent laboratories for understanding in detail the holographic mechanism behind AdS/CFT duality. Steady progress is also being made on better understanding the space of possible higher spin gravity theories and their physical content. This work includes classifying the possible field multiplets and their interactions, constructing exact solutions of the nonlinear field equations, and relating higher spin theories to string theory. A full understanding of these theories will involve coming to grips with the novel symmetry principles that enlarge those of General Relativity and Yang-Mills theory, and one can hope that this will provide

  11. Seismic Safety Margins Research Program. Phase I final report - Subsystem response (Project V)

    International Nuclear Information System (INIS)

    Shieh, L.C.; Chuang, T.Y.; O'Connell, W.J.

    1981-10-01

    This document reports on (1) the computation of the responses of subsystems, given the input subsystem support motion for components and systems whose failure can lead to an accident sequence (radioactive release), and (2) the results of a sensitivity study undertaken to determine the contributions of the several links in the seismic methodology chain (SMC) - seismic input (SI), soil-structure interaction (SSI), structure response (STR), and subsystem response (SUB) - to the uncertainty in subsystem response. For the singly supported subsystems (e.g., pumps, turbines, electrical control panels, etc.), we used the spectral acceleration response of the structure at the point where the subsystem components were mounted. For the multiple supported subsystems, we developed 13 piping models of five safety-related systems, and then used the pseudostatic-mode method with multisupport input motion to compute the response parameters in terms of the parameters used in the fragility descriptions (i.e., peak resultant accelerations for valves and peak resultant moments for piping). Damping and frequency were varied to represent the sources of modeling and random uncertainty. Two codes were developed: a modified version of SAPIV which assembles the piping supports into groups depending on the support's location relative to the attached structure, and SAPPAC a stand-alone modular program from which the time-history analysis module is extracted. On the basis of our sensitivity study, we determined that the variability in the combined soil-structure interaction, structural response, and subsystem response areas contribute more to uncertainty in subsystem response than does the variability in the seismic input area, assuming an earthquake within the limited peak ground acceleration range, i.e., 0.15 to 0.30g. The seismic input variations were in terms of different earthquake time histories. (author)

  12. Age Differences in the Intrinsic Functional Connectivity of Default Network Subsystems

    Directory of Open Access Journals (Sweden)

    Karen eCampbell

    2013-11-01

    Full Text Available Recent work suggests that the default mode network (DMN includes two core regions, the ventromedial prefrontal cortex (vmPFC and posterior cingulate cortex (PCC, and several unique subsystems that are functionally distinct. These include a medial temporal lobe (MTL subsystem, active during remembering and future projection, and a dorsomedial PFC (dmPFC subsystem, active during self-reference. The PCC has been further subdivided into ventral (vPCC and dorsal (dPCC regions that are more strongly connected with the DMN and cognitive control networks, respectively. The goal of this study was to examine age differences in resting state functional connectivity within these subsystems. After applying a rigorous procedure to reduce the effects of head motion, we used a multivariate technique to identify both common and unique patterns of functional connectivity in the MTL vs. the dmPFC, and in vPCC vs. dPCC. All four areas had robust functional connectivity with other DMN regions, and each also showed distinct connectivity patterns in both age groups. Young and older adults had equivalent functional connectivity in the MTL subsystem. Older adults showed weaker connectivity in the vPCC and dmPFC subsystems, particularly with other DMN areas, but stronger connectivity than younger adults in the dPCC subsystem, which included areas involved in cognitive control. Our data provide evidence for distinct subsystems involving DMN nodes, which are maintained with age. Nevertheless, there are age differences in the strength of functional connectivity within these subsystems, supporting prior evidence that DMN connectivity is particularly vulnerable to age, whereas connectivity involving cognitive control regions is relatively maintained. These results suggest an age difference in the integrated activity among brain networks that can have implications for cognition in older adults.

  13. Spin transfer torque with spin diffusion in magnetic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2012-08-09

    Spin transport in magnetic tunnel junctions in the presence of spin diffusion is considered theoretically. Combining ballistic tunneling across the barrier and diffusive transport in the electrodes, we solve the spin dynamics equation in the metallic layers. We show that spin diffusion mixes the transverse spin current components and dramatically modifies the bias dependence of the effective spin transfer torque. This leads to a significant linear bias dependence of the out-of-plane torque, as well as a nonconventional thickness dependence of both spin torque components.

  14. Electron spin and nuclear spin manipulation in semiconductor nanosystems

    International Nuclear Information System (INIS)

    Hirayama, Yoshiro; Yusa, Go; Sasaki, Satoshi

    2006-01-01

    Manipulations of electron spin and nuclear spin have been studied in AlGaAs/GaAs semiconductor nanosystems. Non-local manipulation of electron spins has been realized by using the correlation effect between localized and mobile electron spins in a quantum dot- quantum wire coupled system. Interaction between electron and nuclear spins was exploited to achieve a coherent control of nuclear spins in a semiconductor point contact device. Using this device, we have demonstrated a fully coherent manipulation of any two states among the four spin levels of Ga and As nuclei. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Spins in chemistry

    CERN Document Server

    McWeeny, Roy

    2004-01-01

    Originally delivered as a series of lectures, this volume systematically traces the evolution of the ""spin"" concept from its role in quantum mechanics to its assimilation into the field of chemistry. Author Roy McWeeny presents an in-depth illustration of the deductive methods of quantum theory and their application to spins in chemistry, following the path from the earliest concepts to the sophisticated physical methods employed in the investigation of molecular structure and properties. Starting with the origin and development of the spin concept, the text advances to an examination of sp

  16. Frustrated spin systems

    CERN Document Server

    2013-01-01

    This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can - within a single book - obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated

  17. Spin Hall effect transistor

    Czech Academy of Sciences Publication Activity Database

    Wunderlich, Joerg; Park, B.G.; Irvine, A.C.; Zarbo, Liviu; Rozkotová, E.; Němec, P.; Novák, Vít; Sinova, Jairo; Jungwirth, Tomáš

    2010-01-01

    Roč. 330, č. 6012 (2010), s. 1801-1804 ISSN 0036-8075 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510 EU Projects: European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 31.364, year: 2010

  18. Spin tracking in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luccio, A.U. [Brookhaven National Lab., Upton, NY (United States); Katayama, T. [Univ. of Tokyo (Japan); Wu, H. [Riken Inst., Tokyo (Japan)

    1997-07-01

    In the acceleration of polarized protons in RHIC many spin depolarizing resonances are encountered. Helical Siberian snakes will be used to overcome depolarizing effects. The behavior of polarization can be studied by numerical tracking in a model accelerator. That allows one to check the strength of the resonances, to study the effect of snakes, to find safe lattice tune regions, and finally to study the operation of special devices like spin flippers. In this paper the authors describe numerical spin tracking. Results show that, for the design corrected distorted orbit and the design beam emittance, the polarization of the beam will be preserved in the whole range of proton energies in RHIC.

  19. SPINning parallel systems software

    International Nuclear Information System (INIS)

    Matlin, O.S.; Lusk, E.; McCune, W.

    2002-01-01

    We describe our experiences in using Spin to verify parts of the Multi Purpose Daemon (MPD) parallel process management system. MPD is a distributed collection of processes connected by Unix network sockets. MPD is dynamic processes and connections among them are created and destroyed as MPD is initialized, runs user processes, recovers from faults, and terminates. This dynamic nature is easily expressible in the Spin/Promela framework but poses performance and scalability challenges. We present here the results of expressing some of the parallel algorithms of MPD and executing both simulation and verification runs with Spin

  20. Ambivalent participation

    DEFF Research Database (Denmark)

    Groes-Green, Christian

    2012-01-01

    Participation in young peoples' sexual cultures in Maputo, Mozambique led to reflections about the field dynamics of power, participation, desire, and discomfort. Structural inequalities of race, gender, and educational status resulted in informants seeing me as a morally righteous person to whom...

  1. Employee Participation

    Science.gov (United States)

    Jarratt, Alex

    1975-01-01

    The article presents another approach to individual motivation--participative management--which concerns an emotional rather than financial commitment to the job through involvement and job satisfaction. The author favors within this approach: employee participation in decision-making, entitlement to information, and the establishment of…

  2. Work Plan for Updating Double Shell Tank (DST) Sub-System Specifications (TBR 120.020)

    International Nuclear Information System (INIS)

    GRENARD, C.E.

    1999-01-01

    The DST System stores waste from the processing of nuclear material at the Hanford Nuclear Reservation. The program to dispose of this waste has been divided into several phases with Phase 1 being the demonstration of the waste disposal technology by a private contractor. Subsystem specifications are being prepared providing requirements for the subsystems that are necessary for the continued safe storage of waste in the DST System and the removal of selected waste for processing by the privatized facility during Phase 1. This document provides the detailed plans for updating subsystem specifications developed during EY99

  3. Spectrometer control subsystem with high level functionality for use at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Alberi, J.L.; Stubblefield, F.W.

    1980-11-01

    We have developed a subsystem capable of controlling stepping motors in a wide variety of vuv and x-ray spectrometers to be used at the National Sychrotron Light Source. The subsystem is capable of controlling up to 15 motors with encoder readback and ramped acceleration/deceleration. Both absolute and incremental encoders may be used in any mixture. Function commands to the subsystem are communicated via ASCII characters over an asynchronous serial link in a well-defined protocol in decipherable English. Thus the unit can be controlled via write statements in a high-level language. Details of hardware implementation will be presented

  4. RHIC spin physics: Proceedings. Volume 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This proceedings compiles one-page summaries and five transparencies for each talk, with the intention that the speaker should include a web location for additional information in the summary. Also, email addresses are given with the participant list. The order follows the agenda: gluon, polarimetry, accelerator, W production and quark/antiquark polarization, parity violation searches, transversity, single transverse spin, small angle elastic scattering, and the final talk on ep collisions at RHIC. The authors begin the Proceedings with the full set of transparencies from Bob Jaffe`s colloquium on spin, by popular request.

  5. RHIC spin physics: Proceedings. Volume 7

    International Nuclear Information System (INIS)

    1998-01-01

    This proceedings compiles one-page summaries and five transparencies for each talk, with the intention that the speaker should include a web location for additional information in the summary. Also, email addresses are given with the participant list. The order follows the agenda: gluon, polarimetry, accelerator, W production and quark/antiquark polarization, parity violation searches, transversity, single transverse spin, small angle elastic scattering, and the final talk on ep collisions at RHIC. The authors begin the Proceedings with the full set of transparencies from Bob Jaffe's colloquium on spin, by popular request

  6. Impact of specific language impairment and type of school on different language subsystems.

    Science.gov (United States)

    Puglisi, Marina Leite; Befi-Lopes, Debora Maria

    2016-01-01

    This study aimed to explore quantitative and qualitative effects of type of school and specific language impairment (SLI) on different language abilities. 204 Brazilian children aged from 4 to 6 years old participated in the study. Children were selected to form three groups: 1) 63 typically developing children studying in private schools (TDPri); 2) 102 typically developing children studying in state schools (TDSta); and 39 children with SLI studying in state schools (SLISta). All individuals were assessed regarding expressive vocabulary, number morphology and morphosyntactic comprehension. All language subsystems were vulnerable to both environmental (type of school) and biological (SLI) effects. The relationship between the three language measures was exactly the same to all groups: vocabulary growth correlated with age and with the development of morphological abilities and morphosyntactic comprehension. Children with SLI showed atypical errors in the comprehension test at the age of 4, but presented a pattern of errors that gradually resembled typical development. The effect of type of school was marked by quantitative differences, while the effect of SLI was characterised by both quantitative and qualitative differences.

  7. Assessing children's emotional security in the interparental relationship: the Security in the Interparental Subsystem Scales.

    Science.gov (United States)

    Davies, Patrick T; Forman, Evan M; Rasi, Jennifer A; Stevens, Kristopher I

    2002-01-01

    Guided by the emotional security hypothesis, this study reports on the development of a new self-report measure that assesses children's strategies for preserving emotional security in the context of interparental conflict. Participants were 924 sixth, seventh, and eighth graders and a subset of their mothers, fathers, and teachers. Exploratory and confirmatory factor analyses of the Security in the Interparental Subsystem (SIS) Scale supported a seven-factor solution, corresponding well to the three component processes (i.e., emotional reactivity, regulation of exposure to parent affect, and internal representations) outlined in the emotional security hypothesis. The SIS subscales demonstrated satisfactory internal consistency and test-retest reliability. Support for the validity of the SIS Scale is evidenced by its significant links with parent reports of children's overt reactivity to conflict, children's responses to interparental conflict simulations 6 months later, and children's psychological maladjustment and experiential histories with interparental conflict across multiple informants (i.e., child, mother, father, and teacher). Results are discussed in the context of developing recommendations for use of the SIS and advancing the emotional security hypothesis.

  8. Spin squeezing and quantum correlations

    Indian Academy of Sciences (India)

    2 states. A coherent spin-s state. (CSS) θ φ can then be thought of as having no quantum correlations as the constituent. 2s elementary spins point in the same direction ˆn(θ φ) which is the mean spin direction. 2. State classification and squeezing. In order to discuss squeezing, we begin with the squeezing condition itself.

  9. Geometry of spin coherent states

    Science.gov (United States)

    Chryssomalakos, C.; Guzmán-González, E.; Serrano-Ensástiga, E.

    2018-04-01

    Spin states of maximal projection along some direction in space are called (spin) coherent, and are, in many respects, the ‘most classical’ available. For any spin s, the spin coherent states form a 2-sphere in the projective Hilbert space \

  10. Spin Hall effect and spin swapping in diffusive superconductors

    Science.gov (United States)

    Espedal, Camilla; Lange, Peter; Sadjina, Severin; Mal'shukov, A. G.; Brataas, Arne

    2017-02-01

    We consider the spin-orbit-induced spin Hall effect and spin swapping in diffusive superconductors. By employing the nonequilibrium Keldysh Green's function technique in the quasiclassical approximation, we derive coupled transport equations for the spectral spin and particle distributions and for the energy density in the elastic scattering regime. We compute four contributions to the spin Hall conductivity, namely, skew scattering, side jump, anomalous velocity, and the Yafet contribution. The reduced density of states in the superconductor causes a renormalization of the spin Hall angle. We demonstrate that all four of these contributions to the spin Hall conductivity are renormalized in the same way in the superconducting state. In its simplest manifestation, spin swapping transforms a primary spin current into a secondary spin current with swapped current and polarization directions. We find that the spin-swapping coefficient is not explicitly but only implicitly affected by the superconducting gap through the renormalized diffusion coefficients. We discuss experimental consequences for measurements of the (inverse) spin Hall effect and spin swapping in four-terminal geometries. In our geometry, below the superconducting transition temperature, the spin-swapping signal is increased an order of magnitude while changes in the (inverse) spin Hall signal are moderate.

  11. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  12. Authoring Participation

    DEFF Research Database (Denmark)

    Papazu, Irina

    2016-01-01

    Samsø, Denmark's Renewable Energy Island since 1997, is world renowned for being self-sufficient in renewable energy and for having achieved energy self-sufficiency and CO2 neutrality through successful processes of public participation. In this article I seek to show how these processes of public...... participation so central to the Renewable Energy Island project can be better understood as instances of material participation motivated first and foremost by a concern for the future of the island as a 'liveable' community; a community in which jobs and institutions are not constantly threatening to disappear...

  13. Higher Spins & Strings

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The conjectured relation between higher spin theories on anti de-Sitter (AdS) spaces and weakly coupled conformal field theories is reviewed. I shall then outline the evidence in favour of a concrete duality of this kind, relating a specific higher spin theory on AdS3 to a family of 2d minimal model CFTs. Finally, I shall explain how this relation fits into the framework of the familiar stringy AdS/CFT correspondence.

  14. Quantum spin quadrumer

    Science.gov (United States)

    Khatua, Subhankar; Shankar, R.; Ganesh, R.

    2018-02-01

    A fundamental motif in frustrated magnetism is the fully mutually coupled cluster of N spins, with each spin coupled to every other spin. Clusters with N =2 and 3 have been extensively studied as building blocks of square and triangular lattice antiferromagnets. In both cases, large-S semiclassical descriptions have been fruitfully constructed, providing insights into the physics of macroscopic magnetic systems. Here, we develop a semiclassical theory for the N =4 cluster. This problem has rich mathematical structure with a ground-state space that has nontrivial topology. We show that ground states are appropriately parametrized by a unit vector order parameter and a rotation matrix. Remarkably, in the low-energy description, the physics of the cluster reduces to that of an emergent free spin-S spin and a rigid rotor. This successfully explains the spectrum of the quadrumer and its associated degeneracies. However, this mapping does not hold in the vicinity of collinear ground states due to a subtle effect that arises from the nonmanifold nature of the ground-state space. We demonstrate this by an analysis of soft fluctuations, showing that collinear states have a larger number of soft modes. Nevertheless, as these singularities only occur on a subset of measure zero, the mapping to a spin and a rotor provides a good description of the quadrumer. We interpret thermodynamic properties of the quadrumer that are accessible in molecular magnets, in terms of the rotor and spin degrees of freedom. Our study paves the way for field theoretic descriptions of systems such as pyrochlore magnets.

  15. Spider Spinning for Dummies

    Science.gov (United States)

    Bird, Richard S.

    Spider spinning is a snappy name for the problem of listing the ideals of a totally acyclic poset in such a way that each ideal is computed from its predecessor in constant time. Such an algorithm is said to be loopless. Our aim in these lectures is to show how to calculate a loopless algorithm for spider spinning. The calculation makes use of the fundamental laws of functional programming and the real purpose of the exercise is to show these laws in action.

  16. Spin-engineered quantum dots

    OpenAIRE

    Fleurov, V.; Ivanov, V. A.; Peeters, F. M.; Vagner, I. D.

    2001-01-01

    Spatially nonhomogeneously spin polarized nuclei are proposed as a new mechanism to monitor electron states in a nanostructure, or as a means to createn and, if necessary, reshape such nanostructures in the course of the experiment. We found that a polarization of nulear spins may lift the spin polarization of the electron states in a nanostructure and, if sufficiently strong, leads to a polarization of the electron spins. Polarized nuclear spins may form an energy landscape capable of bindin...

  17. Theory of spin Hall effect

    OpenAIRE

    Chudnovsky, Eugene M.

    2007-01-01

    An extension of Drude model is proposed that accounts for spin and spin-orbit interaction of charge carriers. Spin currents appear due to combined action of the external electric field, crystal field and scattering of charge carriers. The expression for spin Hall conductivity is derived for metals and semiconductors that is independent of the scattering mechanism. In cubic metals, spin Hall conductivity $\\sigma_s$ and charge conductivity $\\sigma_c$ are related through $\\sigma_s = [2 \\pi \\hbar...

  18. Optimization of a thermoelectric generator subsystem for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Gao, Xin; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2014-01-01

    In previous work, a thermoelectric (TE) exhaust heat recovery subsystem for a high temperature polymer electrolyte membrane (HT-PEM) fuel cell stack was developed and modeled. Numerical simulations were conducted and have identified an optimized subsystem configuration and 4 types of compact heat...... exchangers with superior performance for further analysis. In this work, the on-design performances of the 4 heat exchangers are more thoroughly assessed on their corresponding optimized subsystem configurations. Afterward, their off-design performances are compared on the whole working range of the fuel...... modules are now connected into branches. The procedures of designing and optimizing this TE exhaust heat recovery subsystem are drawn out. The contribution of TE exhaust heat recovery to the HT-PEM fuel cell power system is preliminarily concluded. Its feasibility is also discussed....

  19. General-purpose stepping motor-encoder positioning subsystem with standard asynchronous serial-line interface

    International Nuclear Information System (INIS)

    Stubblefield, F.W.; Alberi, J.L.

    1982-01-01

    A general-purpose mechanical positioning subsystem for open-loop control of experiment devices which have their positions established and read out by stepping motor-encoder combinations has been developed. The subsystem is to be used mainly for experiments to be conducted at the National Synchrotron Light Source at Brookhaven National Laboratory. The subsystem unit has been designed to be compatible with a wide variety of stepping motor and encoder types. The unit may be operated by any device capable of driving a standard RS-232-C asynchronous serial communication line. An informal survey has shown that several experiments at the Light Source will use one particular type of computer, operating system, and programming language. Accordingly, a library of subroutines compatible with this combination of computer system elements has been written to facilitate driving the positioning subsystem unit

  20. Feasibility Studies of Surveillance, Communication, and Data Processing Subsystems for Advanced Air Traffic Management

    Science.gov (United States)

    1972-11-01

    Analyses are made of waveforms, parameters, codes, error rates, and multi-access noise for proposed communications and surveillance subsystems to be useful for air traffic control in the 1990-2000 time period. The systems represented in these analyse...

  1. A membrane-based subsystem for very high recoveries of spacecraft waste waters

    Science.gov (United States)

    Ray, Roderick J.; Retzlaff, Sandra E.; Radke-Mitchell, Lyn; Newbold, David D.; Price, Donald F.

    1986-01-01

    This paper describes the continued development of a membrane-based subsystem designed to recover up to 99.5 percent of the water from various spacecraft waste waters. Specifically discussed are: (1) the design and fabrication of an energy-efficient reverse-osmosis (RO) breadboard subsystem; (2) data showing the performance of this subsystem when operated on a synthetic wash-water solution - including the results of a 92-day test; and (3) the results of pasteurization studies, including the design and operation of an in-line pasteurizer. Also included in this paper is a discussion of the design and performance of a second RO stage. This second stage results in higher-purity product water at a minimal energy requirement and provides a substantial redundancy factor to this subsystem.

  2. VG2 URANUS ULTRAVIOLET SPECTROMETER SUBSYSTEM 3 RDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains reformatted records derived from data returned by the Voyager Ultraviolet Spectrometer Subsystem on board Voyager 2 during the Uranus...

  3. Failure data analysis of the SuperHILAC radio frequency subsystem

    International Nuclear Information System (INIS)

    Chang, M.K.

    1978-12-01

    This report is a continuation of an earlier report by Liang with emphasis now on the Radio Frequency subsystem and its components, using current and improved data. It was stated in Liang's report that improvement in overall SuperHILAC availability, which must be very high for medical purposes, is best made by improving subsystems that are needed in all modes of operation. Two such subsystems were Radio Frequency (RF) and Other, with relatively low availabilities of .96 and .93 respectively. Since subsystem Other is not well defined, the RF became the object of this investigation. It was hoped that the components of the RF would show properties that were obscured at the higher level. The analytic procedure of this report is essentially identical to that in the earlier report, except that an operating period analysis is added

  4. VG2 NEPTUNE ULTRAVIOLET SPECTROMETER SUBSYSTEM 3 RDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains reformatted records derived from data returned by the Voyager Ultraviolet Spectrometer Subsystem on board Voyager 2 during the Neptune...

  5. An optical scanning subsystem for a UAS-enabled hyperspectral radiometer

    Data.gov (United States)

    National Aeronautics and Space Administration — Hyperspectral radiometers will be integrated with an optical scanning subsystem to measure remote sensing reflectance spectra over the ocean.  The entire scanning...

  6. System Simulation by Recursive Feedback: Coupling a Set of Stand-Alone Subsystem Simulations

    Science.gov (United States)

    Nixon, D. D.

    2001-01-01

    Conventional construction of digital dynamic system simulations often involves collecting differential equations that model each subsystem, arran g them to a standard form, and obtaining their numerical gin solution as a single coupled, total-system simultaneous set. Simulation by numerical coupling of independent stand-alone subsimulations is a fundamentally different approach that is attractive because, among other things, the architecture naturally facilitates high fidelity, broad scope, and discipline independence. Recursive feedback is defined and discussed as a candidate approach to multidiscipline dynamic system simulation by numerical coupling of self-contained, single-discipline subsystem simulations. A satellite motion example containing three subsystems (orbit dynamics, attitude dynamics, and aerodynamics) has been defined and constructed using this approach. Conventional solution methods are used in the subsystem simulations. Distributed and centralized implementations of coupling have been considered. Numerical results are evaluated by direct comparison with a standard total-system, simultaneous-solution approach.

  7. Behavioral modelling and identification of power electronics converters and subsystems based on transient response

    OpenAIRE

    Valdivia Guerrero, Virgilio

    2013-01-01

    Nowadays, electrical engineers face significant changes in the way the electrical energy is generated and distributed to the consumers. On the one hand, the number of electronic and electrical loads in power distribution systems is continuously growing. Developments in power electronics technology during last decades have enabled the use of power-electronics-based subsystems as an alternative to mechanical, hydraulic and pneumatic subsystems, looking for more reliable and light systems, and a...

  8. Double-Shell Tank (DST) Maintenance and Recovery Subsystem Definition Report

    International Nuclear Information System (INIS)

    SMITH, E.A.

    2000-01-01

    The description of the Double-Shell Tank (DST) Maintenance and Recovery Subsystem presented in this document was developed to establish its boundaries. The DST Maintenance and Recovery Subsystem consists of new and existing equipment and facilities used to provide tank farm operators logistic support and problem resolution for the DST System during operations. This support will include evaluating equipment status, performing preventive and corrective maintenance, developing work packages, managing spares and consumables, supplying tooling, and training maintenance and operations personnel

  9. Assessment of airframe-subsystems synergy on overall aircraft performance in a Collaborative Design Environment.

    OpenAIRE

    Shiva Prakasha, Prajwal; Ciampa, Pier Davide

    2016-01-01

    A Collaborative Multidisciplinary Design Optimization (MDO) methodology is presented, which uses physics based analysis to evaluate the correlations between the airframe design and its sub-systems integration from the early design process, and to exploit the synergies within a simultaneous optimization process. Further, the disciplinary analysis modules involved in the optimization task are located in different organization. Hence, the Airframe and Subsystem design tools are integrated within...

  10. Policy Subsystem Portfolio Management: A Neural Network Model of the Gulf of Mexico Program

    OpenAIRE

    Larkin, George Richard

    1999-01-01

    This study provides insights into the behavior of an environmental policy subsystem. The study uses neural network theory to model the Gulf of Mexico Program's allocation of implementation funds. The Gulf of Mexico Program is a prototype effort to institutionalize a policy subsystem. A project implementation fund is at the core of the Gulf of Mexico Program. The United States Environmental Protection Agency provides the implementation fund and the Mexico Program Office (GMPO) administers it. ...

  11. Protective and control relays as coal-mine power-supply ACS subsystem

    Science.gov (United States)

    Kostin, V. N.; Minakova, T. E.

    2017-10-01

    The paper presents instantaneous selective short-circuit protection for the cabling of the underground part of a coal mine and central control algorithms as a Coal-Mine Power-Supply ACS Subsystem. In order to improve the reliability of electricity supply and reduce the mining equipment down-time, a dual channel relay protection and central control system is proposed as a subsystem of the coal-mine power-supply automated control system (PS ACS).

  12. Spin-Current and Spin-Splitting in Helicoidal Molecules Due to Spin-Orbit Coupling

    Science.gov (United States)

    Caetano, R. A.

