WorldWideScience

Sample records for spin rotation technique

  1. Muon spin rotation in solids

    Science.gov (United States)

    Stronach, C. E.

    1983-01-01

    The muon spin rotation (MuSR) technique is used to probe the microscopic electron density in materials. High temperature MuSR and magnetization measurements in nickel are in progress to allow an unambiguous determination of the muon impurity interaction and the impurity induced change in local spin density. The first results on uniaxial stress induced frequency shifts in an Fe single crystal are also reported.

  2. Muon spin rotation studies

    Science.gov (United States)

    1984-01-01

    The bulk of the muon spin rotation research work centered around the development of the muon spin rotation facility at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL). The collimation system was both designed and fabricated at Virginia State University. This improved collimation system, plus improvements in detectors and electronics enabled the acquisition of spectra free of background out to 15 microseconds. There were two runs at Brookhaven in 1984, one run was devoted primarily to beam development and the other run allowed several successful experiments to be performed. The effect of uniaxial strain on an Fe(Si) crystal at elevated temperature (360K) was measured and the results are incorporated herein. A complete analysis of Fe pulling data taken earlier is included.

  3. Muon spin rotation in superconductors

    International Nuclear Information System (INIS)

    Gladisch, M.; Orth, H.; Putlitz, G. zu; Wahl, W.; Wigand, M.; Herlach, D.; Seeger, A.; Metz, H.; Teichler, H.

    1979-01-01

    By means of the muon spin rotation technique (μ + SR), the temperature dependence of the magnetic field inside the normal-conducting domains of high-purity tantalum crystals in the intermediate state has been measured in the temperature range 2.36 K + SR. Possible applications of these findings to the study of long-range diffusion of positive muons at low temperatures are indicated. (Auth.)

  4. Snakes and spin rotators

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1990-01-01

    The generalized snake configuration offers advantages of either shorter total snake length and smaller orbit displacement in the compact configuration or the multi-functions in the split configuration. We found that the compact configuration can save about 10% of the total length of a snake. On other hand, the spilt snake configuration can be used both as a snake and as a spin rotator for the helicity state. Using the orbit compensation dipoles, the spilt snake configuration can be located at any distance on both sides of the interaction point of a collider provided that there is no net dipole rotation between two halves of the snake. The generalized configuration is then applied to the partial snake excitation. Simple formula have been obtained to understand the behavior of the partial snake. Similar principle can also be applied to the spin rotators. We also estimate the possible snake imperfections are due to various construction errors of the dipole magnets. Accuracy of field error of better than 10 -4 will be significant. 2 refs., 5 figs

  5. COMMISSIONING SPIN ROTATORS IN RHIC

    International Nuclear Information System (INIS)

    MACKAY, W.W.; AHRENS, L.; BAI, M.; COURANT, E.D.; FISCHER, W.; HUANG, H.; LUCCIO, A.; MONTAG, C.; PILAT, F.; PTITSYN, V.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; VANZIEJTS, J.

    2003-01-01

    During the summer of 2002, eight superconducting helical spin rotators were installed into RHIC in order to control the polarization directions independently at the STAR and PHENIX experiments. Without the rotators, the orientation of polarization at the interaction points would only be vertical. With four rotators around each of the two experiments, we can rotate either or both beams from vertical into the horizontal plane through the interaction region and then back to vertical on the other side. This allows independent control for each beam with vertical, longitudinal, or radial polarization at the experiment. In this paper, we present results from the first run using the new spin rotators at PHENIX

  6. Effect of spin rotation coupling on spin transport

    International Nuclear Information System (INIS)

    Chowdhury, Debashree; Basu, B.

    2013-01-01

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied

  7. Muon spin rotation and other microscopic probes of spin-glass dynamics

    International Nuclear Information System (INIS)

    MacLaughlin, D.E.

    1980-01-01

    A number of different microscopic probe techniques have been employed to investigate the onset of the spin-glass state in dilute magnetic alloys. Among these are Moessbauer-effect spectroscopy, neutron scattering, ESR of the impurity spins, host NMR and, most recently, muon spin rotation and depolarization. Spin probes yield information on the microscopic static and dynamic behavior of the impurity spins, and give insight into both the spin freezing process and the nature of low-lying excitations in the ordered state. Microscopic probe experiments in spin glasses are surveyed, and the unique advantages of muon studies are emphasized

  8. Helical spin rotators and snakes for RHIC

    International Nuclear Information System (INIS)

    Ptitsin, V.I.; Shatunov, Yu.M.; Peggs, S.

    1995-01-01

    The RHIC collider, now under construction at BNL, will have the possibility of polarized proton-proton collisions up to a beam energy of 250 Gev. Polarized proton beams of such high energy can be only obtained with the use of siberian snakes, a special kind of spin rotator that rotates the particle spin by 180 degree around an axis lying in the horizontal plane. Siberian snakes help to preserve the beam polarization while numerous spin depolarizing resonances are crossed, during acceleration. In order to collide longitudinally polarized beams, it is also planned to install spin rotators around two interaction regions. This paper discusses snake and spin rotator designs based on sequences of four helical magnets. The schemes that were chosen to be applied at RHIC are presented

  9. Materials science with muon spin rotation

    Science.gov (United States)

    1988-01-01

    During this reporting period, the focus of activity in the Materials Science with Muon Spin Rotation (MSMSR) program was muon spin rotation studies of superconducting materials, in particular the high critical temperature and heavy-fermion materials. Apart from these studies, work was continued on the analysis of muon motion in metal hydrides. Results of these experiments are described in six papers included as appendices.

  10. T violating neutron spin rotation asymmetry

    International Nuclear Information System (INIS)

    Masuda, Yasushiro.

    1993-01-01

    A new experiment on T-violation is proposed, where a spin-rotating-neutron transmission through a polarized nuclear target is measuered. The method to control the neutron spin is discussed for the new T-violation experiment. The present method has possibility to provide us more accurate T-violation information than the neutron EDM measurement

  11. Measurement of the magnetic moment of the positive muon by a stroboscopic muon-spin-rotation technique

    International Nuclear Information System (INIS)

    Klempt, E.; Schulze, R.; Wolf, H.; Camani, M.; Gygax, F.N.; Rueegg, W.; Schenck, A.; Schilling, H.

    1982-01-01

    A new determination of the magnetic moment of the positive muon in units of the magnetic moment of the proton is presented. The Larmor precession of positive muons in liquid bromine was observed by a stroboscopic technique in a field of 0.75 T and combined with concomitant proton NMR measurements in the same chemical environment. The stroboscopic method allows use of the full muon stopping rate available at the Schweizerisches Institut fuer Nuklearforschung (SIN) muon channel. Moreover, it permits an intrinsically precise determination of muon Larmor frequency and proton NMR frequency measuring the magnetic field by comparison with the stable reference frequency of the SIN accelerator (ΔΩ/Ωroughly-equal10 -8 ). Two different bromine targets were used which allowed an unambiguous determination of the chemical field shift experienced by the muons. One target contained pure and water-free liquid bromine (Br 2 ), where stopped muons form (μ + e - )Br molecules. The other target was slightly contaminated with water; there a chemical reaction chain places the muons into (μ + e - )HO molecules. The diamagnetic shielding of protons in the analogous molecules HBr and H 2 O in liquid bromine was measured by high-resolution NMR. Values for the isotopic shift of the diamagnetic shielding, when protons are replaced by muons, are available from quantum chemical calculations. After application of the chemical-shift corrections, the results from the two different bromine targets are consistent. The final result is μ/sub μ//μ/sub p/ = 3.183 344 1(17) (or +- 0.53 ppm). This value agrees with other recent precision determinations of μ/sub μ//μ/sub p/. For the muon mass the present result implies m/sub μ//m/sub e/ = 206.768 35(11)

  12. Spin Tunneling in a Rotating Nanomagnet

    Science.gov (United States)

    O'Keeffe, Michael; Chudnovsky, Eugene; Lehman College Theoretical Condensed Matter Physics Team

    2011-03-01

    We study spin tunneling in a magnetic nanoparticle with biaxial anisotropy that is free to rotate about its anisotropy axis. Exact instanton of the coupled equations of motion is found that connects degenerate classical energy minima. We show that mechanical freedom of the particle renormalizes magnetic anisotropy and increases the tunnel splitting. M. F. O'Keeffe and E. M. Chudnovsky, cond-mat, arXiv:1011.3134.

  13. PREFACE: Muon spin rotation, relaxation or resonance

    Science.gov (United States)

    Heffner, Robert H.; Nagamine, Kanetada

    2004-10-01

    To a particle physicist a muon is a member of the lepton family, a heavy electron possessing a mass of about 1/9 that of a proton and a spin of 1/2, which interacts with surrounding atoms and molecules electromagnetically. Since its discovery in 1937, the muon has been put to many uses, from tests of special relativity to deep inelastic scattering, from studies of nuclei to tests of weak interactions and quantum electrodynamics, and most recently, as a radiographic tool to see inside heavy objects and volcanoes. In 1957 Richard Garwin and collaborators, while conducting experiments at the Columbia University cyclotron to search for parity violation, discovered that spin-polarized muons injected into materials might be useful to probe internal magnetic fields. This eventually gave birth to the modern field of muSR, which stands for muon spin rotation, relaxation or resonance, and is the subject of this special issue of Journal of Physics: Condensed Matter. Muons are produced in accelerators when high energy protons (generally >500 MeV) strike a target like graphite, producing pions which subsequently decay into muons. Most experiments carried out today use relatively low-energy (~4 MeV), positively-charged muons coming from pions decaying at rest in the skin of the production target. These muons have 100% spin polarization, a range in typical materials of about 180 mg cm-2, and are ideal for experiments in condensed matter physics and chemistry. Negatively-charged muons are also occasionally used to study such things as muonic atoms and muon-catalysed fusion. The muSR technique provides a local probe of internal magnetic fields and is highly complementary to inelastic neutron scattering and nuclear magnetic resonance, for example. There are four primary muSR facilities in the world today: ISIS (Didcot, UK), KEK (Tsukuba, Japan), PSI (Villigen, Switzerland) and TRIUMF (Vancouver, Canada), serving about 500 researchers world-wide. A new facility, JPARC (Tokai, Japan

  14. NMR in rotating magnetic fields: Magic angle field spinning

    Energy Technology Data Exchange (ETDEWEB)

    Sakellariou, D.; Meriles, C.; Martin, R.; Pines, A.

    2004-09-10

    Magic angle sample spinning has been one of the cornerstones in high-resolution solid state NMR. Spinning frequencies nowadays have increased by at least one order of magnitude over the ones used in the first experiments and the technique has gained tremendous popularity. It is currently a routine procedure in solid-state NMR, high-resolution liquid-state NMR and solid-state MRI. The technique enhances the spectral resolution by averaging away rank 2 anisotropic spin interactions thereby producing isotropic-like spectra with resolved chemical shifts and scalar couplings. Andrew proposed that it should be possible to induce similar effects in a static sample if the direction of the magnetic field is varied, e.g., magic-angle rotation of the B0 field (B0-MAS) and this has been recently demonstrated using electromagnetic field rotation. Here we discuss on the possibilities to perform field rotation using alternative hardware, together with spectroscopic methods to recover isotropic resolution even in cases where the field is not rotating at the magic angle. Extension to higher magnetic fields would be beneficial in situations where the physical manipulation of the sample is inconvenient or impossible. Such situations occur often in materials or biomedical samples where ''ex-situ'' NMR spectroscopy and imaging analysis is needed.

  15. More on rotations as spin matrix polynomials

    International Nuclear Information System (INIS)

    Curtright, Thomas L.

    2015-01-01

    Any nonsingular function of spin j matrices always reduces to a matrix polynomial of order 2j. The challenge is to find a convenient form for the coefficients of the matrix polynomial. The theory of biorthogonal systems is a useful framework to meet this challenge. Central factorial numbers play a key role in the theoretical development. Explicit polynomial coefficients for rotations expressed either as exponentials or as rational Cayley transforms are considered here. Structural features of the results are discussed and compared, and large j limits of the coefficients are examined

  16. Spin current pumped by a rotating magnetic field in zigzag graphene nanoribbons

    International Nuclear Information System (INIS)

    Wang, J; Chan, K S

    2010-01-01

    We study electron spin resonance in zigzag graphene nanoribbons by applying a rotating magnetic field on the system without any bias. By using the nonequilibrium Green's function technique, the spin-resolved pumped current is explicitly derived in a rotating reference frame. The pumped spin current density increases with the system size and the intensity of the transverse rotating magnetic field. For graphene nanoribbons with an even number of zigzag chains, there is a nonzero pumped charge current in addition to the pumped spin current owing to the broken spatial inversion symmetry of the system, but its magnitude is much smaller than the spin current. The short-ranged static disorder from either impurities or defects in the ribbon can depress the spin current greatly due to the localization effect, whereas the long-ranged disorder from charge impurities can avoid inter-valley scattering so that the spin current can survive in the strong disorder for the single-energy mode.

  17. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  18. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    International Nuclear Information System (INIS)

    Mueller, K.T.; California Univ., Berkeley, CA

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-1/2 nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids

  19. Predicting superdeformed rotational band-head spin in A∼ 190 ...

    Indian Academy of Sciences (India)

    The band-head spin (0) of superdeformed (SD) rotational bands in ∼ 190 mass region is predicted using the variable moment of inertia (VMI) model for 66 SD rotational bands. The superdeformed rotational bands exhibited considerably good rotational property and rigid behaviour. The transition energies were ...

  20. Generation of spin currents due to mechanical rotation

    Science.gov (United States)

    Matsuo, Mamoru; Ieda, Jun'ichi; Saitoh, Eiji; Maekawa, Sadamichi

    2011-03-01

    In the frontier of spintronics, much attention is paid on the control and generation of spin currents. Due to the exciting progress of nanomechatrononics, the importance of mechanical manipulation of electron spin will increase. We discuss theoretically effects of mechanical rotation on spin currents using generally covariant Dirac equation with gauge fields in the non-relativistic limit. We derive semi-classical equations of motion for a wavepacket of electrons in two dimentional planes subject to the spin-orbit interaction argumented by a mechanical rotation. We show that a circular spin current is created by the mechanical rotation with a magnetic field. The magnitude of the spin current becomes 108A/m2 in Pt with the magnetic field ~ 1 T and the rotational velocity ~ 1 kHz.

  1. Spin-stabilized magnetic levitation without vertical axis of rotation

    Science.gov (United States)

    Romero, Louis [Albuquerque, NM; Christenson, Todd [Albuquerque, NM; Aaronson, Gene [Albuquerque, NM

    2009-06-09

    The symmetry properties of a magnetic levitation arrangement are exploited to produce spin-stabilized magnetic levitation without aligning the rotational axis of the rotor with the direction of the force of gravity. The rotation of the rotor stabilizes perturbations directed parallel to the rotational axis.

  2. Studies of superconducting materials with muon spin rotation

    Science.gov (United States)

    Davis, Michael R.; Stronach, Carey E.; Kossler, W. J.; Schone, H. E.; Yu, X. H.; Uemura, Y. J.; Sternlieb, B. J.; Kempton, J. R.; Oostens, J.; Lankford, W. F.

    1989-01-01

    The muon spin rotation/relaxation technique was found to be an exceptionally effective means of measuring the magnetic properties of superconductors, including the new high temperature superconductor materials, at the microscopic level. The technique directly measures the magnetic penetration depth (type II superconductors (SC's)) and detects the presence of magnetic ordering (antiferromagnetism or spin-glass ordering were observed in some high temperature superconductor (HTSC's) and in many closely related compounds). Extensive studies of HTSC materials were conducted by the Virginia State University - College of William and Mary - Columbia University collaboration at Brookhaven National Laboratory and TRIUMF (Vancouver). A survey of LaSrCuO and YBaCaCuO systems shows an essentially linear relationship between the transition temperature T(sub c) and the relaxation rate. This appears to be a manifestation of the proportionality between T(sub c) and the Fermi energy, which suggests a high energy scale for the SC coupling, and which is not consistent with the weak coupling of phonon-mediated SC. Studies of LaCuO and YBaCuO parent compounds show clear evidence of antiferromagnetism. YBa2Cu(3-x)CO(x)O7 shows the simultaneous presence of spin-glass magnetic ordering and superconductivity. Three-dimensional SC, (Ba, K) BiO3, unlike the layered CuO-based compounds, shows no suggestion of magnetic ordering. Experimental techniques and theoretical implications are discussed.

  3. Spins of superdeformed rotational bands in Tl isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Dadwal, Anshul; Mittal, H.M. [Dr. B.R. Ambedkar National Institute of Technology, Jalandhar (India)

    2017-01-15

    The two-parameter model defined for even-even nuclei viz. soft-rotor formula is used to assign the band-head spin of the 17 rotational bands in Tl isotopes. The least-squares fitting method is employed to obtain the spins of these bands in the A ∝ 190 mass region. The calculated transition energies are found to depend sensitively on the proposed spin. Whenever a correct spin assignment is made, the calculated and experimental transition energies coincide very well. The dynamic moment of inertia is also calculated and its variation with rotational frequency is explored. (orig.)

  4. Numerical studies of Siberian snakes and spin rotators for RHIC

    International Nuclear Information System (INIS)

    Luccio, A.

    1995-01-01

    For the program of polarized protons in RHIC, two Siberian snakes and four spin rotators per ring will be used. The Snakes will produce a complete spin flip. Spin Rotators, in pairs, will rotate the spin from the vertical direction to the horizontal plane at a given insertion, and back to the vertical after the insertion. Snakes, 180 degrees apart and with their axis of spin precession at 90 degrees to each other, are an effective means to avoid depolarization of the proton beam in traversing resonances. Classical snakes and rotators are made with magnetic solenoids or with a sequence of magnetic dipoles with fields alternately directed in the radial and vertical direction. Another possibility is to use helical magnets, essentially twisted dipoles, in which the field, transverse the axis of the magnet, continuously rotates as the particles proceed along it. After some comparative studies, the authors decided to adopt for RHIC an elegant solution with four helical magnets both for the snakes and the rotators proposed by Shatunov and Ptitsin. In order to simplify the construction of the magnets and to minimize cost, four identical super conducting helical modules will be used for each device. Snakes will be built with four right-handed helices. Spin rotators with two right-handed and two left-handed helices. The maximum field will be limited to 4 Tesla. While small bore helical undulators have been built for free electron lasers, large super conducting helical magnets have not been built yet. In spite of this difficulty, this choice is dictated by some distinctive advantages of helical over more conventional transverse snakes/rotators: (i) the devices are modular, they can be built with arrangements of identical modules, (ii) the maximum orbit excursion in the magnet is smaller, (iii) orbit excursion is independent from the separation between adjacent magnets, (iv) they allow an easier control of the spin rotation and the orientation of the spin precession axis

  5. Coherent spin-rotational dynamics of oxygen superrotors

    Science.gov (United States)

    Milner, Alexander A.; Korobenko, Aleksey; Milner, Valery

    2014-09-01

    We use state- and time-resolved coherent Raman spectroscopy to study the rotational dynamics of oxygen molecules in ultra-high rotational states. While it is possible to reach rotational quantum numbers up to N≈ 50 by increasing the gas temperature to 1500 K, low population levels and gas densities result in correspondingly weak optical response. By spinning {{O}2} molecules with an optical centrifuge, we efficiently excite extreme rotational states with N≤slant 109 in high-density room temperature ensembles. Fast molecular rotation results in the enhanced robustness of the created rotational wave packets against collisions, enabling us to observe the effects of weak spin-rotation coupling in the coherent rotational dynamics of oxygen. The decay rate of spin-rotational coherence due to collisions is measured as a function of the molecular angular momentum and its dependence on the collisional adiabaticity parameter is discussed. We find that at high values of N, the rotational decoherence of oxygen is much faster than that of the previously studied non-magnetic nitrogen molecules, pointing at the effects of spin relaxation in paramagnetic gases.

  6. Spin currents of charged Dirac particles in rotating coordinates

    Science.gov (United States)

    Dayi, Ö. F.; Yunt, E.

    2018-03-01

    The semiclassical Boltzmann transport equation of charged, massive fermions in a rotating frame of reference, in the presence of external electromagnetic fields is solved in the relaxation time approach to establish the distribution function up to linear order in the electric field in rotating coordinates, centrifugal force and the derivatives. The spin and spin current densities are calculated by means of this distribution function at zero temperature up to the first order. It is shown that the nonequilibrium part of the distribution function yields the spin Hall effect for fermions constrained to move in a plane perpendicular to the angular velocity and magnetic field. Moreover it yields an analogue of Ohm's law for spin currents whose resistivity depends on the external magnetic field and the angular velocity of the rotating frame. Spin current densities in three-dimensional systems are also established.

  7. Birefringence (spin rotation and spin dichroism) of high-energy deuterons

    International Nuclear Information System (INIS)

    Baryshevskij, V.G.; Rovba, A.A.

    2016-01-01

    The phenomenon of birefringence (spin rotation and spin dichroism) of high-energy deuterons, currently observed in experiments, is the macroscopic quantum effect similar to the birefringence effect known in optics. This paper considers the contribution coming to the spin dichroism effect from the interaction of deuteron electric quadrupole moment and nuclear electric field. The effect proves to be responsive to the behavior of deuteron ground state wave functions at a small distance. [ru

  8. High spin rotational bands in Zn

    Indian Academy of Sciences (India)

    and 46 new transitions (marked by an asterisk in figure 1) have been observed and prop- erly placed in the level scheme, thereby the level scheme is extended up to an excitation energy of 10.574 MeV and spin-parity of (41/2· ). This data establishes transitions at. 1074, 1155, 1227, and 1349 keV which form the upper part ...

  9. Magnetic field devices for neutron spin transport and manipulation in precise neutron spin rotation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado-Velázquez, M. [Posgrado en Ciencias Físicas, Universidad Nacional Autónoma de México, 04510 (Mexico); Barrón-Palos, L., E-mail: libertad@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 (Mexico); Crawford, C. [University of Kentucky, Lexington, KY 40506 (United States); Snow, W.M. [Indiana University, Bloomington, IN 47405 (United States)

    2017-05-11

    The neutron spin is a critical degree of freedom for many precision measurements using low-energy neutrons. Fundamental symmetries and interactions can be studied using polarized neutrons. Parity-violation (PV) in the hadronic weak interaction and the search for exotic forces that depend on the relative spin and velocity, are two questions of fundamental physics that can be studied via the neutron spin rotations that arise from the interaction of polarized cold neutrons and unpolarized matter. The Neutron Spin Rotation (NSR) collaboration developed a neutron polarimeter, capable of determining neutron spin rotations of the order of 10{sup −7} rad per meter of traversed material. This paper describes two key components of the NSR apparatus, responsible for the transport and manipulation of the spin of the neutrons before and after the target region, which is surrounded by magnetic shielding and where residual magnetic fields need to be below 100 μG. These magnetic field devices, called input and output coils, provide the magnetic field for adiabatic transport of the neutron spin in the regions outside the magnetic shielding while producing a sharp nonadiabatic transition of the neutron spin when entering/exiting the low-magnetic-field region. In addition, the coils are self contained, forcing the return magnetic flux into a compact region of space to minimize fringe fields outside. The design of the input and output coils is based on the magnetic scalar potential method.

  10. The first muon spin rotation experiment

    CERN Document Server

    Garwin, Richard L

    2003-01-01

    The February 15, 1957 issue of Physical Review Letters shows the first muon precession curve resulting from the stopping of `85 MeV' muons in graphite, and the resulting counting rate in a gate of fixed delay, duration, and orientation, as a function of an applied vertical magnetic field. The purpose of the four-day experiment was to test the conservation of parity in the weak interactions. It involved the sudden recognition that existing muon beams would be polarized if parity were not conserved, together with the appreciation that the angular distribution of decay electrons from the population of stopped muons could be observed (much more reliably and sensitively) by the variation with time or current of the detections in a fixed counter telescope than by the measurement of the decay asymmetry of nominally fixed muon spins. This retrospective paper explains the context, the state of the art at the time, and what we expected as a consequence of this experiment. We went on to study more accurately the magneti...

  11. The first muon spin rotation experiment

    International Nuclear Information System (INIS)

    Garwin, Richard L.

    2003-01-01

    The February 15, 1957 issue of Physical Review Letters shows the first muon precession curve resulting from the stopping of '85 MeV' muons in graphite, and the resulting counting rate in a gate of fixed delay, duration, and orientation, as a function of an applied vertical magnetic field. The purpose of the four-day experiment was to test the conservation of parity in the weak interactions. It involved the sudden recognition that existing muon beams would be polarized if parity were not conserved, together with the appreciation that the angular distribution of decay electrons from the population of stopped muons could be observed (much more reliably and sensitively) by the variation with time or current of the detections in a fixed counter telescope than by the measurement of the decay asymmetry of nominally fixed muon spins. This retrospective paper explains the context, the state of the art at the time, and what we expected as a consequence of this experiment. We went on to study more accurately the magnetic moment of the muon, its gyromagnetic ratio--g --and only to a small extent used μSR to investigate the environment of the muon in matter. Much of the paper treats the instrumentation of the time--especially that adopted in the early 1950s. The essential tools of nanosecond-range coincidence circuits and adiabatic light pipes for scintillation counters are discussed. The paper closes with some later work of the author and his colleagues--measurements of the magnetic moment of the muon and especially the CERN measurement of muon g-2. An expanded version of this presentation is posted at http://www.fas.org/RLG

  12. Spin and rotations in Galois field quantum mechanics

    International Nuclear Information System (INIS)

    Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; Takeuchi, Tatsu

    2013-01-01

    We discuss the properties of Galois field quantum mechanics constructed on a vector space over the finite Galois field GF(q). In particular, we look at two-level systems analogous to spin, and discuss how SO(3) rotations could be embodied in such a system. We also consider two-particle ‘spin’ correlations and show that the Clauser–Horne-Shimony–Holt inequality is nonetheless not violated in this model. (paper)

  13. Spin-rotation and NMR shielding constants in HCl

    International Nuclear Information System (INIS)

    Jaszuński, Michał; Repisky, Michal; Demissie, Taye B.; Komorovsky, Stanislav; Malkin, Elena; Ruud, Kenneth; Garbacz, Piotr; Jackowski, Karol; Makulski, Włodzimierz

    2013-01-01

    The spin-rotation and nuclear magnetic shielding constants are analysed for both nuclei in the HCl molecule. Nonrelativistic ab initio calculations at the CCSD(T) level of approximation show that it is essential to include relativistic effects to obtain spin-rotation constants consistent with accurate experimental data. Our best estimates for the spin-rotation constants of 1 H 35 Cl are C Cl   = −53.914 kHz and C H   = 42.672 kHz (for the lowest rovibrational level). For the chlorine shielding constant, the ab initio value computed including the relativistic corrections, σ(Cl) = 976.202 ppm, provides a new absolute shielding scale; for hydrogen we find σ(H) = 31.403 ppm (both at 300 K). Combining the theoretical results with our new gas-phase NMR experimental data allows us to improve the accuracy of the magnetic dipole moments of both chlorine isotopes. For the hydrogen shielding constant, including relativistic effects yields better agreement between experimental and computed values

  14. High spin rotations of nuclei with the harmonic oscillator potential

    International Nuclear Information System (INIS)

    Cerkaski, M.; Szymanski, Z.

