WorldWideScience

Sample records for spin stabilized projectile

  1. Stability Criterion for a Finned Spinning Projectile

    OpenAIRE

    S. D. Naik

    2000-01-01

    The state-of-the-art in gun projectile technology has been used for the aerodynamic stabilisation.This approach is acceptable for guided and controlled rockets but the free-flight rockets suffer fromunacceptable dispersion. Sabot projectiles with both spin and fms developed during the last decadeneed careful analysis. In this study, the second method of Liapunov has been used to develop stability criterion for a projectile to be designed with small fins and is made to spin in the flight. This...

  2. Design and Analysis of A Spin-Stabilized Projectile Experimental Apparatus

    Science.gov (United States)

    Siegel, Noah; Rodebaugh, Gregory; Elkins, Christopher; van Poppel, Bret; Benson, Michael; Cremins, Michael; Lachance, Austin; Ortega, Raymond; Vanderyacht, Douglas

    2017-11-01

    Spinning objects experience an effect termed `The Magnus Moment' due to an uneven pressure distribution based on rotation within a crossflow. Unlike the Magnus force, which is often small for spin-stabilized projectiles, the Magnus moment can have a strong detrimental effect on aerodynamic flight stability. Simulations often fail to accurately predict the Magnus moment in the subsonic flight regime. In an effort to characterize the conditions that cause the Magnus moment, researchers in this work employed Magnetic Resonance Velocimetry (MRV) techniques to measure three dimensional, three component, sub-millimeter resolution fluid velocity fields around a scaled model of a spinning projectile in flight. The team designed, built, and tested using a novel water channel apparatus that was fully MRI-compliant - water-tight and non-ferrous - and capable of spinning a projectile at a constant rotational speed. A supporting numerical simulation effort informed the design process of the scaled projectile to thicken the hydrodynamic boundary layer near the outer surface of the projectile. Preliminary testing produced two-dimensional and three-dimensional velocity data and revealed an asymmetric boundary layer around the projectile, which is indicative of the Magnus effect.

  3. Experimental Flight Characterization of Spin Stabilized Projectiles at High Angle of Attack

    Science.gov (United States)

    2017-08-07

    impact point prediction for applications such as high-arcing, spin-stabilized munitions. 15. SUBJECT TERMS aerodynamics, spark range, spin...angles of attack increase the delivery error due to poor fire-control solutions (i.e., understanding the relationship between the gun pointing angle and...of downrange travel ) is also evident in the horizontal data. Fig. 3 Center-of-gravity motion The rolling motion is captured in Fig. 4. These

  4. Microadaptive Flow Control Applied to a Spinning Projectile

    National Research Council Canada - National Science Library

    McMichael, J; Lovas, A; Plostins, P; Sahu, J; Brown, G; Glezer, A

    2005-01-01

    ... technology developed, the flight control technology required to enable the MAFC on spinning projectiles, the design of the flight test and validation hardware, and the results of the open-loop flight test...

  5. Orientation estimation algorithm applied to high-spin projectiles

    International Nuclear Information System (INIS)

    Long, D F; Lin, J; Zhang, X M; Li, J

    2014-01-01

    High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm. (paper)

  6. Orientation estimation algorithm applied to high-spin projectiles

    Science.gov (United States)

    Long, D. F.; Lin, J.; Zhang, X. M.; Li, J.

    2014-06-01

    High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm.

  7. Spinning projectile's attitude measurement with LW infrared radiation under sea-sky background

    Science.gov (United States)

    Xu, Miaomiao; Bu, Xiongzhu; Yu, Jing; He, Zilu

    2018-05-01

    With the further development of infrared radiation research in sea-sky background and the requirement of spinning projectile's attitude measurement, the sea-sky infrared radiation field is used to carry out spinning projectile's attitude angle instead of inertial sensors. Firstly, the generation mechanism of sea-sky infrared radiation is analysed. The mathematical model of sea-sky infrared radiation is deduced in LW (long wave) infrared 8 ∼ 14 μm band by calculating the sea surface and sky infrared radiation. Secondly, according to the movement characteristics of spinning projectile, the attitude measurement model of infrared sensors on projectile's three axis is established. And the feasibility of the model is analysed by simulation. Finally, the projectile's attitude calculation algorithm is designed to improve the attitude angle estimation accuracy. The results of semi-physical experiments show that the segmented interactive algorithm estimation error of pitch and roll angle is within ±1.5°. The attitude measurement method is effective and feasible, and provides accurate measurement basis for the guidance of spinning projectile.

  8. A High-Spin Rate Measurement Method for Projectiles Using a Magnetoresistive Sensor Based on Time-Frequency Domain Analysis.

    Science.gov (United States)

    Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting

    2016-06-16

    Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment.

  9. Roll Attitude Determination of Spin Projectile Based on GPS and Magnetoresistive Sensor

    Directory of Open Access Journals (Sweden)

    Dandan Yuan

    2017-01-01

    Full Text Available Improvement in attack accuracy of the spin projectiles is a very significant objective, which increases the overall combat efficiency of projectiles. The accurate determination of the projectile roll attitude is the recent objective of the efficient guidance and control. The roll measurement system for the spin projectile is commonly based on the magnetoresistive sensor. It is well known that the magnetoresistive sensor produces a sinusoidally oscillating signal whose frequency slowly decays with time, besides the possibility of blind spot. On the other hand, absolute sensors such as GPS have fixed errors even though the update rates are generally low. To earn the benefit while eliminating weaknesses from both types of sensors, a mathematical model using filtering technique can be designed to integrate the magnetoresistive sensor and GPS measurements. In this paper, a mathematical model is developed to integrate the magnetoresistive sensor and GPS measurements in order to get an accurate prediction of projectile roll attitude in a real flight time. The proposed model is verified using numerical simulations, which illustrated that the accuracy of the roll attitude measurement is improved.

  10. Microadaptive Flow Control Applied to a Spinning Projectile

    National Research Council Canada - National Science Library

    McMichael, J; Lovas, A; Plostins, P; Sahu, J; Brown, G; Glezer, A

    2005-01-01

    The focus of this report is to provide a technical and programmatic summary of a Defense Advanced Research Projects Agency effort to explore the feasibility of producing steering forces on a spinning...

  11. Aerodynamic characteristics of an ogive-nose spinning projectile

    Indian Academy of Sciences (India)

    J LIJIN

    2018-04-16

    Apr 16, 2018 ... in mass are considered as the common cause for stability ... moment produced about the centre of gravity due to the ... the cross flow plane. ... that can measure the side force and normal force coeffi- ... Apache sounding rocket in the Mach number range of 2–6 ..... elaborated in detail in the next section.

  12. On the Horizontal Deviation of a Spinning Projectile Penetrating into Granular Systems

    Directory of Open Access Journals (Sweden)

    Waseem Ghazi Alshanti

    2017-01-01

    Full Text Available The absence of a general theory that describes the dynamical behavior of the particulate materials makes the numerical simulations the most current powerful tool that can grasp many mechanical problems relevant to the granular materials. In this paper, based on a two-dimensional soft particle discrete element method (DEM, a numerical approach is developed to investigate the consequence of the orthogonal impact into various granular beds of projectile rotating in both clockwise (CW and counterclockwise (CCW directions. Our results reveal that, depending on the rotation direction, there is a significant deviation of the x-coordinate of the final stopping point of a spinning projectile from that of its original impact point. For CW rotations, a deviation to the right occurs while a left deviation has been recorded for CCW rotation case.

  13. Small caliber guided projectile

    Science.gov (United States)

    Jones, James F [Albuquerque, NM; Kast, Brian A [Albuquerque, NM; Kniskern, Marc W [Albuquerque, NM; Rose, Scott E [Albuquerque, NM; Rohrer, Brandon R [Albuquerque, NM; Woods, James W [Albuquerque, NM; Greene, Ronald W [Albuquerque, NM

    2010-08-24

    A non-spinning projectile that is self-guided to a laser designated target and is configured to be fired from a small caliber smooth bore gun barrel has an optical sensor mounted in the nose of the projectile, a counterbalancing mass portion near the fore end of the projectile and a hollow tapered body mounted aft of the counterbalancing mass. Stabilizing strakes are mounted to and extend outward from the tapered body with control fins located at the aft end of the strakes. Guidance and control electronics and electromagnetic actuators for operating the control fins are located within the tapered body section. Output from the optical sensor is processed by the guidance and control electronics to produce command signals for the electromagnetic actuators. A guidance control algorithm incorporating non-proportional, "bang-bang" control is used to steer the projectile to the target.

  14. Scattering of polarized 7Li by 120Sn and projectile-target spin-dependent interactions

    International Nuclear Information System (INIS)

    Sakuragi, Y.; Yahiro, M.; Kamimura, M.; Tanifuji, M.

    1986-07-01

    Scattering of 7 Li by 120 Sn targets at E lab = 44 MeV is investigated in the coupled-channel frame by taking account of the projectile virtual excitations to the lowest three excited states. Calculations are performed by the cluster-folding (CF) interactions and the double-folding (DF) one. Both interactions reproduce very well the expeimental data on the cross section, the vector analyzing power, the second-rank tensor ones and the third-rank tensor one in elastic and projectile inelastic scattering, although some differences are found between the CF results and the DF ones. In the calculation, the virtual excitations of the projectile are important for most of the analyzing powers and the spin-orbit interaction is indispensable for the vector analyzing power. These features are in contrast to those in 7 Li - 58 Ni scattering at 20 MeV and are interpreted as over-Coulomb-barrier effects. The scattering amplitudes and the analyzing powers are investigated by the invariant amplitude method, which provides a key connecting the spin-dependent interactions to the analyzing powers. The method proposes an important relationship between the tensor analyzing powers, which is useful in analyses of both theoretical and experimental results. Finally, it is found that in the elastic scattering the second-rank tensor analyzing powers are proportional to the strength of the second-rank tensor interaction and the vector and third-rank tensor analyzing powers to the square or cube of the strength of this interaction, while in the inelastic scattering the cross section is proportional to the square of the strength of the tensor interaction, other quantities being weakly dependent on the strength. (author)

  15. Novel method for the production of spin-aligned RI beams in projectile fragmentation reaction with the dispersion matching technique

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Y., E-mail: yuichikawa@phys.titech.ac.jp [Tokyo Institute of Technology, Department of Physics (Japan); Ueno, H. [RIKEN Nishina Center (Japan); Ishii, Y. [Tokyo Institute of Technology, Department of Physics (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Yoshimi, A. [Okayama University, Research Core for Extreme Quantum World (Japan); Kameda, D.; Watanabe, H.; Aoi, N. [RIKEN Nishina Center (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Balabanski, D. L. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy (Bulgaria); Chevrier, R.; Daugas, J. M. [CEA, DAM, DIF (France); Fukuda, N. [RIKEN Nishina Center (Japan); Georgiev, G. [CSNSM, IN2P3-CNRS, Universite Paris-sud (France); Hayashi, H.; Iijima, H. [Tokyo Institute of Technology, Department of Physics (Japan); Inabe, N. [RIKEN Nishina Center (Japan); Inoue, T. [Tokyo Institute of Technology, Department of Physics (Japan); Ishihara, M.; Kubo, T. [RIKEN Nishina Center (Japan); and others

    2013-05-15

    A novel method to produce spin-aligned rare-isotope (RI) beam has been developed, that is the two-step projectile fragmentation method with a technique of dispersion matching. The present method was verified in an experiment at the RIKEN RIBF, where an RI beam of {sup 32}Al with spin alignment of 8(1) % was successfully produced from a primary beam of {sup 48}Ca, with {sup 33}Al as an intermediate nucleus. Figure of merit of the present method was found to be improved by a factor larger than 50 compared with a conventional method employing single-step projectile fragmentation.

  16. The study of quasi-projectiles produced in Ni+Ni and Ni+Au collisions: excitation energy and spin

    International Nuclear Information System (INIS)

    Buta, A.

    2003-02-01

    During the collision between the projectile and the target nuclei in the intermediate energy regime (E < 100 MeV/nucleon) two excited nuclei are mainly observed in the exit channel, the quasi projectile (QP) and the quasi target. They disintegrate by particle emission. However, this binary picture is perturbed by the emission of particles and light fragments with velocities intermediate between the projectile velocity and the target one, all along the interaction (midrapidity component). This work aim to determine the excitation energy and the intrinsic angular momentum (or spin) of quasi-projectiles produced in the Ni+Ni and Ni+Au collisions at 52 and 90 MeV/nucleon. The excitation energy is deduced from the kinematical characteristics of particles emitted by the quasi-projectile. They have to be separated from midrapidity particles. Three different scenarios have been used for this purpose. The spin of the quasi-projectile has been extracted from the experimental data by mean of proton and alpha particles multiplicities emitted by the QP in the Ni+Au at 52 MeV/nucleon reaction. The results have been compared to the predictions of a theoretical model based on nucleon transfers. Their evolution is qualitatively reproduced as a function of the violence of the collision. (author)

  17. Quantum Spin Stabilized Magnetic Levitation

    Science.gov (United States)

    Rusconi, C. C.; Pöchhacker, V.; Kustura, K.; Cirac, J. I.; Romero-Isart, O.

    2017-10-01

    We theoretically show that, despite Earnshaw's theorem, a nonrotating single magnetic domain nanoparticle can be stably levitated in an external static magnetic field. The stabilization relies on the quantum spin origin of magnetization, namely, the gyromagnetic effect. We predict the existence of two stable phases related to the Einstein-de Haas effect and the Larmor precession. At a stable point, we derive a quadratic Hamiltonian that describes the quantum fluctuations of the degrees of freedom of the system. We show that, in the absence of thermal fluctuations, the quantum state of the nanomagnet at the equilibrium point contains entanglement and squeezing.

  18. Thermal stability of tunneling spin polarization

    International Nuclear Information System (INIS)

    Kant, C.H.; Kohlhepp, J.T.; Paluskar, P.V.; Swagten, H.J.M.; Jonge, W.J.M. de

    2005-01-01

    We present a study of the thermal stability of tunneling spin polarization in Al/AlOx/ferromagnet junctions based on the spin-polarized tunneling technique, in which the Zeeman-split superconducting density of states in the Al electrode is used as a detector for the spin polarization. Thermal robustness of the polarization, which is of key importance for the performance of magnetic tunnel junction devices, is demonstrated for post-deposition anneal temperatures up to 500 o C with Co and Co 90 Fe 10 top electrodes, independent of the presence of an FeMn layer on top of the ferromagnet

  19. The study of quasi-projectiles produced in Ni+Ni and Ni+Au collisions: excitation energy and spin; Etude des quasi-projectiles produits dans les collisions Ni+Ni et Ni+Au: energie d'excitation et spin

    Energy Technology Data Exchange (ETDEWEB)

    Buta, A

    2003-02-01

    During the collision between the projectile and the target nuclei in the intermediate energy regime (E < 100 MeV/nucleon) two excited nuclei are mainly observed in the exit channel, the quasi projectile (QP) and the quasi target. They disintegrate by particle emission. However, this binary picture is perturbed by the emission of particles and light fragments with velocities intermediate between the projectile velocity and the target one, all along the interaction (midrapidity component). This work aim to determine the excitation energy and the intrinsic angular momentum (or spin) of quasi-projectiles produced in the Ni+Ni and Ni+Au collisions at 52 and 90 MeV/nucleon. The excitation energy is deduced from the kinematical characteristics of particles emitted by the quasi-projectile. They have to be separated from midrapidity particles. Three different scenarios have been used for this purpose. The spin of the quasi-projectile has been extracted from the experimental data by mean of proton and alpha particles multiplicities emitted by the QP in the Ni+Au at 52 MeV/nucleon reaction. The results have been compared to the predictions of a theoretical model based on nucleon transfers. Their evolution is qualitatively reproduced as a function of the violence of the collision. (author)

  20. Fission of spin-aligned projectile-like nuclei in the interactions of 29 MeV/nucleon 208Pb with 197Au

    International Nuclear Information System (INIS)

    Bresson, S.; Morjean, M.; Jastrzebski, J.; Skulski, W.; Kordyasz, A.; Lott, B.

    1992-01-01

    Binary fission of projectile-like nuclei was investigated in the interaction of 29 MeV/nucleon Pb on Au, together with the associated neutron multiplicity. Fission is only observed in rather peripheral collisions and represents approximately 20% of the total reaction cross-section. The fission process occurs after collisions in which up to 550 MeV have been dissipated. The angular and energy distribution of the fragments can be accounted for by assuming a noticeable spin alignment of the fissioning nuclei. (author) 18 refs.; 3 figs

  1. Nonlinear stability of spin-flip excitations

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1975-01-01

    A rather complete discussion of the nonlinear electrodynamic behavior of a negative-temperature spin system is presented. The method presented here is based on a coupled set of master equations, one describing the time evolution of the photon (i.e., the spin-flip excitation) distribution function and the other describing the time evolution of the particle distribution function. It is found that the initially unstable (i.e., growing) spin-flip excitations grow to such a large amplitude that their nonlinear reaction on the particle distribution function becomes important. It is then shown that the initially totally inverted two-level spin system evolves rapidly (through this nonlinear photon-particle coupling) towards a quasilinear steady state where the populations of the spin-up and the spin-down states are equal to each other. Explicit expressions for the time taken to reach this quasilinear steady state and the energy in the spin-flip excitations at this state are also presented

  2. Stability of a dual-spin satellite with two dampers

    Science.gov (United States)

    Alfriend, K. T.; Hubert, C. H.

    1974-01-01

    The rotational stability of a dual-spin satellite consisting of a main body and a symmetric rotor, both spinning about a common axis, is investigated. The main body is equipped with a spring-mass damper, while a partially filled viscous ring damper is mounted on the rapidly spinning rotor. The effect of fluid motion on the rotational stability of the satellite is calculated, considering the fluid as a single particle moving in a tube with viscous damping. Time constants are obtained by solving approximate equations of motion for the nutation-synchronous and the spin-synchronous modes, and the results are found to agree well with the numerical integrations of the exact equations. A limit cycle may exist for some configurations; the nutation angle tends to increase in such cases.

  3. Development of a Plastic Stabilizer for the M865 Training Projectile

    National Research Council Canada - National Science Library

    Garner, James

    1999-01-01

    .... This preliminary stabilizer (flare) is made from polyetheretherketone (PEEK) and is expected to handle the in-bore and out-of-bore aerothermal environments sufficiently to conform to the performance of the present M865 flare...

  4. Navier-Stokes Predictions of Dynamic Stability Derivatives: Evaluation of Steady-State Methods

    National Research Council Canada - National Science Library

    DeSpirito, James; Silton, Sidra I; Weinacht, Paul

    2008-01-01

    The prediction of the dynamic stability derivatives-roll-damping, Magnus, and pitch-damping moments-were evaluated for three spin-stabilized projectiles using steady-state computational fluid dynamic (CFD) calculations...

  5. Influence of yawing force frequency on angular motion and ballistic characteristics of a dual-spin projectile

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2016-04-01

    Full Text Available A roll-decoupled course correction fuze with canards can improve the hit accuracy of conventional unguided ammunitions. The fuze increases accuracy by reducing the effect of angular and translational motion produced by the cyclical yawing forces applied on the projectile. In order to investigate the influence of yawing forces on angular motion, a theoretical solution of the total yaw angle function with the cyclical yawing forces is deduced utilizing the 7 degrees of freedom (7-DOF model designed for this calculation. Furthermore, a detailed simulation is carried out to determine the influence rules of yawing force on angular motion. The calculated results illustrate that, when the rotational speed of the forward part is close to the initial turning rate, the total yaw angle increases and the flight range decreases sharply. Moreover, a yawing force at an appropriate frequency is able to correct the gun azimuth and elevation perturbation to some extent.

  6. Spin-Stabilized Spacecrafts: Analytical Attitude Propagation Using Magnetic Torques

    Directory of Open Access Journals (Sweden)

    Roberta Veloso Garcia

    2009-01-01

    Full Text Available An analytical approach for spin-stabilized satellites attitude propagation is presented, considering the influence of the residual magnetic torque and eddy currents torque. It is assumed two approaches to examine the influence of external torques acting during the motion of the satellite, with the Earth's magnetic field described by the quadripole model. In the first approach is included only the residual magnetic torque in the motion equations, with the satellites in circular or elliptical orbit. In the second approach only the eddy currents torque is analyzed, with the satellite in circular orbit. The inclusion of these torques on the dynamic equations of spin stabilized satellites yields the conditions to derive an analytical solution. The solutions show that residual torque does not affect the spin velocity magnitude, contributing only for the precession and the drift of the spacecraft's spin axis and the eddy currents torque causes an exponential decay of the angular velocity magnitude. Numerical simulations performed with data of the Brazilian Satellites (SCD1 and SCD2 show the period that analytical solution can be used to the attitude propagation, within the dispersion range of the attitude determination system performance of Satellite Control Center of Brazil National Research Institute.

  7. Thermal stability of low dose Ga+ ion irradiated spin valves

    International Nuclear Information System (INIS)

    Qi Xianjin; Wang Yingang; Zhou Guanghong; Li Ziquan

    2009-01-01

    The thermal stability of low dose Ga + ion irradiated spin valves has been investigated and compared with that of the as-prepared ones. The dependences of exchange field, measured using vibrating sample magnetometer at room temperature, on magnetic field sweep rate and time spent at negative saturation of the pinned ferromagnetic layer, and training effect were explored. The training effect is observed on both the irradiated spin valves and the as-prepared ones. The magnetic field sweep rate dependence of the exchange bias field of the irradiated spin valves is nearly the same as that of the as-prepared ones. For the as-prepared structure thermal activation has been observed, which showed that holding the irradiated structure at negative saturation of the pinned ferromagnetic layer for up to 28 hours results in no change in the exchange field. The results indicate that the thermal stability of the ion irradiated spin valves is the same as or even better than the as-prepared ones.

  8. Characterization of beer flavour stability (EPR - spin trapping)

    International Nuclear Information System (INIS)

    Stasko, A.; Liptakova, M.; Malik, F.

    1999-01-01

    The beer flavour stability is coupled with free radical degradation processes. Probably, aldehydes produced during the brewery but also generated by stalling are responsible for beer flavour as well as for its breaking down. The storing beer at the lower temperatures and in the dark place inhibits, and otherwise the rising temperature and illumination accelerate the rate of such radical processes. Beers contain naturally occurring radical scavengers - antioxidants which inhibit such unwanted reactions. Then depleting of scavengers results in the breaking down of the beer stability. EPR spin trapping technique was used as monitor such processes and for characterising so the flavour stability of beer. The probe was temperated at 60 grad C in the cavity of EPR spectrometer in the presence of spin trapping agent, N-tert.-butyl-α-phenyl nitrone (PBN) and EPR spectra were recorded for few hours. After beer antioxidants become depleted, free radicals formed by the beer degradation are scavenged by PBN spin trap and this point is characterised with a dramatically increased concentration of the free radicals trapped

  9. Aerodynamic Characterizations of Asymmetric and Maneuvering 105-, 120-, and 155-mm Fin-Stabilized Projectiles Derived from Telemetry Experiments

    Science.gov (United States)

    2011-04-01

    roll rates are estimates of projectile roll rates with respect to the sun and the local geomagnetic field respectively. The solar aspect angle is the...vector and a vector originating at the CG and parallel to the local geomagnetic field. Methodologies employed to obtain these and other airframe states...and an independent approach (POINTER) and relative magnitude information about the side moments was obtained. VAPP-24 underwent a reversal in coning

  10. Analytical Prediction of the Spin Stabilized Satellite's Attitude Using The Solar Radiation Torque

    International Nuclear Information System (INIS)

    Motta, G B; Carvalho, M V; Zanardi, M C

    2013-01-01

    The aim of this paper is to present an analytical solution for the spin motion equations of spin-stabilized satellite considering only the influence of solar radiation torque. The theory uses a cylindrical satellite on a circular orbit and considers that the satellite is always illuminated. The average components of this torque were determined over an orbital period. These components are substituted in the spin motion equations in order to get an analytical solution for the right ascension and declination of the satellite spin axis. The time evolution for the pointing deviation of the spin axis was also analyzed. These solutions were numerically implemented and compared with real data of the Brazilian Satellite of Data Collection – SCD1 an SCD2. The results show that the theory has consistency and can be applied to predict the spin motion of spin-stabilized artificial satellites

  11. Optical-coupling nuclear spin maser under highly stabilized low static field

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimi, A., E-mail: yoshimi@ribf.riken.jp [RIKEN Nishina Center (Japan); Inoue, T.; Uchida, M.; Hatakeyama, N.; Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan)

    2008-01-15

    A nuclear spin maser of a new type, that employs a feedback scheme based on optical nuclear spin detection, has been fabricated. The spin maser is operated at a low static field of 30 mG by using the optical detection method. The frequency stability and precision of the spin maser have been improved by a highly stabilized current source for the static magnetic field. An experimental setup to search for an electric dipole moment (EDM) in {sup 129}Xe atom is being developed.

  12. In-flight dynamics of volcanic ballistic projectiles

    Science.gov (United States)

    Taddeucci, J.; Alatorre-Ibargüengoitia, M. A.; Cruz-Vázquez, O.; Del Bello, E.; Scarlato, P.; Ricci, T.

    2017-09-01

    Centimeter to meter-sized volcanic ballistic projectiles from explosive eruptions jeopardize people and properties kilometers from the volcano, but they also provide information about the past eruptions. Traditionally, projectile trajectory is modeled using simplified ballistic theory, accounting for gravity and drag forces only and assuming simply shaped projectiles free moving through air. Recently, collisions between projectiles and interactions with plumes are starting to be considered. Besides theory, experimental studies and field mapping have so far dominated volcanic projectile research, with only limited observations. High-speed, high-definition imaging now offers a new spatial and temporal scale of observation that we use to illuminate projectile dynamics. In-flight collisions commonly affect the size, shape, trajectory, and rotation of projectiles according to both projectile nature (ductile bomb versus brittle block) and the location and timing of collisions. These, in turn, are controlled by ejection pulses occurring at the vent. In-flight tearing and fragmentation characterize large bombs, which often break on landing, both factors concurring to decrease the average grain size of the resulting deposits. Complex rotation and spinning are ubiquitous features of projectiles, and the related Magnus effect may deviate projectile trajectory by tens of degrees. A new relationship is derived, linking projectile velocity and size with the size of the resulting impact crater. Finally, apparent drag coefficient values, obtained for selected projectiles, mostly range from 1 to 7, higher than expected, reflecting complex projectile dynamics. These new perspectives will impact projectile hazard mitigation and the interpretation of projectile deposits from past eruptions, both on Earth and on other planets.

  13. Guidance and Control Design for a Class of Spin-Stabilized Projectiles with a Two-Dimensional Trajectory Correction Fuze

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2015-01-01

    Full Text Available A guidance and control strategy for a class of 2D trajectory correction fuze with fixed canards is developed in this paper. Firstly, correction control mechanism is researched through studying the deviation motion, the key point of which is the dynamic equilibrium angle. Phase lag of swerve response is the dominating factor for correction control, and formula is deduced with the Mach number as argument. Secondly, impact point deviation prediction based on perturbation theory is proposed, and the numerical solution and application method are introduced. Finally, guidance and control strategy is developed, and simulations to validate the strategy are conducted.

  14. Stability of global entanglement in thermal states of spin chains

    International Nuclear Information System (INIS)

    Brennen, Gavin K.; Bullock, Stephen S.

    2004-01-01

    We investigate the entanglement properties of a one-dimensional chain of qubits coupled via nearest-neighbor spin-spin interactions. The entanglement measure used is the n-concurrence, which is distinct from other measures on spin chains such as bipartite entanglement in that it can quantify 'global' entanglement across the spin chain. Specifically, it computes the overlap of a quantum state with its time-reversed state. As such, this measure is well suited to study ground states of spin-chain Hamiltonians that are intrinsically time-reversal-symmetric. We study the robustness of n-concurrence of ground states when the interaction is subject to a time-reversal antisymmetric magnetic field perturbation. The n-concurrence in the ground state of the isotropic XX model is computed and it is shown that there is a critical magnetic field strength at which the entanglement experiences a jump discontinuity from the maximum value to zero. The n-concurrence for thermal mixed states is derived and a threshold temperature is computed below which the system has nonzero entanglement

  15. Stability of orbits around a spinning body in a pseudo-Newtonian Hill problem

    International Nuclear Information System (INIS)

    Steklain, A.F.; Letelier, P.S.

    2009-01-01

    A pseudo-Newtonian Hill problem based on a potential proposed by Artemova et al. [I.A. Artemova, G. Bjoernsson, I.D. Novikov, Astrophys. J. 461 (1996) 565] is presented. This potential reproduces some of the general relativistic effects due to the spin angular momentum of the bodies, like the dragging of inertial frames. Poincare maps, Lyapunov exponents and fractal escape techniques are employed to study the stability of bounded and unbounded orbits for different spins of the central body

  16. Dynamical stability for finite quantum spin chains against a time-periodic inhomogeneous perturbation

    International Nuclear Information System (INIS)

    Kudo, Kazue; Nakamura, Katsuhiro

    2009-01-01

    We investigate dynamical stability of the ground state against a time-periodic and spatially-inhomogeneous magnetic field for finite quantum XXZ spin chains. We use the survival probability as a measure of stability and demonstrate that it decays as P(t) ∝ t -1/2 under a certain condition. The dynamical properties should also be related to the level statistics of the XXZ spin chains with a constant spatially-inhomogeneous magnetic field. The level statistics depends on the anisotropy parameter and the field strength. We show how the survival probability depends on the anisotropy parameter, the strength and frequency of the field.

  17. Fired missile projectiles

    International Nuclear Information System (INIS)

    Williams, K.D.; Gieszl, R.; Keller, P.J.; Drayer, B.P.

    1989-01-01

    This paper reports ferromagnetic properties of fired missile projectiles (bullets, BBs, etc) investigated. Projectile samples were obtained from manufactures, police, and commercial sources. Deflection measurements at the portal of a 1.5-T magnetic field were performed for 47 projectiles. Sixteen bullets were examined in gelatin phantoms for rotation-translation movements as well. Ferromagnetic bullets displayed considerable deflection forces in the presence of the magnetic field and could be rotated to 80 degrees from their previous alignments when introduced perpendicular to the magnetic field in our gelatin phantom experiments. Military bullet calibers appear to pose the greatest ferromagnetic risk. Commercial sporting ammunition is generally nonferromagnetic

  18. Stability analysis of perpendicular magnetic trilayers with a field-like spin torque

    International Nuclear Information System (INIS)

    Wang, Ri-Xing; Zhao, Jing-Li; He, Peng-Bin; Gu, Guan-Nan; Li, Zai-Dong; Pan, An-Lian; Liu, Quan-Hui

    2013-01-01

    We have analytically studied the magnetization dynamics in magnetic trilayers with perpendicular anisotropy for both free and pinned layers. By linear stability analysis, we obtain the phase diagram parameterized by the current, magnetic field and relative strength of the field-like spin torque to Slonczewski torque. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out-of-plane precession, and bistable states can be realized. The precession frequency can be expressed as a function of the current and external magnetic field. In addition, the presence of field-like spin torque can change the switching current and precession frequency. - Highlights: ► The phase diagram is obtained by linear stability analysis. ► The precession frequency can be controlled by the current and magnetic field. ► Field-like spin torque can change instability current and precession frequency.

  19. Combined influence of inertia, gravity, and surface tension on the linear stability of Newtonian fiber spinning

    Science.gov (United States)

    Bechert, M.; Scheid, B.

    2017-11-01

    The draw resonance effect appears in fiber spinning processes if the ratio of take-up to inlet velocity, the so-called draw ratio, exceeds a critical value and manifests itself in steady oscillations of flow velocity and fiber diameter. We study the effect of surface tension on the draw resonance behavior of Newtonian fiber spinning in the presence of inertia and gravity. Utilizing an alternative scaling makes it possible to visualize the results in stability maps of highly practical relevance. The interplay of the destabilizing effect of surface tension and the stabilizing effects of inertia and gravity lead to nonmonotonic stability behavior and local stability maxima with respect to the dimensionless fluidity and the dimensionless inlet velocity. A region of unconditional instability caused by the influence of surface tension is found in addition to the region of unconditional stability caused by inertia, which was described in previous works [M. Bechert, D. W. Schubert, and B. Scheid, Eur. J. Mech B 52, 68 (2015), 10.1016/j.euromechflu.2015.02.005; Phys. Fluids 28, 024109 (2016), 10.1063/1.4941762]. Due to its importance for a particular group of fiber spinning applications, a viscous-gravity-surface-tension regime, i.e., negligible effect of inertia, is analyzed separately. The mechanism underlying the destabilizing effect of surface tension is discussed and established stability criteria are tested for validity in the presence of surface tension.

  20. The influence of boundary conditions on domain structure stability in spin wave approximation

    International Nuclear Information System (INIS)

    Wachinewski, A.

    1974-01-01

    Instead of the usually used Born-Karman cyclic conditions, boundary conditions which take into account the situation of the boundary lattice sites lying on the crystal's surface are assumed. It is shown that the particular choice of the boundary conditions secures the stability of domain structure in ferromagnet (positive spin wave energies), without including the Winter term in Hamiltonian. (author)

  1. Projectile Motion Hoop Challenge

    Science.gov (United States)

    Jordan, Connor; Dunn, Amy; Armstrong, Zachary; Adams, Wendy K.

    2018-04-01

    Projectile motion is a common phenomenon that is used in introductory physics courses to help students understand motion in two dimensions. Authors have shared a range of ideas for teaching this concept and the associated kinematics in The Physics Teacher; however, the "Hoop Challenge" is a new setup not before described in TPT. In this article an experiment is illustrated to explore projectile motion in a fun and challenging manner that has been used with both high school and university students. With a few simple materials, students have a vested interest in being able to calculate the height of the projectile at a given distance from its launch site. They also have an exciting visual demonstration of projectile motion when the lab is over.

  2. Projectile Demilitarization Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Projectile Wash Out Facility is US Army Ammunition Peculiar Equipment (APE 1300). It is a pilot scale wash out facility that uses high pressure water and steam...

  3. Universality of projectile fragmentation model

    International Nuclear Information System (INIS)

    Chaudhuri, G.; Mallik, S.; Das Gupta, S.

    2012-01-01

    Presently projectile fragmentation reaction is an important area of research as it is used for the production of radioactive ion beams. In this work, the recently developed projectile fragmentation model with an universal temperature profile is used for studying the charge distributions of different projectile fragmentation reactions with different projectile target combinations at different incident energies. The model for projectile fragmentation consists of three stages: (i) abrasion, (ii) multifragmentation and (iii) evaporation

  4. Linear stability analysis of a levitated nanomagnet in a static magnetic field: Quantum spin stabilized magnetic levitation

    Science.gov (United States)

    Rusconi, C. C.; Pöchhacker, V.; Cirac, J. I.; Romero-Isart, O.

    2017-10-01

    We theoretically study the levitation of a single magnetic domain nanosphere in an external static magnetic field. We show that, apart from the stability provided by the mechanical rotation of the nanomagnet (as in the classical Levitron), the quantum spin origin of its magnetization provides two additional mechanisms to stably levitate the system. Despite the Earnshaw theorem, such stable phases are present even in the absence of mechanical rotation. For large magnetic fields, the Larmor precession of the quantum magnetic moment stabilizes the system in full analogy with magnetic trapping of a neutral atom. For low magnetic fields, the magnetic anisotropy stabilizes the system via the Einstein-de Haas effect. These results are obtained with a linear stability analysis of a single magnetic domain rigid nanosphere with uniaxial anisotropy in a Ioffe-Pritchard magnetic field.

  5. Observer enhanced control for spin-stabilized tethered formation in earth orbit

    Science.gov (United States)

    Guang, Zhai; Yuyang, Li; Liang, Bin

    2018-04-01

    This paper addresses the issues relevant to control of spin-stabilized tethered formation in circular orbit. Due to the dynamic complexities and nonlinear perturbations, it is challenging to promote the control precision for the formation deployment and maintenance. In this work, the formation dynamics are derived with considering the spinning rate of the central body, then major attention is dedicated to develop the nonlinear disturbance observer. To achieve better control performance, the observer-enhanced controller is designed by incorporating the disturbance observer into the control loop, benefits from the disturbance compensation are demonstrated, and also, the dependences of the disturbance observer performance on some important parameters are theoretically and numerically analyzed.

  6. Prediction of projectile ricochet behavior after water impact.

    Science.gov (United States)

    Baillargeon, Yves; Bergeron, Guy

    2012-11-01

    Although not very common, forensic investigation related to projectile ricochet on water can be required when undesirable collateral damage occurs. Predicting the ricochet behavior of a projectile is challenging owing to numerous parameters involved: impact velocity, incident angle, projectile stability, angular velocity, etc. Ricochet characteristics of different projectiles (K50 BMG, 0.5-cal Ball M2, 0.5-cal AP-T C44, 7.62-mm Ball C21, and 5.56-mm Ball C77) were studied in a pool. The results are presented to assess projectile velocity after ricochet, ricochet angle, and projectile azimuth angle based on impact velocity or incident angle for each projectile type. The azimuth ranges show the highest variability at low postricochet velocity. The critical ricochet angles were ranging from 15 to 30°. The average ricochet angles for all projectiles were pretty close for all projectiles at 2.5 and 10° incident angles for the range of velocities studied. © 2012 Her Majesty the Queen in Right of Canada 2012. Reproduced with the permission of the Minister of the Department of National Defence.

  7. Dynamic analysis of a guided projectile during engraving process

    Directory of Open Access Journals (Sweden)

    Tao Xue

    2014-06-01

    Full Text Available The reliability of the electronic components inside a guided projectile is highly affected by the launch dynamics of guided projectile. The engraving process plays a crucial role on determining the ballistic performance and projectile stability. This paper analyzes the dynamic response of a guided projectile during the engraving process. By considering the projectile center of gravity moving during the engraving process, a dynamics model is established with the coupling of interior ballistic equations. The results detail the stress situation of a guided projectile band during its engraving process. Meanwhile, the axial dynamic response of projectile in the several milliseconds following the engraving process is also researched. To further explore how the different performance of the engraving band can affect the dynamics of guided projectile, this paper focuses on these two aspects: (a the effects caused by the different band geometry; and (b the effects caused by different band materials. The time domain and frequency domain responses show that the dynamics of the projectile are quite sensitive to the engraving band width. A material with a small modulus of elasticity is more stable than one with a high modulus of elasticity.

  8. Effective stability around the Cassini state in the spin-orbit problem

    Science.gov (United States)

    Sansottera, Marco; Lhotka, Christoph; Lemaître, Anne

    2014-05-01

    We investigate the long-time stability in the neighborhood of the Cassini state in the conservative spin-orbit problem. Starting with an expansion of the Hamiltonian in the canonical Andoyer-Delaunay variables, we construct a high-order Birkhoff normal form and give an estimate of the effective stability time in the Nekhoroshev sense. By extensively using algebraic manipulations on a computer, we explicitly apply our method to the rotation of Titan. We obtain physical bounds of Titan's latitudinal and longitudinal librations, finding a stability time greatly exceeding the estimated age of the Universe. In addition, we study the dependence of the effective stability time on three relevant physical parameters: the orbital inclination, , the mean precession of the ascending node of Titan orbit, , and the polar moment of inertia,.

  9. Projectile Motion Hoop Challenge

    Science.gov (United States)

    Jordan, Connor; Dunn, Amy; Armstrong, Zachary; Adams, Wendy K.

    2018-01-01

    Projectile motion is a common phenomenon that is used in introductory physics courses to help students understand motion in two dimensions. Authors have shared a range of ideas for teaching this concept and the associated kinematics in "The Physics Teacher" ("TPT"); however, the "Hoop Challenge" is a new setup not…

  10. Subcaliber discarding sabot airgun projectiles.

    Science.gov (United States)

    Frank, Matthias; Schönekeß, Holger; Herbst, Jörg; Staats, Hans-Georg; Ekkernkamp, Axel; Nguyen, Thanh Tien; Bockholdt, Britta

    2014-03-01

    Medical literature abounds with reports on injuries and fatalities caused by airgun projectiles. While round balls or diabolo pellets have been the standard projectiles for airguns for decades, today, there are a large number of different airgun projectiles available. A very uncommon--and until now unique--discarding sabot airgun projectile (Sussex Sabo Bullet) was introduced into the market in the 1980s. The projectile, available in 0.177 (4.5 mm) and 0.22 (5.5 mm) caliber, consists of a plastic sabot cup surrounding a subcaliber copper-coated lead projectile in typical bullet shape. Following the typical principle of a discarding sabot projectile, the lightweight sabot is supposed to quickly loose velocity and to fall to the ground downrange while the bullet continues on target. These sabot-loaded projectiles are of special forensic interest due to their non-traceability and ballistic parameters. Therefore, it is the aim of this work to investigate the ballistic performance of these sabot airgun projectiles by high-speed video analyses and by measurement of the kinetic parameters of the projectile parts by a transient recording system as well as observing their physical features after being fired. While the sabot principle worked properly in high-energy airguns (E > 17 J), separation of the core projectile from the sabot cup was also observed when discharged in low-energy airguns (E work is the first study to demonstrate the regular function of this uncommon type of airgun projectile.

  11. Creation, transport and detection of imprinted magnetic solitons stabilized by spin-polarized current

    Science.gov (United States)

    Loreto, R. P.; Moura-Melo, W. A.; Pereira, A. R.; Zhang, X.; Zhou, Y.; Ezawa, M.; de Araujo, C. I. L.

    2018-06-01

    With the recent proposition of skyrmion utilization in racetrack memories at room temperature, skyrmionics has become a very attractive field. However, for the stability of skyrmions, it is essential to incorporate the Dzyaloshinskii-Moriya interaction (DMI) and the out-of-plane magnetic field into the system. In this work, we explore a system without these interactions. First, we propose a controlled way for the creation of magnetic skyrmions and skyrmioniums imprinted on a ferromagnetic nanotrack via a nanopatterned nanodisk with the magnetic vortex state. Then we investigate the detachment of the imprinted spin textures from the underneath of the nanodisk, as well as its transport by the spin-transfer torque imposed by spin-polarized current pulses applied in the nanotrack. A prominent feature of the moving imprinted spin texture is that its topological number Q is oscillating around the averaged value of Q = 0 as if it is a resonant state between the skyrmions with Q = ± 1 and the bubble with Q = 0 . We may call it a resonant magnetic soliton (RMS). A RMS moves along a straight line since it is free from the skyrmion Hall effect. In our studied device, the same electrodes are employed to realize the imprinted spin texture detachment and its transport. In addition, we have investigated the interaction between the RMS and a magnetic tunnel junction sensor, where the passing of the RMS in the nanotrack can be well detected. Our results would be useful for the development of novel spintronic devices based on moveable spin textures.

  12. Stability of superfluid phases in the 2D spin-polarized attractive Hubbard model

    Science.gov (United States)

    Kujawa-Cichy, A.; Micnas, R.

    2011-08-01

    We study the evolution from the weak coupling (BCS-like limit) to the strong coupling limit of tightly bound local pairs (LPs) with increasing attraction, in the presence of the Zeeman magnetic field (h) for d=2, within the spin-polarized attractive Hubbard model. The broken symmetry Hartree approximation as well as the strong coupling expansion are used. We also apply the Kosterlitz-Thouless (KT) scenario to determine the phase coherence temperatures. For spin-independent hopping integrals (t↑=t↓), we find no stable homogeneous polarized superfluid (SCM) state in the ground state for the strong attraction and obtain that for a two-component Fermi system on a 2D lattice with population imbalance, phase separation (PS) is favoured for a fixed particle concentration, even on the LP (BEC) side. We also examine the influence of spin-dependent hopping integrals (mass imbalance) on the stability of the SCM phase. We find a topological quantum phase transition (Lifshitz type) from the unpolarized superfluid phase (SC0) to SCM and tricritical points in the h-|U| and t↑/t↓-|U| ground-state phase diagrams. We also construct the finite temperature phase diagrams for both t↑=t↓ and t↑≠t↓ and analyze the possibility of occurrence of a spin-polarized KT superfluid.

  13. Generalized Momentum Control of the Spin-Stabilized Magnetospheric Multiscale Formation

    Science.gov (United States)

    Queen, Steven Z.; Shah, Neerav; Benegalrao, Suyog S.; Blackman, Kathie

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented, spin-stabilized observatories elliptically orbiting the Earth in a tetrahedron formation. The on-board attitude control system adjusts the angular momentum of the system using a generalized thruster-actuated control system that simultaneously manages precession, nutation and spin. Originally developed using Lyapunov control-theory with rate-feedback, a published algorithm has been augmented to provide a balanced attitude/rate response using a single weighting parameter. This approach overcomes an orientation sign-ambiguity in the existing formulation, and also allows for a smoothly tuned-response applicable to both a compact/agile spacecraft, as well as one with large articulating appendages.

  14. Physics of projectile fragments

    International Nuclear Information System (INIS)

    Minamisono, Tadanori

    1982-01-01

    This is a study report on the polarization phenomena of the projectile fragments produced by heavy ion reactions, and the beta decay of fragments. The experimental project by using heavy ions with the energy from 50 MeV/amu to 250 MeV/amu was designed. Construction of an angle-dispersion spectrograph for projectile fragments was proposed. This is a two-stage spectrograph. The first stage is a QQDQQ type separator, and the second stage is QDQD type. Estimation shows that Co-66 may be separated from the nuclei with mass of 65 and 67. The orientation of fragments can be measured by detecting beta-ray. The apparatus consists of a uniform field magnet, an energy absorber, a stopper, a RF coil and a beta-ray hodoscope. This system can be used for not only this purpose but also for the measurement of hyperfine structure. (Kato, T.)

  15. Stabilization of 2D assemblies of silver nanoparticles by spin-coating polymers

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Longyu; Pfirman, Aubrie; Chumanov, George, E-mail: gchumak@clemson.edu

    2015-12-01

    Graphical abstract: - Highlights: • Spin-coating of polymers onto 2D assemblies of Ag NPs was used to stabilize the assemblies against aggregation. • The polymer filled the space between the particles leaving the metal surface uncoated and accessible to various chemical reactions. • Etching nanoparticles produced crater-like structures. - Abstract: Silver nanoparticles self-assembled on poly(4-vinylpyridine) modified surfaces were spin-coated with poly(methyl methacrylate), poly(butyl methacrylate) and polystyrene from anisole and toluene solutions. The polymers filled the space between the particles thereby providing stabilization of the assemblies against particle aggregation when dried or chemically modified. The polymers did not coat the top surface of the nanoparticles offering the chemical accessibility to the metal surface. This was confirmed by converting the stabilized nanoparticles into silver sulfide and gold clusters. Etching the nanoparticles resulted in crater-like polymeric structures with the cavities extending down to the underlying substrate. Electrochemical reduction of silver inside the craters was performed. The approach can be extended to other nanoparticle assemblies and polymers.

  16. Determination of extra trajectory parameters of projectile layout motion

    Science.gov (United States)

    Ishchenko, A.; Burkin, V.; Faraponov, V.; Korolkov, L.; Maslov, E.; Diachkovskiy, A.; Chupashev, A.; Zykova, A.

    2017-11-01

    The paper presents a brief description of the experimental track developed and implemented on the base of the RIAMM TSU for external trajectory investigations on determining the main aeroballistic parameters of various shapes projectiles, in the wide velocity range. There is comparison between the experimentally obtained dependence of the fin-stabilized projectile mock-up aerodynamic drag coefficient on the Mach number with the 1958 aerodynamic drag law and aerodynamic tests of the same mock-up

  17. High-velocity Penetration of Concrete Targets with Three Types of Projectiles: Experiments and Analysis

    Directory of Open Access Journals (Sweden)

    Shuang Zhang

    Full Text Available Abstract This study conducted high-velocity penetration experiments using conventional ogive-nose, double-ogive-nose, and grooved-tapered projectiles of approximately 2.5 kg and initial velocities between 1000 and 1360 m/s to penetrate or perforate concrete targets with unconfined compressive strengths of nominally 40MPa. The penetration performance data of these three types of projectiles with two different types of materials (i.e., AerMet100 and DT300 were obtained. The crater depth model considering both the projectile mass and the initial velocity was proposed based on the test results and a theoretical analysis. The penetration ability and the trajectory stability of these three projectile types were compared and analyzed accordingly. The results showed that, under these experimental conditions, the effects of these two different kinds of projectile materials on the penetration depth and mass erosion rate of projectile were not obvious. The existing models could not reflect the crater depths for projectiles of greater weights or higher velocities, whereas the new model established in this study was reliable. The double-ogive-nose has a certain effect of drag reduction. Thus, the double-ogive-nose projectile has a higher penetration ability than the conventional ogive-nose projectile. Meanwhile, the grooved-tapered projectile has a better trajectory stability, because the convex parts of tapered shank generated the restoring moment to stabilize the trajectory.

  18. Concrete structures under projectile impact

    CERN Document Server

    Fang, Qin

    2017-01-01

    In this book, the authors present their theoretical, experimental and numerical investigations into concrete structures subjected to projectile and aircraft impacts in recent years. Innovative approaches to analyze the rigid, mass abrasive and eroding projectile penetration and perforation are proposed. Damage and failure analyses of nuclear power plant containments impacted by large commercial aircrafts are numerically and experimentally analyzed. Ultra-high performance concrete materials and structures against the projectile impact are developed and their capacities of resisting projectile impact are evaluated. This book is written for the researchers, engineers and graduate students in the fields of protective structures and terminal ballistics.

  19. Spin dynamics and thermal stability in L10 FePt

    Science.gov (United States)

    Chen, Tianran; Toomey, Wahida

    Increasing the data storage density of hard drives remains one of the continuing goals in magnetic recording technology. A critical challenge for increasing data density is the thermal stability of the written information, which drops rapidly as the bit size gets smaller. To maintain good thermal stability in small bits, one should consider materials with high anisotropy energy such as L10 FePt. High anisotropy energy nevertheless implies high coercivity, making it difficult to write information onto the disk. This issue can be overcome by a new technique called heat-assisted magnetic recording, where a laser is used to locally heat the recording medium to reduce its coercivity while retaining relatively good thermal stability. Many of the microscopic magnetic properties of L10 FePt, however, have not been theoretically well understood. In this poster, I will focus on a single L10 FePt grain, typically of a few nanometers. Specifically, I will discuss its critical temperature, size effect and, in particular, spin dynamics in the writing process, a key to the success of heat-assisted magnetic recording. WCU URF16.