    2016-03-01

    The use of organic materials in spintronic devices has been seriously considered after recent experimental works have shown unexpected spin-dependent electrical properties. The basis for the confection of any spintronic device is ability of selecting the appropriated spin polarization. In this direction, DNA has been pointed out as a potential candidate for spin selection due to the spin-orbit coupling originating from the electric field generated by accumulated electrical charges along the helix. Here, we demonstrate that spin-orbit coupling is the minimum ingredient necessary to promote a spatial spin separation and the generation of spin-current. We show that the up and down spin components have different velocities that give rise to a spin-current. By using a simple situation where spin-orbit coupling is present, we provide qualitative justifications to our results that clearly point to helicoidal molecules as serious candidates to integrate spintronic devices.

  13. Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction

    KAUST Repository

    Ortiz Pauyac, Christian

    2016-06-19

    In the present thesis we introduce the reader to the field of spintronics and explore new phenomena, such as spin transfer torques, spin filtering, and three types of spin-orbit torques, Rashba, spin Hall, and spin swapping, which have emerged very recently and are promising candidates for a new generation of memory devices in computer technology. A general overview of these phenomena is presented in Chap. 1. In Chap. 2 we study spin transfer torques in tunnel junctions in the presence of spin filtering. In Chap. 3 we discuss the Rashba torque in ferromagnetic films, and in Chap. 4 we study spin Hall effect and spin swapping in ferromagnetic films, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives are summarized in Chap. 5.

  14. Exploring relationships of human-automation interaction consequences on pilots: uncovering subsystems.

    Science.gov (United States)

    Durso, Francis T; Stearman, Eric J; Morrow, Daniel G; Mosier, Kathleen L; Fischer, Ute; Pop, Vlad L; Feigh, Karen M

    2015-05-01

    We attempted to understand the latent structure underlying the systems pilots use to operate in situations involving human-automation interaction (HAI). HAI is an important characteristic of many modern work situations. Of course, the cognitive subsystems are not immediately apparent by observing a functioning system, but correlations between variables may reveal important relations. The current report examined pilot judgments of 11 HAI dimensions (e.g., Workload, Task Management, Stress/Nervousness, Monitoring Automation, and Cross-Checking Automation) across 48 scenarios that required airline pilots to interact with automation on the flight deck. We found three major clusters of the dimensions identifying subsystems on the flight deck: a workload subsystem, a management subsystem, and an awareness subsystem. Relationships characterized by simple correlations cohered in ways that suggested underlying subsystems consistent with those that had previously been theorized. Understanding the relationship among dimensions affecting HAI is an important aspect in determining how a new piece of automation designed to affect one dimension will affect other dimensions as well. © 2014, Human Factors and Ergonomics Society.

  15. Design and implementation of the GPS subsystem for the Radio Aurora eXplorer

    Science.gov (United States)

    Spangelo, Sara C.; Bennett, Matthew W.; Meinzer, Daniel C.; Klesh, Andrew T.; Arlas, Jessica A.; Cutler, James W.

    2013-06-01

    This paper presents the design and implementation of the Global Positioning System (GPS) subsystem for the Radio Aurora eXplorer (RAX) CubeSat. The GPS subsystem provides accurate temporal and spatial information necessary to satisfy the science objectives of the RAX mission. There are many challenges in the successful design and implementation of a GPS subsystem for a CubeSat-based mission, including power, size, mass, and financial constraints. This paper presents an approach for selecting and testing the individual and integrated GPS subsystem components, including the receiver, antenna, low noise amplifier, and supporting circuitry. The procedures to numerically evaluate the GPS link budget and test the subsystem components at various stages of system integration are described. Performance results for simulated tests in the terrestrial and orbital environments are provided, including start-up times, carrier-to-noise ratios, and orbital position accuracy. Preliminary on-orbit GPS results from the RAX-1 and RAX-2 spacecraft are presented to validate the design process and pre-flight simulations. Overall, this paper provides a systematic approach to aid future satellite designers in implementing and verifying GPS subsystems for resource-constrained small satellites.

  16. Hornets Have It: A Conserved Olfactory Subsystem for Social Recognition in Hymenoptera?

    Directory of Open Access Journals (Sweden)

    Antoine Couto

    2017-06-01

    Full Text Available Eusocial Hymenoptera colonies are characterized by the presence of altruistic individuals, which rear their siblings instead of their own offspring. In the course of evolution, such sterile castes are thought to have emerged through the process of kin selection, altruistic traits being transmitted to following generation if they benefit relatives. By allowing kinship recognition, the detection of cuticular hydrocarbons (CHCs might be instrumental for kin selection. In carpenter ants, a female-specific olfactory subsystem processes CHC information through antennal detection by basiconic sensilla. It is still unclear if other families of eusocial Hymenoptera use the same subsystem for sensing CHCs. Here, we examined the existence of such a subsystem in Vespidae (using the hornet Vespa velutina, a family in which eusociality emerged independently of ants. The antennae of both males and female hornets contain large basiconic sensilla. Sensory neurons from the large basiconic sensilla exclusively project to a conspicuous cluster of small glomeruli in the antennal lobe, with anatomical and immunoreactive features that are strikingly similar to those of the ant CHC-sensitive subsystem. Extracellular electrophysiological recordings further show that sensory neurons within hornet basiconic sensilla preferentially respond to CHCs. Although this subsystem is not female-specific in hornets, the observed similarities with the olfactory system of ants are striking. They suggest that the basiconic sensilla subsystem could be an ancestral trait, which may have played a key role in the advent of eusociality in these hymenopteran families by allowing kin recognition and the production of altruistic behaviors toward relatives.

  17. Optical spin generation/detection and spin transport lifetimes

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  18. Optical spin generation/detection and spin transport lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-02-25

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  19. The Soil Degradation Subsystem of the Hungarian Environmental Information System

    Science.gov (United States)

    Szabó, József; Pirkó, Béla; Szabóné Kele, Gabriella; Dombos, Miklós; László, Péter; Koós, Sándor; Bakacsi, Zsófia; Laborczi, Annamária; Pásztor, László

    2013-04-01

    Regular data collection on the state of agricultural soils has not been in operation in Hungary for more than two decades. In the meantime, mainly thanks to the Hungarian Soil Strategy and the planned Soil Framework Directive, the demand for the information on state of Hungarian soils and the follow up of the harmful changes in their conditions and functioning has greatly increased. In 2010 the establishment of a new national soil monitoring system was supported by the Environment and Energy Operational Programme for Informatics Development. The aim of the project was to collect, manage, analyse and publish soil data related to the state of soils and the environmental stresses attributed to the pressures due to agriculture; setting up an appropriate information system in order to fulfil the directives of the Thematic Strategy for Soil Protection. Further objective was the web-based publication of soil data as well as information to support the related public service mission and to inform publicity. The developed information system operates as the Soil Degradation Subsystem of the National Environmental Information System being compatible with its other elements. A suitable representative sampling method was elaborated. The representativity is meant for soil associations, landuse, agricultural practices and typical degradation processes. Soil data were collected on county levels led by regional representatives but altogether they are representative for the whole territory of Hungary. During the project, about 700,000 elementary data were generated, close to 2,000 parcels of 285 farms were surveyed resulting more than 9,000 analysis, 7,000 samples and 28,000 pictures. The overall number of the recorded parcels is 4500, with a total area of about 250,000 hectares. The effect of agricultural land use on soils manifests in rapid changes -related to natural processes- in qualitative and quantitative soil parameters. In intensively used agricultural areas, particularly

  20. Thermoelectric spin voltage in graphene.

    Science.gov (United States)

    Sierra, Juan F; Neumann, Ingmar; Cuppens, Jo; Raes, Bart; Costache, Marius V; Valenzuela, Sergio O

    2018-02-01

    In recent years, new spin-dependent thermal effects have been discovered in ferromagnets, stimulating a growing interest in spin caloritronics, a field that exploits the interaction between spin and heat currents 1,2 . Amongst the most intriguing phenomena is the spin Seebeck effect 3-5 , in which a thermal gradient gives rise to spin currents that are detected through the inverse spin Hall effect 6-8 . Non-magnetic materials such as graphene are also relevant for spin caloritronics, thanks to efficient spin transport 9-11 , energy-dependent carrier mobility and unique density of states 12,13 . Here, we propose and demonstrate that a carrier thermal gradient in a graphene lateral spin valve can lead to a large increase of the spin voltage near to the graphene charge neutrality point. Such an increase results from a thermoelectric spin voltage, which is analogous to the voltage in a thermocouple and that can be enhanced by the presence of hot carriers generated by an applied current 14-17 . These results could prove crucial to drive graphene spintronic devices and, in particular, to sustain pure spin signals with thermal gradients and to tune the remote spin accumulation by varying the spin-injection bias.

  1. Overview of spin physics

    Energy Technology Data Exchange (ETDEWEB)

    Yokosawa, A.

    1992-12-23

    Spin physics activities at medium and high energies became significantly active when polarized targets and polarized beams became accessible for hadron-hadron scattering experiments. My overview of spin physics will be inclined to the study of strong interaction using facilities at Argonne ZGS, Brookhaven AGS (including RHIC), CERN, Fermilab, LAMPF, an SATURNE. In 1960 accelerator physicists had already been convinced that the ZGS could be unique in accelerating a polarized beam; polarized beams were being accelerated through linear accelerators elsewhere at that time. However, there was much concern about going ahead with the construction of a polarized beam because (i) the source intensity was not high enough to accelerate in the accelerator, (ii) the use of the accelerator would be limited to only polarized-beam physics, that is, proton-proton interaction, and (iii) p-p elastic scattering was not the most popular topic in high-energy physics. In fact, within spin physics, [pi]-nucleon physics looked attractive, since the determination of spin and parity of possible [pi]p resonances attracted much attention. To proceed we needed more data beside total cross sections and elastic differential cross sections; measurements of polarization and other parameters were urgently needed. Polarization measurements had traditionally been performed by analyzing the spin of recoil protons. The drawbacks of this technique are: (i) it involves double scattering, resulting in poor accuracy of the data, and (ii) a carbon analyzer can only be used for a limited region of energy.

  2. Quantum spin transistor with a Heisenberg spin chain

    Science.gov (United States)

    Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.

    2016-01-01

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438

  3. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  4. Spin gating electrical current

    Science.gov (United States)

    Ciccarelli, C.; Zârbo, L. P.; Irvine, A. C.; Campion, R. P.; Gallagher, B. L.; Wunderlich, J.; Jungwirth, T.; Ferguson, A. J.

    2012-09-01

    The level of the chemical potential is a fundamental parameter of the electronic structure of a physical system, which consequently plays an important role in defining the properties of active electrical devices. We directly measure the chemical potential shift in the relativistic band structure of the ferromagnetic semiconductor (Ga,Mn)As, controlled by changes in its magnetic order parameter. Our device comprises a non-magnetic aluminum single electron channel capacitively coupled to the (Ga,Mn)As gate electrode. The chemical potential shifts of the gate are directly read out from the shifts in the Coulomb blockade oscillations of the single electron transistor. The experiments introduce a concept of spin gating electrical current. In our spin transistor spin manipulation is completely removed from the electrical current carrying channel.

  5. SPIN-selling

    CERN Document Server

    Rackham, Neil

    1995-01-01

    True or false? In selling high-value products or services: "closing" increases your chance of success; it is essential to describe the benefits of your product or service to the customer; objection handling is an important skill; and open questions are more effective than closed questions. All false, says Neil Rackham. He and his team studied more than 35,000 sales calls made by 10,000 sales people in 23 countries over 12 years. Their findings revealed that many of the methods developed for selling low-value goods just don't work for major sales. Rackham went on to introduce his SPIN-selling method, where SPIN describes the whole selling process - Situation questions, Problem questions, Implication questions, Need-payoff questions. SPIN-selling provides you with a set of simple and practical techniques which have been tried in many of today's leading companies with dramatic improvements to their sales performance.

  6. Chiral higher spin gravity

    Science.gov (United States)

    Krishnan, Chethan; Raju, Avinash

    2017-06-01

    We construct a candidate for the most general chiral higher spin theory with AdS3 boundary conditions. In the Chern-Simons language, on the left it has the Drinfeld-Sokolov reduced form, but on the right all charges and chemical potentials are turned on. Altogether (for the spin-3 case) these are 19 functions. Despite this, we show that the resulting metric has the form of the "most general" AdS3 boundary conditions discussed by Grumiller and Riegler. The asymptotic symmetry algebra is a product of a W3 algebra on the left and an affine s l (3 )k current algebra on the right, as desired. The metric and higher spin fields depend on all the 19 functions. We compare our work with previous results in the literature.

  7. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden

    1975-01-01

    The selection rules for the linear couplings between magnons and phonons propagating in the c direction of a simple basal-plane hcp ferromagnet are determined by general symmetry considerations. The acoustic-optical magnon-phonon interactions observed in the heavy-rare-earth metals have been...... explained by Liu as originating from the mixing of the spin states of the conduction electrons due to the spin-orbit coupling. We find that this coupling mechanism introduces interactions which violate the selection rules for a simple ferromagnet. The interactions between the magnons and phonons propagating...... in the c direction of Tb have been studied experimentally by means of inelastic neutron scattering. The magnons are coupled to both the acoustic- and optical-transverse phonons. By studying the behavior of the acoustic-optical coupling, we conclude that it is a spin-mixed-induced coupling as proposed...

  8. Spin flexoelectricity and chiral spin structures in magnetic films

    OpenAIRE

    Pyatakov, A. P.; Sergeev, A. S.; Mikailzade, F. A.; Zvezdin, A. K.

    2015-01-01

    In this short review a broad range of chiral phenomena observed in magnetic films (spin cycloid and skyrmion structures formation as well as chirality dependent domain wall motion) is considered under the perspective of spin flexoelectricity, i.e. the relation between bending of magnetization pattern and electric polarization. The similarity and the difference between the spin flexoelectricity and the newly emerged notion of spin flexomagnetism is discussed. The phenomenological arguments bas...

  9. Spinning geodesic Witten diagrams

    International Nuclear Information System (INIS)

    Dyer, Ethan; Freedman, Daniel Z.; Massachusetts Institute of Technology; Massachusetts Institute of Technology; Sully, James; McGill University, Montreal, QC

    2017-01-01

    We present an expression for the four-point conformal blocks of symmetric traceless operators of arbitrary spin as an integral over a pair of geodesics in Anti-de Sitter space, generalizing the geodesic Witten diagram formalism of Hijano et al. to arbitrary spin. As an intermediate step in the derivation, we identify a convenient basis of bulk threepoint interaction vertices which give rise to all possible boundary three point structures. Lastly, we highlight a direct connection between the representation of the conformal block as geodesic Witten diagram and the shadow operator formalism.

  10. Spin gating electrical current

    Czech Academy of Sciences Publication Activity Database

    Ciccarelli, C.; Zarbo, Liviu; Irvine, A.C.; Campion, R. P.; Gallagher, B. L.; Wunderlich, Joerg; Jungwirth, Tomáš; Ferguson, A.J.

    2012-01-01

    Roč. 101, č. 12 (2012), , , "122411-1"-"122411-4" ISSN 0003-6951 R&D Projects: GA AV ČR KJB100100802; GA AV ČR KAN400100652 EU Projects: European Commission(XE) 268066 - 0MSPIN; European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic resonance * spin-orbit coupling * nanodevices Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.794, year: 2012 http://arxiv.org/abs/1203.2439

  11. Spin echo in synchrotrons

    Directory of Open Access Journals (Sweden)

    Alexander W. Chao

    2007-01-01

    Full Text Available As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency Δν_{spin} of the beam (particularly due to its energy spread is sufficiently large that the spin precession phases of individual particles smear out completely during the time τ between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference-overlap effect and a spin echo effect. This paper is to address these two effects. The interference-overlap effect occurs when Δν_{spin} is too small, or when τ is too short, to complete the smearing process. In this case, the two resonance crossings overlap each other, and the final polarization exhibits constructive or destructive interference patterns depending on the exact value of τ. Typically, the beam’s energy spread is large and this interference-overlap effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time τ after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when τ is very large, and could be a sensitive (albeit challenging way to experimentally test the intricate spin dynamics in a synchrotron

  12. Spin, gravity, and inertia.

    Science.gov (United States)

    Obukhov, Y N

    2001-01-08

    The gravitational effects in the relativistic quantum mechanics are investigated. The exact Foldy-Wouthuysen transformation is constructed for the Dirac particle coupled to the static spacetime metric. As a direct application, we analyze the nonrelativistic limit of the theory. The new term describing the specific spin (gravitational moment) interaction effect is recovered in the Hamiltonian. The comparison of the true gravitational coupling with the purely inertial case demonstrates that the spin relativistic effects do not violate the equivalence principle for the Dirac fermions.

  13. Real-time fMRI brain-computer interface: Development of a "motivational feedback" subsystem for the regulation of visual cue reactivity

    Directory of Open Access Journals (Sweden)

    Moses O. Sokunbi

    2014-11-01

    Full Text Available Here we present a novel neurofeedback subsystem for the presentation of motivationally relevant visual feedback during the self-regulation of functional brain activation. Our motivational neurofeedback approach uses functional magnetic resonance imaging (fMRI signals elicited by visual cues (pictures and related to motivational processes such as craving or hunger. The visual feedback subsystem provides simultaneous feedback through these images as their size corresponds to the magnitude of fMRI signal change from a target brain area. During self-regulation of cue-evoked brain responses, decreases and increases in picture size thus provide real motivational consequences in terms of cue approach versus cue avoidance, which increases face validity of the approach in applied settings. Further, the outlined approach comprises of neurofeedback (regulation and mirror runs that allow to control for non-specific and task-unrelated effects, such as habituation or neural adaptation. The approach was implemented in the Python programming language. Pilot data from 10 volunteers showed that participants were able to successfully down-regulate individually defined target areas, demonstrating feasibility of the approach. The newly developed visual feedback subsystem can be integrated into protocols for imaging-based brain-computer interfaces (BCI and may facilitate neurofeedback research and applications into healthy and dysfunctional motivational processes, such food craving or addiction.

  14. Subsystem of statistic indicators for characterizing the digital technology

    OpenAIRE

    Dana COLIBABA; Giani GRADINARU; Irina ISAIC MANIU

    2006-01-01

    The technology, in close connection with TIC, might constitute the main source of economic growth in Romania. It allows individuals as well as firms from the public and private sector to beneficiate from the opportunity of participating to socio-economic life, to gain the necessary abilities for evolving in the knowledge society, to develop new business strategies and to experiment the techniques provided by the electronic ruling

  15. A stochastic picture of spin

    International Nuclear Information System (INIS)

    Faris, W.G.

    1981-01-01

    Dankel has shown how to incorporate spin into stochastic mechanics. The resulting non-local hidden variable theory gives an appealing picture of spin correlation experiments in which Bell's inequality is violated. (orig.)

  16. Lifelong learning and the need of designing and implementing an educational subsystem in Macedonian companies

    Directory of Open Access Journals (Sweden)

    Dr.Sc. Elizabeta Mitreva

    2012-06-01

    Full Text Available The education of the employees in each instance of company comes wiith the purpose to gain competences and experience in order to realize every business process in accordance with the requests of the products/ services, legal obligation and competitiveness criteria, as well as with the appointing of the employees requests, and all that with the intention to achieve quality where it is necessary to involve everyone in their own field. In this paper the following inputs are being given in order to get a clear picture if Macedonian companies are keen on to learning and stimulating the individual and collective learning as to improve the results in general. According to the given results in the research, it is stated that Macedonian companies do not care about the quality, insufficiently pay attention to the continuous education, make small investments in the innovations and over all, the quality system is built in a very small number of companies. In this paper the following model for a successful designing and implementing of the educational system as a subsystem of the house of quality is suggested. This methodology is integral and universal meaning it is applicable to all companies and institutions. Without a given training about TQM (Total Quality Management philosophy and a continued education provided firstly to the managers and further on to all the employees, the TQM strategy could not be implemented as well as the benefits that come with the quality system. All the above is imposing a stronger systematic effort where the bases lay in: strong leadership (new style of the top management, realistically grounded market vision, politics and strategy and systematic orientation and business moral that will gain back the confidence between the management and the employees, staff participation (efficiency and cooperativeness in the teamwork that will not stifle the creativity and the individualism.

  17. Predicting Speech Intelligibility Decline in Amyotrophic Lateral Sclerosis Based on the Deterioration of Individual Speech Subsystems.

    Science.gov (United States)

    Rong, Panying; Yunusova, Yana; Wang, Jun; Zinman, Lorne; Pattee, Gary L; Berry, James D; Perry, Bridget; Green, Jordan R

    2016-01-01

    To determine the mechanisms of speech intelligibility impairment due to neurologic impairments, intelligibility decline was modeled as a function of co-occurring changes in the articulatory, resonatory, phonatory, and respiratory subsystems. Sixty-six individuals diagnosed with amyotrophic lateral sclerosis (ALS) were studied longitudinally. The disease-related changes in articulatory, resonatory, phonatory, and respiratory subsystems were quantified using multiple instrumental measures, which were subjected to a principal component analysis and mixed effects models to derive a set of speech subsystem predictors. A stepwise approach was used to select the best set of subsystem predictors to model the overall decline in intelligibility. Intelligibility was modeled as a function of five predictors that corresponded to velocities of lip and jaw movements (articulatory), number of syllable repetitions in the alternating motion rate task (articulatory), nasal airflow (resonatory), maximum fundamental frequency (phonatory), and speech pauses (respiratory). The model accounted for 95.6% of the variance in intelligibility, among which the articulatory predictors showed the most substantial independent contribution (57.7%). Articulatory impairments characterized by reduced velocities of lip and jaw movements and resonatory impairments characterized by increased nasal airflow served as the subsystem predictors of the longitudinal decline of speech intelligibility in ALS. Declines in maximum performance tasks such as the alternating motion rate preceded declines in intelligibility, thus serving as early predictors of bulbar dysfunction. Following the rapid decline in speech intelligibility, a precipitous decline in maximum performance tasks subsequently occurred.

  18. Integration & Validation of LCU with Different Sub-systems for Diacrode based amplifier

    Science.gov (United States)

    Rajnish, Kumar; Verma, Sriprakash; Soni, Dipal; Patel, Hriday; Suthar, Gajendra; Dalicha, Hrushikesh; Dhola, Hitesh; Patel, Amit; Upadhayay, Dishang; Jha, Akhil; Patel, Manoj; Trivedi, Rajesh; Machchhar, Harsha; Singh, Raghuraj; Mukherjee, Aparajita

    2017-04-01

    ITER-India is responsible to deliver nine (8+1 spare) ICH & CD Power Sources to ITER. Each power source is capable to deliver 2.5 MW at 35 to 65 MHz frequency range with a load condition up to VSWR 2:1. For remote operation of different subsystems, Local Control Unit (LCU) is developed. LCU is developed using PXI hardware and Schneider PLC with Lab VIEW-RT developmental environment. All the protection function of the amplifier is running on PXI 7841 R module that ensures hard wired protection logic. There are three level of protection function- first by power supply itself that detects overcurrent/overvoltage and trips itself and generate trip signal for further action. There are some direct hardwired signal interfaces between power supplies to protect the amplifier. Second level of protection is generated through integrated controller of amplifier i.e. Command Control Embedded (CCE) against arc and Anode over current. Third level of Protection is through LCU where different fault signals are received and processed to generate off command for different sub-systems. Before connecting different subsystem with High power RF amplifiers (Driver & Final stage), each subsystem is individually tested through LCU. All protection functions are tested before hooking up the subsystems with main amplifier and initiating RF operation.

  19. Multi-criteria selection of UPPT subsystems by a social community: The 'Beovoz' case study

    Directory of Open Access Journals (Sweden)

    Vuković Dubravka R.

    2014-01-01

    Full Text Available This research paper considers the issue of multi-criteria selection of urban public passenger transport (UPPT subsystems by a social community, where possible solutions are as follows: (1 implementation of a new one, (2 replacement of the existing with a new one, (3 keeping the existing UPPT subsystem. In order to reach the specific solution for this issue, a new algorithm is proposed, which is heuristic, three phased and relatively simple. The aim of the algorithm is to choose the UPPT subsystem between possible options in the specific traffic corridor. To test the algorithm, the 'Beovoz' case study was made, which includes the analysis of six options of the UPPT subsystem (four of which with railway technology, from which stood out the following alternatives2: bus and railway. The conclusion is that the railway can be used in a modern city, however only for high-volume traffic corridors. The bus subsystem can be used in corridors with lower volume and those that supplement the railway.

  20. Predicting Speech Intelligibility Decline in Amyotrophic Lateral Sclerosis Based on the Deterioration of Individual Speech Subsystems

    Science.gov (United States)

    Yunusova, Yana; Wang, Jun; Zinman, Lorne; Pattee, Gary L.; Berry, James D.; Perry, Bridget; Green, Jordan R.

    2016-01-01

    Purpose To determine the mechanisms of speech intelligibility impairment due to neurologic impairments, intelligibility decline was modeled as a function of co-occurring changes in the articulatory, resonatory, phonatory, and respiratory subsystems. Method Sixty-six individuals diagnosed with amyotrophic lateral sclerosis (ALS) were studied longitudinally. The disease-related changes in articulatory, resonatory, phonatory, and respiratory subsystems were quantified using multiple instrumental measures, which were subjected to a principal component analysis and mixed effects models to derive a set of speech subsystem predictors. A stepwise approach was used to select the best set of subsystem predictors to model the overall decline in intelligibility. Results Intelligibility was modeled as a function of five predictors that corresponded to velocities of lip and jaw movements (articulatory), number of syllable repetitions in the alternating motion rate task (articulatory), nasal airflow (resonatory), maximum fundamental frequency (phonatory), and speech pauses (respiratory). The model accounted for 95.6% of the variance in intelligibility, among which the articulatory predictors showed the most substantial independent contribution (57.7%). Conclusion Articulatory impairments characterized by reduced velocities of lip and jaw movements and resonatory impairments characterized by increased nasal airflow served as the subsystem predictors of the longitudinal decline of speech intelligibility in ALS. Declines in maximum performance tasks such as the alternating motion rate preceded declines in intelligibility, thus serving as early predictors of bulbar dysfunction. Following the rapid decline in speech intelligibility, a precipitous decline in maximum performance tasks subsequently occurred. PMID:27148967

  1. Operator quantum error-correcting subsystems for self-correcting quantum memories

    International Nuclear Information System (INIS)

    Bacon, Dave

    2006-01-01

    The most general method for encoding quantum information is not to encode the information into a subspace of a Hilbert space, but to encode information into a subsystem of a Hilbert space. Recently this notion has led to a more general notion of quantum error correction known as operator quantum error correction. In standard quantum error-correcting codes, one requires the ability to apply a procedure which exactly reverses on the error-correcting subspace any correctable error. In contrast, for operator error-correcting subsystems, the correction procedure need not undo the error which has occurred, but instead one must perform corrections only modulo the subsystem structure. This does not lead to codes which differ from subspace codes, but does lead to recovery routines which explicitly make use of the subsystem structure. Here we present two examples of such operator error-correcting subsystems. These examples are motivated by simple spatially local Hamiltonians on square and cubic lattices. In three dimensions we provide evidence, in the form a simple mean field theory, that our Hamiltonian gives rise to a system which is self-correcting. Such a system will be a natural high-temperature quantum memory, robust to noise without external intervening quantum error-correction procedures

  2. Predicting Speech Intelligibility Decline in Amyotrophic Lateral Sclerosis Based on the Deterioration of Individual Speech Subsystems.