    1978-01-01

    Calculations of the nuclear properties at high angular momentum have been performed recently. They are based on the liquid drop model of a nucleus and/or on the assumption of the single particle shell structure of the nucleonic motion. The calculations are usually complicated and involve long computer codes. In this article we shall discuss general trends in fast rotating nuclei in the approximation of the harmonic oscillator potential. We shall see that using the Bohr Mottelson simplified version of the rigorous solution of Valatin one can perform a rather simple analysis of the rotational bands, structure of the yrast line, moments of inertia etc. in the rotating nucleus. While the precision fit to experimental data in actual nuclei is not the purpose of this paper, one can still hope to reach some general understanding within the model of the simple relations resulting in nuclei at high spin. (author)

  15. Cycloid trajectory for a spin in a rotating magnetic field

    Science.gov (United States)

    Oh, Sangchul; Hu, Xuedong

    2013-03-01

    A cycloid is a curve traced by a point on the rim of a circle rolling on a straight (or in general, a base) line. In classical mechanics, it is known as the solution of two famous problems: the brachistochrone (least-time) curve and tautochrone (equal-time) curve. Here we show that a cycloid is the quantum trajectory on the Bloch sphere when a spin is dragged along by a rotating magnetic field. Here an imaginary circle, whose radius is determined by how fast the magnetic field is rotating, rolls on the base line of the rotating magnetic field on the Bloch sphere. If the magnetic field rotates slower, the radius of the rolling circle shrinks (to a point at the adiabatic limit, when the trajectory traces a circle that spans a solid angle proportional to the Berry phase). We find that like classical cycloid curves, the curtate cycloid on a Bloch sphere is generated for initial states within a circle on the Bloch sphere surface, and a prolate cycloid results from initial states outside of this circle. If the initial state is given by the center of the circle, the quantum trajectory is a line of a constant latitude on the Bloch sphere, parallel to the curve of the rotating magnetic field.

  16. Spin-down of a rotating air hockey disk

    Science.gov (United States)

    Weidman, Patrick; Julien, Keith

    2013-11-01

    We extend the work of Weidman (APS, DFD 2008) on the steady float height of a rotating disk to formulate and solve for the unsteady behavior of spin-down to rest. A similarity reduction of the Navier-Stokes equations reduces the problem to a coupled pair of partial differential equations in space and time. For a disk of fixed radius and density, the PDE's must be solved taking into account constraints imposed by the aerodynamic torque and aerodynamic lift. Thus the full solution for the unsteady azimuthal and axial dynamics of the disk can be obtained for given initial values of disk Reynolds number R = W h / ν and dimensionless disk rotation speed S =√{ 2} Ωh / W , where h is the float height, W is the fluid levitation velocity, Ω is the disk rotation rate, and ν is the kinematic viscosity of the fluid. Integrations reveal interesting families of solutions when plotted over steady solution curves in R- S parameter space and vindicate the quasi-steady spin-down theory reported in earlier work, valid only in a restricted region of parameter space.

  17. Demonstrating multibit magnetic memory in the Fe8 high-spin molecule by muon spin rotation

    Science.gov (United States)

    Shafir, Oren; Keren, Amit; Maegawa, Satoru; Ueda, Miki; Amato, Alex; Baines, Chris

    2005-09-01

    We develop a method to detect the quantum nature of high-spin molecules using muon spin rotation and a three-step field cycle ending always with the same field. We use this method to demonstrate that the Fe8 molecule can remember six (possibly eight) different histories (bits). A wide range of fields can be used to write a particular bit, and the information is stored in discrete states. Therefore, Fe8 can be used as a model compound for multibit magnetic memory. Our experiment also paves the way for magnetic quantum tunneling detection in films.

  18. Relativistic theory of nuclear spin-rotation tensor with kinetically balanced rotational London orbitals.

    Science.gov (United States)

    Xiao, Yunlong; Zhang, Yong; Liu, Wenjian

    2014-10-28

    Both kinetically balanced (KB) and kinetically unbalanced (KU) rotational London orbitals (RLO) are proposed to resolve the slow basis set convergence in relativistic calculations of nuclear spin-rotation (NSR) coupling tensors of molecules containing heavy elements [Y. Xiao and W. Liu, J. Chem. Phys. 138, 134104 (2013)]. While they perform rather similarly, the KB-RLO Ansatz is clearly preferred as it ensures the correct nonrelativistic limit even with a finite basis. Moreover, it gives rise to the same "direct relativistic mapping" between nuclear magnetic resonance shielding and NSR coupling tensors as that without using the London orbitals [Y. Xiao, Y. Zhang, and W. Liu, J. Chem. Theory Comput. 10, 600 (2014)].

  19. Operation of the MAMI accelerator with a Wien filter based spin rotation system

    Energy Technology Data Exchange (ETDEWEB)

    Tioukine, V. [Institut fuer Kernphysik, Johannes-Gutenberg Universitaet Mainz, J.-J. Becherweg 45, D-55099 Mainz (Germany)]. E-mail: tioukine@kph.uni-mainz.de; Aulenbacher, K. [Institut fuer Kernphysik, Johannes-Gutenberg Universitaet Mainz, J.-J. Becherweg 45, D-55099 Mainz (Germany)

    2006-12-01

    A compact spin rotation system based on a Wien filter has been installed at the Mainz microtron accelerator (MAMI). Under operation with varying spin rotation angles a significant change of focal length together with a shift of the central beam trajectory is expected. We demonstrate that these effects can be kept under control. As a consequence operation with spin rotation angles between 0{sup o} and {+-}90{sup o} has been achieved without compromising the beam quality and operational stability of MAMI.

  20. Operation of the MAMI accelerator with a Wien filter based spin rotation system

    Science.gov (United States)

    Tioukine, V.; Aulenbacher, K.

    2006-12-01

    A compact spin rotation system based on a Wien filter has been installed at the Mainz microtron accelerator (MAMI). Under operation with varying spin rotation angles a significant change of focal length together with a shift of the central beam trajectory is expected. We demonstrate that these effects can be kept under control. As a consequence operation with spin rotation angles between 0° and ±90° has been achieved without compromising the beam quality and operational stability of MAMI.

  1. Experimental verification of the rotational type of chiral spin spiral structures by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Haze, Masahiro; Yoshida, Yasuo; Hasegawa, Yukio

    2017-10-16

    We report on experimental verification of the rotational type of chiral spin spirals in Mn thin films on a W(110) substrate using spin-polarized scanning tunneling microscopy (SP-STM) with a double-axis superconducting vector magnet. From SP-STM images using Fe-coated W tips magnetized to the out-of-plane and [001] directions, we found that both Mn mono- and double-layers exhibit cycloidal rotation whose spins rotate in the planes normal to the propagating directions. Our results agree with the theoretical prediction based on the symmetry of the system, supporting that the magnetic structures are driven by the interfacial Dzyaloshinskii-Moriya interaction.

  2. Predicting superdeformed rotational band-head spin in A ∼ 190 ...

    Indian Academy of Sciences (India)

    The band-head spin (0) of superdeformed (SD) rotational bands in ∼ 190 mass region is predicted using the variable moment of inertia (VMI) model for 66 SD rotational bands. The superdeformed rotational bands exhibited considerably good rotational property and rigid behaviour. The transition energies were ...

  3. Magnetic pseudo-fields in a rotating electron-nuclear spin system

    Science.gov (United States)

    Wood, A. A.; Lilette, E.; Fein, Y. Y.; Perunicic, V. S.; Hollenberg, L. C. L.; Scholten, R. E.; Martin, A. M.

    2017-11-01

    Analogous to the precession of a Foucault pendulum observed on the rotating Earth, a precessing spin observed in a rotating frame of reference appears frequency-shifted. This can be understood as arising from a magnetic pseudo-field in the rotating frame that nevertheless has physically significant consequences, such as the Barnett effect. To detect these pseudo-fields, a rotating-frame sensor is required. Here we use quantum sensors, nitrogen-vacancy (NV) centres, in a rapidly rotating diamond to detect pseudo-fields in the rotating frame. Whereas conventional magnetic fields induce precession at a rate proportional to the gyromagnetic ratio, rotation shifts the precession of all spins equally, and thus primarily affect 13C nuclear spins in the sample. We are thus able to explore these effects via quantum sensing in a rapidly rotating frame, and define a new approach to quantum control using rotationally induced nuclear spin-selective magnetic fields. This work provides an integral step towards realizing precision rotation sensing and quantum spin gyroscopes.

  4. Spin rotation function in a microscopic non-relativistic optical model

    International Nuclear Information System (INIS)

    Bauhoff, W.

    1984-01-01

    A microscopic optical potential, which is calculated non-relativistically with a density-dependent effective force, is used to calculate cross-section, polarization and spin-rotation function for elastic proton scattering from 40 Ca at 160 MeV and 497 MeV. At 160 MeV, the agreement to the data is comparable to phenomenological fits, and the spin-rotation can be used to distinguish between microscopic and Woods-Saxon potentials. A good fit to the spin-rotation function results at 497 MeV, whereas the polarization data are not well reproduced

  5. Spin annihilations of and spin sifters for transverse electric and transverse magnetic waves in co- and counter-rotations.

    Science.gov (United States)

    Lee, Hyoung-In; Mok, Jinsik

    2014-01-01

    This study is motivated in part to better understand multiplexing in wireless communications, which employs photons carrying varying angular momenta. In particular, we examine both transverse electric (TE) and transverse magnetic (TM) waves in either co-rotations or counter-rotations. To this goal, we analyze both Poynting-vector flows and orbital and spin parts of the energy flow density for the combined fields. Consequently, we find not only enhancements but also cancellations between the two modes. To our surprise, the photon spins in the azimuthal direction exhibit a complete annihilation for the counter-rotational case even if the intensities of the colliding waves are of different magnitudes. In contrast, the orbital flow density disappears only if the two intensities satisfy a certain ratio. In addition, the concepts of spin sifters and enantiomer sorting are illustrated.

  6. Spin annihilations of and spin sifters for transverse electric and transverse magnetic waves in co- and counter-rotations

    Directory of Open Access Journals (Sweden)

    Hyoung-In Lee

    2014-10-01

    Full Text Available This study is motivated in part to better understand multiplexing in wireless communications, which employs photons carrying varying angular momenta. In particular, we examine both transverse electric (TE and transverse magnetic (TM waves in either co-rotations or counter-rotations. To this goal, we analyze both Poynting-vector flows and orbital and spin parts of the energy flow density for the combined fields. Consequently, we find not only enhancements but also cancellations between the two modes. To our surprise, the photon spins in the azimuthal direction exhibit a complete annihilation for the counter-rotational case even if the intensities of the colliding waves are of different magnitudes. In contrast, the orbital flow density disappears only if the two intensities satisfy a certain ratio. In addition, the concepts of spin sifters and enantiomer sorting are illustrated.

  7. Spin Alignment and Collective Moment of Inertia of the Basic Rotational Band in the Cranking Model

    OpenAIRE

    Yoshihide, TANAKA; Department of Physics, Osaka City University

    1982-01-01

    By making an attempt to separate the intrinsic particle and collective rotational motions in the cranking model, the spin alignment and the collective moment of inertia characterizing the basic rotational bands are defined, and investigated by using a simple i_ shell model. The result of the calculation indicates that the collective moment of inertia decreases under the presence of the quasiparticles which are responsible for the increase of the spin alignment of the band.

  8. Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol

    Science.gov (United States)

    Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.; Ilyushin, V. V.; Alekseev, E. A.; Mescheryakov, A. A.; Hougen, J. T.; Xu, Li-Hong

    2016-07-01

    This paper presents an explanation based on torsionally mediated proton-spin-overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = - 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric "torsionally mediated spin-rotation operators" by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e±niα. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A1 and A2 states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.

  9. Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol

    International Nuclear Information System (INIS)

    Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.; Ilyushin, V. V.; Mescheryakov, A. A.; Alekseev, E. A.; Hougen, J. T.; Xu, Li-Hong

    2016-01-01

    This paper presents an explanation based on torsionally mediated proton-spin–overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = − 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric “torsionally mediated spin-rotation operators” by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e ±niα . The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A 1 and A 2 states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.

  10. Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Gutierrez, Bernardo, E-mail: bzuniga.51@gmail.com [Departamento de Ciencias Computacionales, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, C.P. 44430 Guadalajara, Jalisco (Mexico); Camacho-Gonzalez, Monica [Universidad Tecnológica de Tecámac, División A2, Procesos Industriales, Carretera Federal México Pachuca Km 37.5, Col. Sierra Hermosa, C.P. 55740 Tecámac, Estado de México (Mexico); Bendana-Castillo, Alfonso [Universidad Tecnológica de Tecámac, División A3, Tecnologías de la Información y Comunicaciones, Carretera Federal México Pachuca Km 37.5, Col. Sierra Hermosa, C.P. 55740 Tecámac, Estado de México (Mexico); Simon-Bastida, Patricia [Universidad Tecnlógica de Tulancingo, División Electromecánica, Camino a Ahuehuetitla No. 301, Col. Las Presas, C.P. 43642 Tulancingo, Hidalgo (Mexico); Calaminici, Patrizia; Köster, Andreas M. [Departamento de Química, CINVESTAV, Avenida Instituto Politécnico Nacional 2508, A.P. 14-740, México D.F. 07000 (Mexico)

    2015-09-14

    The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H{sup 12}C–{sup 12}CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.

  11. Spin imaging in solids using synchronously rotating field gradients and samples

    International Nuclear Information System (INIS)

    Wind, R.A.; Yannoni, C.S.

    1983-01-01

    A method for spin-imaging in solids using nuclear magnetic resonance (NMR) spectroscopy is described. With this method, the spin density distribution of a two- or three-dimensional object such as a solid can be constructed resulting in an image of the sample. This method lends itself to computer control to map out an image of the object. This spin-imaging method involves the steps of placing a solid sample in the rf coil field and the external magnetic field of an NMR spectrometer. A magnetic field gradient is superimposed across the sample to provide a field gradient which results in a varying DC field that has different values over different parts of the sample. As a result, nuclei in different parts of the sample have different resonant NMR frequencies. The sample is rotated about an axis which makes a particular angle of 54.7 degrees with the static external magnetic field. The magnetic field gradient which has a spatial distribution related to the sample spinning axis is then rotated synchronously with the sample. Data is then collected while performing a solid state NMR line narrowing procedure. The next step is to change the phase relation between the sample rotation and the field gradient rotation. The data is again collected as before while the sample and field gradient are synchronously rotated. The phase relation is changed a number of times and data collected each time. The spin image of the solid sample is then reconstructed from the collected data

  12. Robust techniques for polarization and detection of nuclear spin ensembles

    Science.gov (United States)

    Scheuer, Jochen; Schwartz, Ilai; Müller, Samuel; Chen, Qiong; Dhand, Ish; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2017-11-01

    Highly sensitive nuclear spin detection is crucial in many scientific areas including nuclear magnetic resonance spectroscopy, magnetic resonance imaging (MRI), and quantum computing. The tiny thermal nuclear spin polarization represents a major obstacle towards this goal which may be overcome by dynamic nuclear spin polarization (DNP) methods. The latter often rely on the transfer of the thermally polarized electron spins to nearby nuclear spins, which is limited by the Boltzmann distribution of the former. Here we utilize microwave dressed states to transfer the high (>92 % ) nonequilibrium electron spin polarization of a single nitrogen-vacancy center (NV) induced by short laser pulses to the surrounding 13C carbon nuclear spins. The NV is repeatedly repolarized optically, thus providing an effectively infinite polarization reservoir. A saturation of the polarization of the nearby nuclear spins is achieved, which is confirmed by the decay of the polarization transfer signal and shows an excellent agreement with theoretical simulations. Hereby we introduce the polarization readout by polarization inversion method as a quantitative magnetization measure of the nuclear spin bath, which allows us to observe by ensemble averaging macroscopically hidden polarization dynamics like Landau-Zener-Stückelberg oscillations. Moreover, we show that using the integrated solid effect both for single- and double-quantum transitions nuclear spin polarization can be achieved even when the static magnetic field is not aligned along the NV's crystal axis. This opens a path for the application of our DNP technique to spins in and outside of nanodiamonds, enabling their application as MRI tracers. Furthermore, the methods reported here can be applied to other solid state systems where a central electron spin is coupled to a nuclear spin bath, e.g., phosphor donors in silicon and color centers in silicon carbide.

  13. Demonstrating Multi-bit Magnetic Memory in the Fe8 High Spin Molecule by Muon Spin Rotation

    OpenAIRE

    Shafir, Oren; Keren, Amit; Maegawa, Satoru; Ueda, Miki; Amato, Alex; Baines, Chris

    2005-01-01

    We developed a method to detect the quantum nature of high spin molecules using muon spin rotation, and a three-step field cycle ending always with the same field. We use this method to demonstrate that the Fe8 molecule can remember 6 (possibly 8) different histories (bits). A wide range of fields can be used to write a particular bit, and the information is stored in discrete states. Therefore, Fe8 can be used as a model compound for Multi-bit Magnetic Memory. Our experiment also paves the w...

  14. Cosmic-ray muon spin rotation in Fe and industrial application

    Science.gov (United States)

    Nagamine, K.; Fujimaki, T.; Hashimoto, T.; Tsukamoto, M.; Kubota, S.; Hirai, T.; Manabe, A.; Tomisawa, Y.; Pant, A. D.; Torikai, E.

    2014-12-01

    Spin polarized positive muons contained in the cosmic-rays were stopped in the Fe plates providing a characteristic spin rotation signal of decay positrons. This signal along with the decay lifetime of the negative muons can be used as a non-invasive radiographic measurement method for a characterization of the inner structure of the aged architectures. Principle, results of test experiments and future prospects are described.

  15. A low energy muon spin rotation and point contact tunneling study of niobium films prepared for superconducting cavities

    Science.gov (United States)

    Junginger, Tobias; Calatroni, S.; Sublet, A.; Terenziani, G.; Prokscha, T.; Salman, Z.; Suter, A.; Proslier, T.; Zasadzinski, J.

    2017-12-01

    Point contact tunneling and low energy muon spin rotation are used to probe, on the same samples, the surface superconducting properties of micrometer thick niobium films deposited onto copper substrates using different sputtering techniques: diode, dc magnetron and HIPIMS. The combined results are compared to radio-frequency tests performances of RF cavities made with the same processes. Degraded surface superconducting properties are found to correlate to lower quality factors and stronger Q-slope. In addition, both techniques find evidence for surface paramagnetism on all samples and particularly on Nb films prepared by HIPIMS.

  16. Spin rotation in alpha-Fe2O3 nanoparticles by interparticle interactions

    DEFF Research Database (Denmark)

    Frandsen, Cathrine; Mørup, Steen

    2005-01-01

    degrees out of plane, depending on the particle size. The spin rotation can be explained by exchange interaction between neighboring particles with nonparallel (001) planes. The results imply that interparticle interactions can lead to spin directions deviating from the easy axis defined by the magnetic......Nanoparticles of alpha-Fe2O3 (hematite) typically have the sublattice magnetization directions in the hexagonal (001) plane below the Neel temperature. By use of Mossbauer spectroscopy we have found that for agglomerated particles the sublattice magnetization may be rotated of the order of 15...

  17. Distinguishing between coherent magnetization rotation and generation of incoherent spin waves in a spin-transfer effect experiment

    Science.gov (United States)

    Bazaliy, Yaroslaw; Jones, Barbara

    2002-03-01

    Electric current flowing from one metallic ferromagnet to another induces an interaction between them [1,2]. This interaction is qualitatively different from the one observed in equilibrium and creates a so-called ``spin-transfer'' torque - a subject of recent interest in the field of spintronics. Technologically spin-transfer effect is very interesting due to its possible usefulness for the memory writing process based on ``current induced switching" in metallic magnetic structures. Physics of spin-transfer torque involves interesting issues of spin-injection, spin-accumulation and excitation of different types of magnetic modes in the ferromagnets. The result of spin-transfer torque action depends on which magnetic mode is most easily excited by the spin-polarized current. Currently there are two views on the nature of this mode. In one approach [1] it is assumed that a coherent rotation of magnetization is induced and in the other [2,3] - that incoherent spin waves are generated. While in a real experiment both modes are probably excited at the same time, intuitively it seems natural that coherent rotation is more likely to happen when the angle between injected spins and magnetization is large. On the contrary in a collinear case spin-wave generation is more likely to happen. In the experiments done so far [4] the effect of spin-transfer torque was studied in the collinear setup. In [5] we applied the general approach of Ref.1 to this experiment and were able to give exact predictions for the particular magnetic anisotropy of the experiment [4]. While those predictions do not completely agree with the experimental results, a theory based on spin-wave generation [6] also seems to be ruled out by [4]. Here we propose a relatively easy modification of experiment [4] in which the spin-polarization of incoming current is no longer collinear with magnetization and recalculate the switching behavior of the device. We expect that a better agreement with experiment will

  18. Human-brain ferritin studied by muon spin rotation: a pilot study.

    Science.gov (United States)

    Bossoni, Lucia; Grand Moursel, Laure; Bulk, Marjolein; Simon, Brecht G; Webb, Andrew; van der Weerd, Louise; Huber, Martina; Carretta, Pietro; Lascialfari, Alessandro; Oosterkamp, Tjerk H

    2017-10-18

    Muon spin rotation is employed to investigate the spin dynamics of ferritin proteins isolated from the brain of an Alzheimer's disease (AD) patient and of a healthy control, using a sample of horse-spleen ferritin as a reference. A model based on the Néel theory of superparamagnetism is developed in order to interpret the spin relaxation rate of the muons stopped by the core of the protein. Using this model, our preliminary observations show that ferritins from the healthy control are filled with a mineral compatible with ferrihydrite, while ferritins from the AD patient contain a crystalline phase with a larger magnetocrystalline anisotropy, possibly compatible with magnetite or maghemite.

  19. Probing the flexibility of internal rotation in silylated phenols with the NMR scalar spin-spin coupling constants.

    Science.gov (United States)

    Sychrovský, Vladimír; Benda, Ladislav; Prokop, Alexandr; Blechta, Vratislav; Schraml, Jan; Spirko, Vladimír

    2008-06-12

    The rotation of a trimethylsiloxy (TMSO) group in three silylated phenols (with three different ortho substituents -H, -CH3, and -C(CH3)3) was studied with the NMR (n)J(Si,C), n = 2, 3, 4, 5, scalar spin-spin coupling between the (29)Si nucleus of the TMSO group and the (13)C nuclei of the phenyl ring. The internal rotation potential calculated with the B3LYP and MP2 calculation methods including the effect of a solvent environment (gas phase, chloroform, and water) was used for the calculation of the dynamical averages of the scalar coupling constants in the framework of the rigid-bender formalism. Solvent effects, the quality of the rotational potential, and the applicability of the classical molecular dynamic to the problem is discussed. Quantum effects have a sizable impact on scalar couplings, particularly for the internal rotational states well localized within the wells of the potential surfaces for the TMSO group. The overall difference between the experimental and theoretical scalar couplings calculated for the global energy-minima structures (static model) decreases substantially for both model potentials (B3LYP, MP2) when the molecular motion of the TMSO group is taken into account. The calculated data indicate that the inclusion of molecular motion is necessary for the accurate calculation of the scalar coupling constants and their reliable structural interpretation for any system which possesses a large-amplitude motion.

  20. The new conceptual design of snakes and spin rotators in RHIC

    International Nuclear Information System (INIS)

    Lee, S.Y.; Courant, E.D.

    1990-01-01

    We discuss the generalized snake configurations, which offers either the advantages of shorter total snake length and smaller horizontal orbit displacement in the compact configuration or the dual functions of a snake and a 90 degree spin rotation for the helicity state. The generalized snake is then applied to the polarized proton collision in RHIC. The possible schemes of obtaining high luminosity are discussed

  1. Study of spin-temperature effects using energy-ordered continuum gamma-ray spectroscopy technique

    Energy Technology Data Exchange (ETDEWEB)

    Baktash, C.; Halbert, M.L.; Hensley, D.C.; Johnson, N.R.; Lee, I.Y.; McConnell, J.W.; McGowan, F.K.

    1990-01-01

    We have investigated a new continuum {gamma}-ray spectroscopy technique which is based on the detection of all emitted {gamma} rays in a 4{pi} detector system, and ordering them according to their energies on an event-by-event basis. The technique allows determination of gamma strength functions, and rotational damping width as a function of spin and temperature. Thus, it opens up the possibility of studying the onset of motional narrowing, order-to-chaos transition, and the mapping of the evolution of nuclear collectivity with a spin and temperature. Application of the technique for preferential entry-state population, exit-channel selection, and feeding of the discrete states via selective pathways will be discussed. 20 refs., 4 figs.

  2. Slotted rotatable target assembly and systematic error analysis for a search for long range spin dependent interactions from exotic vector boson exchange using neutron spin rotation

    Science.gov (United States)

    Haddock, C.; Crawford, B.; Fox, W.; Francis, I.; Holley, A.; Magers, S.; Sarsour, M.; Snow, W. M.; Vanderwerp, J.