  20. Initiation of Gaseous Detonation by Conical Projectiles

    Science.gov (United States)

    Verreault, Jimmy

    Initiation and stabilization of detonation by hypersonic conical projectiles launched into combustible gas mixtures is investigated. This phenomenon must be understood for the design and optimization of specific hypersonic propulsion devices, such as the oblique detonation wave engine and the ram accelerator. The criteria for detonation initiation by a projectile is also related to fundamental aspects of detonation research, such as the requirement for direct initiation of a detonation by a blast wave. Experimental results of this problem also offer useful references for validation of numerical and theoretical modeling. Projectiles with cone half angles varying from 15° to 60° were launched into stoichiometric mixtures of hydrogen/oxygen with 70% argon dilution at initial pressures between 10 and 200 kPa. The projectiles were launched from a combustion-driven gas gun at velocities up to 2.2 km/s (corresponding to 133% of the Chapman Jouguet velocity). Pictures of the flowfields generated by the projectiles were taken via Schlieren photography. Five combustion regimes were observed about the projectile ranging from prompt and delayed oblique detonation wave formation, combustion instabilities, a wave splitting, and an inert shock wave. Two types of transition from the prompt oblique detonation wave regime to the inert shock regime were observed. The first (the delayed oblique detonation wave regime) showed an inert shock attached to the tip of the projectile followed by a sharp kink at the onset of an oblique detonation wave; this regime occurred by decreasing the cone angle at high mixture pressures. The second (the combustion instabilities regime) exhibited large density gradients due to combustion ignition and quenching phenomena; this regime occurred by decreasing the mixture pressure at large cone angles. A number of theoretical models were considered to predict critical conditions for the initiation of oblique detonations. The Lee-Vasiljev model agreed

  1. EMGWS, D1 projectile tests

    International Nuclear Information System (INIS)

    Creighton, W.J.

    1991-01-01

    This paper reports on the 90 mm EMGWS D1 Projectile which is an unguided projectile that is designed for launch from an Electromagnetic gun to achieve significant armor penetration. It is being developed under the broader program called Electromagnetic Gun Weapon System (EMGWS) which is sponsored by DARPA, DNA, and the U.S. Army. The 90 mm D1 Type II 'workhorse' Projectile is used to prove out material strength, fabrication techniques, and projectile structural integrity. The type II flight projectile is designed to allow maximum stress levels of 100-ksi when launched at 100-kilogees peak acceleration. The total weight of the projectile is 2.0 kg to attain a muzzle velocity of 3.0 km/s from a 9-Megajoule EM Gun. The Type II projectile configuration employs a tungsten nosetip plus 12 segmented tungsten penetrators, a two-piece aluminum discarding sabot, an aluminum pusher plate, and a nylon obturator. The pusher plate can incorporate either a solid or plasma armature

  2. Influence of spin on fission fragments anisotropy

    Directory of Open Access Journals (Sweden)

    Ghodsi Omid N.

    2005-01-01

    Full Text Available An analysis of selected fission fragment angular distribution when at least one of the spins of the projectile or target is appreciable in induced fission was made by using the statistical scission model. The results of this model predicate that the spins of the projectile or target are affected on the nuclear level density of the compound nucleus. The experimental data was analyzed by means of the couple channel spin effect formalism. This formalism suggests that the projectile spin is more effective on angular anisotropies within the limits of energy near the fusion barrier.

  3. Computed tomography of projectile injuries

    International Nuclear Information System (INIS)

    Jeffery, A.J.; Rutty, G.N.; Robinson, C.; Morgan, B.

    2008-01-01

    Computed tomography (CT) is a gold standard in clinical imaging but forensic professions have been slow to embrace radiological advances. Forensic applications of CT are now exponentially expanding, replacing other imaging methods. As post-mortem cross-sectional imaging increases, radiologists will fall under increasing pressure to interpret complex forensic cases involving both living and deceased patients. This review presents a wide variety of weapon and projectile types aiding interpretation of projectile injuries both in forensic and clinical practice

  4. Generalized Momentum Control of the Spin-Stabilized Magnetospheric Multiscale (MMS) Formation

    Science.gov (United States)

    Benegalrao, Suyog; Queen, Steven; Shah, Neerav; Blackman, Kathleen

    2015-01-01

    Angular momentum control maneuvers required to keep spin-axis in science box. Traditional approach uses de-coupled modes for pointing, spin, nutation Impractical for MMS Frequency and Number of maneuvers (Orbit Control, Pointing, Nutation, Spin, four observatories, every 2-4 weeks). Difficult to implement de-coupled open-loop control with flexible wire booms. Desire a unified angular momentum controller. Comprehensively control pointing, spin, and nutation.

  5. Projectile penetration into ballistic gelatin.

    Science.gov (United States)

    Swain, M V; Kieser, D C; Shah, S; Kieser, J A

    2014-01-01

    Ballistic gelatin is frequently used as a model for soft biological tissues that experience projectile impact. In this paper we investigate the response of a number of gelatin materials to the penetration of spherical steel projectiles (7 to 11mm diameter) with a range of lower impacting velocities (projectile velocity are found to be linear for all systems above a certain threshold velocity required for initiating penetration. The data for a specific material impacted with different diameter spheres were able to be condensed to a single curve when the penetration depth was normalised by the projectile diameter. When the results are compared with a number of predictive relationships available in the literature, it is found that over the range of projectiles and compositions used, the results fit a simple relationship that takes into account the projectile diameter, the threshold velocity for penetration into the gelatin and a value of the shear modulus of the gelatin estimated from the threshold velocity for penetration. The normalised depth is found to fit the elastic Froude number when this is modified to allow for a threshold impact velocity. The normalised penetration data are found to best fit this modified elastic Froude number with a slope of 1/2 instead of 1/3 as suggested by Akers and Belmonte (2006). Possible explanations for this difference are discussed. © 2013 Published by Elsevier Ltd.

  6. Vortex spin-torque oscillator stabilized by phase locked loop using integrated circuits

    Directory of Open Access Journals (Sweden)

    Martin Kreissig

    2017-05-01

    Full Text Available Spin-torque nano-oscillators (STO are candidates for the next technological implementation of spintronic devices in commercial electronic systems. For use in microwave applications, improving the noise figures by efficient control of their phase dynamics is a mandatory requirement. In order to achieve this, we developed a compact phase locked loop (PLL based on custom integrated circuits (ICs and demonstrate that it represents an efficient way to reduce the phase noise level of a vortex based STO. The advantage of our approach to phase stabilize STOs is that our compact system is highly reconfigurable e.g. in terms of the frequency divider ratio N, RF gain and loop gain. This makes it robust against device to device variations and at the same time compatible with a large range of STOs. Moreover, by taking advantage of the natural highly non-isochronous nature of the STO, the STO frequency can be easily controlled by e.g. changing the divider ratio N.

  7. Prevention of breakdown behind railgun projectiles

    International Nuclear Information System (INIS)

    Hawke, R.S.

    1992-01-01

    An electromagnetic railgun accelerator system, for accelerating projectiles by a plasma arc, introduces a breakdown inhibiting gas into the railgun chamber behind the accelerating projectile. The breakdown inhibiting gas, which absorbs electrons, is a halide or a halide compound such as fluorine or SF 6 . The gas is introduced between the railgun rails after the projectile has passed through inlets in the rails or the projectile; by coating the rails or the projectile with a material which releases the gas after the projectile passes over it; by fabricating the rails or the projectile or insulators out of a material which releases the gas into the portions of the chamber through which the projectile has travelled. The projectile may have a cavity at its rear to control the release of ablation products. 12 figs

  8. Dispersion Analysis of the XM881APFSDS Projectile

    Directory of Open Access Journals (Sweden)

    Thomas F. Erline

    2001-01-01

    Full Text Available This study compares the results of a dispersion test with mathematical modeling. A 10-round group of modified 25-mm XM881 Armor Piercing Fin Stabilized Discarding Sabot projectiles was fired from the M242 chain gun into a designated target. The mathematical modeling results come from BALANS, a product of Arrow Tech Associates. BALANS is a finite-element lumped parameter code that has the capability to model a flexible projectile being fired from a flexible gun. It also has the unique feature of an automated statistical evaluation of dispersion. This study represents an effort to evaluate a simulation approach with experiment.

  9. Boundary layer stability on a yawed spinning body of revolution and its effect on the magnus force and moment

    Science.gov (United States)

    Jacobson, I. D.; Morton, J. B.

    1972-01-01

    The parameters are established which are important to the stability of a boundary layer flow over a yawed spinning cylinder in a uniform stream. It is shown that transition occurs asymmetrically in general and this asymmetry can be important for the prediction of aerodynamic forces and moments (e.g., the Magnus effect). Instability of the steady-state boundary layer flow is determined using small disturbance theory. Although the approach is strictly valid only for the calculation of the conditions for stability in the small, experimental data indicate that in many problems, it provides a good estimate for the transition to turbulence.

  10. A model for projectile fragmentation

    International Nuclear Information System (INIS)

    Chaudhuri, G; Mallik, S; Gupta, S Das

    2013-01-01

    A model for projectile fragmentation is developed whose origin can be traced back to the Bevalac era. The model positions itself between the phenomenological EPAX parametrization and transport models like 'Heavy Ion Phase Space Exploration' (HIPSE) model and antisymmetrised molecular dynamics (AMD) model. A very simple impact parameter dependence of input temperature is incorporated in the model which helps to analyze the more peripheral collisions. The model is applied to calculate the charge, isotopic distributions, average number of intermediate mass fragments and the average size of largest cluster at different Z bound of different projectile fragmentation reactions at different energies.

  11. Electromagnetic launcher for heavy projectiles

    Science.gov (United States)

    Kozlov, A. V.; Kotov, A. V.; Polistchook, V. P.; Shurupov, A. V.; Shurupov, M. A.

    2017-11-01

    In this paper, we present the electromagnetic launcher with capacitive power source of 4.8 MJ. Our installation allows studying of the projectile acceleration in railgun in two regimes: with a solid armature and with a plasma piston. The experiments with plasma piston were performed in the railgun with the length of barrel of 0.7-1.0 m and its inner diameter of 17-24 mm. The velocities of lexan projectiles with weight of 5-15 g were in a range of 2.5-3.5 km/s. The physical mechanisms that limit speed of throwing in railgun are discussed.

  12. Effect of projectile on incomplete fusion reactions at low energies

    Directory of Open Access Journals (Sweden)

    Sharma Vijay R.

    2017-01-01

    Full Text Available Present work deals with the experimental studies of incomplete fusion reaction dynamics at energies as low as ≈ 4 - 7 MeV/A. Excitation functions populated via complete fusion and/or incomplete fusion processes in 12C+175Lu, and 13C+169Tm systems have been measured within the framework of PACE4 code. Data of excitation function measurements on comparison with different projectile-target combinations suggest the existence of ICF even at slightly above barrier energies where complete fusion (CF is supposed to be the sole contributor, and further demonstrates strong projectile structure dependence of ICF. The incomplete fusion strength functions for 12C+175Lu, and 13C+169Tm systems are analyzed as a function of various physical parameters at a constant vrel ≈ 0.053c. It has been found that one neutron (1n excess projectile 13C (as compared to 12C results in less incomplete fusion contribution due to its relatively large negative α-Q-value, hence, α Q-value seems to be a reliable parameter to understand the ICF dynamics at low energies. In order to explore the reaction modes on the basis of their entry state spin population, the spin distribution of residues populated via CF and/or ICF in 16O+159Tb system has been done using particle-γ coincidence technique. CF-α and ICF-α channels have been identified from backward (B and forward (F α-gated γspectra, respectively. Reaction dependent decay patterns have been observed in different α emitting channels. The CF channels are found to be fed over a broad spin range, however, ICF-α channels was observed only for high-spin states. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states

  13. Effect of projectile on incomplete fusion reactions at low energies

    Science.gov (United States)

    Sharma, Vijay R.; Shuaib, Mohd.; Yadav, Abhishek; Singh, Pushpendra P.; Sharma, Manoj K.; Kumar, R.; Singh, Devendra P.; Singh, B. P.; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.; Prasad, R.

    2017-11-01

    Present work deals with the experimental studies of incomplete fusion reaction dynamics at energies as low as ≈ 4 - 7 MeV/A. Excitation functions populated via complete fusion and/or incomplete fusion processes in 12C+175Lu, and 13C+169Tm systems have been measured within the framework of PACE4 code. Data of excitation function measurements on comparison with different projectile-target combinations suggest the existence of ICF even at slightly above barrier energies where complete fusion (CF) is supposed to be the sole contributor, and further demonstrates strong projectile structure dependence of ICF. The incomplete fusion strength functions for 12C+175Lu, and 13C+169Tm systems are analyzed as a function of various physical parameters at a constant vrel ≈ 0.053c. It has been found that one neutron (1n) excess projectile 13C (as compared to 12C) results in less incomplete fusion contribution due to its relatively large negative α-Q-value, hence, α Q-value seems to be a reliable parameter to understand the ICF dynamics at low energies. In order to explore the reaction modes on the basis of their entry state spin population, the spin distribution of residues populated via CF and/or ICF in 16O+159Tb system has been done using particle-γ coincidence technique. CF-α and ICF-α channels have been identified from backward (B) and forward (F) α-gated γspectra, respectively. Reaction dependent decay patterns have been observed in different α emitting channels. The CF channels are found to be fed over a broad spin range, however, ICF-α channels was observed only for high-spin states. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states

  14. Stabilization of the Electron-Nuclear Spin Orientation in Quantum Dots by the Nuclear Quadrupole Interaction

    Science.gov (United States)

    Dzhioev, R. I.; Korenev, V. L.

    2007-07-01

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  15. Batch Computed Tomography Analysis of Projectiles

    Science.gov (United States)

    2016-05-01

    ARL-TR-7681 ● MAY 2016 US Army Research Laboratory Batch Computed Tomography Analysis of Projectiles by Michael C Golt, Chris M...Laboratory Batch Computed Tomography Analysis of Projectiles by Michael C Golt and Matthew S Bratcher Weapons and Materials Research...values to account for projectile variability in the ballistic evaluation of armor. 15. SUBJECT TERMS computed tomography , CT, BS41, projectiles

  16. Stability and replica symmetry in the ising spin glass: a toy model

    International Nuclear Information System (INIS)

    De Dominicis, C.; Mottishaw, P.

    1986-01-01

    Searching for possible replica symmetric solutions in an Ising spin glass (in the tree approximation) we investigate a toy model whose bond distribution has two non vanishing cumulants (instead of one only as in a gaussian distribution)

  17. A Kalman Filter for Mass Property and Thrust Identification of the Spin-Stabilized Magnetospheric Multiscale Formation

    Science.gov (United States)

    Queen, Steven Z.

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented, spin-stabilized observatories, elliptically orbiting the Earth in a tetrahedron formation. For the operational success of the mission, on-board systems must be able to deliver high-precision orbital adjustment maneuvers. On MMS, this is accomplished using feedback from on-board star sensors in tandem with accelerometers whose measurements are dynamically corrected for errors associated with a spinning platform. In order to determine the required corrections to the measured acceleration, precise estimates of attitude, rate, and mass-properties are necessary. To this end, both an on-board and ground-based Multiplicative Extended Kalman Filter (MEKF) were formulated and implemented in order to estimate the dynamic and quasi-static properties of the spacecraft.

  18. Self-oscillation in spin torque oscillator stabilized by field-like torque

    International Nuclear Information System (INIS)

    Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi; Imamura, Hiroshi

    2014-01-01

    The effect of the field-like torque on the self-oscillation of the magnetization in spin torque oscillator with a perpendicularly magnetized free layer was studied theoretically. A stable self-oscillation at zero field is excited for negative β while the magnetization dynamics stops for β = 0 or β > 0, where β is the ratio between the spin torque and the field-like torque. The reason why only the negative β induces the self-oscillation was explained from the view point of the energy balance between the spin torque and the damping. The oscillation power and frequency for various β were also studied by numerical simulation

  19. MnNi-based spin valve sensors combining high thermal stability, small footprint and pTesla detectivities

    Science.gov (United States)

    Silva, Marília; Leitao, Diana C.; Cardoso, Susana; Freitas, Paulo

    2018-05-01

    Magnetoresistive sensors with high thermal robustness, low noise and high spatial resolution are the answer to a number of challenging applications. Spin valve sensors including MnNi as antiferromagnet layer provide higher exchange bias field and improved thermal stability. In this work, the influence of the buffer layer type (Ta, NiFeCr) and thickness on key sensor parameters (e.g. offset field, Hf) is investigated. A Ta buffer layer promotes a strong (111) texture which leads to a higher value of MR. In contrast, Hf is lower for NiFeCr buffer. Micrometric sensors display thermal noise levels of 1 nT/Hz1/2 and 571 pT/Hz1/2 for a sensor height (h) of 2 and 4 μm, respectively. The temperature dependence of MR and sensitivity is also addressed and compared with MnIr based spin valves. In this case, MR abruptly decreases after heating at 160°C (without magnetic field), contrary to MnNi-based spin valves, where only a 10% MR decrease (relative to the initial value) is seen at 275°C. Finally, to further decrease the noise levels and improve detectivity, MnNi spin-valves are deposited vertically, and connected in parallel and series (in-plane) to create a device with low resistance and high sensitivity. A field detection at thermal level of 346 pT/Hz1/2 is achieved for a device with a total of 300 SVs (4 vertical, 15 in series, 5 in parallel).

  20. Projectile Balloting Attributable to Gun Tube Curvature

    Directory of Open Access Journals (Sweden)

    Michael M. Chen

    2010-01-01

    Full Text Available Transverse motion of a projectile during launch is detrimental to firing accuracy, structural integrity, and/or on-board electronics performance of the projectile. One manifest contributing factor to the undesired motion is imperfect bore centerline straightness. This paper starts with the presentation of a deterministic barrel model that possesses both vertical and lateral deviations from centerline in accordance with measurement data, followed by a novel approach to simulating comprehensive barrel centerline variations for the investigation of projectile balloting^1 motions. A modern projectile was adopted for this study. In-bore projectile responses at various locations of the projectile while traveling through the simulated gun tubes were obtained. The balloting was evaluated in both time and frequency domains. Some statistical quantities and the significance were outlined.

  1. Predicting the Accuracy of Unguided Artillery Projectiles

    Science.gov (United States)

    2016-09-01

    ability to penetrate a target. If the impact angle is small, the projectile may more likely ricochet, and any penetration will not be as deep as a...projectile experiences less drag and thus increased impact velocity and penetration . However, a blunt nose projectile has more strength at the tip and...fire 15. NUMBER OF PAGES 139 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF THIS PAGE

  2. Embolism of high energy firearm projectile

    Directory of Open Access Journals (Sweden)

    Jaime Álvarez Soler

    2016-12-01

    Full Text Available The embolism of a projectile is very rare and out of the normal context, so the cor-oner in front of a wound projectile firearm must make a very judicious and careful analysis to recover the projectile and/or its fragments. This case presents evidence how modern military high-velocity weapons have a high kinetic energy which is transferred to body tissues, so including their fragments and parts of the projectile can cause serious injury and embolism, requiring a great effort scientific and in-terdisciplinary to give technical support to justice.

  3. The influence of aerodynamic coefficients on the elements of classic projectile paths

    Directory of Open Access Journals (Sweden)

    Damir D. Jerković

    2011-04-01

    Full Text Available The article deals with the results of the research on the influence of aerodynamic coefficient values on the trajectory elements and the stability parameters of classic axisymmetric projectiles. It presents the characteristic functions of aerodynamic coefficients with regard to aerodynamic parameters and the projectile body shape. The trajectory elements of the model of classic axisymmetric projectiles and the analyses of their changes were presented with respect to the aerodynamic coefficient values. Introduction Classic axisymmetric projectiles fly through atmosphere using muzzle velocity as initial energy resource, so the aerodynamic force and moment have the most significant influence on the motion of projectiles. The aerodynamic force and moment components represented as aerodynamic coefficients depend on motion velocity i. e. flow velocity, the flow features produced by projectile shape and position in the flow, and angular velocity (rate of the body. The functional dependence of aerodynamic coefficients on certain influential parameters, such as angle of attack and angular velocity components is expressed by the derivative of aerodynamic coefficients. The determination of aerodynamic coefficients and derivatives enables complete definition of the aerodynamic force and moment acting on the classic projectile. The projectile motion problem is considered in relation to defining the projectile stability parameters and the conditions under which the stability occurs. The comparative analyses of aerodynamic coefficient values obtained by numerical methods, semi empirical calculations and experimental research give preliminary evaluation of the quality of the determined values. The flight simulation of the motion of a classic axisymetric projectile, which has the shape defined by the aerodynamic coefficient values, enables the comparative analyses of the trajectory elements and stability characteristics. The model of the classic projectile

  4. Stability of trans-fermium elements at high spin: Measuring the fission barrier of 254No

    International Nuclear Information System (INIS)

    Henning, Greg

    2012-01-01

    Super heavy nuclei provide opportunities to study nuclear structure near three simultaneous limits: in charge Z, spin I and excitation energy E*. These nuclei exist only because of a fission barrier, created by shell effects. It is therefore important to determine the fission barrier and its spin dependence B f (I), which gives information on the shell energy E(shell)(I). Theoretical calculations predict different fission barrier heights from B f (I = 0) = 6.8 MeV for a macro-microscopic model to 8.7 MeV for Density Functional Theory calculations using the Gogny or Skyrme interactions. Hence, a measurement of B f provides a test for theories.To investigate the fission barrier, an established method is to measure the rise of fission with excitation energy, characterized by the ratio of decay widths Γ(fission)/Γ(total), using transfer reactions. However, for heavy elements such as 254 No, there is no suitable target for a transfer reaction. We therefore rely on the complementary decay widths ratio Γ γ /Γ(fission) and its spin dependence, deduced from the entry distribution (I, E*).Measurements of the gamma-ray multiplicity and total energy for 254 No have been performed with beam energies of 219 and 223 MeV in the reaction 208 Pb( 48 Ca,2n) at ATLAS (Argonne Tandem Linac Accelerator System). The 254 No gamma rays were detected using the Gammasphere array as a calorimeter - as well as the usual high resolution γ-ray detector. Coincidences with evaporation residues at the Fragment Mass Analyzer focal plane separated 254 No gamma rays from those from fission fragments, which are ≥ 10 6 more intense. From this measurement, the entry distribution - i.e. the initial distribution of I and E* - is constructed. Each point (I,E*) of the entry distribution is a point where gamma decay wins over fission and, therefore, gives information on the fission barrier. The measured entry distributions show an increase in the maximum spin and excitation energy from 219 to 223 Me

  5. Graphical Method for Determining Projectile Trajectory

    Science.gov (United States)

    Moore, J. C.; Baker, J. C.; Franzel, L.; McMahon, D.; Songer, D.

    2010-01-01

    We present a nontrigonometric graphical method for predicting the trajectory of a projectile when the angle and initial velocity are known. Students enrolled in a general education conceptual physics course typically have weak backgrounds in trigonometry, making inaccessible the standard analytical calculation of projectile range. Furthermore,…

  6. On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetry

    International Nuclear Information System (INIS)

    Carvalho-Santos, V.L.; Apolonio, F.A.; Oliveira-Neto, N.M.

    2013-01-01

    We study the Heisenberg model on cylindrically symmetric curved surfaces. Two kinds of excitations are considered. The first is given by the isotropic regime, yielding the sine-Gordon equation and π solitons are predicted. The second one is given by the XY model, leading to a vortex turning around the surface. Helical states are also considered, however, topological arguments cannot be used to ensure its stability. The energy and the anisotropy parameter which stabilizes the vortex state are explicitly calculated for two surfaces: catenoid and hyperboloid. The results show that the anisotropy and the vortex energy depends on the underlying geometry. -- Highlights: •Applying the anisotropic Heisenberg model on curved surfaces. •Appearance of topological solitons on curved surfaces with cylindrical symmetry. •Calculus of the vortex energy, which depends on curvature. •Discussion on features of non-topological helical-like states. •Vortex stability ensured by the anisotropy parameter value

  7. Variational study of the stability of the Nagaoka state against single-spin flips in the two-dimensional t-t#prime# Hubbard model

    International Nuclear Information System (INIS)

    Bajdich, M.; Hlubina, R.

    2001-01-01

    Making use of variational wave functions of the Basile-Elser type we study the stability of the Nagaoka state against single-spin flips in the two-dimensional t-t#prime# Hubbard model for t#prime#/t∼0.5. In the low-density limit the variational estimate of the stability region of the Nagaoka state is in qualitative agreement with the predictions of the T-matrix approximation

  8. Effect of spin-orbit interactions on the structural stability, thermodynamic properties, and transport properties of lead under pressure

    Science.gov (United States)

    Smirnov, N. A.

    2018-03-01

    The paper investigates the role of spin-orbit interaction in the prediction of structural stability, lattice dynamics, elasticity, thermodynamic and transport properties (electrical resistivity and thermal conductivity) of lead under pressure with the FP-LMTO (full-potential linear-muffin-tin orbital) method for the first-principles band structure calculations. Our calculations were carried out for three polymorphous lead modifications (fcc, hcp, and bcc) in generalized gradient approximation with the exchange-correlation functional PBEsol. They suggest that compared to the scalar-relativistic calculation, the account for the SO effects insignificantly influences the compressibility of Pb. At the same time, in the calculation of phonon spectra and transport properties, the role of SO interaction is important, at least, for P ≲150 GPa. At higher pressures, the contribution from SO interaction reduces but not vanishes. As for the relative structural stability, our studies show that SO effects influence weakly the pressure of the fcc →hcp transition and much higher the pressure of the hcp →bcc transition.

  9. Charge-exchange products of BEVALAC projectiles

    International Nuclear Information System (INIS)

    Rasmussen, J.

    1982-11-01

    There is a substantial production of fragments of all masses lighter than the projectile, such fragments being centered in a narrow region of velocity space around the beam velocity. The exciting studies about anomalons deal with the curious enhanced reactivity of some of these secondary fragments. I direct attention here to the rather rare fragments of the same mass number as the projectile but differing in charge by one unit. We also keep track, as a frame of reference, of the products that have lost one neutron from the projectile

  10. Stability of MR brain-perfusion measurement using arterial spin labeling

    Energy Technology Data Exchange (ETDEWEB)

    Petr, Jan; Hofheinz, Frank; Platzek, Ivan; Schramm, Georg; Van Den Hoff, Jorg [Helmholtz-Center Dresden-Rossendorf, PET Center, Institute of Radiopharmaceutical Cancer Research (Germany)

    2015-05-18

    Arterial spin labeling (ASL) is an MR technique for assessment of cerebral blood flow (CBF) that does not require use of contrast agents which makes it a less invasive alternative to the 15O-H2O-PET measurement. The repeatability of ASL has been studied extensively but mainly in young healthy volunteers. We have tested repeatability of ASL under realistic clinical conditions in elderly brain tumor patients acquired with a Philips Ingenuity TF PET/MR in the context of an ongoing 11C-Methionine PET/MR study. Twenty three patients (age 54.8±13.0 y) were scanned on two or more session. The patients underwent 6 weeks of concurrent radiochemotherapy with Temozolomide between the first session and second measurement. The mean relative difference of gray matter CBF was 18.6% between the first two session and 13.0% for the second session and further on. The mean gray matter CBF was 46.6±7.2 mL/min/100 g on the first sessions and there was a significant decrease of 9.8% between first and second session (p=0.027). In summary, the ASL presents measurement of CBF with reasonable repeatability also in elderly patients under clinical conditions when it is not possible to control for all sources of variation. Significant decrease of CBF in healthy tissue was observed after the radiochemotherapy. Prospectively, the ASL data together with the also acquired 11C-Methionine PET will be evaluated regarding their separate and combined ability to predict patient outcome and effectiveness of the performed radiochemotherapy.

  11. Penetration of fast projectiles into resistant media: From macroscopic to subatomic projectiles

    Science.gov (United States)

    Gaite, José

    2017-09-01

    The penetration of a fast projectile into a resistant medium is a complex process that is suitable for simple modeling, in which basic physical principles can be profitably employed. This study connects two different domains: the fast motion of macroscopic bodies in resistant media and the interaction of charged subatomic particles with matter at high energies, which furnish the two limit cases of the problem of penetrating projectiles of different sizes. These limit cases actually have overlapping applications; for example, in space physics and technology. The intermediate or mesoscopic domain finds application in atom cluster implantation technology. Here it is shown that the penetration of fast nano-projectiles is ruled by a slightly modified Newton's inertial quadratic force, namely, F ∼v 2 - β, where β vanishes as the inverse of projectile diameter. Factors essential to penetration depth are ratio of projectile to medium density and projectile shape.

  12. Projectile Aerodynamic Jump Due to Lateral Impulsives

    National Research Council Canada - National Science Library

    Cooper, Gene

    2003-01-01

    .... The formulation shows for sufficiently long-range target interception; lateral impulse trajectory response for a guided projectile is independent of when the impulse is activated during the yaw cycle...

  13. High-temperature stability of electron transport in semiconductors with strong spin-orbital interaction

    Science.gov (United States)

    Tomaka, G.; Grendysa, J.; ŚliŻ, P.; Becker, C. R.; Polit, J.; Wojnarowska, R.; Stadler, A.; Sheregii, E. M.

    2016-05-01

    Experimental results of the magnetotransport measurements (longitudinal magnetoresistance Rx x and the Hall resistance Rx y) are presented over a wide interval of temperatures for several samples of Hg1 -xCdxTe (x ≈0.13 -0.15 ) grown by MBE—thin layers (thickness about 100 nm) strained and not strained and thick ones with thickness about 1 μ m . An amazing temperature stability of the SdH-oscillation period and amplitude is observed in the entire temperature interval of measurements up to 50 K. Moreover, the quantum Hall effect (QHE) behavior of the Hall resistance is registered in the same temperature interval. These peculiarities of the Rx x and Rx y for strained thin layers are interpreted using quantum Hall conductivity (QHC) on topologically protected surface states (TPSS) [C. Brüne et al., Phys. Rev. Lett. 106, 126803 (2011), 10.1103/PhysRevLett.106.126803]. In the case of not strained layers it is assumed that the QHC on the TPSS (or on the resonant interface states) contributes also to the conductance of the bulk samples.

  14. Thermal Stability of P-Type BiSbTe Alloys Prepared by Melt Spinning and Rapid Sintering

    Directory of Open Access Journals (Sweden)

    Yun Zheng

    2017-06-01

    Full Text Available P-type BiSbTe alloys have been widely implemented in waste heat recovery from low-grade heat sources below 600 K, which may involve assorted environments and conditions, such as long-term service, high-temperature exposure (generally 473–573 K and mechanical forces. It is important to evaluate the service performance of these materials in order to prevent possible failures in advance and extend the life cycle. In this study, p-type Bi0.5Sb1.5Te3 commercial zone-melting (ZM ingots were processed by melt spinning and subsequent plasma-activated sintering (MS-PAS, and were then subjected to vacuum-annealing at 473 and 573 K, respectively, for one week. The results show that MS-PAS samples exhibit excellent thermal stability when annealed at 473 K. However, thermal annealing at 573 K for MS-PAS specimens leads to the distinct sublimation of the element Te, which degrades the hole concentration remarkably and results in inferior thermoelectric performance. Furthermore, MS-PAS samples annealed at 473 K demonstrate a slight enhancement in flexural and compressive strengths, probably due to the reduction of residual stress induced during the sintering process. The current work guides the reliable application of p-type Bi0.5Sb1.5Te3 compounds prepared by the MS-PAS technique.

  15. Thermal stability study of the insulator layer in NiFe/CoFe/Al2O3/Co spin-dependent tunnel junction

    International Nuclear Information System (INIS)

    Liao, C.C.; Ho, C.H.; Huang, R.-T.; Chen, F.-R.; Kai, J.J.; Chen, L.-C.; Lin, M.-T.; Yao, Y.D.

    2002-01-01

    Spin-dependent tunnel junction, NiFe/CoFe/Al 2 O 3 /Co//Si, was fabricated to investigate the thermal stability induced diffusion behaviors. The interfacial diffusion causes the degradation of the ratio of the TMR, the enhancement of the switching field of the two magnetic electrodes, the thickness decrease of the insulator layer, and the increase of the interfacial roughness. The outward diffusion of oxygen from the insulator layer is faster than that of aluminum for samples annealed below 400 deg. C. The degradation of the ratio of TMR is attributed to the disturbance of the spin polarization in the magnetic layers, and the increase of the pinholes and spin-flip effect in the insulator layer. The relative roughness between the two interfaces of the insulator induces the surface magnetic dipoles, and hence, increases the switching field of the ferromagnetic electrodes

  16. Decay patterns of target-like and projectile-like nuclei in 84Kr+197Au, natU reactions at E/A=150 MeV

    International Nuclear Information System (INIS)

    Quednau, B.M.; Galin, J.; Ledoux, X.; Crema, E.; Gebauer, B.; Hilscher, D.; Jahnke, U.; Jacquet, D.; Leray, S.; and others.

    1996-01-01

    The reactions 84 Kr+ 197 Au and 84 Kr+ nat U were studied at E/A=150 MeV employing the large-volume neutron multiplicity filter ORION at SATURNE. The observed correlations between the atomic number of projectile-like nuclei and neutron multiplicity indicate large excitation energies in the primary projectile- and target-like fragments. Angular correlations between the fission fragments of the U-like nucleus and the projectile-like fragments show a memory of the reaction plane, however no indications of spin effects are found. (author)

  17. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  18. Simulation of the flow past a long-range artillery projectile

    OpenAIRE

    Kaurinkoski, Petri

    2000-01-01

    In this work, an eddy breakup model for chemical reactions is implemented to an existing multi-block Navier-Stokes solver, which is then used to solve the flow past a supersonic long-range base-bleed projectile. The new scheme is validated by simulating an axisymmetric bluff-body stabilized flame, which has been measured in a wind tunnel and simulated numerically by other work groups. Comparison of the numerical results for the projectile shows the importance of the chemistry modelling fo...

  19. Projectile rapidity dependence in target fragmentation

    International Nuclear Information System (INIS)

    Haustein, P.E.; Cumming, J.B.; Hseuh, H.C.

    1979-01-01

    The thick-target, thick-catcher technique was used to determine mean kinetic properties of selected products of the fragmentation of Cu by 1 H, 4 He, and 12 C ions (180 to 28,000 MeV/amu). Momentum transfer, as inferred from F/B ratios, is ovserved to occur most efficiently for the lower velocity projectiles. Recoil properties of target fragments vary strongly with product mass, but show only a weak dependence on projectile type. The projectile's rapidity is shown to be a useful variable for quantitative intercomparison of different reactions. These results indicate that E/sub proj//A/sub proj/ is the dominant parameter which governs the mean recoil behavior of target fragments. 20 references

  20. Dynamic effects of interaction of composite projectiles with targets

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, V. M. [Scientific Research Institute of Applied Mathematics and Mechanics of Tomsk State University, 36, Lenin Avenue, Tomsk, 634050 (Russian Federation)

    2016-01-15

    The process of high-speed impact of projectiles against targets of finite thickness is experimentally investigated. Medium-hard steel plates are used as targets. The objective of this research is to carry out a comparative analysis of dynamic effects of interaction of various types of projectiles with targets, such as characteristics of destruction of the target, the state of the projectile behind the target, and particularities of the after-penetration stream of fragments after the target has been pierced. The projectiles are made of composites on the basis of tungsten carbide obtained by caking and the SHS-technology. To compare effectiveness of composite projectiles steel projectiles are used. Their effectiveness was estimated in terms of the ballistic limit. High density projectiles obtained by means of the SHS-technology are shown to produce results comparable in terms of the ballistic limit with high-strength projectiles that contain tungsten received by caking.

  1. Maximizing the Range of a Projectile.

    Science.gov (United States)

    Brown, Ronald A.

    1992-01-01

    Discusses solutions to the problem of maximizing the range of a projectile. Presents three references that solve the problem with and without the use of calculus. Offers a fourth solution suitable for introductory physics courses that relies more on trigonometry and the geometry of the problem. (MDH)

  2. Cambodian students’ prior knowledge of projectile motion

    Science.gov (United States)

    Piten, S.; Rakkapao, S.; Prasitpong, S.

    2017-09-01

    Students always bring intuitive ideas about physics into classes, which can impact what they learn and how successful they are. To examine what Cambodian students think about projectile motion, we have developed seven open-ended questions and applied into grade 11 students before (N=124) and after (N=131) conventional classes. Results revealed several consistent misconceptions, for instance, many students believed that the direction of a velocity vector of a projectile follows the curved path at every position. They also thought the direction of an acceleration (or a force) follows the direction of motion. Observed by a pilot sitting on the plane, the falling object, dropped from a plane moving at a constant initial horizontal speed, would travel backward and land after the point of its release. The greater angle of the launched projectile creates the greater horizontal range. The hand force imparted with the ball leads the ball goes straight to hit the target. The acceleration direction points from the higher position to lower position. The misconceptions will be used as primary resources to develop instructional instruments to promote Cambodian students’ understanding of projectile motion in the following work.

  3. Speed, Acceleration, Chameleons and Cherry Pit Projectiles

    Science.gov (United States)

    Planinsic, Gorazd; Likar, Andrej

    2012-01-01

    The paper describes the mechanics of cherry pit projectiles and ends with showing the similarity between cherry pit launching and chameleon tongue projecting mechanisms. The whole story is written as an investigation, following steps that resemble those typically taken by scientists and can therefore serve as an illustration of scientific…

  4. Fatal lawn mower related projectile injury

    DEFF Research Database (Denmark)

    Colville-Ebeling, Bonnie; Lynnerup, Niels; Banner, Jytte

    2014-01-01

    was initially overlooked, later interpreted as a possible gunshot homicide, and finally identified as a lawn mower related projectile injury when autopsy revealed a piece of metal thread in the main bronchus to the right middle lobe, hemopericardium, and right-sided hemothorax. To our knowledge, this injury...

  5. Secondary electron emission with molecular projectiles

    International Nuclear Information System (INIS)

    Kroneberger, K.; Rothard, H.; Koschar, P.; Lorenzen, P.; Kemmler, J.; Keller, N.; Maier, R.; Groeneveld, K.O.; Clouvas, A.; Veje, E.

    1990-01-01

    The authors present results for the secondary electron emission (SEE) from thin foil targets, induced by both molecular ions and their atomic constituents as projectiles. The Sternglass theory for kinetic SEE states a proportionality between γ and the electronic stopping power, S e , which has been verified in various experiments. With comparing secondary electron (SE) yields induced by molecular projectiles to those induced by monoatomic projectiles, it is therefore possible to test models for the energy loss of molecular or cluster projectiles. Since the atomic constituents of the molecule are repelled from each other due to Coulomb explosion (superimposed by multiple scattering) while traversing the solid, it is interesting to measure the residual mutual influence on SEE and S e with increasing internuclear separation. This can only be achieved with thin foils, where (as in the present case) the SE-yields from the exit surface can be measured separately. The authors measured the SE-yields from the entrance (γ B ) and exit (γ F ) surfaces of thin C- and Al-foils (150 to 1,000 angstrom) with CO + , C + and O + (15 to 85 keV/u) and H 2 + and H + (0.3 to 1.2 MeV/u). The molecular effect defined as the ratio R(γ) between the yields induced by molecular projectiles and the sum of those induced by their atomic constituents was calculated. The energy dependence of R(γ) can be well represented by the calculated energy loss ratio of di-proton-clusters by Brandt. This supports Brandt's model for the energy loss of clusters

  6. Time-Accurate Simulations of Synthetic Jet-Based Flow Control for An Axisymmetric Spinning Body

    National Research Council Canada - National Science Library

    Sahu, Jubaraj

    2004-01-01

    .... A time-accurate Navier-Stokes computational technique has been used to obtain numerical solutions for the unsteady jet-interaction flow field for a spinning projectile at a subsonic speed, Mach...

  7. Spatial profiling of degradation processes in hindered-amine-stabilized polymers by electron spin resonance imaging of nitroxides

    Czech Academy of Sciences Publication Activity Database

    Marek, Antonín; Kaprálková, Ludmila; Pfleger, Jiří; Pospíšil, Jan; Pilař, Jan

    2005-01-01

    Roč. 99, S (2005), s. 195-198 ISSN 0009-2770. [Meeting on Chemistry and Life /3./. Brno, 20.9.2005-22.9.2005] Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer degradation * nitroxides * electron spin resonance imaging Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.445, year: 2005

  8. Antiscreening mode of projectile-electron loss

    International Nuclear Information System (INIS)

    Montanari, C.C.; Miraglia, J.E.; Arista, N.R.

    2003-01-01

    The inelastic contribution of target electrons to different electronic processes in the projectile is obtained by employing the local-density approximation as usually applied in the dielectric formalism. Projectile-electron-loss cross sections due to the electron-electron interaction are calculated and compared with those obtained by using atomic antiscreening theories. We also calculate ionization cross sections and stopping power for bare ions impinging on different gases. The good agreement with the experimental data and the simplicity of the local-density approximation make it an efficient method for describing inelastic processes of gaseous target electrons. It is expected to be useful for targets with large atomic number. In this case, the number of possible final states to be considered by the traditional atomic methods makes it a tough task to be tackled. On the contrary, the more electrons the target has, the better the local plasma approximation is expected to be

  9. The motion of an arbitrarily rotating spherical projectile and its application to ball games

    Science.gov (United States)

    Robinson, Garry; Robinson, Ian

    2013-07-01

    In this paper the differential equations which govern the motion of a spherical projectile rotating about an arbitrary axis in the presence of an arbitrary ‘wind’ are developed. Three forces are assumed to act on the projectile: (i) gravity, (ii) a drag force proportional to the square of the projectile's velocity and in the opposite direction to this velocity and (iii) a lift or ‘Magnus’ force also assumed to be proportional to the square of the projectile's velocity and in a direction perpendicular to both this velocity and the angular velocity vector of the projectile. The problem has been coded in Matlab and some illustrative model trajectories are presented for ‘ball-games’, specifically golf and cricket, although the equations could equally well be applied to other ball-games such as tennis, soccer or baseball. Spin about an arbitrary axis allows for the treatment of situations where, for example, the spin has a component about the direction of travel. In the case of a cricket ball the subtle behaviour of so-called ‘drift’, particularly ‘late drift’, and also ‘dip’, which may be produced by a slow bowler's off or leg-spin, are investigated. It is found that the trajectories obtained are broadly in accord with those observed in practice. We envisage that this paper may be useful in two ways: (i) for its inherent scientific value as, to the best of our knowledge, the fundamental equations derived here have not appeared in the literature and (ii) in cultivating student interest in the numerical solution of differential equations, since so many of them actively participate in ball-games, and they will be able to compare their own practical experience with the overall trends indicated by the numerical results. As the paper presents equations which can be further extended, it may be of interest to research workers. However, since only the most basic principles of fundamental mechanics are employed, it should be well within the grasp of first

  10. The motion of an arbitrarily rotating spherical projectile and its application to ball games

    International Nuclear Information System (INIS)

    Robinson, Garry; Robinson, Ian

    2013-01-01

    In this paper the differential equations which govern the motion of a spherical projectile rotating about an arbitrary axis in the presence of an arbitrary ‘wind’ are developed. Three forces are assumed to act on the projectile: (i) gravity, (ii) a drag force proportional to the square of the projectile's velocity and in the opposite direction to this velocity and (iii) a lift or ‘Magnus’ force also assumed to be proportional to the square of the projectile's velocity and in a direction perpendicular to both this velocity and the angular velocity vector of the projectile. The problem has been coded in Matlab and some illustrative model trajectories are presented for ‘ball-games’, specifically golf and cricket, although the equations could equally well be applied to other ball-games such as tennis, soccer or baseball. Spin about an arbitrary axis allows for the treatment of situations where, for example, the spin has a component about the direction of travel. In the case of a cricket ball the subtle behaviour of so-called ‘drift’, particularly ‘late drift’, and also ‘dip’, which may be produced by a slow bowler's off or leg-spin, are investigated. It is found that the trajectories obtained are broadly in accord with those observed in practice. We envisage that this paper may be useful in two ways: (i) for its inherent scientific value as, to the best of our knowledge, the fundamental equations derived here have not appeared in the literature and (ii) in cultivating student interest in the numerical solution of differential equations, since so many of them actively participate in ball-games, and they will be able to compare their own practical experience with the overall trends indicated by the numerical results. As the paper presents equations which can be further extended, it may be of interest to research workers. However, since only the most basic principles of fundamental mechanics are employed, it should be well within the grasp of first

  11. Multiple electromagnetic excitations of relativistic projectiles

    International Nuclear Information System (INIS)

    Llope, W.J.; Braun-Munzinger, P.

    1992-01-01

    Conditions optimum for the first experimental verification of the multiplication electromagnetic excitations of nuclei in relativistic nucleus-nucleus collisions are described. The relative magnitudes of three important physical processes that might interfere with such a measurement are compared to the predicted strengths for the single and multiple electromagnetic excitations for various choices of the projectile mass and beam energy. Strategies are presented for making inferences concerning the presence of multiple excitation strength in experimental data

  12. Migration spontanee de projectile intracranien: presentation clinique ...

    African Journals Online (AJOL)

    Les traumatismes crâniens par arme à feu sont graves. Les manifestations cliniques sont variables et peuvent présenter quelques particularités. Les auteurs rapportent un cas de migration spontané de projectile intracérébral survenue après un traumatisme crânien par arme à feu au cours d'une partie de chasse. Elle a été ...

  13. Supercavitating Projectile Tracking System and Method

    Science.gov (United States)

    2009-12-30

    Distribution is unlimited 20100104106 Attorney Docket No. 96681 SUPERCAVITATING PROJECTILE TRACKING SYSTEM AND METHOD STATEMENT OF GOVERNMENT...underwater track or path 14 of a supercavitating vehicle under surface 16 of a body of water. In this embodiment, passive acoustic or pressure...transducers 12 are utilized to measure a pressure field produced by a moving supercavitating vehicle. The present invention provides a low-cost, reusable

  14. Fatal lawn mower related projectile injury.

    Science.gov (United States)

    Colville-Ebeling, Bonnie; Lynnerup, Niels; Banner, Jytte

    2014-06-01

    Fatal lawn mower related injuries are a relatively rare occurrence. In a forensic setting, the primary aim is to reconstruct the injury mechanism and establish the cause of death. A relatively rare, but characteristic type of injury is a so-called projectile or missile injury. This occurs when the operator or a bystander is impacted by an object mobilized from the grass by the rotating mower blades. This type of injury often leaves only modest external trauma, which increases the risk of overlooking an entry wound. In this paper we present a case of a fatal lawn mower related projectile injury which was initially overlooked, later interpreted as a possible gunshot homicide, and finally identified as a lawn mower related projectile injury when autopsy revealed a piece of metal thread in the main bronchus to the right middle lobe, hemopericardium, and right-sided hemothorax. To our knowledge, this injury mechanism has not previously been reported as a cause of death. This case illustrates the importance of postmortem radiological imaging and interdisciplinary cooperation when establishing manner and cause of death in unusual cases.

  15. Improvements to a model of projectile fragmentation

    International Nuclear Information System (INIS)

    Mallik, S.; Chaudhuri, G.; Das Gupta, S.

    2011-01-01

    In a recent paper [Phys. Rev. C 83, 044612 (2011)] we proposed a model for calculating cross sections of various reaction products which arise from disintegration of projectile-like fragments resulting from heavy-ion collisions at intermediate or higher energy. The model has three parts: (1) abrasion, (2) disintegration of the hot abraded projectile-like fragment (PLF) into nucleons and primary composites using a model of equilibrium statistical mechanics, and (3) possible evaporation of hot primary composites. It was assumed that the PLF resulting from abrasion has one temperature T. Data suggested that, while just one value of T seemed adequate for most cross-section calculations, a single value failed when dealing with very peripheral collisions. We have now introduced a variable T=T(b) where b is the impact parameter of the collision. We argue that there are data which not only show that T must be a function of b but, in addition, also point to an approximate value of T for a given b. We propose a very simple formula: T(b)=D 0 +D 1 [A s (b)/A 0 ] where A s (b) is the mass of the abraded PLF and A 0 is the mass of the projectile; D 0 and D 1 are constants. Using this model we compute cross sections for several collisions and compare with data.

  16. Passive control of cavitating flow around an axisymmetric projectile by using a trip bar

    Directory of Open Access Journals (Sweden)

    Jian Huang

    2017-07-01

    Full Text Available Quasi-periodical evolutions such as shedding and collapsing of unsteady cloud cavitating flow, induce strong pressure fluctuations, what may deteriorate maneuvering stability and corrode surfaces of underwater vehicles. This paper analyzed effects on cavitation stability of a trip bar arranged on high-speed underwater projectile. Small scale water tank experiment and large eddy simulation using the open source software OpenFOAM were used, and the results agree well with each other. Results also indicate that trip bar can obstruct downstream re-entrant jet and pressure wave propagation caused by collapse, resulting in a relatively stable sheet cavity between trip bar and shoulder of projectiles. Keywords: Unsteady cavitating flow, Trip bar, Re-entrant jet, Passive flow control

  17. Fen (n=1–6) clusters chemisorbed on vacancy defects in graphene: Stability, spin-dipole moment, and magnetic anisotropy

    KAUST Repository

    Haldar, Soumyajyoti

    2014-05-09

    In this work, we have studied the chemical and magnetic interactions of Fen (n=1–6) clusters with vacancy defects (monovacancy to correlated vacancies with six missing C atoms) in a graphene sheet by ab initio density functional calculations combined with Hubbard U corrections for correlated Fe-d electrons. It is found that the vacancy formation energies are lowered in the presence of Fe, indicating an easier destruction of the graphene sheet. Due to strong chemical interactions between Fe clusters and vacancies, a complex distribution of magnetic moments appear on the distorted Fe clusters which results in reduced averaged magnetic moments compared to the free clusters. In addition to that, we have calculated spin-dipole moments and magnetic anisotropy energies. The calculated spin-dipole moments arising from anisotropic spin density distributions vary between positive and negative values, yielding increased or decreased effective moments. Depending on the cluster geometry, the easy axis of magnetization of the Fe clusters shows in-plane or out-of-plane behavior.