    Directory of Open Access Journals (Sweden)

    Panying Rong

    Full Text Available To determine the mechanisms of speech intelligibility impairment due to neurologic impairments, intelligibility decline was modeled as a function of co-occurring changes in the articulatory, resonatory, phonatory, and respiratory subsystems.Sixty-six individuals diagnosed with amyotrophic lateral sclerosis (ALS were studied longitudinally. The disease-related changes in articulatory, resonatory, phonatory, and respiratory subsystems were quantified using multiple instrumental measures, which were subjected to a principal component analysis and mixed effects models to derive a set of speech subsystem predictors. A stepwise approach was used to select the best set of subsystem predictors to model the overall decline in intelligibility.Intelligibility was modeled as a function of five predictors that corresponded to velocities of lip and jaw movements (articulatory, number of syllable repetitions in the alternating motion rate task (articulatory, nasal airflow (resonatory, maximum fundamental frequency (phonatory, and speech pauses (respiratory. The model accounted for 95.6% of the variance in intelligibility, among which the articulatory predictors showed the most substantial independent contribution (57.7%.Articulatory impairments characterized by reduced velocities of lip and jaw movements and resonatory impairments characterized by increased nasal airflow served as the subsystem predictors of the longitudinal decline of speech intelligibility in ALS. Declines in maximum performance tasks such as the alternating motion rate preceded declines in intelligibility, thus serving as early predictors of bulbar dysfunction. Following the rapid decline in speech intelligibility, a precipitous decline in maximum performance tasks subsequently occurred.

  3. Subsystem-DFT potential-energy curves for weakly interacting systems.

    Science.gov (United States)

    Schlüns, Danny; Klahr, Kevin; Mück-Lichtenfeld, Christian; Visscher, Lucas; Neugebauer, Johannes

    2015-06-14

    Kohn-Sham density-functional theory (DFT) within the local-density approximation (LDA) or the generalized-gradient approximation (GGA) is known to fail for the correct description of London dispersion interactions. Often, not even bound potential-energy surfaces are obtained for van der Waals complexes, unless special correction schemes are employed. In contrast to that, there has been some evidence for the fact that subsystem-based density functional theory produces interaction energies for weakly bound systems which are superior to Kohn-Sham DFT results without dispersion corrections. This is usually attributed to an error cancellation between the approximate exchange-correlation and non-additive kinetic-energy functionals employed in subsystem DFT. Here, we investigate the accuracy of subsystem DFT for weakly interacting systems in detail, paying special attention to the shape of the potential-energy surfaces (PESs). Our test sets include the extensive S22x5 and S66x8 data sets. Our results indicate that subsystem DFT PESs strongly vary depending on the functional. LDA results are usually quite good, but behave differently from their KS counterparts. GGA results from the popular Perdew-Wang (PW91) set of functionals produce PESs that are often, but not in general overbinding. Results from Becke-Perdew (BP86) GGAs, by contrast, show the typical problems known from the corresponding KS results. We provide some preliminary results for empirical corrections for both PW91 and BP86 in subsystem DFT.

  4. On Using Ilities of Non-Functional Properties for Subsystems and Components

    Directory of Open Access Journals (Sweden)

    James Y. Lee

    2017-07-01

    Full Text Available The use of ilities for systems engineering of subsystems and components is investigated. Prior work on ilities has emphasized or restricted their application to system level, non-functional properties. The premise of this work is that ilities can be applied with benefit, and in some cases out of necessity, to lower levels of systems as well. The veracity of this premise is established by providing examples that demonstrate how some ilities are passed and used as a non-functional property of electrical and structural subsystems in aircraft. It is further demonstrated that flowing ilities down to the subsystem level is not only a useful practice for systems engineers, it can also be an essential step to ensure that customer needs are actually met by the system under design or service. Systems engineers often lack the detailed knowledge of the subsystems or components required to translate ilities into functional requirements. Thus, the system ilities are passed down and translated from non-functional to functional requirements by subject matter experts. We first discuss the definition, characteristics and scope of ilities. Then, we formulate the application of ilities at a subsystem level. Next, we show aircraft engineering examples for ilities applications. The application process is formalized with diagrams, and ilities’ relation to system architecture engineering is discussed. The work concludes with a summary and suggestions for future work.

  5. Antiferromagnetic spin-orbitronics

    KAUST Repository

    Manchon, Aurelien

    2015-05-01

    Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.

  6. " The Story of Spin

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 11. The Story of Spin - From Spectroscopy to Relativistic Quantum Mechanics. N Mukunda. Book Review Volume 3 Issue 11 November 1998 pp 89-90. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Spin and isospin modes

    International Nuclear Information System (INIS)

    Suzuki, T.; Sagawa, H.

    2000-01-01

    Complete text of publication follows. Spin and isospin modes in nuclei are investigated. We discuss some of the following topics. 1. Spin-dipole excitations in 12 C and 16 O are studied (1). Effects of tensor and spin-orbit interactions on the distribution of the strengths are investigated, and neutral current neutrino scattering cross sections in 16 O are obtained for heavy-flavor neutrinos from the supernovae. 2. Gamow-Teller (GT) and spin-dipole (SD) modes in 208 Bi are investigated. Quenching and fragmentation of the GT strength are discussed (2). SD excitations and electric dipole (E1) transitions between the GT and SD states are studied (3). Calculated E1 strengths are compared with the sum rule values obtained within the 1p-1h and 1p-1h + 2p-2h configuration spaces. 3. Coulomb displacement energy (CDE) of the IAS of 14 Be is calculated, and the effects of the halo on the CDE and the configuration of the halo state are investigated. 4. Spreading width of IAS and isospin dependence of the width are investigated (4). Our formula for the width explains very well the observed isospin dependence (5). (author)

  8. On "spinning" membrane models

    NARCIS (Netherlands)

    Bergshoeff, E.; Sezgin, E.; Townsend, P.K.

    1988-01-01

    Several alternative actions for a bosonic membrane have recently been proposed. We show that a linearly realized locally world-volume-supersymmetric (spinning membrane) extension of any of these actions implies an analogous extension of the standard Dirac membrane action. We further show that a

  9. Nuclear spin-off

    International Nuclear Information System (INIS)

    1981-11-01

    This booklet gives examples of 'nuclear spin off', from research programmes carried out for the UKAEA, under the following headings; non destructive testing; tribology; environmental protection; flow measurement; material sciences; mechanical engineering; marine services; biochemical technology; electronic instrumentation. (U.K.)

  10. The invariance of spin

    International Nuclear Information System (INIS)

    Bramson, B.D.

    1978-01-01

    An isolated system in general relativity makes a transition between stationary states. It is shown that the spin vectors of the system, long before and long after the emission of radiation, are supertranslation invariant and, hence, independent of the choice of Minkowski observation space. (author)

  11. Spin Injection in Indium Arsenide

    Directory of Open Access Journals (Sweden)

    Mark eJohnson

    2015-08-01

    Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.

  12. Spin tunnelling in mesoscopic systems

    Indian Academy of Sciences (India)

    Spin tunnelling; spin path integrals; discrete phase integral method; diabolical points. ... technologies. Our purpose in this article is rather different. The molecular systems have total spin of the order of 10, and magnetocrystalline anisotropies of few tens of Kelvin ...... The point С' is of this new type, and here it may be said to.

  13. Spin transport in graphene nanostructures

    NARCIS (Netherlands)

    Guimaraes, M. H. D.; van den Berg, J. J.; Vera-Marun, I. J.; Zomer, P. J.; van Wees, B. J.

    2014-01-01

    Graphene is an interesting material for spintronics, showing long spin relaxation lengths even at room temperature. For future spintronic devices it is important to understand the behavior of the spins and the limitations for spin transport in structures where the dimensions are smaller than the

  14. Spin Transport in Bose Gases

    NARCIS (Netherlands)

    van Driel, H.J.

    2012-01-01

    In this Thesis, we show that in a rotating two-component Bose mixture, the spin drag between the two different spin species shows a Hall effect. This spin drag Hall effect can be observed experimentally by studying the out-of-phase dipole mode of the mixture. We determine the damping of this mode

  15. Spin Transport in Semiconductor heterostructures

    International Nuclear Information System (INIS)

    Marinescu, Domnita Catalina

    2011-01-01

    The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

  16. Spinning Them Off: Entrepreneuring Practices in Corporate Spin-Offs

    Directory of Open Access Journals (Sweden)

    Katja Maria Hydle

    2016-01-01

    Full Text Available This paper focuses on the practices between parent and child firms in corporate spinoffs. We uncover the enacted aspects of knowledge, called knowing, through theories from seven cases of incumbent-backed spin-offs and find that the management of the parent firms are highly involved in the spin-offs. The practices associated with spinning off are solving problems, involving multidisciplinary expertise and entrepreneuring management at the parent firm. We contribute to the spin-off literature by discussing the knowledge required for successfully spinning off child firms and to practice theory by empirically uncovering the practical understanding involved in the origin and perpetuation of an organization.

  17. Spin flexoelectricity and chiral spin structures in magnetic films

    Science.gov (United States)

    Pyatakov, A. P.; Sergeev, A. S.; Mikailzade, F. A.; Zvezdin, A. K.

    2015-06-01

    In this short review a broad range of chiral phenomena observed in magnetic films (spin cycloid and skyrmion structures formation as well as chirality dependent domain wall motion) is considered under the perspective of spin flexoelectricity, i.e. the relation between bending of magnetization pattern and electric polarization. The similarity and the difference between the spin flexoelectricity and the newly emerged notion of spin flexomagnetism are discussed. The phenomenological arguments based on the geometrical idea of curvature-induced effects are supported by analysis of the microscopic mechanisms of spin flexoelectricity based on three-site ion indirect exchange and twisted RKKY interaction models.

  18. International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Temperature and Humidity Control Subsystem

    Science.gov (United States)

    Williams, David E.

    2011-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.

  19. Excitation of coherent propagating spin waves by pure spin currents.

    Science.gov (United States)

    Demidov, Vladislav E; Urazhdin, Sergei; Liu, Ronghua; Divinskiy, Boris; Telegin, Andrey; Demokritov, Sergej O

    2016-01-28

    Utilization of pure spin currents not accompanied by the flow of electrical charge provides unprecedented opportunities for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. It was recently shown that pure spin currents can be used to excite coherent magnetization dynamics in magnetic nanostructures. However, because of the intrinsic nonlinear self-localization effects, magnetic auto-oscillations in the demonstrated devices were spatially confined, preventing their applications as sources of propagating spin waves in magnonic circuits using these waves as signal carriers. Here, we experimentally demonstrate efficient excitation and directional propagation of coherent spin waves generated by pure spin current. We show that this can be achieved by using the nonlocal spin injection mechanism, which enables flexible design of magnetic nanosystems and allows one to efficiently control their dynamic characteristics.

  20. Spin-wave-induced spin torque in Rashba ferromagnets

    Science.gov (United States)

    Umetsu, Nobuyuki; Miura, Daisuke; Sakuma, Akimasa

    2015-05-01

    We study the effects of Rashba spin-orbit coupling on the spin torque induced by spin waves, which are the plane-wave dynamics of magnetization. The spin torque is derived from linear-response theory, and we calculate the dynamic spin torque by considering the impurity-ladder-sum vertex corrections. This dynamic spin torque is divided into three terms: a damping term, a distortion term, and a correction term for the equation of motion. The distorting torque describes a phenomenon unique to the Rashba spin-orbit coupling system, where the distorted motion of magnetization precession is subjected to the anisotropic force from the Rashba coupling. The oscillation mode of the precession exhibits an elliptical trajectory, and the ellipticity depends on the strength of the nesting effects, which could be reduced by decreasing the electron lifetime.

  1. Lessons Learned from the Node 1 Temperature and Humidity Control Subsystem Design

    Science.gov (United States)

    Williams, David E.

    2010-01-01

    Node 1 flew to the International Space Station (ISS) on Flight 2A during December 1998. To date the National Aeronautics and Space Administration (NASA) has learned a lot of lessons from this module based on its history of approximately two years of acceptance testing on the ground and currently its twelve years on-orbit. This paper will provide an overview of the ISS Environmental Control and Life Support (ECLS) design of the Node 1 Temperature and Humidity Control (THC) subsystem and it will document some of the lessons that have been learned to date for this subsystem and it will document some of the lessons that have been learned to date for these subsystems based on problems prelaunch, problems encountered on-orbit, and operational problems/concerns. It is hoped that documenting these lessons learned from ISS will help in preventing them in future Programs. 1

  2. Exponential Stability of Time-Switched Two-Subsystem Nonlinear Systems with Application to Intermittent Control

    Directory of Open Access Journals (Sweden)

    Huang Tingwen

    2009-01-01

    Full Text Available This paper studies the exponential stability of a class of periodically time-switched nonlinear systems. Three cases of such systems which are composed, respectively, of a pair of unstable subsystems, of both stable and unstable subsystems, and of a pair of stable systems, are considered. For the first case, the proposed result shows that there exists periodically switching rule guaranteeing the exponential stability of the whole system with (sufficient small switching period if there is a Hurwitz linear convex combination of two uncertain linear systems derived from two subsystems by certain linearization. For the second case, we present two general switching criteria by means of multiple and single Lyapunov function, respectively. We also investigate the stability issue of the third case, and the switching criteria of exponential stability are proposed. The present results for the second case are further applied to the periodically intermittent control. Several numerical examples are also given to show the effectiveness of theoretical results.

  3. Solar Pilot Plant, Phase I. Preliminary design report. Volume III. Collector subsystem. CDRL item 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    The Honeywell collector subsystem features a low-profile, multifaceted heliostat designed to provide high reflectivity and accurate angular and spatial positioning of the redirected solar energy under all conditions of wind load and mirror attitude within the design operational envelope. The heliostats are arranged in a circular field around a cavity receiver on a tower halfway south of the field center. A calibration array mounted on the receiver tower provides capability to measure individual heliostat beam location and energy periodically. This information and weather data from the collector field are transmitted to a computerized control subsystem that addresses the individual heliostat to correct pointing errors and determine when the mirrors need cleaning. This volume contains a detailed subsystem design description, a presentation of the design process, and the results of the SRE heliostat test program.

  4. Complexity, Training Paradigm Design, and the Contribution of Memory Subsystems to Grammar Learning.

    Science.gov (United States)

    Antoniou, Mark; Ettlinger, Marc; Wong, Patrick C M

    2016-01-01

    Although there is variability in nonnative grammar learning outcomes, the contributions of training paradigm design and memory subsystems are not well understood. To examine this, we presented learners with an artificial grammar that formed words via simple and complex morphophonological rules. Across three experiments, we manipulated training paradigm design and measured subjects' declarative, procedural, and working memory subsystems. Experiment 1 demonstrated that passive, exposure-based training boosted learning of both simple and complex grammatical rules, relative to no training. Additionally, procedural memory correlated with simple rule learning, whereas declarative memory correlated with complex rule learning. Experiment 2 showed that presenting corrective feedback during the test phase did not improve learning. Experiment 3 revealed that structuring the order of training so that subjects are first exposed to the simple rule and then the complex improved learning. The cumulative findings shed light on the contributions of grammatical complexity, training paradigm design, and domain-general memory subsystems in determining grammar learning success.

  5. Development of a six-man, self-contained carbon dioxide collection subsystem for spacecraft application

    Science.gov (United States)

    Schubert, F. H.; Quattrone, P. D.

    1974-01-01

    Life Systems, working with NASA, has developed an electrochemical, six-man, self-contained carbon dioxide concentrator subsystem (CX-6) designed to normally remove 13.2 lb/day of CO2 while maintaining the CO2 partial pressure (pCO2) of the cabin atmosphere at 3 mm Hg or less. The CX-6 was subjected to extensive parametric and endurance testing. The effects of operating conditions on CO2 removal and electrical efficiencies were determined, including effects of hydrogen (H2) flow rate, process airflow rate, pCO2, operating temperature and current density. A total of 209 days of operation was accumulated. The subsystem was designed with self-contained electronic control and monitoring instrumentation. The CX-6 was redesigned and repackaged into the CO2 collection subsystem for the air revitalization group of the space station prototype.

  6. Power, Avionics and Software - Phase 1.0:. [Subsystem Integration Test Report

    Science.gov (United States)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This report describes Power, Avionics and Software (PAS) 1.0 subsystem integration testing and test results that occurred in August and September of 2013. This report covers the capabilities of each PAS assembly to meet integration test objectives for non-safety critical, non-flight, non-human-rated hardware and software development. This test report is the outcome of the first integration of the PAS subsystem and is meant to provide data for subsequent designs, development and testing of the future PAS subsystems. The two main objectives were to assess the ability of the PAS assemblies to exchange messages and to perform audio testing of both inbound and outbound channels. This report describes each test performed, defines the test, the data, and provides conclusions and recommendations.

  7. Complexity, Training Paradigm Design, and the Contribution of Memory Subsystems to Grammar Learning

    Science.gov (United States)

    Ettlinger, Marc; Wong, Patrick C. M.

    2016-01-01

    Although there is variability in nonnative grammar learning outcomes, the contributions of training paradigm design and memory subsystems are not well understood. To examine this, we presented learners with an artificial grammar that formed words via simple and complex morphophonological rules. Across three experiments, we manipulated training paradigm design and measured subjects' declarative, procedural, and working memory subsystems. Experiment 1 demonstrated that passive, exposure-based training boosted learning of both simple and complex grammatical rules, relative to no training. Additionally, procedural memory correlated with simple rule learning, whereas declarative memory correlated with complex rule learning. Experiment 2 showed that presenting corrective feedback during the test phase did not improve learning. Experiment 3 revealed that structuring the order of training so that subjects are first exposed to the simple rule and then the complex improved learning. The cumulative findings shed light on the contributions of grammatical complexity, training paradigm design, and domain-general memory subsystems in determining grammar learning success. PMID:27391085

  8. Evaluation of an Atmosphere Revitalization Subsystem for Deep Space Exploration Missions

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Conrad, Ruth E.; Frederick, Kenneth R.; Greenwood, Zachary W.; Kayatin, Matthew J.; Knox, James C.; Newton, Robert L.; Parrish, Keith J.; Takada, Kevin C.; hide

    2015-01-01

    An Atmosphere Revitalization Subsystem (ARS) suitable for deployment aboard deep space exploration mission vehicles has been developed and functionally demonstrated. This modified ARS process design architecture was derived from the International Space Station's (ISS) basic ARS. Primary functions considered in the architecture include trace contaminant control, carbon dioxide removal, carbon dioxide reduction, and oxygen generation. Candidate environmental monitoring instruments were also evaluated. The process architecture rearranges unit operations and employs equipment operational changes to reduce mass, simplify, and improve the functional performance for trace contaminant control, carbon dioxide removal, and oxygen generation. Results from integrated functional demonstration are summarized and compared to the performance observed during previous testing conducted on an ISS-like subsystem architecture and a similarly evolved process architecture. Considerations for further subsystem architecture and process technology development are discussed.

  9. Software Sub-system in Loading Automatic Test System for the Measurement of Power Line Filters

    Directory of Open Access Journals (Sweden)

    Yu Bo

    2017-01-01

    Full Text Available The loading automatic test system for measurement of power line filters are in urgent demand. So the software sub-system of the whole test system was proposed. Methods: structured the test system based on the virtual instrument framework, which consisted of lower and up computer and adopted the top down approach of design to perform the system and its modules, according to the measurement principle of the test system. Results: The software sub-system including human machine interface, data analysis and process software, expert system, communication software, control software in lower computer, etc. had been designed. Furthermore, it had been integrated into the entire test system. Conclusion: This sub-system provided a fiendly software platform for the whole test system, and had many advantages such as strong functions, high performances, low prices. It not only raises the test efficiency of EMI filters, but also renders some creativities.

  10. Facilitating participation

    DEFF Research Database (Denmark)

    Skøtt, Bo

    2018-01-01

    a part of contesting a public office. According to Schreiber and Elbeshausen, civil servants can react in different ways whenever their identities are up for discussion: 1. They can struggle to maintain a monopoly of knowledge and practice in an effort to protect the practice field, e.g. against outside...... theories, methods and knowledge. 2. They can adopt a laissez-faire approach and provide the public with what they want, whereby their relationship is commercialised. 3. They can engage in dialogues with the public to jointly negotiate what functions they are expected to perform (2005, pp. 15......–16). In Scandinavian public libraries, the latter has been the case. During recent decades, citizens have gained more possibilities than ever before to participate in co-creating activities regarding public libraries’ raison d’être. Thereby, they enter realms that were previously reserved for professional...

  11. Spin Structures in Magnetic Nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Brok, Erik; Frandsen, Cathrine

    2013-01-01

    Spin structures in nanoparticles of ferrimagnetic materials may deviate locally in a nontrivial way from ideal collinear spin structures. For instance, magnetic frustration due to the reduced numbers of magnetic neighbors at the particle surface or around defects in the interior can lead to spin...... canting and hence a reduced magnetization. Moreover, relaxation between almost degenerate canted spin states can lead to anomalous temperature dependences of the magnetization at low temperatures. In ensembles of nanoparticles, interparticle exchange interactions can also result in spin reorientation...

  12. Summary test results of the particle-beam diagnostics for the Advanced Photon Source (APS) subsystems

    International Nuclear Information System (INIS)

    Lumpkin, A.; Wang, X.; Sellyey, W.; Patterson, D.; Kahana, E.

    1994-01-01

    During the first half of 1994, a number of the diagnostic systems for measurement of the charged-particle beam parameters throughout the subsystems of the Advanced Photon Source (APS) have been installed and tested. The particle beams eventually will involve 450-MeV to 7-GeV positrons and with different pulse formats. The first test and commissionin results for beam profiles, beam position monitors, loss rate monitors, current monitors, and synchrotron radiation photon monitors hve been obtained using 200- to 350-MeV electron beams injected into the subsystems. Data presented are principally from the transport lines and the positron accumulator ring

  13. Artificial Intelligence Applications To Command, Control, And Communications Systems/Subsystems

    Science.gov (United States)

    Chaudhuri, Syama P.; Agrawal, Rajiv

    1989-09-01

    This paper has focussed on the artificial intelligence applications to command, control, and communications systems/subsystems. The overall objective of this project is to investigate sources of airborne target identification information available from various equipment (airborne, land-based, or space-based) and to develop an automatic target recognition (ATR) system design for integrating the data from these target identification subsystems. The entire project is divided into two phases: Phase I and Phase II. This paper details the results derived from the Phase I study.

  14. Optimum dry-cooling sub-systems for a solar air conditioner

    Science.gov (United States)

    Chen, J. L. S.; Namkoong, D.

    1978-01-01

    Dry-cooling sub-systems for residential solar powered Rankine compression air conditioners were economically optimized and compared with the cost of a wet cooling tower. Results in terms of yearly incremental busbar cost due to the use of dry-cooling were presented for Philadelphia and Miami. With input data corresponding to local weather, energy rate and capital costs, condenser surface designs and performance, the computerized optimization program yields design specifications of the sub-system which has the lowest annual incremental cost.

  15. Controlling computers and apparatus of the automation subsystems of the ''Del'fin'' facility

    International Nuclear Information System (INIS)

    Allin, A.P.; Belen'kii, Y.M.; Borzyak, Y.V.

    1983-01-01

    The architecture of the controlling computer assembly (CCA) of the ''Del'fin'' facility, the apparatus, and the software of the system are considered. The apparatus of the ''supply'' automation system controls the energy supply to the amplifier module on the basis of a capacitor bank with 2.5-mJ energy. The elemental base of the ''adjustment'' automation subsystem is developed. It includes the mounts for the mirrors actuated by stepper motors (SM), the drivers of the stepper motors, the optical heads with coordinate-sensitive receivers, logic blocks, and other elements. The trends in the development of CCA and of automation subsystems are considered

  16. Galactic Subsystems on the Basis of Cumulative Distribution of Space Velocities

    Directory of Open Access Journals (Sweden)

    Vidojević, S.

    2008-12-01

    Full Text Available A sample containing $4,614$ stars with available space velocities and high-quality kinematical data from the Arihip Catalogue is formed. For the purpose of distinguishing galactic subsystems the cumulative distribution of space velocities is studied. The fractions of the three subsystems are found to be: thin disc 92\\%, thick disc 6\\% and halo 2\\%. These results are verified by analysing the elements of velocity ellipsoids and the shape and size of the galactocentric orbits of the sample stars, i.e. the planar and vertical eccentricities of the orbits.

  17. ALARM-subsystem of automation control system (ASUS) of high current phasotron (''F'' installation)

    International Nuclear Information System (INIS)

    Anosov, V.N.; Krug, H.

    1982-01-01

    A component of automation control system (ASUS) - so-called ALARM subsystem - of JINR high current phasotron is described. The system consists of high speed scanning system (SSS), the de-- vice for preliminary conversion of signals of accelerotor monitors (APOS) and of appropriate software. SSS ALARM subsystems consist of CAMAC modules of Laboratory of Nuclear Problems, and of ''Electronika 60'' microcomputers. Execution time of its parameters is 0.5 ms by normal regime and 1.0 ms for refusals it finds. Principles of ALARM data processing are general applicable for control of multiparameter systems [ru

  18. Determination of the spin diffusion length in germanium by spin optical orientation and electrical spin injection

    Science.gov (United States)

    Rinaldi, C.; Bertoli, S.; Asa, M.; Baldrati, L.; Manzoni, C.; Marangoni, M.; Cerullo, G.; Bianchi, M.; Sordan, R.; Bertacco, R.; Cantoni, M.

    2016-10-01

    The measurement of the spin diffusion length and/or lifetime in semiconductors is a key issue for the realisation of spintronic devices, exploiting the spin degree of freedom of carriers for storing and manipulating information. In this paper, we address such parameters in germanium (0 0 1) at room temperature (RT) by three different measurement methods. Exploiting optical spin orientation in the semiconductor and spin filtering across an insulating MgO barrier, the dependence of the resistivity on the spin of photo-excited carriers in Fe/MgO/Ge spin photodiodes (spin-PDs) was electrically detected. A spin diffusion length of 0.9  ±  0.2 µm was obtained by fitting the photon energy dependence of the spin signal by a mathematical model. Electrical techniques, comprising non-local four-terminal and Hanle measurements performed on CoFeB/MgO/Ge lateral devices, led to spin diffusion lengths of 1.3  ±  0.2 µm and 1.3  ±  0.08 µm, respectively. Despite minor differences due to experimental details, the order of magnitude of the spin diffusion length is the same for the three techniques. Although standard electrical methods are the most employed in semiconductor spintronics for spin diffusion length measurements, here we demonstrate optical spin orientation as a viable alternative for the determination of the spin diffusion length in semiconductors allowing for optical spin orientation.