    2018-03-01

    We discuss the design and construction of a novel target array of nonmagnetic test masses used in a neutron polarimetry measurement made in search for new possible exotic spin dependent neutron-atominteractions of Nature at sub-mm length scales. This target was designed to accept and efficiently transmit a transversely polarized slow neutron beam through a series of long open parallel slots bounded by flat rectangular plates. These openings possessed equal atom density gradients normal to the slots from the flat test masses with dimensions optimized to achieve maximum sensitivity to an exotic spin-dependent interaction from vector boson exchanges with ranges in the mm - μm regime. The parallel slots were oriented differently in four quadrants that can be rotated about the neutron beam axis in discrete 90°increments using a Geneva drive. The spin rotation signals from the 4 quadrants were measured using a segmented neutron ion chamber to suppress possible systematic errors from stray magnetic fields in the target region. We discuss the per-neutron sensitivity of the target to the exotic interaction, the design constraints, the potential sources of systematic errors which could be present in this design, and our estimate of the achievable sensitivity using this method.

  3. Polarized neutron beam properties for measuring parity-violating spin rotation in liquid {sup 4}He

    Energy Technology Data Exchange (ETDEWEB)

    Micherdzinska, A.M., E-mail: amicherd@gwu.ed [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); George Washington University, Washington, DC 20052 (United States); Bass, C.D. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Bass, T.D. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Gan, K. [George Washington University, Washington, DC 20052 (United States); Luo, D. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Markoff, D.M. [North Carolina Central University, Durham, NC 27707 (United States); Mumm, H.P.; Nico, J.S. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Opper, A.K. [George Washington University, Washington, DC 20052 (United States); Sharapov, E.I. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Snow, W.M. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Swanson, H.E. [University of Washington/CENPA, Seattle, WA 98195 (United States); Zhumabekova, V. [Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050038 Almaty (Kazakhstan)

    2011-03-01

    Measurements of parity-violating neutron spin rotation can provide insight into the poorly understood nucleon-nucleon weak interaction. Because the expected rotation angle per unit length is small (10{sup -7} rad/m), several properties of the polarized cold neutron beam phase space and the neutron optical elements of the polarimeter must be measured to quantify possible systematic effects. This paper presents (1) an analysis of a class of possible systematic uncertainties in neutron spin rotation measurements associated with the neutron polarimetry, and (2) measurements of the relevant neutron beam properties (intensity distribution, energy spectrum, and the product of the neutron beam polarization and the analyzing power as a function of the beam phase space properties) on the NG-6 cold neutron beam-line at the National Institute of Standards and Technology Center for Neutron Research. We conclude that the phase space nonuniformities of the polarimeter in this beam are small enough that a parity-violating neutron spin rotation measurement in n-{sup 4}He with systematic uncertainties at the 10{sup -7} rad/m level is possible.

  4. Glenohumeral internal rotation measurements differ depending on stabilization techniques.

    Science.gov (United States)

    Wilk, Kevin E; Reinold, Michael M; Macrina, Leonard C; Porterfield, Ron; Devine, Kathleen M; Suarez, Kim; Andrews, James R

    2009-03-01

    The loss of glenohumeral internal rotation range of motion in overhead athletes has been well documented in the literature. Several different methods of assessing this measurement have been described, making comparison between the results of studies difficult. Significant differences in the amount of internal rotation range of motion exist when using different methods of stabilization. Descriptive laboratory study. THREE TECHNIQUES WERE USED BILATERALLY IN RANDOM FASHION TO MEASURE GLENOHUMERAL INTERNAL ROTATION RANGE OF MOTION: stabilization of the humeral head, stabilization of the scapula, and visual inspection without stabilization. An initial study on 20 asymptomatic participants was performed to determine the intrarater and interrater reliability for each measurement technique. Once complete, measurements were performed on 39 asymptomatic professional baseball players to determine if a difference existed in measurement techniques and if there was a significant side-to-side difference. A 2-way repeated-measures analysis of variance was used. While interrater reliability was fair between all 3 methods, scapular stabilization provided the best intrarater reliability. A statistically significant difference was observed between all 3 methods (P < .001). Internal rotation was significantly less in the dominant shoulder than in the nondominant shoulder (P < .001). Differences in internal rotation range of motion measurements exist when using different methods. The scapula stabilization method displayed the highest intrarater reproducibility and should be considered when evaluating internal rotation passive range of motion of the glenohumeral joint. A standardized method of measuring internal rotation range of motion is required to accurately compare physical examinations of patients. The authors recommend the use of the scapula stabilization method to assess internal rotation range of motion by allowing normal glenohumeral arthrokinematics while stabilizing the

  5. Pulsar spin-down: the glitch-dominated rotation of PSR J0537-6910

    Science.gov (United States)

    Antonopoulou, D.; Espinoza, C. M.; Kuiper, L.; Andersson, N.

    2018-01-01

    The young, fast-spinning X-ray pulsar J0537-6910 displays an extreme glitch activity, with large spin-ups interrupting its decelerating rotation every ∼100 d. We present nearly 13 yr of timing data from this pulsar, obtained with the Rossi X-ray Timing Explorer. We discovered 22 new glitches and performed a consistent analysis of all 45 glitches detected in the complete data span. Our results corroborate the previously reported strong correlation between glitch spin-up size and the time to the next glitch, a relation that has not been observed so far in any other pulsar. The spin evolution is dominated by the glitches, which occur at a rate of ∼3.5 per year, and the post-glitch recoveries, which prevail the entire interglitch intervals. This distinctive behaviour provides invaluable insights into the physics of glitches. The observations can be explained with a multicomponent model that accounts for the dynamics of the neutron superfluid present in the crust and core of neutron stars. We place limits on the moment of inertia of the component responsible for the spin-up and, ignoring differential rotation, the velocity difference it can sustain with the crust. Contrary to its rapid decrease between glitches, the spin-down rate increased over the 13 yr, and we find the long-term braking index nl = -1.22(4), the only negative braking index seen in a young pulsar. We briefly discuss the plausible interpretations of this result, which is in stark contrast to the predictions of standard models of pulsar spin-down.

  6. PREFACE: 13th International Conference on Muon Spin Rotation, Relaxation and Resonance

    Science.gov (United States)

    2014-12-01

    The 13th International Conference on Muon Spin Rotation, Relaxation and Resonance (μSR2014) organized by the Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute in collaboration with the University of Zurich and the University of Fribourg, was held in Grindelwald, Switzerland from 1st to 6th June 2014. The conference provided a forum for researchers from around the world with interests in the applications of μSR to study a wide range of topics including condensed matter physics, materials and molecular sciences, chemistry and biology. Polarized muons provide a unique and versatile probe of matter, enabling studies at the atomic level of electronic structure and dynamics in a wide range of systems. The conference was the thirteenth in a series, which began in Rorschach in 1978 and it took place for the third time in Switzerland. The previous conferences were held in Cancun, Mexico (2011), Tsukuba, Japan (2008), Oxford, UK (2005), Williamsburg, USA (2002), Les Diablerets, Switzerland (1999), Nikko, Japan (1996), Maui, USA (1993), Oxford, UK (1990), Uppsala, Sweden (1986), Shimoda, Japan (1983), Vancouver, Canada (1980), and Rorschach, Switzerland (1978). These conference proceedings contain 67 refereed publications from presentations covering magnetism, superconductivity, chemistry, semiconductors, biophysics and techniques. The conference logo, displayed in the front pages of these proceedings, represents both the location of μSR2014 in the Alps and the muon-spin rotation technique. The silhouette represents the famous local mountains Eiger, Mönch and Jungfrau as drawn by the Swiss painter Ferdinand Hodler and the apple with arrow is at the same time a citation of the Wilhelm Tell legend and a remembrance of the key role played by the muon spin and the asymmetric muon decay (which for the highest positron energy has an apple like shape). More than 160 participants (including 32 registered as students and 13 as accompanying persons) from 19 countries

  7. Strong coupling between a single nitrogen-vacancy spin and the rotational mode of diamonds levitating in an ion trap

    Science.gov (United States)

    Delord, T.; Nicolas, L.; Chassagneux, Y.; Hétet, G.

    2017-12-01

    A scheme for strong coupling between a single atomic spin and the rotational mode of levitating nanoparticles is proposed. The idea is based on spin readout of nitrogen-vacancy centers embedded in aspherical nanodiamonds levitating in an ion trap. We show that the asymmetry of the diamond induces a rotational confinement in the ion trap. Using a weak homogeneous magnetic field and a strong microwave driving we then demonstrate that the spin of the nitrogen-vacancy center can be strongly coupled to the rotational mode of the diamond.

  8. High-spin level systematics in /sup 186-194/Pt and rotation-alignment coupling

    International Nuclear Information System (INIS)

    Piiparinen, M.; Cunnane, J.C.; Daly, P.J.; Dors, C.L.; Bernthal, F.M.; Khoo, T.L.

    1975-01-01

    Systematic investigations of the shape-transitional nuclei 186 Pt to 194 Pt by (α,xny) reactions have revealed a rich variety of high-spin structural phenomena, which can be qualitatively understood in terms of rotation-alignment coupling and the interplay between collective and single-particle excitation modes. Acute backbending in the positive-parity yrast sequences of 188 , 190 , 192 , 194 Pt is attributed to the intersection of rotation-aligned (νi 13 / 2 -2 ) and (πh 11 / 2 -2 ) bands with the ground bands

  9. Coupling between magnetic field and curvature in Heisenberg spins on surfaces with rotational symmetry

    International Nuclear Information System (INIS)

    Carvalho-Santos, Vagson L.; Dandoloff, Rossen

    2012-01-01

    We study the nonlinear σ-model in an external magnetic field applied on curved surfaces with rotational symmetry. The Euler–Lagrange equations derived from the Hamiltonian yield the double sine-Gordon equation (DSG) provided the magnetic field is tuned with the curvature of the surface. A 2π skyrmion appears like a solution for this model and surface deformations are predicted at the sector where the spins point in the opposite direction to the magnetic field. We also study some specific examples by applying the model on three rotationally symmetric surfaces: the cylinder, the catenoid and the hyperboloid.

  10. Nuclear spin optical rotation and Faraday effect in gaseous and liquid water.

    Science.gov (United States)

    Pennanen, Teemu S; Ikäläinen, Suvi; Lantto, Perttu; Vaara, Juha

    2012-05-14

    Nuclear spin optical rotation (NSOR) of linearly polarized light, due to the nuclear spins through the Faraday effect, provides a novel probe of molecular structure and could pave the way to optical detection of nuclear magnetization. We determine computationally the effects of the liquid medium on NSOR and the Verdet constant of Faraday rotation (arising from an external magnetic field) in water, using the recently developed theory applied on a first-principles molecular dynamics trajectory. The gas-to-liquid shifts of the relevant antisymmetric polarizability and, hence, NSOR magnitude are found to be -14% and -29% for (1)H and (17)O nuclei, respectively. On the other hand, medium effects both enhance the local electric field in water and, via bulk magnetization, the local magnetic field. Together these two effects partially cancel the solvation influence on the single-molecular property. We find a good agreement for the hydrogen NSOR with a recent pioneering experiment on H(2)O(l).

  11. Spinning like a blue straggler: the population of fast rotating blue straggler stars in ω Centauri

    Energy Technology Data Exchange (ETDEWEB)

    Mucciarelli, A.; Lovisi, L.; Ferraro, F. R.; Dalessandro, E.; Lanzoni, B. [Dipartimento di Fisica and Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Monaco, L. [European Southern Observatory, Casilla 19001, Santiago (Chile)

    2014-12-10

    By using high-resolution spectra acquired with FLAMES-GIRAFFE at the ESO/VLT, we measured the radial and rotational velocities for 110 blue straggler stars (BSSs) in ω Centauri, the globular cluster-like stellar system harboring the largest known BSS population. According to their radial velocities, 109 BSSs are members of the system. The rotational velocity distribution is very broad, with the bulk of BSSs spinning at less than ∼40 km s{sup –1} (in agreement with the majority of such stars observed in other globular clusters) and a long tail reaching ∼200 km s{sup –1}. About 40% of the sample has v{sub e} sin i > 40 km s{sup –1} and about 20% has v{sub e} sin i > 70 km s{sup –1}. Such a large fraction is very similar to the percentage of fast rotating BSSs observed in M4. Thus, ω Centauri is the second stellar cluster, beyond M4, with a surprisingly high population of fast spinning BSSs. We found a hint of radial behavior for a fraction of fast rotating BSSs, with a mild peak within one core radius, and a possible rise in the external regions (beyond four core radii). This may suggest that recent formation episodes of mass transfer BSSs occurred preferentially in the outskirts of ω Centauri, or that braking mechanisms able to slow down these stars are least efficient in the lowest density environments.

  12. Computer calculation of the Van Vleck second moment for materials with internal rotation of spin groups

    Science.gov (United States)

    Goc, Roman

    2004-09-01

    in this paper calculates the second moment for solids with rotation of different groups of spins with C 3 symmetry. Method of solution: The rotation of molecules or their parts, for example CH 3 groups, is simulated as a random walk process by rotating each individual group of spins about its symmetry axis by an angle allowed by the type of symmetry. It is not a continuous rotation, but is in the form of jumps between consecutive positions allowed by the symmetry of the rotating group. Such a model of rotation fulfills assumptions on which theoretical equations used in NMR are derived. The value of Van Vleck's second moment averaged by this rotation is evaluated. The degree of averaging depends on the number of rotational jumps simulated during calculation. This number is then expressed in terms of the frequency of rotation and finally into the temperature. As a result we obtain simulated values of the NMR second moment as a function of temperature. Restrictions on the complexity of the problem: The only restriction is the number of spins for which calculations can be performed in a reasonable amount of CPU time. This restriction is therefore a combination of the number of spins in the unit cell, number of unit cells included in the calculation, and the speed of the computer used. The tested version of the program was compiled for a maximum number of 6250 spins, arranged in 125 unit cells. There are 15 axes of rotation allowed per unit cell. Any of these restrictions can be overcome by increasing the dimensions of the appropriate arrays in the program. The dimensions given in the program are sufficient for analysis of most of the NMR data which one can find in the scientific literature. This is due to the fact that the magnetic dipole-dipole interaction decreases with the third power of distance between spins, and calculations including spins up to a distance of about 2.0 nm give a final accuracy of the second moment equal to about 1%, while experimental values are

  13. Rotation of the swing plane of Foucault's pendulum and Thomas spin precession: two sides of one coin

    International Nuclear Information System (INIS)

    Krivoruchenko, Mikhail I

    2009-01-01

    Using elementary geometric tools, we apply essentially the same methods to derive expressions for the rotation angle of the swing plane of Foucault's pendulum and the rotation angle of the spin of a relativistic particle moving in a circular orbit (the Thomas precession effect). (methodological notes)

  14. Rotation of the swing plane of Foucault's pendulum and Thomas spin precession: two sides of one coin

    Energy Technology Data Exchange (ETDEWEB)

    Krivoruchenko, Mikhail I [Alikhanov Institute for Theoretical and Experimental Physics, Russian Federation State Scientific Center, Moscow (Russian Federation)

    2009-08-31

    Using elementary geometric tools, we apply essentially the same methods to derive expressions for the rotation angle of the swing plane of Foucault's pendulum and the rotation angle of the spin of a relativistic particle moving in a circular orbit (the Thomas precession effect). (methodological notes)

  15. Spinning Like a Blue Straggler: The Population of Fast Rotating Blue Straggler Stars in ω Centauri

    Science.gov (United States)

    Mucciarelli, A.; Lovisi, L.; Ferraro, F. R.; Dalessandro, E.; Lanzoni, B.; Monaco, L.

    2014-12-01

    By using high-resolution spectra acquired with FLAMES-GIRAFFE at the ESO/VLT, we measured the radial and rotational velocities for 110 blue straggler stars (BSSs) in ω Centauri, the globular cluster-like stellar system harboring the largest known BSS population. According to their radial velocities, 109 BSSs are members of the system. The rotational velocity distribution is very broad, with the bulk of BSSs spinning at less than ~40 km s-1 (in agreement with the majority of such stars observed in other globular clusters) and a long tail reaching ~200 km s-1. About 40% of the sample has ve sin i > 40 km s-1 and about 20% has ve sin i > 70 km s-1. Such a large fraction is very similar to the percentage of fast rotating BSSs observed in M4. Thus, ω Centauri is the second stellar cluster, beyond M4, with a surprisingly high population of fast spinning BSSs. We found a hint of radial behavior for a fraction of fast rotating BSSs, with a mild peak within one core radius, and a possible rise in the external regions (beyond four core radii). This may suggest that recent formation episodes of mass transfer BSSs occurred preferentially in the outskirts of ω Centauri, or that braking mechanisms able to slow down these stars are least efficient in the lowest density environments. Based on observations collected at the ESO-VLT under the programs 077.D-0696(A), 081.D-0356(A), and 089.D-0298(A).

  16. ROTATING STARS AND THE FORMATION OF BIPOLAR PLANETARY NEBULAE. II. TIDAL SPIN-UP

    Energy Technology Data Exchange (ETDEWEB)

    García-Segura, G. [Instituto de Astronomía, Universidad Nacional Autónoma de Mexico, Km. 103 Carr. Tijuana-Ensenada, 22860, Ensenada, B. C. (Mexico); Villaver, E. [Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Manchado, A. [Instituto de Astrofísica de Canarias, Via Láctea s/n, E-38200 La Laguna, Tenerife (Spain); Langer, N. [Argelander-Institut für Astronomie, Universität Bonn, D-53121 Bonn (Germany); Yoon, S.-C., E-mail: ggs@astrosen.unam.mx [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul, 151-747 (Korea, Republic of)

    2016-06-01

    We present new binary stellar evolution models that include the effects of tidal forces, rotation, and magnetic torques with the goal of testing planetary nebulae (PNs) shaping via binary interaction. We explore whether tidal interaction with a companion can spin-up the asymptotic giant brach (AGB) envelope. To do so, we have selected binary systems with main-sequence masses of 2.5 M {sub ⊙} and 0.8 M {sub ⊙} and evolve them allowing initial separations of 5, 6, 7, and 8 au. The binary stellar evolution models have been computed all the way to the PNs formation phase or until Roche lobe overflow (RLOF) is reached, whatever happens first. We show that with initial separations of 7 and 8 au, the binary avoids entering into RLOF, and the AGB star reaches moderate rotational velocities at the surface (∼3.5 and ∼2 km s{sup −1}, respectively) during the inter-pulse phases, but after the thermal pulses it drops to a final rotational velocity of only ∼0.03 km s{sup −1}. For the closest binary separations explored, 5 and 6 au, the AGB star reaches rotational velocities of ∼6 and ∼4 km s{sup −1}, respectively, when the RLOF is initiated. We conclude that the detached binary models that avoid entering the RLOF phase during the AGB will not shape bipolar PNs, since the acquired angular momentum is lost via the wind during the last two thermal pulses. This study rules out tidal spin-up in non-contact binaries as a sufficient condition to form bipolar PNs.

  17. An Alternative Rhinoplasty Technique: Rotational Spreader Flap ("Rabbit Flap").

    Science.gov (United States)

    Sirin, Ali Ahmet; Erdim, Ibrahim; Erdur, Omer; Sirin, Alperen

    2018-04-01

    In modern rhinoplasty, septal cartilage is the most commonly used graft material. It is a big challenge if septal cartilage is insufficient. We present an alternative technique named the "rabbit flap," created from the cephalic portion of the lower lateral cartilage to show its effectiveness on nasolabial angle, nasal axis deviation, and nasal dorsal line. An alternative flap, called a "rabbit flap," is constituted from the cephalic portion of the lower lateral cartilage (LLC). The key for this flap's success is in not cutting the connection between the lateral and medial crus of the alar cartilage. The flap is rotated and placed between the upper lateral cartilage and the septum to ensure a spreader graft effect; it can also be moved forward and backward to adjust the nasal tip rotation. Patients whose minimum width of LLC was 12 mm were included in this study. We subjectively evaluated the results of this technique for 24 patients who completed the rhinoplasty outcomes evaluation (ROE) questionnaire and objectively by measuring the nasal axis and nasolabial angles in the preoperative and postoperative first-year periods. There were significant improvements in ROE, nasal axis deviation, and nasolabial angle scores when preoperative and postoperative first-year controls were compared (p rotation and a mild nasal axis deviation. Moreover, we can achieve a proper nasal dorsal line and prevent an inverted V deformity. By expanding the internal nasal valve, a functionally effective surgery can be performed. However, the LLC must be strong enough to avoid alar collapse. In light of our results, we believe that the technique we call the "rabbit flap" can be used as an alternative rhinoplasty technique. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  18. Decoding the subjective rotation direction of the spinning dancer from fMRI data

    Science.gov (United States)

    Song, SuTao; Liu, Yang; Zhang, JiaCai

    2015-03-01

    A challenging goal in neuroscience is to decode the mental states from brain activity. Recently, researchers have successfully deciphered the objective and static visual stimuli (such as orientation of stripes and category of objects) from brain activity recorded by functional magnetic resonance imaging (fMRI) technology. However, few studies focused on the decoding of the rotation direction perception of the actual three-dimensional world with two-dimensional representations. In this study, the brain activities when subjects viewed the animation of the spinning dancer in the front were recorded using fMRI, and subjects reported the viewing-from-bottom motion direction (clockwise or counterclockwise) by press different buttons. One multivariate pattern analysis method, support vector machine was trained to predict the rotation direction. The 5-fold cross-validation result showed that the subjective rotation direction reported by the subjects can be predicted from fMRI with a possibility above the chance level, which imply that fMRI activity of the brain contains detailed rotation direction information that can reliably predict the subjective perception.

  19. Percutaneous vertebroplasty with the rotational fluoroscopy imaging technique.

    Science.gov (United States)

    Cannavale, Alessandro; Salvatori, Filippo Maria; Wlderk, Andrea; Cirelli, Carlo; d'Adamo, Alessandro; Fanelli, Fabrizio

    2014-11-01

    To evaluate the feasibility of the rotational angiography unit (RAU) as a single technique to guide percutaneous vertebroplasty (PVP). Twenty-five consecutive patients (35 vertebral bodies, 20 lumbar and 15 thoracic) were treated using RA fluoroscopy. Using a state-of-the-art flat-panel angiographer (Artis zee, Siemens, Erlangen, Germany), rotational acquisitions were obtained in all patients for immediate post-procedure 2D/3D reconstructions. Pre- and postoperative back pain was assessed with the visual analog scale (VAS). Fluoroscopy time, patient radiation dose exposure, technical success, mean procedure time, mean number of rotational acquisitions and procedural complications were recorded. All features were compared with a historical cohort of patients (N = 25) who underwent PVP under CT and mobile C-arm fluoroscopy guidance. In all cases, safe and accurate control of the needle insertion and bone-cement injection was successfully obtained with high-quality fluoroscopy images. One cement leakage was detected in the RAU group, and two leakages were detected in the CT and C-arm fluoroscopy group. Technical features were significantly different between the two groups (RAU vs. CT): mean procedure time: 38.2 min vs. 60.2 min (p = 0.02); median fluoroscopy time: 14.58 and 4.58 min (p = 0.02); median number of rotational acquisitions: 5 vs. 10 (p = 0.02); mean patient dose: 6 ± 1.3 mSv vs. 23 ± 1.3 mSv (p = 0.02). There were minor complications (pain, small hematoma) in two patients (8%) in the study group and three cases (12%) in the control group. RAU guidance is an effective and safe technique for performing PVP because it reduces the procedural time and radiation exposure.

  20. Percutaneous vertebroplasty with the rotational fluoroscopy imaging technique

    Energy Technology Data Exchange (ETDEWEB)

    Cannavale, Alessandro; Salvatori, Filippo Maria; Wlderk, Andrea; Cirelli, Carlo; D' Adamo, Alessandro; Fanelli, Fabrizio [University of Rome, Vascular and Interventional Unit, Department of Radiological Sciences, Rome (Italy)

    2014-11-15

    To evaluate the feasibility of the rotational angiography unit (RAU) as a single technique to guide percutaneous vertebroplasty (PVP). Twenty-five consecutive patients (35 vertebral bodies, 20 lumbar and 15 thoracic) were treated using RA fluoroscopy. Using a state-of-the-art flat-panel angiographer (Artis zee, Siemens, Erlangen, Germany), rotational acquisitions were obtained in all patients for immediate post-procedure 2D/3D reconstructions. Pre- and postoperative back pain was assessed with the visual analog scale (VAS). Fluoroscopy time, patient radiation dose exposure, technical success, mean procedure time, mean number of rotational acquisitions and procedural complications were recorded. All features were compared with a historical cohort of patients (N = 25) who underwent PVP under CT and mobile C-arm fluoroscopy guidance. In all cases, safe and accurate control of the needle insertion and bone-cement injection was successfully obtained with high-quality fluoroscopy images. One cement leakage was detected in the RAU group, and two leakages were detected in the CT and C-arm fluoroscopy group. Technical features were significantly different between the two groups (RAU vs. CT): mean procedure time: 38.2 min vs. 60.2 min (p = 0.02); median fluoroscopy time: 14.58 and 4.58 min (p = 0.02); median number of rotational acquisitions: 5 vs. 10 (p = 0.02); mean patient dose: 6 ± 1.3 mSv vs. 23 ± 1.3 mSv (p = 0.02). There were minor complications (pain, small hematoma) in two patients (8%) in the study group and three cases (12%) in the control group. RAU guidance is an effective and safe technique for performing PVP because it reduces the procedural time and radiation exposure. (orig.)

  1. Atmospheric thermal tides and planetary spin. I. The complex interplay between stratification and rotation

    Science.gov (United States)

    Auclair-Desrotour, P.; Mathis, S.; Laskar, J.