  18. Photon emission from massive projectile impacts on solids.

    Science.gov (United States)

    Fernandez-Lima, F A; Pinnick, V T; Della-Negra, S; Schweikert, E A

    2011-01-01

    First evidence of photon emission from individual impacts of massive gold projectiles on solids for a number of projectile-target combinations is reported. Photon emission from individual impacts of massive Au(n) (+q) (1 ≤ n ≤ 400; q = 1-4) projectiles with impact energies in the range of 28-136 keV occurs in less than 10 ns after the projectile impact. Experimental observations show an increase in the photon yield from individual impacts with the projectile size and velocity. Concurrently with the photon emission, electron emission from the impact area has been observed below the kinetic emission threshold and under unlikely conditions for potential electron emission. We interpret the puzzling electron emission and correlated luminescence observation as evidence of the electronic excitation resulting from the high-energy density deposited by massive cluster projectiles during the impact.

  19. A design of inverse Taylor projectiles using material simulation

    International Nuclear Information System (INIS)

    Tonks, Michael; Harstad, Eric; Maudlin, Paul; Trujillo, Carl

    2008-01-01

    The classic Taylor cylinder test, in which a right circular cylinder is projected at a rigid anvil, exploits the inertia of the projectile to access strain rates that are difficult to achieve with more traditional uniaxial testing methods. In this work we present our efforts to design inverse Taylor projectiles, in which a tapered projectile becomes a right circular cylinder after impact, from annealed copper and show that the self-correcting geometry leads to a uniform compressive strain in the radial direction. We design projectiles using finite element simulation and optimization that deform as desired in tests with minor deviations in the deformed geometry due to manufacturing error and uncertainty in the initial velocity. The inverse Taylor projectiles designed in this manner provide a simple means of validating constitutive models. This work is a step towards developing a general method of designing Taylor projectiles that provide stress–strain behavior relevant to particular engineering problems

  20. The Nuclear Spin Nanomagnet

    OpenAIRE

    Korenev, V. L.

    2007-01-01

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei brings the optical transition energy into resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of...

  1. Design and testing of high-pressure railguns and projectiles

    International Nuclear Information System (INIS)

    Peterson, D.R.; Fowler, C.M.

    1984-01-01

    The results of high-pressure tests of four railgun designs and four projectile types are presented. All tests were conducted at the Los Alamos explosive magnetic-flux compression facility in Ancho Canyon. The data suggest that the high-strength projectiles have lower resistance to acceleration than the low strength projectiles, which expand against the bore during acceleration. The railguns were powered by explosive magneticflux compression generators. Calculations to predict railgun and power supply performance were performed by Kerrisk

  2. Femoral vessel injury by a nonlethal weapon projectile

    Directory of Open Access Journals (Sweden)

    Rodrigo Bruno Biagioni, MD

    2018-06-01

    Full Text Available Rubber projectiles are used as an alternative to metal bullets owing to their lower morbidity and mortality rate. There are few reports of vascular lesions of extremities caused by rubber projectiles in the literature. The authors report the case of a 37-year-old man who was the victim of a penetrating injury to the left thigh with a rubber projectile. He reported only pain at the site of the injury; pulses were decreased in the affected limb. After arteriography confirmed an injury to the superficial femoral artery, he underwent an arterial and venous femorofemoral bypass using a reversed contralateral saphenous vein. Keywords: Vascular trauma, Nonlethal projectile, Penetrating trauma

  3. Visualization of Projectile Flying at High Speed in Dusty Atmosphere

    Science.gov (United States)

    Masaki, Chihiro; Watanabe, Yasumasa; Suzuki, Kojiro

    2017-10-01

    Considering a spacecraft that encounters particle-laden environment, such as dust particles flying up over the regolith by the jet of the landing thruster, high-speed flight of a projectile in such environment was experimentally simulated by using the ballistic range. At high-speed collision of particles on the projectile surface, they may be reflected with cracking into smaller pieces. On the other hand, the projectile surface will be damaged by the collision. To obtain the fundamental characteristics of such complicated phenomena, a projectile was launched at the velocity up to 400 m/s and the collective behaviour of particles around projectile was observed by the high-speed camera. To eliminate the effect of the gas-particle interaction and to focus on only the effect of the interaction between the particles and the projectile's surface, the test chamber pressure was evacuated down to 30 Pa. The particles about 400μm diameter were scattered and formed a sheet of particles in the test chamber by using two-dimensional funnel with a narrow slit. The projectile was launched into the particle sheet in the tangential direction, and the high-speed camera captured both projectile and particle motions. From the movie, the interaction between the projectile and particle sheet was clarified.

  4. Continuous measurements of in-bore projectile velocity

    International Nuclear Information System (INIS)

    Asay, J.R.; Konrad, C.H.; Hall, C.A.; Shahinpoor, M.

    1989-01-01

    The application of velocity interferometry to the continuous measurement of in-bore projectile velocity in a small-bore three-stage railgun is described. These measurements are useful for determining projectile acceleration and for evaluating gun performance. The launcher employed in these studies consists of a two-stage light gas gun used to inject projectiles into a railgun for additional acceleration. Results obtained for projectile velocities to 7.4 km/s with the two-stage injector are reported and potential improvements for railgun applications are discussed

  5. Stopping power. Projectile and target modeled as oscillators

    International Nuclear Information System (INIS)

    Stevanovic, N.; Nikezic, D.

    2005-01-01

    In this Letter the collision of two quantum harmonic oscillators was considered. The oscillators interact through the Coulomb interaction. Stopping power of projectile was calculated assuming that both, target and projectile may be excited. It has been shown that the frequency of the projectile oscillation, ω p influences on stopping power, particularly in the region of Bragg peak. If, ω p ->0 is substitute in the expression for stopping power derived in this Letter, then it comes to the form when the projectile has been treated as point like charged particle

  6. Finite element investigation of explosively formed projectiles (EFP)

    International Nuclear Information System (INIS)

    Ahmad, I.

    1999-01-01

    This thesis report represents the numerical simulation of explosively formed projectiles (EFP), a type of linear self-forging fragment device. The simulation is performed using a finite element code DYNA2D. It also explicates that how the shape, velocity and kinetic energy of an explosively formed projectile is effected by various parameters. Different parameters investigated are mesh density, material, thickness, contour and types of liner. Effect of shape of casing and material model is also analyzed. The shapes of projectiles at different times after detonation are shown. The maximum velocity and kinetic energy of the projectile have been used to ascertain the effect of above mentioned parameters. (author)

  7. New approach to the nuclear in beam γ spectroscopy of neutron rich nuclei at N=20 using projectile fragmentation

    International Nuclear Information System (INIS)

    Lopez-Jimenez, M.J.; Saint-Laurent, M.G.; Achouri, L.; Daugas, J.M.; Belleguic, M.; Azaiez, F.; Bourgeois, C.; Angelique, J.C.

    1999-01-01

    The structure of nuclei far from stability around 32 Mg have been recently investigated by means of a novel method. In-beam γ-decay spectroscopy of a large number of exotic neutron-rich nuclei produced by projectile fragmentation of a 36 S projectile has been performed, using coincidences between the recoil fragments collected at the focal plane of SPEG spectrometer and γ-rays emitted at the target location. Preliminary results on both the population mechanism and the decay of excited states in nuclei around 32 Mg are presented. (author)

  8. A note on stability of motion of a projectile

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    S D Naik. K3 = −ε. (. B ς2f1p + g1. K2 t. ) +. ( gxl u. )2. + gxl u2 ε. K2 t g2 − ε. ( gxl u2. ) (. 2CA − f1. ) ,. K4 = εςB. (. CA − f1 + g1p. K2 t. ) − B ς. ( gxl u2. ) − ες. ( gxl u2. )(.

  9. Electromagnetic projectile acceleration utilizing distributed energy sources

    International Nuclear Information System (INIS)

    Parker, J.V.

    1982-01-01

    Circuit equations are derived for an electromagnetic projectile accelerator (railgun) powered by a large number of capacitive discharge circuits distributed along its length. The circuit equations are put into dimensionless form and the parameters governing the solutions derived. After specializing the equations to constant spacing between circuits, the case of lossless rails and negligible drag is analyzed to show that the electrical to kinetic energy transfer efficiency is equal to sigma/2, where sigma = 2mS/Lq 2 0 and m is the projectile mass, S the distance between discharge circuit, Lthe rail inductance per unit length, and q 0 the charge on the first stage capacitor. For sigma = 2 complete transfer of electrical to kinetic energy is predicted while for sigma>2 the projective-discharge circuit system is unstable. Numerical solutions are presented for both lossless rails and for finite rail resistance. When rail resistance is included, >70% transfer is calculated for accelerators of arbitrary length. The problem of projectile startup is considered and a simple modification of the first two stages is described which provides proper startup. Finally, the results of the numerical solutions are applied to a practical railgun design. A research railgun designed for repeated operation at 50 km/sec is described. It would have an overall length of 77 m, an electrical efficiency of 81%, a stored energy per stage of 105 kJ, and a charge transfer of <50 C per stage. A railgun of this design appears to be practicable with current pulsed power technology

  10. Structural stability, electronic and magnetic behaviour of spin-polarized YCoVZ (Z = Si, Ge) and YCoTiZ (Z = Si, Ge) Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rasool, Muhammad Nasir, E-mail: nasir4iub@gmail.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100 (Pakistan); Hussain, Altaf, E-mail: altafiub@yahoo.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100 (Pakistan); Javed, Athar [Department of Physics, University of the Punjab, Lahore, 54590 (Pakistan); Khan, Muhammad Azhar; Iqbal, F. [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100 (Pakistan)

    2016-11-01

    The structural stability, electronic and magnetic behaviour of YCoVZ (Z = Si, Ge) and YCoTiZ (Z = Si, Ge) Heusler alloys have been studied by first principle approach. Generalized gradient approximation (GGA) based on density functional theory (DFT) has been applied to investigate the properties of quaternary Heusler alloys. The YCoVSi, YCoVGe, YCoTiSi and YCoTiGe Heusler alloys of Type-3 structure are found to be stable in spin-polarized/magnetic phase. The YCoVSi and YCoVGe alloys exhibit nearly spin gapless semiconductor (SGS) behaviour while YCoTiSi and YCoTiGe alloys show half-metallic ferromagnetic (HMF) behaviour. For YCoVSi, YCoVGe, YCoTiSi and YCoTiGe alloys, the calculated energy band gaps in spin down (↓) channel are 0.60, 0.54, 0.68 and 0.44 eV, respectively. The YCoVZ and YCoTiZ alloys are found to have integral value of total magnetic moment (M{sub T}), thus obeying the Slater-Pauling rule, M{sub T} = (N{sub v}–18)μ{sub B}. - Highlights: • Four Heusler alloys i.e. YCoVZ (Z = Si, Ge) and YCoTiZ (Z = Si, Ge) are studied. • Type-3 crystal structure of all four alloys is stable in magnetic phase. • The compressibility (S) follows the order: S{sub YCoVSi} > S{sub YCoTiSi} > S{sub YCoVGe} > S{sub YCoTiGe}. • Half metallic ferromagnetic behaviour is observed in all four alloys. • All four alloys obey the Slater-Pauling rule, M{sub T} = (N{sub v} – 18)μ{sub B}.

  11. New projectiles: multicharged metal clusters and biopolymers

    International Nuclear Information System (INIS)

    Della-Negra, S.; Gardes, D.; Le Beyec, Y.; Waast, B.

    1991-01-01

    Metal clusters and molecules are the one mean to realize simultaneous impacts of several atoms on a reduced surface(∼100A). The interaction characteristics is the non-linearity of energy deposition; the perturbation that the cluster produces, is above than the sum of the perturbation induced by its components, taken separately. The purpose of ORION project is to accelerate these new projectiles at ORSAY Tandem. The considered mass range is from 100 Daltons to 100 000 Daltons and energy range from MeV to GeV

  12. Ionization of atoms by bare ion projectiles

    International Nuclear Information System (INIS)

    Tribedi, L.C.

    1997-01-01

    The double differential cross sections (DDCS) for low energy electron emission can provide stringent tests to the theoretical models for ionization in ion-atom collision. The two-center effects and the post collision interactions play a major role in ionization by highly charged, high Z projectiles. We close-quote ll review the recent developments in this field and describe our efforts to study the energy and angular distributions of the low energy electrons emitted in ion-atom ionization. copyright 1997 American Institute of Physics

  13. Numerical Study of the Formation, Ion Spin-up and Nonlinear Stability Properties of Field-reversed Configurations

    International Nuclear Information System (INIS)

    Belova, E.V.; Davidson, R.C.; Ji, H.; Yamada, M.; Cothran, C.D.; Brown, M.R.; Schaffer, M.J.

    2004-01-01

    Results of three-dimensional numerical simulations of field-reversed configurations (FRCs) are presented. Emphasis of this work is on the nonlinear evolution of magnetohydrodynamic (MHD) instabilities in kinetic FRCs and the new FRC formation method by the counter-helicity spheromak merging. Kinetic simulations show nonlinear saturation of the n = 1 tilt mode, where n is the toroidal mode number. The n = 2 and n = 3 rotational modes are observed to grow during the nonlinear phase of the tilt instability due to the ion spin-up in the toroidal direction. The ion toroidal spin-up is shown to be related to the resistive decay of the internal flux, and the resulting loss of particle confinement. Three-dimensional MHD simulations of counter-helicity spheromak merging and FRC formation show good agreement with results from the SSX-FRC experiment. Simulations show formation of an FRC in about 30 Alfven times for typical experimental parameters. The growth rate of the n = 1 tilt mode is shown to be significantly reduced compared to the MHD growth rate due to the large plasma viscosity and field-line-tying effects

  14. Commissioning the A1900 projectile fragment separator

    CERN Document Server

    Morrissey, D J; Steiner, M; Stolz, A; Wiedenhöver, I

    2003-01-01

    An important part of the recent upgrade of the NSCL facility is the replacement of the A1200 fragment separator with a new high acceptance device called the A1900. The design of the A1900 device represents a third generation projectile fragment separator (relative to the early work at LBL) as it is situated immediately after the primary accelerator, has a very large acceptance, a bending power significantly larger than that of the cyclotron and is constructed from large superconducting magnets (quadrupoles with 20 and 40 cm diameter warm bores). The A1900 can accept over 90% of a large range of projectile fragmentation products produced at the NSCL, leading to large gains in the intensity of the secondary beams. The results of initial tests of the system with a restricted momentum acceptance (+-0.5%) indicate that the A1900 is performing up to specifications. Further large gains in the intensities of primary beams, typically two or three orders of magnitude, will be possible as the many facets of high current...

  15. Inclusive projectile fragmentation in the spectator model

    International Nuclear Information System (INIS)

    Hussein, M.S.; McVoy, K.W.

    1985-01-01

    Crazing-angle single spectra for projectile fragments from nuclear collisions exhibit a broad peak centered near the beam velocity, suggesting that these observed fragments play only a 'spectator' role in the reaction. Using only this spectator assumption (but not DWBA), it is found that a 'prior form' formulation of the reaction leads, via closure, to a -type estimate of the inclusive spectator spectrum, thus relating it to the reaction cross section for the 'participant' with the target. It is shown explicitly that this expression includes an improved multi-channel version of the Udagawa-Tamura formula for the 'breakup-fusion' or incomplete fusion cross section, and identifies it as the fluctuation part of the participant-target reaction cross section. A Glauber-type estimate of the distorted wave functions which enter clearly shows how the width of the peak in the spectator spectrum arises from the 'Fermi motion' within the projectile, as in the simple Serber model, but is modified by the 'overlap geometry' of the collision. (Author) [pt

  16. Electromagnetic compression gun for hypervelocity projectile acceleration

    International Nuclear Information System (INIS)

    Woo, J.T.

    1987-01-01

    The rapid acceleration of projectiles to very high velocities has applications in many areas. The general requirements for an effective system is simplicity, reliability, compactness and good efficiency. The authors developed a concept by using electromagnetic forces to compressionally heat a plasma to high temperature and pressure to serve as the propellant for the acceleration of projectiles. The concept shares the simplicity of the light gas gun, but because of the high temperature of the propellant, is capable of significantly higher performance. Unlike the electrothermal gun approach to raise the propellant temperature by resistive heating, the electromagnetic concept is more efficient at higher temperatures. Operationally, the concept resembles a railgun in requiring a large pulsed current to drive the system. However, the current flow in this case is entirely external to the gun barrel and is axisymmetric. Therefore, many of the problems associated with railgun operations are avoided. Furthermore, because the current channel is external, there is also greater flexibility in the choice of load impedance to match to the power supply. The concept can also be generalized to a multi-stage regenerative system driven by a pulse forming network to resemble a coaxial accelerator

  17. Density-Imbalance Stability Diagram of the νT = 1 Bilayer Electron System at Full Spin Polarization

    International Nuclear Information System (INIS)

    Takase, Keiko; Muraki, Koji

    2011-01-01

    We investigate the evolution of the total Landau level filling factor ν T = 1 bilayer quantum Hall (QH) state versus density imbalance at full spin polarization under a tilted magnetic field. When the system is well below the compressible-incompressible transition point at the balanced density, the ν T = 1 QH state extends widely versus density imbalance, continuously merging into the single-layer ν = 1 QH state. In the vicinity of the transition point, the ν T = 1 QH state is only weakly developed at small imbalance but increases in strength toward ν T = 1/3 + 2/3, where it is clearly separated from the single-layer ν = 1 QH state. These results suggest that the system at the imbalance of Δν = 1/3 undergoes a transition from the correlated ν T = 1 QH state to single-layer fractional QH states with increasing density.

  18. Numerical simulation of 3-D incompressible, multi-phase flows over cavitating projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Owis, F.M.; Nayfeh, A.H. [Blacksburg State University, Dept. of Engineering Science and Mechanics, MC 0219, Virginia Polytechnic Institute, VA (United States)

    2004-04-01

    The hydrodynamic cavitation over axisymmetric projectiles is computed using the unsteady incompressible Navier-Stokes equations for multi-fluid elements. The governing equations are discretized on a structured grid using an upwind difference scheme with flux limits. A preconditioning dual-time stepping method is used for the unsteady computations. The Eigen-system is derived for the Jacobian matrices. This Eigen-system is suitable for high-density ratio multi-fluid flows and it provides high numerical stability and fast convergence. This method can be used to compute single- as well as multi-phase flows. Cavitating flows over projectiles with different geometries are computed and the results are in good agreement with available experimental data and other published computations. (authors)

  19. Special features of isomeric ratios in nuclear reactions induced by various projectile particles

    Energy Technology Data Exchange (ETDEWEB)

    Danagulyan, A. S.; Hovhannisyan, G. H., E-mail: hov-gohar@ysu.am; Bakhshiyan, T. M.; Martirosyan, G. V. [Yerevan State University (Armenia)

    2016-05-15

    Calculations for (p, n) and (α, p3n) reactions were performed with the aid of the TALYS-1.4 code. Reactions in which the mass numbers of target and product nuclei were identical were examined in the range of A = 44–124. Excitation functions were obtained for product nuclei in ground and isomeric states, and isomeric ratios were calculated. The calculated data reflect well the dependence of the isomeric ratios on the projectile type. A comparison of the calculated and experimental data reveals, that, for some nuclei in a high-spin state, the calculated data fall greatly short of their experimental counterparts. These discrepancies may be due to the presence of high-spin yrast states and rotational bands in these nuclei. Calculations involving various level-density models included in the TALYS-1.4 code with allowance for the enhancement of collective effects do not remove the discrepancies in the majority of cases.

  20. Breakup of the projectile at 35 MeV/nucleon

    International Nuclear Information System (INIS)

    Gonthier, P.L.; Harper, P.; Bouma, B.; Ramaker, R.; Cebra, D.A.; Koenig, Z.M.; Fox, D.; Westfall, G.D.

    1990-01-01

    Projectile breakup processes are probed by studying the emission of α particles in coincidence with projectile-like fragments as a function of the dissipated energy in the collisions of 35 MeV/nucleon 16 O with 58 Ni. Energy correlations between α particles and projectile-like fragments at small-angle geometries allow the separation of the sources of α emission from projectile-like and target-like fragments. We find that the slope parameters of the decay energy distributions, the average excitation energies, and the α particle multiplicities of the projectile-like fragments increase with increasing dissipation of energy. If the linear dependence, exhibited by the data, of the slope parameter with the dissipated energy is included in model calculations, the majority of the coincidence yield in the forward hemisphere can be explained. However, an excess yield of the data on the opposite side of the beam from the observed projectile-like fragment still remains. Such analysis of the data suggests that the breakup of the projectile is the dominant source of light particles at forward angles. Processes resulting in the breakup of the projectile must be better understood in order to study other processes leading to similar phenomena

  1. Corrected Launch Speed for a Projectile Motion Laboratory

    Science.gov (United States)

    Sanders, Justin M.; Boleman, Michael W.

    2013-01-01

    At our university, students in introductory physics classes perform a laboratory exercise to measure the range of a projectile fired at an assigned angle. A set of photogates is used to determine the initial velocity of the projectile (the launch velocity). We noticed a systematic deviation between the experimentally measured range and the range…

  2. Systematics of new isotopic production cross sections from neon projectiles

    International Nuclear Information System (INIS)

    Chen, C.X.; Guzik, T.G.; McMahon, M.; Wefel, J.P.; Flores, I.; Lindstrom, P.J.; Tull, C.E.; Mitchell, J.W.; Cronqvist, M.; Crawford, H.J.

    1996-02-01

    New isotopic production cross sections from 22 Ne projectiles at 377,581 and 891 MeV/nucleon in a liquid hydrogen target have been measured. These data allow to investigate the projectile energy and nuclear composition dependence of the cross sections. The comparisons between data and predictions can have important consequences in source abundance investigations. (K.A.)

  3. Systematics of new isotopic production cross sections from neon projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C X; Guzik, T G; McMahon, M; Wefel, J P [Louisiana State Univ., Baton Rouge, LA (United States); Flores, I; Lindstrom, P J; Tull, C E [Lawrence Berkeley Lab., CA (United States); Mitchell, J W [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center; Cronqvist, M; Crawford, H J [California Univ., Berkeley, CA (United States). Space Sciences Lab.; and others

    1996-02-01

    New isotopic production cross sections from {sup 22}Ne projectiles at 377,581 and 891 MeV/nucleon in a liquid hydrogen target have been measured. These data allow to investigate the projectile energy and nuclear composition dependence of the cross sections. The comparisons between data and predictions can have important consequences in source abundance investigations. (K.A.). 9 refs.

  4. Application of sol gel spin coated yttria-stabilized zirconia layers for the improvement of solid oxide fuel cell electrolytes produced by atmospheric plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Lars [University of British Columbia, Department of Materials Engineering, 309-6350 Stores Road, Vancouver, British Columbia, V6T 1Z4 (Canada); National Research Council, Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, British Columbia, V6T 1W5 (Canada); Kesler, Olivera [National Research Council, Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, British Columbia, V6T 1W5 (Canada); University of British Columbia, Department of Mechanical Engineering, 2054-6250 Applied Science Lane, Vancouver, British Columbia, V6T 1Z4 (Canada); Tang, Zhaolin; Burgess, Alan [Northwest Mettech Corp., 467 Mountain Hwy, North Vancouver, British Columbia, V7J 2L3 (Canada)

    2007-05-15

    Due to its high thermal stability and purely oxide ionic conductivity, yttria-stabilized zirconia (YSZ) is the most commonly used electrolyte material for solid oxide fuel cells (SOFCs). Standard electrolyte fabrication techniques for planar SOFCs involve wet ceramic techniques such as tape-casting or screen printing, requiring sintering steps at temperatures above 1300 C. Plasma spraying (PS) may provide a more rapid and cost efficient method to produce SOFCs without sintering. High-temperature sintering requires long processing times and can lead to oxidation of metal alloys used as mechanical supports, or to detrimental interreactions between the electrolyte and adjacent electrode layers. This study investigates the use of spin coated sol gel derived YSZ precursor solutions to fill the pores present in plasma sprayed YSZ layers, and to enhance the surface area for reaction at the electrolyte-cathode interface, without the use of high-temperature firing steps. The effects of different plasma conditions and sol concentrations and solid loadings on the gas permeability and fuel cell performance have been investigated. (author)

  5. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  6. Fluvial gravel stabilization by net-spinning Hydropsychid caddisflies: exploring the magnitude and geographic scope of ecosystem engineering effect and evaluating resistance to anthropogenic stresses

    Science.gov (United States)

    Daniels, M.; Albertson, L.; Sklar, L. S.; Tumolo, B.; Mclaughlin, M. K.

    2017-12-01

    Several studies have demonstrated the substantial effects that organisms can have on earth surface processes. Known as ecosystem engineers, in streams these organisms maintain, modify, or create physical habitat structure by influencing fluvial processes such as gravel movement, fine sediment deposition and bank erosion. However, the ecology of ecosystem engineers and the magnitude of ecosystem engineering effects in a world increasingly influence by anthropogenically-driven changes is not well understood. Here we present a synthesis of research findings on the potential gravel stabilization effects of Hydropsychid caddisflies, a globally distributed group of net-spinning insects that live in the benthic substrate of most freshwater streams. Hydropsychid caddisflies act as ecosystem engineers because these silk structures can fundamentally alter sediment transport conditions, including sediment stability and flow currents. The silk nets spun by these insects attach gravel grains to one another, increasing the shear stress required to initiate grain entrainment. In a series of independent laboratory experiments, we investigate the gravel size fractions most affected by these silk attachments. We also investigate the role of anthropogenic environmental stresses on ecosystem engineering potential by assessing the impact of two common stressors, high fine sediment loads and stream drying, on silk structures. Finally, an extensive field survey of grain size and Hydropsychid caddisfly population densities informs a watershed-scale network model of Hydropsychid caddisfly gravel stabilizing potential. Our findings provide some of the first evidence that caddisfly silk may be a biological structure that is resilient to various forms of human-mediated stress and that the effects of animal ecosystem engineers are underappreciated as an agent of resistance and recovery for aquatic communities experiencing changes in sediment loads and hydrologic regimes.

  7. Study of projectile break-up process at intermediate energies

    International Nuclear Information System (INIS)

    Kumar, Harish; Parashari, Siddharth; Tali, Suhail A.

    2016-01-01

    The projectile break-up reactions are explained in terms of incomplete fusion or massive transfer reactions leading to the formation of composite system with less mass, charge and excitation energy, as compared to the complete fusion (CF) process. Since, the existing theoretical models are not applicable to reproduce the experimentally measured ICF, data satisfactory below 10 MeV/nucleon energies; thereby the study of the role of the entrance channel parameters in the fusion reactions is still a relevant problem in establishing the explicit inference regarding the influence of ICF on CF at 4-7 MeV/nucleon energies. Recently reported some studies have also shown that alpha Q-value is also an important parameter which affects the onset of ICF and conflict with the suggestion of Morgenstern et al. Keeping in view the recent aspects, to provide more strength to the aspect of projectile-target mass-asymmetry effect, role of non α-cluster projectile over α-cluster projectile, the present work has been carried out which will be useful to understand a clearer picture about the conflict between mass-asymmetry and projectile structure effect on break-up fusion process. As such, excitation function measurement of residues produced in 13 C + 175 Lu system has been carried out in a series of experiments of comparative study using α-cluster as well as non α-cluster projectiles with deformed heavier target nuclei at lower projectile energies ≈ 4-7 MeV/nucleon

  8. Cu–Ni core–shell nanoparticles: structure, stability, electronic, and magnetic properties: a spin-polarized density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiang, E-mail: wangqiang@njtech.edu.cn; Wang, Xinyan; Liu, Jianlan; Yang, Yanhui [Nanjing Tech University, School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis (IAS) (China)

    2017-02-15

    Bimetallic core–shell nanoparticles (CSNPs) have attracted great interest not only because of their superior stability, selectivity, and catalytic activity but also due to their tunable properties achieved by changing the morphology, sequence, and sizes of both core and shell. In this study, the structure, stability, charge transfer, electronic, and magnetic properties of 13-atom and 55-atom Cu and Cu–Ni CSNPs were investigated using the density functional theory (DFT) calculations. The results show that Ni@Cu CSNPs with a Cu surface shell are more energetically favorable than Cu@Ni CSNPs with a Ni surface shell. Interestingly, three-shell Ni@Cu{sub 12}@Ni{sub 42} is more stable than two-shell Cu{sub 13}@Ni{sub 42}, while two-shell Ni{sub 13}@Cu{sub 42} is more stable than three-shell Cu@Ni{sub 12}@Cu{sub 42}. Analysis of Bader charge illustrates that the charge transfer increases from Cu core to Ni shell in Cu@Ni NPs, while it decreases from Ni core to Cu shell in Ni@Cu NPs. Furthermore, the charge transfer results that d-band states have larger shift toward the Fermi level for the Ni@Cu CSNPs with Cu surface shell, while the Cu@Ni CSNPs with Ni surface shell have similar d-band state curves and d-band centers with the monometallic Ni NPs. In addition, the Cu–Ni CSNPs possess higher magnetic moment when the Ni atoms aggregated at core region of CSNPs, while having lower magnetic moment when the Ni atoms segregate on surface region. The change of the Cu atom location in CSNPs has a weak effect on the total magnetic moment. Our findings provide useful insights for the design of bimetallic core–shell catalysts.

  9. Femoral vessel injury by a nonlethal weapon projectile.

    Science.gov (United States)

    Biagioni, Rodrigo Bruno; Miranda, Gustavo Cunha; Mota de Moraes, Leonardo; Nasser, Felipe; Burihan, Marcelo Calil; Ingrund, José Carlos

    2018-06-01

    Rubber projectiles are used as an alternative to metal bullets owing to their lower morbidity and mortality rate. There are few reports of vascular lesions of extremities caused by rubber projectiles in the literature. The authors report the case of a 37-year-old man who was the victim of a penetrating injury to the left thigh with a rubber projectile. He reported only pain at the site of the injury; pulses were decreased in the affected limb. After arteriography confirmed an injury to the superficial femoral artery, he underwent an arterial and venous femorofemoral bypass using a reversed contralateral saphenous vein.

  10. Features of projectile motion in the special theory of relativity

    International Nuclear Information System (INIS)

    Shahin, Ghassan Y

    2006-01-01

    A relativistic projectile motion in a vacuum is examined by means of elementary consequences of special relativity. Exact analytical expressions were found for the kinematics variables using basic mathematical tools. The trajectory equation was established and the area under the trajectory traversed by the relativistic projectile was determined. It was found that, unlike non-relativistic projectile motion, the launching angles that maximize both the horizontal range as well as the area under the trajectory are functions of the initial speed. It is anticipated that this paper will be consistent with the intuition of students and serve as a resource for further problems usually encountered in the special theory of relativity

  11. Transient processes induced by heavy projectiles in silicon

    International Nuclear Information System (INIS)

    Lazanu, Ionel; Lazanu, Sorina

    2010-01-01

    The thermal spike model developed for the electronic stopping power regime is extended to consider both ionization and nuclear energy loss processes of the projectile as electronic and atomic heat distinct sources. The time and space dependencies of the lattice and electron temperatures near the projectile trajectory are calculated and discussed for different ions in silicon, at room and cryogenic temperatures, taking into account the peculiarities of electron-phonon interaction in both domains. The model developed contributes to the understanding of transient microscopic processes immediately after the projectile interaction in the target.

  12. Topics in numerical relativity : the periodic standing-wave approximation, the stability of constraints in free evolution, and the spin of dynamical black holes

    Science.gov (United States)

    Owen, Robert

    This thesis concerns numerical relativity, the attempt to study Einstein's theory of gravitation using numerical discretization. The goal of the field, the study of gravitational dynamics in cases where symmetry reduction or perturbation theory are not possible, finally seems to be coming to fruition, at least for the archetypal problem of the inspiral and coalescence of binary black hole systems. This thesis presents three episodes that each bear some relationship to this story.Chapters 2 and 3 present previously published work in collaboration with Richard Price and others on the so-called periodic standing-wave (PSW) approximation for binary inspiral. The approximation is to balance outgoing radiation with incoming radiation, stabilizing the orbit and making the problem stationary in a rotating frame. Chapters 2 and 3 apply the method to the problem of co-orbiting charges coupled to a nonlinear scalar field in three dimensions.Chapters 4, 5, and 6 concern the stability of constraint fields in conventional numerical relativity simulations. Chapter 4 (also previously published work, in collaboration with the Caltech numerical relativity group, along with Michael Holst and Lawrence Kidder) presents a method for immediately correcting violations of constraints after they have arisen. Chapters 5 and 6 present methods to ``damp' away constraint violations dynamically in two specific contexts. Chapter 5 (previously published work in collaboration with the Caltech numerical relativity group and Lawrence Kidder) presents a first-order linearly degenerate symmetric hyperbolic representation of Einstein's equations in generalized harmonic gauge. A representation is presented that stabilizes all constraints, including those that appear when the system is written in first-order form. Chapter 6 presents a generalization of the Kidder-Scheel-Teukolsky evolution systems that provides much-improved stability. This is investigated with numerical simulations of a single black hole

  13. The collision of a hypervelocity massive projectile with free-standing graphene: Investigation of secondary ion emission and projectile fragmentation

    Science.gov (United States)

    Geng, Sheng; Verkhoturov, Stanislav V.; Eller, Michael J.; Della-Negra, Serge; Schweikert, Emile A.

    2017-02-01

    We present here the study of the individual hypervelocity massive projectiles (440-540 keV, 33-36 km/s Au4004+ cluster) impact on 1-layer free-standing graphene. The secondary ions were detected and recorded separately from each individual impact in the transmission direction using a time-of-flight mass spectrometer. We observed C1-10± ions emitted from graphene, the projectiles which penetrated the graphene, and the Au1-3± fragment ions in mass spectra. During the projectile-graphene interaction, the projectile loses ˜15% of its initial kinetic energy (˜0.18 keV/atom, 72 keV/projectile). The Au projectiles are neutralized when approaching the graphene and then partially ionized again via electron tunneling from the hot rims of the holes on graphene, obtaining positive and negative charges. The projectile reaches an internal energy of ˜450-500 eV (˜4400-4900 K) after the impact and then undergoes a ˜90-100 step fragmentation with the ejection of Au1 atoms in the experimental time range of ˜0.1 μs.

  14. Mercury as the Unaccreted Projectile: Thermal Consequences

    Science.gov (United States)

    Asphaug, Erik; Gabriel, Travis; Jackson, Alan; Perera, Viranga

    2017-10-01

    Mercury retained substantial volatiles during its formation, in far greater proportion than the Moon, despite losing ~2/3 of its rocky mantle. Its volatile-rich geochemistry would contraindicate a giant impact because it would drive away the volatiles, as in the hypothesis for the Moon. However, the thermal consequences of Mercury formation vary considerably between the two giant impact scenarios, ‘direct hit’ (DH; Benz et al. 1989) and ‘hit and run’ (HR; Asphaug and Reufer 2014). Each begins with a differentiated chondritic proto-Mercury (PM) a bit larger than Mars. In DH, PM gets eroded by a very energetic impactor half its mass, at ~6-7 times the escape velocity. To remove half of PM’s mantle, the post-impact target gets completely shock-vaporized and is sheared apart into space. The bound remnant in DH would experience a comparable deposition of shock enthalpy, as in Moon formation, and would expand into a much larger volume of heliocentric space, leading to a dry planet. The bound remnant will go on to re-accrete much of the silicate mantle that it just lost, another challenge for DH. In HR, PM is the projectile that slams into a terrestrial planet twice its size (proto-Venus or proto-Earth). For typical impact angle and speed, a typical outcome is to ‘bounce”. But for HR to explain Mercury, PM must avoid accretion every time it encounters the target, until it is scattered or migrates away (or is accreted, in which case there is no Mercury), leading to multi-HR scenarios. Tides are intense in HR because the projectile grazes the target core; gravity does most of the work of mantle stripping. Shocks play a secondary role. Whereas in DH the impactor blasts the target inside-out, in HR the runner emerges relatively unshocked, and undispersed except for losing the gravitationally-unbound material. HR is a mechanism for collecting low-shocked remnants, because the intensely shocked material ends up bound to the target or escaping to heliocentric space

  15. Projectile ionization in fast heavy-ion--atom collisions

    International Nuclear Information System (INIS)

    Schneider, D.; Prost, M.; Stolterfoht, N.; Nolte, G.; Du Bois, R.

    1983-01-01

    Electron emission following the ionization of projectile ions has been investigated systematically in collisions with Ne/sup q/+ and Ar/sup q/+ ions at several hundred MeV incident on different target gases. The projectile electrons are concentrated within one maximum, the electron-loss peak (ELP). The variation of the shape and intensity of the ELP with the projectile energy, its charge state, the observation angle, and the target gas has been measured. Theoretical predictions which are based on the binary-encounter approximation show, in general, good agreement with the experimental data. The contributions of the different subshells to the ELP are deduced. It is shown that electronic screening of the target nucleus plays an important role in the ionization process of the projectile ions

  16. Fusion and direct reactions for strongly and weakly bound projectiles

    International Nuclear Information System (INIS)

    Hugi, M.; Lang, J.; Mueller, R.; Ungricht, E.; Bodek, K.; Jarczyk, L.; Kamys, B.; Magiera, A.; Strzalkowski, A.; Willim, G.

    1981-01-01

    The interaction of 6 Li, 9 Be and 12 C projectiles with a 28 Si target was investigated by measuring the angular distributions of the elasitcally scattered projectiles and of the emitted protons, deuterons and α-particles. The experiment was perfomred in order to deduce direct and compound nucleus process contributions to the total reaction cross section and to study the influence of the projectile structure on the relative importance of these two mechanisms. Optical model parameters and therefore the total reaction cross section are strongly influenced by the binding energy of the projectile. The parameters of the Glas-Mosel describing the fusion reaction vary smoothly with the atomic number. In the system 9 B + 28 Si around 50% of all reactions are direct processes even at energies near the Coulomb barrier, whereas in the other systeme the direct part amounts to 15% ( 12 C) and 30% ( 6 Li) only. (orig.)

  17. Impact of Thin-Walled Projectiles with Concrete Targets

    Directory of Open Access Journals (Sweden)

    Rayment E. Moxley

    1995-01-01

    Full Text Available An experimental program to determine the response of thin-walled steel projectiles to the impact with concrete targets was recently conducted. The projectiles were fired against 41-MPa concrete targets at an impact velocity of 290 m/s. This article contains an outline of the experimental program, an examination of the results of a typical test, and predictions of projectile deformation by classical shell theory and computational simulation. Classical shell analysis of the projectile indicated that the predicted impact loads would result in circumferential buckling. A computational simulation of a test was conducted with an impact/penetration model created by linking a rigid-body penetration trajectory code with a general-purpose finite element code. Scientific visualization of the resulting data revealed that circumferential buckling was induced by the impact conditions considered.

  18. Penetration analysis of projectile with inclined concrete target

    Directory of Open Access Journals (Sweden)

    Kim S.B.

    2015-01-01

    Full Text Available This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction and CONCRETE_DAMAGE (K&C concrete models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  19. Penetration analysis of projectile with inclined concrete target

    Science.gov (United States)

    Kim, S. B.; Kim, H. W.; Yoo, Y. H.

    2015-09-01

    This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction) and CONCRETE_DAMAGE (K&C concrete) models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  20. Optimisation of design parameters for modular range enhanced projectile

    OpenAIRE

    Jelic, Z

    2016-01-01

    There is an underpinning requirement for artillery systems to achieve longer range, better precision, and an adequate lethal effect. The main objective of this research is to investigate various methods of range increase and propose optimal solution for range extension of existing artillery systems. The proposed solution is novel, modular projectile design. Several methodologies for projectile range increment (such as improved aerodynamics and ballistic profile) were combined to achieve the "...

  1. A Flexible Online Apparatus for Projectile Launch Experiments

    Directory of Open Access Journals (Sweden)

    Carlos Manuel Paiva

    2013-01-01

    Full Text Available In order to provide a more flexible learning environment in physics, the developed projectile launch apparatus enables students to determine the acceleration of gravity and the dependence of a set of parameters in the projectile movement. This apparatus is remotely operated and accessed via web, by first scheduling an access time slot. This machine has a number of configuration parameters that support different learning scenarios with different complexities.

  2. Projectile-power-compressed magnetic-field pulse generator

    International Nuclear Information System (INIS)

    Barlett, R.H.; Takemori, H.T.; Chase, J.B.

    1983-01-01

    Design considerations and experimental results are presented of a compressed magnetic field pulsed energy source. A 100-mm-diameter, gun-fired projectile of approx. 2MJ kinetic energy was the input energy source. An initial magnetic field was trapped and compressed by the projectile. With a shorted load, a magajoule in a nanohenry was the design goal, i.e., 50 percent energy transformation from kinetic to magnetic. Five percent conversion was the highest recorded before gauge failure

  3. Impact Behaviour of Soft Body Projectiles

    Science.gov (United States)

    Kalam, Sayyad Abdul; Rayavarapu, Vijaya Kumar; Ginka, Ranga Janardhana

    2018-02-01

    Bird strike analysis is a common type of analysis done during the design and analysis of primary structures such as engine cowlings or fuselage panels. These simulations are done in order to predict whether various designs will pass the necessary certification tests. Composite materials are increasingly being used in aerospace industry and bird strike is a major threat which may lead to serious structural damage of those materials. Such phenomenon may arise from numerous impact scenarios. The focus of current study is on the finite element modeling for composite structures and simulation of high velocity impact loads from soft body projectiles with an explicit dynamics code AUTODYN. This paper investigates the methodology which can be utilized to certify an aircraft for bird strike resistance using computational technique by first demonstrating the accuracy of the method for bird impact on rigid target modeling and then applies the developed model to a more complex problem. The model developed for bird strike threat assessment incorporates parameters of bird number (bird density), bird body mass, equation of state (EOS) and bird path during impact.

  4. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  5. Spin-flip and spin orbit interactions in heavy ion systems

    International Nuclear Information System (INIS)

    Bybell, D.P.

    1983-01-01

    The role of spin orbit forces in heavy ion reactions is not completely understood. Experimental data is scarce for these systems but the data that does exist indicates a stronger spin orbit force than predicted by the folding models. The spin-flip probability of non-spin zero projectiles is one technique used for these measurements and is often taken as a direct indicator of a spin orbit interaction. This work measures the projectile spin-flip probability for three inelastic reactions; 13 C + 24 Mg, E/sub cm/ = 22.7 MeV; 13 C + 12 C, E/sub cm/ = 17.3 MeV; and 6 Li + 12 C, E/sub cm/ = 15.2 MeV, all leading to the first J/sup π/ = 2 + state of the target. The technique of particle-γ angular correlations was used for measuring the final state density matrix elements, of which the absolute value M = 1 magnetic substate population is equivalent to the spin-flip probability. The method was explored in detail and found to be sensitive to spin-flip probabilities smaller than 1%. The technique was also found to be a good indicator of the reaction mechanism involved. Nonzero and occasionally large spin-flip probabilities were observed in all systems, much larger than the folding model predictions. Information was obtained on the non-spin-flip density matrix elements. In the 13 C + 24 Mg reaction, these were found to agree with calculations when the finite size of the particle detector is included

  6. Nuclear Alignment in Projectile Fragmentation as a Tool for Moment Measurements

    International Nuclear Information System (INIS)

    Georgiev, G.; Matea, I.; Oliveira Santos, F. de; Lewitowicz, M.; Daugas, J.M.; Belier, G.; Goutte, H.; Meot, V.; Roig, O.; Hass, M.; Baby, L.T.; Goldring, G.; Astabatyan, R.; Lukyanov, S.; Penionzhkevich, Yu.E.; Balabanski, D.L.; Borremans, D.; Himpe, P.; Neyens, G.; Sawicka, M.

    2004-01-01

    The application of the Time Dependent Perturbed Angular Distribution (TDPAD) method to study isomeric states produced and oriented in projectile-fragmentation reactions provides the opportunity to perform nuclear-moment measurements in a wide range of neutron-rich nuclei, unaccessible by other means. An absolute necessity for the application of the TDPAD technique is a spin-aligned ensemble of nuclei. The preliminary results from a recent application of this method on 61mFe and 54mFe at GANIL, Caen, France showed that a significant increase of the amount of the observed alignment, compared to our previous measurement on 67mNi and 69mCu, can be obtained. Some experimental details, concerning the conservation of the reaction obtained alignment, are discussed

  7. Comparative Analysis of the $^{178m2}$Hf Yield at Reactions with Different Projectiles

    CERN Document Server

    Karamian, S A

    2004-01-01

    The long-lived high-spin $^{178m2}$Hf $K$-isomer can be produced in nuclear reactions with different projectiles. The reaction yields and cross-sections have been measured in the series of experiments and the results are now overviewed. The systematics of isomer-to-ground state ratios are drawn and real production capabilities are estimated for the best reactions. Such a summary is relevant to the significance of the isomer studies both for the nuclear-science knowledge and for possible applications. Potential isomer applications have been earlier stressed in popular publications with probably overestimated expectations. The real possibilities are restricted in part by the production yield and by other shortcomings as well.

  8. Calculation program development for spinning reserve

    International Nuclear Information System (INIS)

    1979-01-01

    This study is about optimal holding of spinning reserve and optimal operation for it. It deals with the purpose and contents of the study, introduction of the spinning reserve electricity, speciality of the spinning reserve power, the result of calculation, analysis for limited method of optimum load, calculation of requirement for spinning reserve, analysis on measurement of system stability with summary, purpose of the analysis, cause of impact of the accident, basics on measurement of spinning reserve and conclusion. It has the reference on explanation for design of spinning reserve power program and using and trend about spinning reserve power in Korea.

  9. Electronic emission produced by light projectiles at intermediate energies

    International Nuclear Information System (INIS)

    Bernardi, G.C.

    1989-01-01

    Two aspects of the electronic emission produced by light projectiles of intermediate energies have been studied experimentally. In the first place, measurements of angular distributions in the range from θ = 0 deg -50 deg induced by collisions of 50-200 keV H + incident on He have been realized. It was found that the double differential cross section of electron emission presents a structure focussed in the forward direction and which extends up to relatively large angles. Secondly, the dependence of the double differential cross section on the projectile charge was studied using H + and He 3 2+ projectiles of 50 and 100 keV/amu incident on He. Strong deviations from a constant scaling factor were found for increasing projectile charge. The double differential cross sections and the single differential cross sections as a function of the emission angle, and the ratios of the emissions induced by He 3 2+ and H + at equal incident projectile velocities are compared with the 'Continuum Distorted Wave-Eikonal Initial State' (CDW-EIS) approximation and the 'Classical Trajectory Monte Carlo' (CTMC) method. Both approximations, in which the potential of the projectile exercises a relevant role, reproduce the general aspects of the experimental results. An electron analyzer and the corresponding projectile beam line has been designed and installed; it is characterized by a series of properties which are particularly appropriate for the study of double differential electronic emission in gaseous as well as solid targets. The design permits to assure the conditions to obtain a well localized gaseous target and avoid instrumental distortions of the measured distributions. (Author) [es

  10. Geometrical spin symmetry and spin

    International Nuclear Information System (INIS)

    Pestov, I. B.

    2011-01-01

    Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.

  11. A Mass Loss Penetration Model to Investigate the Dynamic Response of a Projectile Penetrating Concrete considering Mass Abrasion

    Directory of Open Access Journals (Sweden)

    NianSong Zhang

    2015-01-01

    Full Text Available A study on the dynamic response of a projectile penetrating concrete is conducted. The evolutional process of projectile mass loss and the effect of mass loss on penetration resistance are investigated using theoretical methods. A projectile penetration model considering projectile mass loss is established in three stages, namely, cratering phase, mass loss penetration phase, and remainder rigid projectile penetration phase.

  12. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers

    KAUST Repository

    Cheng, Yingchun; Zhu, Zhiyong; Tahir, Muhammad; Schwingenschlö gl, Udo

    2013-01-01

    . We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te

  13. The dynamics of target ionization by fast higly charged projectiles

    International Nuclear Information System (INIS)

    Moshammer, R.; Ullrich, J.; Unverzagt, M.; Olsen, R.E.; Doerner, R.; Mergel, V.; Schmidt-Boecking, H.

    1995-12-01

    We report on the first kinematically complete investigation of single target ionization by fast heavy ions, on the measurement of all low energy electrons down to zero emission velocities and on the determination of the projectile energy loss on the level of ΔE p /E p ∼10 -7 . This has been achieved by combining a high-resolution recoil-ion momentum spectrometer with a novel 4π electron analyzer. The complete momentum balance between electron, recoil-ion and projectile for single ionization of helium by 3.6 MeV/u Ni 24+ was explored. Low energy electrons are found to be ejected mainly into the forward direction with a most likely longitudinal energy of only 2 eV. The electron momentum is not balanced, as might be expected, by the projectile momentum but is nearly completely compensated by the recoil ion. Surprisingly, the momenta of the helium-atom ''fragments'', the electron and the He 1+ recoil ion, are considerably larger than the total momentum loss of the projectile: the target atom seems to dissociate in the strong, longranging projectile potential. The collision has to be considered as a real three body interaction. (orig.)

  14. Fragmentation of Pb-Projectiles at SPS Energies

    CERN Multimedia

    2002-01-01

    % EMU17 \\\\ \\\\ We have exposed stacks consisting of solid state nuclear track detectors (CR-39 plastic and BP-1 glass) and different target materials at the SPS to beams of Pb projectiles. Our detectors record tracks of relativistic nuclei with charge numbers of Z~$\\geq$~6 for CR-39 and Z~$\\geq$75 for BP-1. After development of the tracks by etching they are detected and measured using completely automated microscope systems. Thus experiments with high statistics are possible. \\\\ \\\\BP-1 detectors were exposed to measure total charge changing cross sections and elemental production cross sections for heavy projectile fragments. These experiments were performed for different targets CH$ _{2} $, C, Al, Cu, Ag and Pb. Comparison of the results for different targets allows to investigate contributions to charge changing reactions by electromagnetic dissociation. Multifragmentation events in which several intermediate mass fragments are emitted from the heavy Pb projectile are studied using stacks containing CR-39 d...