  19. Spin diffusion length of Permalloy using spin absorption in lateral spin valves

    Science.gov (United States)

    Sagasta, Edurne; Omori, Yasutomo; Isasa, Miren; Otani, YoshiChika; Hueso, Luis E.; Casanova, Fèlix

    2017-08-01

    We employ the spin absorption technique in lateral spin valves to extract the spin diffusion length of Permalloy (Py) as a function of temperature and resistivity. A linear dependence of the spin diffusion length with the conductivity of Py is observed, evidencing that the Elliott-Yafet mechanism is the dominant spin relaxation mechanism in Permalloy. Completing the dataset with additional data found in the literature, we obtain λPy = (0.91 ± 0.04) (fΩm2)/ρPy.

  20. Muon spin rotation studies

    Science.gov (United States)

    1984-01-01

    The bulk of the muon spin rotation research work centered around the development of the muon spin rotation facility at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL). The collimation system was both designed and fabricated at Virginia State University. This improved collimation system, plus improvements in detectors and electronics enabled the acquisition of spectra free of background out to 15 microseconds. There were two runs at Brookhaven in 1984, one run was devoted primarily to beam development and the other run allowed several successful experiments to be performed. The effect of uniaxial strain on an Fe(Si) crystal at elevated temperature (360K) was measured and the results are incorporated herein. A complete analysis of Fe pulling data taken earlier is included.

  1. Spin and Madelung fluid

    International Nuclear Information System (INIS)

    Salesi, G.

    1995-07-01

    Starting from the Pauli current the decomposition of the non-relativistic local velocity has been obtained in two parts (in the ordinary tensorial language): one parallel and the other orthogonal to the impulse. The former is recognized to be the classical part, that is, the center-of-mass (CM) velocity, and the latter the quantum one, that is, the velocity of the motion in the CM frame (namely, the internal spin motion or Zitterbewegung). Inserting this complete, composite expression of the velocity into the kinetic energy term of the classical non-relativistic (i.e. Newtonian) Lagrangian, the author straightforwardly get the appearance of the so called quantum potential associates as it is known, to the Madelung fluid. In such a way, the quantum mechanical behaviour of particles appears to be strictly correlated to the existence of spin and Zitterbewegung

  2. Pangaea, She No Spin

    Science.gov (United States)

    McDowell, M.

    2002-12-01

    Looking at lopsided Pangaea, shown imaginatively on many illustrated proposals, I wondered what would happen if the configuration were put in high relief on a globe and spun on axis. Then I wondered if the present configuration of land masses would itself balance as a spinning top. So I got two Replogle globes, two boxes of colored modeling clay sticks, and two fat knitting needles, to fit through the capped holes at the poles of the globes. The clay sticks I cut up into 3 mm. (1/8") slices, using a different color for each continent, and applied to the first globe, assuming the extreme exaggeration above the geoid, no matter how crude, would tell the story. Inserting one needle through the globe and securing it, I balanced the globe on the point of the needle and twirled it like a top. Result: Wobbly! Top end of needle gyrated unevenly, and here it was supposed to make a smooth precessional cone. Oh boy. For the second globe, I used a Scotese "free stuff" interpretation of Pangaea, which I had to augment considerably using USGS, DuToit, Irving and other references, fitting it on the globe and applying identical clay color slices to what I judged generally accepted land surfaces. Result: the thing would hardly stand up, let alone spin. Conclusion: Although a refinement of application on the "today" globe might eliminate nutation, creating a smoother spin, there is no way any refinement of Pangaea on the same size globe can come close. While the concept of a supercontinent may be viable, I theorize that it had to have evolved on a far smaller globe, where land mass could balance, and the "breakup" would not have caused us to wildly gyrate on our axis. Because Pangaea, she no spin.

  3. Spin Hall effect

    Czech Academy of Sciences Publication Activity Database

    Sinova, Jairo; Valenzuela, O.V.; Wunderlich, Joerg; Back, C.H.; Jungwirth, Tomáš

    2015-01-01

    Roč. 87, č. 4 (2015), s. 1213-1259 ISSN 0034-6861 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : spin Hall effect * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 33.177, year: 2015

  4. Spin and gravitation

    Science.gov (United States)

    Ray, J. R.

    1982-01-01

    The fundamental variational principle for a perfect fluid in general relativity is extended so that it applies to the metric-torsion Einstein-Cartan theory. Field equations for a perfect fluid in the Einstein-Cartan theory are deduced. In addition, the equations of motion for a fluid with intrinsic spin in general relativity are deduced from a special relativistic variational principle. The theory is a direct extension of the theory of nonspinning fluids in special relativity.

  5. Spinning Disk Confocal System

    Science.gov (United States)

    2006-06-01

    high temporal resolution. An instrument has been developed for exactly this type of live-cell imaging. This new instrument scans 1000 microbeams across...Imaging System. Instead of scanning a single laser beam across the cell, this new instrument scans 1000 microbeams simultaneously using a spinning...multipoint-excitation, multipoint- emission characteristics of UltraView RS, which confers three main advantages over traditional beam scanning LSCMs for

  6. Spinning out a star.

    Science.gov (United States)

    Lord, Michael D; Mandel, Stanley W; Wager, Jeffrey D

    2002-06-01

    Spinouts rarely take off; most, in fact, fall into one or more of four traps that doom them from the start. Some companies spin out ventures that are too close to the core of their businesses, in effect selling off their crown jewels. Sometimes, a parent company uses the spinout primarily to pawn off debt or expenses or to quickly raise external capital for itself. Other times, a company may try to spin out an area of its business that lacks one or more of the critical legs of a successful company--a coherent business model, say, or a solid financial base. And in many cases, parent companies can't bring themselves to sever their ownership ties and give up control of their spinouts. R.J. Reynolds, the tobacco giant, managed to avoid these traps when it successfully spun out a most unlikely venture, the pharmaceutical company Targacept. As the story illustrates, the problem with spinouts is similar to the problem of rich children. Their parents have the wherewithal to spoil them or shelter them or cling to them, but what they need is tough love and discipline--much the same discipline that characterizes successful start-ups. R.J. Reynolds recognized that it didn't know that much about the pharmaceutical business and couldn't merely try to spin out a small clone of itself. It had to treat the venture as if it were essentially starting from scratch, with a passionate entrepreneurial leader, a solid business plan, help from outside partners in the industry, and ultimately substantial venture backing. That these lessons are less obvious to executives contemplating spinning out ventures closer to their core businesses may be why so many spinouts fail.

  7. Spinning geometry = Twisted geometry

    International Nuclear Information System (INIS)

    Freidel, Laurent; Ziprick, Jonathan

    2014-01-01

    It is well known that the SU(2)-gauge invariant phase space of loop gravity can be represented in terms of twisted geometries. These are piecewise-linear-flat geometries obtained by gluing together polyhedra, but the resulting geometries are not continuous across the faces. Here we show that this phase space can also be represented by continuous, piecewise-flat three-geometries called spinning geometries. These are composed of metric-flat three-cells glued together consistently. The geometry of each cell and the manner in which they are glued is compatible with the choice of fluxes and holonomies. We first remark that the fluxes provide each edge with an angular momentum. By studying the piecewise-flat geometries which minimize edge lengths, we show that these angular momenta can be literally interpreted as the spin of the edges: the geometries of all edges are necessarily helices. We also show that the compatibility of the gluing maps with the holonomy data results in the same conclusion. This shows that a spinning geometry represents a way to glue together the three-cells of a twisted geometry to form a continuous geometry which represents a point in the loop gravity phase space. (paper)

  8. Spin Foam Models

    CERN Document Server

    Krasnov, K V

    1999-01-01

    The term ‘spin foam models’ was invented only a couple years ago by Baez to refer to a new approach to quantization of general relativity that appeared as an offsping of loop quantum gravity. Although this new approach was motivated, both logically and historically, by loop quantum gravity, it became clear by now that the two approaches are rather independent. While loop quantum gravity attempts to give a canonical quantization of general relativity, spin foam model approach is set to make sense of the path integral for gravity. Eventually, the two approaches will probably be shown to be equivalent, but no rigorous result to this effect exists as for now. In this thesis I develop the spin foam quantization of gravity from scratch, referring to results from loop quantum gravity only for comparison. I start from a review of 2 + 1 gravity and discuss different roots to quantize it. While some of them, as, for example, using Chern-Simons theory, only exist in 2 + 1, others can be generalized t...

  9. Spinning particle approach to higher spin field theory

    International Nuclear Information System (INIS)

    Corradini, Olindo

    2011-01-01

    We shortly review on the connection between higher-spin gauge field theories and supersymmetric spinning particle models. In such approach the higher spin equations of motion are linked to the first-class constraint algebra associated with the quantization of particle models. Here we consider a class of spinning particle models characterized by local O(N)-extended supersymmetry since these models are known to provide an alternative approach to the geometric formulation of higher spin field theory. We describe the canonical quantization of the models in curved target space and discuss the obstructions that appear in presence of an arbitrarily curved background. We then point out the special role that conformally flat spaces appear to have in such models and present a derivation of the higher-spin curvatures for maximally symmetric spaces.

  10. Entanglement entropy in random quantum spin-S chains

    International Nuclear Information System (INIS)

    Saguia, A.; Boechat, B.; Continentino, M. A.; Sarandy, M. S.

    2007-01-01

    We discuss the scaling of entanglement entropy in the random singlet phase (RSP) of disordered quantum magnetic chains of general spin S. Through an analysis of the general structure of the RSP, we show that the entanglement entropy scales logarithmically with the size of a block, and we provide a closed expression for this scaling. This result is applicable for arbitrary quantum spin chains in the RSP, being dependent only on the magnitude S of the spin. Remarkably, the logarithmic scaling holds for the disordered chain even if the pure chain with no disorder does not exhibit conformal invariance, as is the case for Heisenberg integer-spin chains. Our conclusions are supported by explicit evaluations of the entanglement entropy for random spin-1 and spin-3/2 chains using an asymptotically exact real-space renormalization group approach

  11. Spin current through quantum-dot spin valves

    International Nuclear Information System (INIS)

    Wang, J; Xing, D Y

    2006-01-01

    We report a theoretical study of the influence of the Coulomb interaction on the equilibrium spin current in a quantum-dot spin valve, in which the quantum dot described by the Anderson impurity model is coupled to two ferromagnetic leads with noncollinear magnetizations. In the Kondo regime, electrons transmit through the quantum dot via higher-order virtual processes, in which the spin of either lead electrons or a localized electron on the quantum dot may reverse. It is found that the magnitude of the spin current decreases with increasing Coulomb interactions due to spin flip effects on the dot. However, the spatial direction of the spin current remains unchanged; it is determined only by the exchange coupling between two noncollinear magnetizations

  12. Part-task simulator for a WWER-440 nuclear power plant subsystem

    International Nuclear Information System (INIS)

    Szabo, B.K.

    1988-07-01

    PC-based part-task simulators for simulating subsystems of nuclear power plants are low cost tools for operator training. In the Central Research Institute for Physics, Budapest, a simulator system has been developed to facilitate fast development of such simulators. The first application simulates the Neutron Flux Monitoring System of WWER-440 nuclear power plants. (author) 9 refs.; 2 figs

  13. Shuttle to Shuttle 2: Subsystem weight reduction potential (estimated 1992 technology readiness date)

    Science.gov (United States)

    Macconochie, Ian O.

    1988-01-01

    The objective of this study was to make estimates of the weight savings that might be realized on all the subsystems on an advanced rocket-powered shuttle (designated Shuttle 2) by using advanced technologies having a projected maturity date of 1992. The current Shuttle with external tank was used as a baseline from which to make the estimates of weight savings on each subsystem. The subsystems with the greatest potential for weight reduction are the body shell and the thermal protection system. For the body shell, a reduction of 5.2 percent in the weight of the vehicle at main engine cutoff is projected through the application of new technologies, and an additional configuration-based reduction of 5 percent is projected through simplification of body shape. A reduction of 5 percent is projected for the thermal protection system through experience with the current Space Shuttle and the potential for reducing thermal protection system thicknesses in selected areas. Main propellant tanks are expected to increase slightly in weight. The main propulsion system is also projected to increase in weight because of the requirement to operate engines at derated power levels in order to accommodate one-engine-out capability. The projections for weight reductions through improvements in the remaining subsystems are relatively small. By summing all the technology factors, a projected reduction of 16 percent in the vehicle weight at main engine cutoff is obtained. By summarizing the configurational factors, a potential reduction of 12 percent in vehicle weight is obtained.

  14. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Science.gov (United States)

    2010-10-01

    ... meeting the following requirements: (1) With the vehicle in a stationary position, compressed air reserve... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and air-over-hydraulic...

  15. Optimal subsystem approach to multi-qubit quantum state discrimination and experimental investigation

    Science.gov (United States)

    Xue, ShiChuan; Wu, JunJie; Xu, Ping; Yang, XueJun

    2018-02-01

    Quantum computing is a significant computing capability which is superior to classical computing because of its superposition feature. Distinguishing several quantum states from quantum algorithm outputs is often a vital computational task. In most cases, the quantum states tend to be non-orthogonal due to superposition; quantum mechanics has proved that perfect outcomes could not be achieved by measurements, forcing repetitive measurement. Hence, it is important to determine the optimum measuring method which requires fewer repetitions and a lower error rate. However, extending current measurement approaches mainly aiming at quantum cryptography to multi-qubit situations for quantum computing confronts challenges, such as conducting global operations which has considerable costs in the experimental realm. Therefore, in this study, we have proposed an optimum subsystem method to avoid these difficulties. We have provided an analysis of the comparison between the reduced subsystem method and the global minimum error method for two-qubit problems; the conclusions have been verified experimentally. The results showed that the subsystem method could effectively discriminate non-orthogonal two-qubit states, such as separable states, entangled pure states, and mixed states; the cost of the experimental process had been significantly reduced, in most circumstances, with acceptable error rate. We believe the optimal subsystem method is the most valuable and promising approach for multi-qubit quantum computing applications.

  16. Integrated thermal and nonthermal treatment technology and subsystem cost sensitivity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harvego, L.A.; Schafer, J.J.

    1997-02-01

    The U.S. Department of Energy`s (DOE) Environmental Management Office of Science and Technology (EM-50) authorized studies on alternative systems for treating contact-handled DOE mixed low-level radioactive waste (MLLW). The on-going Integrated Thermal Treatment Systems` (ITTS) and the Integrated Nonthermal Treatment Systems` (INTS) studies satisfy this request. EM-50 further authorized supporting studies including this technology and subsystem cost sensitivity analysis. This analysis identifies areas where technology development could have the greatest impact on total life cycle system costs. These areas are determined by evaluating the sensitivity of system life cycle costs relative to changes in life cycle component or phase costs, subsystem costs, contingency allowance, facility capacity, operating life, and disposal costs. For all treatment systems, the most cost sensitive life cycle phase is the operations and maintenance phase and the most cost sensitive subsystem is the receiving and inspection/preparation subsystem. These conclusions were unchanged when the sensitivity analysis was repeated on a present value basis. Opportunity exists for technology development to reduce waste receiving and inspection/preparation costs by effectively minimizing labor costs, the major cost driver, within the maintenance and operations phase of the life cycle.

  17. Physical model of evolution of oxygen subsystem of PLZT-ceramics at neutron irradiation and annealing

    CERN Document Server

    Kulikov, D V; Trushin, Y V; Veber, K V; Khumer, K; Bitner, R; Shternberg, A R

    2001-01-01

    The physical model of evolution of the oxygen subsystem defects of the ferroelectric PLZT-ceramics by the neutron irradiation and isochrone annealing is proposed. The model accounts for the effect the lanthanum content on the material properties. The changes in the oxygen vacancies concentration, calculated by the proposed model, agree well with the polarization experimental behavior by the irradiated material annealing

  18. A subsystems approach for parameter estimation of ODE models of hybrid systems

    Directory of Open Access Journals (Sweden)

    Guido Sanguinetti

    2012-08-01

    Full Text Available We present a new method for parameter identification of ODE system descriptions based on data measurements. Our method works by splitting the system into a number of subsystems and working on each of them separately, thereby being easily parallelisable, and can also deal with noise in the observations.

  19. Investigation of Techniques for Simulating Communications and Tracking Subsystems on Space Station Freedom

    Science.gov (United States)

    Deacetis, Louis A.

    1991-01-01

    The need to reduce the costs of Space Station Freedom has resulted in a major redesign and downsizing of the Station in general, and its Communications and Tracking (C&T) components in particular. Earlier models and simulations of the C&T Space-to-Ground Subsystem (SGS) in particular are no longer valid. There thus exists a general need for updated, high fidelity simulations of C&T subsystems. This project explored simulation techniques and methods that might be used in developing new simulations of C&T subsystems, including the SGS. Three requirements were placed on the simulations to be developed: (1) they run on IBM PC/XT/AT compatible computers; (2) they be written in Ada as much as possible; and (3) since control and monitoring of the C&T subsystems will involve communication via a MIL-STD-1553B serial bus, that the possibility of commanding the simulator and monitoring its sensors via that bus be included in the design of the simulator. The result of the project is a prototype of a simulation of the Assembly/Contingency Transponder of the SGS, written in Ada, which can be controlled from another PC via a MIL-STD-1553B bus.

  20. Two Case Studies of Subsystem Design for General-Purpose CSCW Software Architectures

    NARCIS (Netherlands)

    Grefen, P.W.P.J.; Sikkel, Nicolaas; Wieringa, Roelf J.

    2000-01-01

    This paper discusses subsystem design guidelines for the software architecture of general-purpose computer supported cooperative work systems, i.e., systems that are designed to be applicable in various application areas requiring explicit collaboration support. In our opinion, guidelines for

  1. Molecular properties via a subsystem density functional theory formulation: A common framework for electronic embedding

    NARCIS (Netherlands)

    Höfener, S.; Gomes, A.S.P.; Visscher, L.

    2012-01-01

    In this article, we present a consistent derivation of a density functional theory (DFT) based embedding method which encompasses wave-function theory-in-DFT (WFT-in-DFT) and the DFT-based subsystem formulation of response theory (DFT-in-DFT) by Neugebauer [J. Neugebauer, J. Chem. Phys. 131, 084104

  2. Advanced silver zinc battery development for the SRB and ET range safety subsystems

    Science.gov (United States)

    Adamedes, Zoe

    1994-02-01

    This document presents in viewgraph format the design and development of silver zinc (AgZn) batteries for the solid rocket booster (SRB) and external tank (ET) range safety subsystems. Various engineering techniques, including composite separator systems, new electrode processing techniques, and new restraint techniques, were used to meet difficult requirements.

  3. Spin Transfer Torque in Graphene

    Science.gov (United States)

    Lin, Chia-Ching; Chen, Zhihong

    2014-03-01

    Graphene is an idea channel material for spin transport due to its long spin diffusion length. To develop graphene based spin logic, it is important to demonstrate spin transfer torque in graphene. Here, we report the experimental measurement of spin transfer torque in graphene nonlocal spin valve devices. Assisted by a small external in-plane magnetic field, the magnetization reversal of the receiving magnet is induced by pure spin diffusion currents from the injector magnet. The magnetization switching is reversible between parallel and antiparallel configurations by controlling the polarity of the applied charged currents. Current induced heating and Oersted field from the nonlocal charge flow have also been excluded in this study. Next, we further enhance the spin angular momentum absorption at the interface of the receiving magnet and graphene channel by removing the tunneling barrier in the receiving magnet. The device with a tunneling barrier only at the injector magnet shows a comparable nonlocal spin valve signal but lower electrical noise. Moreover, in the same preset condition, the critical charge current density for spin torque in the single tunneling barrier device shows a substantial reduction if compared to the double tunneling barrier device.

  4. Spin waves and spin instabilities in quantum plasmas

    OpenAIRE

    Andreev, P. A.; Kuz'menkov, L. S.

    2014-01-01

    We describe main ideas of method of many-particle quantum hydrodynamics allows to derive equations for description of quantum plasma evolution. We also present definitions of collective quantum variables suitable for quantum plasmas. We show that evolution of magnetic moments (spins) in quantum plasmas leads to several new branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered. Inst...

  5. Hardy's argument and successive spin-s measurements

    International Nuclear Information System (INIS)

    Ahanj, Ali

    2010-01-01

    We consider a hidden-variable theoretic description of successive measurements of noncommuting spin observables on an input spin-s state. In this scenario, the hidden-variable theory leads to a Hardy-type argument that quantum predictions violate it. We show that the maximum probability of success of Hardy's argument in quantum theory is ((1/2)) 4s , which is more than in the spatial case.

  6. Spin transport in spin filtering magnetic tunneling junctions.

    Science.gov (United States)

    Li, Yun; Lee, Eok Kyun

    2007-11-01

    Taking into account spin-orbit coupling and s-d interaction, we investigate spin transport properties of the magnetic tunneling junctions with spin filtering barrier using Landauer-Büttiker formalism implemented with the recursive algorithm to calculate the real-space Green function. We predict completely different bias dependence of negative tunnel magnetoresistance (TMR) between the systems composed of nonmagnetic electrode (NM)/ferromagnetic barrier (FB)/ferromagnet (FM) and NM/FB/FM/NM spin filtering tunnel junctions (SFTJs). Analyses of the results provide us possible ways of designing the systems which modulate the TMR in the negative magnetoresistance regime.

  7. Spin-orbit mediated control of spin qubits

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A.S; Flensberg, Karsten

    2006-01-01

    We propose to use the spin-orbit interaction as a means to control electron spins in quantum dots, enabling both single-qubit and two-qubit operations. Very fast single-qubit operations may be achieved by temporarily displacing the electrons. For two-qubit operations the coupling mechanism is based...... on a combination of the spin-orbit coupling and the mutual long-ranged Coulomb interaction. Compared to existing schemes using the exchange coupling, the spin-orbit induced coupling is less sensitive to random electrical fluctuations in the electrodes defining the quantum dots....

  8. High-field spin dynamics of antiferromagnetic quantum spin chains

    DEFF Research Database (Denmark)

    Enderle, M.; Regnault, L.P.; Broholm, C.

    2000-01-01

    present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights......The characteristic internal order of macroscopic quantum ground states in one-dimensional spin systems is usually not directly accessible, but reflected in the spin dynamics and the field dependence of the magnetic excitations. In high magnetic fields quantum phase transitions are expected. We...

  9. Visualizing spin states using the spin coherent state representation

    Science.gov (United States)

    Lee Loh, Yen; Kim, Monica

    2015-01-01

    Orbital angular momentum eigenfunctions are readily understood in terms of spherical harmonics. However, the quantum mechanical phenomenon of spin is often said to be mysterious and hard to visualize, with no classical analog. Many textbooks give a heuristic and somewhat unsatisfying picture of a precessing spin vector. Here, we show that the spin-coherent-state representation is a striking, elegant, and mathematically meaningful tool for visualizing spin states. We also demonstrate that cartographic projections such as the Hammer projection are useful for visualizing functions defined on spherical surfaces.

  10. Spin Currents and Spin Orbit Torques in Ferromagnets and Antiferromagnets

    Science.gov (United States)

    Hung, Yu-Ming

    This thesis focuses on the interactions of spin currents and materials with magnetic order, e.g., ferromagnetic and antiferromagnetic thin films. The spin current is generated in two ways. First by spin-polarized conduction-electrons associated with the spin Hall effect in heavy metals (HMs) and, second, by exciting spin-waves in ferrimagnetic insulators using a microwave frequency magnetic field. A conduction-electron spin current can be generated by spin-orbit coupling in a heavy non-magnetic metal and transfer its spin angular momentum to a ferromagnet, providing a means of reversing the magnetization of perpendicularly magnetized ultrathin films with currents that flow in the plane of the layers. The torques on the magnetization are known as spin-orbit torques (SOT). In the first part of my thesis project I investigated and contrasted the quasistatic (slowly swept current) and pulsed current-induced switching characteristics of micrometer scale Hall crosses consisting of very thin (thesis project studies and considers applications of SOT-driven domain wall (DW) motion in a perpendicularly magnetized ultrathin ferromagnet sandwiched between a heavy metal and an oxide. My experiment results demonstrate that the DW motion can be explained by a combination of the spin Hall effect, which generates a SOT, and Dzyaloshinskii-Moriya interaction, which stabilizes chiral Neel-type DW. Based on SOT-driven DW motion and magnetic coupling between electrically isolated ferromagnetic elements, I proposed a new type of spin logic devices. I then demonstrate the device operation by using micromagnetic modeling which involves studying the magnetic coupling induced by fringe fields from chiral DWs in perpendicularly magnetized nanowires. The last part of my thesis project reports spin transport and spin-Hall magnetoresistance (SMR) in yttrium iron garnet Y3Fe5O 12 (YIG)/NiO/Pt trilayers with varied NiO thickness. To characterize the spin transport through NiO we excite

  11. QED approach to the nuclear spin-spin coupling tensor

    International Nuclear Information System (INIS)

    Romero, Rodolfo H.; Aucar, Gustavo A.

    2002-01-01

    A quantum electrodynamical approach for the calculation of the nuclear spin-spin coupling tensor of nuclear-magnetic-resonance spectroscopy is given. Quantization of radiation fields within the molecule is considered and expressions for the magnetic field in the neighborhood of a nucleus are calculated. Using a generalization of time-dependent response theory, an effective spin-spin interaction is obtained from the coupling of nuclear magnetic moments to a virtual quantized magnetic field. The energy-dependent operators obtained reduce to usual classical-field expressions at suitable limits

  12. Multilayer network of language: A unified framework for structural analysis of linguistic subsystems

    Science.gov (United States)

    Martinčić-Ipšić, Sanda; Margan, Domagoj; Meštrović, Ana

    2016-09-01

    Recently, the focus of complex networks' research has shifted from the analysis of isolated properties of a system toward a more realistic modeling of multiple phenomena - multilayer networks. Motivated by the prosperity of multilayer approach in social, transport or trade systems, we introduce the multilayer networks for language. The multilayer network of language is a unified framework for modeling linguistic subsystems and their structural properties enabling the exploration of their mutual interactions. Various aspects of natural language systems can be represented as complex networks, whose vertices depict linguistic units, while links model their relations. The multilayer network of language is defined by three aspects: the network construction principle, the linguistic subsystem and the language of interest. More precisely, we construct a word-level (syntax and co-occurrence) and a subword-level (syllables and graphemes) network layers, from four variations of original text (in the modeled language). The analysis and comparison of layers at the word and subword-levels are employed in order to determine the mechanism of the structural influences between linguistic units and subsystems. The obtained results suggest that there are substantial differences between the networks' structures of different language subsystems, which are hidden during the exploration of an isolated layer. The word-level layers share structural properties regardless of the language (e.g. Croatian or English), while the syllabic subword-level expresses more language dependent structural properties. The preserved weighted overlap quantifies the similarity of word-level layers in weighted and directed networks. Moreover, the analysis of motifs reveals a close topological structure of the syntactic and syllabic layers for both languages. The findings corroborate that the multilayer network framework is a powerful, consistent and systematic approach to model several linguistic subsystems

  13. ac spin-Hall effect

    International Nuclear Information System (INIS)

    Entin-Wohlman, O.