    2018-02-01

    Context. Thermal atmospheric tides can torque telluric planets away from spin-orbit synchronous rotation, as observed in the case of Venus. They thus participate in determining the possible climates and general circulations of the atmospheres of these planets. Aims: The thermal tidal torque exerted on an atmosphere depends on its internal structure and rotation and on the tidal frequency. Particularly, it strongly varies with the convective stability of the entropy stratification. This dependence has to be characterized to constrain and predict the rotational properties of observed telluric exoplanets. Moreover, it is necessary to validate the approximations used in global modelings such as the traditional approximation, which is used to obtain separable solutions for tidal waves. Methods: We wrote the equations governing the dynamics of thermal tides in a local vertically stratified section of a rotating planetary atmosphere by taking into account the effects of the complete Coriolis acceleration on tidal waves. This allowed us to analytically derive the tidal torque and the tidally dissipated energy, which we used to discuss the possible regimes of tidal dissipation and to examine the key role played by stratification. Results: In agreement with early studies, we find that the frequency dependence of the thermal atmospheric tidal torque in the vicinity of synchronization can be approximated by a Maxwell model. This behavior corresponds to weakly stably stratified or convective fluid layers, as observed previously. A strong stable stratification allows gravity waves to propagate, and makes the tidal torque negligible. The transition is continuous between these two regimes. The traditional approximation appears to be valid in thin atmospheres and in regimes where the rotation frequency is dominated by the forcing or the buoyancy frequencies. Conclusions: Depending on the stability of their atmospheres with respect to convection, observed exoplanets can be tidally

  2. Imaging of the brain using the fast-spin-echo and gradient-spin-echo techniques

    Energy Technology Data Exchange (ETDEWEB)

    Umek, W.; Ba-Ssalamah, A.; Prokesch, R. [Department of Radiology, University of Vienna (Austria); Mallek, R.; Heimberger, K. [Division of Neuroradiology, University of Vienna (Austria); Hittmair, K. [Department of Radiology, University of Vienna (Austria)]|[Department of Radiology, AKH Linz (Austria)

    1998-03-27

    The aim of our study was to compare gradient-spin-echo (GRASE) to fast-spin-echo (FSE) sequences for fast T2-weighted MR imaging of the brain. Thirty-one patients with high-signal-intensity lesions on T2-weighted images were examined on a 1.5-T MR system. The FSE and GRASE sequences with identical sequence parameters were obtained and compared side by side. Image assessment criteria included lesion conspicuity, contrast between different types of normal tissue, and image artifacts. In addition, signal-to-noise, contrast-to-noise, and contrast ratios and were determined. The FSE technique demonstrated more lesions than GRASE and with generally better conspicuity. Smaller lesions in particular were better demonstrated on FSE because of lower image noise and slightly weaker image artifacts. Gray-white differentiation was better on FSE. Ferritin and hemosiderin depositions appeared darker on GRASE, which resulted in better contrast. Fatty tissue was less bright on GRASE. With current standard hardware equipment, the FSE technique seems preferable to GRASE for fast T2-weighted routine MR imaging of the brain. For the assessment of hemosiderin or ferritin depositions, GRASE might be considered. (orig.) With 3 figs., 4 tabs., 29 refs.

  3. Spin-filter scanning tunneling microscopy : a novel technique for the analysis of spin polarization on magnetic surfaces and spintronic devices

    NARCIS (Netherlands)

    Vera Marun, I.J.

    2010-01-01

    This thesis deals with the development of a versatile technique to measure spin polarization with atomic resolution. A microscopy technique that can measure electronic spin polarization is relevant for characterization of magnetic nanostructures and spintronic devices. Scanning tunneling microscopy

  4. Canine transurethral laser prostatectomy using a rotational technique

    Science.gov (United States)

    Cromeens, Douglas M.; Johnson, Douglas E.

    1995-05-01

    Conventional radical prostatectomy in the dog has historically been attended by unacceptably high incidence of urinary incontinence (80 - 100%). Ablation of the prostate can be accomplished in the dog by transurethral irradiation of the prostate with the Nd:YAG laser and a laterally deflecting fiber. Exposure has ranged between 40 and 60 watts for 60 seconds at 4 fixed locations. Although prostatectomies performed with the above described technique offers significant advantage over conventional prostatectomies, the high power density at each location can result in small submucosal explosions (`popcorn effect') that increase the potential for bleeding and rupture of the prostatic capsule. We describe a new technique in which the energy is applied continuously by a laser fiber rotating around a central point. Delivering 40 watts of Nd:YAG energy for 4 minutes using a new angle-delivery device (UrotekTM), we produced results comparable to those of other previously reported techniques in the canine model with two added advantages: (1) a more even application of heat resulting in no `popcorn' effect and (2) a more reliably predictable area of coagulative necrosis within a given axial plane. This technique should provide additional safety for the veterinary surgeon performing visual laser ablation of the prostate in the dog.

  5. Recent Progress on the Description of Relativistic Spin: Vector Model of Spinning Particle and Rotating Body with Gravimagnetic Moment in General Relativity

    Directory of Open Access Journals (Sweden)

    Alexei A. Deriglazov

    2017-01-01

    Full Text Available We review the recent results on development of vector models of spin and apply them to study the influence of spin-field interaction on the trajectory and precession of a spinning particle in external gravitational and electromagnetic fields. The formalism is developed starting from the Lagrangian variational problem, which implies both equations of motion and constraints which should be presented in a model of spinning particle. We present a detailed analysis of the resulting theory and show that it has reasonable properties on both classical and quantum level. We describe a number of applications and show how the vector model clarifies some issues presented in theoretical description of a relativistic spin: (A one-particle relativistic quantum mechanics with positive energies and its relation with the Dirac equation and with relativistic Zitterbewegung; (B spin-induced noncommutativity and the problem of covariant formalism; (C three-dimensional acceleration consistent with coordinate-independence of the speed of light in general relativity and rainbow geometry seen by spinning particle; (D paradoxical behavior of the Mathisson-Papapetrou-Tulczyjew-Dixon equations of a rotating body in ultrarelativistic limit, and equations with improved behavior.

  6. Multiple quantum spin counting techniques with quadrupolar nuclei

    NARCIS (Netherlands)

    Dodd, A.J.; Eck, E.R.H. van

    2004-01-01

    Phase incremented and continuous irradiation multiple spin correlation methods are applied to spin 3/2 nuclei with small quadrupole couplings such as Li-7 in LiCl and are shown to successfully produce a coherently coupled dipolar spin network. Application to the analogous Na salt shows successful

  7. Muon spin rotation studies involving muonium at high pH

    International Nuclear Information System (INIS)

    Ng, B.W.; Stadlbauer, J.M.; Walker, D.C.

    1983-06-01

    The muon spin rotation method was used to determine the muon yields in concentrated KOH solutions and to evaluate Arrhenius parameters for the reaction of muonium with hydroxyl ions in dilute aqueous solutions. This latter reaction is relatively slow due to a substantial activation energy, yet there is no kinetic isotope effect at room temperature. The kinetics are well represented by the relationship log ksub(M) = 14.38 - 2100(+-260)/T. The observed enhancement of the diamagentic muon yield (Psub(D)) from 0.62 to 0.79 as the (KOH) was increased from 0 to 20 M can be accounted for in terms of a 'hot-model' mechanism, by allowing Ksub(M) (or the hot fraction) to vary somewhat. The failure of Psub(D) to reach 1.0 in such concentrated OH - solutions shows that the muons do not all emerge from the epithermal processes of the track as free μ + ions

  8. Muon spin rotation study of the topological superconductor SrxBi2Se3

    Science.gov (United States)

    Leng, H.; Cherian, D.; Huang, Y. K.; Orain, J.-C.; Amato, A.; de Visser, A.

    2018-02-01

    We report transverse-field (TF) muon spin rotation experiments on single crystals of the topological superconductor SrxBi2Se3 with nominal concentrations x =0.15 and 0.18 (Tc˜3 K). The TF spectra (B =10 mT), measured after cooling to below Tc in field, did not show any additional damping of the muon precession signal due to the flux line lattice within the experimental uncertainty. This puts a lower bound on the magnetic penetration depth λ ≥2.3 μ m . However, when we induce disorder in the vortex lattice by changing the magnetic field below Tc, a sizable damping rate is obtained for T →0 . The data provide microscopic evidence for a superconducting volume fraction of ˜70 % in the x =0.18 crystal and thus bulk superconductivity.

  9. Effect of nuclear spin on chemical reactions and internal molecular rotation

    International Nuclear Information System (INIS)

    Sterna, L.L.

    1980-12-01

    Part I of this dissertation is a study of the magnetic isotope effect, and results are presented for the separation of 13 C and 12 C isotopes. Two models are included in the theoretical treatment of the effect. In the first model the spin states evolve quantum mechanically, and geminate recombination is calculated by numerically integrating the collision probability times the probability the radical pair is in a singlet state. In the second model the intersystem crossing is treated via first-order rate constants which are average values of the hyperfine couplings. Using these rate constants and hydrodynamic diffusion equations, an analytical solution, which accounts for all collisions, is obtained for the geminate recombination. The two reactions studied are photolysis of benzophenone and toluene and the photolytic decomposition of dibenzylketone (1,3-diphenyl-2-propanone). No magnetic isotope effect was observed in the benzophenone reaction. 13 C enrichment was observed for the dibenzylketone reaction, and this enrichment was substantially enhanced at intermediate viscosities and low temperatures. Part II of this dissertation is a presentation of theory and results for the use of Zeeman spin-lattice relaxation as a probe of methyl group rotation in the solid state. Experimental results are presented for the time and angular dependences of rotational polarization, the methyl group magnetic moment, and methyl-methyl steric interactions. The compounds studied are 2,6-dimethylphenol, methyl iodide, 1,4,5,8-tetramethylanthracene, 1,4,5,8-tetramethylnaphthalene, 1,2,4,5-tetramethylbenzene, and 2,3-dimethylmaleicanhydride

  10. Anisotropic Rotational Diffusion Studied by Nuclear Spin Relaxation and Molecular Dynamics Simulation: An Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Fuson, Michael M.

    2017-01-01

    Laboratories studying the anisotropic rotational diffusion of bromobenzene using nuclear spin relaxation and molecular dynamics simulations are described. For many undergraduates, visualizing molecular motion is challenging. Undergraduates rarely encounter laboratories that directly assess molecular motion, and so the concept remains an…

  11. Comparison of different techniques to determine long spin lifetimes in slightly n-doped GaAs bulk and GaAs/AlGaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Griesbeck, Michael; Maurer, Andreas; Fehringer, Sebastian; Schulz, Robert; Korn, Tobias; Schuh, Dieter; Wegscheider, Werner; Schueller, Christian [Universitaet Regensburg (Germany)

    2009-07-01

    A key issue of spintronics research is the search for materials with long spin lifetime. The commonly used technique for the determination of spin lifetimes, ultrafast time-resolved Faraday/Kerr rotation (TRFR/TRKR), is limited to a short time window of a few ns by some reasons like the pulse repetition rate of the used pulsed laser or the length of the available delay line.Here we present a study about the comparison of the well-known TRFR technique with two other optical techniques, the so-called resonant spin amplification technique (RSA) on the one hand and Hanle-MOKE measurements on the other hand. The measurements are done on samples of slightly n-doped GaAs bulk and Mn-doped GaAs/AlGaAs quantum wells, where long spin lifetimes were detected earlier. We compare the results for spin lifetime from the different techniques in 3D and 2D systems. Spin lifetimes were extracted for different excitation and probing intensities for different Laser spot sizes, partially using a microscope setup, focussing the spot down to a few microns. The observed spin lifetimes range from about 1 ns to 120 ns and could be measured with an accuracy of a few percent.

  12. Spin, quadrupole moment, and deformation of the magnetic-rotational band head in Pb193

    Science.gov (United States)

    Balabanski, D. L.; Ionescu-Bujor, M.; Iordachescu, A.; Bazzacco, D.; Brandolini, F.; Bucurescu, D.; Chmel, S.; Danchev, M.; de Poli, M.; Georgiev, G.; Haas, H.; Hübel, H.; Marginean, N.; Menegazzo, R.; Neyens, G.; Pavan, P.; Rossi Alvarez, C.; Ur, C. A.; Vyvey, K.; Frauendorf, S.

    2011-01-01

    The spectroscopic quadrupole moment of the T1/2=9.4(5) ns isomer in Pb193 at an excitation energy Eex=(2585+x) keV is measured by the time-differential perturbed angular distribution method as |Qs|=2.6(3) e b. Spin and parity Iπ=27/2- are assigned to it based on angular distribution measurements. This state is the band head of a magnetic-rotational band, described by the 1i13/2 subshell with the (3s1/2-21h9/21i13/2)11- proton excitation. The pairing-plus-quadrupole tilted-axis cranking calculations reproduce the measured quadrupole moment with a moderate oblate deformation ɛ2=-0.11, similar to that of the 11-proton intruder states, which nuclei in the region. This is the first direct measurement of a quadrupole moment and thus of the deformation of a magnetic-rotational band head.

  13. Spin, quadrupole moment, and deformation of the magnetic-rotational band head in (193)Pb

    CERN Document Server

    Balabanski, D L; Iordachescu, A; Bazzacco, D; Brandolini, F; Bucurescu, D; Chmel, S; Danchev, M; De Poli, M; Georgiev, G; Haas, H; Hubel, H; Marginean, N; Menegazzo, R; Neyens, G; Pavan, P; Rossi Alvarez, C; Ur, C A; Vyvey, K; Frauendorf, S

    2011-01-01

    The spectroscopic quadrupole moment of the T(1/2) = 9.4(5) ns isomer in (193)Pb at an excitation energy E(ex) = (2585 + x) keV is measured by the time-differential perturbed angular distribution method as vertical bar Q(s)vertical bar = 2.6(3) e b. Spin and parity I(pi) = 27/2(-) are assigned to it based on angular distribution measurements. This state is the band head of a magnetic-rotational band, described by the coupling of a neutron hole in the 1i(13/2) subshell with the (3s(1/2)(-2)1h(9/2)1i(13/2))(11-) proton excitation. The pairing-plus-quadrupole tilted-axis cranking calculations reproduce the measured quadrupole moment with a moderate oblate deformation epsilon(2) = -0.11, similar to that of the 11(-)proton intruder states, which occur in the even-even Pb nuclei in the region. This is the first direct measurement of a quadrupole moment and thus of the deformation of a magnetic-rotational band head.

  14. Magnetic states of MnP: muon-spin rotation studies.

    Science.gov (United States)

    Khasanov, R; Amato, A; Bonfà, P; Guguchia, Z; Luetkens, H; Morenzoni, E; De Renzi, R; Zhigadlo, N D

    2017-04-26

    Muon-spin rotation data collected at ambient pressure (p) and at p  =  2.42 GPa in MnP were analyzed to check their consistency with various low- and high-pressure magnetic structures reported in the literature. Our analysis confirms that in MnP the low-temperature and low-pressure helimagnetic phase is characterised by an increased value of the average magnetic moment compared to the high-temperature ferromagnetic phase. An elliptical double-helical structure with a propagation vector [Formula: see text], an a-axis moment elongated by approximately 18% and an additional tilt of the rotation plane towards c-direction by [Formula: see text]-8° leads to a good agreement between the theory and the experiment. The analysis of the high-pressure μSR data reveals that the new magnetic order appearing for pressures exceeding 1.5 GPa can not be described by keeping the propagation vector [Formula: see text]. Even the extreme case-decoupling the double-helical structure into four individual helices-remains inconsistent with the experiment. It is shown that the high-pressure magnetic phase which is a precursor of superconductivity is an incommensurate helical state with [Formula: see text].

  15. Real-space observation of a right-rotating inhomogeneous cycloidal spin spiral by spin-polarized scanning tunneling microscopy in a triple axes vector magnet.

    Science.gov (United States)

    Meckler, S; Mikuszeit, N; Pressler, A; Vedmedenko, E Y; Pietzsch, O; Wiesendanger, R

    2009-10-09

    Using spin-polarized scanning tunneling microscopy performed in a triple axes vector magnet, we show that the magnetic structure of the Fe double layer on W(110) is an inhomogeneous right-rotating cycloidal spin spiral. The magnitude of the Dzyaloshinskii-Moriya vector is extracted from the experimental data using micromagnetic calculations. The result is confirmed by comparison of the measured saturation field along the easy axis to the respective value as obtained from Monte Carlo simulations. We find that the Dzyaloshinskii-Moriya interaction is too weak to destabilize the single domain state. However, it can define the sense of rotation and the cycloidal spiral type once the single domain state is destabilized by dipolar interaction.

  16. Voltage switching technique for detecting nuclear spin polarization in a quantum dot

    International Nuclear Information System (INIS)

    Takahashi, Ryo; Kono, Kimitoshi; Tarucha, Seigo; Ono, Keiji

    2010-01-01

    We have introduced a source-drain voltage switching technique for studying nuclear spins in a vertical double quantum dot. Switching the source-drain voltage between the spin-blockade state and the zero-bias Coulomb blockade state can tune the energy difference between the spin singlet and triplet, and effectively turn on/off the hyperfine interaction. Since the change in the nuclear spin state affects the source-drain current, nuclear spin properties can only be detected by transport measurement. Using this technique, we have succeeded in measuring the timescale of nuclear spin depolarization. Furthermore, combining this technique and an RF ac magnetic field, we successfully detected continuous-wave NMR signals of 75 As, 69 Ga, and 71 Ga, which are contained in a quantum dot. (author)

  17. Mean field spin glasses treated with PDE techniques

    Science.gov (United States)

    Barra, Adriano; Del Ferraro, Gino; Tantari, Daniele

    2013-07-01

    Following an original idea of Guerra, in these notes we analyze the Sherrington-Kirkpatrick model from different perspectives, all sharing the underlying approach which consists in linking the resolution of the statistical mechanics of the model (e.g. solving for the free energy) to well-known partial differential equation (PDE) problems (in suitable spaces). The plan is then to solve the related PDE using techniques involved in their native field and lastly bringing back the solution in the proper statistical mechanics framework. Within this strand, after a streamlined test-case on the Curie-Weiss model to highlight the methods more than the physics behind, we solve the SK both at the replica symmetric and at the 1-RSB level, obtaining the correct expression for the free energy via an analogy to a Fourier equation and for the self-consistencies with an analogy to a Burger equation, whose shock wave develops exactly at critical noise level (triggering the phase transition). Our approach, beyond acting as a new alternative method (with respect to the standard routes) for tackling the complexity of spin glasses, links symmetries in PDE theory with constraints in statistical mechanics and, as a novel result from the theoretical physics perspective, we obtain a new class of polynomial identities (namely of Aizenman-Contucci type, but merged within the Guerra's broken replica measures), whose interest lies in understanding, via the recent Panchenko breakthroughs, how to force the overlap organization to the ultrametric tree predicted by Parisi.

  18. Transient flows occurring during the accelerated crucible rotation technique

    International Nuclear Information System (INIS)

    Horowitz, Atara; Horowitz, Yigal

    1992-11-01

    The transient flows occurring after a change in the angular velocity of the cylindrical container are described. The dependence of the transient (known as spin-up or spin-down time) on experimental parameters as kinematic viscosity, cylinder dimensions and the cylinder's initial and final angular velocities are elucidates by a review of the literature. It is emphasized that with large Rossby numbers the spin-up time is longer and the amount of fluid mixing is greater than small and moderate Rossby numbers. It is also elucidated that most crystal growth crucibles cannot be considered as infinitely-long cylinders for the evaluation of the fluid dynamics (authors)

  19. Output-only cyclo-stationary linear-parameter time-varying stochastic subspace identification method for rotating machinery and spinning structures

    Science.gov (United States)

    Velazquez, Antonio; Swartz, R. Andrew

    2015-02-01

    Economical maintenance and operation are critical issues for rotating machinery and spinning structures containing blade elements, especially large slender dynamic beams (e.g., wind turbines). Structural health monitoring systems represent promising instruments to assure reliability and good performance from the dynamics of the mechanical systems. However, such devices have not been completely perfected for spinning structures. These sensing technologies are typically informed by both mechanistic models coupled with data-driven identification techniques in the time and/or frequency domain. Frequency response functions are popular but are difficult to realize autonomously for structures of higher order, especially when overlapping frequency content is present. Instead, time-domain techniques have shown to possess powerful advantages from a practical point of view (i.e. low-order computational effort suitable for real-time or embedded algorithms) and also are more suitable to differentiate closely-related modes. Customarily, time-varying effects are often neglected or dismissed to simplify this analysis, but such cannot be the case for sinusoidally loaded structures containing spinning multi-bodies. A more complex scenario is constituted when dealing with both periodic mechanisms responsible for the vibration shaft of the rotor-blade system and the interaction of the supporting substructure. Transformations of the cyclic effects on the vibrational data can be applied to isolate inertial quantities that are different from rotation-generated forces that are typically non-stationary in nature. After applying these transformations, structural identification can be carried out by stationary techniques via data-correlated eigensystem realizations. In this paper, an exploration of a periodic stationary or cyclo-stationary subspace identification technique is presented here for spinning multi-blade systems by means of a modified Eigensystem Realization Algorithm (ERA) via

  20. Quantifying thumb rotation during circumduction utilizing a video technique

    NARCIS (Netherlands)

    Coert, JH; van Dijke, GAH; Hovius, SER; Snijders, CJ; Meek, MF

    2003-01-01

    Thumb rotation is an essential component of circumduction in order to achieve pulp to pulp contact. In order to evaluate opponensplasty, a device was developed to quantify thumb rotation utilizing a special jig to hold the hand and video analysis. Twenty-seven healthy volunteers (12 female and 15

  1. Vortex motion in type II superconductors probed by muon spin rotation and SANS

    Science.gov (United States)

    Forgan, E. M.; Charalambous, D.; Kealey, P. G.; King, P. J. C.; Khasanov, R.; Amato, A.

    2003-02-01

    We have used a variety of microscopic techniques to reveal the structure and motion of flux line arrangements, when the flux lines in low Tc type II superconductors are caused to move by a transport current. Using small-angle neutron scattering by the flux line lattice (FLL), we are able to demonstrate directly the alignment by motion of the nearest-neighbour FLL direction. This tends to be parallel to the direction of flux line motion, as had been suspected from two-dimensional simulations. We also see the destruction of the ordered FLL by plastic flow and the bending of flux lines. Another technique that our collaboration has employed is the direct measurement of flux line motion, using the ultra-high-resolution spectroscopy of the neutron spin-echo technique to observe the energy change of neutrons diffracted by moving flux lines. The μSR technique gives the distribution of values of magnetic field within the FLL. We have recently shown that one can perform μSR measurements while the FLL is moving. Such measurements give complementary information about the local speed and orientation of the FLL motion. We conclude by discussing the possible application of this technique to thin film superconductors.

  2. Vortex motion in type II superconductors probed by muon spin rotation and SANS

    International Nuclear Information System (INIS)

    Forgan, E.M.; Charalambous, D.; Kealey, P.G.; King, P.J.C.; Khasanov, R.; Amato, A.

    2003-01-01

    We have used a variety of microscopic techniques to reveal the structure and motion of flux line arrangements, when the flux lines in low T c type II superconductors are caused to move by a transport current. Using small-angle neutron scattering by the flux line lattice (FLL), we are able to demonstrate directly the alignment by motion of the nearest-neighbour FLL direction. This tends to be parallel to the direction of flux line motion, as had been suspected from two-dimensional simulations. We also see the destruction of the ordered FLL by plastic flow and the bending of flux lines. Another technique that our collaboration has employed is the direct measurement of flux line motion, using the ultra-high-resolution spectroscopy of the neutron spin-echo technique to observe the energy change of neutrons diffracted by moving flux lines. The μSR technique gives the distribution of values of magnetic field within the FLL. We have recently shown that one can perform μSR measurements while the FLL is moving. Such measurements give complementary information about the local speed and orientation of the FLL motion. We conclude by discussing the possible application of this technique to thin film superconductors

  3. Arthroscopic repair techniques for massive rotator cuff tears.

    Science.gov (United States)

    Abrams, Jeffrey S; Song, Frederick S

    2012-01-01

    Patients with massive rotator cuff tears present with pain, weakness, and loss of function. Candidates for arthroscopic repair include symptomatic, young, active patients; those with an acute tear or tears with early changes of atrophy; and patients willing to comply with recovery and rehabilitation processes after surgery. As massive rotator cuff tears extend, the glenohumeral articulation is destabilized, allowing superior migration. Repair of the force couples and reinforcement of the anterosuperior rotator cuff cable can restore functional elevation via the deltoid. Muscle changes, including rotator cuff atrophy and fatty infiltration, will affect shoulder strength and function. As chronic changes become more extensive (such as the absence of the acromiohumeral interval and degenerative joint changes), other repair options may be more durable. Other arthroscopic options, including partial rotator cuff closure, graft to augment the repair, and use of the long head of the biceps tendon, have been helpful in pain relief and functional gains.

  4. Methodological considerations of electron spin resonance spin trapping techniques for measuring reactive oxygen species generated from metal oxide nanomaterials.

    Science.gov (United States)

    Jeong, Min Sook; Yu, Kyeong-Nam; Chung, Hyun Hoon; Park, Soo Jin; Lee, Ah Young; Song, Mi Ryoung; Cho, Myung-Haing; Kim, Jun Sung

    2016-05-19

    Qualitative and quantitative analyses of reactive oxygen species (ROS) generated on the surfaces of nanomaterials are important for understanding their toxicity and toxic mechanisms, which are in turn beneficial for manufacturing more biocompatible nanomaterials in many industrial fields. Electron spin resonance (ESR) is a useful tool for detecting ROS formation. However, using this technique without first considering the physicochemical properties of nanomaterials and proper conditions of the spin trapping agent (such as incubation time) may lead to misinterpretation of the resulting data. In this report, we suggest methodological considerations for ESR as pertains to magnetism, sample preparation and proper incubation time with spin trapping agents. Based on our results, each spin trapping agent should be given the proper incubation time. For nanomaterials having magnetic properties, it is useful to remove these nanomaterials via centrifugation after reacting with spin trapping agents. Sonication for the purpose of sample dispersion and sample light exposure should be controlled during ESR in order to enhance the obtained ROS signal. This report will allow researchers to better design ESR spin trapping applications involving nanomaterials.

  5. MEMS IMU Error Mitigation Using Rotation Modulation Technique.

    Science.gov (United States)

    Du, Shuang; Sun, Wei; Gao, Yang

    2016-11-29

    Micro-electro-mechanical-systems (MEMS) inertial measurement unit (IMU) outputs are corrupted by significant sensor errors. The navigation errors of a MEMS-based inertial navigation system will therefore accumulate very quickly over time. This requires aiding from other sensors such as Global Navigation Satellite Systems (GNSS). However, it will still remain a significant challenge in the presence of GNSS outages, which are typically in urban canopies. This paper proposed a rotary inertial navigation system (INS) to mitigate navigation errors caused by MEMS inertial sensor errors when external aiding information is not available. A rotary INS is an inertial navigator in which the IMU is installed on a rotation platform. Application of proper rotation schemes can effectively cancel and reduce sensor errors. A rotary INS has the potential to significantly increase the time period that INS can bridge GNSS outages and make MEMS IMU possible to maintain longer autonomous navigation performance when there is no external aiding. In this research, several IMU rotation schemes (rotation about X-, Y- and Z-axes) are analyzed to mitigate the navigation errors caused by MEMS IMU sensor errors. As the IMU rotation induces additional sensor errors, a calibration process is proposed to remove the induced errors. Tests are further conducted with two MEMS IMUs installed on a tri-axial rotation table to verify the error mitigation by IMU rotations.