  15. International Conference on Spin Observables of Nuclear Probes

    CERN Document Server

    Goodman, Charles; Walker, George; Spin Observables of Nuclear Probes

    1988-01-01

    The proceedings of the "International Conference on Spin Observables of Nuclear Probes" are presented in this volume. This conference was held in Telluride, Colorado, March 14 -17, 1988, and was the fourth in the Telluride series of nuclear physics conferences. A continuing theme in the Telluride conference series has been the complementarity of various intermediate-energy projectiles for elucidating the nucleon-nucleon interaction and nuclear structure. Earlier conferences have contributed significantly to an understanding of spin currents in nuclei, in particular the distribution of Gamow-Teller strength using charge-exchange reactions. The previous conference on "Antinucleon and Nucleon Nucleus Interactions" compared nuclear information from tra­ tional probes to recent results from antinucleon reactions. The 1988 conference on Spin Observables of Nuclear Probes, put special emphasis on spin observables and brought together experts using spin information to probe nuclear structure. Spin observabl...

  16. Monoclinic Cc-phase stabilization in magnetically diluted lead free Na1/2Bi1/2TiO3—Evolution of spin glass like behavior with enhanced ferroelectric and dielectric properties

    Science.gov (United States)

    Thangavelu, Karthik; Asthana, Saket

    2015-09-01

    The effect of magnetic cation substitution on the phase stabilization, ferroelectric, dielectric and magnetic properties of a lead free Na0.5Bi0.5TiO3 (NBT) system prepared by O2 atmosphere solid state sintering were studied extensively. Cobalt (Co) was chosen as the magnetic cation to substitute at the Ti-site of NBT with optimized 2.5 mol%. Rietveld analysis of x-ray diffraction data favours the monoclinic Cc phase stabilization strongly rather than the parent R3c phase. FE-SEM micrograph supports the single phase characteristics without phase segregation at the grain boundaries. The stabilized Cc space group was explained based on the collective local distortion effects due to spin-orbit stabilization at Co3+ and Co2+ functional centres. The phonon mode changes as observed in the TiO6 octahedral modes also support the Cc phase stabilization. The major Co3+-ion presence was revealed from corresponding crystal field transitions observed through solid state diffuse reflectance spectroscopy. The enhanced spontaneous polarization (Ps) from ≅38 μC cm-2 to 45 μC cm-2 could be due to the easy rotation of polarization vector along the {(1\\bar{1}0)}{{pc}} in Cc phase. An increase in static dielectric response (ɛ) from ɛ ≅ 42 to 60 along with enhanced diffusivity from γ ≅ 1.53 to 1.75 was observed. Magneto-thermal irreversibility and their magnetic field dependent ZFC/FC curves suggest the possibility of a spin glass like behaviour below 50 K. The monoclinic Cc phase stabilization as confirmed from structural studies was well correlated with the observed ferroic properties in magnetically diluted NBT.

  17. Optimization of Construction of the rocket-assisted projectile

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2017-01-01

    Full Text Available New scheme of the rocket motor of rocket-assisted projectile providing the increase in distance of flight due to controlled and optimal delay time of ignition of the solid-propellant charge of the SRM and increase in reliability of initiation of the SRM by means of the autonomous system of ignition excluding the influence of high pressure gases of the propellant charge in the gun barrel has been considered. Results of the analysis of effectiveness of using of the ignition delay device on motion characteristics of the rocket-assisted projectile has been presented.

  18. Locus of the apices of projectile trajectories under constant drag

    Science.gov (United States)

    Hernández-Saldaña, H.

    2017-11-01

    Using the hodograph method, we present an analytical solution for projectile coplanar motion under constant drag, parametrised by the velocity angle. We find the locus formed by the apices of the projectile trajectories, and discuss its implementation for the motion of a particle on an inclined plane in presence of Coulomb friction. The range and time of flight are obtained numerically, and we find that the optimal launching angle is smaller than in the drag-free case. This is a good example of a problem with constant dissipation of energy that includes curvature; it is appropriate for intermediate courses of mechanics.

  19. Integrated Projectile Systems Synthesis Model (IPSSM)

    Science.gov (United States)

    1976-08-01

    max. alt. NKS 1.0 Print coefficient tables. 2.0 Do not print coefficient tables. KFC 1.0 Include magnus (force) co- efficients as input. 2.0 Do not...KON 0.0 Assume KFC input to be based on 71/16 1.0 Assume KFC input to be based on 1/8. KMR 0.0 Print output in feet. 1.0 Print output in meters. KSP 1.0...For three-way table lookup of KFC and CPF. KFC and CPF will now be a function of mach no., angle of attack, and spin. 0.0 For two-way table lookup of

  20. A Simple General Solution for Maximal Horizontal Range of Projectile Motion

    OpenAIRE

    Busic, Boris

    2005-01-01

    A convenient change of variables in the problem of maximizing the horizontal range of the projectile motion, with an arbitrary initial vertical position of the projectile, provides a simple, straightforward solution.

  1. Charm production yield from target nuclei filtering intrinsic projectile charm

    International Nuclear Information System (INIS)

    Quack, E.; Nemes, M.C.

    1990-01-01

    Estimating the process of filtering an intrinsic projectile charm component by a target nucleus as proposed earlier, we obtain upper limits for the cross sections of open charm and J/Ψ. Comparing with experiment, we conclude that this filtering mechanism is not sufficient to explain the observed A α-dependence at large final state momenta. (author)

  2. Ionization of hydrogen by a relativistic heavy projectile

    International Nuclear Information System (INIS)

    Hofstetter, S.; Hofmann, C.; Soff, G.

    1991-10-01

    Using a relativistic analogue of the classical trajectory Monte-Carlo method we investigate the influence of the magnetic field of a relativistic heavy projectile on the ionization cross section of hydrogen. In particular we focus our attention on the angular and energy distribution of the emitted delta electrons. (orig.)

  3. Projectile Motion in the "Language" of Orbital Motion

    Science.gov (United States)

    Zurcher, Ulrich

    2011-01-01

    We consider the orbit of projectiles launched with arbitrary speeds from the Earth's surface. This is a generalization of Newton's discussion about the transition from parabolic to circular orbits, when the launch speed approaches the value [image omitted]. We find the range for arbitrary launch speeds and angles, and calculate the eccentricity of…

  4. Projectile General Motion in a Vacuum and a Spreadsheet Simulation

    Science.gov (United States)

    Benacka, Jan

    2015-01-01

    This paper gives the solution and analysis of projectile motion in a vacuum if the launch and impact heights are not equal. Formulas for the maximum horizontal range and the corresponding angle are derived. An Excel application that simulates the motion is also presented, and the result of an experiment in which 38 secondary school students…

  5. Projectile deformation effects in the breakup of 37Mg

    Directory of Open Access Journals (Sweden)

    Shubhchintak

    2016-01-01

    Full Text Available We study the breakup of 37Mg on Pb at 244MeV/u with the recently developed extended theory of Coulomb breakup within the postform finite range distorted wave Born approximation that includes deformation of the projectile. Comparing our calculated cross section with the available Coulomb breakup data we determine the possible ground state configuration of 37Mg.

  6. On the Inertia Term of Projectile's Penetration Resistance

    Directory of Open Access Journals (Sweden)

    Yu Shan

    2013-01-01

    Full Text Available The effect of the target inertia term of rigid kinetic energy projectiles (KEP’s penetration resistance is investigated using nonlinear dynamic code LS-DYNA and four constitutive models. It is found that the damage number of target can be used to measure the influence of the inertia term. The smaller the damage number is, the less influence the inertia term has. The less dependent the resistance has on projectile velocity, the more accurate it is to treat the resistance as a constant. For the ogive-nose projectile with CRH of 3, when the target is aluminum, steel, or other metals, the threshold velocity for the constant resistance is at least 1258 m/s; when the target is concrete, rock, or other brittle materials, if the velocity of the projectile is greater than 400 m/s or so, the damage number would be very large, and the penetration resistance would clearly depend on the projectile’s velocity. The higher the elastic wave velocity is, the more penetration process is affected by the impact face.

  7. Fusion of a polarized projectile with a polarized target

    International Nuclear Information System (INIS)

    Christley, J.A.; Johnson, R.C.; Thompson, I.J.

    1995-01-01

    The fusion cross sections for a polarized target with both unpolarized and polarized projectiles are studied. Expressions for the observables are given for the case when both nuclei are polarized. Calculations for fusion of an aligned 165 Ho target with 16 O and polarized 7 Li beams are presented

  8. On the Trajectories of Projectiles Depicted in Early Ballistic Woodcuts

    Science.gov (United States)

    Stewart, Sean M.

    2012-01-01

    Motivated by quaint woodcut depictions often found in many late 16th and 17th century ballistic manuals of cannonballs fired in air, a comparison of their shapes with those calculated for the classic case of a projectile moving in a linear resisting medium is made. In considering the asymmetrical nature of such trajectories, the initial launch…

  9. When Does Air Resistance Become Significant in Projectile Motion?

    Science.gov (United States)

    Mohazzabi, Pirooz

    2018-01-01

    In an article in this journal, it was shown that air resistance could never be a significant source of error in typical free-fall experiments in introductory physics laboratories. Since projectile motion is the two-dimensional version of the free-fall experiment and usually follows the former experiment in such laboratories, it seemed natural to…

  10. Ionization of heavy targets by impact of relativistic projectiles

    International Nuclear Information System (INIS)

    Deco, G.R.; Fainstein, P.D.; Comision Nacional de Energia Atomica, San Carlos de Bariloche; Rivarola, R.D.

    1988-01-01

    Electron ejection from atomic targets by impact of bare heavy projectiles at relativistic collision energies is studied theoretically. First-order Born calculations are presented by using initial Darwin and final Sommerfeld-Maue wavefunctions. Comparisons with other calculations and experimental data are given. (orig.)

  11. Calculation of forces arising from impacting projectiles upon yielding structures

    International Nuclear Information System (INIS)

    Drittler, K.; Gruner, P.; Krivy, J.

    1977-01-01

    Calculations concerning the impact of airplanes upon nuclear power plant buildings usually imply that the building [QUOTE]acts' as a rigid target. This assumption is justified for considerations concerning the structural integrity of the building being hit. However, for investigating induced vibrations of components within the structure, this approach might-in general-be too conservative. It is expected, that yielding of the structure during impact reduces the peak values of the loads and changes the temporal behaviour of the load function which is obtained for a rigid target. To calculate the changes of the load function which are due to deformations of the structure, Riera's method is extended for the case of a yielding target. The calculations are performed with a one-dimensional model for the projectile. The presented model calculations seem to verify that the motion of the target does not have much influence on the impact force for projectiles similar to the model projectile, provided the displacement of the yielding target is small in comparison with the path covered by the free-flying projectile during a time which is equivalent to the total time of impact. (Auth.)

  12. Calculation of projectile velocity in an electromagnetic mass driver

    International Nuclear Information System (INIS)

    Ikuta, K.

    1986-08-01

    The formula for the velocity increase of a projectile accelerated by the single z-pinch between the cylindrical electrodes is established. This formula enables one to consider the necessary stages in the cylindrical electrode array of the accelerator for a required velocity. (author)

  13. EFFECT OF BODY SHAPE ON THE AERODYNAMICS OF PROJECTILES AT SUPERSONIC SPEEDS

    Directory of Open Access Journals (Sweden)

    ABDULKAREEM SH. MAHDI

    2008-12-01

    Full Text Available An investigation has been made to predict the effects of forebody and afterbody shapes on the aerodynamic characteristics of several projectile bodies at supersonic speeds using analytical methods combined with semi-empirical design curves. The considered projectile bodies had a length-to-diameter ratio of 6.67 and included three variations of forebody shape and three variations of afterbody shape. The results, which are verified by comparison with available experimental data, indicated that the lowest drag was achieved with a cone-cylinder at the considered Mach number range. It is also shown that the drag can be reduced by boattailing the afterbody. The centre-of-pressure assumed a slightly rearward location for the ogive-cylinder configuration when compared to the configuration with boattailed afterbody where it was the most forward. With the exception of the boattailed afterbody, all the bodies indicated inherent static stability above Mach number 2 for a centre-of-gravity location at about 40% from the body nose.

  14. Vibration dependence of the tensor spin-spin and scalar spin-spin hyperfine interactions by precision measurement of hyperfine structures of 127I2 near 532 nm

    International Nuclear Information System (INIS)

    Hong Fenglei; Zhang Yun; Ishikawa, Jun; Onae, Atsushi; Matsumoto, Hirokazu

    2002-01-01

    Hyperfine structures of the R(87)33-0, R(145)37-0, and P(132)36-0 transitions of molecular iodine near 532 nm are measured by observing the heterodyne beat-note signal of two I 2 -stabilized lasers, whose frequencies are bridged by an optical frequency comb generator. The measured hyperfine splittings are fit to a four-term Hamiltonian, which includes the electric quadrupole, spin-rotation, tensor spin-spin, and scalar spin-spin interactions, with an accuracy of ∼720 Hz. High-accurate hyperfine constants are obtained from this fit. Vibration dependences of the tensor spin-spin and scalar spin-spin hyperfine constants are determined for molecular iodine, for the first time to our knowledge. The observed hyperfine transitions are good optical frequency references in the 532-nm region

  15. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2017-01-01

    Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.

  16. Spin doctoring

    OpenAIRE

    Vozková, Markéta

    2011-01-01

    1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...

  17. Spin exchange between ion probes and localized moments in ferromagnets as the origin of transient fields

    International Nuclear Information System (INIS)

    Hagelberg, F.; Das, T.P.; Speidel, K.

    1993-01-01

    The transient field phenomenon has been ascribed to a polarization transfer between the electrons of the ionic projectiles and the surplus of majority spin electrons of the ferromagnetic host over the minority spin electrons. Earlier attempts to explain this crucial process failed to account for the order of magnitude of the experimentally observed transient field strengths. A recent model which proposes spin exchange scattering between bound projectile electrons and quasifree host electrons as the mechanism of polarization transfer arrives at the correct orders of magnitude but is in conflict with the weak velocity dependence of the experimental polarization, exhibiting a strongly decreasing behavior with increasing velocity. The new model presented here proposes spin exchange between the ionic shell and localized electrons of the ferromagnet as a more adequate approach to the problem. It is shown that calculations involving hydrogenlike ions explain the size of the experimentally observed polarization effects as well as their velocity dependence for various ion probes traversing thin iron foils

  18. Perspectives on spin glasses

    CERN Document Server

    Contucci, Pierluigi

    2013-01-01

    Presenting and developing the theory of spin glasses as a prototype for complex systems, this book is a rigorous and up-to-date introduction to their properties. The book combines a mathematical description with a physical insight of spin glass models. Topics covered include the physical origins of those models and their treatment with replica theory; mathematical properties like correlation inequalities and their use in the thermodynamic limit theory; main exact solutions of the mean field models and their probabilistic structures; and the theory of the structural properties of the spin glass phase such as stochastic stability and the overlap identities. Finally, a detailed account is given of the recent numerical simulation results and properties, including overlap equivalence, ultrametricity and decay of correlations. The book is ideal for mathematical physicists and probabilists working in disordered systems.

  19. Island of high-spin isomers near N = 82

    International Nuclear Information System (INIS)

    Pedersen, J.; Back, B.B.; Bernthal, F.M.; Bjornholm, S.; Borggreen, J.; Christensen, O.; Folkmann, F.; Herskind, B.; Khoo, T.L.; Neiman, M.; Puehlhofer, F.; Sletten, G.

    1977-01-01

    Experiments aimed at testing for the existence of yrast traps are reported. A search for delayed γ radiation of lifetimes longer than approx. 10 ns and of high multiplicity has been performed by producing more than 100 compound nuclei between Ba and Pb in bombardments with 40 Ar, 50 Ti, and 65 Cu projectiles. An island of high-spin isomers is found to exist in the region 64 or approx. = 71 and N < or approx. = 82

  20. Spin 1990

    International Nuclear Information System (INIS)

    Anton, Gisela

    1990-01-01

    The idea of the intrinsic angular momentum, or 'spin', of a particle has played an essential part in fundamental physics for more than 60 years, and its continuing importance was underlined at the 9th International Symposium on High Energy Spin Physics, held in September in Bonn.

  1. Spin 1990

    Energy Technology Data Exchange (ETDEWEB)

    Anton, Gisela

    1990-12-15

    The idea of the intrinsic angular momentum, or 'spin', of a particle has played an essential part in fundamental physics for more than 60 years, and its continuing importance was underlined at the 9th International Symposium on High Energy Spin Physics, held in September in Bonn.

  2. Spin tomography

    Energy Technology Data Exchange (ETDEWEB)

    D' Ariano, G M [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy); Maccone, L [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy); Paini, M [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy)

    2003-02-01

    We propose a tomographic reconstruction scheme for spin states. The experimental set-up, which is a modification of the Stern-Gerlach scheme, can be easily performed with currently available technology. The method is generalized to multiparticle states, analysing the spin-1/2 case for indistinguishable particles. Some Monte Carlo numerical simulations are given to illustrate the technique.

  3. Spin tomography

    International Nuclear Information System (INIS)

    D'Ariano, G M; Maccone, L; Paini, M

    2003-01-01

    We propose a tomographic reconstruction scheme for spin states. The experimental set-up, which is a modification of the Stern-Gerlach scheme, can be easily performed with currently available technology. The method is generalized to multiparticle states, analysing the spin-1/2 case for indistinguishable particles. Some Monte Carlo numerical simulations are given to illustrate the technique

  4. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  5. Spin symposium

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-01-15

    The recent 8th International Symposium on High Energy Spin Physics at the University of Minnesota in Minneapolis, Minnesota, opened with a bang when L. Pondrom (Wisconsin), donning a hard hat borrowed from construction workers, ventured that 'spin, the notorious inessential complication of hadronic physics, is finally telling us what real QCD (quantum chromodynamics, the field theory of quarks and gluons) looks like.' He was referring to an animated discussion on the meaning of the recent spin oriented (polarized) scattering results from the European Muon Collaboration (EMC) at CERN and reported at the Symposium by R. Garnet (Liverpool) and P. Schuler (Yale) which show that the proton spin is not simply a reflection of the spins of its constituent quarks.

  6. L and M shell coulomb ionization by heavy charged projectiles

    International Nuclear Information System (INIS)

    Karmaker, R.

    1980-01-01

    Universal cross sections for L and M shell ionization have been extracted from the semiclassical approximation (SCA) model in the straight line path approximation of the projectile. It has been shown that it is possible to organise the calculation of the SCA in a suitable way so that it is not necessary to calculate the cross section for different targets. The agreement between the theoretical curve in the SCA model and the available experimental data for different target elements, is reasonably good. Cross sections for L and M shell ionization in the straight line path of the projectile in the SCA model for Pb, Au and U targets by the impact of protons have been calculated. The results have been compared with those calculated in the Binary Encounter Approximation (BEA) and the Plane Wave Born Approximation (PWBA) as well as with the available experimental results. The present calculations are in good agreement with the existing theoretical and the experimental results. (author)

  7. Mechanisms of Li-projectile breakup-up

    International Nuclear Information System (INIS)

    Rebel, H.; Srivastava, D.K.

    1990-08-01

    Various experimental and theoretical features observed in recent studies of break-up of 6 Li and 7 Li projectiles in the field of atomic nuclei are discussed, in particular for the transitional energy regime of 10-30 MeV/amu. The discussion is organized as three independent lectures presented at the International School on Nuclear Physics, Kiev (UkSSR), 28 May - 8 June, 1990. After a survey on the main experimental facts and on the basic reaction mechanisms, current theoretical approaches are illustrated by an application to the analysis of elastic break-up of 156 MeV 6 Li projectiles. Finally Coulomb break-up is discussed as a novel tool of laboratory nuclear astrophysics. (orig.) [de

  8. Ballistics considerations for small-caliber, low-density projectiles

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Milora, S.L.; Qualls, A.L.

    1993-01-01

    One major application for single- and two-stage light gas guns is for fueling magnetic fusion confinement devices. Powder guns are not a feasible alternative due to possible plasma contamination by residual powder gases and the eventual requirement of steady-state operation at ∼ 1 Hz, which will dictate a closed gas handling system where propellant gases are recovered, processed and recompressed. Interior ballistic calculations for single-stage light gas guns, both analytical and numerical, are compared to an extensive data base for low density hydrogenic projectiles (pellets). Some innovative range diagnostics are described for determining the size and velocity of these small (several mm) size projectiles. A conceptual design of a closed cycle propellant gas system is presented including tradeoffs between different light propellant gases

  9. First spatial isotopic separation of relativistic uranium projectile fragments

    International Nuclear Information System (INIS)

    Magel, A.; Voss, B.; Armbruster, P.; Aumann, T.; Clerc, H.G.; Czajkowski, S.; Folger, H.; Grewe, A.; Hanelt, E.; Heinz, A.; Irnich, H.; Jong, M. de; Junghans, A.; Nickel, F.; Pfuetzner, M.; Roehl, C.; Scheidenberger, C.; Schmidt, K.H.; Schwab, W.; Steinhaeuser, S.; Suemmerer, K.; Trinder, W.; Wollnik, H.

    1994-07-01

    Spatial isotopic separation of relativistic uranium projectile fragments has been achieved for the first time. The fragments were produced in peripheral nuclear collisions and spatially separated in-flight with the fragment separator FRS at GSI. A two-fold magnetic-rigidity analysis was applied exploiting the atomic energy loss in specially shaped matter placed in the dispersive central focal plane. Systematic investigations with relativistic projectiles ranging from oxygen up to uranium demonstrate that the FRS is a universal and powerful facility for the production and in-flight separation of monoisotopic, exotic secondary beams of all elements up to Z=92. This achievement has opened a new area in heavy-ion research and applications. (orig.)

  10. Backscattering of projectile-bound electrons from solid surfaces

    International Nuclear Information System (INIS)

    Tobisch, M.; Schosnig, M.; Kroneberger, K.; Kuzel, M.; Maier, R.; Jung, M.; Fiedler, C.; Rothard, H.; Clouvas, A.; Suarez, S.; Groeneveld, K.O.

    1994-01-01

    The contribution of projectile ionization (PI) to secondary electron emission is studied by collision of H 2 + and H 3 + ions (400 keV/u and 700 keV/u) with carbon, copper and gold targets (600 A). The measured doubly differential intensity distribution shows a peak of lost projectile electrons near - v p . We describe the subtraction of the contribution of target ionization (TI), and compare the remaining electron intensities with a BEA calculation. For solids we observe a strong energy shift of the electron loss peak, which is compared with the influence of electron transport and binding energy. Furthermore, the low energy tail of the electron loss peak indicates the simultaneous occurrence of PI and TI. Finally we discuss the influence of surface conditions and the dependence of the observation angles on the measured electron intensities. (orig.)

  11. {beta}-decay studies at the N=28 shell closure: indications for a weakening of the spin-orbit force far from stability?

    Energy Technology Data Exchange (ETDEWEB)

    Grevy, S. [Laboratoire de Physique Corpusculaire de Caen, IN2P3-CNRS, ENSICAEN et Universite de Caen, F-14050 Caen Cedex (France)]. E-mail: grevy@in2p3.fr; Angelique, J.C.; Baumann, P.; Borcea, C.; Buta, A.; Canchel, G.; Catford, W.N.; Courtin, S.; Daugas, J.M.; Oliveira, F. de; Dessagne, P.; Dlouhy, Z.; Knipper, A.; Kratz, K.L.; Lecolley, F.R.; Lecouey, J.L.; Lehrsenneau, G.; Lewitowicz, M.; Lienard, E.; Lukyanov, S.; Marechal, F.; Miehe, C.; Mrazek, J.; Negoita, F.; Orr, N.A.; Pantelica, D.; Penionzhkevich, Y.; Peter, J.; Pfeiffer, B.; Pietri, S.; Poirier, E.; Sorlin, O.; Stanoiu, M.; Stefan, I.; Stodel, C.; Timis, C

    2004-12-27

    A {beta}-decay experiment on nuclei in the region of N=28 has been performed at the GANIL facility. New measured half-lives for the Si isotopes from N=25 to N=28 are reported and discussed in the light of the deformation occurring in this region. Comparison with QRPA calculations suggests that a weakening of the spin-orbit force occurs for the very neutron-rich Si isotopes.

  12. Occult lawn mower projectile injury presenting with hemoptysis

    Directory of Open Access Journals (Sweden)

    Patric J. Darvie, BS

    2017-12-01

    Full Text Available We present the case of a 72-year-old man with hemoptysis after a thoracic projectile injury, which occurred while mowing the lawn. Chest radiograph followed by a computed tomography angiogram revealed a metallic foreign body in the right middle lobe of the lung. The patient underwent a right anterolateral thoracotomy where the object was successfully retrieved. The patient had an uneventful postoperative recovery.

  13. Occult lawn mower projectile injury presenting with hemoptysis.

    Science.gov (United States)

    Darvie, Patric J; Ballard, David H; Harris, Nicholas; Bhargava, Peeyush; Rao, Vyas R; Samra, Navdeep S

    2017-12-01

    We present the case of a 72-year-old man with hemoptysis after a thoracic projectile injury, which occurred while mowing the lawn. Chest radiograph followed by a computed tomography angiogram revealed a metallic foreign body in the right middle lobe of the lung. The patient underwent a right anterolateral thoracotomy where the object was successfully retrieved. The patient had an uneventful postoperative recovery.

  14. Occult lawn mower projectile injury presenting with hemoptysis

    OpenAIRE

    Patric J. Darvie, BS; David H. Ballard, MD; Nicholas Harris, MD; Peeyush Bhargava, MD, MBA; Vyas R. Rao, MD; Navdeep S. Samra, MD

    2017-01-01

    We present the case of a 72-year-old man with hemoptysis after a thoracic projectile injury, which occurred while mowing the lawn. Chest radiograph followed by a computed tomography angiogram revealed a metallic foreign body in the right middle lobe of the lung. The patient underwent a right anterolateral thoracotomy where the object was successfully retrieved. The patient had an uneventful postoperative recovery.

  15. Investigations in atomic physics by heavy ion projectiles

    International Nuclear Information System (INIS)

    Berenyi, D.

    1983-01-01

    The utilization of heavy ion reactions in atomic physics is surveyed. The basic collision mechanisms and their consequences in atomic physics are summarized. The atomic and electronic processes during and after heavy ion collisions are reviewed as functions of the projectile energy. The main detection and measuring methods are described. Reviews of new information about the structure of electronic cloud and about fundamental processes based on the analysis of heavy ion reaction data are given. (D.Gy.)

  16. ["Bolt projectiles" discharged from modified humane killers (author's transl)].

    Science.gov (United States)

    Pollak, S; Reiter, C

    1981-01-01

    Some common types of "humane killers" are supplied with rubber bushings and recoil springs holding back the bolt, which afterwards is rebound into the barrel. Removal of the rubber bush and withdrawal spring before firing can cause the bolt to break and become a free projectile. A suicide case is reported, in which a livestock stunner discharged a steel bolt penetrating the forehead and getting stuck in the skull.

  17. Excitation and ionization of ethylene by charged projectiles

    International Nuclear Information System (INIS)

    Wang Zhiping; Wang Jing; Zhang Fengshou

    2010-01-01

    Using the time dependent local density approximation, applied to valence electrons, coupled non-adiabatically to molecular dynamics of ions, the collision process between ethylene and fast charged projectiles is studied in the microscopic way. The impact of ionic motion on the ionization is explored to show the importance of treating electronic and ionic degrees of freedom simultaneously. The number of escaped electrons, ionization probabilities are obtained. Furthermore, it is found that the ionic extensions in different directions show the different patterns. (authors)

  18. Smart Projectiles: Design Guidelines and Development Process Keys to Success

    Science.gov (United States)

    2010-10-01

    about its principal axis. Set forward is the unspringing of the projectile as it leaves the muzzle of the weapon as described in reference 1. In...material properties at even room temperature are unknown or depend upon the mixing of two or more ingredients. The only solution is to create dog ...to setback or are required to hold in tension during set- forward ( muzzle exit), cracks or voids in the explosive that may be compressed and

  19. Scattering of mass-3 projectiles from heavy nuclei

    International Nuclear Information System (INIS)

    Mukhopadyay, S.; Srivastava, D.K.; Ganguly, N.K.

    1976-01-01

    The interaction between heavy ions is a subject of great interest. It is well known that α-particle scattering shows most of the features which are observed in heavy ion scattering. In as much as mass-3 system is intermediate between heavy and light particles it will be interesting to investigate the scattering of mass-3 projectiles to see if it is possible to extend it to study the heavy ion scattering. Indeed; it has been seen that the 'molecular type' potentials, with a soft repulsive core and a shallow attractive well used for heavy ion collisions can be used to fit the elastic scattering data of mass-3 projectiles also. In the first part of this paper, a description is given of how this potential is generated with a special emphasis on saturation and second order effect through a density dependent interaction between nucleon and mass-3 projectiles. In the second part it is shown that the asymmetry dependence observed in the potential describing the scattering of mass-3 particles from heavier nuclei actually originates from the isospin interaction, when triton and helion are treated as two members of an isospin doublet. (Auth.)

  20. Inelastic scattering of quasifree electrons on O7+ projectiles

    International Nuclear Information System (INIS)

    Toth, G.; Grabbe, S.; Richard, P.; Bhalla, C.P.

    1996-01-01

    Absolute doubly differential cross sections (DDCS close-quote s) for the resonant inelastic scattering of quasifree target electrons on H-like projectiles have been measured. Electron spectra for 20.25-MeV O 7+ projectiles on an H 2 target were measured. The spectra contain a resonant contribution from the 3l3l ' doubly excited states of O 6+ , which decay predominantly to the 2l states of the O 7+ via autoionization, and a nonresonant contribution from the direct excitation of the projectiles to the O 7+ (2l) state by the quasifree target electrons. Close-coupling R-matrix calculations for the inelastic scattering of free electrons on O 7+ ions were performed. The relation between the electron-ion inelastic scattering calculation and the electron DDCS close-quote s for the ion-atom collision was established by using the inelastic scattering model (ISM). We found excellent agreement between the theoretical and measured resonant peak positions and relative peak heights. The calculated absolute double differential cross sections for the resonance processes are also in good agreement with the measured data. The implication is that collisions of highly charged ions on hydrogen can be used to obtain high-resolution, angle- resolved differential inelastic electron-scattering cross section. copyright 1996 The American Physical Society

  1. Ultrahigh-speed X-ray imaging of hypervelocity projectiles

    Science.gov (United States)

    Miller, Stuart; Singh, Bipin; Cool, Steven; Entine, Gerald; Campbell, Larry; Bishel, Ron; Rushing, Rick; Nagarkar, Vivek V.

    2011-08-01

    High-speed X-ray imaging is an extremely important modality for healthcare, industrial, military and research applications such as medical computed tomography, non-destructive testing, imaging in-flight projectiles, characterizing exploding ordnance, and analyzing ballistic impacts. We report on the development of a modular, ultrahigh-speed, high-resolution digital X-ray imaging system with large active imaging area and microsecond time resolution, capable of acquiring at a rate of up to 150,000 frames per second. The system is based on a high-resolution, high-efficiency, and fast-decay scintillator screen optically coupled to an ultra-fast image-intensified CCD camera designed for ballistic impact studies and hypervelocity projectile imaging. A specially designed multi-anode, high-fluence X-ray source with 50 ns pulse duration provides a sequence of blur-free images of hypervelocity projectiles traveling at speeds exceeding 8 km/s (18,000 miles/h). This paper will discuss the design, performance, and high frame rate imaging capability of the system.

  2. Spin systems

    CERN Document Server

    Caspers, W J

    1989-01-01

    This book is about spin systems as models for magnetic materials, especially antiferromagnetic lattices. Spin-systems are well-defined models, for which, in special cases, exact properties may be derived. These special cases are for the greater part, one- dimensional and restricted in their applicability, but they may give insight into general properties that also exist in higher dimension. This work pays special attention to qualitative differences between spin lattices of different dimensions. It also replaces the traditional picture of an (ordered) antiferromagnetic state of a Heisenberg sy

  3. Interactions of $^{16}$O Projectile and its Fragments in Nuclear Emulsion at about 60 and 200 GeV/nucleon

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to measure the multiplicity ``$ n _{s} $'' and pseudo-rapidity ``$\\eta$'' of the shower particles ($\\beta$~$\\geq$~0.7) produced in different types of collisions (peripheral, semi-central and central), of $^{16}$O and $^{32}$S in nuclear emulsions. The multiplicities and angular distributions of both the grey ``$ n _{g} $'' (mainly due to knock- on and recoil protons), and black ``$ n _{b} $'' (slow evaporated target fragments) particles, and the inter-correlation between them are studied. \\\\ \\\\ The yield, charge and angular distributions of produced relativistic projectile fragments P.F.S., for $ Z _{P} . _{F} . $ $\\geq$~2 are measured and their interactions in emulsions are investigated. \\\\ \\\\ The study of the mean free paths for the projectile fragments with Z $\\geq$ 3 produced from 200~A~GeV $^{16}$ 0 interactions were performed, which show the absence of the anomalous phenomena. \\\\ \\\\ The possible production of zero-spin light neutral scaler bosons and pseudoscaler bosons from...

  4. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  5. Spin Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The 5th International Symposium on High Energy Spin Physics met in September at Brookhaven. The symposium has evolved to include a number of diverse specialities: theory, including parity violations and proposed quantum chromodynamics (QCD) tests with polarized beams; experiment, including the large spin effects discovered in high transverse momentum elastic scattering and hyperon production, dibaryons, and magnetic moments; acceleration and storage of polarized protons and electrons; and development of polarized sources and targets

  6. Strain Behavior of Concrete Panels Subjected to Different Nose Shapes of Projectile Impact.

    Science.gov (United States)

    Lee, Sangkyu; Kim, Gyuyong; Kim, Hongseop; Son, Minjae; Choe, Gyeongcheol; Nam, Jeongsoo

    2018-03-09

    This study evaluates the fracture properties and rear-face strain distribution of nonreinforced and hooked steel fiber-reinforced concrete panels penetrated by projectiles of three different nose shapes: sharp, hemispherical, and flat. The sharp projectile nose resulted in a deeper penetration because of the concentration of the impact force. Conversely, the flat projectile nose resulted in shallower penetrations. The penetration based on different projectile nose shapes is directly related to the impact force transmitted to the rear face. Scabbing can be more accurately predicted by the tensile strain on the rear face of concrete due to the projectile nose shape. The tensile strain on the rear face of the concrete was reduced by the hooked steel fiber reinforcement because the hooked steel fiber absorbed some of the impact stress transmitted to the rear face of the concrete. Consequently, the strain behavior on the rear face of concrete according to the projectile nose shape was confirmed.

  7. Study of incomplete fusion sensitivity to projectile structure from forward recoil range distribution measurement

    International Nuclear Information System (INIS)

    Kumar, Harish; Tali, Suhail A.; Afzal Ansari, M.

    2017-01-01

    Recently, the projectile structure is found to affect the incomplete fusion (ICF) process by using α- and non-α-cluster structured projectiles which is explored in terms of projectile α-Q-value and is still limited only for a very few systems. Keeping in view the recent aspects especially the projectile structure effect on ICF, the present work is carried out in the series of experiment by using α- and non-α-cluster structured projectiles. Presently, the FRRDs of evaporation residues (ERs) produced in 13 C + 175 Lu system have been measured at ≈ 88 MeV energy. In this work, an attempt has been made to have a better knowledge of projectile α-Q-value effect on ICF

  8. Electron loss from heavy heliumlike projectiles in ultrarelativistic collisions with many-electron atomic targets

    International Nuclear Information System (INIS)

    Mueller, C.; Gruen, N.; Voitkiv, A.B.

    2002-01-01

    We study single- and double-electron loss from heavy heliumlike projectiles in ultrarelativistic collisions with neutral many-electron target atoms. The simultaneous interaction of the target with two projectile electrons is found to be the dominant process in the double-electron loss provided the atomic number of the projectile, Z p , that of the target, Z t , and the collision velocity, v, satisfy the condition Z p Z t /v>0.4. It is shown that for a wide range of projectile and target atomic numbers the asymptotic double-to-single loss ratio strongly depends on the target atomic number but is nearly independent of the nuclear charge of the projectile. It is also demonstrated that many-photon exchange between the target and each of the projectile electrons considerably influences the double loss in collisions with very heavy targets

  9. Strain Behavior of Concrete Panels Subjected to Different Nose Shapes of Projectile Impact

    Directory of Open Access Journals (Sweden)

    Sangkyu Lee

    2018-03-01

    Full Text Available This study evaluates the fracture properties and rear-face strain distribution of nonreinforced and hooked steel fiber-reinforced concrete panels penetrated by projectiles of three different nose shapes: sharp, hemispherical, and flat. The sharp projectile nose resulted in a deeper penetration because of the concentration of the impact force. Conversely, the flat projectile nose resulted in shallower penetrations. The penetration based on different projectile nose shapes is directly related to the impact force transmitted to the rear face. Scabbing can be more accurately predicted by the tensile strain on the rear face of concrete due to the projectile nose shape. The tensile strain on the rear face of the concrete was reduced by the hooked steel fiber reinforcement because the hooked steel fiber absorbed some of the impact stress transmitted to the rear face of the concrete. Consequently, the strain behavior on the rear face of concrete according to the projectile nose shape was confirmed.

  10. Characteristics and measurement of supersonic projectile shock waves by a 32-microphone ring array

    Science.gov (United States)

    Chang, Ho; Wu, Yan-Chyuan; Tsung, Tsing-Tshih

    2011-08-01

    This paper discusses about the characteristics of supersonic projectile shock wave in muzzle region during firing of high explosive anti-tank (HEAT) and high explosive (HE) projectiles. HEAT projectiles are fired horizontally at a muzzle velocity of Mach 3.5 from a medium caliber tank gun equipped with a newly designed multi-perforated muzzle brake, whereas HE projectiles are fired at elevation angles at a muzzle velocity of Mach 2 from a large caliber howitzer equipped with a newly designed double-baffle muzzle brake. In the near field, pressure signatures of the N-wave generated from projectiles are measured by 32-microphone ring array wrapped by cotton sheath. Records measured by the microphone array are used to demonstrate several key characteristics of the shock wave of supersonic projectile. All measurements made in this study can be a significant reference for developing guns, tanks, or the chassis of fighting vehicles.

  11. On ballistic parameters of less lethal projectiles influencing the severity of thoracic blunt impacts.

    Science.gov (United States)

    Pavier, Julien; Langlet, André; Eches, Nicolas; Jacquet, Jean-François

    2015-01-01

    The development and safety certification of less lethal projectiles require an understanding of the influence of projectile parameters on projectile-chest interaction and on the resulting terminal effect. Several energy-based criteria have been developed for chest injury assessment. Many studies consider kinetic energy (KE) or energy density as the only projectile parameter influencing terminal effect. In a common KE range (100-160 J), analysis of the firing tests of two 40 mm projectiles of different masses on animal surrogates has been made in order to investigate the severity of the injuries in the thoracic region. Experimental results have shown that KE and calibre are not sufficient to discriminate between the two projectiles as regards their injury potential. Parameters, such as momentum, shape and impedance, influence the projectile-chest interaction and terminal effect. A simplified finite element model of projectile-structure interaction confirms the experimental tendencies. Within the range of ballistic parameters used, it has been demonstrated that maximum thoracic deflection is a useful parameter to predict the skeletal level of injury, and it largely depends on the projectile pre-impact momentum. However, numerical simulations show that these results are merely valid for the experimental conditions used and cannot be generalised. Nevertheless, the transmitted impulse seems to be a more general factor governing the thorax deflection.

  12. Local behavior of reinforced concrete slabs to aircraft engine projectile impact

    International Nuclear Information System (INIS)

    Yoo, Hyeon Kyeong; Choi, Hyun; Chung, Chul Hun; Lee, Jung Whee; Kim, Sang Yun

    2011-01-01

    Structural safety evaluation of nuclear power plant considers two distinct types of structural failure, local failure and global failure. In the local failure evaluation, considered projectiles can be divided as internal and external projectile according to the impact location, and they also can be divided as rigid and soft projectile according to the deformation level after impact. Frequently considered projectiles are aircraft engine, tornado, and turbine projectile. When the speed and weight of the projectiles are considered, the most influential projectile is aircraft engine, which is one of the soft projectiles. Sugano et al. performed impact test using an engine model projectile, which is derived from GE-J79 engine and concentrated mass-spring model idealization. Kojima and Sugano et al. demonstrated from their experiments that steel liner on the rear side of the concrete wall reduces impact induced damage and suppresses debris scattering. Chung et al. performed comparison study of various formulae suggested for local damage evaluation using previously performed numerous local impact test results. Also, they validated a methodology of numerical analysis for impact simulation using LS-DYNA. Previously suggested formulae and research results do not consider the effect of liner plate or curved shape of the containment building walls on the local damage. In this research, flat wall and curved wall are individually modeled using the same curvature of nuclear power plants, and the effects of curvature and liner plates on the local damage are analytically investigated

  13. Analysis on the resistive force in penetration of a rigid projectile

    Directory of Open Access Journals (Sweden)

    Xiao-wei Chen

    2014-09-01

    Full Text Available According to the dimensionless formulae of DOP (depth of penetration of a rigid projectile into different targets, the resistive force which a target exerts on the projectile during the penetration of rigid projectile is theoretically analyzed. In particular, the threshold Vc of impact velocity applicable for the assumption of constant resistive force is formulated through impulse analysis. The various values of Vc corresponding to different pairs of projectile-target are calculated, and the consistency of the relative test data and numerical results is observed.

  14. Hidrodinamički model podvodnog projektila / Hidrodinamical model of an underwater projectile

    Directory of Open Access Journals (Sweden)

    Miroslav Radosavljević

    2008-07-01

    Full Text Available Radi dobijanja kvalitetnog matematičkog modela podvodnog projektila u radu su definisane ulazne i izlazne veličine, brzine i ubrzanje projektila. Uz zadate uslove mogućeg kretanja projektila definisan je model podvodnog projektila sa šest jednačina. / The paper analyzes an underwater projectile. The input and output values, the projectile speed and acceleration are defined for a quality definition of the projectile mathematical model. With the conditions of the projectile potential movement previously set out, the torpedo model is defined by six equations.

  15. Calculation of forces arising from impacting projectiles upon yielding structures

    International Nuclear Information System (INIS)

    Drittler, K.; Gruner, P.; Krivy, J.

    1977-01-01

    Calculations concerning the impact of airplanes upon nuclear power plant buildings usually imply that the building 'acts' as a rigid target. This assumption is justified for considerations concerning the structural integrity of the building being hit. However, for investigating induced vibrations of components within the structure, this approach might -in general- be too conservative. It is expected, that yielding of the structure during impact reduces the peak values of the loads and changes the temporal behavior of the load function which is obtained for a rigid target. To calculate the changes of the load function which are due to deformations of the structure, Riera's method is extended for the case of a yielding target. In view of the applications of the calculations to the impact of airplanes upon buildings which are constructed to withstand loads of this kind without serious damage and without large deformations, it is possible to simplify the calculations to some extent. That is, the investigations need not take into account in detail the behavior of the target during impact. The calculations are performed with a one-dimensional model for the projectile. The direction of impact is perpendicular to the target surface; direction of impact and projectile axis coincide. The calculations were performed for several initial velocities of the projectiles simulating a fast flying military airplane. Variations of the peak values of the load functions as compared to corresponding values for a rigid target do not exceed about 10%. The overall temporal behavior of the load curves turns out to be not very sensitive to the yielding of the target, though, in some cases displacements in time of the peak positions within a single load curve do arise

  16. Influence of mass-asymmetry and ground state spin on fission fragment angular distributions

    International Nuclear Information System (INIS)

    Thomas, R.G.; Biswas, D.C.; Saxena, A.; Pant, L.M.; Nayak, B.K.; Vind, R.P.; Sahu, P.K.; Sinha, Shrabani; Choudhury, R.K.

    2001-01-01

    The strong influence of the target or/and projectile ground state spin on the anomalously large anisotropies of fission fragments produced in the heavy-ion induced fission of actinide targets were reported earlier. Interestingly, all those systems studied were having a mass asymmetry greater than the Businaro-Gallone critical asymmetry and hence the presence of pre-equilibrium fission was unambiguously ruled out. The observed anisotropies were successfully explained using the ECD-K-States model. It is of interest to know the influence of the target/projectile ground state spin on systems having an entrance channel mass asymmetry less than the critical value where pre-equilibrium fission cannot be ignored. With this motivation we performed measurements of fission fragment angular distributions of the 16 O+ 235 U (spin=7/2) system

  17. Management of in-tube projectiles using acoustic channel

    Science.gov (United States)

    Kostina, M. A.; Bortalevich, S. I.; Loginov, E. L.; Shinyakov, Y. A.; Sukhorukov, M. P.

    2018-03-01

    The article describes the method of measuring the distance from the operator's console installed outside the pipe to the in-tube projectile. A method for measuring distance in the absence of an echo signal is proposed. To do this, two identical ultrasonic locators operating at different frequencies were installed inside and outside the pipeline. The change in the duration of an acoustic pulse propagating in a circular waveguide with rigid walls is shown, which leads to a decrease in the data transfer rate.

  18. Excitation and Ionization of Ethylene by Charged Projectiles

    International Nuclear Information System (INIS)

    Zhi-Ping, Wang; Jing, Wang; Feng-Shou, Zhang

    2010-01-01

    Using the time dependent local density approximation, applied to valence electrons, coupled non-adiabatically to molecular dynamics of ions, the collision process between ethylene and fast charged projectiles is studied in the microscopic way. The impact of ionic motion on the ionization is explored to show the importance of treating electronic and ionic degrees of freedom simultaneously. The number of escaped electrons, ionization probabilities are obtained. Furthermore, it is found that the ionic extensions in different directions show the different patterns. (atomic and molecular physics)

  19. Destructive behavior of iron oxide in projectile impact

    Science.gov (United States)

    Shang, Wang; Xiaochen, Wang; Quan, Yang; Zhongde, Shan

    2017-12-01

    The damage strain values of Q235-A surface oxide scale were obtained by scanning electron microscopy (SEM/EDS) and universal tensile testing machine. The finite element simulation was carried out to study the destruction effects of oxidation at different impact rates. The results show that the damage value of the oxide strain is 0.08%. With the increase of the projectile velocity, the damage area of the oxide scale is increased, and the damage area is composed of the direct destruction area and the indirect failure area. The indirect damage area is caused by the stress/strain to the surrounding expansion after the impact of the steel body.

  20. Fragmentation of the projectile near the Fermi energy

    International Nuclear Information System (INIS)

    Dayras, R.

    1986-05-01

    The experimental data about projectile fragmentation around the Fermi energy are reviewed. Comparisons with low and high energy data suggest that this energy domain is indeed a transition region. Reaction mechanisms dominated by the mean field at low energy progressively give way to individual n-n collisions. In the present case, this transition manifests itself by a rapid decrease of transfer reactions for the benefit of fragmentation processes. A coherent description of the observed results requires to take into account mean field effects as well as individual n-n collisions

  1. An experimental study on the deformation and fracture modes of steel projectiles during impact

    International Nuclear Information System (INIS)

    Rakvåg, K.G.; Børvik, T.; Westermann, I.; Hopperstad, O.S.

    2013-01-01

    Highlights: • The fracture process is ductile for the unhardened projectiles. • A combined ductile–brittle fracture process is obtained for the HRC 40 projectiles. • The fragmentation of HRC 52 projectiles has cleavage as the main mechanism. • The fracture modes were confirmed in a metallurgical study. • The hardened materials have a stochastic variation of the mechanical properties. - Abstract: Previous investigations of the penetration and perforation of high-strength steel plates struck by hardened steel projectiles have shown that under certain test conditions the projectile may fracture or even fragment upon impact. Simulations without an accurate failure description for the projectile material will then predict perforation of the target instead of fragmentation of the projectile, and thus underestimate the ballistic limit velocity of the target plate. This paper presents an experimental investigation of the various deformation and fracture modes that may occur in steel projectiles during impact. This is studied by conducting Taylor bar impact tests using 20 mm diameter, 80 mm long, tool steel projectiles with three different hardness values (HRC 19, 40 and 52). A gas gun was used to fire the projectiles into a rigid wall at impact velocities ranging from 100 to 350 m/s, and the deformation and fracture processes were captured by a high-speed video camera. From the tests, several different deformation and fracture modes were registered for each hardness value. To investigate the influence of material on the deformation and fracture modes, several series of tensile tests on smooth axisymmetric specimens were carried out to characterise the mechanical properties of the three materials. To gain a deeper understanding of the various processes causing fracture and fragmentation during impact, a metallurgical investigation was conducted. The fracture surfaces of the failed projectiles of different hardness were investigated, and the microstructure was

  2. Spin modes

    International Nuclear Information System (INIS)

    Gaarde, C.

    1985-01-01

    An analysis of spectra of (p,n) reactions showed that they were very selective in exciting spin modes. Charge exchange reactions at intermediate energies give important new understanding of the M1-type of excitations and of the spin structure of continuum p spectra in general. In this paper, the author discusses three charge exchange reactions: (p,n); ( 3 H,t); and (d,2p) at several targets. Low-lying states and the Δ region are discussed separately. Finally, the charge exchange reaction with heavy ion beams is briefly discussed. (G.J.P./Auth.)