    2005-01-01

    Full Text:The spin-Hall effect is described. The Rashba and Dresselhaus spin-orbit interactions are both shown to yield the low temperature spin-Hall effect for strongly localized electrons coupled to phonons. A frequency-dependent electric field E(ω) generates a spin-polarization current, normal to E, due to interference of hopping paths. At zero temperature the corresponding spin-Hall conductivity is real and is proportional to ω 2 . At non-zero temperatures the coupling to the phonons yields an imaginary term proportional to ω. The interference also yields persistent spin currents at thermal equilibrium, at E = 0. The contributions from the Dresselhaus and Rashba interactions to the interference oppose each other

  14. Element-selective investigation of femtosecond spin dynamics in NiPd magnetic alloys using extreme ultraviolet radiation

    Science.gov (United States)

    Gang, Seung-gi; Adam, Roman; Plötzing, Moritz; von Witzleben, Moritz; Weier, Christian; Parlak, Umut; Bürgler, Daniel E.; Schneider, Claus M.; Rusz, Jan; Maldonado, Pablo; Oppeneer, Peter M.

    2018-02-01

    We studied femtosecond spin dynamics in NixPd1 -x magnetic thin films by optically pumping the system with infrared (1.55 eV) laser pulses and subsequently recording the reflectivity of extreme ultraviolet (XUV) pulses synchronized with the pump pulse train. XUV light in the energy range from 20 to 72 eV was produced by laser high-harmonic generation. The reflectivity of XUV radiation at characteristic resonant energies allowed separate detection of the spin dynamics in the elemental subsystems at the M2 ,3 absorption edges of Ni (68.0 and 66.2 eV) and N2 ,3 edges of Pd (55.7 and 50.9 eV). The measurements were performed in transversal magneto-optical Kerr effect geometry. In static measurements, we observed a magnetic signature of the Pd subsystem due to an induced magnetization. Calculated magneto-optical asymmetries based on density functional theory show close agreement with the measured results. Femtosecond spin dynamics measured at the Ni absorption edges indicates that increasing the Pd concentration, which causes a decrease in the Curie temperature TC, results in a drop of the demagnetization time τM, contrary to the τM˜1 /TC scaling expected for single-species materials. This observation is ascribed to the increase of the Pd-mediated spin-orbit coupling in the alloy.

  15. ON CODE REFACTORING OF THE DIALOG SUBSYSTEM OF CDSS PLATFORM FOR THE OPEN-SOURCE MIS OPENMRS

    Directory of Open Access Journals (Sweden)

    A. V. Semenets

    2016-08-01

    The open-source MIS OpenMRS developer tools and software API are reviewed. The results of code refactoring of the dialog subsystem of the CDSS platform which is made as module for the open-source MIS OpenMRS are presented. The structure of information model of database of the CDSS dialog subsystem was updated according with MIS OpenMRS requirements. The Model-View-Controller (MVC based approach to the CDSS dialog subsystem architecture was re-implemented with Java programming language using Spring and Hibernate frameworks. The MIS OpenMRS Encounter portlet form for the CDSS dialog subsystem integration is developed as an extension. The administrative module of the CDSS platform is recreated. The data exchanging formats and methods for interaction of OpenMRS CDSS dialog subsystem module and DecisionTree GAE service are re-implemented with help of AJAX technology via jQuery library

  16. Operation of a general purpose stepping motor-encoder positioning subsystem at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Stubblefield, F.W.

    1985-11-01

    Four copies of a general purpose subsystem for mechanical positioning of detectors, samples, and beam line optical elements which constitute experiments at the National Synchrotron Light Source facility of Brookhaven National Laboratory have been constructed and placed into operation. Construction of a fifth subsystem unit is nearing completion. The subsystems affect mechanical positioning by controlling a set of stepping motor-encoder pairs. The units are general purpose in the sense that they receive commands over a 9600 baud asynchronous serial line compatible with the RS-232-C electrical signal standard, generate TTL-compatible streams of stepping pulses which can be used with a wide variety of stepping motors, and read back position values from a number of different types and models of position encoder. The basic structure of the motor controller subsystem is briefly reviewed. Additions to the subsystem made in response to problems indicated by actual operation of the four installed units are described in more detail

  17. Observation of the spin Nernst effect

    Science.gov (United States)

    Meyer, S.; Chen, Y.-T.; Wimmer, S.; Althammer, M.; Wimmer, T.; Schlitz, R.; Geprägs, S.; Huebl, H.; Ködderitzsch, D.; Ebert, H.; Bauer, G. E. W.; Gross, R.; Goennenwein, S. T. B.

    2017-10-01

    The observation of the spin Hall effect triggered intense research on pure spin current transport. With the spin Hall effect, the spin Seebeck effect and the spin Peltier effect already observed, our picture of pure spin current transport is almost complete. The only missing piece is the spin Nernst (-Ettingshausen) effect, which so far has been discussed only on theoretical grounds. Here, we report the observation of the spin Nernst effect. By applying a longitudinal temperature gradient, we generate a pure transverse spin current in a Pt thin film. For readout, we exploit the magnetization-orientation-dependent spin transfer to an adjacent yttrium iron garnet layer, converting the spin Nernst current in Pt into a controlled change of the longitudinal and transverse thermopower voltage. Our experiments show that the spin Nernst and the spin Hall effect in Pt are of comparable magnitude, but differ in sign, as corroborated by first-principles calculations.

  18. Symplectic integrators for spin systems

    Science.gov (United States)

    McLachlan, Robert I.; Modin, Klas; Verdier, Olivier

    2014-06-01

    We present a symplectic integrator, based on the implicit midpoint method, for classical spin systems where each spin is a unit vector in R3. Unlike splitting methods, it is defined for all Hamiltonians and is O (3)-equivariant, i.e., coordinate-independent. It is a rare example of a generating function for symplectic maps of a noncanonical phase space. It yields a new integrable discretization of the spinning top.

  19. Asymptotics of relativistic spin networks

    International Nuclear Information System (INIS)

    Barrett, John W; Steele, Christopher M

    2003-01-01

    The stationary phase technique is used to calculate asymptotic formulae for SO(4) relativistic spin networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j-symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the spin network evaluation. Finally, we discuss the asymptotics of the SO(3, 1) 10j-symbol

  20. Spin currents in metallic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Czeschka, Franz Dominik

    2011-09-05

    A pure spin current, i.e., a flow of angular momentum without accompanying net charge current, is a key ingredient in the field of spintronics. In this thesis, we experimentally investigated two different concepts for pure spin current sources suggested by theory. The first is based on a time-dependent magnetization precession which ''pumps'' a pure spin current into an adjacent non-magnetic conductor. Our experiments quantitatively corroborated important predictions expected theoretically for this approach, including the dependence of the spin current on the sample geometry and the microwave power. Even more important, we could show for the first time that the spin pumping concept is viable in a large variety of ferromagnetic materials and that it only depends on the magnetization damping. Therefore, our experiments established spin pumping as generic phenomenon and demonstrated that it is a powerful way to generate pure spin currents. The second theoretical concept is based on the conversion of charge currents into spin currents in non-magnetic nanostructures via the spin Hall effect. We experimentally investigated this approach in H-shaped, metallic nanodevices, and found that the predictions are linked to requirements not realizable with the present experimental techniques, neither in sample fabrication nor in measurement technique. Indeed, our experimental data could be consistently understood by a spin-independent transport model describing the transition from diffusive to ballistic transport. In addition, the implementation of advanced fabrication and measurement techniques allowed to discover a new non-local phenomenon, the non-local anisotropic magnetoresistance. Finally, we also studied spin-polarized supercurrents carried by spin-triplet Cooper pairs. We found that low resistance interfaces are a key requirement for further experiments in this direction. (orig.)

  1. Towards spin injection into silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dash, S.P.

    2007-08-15

    Si has been studied for the purpose of spin injection extensively in this thesis. Three different concepts for spin injection into Si have been addressed: (1) spin injection through a ferromagnet-Si Schottky contact, (2) spin injection using MgO tunnel barriers in between the ferromagnet and Si, and (3) spin injection from Mn-doped Si (DMS) as spin aligner. (1) FM-Si Schottky contact for spin injection: To be able to improve the interface qualities one needs to understand the atomic processes involved in the formation of silicide phases. In order to obtain more detailed insight into the formation of such phases the initial stages of growth of Co and Fe were studied in situ by HRBS with monolayer depth resolution.(2) MgO tunnel barrier for spin injection into Si: The fabrication and characterization of ultra-thin crystalline MgO tunnel barriers on Si (100) was presented. (3) Mn doped Si for spin injection: Si-based diluted magnetic semiconductor samples were prepared by doping Si with Mn by two different methods i) by Mn ion implantation and ii) by in-diffusion of Mn atoms (solid state growth). (orig.)

  2. Spin-photon entangling diode

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A. S.; Lukin, M. D.

    2007-01-01

    We propose a semiconductor device that can electrically generate entangled electron spin-photon states, providing a building block for entanglement of distant spins. The device consists of a p-i-n diode structure that incorporates a coupled double quantum dot. We show that electronic control...... of the diode bias and local gating allow for the generation of single photons that are entangled with a robust quantum memory based on the electron spins. Practical performance of this approach to controlled spin-photon entanglement is analyzed....

  3. Spin diffusion in Fermi gases

    DEFF Research Database (Denmark)

    Bruun, Georg

    2011-01-01

    We examine spin diffusion in a two-component homogeneous Fermi gas in the normal phase. Using a variational approach, analytical results are presented for the spin diffusion coefficient and the related spin relaxation time as a function of temperature and interaction strength. For low temperatures......, strong correlation effects are included through the Landau parameters which we extract from Monte Carlo results. We show that the spin diffusion coefficient has a minimum for a temperature somewhat below the Fermi temperature with a value that approaches the quantum limit ~/m in the unitarity regime...

  4. Flat and conical incommensurate magnetic structures in the two-subsystem partially frustrated Heisenberg ferrimagnet

    Energy Technology Data Exchange (ETDEWEB)

    Martynov, S.N., E-mail: unonav@iph.krasn.ru

    2016-01-15

    The phase transitions into flat and conical incommensurate magnetic structures are considered for a ferrimagnet with the dominant nonfrustrated exchange between the spins in one crystallographic position, competing exchanges between the spins in another position and frustrated exchange between the spins in different positions. The appearance conditions and the temperatures of the second order phase transitions are analytically obtained in the mean field approximation. The first order phase transition between these states is studied and the phase diagrams of temperature vs frustrated exchanges are calculated by the numerical minimization of free energy. - Highlights: • 3D spatial distribution of the spins decreases the energy of the frustrated exchanges. • Symmetry of the antiferromagnetic conical structure reduces the number of variables. • The collinearity of the spins and the local fields gives a simple analytical solution.

  5. Electron spin resonance

    International Nuclear Information System (INIS)

    Wasson, J.R.; Salinas, J.E.

    1980-01-01

    Published literature concerning electron spin resonance (ESR) from July 1977 to July 1979 is reviewed. The 108 literature sources cited were chosen from literally thousands and are intended to serve as a guide to the current literature and to provide an eclectic selection of publications cited for their contributions to the advance and/or applications of ESR spectroscopy. 40 of the sources are reviews, and a table is included to indicate the topic(s) mainly covered in each review. Other divisions of the material reviewed are apparatus and spectral analysis, analytical applications, and selected paramagnetic materials

  6. Quantum entanglement for systems of identical bosons: II. Spin squeezing and other entanglement tests

    Science.gov (United States)

    Dalton, B. J.; Goold, J.; Garraway, B. M.; Reid, M. D.

    2017-02-01

    These two accompanying papers are concerned with entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. The main focus is on two mode entanglement, but multi-mode entanglement is also considered. The bosons may be atoms or molecules as in cold quantum gases. The previous paper I dealt with the general features of quantum entanglement and its specific definition in the case of systems of identical bosons. Entanglement is a property shared between two (or more) quantum sub-systems. In defining entanglement for systems of identical massive particles, it was concluded that the single particle states or modes are the most appropriate choice for sub-systems that are distinguishable, that the general quantum states must comply both with the symmetrization principle and the super-selection rules (SSR) that forbid quantum superpositions of states with differing total particle number (global SSR compliance). Further, it was concluded that (in the separable states) quantum superpositions of sub-system states with differing sub-system particle number (local SSR compliance) also do not occur. The present paper II determines possible tests for entanglement based on the treatment of entanglement set out in paper I. Several inequalities involving variances and mean values of operators have been previously proposed as tests for entanglement between two sub-systems. These inequalities generally involve mode annihilation and creation operators and include the inequalities that define spin squeezing. In this paper, spin squeezing criteria for two mode systems are examined, and spin squeezing is also considered for principle spin operator components where the covariance matrix is diagonal. The proof, which is based on our SSR compliant approach shows that the presence of spin squeezing in any one of the spin components requires entanglement of the relevant pair of modes. A simple Bloch vector test for

  7. Angular dependence of spin-orbit spin-transfer torques

    KAUST Repository

    Lee, Ki-Seung

    2015-04-06

    In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.

  8. Diffusion equation and spin drag in spin-polarized transport

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Jensen, Thomas Stibius; Mortensen, Asger

    2001-01-01

    We study the role of electron-electron interactions for spin-polarized transport using the Boltzmann equation, and derive a set of coupled transport equations. For spin-polarized transport the electron-electron interactions are important, because they tend to equilibrate the momentum of the two-s...

  9. Spin caloritronics, origin and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haiming, E-mail: haiming.yu@buaa.edu.cn [Fert Beijing Institute, School of Electronic and Information Engineering, BDBC, Beihang University (China); Brechet, Sylvain D. [Institute of Physics, station 3, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne-EPFL (Switzerland); Ansermet, Jean-Philippe, E-mail: jean-philippe.ansermet@epfl.ch [Institute of Physics, station 3, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne-EPFL (Switzerland)

    2017-03-03

    Spin caloritronics refers to research efforts in spintronics when a heat current plays a role. In this review, we start out by reviewing the predictions that can be drawn from the thermodynamics of irreversible processes. This serves as a conceptual framework in which to analyze the interplay of charge, spin and heat transport. This formalism predicts tensorial relations between vectorial quantities such as currents and gradients of chemical potentials or of temperature. Transverse effects such as the Nernst or Hall effects are predicted on the basis that these tensors can include an anti-symmetric contribution, which can be written with a vectorial cross-product. The local symmetry of the system may determine the direction of the vector defining such transverse effects, such as the surface of an isotropic medium. By including magnetization as state field in the thermodynamic description, spin currents appear naturally from the continuity equation for the magnetization, and dissipative spin torques are derived, which are charge-driven or heat-driven. Thermodynamics does not give the strength of these effects, but may provide relationships between them. Based on this framework, the review proceeds by showing how these effects have been observed in various systems. Spintronics has become a vast field of research, and the experiments highlighted in this review pertain only to heat effects on transport and magnetization dynamics, such as magneto-thermoelectric power, or the spin-dependence of the Seebeck effect, the spin-dependence of the Peltier effect, the spin Seebeck effect, the magnetic Seebeck effect, or the Nernst effect. The review concludes by pointing out predicted effects that are yet to be verified experimentally, and in what novel materials the standard thermal spin effects could be investigated. - Highlights: • Thermodynamic description of transport: three-current model. • Magneto-thermoelectric power and spin-dependent Peltier effects. • Thermal

  10. Nuclear Spin-Spin Coupling in HD, HT, and DT

    Science.gov (United States)

    Puchalski, Mariusz; Komasa, Jacek; Pachucki, Krzysztof

    2018-02-01

    The interaction between nuclear spins in a molecule is exceptionally sensitive to the physics beyond the standard model. However, all present calculations of the nuclear spin-spin coupling constant J are burdened by computational difficulties, which hinders the comparison to experimental results. Here, we present a variational approach and calculate the constant J in the hydrogen molecule with the controlled numerical precision, using the adiabatic approximation. The apparent discrepancy with experimental result is removed by an analysis of nonadiabatic effects based on the experimental values of the J constant for HD, HT, and DT molecules. This study significantly improves the reliability of the NMR theory for searching new physics in the spin-spin coupling.

  11. Snakes and spin rotators

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1990-01-01

    The generalized snake configuration offers advantages of either shorter total snake length and smaller orbit displacement in the compact configuration or the multi-functions in the split configuration. We found that the compact configuration can save about 10% of the total length of a snake. On other hand, the spilt snake configuration can be used both as a snake and as a spin rotator for the helicity state. Using the orbit compensation dipoles, the spilt snake configuration can be located at any distance on both sides of the interaction point of a collider provided that there is no net dipole rotation between two halves of the snake. The generalized configuration is then applied to the partial snake excitation. Simple formula have been obtained to understand the behavior of the partial snake. Similar principle can also be applied to the spin rotators. We also estimate the possible snake imperfections are due to various construction errors of the dipole magnets. Accuracy of field error of better than 10 -4 will be significant. 2 refs., 5 figs

  12. The transverse spin

    Energy Technology Data Exchange (ETDEWEB)

    Artru, X. [Institut de Physique Nucleaire de Lyon, IN2P3-CNRS, Universite Claude Bernard, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France)

    2002-07-01

    The aim of this introduction, which is far from exhaustive, was to give an overview on the richness of transverse spin quantity and its differences in comparison with helicity. From the experimental point of view, the physics of quark transversity in deep inelastic reaction is still practically unexplored. This situation will certainly change rapidly, with planned experiments at DESY (HERMES), Brookhaven (RHIC) and CERN (COMPAS), but there is a long way before knowing the transversity distribution, {delta}q(x), as precisely as the helicity distribution, {delta}q(x), now. Unless polarized anti-proton beams become feasible, experiments probing quark transversity will rely mainly on 'quark polarimeters', like {lambda}'s or the Collins effect. These polarimeters will have to be calibrated at e{sup +}e{sup -} colliders. The Collins polarimeter will by the way allow the flavor decomposition of {delta}q(x), using mesons of various charging and strangeness. Quark polarimetry is by itself an interesting topic of non-perturbative QCD, and may teach us something about the breaking of chiral symmetry. Let us recall that, if chiral symmetry were unbroken, transversity would be undefined. The transversity physics program is not at all a 'remake' of the helicity one. Helicity and transversity probe rather different aspects of the hadron structure. Differences between {delta}q(x) and {delta}q(x) will reveal non-relativistic effects in the baryon wave function. Also {delta}q(x) does not couples to gluon distributions, thus it is free from anomaly. In that respect it is a more clean probe than {delta}q(x). In fact, the combination of helicity and transversity measurements will perhaps be the most interesting. Polarized parton densities taking only the helicity degree of freedom are almost 'classical'. Quantum aspects of spin correlations, like violation of Bell's inequality, can be found only when varying the spin quantification axis

  13. On the tensionless limit of bosonic strings, infinite symmetries and higher spins

    Energy Technology Data Exchange (ETDEWEB)

    Bonelli, Giulio E-mail: gbonelli@ulb.ac.be

    2003-10-06

    In the tensionless limit of string theory on flat background all the massive tower of states gets squeezed to a common zero mass level and the free theory is described by an infinite amount of massless free fields with arbitrary integer high spin. We notice that in this situation the very notion of critical dimension gets lost, the apparency of infinite global symmetries takes place, and the closed tensionless string can be realized as a constrained subsystem of the open one in a natural way. Moreover, we study the tensionless limit of the Witten's cubic sting field theory and find that the theory in such a limit can be represented as an infinite set of free arbitrary higher spin excitations plus an interacting sector involving their zero-modes only.

  14. Superconductive analogue of spin glasses

    International Nuclear Information System (INIS)

    Feigel'man, M.; Ioffe, L.; Vinokur, V.; Larkin, A.

    1987-07-01

    The properties of granular superconductors in magnetic fields, namely the existence of a new superconductive state analogue of the low-temperature superconductive state in spin glasses are discussed in the frame of the infinite-range model and the finite-range models. Experiments for elucidation of spin-glass superconductive state in real systems are suggested. 30 refs

  15. Spinning top—the question

    Science.gov (United States)

    Featonby, David

    2017-11-01

    The motion of a spinning top can be mystifying at times until some basic principles are understood. In this question the key to understanding what happens is the nature of the bottom tip of the top in contact with the surface on which it spins.

  16. Decoherence in Quantum Spin Systems

    NARCIS (Netherlands)

    De Raedt, H; Dobrovitski, VV; Landau, DP; Lewis, SP; Schuttler, HB

    2003-01-01

    Computer simulations of decoherence in quantum spin systems require the solution of the time-dependent Schrodinger equation for interacting quantum spin systems over extended periods of time. We use exact diagonalization, the Chebyshev polynomial technique, four Suzuki-formula algorithms, and the

  17. Nuclear Spins in Quantum Dots

    NARCIS (Netherlands)

    Erlingsson, S.I.

    2003-01-01

    The main theme of this thesis is the hyperfine interaction between the many lattice nuclear spins and electron spins localized in GaAs quantum dots. This interaction is an intrinsic property of the material. Despite the fact that this interaction is rather weak, it can, as shown in this thesis,

  18. Black Hole Spin Measurement Uncertainty

    Science.gov (United States)

    Salvesen, Greg; Begelman, Mitchell C.

    2018-01-01

    Angular momentum, or spin, is one of only two fundamental properties of astrophysical black holes, and measuring its value has numerous applications. For instance, obtaining reliable spin measurements could constrain the growth history of supermassive black holes and reveal whether relativistic jets are powered by tapping into the black hole spin reservoir. The two well-established techniques for measuring black hole spin can both be applied to X-ray binaries, but are in disagreement for cases of non-maximal spin. This discrepancy must be resolved if either technique is to be deemed robust. We show that the technique based on disc continuum fitting is sensitive to uncertainties regarding the disc atmosphere, which are observationally unconstrained. By incorporating reasonable uncertainties into black hole spin probability density functions, we demonstrate that the spin measured by disc continuum fitting can become highly uncertain. Future work toward understanding how the observed disc continuum is altered by atmospheric physics, particularly magnetic fields, will further strengthen black hole spin measurement techniques.

  19. SPIN PHYSICS: Lasers at work

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Lasers are now an everyday tool in particle physics, particularly for the spin polarization of beams, targets, and even short-lived particles. Development has been boosted in recent years by the availability of reliable multiwatt tunable lasers to select spin in an experimentally useful sample

  20. Implementation of a Digital Signal Processing Subsystem for a Long Wavelength Array Station

    Science.gov (United States)

    Soriano, Melissa; Navarro, Robert; D'Addario, Larry; Sigman, Elliott; Wang, Douglas

    2011-01-01

    This paper describes the implementation of a Digital Signal Processing (DP) subsystem for a single Long Wavelength Array (LWA) station.12 The LWA is a radio telescope that will consist of many phased array stations. Each LWA station consists of 256 pairs of dipole-like antennas operating over the 10-88 MHz frequency range. The Digital Signal Processing subsystem digitizes up to 260 dual-polarization signals at 196 MHz from the LWA Analog Receiver, adjusts the delay and amplitude of each signal, and forms four independent beams. Coarse delay is implemented using a first-in-first-out buffer and fine delay is implemented using a finite impulse response filter. Amplitude adjustment and polarization corrections are implemented using a 2x2 matrix multiplication

  1. Neural network model for a reactor subsystem using real time data

    International Nuclear Information System (INIS)

    Patra, Subhra Rani; Jayadev, Sujith; Jehadeesan, R.; Rajeswari, S.; Satya Murty, S.A.V.; Madurai Meenachi, N.

    2010-01-01

    Modern nuclear power plant is a very complex arrangement of machinery consisting of huge number of control and support systems. In real time it is possible to implement intelligent systems in the form of neural network, data mining, expert system etc. for modeling the power plant. This paper describes the development of an artificial neural network model for intermediate heat exchanger subsystem of fast breeder test reactor. Multilayer perceptron network using back propagation algorithm is implemented for training the safety critical, safety related real time data. It takes in to account the weight correction method. The results indicate a very good convergence of the algorithm. The model can be used as an operator support system for predictive measures of various parameters of the reactor subsystems. (author)

  2. Structural and mechanical design challenges of space shuttle solid rocket boosters separation and recovery subsystems

    Science.gov (United States)

    Woodis, W. R.; Runkle, R. E.

    1985-01-01

    The design of the space shuttle solid rocket booster (SRB) subsystems for reuse posed some unique and challenging design considerations. The separation of the SRBs from the cluster (orbiter and external tank) at 150,000 ft when the orbiter engines are running at full thrust meant the two SRBs had to have positive separation forces pushing them away. At the same instant, the large attachments that had reacted launch loads of 7.5 million pounds thrust had to be servered. These design considerations dictated the design requirements for the pyrotechnics and separation rocket motors. The recovery and reuse of the two SRBs meant they had to be safely lowered to the ocean, remain afloat, and be owed back to shore. In general, both the pyrotechnic and recovery subsystems have met or exceeded design requirements. In twelve vehicles, there has only been one instance where the pyrotechnic system has failed to function properly.

  3. Report on Wind Turbine Subsystem Reliability - A Survey of Various Databases (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.

    2013-07-01

    Wind industry has been challenged by premature subsystem/component failures. Various reliability data collection efforts have demonstrated their values in supporting wind turbine reliability and availability research & development and industrial activities. However, most information on these data collection efforts are scattered and not in a centralized place. With the objective of getting updated reliability statistics of wind turbines and/or subsystems so as to benefit future wind reliability and availability activities, this report is put together based on a survey of various reliability databases that are accessible directly or indirectly by NREL. For each database, whenever feasible, a brief description summarizing database population, life span, and data collected is given along with its features & status. Then selective results deemed beneficial to the industry and generated based on the database are highlighted. This report concludes with several observations obtained throughout the survey and several reliability data collection opportunities in the future.

  4. Josephson spin current in triplet superconductor junctions

    OpenAIRE

    Asano, Yasuhiro

    2006-01-01

    This paper theoretically discusses the spin current in spin-triplet superconductor / insulator / spin-triplet superconductor junctions. At low temperatures, a midgap Andreev resonant state anomalously enhances not only the charge current but also the spin current. The coupling between the Cooper pairs and the electromagnetic fields leads to the Frounhofer pattern in the direct current spin flow in magnetic fields and the alternative spin current under applied bias-voltages.

  5. Disorder and Quantum Spin Ice

    Science.gov (United States)

    Martin, N.; Bonville, P.; Lhotel, E.; Guitteny, S.; Wildes, A.; Decorse, C.; Ciomaga Hatnean, M.; Balakrishnan, G.; Mirebeau, I.; Petit, S.