  6. The one-parameter subgroup of rotations generated by spin transformations in three-dimensional real space

    International Nuclear Information System (INIS)

    Gazoya, E.D.K.; Prempeh, E.; Banini, G.K.

    2015-01-01

    The relationship between the spin transformations of the special linear group of order 2, SL (2, C) and the aggregate SO(3) of the three-dimensional pure rotations when considered as a group in itself (and not as a subgroup of the Lorentz group), is investigated. It is shown, by the spinor map X - → AXA ct which is all action of SL(2. C) on the space of Hermitian matrices, that the one- parameter subgroup of rotations generated are precisely those of angles which are multiples 2π. (au)

  7. Meniscal tears: comparison of the conventional spin-echo and fast spin-echo techniques through image processing.

    Science.gov (United States)

    Nogueira, Ibevan A; Frère, Annie F; Silva, Alessandro P; de Oliveira, Heverton C

    2014-03-27

    Conventional spin-echo (PD-CSE) and fast spin-echo (PD-FSE) techniques are frequently used to detect meniscal tears. However, the time delay for imaging with PD-CSE has resulted in its replacement with faster techniques, such as proton density fast spin-echo (PD-FSE), which has become a frequent tool at most diagnostic centres.Qualitative analysis shows that the PD-CSE technique is more sensitive, but other authors have not found significant differences between the aforementioned techniques. Therefore, we performed a quantitative analysis in this study that aims to measure differences in the quality of the images obtained with both techniques. We compared the PD-CSE and PD-FSE techniques by quantitatively analysing the obtained proton density images: the area shown, as well as the brightness and lesion contrast of the obtained image.A set of 100 images from 50 patients thought to contain meniscal tears of the knee were selected. These 100 images were obtained from all individuals using both the PD-CSE and PD-FSE techniques. The images were processed using software developed in Delphi. In addition to these quantifications, three physicians, who are specialists in radiology and capable of analysing magnetic resonance (MR) images of the musculoskeletal system, qualitatively analysed the diagnostic sensitivity of both techniques. On average, samples obtained via the PD-CSE technique contained 22% more pixels in the lesion area. The contrast differed by 28%, and the brightness differed by 31%. The two techniques were correlated using Student's t-test, which showed a statistically significant difference. The specialists detected meniscal tears in 30 of the images obtained via the PD-CSE technique, while only 72% of these cases were detected via the PD-FSE technique. The PD-CSE technique was shown to be superior to PD-FSE for all of the evaluated properties, making its selection preferable.

  8. Design and Simulation of a Spin Rotator for Longitudinal Field Measurements in the Low Energy Muons Spectrometer

    Science.gov (United States)

    Salman, Z.; Prokscha, T.; Keller, P.; Morenzoni, E.; Saadaoui, H.; Sedlak, K.; Shiroka, T.; Sidorov, S.; Suter, A.; Vrankovic, V.; Weber, H.-P.

    We usedGeant4 to accurately model the low energy muons (LEM) beam line, including scattering due to the 10-nm thin carbon foil in the trigger detector. Simulations of the beam line transmission give excellent agreement with experimental results for beam energies higher than ∼ 12keV.We use these simulations to design and model the operation of a spin rotator for the LEM spectrometer, which will enable longitudinal field measurements in the near future.

  9. Measurements of spin rotation parameter /A in pion-proton elastic scattering at 1.62 GeV/c

    Science.gov (United States)

    Alekseev, I. G.; Budkovsky, P. E.; Kanavets, V. P.; Koroleva, L. I.; Morozov, B. V.; Nesterov, V. M.; Ryltsov, V. V.; Svirida, D. N.; Sulimov, A. D.; Zhurkin, V. V.; Beloglazov, Y. A.; Kovalev, A. I.; Kruglov, S. P.; Novinsky, D. V.; Shchedrov, V. A.; Sumachev, V. V.; Trautman, V. Y.; Bazhanov, N. A.; Bunyatova, E. I.

    2000-07-01

    The ITEP-PNPI Collaboration presents the results of the measurements of the spin rotation parameter /A in the elastic scattering of positive and negative pions on protons at Pbeam=1.62 GeV/c. The setup included a longitudinally-polarized proton target with superconductive magnet, multiwire spark chambers and a carbon polarimeter with thick filter. Results are compared with the predictions of partial wave analyses. The experiment was performed at the ITEP proton synchrotron, Moscow.

  10. New Results on Spin Rotation Parameter A in the πp-elastic Scattering in the Resonance Region

    Science.gov (United States)

    Alekseev, I. G.; Budkovsky, P. E.; Kanavets, V. P.; Koroleva, L. I.; Morozov, B. V.; Nesterov, V. M.; Ryltsov, V. V.; Svirida, D. N.; Sulimov, A. D.; Zhurkin, V. V.; Beloglazov, Yu. A.; Kovalev, A. I.; Kruglov, S. P.; Novinsky, D. V.; Shchedrov, V. A.; Sumachev, V. V.; Trautman, V. Yu.; Bazhanov, N. A.; Bunyatova, E. I.

    2003-07-01

    The paper presents new experimental data on the spin rotation parameter A obtained recently by ITEP-PNPI collaboration at the ITEP accelerator. The set of measurements was performed in carefully chosen critical points with precision sufficient for choosing the correct branches of partial wave analyses. The data for both π+ and π--scattering at 1.0, 1.43 and 1.62 GeV/c is included.

  11. Measurements of spin rotation parameter A in pion-proton elastic scattering at 1.62 GeV/c

    OpenAIRE

    Alekseev, I. G.; Budkovsky, P. E.; Kanavets, V. P.; Koroleva, L. I.; Morozov, B. V.; Nesterov, V. M.; Ryltsov, V. V.; Svirida, D. N.; Sulimov, A. D.; Zhurkin, V. V.; Beloglazov, Yu. A.; Kovalev, A. I.; Kruglov, S. P.; Novinsky, D. V.; Shchedrov, V. A.

    2000-01-01

    The ITEP-PNPI collaboration presents the results of the measurements of the spin rotation parameter A in the elastic scattering of positive and negative pions on protons at P_beam = 1.62 GeV/c. The setup included a longitudinally-polarized proton target with superconductive magnet, multiwire spark chambers and a carbon polarimeter with thick filter. Results are compared to the predictions of partial wave analyses. The experiment was performed at the ITEP proton synchrotron, Moscow.

  12. Theory of Faraday rotation beatings in quantum wells with great value of spin splitting

    CERN Document Server

    Gridnev, V N

    2001-01-01

    The conductivity electrons spin dynamics in the semiconducting heterostructures when the spin splitting value exceeds the energy levels widening due to collisions is theoretically studied. It is shown that the spin density component normal to the quantum well planes may oscillate with time even by absence of the external magnetic field. These oscillations might be excited and registered through the method of the nonlinear two-pulse spectroscopy. In contrast to the small spin splitting the external cross-sectional magnetic field strongly effects the spin dynamics in this mode

  13. You Spin my Head Right Round: Threshold of Limited Immersion for Rotation Gains in Redirected Walking.

    Science.gov (United States)

    Schmitz, Patric; Hildebrandt, Julian; Valdez, Andre Calero; Kobbelt, Leif; Ziefle, Martina

    2018-04-01

    In virtual environments, the space that can be explored by real walking is limited by the size of the tracked area. To enable unimpeded walking through large virtual spaces in small real-world surroundings, redirection techniques are used. These unnoticeably manipulate the user's virtual walking trajectory. It is important to know how strongly such techniques can be applied without the user noticing the manipulation-or getting cybersick. Previously, this was estimated by measuring a detection threshold (DT) in highly-controlled psychophysical studies, which experimentally isolate the effect but do not aim for perceived immersion in the context of VR applications. While these studies suggest that only relatively low degrees of manipulation are tolerable, we claim that, besides establishing detection thresholds, it is important to know when the user's immersion breaks. We hypothesize that the degree of unnoticed manipulation is significantly different from the detection threshold when the user is immersed in a task. We conducted three studies: a) to devise an experimental paradigm to measure the threshold of limited immersion (TLI), b) to measure the TLI for slowly decreasing and increasing rotation gains, and c) to establish a baseline of cybersickness for our experimental setup. For rotation gains greater than 1.0, we found that immersion breaks quite late after the gain is detectable. However, for gains lesser than 1.0, some users reported a break of immersion even before established detection thresholds were reached. Apparently, the developed metric measures an additional quality of user experience. This article contributes to the development of effective spatial compression methods by utilizing the break of immersion as a benchmark for redirection techniques.

  14. Photometric Amplitude Distribution of Stellar Rotation of KOIs—Indication for Spin-Orbit Alignment of Cool Stars and High Obliquity for Hot Stars

    Science.gov (United States)

    Mazeh, Tsevi; Perets, Hagai B.; McQuillan, Amy; Goldstein, Eyal S.

    2015-03-01

    The observed amplitude of the rotational photometric modulation of a star with spots should depend on the inclination of its rotational axis relative to our line of sight. Therefore, the distribution of observed rotational amplitudes of a large sample of stars depends on the distribution of their projected axes of rotation. Thus, comparison of the stellar rotational amplitudes of the Kepler objects of interest (KOIs) with those of Kepler single stars can provide a measure to indirectly infer the properties of the spin-orbit obliquity of Kepler planets. We apply this technique to the large samples of 993 KOIs and 33,614 single Kepler stars in temperature range of 3500-6500 K. We find with high significance that the amplitudes of cool KOIs are larger, on the order of 10%, than those of the single stars. In contrast, the amplitudes of hot KOIs are systematically lower. After correcting for an observational bias, we estimate that the amplitudes of the hot KOIs are smaller than the single stars by about the same factor of 10%. The border line between the relatively larger and smaller amplitudes, relative to the amplitudes of the single stars, occurs at about 6000 K. Our results suggest that the cool stars have their planets aligned with their stellar rotation, while the planets around hot stars have large obliquities, consistent with the findings of Winn et al. and Albrecht et al. We show that the low obliquity of the planets around cool stars extends up to at least 50 days, a feature that is not expected in the framework of a model that assumes the low obliquity is due to planet-star tidal realignment.

  15. Comparison between muon spin rotation and neutron scattering studies on the 3-dimensional magnetic ordering of La2CuO(4-y)

    Science.gov (United States)

    Uemura, Y. J.; Kossler, W. J.; Kempton, J. R.; Yu, X. H.; Schone, H. E.; Opie, D.; Stronach, C. E.; Brewer, J. H.; Kiefl, R. F.; Kreitzman, S. R.

    1988-01-01

    Muon spin rotation and neutron scattering studies on powder and single-crystal specimens of La2CuO(4-y) are compared. The apparent difference between the muon and neutron results for the ordered moment in the antiferromagnetic state is interpreted as the signature of increasingly short-ranged spatial spin correlations with increasing oxygen content.

  16. A Novel DOA Estimation Algorithm Using Array Rotation Technique

    Directory of Open Access Journals (Sweden)

    Xiaoyu Lan

    2014-03-01

    Full Text Available The performance of traditional direction of arrival (DOA estimation algorithm based on uniform circular array (UCA is constrained by the array aperture. Furthermore, the array requires more antenna elements than targets, which will increase the size and weight of the device and cause higher energy loss. In order to solve these issues, a novel low energy algorithm utilizing array base-line rotation for multiple targets estimation is proposed. By rotating two elements and setting a fixed time delay, even the number of elements is selected to form a virtual UCA. Then, the received data of signals will be sampled at multiple positions, which improves the array elements utilization greatly. 2D-DOA estimation of the rotation array is accomplished via multiple signal classification (MUSIC algorithms. Finally, the Cramer-Rao bound (CRB is derived and simulation results verified the effectiveness of the proposed algorithm with high resolution and estimation accuracy performance. Besides, because of the significant reduction of array elements number, the array antennas system is much simpler and less complex than traditional array.

  17. Competition/coexistence of magnetism and superconductivity in iron pnictides probed by muon spin rotation

    International Nuclear Information System (INIS)

    Takeshita, Soshi; Kadono, Ryosuke

    2009-01-01

    The presence of macroscopic phase separation into superconducting and magnetic phases in LaFeAsO 1-x F x and CaFe 1-x Co x AsF is demonstrated by muon spin rotation (μSR) measurement across their phase boundaries (x=0.06 for LaFeAsO 1-x F x and x=0.075-0.15 for CaFe 1-x Co x AsF). In LaFeAsO 0.94 F 0.06 , both magnetism and superconductivity develop simultaneously below a common critical temperature, T m ≅T c ≅18 K, where the magnetism is characterized by strong randomness. A similar, but more distinct segregation of these two phases is observed in CaFe 1-x Co x AsF, where the magnetic phase retains T m close to that of the parent compound (T c m ≅80-120 K) and the superconducting volume fraction is mostly proportional to the Co content x. The close relationship between magnetism and superconductivity is discussed based on these experimental observations. Concerning the superconducting phase, an assessment is made on the anisotropy of the order parameter in the superconducting state of LaFeAsO 1-x F x , CaFe 1-x Co x AsF and Ba 1-x K x Fe 2 As 2 (x=0.4) based on the temperature dependence of superfluid density [n s (T)] measured by μSR. The gap parameter, 2Δ/k B T c , determined from n s (T) exhibits a tendency that values in the hole-doped pnictides (Ba 1-x K x Fe 2 As 2 ) are much greater than those in electron-doped ones (LaFeAsO 1-x F x and CaFe 1-x Co x AsF), suggesting a difference in the coupling to bosons mediating the Cooper pairs between relevant d electron bands.

  18. The global percutaneous shuttling technique tip for arthroscopic rotator cuff repair

    Directory of Open Access Journals (Sweden)

    Bryan G. Vopat

    2014-05-01

    Full Text Available Most arthroscopic rotator cuff repairs utilize suture passing devices placed through arthro- scopic cannulas. These devices are limited by the size of the passing device where the suture is passed through the tendon. An alternative technique has been used in the senior author’s practice for the past ten years, where sutures are placed through the rotator cuff tendon using percutaneous passing devices. This technique, dubbed the global percutaneous shuttling technique of rotator cuff repair, affords the placement of sutures from nearly any angle and location in the shoulder, and has the potential advantage of larger suture bites through the tendon edge. These advantages may increase the area of tendon available to compress to the rotator cuff footprint and improve tendon healing and outcomes. The aim of this study is to describe the global percutaneous shuttling (GPS technique and report our results using this method. The GPS technique can be used for any full thickness rotator cuff tear and is particularly useful for massive cuff tears with poor tissue quality. We recently followed up 22 patients with an average follow up of 32 months to validate its usefulness. American Shoulder and Elbow Surgeons scores improved significantly from 37 preoperatively to 90 postoperatively (P<0.0001. This data supports the use of the GPS technique for arthroscopic rotator cuff repair. Further biomechanical studies are currently being performed to assess the improvements in tendon footprint area with this technique.

  19. Counter-rotating standing spin waves: A magneto-optical illusion

    Science.gov (United States)

    Shihab, S.; Thevenard, L.; Lemaître, A.; Gourdon, C.

    2017-04-01

    We excite perpendicular standing spin waves by a laser pulse in a GaMnAsP ferromagnetic layer and detect them using time-resolved magneto-optical effects. Quite counterintuitively, we find the first two excited modes to be of opposite chirality. We show that this can only be explained by taking into account absorption and optical phase shift inside the layer. This optical illusion is particularly strong in weakly absorbing layers. These results provide a correct identification of spin waves modes, enabling a trustworthy estimation of their respective weight as well as an unambiguous determination of the spin stiffness parameter.

  20. A slowly rotating hollow sphere in a magnetic field: First steps to de-spin a space object

    Science.gov (United States)

    Youngquist, Robert C.; Nurge, Mark A.; Starr, Stanley O.; Leve, Frederick A.; Peck, Mason

    2016-03-01

    Modeling the interaction of a slowly rotating hollow conducting sphere in a magnetic field provided an understanding of the dynamics of orbiting space objects moving through the Earth's magnetic field. This analysis, performed in the late 1950s and limited to uniform magnetic fields, was innovative and acknowledged the pioneers who first observed rotary magnetism, in particular, the seminal work of Hertz in 1880. Now, there is interest in using a magnetic field produced by one space object to stop the spin of a second object so that docking can occur. In this paper, we consider, yet again, the interaction of a rotating hollow sphere in a magnetic field. We show that the predicted results can be tested experimentally, making this an interesting advanced student project. This analysis also sheds light on a rich set of previously unaddressed behaviors involving eddy currents.

  1. Closure of oroantral fistula with rotational palatal flap technique

    Directory of Open Access Journals (Sweden)

    David B. Kamadjaja

    2007-03-01

    Full Text Available Oroantral fistula is one of the common complications following dentoalveolar surgeries in the maxilla. Closure of oroantral fistula should be done as early as possible to eliminate the risk of infection of the antrum. Palatal flap is one of the commonly used methods in the closure of oroantral fistula. A case is reported of a male patient who had two oroantral communication after having his two dental implants removed. Buccal flap was used to close the defects, but one of them remained open and resulted in oroantral fistula. Second correction was performed to close the defect using buccal fat pad, but the fistula still persisted. Finally, palatal rotational flap was used to close up the fistula. The result was good, as the defect was successfully closed and the donor site healed uneventfully.

  2. Changes in the Earth’s Spin Rotation due to the Atmospheric Effects and Reduction in Glaciers

    Directory of Open Access Journals (Sweden)

    Sung-Ho Na

    2016-12-01

    Full Text Available The atmosphere strongly affects the Earth’s spin rotation in wide range of timescale from daily to annual. Its dominant role in the seasonal perturbations of both the pole position and spinning rate of the Earth is once again confirmed by a comparison of two recent data sets; i the Earth orientation parameter and ii the global atmospheric state. The atmospheric semi-diurnal tide has been known to be a source of the Earth’s spin acceleration, and its magnitude is re-estimated by using an enhanced formulation and an up-dated empirical atmospheric S2 tide model. During the last twenty years, an unusual eastward drift of the Earth’s pole has been observed. The change in the Earth’s inertia tensor due to glacier mass redistribution is directly assessed, and the recent eastward movement of the pole is ascribed to this change. Furthermore, the associated changes in the length of day and UT1 are estimated.

  3. Antiferromagnetism of La2CuO(4-y) studied by muon-spin rotation

    Science.gov (United States)

    Uemura, Y. J.; Kossler, W. J.; Yu, X. H.; Kempton, J. R.; Schone, H. E.

    1987-01-01

    Zero-field spin precession of positive muons has been observed in the antiferromagnetic state of La2CuO(4-y). Sharp onsets of the sublattice magnetization are found at temperatures close to those of the susceptibility maxima of different specimens. The long-lived precession signal indicates a microscopically homogeneous distribution of spin density at each Cu atom below the Neel temperature. A combination of the present results and neutron-scattering studies indicates the ordered moment per Cu atom to be significantly less than 1 mu(B).

  4. The rotating particles probe: a new technique to measure interactions between particles and a substrate

    NARCIS (Netherlands)

    Janssen, X.J.A.; Van Reenen, A.; Van IJzendoorn, L.J.; De Jong, A.M.; Prins, M.W.J.

    2012-01-01

    We demonstrate a new probing technique to measure physicochemical interactions between particles and a substrate in a fluid. The technique is based on the measurement of field-induced rotation of individual magnetic particles in contact with the substrate. The parallel measurement of many particles

  5. CORDIC TECHNIQUES FOR FIXED ANGLE OF ROTATION IN MULTIPLYING OPERATION OF QUATERNIONS

    Directory of Open Access Journals (Sweden)

    N. A. Petrovsky

    2015-01-01

    Full Text Available The article contains a number of solutions for the key element of paraunitary filter banks based on quaternionic algebra (Q-PUBF – the multiplier of quaternions with usage of CORDIC (Coordinate Rotation Digital Computer techniques for the fixed angle of rotation where, unlike known solutions, 4D rotation control parameters are represented by nonlinear function of shifts number of input operands of the microrotation operation. Suggested approach of the multiplier designing on a quaternion-constant allows reaching the maximum performance of the multiplier scheme with low use of resources, for example, of FPGA.

  6. Predicting superdeformed rotational band-head spin in A ∼ 190 ...

    Indian Academy of Sciences (India)

    Table 1a. The band-head spin I0 of SD bands in A ≈ 190 region along with the calculated transition energy is given. The parameters, stiffness constant (C) and band- head moment of inertia Jo used in fitting are also given. The other theoretical model values which are available in literature are given for comparsion. A total ...

  7. Predicting superdeformed rotational band-head spin in A ∼ 190 ...

    Indian Academy of Sciences (India)

    head spin in. A ∼ 190 mass region using variable moment of inertia model. V S UMA1,∗, ALPANA GOEL2, ARCHANA YADAV2 and A K JAIN3 ..... [1] P J Twin, B M Nyako, A H Nelson, J Simpson, M A Bentley, J F Sharpey-Schafer and. G Sletten ...

  8. A technique for measurement of vector and tensor polarization in solid spin one polarized targets

    Energy Technology Data Exchange (ETDEWEB)

    Kielhorn, W.F.

    1991-06-01

    Vector and tensor polarizations are explicitly defined and used to characterize the polarization states of spin one polarized targets, and a technique for extracting these polarizations from nuclear magnetic resonance (NMR) data is developed. This technique is independent of assumptions about spin temperature, but assumes the target's crystal structure induces a quadrupole interaction with the spin one particles. Analysis of the NMR signals involves a computer curve fitting algorithm implemented with a fast Fourier transform method which speeds and simplifies curve fitting algorithms used previously. For accurate curve fitting, the NMR electronic circuit must be modeled by the fitting algorithm. Details of a circuit, its model, and data collected from this circuit are given for a solid deuterated ammonia target. 37 refs., 19 figs., 3 tabs.

  9. A technique for measurement of vector and tensor polarization in solid spin one polarized targets

    International Nuclear Information System (INIS)

    Kielhorn, W.F.

    1991-06-01

    Vector and tensor polarizations are explicitly defined and used to characterize the polarization states of spin one polarized targets, and a technique for extracting these polarizations from nuclear magnetic resonance (NMR) data is developed. This technique is independent of assumptions about spin temperature, but assumes the target's crystal structure induces a quadrupole interaction with the spin one particles. Analysis of the NMR signals involves a computer curve fitting algorithm implemented with a fast Fourier transform method which speeds and simplifies curve fitting algorithms used previously. For accurate curve fitting, the NMR electronic circuit must be modeled by the fitting algorithm. Details of a circuit, its model, and data collected from this circuit are given for a solid deuterated ammonia target. 37 refs., 19 figs., 3 tabs

  10. Robot Grasps Rotating Object

    Science.gov (United States)

    Wilcox, Brian H.; Tso, Kam S.; Litwin, Todd E.; Hayati, Samad A.; Bon, Bruce B.

    1991-01-01

    Experimental robotic system semiautomatically grasps rotating object, stops rotation, and pulls object to rest in fixture. Based on combination of advanced techniques for sensing and control, constructed to test concepts for robotic recapture of spinning artificial satellites. Potential terrestrial applications for technology developed with help of system includes tracking and grasping of industrial parts on conveyor belts, tracking of vehicles and animals, and soft grasping of moving objects in general.

  11. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    International Nuclear Information System (INIS)

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of Kα and Kβ emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS

  12. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin [Univ. of California, Davis, CA (United States). Dept. of Applied Science

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

  13. Magnetism of unconventional nanoscaled materials. An X-ray circular dichroism and muon spin rotation study

    International Nuclear Information System (INIS)

    Tietze, Thomas Hermann

    2014-01-01

    significant shape dependence was observed. This part of the thesis provides a microscopic understanding of the electronic and magnetic properties of Ni nanocluster on graphene and the cluster/graphene interaction. The resulting strong change in the Ni d states is very important concerning the choice of suitable materials for graphene based spintronic devices. The second part of this thesis is dedicated to the indirect influence of the nanoparticle size on the magnetic properties of an oxide system. In particular the origin of ferromagnetism in actual nonmagnetic ZnO is discussed. The reason for ferromagnetism in ZnO depends strongly on its microscopic properties. Nanocrystalline samples with adequate small grains are mandatory. The key parameter is the so called specific grain boundary area which is defined as ratio of grain surface to grain volume. If this value exceeds a certain threshold limit, ZnO can become ferromagnetic even without doping atoms. Here the ferromagnetic coupling is suggested to occur within the grain boundaries itself. A direct proof of this hypothesis is difficult. Measurement methods like SQUID do not provide information on the microscopic origin of the sample magnetization. Therefore, this problem was addressed using low energy muon spin rotation (μSR). Here, the magnetic moment of the muon is utilized as a local magnetic probe. Three different sample systems were investigated, varying the respective grain size. Two nanograined samples with an average grain size of 31 nm and 65 nm were compared to a nonmagnetic reference ZnO single crystal. A detailed TEM analysis of the grain size distribution showed that in both nanograined samples a significant fraction of grains is smaller than the threshold condition. SQUID and μSR measurements show a clear relation between magnetization respectively magnetic volume fraction and the sample volume occupied by grain boundaries. For larger grain boundary volume a larger saturation magnetization and μSR related

  14. Rotational dynamics in supercooled water from nuclear spin relaxation and molecular simulations.

    Science.gov (United States)

    Qvist, Johan; Mattea, Carlos; Sunde, Erik P; Halle, Bertil

    2012-05-28

    Structural dynamics in liquid water slow down dramatically in the supercooled regime. To shed further light on the origin of this super-Arrhenius temperature dependence, we report high-precision (17)O and (2)H NMR relaxation data for H(2)O and D(2)O, respectively, down to 37 K below the equilibrium freezing point. With the aid of molecular dynamics (MD) simulations, we provide a detailed analysis of the rotational motions probed by the NMR experiments. The NMR-derived rotational correlation time τ(R) is the integral of a time correlation function (TCF) that, after a subpicosecond librational decay, can be described as a sum of two exponentials. Using a coarse-graining algorithm to map the MD trajectory on a continuous-time random walk (CTRW) in angular space, we show that the slowest TCF component can be attributed to large-angle molecular jumps. The mean jump angle is ∼48° at all temperatures and the waiting time distribution is non-exponential, implying dynamical heterogeneity. We have previously used an analogous CTRW model to analyze quasielastic neutron scattering data from supercooled water. Although the translational and rotational waiting times are of similar magnitude, most translational jumps are not synchronized with a rotational jump of the same molecule. The rotational waiting time has a stronger temperature dependence than the translation one, consistent with the strong increase of the experimentally derived product τ(R) D(T) at low temperatures. The present CTRW jump model is related to, but differs in essential ways from the extended jump model proposed by Laage and co-workers. Our analysis traces the super-Arrhenius temperature dependence of τ(R) to the rotational waiting time. We present arguments against interpreting this temperature dependence in terms of mode-coupling theory or in terms of mixture models of water structure.