  3. The origin of nuclear spin and its effect durning intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Zhang Guoqiang; Cao Xiguang; Fu Yao; Ma Yugang; Cai Xiangzhou; Wang Hongwei; Fang Deqing; Tian Wendong; Chen Jingen; Guo Wei; Liu Guihua

    2010-01-01

    We use the heavy-ion phase-space exploration (HIPSE) model to discuss the origin of the nuclear spin and its effect in Intermediate energy nuclear reaction. It is found that the spin of projectile depends on the impact parameter of the reaction system heavily, while on the violence lightly by contrast. Some interesting multifragmentation phenomena related to the spin are shown, especially those of phase transition. At the same time, the role of excited energy for multifragmentation is also invested. We find the later plays a more robust role durning the nuclear disintegration. (authors)

  4. Origin of the finite nuclear spin and its effect in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Zhang Guoqiang; Cao Xiguang; Fu Yao

    2012-01-01

    The heavy-ion phase-space exploration (HIPSE) model is used to discuss the origin of the nuclear spin in intermediate energy heavy-ion collision (HIC). The spin of maximal projectile-like fragment is found to depend strongly on impact parameter of a reaction system,while it relates weakly to the collision violence. Some interesting multi-fragmentation phenomena related to the spin are shown. We also found that the excitation energy in the de-excitation stage plays a robust role at the de-excitation stage in HIC. (authors)

  5. ''Theta gun,'' a multistage, coaxial, magnetic induction projectile accelerator

    International Nuclear Information System (INIS)

    Burgess, T.J.; Duggin, B.W.; Cowan, M. Jr.

    1985-11-01

    We experimentally and theoretically studied a multistage coaxial magnetic induction projectile accelerator. We call this system a ''theta gun'' to differentiate it from other coaxial accelerator concepts such as the mass driver. We conclude that this system can theoretically attain railgun performance only for large caliber or very high injection velocity and, even then, only for long coil geometry. Our experiments with a three-stage, capactor bank-driven accelerator are described. The experiments are modeled with a 1-1/2 dimensional equivalent circuit-hydrodynamics code which is also described. We derive an expression for the conditions of coaxial accelerator-railgun ''velocity breakeven'' in the absence of ohmic and hydrodynamic effects. This, in conjunction with an expression for the magnetic coupling coefficient, defines a set of geometric relations which the coaxial system must simultaneously satisfy. Conclusions concerning both the existence and configuration of a breakeven coaxial system follow from this requirement. The relative advantages and disadvantages of the coaxial induction projectile accelerator, previously cited in the literature, are critiqued from the viewpoint of our analysis and experimental results. We find that the advantages vis-a-vis the railgun have been overstated. 13 refs., 17 figs

  6. Spinning worlds

    NARCIS (Netherlands)

    Schwarz, H.

    2017-01-01

    The thesis "Spinning Worlds" is about the characterisation of two types of gas-giant exoplanets: Hot Jupiters, with orbital periods of fewer than five days, and young, wide-orbit gas giants, with orbital periods as long as thousands of years. The thesis is based on near-infrared observations of 1

  7. Reaction dynamics of {sup 34-38}Mg projectile with carbon target using Glauber model

    Energy Technology Data Exchange (ETDEWEB)

    Shama, Mahesh K., E-mail: maheshphy82@gmail.com [School of Physics and Material Sciences, Thapar University Patiala-147004 (India); Department of Applied Sciences, Chandigarh Engineering College, Landran Mohali-140307 (India); Panda, R. N. [Department of Physics, ITER, Shiksha O Anusandhan University, Bhubaneswar-751030 (India); Sharma, Manoj K. [School of Physics and Material Sciences, Thapar University Patiala-147004 (India); Patra, S. K. [Institute of Physics, Sachivalaya marg Bhubneswar-751005 (India)

    2015-08-28

    We have studied nuclear reaction cross-sections for {sup 34-38}Mg isotopes as projectile with {sup 12}C target at projectile energy 240AMeV using Glauber model with the conjunction of densities from relativistic mean filed formalism. We found good agreement with the available experimental data. The halo status of {sup 37}Mg is also investigated.

  8. Projectile Nose Mass Abrasion of High-Speed Penetration into Concrete

    Directory of Open Access Journals (Sweden)

    Haijun Wu

    2012-01-01

    Full Text Available Based on the dynamic spherical cavity expansion theory of concrete and the analysis of experimental data, a mass abrasion model of projectile considering the hardness of aggregates, the relative strength of target and projectile, and the initial impact velocity is constructed in this paper. Furthermore, the effect of mass abrasion on the penetration depth of projectile and the influence of hardness of aggregates and strength of projectile on penetration depth and mass loss are also analyzed. The results show that, for the ogive-nose projectile with the CRH of 3 and aspect ratio of 7 penetrating the concrete of 35 MPa, the “rigid-body penetration” model is available when the initial impact velocity is lower than 800 m/s. However, when the initial impact velocity is higher than 800 m/s, the “deforming/eroding body penetration” model should be adopted. Through theoretical analysis and numerical calculation, the results indicate that the initial impact velocity is the most important factor of mass abrasion. The hardness of aggregates and the strength of projectile are also significant factors. But relatively speaking, the sensitivity of strength of projectile to mass abrasion is higher, which indicates that the effect of projectile material on mass abrasion is more dramatic than the hardness of aggregates.

  9. Variation of the binary encounter peak energy as a function of projectile atomic number

    International Nuclear Information System (INIS)

    Sanders, J.M.

    1994-01-01

    The energy of the binary encounter peak, in spectra of electrons emitted at 0 degrees with respect to the projectile beam direction, has been studied to investigate its dependence on the atomic number of the projectile ion. The projectiles all had the same squared velocity of 0.6 MeV/u, and all had the same charge q=7. The Z of the projectiles ranged from 8 to 35, and the target was H 2 . The Energy E BEP of the binary encounter peak and also the energy t of the cusp formed by electron loss or electron capture to the projectile continuum (ELC or ECC) were obtained from fits to the spectra. Considerable care was required in fitting the cusp in order to properly ascertain the cusp energy. The energy shift ΔE, defined as the difference between 4t and E BEP , was obtained for each projectile. It is found that the energy shift decreases as the projectile Z increases. This trend is the opposite of that seen for projectile charge where the shift increases as q increases. Such a trend is not well described by the simple elastic scattering model of binary encounter electron production

  10. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction

    Science.gov (United States)

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.

    2009-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  11. Earliest stone-tipped projectiles from the Ethiopian rift date to >279,000 years ago.

    Science.gov (United States)

    Sahle, Yonatan; Hutchings, W Karl; Braun, David R; Sealy, Judith C; Morgan, Leah E; Negash, Agazi; Atnafu, Balemwal

    2013-01-01

    Projectile weapons (i.e. those delivered from a distance) enhanced prehistoric hunting efficiency by enabling higher impact delivery and hunting of a broader range of animals while reducing confrontations with dangerous prey species. Projectiles therefore provided a significant advantage over thrusting spears. Composite projectile technologies are considered indicative of complex behavior and pivotal to the successful spread of Homo sapiens. Direct evidence for such projectiles is thus far unknown from >80,000 years ago. Data from velocity-dependent microfracture features, diagnostic damage patterns, and artifact shape reported here indicate that pointed stone artifacts from Ethiopia were used as projectile weapons (in the form of hafted javelin tips) as early as >279,000 years ago. In combination with the existing archaeological, fossil and genetic evidence, these data isolate eastern Africa as a source of modern cultures and biology.

  12. Measurements of recoil and projectile momentum distributions for 19-MeV F9+ + Ne collisions

    International Nuclear Information System (INIS)

    Frohne, V.; Cheng, S.; Ali, R.M.; Raphaelian, M.L.; Cocke, C.L.; Olson, R.

    1996-01-01

    The collision system of 19-MeV F 9+ on Ne has been studied using recoil and projectile momentum spectroscopy. For each event, identified by final recoil and projectile charge state, the three-dimensional momentum vector of the recoil ion and the transverse momentum vector of the projectile ion were measured. The transverse momenta of the recoil and projectile ions were found to be equal in magnitude and opposite in direction, indicating that the transverse momentum exchange is dominated by interactions between the two ion cores. The transverse momentum distributions are well described by nCTMC calculations. The longitudinal momentum distributions of the recoil ions show that a large fraction of the momentum transferred to the projectile is carried off by continuum electrons. The recoil ions are scattered slightly backward, in partial agreement with predictions of nCTMC calculations. copyright 1996 The American Physical Society

  13. Double ionization of H2 caused by two sequential projectile-electron collisions

    International Nuclear Information System (INIS)

    Edwards, A.K.; Wood, R.M.; Ezell, R.L.

    1985-01-01

    The impact-parameter calculations of Hansteen et al. [J. Phys. B 17, 3545 (1984)] for K-shell ionization are used to predict the cross sections for the double ionization of H 2 and He by H + and D + projectiles as a function of projectile velocity. The calculated values in the case of the H 2 target are typically a factor of 12 lower than the measured values, but the calculations and measurements show similar velocity dependencies. The results indicate that for projectile energies less than 1 MeV/amu, the double-ionization process of H 2 occurs mainly by two independent interactions between the electrons and projectile. For the He target, the calculated and measured values for the double-ionization cross section are much closer in magnitude, but the calculations predict a more rapid falloff with projectile velocity than is observed

  14. Earliest stone-tipped projectiles from the Ethiopian rift date to >279,000 years ago.

    Directory of Open Access Journals (Sweden)

    Yonatan Sahle

    Full Text Available Projectile weapons (i.e. those delivered from a distance enhanced prehistoric hunting efficiency by enabling higher impact delivery and hunting of a broader range of animals while reducing confrontations with dangerous prey species. Projectiles therefore provided a significant advantage over thrusting spears. Composite projectile technologies are considered indicative of complex behavior and pivotal to the successful spread of Homo sapiens. Direct evidence for such projectiles is thus far unknown from >80,000 years ago. Data from velocity-dependent microfracture features, diagnostic damage patterns, and artifact shape reported here indicate that pointed stone artifacts from Ethiopia were used as projectile weapons (in the form of hafted javelin tips as early as >279,000 years ago. In combination with the existing archaeological, fossil and genetic evidence, these data isolate eastern Africa as a source of modern cultures and biology.

  15. Electron loss and capture from low-charge-state oxygen projectiles in methane

    International Nuclear Information System (INIS)

    Santos, A C F; Wolff, W; Sant’Anna, M M; Sigaud, G M; DuBois, R D

    2013-01-01

    Absolute cross sections for single- and double-electron loss and single- and multiple-electron capture of 15–1000 keV oxygen projectiles (q = −1, 0, 1, 2) colliding with the methane molecule are presented. The experimental data are used to examine cross-section scaling characteristics for the electron loss of various projectiles. In addition, a modified version of the free-collision model was employed for the calculation of the single- and total-electron-loss cross sections of oxygen projectiles presented in this work. The comparison of the calculated cross sections with the present experimental data shows very good agreement for projectile velocities above 1.0 au. The comparison of the present single-electron-capture cross sections with other projectiles having the same charge shows good agreement, and a common curve can be drawn through the different data sets. (paper)

  16. Non-contact and contact measurement system for detecting projectile position in electromagnetic launch bore

    Science.gov (United States)

    Xu, Weidong; Yuan, Weiqun; Xu, Rong; Zhao, Hui; Cheng, Wenping; Zhang, Dongdong; Zhao, Ying; Yan, Ping

    2017-12-01

    This paper introduces a new measurement system for measuring the position of a projectile within a rapid fire electromagnetic launching system. The measurement system contains both non-contact laser shading and metal fiber contact measurement devices. Two projectiles are placed in the rapid fire electromagnetic launch bore, one in the main accelerating segment and the other in the pre-loading segment. The projectile placed in the main accelerating segment should be shot first, and then the other is loaded into the main segment from the pre-loading segment. The main driving current (I-main) can only be discharged again when the second projectile has arrived at the key position (the projectile position corresponds to the discharging time) in the main accelerating segment. So, it is important to be able to detect when the second projectile arrives at the key position in the main accelerating segment. The B-dot probe is the most widely used system for detecting the position of the projectile in the electromagnetic launch bore. However, the B-dot signal is affected by the driving current amplitude and the projectile velocity. There is no current in the main accelerating segment when the second projectile moves into this segment in rapid fire mode, so the B-dot signal for detecting the key position is invalid. Due to the presence of a high-intensity magnetic field, a high current, a high-temperature aluminum attachment, smoke and strong vibrations, it is very difficult to detect the projectile position in the bore accurately. So, other measurements need to be researched and developed in order to achieve high reliability. A measurement system based on a laser (non-contact) and metal fibers (contact) has been designed, and the integrated output signal based on this detector is described in the following paper.

  17. Studies of projectile-like fragments in the 16O + 238U reaction at 20 MeV/u

    International Nuclear Information System (INIS)

    Dyer, P.; Awes, T.C.; Gelbke, C.K.; Back, B.B.; Mignerey, A.C.; Wolf, K.L.; Breuer, H.; Viola, V.E.; Meyer, W.G.

    1979-01-01

    Projectile residues were studied in coincidence with angle-correlated fission fragments resulting from reactions of 20-MeV/u 16 O ions on 238 U. Distributions of the missing parallel momentum are shown for different projectile residues, and the dependence of the average parallel recoil momentum on the average parallel momentum of the projectile residue is plotted. 2 figures

  18. Aerodynamic Jump: A Short Range View for Long Rod Projectiles

    Directory of Open Access Journals (Sweden)

    Mark Bundy

    2001-01-01

    Full Text Available It is shown that aerodynamic jump for a nonspinning kinetic energy penetrator is not – as conventional definitions may infer – a discontinuous change in the direction of motion at the origin of free flight, nor is it the converse, a cumulative redirection over a domain of infinite extent. Rather, with the aid of an alternative kinematical definition, it is shown that aerodynamic jump for such a projectile is a localized redirection of the center-of-gravity motion, caused by the force of lift due to yaw over the relatively short region from entry into free flight until the yaw reaches its first maximum. A rigorous proof of this statement is provided, but the primary objective of this paper is to provide answers to the questions: what is aerodynamic jump, what does it mean, and what aspects of the flight trajectory does it refer to, or account for.

  19. Radioactive nuclear beam facilities based on projectile fragmentation

    International Nuclear Information System (INIS)

    Sherrill, B.M.

    1992-01-01

    The production of radioactive beams using direct separation techniques is discussed. The reaction mechanisms which can be used to produce radioactive beams with these techniques can be broadly divided into three groups, projectile fragmentation, nucleon transfer, and Coulomb disassociation. Radioactive nuclei produced in these ways have large forward momenta with relatively sharp angular distributions peaked near zero degrees which are suitable for collection with magnetic devices. Secondary beam intensities of up to a few percent of the primary beam intensity are possible, although depending on the production mechanism the beam emittance may be poor. Further beam purification can be achieved using atomic processes with profiled energy degraders. The features of the production reaction mechanism, separation techniques, and a review of world wide efforts are presented. The advantages and disadvantages of the method are presented, with discussion of techniques to overcome some of the disadvantages. (Author)

  20. Influence of projectile α-breakup threshold on complete fusion

    International Nuclear Information System (INIS)

    Mukherjee, A.; Subinit Roy; Pradhan, M.K.; Saha Sarkar, M.; Basu, P.; Dasmahapatra, B.; Bhattacharya, T.; Bhattacharya, S.; Basu, S.K.; Chatterjee, A.; Tripathi, V.; Kailas, S.

    2006-01-01

    Complete fusion excitation functions for B11,10+Tb159 have been measured at energies around the respective Coulomb barriers, and the existing complete fusion measurements for Li7+Tb159 have been extended to higher energies. The measurements show significant reduction of complete fusion cross sections at above-barrier energies for both the reactions, B10+Tb159 and Li7+Tb159, when compared to those for B11+Tb159. The comparison shows that the extent of suppression of complete fusion cross sections is correlated with the α-separation energies of the projectiles. Also, the two reactions, B10+Tb159 and Li7+Tb159 were found to produce incomplete fusion products at energies near the respective Coulomb barriers, with the α-particle emitting channel being the favoured incomplete fusion process in both the cases

  1. Selected Screen for Engaging Students in Projectile Motion

    Science.gov (United States)

    Dramae, A.; Toedtanya, K.; Wuttiprom, S.

    2017-09-01

    Connecting physics concepts to activities that are interesting to students or what they encounter in everyday life will help students build a strong foundation. When there is an interesting activity for the student, it will result in the student responding, engaging, and enthusiasm in learning. Learning activities that are based on what students are interested in and regularly experience will enable students to understand the long and memorable experience. Both of these will enhance the student’s learning experience. One of the activities that can be described in this research used the learning activity through movies, which is the application of the basic motion projectile for students to understand the characteristics of such movement. It also aims to further develop critical thinking skills of learners.

  2. Flow past an axially aligned spinning cylinder: Experimental Study

    Science.gov (United States)

    Carlucci, Pasquale; Buckley, Liam; Mehmedagic, Igbal; Carlucci, Donald; Thangam, Siva

    2017-11-01

    Experimental investigation of flow past a spinning cylinder is presented in the context of its application and relevance to flow past projectiles. A subsonic wind tunnel is used to perform experiments on the flow past a spinning cylinder that is mounted on a forward sting and oriented such that its axis of rotation is aligned with the mean flow. The experiments cover a Reynolds number of range of up to 45000 and rotation numbers of up to 2 (based on cylinder diameter). Time-averaged mean flow and turbulence profiles in the wake flow are presented with and without spin along with comparison to published experimental data. Funded in part by the U. S. Army ARDEC, Picatinny Arsenal, NJ.

  3. Breakup conditions of projectile spectators from dynamical observables

    Energy Technology Data Exchange (ETDEWEB)

    Begemann-Blaich, M.; Lindenstruth, V.; Pochodzalla, J. [and others

    1998-03-01

    Momenta and masses of heavy projectile fragments (Z {>=} 8), produced in collisions of {sup 197}Au with C, Al, Cu and Pb targets at E/A=600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. Using these informations, an analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. For a quantitative investigation, the data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. With classical trajectory calculations, where the charges and masses of the fragments are taken from a Monte Carlo sampling of the experimental events, the dynamical observables can be reproduced. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found with the exception that the fluctuation widths of the intrinsic fragment energies are significantly underestimated. A new version of the multifragmentation code MCFRAG was therefore used to investigate the potential role of angular momentum at the breakup stage. If a mean angular momentum of 0.75 {Dirac_h}/nucleon is added to the system, the energy fluctuations can be reproduced, but at the same time the charge partitions are modified and deviate from the data. (orig.)

  4. Investigations of nuclear projectile break-up reactions

    International Nuclear Information System (INIS)

    Rebel, H.

    1986-10-01

    The cross sections for radiative capture of α-particles, deuterons and protons by light nuclei at very low relative energies are of particular importance for the understanding of the nucleosynthesis of chemical elements and for determining the relative elemental abundances in stellar burning processes at various astrophysical sites. As example we quote the reactions α+d → 6 Li+γ, α+ 3 He → 7 Be+γ, or α+ 12 C → 16 O+γ. As an alternative to the direct experimental study of these processes we consider the inverse process, the photodisintegration, by means of the virtual photons provided by a nuclear Coulomb field: Z+a → Z+b+c. The radiative capture process b+c → a+γ is related to the inverse process, the photodisintegration γ+a → b+c by the detailed balance theorem. Except for the extreme case very close to the threshold the phase space favours the photodisintegration cross section as compared to the radiative capture. The Coulomb dissociation cross section proves to be enhanced due to the large virtual photon number, seen by the passing projectile, and the kinematics of the process leads to particular advantages for studies of the interaction of the two break-up fragments at small relative energies E bc . The conditions of dedicated experimental investigations are discussed and demonstrated by recent experimental and theoretical studies of the break-up of 156 MeV 6 Li projectiles. In addition, a brief review about general features of break-up processes of light ions in the field of atomic nuclei is given. (orig.) [de

  5. Breakup conditions of projectile spectators from dynamical observables

    International Nuclear Information System (INIS)

    Begemann-Blaich, M.; Lindenstruth, V.; Pochodzalla, J.

    1998-03-01

    Momenta and masses of heavy projectile fragments (Z ≥ 8), produced in collisions of 197 Au with C, Al, Cu and Pb targets at E/A=600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. Using these informations, an analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. For a quantitative investigation, the data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. With classical trajectory calculations, where the charges and masses of the fragments are taken from a Monte Carlo sampling of the experimental events, the dynamical observables can be reproduced. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found with the exception that the fluctuation widths of the intrinsic fragment energies are significantly underestimated. A new version of the multifragmentation code MCFRAG was therefore used to investigate the potential role of angular momentum at the breakup stage. If a mean angular momentum of 0.75 ℎ/nucleon is added to the system, the energy fluctuations can be reproduced, but at the same time the charge partitions are modified and deviate from the data. (orig.)

  6. Spin Coherence in Semiconductor Nanostructures

    National Research Council Canada - National Science Library

    Flatte, Michael E

    2006-01-01

    ... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...

  7. Systematics of the breakup probability function for {sup 6}Li and {sup 7}Li projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Capurro, O.A., E-mail: capurro@tandar.cnea.gov.ar [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); Pacheco, A.J.; Arazi, A. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Carnelli, P.F.F. [CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, 25 de Mayo y Francia, B1650BWA San Martín, Buenos Aires (Argentina); Fernández Niello, J.O. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, 25 de Mayo y Francia, B1650BWA San Martín, Buenos Aires (Argentina); and others

    2016-01-15

    Experimental non-capture breakup cross sections can be used to determine the probability of projectile and ejectile fragmentation in nuclear reactions involving weakly bound nuclei. Recently, the probability of both type of dissociations has been analyzed in nuclear reactions involving {sup 9}Be projectiles onto various heavy targets at sub-barrier energies. In the present work we extend this kind of systematic analysis to the case of {sup 6}Li and {sup 7}Li projectiles with the purpose of investigating general features of projectile-like breakup probabilities for reactions induced by stable weakly bound nuclei. For that purpose we have obtained the probabilities of projectile and ejectile breakup for a large number of systems, starting from a compilation of the corresponding reported non-capture breakup cross sections. We parametrize the results in accordance with the previous studies for the case of beryllium projectiles, and we discuss their systematic behavior as a function of the projectile, the target mass and the reaction Q-value.

  8. Experimental study of the penetrating of plates by projectile at low initial speeds

    Science.gov (United States)

    Orlov, M. Yu; Orlova, Yu N.; Smakotin, Ig L.; Glazyrin, V. P.; Orlov, Yu N.

    2017-11-01

    The research of the penetration process of lightweight plates by a projectile in the range of initial velocities up to 325 m/s was attempted. The projectile was a shell bullet and the barriers were of ice, MDF-panels and plexiglas barriers. The response of barriers to impact loading is studied. High-speed shooting of each experiment is obtained, including photos of the front and rear sides of the barriers. An attempt was made to reproduce the scenario of the destruction of barriers. The results of experiments can be interpreted only as qualitative tests. Projectile was not destroyed.

  9. The role of the spectator assumption in models for projectile fragmentation

    International Nuclear Information System (INIS)

    Mc Voy, K.W.

    1984-01-01

    This review is restricted to direct-reaction models for the production of projectile fragments in nuclear collisions, at beam energies of 10 or more MeV/nucleon. Projectile fragments are normally identified as those which have near-beam velocities, and there seem to be two principal mechanisms for the production of these fast particles: 1. Direct breakup, 2. Sequential breakup. Of the two, the authors exclude from their discussion the ''sequential breakup'' process, in which the projectile is excited by the initial collision (either via inelastic scattering or transfer to unbound states) and then subsequently decays, outside the range of interaction

  10. Spin-dependent electron emission from metals in the neutralization of He+ ions

    International Nuclear Information System (INIS)

    Alducin, M.; Roesler, M.; Juaristi, J.I.; Muino, R. Diez; Echenique, P.M.

    2005-01-01

    We calculate the spin-polarization of electrons emitted in the neutralization of He + ions interacting with metals. All stages of the emission process are included: the spin-dependent perturbation induced by the projectile, the excitation of electrons in Auger neutralization processes, the creation of a cascade of secondaries, and the escape of the electrons through the surface potential barrier. The model allows us to explain in quantitative terms the measured spin-polarization of the yield in the interaction of spin-polarized He + ions with paramagnetic surfaces, and to disentangle the role played by each of the involved mechanisms. We show that electron-electron scattering processes at the surface determine the spin-polarization of the total yield. High energy emitted electrons are the ones providing direct information on the He + ion neutralization process and on the electronic properties of the surface

  11. Coincidence measurements of slow recoil ions with projectile ions in 42-MeV Arq+-Ar collisions

    International Nuclear Information System (INIS)

    Tonuma, T.; Kumagai, H.; Matsuo, T.; Tawara, H.

    1989-01-01

    Slow Ar recoil-ion production cross sections by projectiles of 1.05-MeV/amu Ar q+ (q=4,6,8,10,12,14) were measured using a projectile-ion--recoil-ion coincidence technique. The present results indicate that the average recoil ion charges left-angle i right-angle increase with increasing the incident projectile charge q and the number of the lost and captured electrons from and/or into projectiles, whereas the projectile charge-changing cross sections for loss ionization decrease steeply with increasing q for low-charge-state projectiles, and those for transfer ionization increase rapidly with increasing q for high-charge-state projectiles. For Ar projectiles with q=10, which corresponds to the equilibrium charge state of Ar projectiles at the present collision energy, the average recoil-ion charges are nearly the same in both loss and transfer ionization, and a pure ionization process plays a much more important role in producing highly charged recoil ions, in contrast to projectile electron loss or transfer processes, which play a role in other projectile charge states

  12. Spin polarization of 34Al fragments produced by nucleon pickup at intermediate energies

    International Nuclear Information System (INIS)

    Turzo, K.; Himpe, P.; Borremans, D.; Mallion, S.; Neyens, G.; Vermeulen, N.; Yordanov, D.; Balabanski, D.L.; Belier, G.; Daugas, J.M.; Georgiev, G.; Oliveira de Santos, F.; Matea, I.; Stodel, Ch.; Penionzhkevich, Yu. E.

    2006-01-01

    The polarization of 34 Al fragments, produced by single neutron pickup from a 9 Be target by a 36 S projectile at 77.5 MeV/nucleon, have been observed at GANIL via the detection of resonantly destroyed β-asymmetry. The reaction-induced polarization is deduced using a tentative spin/parity assignment for the 34 Al ground state. A positive polarization was measured near the peak of the 34 Al yield curve. A kinematical model based on the spectator-participant model for projectile fragmentation reactions has been extended in order to take into account the features of pickup reactions, i.e., the picked-up nucleon having an average momentum equal to the Fermi momentum and aligned along the incident beam direction. The trend-line in the observed spin-orientation is very well reproduced by this model

  13. Comparative parametric numerical simulations of materials used as liners in the explosively formed projectiles (EFPs)

    International Nuclear Information System (INIS)

    Hussain, G.; Sanaullah, K.

    2009-01-01

    A conventional shaped charge comprises a conical metal liner projecting a hyper velocity jet of metal that is able to penetrate to great depths into steel armour. However, misalignment problems exist in tandem with jet break up and spewing particles that greatly diminish its penetration power. An EFP, on the other hand, has a liner in the shape of a geometrical recess. The force of the blast molds the liner into a number of configurations, depending on the geometry and the explosive detonation characteristics. This paper presents comparative parametric numerical simulations of materials used as liners in the explosively formed projectiles EFPs. Numerical simulations are carried out using AUTODYN 2D hydrocode to study effects of liner's materials on the shape, velocity, traveled distance, time, pressure, internal energy, temperature, yield stress, divergence or stability, density, compression, and length to diameter (L/D) ratio of EFPs. These parameters are estimated at the instants of maximum as well as at stable velocities. The parametric study reveals that aluminum has maximum velocity in shortest time among the liner materials. From this reason, it was concluded effective standoff was greater for aluminum than more denser metals. Maximum velocity and traveled distance of Tantalum EFP is found to be minimum which may be due to low thermal softening exponent and larger hardening exponent. The simulated yield stress and pressure developed in the Fe EFP reaches at maximum. The L/D ratio for Copper is found to be maximum which supports maximum penetration. From the stability point of view, 1006 MS is found to be the most reliable liner material due to minimum divergence. Generally all liner materials have similar effects of all parameters like pressure, internal energy, temperature, yield stress, divergence or stability, density, compression at the instants of maximum as well as at stable velocities except L/D ratio of EFPs. At the instant of maximum velocity, L

  14. Spin glasses

    International Nuclear Information System (INIS)

    Mookerjee, Abhijit

    1976-01-01

    ''Spin glasses'', are entire class of magnetic alloys of moderate dilution, in which the magnetic atoms are far enough apart to be unlike the pure metal, but close enough so that the indirect exchange energy between them (mediated by the s-d interaction between local moments and conduction electrons) dominates all other energies. Characteristic critical phenomena displayed such as freezing of spin orientation at 'Tsub(c)' and spreading of magnetic ordering, are pointed out. Anomalous behaviour, associated with these critical phenomena, as reflected in : (i) Moessbauer spectroscopy giving hyperfine splitting at Tsub(c), (ii) maxima in susceptibility and remanent magnetism, (iii) thermopower maxima and change in slope, (iv) Characteristic cusp in susceptibility and its removal by very small magnetic fields, and (v) conductivity-resistivity measurements, are discussed. Theoretical developments aimed at explaining these phenomena, in particular, the ideas from percolation and localisation theories, and the approach based on the gellations of polymers, are discussed. Finally, a new approach based on renormalisation group in disordered systems is also briefly mentioned. (K.B.)

  15. Spin Currents and Spin Orbit Torques in Ferromagnets and Antiferromagnets

    Science.gov (United States)

    Hung, Yu-Ming

    This thesis focuses on the interactions of spin currents and materials with magnetic order, e.g., ferromagnetic and antiferromagnetic thin films. The spin current is generated in two ways. First by spin-polarized conduction-electrons associated with the spin Hall effect in heavy metals (HMs) and, second, by exciting spin-waves in ferrimagnetic insulators using a microwave frequency magnetic field. A conduction-electron spin current can be generated by spin-orbit coupling in a heavy non-magnetic metal and transfer its spin angular momentum to a ferromagnet, providing a means of reversing the magnetization of perpendicularly magnetized ultrathin films with currents that flow in the plane of the layers. The torques on the magnetization are known as spin-orbit torques (SOT). In the first part of my thesis project I investigated and contrasted the quasistatic (slowly swept current) and pulsed current-induced switching characteristics of micrometer scale Hall crosses consisting of very thin (magnetized CoFeB layers on beta-Ta. While complete magnetization reversal occurs at a threshold current density in the quasistatic case, pulses with short duration (≤10 ns) and larger amplitude (≃10 times the quasistatic threshold current) lead to only partial magnetization reversal and domain formation. The partial reversal is associated with the limited time for reversed domain expansion during the pulse. The second part of my thesis project studies and considers applications of SOT-driven domain wall (DW) motion in a perpendicularly magnetized ultrathin ferromagnet sandwiched between a heavy metal and an oxide. My experiment results demonstrate that the DW motion can be explained by a combination of the spin Hall effect, which generates a SOT, and Dzyaloshinskii-Moriya interaction, which stabilizes chiral Neel-type DW. Based on SOT-driven DW motion and magnetic coupling between electrically isolated ferromagnetic elements, I proposed a new type of spin logic devices. I then

  16. Spin-Triplet Pairing Induced by Spin-Singlet Interactions in Noncentrosymmetric Superconductors

    Science.gov (United States)

    Matsuzaki, Tomoaki; Shimahara, Hiroshi

    2017-02-01

    In noncentrosymmetric superconductors, we examine the effect of the difference between the intraband and interband interactions, which becomes more important when the band splitting increases. We define the difference ΔVμ between their coupling constants, i.e., that between the intraband and interband hopping energies of intraband Cooper pairs. Here, the subscript μ of ΔVμ indicates that the interactions scatter the spin-singlet and spin-triplet pairs when μ = 0 and μ = 1,2,3, respectively. It is shown that the strong antisymmetric spin-orbit interaction reverses the target spin parity of the interaction: it converts the spin-singlet and spin-triplet interactions represented by ΔV0 and ΔVμ>0 into effective spin-triplet and spin-singlet pairing interactions, respectively. Hence, for example, triplet pairing can be induced solely by the singlet interaction ΔV0. We name the pairing symmetry of the system after that of the intraband Cooper pair wave function, but with an odd-parity phase factor excluded. The pairing symmetry must then be even, even for the triplet component, and the following results are obtained. When ΔVμ is small, the spin-triplet p-wave interactions induce spin-triplet s-wave and spin-triplet d-wave pairings in the regions where the repulsive singlet s-wave interaction is weak and strong, respectively. When ΔV0 is large, a repulsive interband spin-singlet interaction can stabilize spin-triplet pairing. When the Rashba interaction is adopted for the spin-orbit interaction, the spin-triplet pairing interactions mediated by transverse magnetic fluctuations do not contribute to triplet pairing.

  17. Heat and spin interconversion

    International Nuclear Information System (INIS)

    Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji

    2017-01-01

    Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)

  18. Entangled spins and ghost-spins

    Directory of Open Access Journals (Sweden)

    Dileep P. Jatkar

    2017-09-01

    Full Text Available We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves, the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.

  19. Effect of a Bore Evacuator on Projectile In-Bore Dynamics

    National Research Council Canada - National Science Library

    Carlucci, Donald

    2004-01-01

    Projectile base pressure measurements were taken in a 155-mm M284 gun tube using an Armament Research, Development and Engineering Center-designed instrumentation package incorporated into a modified...

  20. Unusual behavior of projectile fragments formed in the bombardment of copper with relativistic Ar ions

    International Nuclear Information System (INIS)

    Dersch, G.; Beckmann, R.; Feige, G.

    1985-01-01

    The interaction properties of projectile fragments from the fragmentation of 0.9 GeV/nucleon and 1.8 GeV/nucleon 40 Ar with Cu have been studied using radioactivation techniques. In this experiment, two identical copper blocks, 1 cm thick and 8 cm in diameter, are irradiated by relativistic projectiles in different configurations. In configuration 0, the blocks are touching while in configuration 10 or 20, the blocks are separated by 10 or 20 cm of air, respectively. It is assumed that when the relativistic projectiles interact with the first block of each pair, projectile fragments are created which interact with other nuclei in the first and second blocks. What is measured is the ratio of some target fragment activity, such as 24 Na or 28 Mg, produced in the second block relative to the first block, R

  1. Time of flight and range of the motion of a projectile in a constant gravitational field

    Directory of Open Access Journals (Sweden)

    P. A. Karkantzakos

    2009-01-01

    Full Text Available In this paper we study the classical problem of the motion of a projectile in a constant gravitational field under the influenceof a retarding force proportional to the velocity. Specifically, we express the time of flight, the time of fall and the range ofthe motion as a function of the constant of resistance per unit mass of the projectile. We also prove that the time of fall isgreater than the time of rise with the exception of the case of zero constant of resistance where we have equality. Finally weprove a formula from which we can compute the constant of resistance per unit mass of the projectile from time of flight andrange of the motion when the acceleration due to gravity and the initial velocity of the projectile are known.

  2. Rapid Assessment of Small Changes to Major Gun and Projectile Dynamic Parameters

    National Research Council Canada - National Science Library

    Erline, Thomas

    1997-01-01

    The U.S. Navy's 5-in 54-cal. (5"/54) gun system Mark (Mk) 45 was subjected to first-order dynamic analysis tools that allowed rapid assessment of ballistic dispersion of a typical naval high explosive projectile...

  3. Classical gluon production amplitude for nucleus-nucleus collisions:First saturation correction in the projectile

    International Nuclear Information System (INIS)

    Chirilli, Giovanni A.; Kovchegov, Yuri V.; Wertepny, Douglas E.

    2015-01-01

    We calculate the classical single-gluon production amplitude in nucleus-nucleus collisions including the first saturation correction in one of the nuclei (the projectile) while keeping multiple-rescattering (saturation) corrections to all orders in the other nucleus (the target). In our approximation only two nucleons interact in the projectile nucleus: the single-gluon production amplitude we calculate is order-g"3 and is leading-order in the atomic number of the projectile, while resumming all order-one saturation corrections in the target nucleus. Our result is the first step towards obtaining an analytic expression for the first projectile saturation correction to the gluon production cross section in nucleus-nucleus collisions.

  4. Electromagnetic interference analysis of magnetic resistance sensors inside a projectile under complex electromagnetic environments

    International Nuclear Information System (INIS)

    Guo, Qingwei; Gao, Min; Lu, Zhicai; Yang, Peijie

    2013-01-01

    Accurate measurement of angular motion has long been recognized as a daunting task. In recent years the measurement of projectiles utilizing magnetic resistance sensors has become a hot research field. Electromagnetic interference on attitude measurement cannot be ignored in complex electromagnetic environments such as battlefield conditions. In this paper, the influence and function pattern of electromagnetic interference on the measuring performance are theoretically analyzed, and the shielding effectiveness (SE) simulation of projectile is conducted via software Computer Simulation Technology (CST). Considering the specific tests, the intensity of the influence is judged. The simulation indicates that the battlefield's complex electromagnetic environment influences the environment inside the projectile, especially its electronic components and capability. The research results can provide important theoretical support on the errors compensation and precision improvement of the projectile attitude measurement with Magnetic Resistance sensor.

  5. Development of odd-Z-projectile reactions for transactinide element synthesis

    International Nuclear Information System (INIS)

    Folden III, Charles Marvin

    2004-01-01

    The development of new odd-Z-projectile reactions leading to the production of transactinide elements is described. The cross section of the even-Z-projectile 208Pb(64Ni, n)271Ds reaction was measured at two new energies using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. In total, seven decay chains attributable to 271Ds were observed. These data, combined with previous results, establish an excitation function for the production of 271Ds. The maximum cross section was 20 +15 -11 pb at a center-of-target energy of 311.5 MeV in the laboratory frame.The data from the 271Ds experiments were used to estimate the optimum beam energy for the new odd-Z-projectile 208Pb(65Cu, n)272-111 reaction using the Fusion by Diffusion theory proposed by Swiatecki, Siwek-Wilczynska, and Wilczynski. A cross section for this reaction was measured for the first time, at a center-of-target energy of 321.1 MeV in the laboratory frame. The excitation energy f or compound nuclei formed at the target center was 13.2 MeV. One decay chain was observed, resulting in a measured cross section of 1.7 +3.9 -1.4 pb. This decay chain is in good agreement with previously published data on the decay of 272-111.The new odd-Z-projectile 208Pb(55Mn, n)262Bh reaction was studied at three different projectile energies, and 33 decay chains of 262Bh were observed. The existence of a previously reported alpha-decaying isomeric state in this nuclide was confirmed. Production of the ground state was preferred at all three beam energies. The maximum cross section was 540 +180 -150 pb at a projectile center-of-target energy of 264.0 MeV. This cross section is much larger than that previously reported for the even-Z-projectile 209Bi(54Cr, n)262Bh reaction, which may be because the 54Cr projectile energies in the latter reaction were too high for optimum production of the 1n product. At the highest projectile energy of 268.0 MeV in the target center, two decay

  6. Spin transport in nanowires

    OpenAIRE

    Pramanik, S.; bandyopadhyay, S.; Cahay, M.

    2003-01-01

    We study high-field spin transport of electrons in a quasi one-dimensional channel of a $GaAs$ gate controlled spin interferometer (SPINFET) using a semiclassical formalism (spin density matrix evolution coupled with Boltzmann transport equation). Spin dephasing (or depolarization) is predominantly caused by D'yakonov-Perel' relaxation associated with momentum dependent spin orbit coupling effects that arise due to bulk inversion asymmetry (Dresselhaus spin orbit coupling) and structural inve...

  7. Accuracy Improvement Capability of Advanced Projectile Based on Course Correction Fuze Concept

    OpenAIRE

    Elsaadany, Ahmed; Wen-jun, Yi

    2014-01-01

    Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course corr...

  8. Extended Range of a Gun Launched Smart Projectile Using Controllable Canards

    OpenAIRE

    Mark Costello

    2001-01-01

    This effort investigates the extent to which moveable canards can extend the range of indirect fire munitions using both projectile body and canard lift. Implications on terminal velocity and time of flight using this mechanism to extend range are examined for various canard configurations. Performance predictions are conducted using a six-degree-of-freedom simulation model that has previously been validated against range data. The projectile dynamic equations are formed in the body frame and...

  9. The Locus of the apices of projectile trajectories under constant drag

    OpenAIRE

    Hernández-Saldaña, H.

    2017-01-01

    We present an analytical solution for the projectile coplanar motion under constant drag parametrised by the velocity angle. We found the locus formed by the apices of the projectile trajectories. The range and time of flight are obtained numerically and we find that the optimal launching angle is smaller than in the free drag case. This is a good example of problems with constant dissipation of energy that includes curvature, and it is proper for intermediate courses of mechanics.

  10. Projectile fragmentation processes in 35-MeV/amu (α,xy) reactions

    International Nuclear Information System (INIS)

    Koontz, R.W.; Chang, C.C.; Holmgren, H.D.; Wu, J.R.

    1979-01-01

    Coincidence measurements with 35-MeV/amu α particles show that at least three projectile-fragmentation processes occur. The dominant process is ''absorptive'' breakup, where one component of the projectile interacts strongly with the target resulting in the emission of evaporation or nonstatistical particles while the other component behaves as a spectator. The other fragmentation processes which are observed account for only a few percent of the breakup cross section

  11. Fusion, reaction and break-up cross sections of weakly bound projectiles on 64Zn

    International Nuclear Information System (INIS)

    Gomes, P.R.S.; Padron, I.; Rodriguez, M.D.; Marti, G.V.; Anjos, R.M.; Lubian, J.; Veiga, R.; Liguori Neto, R.; Crema, E.; Added, N.; Chamon, L.C.; Fernandez Niello, J.O.; Capurro, O.A.; Pacheco, A.J.; Testoni, J.E.; Abriola, D.; Arazi, A.; Ramirez, M.; Hussein, M.S.

    2004-01-01

    We present new measurements and a general discussion of the behavior of the fusion, break-up and reaction cross sections of different projectiles on the same target 64 Zn, at near and above barrier energies. The projectiles are the tightly bound 16 O, the stable weakly bound 6 Li, 7 Li and 9 Be and the radioactive very weakly bound 6 He nuclei. We also compare the results with the ones for heavier targets

  12. Radiative electron capture into the K-, L-, and M-shell of decelerated, hydrogenic Ge projectiles

    International Nuclear Information System (INIS)

    Stoehlker, T.; Kozhuharov, C.; Livingston, A.E.; Mokler, P.H.; Stachura, Z.; Warczak, A.

    1991-12-01

    Radiative Electron Capture (REC) in 4 to 12 MeV/u Ge 31+ →H 2 collisions has been studied using an X-ray/particle coincidence technique. This technique allowed a systematic investigation of K-shell REC as well as a separation of REC into the projectile L- and M-shells. The cross sections are discussed within a general scaling picture based on the reduced projectile velocity. (orig.)

  13. Projectile like fragment production in Ar induced reactions around the Fermi energy

    International Nuclear Information System (INIS)

    Borrel, V.; Gatty, B.; Jacquet, D.; Galin, J.

    1986-01-01

    The production of projectile like fragments (PLF) has been studied in Ar induced reactions on various targets. It shows very clearly, that besides the predominance of fragmentation for most of the products, the transfer process is still a very strong component for products nearby the projectile. The influence of the target neutron excess on the PLF production is investigated as well as the evolution with incident energy of the characteristics of the different competing processes

  14. Assessment of empirical formulae for local response of concrete structures to hard projectile impact

    International Nuclear Information System (INIS)

    Buzaud, E.; Cazaubon, Ch.; Chauvel, D.

    2007-01-01

    The outcome of the impact of a hard projectile on a reinforced concrete structure is affected by different parameters such as the configuration of the interaction, the projectile geometry, mass and velocity and the target geometry, reinforcement, and concrete mechanical properties. Those parameters have been investigated experimentally during the last 30 years, hence providing a basis of simplified mathematical models like empirical formulae. The aim of the authors is to assess the relative performances of classical and more recent empirical formulae. (authors)

  15. Computational Simulation of High-Speed Projectiles in Air, Water, and Sand

    Science.gov (United States)

    2007-12-03

    Supercavitating projectiles can be used for underwater mine neutralization, beach and surf zone mine clearance, littoral ASW, and neutralizing combat...swimmer systems. The water entry phase of flight is interesting and challenging due to projectile transitioning from flight in air to supercavitating ...is formed. Neaves and Edwards [1] simulated this case using a supercavitation code developed at NSWC-PC. The results presented are in good agreement

  16. A study of the penetration of projectiles into marine sediments

    International Nuclear Information System (INIS)

    Boisson, J.Y.

    1985-01-01

    The work described in this document consists of three main parts: - Application, after having reviewed calculation methods and known codes, of a dynamic plasticity model based on the upper bound-method (with dissipated energy calculations by plastic deformations). The soil model used for this calculation is the Cambridge Clay Model. - Carrying out a programme of tests with instrumented small scale penetrators in centrifuge on a consolidated clay-target. The trials are done under 50 g, with projectiles, fired with an airgun at high impact velocity (50 m/s). The penetrators' instrumentation consists of either measuring acceleration, or tip force with strain gauges. - The mounting of a small instrumented penetrator for shallow water depth experimentations, with an accelerometer, and a local cell for tip resistance. A rapid electronic data acquisition system has been developed for these experimentations. The preliminary tests are done in a large tank filled with clay. The geotechnical characteristics of the clay are perfectly controlled. The tests performed under these conditions have shown the following observations: the rapid electronic data acquisition system works perfectly and could be used as a basic component for a deep water instrumentated penetrator; the results, obtained in these particular test conditions, are in a perfect agreement with the predictions of the model developed in the frame of this contract

  17. Ablation and deceleration of mass-driver launched projectiles for space disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Park, C.; Bowen, S.W.

    1981-01-01

    The energy cost of launching a projectile containing nuclear waste is two orders of magnitude lower with a mass driver than with a typical rocket system. A mass driver scheme will be feasible, however, only if ablation and deceleration are within certain tolerable limits. It is shown that if a hemisphere-cylinder-shaped projectile protected thermally with a graphite nose is launched vertically to attain a velocity of 17 km/sec at an altitude of 40 km, the mass loss from ablation during atmospheric flight will be less than 0.1 ton, provided the radius of the projectile is under 20 cm and the projectile's mass is of the order of 1 ton. The velocity loss from drag will vary from 0.4 to 30 km/sec, depending on the mass and radius of the projectile, the smaller velocity loss corresponding to large mass and small radius. Ablation is always within a tolerable range for schemes using a mass driver launcher to dispose of nuclear wastes outside the solar system. Deceleration can also be held in the tolerable range if the mass and diameter of the projectile are properly chosen

  18. Charge dependence of one and two electron processes in collisions between hydrogen molecules and fast projectiles

    International Nuclear Information System (INIS)

    Wells, E.; Ben-Itzhak, I.; Carnes, K.D.; Krishnamurthi, V.

    1996-01-01

    The ratio of double- to single-ionization (DI/SI) as well as the ratio of ionization-excitation to single-ionization (IE/SI) in hydrogen molecules was studied by examining the effect of the projectile charge on these processes. The DI/SI and IE/SI ratios were measured using the coincidence time of flight technique at a fixed velocity (1 MeV/amu) over a range of projectile charge states (q = 1-9,14,20). Preliminary results indicate that for a highly charged F 9+ projectile the DI/SI and IE/SI ratios are 6.8% and 24.7%, respectively, a large increase from the ratios of 0.13% and 1.95%, respectively, for H + projectiles. For low charge states, the DI/SI is negligible relative to the IE/SI ratio, while for more highly charged projectiles the DI/SI ratio becomes comparable to the IE/SI ratio. This indicates that double-ionization increases much more rapidly with projectile charge than ionization-excitation

  19. Ionization of one-electron oxygen and fluorine projectiles by molecular hydrogen

    International Nuclear Information System (INIS)

    Tipping, T.N.; Sanders, J.M.; Hall, J.; Shinpaugh, J.L.; Lee, D.H.; McGuire, J.H.; Richard, P.

    1988-01-01

    Cross sections for projectile ionization have been measured for hydrogenlike oxygen and fluorine ions incident on a molecular-hydrogen target over a projectile energy range of 0.5--2.5 MeV/amu. The experimental cross sections are compared to the plane-wave Born approximation (PWBA) and to the Glauber-approximation cross sections all of which were calculated for atomic hydrogen and multiplied by 2. The PWBA calculations have a projectile energy dependence similar to the measured cross sections but slightly underestimate them. The Glauber approximation also underestimates the measured projectile-ionization cross sections when the hydrogen target electrons are neglected, while it overestimates the measured cross sections when the effects of the hydrogen target electrons are included. The measured projectile-ionization cross sections for hydrogenlike ions incident on molecular hydrogen are approximately a factor of 2 smaller than previously reported projectile-ionization cross sections for hydrogenlike ions incident on helium. No cross sections are available for atomic hydrogen in this velocity and ion-charge regime

  20. Fairly direct hit. Advances in imaging of shotgun projectiles in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Eggert, Sebastian [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); University of Zurich, Institute of Forensic Medicine, Zurich (Switzerland); Kubik-Huch, Rahel A.; Peters, Alexander [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); Klarhoefer, Markus [Siemens Healthcare, Zurich (Switzerland); Bolliger, Stephan A.; Thali, Michael J. [University of Zurich, Institute of Forensic Medicine, Zurich (Switzerland); Anderson, Suzanne [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); University of Notre Dame Australia, Radiology, Sydney School of Medicine, Sydney, NSW (Australia); Froehlich, Johannes M. [Federal Institute of Technology, Pharmaceutical Sciences, Zurich (Switzerland)

    2015-09-15

    To investigate the magnetic properties of different types of projectiles and qualify the metal artefact reduction technique for diagnostic and/or forensic MRI. Ten different projectiles embedded in ordnance gelatine blocks underwent an in vitro 1.5-T MR study with seven sequences including a recently developed metal artefact reduction sequence (Advanced WARP) combining VAT (view-angle-tilting) and SEMAC (slice-encoding metal-artefact-correction). Resulting image quality (five-point scale: 1=best; 5=worst) was scored. Quantifiable magnetic characteristics were correlated with qualitative rating of the MR sequences and torque dislodgment. Metal artefact reduction sequence (median: 2.5) significantly (p < 0.001) improves depiction of projectiles in comparison to all other MR pulse sequences (median: 4.75). Images from diamagnetic composed bullets (median: 2) are much less disturbed compared to magnetic attracted ones (median: 5). Correlation (0.623) between deflection angle measurement (ferromagnetic mean 84.2 ; paramagnetic 62 ; diamagnetic mean 0 ) and median qualitative image quality was highly significant (p = 0.027). Torque dislodgement was distinct for elongated magnetic attracted projectiles. Significant improvement of MR imaging of projectiles using metal artefact reduction techniques has important implications for diagnostic/forensic work-up. The correlations between magnetic attraction force, deflection-angle results and image properties demonstrate that the MR safety of projectiles can be estimated with one of these methods. (orig.)