    2017-10-01

    We report on diffuse neutron scattering experiments providing evidence for the presence of random strains in the quantum spin-ice candidate Pr2Zr2O7 . Since Pr3 + is a non-Kramers ion, the strain deeply modifies the picture of Ising magnetic moments governing the low-temperature properties of this material. It is shown that the derived strain distribution accounts for the temperature dependence of the specific heat and of the spin-excitation spectra. Taking advantage of mean-field and spin-dynamics simulations, we argue that the randomness in Pr2Zr2O7 promotes a new state of matter, which is disordered yet characterized by short-range antiferroquadrupolar correlations, and from which emerge spin-ice-like excitations. Thus, this study gives an original research route in the field of quantum spin ice.

  6. Disorder and Quantum Spin Ice

    Directory of Open Access Journals (Sweden)

    N. Martin

    2017-10-01

    Full Text Available We report on diffuse neutron scattering experiments providing evidence for the presence of random strains in the quantum spin-ice candidate Pr_{2}Zr_{2}O_{7}. Since Pr^{3+} is a non-Kramers ion, the strain deeply modifies the picture of Ising magnetic moments governing the low-temperature properties of this material. It is shown that the derived strain distribution accounts for the temperature dependence of the specific heat and of the spin-excitation spectra. Taking advantage of mean-field and spin-dynamics simulations, we argue that the randomness in Pr_{2}Zr_{2}O_{7} promotes a new state of matter, which is disordered yet characterized by short-range antiferroquadrupolar correlations, and from which emerge spin-ice-like excitations. Thus, this study gives an original research route in the field of quantum spin ice.

  7. TOOLS OF INTELLECTUAL PROPERTY MANAGEMENT OF A HOLDING COMPANY AND ITS SUB-SYSTEMS

    Directory of Open Access Journals (Sweden)

    Nicolai N. Samoilenko

    2013-01-01

    Full Text Available The concept and essence of intellectual property management are considered in the article, as well as the models, the methods and the tools of intellectual property management of holding structures. In particular, the life cycle of object of intellectual property is described, the concept "intellectual property management" is created, the most effective models of intellectual property management are revealed, and also the instruments of intellectual property management of a holding company and its sub-systems are defined.

  8. A Dantzig-Wolfe decomposition algorithm for linear economic model predictive control of dynamically decoupled subsystems

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Standardi, Laura; Edlund, Kristian

    2014-01-01

    This paper presents a warm-started Dantzig–Wolfe decomposition algorithm tailored to economic model predictive control of dynamically decoupled subsystems. We formulate the constrained optimal control problem solved at each sampling instant as a linear program with state space constraints, input ....... In the presence of process and measurement noise, such a regularization term is critical for achieving a well-behaved closed-loop performance....

  9. National Ignition Facility subsystem design requirements transportation and handling, SSDR 1.1.1.3.2

    International Nuclear Information System (INIS)

    Yakuma, S.; McNairy, R.

    1996-01-01

    This Subsystem Design Requirement document is a development specification that establishes the performance, design, development, and test requirements for the Transportation ampersand Material Handling Systems (WBS 1.1.1.3.2) of the NIF Laser System (WBS 1.3 and 1.4). The NIF is a multi-pass, 192-beam, high-power, neodymium-glass laser that meets requirements set forth in the NIF SDR 002 (Laser System). 5 figs

  10. AUTOET code (a code for automatically constructing event trees and displaying subsystem interdependencies)

    International Nuclear Information System (INIS)

    Wilson, J.R.; Burdick, G.R.

    1977-06-01

    This is a user's manual for AUTOET I and II. AUTOET I is a computer code for automatic event tree construction. It is designed to incorporate and display subsystem interdependencies and common or key component dependencies in the event tree format. The code is written in FORTRAN IV for the CDC Cyber 76 using the Integrated Graphics System (IGS). AUTOET II incorporates consequence and risk calculations, in addition to some other refinements. 5 figures

  11. The Design of the NetBSD I/O Subsystems

    OpenAIRE

    Chung, SungWon

    2016-01-01

    This book describes the source code of the NetBSD Operating System Release 1.6 in SUN UltraSPARC 64-bit platform by annotating related excerpts from references and user manuals on the NetBSD Operating System. The goal of this book is to provide necessary information to understand the operation and the implementation of I/O subsystems in the kernel as well as to design and implement a new filesystem on the NetBSD platform.

  12. Molten salt steam generator subsystem research experiment. Volume I. Phase 1 - Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-10-01

    A study was conducted for Phase 1 of a two-phase project whose objectives were to develop a reliable, cost-effective molten salt steam generating subsystem for solar thermal plants, minimize uncertainty in capital, operating, and maintenance costs, and demonstrate the ability of molten salt to generate high-pressure, high-temperature steam. The Phase 1 study involved the conceptual design of molten salt steam generating subsystems for a nominal 100-MWe net stand-alone solar central receiver electric generating plant, and a nominal 100-MWe net hybrid fossil-fueled electric power generating plant that is 50% repowered by a solar central receiver system. As part of Phase 1, a proposal was prepared for Phase 2, which involves the design, construction, testing and evaluation of a Subsystem Research Experiment of sufficient size to ensure successful operation of the full-size subsystem designed in Phase 1. Evaluation of several concepts resulted in the selection of a four-component (preheater, evaporator, superheater, reheater), natural circulation, vertically oriented, shell and tube (straight) heat exchanger arrangement. Thermal hydraulic analysis of the system included full and part load performance, circulation requirements, stability, and critical heat flux analysis. Flow-induced tube vibration, tube buckling, fatigue evaluation of tubesheet junctions, steady-state tubesheet analysis, and a simplified transient analysis were included in the structural analysis of the system. Operating modes and system dynamic response to load changes were identified. Auxiliary equipment, fabrication, erection, and maintenance requirements were also defined. Installed capital costs and a project schedule were prepared for each design.

  13. Nickel-hydrogen battery design for the Transporter Energy Storage Subsystem (TESS)

    Science.gov (United States)

    Lapinski, John R.; Bourland, Deborah S.

    1992-01-01

    Information is given in viewgraph form on nickel hydrogen battery design for the transporter energy storage subsystem (TESS). Information is given on use in the Space Station Freedom, the launch configuration, use in the Mobile Servicing Center, battery design requirements, TESS subassembley design, proof of principle testing of a 6-cell battery, possible downsizing of TESS to support the Mobile Rocket Servicer Base System (MBS) redesign, TESS output capacity, and cell testing.

  14. [Analysis of mass minimization of Thermoelectric Integrated Membrane Evaporation Subsystem in waste water processing].

    Science.gov (United States)

    Ren, J X; Ji, C Y; Zhang, X R; Wang, S; Liang, X G; Guo, Z Y

    2001-02-01

    To minimize in the system level the designed mass of Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) of Environment Control Life Support System (ECLSS) in manned spacecraft, when the requirement of the production rate of fresh water and its hygiene is fulfilled. According to the characteristics of the operational process of TIMES, the physical and mathematical model for fluid flow, heat transfer and mass composition in its main parts were established to investigate numerically the relation between the system mass and those parameters associated with the structure and operation of the system. The system mass depended not only on the structural parameters and operational parameters of TIMES, but also on the operational characteristics of power subsystem and thermal control subsystem. The relative mass covered a large part of the system mass. There existed an optimum of the number of thermoelectric cooling parts and flow rate of circular waste water of the TIMES when the designed system mass was minimum. Moreover, higher condensation pressure in the system contributed to lower system mass.

  15. Low-voltage Power Supply Subsystem for a Sub-Orbital Particle Physic Instrument

    Directory of Open Access Journals (Sweden)

    Hector Hugo Silva Lopez

    2014-01-01

    Full Text Available The Japanese Experiment Module–Extreme Universe Space Observatory (JEM-EUSO is a wide-field (+/-~30°of aperture 2.5m refractor telescope to be installed in the International Space Station (ISS. The instrument looks downward from its orbit, into Earth’s atmosphere, with the main objective of observing ultra-violet (UV fluorescence light generated by Ultra-High Energy Cosmic Rays (UHECR extensive air showers (EAS. It is a frontier particle-physics experiment, the first of its kind. The validation of the technical readiness level of such a complex and unique instrument requires prototypes at several levels of integration. At the highest level, the EUSO-Balloon instrument has been conceived, through French space agency (CNES. At a smaller scale and in suborbital flight, EUSO-Balloon integrates all the sub-systems of the full space JEM-EUSO telescope, allowing end-to-end testing of hardware and interfaces, and to probing the global detection chain and strategy, while improving at the same time our knowledge of atmospheric and terrestrial UV background. EUSO-Balloon will be flown by CNES for the first time from Timmins, Canada; on spring 2014.This article presents the low-voltage power supply (LVPS subsystem development for the EUSO-Balloon instrument. This LVPS is the fully operational prototype for the space instrument JEM-EUSO. Besides design and construction, all performance tests and integration results with the other involved subsystems are shown.

  16. Improving the Reliability of Technological Subsystems Equipment for Steam Turbine Unit in Operation

    Science.gov (United States)

    Brodov, Yu. M.; Murmansky, B. E.; Aronson, R. T.

    2017-11-01

    The authors’ conception is presented of an integrated approach to reliability improving of the steam turbine unit (STU) state along with its implementation examples for the various STU technological subsystems. Basing on the statistical analysis of damage to turbine individual parts and components, on the development and application of modern methods and technologies of repair and on operational monitoring techniques, the critical components and elements of equipment are identified and priorities are proposed for improving the reliability of STU equipment in operation. The research results are presented of the analysis of malfunctions for various STU technological subsystems equipment operating as part of power units and at cross-linked thermal power plants and resulting in turbine unit shutdown (failure). Proposals are formulated and justified for adjustment of maintenance and repair for turbine components and parts, for condenser unit equipment, for regeneration subsystem and oil supply system that permit to increase the operational reliability, to reduce the cost of STU maintenance and repair and to optimize the timing and amount of repairs.

  17. Independent Orbiter Assessment (IOA): Analysis of the electrical power generation/fuel cell powerplant subsystem

    Science.gov (United States)

    Brown, K. L.; Bertsch, P. J.

    1986-01-01

    Results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Generation (EPG)/Fuel Cell Powerplant (FCP) hardware. The EPG/FCP hardware is required for performing functions of electrical power generation and product water distribution in the Orbiter. Specifically, the EPG/FCP hardware consists of the following divisions: (1) Power Section Assembly (PSA); (2) Reactant Control Subsystem (RCS); (3) Thermal Control Subsystem (TCS); and (4) Water Removal Subsystem (WRS). The IOA analysis process utilized available EPG/FCP hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  18. Spin-lattice relaxation of individual solid-state spins

    Science.gov (United States)

    Norambuena, A.; Muñoz, E.; Dinani, H. T.; Jarmola, A.; Maletinsky, P.; Budker, D.; Maze, J. R.

    2018-03-01

    Understanding the effect of vibrations on the relaxation process of individual spins is crucial for implementing nanosystems for quantum information and quantum metrology applications. In this work, we present a theoretical microscopic model to describe the spin-lattice relaxation of individual electronic spins associated to negatively charged nitrogen-vacancy centers in diamond, although our results can be extended to other spin-boson systems. Starting from a general spin-lattice interaction Hamiltonian, we provide a detailed description and solution of the quantum master equation of an electronic spin-one system coupled to a phononic bath in thermal equilibrium. Special attention is given to the dynamics of one-phonon processes below 1 K where our results agree with recent experimental findings and analytically describe the temperature and magnetic-field scaling. At higher temperatures, linear and second-order terms in the interaction Hamiltonian are considered and the temperature scaling is discussed for acoustic and quasilocalized phonons when appropriate. Our results, in addition to confirming a T5 temperature dependence of the longitudinal relaxation rate at higher temperatures, in agreement with experimental observations, provide a theoretical background for modeling the spin-lattice relaxation at a wide range of temperatures where different temperature scalings might be expected.

  19. A Probabilistic Model of Spin and Spin Measurements

    Science.gov (United States)

    Niehaus, Arend

    2016-01-01

    Several theoretical publications on the Dirac equation published during the last decades have shown that, an interpretation is possible, which ascribes the origin of electron spin and magnetic moment to an autonomous circular motion of the point-like charged particle around a fixed centre. In more recent publications an extension of the original so called "Zitterbewegung Interpretation" of quantum mechanics was suggested, in which the spin results from an average of instantaneous spin vectors over a Zitterbewegung period. We argue that, the corresponding autonomous motion of the electron should, if it is real, determine non-relativistic spin measurements. Such a direct connection with the established formal quantum mechanical description of spin measurements, into which spin is introduced as a "non-classical" quantity has, to our knowledge, not been reported. In the present work we show that, under certain "model assumptions" concerning the proposed autonomous motion, results of spin measurements, including measurements of angular correlations in singlet systems, can indeed be correctly described using classical probabilities. The success of the model is evidence for the "reality" of the assumed autonomous motion. The resulting model violates the Bell—inequalities to the same extent as quantum mechanics.

  20. Quantum Spin Liquids in Frustrated Spin-1 Diamond Antiferromagnets

    Science.gov (United States)

    Buessen, Finn Lasse; Hering, Max; Reuther, Johannes; Trebst, Simon

    2018-01-01

    Motivated by the recent synthesis of the spin-1 A -site spinel NiRh2 O4 , we investigate the classical to quantum crossover of a frustrated J1-J2 Heisenberg model on the diamond lattice upon varying the spin length S . Applying a recently developed pseudospin functional renormalization group approach for arbitrary spin-S magnets, we find that systems with S ≥3 /2 reside in the classical regime, where the low-temperature physics is dominated by the formation of coplanar spirals and a thermal (order-by-disorder) transition. For smaller local moments S =1 or S =1 /2 , we find that the system evades a thermal ordering transition and forms a quantum spiral spin liquid where the fluctuations are restricted to characteristic momentum-space surfaces. For the tetragonal phase of NiRh2 O4 , a modified J1-J2--J2⊥ exchange model is found to favor a conventionally ordered Néel state (for arbitrary spin S ), even in the presence of a strong local single-ion spin anisotropy, and it requires additional sources of frustration to explain the experimentally observed absence of a thermal ordering transition.

  1. Spin flexoelectricity and chiral spin structures in magnetic films

    International Nuclear Information System (INIS)

    Pyatakov, A.P.; Sergeev, A.S.; Mikailzade, F.A.; Zvezdin, A.K.

    2015-01-01

    In this short review a broad range of chiral phenomena observed in magnetic films (spin cycloid and skyrmion structures formation as well as chirality dependent domain wall motion) is considered under the perspective of spin flexoelectricity, i.e. the relation between bending of magnetization pattern and electric polarization. The similarity and the difference between the spin flexoelectricity and the newly emerged notion of spin flexomagnetism are discussed. The phenomenological arguments based on the geometrical idea of curvature-induced effects are supported by analysis of the microscopic mechanisms of spin flexoelectricity based on three-site ion indirect exchange and twisted RKKY interaction models. - Highlights: • Magnetic structure formation in thin films is analogous to flexoelectric phenomena in crystals. • The microscopic mechanism of spin flexoelectricity is the antisymmetric exchange. • Spin cycloid in thin film of metals can be the result of Rashba interaction in 2DEG. • The chirality-dependent Néel-type magnetic domain wall motion is observed in electric field

  2. Spin flexoelectricity and chiral spin structures in magnetic films

    Energy Technology Data Exchange (ETDEWEB)

    Pyatakov, A.P., E-mail: pyatakov@physics.msu.ru [M.V. Lomonosov Moscow State University, Leninskie gori, Moscow 119991 (Russian Federation); Sergeev, A.S. [M.V. Lomonosov Moscow State University, Leninskie gori, Moscow 119991 (Russian Federation); Mikailzade, F.A. [Department of Physics, Gebze Technical University, Gebze, 41400 Kocaeli (Turkey); Zvezdin, A.K. [A.M. Prokhorov General Physics Institute, Vavilova St., 38, Moscow 119991 (Russian Federation)

    2015-06-01

    In this short review a broad range of chiral phenomena observed in magnetic films (spin cycloid and skyrmion structures formation as well as chirality dependent domain wall motion) is considered under the perspective of spin flexoelectricity, i.e. the relation between bending of magnetization pattern and electric polarization. The similarity and the difference between the spin flexoelectricity and the newly emerged notion of spin flexomagnetism are discussed. The phenomenological arguments based on the geometrical idea of curvature-induced effects are supported by analysis of the microscopic mechanisms of spin flexoelectricity based on three-site ion indirect exchange and twisted RKKY interaction models. - Highlights: • Magnetic structure formation in thin films is analogous to flexoelectric phenomena in crystals. • The microscopic mechanism of spin flexoelectricity is the antisymmetric exchange. • Spin cycloid in thin film of metals can be the result of Rashba interaction in 2DEG. • The chirality-dependent Néel-type magnetic domain wall motion is observed in electric field.

  3. Solar Pilot Plant, Phase I. Preliminary design report. Volume IV. Receiver subsystem (CDRL item 2). [Contains engineering drawings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    The Honeywell receiver subsystem design uses well established fossil technology and consists of a cavity receiver housing, a steam generator, a cavity barrier, piping, and a support tower. The steam generator absorbs the redirected solar energy from the collector subsystem and converts it to superheated steam which drives the turbine. The receiver is adequately shielded to protect personnel and equipment. A cavity barrier is lowered at night to conserve heat and expedite startup the following day. This volume contains the subsystem design and methodology and the correlation with the design and performance characteristics of the SRE steam generator which was fabricated and successfully tested during the program.

  4. Spin Orbit Interaction Engineering for beyond Spin Transfer Torque memory

    Science.gov (United States)

    Wang, Kang L.

    Spin transfer torque memory uses electron current to transfer the spin torque of electrons to switch a magnetic free layer. This talk will address an alternative approach to energy efficient non-volatile spintronics through engineering of spin orbit interaction (SOC) and the use of spin orbit torque (SOT) by the use of electric field to improve further the energy efficiency of switching. I will first discuss the engineering of interface SOC, which results in the electric field control of magnetic moment or magneto-electric (ME) effect. Magnetic memory bits based on this ME effect, referred to as magnetoelectric RAM (MeRAM), is shown to have orders of magnitude lower energy dissipation compared with spin transfer torque memory (STTRAM). Likewise, interests in spin Hall as a result of SOC have led to many advances. Recent demonstrations of magnetization switching induced by in-plane current in heavy metal/ferromagnetic heterostructures have been shown to arise from the large SOC. The large SOC is also shown to give rise to the large SOT. Due to the presence of an intrinsic extraordinarily strong SOC and spin-momentum lock, topological insulators (TIs) are expected to be promising candidates for exploring spin-orbit torque (SOT)-related physics. In particular, we will show the magnetization switching in a chromium-doped magnetic TI bilayer heterostructure by charge current. A giant SOT of more than three orders of magnitude larger than those reported in heavy metals is also obtained. This large SOT is shown to come from the spin-momentum locked surface states of TI, which may further lead to innovative low power applications. I will also describe other related physics of SOC at the interface of anti-ferromagnetism/ferromagnetic structure and show the control exchange bias by electric field for high speed memory switching. The work was in part supported by ERFC-SHINES, NSF, ARO, TANMS, and FAME.

  5. Spin Physics at COMPASS

    CERN Document Server

    Bradamante, Franco

    2005-01-01

    COMPASS is a new fixed target experiment presently in operation at CERN. It has the goal to investigate hadron structure and hadron spectroscopy by using either muon or hadron beams. From measurements of various hadron asymmetries in polarized muon - nucleon scattering it will be possible to determine the contribution of the gluons to the nucleon spin. Main objective of the hadron program is the search of exotic states, and glueballs in particular. This physics programme is carried out with a two-stage magnetic spectrometer, with particle identification and calorimetry in both stages, which has started collecting physics data in 2002, and will run at the CERN SPS at least until 2010. Preliminary results from the 2002 run with a 160 GeV muon beam are presented for several physics channels under investigation.

  6. Spin fluctuations and the

    Directory of Open Access Journals (Sweden)

    V.M. Loktev

    2008-09-01

    Full Text Available We analyze the spectral properties of a phenomenological model for a weakly doped two-dimensional antiferromagnet, in which the carriers move within one of the two sublattices where they were introduced. Such a constraint results in the free carrier spectra with the maxima at k=(± π/2 , ± π/2 observed in some cuprates. We consider the spectral properties of the model by taking into account fluctuations of the spins in the antiferromagnetic background. We show that such fluctuations lead to a non-pole-like structure of the single-hole Green's function and these fluctuations can be responsible for some anomalous "strange metal" properties of underdoped cuprates in the nonsuperconducting regime.

  7. Gyroscopes may cease spinning

    Science.gov (United States)

    Martin, G. J.

    1986-02-01

    Laser gyroscopes have advantages compared to mechanical gyroscopes. Thus, they are more rugged and reliable, and, therefore, offer lower life-cycle costs. They are not yet more accurate than high-quality mechanical systems, but they have excellent development potential. Problems which can arise in the case of the spinning-rotor systems are related to their sensitivity to gravitational fields in the increasingly high-g environment of modern military aircraft. Optically based systems, on the other hand, have, in principle, no gravitational sensitivity and are in addition highly linear over a large dynamic range. The principles of operation of ring laser gyros (RLG) are discussed, taking into account the utilization of the Sagnac effect. Attention is given to the approaches found to overcome a number of engineering difficulties which arose in connection with the construction of RLG, techniques for limiting laser beam competition, aspects of geometry, and the current state of the art.

  8. Minimal model of spin-transfer torque and spin pumping caused by the spin Hall Effect

    Czech Academy of Sciences Publication Activity Database

    Chen, W.; Sigrist, M.; Sinova, Jairo; Manske, D.

    2016-01-01

    Roč. 115, č. 21 (2016), 1-5, č. článku 217203. ISSN 0031-9007 Institutional support: RVO:68378271 Keywords : spin tronics * spin Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 8.462, year: 2016

  9. Competing Spin Liquids and Hidden Spin-Nematic Order in Spin Ice with Frustrated Transverse Exchange

    Directory of Open Access Journals (Sweden)

    Mathieu Taillefumier

    2017-12-01

    Full Text Available Frustration in magnetic interactions can give rise to disordered ground states with subtle and beautiful properties. The spin ices Ho_{2}Ti_{2}O_{7} and Dy_{2}Ti_{2}O_{7} exemplify this phenomenon, displaying a classical spin-liquid state, with fractionalized magnetic-monopole excitations. Recently, there has been great interest in closely related “quantum spin-ice” materials, following the realization that anisotropic exchange interactions could convert spin ice into a massively entangled, quantum spin liquid, where magnetic monopoles become the charges of an emergent quantum electrodynamics. Here we show that even the simplest model of a quantum spin ice, the XXZ model on the pyrochlore lattice, can realize a still-richer scenario. Using a combination of classical Monte Carlo simulation, semiclassical molecular-dynamics simulation, and analytic field theory, we explore the properties of this model for frustrated transverse exchange. We find not one, but three competing forms of spin liquid, as well as a phase with hidden, spin-nematic order. We explore the experimental signatures of each of these different states, making explicit predictions for inelastic neutron scattering. These results show an intriguing similarity to experiments on a range of pyrochlore oxides.

  10. Competing Spin Liquids and Hidden Spin-Nematic Order in Spin Ice with Frustrated Transverse Exchange

    Science.gov (United States)

    Taillefumier, Mathieu; Benton, Owen; Yan, Han; Jaubert, L. D. C.; Shannon, Nic

    2017-10-01

    Frustration in magnetic interactions can give rise to disordered ground states with subtle and beautiful properties. The spin ices Ho2 Ti2 O7 and Dy2 Ti2 O7 exemplify this phenomenon, displaying a classical spin-liquid state, with fractionalized magnetic-monopole excitations. Recently, there has been great interest in closely related "quantum spin-ice" materials, following the realization that anisotropic exchange interactions could convert spin ice into a massively entangled, quantum spin liquid, where magnetic monopoles become the charges of an emergent quantum electrodynamics. Here we show that even the simplest model of a quantum spin ice, the XXZ model on the pyrochlore lattice, can realize a still-richer scenario. Using a combination of classical Monte Carlo simulation, semiclassical molecular-dynamics simulation, and analytic field theory, we explore the properties of this model for frustrated transverse exchange. We find not one, but three competing forms of spin liquid, as well as a phase with hidden, spin-nematic order. We explore the experimental signatures of each of these different states, making explicit predictions for inelastic neutron scattering. These results show an intriguing similarity to experiments on a range of pyrochlore oxides.

  11. SpinS: Extending LTSmin with Promela through SpinJa

    NARCIS (Netherlands)

    van der Berg, Freark; van der Berg, Freark Iwert; Laarman, Alfons; Heljanko, K.; Knottenbelt, W.J.

    2012-01-01

    We show how PROMELA can be supported by the high-performance generic model checking tools of LTSMIN. The success of the SPIN model checker has made PROMELA an important modeling language. SPINJA was created as a Java implementation of SPIN, in an effort to make the model checker easily extendible

  12. The continuous spin limit of higher spin field equations

    Energy Technology Data Exchange (ETDEWEB)

    Bekaert, Xavier [Institut des Hautes Etudes Scientifiques, Le Bois-Marie, 35 route de Chartres, 91440 Bures-sur-Yvette (France); Mourad, Jihad [APC, Universite Paris VII, 2 place Jussieu, 75251 Paris Cedex 05 (France); LPT, Bat. 210, Universite Paris XI, 91405 Orsay Cedex (France)

    2006-01-15

    We show that the Wigner equations describing the continuous spin representations can be obtained as a limit of massive higher-spin field equations. The limit involves a suitable scaling of the wave function, the mass going to zero and the spin to infinity with their product being fixed. The result allows to transform the Wigner equations to a gauge invariant Fronsdal-like form. We also give the generalisation of the Wigner equations to higher dimensions with fields belonging to arbitrary representations of the massless little group.

  13. Separating inverse spin Hall voltage and spin rectification voltage by inverting spin injection direction

    International Nuclear Information System (INIS)

    Zhang, Wenxu; Peng, Bin; Han, Fangbin; Wang, Qiuru; Zhang, Wanli; Soh, Wee Tee; Ong, Chong Kim

    2016-01-01

    We develop a method for universally resolving the important issue of separating the inverse spin Hall effect (ISHE) from the spin rectification effect (SRE) signal. This method is based on the consideration that the two effects depend on the spin injection direction: The ISHE is an odd function of the spin injection direction while the SRE is independent on it. Thus, the inversion of the spin injection direction changes the ISHE voltage signal, while the SRE voltage remains. It applies generally to analyzing the different voltage contributions without fitting them to special line shapes. This fast and simple method can be used in a wide frequency range and has the flexibility of sample preparation.

  14. Spin Hall effect, Hall effect and spin precession in diffusive normal metals

    OpenAIRE

    Shchelushkin, R. V.; Brataas, Arne

    2005-01-01

    We study transport in normal metals in an external magnetic field. This system exhibits an interplay between a transverse spin imbalance (spin Hall effect) caused by the spin-orbit interaction, a Hall effect via the Lorentz force, and spin precession due to the Zeeman effect. Diffusion equations for spin and charge flow are derived. The spin and charge accumulations are computed numerically in experimentally relevant thin film geometries. The out-of-plane spin Hall potential is suppressed whe...