  15. Coexistence of magnetic fluctuations and superconductivity in the pnictide high temperature superconductor SmFeAsO1-xFx measured by muon spin rotation.

    Science.gov (United States)

    Drew, A J; Pratt, F L; Lancaster, T; Blundell, S J; Baker, P J; Liu, R H; Wu, G; Chen, X H; Watanabe, I; Malik, V K; Dubroka, A; Kim, K W; Rössle, M; Bernhard, C

    2008-08-29

    Muon spin rotation experiments were performed on the pnictide high temperature superconductor SmFeAsO1-xFx with x=0.18 and 0.3. We observed an unusual enhancement of slow spin fluctuations in the vicinity of the superconducting transition which suggests that the spin fluctuations contribute to the formation of an unconventional superconducting state. An estimate of the in-plane penetration depth lambda ab(0)=190(5) nm was obtained, which confirms that the pnictide superconductors obey an Uemura-style relationship between Tc and lambda ab(0);(-2).

  16. Rotational acceleration during head impact resulting from different judo throwing techniques.

    Science.gov (United States)

    Murayama, Haruo; Hitosugi, Masahito; Motozawa, Yasuki; Ogino, Masahiro; Koyama, Katsuhiro

    2014-01-01

    Most severe head injuries in judo are reported as acute subdural hematoma. It is thus necessary to examine the rotational acceleration of the head to clarify the mechanism of head injuries. We determined the rotational acceleration of the head when the subject is thrown by judo techniques. One Japanese male judo expert threw an anthropomorphic test device using two throwing techniques, Osoto-gari and Ouchi-gari. Rotational and translational head accelerations were measured with and without an under-mat. For Osoto-gari, peak resultant rotational acceleration ranged from 4,284.2 rad/s(2) to 5,525.9 rad/s(2) and peak resultant translational acceleration ranged from 64.3 g to 87.2 g; for Ouchi-gari, the accelerations respectively ranged from 1,708.0 rad/s(2) to 2,104.1 rad/s(2) and from 120.2 g to 149.4 g. The resultant rotational acceleration did not decrease with installation of an under-mat for both Ouchi-gari and Osoto-gari. We found that head contact with the tatami could result in the peak values of translational and rotational accelerations, respectively. In general, because kinematics of the body strongly affects translational and rotational accelerations of the head, both accelerations should be measured to analyze the underlying mechanism of head injury. As a primary preventative measure, throwing techniques should be restricted to participants demonstrating ability in ukemi techniques to avoid head contact with the tatami.

  17. Simultaneous rotational and vibrational CARS generation through a multiple-frequency combination technique

    International Nuclear Information System (INIS)

    Alden, M.; Bengtsson, P.E.; Edner, H.

    1987-01-01

    One most promising laser technique for probing combustion processes is coherent anti-Stokes Raman scattering (CARS), which due to its coherent nature and signal strength is applied in several real-world applications. Until today almost all CARS experiments are based on probing the population of molecular vibrational energy levels. However, there are several reasons rotational CARS, i.e. probing of rotational energy levels, may provide a complement to or even a better choice than vibrational CARS. Recently an alternative way to produce rotational CARS spectra is proposed, which is based on a multiple-frequency combination technique. The energy-level diagram for this process is presented. Two dye laser beams at ω/sub r/, and one fix frequency laser beam at ω/sub g/ are employed. ω/sub r,1/ and ω/sub r,2/ are two frequencies of many possible pairs with a frequency difference matching a rotational transition in a molecule. The excitation induced by ω/sub r,1/ and ω/sub r,2/ is then scattered by the narrowband ω/sub g/ beam resulting in a CARS beam ω/sub g/ at ω/sub g/ + ω/sub r,1/ - ω/sub r,2/. An interesting feature with this technique is that it is possible to generate simultaneously a rotational and vibrational CARS spectrum by using a double-folded boxcars phase matching approach. The authors believe that the proposed technique for producing rotational and vibration CARS spectra could be of interest, e.g., when measuring in highly turbulent flows. In this case the rotational CARS spectra could use for temperature measurements in the cooler parts, whereas vibrational CARS are to be preferred when measuring in the hotter parts

  18. Analysis of state-of-the-art single-thruster attitude control techniques for spinning penetrator

    Science.gov (United States)

    Raus, Robin; Gao, Yang; Wu, Yunhua; Watt, Mark

    2012-07-01

    The attitude dynamics and manoeuvre survey in this paper is performed for a mission scenario involving a penetrator-type spacecraft: an axisymmetric prolate spacecraft spinning around its minor axis of inertia performing a 90° spin axis reorientation manoeuvre. In contrast to most existing spacecraft only one attitude control thruster is available, providing a control torque perpendicular to the spin axis. Having only one attitude thruster on a spinning spacecraft could be preferred for spacecraft simplicity (lower mass, lower power consumption etc.), or it could be imposed in the context of redundancy/contingency operations. This constraint does yield restrictions on the thruster timings, depending on the ratio of minor to major moments of inertia among other parameters. The Japanese Lunar-A penetrator spacecraft proposal is a good example of such a single-thruster spin-stabilised prolate spacecraft. The attitude dynamics of a spinning rigid body are first investigated analytically, then expanded for the specific case of a prolate and axisymmetric rigid body and finally a cursory exploration of non-rigid body dynamics is made. Next two well-known techniques for manoeuvring a spin-stabilised spacecraft, the Half-cone/Multiple Half-cone and the Rhumb line slew, are compared with two new techniques, the Sector-Arc Slew developed by Astrium Satellites and the Dual-cone developed at Surrey Space Centre. Each technique is introduced and characterised by means of simulation results and illustrations based on the penetrator mission scenario and a brief robustness analysis is performed against errors in moments of inertia and spin rate. Also, the relative benefits of each slew algorithm are discussed in terms of slew accuracy, energy (propellant) efficiency and time efficiency. For example, a sequence of half-cone manoeuvres (a Multi-half-cone manoeuvre) tends to be more energy-efficient than one half-cone for the same final slew angle, but more time-consuming. As another

  19. Field of first magnetic flux entry and pinning strength of superconductors for rf application measured with muon spin rotation

    Science.gov (United States)

    Junginger, T.; Abidi, S. H.; Maffett, R. D.; Buck, T.; Dehn, M. H.; Gheidi, S.; Kiefl, R.; Kolb, P.; Storey, D.; Thoeng, E.; Wasserman, W.; Laxdal, R. E.

    2018-03-01

    The performance of superconducting radiofrequency (SRF) cavities used for particle accelerators depends on two characteristic material parameters: field of first flux entry Hentry and pinning strength. The former sets the limit for the maximum achievable accelerating gradient, while the latter determines how efficiently flux can be expelled related to the maximum achievable quality factor. In this paper, a method based on muon spin rotation (μ SR ) is developed to probe these parameters on samples. It combines measurements from two different spectrometers, one being specifically built for these studies and samples of different geometries. It is found that annealing at 1400 °C virtually eliminates all pinning. Such an annealed substrate is ideally suited to measure Hentry of layered superconductors, which might enable accelerating gradients beyond bulk niobium technology.

  20. Studies of LENRA-Toughened PVC non-woven membranes prepared by electro spinning technique

    International Nuclear Information System (INIS)

    Dahlan Mohd; Mahathir Mohamed; Khirul Hafiz mohd Yusof

    2010-01-01

    Lately research in use of so-called green chemicals draws strong interest from research community due to the climate change issues. Malaysia is in strong position to take this advantage because we are among the world biggest producers of natural rubber and palm oil - the two sources of important green renewable chemical feedstock in the near future. For the last couple of years we have shown how modified natural rubbers especially liquid natural rubber and its derivatives such as liquid epoxidized natural rubber acrylate (LENRA) could be used in various applications via among others sol-gel technique and radiation curing technology. This time around we will show another application on how non-woven membranes made from PVC can be prepared by electro spinning technique using radiation curable LENRA as toughener. The electro spinning technique has great potential in producing nano fiber materials to be used in various applications to ensure sustainable energy and environments for the future. (author)

  1. Measurement of the spin rotation parameter A in the elastic pion-proton scattering at 1.43 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, I.G.; Budkovsky, P.E.; Kanavets, V.P.; Koroleva, L.I.; Morozov, B.V.; Nesterov, V.M.; Ryltsov, V.V.; Sulimov, A.D.; Svirida, D.N.; Zhurkin, V.V. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bazhanov, N.A.; Bunyatova, E.I. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kovalev, A.I.; Kruglov, S.P.; Novinsky, D.V.; Shchedrov, V.A.; Sumachev, V.V.; Trautman, V. Yu. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation)

    2006-02-01

    The ITEP-PNPI collaboration presents new results of the measurements of the spin rotation parameter A in the elastic scattering of negative pions on protons at P{sub beam}=1.43 GeV/c. The results are compared to the predictions of several partial wave analyses. The experiment was performed at the ITEP proton synchrotron, Moscow. (orig.)

  2. Measurement of the spin rotation parameter Ain the elastic pion-proton scattering at 1.43 GeV/c

    Science.gov (United States)

    Alekseev, I. G.; Bazhanov, N. A.; Budkovsky, P. E.; Bunyatova, E. I.; Kanavets, V. P.; Kovalev, A. I.; Koroleva, L. I.; Kruglov, S. P.; Morozov, B. V.; Nesterov, V. M.; Novinsky, D. V.; Ryltsov, V. V.; Shchedrov, V. A.; Sulimov, A. D.; Sumachev, V. V.; Svirida, D. N.; Trautman, V. Yu; Zhurkin, V. V.

    2006-02-01

    The ITEP-PNPI collaboration presents new results of the measurements of the spin rotation parameter A in the elastic scattering of negative pions on protons at P beam = 1.43 GeV/c. The results are compared to the predictions of several partial wave analyses. The experiment was performed at the ITEP proton synchrotron, Moscow.

  3. Measurement of the spin rotation parameter A in the elastic pion- proton scattering at 1.43 GeV/c

    CERN Document Server

    Alekseev, I G; Budkovsky, P E; Bunyatova, E I; Kanavets, V P; Koroleva, L I; Kovalev, A I; Kruglov, S P; Morozov, B V; Nesterov, V M; Novinsky, D V; Ryltzov, V V; Shchedrov, V A; Sulimov, A D; Sumachev, V V; Svirida, D N; Trautman, V Yu; Zhurkin, V V

    2004-01-01

    The ITEP-PNPI collaboration presents new results of the measurements of the spin rotation parameter A in the elastic scattering of negative pions on protons at P/sub beam/ = 1.43 GeV/c. The results are compared to the predictions of the different partial wave analyses. The experiment was performed at the ITEP proton synchrotron, Moscow.

  4. Measurement of the Spin Rotation Parameter A in the Elastic Pion-proton Scattering at 1.43 GeV/c

    OpenAIRE

    Alekseev, I. G.; Bazhanov, N. A.; Budkovsky, P. E.; Bunyatova, E. I.; Kanavets, V. P.; Kovalev, A. I.; Koroleva, L. I.; Kruglov, S. P.; Morozov, B. V.; Nesterov, V. M.; Novinsky, D. V.; Ryltsov, V. V.; Shchedrov, V. A.; Sulimov, A. D.; Sumachev, V. V.

    2005-01-01

    The ITEP-PNPI collaboration presents new results of the measurements of the spin rotation parameter A in the elastic scattering of negative pions on protons at P_beam=1.43 GeV/c. The results are compared to the predictions of several partial wave analyses. The experiment was performed at the ITEP proton synchrotron, Moscow.

  5. A new corrective technique for adolescent idiopathic scoliosis (Ucar′s convex rod rotation

    Directory of Open Access Journals (Sweden)

    Bekir Yavuz Ucar

    2014-01-01

    Full Text Available Study Design: Prospective single-center study. Objective: To analyze the efficacy and safety of a new technique of global vertebral correction with convex rod rotation performed on the patients with adolescent idiopathic scoliosis. Summary of Background Data: Surgical goal is to obtain an optimal curve correction in scoliosis surgery. There are various correction techniques. This report describes a new technique of global vertebral correction with convex rod rotation. Materials and Methods: A total of 12 consecutive patients with Lenke type I adolescent idiopathic scoliosis and managed by convex rod rotation technique between years 2012 and 2013 having more than 1 year follow-up were included. Mean age was 14.5 (range = 13-17 years years at the time of operation. The hospital charts were reviewed for demographic data. Measurements of curve magnitude and balance were made on 36-inch standing anteroposterior and lateral radiographs taken before surgery and at most recent follow up to assess deformity correction, spinal balance, and complications related to the instrumentation. Results: Preoperative coronal plane major curve of 62° (range = 50°-72° with flexibility of less than 30% was corrected to 11.5°(range = 10°-14° showing a 81% scoliosis correction at the final follow-up. Coronal imbalance was improved 72% at the most recent follow-up assessment. No complications were found. Conclusion: The new technique of global vertebral correction with Ucar′s convex rod rotation is an effective technique. This method is a vertebral rotation procedure from convex side and it allows to put screws easily to the concave side.

  6. An efficient numerical technique for solving navier-stokes equations for rotating flows

    International Nuclear Information System (INIS)

    Haroon, T.; Shah, T.M.

    2000-01-01

    This paper simulates an industrial problem by solving compressible Navier-Stokes equations. The time-consuming tri-angularization process of a large-banded matrix, performed by memory economical Frontal Technique. This scheme successfully reduces the time for I/O operations even for as large as (40, 000 x 40, 000) matrix. Previously, this industrial problem can solved by using modified Newton's method with Gaussian elimination technique for the large matrix. In the present paper, the proposed Frontal Technique is successfully used, together with Newton's method, to solve compressible Navier-Stokes equations for rotating cylinders. By using the Frontal Technique, the method gives the solution within reasonably acceptance computational time. Results are compared with the earlier works done, and found computationally very efficient. Some features of the solution are reported here for the rotating machines. (author)

  7. Investigation of the Sequential Rotation Technique and its Application in Phased Arrays

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal

    2007-01-01

    This report documents the investigations of the sequential rotation technique in application to phased array antennas. A spherical wave expansion for the far field of sequentially phased arrays is derived for general antenna elements. This model is approximate in that it assumes that the element...

  8. The gap technique does not rotate the femur parallel to the epicondylar axis.

    Science.gov (United States)

    Matziolis, Georg; Boenicke, Hinrich; Pfiel, Sascha; Wassilew, Georgi; Perka, Carsten

    2011-02-01

    In the analysis of painful total knee replacements, the surgical epicondylar axis (SEA) has become established as a standard in the diagnosis of femoral component rotation. It remains unclear whether the gap technique widely used to determine femoral rotation, when applied correctly, results in a rotation parallel to the SEA. In this prospective study, 69 patients (69 joints) were included who received a navigated bicondylar surface replacement due to primary arthritis of the knee joint. In 67 cases in which a perfect soft-tissue balancing of the extension gap (technique and the SEA. If the gap technique had been used consistently, it would have resulted in a deviation of the femoral components by -0.6° ± 2.9° (-7.4°-5.9°) from the SEA. The absolute deviation would have been 2.4° ± 1.8°, with a range between 0.2° and 7.4°. Even if the extension gap is perfectly balanced, the gap technique does not lead to a parallel alignment of the femoral component to the SEA. Since the clinical results of this technique are equivalent to those of the femur first technique in the literature, an evaluation of this deviation as a malalignment must be considered critically.

  9. Comparison of dual-axis rotational coronary angiography (XPERSWING) versus conventional technique in routine practice.

    Science.gov (United States)

    Gómez-Menchero, Antonio E; Díaz, José F; Sánchez-González, Carlos; Cardenal, Rosa; Sanghvi, Amit B; Roa-Garrido, Jessica; Rodríguez-López, José L

    2012-05-01

    Coronary angiography is the gold standard for the study of coronary artery disease. This technique requires several orthogonal projections. Rotational angiography is a new technique which involves pre-set rotation of the X-ray tube around the patient and allows visualization of each coronary artery in different views, using a single contrast injection. The purpose of this study was to compare conventional coronary angiography (A) vs rotational angiography (B), focusing on radiation dose, amount of contrast administered, and total procedure time for both diagnostic and therapeutic percutaneous coronary interventions. Prospective study of 104 consecutive patients undergoing coronary angiography who were randomized to one of these techniques. We found a significant reduction in the amount of contrast administered (A vs B, 93.1 [41.7] vs 50.9 [14.7] mL; Protational angiography arm. However, when only the last 50 patients were analyzed, we found no difference in procedure time between the groups, probably related to the learning curve of the operators. Angioplasty was performed in 29 patients in group A and 28 patients in group B. Contrast reduction was maintained in the rotational angiography group compared to the conventional technique (A vs B, 335.1 [192.1] vs 238.5 [114.4] mL; P=.02). The rotational angiography technique leads to a significant decrease in radiation exposure and contrast dose administered for diagnostic procedures when compared to conventional coronary angiography. In patients who undergo percutaneous coronary intervention, contrast reduction remains significant. Copyright © 2011 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  10. Rotational high spin structures in doubly-odd in {sup 184}Au

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, F.; Roussiere, B.; Sauvage, J.; Bourgeois, C.; Korichi, A. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Hojman, D.; Kreiner, A.J.; Davidson, J.; Davidson, M.; Debray, M. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. de Fisica; Knipper, A. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Marguier, G. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire] [and others

    1995-12-31

    Excited states in the doubly-odd {sup 184}Au nucleus have been studied by in-beam {gamma}-ray spectroscopy. This nucleus was produced through the fusion-evaporation reactions {sup 165}Ho({sup 24}Mg, 5n), {sup 170}Yb({sup 19}F, 5n) and {sup 161}Dy({sup 27}Al, 4n). Different rotational band structures have been observed and interpreted as specific couplings of proton and neutron single-particle excitations present in neighboring odd Au and Pt nuclei. (author). 34 refs.; Submitted to Physical Review, C (US).

  11. Control of susceptibility-related image contrast by spin-lock techniques.

    Science.gov (United States)

    Martirosian, Petros; Rommel, Eberhard; Schick, Fritz; Deimling, Michael

    2008-12-01

    Macroscopic magnetic field inhomogeneities might lead to image distortions, while microscopic field inhomogeneities, due to susceptibility changes in tissues, cause spin dephasing and decreasing T(2)() relaxation time. The latter effects are especially observed in the trabecular bone and in regions adjacent to air-containing cavities when gradient-echo sequences are applied. In conventional MRI, these susceptibility-related signal voids can be avoided by applying spin-echo (SE) techniques. In this study, an alternative method for the examination and control of susceptibility-related effects by spin-lock (SL) radiofrequency pulses is presented: SL pulses were applied in two different susceptibility-sensitive sequence types: (a) between the jump and return 90 degrees pulses in a 90 degrees (x)-tau-90 degrees (-x) magnetization-prepared Fast Low Angle Shot (FLASH) sequence and (b) between the 90 degrees pulse and the 180 degrees pulse in an asymmetric SE sequence. The range of Larmor frequencies used for spin locking can be determined for different B(1) amplitudes of the SL pulses, allowing control of image contrast by the amplitude of the SL pulses.

  12. The Ceres gravity field, spin pole, rotation period and orbit from the Dawn radiometric tracking and optical data

    Science.gov (United States)

    Konopliv, A. S.; Park, R. S.; Vaughan, A. T.; Bills, B. G.; Asmar, S. W.; Ermakov, A. I.; Rambaux, N.; Raymond, C. A.; Castillo-Rogez, J. C.; Russell, C. T.; Smith, D. E.; Zuber, M. T.

    2018-01-01

    Ceres' gravity field and rotational parameters have been precisely measured using 1.5 years of radiometric Doppler and range data and optical landmark tracking from the Dawn spacecraft in orbit about the dwarf planet. As was the case with Dawn at Vesta, the gravity field, orientation parameters, landmark locations, and Ceres' orbit are jointly estimated in a global solution. Even though Dawn's radio science investigation at Ceres was complicated by additional thrusting for attitude control, the resulting spherical harmonic gravity field has a half-wavelength resolution of up to 82 km (degree 18) near the equator, which is similar harmonic resolution to that of Vesta. The gravity field is consistent with Airy isostatic compensation, and this model assumption limits Ceres' crustal density to be between 1200 and 1600 kg/m3 for two-layer and three-layer models with mean crustal thickness between 27 and 43 km. The compensation depth is determined using admittance between gravity and gravity from topography and is superior to admittance between gravity and topography. The gravitational mass of Ceres is determined to better than 0.002% (GMCeres = 62.62736 ± 0.00040 km3/s2), the spin pole location is improved by 10× over previous results with right ascension (α = 291.427°) and declination (δ = 66.760°) uncertainty less than 0.001°, and the rotation rate is improved by ∼100× over previous determinations from Hubble Space Telescope (HST) images. Ceres' heliocentric orbit has also been improved, with about 17 months of precision range measurements reducing ephemeris uncertainties to about 10 m during the Dawn timeframe.

  13. New spoiled spin-echo technique for three-dimensional MR imaging

    International Nuclear Information System (INIS)

    Darrasse, L.; Mao, L.; Saint-Jalmes, H.

    1989-01-01

    For 3D MR imaging within a convenient scanning time, the authors propose an improved spin-echo technique that permits the use of TRs shorter than 100 msec. They use a two-pulse RF sequence (α-π echo). The echo is read with conventional 3DFT encoding. To avoid steady-state signal refocusing before either α or (imperfect) π pulses, we apply randomized gradient spoilers both before each α pulse and on each side of the π pulse. So the sequence works like standard spin- echo sequences, with the z-magnetization recovery being adjusted by means of α rather than TR. The authors have investigated the method on a new 0.1-T Magnetom system dedicated for 3D MR imaging

  14. Data structure techniques for the graphical special unitary group approach to arbitrary spin representations

    International Nuclear Information System (INIS)

    Kent, R.D.; Schlesinger, M.

    1987-01-01

    For the purpose of computing matrix elements of quantum mechanical operators in complex N-particle systems it is necessary that as much of each irreducible representation be stored in high-speed memory as possible in order to achieve the highest possible rate of computations. A graph theoretic approach to the representation of N-particle systems involving arbitrary single-particle spin is presented. The method involves a generalization of a technique employed by Shavitt in developing the graphical group approach (GUGA) to electronic spin-orbitals. The methods implemented in GENDRT and DRTDIM overcome many deficiencies inherent in other approaches, particularly with respect to utilization of memory resources, computational efficiency in the recognition and evaluation of non-zero matrix elements of certain group theoretic operators and complete labelling of all the basis states of the permutation symmetry (S N ) adapted irreducible representations of SU(n) groups. (orig.)

  15. Evaluation of the functional results after rotator cuff arthroscopic repair with the suture bridge technique

    Directory of Open Access Journals (Sweden)

    Alberto Naoki Miyazaki

    Full Text Available ABSTRACT OBJECTIVE: To evaluate the results of arthroscopic treatment of large and extensive rotator cuff injuries (RCI that involved the supra and infraspinatus muscles using the suture bridge (SB technique. METHODS: Between July 2010 and November 2014, 37 patients with RCI who were treated with SB technique were evaluated. The study included all patients with a minimum follow-up of 12 months who underwent primary surgery of the shoulder. Twenty-four patients were male and 13 were female. The mean age was 60 years (45-75. The dominant side was affected in 32 cases. The most common cause of injury was trauma (18 cases. The mean preoperative motion was 123°, 58°, T11. Through magnetic resonance imaging, 36 fatty degenerations were classified according to Goutallier. Patients underwent rotator cuff repair with SB technique, which consists of using a medial row anchor with two Corkscrew(r fibertape(r or fiberwire(r at the articular margin, associated with lateral fixation without stitch using PushLocks(r or SwiveLocks(r. RESULTS: The mean age was 60 years and mean fatty degeneration was 2.6. The mean range of motion (following the AAOS in the postoperative evaluation was 148° of forward elevation, 55° in lateral rotation and medial rotation in T9. Using the criteria of the University of California at Los Angeles (UCLA, 35 (94% patients had excellent and good results; one (2.7%, fair; and one (2.7%, poor. CONCLUSION: Arthroscopic repair of a large and extensive RCI using SB technique had good and excellent results in 94% of the patients.

  16. Laryngeal mask airway insertion in children: comparison between rotational, lateral and standard technique.

    Science.gov (United States)

    Ghai, Babita; Makkar, Jeetinder Kaur; Bhardwaj, Neerja; Wig, Jyotsna

    2008-04-01

    The purpose of the study was to compare the success and ease of insertion of three techniques of laryngeal mask airway (LMA) insertion; the standard Brain technique, a lateral technique with cuff partially inflated and a rotational technique with cuff partially inflated. One hundred and sixty-eight ASA I and II children aged 6 months to 6 years undergoing short elective surgical procedures lasting 40-60 min were included in the study. A standard anesthesia protocol was followed for all patients. Patients were randomly allocated into one of the three groups i.e. standard (S), rotational (R) and lateral (L). The primary outcome measure of the study was success rate at the first attempt using three techniques of LMA insertion. Secondary outcomes measures studied were overall success rate, time before successful LMA insertion, complications and maneuvers used to relieve airway obstruction. Successful insertion at the first attempt was significantly higher in group R (96%) compared with group L (84%) and group S (80%) (P = 0.03). Overall success rate (i.e. successful insertion with two attempts) was 100% for group R, 93% for group L and 87% for group S (P = 0.03). Time for successful insertion was significantly lower in group R compared with group L and S (P insertion and lowest incidence of complications and could be the technique of first choice for LMA insertion in pediatric patients.