  1. Effect of Projectile Materials on Foreign Object Damage of a Gas-Turbine Grade Silicon Nitride

    Science.gov (United States)

    Choi, Sung R.; Racz, Zsolt; Bhatt, Ramakrishna T.; Brewer, David N.; Gyekenyesi, John P.

    2005-01-01

    Foreign object damage (FOD) behavior of AS800 silicon nitride was determined using four different projectile materials at ambient temperature. The target test specimens rigidly supported were impacted at their centers by spherical projectiles with a diameter of 1.59 mm. Four different types of projectiles were used including hardened steel balls, annealed steel balls, silicon nitride balls, and brass balls. Post-impact strength of each target specimen impacted was determined as a function of impact velocity to better understand the severity of local impact damage. The critical impact velocity where target specimens fail upon impact was highest with brass balls, lowest with ceramic ball, and intermediate with annealed and hardened steel balls. Degree of strength degradation upon impact followed the same order as in the critical impact velocity with respect to projectile materials. For steel balls, hardened projectiles yielded more significant impact damage than annealed counterparts. The most important material parameter affecting FOD was identified as hardness of projectiles and was correlated in terms of critical impact velocity, impact deformation, and impact load.

  2. Fairly direct hit. Advances in imaging of shotgun projectiles in MRI

    International Nuclear Information System (INIS)

    Eggert, Sebastian; Kubik-Huch, Rahel A.; Peters, Alexander; Klarhoefer, Markus; Bolliger, Stephan A.; Thali, Michael J.; Anderson, Suzanne; Froehlich, Johannes M.

    2015-01-01

    To investigate the magnetic properties of different types of projectiles and qualify the metal artefact reduction technique for diagnostic and/or forensic MRI. Ten different projectiles embedded in ordnance gelatine blocks underwent an in vitro 1.5-T MR study with seven sequences including a recently developed metal artefact reduction sequence (Advanced WARP) combining VAT (view-angle-tilting) and SEMAC (slice-encoding metal-artefact-correction). Resulting image quality (five-point scale: 1=best; 5=worst) was scored. Quantifiable magnetic characteristics were correlated with qualitative rating of the MR sequences and torque dislodgment. Metal artefact reduction sequence (median: 2.5) significantly (p < 0.001) improves depiction of projectiles in comparison to all other MR pulse sequences (median: 4.75). Images from diamagnetic composed bullets (median: 2) are much less disturbed compared to magnetic attracted ones (median: 5). Correlation (0.623) between deflection angle measurement (ferromagnetic mean 84.2 ; paramagnetic 62 ; diamagnetic mean 0 ) and median qualitative image quality was highly significant (p = 0.027). Torque dislodgement was distinct for elongated magnetic attracted projectiles. Significant improvement of MR imaging of projectiles using metal artefact reduction techniques has important implications for diagnostic/forensic work-up. The correlations between magnetic attraction force, deflection-angle results and image properties demonstrate that the MR safety of projectiles can be estimated with one of these methods. (orig.)

  3. Heavy spin-2 Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Babichev, Eugeny [Laboratoire de Physique Théorique, CNRS, Univ. Paris-Sud, Université Paris-Saclay,91405 Orsay (France); UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, GReCO,98bis boulevard Arago, F-75014 Paris (France); Marzola, Luca; Raidal, Martti [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Laboratory of Theoretical Physics, Institute of Physics, University of Tartu,Ravila 14c, 50411 Tartu (Estonia); Schmidt-May, Angnis [Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland); Urban, Federico; Veermäe, Hardi [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Strauss, Mikael von [UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, GReCO,98bis boulevard Arago, F-75014 Paris (France)

    2016-09-12

    We provide further details on a recent proposal addressing the nature of the dark sectors in cosmology and demonstrate that all current observations related to Dark Matter can be explained by the presence of a heavy spin-2 particle. Massive spin-2 fields and their gravitational interactions are uniquely described by ghost-free bimetric theory, which is a minimal and natural extension of General Relativity. In this setup, the largeness of the physical Planck mass is naturally related to extremely weak couplings of the heavy spin-2 field to baryonic matter and therefore explains the absence of signals in experiments dedicated to Dark Matter searches. It also ensures the phenomenological viability of our model as we confirm by comparing it with cosmological and local tests of gravity. At the same time, the spin-2 field possesses standard gravitational interactions and it decays universally into all Standard Model fields but not into massless gravitons. Matching the measured DM abundance together with the requirement of stability constrains the spin-2 mass to be in the 1 to 100 TeV range.

  4. Initial study of stability and repeatability of measuring R2' and oxygen extraction fraction values in the healthy brain with gradient-echo sampling of spin-echo sequence

    International Nuclear Information System (INIS)

    Hui Lihong; Zhang Xiaodong; He Chao; Xie Sheng; Xiao Jiangxi; Zhang jue; Wang Xiaoying; Jiang Xuexiang

    2010-01-01

    Objective: To evaluate the stability and repeatability of gradient-echo sampling of spin- echo (GESSE) sequence in measuring the R 2 ' value in volunteers, by comparison with traditional GRE sequence (T 2 * ]nap and T 2 map). Methods: Eight normal healthy volunteers were enrolled in this study and written informed consents were obtained from all subjects. MR scanning including sequences of GESSE, T 2 map and T 2 * map were performed in these subjects at resting status. The same protocol was repeated one day later. Raw data from GESSE sequence were transferred to PC to conduct postprocessing with the software built in house. R 2 ' map and OEF map were got consequently. To obtain quantitative R 2 ' and OEF values in the brain parenchyma, six ROIs were equally placed in the anterior, middle and posterior part of bilateral hemispheres. Both mean and standard deviation of R 2 ' and OEF were recorded. All images from T 2 * map and T 2 map were transferred to the Workstation for postprocessing. The ROIs were put at the same areas as those for GESSE sequence. R 2 ' is defined as R 2 ' = R 2 * - R 2 , R 2 * = 1/T 2 * . The R 2 ' value of GESSE sequence were compared with that of GRE sequence. Results: The mean R 2 ' values of GESSE at the first and second scan and those of the GRE were (4.21±0.92), (4.45±0.94) Hz and (7.37±1.47), (6.42±2.33) Hz respectively. The mean OEF values of GESSE at the first and second scan is 0.327±0.036 and 0.336± 0.035 respectively. The R 2 ' value and OEF value obtained from GESSE were not significantly different between the first and second scan (t=-0.83, -1.48, P>0.05). The R 2 ' value of first GRE imaging had significantly statistical difference from that of second GRE imaging (t=1.80, P 2 ' value of GESSE sequence was less than that of GRE sequence, and there was significantly statistical difference between them (t=1.71, P<0.05). Conclusion: The GESSE sequence has good stability and repeatability with promising clinical practicability

  5. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  6. chi2 analyses of data on relativistic anomalous projectile fragments

    International Nuclear Information System (INIS)

    MacGregor, M.H.

    1983-01-01

    Nuclear emulsion data from four experimental groups are now available on the interactions of p relativistic anomalous projectile fragments. In the present paper we systematically combine these data together to form several different data sets, which are used to carry out a series of chi 2 parameter studies. The anomalous particle fragment component in the relativistic nuclear beam has been characterized previously in terms of the parameters f and lambda, where f is the anomalous particle fragment fraction in the secondary beam and lambda is the average anomalous particle fragment mean free path in the emulsion. We extend this result here by setting lambda = lambda 0 (2Z)/sup -beta/, where Z is the nuclear charge of the anomalous particle fragment, so that we can investigate the Z dependence of lambda. We also investigate isotopic effects in the equations used to describe ''normal'' secondary beam nuclei, and we examine the problem of optimizing the bin sizes used to represent the data. A series of (f,lambda 0 ,#betta#) parameter studies leads to the conclusion that the ''anomalous particle fragment effect'' exists for all Z values in the range Z = 3--26 included in the chi 2 analyses. These chi 2 analyses also indicate that #betta#>0, so that the anomalous particle fragment lambda's are Z dependent, but the data are not sufficient to pin down a definite value of #betta#. In order to assess the physical content of these results, we define a domain within which nuclear mean free paths can be accounted for by conventional nuclear forces (but not necessarily by conventional nuclear structure). The Z-dependent anomalous particle fragment mean free paths lie approximately on the boundary of this domain

  7. Effect of deformation and orientation on spin orbit density dependent nuclear potential

    Science.gov (United States)

    Mittal, Rajni; Kumar, Raj; Sharma, Manoj K.

    2017-11-01

    Role of deformation and orientation is investigated on spin-orbit density dependent part VJ of nuclear potential (VN=VP+VJ) obtained within semi-classical Thomas Fermi approach of Skyrme energy density formalism. Calculations are performed for 24-54Si+30Si reactions, with spherical target 30Si and projectiles 24-54Si having prolate and oblate shapes. The quadrupole deformation β2 is varying within range of 0.023 ≤ β2 ≤0.531 for prolate and -0.242 ≤ β2 ≤ -0.592 for oblate projectiles. The spin-orbit dependent potential gets influenced significantly with inclusion of deformation and orientation effect. The spin-orbit barrier and position gets significantly influenced by both the sign and magnitude of β2-deformation. Si-nuclei with β220. The possible role of spin-orbit potential on barrier characteristics such as barrier height, barrier curvature and on the fusion pocket is also probed. In reference to prolate and oblate systems, the angular dependence of spin-orbit potential is further studied on fusion cross-sections.

  8. Nuclei at the limits of particle stability

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1993-01-01

    The properties and synthesis of nuclei at the limits of particle stability are reviewed. Nuclear reactions were induced and studied by means of the 'exotic' nuclear beams, i.e. beams of radioactive drip-line nuclei. The beams are mostly generated in heavy-ion projectile fragmentation. The cases of both neutron-rich and proton-rich nuclei are discussed. (K.A.) 270 refs.; 13 figs.; 1 tab

  9. Determination of the excitation energy and angular momentum of the quasi-projectiles produced in the heavy ion collisions Xe + Sn

    International Nuclear Information System (INIS)

    Genouin-Duhamel, Emmanuel

    1999-01-01

    This work is a contribution to the study of properties of hot nuclei formed in heavy ion collisions at intermediate energies. The experiment has been performed with the INDRA multidetector. It is shown that most of the reaction cross section is associated with binary dissipative collisions, accompanied by the production of particles from a region between the two reaction partners. This study is focussed on excitation energy and angular momentum of projectile-like fragment (PLF) in 129 Xe + nat Sn reactions from 25 to 50 MeV per nucleon. Several methods are used to characterize hot nuclei (velocity, charge, mass and excitation energy). All these methods are compared between them and indicate that high energies are deposited in the nuclei during collision (it may exceed the nucleus binding energy). The angular momentum transferred into intrinsic spin to PLF in the peripheral collisions has been deduced from angular distributions and kinetic energies of the emitted light charged particles (atomic number smaller ar equal to 2). Both methods agree qualitatively. The spin values decrease with the violence of the collision. These values correspond to values averaged over the whole deexcitation chain of nuclei. The predictions of transport models reproduce qualitatively the most peripheral collisions and suggest that high spins are transferred to PLF (from 30 to 50 ℎ). Larger angular momentum values are observed at the lowest incident energy. The time hierarchy in the evaporation process and the role of mid-rapidity emission are also discussed. (author)

  10. Projectile metallic foreign bodies in the orbit: a retrospective study of epidemiologic factors, management, and outcomes.

    Science.gov (United States)

    Finkelstein, M; Legmann, A; Rubin, P A

    1997-01-01

    Intraorbital projectile metallic foreign bodies are associated with significant ocular and orbital injuries. The authors sought to evaluate epidemiologic factors, the incidence of associated ocular and orbital injury, and the nature and necessity of surgical intervention in these cases. Charts of all patients with projectile intraorbital metallic foreign bodies seen at our institution (27) over the preceding 7 years were evaluated with respect to age, sex, type of injury, associated ocular and orbital injuries, location of the projectile (anterior, epibulbar, or posterior), postinjury visual acuity, and surgical intervention. The majority of patients were male, between the ages of 11 and 30, and had BB pellet injuries. Thirteen projectiles were lodged anteriorly, 4 were in an epibulbar position, and the remaining 10 were posterior to the equator. Twelve of 13 anterior, and 4 of 4 epibulbar foreign bodies were removed surgically, whereas only 2 of 10 posterior foreign bodies required surgery. No case of surgical intervention resulted in a decrease of visual acuity. Associated ocular injuries were both more common and severe in patients with posteriorly located foreign bodies. Final visual acuity was better at presentation and at discharge in patients with anteriorly located foreign bodies. Intraorbital projectile metallic foreign bodies can be a source of significant ocular morbidity. Management of these cases is dependent on the location of the projectile. Ancillary radiographic studies can be helpful. Surgery to remove the projectile should be considered in each case, but foreign bodies that are not readily accessible often may be left safely in place. Closer regulation of the pellet gun industry, with an emphasis on education and protective eyewear use, would be helpful in reducing these injuries.

  11. High spin levels populated in multinucleon transfer reaction with 480 MeV 12C

    International Nuclear Information System (INIS)

    Kraus, L.; Boucenna, A.; Linck, I.

    1988-01-01

    Two- and three-nucleon stripping reactions induced by 480 MeV 12 C have been studied on 12 C, 16 O, 28 Si, 40 Ca and 54 Fe target nuclei. Discrete levels are fed with cross sections up to 1 mb/sr for d-transfer reactions and one order and two orders of magnitude less for 2p- and 3 He-transfer reactions, respectively. These reactions preferentially populate high spin states with stretched configurations. Several spin assignments were known from transfer reactions induced by lighter projectiles at incident energies well above the Coulomb barrier. In the case of two-nucleon transfer reactions, the energy of these states is well reproduced by crude shell model calculations. Such estimates are of use in proposing spins of newly observed states especially as the shapes of the measured angular distributions are independent of the final spin of the residual nucleus

  12. Spin-polarized spin excitation spectroscopy

    International Nuclear Information System (INIS)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2010-01-01

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  13. Assessing the Blunt Trauma Potential of Free Flying Projectiles for Development and Safety Certification of Non-Lethal Kinetic Impactors

    National Research Council Canada - National Science Library

    Widder, Jeffrey

    1997-01-01

    The primary performance objective for non-lethal, antipersonnel kinetic energy impact projectiles is to reliably deter or incapacitate without causing injuries that require medical treatment beyond...

  14. Modeling and Experiments on Ballistic Impact into UHMWPE Yarns Using Flat and Saddle-Nosed Projectiles

    Directory of Open Access Journals (Sweden)

    Stuart Leigh Phoenix

    2017-03-01

    Full Text Available Yarn shooting experiments were conducted to determine the ballistically-relevant, Young’s modulus and tensile strength of ultra-high molecular weight polyethylene (UHMWPE fiber. Target specimens were Dyneema® SK76 yarns (1760 dtex, twisted to 40 turns/m, and initially tensioned to stresses ranging from 29 to 2200 MPa. Yarns were impacted, transversely, by two types of cylindrical steel projectiles at velocities ranging from 150 to 555 m/s: (i a reverse-fired, fragment simulating projectile (FSP where the flat rear face impacted the yarn rather than the beveled nose; and (ii a ‘saddle-nosed projectile’ having a specially contoured nose imparting circular curvature in the region of impact, but opposite curvature transversely to prevent yarn slippage off the nose. Experimental data consisted of sequential photographic images of the progress of the triangular transverse wave, as well as tensile wave speed measured using spaced, piezo-electric sensors. Yarn Young’s modulus, calculated from the tensile wave-speed, varied from 133 GPa at minimal initial tension to 208 GPa at the highest initial tensions. However, varying projectile impact velocity, and thus, the strain jump on impact, had negligible effect on the modulus. Contrary to predictions from the classical Cole-Smith model for 1D yarn impact, the critical velocity for yarn failure differed significantly for the two projectile types, being 18% lower for the flat-faced, reversed FSP projectile compared to the saddle-nosed projectile, which converts to an apparent 25% difference in yarn strength. To explain this difference, a wave-propagation model was developed that incorporates tension wave collision under blunt impact by a flat-faced projectile, in contrast to outward wave propagation in the classical model. Agreement between experiment and model predictions was outstanding across a wide range of initial yarn tensions. However, plots of calculated failure stress versus yarn pre

  15. Numerical Study on the Projectile Impact Resistance of Multi-Layer Sandwich Panels with Cellular Cores

    Directory of Open Access Journals (Sweden)

    Liming Chen

    Full Text Available Abstract The projectile impact resistance of sandwich panels with cellular cores with different layer numbers has been numerically investigated by perpendicular impact of rigid blunt projectile in ABAQUS/Explicit. These panels with corrugation, hexagonal honeycomb and pyramidal truss cores are impacted at velocities between 50 m/s and 202 m/s while the relative density ranges from 0.001 to 0.15 The effects of core configuration and layer number on projectile impact resistance of sandwich panels with cellular cores are studied. At low impact velocity, sandwich panels with cellular cores outperform the corresponding solid ones and non-montonicity between relative density and projectile resistance of sandwich panels is found and analyzed. Multiplying layer can reduce the maximum central deflection of back face sheet of the above three sandwich panels except pyramidal truss ones in high relative density. Hexagonal honeycomb sandwich panel is beneficial to increasing layer numbers in lowering the contact force and prolonging the interaction time. At high impact velocity, though corrugation and honeycomb sandwich panels are inferior to the equal-weighted solid panels, pyramidal truss ones with high relative density outperform the corresponding solid panels. Multiplying layer is not the desirable way to improve high-velocity projectile resistance.

  16. Evaluating the risk of eye injuries: intraocular pressure during high speed projectile impacts.

    Science.gov (United States)

    Duma, Stefan M; Bisplinghoff, Jill A; Senge, Danielle M; McNally, Craig; Alphonse, Vanessa D

    2012-01-01

    To evaluate the risk of eye injuries by determining intraocular pressure during high speed projectile impacts. A pneumatic cannon was used to impact eyes with a variety of projectiles at multiple velocities. Intraocular pressure was measured with a small pressure sensor inserted through the optic nerve. A total of 36 tests were performed on 12 porcine eyes with a range of velocities between 6.2 m/s and 66.5 m/s. Projectiles selected for the test series included a 6.35  mm diameter metal ball, a 9.25  mm diameter aluminum rod, and an 11.16  mm diameter aluminum rod. Experiments were designed with velocities in the range of projectile consumer products such as toy guns. A range of intraocular pressures ranged between 2017 mmHg to 26,426 mmHg (39 psi-511 psi). Four of the 36 impacts resulted in globe rupture. Intraocular pressures dramatically above normal physiological pressure were observed for high speed projectile impacts. These pressure data provide critical insight to chronic ocular injuries and long-term complications such as glaucoma and cataracts.

  17. Accuracy Improvement Capability of Advanced Projectile Based on Course Correction Fuze Concept

    Directory of Open Access Journals (Sweden)

    Ahmed Elsaadany

    2014-01-01

    Full Text Available Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake and the second is devoted to drift correction (canard based-correction fuze. The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion.

  18. Accuracy improvement capability of advanced projectile based on course correction fuze concept.

    Science.gov (United States)

    Elsaadany, Ahmed; Wen-jun, Yi

    2014-01-01

    Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake) and the second is devoted to drift correction (canard based-correction fuze). The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion.

  19. Fragmentation of armor piercing steel projectiles upon oblique perforation of steel plates

    Directory of Open Access Journals (Sweden)

    Aizik F.

    2012-08-01

    Full Text Available In this study, a constitutive strength and failure model for a steel core of a14.5 mm API projectile was developed. Dynamic response of a projectile steel core was described by the Johnson-Cook constitutive model combined with principal tensile stress spall model. In order to obtain the parameters required for numerical description of projectile core material behavior, a series of planar impact experiments was done. The parameters of the Johnson-Cook constitutive model were extracted by matching simulated and experimental velocity profiles of planar impact. A series of oblique ballistic experiments with x-ray monitoring was carried out to study the effect of obliquity angle and armor steel plate thickness on shattering behavior of the 14.5 mm API projectile. According to analysis of x-ray images the fragmentation level increases with both steel plate thickness and angle of inclination. The numerical modeling of the ballistic experiments was done using commercial finite element code, LS-DYNA. Dynamic response of high hardness (HH armor steel was described using a modified Johnson-Cook strength and failure model. A series of simulations with various values of maximal principal tensile stress was run in order to capture the overall fracture behavior of the projectile’s core. Reasonable agreement between simulated and x-ray failure pattern of projectile core has been observed.

  20. Effect of Nonsmooth Nose Surface of the Projectile on Penetration Using DEM Simulation

    Directory of Open Access Journals (Sweden)

    Jing Han

    2017-01-01

    Full Text Available The nonsmooth body surface of the reptile in nature plays an important role in reduction of resistance and friction when it lives in a soil environment. To consider whether it was feasible for improving the performance of penetrating projectile we investigated the influence of the convex as one of nonsmooth surfaces for the nose of projectile. A numerical simulation study of the projectile against the concrete target was developed based on the discrete element method (DEM. The results show that the convex nose surface of the projectile is beneficial for reducing the penetration resistance greatly, which is also validated by the experiments. Compared to the traditional smooth nose structure, the main reason of difference is due to the local contact normal pressure, which increases dramatically due to the abrupt change of curvature caused by the convex at the same condition. Accordingly, the broken particles of the concrete target obtain more kinetic energy and their average radial flow velocities will drastically increase simultaneously, which is in favor of decreasing the interface friction and the compaction density of concrete target around the nose of projectile.

  1. Spin nematics next to spin singlets

    Science.gov (United States)

    Yokoyama, Yuto; Hotta, Chisa

    2018-05-01

    We provide a route to generate nematic order in a spin-1/2 system. Unlike the well-known magnon-binding mechanism, our spin nematics requires neither the frustration effect nor spin polarization in a high field or in the vicinity of a ferromagnet, but instead appears next to the spin singlet phase. We start from a state consisting of a quantum spin-1/2 singlet dimer placed on each site of a triangular lattice, and show that interdimer ring exchange interactions efficiently dope the SU(2) triplets that itinerate and interact, easily driving a stable singlet state to either Bose-Einstein condensates or a triplet crystal, some hosting a spin nematic order. A variety of roles the ring exchange serves includes the generation of a bilinear-biquadratic interaction between nearby triplets, which is responsible for the emergent nematic order separated from the singlet phase by a first-order transition.

  2. Algebraic topology of spin glasses

    International Nuclear Information System (INIS)

    Koma, Tohru

    2011-01-01

    We study the topology of frustration in d-dimensional Ising spin glasses with d ≥ 2 with nearest-neighbor interactions. We prove the following. For any given spin configuration, the domain walls on the unfrustration network are all transverse to a frustrated loop on the unfrustration network, where a domain wall is defined to be a connected element of the collection of all the (d - 1)-cells which are dual to the bonds having an unfavorable energy, and the unfrustration network is the collection of all the unfrustrated plaquettes. These domain walls are topologically nontrivial because they are all related to the global frustration of a loop on the unfrustration network. Taking account of the thermal stability for the domain walls, we can explain the numerical results that three- or higher-dimensional systems exhibit a spin glass phase, whereas two-dimensional ones do not. Namely, in two dimensions, the thermal fluctuations of the topologically nontrivial domain walls destroy the order of the frozen spins on the unfrustration network, whereas they do not in three or higher dimensions. This may be interpreted as a global topological effect of the frustrations.

  3. Hysteretic behavior of spin-crossover noise driven system

    Energy Technology Data Exchange (ETDEWEB)

    Gudyma, Iurii [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Maksymov, Artur, E-mail: maxyartur@gmail.com [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Advanced Materials Research Institute, University of New Orleans, LA 70148 (United States); Dimian, Mihai [Department of Electrical and Computer Engineering, Howard University, Washington DC, 20059 (United States); Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University, Suceava 720229 (Romania)

    2016-04-01

    The influence of white Gaussian noise on hysteretic behavior of spin-crossover system is analyzed in the framework of stochastic Langevin dynamics. Various stochastic simulations are performed and several important properties of spin-transition in spin-crossover system driven by noise are reproduced. The numerical results are tested against the stationary probability function and the associated dynamic potential obtained from Fokker–Planck equation corresponding to spin-crossover Langevin dynamics. The dependence of light-induced optical hysteresis width and non-hysteretic transition curve slope on the noise intensity is illustrated. The role of low-spin and high-spin phase stabilities in the hysteretic behavior of noise-driven spin-crossover system is discussed.

  4. Spin-Mechatronics

    Science.gov (United States)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  5. Research on Ground Motion Metal Target Based on Rocket Projectile by Using Millimeter Wave Radiometer Technology

    Directory of Open Access Journals (Sweden)

    Zhang Dongyang

    2014-06-01

    Full Text Available How to detect the ground motion metal target effectively is an important guarantee for precision strike in the process of Rocket Projectile flight. Accordingly and in view of the millimeter- wave radiation characteristic of the ground motion metal target, a mathematical model was established based on Rocket Projectile about millimeter-wave detection to the ground motion metal target. Through changing various parameters in the process of Rocket Projectile flight, the detection model was studied by simulation. The parameters variation and effective range of millimeter wave radiometer were obtained in the process of rotation and horizontal flight. So a certain theoretical basis was formed for the precision strike to the ground motion metal target.

  6. Eikonal calculation of electron-capture cross sections in collisions of H atoms with fast projectiles

    International Nuclear Information System (INIS)

    Ho, T.S.; Lieber, M.; Chan, F.T.

    1981-01-01

    We have employed the eikonal method to calculate the cross section for the capture of an electron into an arbitrary nl subshell in collisions between hydrogen atoms and fast projectiles. the projectiles were protons, C 6+ , O 8+ , and Fe 24+ . The energy ranges considered were 20--100 keV in the proton case, and 40--200 keV per nucleon in the other cases. These projectiles were selected because of their importance in fusion plasmas. For the highly charged case of Fe 24+ we found that our formulas, while exact, involved a high degree of cancellation and produced unreliable numerical results, so that a numerical integration of the penultimate formula was substituted. In the proton case agreement with recent experimental data is excellent

  7. Backward ejected electrons from collisions of 1 MeV/u Oq+ projectiles with argon gas

    International Nuclear Information System (INIS)

    Berryman, J.W.; Breinig, M.; Segner, F.; Desai, D.

    1993-01-01

    We will be presenting results from a series of experiments measuring the yields and energy distributions of electrons emitted at 1800 with respect to the 1 MeV/u O q+ [q=3-8] ion beam. We have systematically studied the yield per incident ion and the energy distribution of electrons as a function of the incident projectile charge state. The energy distributions show two prominent structures: a narrow peak due to target LMM Auger electrons and a broad hump due to projectile binary-encounter electrons. The shapes and yields of the Auger electron peaks are nearly independent of the incident charge state. The shapes and yields of the binary-encounter electron peaks are sensitive functions of the number of projectile electrons carried into the collision. A well defined binary-encounter electron peak appears only for charge states q=3, 4, and 5

  8. Extended Range of a Gun Launched Smart Projectile Using Controllable Canards

    Directory of Open Access Journals (Sweden)

    Mark Costello

    2001-01-01

    Full Text Available This effort investigates the extent to which moveable canards can extend the range of indirect fire munitions using both projectile body and canard lift. Implications on terminal velocity and time of flight using this mechanism to extend range are examined for various canard configurations. Performance predictions are conducted using a six-degree-of-freedom simulation model that has previously been validated against range data. The projectile dynamic equations are formed in the body frame and aerodynamic loads from the body and canards are Mach number and angle of attack dependent. The projectile body aerodynamic moments include unsteady aerodynamic damping. The focus of the study is directed toward low cost competent munitions that extend range and as such a simple flight control system is considered which utilizes only timer, roll rate, and roll attitude inputs.

  9. Experimental investigation of magnetoplasma acceleration of dielectric projectiles in a rail gun

    International Nuclear Information System (INIS)

    Kondratenko, M.M.; Lebedev, E.F.; Ostashev, V.E.; Safonov, V.I.; Fortov, V.E.; Ul'yanov, A.V.

    1988-01-01

    The authors present results of experimental investigations of the process of a nondestructive electrodynamic acceleration of dielectric projectiles in a magnetoplasma accelerator of rail gun type upon discharge of the electrical energy of the capacitor bank. They describe the phenomenon of decay of the plasma driving piston. They describe the causes of this phenomenon and the practical steps to avoid it. In a specific facility regimes have been achieved with electrodynamic acceleration of projectiles without plasma piston decay at working currents of up to 0.7 MA. In acceleration of projectiles of mass ∼ 1 g a speed of 6 km/sec has been attained and reproduced. The facility constructed can be used efficiently in experiments to investigate the thermophysical properties of substances using dynamic methods as a means of creating intense kinetic energy pulses

  10. Single capture and transfer ionization in collisions of Clq+ projectile ions incident on helium

    International Nuclear Information System (INIS)

    Wong, K.L.; Ben-Itzhak, I.; Cocke, C.L.; Giese, J.P.; Richard, P.

    1995-01-01

    The Kansas State University linac has been used to measure the ratio of the cross sections for the processes of transfer ionization (TI) and single capture (SC) for 2 MeV/amu Cl q+ where q=7, 9, 13, 14, and 15 projectile ions incident on a helium target. The ratio was determined using a helium gas jet target by measuring coincidences between projectile-ion and recoil-ion final charge states. The σ TI /σ SC for Cl q+ were compared to measurements of bare F 9+ and hydrogenlike F 8+ and O 7+ taken at the same velocity. The ratios deviate from a q 2 scaling which is predicted in the perturbative regime. This deviation is attributed to screening by the projectile electrons for low q=7 and 9, and to the collision being non-perturbative for high q. A possible saturation effect in the ratio was observed for q similar 14. (orig.)

  11. Deformations on Hole and Projectile Surfaces Caused By High Velocity Friction During Ballistic Impact

    Science.gov (United States)

    Karamış, M. B.

    2018-01-01

    In this study, the deformations caused by the ballistic impact on the MM composites and on projectile surfaces are examined. The hole section and grain deformation of unreinforced targets are also examined after impact. The relatively high complexity of impact problems is caused by the large number of intervening parameters like relative velocity of projectile and target, shape of colliding objects, relative stiffness and masses, time-dependent surface of contact, geometry and boundary conditions and material characteristics. The material used in this investigation are 2024 and 7075 aluminum alloys as matrix reinforced with SiC and Al2O3 particles. The matrix materials are extensively used in defense applications due to its favorable ballistic properties, moderate strength, high corrosion resistance and super plastic potential. Two different composites were produced; one by casting and the other by lamination. The ballistic tests of the composite targets were carried out according to NIJ Standard-0101.04, Temperature 21 °C, RH=65% with 7.62 mm projectiles. The bullet weight was 9.6 g and their muzzle velocities were in the range of 770-800 m/s. The projectiles consisted of a steel core, copper jacket and lead material. The composite targets were positioned 15 m from the rifle. The interaction between projectiles and the target hole created after impact were examined by light microscopy and photography. Different damage and failure mechanisms such as petalling, cracking, spalling, dishing, etc., were observed on the target body. On the other hand, dramatic wear and damages on the projectile surface were also observed. The targets were supported with Al-5083 backing blocks having 40 mm thickness.

  12. Fragmentation of small molecules induced by 46 keV/amu N+ and N2+ projectiles

    International Nuclear Information System (INIS)

    Kovacs, S.T.S.; Juhasz, Z.; Herczku, P.; Sulik, B.

    2012-01-01

    Complete text of publication follows. Collisional molecule fragmentation experiments has gain increasing attention in several research and applied fields. In order to understand the fundamental processes of molecule fragmentation one has to start with collisions of small few-atomic molecules. Moreover, fragments of small molecules such as water can cause damages of large molecules (DNA) very effectively in living tissues. In the last few years a new experimental setup was developed at Atomki. It was designed especially for molecule fragmentation experiments. Now the measurements using this system are running routinely. In 2012 the studied targets were water vapor, methane and nitrogen gases, injected into the collision area by an effusive molecular gas jet system. 650 keV N + and 1,3 MeV N 2 + ions were used as projectiles produced by the VdG-5 electrostatic accelerator. The velocity of the two types of projectiles was the same. Energy and angular distribution of the produced fragments was measured by an energy dispersive electrostatic spectrometer. For atomic ionization a symmetric, diatomic molecular projectile (e.g. N 2 + ) yields about twice more electrons compared to those of singly charged ion projectiles of the same atom (N + ) at the same velocity. In such cases the two atomic centers in the molecular ion can be considered as two individual atomic centers. For the fragmentation of molecular targets the picture is not so simple because in this case close collision of two extended systems is investigated. As figure 1 and 2 show, the measured yields for molecular projectile is not simply twice of the ones for atomic projectile. The shape of the energy spectra are different. The measured data are under evaluation. Acknowledgements. This work was supported by the Hungarian National Science Foundation OTKA (Grant: K73703) and by the TAMOP-4.2.2/B-10/1-2010-0024 project. The project is cofinanced by the European Union and the European Social Fund.

  13. Quantitative functional analysis of Late Glacial projectile points from northern Europe

    DEFF Research Database (Denmark)

    Dev, Satya; Riede, Felix

    2012-01-01

    This paper discusses the function of Late Glacial arch-backed and tanged projectile points from northern Europe in general and southern Scandinavia in particular. Ballistic requirements place clear and fairly well understood constraints on the design of projectile points. We outline the argument...... surely fully serviceable, diverged considerably from the functional optimum predicated by ballistic theory. These observations relate directly to southern Scandinavian Late Glacial culture-history which is marked by a sequence of co-occurrence of arch-backed and large tanged points in the earlier part...

  14. Effectiveness of projectile screening in single and multiple ionization of Ne by B{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, W.; Luna, H.; Santos, A. C. F.; Montenegro, E. C. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, 21945-970 RJ (Brazil); DuBois, R. D. [Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409 (United States); Montanari, C. C.; Miraglia, J. E. [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, C1428EGA, Buenos Aires (Argentina)

    2011-10-15

    Pure multiple ionization cross sections of Ne by B{sup 2+} projectiles have been measured in the energy range of 0.75 to 4.0 MeV and calculated using the continuum distorted wave-eikonal initial state approximation. The experiment and calculations show that the ionization cross sections by B{sup 2+}, principally for the production of highly charged recoils, is strongly enhanced when compared to the bare projectile with the same charge state, He{sup 2+}, at the same velocities.

  15. Heavy-ion stopping powers and the low-velocity-projectile z3 effect

    International Nuclear Information System (INIS)

    Porter, L.E.

    1977-01-01

    Recent heavy-ion stopping-power measurements with elemental solid targets have been analyzed in order to ascertain the influence on effective ion charge of incorporating the low-velocity-projectile z 3 effect in Bethe-Bloch calculations. Shell corrections and the mean excitation energy of a given target were held fixed while searching for the best-fit value of a single charge-state parameter. In general, excellent fits to the stopping powers at projectile energies above 0.3 MeV/amu were achieved. Results of the present study compare very favorably with those from other extant methods of analysis

  16. Study of the effect of hard projectiles impacting reinforced concrete walls

    International Nuclear Information System (INIS)

    Berriaud, C.; Sokolovsky, A.

    1977-01-01

    Among the risks examined in the framework of nuclear safety in France, quite unlikely events are examined as constituting a safety cover. This type of event includes the possible impact of aircrafts, or rotor splinters. Research on the limit strength of a wall under the impact of a hard projectile presently gives incentive results. First, a good agreement appears between works performed in parallel directions by EDF and CEA. Secondly, the special field of aerial projectiles is much better known as it was with previous formulations. Third, such research highly contributes to the knowledge of the mechanical strength of reinforced concrete structures [fr

  17. Bringing solid fuel ramjet projectiles closer to application - An overview of the TNO/RWMS technology demonstration programme

    NARCIS (Netherlands)

    Veraar, R.G.; Giusti, G.

    2005-01-01

    TNO executed a technology demonstration programme in co-operation with RWMS on the application of solid fuel ramjet propulsion technology to medium calibre air defence projectiles. From 2000 to 2004 a complete and integrated structural and aero-thermodynamic projectile design was conceived

  18. Spin in hadron physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The following topics were ealt with: Hadron physics with proton and deuteron probes, physics projects with Georgian participation, spin physics with antiprotons and leptons, spin filtering experiments, ISTC projects, technical issues for FAIR. (HSI)

  19. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  20. A Beautiful Spin

    International Nuclear Information System (INIS)

    Ji Xiangdong

    2003-01-01

    Spin is a beautiful concept that plays an ever important role in modern physics. In this talk, I start with a discussion of the origin of spin, and then turn to three themes in which spin has been crucial in subatomic physics: a lab to explore physics beyond the standard model, a tool to measure physical observables that are hard to obtain otherwise, a probe to unravel nonperturbative QCD. I conclude with some remarks on a world without spin

  1. Determination of the excitation energy and angular momentum of the quasi-projectiles produced in the heavy ion collisions Xe + Sn; Determination de l'energie d'excitation et du moment angulaire des quasi-projectiles produits dans les collisions d'ions lourds Xe + Sn

    Energy Technology Data Exchange (ETDEWEB)

    Genouin-Duhamel, Emmanuel [Lab. de Physique Corpusculaire, Caen Univ., 14 Caen (France)

    1999-04-08

    This work is a contribution to the study of properties of hot nuclei formed in heavy ion collisions at intermediate energies. The experiment has been performed with the INDRA multidetector. It is shown that most of the reaction cross section is associated with binary dissipative collisions, accompanied by the production of particles from a region between the two reaction partners. This study is focussed on excitation energy and angular momentum of projectile-like fragment (PLF) in {sup 129}Xe + {sup nat}Sn reactions from 25 to 50 MeV per nucleon. Several methods are used to characterize hot nuclei (velocity, charge, mass and excitation energy). All these methods are compared between them and indicate that high energies are deposited in the nuclei during collision (it may exceed the nucleus binding energy). The angular momentum transferred into intrinsic spin to PLF in the peripheral collisions has been deduced from angular distributions and kinetic energies of the emitted light charged particles (atomic number smaller ar equal to 2). Both methods agree qualitatively. The spin values decrease with the violence of the collision. These values correspond to values averaged over the whole deexcitation chain of nuclei. The predictions of transport models reproduce qualitatively the most peripheral collisions and suggest that high spins are transferred to PLF (from 30 to 50 {Dirac_h}). Larger angular momentum values are observed at the lowest incident energy. The time hierarchy in the evaporation process and the role of mid-rapidity emission are also discussed.

  2. Quantum Computation and Quantum Spin Dynamics

    NARCIS (Netherlands)

    Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji

    2001-01-01

    We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum

  3. Spin at Lausanne

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    From 25 September to 1 October, some 150 spin enthusiasts gathered in Lausanne for the 1980 International Symposium on High Energy Physics with Polarized Beams and Polarized Targets. The programme was densely packed, covering physics interests with spin as well as the accelerator and target techniques which make spin physics possible

  4. Spin-Caloritronic Batteries

    DEFF Research Database (Denmark)

    Yu, Xiao-Qin; Zhu, Zhen-Gang; Su, Gang

    2017-01-01

    The thermoelectric performance of a topological energy converter is analyzed. The H-shaped device is based on a combination of transverse topological effects involving the spin: the inverse spin Hall effect and the spin Nernst effect. The device can convert a temperature drop in one arm into an e...

  5. Spinning Eggs and Ballerinas

    Science.gov (United States)

    Cross, Rod

    2013-01-01

    Measurements are presented on the rise of a spinning egg. It was found that the spin, the angular momentum and the kinetic energy all decrease as the egg rises, unlike the case of a ballerina who can increase her spin and kinetic energy by reducing her moment of inertia. The observed effects can be explained, in part, in terms of rolling friction…

  6. Nuclear Spin Nanomagnet in an Optically Excited Quantum Dot

    Science.gov (United States)

    Korenev, V. L.

    2007-12-01

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins—the nuclear spin nanomagnet.

  7. Calculation of spin-dependent observables in electron-sodium scattering using the coupled-channel optical method

    International Nuclear Information System (INIS)

    Bray, Igor.

    1992-04-01

    The calculations of the 3 2 S and 3 2 P spin asymmetries and the angular momentum for singlet and triplet scattering for projectile energies of 10 and 20 eV is presented. Together these observables give a most stringent test of any electron-atom scattering theory. An excellent agreement was found between the results of the coupled-channel optical method and experiment, which for the spin asymmetries can only be obtained by a good description of the couplings between the lower-lying target states and the target continuum. 10 refs., 2 figs

  8. Spin physics in semiconductors

    CERN Document Server

    2017-01-01

    This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.

  9. A heavy ion spectrometer system for the measurement of projectile fragmentation of relativistic heavy ions

    International Nuclear Information System (INIS)

    Engelage, J.; Crawford, H.J.; Greiner, L.; Kuo, C.

    1996-06-01

    The Heavy Ion Spectrometer System (HISS) at the LBL Bevalac provided a unique facility for measuring projectile fragmentation cross sections important in deconvolving the Galactic Cosmic Ray (GCR) source composition. The general characteristics of the apparatus specific to this application are described and the main features of the event reconstruction and analysis used in the TRANSPORT experiment are discussed

  10. Influence of the embedded structure on the efp formation of compact terminal sensitive projectile

    NARCIS (Netherlands)

    Boyang, Xing; Rongzhong, Liu; Rui, Guo; Liang, Chen; Hao, Zhou; Yongliang, Yang; Lei, Liu

    2017-01-01

    To improve the damage efficiency of compact terminal sensitive projectile with EFP warhead, it is vital to understand how the embedded structure (ES) affects the EFP forming performance. In this paper, the corresponding numerical investigation is focused on, in which the fluid-structure interaction

  11. Influence of the embedded structure on the EFP formation of compact terminal sensitive projectile

    NARCIS (Netherlands)

    Xing, Bo yang; Liu, Rong zhong; Guo, Rui; Chen, Liang; Zhou, Hao; Yang, Yong liang; Liu, Lei

    2017-01-01

    To improve the damage efficiency of compact terminal sensitive projectile with EFP warhead, it is vital to understand how the embedded structure (ES) affects the EFP forming performance. In this paper, the corresponding numerical investigation is focused on, in which the fluid-structure interaction

  12. Experimental characterisation of sprays resulting from impacts of liquid-containing projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Hostikka, Simo, E-mail: simo.hostikka@aalto.fi [Aalto University, Espoo (Finland); Silde, Ari; Sikanen, Topi; Vepsä, Ari; Paajanen, Antti [VTT Technical Research Centre of Finland Ltd, Espoo (Finland); Honkanen, Markus [Pixact Oy, Tampere (Finland)

    2015-12-15

    Highlights: • Detailed characterisation of sprays resulting from the impacts of water-filled metal projectiles on a hard wall. • Experimental measurements of spray speed, direction and droplet size. • Detailed analysis of overall spray evolution. • The spray characterisation information can be used in CFD analyses of aircraft impact fires. - Abstract: Modelling and analysing fires following aircraft impacts requires information about the behaviour of liquid fuel. In this study, we investigated sprays resulting from the impacts of water-filled metal projectiles on a hard wall. The weights of the projectiles were in the range of 38–110 kg, with 8.6–68 kg water, and the impact speeds varied between 96 and 169 m/s. The overall spray behaviour was observed with high-speed video cameras. Ultra-high-speed cameras were used in backlight configuration for measuring the droplet size and velocity distributions. The results indicate that the liquid leaves the impact position as a thin sheet of spray in a direction perpendicular to the projectile velocity. The initial spray speeds were 1.5–2.5 times the impact speed, and the Sauter mean diameters were in the 147–344 μm range. This data can be used as boundary conditions in CFD fire analyses, considering the two-phase fuel flow. The overall spray observations, including the spray deceleration rate, can be used for validating the model.

  13. Modeling Fragment Simulating Projectile Penetration into Steel Plates Using Finite Elements and Meshfree Particles

    Directory of Open Access Journals (Sweden)

    James O’Daniel

    2011-01-01

    Full Text Available Simulating fragment penetration into steel involves complicated modeling of severe behavior of the materials through multiple phases of response. Penetration of a fragment-like projectile was simulated using finite element (FE and meshfree particle formulations. Extreme deformation and failure of the material during the penetration event were modeled with several approaches to evaluate each as to how well it represents the actual physics of the material and structural response. A steel Fragment Simulating Projectile (FSP – designed to simulate a fragment of metal from a weapon casing – was simulated for normal impact into a flat square plate. A range of impact velocities was used to examine levels of exit velocity ranging from relatively small to one on the same level as the impact velocity. The numerical code EPIC, used for all the simulations presented herein, contains the element and particle formulations, as well as the explicit methodology and constitutive models needed to perform these simulations. These simulations were compared against experimental data, evaluating the damage caused to the projectile and the target plates, as well as comparing the residual velocity when the projectile perforated the target.

  14. Influences of the embedded structure on the efp formation of compact terminal sensitive projectile

    NARCIS (Netherlands)

    Boyang, Xing; Rongzhong, Liu; Rui, Guo; Liang, Chen; Hao, Zhou; Yongliang, Yang; Lei, Liu

    2017-01-01

    To improve the damage efficiency of the compact terminal sensitive projectile with EFP warhead, it is vital to understand how the embedded structure (ES) affects the EFP forming performance. In this paper, the corresponding numerical investigation is focused on, where the fluid-structure interaction

  15. Towards an unambiguous determination of the excitation energy of the projectile in heavy-ion reactions?

    Energy Technology Data Exchange (ETDEWEB)

    Buta, A.M.; Steckmeyer, J.C. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Auger, G. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)] [and others

    2002-03-01

    The excitation energy of the quasi-projectiles produced in heavy-ion collisions is determined for the {sup 58}Ni+{sup 197}Au reactions at 52 and 90 AMeV. A new method is proposed for isolating unambiguously the particles evaporated by the source. It consists in observing them at small angles along the flight direction of the source. (authors)

  16. Enhanced RAMAC performance in subdetonative propulsion mode with semi-combustible projectile

    Energy Technology Data Exchange (ETDEWEB)

    Legendre, J.F.; Giraud, M. [French-German Res. Inst., Saint-Louis (France)

    2000-11-01

    Investigations are carried out at ISL to determine the experimental conditions required to accelerate a projectile in the mass range from 1.5 to 2 kg up to a muzzle velocity of 3 km/s while keeping the maximum acceleration below 40,000 g. Therefore, two smooth-bore ram-accelerators denoted RAMAC 30-II and RAMAC 90, in caliber 30 and 90 mm respectively, are being operated in the thermally choked propulsion mode. Different material configurations for the projectile afterbody have been investigated, while keeping an aluminum nose cone. Besides afterbodies made of aluminum or magnesium alloy only, a third configuration is presented relying on a short magnesium part fitted to the base of an aluminum afterbody. This configuration denoted as ''semi-combustible'' is designed so that magnesium particles are steadily injected and burnt-out within the combustion zone at the base, therefore providing an additional heat release and consequently a significantly greater forward thrust. Experimental results achieved in both 30 and 90 mm along a 300-caliber-long ram-section and using up to three different gaseous mixtures are presented. To date, for a given semi-combustible projectile and an injection velocity into the ram-section of 1380 m/s, a maximum muzzle velocity of 2380 m/s has been achieved in RAMAC 30-II and 2180 m/s in RAMAC 90, the initial projectile mass being 69 g and 1608 g respectively. (orig.)

  17. The Effect of Cooperative Learning on Grade 12 Learners' Performance in Projectile Motions, South Africa

    Science.gov (United States)

    Kibirige, Israel; Lehong, Moyahabo Jeridah

    2016-01-01

    The study explored the effect of cooperative learning on Grade 12 learners' performance in projectile motions. A quasi-experimental research design with non-equivalent control group was used. Two schools were purposively selected from Maleboho Central circuit in South Africa based on their performance in Physical Sciences Grade 12 results of 2011.…

  18. Comment on "The motion of an arbitrarily rotating spherical projectile and its application to ball games"

    DEFF Research Database (Denmark)

    Jensen, Jens Højgaard

    2014-01-01

    In a recent paper (Robinson G and Robinson I 2013 Phys. Scr. 88 018101) the authors developed the differential equations which govern the motion of a spherical projectile rotating about an arbitrary axis in the presence of an arbitrary wind, assuming that both the drag force and the lift force...

  19. The scaling and dynamics of a projectile obliquely impacting a granular medium.

    Science.gov (United States)

    Wang, Dengming; Ye, Xiaoyan; Zheng, Xiaojing

    2012-01-01

    In this paper, the dynamics of a spherical projectile obliquely impacting into a two-dimensional granular bed is numerically investigated using the discrete element method. The influences of projectile's initial velocities and impacting angles are mainly considered. Numerical results show that the relationship between the final penetration depth and the initial impact velocity is very similar to that in the vertical-impact case. However, the dependence of the stopping time on the impact velocity of the projectile exhibits critical characteristics at different impact angles: the stopping time approximately increases linearly with the impact velocity for small impact angles but decreases in an exponential form for larger impact angles, which demonstrates the existence of two different regimes at low and high impact angles. When the impact angle is regarded as a parametric variable, a phenomenological force model at large impact angles is eventually proposed based on the simulation results, which can accurately describe the nature of the resistance force exerted on the projectile by the granular medium at different impact angels during the whole oblique-impact process. The degenerate model agrees well with the existing experimental results in the vertical-impact cases.