  15. Spin transport in epitaxial graphene

    Science.gov (United States)

    Tbd, -

    2014-03-01

    Spintronics is a paradigm focusing on spin as the information vector in fast and ultra-low-power non volatile devices such as the new STT-MRAM. Beyond its widely distributed application in data storage it aims at providing more complex architectures and a powerful beyond CMOS solution for information processing. The recent discovery of graphene has opened novel exciting opportunities in terms of functionalities and performances for spintronics devices. We will present experimental results allowing us to assess the potential of graphene for spintronics. We will show that unprecedented highly efficient spin information transport can occur in epitaxial graphene leading to large spin signals and macroscopic spin diffusion lengths (~ 100 microns), a key enabler for the advent of envisioned beyond-CMOS spin-based logic architectures. We will also show that how the device behavior is well explained within the framework of the Valet-Fert drift-diffusion equations. Furthermore, we will show that a thin graphene passivation layer can prevent the oxidation of a ferromagnet, enabling its use in novel humide/ambient low-cost processes for spintronics devices, while keeping its highly surface sensitive spin current polarizer/analyzer behavior and adding new enhanced spin filtering property. These different experiments unveil promising uses of graphene for spintronics.

  16. Spin Hall effect-driven spin torque in magnetic textures

    KAUST Repository

    Manchon, Aurelien

    2011-07-13

    Current-induced spin torque and magnetization dynamics in the presence of spin Hall effect in magnetic textures is studied theoretically. The local deviation of the charge current gives rise to a current-induced spin torque of the form (1 - ΒM) × [(u 0 + αH u 0 M) ∇] M, where u0 is the direction of the injected current, H is the Hall angle and is the non-adiabaticity parameter due to spin relaxation. Since αH and ×can have a comparable order of magnitude, we show that this torque can significantly modify the current-induced dynamics of both transverse and vortex walls. © 2011 American Institute of Physics.

  17. Spin and torsion in gravitation

    CERN Document Server

    De Sabbata, Venzo

    1994-01-01

    This book gives an exposition of both the old and new results of spin and torsion effects on gravitational interactions with implications for particle physics, cosmology etc. Physical aspects are stressed and measurable effects in relation to other areas of physics are discussed.Among the topics discussed are: alternative ways of unifying gravity with electroweak and strong interactions by an energy dependent spin torsion coupling constant; the idea that all interactions can be understood as originating from spin curvature coupling; the possibility of cosmological models with torsion providing

  18. Spinning fluids in general relativity

    Science.gov (United States)

    Ray, J. R.; Smalley, L. L.

    1982-01-01

    General relativity field equations are employed to examine a continuous medium with internal spin. A variational principle formerly applied in the special relativity case is extended to the general relativity case, using a tetrad to express the spin density and the four-velocity of the fluid. An energy-momentum tensor is subsequently defined for a spinning fluid. The equations of motion of the fluid are suggested to be useful in analytical studies of galaxies, for anisotropic Bianchi universes, and for turbulent eddies.

  19. Strategic Defense Initiative (SDI) System Architecture and Key Tradeoff Studies, Phase IIC, Congestion control Subsystem Software Algorithm; Appendix E

    National Research Council Canada - National Science Library

    Niznik, C

    1988-01-01

    The fundamental requirement that must be satisfied by the SDI BM/C2 Communication architecture is to provide a transport interface to each of the three principal SDI functions: Surveillance (sensor subsystems...

  20. Variability of energy input into selected subsystems of the human-glove-tool system: a theoretical study.

    Science.gov (United States)

    Hermann, Tomasz; Dobry, Marian Witalis

    2017-05-31

    This article presents an application of the energy method to assess the energy input introduced into two subsystems of the human-glove-tool system. To achieve this aim, a physical model of the system was developed. This consists of dynamic models of the human body and the glove described in Standard No. ISO 10068:2012, and a model of a hand-held power tool. The energy input introduced into the subsystems, i.e., the human body and the glove, was analysed in the domain of energy and involved calculating three component energy inputs of forces. The energy model was solved using numerical simulation implemented in the MATLAB/simulink environment. This procedure demonstrates that the vibration energy was distributed quite differently in the internal structure of the two subsystems. The results suggest that the operating frequency of the tool has a significant impact on the level of energy inputs transmitted into both subsystems.

  1. Spin-spin correlations in the tt'-Hubbard model

    International Nuclear Information System (INIS)

    Husslein, T.; Newns, D.M.; Mattutis, H.G.; Pattnaik, P.C.; Morgenstern, I.; Singer, J.M.; Fettes, W.; Baur, C.

    1994-01-01

    We present calculations of the tt'-Hubbard model using Quantum Monte Carlo techniques. The parameters are chosen so that the van Hove Singularity in the density of states and the Fermi level coincide. We study the behaviour of the system with increasing Hubbard interaction U. Special emphasis is on the spin-spin correlation (SSC). Unusual behaviour for large U is observed there and in the momentum distribution function (n(q)). (orig.)

  2. Spin tunneling and manipulation in nanostructures.

    Science.gov (United States)

    Sherman, E Ya; Ban, Yue; Gulyaev, L V; Khomitsky, D V

    2012-09-01

    The results for joint effects of tunneling and spin-orbit coupling on spin dynamics in nanostructures are presented for systems with discrete and continuous spectra. We demonstrate that tunneling plays the crucial role in the spin dynamics and the abilities of spin manipulation by external electric field. This result can be important for design of nanostructures-based spintronics devices.

  3. RESEARCH PLAN FOR SPIN PHYSICS AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    AIDALA, C.; BUNCE, G.; ET AL.

    2005-02-01

    In this report we present the research plan for the RHIC spin program. The report covers (1) the science of the RHIC spin program in a world-wide context; (2) the collider performance requirements for the RHIC spin program; (3) the detector upgrades required, including timelines; (4) time evolution of the spin program.

  4. Some recent developments in spin glasses

    Indian Academy of Sciences (India)

    I give some experimental and theoretical background to spin glasses, and then discuss the nature of the phase transition in spin glasses with vector spins. Results of Monte Carlo simulations of the Heisenberg spin glass model in three dimensions are presented. A finite-size scaling analysis of the correlation length of the ...

  5. Some recent developments in spin glasses

    Indian Academy of Sciences (India)

    Abstract. I give some experimental and theoretical background to spin glasses, and then discuss the nature of the phase transition in spin glasses with vector spins. Results of Monte Carlo simulations of the Heisenberg spin glass model in three dimensions are presented. A finite-size scaling analysis of the correlation length ...

  6. Phase space representations for spin23

    International Nuclear Information System (INIS)

    Polubarinov, I.V.

    1991-01-01

    General properties of spin matrices and density ones are considered for any spin s. For spin 2 3 phase space representations are constructed. Representations, similar to the Bell one, for the correlator of projections of two spins 2 3 in the singlet state are found. Quantum analogs of the Bell inequality are obtained. 14 refs

  7. SPIN SUSCEPTIBILITY IN HIGH - TC SUPERCONDUCTIVITY

    African Journals Online (AJOL)

    USER

    2012-07-05

    Jul 5, 2012 ... Anderson (KGA)rules(Suzuki,Suzuki,2009) will upturn the. Cu spins. It turns that this process introduces the now measurable spin fluctuations in the cuprates. The AFM sublattices contain two spin magnetic moments as we know and according to basic theory of magnetism, equal and opposite spin currents ...

  8. Semantic Registration and Discovery System of Subsystems and Services within an Interoperable Coordination Platform in Smart Cities

    Directory of Open Access Journals (Sweden)

    Gregorio Rubio

    2016-06-01

    Full Text Available Smart subsystems like traffic, Smart Homes, the Smart Grid, outdoor lighting, etc. are built in many urban areas, each with a set of services that are offered to citizens. These subsystems are managed by self-contained embedded systems. However, coordination and cooperation between them are scarce. An integration of these systems which truly represents a “system of systems” could introduce more benefits, such as allowing the development of new applications and collective optimization. The integration should allow maximum reusability of available services provided by entities (e.g., sensors or Wireless Sensor Networks. Thus, it is of major importance to facilitate the discovery and registration of available services and subsystems in an integrated way. Therefore, an ontology-based and automatic system for subsystem and service registration and discovery is presented. Using this proposed system, heterogeneous subsystems and services could be registered and discovered in a dynamic manner with additional semantic annotations. In this way, users are able to build customized applications across different subsystems by using available services. The proposed system has been fully implemented and a case study is presented to show the usefulness of the proposed method.

  9. Semantic Registration and Discovery System of Subsystems and Services within an Interoperable Coordination Platform in Smart Cities.

    Science.gov (United States)

    Rubio, Gregorio; Martínez, José Fernán; Gómez, David; Li, Xin

    2016-06-24

    Smart subsystems like traffic, Smart Homes, the Smart Grid, outdoor lighting, etc. are built in many urban areas, each with a set of services that are offered to citizens. These subsystems are managed by self-contained embedded systems. However, coordination and cooperation between them are scarce. An integration of these systems which truly represents a "system of systems" could introduce more benefits, such as allowing the development of new applications and collective optimization. The integration should allow maximum reusability of available services provided by entities (e.g., sensors or Wireless Sensor Networks). Thus, it is of major importance to facilitate the discovery and registration of available services and subsystems in an integrated way. Therefore, an ontology-based and automatic system for subsystem and service registration and discovery is presented. Using this proposed system, heterogeneous subsystems and services could be registered and discovered in a dynamic manner with additional semantic annotations. In this way, users are able to build customized applications across different subsystems by using available services. The proposed system has been fully implemented and a case study is presented to show the usefulness of the proposed method.

  10. An Integrated Approach to Explore the Relationship Among Economic, Construction Land Use, and Ecology Subsystems in Zhejiang Province, China

    Directory of Open Access Journals (Sweden)

    Chuyu Xia

    2016-05-01

    Full Text Available Zhejiang Province, China is experiencing rapid urbanization, facing the challenge of coupling socioeconomic development and ecological conservation. This paper establishes a comprehensive index system to assess coordinating development of economic, construction land use (CLU, and ecology subsystems. A Granger test and a coupling coordination model were applied to explore the causal relationship and the coordinated development state among the three subsystems from 2000 to 2012. The results showed that: (1 changes in the integrated value of the economic subsystem were the Granger cause of changes in the ecology and CLU subsystems, and the changes in the integrated values of ecology and CLU was each other’s Granger cause; (2 the coupling coordination relationship of the integrated value for economic–CLU–ecology was constrained by the relationship between the economic and the CLU subsystems from 2000 to 2004, and that between the ecology and the economic subsystems was the impediment of the sustainable development of economic–CLU–ecology from 2004 to 2012. This research helps to identify approach to sustainable development through analyzing synergistic effects, interdependencies, and trade-offs among the integrated economic–CLU–ecology values, and to make significant contribution to urban planning policies in rapid urbanization region.

  11. Magnetoelectric control of spin currents

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, J. E.; Vargas, J. M.; Avilés-Félix, L.; Butera, A. [Centro Atómico Bariloche, Instituto de Nanociencia y Nanotecnología (CNEA) and Conicet, 8400 Bariloche, Río Negro (Argentina)

    2016-06-13

    The ability to control the spin current injection has been explored on a hybrid magnetoelectric system consisting of a (011)-cut ferroelectric lead magnesium niobate-lead titanate (PMNT) single crystal, a ferromagnetic FePt alloy, and a metallic Pt. With this PMNT/FePt/Pt structure we have been able to control the magnetic field position or the microwave excitation frequency at which the spin pumping phenomenon between FePt and Pt occurs. We demonstrate that the magnetoelectric heterostructure operating in the L-T (longitudinal magnetized-transverse polarized) mode couples the PMNT crystal to the magnetostrictive FePt/Pt bilayer, displaying a strong magnetoelectric coefficient of ∼140 Oe cm kV{sup −1}. Our results show that this mechanism can be effectively exploited as a tunable spin current intensity emitter and open the possibility to create an oscillating or a bistable switch to effectively manipulate spin currents.

  12. Magnetoelectric control of spin currents

    International Nuclear Information System (INIS)

    Gómez, J. E.; Vargas, J. M.; Avilés-Félix, L.; Butera, A.

    2016-01-01

    The ability to control the spin current injection has been explored on a hybrid magnetoelectric system consisting of a (011)-cut ferroelectric lead magnesium niobate-lead titanate (PMNT) single crystal, a ferromagnetic FePt alloy, and a metallic Pt. With this PMNT/FePt/Pt structure we have been able to control the magnetic field position or the microwave excitation frequency at which the spin pumping phenomenon between FePt and Pt occurs. We demonstrate that the magnetoelectric heterostructure operating in the L-T (longitudinal magnetized-transverse polarized) mode couples the PMNT crystal to the magnetostrictive FePt/Pt bilayer, displaying a strong magnetoelectric coefficient of ∼140 Oe cm kV −1 . Our results show that this mechanism can be effectively exploited as a tunable spin current intensity emitter and open the possibility to create an oscillating or a bistable switch to effectively manipulate spin currents.

  13. Spin Structure Analyses of Antiferromagnets

    International Nuclear Information System (INIS)

    Chung, Jae Ho; Song, Young Sang; Lee, Hak Bong

    2010-05-01

    We have synthesized series of powder sample of incommensurate antiferromagnetic multiferroics, (Mn, Co)WO 4 and Al doped Ba 0.5 Sr 1.5 Zn 2 Fe 12 O 22 , incommensurate antiferromagnetic multiferroics. Their spin structure was studied by using the HRPD. In addition, we have synthesized series of crystalline samples of incommensurate multiferroics, (Mn, Co)WO 4 and olivines. Their spin structure was investigated using neutron diffraction under high magnetic field. As a result, we were able to draw the phase diagram of (Mn, Co)WO 4 as a function of composition and temperature. We learned the how the spin structure changes with increased ionic substitution. Finally we have drawn the phase diagram of the multicritical olivine Mn2SiS4/Mn2GeS4 as a function of filed and temperature through the spin structure studies

  14. spinning self-dual particles

    International Nuclear Information System (INIS)

    Gamboa, J.; Rivelles, V.O.

    1989-01-01

    Self-dual particles in two-dimensions are presented. They were obtained from chiral boson particle by square root technique. The propagator of spinning self-dual particle is calculated using the BFV formalism. (M.C.K.)

  15. Spin and charge transport in the presence of spin-orbit interaction

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 58; Issue 2. Spin and ... We present the study of spin and charge transport in nanostructures in the presence of spin-orbit (SO) interaction. ... Using these tight binding Hamiltonians and spin resolved Landauer–Büttiker formula, spin and charge transport is studied.

  16. Spin Hall effect by surface roughness

    KAUST Repository

    Zhou, Lingjun

    2015-01-08

    The spin Hall and its inverse effects, driven by the spin orbit interaction, provide an interconversion mechanism between spin and charge currents. Since the spin Hall effect generates and manipulates spin current electrically, to achieve a large effect is becoming an important topic in both academia and industries. So far, materials with heavy elements carrying a strong spin orbit interaction, provide the only option. We propose here a new mechanism, using the surface roughness in ultrathin films, to enhance the spin Hall effect without heavy elements. Our analysis based on Cu and Al thin films suggests that surface roughness is capable of driving a spin Hall angle that is comparable to that in bulk Au. We also demonstrate that the spin Hall effect induced by surface roughness subscribes only to the side-jump contribution but not the skew scattering. The paradigm proposed in this paper provides the second, not if only, alternative to generate a sizable spin Hall effect.

  17. Spin-controlled atom-ion chemistry.

    Science.gov (United States)

    Sikorsky, Tomas; Meir, Ziv; Ben-Shlomi, Ruti; Akerman, Nitzan; Ozeri, Roee

    2018-03-02

    Quantum control of chemical reactions is an important goal in chemistry and physics. Ultracold chemical reactions are often controlled by preparing the reactants in specific quantum states. Here we demonstrate spin-controlled atom-ion inelastic (spin-exchange) processes and chemical (charge-exchange) reactions in an ultracold Rb-Sr + mixture. The ion's spin state is controlled by the atomic hyperfine spin state via spin-exchange collisions, which polarize the ion's spin parallel to the atomic spin. We achieve ~ 90% spin polarization due to the absence of strong spin-relaxation channel. Charge-exchange collisions involving electron transfer are only allowed for (RbSr) + colliding in the singlet manifold. Initializing the atoms in various spin states affects the overlap of the collision wave function with the singlet molecular manifold and therefore also the reaction rate. Our observations agree with theoretical predictions.

  18. Muon spin rotation in solids

    Science.gov (United States)

    Stronach, C. E.

    1983-01-01

    The muon spin rotation (MuSR) technique is used to probe the microscopic electron density in materials. High temperature MuSR and magnetization measurements in nickel are in progress to allow an unambiguous determination of the muon impurity interaction and the impurity induced change in local spin density. The first results on uniaxial stress induced frequency shifts in an Fe single crystal are also reported.

  19. Excitations and spin waves

    International Nuclear Information System (INIS)

    Lindgaard, P.-A.

    1978-01-01

    When neutron scattering data became available for the light rare earths (REs) and the RE compounds, a need was felt for a systematic theory for excitations in crystal-field dominated systems. The crystal field mixes the wavefunctions and provides a coupling between the ground state and the excited states for many operators, whereas for the Heisenberg system only J - has a nonzero matrix element to the first excited state. A review is given of successful applications of the theory in the interpretation of several experiments. The excitation spectrum for neutron scattering is simply given by the poles of the imaginary part of the enhanced wave-vector-dependent susceptibility tensor calculated in the random-phase approximation. A discussion of the effect of two-ion anisotropy is given. The formalism reduces to the conventional spin wave theory for the Heisenberg system when the crystal field is negligible compared to the exchange interaction. However, this theory has the drawback that it is necessary to know the crystal field in advance and each value of J must then be treated separately. A review of the results in the RE Laves-phase compounds and in the heavy rare earths is given, and the status of the current understanding of the interactions is rare earths and their compounds is discussed. (author)

  20. Spin physics at RHIC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1996-01-01

    Operation of RHIC with two beams of highly polarized protons (70%, either longitudinal or transverse) at high luminosity L = 2 x 10 32 cm -2 sec -1 for two months/year will allow the STAR and PHENIX detectors to perform high statististics studies of polarization phenomena in the perturbative region of hard scattering where both QCD and ElectroWeak theory make detailed predictions for polarization effects. The collision c.m. energy, √s = 200 - 500 GeV, represents a new domain for the study of spin. Direct photon production will be used to measure the gluon polarization in the polarized proton. A new twist comes from W-boson production which is expected to be 100% parity violating and will thus allow measurements of flavor separated Quark and antiquark (u, bar u, d, bar d) polarization distributions. Searches for parity violation in strong interaction processes such as jet and leading particle production will be a sensitive way to look for new physics beyond the standard model, one possibility being quark substructure

  1. Integrated graphical user interface for the back-end software sub-system

    International Nuclear Information System (INIS)

    Badescu, E.; Caprini, M.

    2001-01-01

    The ATLAS data acquisition and Event Filter prototype '-1' project was intended to produce a prototype system for evaluating candidate technologies and architectures for the final ATLAS DAQ system on the LHC accelerator at CERN. Within the prototype project, the back-end sub-system encompasses the software for configuring, controlling and monitoring the data acquisition (DAQ). The back-end sub-system includes core components and detector integration components. One of the detector integration components is the Integrated Graphical User Interface (IGUI), which is intended to give a view of the status of the DAQ system and its sub-systems (Dataflow, Event Filter and Back-end) and to allow the user (general users, such as a shift operator at a test beam or experts, in order to control and debug the DAQ system) to control its operation. The IGUI is intended to be a Status Display and a Control Interface too, so there are three groups of functional requirements: display requirements (the information to be displayed); control requirements (the actions the IGUI shall perform on the DAQ components); general requirements, applying to the general functionality of the IGUI. The constraint requirements include requirements related to the access control (shift operator or expert user). The quality requirements are related to the portability on different platforms. The IGUI has to interact with many components in a distributed environment. The following design guidelines have been considered in order to fulfil the requirements: use a modular design with easy possibility to integrate different sub-systems; use Java language for portability and powerful graphical features; use CORBA interfaces for communication with other components. The actual implementation of Back-end software components use Inter-Language Unification (ILU) for inter-process communication. Different methods of access of Java applications to ILU C++ servers have been evaluated (native methods, ILU Java support

  2. Two Wien Filter Spin Flipper

    Energy Technology Data Exchange (ETDEWEB)

    Grames, J M; Benesch, J F; Clark, J; Hansknecht, J; Kazimi, R; Machie, D; Poelker, M; Stutzman, M L; Suleiman, R

    2011-03-01

    A new 4pi spin manipulator composed of two Wien filters oriented orthogonally and separated by two solenoids has been installed at the CEBAF/Jefferson Lab photoinjector. The new spin manipulator is used to precisely set the electron spin direction at an experiment in any direction (in or out of plane of the accelerator) and provides the means to reverse, or flip, the helicity of the electron beam on a daily basis. This reversal is being employed to suppress systematic false asymmetries that can jeopardize challenging parity violation experiments that strive to measure increasingly small physics asymmetries [*,**,***]. The spin manipulator is part of the ultra-high vacuum polarized electron source beam line and has been successfully operated with 100keV and 130keV electron beam at high current (>100 microAmps). A unique feature of the device is that spin-flipping requires only the polarity of one solenoid magnet be changed. Performance characteristics of the Two Wien Filter Spin Flipper will be summarized.

  3. Positivity of spin foam amplitudes

    International Nuclear Information System (INIS)

    Baez, John C; Christensen, J Daniel

    2002-01-01

    The amplitude for a spin foam in the Barrett-Crane model of Riemannian quantum gravity is given as a product over its vertices, edges and faces, with one factor of the Riemannian 10j symbols appearing for each vertex, and simpler factors for the edges and faces. We prove that these amplitudes are always nonnegative for closed spin foams. As a corollary, all open spin foams going between a fixed pair of spin networks have real amplitudes of the same sign. This means one can use the Metropolis algorithm to compute expectation values of observables in the Riemannian Barrett-Crane model, as in statistical mechanics, even though this theory is based on a real-time (e iS ) rather than imaginary-time e -S path integral. Our proof uses the fact that when the Riemannian 10j symbols are nonzero, their sign is positive or negative depending on whether the sum of the ten spins is an integer or half-integer. For the product of 10j symbols appearing in the amplitude for a closed spin foam, these signs cancel. We conclude with some numerical evidence suggesting that the Lorentzian 10j symbols are always nonnegative, which would imply similar results for the Lorentzian Barrett-Crane model

  4. ISS Double-Gimbaled CMG Subsystem Simulation Using the Agile Development Method

    Science.gov (United States)

    Inampudi, Ravi

    2016-01-01

    This paper presents an evolutionary approach in simulating a cluster of 4 Control Moment Gyros (CMG) on the International Space Station (ISS) using a common sense approach (the agile development method) for concurrent mathematical modeling and simulation of the CMG subsystem. This simulation is part of Training systems for the 21st Century simulator which will provide training for crew members, instructors, and flight controllers. The basic idea of how the CMGs on the space station are used for its non-propulsive attitude control is briefly explained to set up the context for simulating a CMG subsystem. Next different reference frames and the detailed equations of motion (EOM) for multiple double-gimbal variable-speed control moment gyroscopes (DGVs) are presented. Fixing some of the terms in the EOM becomes the special case EOM for ISS's double-gimbaled fixed speed CMGs. CMG simulation development using the agile development method is presented in which customer's requirements and solutions evolve through iterative analysis, design, coding, unit testing and acceptance testing. At the end of the iteration a set of features implemented in that iteration are demonstrated to the flight controllers thus creating a short feedback loop and helping in creating adaptive development cycles. The unified modeling language (UML) tool is used in illustrating the user stories, class designs and sequence diagrams. This incremental development approach of mathematical modeling and simulating the CMG subsystem involved the development team and the customer early on, thus improving the quality of the working CMG system in each iteration and helping the team to accurately predict the cost, schedule and delivery of the software.

  5. National Ignition Facility subsystem design requirements optics assembly building (OAB) SSDR 1.2.2.3

    International Nuclear Information System (INIS)

    Kempel, P.; Hands, J.

    1996-01-01

    This Subsystem Design Requirement (SSDR) document establishes the performance, design, and verification requirements 'for the conventional building systems and subsystems of the Optics Assembly Building (OAB). These building system requirements are associated with housing and supporting the operational flow of personnel and materials throughout the OAB for preparing and repairing optical and mechanical components used in the National Ignition Facility (NIF) Laser and Target Building (LTAB). This SSDR addresses the following subsystems associated with the OAB: * Structural systems for the building spaces and operational-support equipment and building- support equipment. * Architectural building features associated with housing the space, operational cleanliness, and functional operation of the facility. * Heating, Ventilating, and Air Conditioning (HVAC) systems for maintaining a clean and thermally stable ambient environment within the facility. * Plumbing systems that provide potable water and sanitary facilities for the occupants and stormwater drainage for transporting rainwater. * Fire Protection systems that guard against fire damage to the facility and its contents. * Material handling equipment for transferring optical assemblies and other materials within building areas and to the LTAB. * Mechanical process piping systems for liquids and gases that provide cooling, cleaning, and other service to optical and mechanical components. * Electrical power and grounding systems that provide service to the building and equipment, including lighting distribution and communications systems for the facilities. * Instrumentation and control systems that ensure the safe operation of conventional facilities systems, such as those listed above. Generic design criteria, such as siting data, seismic requirements, utility availability, and other information that contributes to the OAB design, are not addressed in this document

  6. Low-cost medical image storage and manipulation using optical disk subsystems

    Science.gov (United States)

    Glenn, William V., Jr.; Marx, Peter S.

    1990-08-01

    Traditionally, medical imaging has required large capital investments into workstations and storage subsystems. Many vendors have chosen to offer proprietary systems which are expensive to develop and costly to the institutions which purchase them. Our experience has been that this is unnecessary; most traditional imaging functions in the digital modalities of computed tomography (CT) and magnetic resonance imaging (MM) can be performed using off-the-shelf hardware with relatisely inexpensive software. In order to reduce the cost of medical imaging, our approach has been to choose computers and storage subsystems that are efficient, inexpensive, and easy-to-use (after all, the users are interested in practicing medicine, not computer science.) With these goals in mind, we chose to use a general purpose computer (the Apple Macintosh Ilci) with two types of high-capacity optical storage devices (both magneto-optical and write once, read multiple (WORM) disc subsystems.) We have developed a powerful, yet user-friendly medical imaging workstation oriented towards radiologists, orthopadic surgeons, neurosurgeons, and other users of medical images. In addition to providing inexpensive storage, the workstation is capable of multiplanar reformatting (MPR), 3D MM angiography, and other image processing functions. The resulting images may be annotated, windowed, and filmed on to 14x17" radiology film for presentation to the referring physicians and their patients. This system can be considered to be a picture archiving and communication system (PACS) for private physicians and small clinics; further, it is small enough for desktop environments and inexpensive enough for clinicians to purchase.