  17. Instabilities and spin-up behaviour of a rotating magnetic field driven flow in a rectangular cavity

    Science.gov (United States)

    Galindo, V.; Nauber, R.; Räbiger, D.; Franke, S.; Beyer, H.; Büttner, L.; Czarske, J.; Eckert, S.

    2017-11-01

    This study presents numerical simulations and experiments considering the flow of an electrically conducting fluid inside a cube driven by a rotating magnetic field (RMF). The investigations are focused on the spin-up, where a liquid metal (GaInSn) is suddenly exposed to an azimuthal body force generated by the RMF and the subsequent flow development. The numerical simulations rely on a semi-analytical expression for the induced electromagnetic force density in an electrically conducting medium inside a cuboid container with insulating walls. Velocity distributions in two perpendicular planes are measured using a novel dual-plane, two-component ultrasound array Doppler velocimeter with continuous data streaming, enabling long term measurements for investigating transient flows. This approach allows identifying the main emerging flow modes during the transition from stable to unstable flow regimes with exponentially growing velocity oscillations using the Proper Orthogonal Decomposition method. Characteristic frequencies in the oscillating flow regimes are determined in the super critical range above the critical magnetic Taylor number T ac≈1.26 ×1 05, where the transition from the steady double vortex structure of the secondary flow to an unstable regime with exponentially growing oscillations is detected. The mean flow structures and the temporal evolution of the flow predicted by the numerical simulations and observed in experiments are in very good agreement.

  18. Measurements of the spin rotation parameter R in high energy elastic scattering and helicity amplitudes at Serpukhov energies

    International Nuclear Information System (INIS)

    Pierrard, J.; Bruneton, C.; Bystricky, J.; Cozzika, G.; Deregel, J.; Ducros, Y.; Gaidot, A.; Khantine-Langlois, F.; Lehar, F.; Lesquen, A. de; Merlo, J.P.; Miyashita, S.; Movchet, J.; Raoul, J.C.; Van Rossum, L.; Kanavets, V.P.

    1975-01-01

    The spin rotation parameter R in pp and π + p elastic scattering at 45GeV/c has been measured at the Serpukhov accelerator, for /t/ ranging from 0.2 to 0.5(GeV/c) 2 . The results are presented, together with previous R measurements at 3.8, 6, 16 and 40GeV/c, and are compared with the predictions of Regge pole models. The equality of the values for R in proton-proton and pion-proton scattering, within the experimental errors, is a test of factorization of the residues. An s-channel helicity amplitude analysis for pion-nucleon scattering at 40GeV/c is made using all available data. Significant results are obtained for the non flip amplitude in isoscalar exchange and for flip amplitudes on both isovector and isoscalar exchanges. The helicity flip in isoscalar exchange is non negligible. The energy dependence of this amplitude, at 6, 16 and 40GeV/c, is compared with predictions of Regge pole models [fr

  19. Ring Laser Gyro-based Digital Processing Technique for Detecting Rotation Rate over Short Time Intervals

    Directory of Open Access Journals (Sweden)

    V. N. Enin

    2017-01-01

    Full Text Available The article investigates capabilities of digital techniques to improve measurement accuracy of dithering ring laser gyro (DRLG in detecting constant rotation rate over short time intervals. An array of the GL-1 device output within a LG triad to measure the vertical component of the angular rate of rotation of the Earth in the laboratory setting is selected as the object of study. The selected time of a single measurement is 2 minutes, and as a full standard deviation error of measurement is selected the magnitude at least 0.002 "/ min. The objective of this study is to develop and underpin a new effective technique of LG digital information processing to enable providing an appropriate accuracy to meet modern requirements with reducing measurement time of a constant rate Ωz component. The specific objectives are the comparative analysis of the precision capabilities of the known techniques over limited measurement time intervals, development and support of new, more efficient technique of digital information processing of dithering ring LG, and experimental verification and evaluation of effectiveness of the technique proposed. The article presents a comparative error analysis of practically applied digital techniques such a simple averaging method, Hamming method, and method of "conditional sample of regression lines" with the proposed technique of "recognition of the output signal of the image N". To compare the techniques were used the real digital processing device output data taken at a frequency of 400 Hz over 94 two-minute measurement intervals after the device has been switched on. The proposed LG output image recognition technique enables us to reach about three times higher measuring accuracy over two-minute interval as compared to the known techniques.

  20. Spin rotation and oscillations for high energy particles in a crystal and possibility to measure the quadrupole moments and tensor polarizabilities of elementary particles and nuclei

    OpenAIRE

    Baryshevsky, V. G.; Gurinovich, A. A.

    2005-01-01

    It is shown that particle motion in a bent (straight) crystal is accompanied by particle spin rotation and oscillations that allows to measure the tensor electric and magnetic polarizabilities of nuclei and elementary particles. It is shown that channelling of particles in either straight or bent crystal with the polarized nuclei could be used both to analyze polarization of high energy particles and polarize them.

  1. The Roman Bridge: a "double pulley – suture bridges" technique for rotator cuff repair

    Directory of Open Access Journals (Sweden)

    Maffulli Nicola

    2007-12-01

    Full Text Available Abstract Background With advances in arthroscopic surgery, many techniques have been developed to increase the tendon-bone contact area, reconstituting a more anatomic configuration of the rotator cuff footprint and providing a better environment for tendon healing. Methods We present an arthroscopic rotator cuff repair technique which uses suture bridges to optimize rotator cuff tendon-footprint contact area and mean pressure. Results Two medial row 5.5-mm Bio-Corkscrew suture anchors (Arthrex, Naples, FL, which are double-loaded with No. 2 FiberWire sutures (Arthrex, Naples, FL, are placed in the medial aspect of the footprint. Two suture limbs from a single suture are both passed through a single point in the rotator cuff. This is performed for both anchors. The medial row sutures are tied using the double pulley technique. A suture limb is retrieved from each of the medial anchors through the lateral portal, and manually tied as a six-throw surgeon's knot over a metal rod. The two free suture limbs are pulled to transport the knot over the top of the tendon bridge. Then the two free suture limbs that were used to pull the knot down are tied. The end of the sutures are cut. The same double pulley technique is repeated for the other two suture limbs from the two medial anchors, but the two free suture limbs are used to produce suture bridges over the tendon, by means of a Pushlock (Arthrex, Naples, FL, placed 1 cm distal to the lateral edge of the footprint. Conclusion This technique maximizes the advantages of two techniques. On the one hand, the double pulley technique provides an extremely secure fixation in the medial aspect of the footprint. On the other hand, the suture bridges allow to improve pressurized contact area and mean footprint pressure. In this way, the bony footprint in not compromised by the distal-lateral fixation, and it is thus possible to share the load between fixation points. This maximizes the strength of the repair

  2. X-ray wavefront characterization using a rotating shearing interferometer technique.

    Science.gov (United States)

    Wang, Hongchang; Sawhney, Kawal; Berujon, Sébastien; Ziegler, Eric; Rutishauser, Simon; David, Christian

    2011-08-15

    A fast and accurate method to characterize the X-ray wavefront by rotating one of the two gratings of an X-ray shearing interferometer is described and investigated step by step. Such a shearing interferometer consists of a phase grating mounted on a rotation stage, and an absorption grating used as a transmission mask. The mathematical relations for X-ray Moiré fringe analysis when using this device are derived and discussed in the context of the previous literature assumptions. X-ray beam wavefronts without and after X-ray reflective optical elements have been characterized at beamline B16 at Diamond Light Source (DLS) using the presented X-ray rotating shearing interferometer (RSI) technique. It has been demonstrated that this improved method allows accurate calculation of the wavefront radius of curvature and the wavefront distortion, even when one has no previous information on the grating projection pattern period, magnification ratio and the initial grating orientation. As the RSI technique does not require any a priori knowledge of the beam features, it is suitable for routine characterization of wavefronts of a wide range of radii of curvature. © 2011 Optical Society of America

  3. A Novel MEMS Gyro North Finder Design Based on the Rotation Modulation Technique.

    Science.gov (United States)

    Zhang, Yongjian; Zhou, Bin; Song, Mingliang; Hou, Bo; Xing, Haifeng; Zhang, Rong

    2017-04-28

    Gyro north finders have been widely used in maneuvering weapon orientation, oil drilling and other areas. This paper proposes a novel Micro-Electro-Mechanical System (MEMS) gyroscope north finder based on the rotation modulation (RM) technique. Two rotation modulation modes (static and dynamic modulation) are applied. Compared to the traditional gyro north finders, only one single MEMS gyroscope and one MEMS accelerometer are needed, reducing the total cost since high-precision gyroscopes and accelerometers are the most expensive components in gyro north finders. To reduce the volume and enhance the reliability, wireless power and wireless data transmission technique are introduced into the rotation modulation system for the first time. To enhance the system robustness, the robust least square method (RLSM) and robust Kalman filter (RKF) are applied in the static and dynamic north finding methods, respectively. Experimental characterization resulted in a static accuracy of 0.66° and a dynamic repeatability accuracy of 1°, respectively, confirming the excellent potential of the novel north finding system. The proposed single gyro and single accelerometer north finding scheme is universal, and can be an important reference to both scientific research and industrial applications.

  4. Dynamics of polymers in elongational flow studied by the neutron spin-echo technique

    International Nuclear Information System (INIS)

    Rheinstaedter, Maikel C.; Sattler, Rainer; Haeussler, Wolfgang; Wagner, Christian

    2010-01-01

    The nanoscale fluctuation dynamics of semidilute high molecular weight polymer solutions of polyethylenoxide (PEO) in D 2 O under non-equilibrium flow conditions were studied by the neutron spin-echo technique. The sample cell was in contraction flow geometry and provided a pressure driven flow with a high elongational component that stretched the polymers most efficiently. Neutron scattering experiments in dilute polymer solutions are challenging because of the low polymer concentration and corresponding small quasi-elastic signals. A relaxation process with relaxation times of about 10 ps was observed, which shows anisotropic dynamics with applied flow.

  5. Muon spin rotation and neutron scattering study of the noncentrosymmetric tetragonal compound CeAuAl3

    Science.gov (United States)

    Adroja, D. T.; de la Fuente, C.; Fraile, A.; Hillier, A. D.; Daoud-Aladine, A.; Kockelmann, W.; Taylor, J. W.; Koza, M. M.; Burzurí, E.; Luis, F.; Arnaudas, J. I.; del Moral, A.

    2015-04-01

    We have investigated the noncentrosymmetric tetragonal heavy fermion compound CeAuA l3 using muon spin rotation (μ SR ), neutron diffraction (ND), and inelastic neutron scattering (INS) measurements. We have also revisited the magnetic, transport, and thermal properties. The magnetic susceptibility reveals an antiferromagnetic transition at 1.1 K with, possibly, another magnetic transition near 0.18 K. The heat capacity shows a sharp λ -type anomaly at 1.1 K in zero field, which broadens and moves to a higher temperature in an applied magnetic field. Our zero-field μ SR and ND measurements confirm the existence of a long-range magnetic ground state below 1.2 K. Further, the ND study reveals an incommensurate magnetic order with a magnetic propagation vector k =( 0 , 0 , 0.52 (1 )) and a spiral structure of Ce moments coupled ferromagnetically within the a b plane. Our INS study reveals the presence of two well-defined crystal electric field (CEF) excitations at 5.1 and 24.6 meV in the paramagnetic phase of CeAuA l3 that can be explained on the basis of the CEF theory and the Kramer's theorem for a Ce ion having a 4 f1 electronic state. Furthermore, low energy quasielastic excitations show a Gaussian line shape below 30 K compared to a Lorentzian line shape above 30 K, indicating a slowdown of spin fluctuations below 30 K. We have estimated a Kondo temperature of TK=3.5 K from the quasielastic linewidth, which is in good agreement with that estimated from the heat capacity. This study also indicates the absence of any CEF-phonon coupling unlike that observed in isostructural CeCuA l3 The CEF parameters, energy level scheme, and their wave functions obtained from the analysis of INS data explain satisfactorily the single crystal susceptibility in the presence of two-ion anisotropic exchange interaction in CeAuA l3 .

  6. Spin-polarized radioactive isotope beam produced by tilted-foil technique

    International Nuclear Information System (INIS)

    Hirayama, Yoshikazu; Mihara, Mototsugu; Watanabe, Yutaka; Jeong, Sun-Chan; Miyatake, Hiroari; Momota, Sadao; Hashimoto, Takashi; Imai, Nobuaki; Matsuta, Kensaku; Ishiyama, Hironobu; Ichikawa, Shin-ichi; Ishii, Tetsuro; Izumikawa, Takuji; Katayama, Ichiro; Kawakami, Hirokane; Kawamura, Hirokazu; Nishinaka, Ichiro; Nishio, Katsuhisa; Makii, Hiroyuki; Mitsuoka, Shin-ichi

    2013-01-01

    Highlights: • Detail study for tilted foil technique. • New equation for estimating nuclear polarization dependence on the beam energy. • Production of nuclear polarization for heaviest nucleus 123 In in ground state. -- Abstract: The tilted-foil method for producing spin-polarized radioactive isotope beams has been studied using the re-accelerated radioactive 8 Li and 123 In beams produced at Tokai Radioactive Ion Accelerator Complex (TRIAC) facility. We successfully produced polarization in a 8 Li beam of 7.3(5)% using thin polystyrene foils (4.2 μg/cm 2 ). The systematic study of the nuclear polarization as a function of the number of foils and beam energy has been performed, confirming the features of the tilted-foil technique experimentally. After the study, a spin-polarized radioactive 123 In beam, which is the heaviest ever polarized in its ground state by this method, has been successfully generated by the tilted-foil method, for the nuclear spectroscopy around the doubly magic nucleus 132 Sn

  7. Rotational Osteotomy for Hallux Valgus. A New Technique for Primary and Revision Cases

    Science.gov (United States)

    Ortiz, Cristian; Wagner, Emilio

    2017-01-01

    More than 200 different surgical techniques exist for hallux valgus (HV). Some of them are designed for mild, moderate, or severe deformities depending on their correction power. Nevertheless, they all correct only the coronal and/or sagittal plane deformity. Just a handful of them correct the known axial malrotation that exists in most HV cases. This malrotation is one possible factor that could be the source of recurrence of an operated HV as it has been described. We describe a new technique which simultaneously corrects the metatarsal internal rotation and varus deformity by rotating the metatarsal through an oblique plane osteotomy. This is performed with no bone wedge resection. Also, there is a broader bone surface contact than on a transverse proximal osteotomy. This technique is easy to remember and relatively simple to perform in primary and revision cases. The authors results show that it is as safe and effective as other procedures, with some advantages to be discussed. Levels of Evidence: Diagnostic Level 5. See Instructions for Authors for a complete description of levels of evidence. PMID:28286430

  8. Application of interferometry and Faraday rotation techniques for density measurements on ITER

    International Nuclear Information System (INIS)

    Snider, R.T.; Carlstrom, T.N.; Ma, C.H.; Peebles, W.A.

    1995-01-01

    There is a need for real time, reliable density measurement for density control, compatible with the restricted access and radiation environment on ITER. Line average density measurements using microwave or laser interferometry techniques have proven to be robust and reliable for density control on contemporary tokamaks. In ITER, the large path length, high density and density gradients, limit the wavelength of a probing beam to shorter then about 50 microm due to refraction effects. In this paper the authors consider the design of short wavelength vibration compensated interferometers and Faraday rotation techniques for density measurements on ITER. These techniques allow operation of the diagnostics without a prohibitively large vibration isolated structure and permits the optics to be mounted directly on the radial port plugs on ITER. A beam path designed for 10.6 microm (CO2 laser) with a tangential path through the plasma allows both an interferometer and a Faraday rotation measurement of the line average density with good density resolution while avoiding refraction problems. Plasma effects on the probing beams and design tradeoffs will be discussed along with radiation and long pulse issues. A proposed layout of the diagnostic for ITER will be present

  9. A passive technique for detecting copy-move forgery with rotation based on polar complex exponential transform

    Science.gov (United States)

    Emam, Mahmoud; Han, Qi; Yu, Liyang; Zhang, Ye; Niu, Xiamu

    2015-07-01

    Copy-move is one of the most common methods for image manipulation. Several methods have been proposed to detect and locate the tampered regions, while many methods failed when the copied regions are rotated before being pasted. A rotational invariant detecting method using Polar Complex Exponential Transform (PCET) is proposed in this paper. Firstly, the original image is divided into overlapping circular blocks, and PCET is employed to each block to extract the rotation-invariant robust features. Secondly, the Approximate Nearest Neighbors (ANN) of each feature vector are collected by Locality Sensitive Hashing (LSH). Experimental results show that the proposed technique is robust to rotation.

  10. Spin injection and detection in lanthanum- and niobium-doped SrTiO3 using the Hanle technique

    KAUST Repository

    Han, Wei

    2013-07-08

    There has been much interest in the injection and detection of spin-polarized carriers in semiconductors for the purposes of developing novel spintronic devices. Here we report the electrical injection and detection of spin-polarized carriers into Nb-doped strontium titanate single crystals and La-doped strontium titanate epitaxial thin films using MgO tunnel barriers and the three-terminal Hanle technique. Spin lifetimes of up to ∼100 ps are measured at room temperature and vary little as the temperature is decreased to low temperatures. However, the mobility of the strontium titanate has a strong temperature dependence. This behaviour and the carrier doping dependence of the spin lifetime suggest that the spin lifetime is limited by spin-dependent scattering at the MgO/strontium titanate interfaces, perhaps related to the formation of doping induced Ti 3+. Our results reveal a severe limitation of the three-terminal Hanle technique for measuring spin lifetimes within the interior of the subject material. © 2013 Macmillan Publishers Limited. All rights reserved.

  11. Nanofiber production of poly (vinylidene fluoride) / hexaferrite, obtained by Blow Spinning Technique

    International Nuclear Information System (INIS)

    Dias, G.C.; Zadorosny, L.; Malmonge, J.A.; Malmonge, L.F.

    2014-01-01

    In this study, fibrous films of poly (vinylidene fluoride) - PVDF with barium hexaferrite particles were obtained by Solution Blow Spinning technique. In such technique, the polymer solution is injected through an inner nozzle which experiences the action of an accelerated flux of gas that drags and stretches the jet solution forming the nanofibers. The films were obtained from solutions of PVDF/DMF (30% w/v), which was incorporated into barium hexaferrite particles in proportions of 1, 3 and 5% (w / w). The results of the micrographs revealed the formation of a fibrous film with good dispersion of the particles. Xray analyzes showed the predominance of the β crystalline phase of PVDF. The increase of the amount of particles induces the appearance of a characteristic peak of PVDF. EDX measurements confirmed the presence of particles in the films. (author)

  12. A planning and delivery study of a rotational IMRT technique with burst delivery

    International Nuclear Information System (INIS)

    Kainz, Kristofer; Chen, Guang-Pei; Chang, Yu-Wen; Prah, Douglas; Sharon Qi, X.; Shukla, Himanshu P.; Stahl, Johannes; Allen Li, X.

    2011-01-01

    Purpose: A novel rotational IMRT (rIMRT) technique using burst delivery (continuous gantry rotation with beam off during MLC repositioning) is investigated. The authors evaluate the plan quality and delivery efficiency and accuracy of this dynamic technique with a conventional flat 6 MV photon beam. Methods: Burst-delivery rIMRT was implemented in a planning system and delivered with a 160-MLC linac. Ten rIMRT plans were generated for five anonymized patient cases encompassing head and neck, brain, prostate, and prone breast. All plans were analyzed retrospectively and not used for treatment. Among the varied plan parameters were the number of optimization points, number of arcs, gantry speed, and gantry angle range (alpha) over which the beam is turned on at each optimization point. Combined rotational/step-and-shoot rIMRT plans were also created by superimposing multiple-segment static fields at several optimization points. The rIMRT trial plans were compared with each other and with plans generated using helical tomotherapy and VMAT. Burst-mode rotational IMRT plans were delivered and verified using a diode array, ionization chambers, thermoluminescent dosimeters, and film. Results: Burst-mode rIMRT can achieve plan quality comparable to helical tomotherapy, while the former may lead to slightly better OAR sparing for certain cases and the latter generally achieves slightly lower hot spots. Few instances were found in which increasing the number of optimization points above 36, or superimposing step-and-shoot IMRT segments, led to statistically significant improvements in OAR sparing. Using an additional rIMRT partial arc yielded substantial OAR dose improvements for the brain case. Measured doses from the rIMRT plan delivery were within 4% of the plan calculation in low dose gradient regions. Delivery time range was 228-375 s for single-arc rIMRT 200-cGy prescription with a 300 MU/min dose rate, comparable to tomotherapy and VMAT. Conclusions: Rotational IMRT

  13. Spinning targets for laser fusion

    International Nuclear Information System (INIS)

    Baldwin, D.E.; Ryutov, D.D.

    1995-09-01

    Several techniques for spinning the ICF targets up prior to or in the course of their compression are suggested. Interference of the rotational shear flow with Rayleigh-Taylor instability is briefly discussed and possible consequences for the target performance are pointed out

  14. The bridge technique for pectus bar fixation: a method to make the bar un-rotatable.

    Science.gov (United States)

    Park, Hyung Joo; Kim, Kyung Soo; Moon, Young Kyu; Lee, Sungsoo

    2015-08-01

    Pectus bar rotation is a major challenge in pectus repair. However, to date, no satisfactory technique to completely eliminate bar displacement has been introduced. Here, we propose a bar fixation technique using a bridge that makes the bar unmovable. The purpose of this study was to determine the efficacy of this bridge technique. A total of 80 patients underwent pectus bar repair of pectus excavatum with the bridge technique from July 2013 to July 2014. The technique involved connecting 2 parallel bars using plate-screws at the ends of the bars. To determine bar position change, the angles between the sternum and pectus bars were measured on postoperative day 5 (POD5) and 4 months (POM4) and compared. The mean patient age was 17.5 years (range, 6-38 years). The mean difference between POD5 and POM4 were 0.23° (P=.602) and 0.35° (P=.338) for the upper and lower bars, respectively. Bar position was virtually unchanged during the follow-up, and there was no bar dislocation or reoperation. A "bridge technique" designed to connect 2 parallel bars using plates and screws was demonstrated as a method to avoid pectus bar displacement. This approach was easy to implement without using sutures or invasive devices. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. The 90° rotation technique improves the ease of insertion of the ProSeal™ laryngeal mask airway in children.

    Science.gov (United States)

    Yun, Mi-Ja; Hwang, Jung-Won; Park, Sang-Heon; Han, Sung-Hee; Park, Hee-Pyoung; Kim, Jin-Hee; Jeon, Young-Tae; Lee, Sang-Chul

    2011-04-01

    A previous study using a 180° rotation to insert the ProSeal™ laryngeal mask airway (LMA ProSeal) in children did not show improvement over the standard technique. We used a 90° rotation technique to insert the LMA ProSeal in pediatric patients and compared ease of insertion and pharyngeal trauma with the standard technique. This prospective randomized controlled study included 126 patients aged three to nine years. Anesthesia was induced with thiopental and rocuronium, and the LMA ProSeal used in the study ranged in size from 2 to 3 depending on the patient's body weight. In the control group (n = 63), the LMA ProSeal was inserted using the index finger. In the rotation group (n = 63), the entire cuff of the LMA ProSeal was placed in the patient's mouth without finger insertion and rotated 90° counter clockwise around the tongue. The LMA ProSeal was then advanced and rotated back until resistance was felt. The primary outcome was the insertion success rate at first attempt. The success rate of insertion at first attempt was higher with the rotation technique than with the standard technique (97% vs 70%, respectively; P insertion time was shorter (16 ± 6 sec vs 30 ± 24 sec, respectively; P insertion increased significantly in the control group (62 ± 12 to 69 ± 17 mmHg; P = 0.01), but not in the rotation group. The incidence of blood staining was lower in the rotation group than in the control group (10% vs 25%, respectively; P = 0.03), but the incidence of sore throat was not significantly different (24% vs 22%, respectively; P = 0.9). The 90° rotation technique improves ease of insertion of the LMA ProSeal in children, and it decreases the risk of pharyngeal trauma. (ClinicalTrials.gov number, NCT01076725).

  16. Muon spin rotation study of magnetism and superconductivity in Ba(Fe1-xCox)2As2 single crystals

    DEFF Research Database (Denmark)

    Bernhard, C.; Wang, C. N.; Nuccio, L.

    2012-01-01

    Using muon spin rotation (μSR) we investigated the magnetic and superconducting properties of a series of Ba(Fe1−xCox)2As2 single crystals with 0 ≤x ≤0.15. Our study details how the antiferromagnetic order is suppressed upon Co substitution and how it coexists with superconductivity. In the nonsu......Using muon spin rotation (μSR) we investigated the magnetic and superconducting properties of a series of Ba(Fe1−xCox)2As2 single crystals with 0 ≤x ≤0.15. Our study details how the antiferromagnetic order is suppressed upon Co substitution and how it coexists with superconductivity...... caused by the randomly distributed Co atoms. A different kind of magnetic order that was also previously identified [C. Bernhard et al., New J. Phys. 11, 055050 (2009)] occurs at 0.055 magnetic order develops here only in parts of the sample volume...... and it seems to cooperate with superconductivity since its onset temperature coincides with Tc. Even in the strongly overdoped regime at x = 0.11, where the static magnetic order has disappeared, we find that the low-energy spin fluctuations are anomalously enhanced below Tc. These findings point toward...

  17. Adaptive, Small-Rotation-Based, Corotational Technique for Analysis of 2D Nonlinear Elastic Frames

    Directory of Open Access Journals (Sweden)

    Jaroon Rungamornrat

    2014-01-01

    Full Text Available This paper presents an efficient and accurate numerical technique for analysis of two-dimensional frames accounted for both geometric nonlinearity and nonlinear elastic material behavior. An adaptive remeshing scheme is utilized to optimally discretize a structure into a set of elements where the total displacement can be decomposed into the rigid body movement and one possessing small rotations. This, therefore, allows the force-deformation relationship for the latter part to be established based on small-rotation-based kinematics. Nonlinear elastic material model is integrated into such relation via the prescribed nonlinear moment-curvature relationship. The global force-displacement relation for each element can be derived subsequently using corotational formulations. A final system of nonlinear algebraic equations along with its associated gradient matrix for the whole structure is obtained by a standard assembly procedure and then solved numerically by Newton-Raphson algorithm. A selected set of results is then reported to demonstrate and discuss the computational performance including the accuracy and convergence of the proposed technique.