  20. Computational Fluid Dynamics (CFD) Simulations of a Finned Projectile with Microflaps for Flow Control

    Science.gov (United States)

    2016-04-01

    multigrid approach as the means to efficiently solve the linear algebra problem that results in applying an implicit scheme to both steady-state and...projectile, CFD applications , microflaps, optimized control force 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18...counterparts, and successive relaxation allows update of cells as information becomes available and thus aids convergence. CFD++ uses an algebraic

  1. Tissue simulant response at projectile impact on flexible fabric armour systems

    NARCIS (Netherlands)

    Bree, J.L.M.J. van; Volker, A.; Heiden, N. van der

    2006-01-01

    Behind Armour Blunt Trauma is a phenomenon which has been studied extensively for rigid personal protective armour systems. These systems used in e.g. bullet proof vests manage to defeat high velocity small arms projectiles. Tissue simulants are used to study behind armour effects. At high velocity

  2. High precision mass measurements of thermalized relativistic uranium projectile and fission fragments with a multiple-reflection time-of-flight mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ayet San Andres, Samuel [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Justus Liebig Universitaet, Giessen (Germany); Collaboration: FRS Ion Catcher-Collaboration

    2016-07-01

    At the FRS Ion Catcher at GSI, a relativistic beam of {sup 238}U at 1GeV/u was used to produce fission and projectile fragments on a beryllium target. The ions were separated in-flight at the FRS, thermalized in a cryogenic stopping cell and transferred to a multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) where high precision mass measurements were performed. The masses of several fission and projectile fragments were measured (including short-lived nuclei with half-lives down to 18 ms) and the possibility of tailoring an isomerically clean beam for other experiments was demonstrated. With the demonstrated performance of the MR-TOF-MS and the expected production rates of exotic nuclei far from stability at the next-generation facilities such as FAIR, novel mass measurements of nuclei close to the neutron drip line will be possible and key information for understanding the r-process will be available. The results from the last experiment and an outlook of possible future mass measurements close to the neutron drip line at FAIR with the MR-TOF-MS are presented.

  3. Inverse spin Hall effect by spin injection

    Science.gov (United States)

    Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.

    2007-09-01

    Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.

  4. Flexible semi-transparent organic spin valve based on bathocuproine

    International Nuclear Information System (INIS)

    Sun, Xiangnan; Bedoya-Pinto, Amilcar; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E.

    2014-01-01

    Organic semiconductors are attractive materials for advanced spintronic applications due to their long spin lifetimes and, simultaneously, their mechanical flexibility. With the aim of combining these advantages in a single device, we report on the fabrication and properties of a mechanically flexible bathocuproine-based spin valve. This organic spin device shows great stability on both electrical and magneto-transport properties upon mechanical bending at different radius (up to r = 5 mm), while featuring long-lasting endurance (on bending over 50 times). The room-temperature magnetoresistance ratio reaches up to 3.5%, and is notably preserved under air atmosphere. The observation of spin transport at room-temperature, combined with the outstanding mechanical properties and air stability, highlights the potential of bathocuproine-based spin devices towards applications.

  5. Pilot experiments with relativistic uranium projectile and fission fragments thermalized in a cryogenic gas-filled stopping cell

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Moritz Pascal

    2015-07-01

    High precision experiments and decay spectroscopy of exotic nuclei are of great interest for nuclear structure and nuclear astro-physics. They allow for studies of the nuclear structure far from stability, test of fundamental interactions and symmetries and give important input for the understanding of the nuclear synthesis in the universe. In the context of this work a second generation stopping cell for the low energy branch of the Super-FRS was commissioned at the FRS at GSI and significant improvements were made to the device. The prototype stopping cell is designed as a cryogenic stopping cell (CSC), featuring enhanced cleanliness and high area density. The CSC was brought into full operation and its performance characteristics were investigated including the maximal area density, extraction times, cleanliness and extraction efficiencies. In three commissioning experiments at the current GSI FRS facility in 2011, 2012 and 2014 up to 22 isotopes from 14 elements produced by in-flight projectile fragmentation and fission of {sup 238}U could be thermalized and extracted with high efficiency. For the first time projectile and fission fragmentation produced at 1000 MeV/u could be thermalized in a stopping cell and provided as a low-energy beam of high brilliance for high precision experiments. The technical improvements of the CSC, such as an improved RF carpet, new cryocooler-based cooling system, a monitoring system of the cleanliness and the high density operation, made it possible to thermalize heavy {sup 238}U projectile fragments with total efficiencies of about 20% in the 2014 experiment. In addition the improvements lead to an increase in the stability and reliability of the CSC and the performance of the CSC during online experiments at the FRS Ion Catcher showed that the utilized techniques are ready for the final CSC for the low-energy branch of the Super-FRS at FAIR. The CSC was operated with an area density of up to 6.3 mg/cm{sup 2} helium during

  6. Pilot experiments with relativistic uranium projectile and fission fragments thermalized in a cryogenic gas-filled stopping cell

    International Nuclear Information System (INIS)

    Reiter, Moritz Pascal

    2015-01-01

    High precision experiments and decay spectroscopy of exotic nuclei are of great interest for nuclear structure and nuclear astro-physics. They allow for studies of the nuclear structure far from stability, test of fundamental interactions and symmetries and give important input for the understanding of the nuclear synthesis in the universe. In the context of this work a second generation stopping cell for the low energy branch of the Super-FRS was commissioned at the FRS at GSI and significant improvements were made to the device. The prototype stopping cell is designed as a cryogenic stopping cell (CSC), featuring enhanced cleanliness and high area density. The CSC was brought into full operation and its performance characteristics were investigated including the maximal area density, extraction times, cleanliness and extraction efficiencies. In three commissioning experiments at the current GSI FRS facility in 2011, 2012 and 2014 up to 22 isotopes from 14 elements produced by in-flight projectile fragmentation and fission of "2"3"8U could be thermalized and extracted with high efficiency. For the first time projectile and fission fragmentation produced at 1000 MeV/u could be thermalized in a stopping cell and provided as a low-energy beam of high brilliance for high precision experiments. The technical improvements of the CSC, such as an improved RF carpet, new cryocooler-based cooling system, a monitoring system of the cleanliness and the high density operation, made it possible to thermalize heavy "2"3"8U projectile fragments with total efficiencies of about 20% in the 2014 experiment. In addition the improvements lead to an increase in the stability and reliability of the CSC and the performance of the CSC during online experiments at the FRS Ion Catcher showed that the utilized techniques are ready for the final CSC for the low-energy branch of the Super-FRS at FAIR. The CSC was operated with an area density of up to 6.3 mg/cm"2 helium during online

  7. Bulk electron spin polarization generated by the spin Hall current

    OpenAIRE

    Korenev, V. L.

    2005-01-01

    It is shown that the spin Hall current generates a non-equilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known equilibrium polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  8. Bulk electron spin polarization generated by the spin Hall current

    Science.gov (United States)

    Korenev, V. L.

    2006-07-01

    It is shown that the spin Hall current generates a nonequilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known “equilibrium” polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  9. The effect of spin in swing bowling in cricket: model trajectories for spin alone

    Science.gov (United States)

    Robinson, Garry; Robinson, Ian

    2015-02-01

    In ‘swing’ bowling, as employed by fast and fast-medium bowlers in cricket, back-spin along the line of the seam is normally applied in order to keep the seam vertical and to provide stability against ‘wobble’ of the seam. Whilst spin is normally thought of as primarily being the slow bowler's domain, the spin applied by the swing bowler has the side-effect of generating a lift or Magnus force. This force, depending on the orientation of the seam and hence that of the back-spin, can have a side-ways component as well as the expected vertical ‘lift’ component. The effect of the spin itself, in influencing the trajectory of the fast bowler's delivery, is normally not considered, presumably being thought of as negligible. The purpose of this paper is to investigate, using calculated model trajectories, the amount of side-ways movement due to the spin and to see how this predicted movement compares with the total observed side-ways movement. The size of the vertical lift component is also estimated. It is found that, although the spin is an essential part of the successful swing bowler's delivery, the amount of side-ways movement due to the spin itself amounts to a few centimetres or so, and is therefore small, but perhaps not negligible, compared to the total amount of side-ways movement observed. The spin does, however, provide a considerable amount of lift compared to the equivalent delivery bowled without spin, altering the point of pitching by up to 3 m, a very large amount indeed. Thus, for example, bowling a ball with the seam pointing directly down the pitch and not designed to swing side-ways at all, but with the amount of back-spin varied, could provide a very powerful additional weapon in the fast bowler's arsenal. So-called ‘sling bowlers’, who use a very low arm action, can take advantage of spin since effectively they can apply side-spin to the ball, giving rise to a large side-ways movement, ˜ 20{}^\\circ cm or more, which certainly is

  10. Spin-1 Dirac-Weyl fermions protected by bipartite symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zeren [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); School of Physics, Peking University, Beijing 100871 (China); Liu, Zhirong, E-mail: LiuZhiRong@pku.edu.cn [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing 100871 (China)

    2015-12-07

    We propose that bipartite symmetry allows spin-1 Dirac-Weyl points, a generalization of the spin-1/2 Dirac points in graphene, to appear as topologically protected at the Fermi level. In this spirit, we provide methodology to construct spin-1 Dirac-Weyl points of this kind in a given 2D space group and get the classification of the known spin-1 systems in the literature. We also apply the workflow to predict two new systems, P3m1-9 and P31m-15, to possess spin-1 at K/K′ in the Brillouin zone of hexagonal lattice. Their stability under various strains is investigated and compared with that of T{sub 3}, an extensively studied model of ultracold atoms trapped in optical lattice with spin-1 also at K/K′.

  11. Muon spin relaxation in random spin systems

    International Nuclear Information System (INIS)

    Toshimitsu Yamazaki

    1981-01-01

    The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)

  12. The dose, temperature, and projectile-mass dependence for irradiation-induced amorphization of CuTi

    International Nuclear Information System (INIS)

    Koike, J.; Okamoto, P.R.; Rehn, L.E.; Meshii, M.

    1989-01-01

    CuTi was irradiated with 1-MeV Ne + , Kr + , and Xe + in the temperature range from 150 to 563 K. The volume fraction of the amorphous phase produced during room temperature irradiation with Ne + and Kr + ions was determined as a function of ion dose from measurements of the integrated intensity of the diffuse ring in electron diffraction patterns. The results, analyzed by Gibbons' model, indicate that direct amorphization occurs along a single ion track with Kr + , but the overlapping of three ion tracks is necessary for amorphization with Ne + . The critical temperature for amorphization increases with increasing projectile mass from electron to Ne + to Kr + . However, the critical temperatures for Kr + and Xe + irradiations were found to be identical, and very close to the thermal crystallization temperature of an amorphous zone embedded in the crystalline matrix. Using the present observations, relationships between the amorphization kinetics and the displacement density along the ion track, and between the critical temperature and the stability of the irradiation-induced damage, are discussed

  13. High spin studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1992-01-01

    The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and complete spectroscopy (i.e. the overlap of state of the art low-and high-spin studies in the same nucleus)

  14. High spin studies with radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, J D [Oak Ridge National Lab., TN (United States)

    1992-08-01

    The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and, complete spectroscopy (i.e. the overlap of state of the art low- and high-spin studies in the same nucleus). (author). 47 refs., 8 figs.

  15. Spin Hall effects

    Science.gov (United States)

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical

  16. The susceptibilities in the spin-S Ising model

    International Nuclear Information System (INIS)

    Ainane, A.; Saber, M.

    1995-08-01

    The susceptibilities of the spin-S Ising model are evaluated using the effective field theory introduced by Tucker et al. for studying general spin-S Ising model. The susceptibilities are studied for all spin values from S = 1/2 to S = 5/2. (author). 12 refs, 4 figs

  17. High speed photography of the plasma flow and the projectiles in the T.U.M. hypervelocity accelerator

    International Nuclear Information System (INIS)

    Igenbergs, E.; Kuczera, H.; Schroeder, B.

    1979-01-01

    The hypervelocity accelerator at the Technische Universitaet Muenchen, FRG, accelerates small projectiles (0.1 to 1.0 mm diameter) to velocities around 20 km/s. The photographic equipment consists of two Cordin single-frame image converter cameras and one TRW image converter camera with streak units and multiple-frame units. They are used for plasma flow diagnostics and the measurement of the position and the velocity of the projectiles. The single-frame cameras are triggered with a Laser light bar and the photographic measurement of the projectile velocity will be compared with Doppler-Radar. (author)

  18. Study of atomic excitations in sputtering with the use of N, O, F, Ne, Na, Cl, and Ar projectiles

    International Nuclear Information System (INIS)

    Jensen, H.K.; Veje, E.

    1985-01-01

    Solid magnesium has been bombarded with 80 keV ions of N, O, F, Ne, Na, Cl, and Ar, and excitation of sputtered magnesium atoms and ions has been studied. Relative level excitation probabilities depend strongly on the projectile, the dependences for Mg I levels being different from those for Mg II levels. With all projectiles, the resonance level in Mg II is excited stronger than the resonance level in Mg I. Very little radiation is observed from the projectiles except for sodium. The results are discussed. (orig.)

  19. Effects of dust-charge fluctuations on the potential of an array of projectiles in a partially ionized dusty plasma

    International Nuclear Information System (INIS)

    Ali, S.; Nasim, M.H.; Murtaza, G.

    2003-01-01

    The expressions for the Debye and the wake potential are derived by incorporating dust-charge fluctuations of a single projectile, as well as of an array of dust grain projectiles, propagating through a partially ionized dusty plasma with a constant velocity. Numerically, the effects of the dust-charge fluctuations and the dust-neutral collisions on the electrostatic potential for a single, three, six and ten projectiles are examined. The dust-charge relaxation rate modifies the shape of the Debye as well as the wake potential. For smaller values of the relaxation rates a potential well is formed instead of Debye potential

  20. Molecular projectile effects for kinetic electron emission from carbon- and metal-surfaces bombarded by slow hydrogen ions

    Science.gov (United States)

    Cernusca, S.; Winter, HP.; Aumayr, F.; Díez Muiño, R.; Juaristi, J. I.

    2003-04-01

    Total yields for kinetic electron emission (KE) have been determined for impact of hydrogen monomer-, dimer- and trimer-ions (impact energy armour in magnetic fusion devices. The data are compared with KE yields for impact of same projectile ions on atomically clean highly oriented pyrolytic graphite and polycrystalline gold. We discuss KE yields for the different targets if bombarded by equally fast molecular and atomic ions in view to "projectile molecular effects" (different yields per proton for equally fast atomic and molecular ions), which are expected from calculated electronic projectile energy losses in these target materials.

  1. Neutron spin quantum precession using multilayer spin splitters and a phase-spin echo interferometer

    International Nuclear Information System (INIS)

    Ebisawa, Toru; Tasaki, Seiji; Kawai, Takeshi; Hino, Masahiro; Akiyoshi, Tsunekazu; Achiwa, Norio; Otake, Yoshie; Funahashi, Haruhiko.

    1996-01-01

    Neutron spin quantum precession by multilayer spin splitter has been demonstrated using a new spin interferometer. The multilayer spin splitter consists of a magnetic multilayer mirror on top, followed by a gap layer and a non magnetic multilayer mirror which are evaporated on a silicon substrate. Using the multilayer spin splitter, a polarized neutron wave in a magnetic field perpendicular to the polarization is split into two spin eigenstates with a phase shift in the direction of the magnetic field. The spin quantum precession is equal to the phase shift, which depends on the effective thickness of the gap layer. The demonstration experiments verify the multilayer spin splitter as a neutron spin precession device as well as the coherent superposition principle of the two spin eigenstates. We have developed a new phase-spin echo interferometer using the multilayer spin splitters. We present successful performance tests of the multilayer spin splitter and the phase-spin echo interferometer. (author)

  2. Firing Control Optimization of Impulse Thrusters for Trajectory Correction Projectiles

    Directory of Open Access Journals (Sweden)

    Min Gao

    2015-01-01

    Full Text Available This paper presents an optimum control scheme of firing time and firing phase angle by taking impact point deviation as optimum objective function which takes account of the difference of longitudinal and horizontal correction efficiency, firing delay, roll rate, flight stability, and so forth. Simulations indicate that this control scheme can assure lateral impulse thrusters are activated at time and phase angle when the correction efficiency is higher. Further simulations show that the impact point dispersion is mainly influenced by the total impulse deployed, and the impulse, number, and firing interval need to be optimized to reduce the impact point dispersion of rockets. Live firing experiments with two trajectory correction rockets indicate that the firing control scheme works effectively.

  3. Higher spin gauge theories

    CERN Document Server

    Henneaux, Marc; Vasiliev, Mikhail A

    2017-01-01

    Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...

  4. Energy-dependent expansion of .177 caliber hollow-point air gun projectiles.

    Science.gov (United States)

    Werner, Ronald; Schultz, Benno; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2017-05-01

    Amongst hundreds of different projectiles for air guns available on the market, hollow-point air gun pellets are of special interest. These pellets are characterized by a tip or a hollowed-out shape in their tip which, when fired, makes the projectiles expand to an increased diameter upon entering the target medium. This results in an increase in release of energy which, in turn, has the potential to cause more serious injuries than non-hollow-point projectiles. To the best of the authors' knowledge, reliable data on the terminal ballistic features of hollow-point air gun projectiles compared to standard diabolo pellets have not yet been published in the forensic literature. The terminal ballistic performance (energy-dependent expansion and penetration) of four different types of .177 caliber hollow-point pellets discharged at kinetic energy levels from approximately 3 J up to 30 J into water, ordnance gelatin, and ordnance gelatin covered with natural chamois as a skin simulant was the subject of this investigation. Energy-dependent expansion of the tested hollow-point pellets was observed after being shot into all investigated target media. While some hollow-point pellets require a minimum kinetic energy of approximately 10 J for sufficient expansion, there are also hollow-point pellets which expand at kinetic energy levels of less than 5 J. The ratio of expansion (RE, calculated by the cross-sectional area (A) after impact divided by the cross-sectional area (A 0 ) of the undeformed pellet) of hollow-point air gun pellets reached values up of to 2.2. The extent of expansion relates to the kinetic energy of the projectile with a peak for pellet expansion at the 15 to 20 J range. To conclude, this work demonstrates that the hollow-point principle, i.e., the design-related enlargement of the projectiles' frontal area upon impact into a medium, does work in air guns as claimed by the manufacturers.

  5. A controllable spin prism

    International Nuclear Information System (INIS)

    Hakioglu, T

    2009-01-01

    Based on Khodas et al (2004 Phys. Rev. Lett. 92 086602), we propose a device acting like a controllable prism for an incident spin. The device is a large quantum well where Rashba and Dresselhaus spin-orbit interactions are present and controlled by the plunger gate potential, the electric field and the barrier height. A totally destructive interference can be manipulated externally between the Rashba and Dresselhaus couplings. The spin-dependent transmission/reflection amplitudes are calculated as the control parameters are changed. The device operates as a spin prism/converter/filter in different regimes and may stimulate research in promising directions in spintronics in analogy with linear optics.

  6. Operator spin foam models

    International Nuclear Information System (INIS)

    Bahr, Benjamin; Hellmann, Frank; Kaminski, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy

    2011-01-01

    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as our main tool. A set of moves we define in the set of the operator spin foams (among other operations) allows us to split the faces and the edges of the foams. We assign to each operator spin foam a contracted operator, by using the contractions at the vertices and suitably adjusted face amplitudes. The emergence of the face amplitudes is the consequence of assuming the invariance of the contracted operator with respect to the moves. Next, we define spin foam models and consider the class of models assumed to be symmetric with respect to the moves we have introduced, and assuming their partition functions (state sums) are defined by the contracted operators. Briefly speaking, those operator spin foam models are invariant with respect to the cellular decomposition, and are sensitive only to the topology and colouring of the foam. Imposing an extra symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with assumed invariance with respect to the edge splitting move, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on a spin(4) BF spin foam model is exactly the way we tend to view 4D quantum gravity, starting with the BC model and continuing with the Engle-Pereira-Rovelli-Livine (EPRL) or Freidel-Krasnov (FK) models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. Among our natural spin foam models there are the BF spin foam model, the BC model, and a model corresponding to the EPRL intertwiners. Our operator spin foam framework can also be used for more general spin

  7. PREFACE: Spin Electronics

    Science.gov (United States)

    Dieny, B.; Sousa, R.; Prejbeanu, L.

    2007-04-01

    Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic

  8. Topologically Massive Higher Spin Gravity

    NARCIS (Netherlands)

    Bagchi, A.; Lal, S.; Saha, A.; Sahoo, B.

    2011-01-01

    We look at the generalisation of topologically massive gravity (TMG) to higher spins, specifically spin-3. We find a special "chiral" point for the spin-three, analogous to the spin-two example, which actually coincides with the usual spin-two chiral point. But in contrast to usual TMG, there is the

  9. Mechanism of ({sup 14}N, {sup 12}B) reactions at intermediate energy leading to large spin-polarization of {sup 12}B

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuoka, Shin-ichi [Osaka Univ., Ibaraki (Japan). Research Center for Nuclear Physics; Shimoda, Tadashi; Miyatake, Hiroari [and others

    1996-05-01

    To study mechanisms of the ({sup 14}N, {sup 12}B) reactions at intermediate energies, double differential cross section and nuclear spin-polarization of the {sup 12}B projectile-like fragments have been measured as a function of longitudinal momentum in the angular range of 0deg - 9deg. Large spin-polarization of the reaction products {sup 12}B has been observed in the {sup 9}Be({sup 14}N, {sup 12}B) reaction at 39.3 MeV/u. The momentum distributions at forward angles exhibit characteristic features which can not be understood by the current projectile fragmentation picture. It is shown that by assuming the existence of direct two-proton transfer process in addition to the fragmentation process, both the cross section and polarization of {sup 12}B fragments are successfully explained. The target and incident energy dependence of the momentum distribution are also explained reasonably. (author)

  10. Spin-orbit and spin-lattice coupling

    International Nuclear Information System (INIS)

    Bauer, Gerrit E.W.; Ziman, Timothy; Mori, Michiyasu

    2014-01-01

    We pursued theoretical research on the coupling of electron spins in the condensed matter to the lattice as mediated by the spin-orbit interaction with special focus on the spin and anomalous Hall effects. (author)

  11. Demonstration of a robust magnonic spin wave interferometer.

    Science.gov (United States)

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B; Ross, Caroline A; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru

    2016-07-22

    Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe.

  12. Spin Current Noise of the Spin Seebeck Effect and Spin Pumping

    Science.gov (United States)

    Matsuo, M.; Ohnuma, Y.; Kato, T.; Maekawa, S.

    2018-01-01

    We theoretically investigate the fluctuation of a pure spin current induced by the spin Seebeck effect and spin pumping in a normal-metal-(NM-)ferromagnet(FM) bilayer system. Starting with a simple ferromagnet-insulator-(FI-)NM interface model with both spin-conserving and non-spin-conserving processes, we derive general expressions of the spin current and the spin-current noise at the interface within second-order perturbation of the FI-NM coupling strength, and estimate them for a yttrium-iron-garnet-platinum interface. We show that the spin-current noise can be used to determine the effective spin carried by a magnon modified by the non-spin-conserving process at the interface. In addition, we show that it provides information on the effective spin of a magnon, heating at the interface under spin pumping, and spin Hall angle of the NM.

  13. Fragmentation cross section measurements of iron projectiles using CR-39 plastic nuclear track detectors

    CERN Document Server

    Flesch, F; Huentrup, G; Roecher, H; Streibel, T; Winkel, E; Heinrich, W

    1999-01-01

    For long term space missions in which larger radiation doses are accumulated it is necessary to improve the precision of models predicting the space radiation environment. Different models are available to determine the flux of cosmic ray heavy ions behind shielding material. The accuracy of these predictions depends on the knowledge of the fragmentation cross sections, especially at energies of several hundred MeV/nucleon, where the particle flux is at a maximum and especially for those particles with high LET, i.e. iron nuclei. We have measured fragmentation cross sections of sup 5 sup 6 Fe projectiles at beam energies of 700 and 1700 A MeV using experimental set-ups with plastic nuclear track detectors. In this paper we describe the experimental technique to study the fragmentation reactions of sup 5 sup 6 Fe projectiles using CR-39 plastic nuclear track detectors. Results for different targets are presented.

  14. Projectile electron loss in collisions of light charged ions with helium

    International Nuclear Information System (INIS)

    Yin Yong-Zhi; Chen Xi-Meng; Wang Yun

    2014-01-01

    We investigate the single-electron loss processes of light charged ions (Li 1+,2+ , C 2+,3+,5+ , and O 2+,3+ ) in collisions with helium. To better understand the experimental results, we propose a theoretical model to calculate the cross section of projectile electron loss. In this model, an ionization radius of the incident ion was defined under the classical over-barrier model, and we developed ''strings'' to explain the processes of projectile electron loss, which is similar with the molecular over-barrier model. Theoretical calculations are in good agreement with the experimental results for the cross section of single-electron loss and the ratio of double-to-single ionization of helium associated with one-electron loss. (atomic and molecular physics)

  15. Dependence of ion-electron emission from clean metals on the incidence angle of the projectile

    International Nuclear Information System (INIS)

    Ferron, J.; Alonso, E.V.; Baragiola, R.A.; Oliva-Florio, A.

    1981-01-01

    We have studied the dependence of electron yields γ from clean Cu and Au surfaces on the incidence angle theta of 5--50-keV He + , Ar + , and Xe + projectiles, in the angular range 0--80 0 , and under ultrahigh-vacuum conditions. We have found that, at small angles, γproportionalsec/sup f/theta, with f generally different from unity. For Xe + on Cu, γ(theta) presents an energy-dependence maximum, similar to that obtained for sputtering. The results are explained in terms of the anisotropy of the electron cascade in the solid, the depth distribution of the inelastic energy deposited by the projectile and by rapidly recoiling target atoms in the near-surface region of the solid

  16. Dependence of ion-electron emission from clean metals on the incidence angle of the projectile

    Energy Technology Data Exchange (ETDEWEB)

    Ferron, J.; Alonso, E.V.; Baragiola, R.A.; Oliva-Florio, A.

    1981-10-15

    We have studied the dependence of electron yields ..gamma.. from clean Cu and Au surfaces on the incidence angle theta of 5--50-keV He/sup +/, Ar/sup +/, and Xe/sup +/ projectiles, in the angular range 0--80 /sup 0/, and under ultrahigh-vacuum conditions. We have found that, at small angles, ..gamma..proportionalsec/sup f/theta, with f generally different from unity. For Xe/sup +/ on Cu, ..gamma..(theta) presents an energy-dependence maximum, similar to that obtained for sputtering. The results are explained in terms of the anisotropy of the electron cascade in the solid, the depth distribution of the inelastic energy deposited by the projectile and by rapidly recoiling target atoms in the near-surface region of the solid.

  17. Influence of the power supply parameters on the projectile energy in the permanent magnet electrodynamic accelerator

    Science.gov (United States)

    Waindok, Andrzej; Piekielny, Paweł

    2017-10-01

    The main objective of the research is to investigate, how the power supply parameters influence the kinetic energy of the movable element, called commonly a projectile or bullet. A calculation and measurement results of transient characteristics for an electrodynamic accelerator with permanent magnet support were presented in the paper. The calculations were made with using field-circuit model, which includes the parameters of the power supply, mass of the bullet and friction phenomenon. Characteristics of energy and muzzle velocity verso supply voltage (50 V to 350 V) and capacitance value (60 mF to 340.5 mF) were determined, as well. A measurement verification of selected points of calculation characteristics were carried out for investigated values of muzzle velocity. A good conformity between calculation and measurement results was obtained. Concluding, presented characteristics of the muzzle velocity and energy of the projectile vs. power supply parameters indicate, that accelerators could be used for fatigue testing of materials.

  18. Detailed determination of the fusion nuclear radius in reactions involving weakly bound projectiles

    International Nuclear Information System (INIS)

    Gomez Camacho, A.; Aguilera, E. F.; Quiroz, E. M.

    2007-01-01

    A detailed determination of the fusion radius parameter is performed within the Distorted Wave Born Approximation for reactions involving weakly bound projectiles. Specifically, a simultaneous X 2- analysis of elastic and fusion cross section data is done using a Woods-Saxon potential with volume and surface parts. The volume part is assumed to be responsible for fusion reactions while the surface part for all other direct reactions. It is proved that in order to fit fusion data, particularly for energies below the Coulomb barrier where fusion is enhanced, it is necessary to have a value of around 1.4 fm for the fusion radial parameter of the fusion potential (W F ). This value is much higher than that frequently used in Barrier Penetration models (1.0 fm). The calculations are performed for reactions involving the weakly bound projectile 9 Be with several medium mass targets. (Author)

  19. Angry Birds realized: water balloon launcher for teaching projectile motion with drag

    International Nuclear Information System (INIS)

    Edwards, Boyd F; Sam, David D; Christiansen, Michael A; Booth, William A; Jessup, Leslie O

    2014-01-01

    A simple, collapsible design for a large water balloon slingshot launcher features a fully adjustable initial velocity vector and a balanced launch platform. The design facilitates quantitative explorations of the dependence of the balloon range and time of flight on the initial speed, launch angle, and projectile mass, in an environment where quadratic air drag is important. Presented are theory and experiments that characterize this drag, and theory and experiments that characterize the nonlinear elastic energy and hysteresis of the latex tubing used in the slingshot. The experiments can be carried out with inexpensive and readily available tools and materials. The launcher provides an engaging way to teach projectile motion and elastic energy to students of a wide variety of ages. (paper)

  20. Projectile break-up of 14N at 62,7 MeV

    International Nuclear Information System (INIS)

    Bozek, E.; Cassagnou, Y.; Dayras, R.; Legrain, R.; Pagano, A.; Rodriguez, L.; Lanzano, G.; Palmeri, A.; Pappalardo, G.

    1983-01-01

    In plane and out of plane angular correlations between light particles and heavy ions have been measured in the reaction 14 N + 12 C at 62.7 MeV bombarding energy. Special attention has been given to the break-up of 14 N into 13 C + p, 12 C + d and 10 B + α. The observed correlations are consistent with sequential break-up of the 14 N projectile. A Monte-Carlo calculation assuming isotropic emission of particles in the rest frame of the projectile from well defined states in 14 N is in good agreement with the experimental angular correlations. From a comparison between calculated and experimental boron and carbon single energy spectra, it appears that after transfer reactions, sequential break-up of 14 N is the dominant process to produce these nuclei

  1. High energy nuclear collisions in the few GeV/nucleon region: projectile and target fragmentation

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1980-06-01

    A general review of nucleon-nucleus and nucleus-nucleus collisions for incident energies <10 GeV/nucleon is presented. The division of these interactions into peripheral and central collisions is briefly discussed. Subjects treated include the following: target and projectile fragmentation systematics, production of exotic nuclear fragments, studies of multiparticle final states, total cross section measurements, results from an experiment that indicate the production of projectile fragments with an anomalously short reaction mean free path, high-energy particle production at backward angles beyond simple N-N kinematic limits, and recent results on backward particle emission in studies with the Berkeley streamer chamber. Both the particle and nuclear physics aspects that are present are considered. A brief discussion of future trends in this energy range ends the presentation. 65 references, 37 figures

  2. Electron-hydrogen collisions with dressed target and Volkov projectile states in a laser field

    International Nuclear Information System (INIS)

    Smith, P.H.G.; Flannery, M.R.

    1992-01-01

    Cross sections for the 1S-2S and 1S-2P O transitions in laser-assisted e - -H(1S) collisions are calculated in both the multi-channel eikonal treatment and the Born wave approximation, as a function of impact energy and laser field intensity. The laser considered is a monotonic, plane-polarized CO 2 laser (photon energy = 0.117 eV) with the polarization direction parallel to the initial projectile velocity. The first part of this paper confines the laser perturbation to the bound electrons of the atom. The second part extends the laser perturbation to the projectile electron, and the familiar Volkov dressed states are used. (author)

  3. Multifragmentation induced by light relativistic projectiles and heavy ions: similarities and differences

    International Nuclear Information System (INIS)

    Karnaukhov, V.A.; Avdeev, S.P.; Kuznetsov, V.D.

    1998-01-01

    The experimental data on fragment multiplicities, their energy and charge distributions, the emission times are considered for the nuclear multifragmentation process induced by relativistic light projectiles (protons, helium) and heavy ions. With light projectiles, the multifragmentation is a pure 'thermal' process, well described by the statistical models. Heavy-ion-induced multifragmentation is influenced by dynamic effects related first of all to the compression of the system in the collision. But statistical models can also be applied to rendering the partition of the system if the excitation energy is less than 10 MeV/nucleon and compression is modest. For the central collision of heavy ions the statistical approach fails to describe the data

  4. Explanation of the observed trend in the mean excitation energy of a target as determined using several projectiles

    International Nuclear Information System (INIS)

    Cabrera-Trujillo, R.; Sabin, J.R.; Oddershede, J.

    2003-01-01

    Recently, Porter observed [L.E. Porter, Int. J. Quantum Chem. 90, 684 (2002)] that the mean excitation energy and stopping cross section of a target, obtained from fitting experimental data at given projectile charge to a modified Bethe-Block theory, gives projectile dependent results. The main result of his work is that there is a trend for the inferred target mean excitation energy, to decrease as the projectile atomic number increases. However, this result is inconsistent with the usual definition of the mean excitation energy as a function of target excitation properties only. Here we present an explanation of Porter's results based on the Bethe theory extended to take projectile electronic structure explicitly into account

  5. Spin-isospin excitations induced by heavy ions at Saturne energies

    International Nuclear Information System (INIS)

    Hennino, T.

    1989-01-01

    Our program on the Spin-Isospin excitations started with the ( 3 He, 3 H) and ( 2 H, 2 He) reactions was extended with the heavy ion beams available at Saturne ( 12 C, 16 0, 20 Ne and 40 Ar) to study systematically the Δ excitation energy region. Projectile-ejectile dependences were measured. The Δ peak shift appears as a common feature in all charge exchange reactions. The first cross section calculations for the ( 12 C, 12 N) reaction are in good quantitative agreement with the data [fr

  6. Experimental Evaluation of Cold-Sprayed Copper Rotating Bands for Large-Caliber Projectiles

    Science.gov (United States)

    2015-05-01

    process parameters used during the initial deposition of copper material, given the observation that these initial copper rotating bands tended to “ flake ...ARL-TR-7299 ● MAY 2015 US Army Research Laboratory Experimental Evaluation of Cold-Sprayed Copper Rotating Bands for Large...Experimental Evaluation of Cold-Sprayed Copper Rotating Bands for Large-Caliber Projectiles by Michael A Minnicino Weapons and Materials Research

  7. Optimization of aerodynamic form of projectile for solving the problem of shooting range increasing

    Science.gov (United States)

    Lipanov, Alexey M.; Korolev, Stanislav A.; Rusyak, Ivan G.

    2017-10-01

    The article is devoted to the development of methods for solving the problem of external ballistics using a more complete system of motion equation taken into account the rotation and oscillation about the mass center and using aerodynamic coefficients of forces and moments which are calculated on the basis of modeling the hydrodynamics of flow around the projectile. Developed methods allows to study the basic ways of increasing the shooting range or artillery.

  8. Off-shell gluon production in interaction of a projectile with 2 or 3 targets

    Energy Technology Data Exchange (ETDEWEB)

    Braun, M.A.; Salykin, M.Yu. [Saint-Petersburg State University, Department of High Energy physics, Saint Petersburg (Russian Federation)

    2017-07-15

    Within the effective QCD action for the Regge kinematics, the amplitudes for virtual gluon emission are studied in collision of a projectile with two and three targets. It is demonstrated that all non-Feynman singularities cancel between induced vertices and rescattering contributions. Formulas simplify considerably in a special gauge, which is a straightforward generalization of the light-cone gauge for emission of real gluons. (orig.)

  9. Energy changes in massive target-nuclei, induced by high-energy hadronic projectiles

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.

    1997-01-01

    Now it turned out that it is real to estimate by experiments the energy changes in massive target-nuclei, induced by high-energy hadronic projectiles. The subject matter in this work is to present results of the quantitative estimations of the energy changes in intranuclear matter at various stages of hadron-nucleus collision reactions. Appropriate formulas are proposed for the energy balances - as following from the experimentally based mechanism of the hadron-nucleus collision reactions

  10. Atomic Nuclei Utter Disintegration into Nucleons by High Energy Nuclear Projectiles

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1994-01-01

    The disintegration process of atomic nuclei by high energy nuclear projectiles is described. The physical basis for this process is the passage of hadrons through layers of intranuclear matter accompanied by the nucleon emission from the target nuclei observed in experiments; kinetic energies of the nucleons are from about 20 up to about 400 MeV - in the target nucleus reference system. 22 refs., 3 tabs

  11. Aerodynamic Optimization of a Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm

    Science.gov (United States)

    2016-12-01

    of offspring populations, the Student’s t-distribution is used as the convergence method. Equations 10–12 are the mean , variance , and standard...ARL-CR-0810 ● DEC 2016 US Army Research Laboratory Aerodynamic Optimization of a Supersonic Bending Body Projectile by a Vector...not return it to the originator. ARL-CR-0810 ● DEC 2016 US Army Research Laboratory Aerodynamic Optimization of a

  12. Wound Ballistics Modeling for Blast Loading Blunt Force Impact and Projectile Penetration.

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Paul A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    Light body armor development for the warfighter is based on trial-and-error testing of prototype designs against ballistic projectiles. Torso armor testing against blast is nonexistent but necessary to protect the heart and lungs. In tests against ballistic projectiles, protective apparel is placed over ballistic clay and the projectiles are fired into the armor/clay target. The clay represents the human torso and its behind-armor, permanent deflection is the principal metric used to assess armor protection. Although this approach provides relative merit assessment of protection, it does not examine the behind-armor blunt trauma to crucial torso organs. We propose a modeling and simulation (M&S) capability for wound injury scenarios to the head, neck, and torso of the warfighter. We will use this toolset to investigate the consequences of, and mitigation against, blast exposure, blunt force impact, and ballistic projectile penetration leading to damage of critical organs comprising the central nervous, cardiovascular, and respiratory systems. We will leverage Sandia codes and our M&S expertise on traumatic brain injury to develop virtual anatomical models of the head, neck, and torso and the simulation methodology to capture the physics of wound mechanics. Specifically, we will investigate virtual wound injuries to the head, neck, and torso without and with protective armor to demonstrate the advantages of performing injury simulations for the development of body armor. The proposed toolset constitutes a significant advance over current methods by providing a virtual simulation capability to investigate wound injury and optimize armor design without the need for extensive field testing.

  13. Effect of spin rotation coupling on spin transport

    International Nuclear Information System (INIS)

    Chowdhury, Debashree; Basu, B.

    2013-01-01

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied

  14. Effect of spin rotation coupling on spin transport

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com

    2013-12-15

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k{sup →}⋅p{sup →} perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k{sup →}⋅p{sup →} framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied.

  15. Spin temperature concept verified by optical magnetometry of nuclear spins

    Science.gov (United States)

    Vladimirova, M.; Cronenberger, S.; Scalbert, D.; Ryzhov, I. I.; Zapasskii, V. S.; Kozlov, G. G.; Lemaître, A.; Kavokin, K. V.

    2018-01-01

    We develop a method of nonperturbative optical control over adiabatic remagnetization of the nuclear spin system and apply it to verify the spin temperature concept in GaAs microcavities. The nuclear spin system is shown to exactly follow the predictions of the spin temperature theory, despite the quadrupole interaction that was earlier reported to disrupt nuclear spin thermalization. These findings open a way for the deep cooling of nuclear spins in semiconductor structures, with the prospect of realizing nuclear spin-ordered states for high-fidelity spin-photon interfaces.

  16. Projectile fragmentation of neutron-rich nuclei on light target (momentum distribution and nucleon-removal cross section)

    International Nuclear Information System (INIS)

    Kobayashi, T.; Tanihata, I.; Suzuki, T.

    1992-01-01

    Transverse momentum distributions of the projectile fragments from β-unstable nuclei have been measured with various projectile and target combinations. The momentum correlation of two neutrons in the neutron halo is extracted from the P c t distribution of 9 Li and hat of the neutrons. It is found that the two neutrons are moving in the same direction on average and thus strongly suggests the formation of a di-neutron in 11 Li. (Author)

  17. Numerical simulation of projectile impact on mild steel armour plates using LS-DYNA, Part II: Parametric studies

    OpenAIRE

    Raguraman, M; Deb, A; Gupta, NK; Kharat, DK

    2008-01-01

    In Part I of the current two-part series, a comprehensive simulation-based study of impact of Jacketed projectiles on mild steel armour plates has been presented. Using the modelling procedures developed in Part I, a number of parametric studies have been carried out for the same mild steel plates considered in Part I and reported here in Part II. The current investigation includes determination of ballistic limits of a given target plate for different projectile diameters and impact velociti...

  18. Numerical Simulation of Projectile Impact on Mild Steel Armour Platesusing LS-DYNA, Part II: Parametric Studies

    OpenAIRE

    M. Raguraman; A. Deb; N. K. Gupta; D. K. Kharat

    2008-01-01

    In Part I of the current two-part series, a comprehensive simulation-based study of impact of jacketed projectiles on mild steel armour plates has been presented. Using the modelling procedures developed in Part I, a number of parametric studies have been carried out for the same mild steel plates considered in Part I and reported here in Part II. The current investigation includes determination of ballistic limits of a given target plate for different projectile diameters and impact velociti...

  19. In-pipe aerodynamic characteristics of a projectile in comparison with free flight for transonic Mach numbers

    Science.gov (United States)

    Hruschka, R.; Klatt, D.

    2018-03-01

    The transient shock dynamics and drag characteristics of a projectile flying through a pipe 3.55 times larger than its diameter at transonic speed are analyzed by means of time-of-flight and pipe wall pressure measurements as well as computational fluid dynamics (CFD). In addition, free-flight drag of the 4.5-mm-pellet-type projectile was also measured in a Mach number range between 0.5 and 1.5, providing a means for comparison against in-pipe data and CFD. The flow is categorized into five typical regimes the in-pipe projectile experiences. When projectile speed and hence compressibility effects are low, the presence of the pipe has little influence on the drag. Between Mach 0.5 and 0.8, there is a strong drag increase due to the presence of the pipe, however, up to a value of about two times the free-flight drag. This is exactly where the nose-to-base pressure ratio of the projectile becomes critical for locally sonic speed, allowing the drag to be estimated by equations describing choked flow through a converging-diverging nozzle. For even higher projectile Mach numbers, the drag coefficient decreases again, to a value slightly below the free-flight drag at Mach 1.5. This behavior is explained by a velocity-independent base pressure coefficient in the pipe, as opposed to base pressure decreasing with velocity in free flight. The drag calculated by CFD simulations agreed largely with the measurements within their experimental uncertainty, with some discrepancies remaining for free-flying projectiles at supersonic speed. Wall pressure measurements as well as measured speeds of both leading and trailing shocks caused by the projectile in the pipe also agreed well with CFD.

  20. Projectile and target fragmentation at intermediate energies (20 MeV <= E/A <= 100 MeV)

    International Nuclear Information System (INIS)

    Dayras, R.A.

    1985-04-01

    In order to follow the evolution of the reaction mechanisms in the transition region of the intermediate energy range, detailed studies of projectile-like fragments from a 44 MeV/u 40 Ar projectile bombarding 27 Al and sup(NAT)T: targets have been made. Experimental results are given. Discussion of the data is presented: transfer reactions, isotopic distributions, the fragmentation model, and abrasion model are used in the discussion

  1. Spin labels. Applications in biology

    International Nuclear Information System (INIS)

    Frangopol, T.P.; Frangopol, M.; Ionescu, S.M.; Pop, I.V.; Benga, G.

    1980-11-01

    The main applications of spin labels in the study of biomembranes, enzymes, nucleic acids, in pharmacology, spin immunoassay are reviewed along with the fundamentals of the spin label method. 137 references. (author)

  2. Spin Switching via Quantum Dot Spin Valves

    Science.gov (United States)

    Gergs, N. M.; Bender, S. A.; Duine, R. A.; Schuricht, D.

    2018-01-01

    We develop a theory for spin transport and magnetization dynamics in a quantum dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot. Our theory is able to take into account effects of strong correlations. We demonstrate that, as a result of these strong correlations, the dot gate voltage enables control over the current-induced torques on the magnets and, in particular, enables voltage-controlled magnetic switching. The electrical resistance of the structure can be used to read out the magnetic state. Our model may be realized by a number of experimental systems, including magnetic scanning-tunneling microscope tips and artificial quantum dot systems.

  3. Evaluating simulant materials for understanding cranial backspatter from a ballistic projectile.

    Science.gov (United States)

    Das, Raj; Collins, Alistair; Verma, Anurag; Fernandez, Justin; Taylor, Michael

    2015-05-01

    In cranial wounds resulting from a gunshot, the study of backspatter patterns can provide information about the actual incidents by linking material to surrounding objects. This study investigates the physics of backspatter from a high-speed projectile impact and evaluates a range of simulant materials using impact tests. Next, we evaluate a mesh-free method called smoothed particle hydrodynamics (SPH) to model the splashing mechanism during backspatter. The study has shown that a projectile impact causes fragmentation at the impact site, while transferring momentum to fragmented particles. The particles travel along the path of least resistance, leading to partial material movement in the reverse direction of the projectile motion causing backspatter. Medium-density fiberboard is a better simulant for a human skull than polycarbonate, and lorica leather is a better simulant for a human skin than natural rubber. SPH is an effective numerical method for modeling the high-speed impact fracture and fragmentations. © 2015 American Academy of Forensic Sciences.

  4. Classical molecular dynamics simulation of weakly-bound projectile heavy-ion reactions

    Directory of Open Access Journals (Sweden)

    Morker Mitul R.

    2015-01-01

    Full Text Available A 3-body classical molecular dynamics approach for heavy-ion reactions involving weakly bound projectiles is developed. In this approach a weakly bound projectile is constructed as a two-body cluster of the constituent tightly bound nuclei in a configuration corresponding to the observed breakup energy. This 3-body system with their individual nucleon configuration in their ground state is dynamically evolved for given initial conditions using the three-stage classical molecular dynamics approach (3S-CMD. Various levels of rigidbody constraints on the projectile constituents and the target are considered at appropriate stages. This 3-dimensional approach explicitly takes into account not only the long range Coulomb reorientation of the deformed collision partner but internal excitations and breakup probabilities at distances close to the barrier also. Dynamical simulations of 6Li+209Bi show all the possible reaction mechanism like complete fusion, incomplete fusion, scattering and breakup scattering. Complete fusion cross sections of 6Li+209Bi and 7Li+209Bi reactions are calculated in this approach with systematic relaxations of the rigid-body constraints on one or more constituent nuclei.

  5. Penetration of a Small Caliber Projectile into Single and Multi-layered Targets

    Directory of Open Access Journals (Sweden)

    Riad A.M.

    2010-06-01

    Full Text Available The normal penetration of armor-piercing projectiles into single and multi-layered steel plates has been investigated. An experimental program has been conducted to study the effect of spaced and in-contact layered targets on their ballistic resistance. Armor piercing projectiles with caliber of 7.62 mm were fired against a series of single and multi-layered steel targets. The projectile impact velocities were ranged from 300-600 m/s, whereas the total thicknesses of the tested single, spaced and in-contact layered steel targets were 3 mm. The penetration process of different tested target configurations has been simulated using Autodayn-2D hydrocode. The experimental measurements of the present work were used to discuss the effect of impact velocity, target configurations and number of layers of different spaced and in-contact layered steel targets on their ballistic resistance. In addition, the post-firing examination of the tested targets over the used impact velocity range showed that the single and each layer of spaced and in-contact laminated steel targets were failed by petalling. Finally, the obtained experimental measurements were compared with the corresponding numerical results of Autodyn-2D hydrocode, good agreement was generally obtained.

  6. CFD Simulations of a Finned Projectile with Microflaps for Flow Control

    Directory of Open Access Journals (Sweden)

    Jubaraj Sahu

    2017-01-01

    Full Text Available This research describes a computational study undertaken to determine the effect of a flow control mechanism and its associated aerodynamics for a finned projectile. The flow control system consists of small microflaps located between the rear fins of the projectile. These small microflaps alter the flow field in the aft finned region of the projectile, create asymmetric pressure distributions, and thus produce aerodynamic control forces and moments. A number of different geometric parameters, microflap locations, and the number of microflaps were varied in an attempt to maximize the control authority generated by the flaps. Steady-state Navier-Stokes computations were performed to obtain the control aerodynamic forces and moments associated with the microflaps. These results were used to optimize the control authority at a supersonic speed, M=2.5. Computed results showed not only the microflaps to be effective at this speed, but also configurations with 6 and 8 microflaps were found to generate 25%–50% more control force than a baseline 4-flap configuration. These results led to a new optimized 8-flap configuration that was further investigated for a range of Mach numbers from M=0.8 to 5.0 and was found to be a viable configuration effective in providing control at all of these speeds.

  7. Scaling invariance of spherical projectile fragmentation upon high-velocity impact on a thin continuous shield

    Energy Technology Data Exchange (ETDEWEB)

    Myagkov, N. N., E-mail: nn-myagkov@mail.ru [Russian Academy of Sciences, Institute of Applied Mechanics (Russian Federation)

    2017-01-15

    The problem of aluminum projectile fragmentation upon high-velocity impact on a thin aluminum shield is considered. A distinctive feature of this description is that the fragmentation has been numerically simulated using the complete system of equations of deformed solid mechanics by a method of smoothed particle hydrodynamics in three-dimensional setting. The transition from damage to fragmentation is analyzed and scaling relations are derived in terms of the impact velocity (V), ratio of shield thickness to projectile diameter (h/D), and ultimate strength (σ{sub p}) in the criterion of projectile and shield fracture. Analysis shows that the critical impact velocity V{sub c} (separating the damage and fragmentation regions) is a power function of σ{sub p} and h/D. In the supercritical region (V > V{sub c}), the weight-average fragment mass asymptotically tends to a power function of the impact velocity with exponent independent of h/D and σ{sub p}. Mean cumulative fragment mass distributions at the critical point are scale-invariant with respect to parameters h/D and σ{sub p}. Average masses of the largest fragments are also scale-invariant at V > V{sub c}, but only with respect to variable parameter σ{sub p}.