  7. Experimental Realization of a Quantum Spin Pump

    DEFF Research Database (Denmark)

    Watson, Susan; Potok, R.; M. Marcus, C.

    2003-01-01

    We demonstrate the operation of a quantum spin pump based on cyclic radio-frequency excitation of a GaAs quantum dot, including the ability to pump pure spin without pumping charge. The device takes advantage of bidirectional mesoscopic fluctuations of pumped current, made spin......-dependent by the application of an in-plane Zeeman field. Spin currents are measured by placing the pump in a focusing geometry with a spin-selective collector....

  8. Spin stabilized magnetic levitation of horizontal rotors.

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Louis Anthony

    2004-10-01

    In this paper we present an analysis of a new configuration for achieving spin stabilized magnetic levitation. In the classical configuration, the rotor spins about a vertical axis; and the spin stabilizes the lateral instability of the top in the magnetic field. In this new configuration the rotor spins about a horizontal axis; and the spin stabilizes the axial instability of the top in the magnetic field.

  9. Thermal entanglement properties of small spin clusters

    OpenAIRE

    Bose, Indrani; Tribedi, Amit

    2005-01-01

    Exchange interactions in spin systems can give rise to quantum entanglement in the ground and thermal states of the systems. In this paper, we consider a spin tetramer, with spins of magnitude 1/2, in which the spins interact via nearest-neighbour, diagonal and four-spin interactions of strength J1, J2 and K respectively. The ground and thermal state entanglement properties of the tetramer are calculated analytically in the various limiting cases. Signatures of quantum phase transition (QPT) ...

  10. Quantum spin transport in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Christoph

    2012-05-15

    In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.

  11. Amplification of spin-current polarization

    Science.gov (United States)

    Saha, D.; Holub, M.; Bhattacharya, P.

    2007-08-01

    A ferromagnet/semiconductor based electrically controlled spin-current amplifier using a dual-drain nonlocal lateral spin valve is demonstrated. The spin polarization injected by the source into the channel is amplified at the second drain contact. An amplified current spin polarization of 100% is measured. The controlled variation of amplifier gain with bias is also demonstrated. The observations are explained in the framework of the spin drift-diffusion model.

  12. Quantum spin transport in semiconductor nanostructures

    International Nuclear Information System (INIS)

    Schindler, Christoph

    2012-01-01

    In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.

  13. A linear chained approach for service invocation in IP multimedia subsystem.

    OpenAIRE

    Li, Tonghong; Liao, Jianxin; Qi, Qi; Xun, Zhaoyong; Cao, Yufei; Wang, Jingyu

    2012-01-01

    IP Multimedia Subsystem (IMS) is considered to provide multimedia services to users through an IP-based control plane. The current IMS service invocation mechanism, however, requires the Serving-Call Session Control Function (S-CSCF) invokes each Application Server (AS) sequentially to perform service subscription pro?le, which results in the heavy load of the S-CSCF and the long session set-up delay. To solve this issue, this paper proposes a linear chained service invocation mechanism to in...

  14. Thermal Infrared Sensor (TIRS) Instrument Thermal Subsystem Design and Lessons Learned

    Science.gov (United States)

    Otero, Veronica; Mosier, Carol; Neuberger, David

    2013-01-01

    The Thermal Infrared Sensor (TIRS) is one of two instruments on the Landsat Data Continuity Mission (LDCM), which is scheduled to launch in February of 2013. The TIRS instrument was officially added to the mission later in the flow, which led to a highly aggressive schedule that became one of the main drivers during instrument development. The thermal subsystem design of the TIRS Sensor Unit is comprised of five thermal zones which range in temperature from less than 43 Kelvin to 330 Kelvin. Most zones are proportional heater controlled, and all are within a volume of 35 cu.ft. A two-stage cryocooler is used to cool the "cold stage" including three QWIP detectors to less than 43 Kelvin, and cool the "warm stage" to 105 Kelvin. The excess power dissipation from the cryocooler is rejected via ammonia transport heat pipes to a dedicated Cryocooler Radiator with embedded ammonia heat pipes. The cryogenic subsystem includes a series of shells used to radiatively and conductively isolate the cold stage from the warmer surroundings. The Optical System (telescope) is passively cooled to 180-190 Kelvin using a "thermal link" (comprised of a Flexible Conductive Thermal Strap and an APG Bar) which couples the telescope stage to a dedicated radiator with embedded ethane heat pipes. The Scene Select Mechanism, which is responsible for moving the Scene Select Mirror to three distinct positions (including Nadir, Space, and On-board Black Body Calibrator pointing), runs nominally at 278 Kelvin and is thermally isolated from the cryogenic thermal zones. The On-board Black Body Calibrator requires a dedicated radiator which allows for a temperature range of 260-330 Kelvin at the Source. The detectors are powered by the FPE Box, which is mounted to the nadir external surface of the composite honeycomb structure. There are two additional electronics boxes which are wet-mounted directly to the spacecraft shear panel, the Main Electronics Box and Cryocooler Electronics Box; thermal

  15. Measurement of the Operating Parameters and Numerical Analysis of the Mechanical Subsystem

    Directory of Open Access Journals (Sweden)

    Božek Pavol

    2014-08-01

    Full Text Available Submission is focused on completing the information system about quality, operation, automatic testing and new evaluating method of vehicle subsystem. Numeric analysis is carried out on the base of automatic collection and systematic recording of commercial car operation. Proposed new information system about operation and trial process allows verification according to the proposed method. Critical components verified in laboratory conditions are detected by numeric analysis of reliability. Quality level increasing not only for final product, but also related automatic test laboratory for cars is the result of respecting these principles.

  16. Measurement of the Operating Parameters and Numerical Analysis of the Mechanical Subsystem

    Science.gov (United States)

    Božek, Pavol; Turygin, Yuri

    2014-08-01

    Submission is focused on completing the information system about quality, operation, automatic testing and new evaluating method of vehicle subsystem. Numeric analysis is carried out on the base of automatic collection and systematic recording of commercial car operation. Proposed new information system about operation and trial process allows verification according to the proposed method. Critical components verified in laboratory conditions are detected by numeric analysis of reliability. Quality level increasing not only for final product, but also related automatic test laboratory for cars is the result of respecting these principles.

  17. SIM PlanetQuest: Mili-Kelvin Analysis of the Collector Sub-system Thermal Model

    Science.gov (United States)

    Kelly, Frank

    2006-01-01

    Space Interferometry Mission (SIM) PlanetQuest is part of the NASA Astronomical Search for Origins (ASO) program. It will use a Michelson Interferometer to locate extrasolar planets, among other objectives. The spacecraft's subsystems, temperature requirements, and thermal control approach are discussed. The current SIM thermal design is analyzed using a Milli-Kelvin approach and appears to meet temperature stability requirements on the OOPCC optic. SIM absolute temperature requirements are met through the robustness of the thermal design (i.e., PIC control).

  18. Assessment of importance for protection subsystems at analysis of reliability and safety

    International Nuclear Information System (INIS)

    Pereguda, A.I.; Povyakalo, A.A.

    1995-01-01

    Importance of the element estimation in the system, including protection and safety subsystems, by individual variation of the system failure probability relative to the element failure in the case, when the variation constitutes the single step-like function, is considered. The importance of elements by such an approach is the function of time. It is shown that introduction of the safety system not only diminishes the accident probability but essentially decreases the importance of danger source for the object under protection. 6 refs

  19. Photovoltaic power conditioning subsystem: state of the art and development opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Krauthamer, S.; Bahrami, K.; Das, R.; Macie, T.; Rippel, W.

    1984-01-15

    Photovoltaic sytems, the state of the art of power conditioning subsystem components, and the design and operational interaction between photovoltaic systems and hot utilities are detailed in this document. Major technical issues relating to the design and development of power conditioning systems for photovoltaic application are also considered, including: (1) standards, guidelines, and specifications; (2) cost-effective hardware design; (3) impact of advanced components on power conditioning development; (4) protection and safety; (5) quality of power; (6) system efficiency; and (7) system integration with the host utility. In addition, theories of harmonic distortion and reactive power flow are discussed, and information about power conditioner hardware and manufacturers is provided.

  20. The Fiber Optic Subsystem Components on Express Logistics Carrier for International Space Station

    Science.gov (United States)

    Ott, Melanie N.; Switzer, Robert; Thomes, William Joe; Chuska, Richard; LaRocca, Frank; Day, Lance

    2009-01-01

    ISS SSP 50184 HRDL optical fiber communication subsystem, has system level requirements that were changed to accommodate large loss optical fiber links previously installed. SSQ22680 design is difficult to implement, no metal shell over socket/pin combination to protect the weak part of the pin. Additions to ISS are planned for the future. AVIM still used for interconnection in space flight applications without incident. Thermal cycling resulted in less than 0.25 dB max change in Insertion Loss for all types during cycling, nominal as compared to the AVIM. Vibration testing results conclusion; no significant changes, nominal as compared to AVIM.

  1. APPLICATION OF OLAP SYSTEM IN INFORMATION SUB-SYSTEM OF QMS INCOSISTENCY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Alempije Veljovic

    2008-03-01

    Full Text Available Records of inconsistencies arise as a result of incompliance of certain requirements during the execution of the process for the quality management system (QMS functioning. In this study, the established connection between QMS and projected information sub-system for inconsistencies management is presented. The information model of inconsistencies management provides a possibility to analyse inconsistencies from the aspect of interactive analytical data processing (OLAPsystems on the basis of multi-dimensional tables (OLAPcubes created in MSSQL Server-Analysis Services programme.

  2. The kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal plants

    Science.gov (United States)

    Bowyer, J. M.

    1984-01-01

    The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module was estimated. Results obtained by elementary cycle analyses were shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration was given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs were not considered here.

  3. Dataset of anomalies and malicious acts in a cyber-physical subsystem.

    Science.gov (United States)

    Laso, Pedro Merino; Brosset, David; Puentes, John

    2017-10-01

    This article presents a dataset produced to investigate how data and information quality estimations enable to detect aNomalies and malicious acts in cyber-physical systems. Data were acquired making use of a cyber-physical subsystem consisting of liquid containers for fuel or water, along with its automated control and data acquisition infrastructure. Described data consist of temporal series representing five operational scenarios - Normal, aNomalies, breakdown, sabotages, and cyber-attacks - corresponding to 15 different real situations. The dataset is publicly available in the .zip file published with the article, to investigate and compare faulty operation detection and characterization methods for cyber-physical systems.

  4. Spin-inversion in nanoscale graphene sheets with a Rashba spin-orbit barrier

    Directory of Open Access Journals (Sweden)

    Somaieh Ahmadi

    2012-03-01

    Full Text Available Spin-inversion properties of an electron in nanoscale graphene sheets with a Rashba spin-orbit barrier is studied using transfer matrix method. It is found that for proper values of Rashba spin-orbit strength, perfect spin-inversion can occur in a wide range of electron incident angle near the normal incident. In this case, the graphene sheet with Rashba spin-orbit barrier can be considered as an electron spin-inverter. The efficiency of spin-inverter can increase up to a very high value by increasing the length of Rashba spin-orbit barrier. The effect of intrinsic spin-orbit interaction on electron spin inversion is then studied. It is shown that the efficiency of spin-inverter decreases slightly in the presence of intrinsic spin-orbit interaction. The present study can be used to design graphene-based spintronic devices.

  5. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian

    2014-12-08

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green\\'s function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  6. Spin relaxation in quantum dots: Role of the phonon modulated spin-orbit interaction

    Science.gov (United States)

    Alcalde, A. M.; Romano, C. L.; Sanz, L.; Marques, G. E.

    2010-01-01

    We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. We analyze the behavior of the spin relaxation rates as a function of an external magnetic field and mean quantum dot radius. Effects of the spin admixture due to Dresselhaus contribution to spin-orbit interaction are also discussed.

  7. Exact valence bond entanglement entropy and probability distribution in the XXX spin chain and the potts model.

    Science.gov (United States)

    Jacobsen, J L; Saleur, H

    2008-02-29

    We determine exactly the probability distribution of the number N_(c) of valence bonds connecting a subsystem of length L>1 to the rest of the system in the ground state of the XXX antiferromagnetic spin chain. This provides, in particular, the asymptotic behavior of the valence-bond entanglement entropy S_(VB)=N_(c)ln2=4ln2/pi(2)lnL disproving a recent conjecture that this should be related with the von Neumann entropy, and thus equal to 1/3lnL. Our results generalize to the Q-state Potts model.

  8. Mars Science Laboratory Sample Acquisition, Sample Processing and Handling: Subsystem Design and Test Challenges

    Science.gov (United States)

    Jandura, Louise

    2010-01-01

    The Sample Acquisition/Sample Processing and Handling subsystem for the Mars Science Laboratory is a highly-mechanized, Rover-based sampling system that acquires powdered rock and regolith samples from the Martian surface, sorts the samples into fine particles through sieving, and delivers small portions of the powder into two science instruments inside the Rover. SA/SPaH utilizes 17 actuated degrees-of-freedom to perform the functions needed to produce 5 sample pathways in support of the scientific investigation on Mars. Both hardware redundancy and functional redundancy are employed in configuring this sampling system so some functionality is retained even with the loss of a degree-of-freedom. Intentional dynamic environments are created to move sample while vibration isolators attenuate this environment at the sensitive instruments located near the dynamic sources. In addition to the typical flight hardware qualification test program, two additional types of testing are essential for this kind of sampling system: characterization of the intentionally-created dynamic environment and testing of the sample acquisition and processing hardware functions using Mars analog materials in a low pressure environment. The overall subsystem design and configuration are discussed along with some of the challenges, tradeoffs, and lessons learned in the areas of fault tolerance, intentional dynamic environments, and special testing

  9. Survey of solar thermal energy storage subsystems for thermal/electric applications

    Energy Technology Data Exchange (ETDEWEB)

    Segaser, C. L.

    1978-08-01

    A survey of the current technology and estimated costs of subsystems for storing the thermal energy produced by solar collectors is presented. The systems considered were capable of producing both electricity and space conditioning for three types of loads: a single-family detached residence, an apartment complex of 100 units, and a city of 30,000 residents, containing both single-family residences and apartments. Collector temperatures will be in four ranges: (1) 100 to 250/sup 0/F (used for space heating and single-cycle air conditioners and organic Rankine low-temperature turbines); (2) 300 to 400/sup 0/F (used for dual-cycle air conditioners and low-temperature turbines); (3) 400 to 600/sup 0/F (using fluids from parabolic trough collectors to run Rankine turbines); (4) 800 to 1000/sup 0/F (using fluids from heliostats to run closed-cycle gas turbines and steam Rankine turbines). The solar thermal energy subsystems will require from 60 to 36 x 10/sup 5/ kWhr (2.05 x 10/sup 5/ to 1.23 x 10/sup 10/ Btu) of thermal storage capacity. In addition to sensible heat and latent heat storage materials, several other media were investigated as potential thermal energy storage materials, including the clathrate and semiclathrate hydrates, various metal hydrides, and heat storage based on inorganic chemical reactions.

  10. Galileo IOV Electrical Power Subsystem Relies On Li-Ion Batter Charge Management Controlled By Hardware

    Science.gov (United States)

    Douay, N.

    2011-10-01

    In the frame of GALILEO In-Orbit Validation program which is composed of 4 satellites, Thales Alenia Space France has designed, developed and tested the Electrical Power Subsystem. Besides some classical design choices like: -50V regulated main power bus provided by the PCDU manufactured by Terma (DK), -Solar array, manufactured by Dutch-Space (NL), using Ga-As triple junction technology from Azur Space Power Solar GmbH, -SAFT (FR) Lithium-ion Battery for which cell package balancing function is required, -Solar Array Drive Mechanism, provided by RUAG Space Switzerland, to transfer the power. This subsystem features a fully autonomous, failure tolerant, battery charge management able to operate even after a complete unavailability of the on-board software. The battery charge management is implemented such that priority is always given to satisfy the satellite main bus needs in order to maintain the main bus regulation under MEA control. This battery charge management principle provides very high reliability and operational robustness. So, the paper describes : -the battery charge management concept using a combination of PCDU hardware and relevant battery lines monitoring, -the functional aspect of the single point failure free S4R (Sequential Switching Shunt Switch Regulator) and associated performances, -the failure modes isolated and passivated by this architecture. The paper will address as well the autonomous balancing function characteristics and performances.

  11. Lumen degradation analysis of LED lamps based on the subsystem isolation method.

    Science.gov (United States)

    Ke, Hong-Liang; Hao, Jian; Tu, Jian-Hui; Miao, Pei-Xian; Wang, Chao-Quan; Cui, Jing-Zhong; Sun, Qiang; Sun, Ren-Tao

    2018-02-01

    The lumen degradation of LED lamps undergoing an accelerated aging test is investigated. The entire LED lamp is divided into three subsystems, namely, driver, lampshade, and LED light source. The parameters of output power [Watts (W)], transmittance (%), and lumen flux (lm) are adopted in the analysis of the degradation of the driver, lampshade, and LED light source, respectively. Two groups of LED lamps are aged under the ambient temperatures of 25°C and 85°C, respectively, with the aging time of 2000 h. The lumen degradation of the lamps is from 3.8% to 4.9% for the group under a temperature of 25°C and from 10.6% to 12.7% for the group under a temperature of 85°C. The LED light source is the most aggressive part of the three subsystems, which accounts for 70.5% of the lumen degradation of the LED lamp on average. The lampshade is the second degradation source, which causes 21.5% of the total amount on average. The driver is the third degradation source, which causes 6.5% under 25°C and 2.8% under 85°C of the total amount on average.

  12. Voltage Analysis Improvement of 150 kV Transmission Subsystem Using Static Synchronous Compensator (STATCOM)

    Science.gov (United States)

    Akbar, P. A.; Hakim, D. L.; Sucita, T.

    2018-02-01

    In this research, testing improvements to the distribution voltage electricity at 150 kV transmission subsystem Bandung Selatan and New Ujungberung using Flexible AC Transmission System (FACTS) technology. One of them is by doing the control of active and reactive power through the power electronics equipment Static Synchronous Compensator (STATCOM). The subsystem is tested because it has a voltage profile are relatively less well when based on the IEEE / ANSI C.84.1 (142.5 - 157.5 kV). This study was conducted by analyzing the Newton-Raphson power flow on the simulator DigSilent Power Factory 15 to determine the profile of the voltage (V) on the system. Bus which has the lowest voltage to be a reference in the installation of STATCOM. From this research is known that the voltage on the conditions of the existing bus 28, as many as 21-23 still below standard buses (142.5 kV), after the installation is done using STATCOM, voltage on the buses improved by increasing the number of tracks that follow the standard / is in the range 142.5 kV -157.5 kV as many as 23-27 buses or 78.6% - 96%, with the optimum mounting on a bus Rancaekek STATCOM II with a capacity of 300 MVA.

  13. Scientific Use of the Sampler, Drill and Distribution Subsystem (SD2)

    Science.gov (United States)

    Armellin, R.; Di Lizia, P.; Crepaldi, M.; Bernelli-Zazzera, F.; Ercoli Finzi, A.

    Rosetta is the third cornerstone mission of the European Space Agency scientific program "Horizon 2000". Rosetta will be the first spacecraft to orbit around a comet nucleus. It was launched in March 2004 and will reach the comet 67P/ChurymovGerasimenko in 2014. A lander (Philae) will be released and land on the comet surface for in-situ investigation. One of the key subsystems of the lander Philae is the Sampler, Drill and Distribution (SD2) subsystem. SD2 provides in-situ operations devoted to soil drilling, samples collection, and their distribution to two evolved gas analyzers (COSAC and PTOLEMY) and one imaging instrument (ÇIVA). Recent studies have proven the existence of a correlation between the drill behavior during perforation and the mechanical characteristics of the cometary soil. This outlines the possibility of using SD2 not only as a tool to support other instruments, but also as a scientific instrument itself. In this paper the possibility of using the drill as a quasi-static penetrator is presented. Within this approach, laboratory tests on glass-foam specimens of different porosity show that the drill behaviour during penetration can be exploited for cometary soil characterization.

  14. Development of a household waste treatment subsystem, volume 1. [with water conservation features

    Science.gov (United States)

    Gresko, T. M.; Murray, R. W.

    1973-01-01

    The domestic waste treatment subsystem was developed to process the daily liquid and non-metallic solid wastes provided by a family of four people. The subsystem was designed to be connected to the sewer line of a household which contained water conservation features. The system consisted of an evaporation technique to separate liquids from solids, an incineration technique for solids reduction, and a catalytic oxidizer for eliminating noxious gases from evaporation and incineration processes. All wastes were passed through a grinder which masticated the solids and deposited them in a settling tank. The liquids were transferred through a cleanable filter into a holding tank. From here the liquids were sprayed into an evaporator and a spray chamber where evaporation occurred. The resulting vapors were processed by catalytic oxidation. Water and latent energy were recovered in a combination evaporator/condenser heat exchanger. The solids were conveyed into an incinerator and reduced to ash while the incineration gases were passed through the catalytic oxidizer along with the processed water vapor.

  15. The electrical power subsystem design for the high energy solar physics spacecraft concepts

    Science.gov (United States)

    Kulkarni, Milind

    1993-01-01

    This paper discusses the Electrical Power Subsystem (EPS) requirements, architecture, design description, performance analysis, and heritage of the components for two spacecraft concepts for the High Energy Solar Physics (HESP) Mission. It summarizes the mission requirements and the spacecraft subsystems and instrument power requirements, and it describes the EPS architecture for both options. A trade study performed on the selection of the solar cells - body mounted versus deployed panels - and the optimum number of panels is also presented. Solar cell manufacturing losses, array manufacturing losses, and the radiation and temperature effects on the GaAs/Ge and Si solar cells were considered part of the trade study and are included in this paper. Solar cell characteristics, cell circuit description, and the solar array area design are presented, as is battery sizing analysis performed based on the power requirements during launch and initial spacecraft operations. This paper discusses Earth occultation periods and the battery power requirements during this period as well as shunt control, battery conditioning, and bus regulation schemes. Design margins, redundancy philosophy, and predicted on-orbit battery and solar cell performance are summarized. Finally, the heritage of the components and technology risk assessment are provided.

  16. Spin and tunneling dynamics in an asymmetrical double quantum dot with spin-orbit coupling: Selective spin transport device

    Science.gov (United States)

    Singh, Madhav K.; Jha, Pradeep K.; Bhattacherjee, Aranya B.

    2017-09-01

    In this article, we study the spin and tunneling dynamics as a function of magnetic field in a one-dimensional GaAs double quantum dot with both the Dresselhaus and Rashba spin-orbit coupling. In particular, we consider different spatial widths for the spin-up and spin-down electronic states. We find that the spin dynamics is a superposition of slow as well as fast Rabi oscillations. It is found that the Rashba interaction strength as well as the external magnetic field strongly modifies the slow Rabi oscillations which is particularly useful for implementing solid state selective spin transport device.

  17. Heat capacity and monogamy relations in the mixed-three-spin XXX Heisenberg model at low temperatures

    Science.gov (United States)

    Zad, Hamid Arian; Movahhedian, Hossein

    2016-08-01

    Heat capacity of a mixed-three-spin (1/2,1,1/2) antiferromagnetic XXX Heisenberg chain is precisely investigated by use of the partition function of the system for which, spins (1,1/2) have coupling constant J1 and spins (1/2,1/2) have coupling constant J2. We verify tripartite entanglement for the model by means of the convex roof extended negativity (CREN) and concurrence as functions of temperature T, homogeneous magnetic field B and the coupling constants J1 and J2. As shown in our previous work, [H. A. Zad, Chin. Phys. B 25 (2016) 030303.] the temperature, the magnetic field and the coupling constants dependences of the heat capacity for such spin system have different behaviors for the entangled and separable states, hence, we did some useful comparisons between this quantity and negativities of its organized bipartite (sub)systems at entangled and separable states. Here, we compare the heat capacity of the mixed-three-spin (1/2,1,1/2) system with the CREN and the tripartite concurrence (as measures of the tripartite entanglement) at low temperature. Ground state phase transitions, and also, transition from ground state to some excited states are explained in detail for this system at zero temperature. Finally, we investigate the heat capacity behavior around those critical points in which these quantum phase transitions occur.

  18. Spin dynamics with inertia in metallic ferromagnets

    Science.gov (United States)

    Kikuchi, Toru; Tatara, Gen

    2015-11-01

    The nonadiabatic contribution of environmental degrees of freedom yields an effective inertia of spin in the effective spin dynamics. In this paper, we study several aspects of the inertia of spin in metallic ferromagnets: (i) a concrete expression of the spin inertia ms: ms=ℏ Sc/(2 gsd) , where Sc is the spin polarization of conduction electrons and gsd is the s d coupling constant; (ii) a dynamical behavior of spin with inertia, discussed from the viewpoints of a spinning top and of a particle on a sphere; (iii) the behavior of spin waves and domain walls in the presence of inertia and the behavior of spin with inertia under a time-dependent magnetic field.

  19. Vibration dependence of the tensor spin-spin and scalar spin-spin hyperfine interactions by precision measurement of hyperfine structures of 127I2 near 532 nm

    International Nuclear Information System (INIS)

    Hong Fenglei; Zhang Yun; Ishikawa, Jun; Onae, Atsushi; Matsumoto, Hirokazu

    2002-01-01

    Hyperfine structures of the R(87)33-0, R(145)37-0, and P(132)36-0 transitions of molecular iodine near 532 nm are measured by observing the heterodyne beat-note signal of two I 2 -stabilized lasers, whose frequencies are bridged by an optical frequency comb generator. The measured hyperfine splittings are fit to a four-term Hamiltonian, which includes the electric quadrupole, spin-rotation, tensor spin-spin, and scalar spin-spin interactions, with an accuracy of ∼720 Hz. High-accurate hyperfine constants are obtained from this fit. Vibration dependences of the tensor spin-spin and scalar spin-spin hyperfine constants are determined for molecular iodine, for the first time to our knowledge. The observed hyperfine transitions are good optical frequency references in the 532-nm region

  20. Universal spin dynamics in quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, E. A.; Zülicke, U.; Winkler, R.

    2017-10-01

    We discuss the universal spin dynamics in quasi-one-dimensional systems including the real spin in narrow-gap semiconductors like InAs and InSb, the valley pseudospin in staggered single-layer graphene, and the combination of real spin and valley pseudospin characterizing single-layer transition metal dichalcogenides (TMDCs) such as MoS2, WS2, MoS2, and WSe2. All these systems can be described by the same Dirac-like Hamiltonian. Spin-dependent observable effects in one of these systems thus have counterparts in each of the other systems. Effects discussed in more detail include equilibrium spin currents, current-induced spin polarization (Edelstein effect), and spin currents generated via adiabatic spin pumping. Our work also suggests that a long-debated spin-dependent correction to the position operator in single-band models should be absent.