  8. Determine ISS Soyuz Orbital Module Ballistic Limits for Steel Projectiles Hypervelocity Impact Testing

    Science.gov (United States)

    Lyons, Frankel

    2013-01-01

    A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.

  9. The Response of Clamped Shallow Sandwich Arches with Metallic Foam Cores to Projectile Impact Loading

    Directory of Open Access Journals (Sweden)

    Yanping Fan

    Full Text Available Abstract The dynamic response and energy absorption capabilities of clamped shallow sandwich arches with aluminum foam core were numerically investigated by impacting the arches at mid-span with metallic foam projectiles. The typical deformation modes, deflection response, and core compression of sandwich arches obtained from the tests were used to validate the computation model. The resistance to impact loading was quantified by the permanent transverse deflection at mid-span of the arches as a function of projectile momentum. The sandwich arches have a higher shock resistance than the monolithic arches of equal mass, and shock resistance could be significantly enhanced by optimizing geometrical configurations. Meanwhile, decreasing the face-sheet thickness and curvature radius could enhance the energy absorption capability of the sandwich arches. Finite element calculations indicated that the ratio of loading time to structural response time ranged from 0.1 to 0.4. The projectile momentum, which was solely used to quantify the structural response of sandwich arches, was insufficient. These findings could provide guidance in conducting further theoretical studies and producing the optimal design of metallic sandwich structures subjected to impact loading.

  10. Electromagnetic dissociation of target nuclei by $^{16}$O and $^{32}$S projectiles

    CERN Multimedia

    2002-01-01

    We have measured the inclusive cross sections for electromagnetic dissociation (ED) of $^{197}$Au targets by 60 and 200 GeV/nucleon $^{16}$O and $^{32}$S projectiles. This is an extension of similar measurements carried out earlier at 2 GeV/nucleon. ED is a purely electromagnetic process occuring when a virtual photon is exchanged between projectile and target. The experiment emphasized precise measurement of total one-neutron-out cross sections. A secondary goal was to test the applicability of the concepts of factorization and limiting fragmentation at ultrarelativistic energies.\\\\ \\\\ Each individual target will be irradiated upstream and parasitic to experiment NA38 on the dimuon spectrometer. Cross sections for reactions of interest will be determined by off-line counting of the appropriate residual $\\gamma$ ray activities in Ames, Iowa, USA. Preliminary results indicate an ED one-neutron removal cross section for 200 GeV/nucleon $^{16}$O projectiles on $^{197}$Au of approximately 0.45~barns. The result i...

  11. Electron-detachment cross sections of halogen negative-ion projectiles for inertial confinement fusion

    Science.gov (United States)

    Sant'Anna, M. M.; Zappa, F.; Santos, A. C. F.; de Barros, A. L. F.; Wolff, W.; Coelho, L. F. S.; de Castro Faria, N. V.

    2004-07-01

    Negative-ion beams have recently been suggested as sources of high-energy heavy atoms to be used as drivers for inertial confinement fusion (ICF). Owing to their electron affinities limited to a few eV, anions can be efficiently photo-detached in the vicinity of the fusion chamber, with the resulting high-velocity neutral projectiles following ballistic trajectories towards the hydrogen pellet target. Electron-detachment cross sections are needed as parameters to estimate the beam attenuation in the path from the ion source to the hydrogen pellet. Halogen anions are possible projectile choices. In this paper we present experimental data for total electron-detachment cross sections for F-, Cl-, Br- and I- ions incident on N2, in the 0.94-74 keV u-1 energy range. Our measurements can benchmark theory on anion electron detachment at intermediate to high velocities. Comparison between different projectiles shows very similar collision velocity dependencies. A simple geometrical scaling is presented, providing an estimate for electron-detachment cross sections at the MeV u-1 energy range. The presented scaling indicates that the vacuum requirements due to the use of halogen anions for ICF are less critical than previously suggested.

  12. Supercavitating flow around high-speed underwater projectile near free surface induced by air entrainment

    Directory of Open Access Journals (Sweden)

    Chang Xu

    2018-03-01

    Full Text Available Cavitating flow near free surface is a complicated issue and may provide new inspiration on high-speed surface cruising. This study observes stable supercavitating flow as a new phenomenon in a launch experiment of axisymmetric projectile when the upper side of the projectile coincides with the free surface. A numerical approach is established using large eddy-simulation and volume-of-fluid methods, and good agreements are achieved between numerical and experimental results. Supercavity formation mechanism is revealed by analyzing the experiment photographs and the iso-surface of 90% water volume fraction in numerical results. The entrainment of a large amount of air into the cavity can cause the pressure inside the cavity to similarly increase with the pressure outside the cavity, which makes the actual cavitation number close to zero and is similar to supercavitation. Cases with various headforms of the projectile and cavitation numbers on the cavitating flow, as well as the drag reduction effects are further examined. Results indicate that the present strategy near the free surface could possibly be a new effective approach for high-speed cruising after vigorous design optimization in the future.

  13. Fragmentation of Millimeter-Size Hypervelocity Projectiles on Combined Mesh-Plate Bumpers

    Directory of Open Access Journals (Sweden)

    Aleksandr Cherniaev

    2017-01-01

    Full Text Available This numerical study evaluates the concept of a combined mesh-plate bumper as a shielding system protecting unmanned spacecraft from small (1 mm orbital debris impacts. Two-component bumpers consisting of an external layer of woven mesh (aluminum or steel directly applied to a surface of the aluminum plate are considered. Results of numerical modeling with a projectile velocity of 7 km/s indicate that, in comparison to the steel mesh-combined bumper, the combination of aluminum mesh and aluminum plate provides better fragmentation of small hypervelocity projectiles. At the same time, none of the combined mesh/plate bumpers provide a significant increase of ballistic properties as compared to an aluminum plate bumper. This indicates that the positive results reported in the literature for bumpers with metallic meshes and large projectiles are not scalable down to millimeter-sized particles. Based on this investigation’s results, a possible modification of the combined mesh/plate bumper is proposed for the future study.

  14. An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method

    International Nuclear Information System (INIS)

    Yabushita, Kazuki; Yamashita, Mariko; Tsuboi, Kazuhiro

    2007-01-01

    We consider the problem of two-dimensional projectile motion in which the resistance acting on an object moving in air is proportional to the square of the velocity of the object (quadratic resistance law). It is well known that the quadratic resistance law is valid in the range of the Reynolds number: 1 x 10 3 ∼ 2 x 10 5 (for instance, a sphere) for practical situations, such as throwing a ball. It has been considered that the equations of motion of this case are unsolvable for a general projectile angle, although some solutions have been obtained for a small projectile angle using perturbation techniques. To obtain a general analytic solution, we apply Liao's homotopy analysis method to this problem. The homotopy analysis method, which is different from a perturbation technique, can be applied to a problem which does not include small parameters. We apply the homotopy analysis method for not only governing differential equations, but also an algebraic equation of a velocity vector to extend the radius of convergence. Ultimately, we obtain the analytic solution to this problem and investigate the validation of the solution

  15. Morphology and chemistry of projectile residue in small experimental impact craters

    Science.gov (United States)

    Horz, F.; Fechtig, H.; Janicke, J.; Schneider, E.

    1983-01-01

    Small-scale impact craters (5-7 mm in diameter) were produced with a light gas gun in high purity Au and Cu targets using soda lime glass (SL) and man-made basalt glass (BG) as projectiles. Maximum impact velocity was 6.4 km/s resulting in peak pressures of approximately 120-150 GPa. Copious amounts of projectile melts are preserved as thin glass liners draping the entire crater cavity; some of this liner may be lost by spallation, however. SEM investigations reveal complex surface textures including multistage flow phenomena and distinct temporal deposition sequences of small droplets. Inasmuch as some of the melts were generated at peak pressures greater than 120 GPa, these glasses represent the most severely shocked silicates recovered from laboratory experiments to date. Major element analyses reveal partial loss of alkalis; Na2O loss of 10-15 percent is observed, while K2O loss may be as high as 30-50 percent. Although the observed volatile loss in these projectile melts is significant, it still remains uncertain whether target melts produced on planetary surfaces are severely fractionated by selective volatilization processes.

  16. Electron-detachment cross sections of halogen negative-ion projectiles for inertial confinement fusion

    International Nuclear Information System (INIS)

    Sant'Anna, M M; Zappa, F; Santos, A C F; Barros, A L F de; Wolff, W; Coelho, L F S; Faria, N V de Castro

    2004-01-01

    Negative-ion beams have recently been suggested as sources of high-energy heavy atoms to be used as drivers for inertial confinement fusion (ICF). Owing to their electron affinities limited to a few eV, anions can be efficiently photo-detached in the vicinity of the fusion chamber, with the resulting high-velocity neutral projectiles following ballistic trajectories towards the hydrogen pellet target. Electron-detachment cross sections are needed as parameters to estimate the beam attenuation in the path from the ion source to the hydrogen pellet. Halogen anions are possible projectile choices. In this paper we present experimental data for total electron-detachment cross sections for F - , Cl - , Br - and I - ions incident on N 2 , in the 0.94-74 keV u -1 energy range. Our measurements can benchmark theory on anion electron detachment at intermediate to high velocities. Comparison between different projectiles shows very similar collision velocity dependencies. A simple geometrical scaling is presented, providing an estimate for electron-detachment cross sections at the MeV u -1 energy range. The presented scaling indicates that the vacuum requirements due to the use of halogen anions for ICF are less critical than previously suggested

  17. Physics lab in spin

    CERN Multimedia

    Hawkes, N

    1999-01-01

    RAL is fostering commerical exploitation of its research and facilities in two main ways : spin-out companies exploit work done at the lab, spin-in companies work on site taking advantage of the facilities and the expertise available (1/2 page).

  18. Summary: Symmetries and spin

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1988-01-01

    I discuss a number of the themes of the Symmetries and Spin session of the 8th International Symposium on High Energy Spin Physics: parity nonconservation, CP/T nonconservation, and tests of charge symmetry and charge independence. 28 refs., 1 fig

  19. Spin, mass, and symmetry

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1994-01-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics

  20. Classical spins in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, H [Tokyo Univ.; Maki, K

    1968-08-01

    It is shown that there exists a localized excited state in the energy gap in a superconductor with a classical spin. At finite concentration localized excited states around classical spins form an impurity band. The process of growth of the impurity band and its effects on observable quantities are investigated.

  1. Spin, mass, and symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E. [Stanford Univ., CA (United States)

    1994-12-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.

  2. More spinoff from spin

    International Nuclear Information System (INIS)

    Masaike, Akira

    1993-01-01

    Despite playing a major role in today's Standard Model, spin - the intrinsic angular momentum carried by particles - is sometimes dismissed as an inessential complication. However several major spin questions with important implications for the Standard Model remain unanswered, and recent results and new technological developments made the 10th International Symposium on High Energy Spin Physics, held in Nagoya, Japan, in November, highly topical. The symposium covered a wide range of physics, reflecting the diversity of spin effects, however four main themes were - the spin content of the nucleon, tests of symmetries and physics beyond standard models, intermediate energy physics, and spin technologies. Opening the meeting, T. Kinoshita reviewed the status of measurements of the anomalous magnetic moment (g-2) of the electron and the muon. The forthcoming experiment at Brookhaven (September 1991, page 23) will probe beyond the energy ranges open to existing electronpositron colliders. For example muon substructure will be opened up to 5 TeV and Ws to 2 TeV. R.L. Jaffe classified quark-parton distributions in terms of their spin dependence, pointing out their leftright attributes, and emphasized the importance of measuring transverse spin distributions through lepton pair production

  3. Experimental impact-parameter--dependent probabilities for K-shell vacancy production by fast heavy-ion projectiles

    International Nuclear Information System (INIS)

    Randall, R.R.; Bednar, J.A.; Curnutte, B.; Cocke, C.L.

    1976-01-01

    The impact-parameter dependence of the probability for production of target K x rays has been measured for oxygen projectiles on copper and for carbon and fluorine projectiles on argon at scaled velocities near 0.5. The O-on-Cu data were taken for 1.56-, 1.88-, and 2.69-MeV/amu O beams incident upon thin Cu foils. A thin Ar-gas target was used for 1.56-MeV/amu C and F beams, permitting measurements to be made for charge-pure C +4 , C +6 , F +9 and F +5 projectiles. Ar and Cu K x rays were observed with a Si(Li) detector and scattered projectiles with a collimated surface-barrier detector. Comparison of the shapes of the measured K-vacancy--production probability curves with predictions of the semiclassical Coulomb approximation (SCA) shows adequate agreement for the O-on-Cu system. For the higher ratio of projectile-to-target nuclear charge (Z 1 /Z 2 ) characterizing the C-on-Ar and F-on-Ar systems, the SCA predictions are entirely inadequate in describing the observed impact-parameter dependence. In particular, they cannot account for large probabilities found at large impact parameters. Furthermore, the dependence of the shapes on the projectile charge state is found to become pronounced at larger Z 1 /Z 2 . Attempts to account for this behavior in terms of alternative vacancy-production processes are discussed

  4. Experimental study on the penetration effect of ceramics composite projectile on ceramic / A3 steel compound targets

    Directory of Open Access Journals (Sweden)

    Di-qi Hu

    2017-08-01

    Full Text Available In order to improve the penetration of projectiles into ceramic composite armors, the nose of 30 mm standard projectile was replaced by a toughened ceramic nose, and the performance of ceramic-nose projectiles penetrating into ceramic/A3 steel composite targets has been experimentally researched. According to impact dynamics theory,, the performances of 30 mm ceramic-nose projectile and 30 mm standard projectile penetrating into the ceramic/A3 steel composite targets were analyzed and compared using DOP method, especially focusing on the effects made by different nose structures and materials. The aperture and depth of perforation of projectile into the armor plates as well as the residual mass of bullet core under the same conditions were comparatively analyzed. A numerical simulation was built and computed by ANSYS/LS-DYNA. Based on the simulated results, the penetration performance was further analyzed in terms of the residual mass of bullet core. The results show that the ceramic nose has a great effect on the protection of bullet core.

  5. Spin distribution of evaporation residues formed in complete and incomplete fusion in 16O+154Sm system

    Science.gov (United States)

    Singh, D.; Linda, Sneha B.; Giri, Pankaj K.; Mahato, Amritraj; Tripathi, R.; Kumar, Harish; Afzal Ansari, M.; Sathik, N. P. M.; Ali, Rahbar; Kumar, Rakesh; Muralithar, S.; Singh, R. P.

    2017-11-01

    Spin distributions for several evaporation residues populated in the 16O+154Sm system have been measured at projectile energy ≈ 6.2 MeV/A by using the charged particle-γ-coincidence technique. The measured spin distributions of the evaporation residues populated through incomplete fusion associated with 'fast' α and 2α-emission channels are found to be entirely different from fusion-evaporation channels. It is observed that the mean input angular momentum for the evaporation residues formed in incomplete fusion channel is relatively higher than that observed for evaporation residues in complete fusion channels. The feeding intensity profile of evaporation residues populated through complete fusion and incomplete fusion have also been studied. The incomplete fusion channels are found to have narrow range feeding only for high spin states, while complete fusion channels are strongly fed over a broad spin range and widely populated. Comparison of present results with earlier data suggests that the mean input angular momentum values are relatively smaller for spherical target than that of deformed target using the same projectile and incident energy highlighting the role of target deformation in incomplete fusion dynamics.

  6. Spin distribution of evaporation residues formed in complete and incomplete fusion in 16O+154Sm system

    Directory of Open Access Journals (Sweden)

    D. Singh

    2017-11-01

    Full Text Available Spin distributions for several evaporation residues populated in the 16O+154Sm system have been measured at projectile energy ≈ 6.2 MeV/A by using the charged particle–γ-coincidence technique. The measured spin distributions of the evaporation residues populated through incomplete fusion associated with ‘fast’ α and 2α-emission channels are found to be entirely different from fusion–evaporation channels. It is observed that the mean input angular momentum for the evaporation residues formed in incomplete fusion channel is relatively higher than that observed for evaporation residues in complete fusion channels. The feeding intensity profile of evaporation residues populated through complete fusion and incomplete fusion have also been studied. The incomplete fusion channels are found to have narrow range feeding only for high spin states, while complete fusion channels are strongly fed over a broad spin range and widely populated. Comparison of present results with earlier data suggests that the mean input angular momentum values are relatively smaller for spherical target than that of deformed target using the same projectile and incident energy highlighting the role of target deformation in incomplete fusion dynamics.

  7. Spin-Wave Diode

    Directory of Open Access Journals (Sweden)

    Jin Lan (兰金

    2015-12-01

    Full Text Available A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound states in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. Our findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.

  8. Spin physics at BNL

    International Nuclear Information System (INIS)

    Lowenstein, D.I.

    1985-01-01

    Spin Physics at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory is the most recent of new capabilities being explored at this facility. During the summer of 1984 the AGS accelerated beams of polarized protons to 16.5 GeV/c at 40% polarization to two experiments (E782, E785). These experiments; single spin asymmetry in inclusive polarized pp interactions; and spin-spin effects in polarized pp elastic scattering, operated at the highest polarized proton energy ever achieved by any accelerator in the world. These experiments are reviewed after the complementary spin physics program with unpolarized protons, and the future possibilities with a booster injector for the AGS and the secondary benefits of a Relativisitic Heavy Ion Collider (RHIC), are placed within the context of the present physics program

  9. Superconductivity and spin fluctuations

    International Nuclear Information System (INIS)

    Scalapino, D.J.

    1999-01-01

    The organizers of the Memorial Session for Herman Rietschel asked that the author review some of the history of the interplay of superconductivity and spin fluctuations. Initially, Berk and Schrieffer showed how paramagnon spin fluctuations could suppress superconductivity in nearly-ferromagnetic materials. Following this, Rietschel and various co-workers wrote a number of papers in which they investigated the role of spin fluctuations in reducing the Tc of various electron-phonon superconductors. Paramagnon spin fluctuations are also believed to provide the p-wave pairing mechanism responsible for the superfluid phases of 3 He. More recently, antiferromagnetic spin fluctuations have been proposed as the mechanism for d-wave pairing in the heavy-fermion superconductors and in some organic materials as well as possibly the high-Tc cuprates. Here the author will review some of this early history and discuss some of the things he has learned more recently from numerical simulations

  10. Spin Hall and spin swapping torques in diffusive ferromagnets

    KAUST Repository

    Pauyac, C. O.

    2017-12-08

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  11. Spin Hall and spin swapping torques in diffusive ferromagnets

    KAUST Repository

    Pauyac, C. O.; Chshiev, M.; Manchon, Aurelien; Nikolaev, S. A.

    2017-01-01

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  12. Penetration Experiments with 6061-T6511 Aluminum Targets and Spherical-Nose Steel Projectiles at Striking Velocities Between 0.5 and 3.0 km/s

    Energy Technology Data Exchange (ETDEWEB)

    Forrestal, M.J.; Piekutowski, A.J.

    1999-02-04

    We conducted depth of penetration experiments with 7.11-mm-diameter, 74.7-mm-long, spherical-nose, 4340 steel projectiles launched into 250-mm-diameter, 6061-T6511 aluminum targets. To show the effect of projectile strength, we used projectiles that had average Rockwell harnesses of R{sub c} = 36.6, 39.5, and 46.2. A powder gun and two-stage, light-gas guns launched the 0.023 kg projectiles at striking velocities between 0.5 and 3.0 km/s. Post-test radiographs of the targets showed three response regions as striking velocities increased: (1) the projectiles remained visibly undeformed, (2) the projectiles permanently deformed without erosion, and (3) the projectiles eroded and lost mass. To show the effect of projectile strength, we compared depth-of-penetration data as a function of striking velocity for spherical-nose rods with three Rockwell harnesses at striking velocities ranging from 0.5 to 3.0 km/s. To show the effect of nose shape, we compared penetration data for the spherical-nose projectiles with previously published data for ogive-nose projectiles.

  13. Homoepitaxial graphene tunnel barriers for spin transport

    Directory of Open Access Journals (Sweden)

    Adam L. Friedman

    2016-05-01

    Full Text Available Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  14. Homoepitaxial graphene tunnel barriers for spin transport

    Science.gov (United States)

    Friedman, Adam L.; van't Erve, Olaf M. J.; Robinson, Jeremy T.; Whitener, Keith E.; Jonker, Berend T.

    2016-05-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  15. Resonant Tunneling Spin Pump

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  16. Nuclear spins in nanostructures

    International Nuclear Information System (INIS)

    Coish, W.A.; Baugh, J.

    2009-01-01

    We review recent theoretical and experimental advances toward understanding the effects of nuclear spins in confined nanostructures. These systems, which include quantum dots, defect centers, and molecular magnets, are particularly interesting for their importance in quantum information processing devices, which aim to coherently manipulate single electron spins with high precision. On one hand, interactions between confined electron spins and a nuclear-spin environment provide a decoherence source for the electron, and on the other, a strong effective magnetic field that can be used to execute local coherent rotations. A great deal of effort has been directed toward understanding the details of the relevant decoherence processes and to find new methods to manipulate the coupled electron-nuclear system. A sequence of spectacular new results have provided understanding of spin-bath decoherence, nuclear spin diffusion, and preparation of the nuclear state through dynamic polarization and more general manipulation of the nuclear-spin density matrix through ''state narrowing.'' These results demonstrate the richness of this physical system and promise many new mysteries for the future. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  17. Bifurcation analysis of magnetization dynamics driven by spin transfer

    International Nuclear Information System (INIS)

    Bertotti, G.; Magni, A.; Bonin, R.; Mayergoyz, I.D.; Serpico, C.

    2005-01-01

    Nonlinear magnetization dynamics under spin-polarized currents is discussed by the methods of the theory of nonlinear dynamical systems. The fixed points of the dynamics are calculated. It is shown that there may exist 2, 4, or 6 fixed points depending on the values of the external field and of the spin-polarized current. The stability of the fixed points is analyzed and the conditions for the occurrence of saddle-node and Hopf bifurcations are determined

  18. Bifurcation analysis of magnetization dynamics driven by spin transfer

    Energy Technology Data Exchange (ETDEWEB)

    Bertotti, G. [IEN Galileo Ferraris, Strada delle Cacce 91, 10135 Turin (Italy); Magni, A. [IEN Galileo Ferraris, Strada delle Cacce 91, 10135 Turin (Italy); Bonin, R. [Dipartimento di Fisica, Politecnico di Torino, Corso degli Abbruzzi, 10129 Turin (Italy)]. E-mail: bonin@ien.it; Mayergoyz, I.D. [Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742 (United States); Serpico, C. [Department of Electrical Engineering, University of Napoli Federico II, via Claudio 21, 80125 Naples (Italy)

    2005-04-15

    Nonlinear magnetization dynamics under spin-polarized currents is discussed by the methods of the theory of nonlinear dynamical systems. The fixed points of the dynamics are calculated. It is shown that there may exist 2, 4, or 6 fixed points depending on the values of the external field and of the spin-polarized current. The stability of the fixed points is analyzed and the conditions for the occurrence of saddle-node and Hopf bifurcations are determined.

  19. Spin drift and spin diffusion currents in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)], E-mail: m.miah@griffith.edu.au

    2008-09-15

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  20. Spin drift and spin diffusion currents in semiconductors

    Directory of Open Access Journals (Sweden)

    M Idrish Miah

    2008-01-01

    Full Text Available On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  1. Spin drift and spin diffusion currents in semiconductors

    International Nuclear Information System (INIS)

    Idrish Miah, M

    2008-01-01

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  2. Quantifying Spin Hall Angles from Spin Pumping : Experiments and Theory

    NARCIS (Netherlands)

    Mosendz, O.; Pearson, J.E.; Fradin, F.Y.; Bauer, G.E.W.; Bader, S.D.; Hoffmann, A.

    2010-01-01

    Spin Hall effects intermix spin and charge currents even in nonmagnetic materials and, therefore, ultimately may allow the use of spin transport without the need for ferromagnets. We show how spin Hall effects can be quantified by integrating Ni80Fe20|normal metal (N) bilayers into a coplanar

  3. Compound nucleus effects in spin-spin cross sections

    International Nuclear Information System (INIS)

    Thompson, W.J.

    1976-01-01

    By comparison with recent data, it is shown that spin-spin cross sections for low-energy neutrons may be dominated by a simple compound-elastic level-density effect, independent of spin-spin terms in the nucleon-nucleus optical-model potential. (Auth.)

  4. Frustrated spin systems

    CERN Document Server

    2013-01-01

    This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can - within a single book - obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated

  5. SPINning parallel systems software

    International Nuclear Information System (INIS)

    Matlin, O.S.; Lusk, E.; McCune, W.

    2002-01-01

    We describe our experiences in using Spin to verify parts of the Multi Purpose Daemon (MPD) parallel process management system. MPD is a distributed collection of processes connected by Unix network sockets. MPD is dynamic processes and connections among them are created and destroyed as MPD is initialized, runs user processes, recovers from faults, and terminates. This dynamic nature is easily expressible in the Spin/Promela framework but poses performance and scalability challenges. We present here the results of expressing some of the parallel algorithms of MPD and executing both simulation and verification runs with Spin

  6. Spins in chemistry

    CERN Document Server

    McWeeny, Roy

    2004-01-01

    Originally delivered as a series of lectures, this volume systematically traces the evolution of the ""spin"" concept from its role in quantum mechanics to its assimilation into the field of chemistry. Author Roy McWeeny presents an in-depth illustration of the deductive methods of quantum theory and their application to spins in chemistry, following the path from the earliest concepts to the sophisticated physical methods employed in the investigation of molecular structure and properties. Starting with the origin and development of the spin concept, the text advances to an examination of sp

  7. NUCLEON SPIN: Enigma confirmed

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In 1987 the European Muon Collaboration (EMC - June 1988, page 9) reported results from a polarized muon-proton scattering experiment at CERN which puzzled the particle and nuclear physics communities. Contrary to the prediction of the naive quark model, the EMC found that little of the proton spin seemed to be carried by the spins of the quarks. An extensive experimental programme was therefore immediately proposed at CERN, SLAC (Stanford) and DESY (Hamburg) to measure the spin structure function of the neutron and to repeat the proton measurement with improved accuracy

  8. Spin-polarized SEM

    International Nuclear Information System (INIS)

    Konoto, Makoto

    2007-01-01

    Development of highly effective evaluation technology of magnetic structures on a nanometric scale is a key to understanding spintronics and related phenomena. A high-resolution spin-polarized scanning electron microscope (spin SEM) developed recently is quite suitable for probing such nanostructures because of the capability of analyzing local magnetization vectors in three dimensions. Utilizing the spin SEM, a layered antiferromagnetic structure with the 1nm-alternation of bilayer-sheet magnetization has been successfully resolved. The real-space imaging with full analysis of the temperature-dependent magnetization vectors will be demonstrated. (author)

  9. High spin structure functions

    International Nuclear Information System (INIS)

    Khan, H.

    1990-01-01

    This thesis explores deep inelastic scattering of a lepton beam from a polarized nuclear target with spin J=1. After reviewing the formation for spin-1/2, the structure functions for a spin-1 target are defined in terms of the helicity amplitudes for forward compton scattering. A version of the convolution model, which incorporates relativistic and binding energy corrections is used to calculate the structure functions of a neutron target. A simple parameterization of these structure functions is given in terms of a few neutron wave function parameters and the free nucleon structure functions. This allows for an easy comparison of structure functions calculated using different neutron models. (author)

  10. Spin Hall effect transistor

    Czech Academy of Sciences Publication Activity Database

    Wunderlich, Joerg; Park, B.G.; Irvine, A.C.; Zarbo, Liviu; Rozkotová, E.; Němec, P.; Novák, Vít; Sinova, Jairo; Jungwirth, Tomáš

    2010-01-01

    Roč. 330, č. 6012 (2010), s. 1801-1804 ISSN 0036-8075 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510 EU Projects: European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 31.364, year: 2010

  11. Spinning of refractory metals

    International Nuclear Information System (INIS)

    Chang Wenkua; Zheng Han

    1989-01-01

    The effects of spinning process parameters including max. pass percentage reduction, spinning temperature, feed rate, lubricant and annealing technology on the quality of shaped components are summarized and discussed in the present paper. The above mentioned parameters are adopted in the process of spinning of barrel-shaped and specially shaped components of refractory metals and their alloys W, Mo, Nb, Zr, TZM molybdenum alloy, C-103, C-752 niobium alloy etc. The cause of leading to usual defects of spun products of refractory metals such as lamellar as 'scaling', crack, swelling, wrinkle, etc. have been analysed and the ways to eliminate the defects have been put forward. 8 figs., 5 tabs. (Author)

  12. Spin transfer torque with spin diffusion in magnetic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2012-08-09

    Spin transport in magnetic tunnel junctions in the presence of spin diffusion is considered theoretically. Combining ballistic tunneling across the barrier and diffusive transport in the electrodes, we solve the spin dynamics equation in the metallic layers. We show that spin diffusion mixes the transverse spin current components and dramatically modifies the bias dependence of the effective spin transfer torque. This leads to a significant linear bias dependence of the out-of-plane torque, as well as a nonconventional thickness dependence of both spin torque components.

  13. Electron spin and nuclear spin manipulation in semiconductor nanosystems

    International Nuclear Information System (INIS)

    Hirayama, Yoshiro; Yusa, Go; Sasaki, Satoshi

    2006-01-01

    Manipulations of electron spin and nuclear spin have been studied in AlGaAs/GaAs semiconductor nanosystems. Non-local manipulation of electron spins has been realized by using the correlation effect between localized and mobile electron spins in a quantum dot- quantum wire coupled system. Interaction between electron and nuclear spins was exploited to achieve a coherent control of nuclear spins in a semiconductor point contact device. Using this device, we have demonstrated a fully coherent manipulation of any two states among the four spin levels of Ga and As nuclei. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Magnon condensation and spin superfluidity

    Science.gov (United States)

    Bunkov, Yury M.; Safonov, Vladimir L.

    2018-04-01

    We consider the Bose-Einstein condensation (BEC) of quasi-equilibrium magnons which leads to spin superfluidity, the coherent quantum transfer of magnetization in magnetic material. The critical conditions for excited magnon density in ferro- and antiferromagnets, bulk and thin films, are estimated and discussed. It was demonstrated that only the highly populated region of the spectrum is responsible for the emergence of any BEC. This finding substantially simplifies the BEC theoretical analysis and is surely to be used for simulations. It is shown that the conditions of magnon BEC in the perpendicular magnetized YIG thin film is fulfillied at small angle, when signals are treated as excited spin waves. We also predict that the magnon BEC should occur in the antiferromagnetic hematite at room temperature at much lower excited magnon density compared to that of ferromagnetic YIG. Bogoliubov's theory of Bose-Einstein condensate is generalized to the case of multi-particle interactions. The six-magnon repulsive interaction may be responsible for the BEC stability in ferro- and antiferromagnets where the four-magnon interaction is attractive.

  15. Excitation and multiple dissociation of 12C, 14N, and 16O projectiles in peripheral collisions at 32.5 MeV/nucleon

    International Nuclear Information System (INIS)

    Pouliot, J.; Chan, Y.; DiGregorio, D.E.; Harmon, B.A.; Knop, R.; Moisan, C.; Roy, R.; Stokstad, R.G.; Laboratoire de physique nucleaire, Universite Laval, Quebec, P.Q., Canada G1K7P4)

    1991-01-01

    Cross sections for the multiple breakup of 16 O, 14 N, and 12 C projectiles scattered by an Au target were measured with an array of 34 phoswich detectors. The dissociation of the projectiles into as many as five charged particles has been observed. The yields of different exit channels correlate approximately with the threshold energy for separation of the projectile into the observed fragments. The excitation spectrum of the primary projectile-like nucleus was reconstructed from the measured positions and kinetic energies of the individual fragments. The energy sharing between projectile and target is consistent with a fast excitation mechanism in which differential increases in projectile excitation energy appear to be accompanied by comparable increases in target excitation. Calculations of the yields based on a sequence of binary decays are presented

  16. Devices for launching 0.1-g projectiles to 150 km/s or more to initiate fusion. Part 1. Magnetic-gradient and electrostatic accelerators

    International Nuclear Information System (INIS)

    Brittingham, J.N.

    1979-01-01

    The feasibility of using magnetic-gradient and electrostatic accelerators to launch a 0.1-g projectile to hypervelocities (150 km/s or more) is studied. Such hypervelocity projectiles could be used to ignite deuterium-tritium fuel pellets in a fusion reactor. For the magnetic-gradient accelerator, several types of projectile were studied: shielded and unshielded copper, ferromagnetic, and superconducting. The calculations revealed the superconducting projectile to be the best of those materials. It would require a 3.2-km-long magnetic-gradient accelerator and achieve a 92% efficiency. This accelerator-projectile combination would be the one most likely to launch a 0.1-g projectile to 150 km/s or more. Its components would cost $58.9 million. The electrostatic accelerator was found to be impractical because of its excessive length of 23 km

  17. When measured spin polarization is not spin polarization

    International Nuclear Information System (INIS)

    Dowben, P A; Wu Ning; Binek, Christian

    2011-01-01

    Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO 2 and Cr 2 O 3 illustrate some of the complications which hinders comparisons of spin polarization values. (viewpoint)

  18. Spin-4 extended conformal algebras

    International Nuclear Information System (INIS)

    Kakas, A.C.

    1988-01-01

    We construct spin-4 extended conformal algebras using the second hamiltonian structure of the KdV hierarchy. In the presence of a U(1) current a family of spin-4 algebras exists but the additional requirement that the spin-1 and spin-4 currents commute fixes the algebra uniquely. (orig.)

  19. Anisotropic spin relaxation in graphene

    NARCIS (Netherlands)

    Tombros, N.; Tanabe, S.; Veligura, A.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J.

    2008-01-01

    Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular

  20. Spin squeezing and quantum correlations

    Indian Academy of Sciences (India)

    2 states. A coherent spin-s state. (CSS) θ φ can then be thought of as having no quantum correlations as the constituent. 2s elementary spins point in the same direction ˆn(θ φ) which is the mean spin direction. 2. State classification and squeezing. In order to discuss squeezing, we begin with the squeezing condition itself.

  1. Geometry of spin coherent states

    Science.gov (United States)

    Chryssomalakos, C.; Guzmán-González, E.; Serrano-Ensástiga, E.

    2018-04-01

    Spin states of maximal projection along some direction in space are called (spin) coherent, and are, in many respects, the ‘most classical’ available. For any spin s, the spin coherent states form a 2-sphere in the projective Hilbert space \

  2. Projectile excitation energy evolution in peripheral collisions for 16O + 197Au at 32.5, 50 and 70 MeV/N

    International Nuclear Information System (INIS)

    Pouliot, J.; Dore, D.; Houde, S.; Laforest, R.; Roy, R.; St-Pierre, C.; Chan, Y.; Horn, D.; Horn, D.

    1991-01-01

    A comparison of the multiple breakup of 16 O projectiles scattered by a Au target at three different energies (32.5, 50 and 70 MeV/N) is presented. The excitation energy spectra of the primary projectile-like nuclei decaying into specific output channels were reconstructed. The excitation energy of the target is found to increase faster with beam energy than the one for the quasi-projectile

  3. Terwilliger and spin physics

    International Nuclear Information System (INIS)

    O'FAllon, J.R.

    1991-01-01

    The history of spin physics experiments is presented, with emphasis of Kent Terwilliger's involvement. Development of polarized beams and targets at the ZGS and AGS is recalled. P-P elastic scattering experiments are reviewed

  4. Transverse spin effects

    International Nuclear Information System (INIS)

    Ratcliffe, P.G.

    1993-01-01

    A discussion is presented of the role that transverse spin physics can play in providing information on the bound state dynamics in hadronic physics. Care is taken to distinguish between single- and double-spin measurements, each being discussed separately. In the case of single-spin effects it is stressed that as yet no satisfactory explanation has been provided within the framework if perturbative QCD which in fact generally predicts negligible effects. In order to clarify the situation experimental data at yet higher p T are necessary and semi-leptonic data could shed some light on the underlying scattering mechanisms. As regards double-spin correlations, the theoretical picture (although clouded by some ill-informed, often erroneous statements and even recent papers) is rather well understood and what is dearly missing is the experimental study of, for example, g 2 in deep-inelastic scattering. (author). 31 refs

  5. Spin polarized deuterium

    International Nuclear Information System (INIS)

    Glyde, H.R.; Hernadi, S.I.

    1986-01-01

    Several ground state properties of (electron) spin-polarized deuterium (D) such as the energy, single quasiparticle energies and lifetimes, Landau parameters and sound velocities are evaluated. The calculations begin with the Kolos-Wolneiwicz potential and use the Galitskii-FeynmanHartree-Fock (GFHF) approximation. The deuteron nucleas has spin I = 1, and spin states I/sub z/ = 1,0,-1. We explore D 1 , D 2 and D 3 in which, respectively, one spin state only is populated, two states are equally populated, and three states are equally populated. We find the GFHF describes D 1 well, but D 2 and D 3 less well. The Landau parameters, F/sub L/, are small compared to liquid 3 He and very small for doubly polarized D 1 (i.e. the F/sub L/ decrease with nuclear polarization)

  6. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  7. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Science.gov (United States)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-05-01

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  8. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    International Nuclear Information System (INIS)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-01-01

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems

  9. Exertional Rhabdomyolysis after Spinning

    OpenAIRE

    Jeong, Youjin; Kweon, Hyuk-Jung; Oh, Eun-Jung; Ahn, Ah-Leum; Choi, Jae-Kyung; Cho, Dong-Yung

    2016-01-01

    Any strenuous muscular exercise may trigger rhabdomyolysis. We report an episode of clinically manifested exertional rhabdomyolysis due to stationary cycling, commonly known as spinning. Reports of spinning-related rhabdomyolysis are rare in the English literature, and the current case appears to be the first such case reported in South Korea. A previously healthy 21-year-old Asian woman presented with severe thigh pain and reddish-brown urinary discoloration 24?48 hours after attending a spi...

  10. Higher Spins & Strings

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The conjectured relation between higher spin theories on anti de-Sitter (AdS) spaces and weakly coupled conformal field theories is reviewed. I shall then outline the evidence in favour of a concrete duality of this kind, relating a specific higher spin theory on AdS3 to a family of 2d minimal model CFTs. Finally, I shall explain how this relation fits into the framework of the familiar stringy AdS/CFT correspondence.

  11. Singly and Doubly Charged Projectile Fragments in Nucleus-Emulsion Collisions at Dubna Energy in the Framework of the Multi-Source Model

    International Nuclear Information System (INIS)

    Er-Qin, Wang; Fu-Hu, Liu; Jian-Xin, Sun; Rahim, Magda A.; Fakhraddin, S.

    2011-01-01

    The multiplicity distributions of projectile fragments emitted in interactions of different nuclei with emulsion are studied by using a multi-source model. Our calculated results show that the projectile fragments can be described by the model and each source contributes an exponential distribution. As the weighted sum of the folding result of many exponential distributions, a multi-component Erlang distribution is used to describe the experimental data. The relationship between the height (or width) of the distribution and the mass of the incident projectile, as well as the dependence of projectile fragments on target groups, are investigated too. (nuclear physics)

  12. Entangled spin chain

    Science.gov (United States)

    Salberger, Olof; Korepin, Vladimir

    We introduce a new model of interacting spin 1/2. It describes interactions of three nearest neighbors. The Hamiltonian can be expressed in terms of Fredkin gates. The Fredkin gate (also known as the controlled swap gate) is a computational circuit suitable for reversible computing. Our construction generalizes the model presented by Peter Shor and Ramis Movassagh to half-integer spins. Our model can be solved by means of Catalan combinatorics in the form of random walks on the upper half plane of a square lattice (Dyck walks). Each Dyck path can be mapped on a wave function of spins. The ground state is an equally weighted superposition of Dyck walks (instead of Motzkin walks). We can also express it as a matrix product state. We further construct a model of interacting spins 3/2 and greater half-integer spins. The models with higher spins require coloring of Dyck walks. We construct a SU(k) symmetric model (where k is the number of colors). The leading term of the entanglement entropy is then proportional to the square root of the length of the lattice (like in the Shor-Movassagh model). The gap closes as a high power of the length of the lattice [5, 11].

  13. Theory of spin Hall effect

    OpenAIRE

    Chudnovsky, Eugene M.

    2007-01-01

    An extension of Drude model is proposed that accounts for spin and spin-orbit interaction of charge carriers. Spin currents appear due to combined action of the external electric field, crystal field and scattering of charge carriers. The expression for spin Hall conductivity is derived for metals and semiconductors that is independent of the scattering mechanism. In cubic metals, spin Hall conductivity $\\sigma_s$ and charge conductivity $\\sigma_c$ are related through $\\sigma_s = [2 \\pi \\hbar...

  14. Considerations about projectile and target X-rays induced during heavy ion bombardment

    Science.gov (United States)

    Fernandes, F.; Bauer, D. V.; Duarte, A.; Ferrari, T. M.; Niekraszewicz, L. A. B.; Amaral, L.; Dias, J. F.

    2018-02-01

    In this work we present some results concerning the X-rays emitted by heavy ions during target bombardment. In this case, Cl4+ and Cl5+ ions with energies from 4 MeV to 10 MeV were employed to irradiate vitreous carbon planchets. Moreover, total X-ray production cross sections of titanium X-rays induced by chlorine ions were obtained as well for the same energy range. Only inner shell transitions were considered in the present work. The titanium target consisted of a thin film deposited over vitreous carbon planchets. The results indicate that the projectile X-ray yields increase as a function of the bombarding energy for the present energy range. Effects due to projectile charge state appears to be of minor importance at these low ion velocities. It is shown that a simple exponential function can represent the continuum background of such complex spectra. The chlorine transition rates Kβ/Kα obtained from chlorine acting as a projectile interacting with a carbon target are about half the value when compared to the chlorine Kβ/Kα ratios obtained when a LiCl target is bombarded with C+ and C3+ ions with energies from 2 MeV to 6 MeV. As far as the total X-ray production cross sections of Ti induced by chlorine ions are concerned, the ECPSSR theory underestimates the Ti total X-rays production cross sections by several orders of magnitude. The role of electron capture and possible mechanisms responsible for these effects are discussed.

  15. Performance of primary repair on colon injuries sustained from low-versus high-energy projectiles.

    Science.gov (United States)

    Lazovic, Ranko; Radojevic, Nemanja; Curovic, Ivana

    2016-04-01

    Among various reasons, colon injuries may be caused by low- or high-energy firearm bullets, with the latter producing a temporary cavitation phenomenon. The available treatment options include primary repair and two-stage management, but recent studies have shown that primary repair can be widely used with a high success rate. This paper investigates the differences in performance of primary repair on these two types of colon injuries. Two groups of patients who sustained colon injuries due to single gunshot wounds, were retrospectively categorized based on the type of bullet. Primary colon repair was performed in all patients selected based on the inclusion and exclusion criteria (Stone and Fabian's criteria). An almost absolute homogeneity was attained among the groups in terms of age, latent time before surgery, and four trauma indexes. Only one patient from the low-energy firearm projectile group (4%) developed a postsurgical complication versus nine patients (25.8%) from the high-energy group, showing statistically significant difference (p = 0.03). These nine patients experienced the following postsurgical complications: pneumonia, abscess, fistula, suture leakage, and one multiorgan failure with sepsis. Previous studies concluded that one-stage primary repair is the best treatment option for colon injuries. However, terminal ballistics testing determined the projectile's path through the body and revealed that low-energy projectiles caused considerably lesser damage than their high-energy counterparts. Primary colon repair must be performed definitely for low-energy short firearm injuries but very carefully for high-energy injuries. Given these findings, we suggest that the treatment option should be determined based not only on the bullet type alone but also on other clinical findings. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  16. Effect of a viscoelastic target on the impact response of a flat-nosed projectile

    Science.gov (United States)

    Liu, Hu; Yang, Jialing; Liu, Hua

    2018-02-01

    Taylor impact is a widely used strategy in which a flat-nosed projectile is fired onto a rigid anvil directly to determine the dynamic strength of rod specimens. Nowadays, the rigid anvil is often replaced by an output target bar to ensure the accuracy of measurement via recording strain signals in the output bar. For testing the dynamic strength of low-density materials, a low-impedance target bar, which exhibits viscoelastic characteristics is often employed. In this paper, an extended Taylor model is proposed to improve the idealization of treating the target bar as perfectly rigid material in the classic Taylor model, and the viscoelastic effect of the target bar is incorporated. The viscoelastic target bar is depicted by two elastic springs and one dashpot. Based on the plastic shock wave theory in the flat-nosed projectile associated with the viscoelastic wave analysis in the target bar, the viscoelastic effect of the target bar on the impact response of the flat-nosed projectile is investigated. The finite element simulation is also carried out to verify the theoretical model, and good agreement is found. The present theoretical model is also called the Taylor-cylinder Hopkinson impact, which provides a more accurate way to identify the dynamic material parameters. The dynamic responses of the present model are further compared with previous elastic and rigid target bar models. It is found that the viscoelastic effect of the target bar should be taken into consideration in the Taylor-cylinder Hopkinson impact test for low-impedance materials.

  17. Study of the nuclear structure far from stability: Coulomb excitation of neutron-rich Rb isotopes around N=60; Production of nuclear spin polarized beams using the tilted foils technique

    International Nuclear Information System (INIS)

    Sotty, C.

    2013-01-01

    The underlying structure in the region A ∼ 100, N ∼ 60 has been under intensive and extensive investigation, mainly by β-decay and γ-ray spectroscopy from fission processes. Around N ∼ 60, by adding just few neutrons, protons a rapid shape change occurs from spherical-like to well deformed g.s. shape. Shape coexistence has been observed in the Sr and Zr nuclei, and is expected to take place in the whole region. The mechanisms involved in the appearance of the deformation is not well understood. The interplay between down-sloping and up-sloping neutron Nilsson orbital is evoked as one of the main reasons for the sudden shape change. However, a clear identification of the active proton and neutron orbitals was still on-going. For that purpose, the neutron rich 93;95;97;99 Rb isotopes have been studied by Coulomb excitation at CERN (ISOLDE) using the REX-ISOLDE post-accelerator and the MINIBALL setup. The completely unknown structures of 97;99 Rb have been populated and observed. Prompt γ-ray coincidences of low-lying states have been observed and time-correlated in order to build level schemes. The associated transition strengths have been extracted with the GOSIA code. The observed matrix elements of the electromagnetic operator constituted new inputs of further theoretical calculations giving new insight on the involved orbitals. The sensitivity of such experiment can be increased using nuclear spin polarized radioactive ion beam. For that purpose the Tilted Foils Technique (TFT) of polarization has been investigated at CERN. This technique consists to spin polarize the ion beam, passing through thin foils tilted at an oblique angle with respect to the beam direction. The initially obtained atomic polarization is transferred to the nucleus by hyperfine interaction. This technique does not depend on the chemical nature of the element. Short lived nuclei can be polarized in-flight without any need to be stopped in a catcher. It opens up the possibility to

  18. Emission of projectile helium fragments in 14N interactions at 2.1 GeV/nucleon

    International Nuclear Information System (INIS)

    Bhanja, R.; Devi, N.A.L.; Joseph, R.R.; Ojha, I.D.; Shyam, M.; Tuli, S.K.

    1983-01-01

    An analysis of projectile helium fragments has been performed from the point of view of testing the factorization and limiting fragmentation hypothesis. An event-by-event examination of 923 interactions of 14 N in emulsion at 2.1 GeV per nucleon has been made for target identification. Events with projectile fragments have been divided into various reaction channels according to the multiplicity of He nuclei. The multiplicity distribution, angular structure and other properties of the projectile He fragments have been investigated to see the dependence on different targets and target excitation. The properties of He fragments emitted from the projectile have been found to remain independent of target in peripheral collision processes. The target and projectile breakup properties have been analysed in terms of the collision geometry. Gaussian distributions have been fitted to the projected angular distribution data for He fragments at various intervals of impact parameter and in different reaction channels. The properties of emitted He nuclei exhibit characteristic features of factorization and limiting fragmentation. (orig.)

  19. Study of momentum distributions for projectile fragments of 22Ne and 28Si nuclei in collisions with emulsion

    International Nuclear Information System (INIS)

    Abou-Steit, S.A.H.

    2000-01-01

    The charge and mass yield curves and the momentum distributions of the projectile fragments produced in the interactions of 4.1 A GeV/c 22 Ne and 4.5 A GeV/c 28 Si with emulsion have been studied. The overall charge distributions of the projectile fragments resulting from these interactions are presented. The dependence of the mass yield distributions of the projectile fragments on the impact parameter has been tested. The momentum distributions for the considered reactions have been investigated by two methods. First, the projected momentum distributions in the plane of the microscope have been achieved by fitting the projected angular distributions to gaussian ones. It has been found that the width of the distribution changes with the charge of the projectile fragment and it decreases with the increase of the projectile fragment charge. Secondly, the transverse momentum distributions have been compared with previous studies. The momentum distribution, in the forward cone, is a typically narrow gaussian one

  20. Fusion with projectiles form carbon to argon at energies between 20A and 60A MeV

    International Nuclear Information System (INIS)

    Galin, J.

    1986-03-01

    A review of the linear momentum transfer is made, considering essentially heavy targets and two important parameters in the entrance channel: the projectile energy and its mass. Over a broad mass range, and for energies up to 30A MeV, the momentum transfer scales with the mass of the projectile. At 30A MeV, the most probable value of projectile momentum transferred to the fused system is 80%, and this represents roughly 180 MEV/c per projectile nucleon. At higher bombarding energies, the momentum distribution in the fused systems, as observed from binary fission events, seems to depend on the mass of the projectile. Further studies are still needed to understand this behaviour. Finally, the decay of highly excited (E* approximately 500-800 MeV) fused systems, with masses close to 270 amu, is studied from the characteristics of both fusion fragments and light charged particles. It is shown that thermal equilibrium is reached before fission, even for such high energy deposition. However, the decay sequence is sensitive to dynamical effects and does not depend only on available phase space