  18. Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya; Maksimyak, P. P.

    2012-01-01

    The internal energy flow in a light beam can be divided into the "orbital" and "spin" parts, associated with the spatial and polarization degrees of freedom of light. In contrast to the orbital one, experimental observation of the spin flow seems problematic because it is converted into an orbital...

  19. Negative oxygen isotope effect on the static spin stripe order in superconducting La(2-x)Ba(x)CuO(4) (x=1/8) observed by muon-spin rotation.

    Science.gov (United States)

    Guguchia, Z; Khasanov, R; Bendele, M; Pomjakushina, E; Conder, K; Shengelaya, A; Keller, H

    2014-08-01

    Large negative oxygen-isotope (^{16}O and ^{18}O) effects (OIEs) on the static spin-stripe-ordering temperature T_{so} and the magnetic volume fraction V_{m} were observed in La_{2-x}Ba_{x}CuO_{4}(x=1/8) by means of muon-spin-rotation experiments. The corresponding OIE exponents were found to be α_{T_{so}}=-0.57(6) and α_{V_{m}}=-0.71(9), which are sign reversed to α_{T_{c}}=0.46(6) measured for the superconducting transition temperature T_{c}. This indicates that the electron-lattice interaction is involved in the stripe formation and plays an important role in the competition between bulk superconductivity and static stripe order in the cuprates.

  20. Low-temperature muon spin rotation studies of the monopole charges and currents in Y doped Ho2Ti2O7.

    Science.gov (United States)

    Chang, L J; Lees, M R; Balakrishnan, G; Kao, Y-J; Hillier, A D

    2013-01-01

    In the ground state of Ho2Ti2O7 spin ice, the disorder of the magnetic moments follows the same rules as the proton disorder in water ice. Excitations take the form of magnetic monopoles that interact via a magnetic Coulomb interaction. Muon spin rotation has been used to probe the low-temperature magnetic behaviour in single crystal Ho2-xYxTi2O7 (x = 0, 0.1, 1, 1.6 and 2). At very low temperatures, a linear field dependence for the relaxation rate of the muon precession λ(B), that in some previous experiments on Dy2Ti2O7 spin ice has been associated with monopole currents, is observed in samples with x = 0, and 0.1. A signal from the magnetic fields penetrating into the silver sample plate due to the magnetization of the crystals is observed for all the samples containing Ho allowing us to study the unusual magnetic dynamics of Y doped spin ice.

  1. Enhancement of Lithium Niobate nanophotonic structures via spin-coating technique for optical waveguides application

    Directory of Open Access Journals (Sweden)

    Fakhri Makram A.

    2017-01-01

    Full Text Available This work is dedicated to investigation of temperature effects in Lithium Niobate (LiNbO3 nanostructures. The LiNbO3 nanostructures were deposited on glass substrate by spin-coating technique. LiNbO3 was set down at 3000 rpm for 30 sec and annealed from 100 to 600 °C. The structures were characterized and analyzed by scanning electron microscopy (SEM and ultra-violet visible (UV-vis spectrophotometer. The measured results have showed that by increasing annealing temperatures, the structures start to be more crystallized and be more homogenized until the optimum arrangement was achieved. Once this was accomplished, it's applicable for optical waveguides development. Eventually, it starts to be less crystallization and non-homogeneous. Energy gap was recorded to be at average value of 3.9 eV.

  2. Temperature Dependence of the Elongation Behavior of Polyphenylene Sulfide using Melt Spinning Technique

    Science.gov (United States)

    Tan, Changbin; Yang, Yan; Gao, Jun; Li, Shenghu; Qing, Long

    2017-12-01

    The elongational properties of polyphenylene sulfide (PPS) melt were measured using a melt spinning technique. The relationship between extrusion temperature and melt strength (MS) as well as between elongational viscosity and drawability were investigated with respect to the effects of extrusion temperature and extensional strain rate on the melt extensional stress and elongational viscosity. The results showed that the stretching force for the PPS melt decreased with a rise of extrusion temperature while increased roughly with an increase of extensional rate. The MS decreased with an increase of temperature, and the ln MS was a linear function of 1/T when the extrusion velocity was constant. Both the melt extensional stress and elongational viscosity decreased with the increase of the extrusion temperature. With increase of the extensional strain rate, the extensional stress increased while the melt elongational viscosity first decreases and then increases gradually. A low melt elongational viscosity might be beneficial to improve the melt drawability.

  3. Cell biological and biomechanical evaluation of two different fixation techniques for rotator cuff repair.

    Science.gov (United States)

    Klinger, H-M; Koelling, S; Baums, M H; Kahl, E; Steckel, H; Smith, M M; Schultz, W; Miosge, N

    2009-06-01

    Our objective was to evaluate the cell biology and biomechanical aspects of the healing process after two different techniques in open rotator cuff surgery - double-loaded bio-absorbable suture anchors combined with so-called arthroscopic Mason-Allen stitches (AAMA) and a trans-osseous suture technique combined with traditional modified Mason-Allen stitches (SMMA). Thirty-six mature sheep were randomized into two repair groups. After 6, 12, or 26 weeks, evaluation of the reinsertion site of the infraspinatus tendon was performed. The mechanical load-to-failure and stiffness results did not indicate a significant difference between the two groups. After 26 weeks, fibrocartilage was sparse in the AAMA group, whereas the SMMA group showed the most pronounced amount of fibrocartilage. We found no ultrastructural differences in collagen fiber organization between the two groups. The relative expression of collagen type II mRNA in the normal group was 1.11. For the AAMA group, 6 weeks after surgery, the relative expression was 55.47, whereas for the SMMA group it was 1.90. This in vivo study showed that the AAMA group exhibited a tendon-to-bone healing process more favorable in its cell biology than that of the traditional SMMA technique. Therefore, the AAMA technique might also be more appropriate for arthroscopic repair.

  4. A scanning tunneling microscopy based potentiometry technique and its application to the local sensing of the spin Hall effect

    Directory of Open Access Journals (Sweden)

    Ting Xie

    2017-12-01

    Full Text Available A scanning tunneling microscopy based potentiometry technique for the measurements of the local surface electric potential is presented. A voltage compensation circuit based on this potentiometry technique is developed and employed to maintain a desired tunneling voltage independent of the bias current flow through the film. The application of this potentiometry technique to the local sensing of the spin Hall effect is outlined and some experimental results are reported.

  5. Electron spin dynamics of Ce.sup.3+./sup. ions in YAG crystals studied by pulse-EPR and pump-probe Faraday rotation

    Czech Academy of Sciences Publication Activity Database

    Azamat, Dmitry; Belykh, V.V.; Yakovlev, D.R.; Fobbe, F.; Feng, D.H.; Evers, E.; Jastrabík, Lubomír; Dejneka, Alexandr; Bayer, M.

    2017-01-01

    Roč. 96, č. 7 (2017), s. 1-10, č. článku 075160. ISSN 2469-9950 R&D Projects: GA MŠk LO1409; GA ČR GA16-22092S Institutional support: RVO:68378271 Keywords : electron spin dynamics * Ce 3+ ions * YAG crystals * pulse-EPR * Faraday rotation Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  6. A novel technique of rotator cuff repair using spinal needle and suture loop

    Directory of Open Access Journals (Sweden)

    Muzaffar Nasir

    2010-11-01

    Full Text Available Abstract Background We present a simple technique of arthroscopic rotator cuff repair using a spinal needle and suture loop. Methods With the arthroscope laterally, a spinal needle looped with PDS is inserted percutaneously into the shoulder posteriorly and penetrated through the healthy posterior cuff tear margin. Anteriorly, another spinal needle loaded with PDS is inserted percutaneously to engage the healthy tissue at the anterior tear margin. The suture in the anterior needle is then delivered into the suture loop of the posterior needle using a suture retriever. The posterior needle and loop are then pulled out carrying the anterior suture with it. The two limbs of this suture are then retrieved through a cannula for knotting. The same procedure is then repeated for additional suturing. Suture anchors placed over the greater tuberosity are used to complete the repair. Conclusion This is an easy method of rotator cuff repair using simple instruments and lesser time, hence can be employed at centers with less equipment and at reduced cost to the patient.

  7. Application of the rotating ring-disc-electrode technique to water oxidation by surface-bound molecular catalysts.

    Science.gov (United States)

    Concepcion, Javier J; Binstead, Robert A; Alibabaei, Leila; Meyer, Thomas J

    2013-10-07

    We report here the application of a simple hydrodynamic technique, linear sweep voltammetry with a modified rotating-ring-disc electrode, for the study of water oxidation catalysis. With this technique, we have been able to reliably obtain turnover frequencies, overpotentials, Faradaic conversion efficiencies, and mechanistic information from single samples of surface-bound metal complex catalysts.

  8. Impingement syndrome of the shoulder following double row suture anchor technique for arthroscopic rotator cuff repair: a case report

    Directory of Open Access Journals (Sweden)

    Rambani Rohit

    2009-06-01

    Full Text Available Abstract Introduction Arthroscopic repair of the rotator cuff is a demanding surgery. Accurate placement of anchors is key to success. Case presentation A 38-year-old woman received arthroscopic repair of her rotator cuff using a double row suture anchor technique. Postoperatively, she developed impingement syndrome which resulted from vertical displacement of a suture anchor once the shoulder was mobilised. The anchor was removed eight weeks following initial surgery and the patient had an uneventful recovery. Conclusion Impingement syndrome following arthroscopic repair of the rotator cuffs using double row suture anchor has not been widely reported. This is the first such case where anchoring has resulted in impingement syndrome.

  9. Statistical techniques for automating the detection of anomalous performance in rotating machinery

    International Nuclear Information System (INIS)

    Piety, K.R.; Magette, T.E.

    1978-01-01

    Surveillance techniques which extend the sophistication existing in automated systems monitoring in industrial rotating equipment are described. The monitoring system automatically established limiting criteria during an initial learning period of a few days; and subsequently, while monitoring the test rotor during an extended period of normal operation, experienced a false alarm rate of 0.5%. At the same time, the monitoring system successfully detected all fault types that introduced into the test setup. Tests on real equipment are needed to provide final verification of the monitoring techniques. There are areas that would profit from additional investigation in the laboratory environment. A comparison of the relative value of alternate descriptors under given fault conditions would be worthwhile. This should be pursued in conjunction with extending the set of fault types available, e.g., lecaring problems. Other tests should examine the effects of using fewer (more coarse) intervals to define the lumped operational states. finally, techniques to diagnose the most probable fault should be developed by drawing upon the extensive data automatically logged by the monitoring system

  10. Segmental dynamics of polyethylene-alt-propylene studied by NMR spin echo techniques

    Science.gov (United States)

    Lozovoi, A.; Mattea, C.; Hofmann, M.; Saalwaechter, K.; Fatkullin, N.; Stapf, S.

    2017-06-01

    Segmental dynamics of a highly entangled melt of linear polyethylene-alt-propylene with a molecular weight of 200 kDa was studied with a novel proton nuclear magnetic resonance (NMR) approach based upon 1H → 2H isotope dilution as applied to a solid-echo build-up function ISE(t), which is constructed from the NMR spin echo signals arising from the Hahn echo (HE) and two variations of the solid-echo pulse sequence. The isotope dilution enables the separation of inter- and intramolecular contributions to this function and allows one to extract the segmental mean-squared displacements in the millisecond time range, which is hardly accessible by other experimental methods. The proposed technique in combination with time-temperature superposition yields information about segmental translation in polyethylene-alt-propylene over 6 decades in time from 10-6 s up to 1 s. The time dependence of the mean-squared displacement obtained in this time range clearly shows three regimes of power law with exponents, which are in good agreement with the tube-reptation model predictions for the Rouse model, incoherent reptation and coherent reptation regimes. The results at short times coincide with the fast-field cycling relaxometry and neutron spin echo data, yet, significantly extending the probed time range. Furthermore, the obtained data are verified as well by the use of the dipolar-correlation effect on the Hahn echo, which was developed before by the co-authors. At the same time, the amplitude ratio of the intermolecular part of the proton dynamic dipole-dipole correlation function over the intramolecular part obtained from the experimental data is not in agreement with the predictions of the tube-reptation model for the regimes of incoherent and coherent reptation.

  11. Is the arthroscopic suture bridge technique suitable for full-thickness rotator cuff tears of any size?

    Science.gov (United States)

    Lee, Sung Hyun; Kim, Jeong Woo; Kim, Tae Kyun; Kweon, Seok Hyun; Kang, Hong Je; Kim, Se Jin; Park, Jin Sung

    2017-07-01

    The purpose of this study was to compare functional outcomes and tendon integrity between the suture bridge and modified tension band techniques for arthroscopic rotator cuff repair. A consecutive series of 128 patients who underwent the modified tension band (MTB group; 69 patients) and suture bridge (SB group; 59 patients) techniques were enrolled. The pain visual analogue scale (VAS), Constant, and American Shoulder and Elbow Surgeons (ASES) scores were determined preoperatively and at the final follow-up. Rotator cuff hypotrophy was quantified by calculating the occupation ratio (OR). Rotator cuff integrity and the global fatty degeneration index were determined by using magnetic resonance imaging at 6 months postoperatively. The average VAS, Constant, and ASES scores improved significantly at the final follow-up in both groups (p bridge groups (7.0 vs. 6.8%, respectively; p = n.s.). The retear rate of large-to-massive tears was significantly lower in the suture bridge group than in the modified tension band group (33.3 vs. 70%; p = 0.035). Fatty infiltration (postoperative global fatty degeneration index, p = 0.022) and muscle hypotrophy (postoperative OR, p = 0.038) outcomes were significantly better with the suture bridge technique. The retear rate was lower with the suture bridge technique in the case of large-to-massive rotator cuff tears. Additionally, significant improvements in hypotrophy and fatty infiltration of the rotator cuff were obtained with the suture bridge technique, possibly resulting in better anatomical outcomes. The suture bridge technique was a more effective method for the repair of rotator cuff tears of all sizes as compared to the modified tension band technique. Retrospective Cohort Design, Treatment Study, level III.

  12. Restoring Anterior Aesthetics by a Rotational Path Cast Partial Denture: An Overlooked Technique

    Science.gov (United States)

    Bhat, Bala Saraswati; Arora, Himanshu

    2016-01-01

    Cast Partial Dentures (CPD) has long been known to restore missing teeth in patients with minimal invasion on hard and soft tissues. Although satisfactory otherwise, the main concern in CPD is the anterior display of metal. Also the technique sensitive lab procedures, together with the esthetic concern have built an iceberg around the frequent utilization of this treatment modality. With the advent of various techniques to get rid of the metallic display, it was predicted to have more CPD’s done in the dental arena. But the conceptual technicalities of the procedure took away the limelight from this treatment modality and focused on the fixed prosthodontics. Although feasible in a large number of patients, fixed prosthesis still has areas of restriction. It is here, when we apply our knowledge and skill of esthetic CPD. Esthetic CPD eliminates the metal display by utilizing desirable undercuts. The engaging action of the framework into these undercuts paves way for a rotational motion to seat the remaining prosthesis. Hence dual path of insertion helps eliminating the anterior clasp. In this case report dual path of insertion is discussed for replacing anterior teeth in an old male patient who had mild esthetic concerns. Following the conservative approach of CPD (over FPD) esthetic and restorative treatment was planned with patient’s consent. PMID:27437375

  13. A novel buoyancy technique optimizes simulated microgravity conditions for whole sensory organ culture in rotating bioreactors.

    Science.gov (United States)

    Arnold, Heinz J P; Müller, Marcus; Waldhaus, Jörg; Hahn, Hartmut; Löwenheim, Hubert

    2010-02-01

    Whole-organ culture of a sensory organ in a rotating wall vessel bioreactor provides a powerful in vitro model for physiological and pathophysiological investigation as previously demonstrated for the postnatal inner ear. The model is of specific relevance as a tool for regeneration research. In the immature inner ear explant, the density was only 1.29 g/cm(3). The high density of 1.68 g/cm(3) of the functionally mature organ resulted in enhanced settling velocity and deviation from its ideal circular orbital path causing enhanced shear stress. The morphometric and physical properties, as well as the dynamic motion patterns of explants, were analyzed and numerically evaluated by an orbital path index. Application of a novel buoyancy bead technique resulted in a 6.5- to 14.8-fold reduction of the settling velocity. The deviation of the explant from its ideal circular orbital path was adjusted as indicated by an optimum value for the orbital path index (-1.0). Shear stress exerted on the inner ear explant was consequently reduced 6.4- to 15.0-fold. The culture conditions for postnatal stages were optimized, and the preconditions for transferring this in vitro model toward mature high-density stages established. This buoyancy technique may also be useful in tissue engineering of other high-density structures.

  14. Computational efficiency improvement with Wigner rotation technique in studying atoms in intense few-cycle circularly polarized pulses

    International Nuclear Information System (INIS)

    Yuan, Minghu; Feng, Liqiang; Lü, Rui; Chu, Tianshu

    2014-01-01

    We show that by introducing Wigner rotation technique into the solution of time-dependent Schrödinger equation in length gauge, computational efficiency can be greatly improved in describing atoms in intense few-cycle circularly polarized laser pulses. The methodology with Wigner rotation technique underlying our openMP parallel computational code for circularly polarized laser pulses is described. Results of test calculations to investigate the scaling property of the computational code with the number of the electronic angular basis function l as well as the strong field phenomena are presented and discussed for the hydrogen atom

  15. Synthesis of Colloidal ZnO Nanoparticles and Deposit of Thin Films by Spin Coating Technique

    Directory of Open Access Journals (Sweden)

    Jose Alberto Alvarado

    2013-01-01

    Full Text Available ZnO colloidal nanoparticles were synthesized, the average size of these nanoparticles is around 25 nm with hexagonal form. It was noted that stabilization depends directly on the purifying process; in this work we do not change the nature of the solution as a difference from Meulekamp's method, and we do not use any alkanes to remove the byproducts; only a centrifuge to remove those ones was used, thereby the stabilization increases up to 24 days. It is observed from the results that only three times of washing is enough to prevent the rapid aging process. The effect of annealing process on the composition, size, and geometrical shape of ZnO nanoparticles was studied in order to know whether the annealing process affects the crystallization and growth of the nanoparticles. After the synthesis, the colloidal nanoparticles were deposited by spin coating technique showing that the formed nanoparticles have no uniformly deposition pattern. But is possible to deposit those ones in glass substrates. A possible deposition process of the nanoparticles is proposed.

  16. Characterizations of multilayer ZnO thin films deposited by sol-gel spin coating technique

    Directory of Open Access Journals (Sweden)

    M.I. Khan

    Full Text Available In this work, zinc oxide (ZnO multilayer thin films are deposited on glass substrate using sol-gel spin coating technique and the effect of these multilayer films on optical, electrical and structural properties are investigated. It is observed that these multilayer films have great impact on the properties of ZnO. X-ray Diffraction (XRD confirms that ZnO has hexagonal wurtzite structure. Scanning Electron Microscopy (SEM showed the crack-free films which have uniformly distributed grains structures. Both micro and nano particles of ZnO are present on thin films. Four point probe measured the electrical properties showed the decreasing trend between the average resistivity and the number of layers. The optical absorption spectra measured using UV–Vis. showed the average transmittance in the visible region of all films is 80% which is good for solar spectra. The performance of the multilayer as transparent conducting material is better than the single layer of ZnO. This work provides a low cost, environment friendly and well abandoned material for solar cells applications. Keywords: Multilayer films, Semiconductor, ZnO, XRD, SEM, Optoelectronic properties

  17. Synthesis of dense TiO2 nanoparticle multilayers using spin coating technique

    Science.gov (United States)

    DeSilva, L. Ajith; Thakurdesai, Madhavi; Bandara, T. M. W. J.; Preston, Joshua; Johnson, Wyatt; Gaquere-Parker, Anne; Survase, Smita

    2018-04-01

    A stack of nine layers is prepared by sequential spun casting of commercially available colloidal TiO2 nanoparticles of average size of 10-15 nm. Scanning electron microscopy (SEM) is employed to investigate the surface morphology of the multilayers. SEM micrographs exhibit formation of highly uniform and dense TiO2 nanoparticle layers. The uniformity and density is found to be increasing with layer thickness. Structural characterization is carried out using X-ray diffraction (XRD) technique. XRD spectra indicate improvement in crystalline quality of all the layers with increasing layer thickness. All the layers are having mainly the anatase phase of TiO2. Optical characterization is carried out by UV-visible spectroscopy. The value of bandgap estimated on the basis of absorption coefficient is found to be 3.26 eV and approximately remains the same for the layers. The electrical characterization suggests that multilayer resistivity increases with increasing layer thickness. The good quality spin coated thin dense TiO2 layers have many applications in optoelectronics.

  18. Characterization of ITO Thin Films Prepared by Sol-gel Spin-Coating Technique

    Directory of Open Access Journals (Sweden)

    Mokhtar HJIRI

    2014-05-01

    Full Text Available Indium tin oxide (ITO thin films have been prepared on glass substrate using sol-gel spin-coating technique with different dopant concentrations. The sol was prepared using 2- methoxyethanol and triethylamine (TEA as a solvent and stabilizer, respectively. Indium chloride (InCl3 was used as a precursor and tin chloride (SnCl2, 2H2O as a doping source. X-ray diffraction result indicates that the ITO thin films have the polycrystalline structure. The optical transmittance spectrum indicates the average transmittance higher than 80 % in visible region. The band gap energy is varied between 3.5 and 4.0 eV. From AFM analysis, we can show that all films have a good roughness. Four point method indicates that the sample with doping concentration of 5 % at. Has the lowest sheet resistance (277 W/Sq. From characterization results, it’s clear that the obtained samples are promising for gas detection.

  19. Spin rotation and depolarization of high-energy particles in crystals at Hadron Collider (LHC) and Future Circular Collider (FCC) energies and the possibility to measure the anomalous magnetic moments of short-lived particles

    OpenAIRE

    Baryshevsky, V. G.

    2015-01-01

    We study the phenomena of spin rotation and depolarization of high-energy particles in crystals in the range of high energies that will be available at Hadron Collider (LHC) and Future Circular Collider (FCC). It is shown that these phenomena can be used to measure the anomalous magnetic moments of short-lived particles in this range of energies. We also demonstrate that the phenomenon of particle spin depolarization in crystals provides a unique possibility of measuring the anomalous magneti...

  20. MR cholangiopancreatography : comparison of breath-hold fast spin echo and respiratory triggered fast spin echo techniques

    International Nuclear Information System (INIS)

    Kim, Myeong Jin; Hong, Hye Suk; Chung, Jae Joon; Chung, Jae Bock; Yang, Hee Chul; Yoo, Hyung Sik; Lee, Jaong Tae

    1997-01-01

    To determine relative image qualities and to evaluate their ability to visualize biliary trees and pancreatic ducts, we compared the breath-hold fast echo (FSE) and respiratory-triggered FSE technique in magnetic resonance cholangiopancreatography (MRCP). Forty-seven patients with suspected of hepatic disease but no pancreatic or biliary ductal dilatation, as determined by other imaging techniques (group of non-pathologic pancreatobiliary tree), and seven with pancreatic or biliary disease (group of pathologic pancreatobiliary tree) underwent MRCP. Heavily T2-weighted FSE coronal images were obtained by both breath-hold and respiratory triggered techniques. These two images were 3 D-reconstructed using a maximal intensity projection algorithm. Three radiologists scored the image qualities of anatomic by the two techniques. For the visualization of extrahepatic bile ducts, the respiratory triggered FSE sequence was better than the breath-hold sequence; for the evaluation of both a non-dilated and dilated pancreatobiliary system, however, both techniques need further development. (author). 16 refs., 2 tabs., 4 figs

  1. Mercury detection at boron doped diamond electrodes using a rotating disk technique

    Energy Technology Data Exchange (ETDEWEB)

    Manivannan, A.; Ramakrishnan, L.; Seehra, M.S.; Granite, E.; Butler, J.E.; Tryk, D.A.; Fujishima, A. [West Virginia University, Morgantown, WV (United States)

    2005-04-01

    Quantification of mercury ions at the ppt level is reported using highly boron-doped diamond (BDD) film electrodes by differential pulse voltammetry (DPV). The DPV experiments were performed in nitrate, thiocyanate and chloride media. Investigation in chloride medium is important since practical samples usually contain chloride impurities. The formation of calomel in a chloride medium on the BDD surface is avoided by the co-deposition of purposely-added gold (3 ppm) during DPV detection. Excellent linear calibration plots have been obtained in all media for ppb ranges. Mercury in the 0.005-50 ppb range has been detected using a rotating disk electrode (RDE) technique in real samples (KCl impinger solutions) prepared from flue gas released by a pilot-scale coal-fired combustion facility. A portable instrument has also been used for the detection of mercury efficiently. These studies have demonstrated that BDD mounted in an RDE system together with gold co-deposition is able to detect mercury with sufficient sensitivity for practical analysis of environmental samples.

  2. IMPLEMENTATION OF IMPROVED NETWORK LIFETIME TECHNIQUE FOR WSN USING CLUSTER HEAD ROTATION AND SIMULTANEOUS RECEPTION

    Directory of Open Access Journals (Sweden)

    Arun Vasanaperumal

    2015-11-01

    Full Text Available There are number of potential applications of Wireless Sensor Networks (WSNs like wild habitat monitoring, forest fire detection, military surveillance etc. All these applications are constrained for power from a stand along battery power source. So it becomes of paramount importance to conserve the energy utilized from this power source. A lot of efforts have gone into this area recently and it remains as one of the hot research areas. In order to improve network lifetime and reduce average power consumption, this study proposes a novel cluster head selection algorithm. Clustering is the preferred architecture when the numbers of nodes are larger because it results in considerable power savings for large networks as compared to other ones like tree or star. Since majority of the applications generally involve more than 30 nodes, clustering has gained widespread importance and is most used network architecture. The optimum number of clusters is first selected based on the number of nodes in the network. When the network is in operation the cluster heads in a cluster are rotated periodically based on the proposed cluster head selection algorithm to increase the network lifetime. Throughout the network single-hop communication methodology is assumed. This work will serve as an encouragement for further advances in the low power techniques for implementing Wireless Sensor Networks (WSNs.

  3. Nanofiber production of poly (vinylidene fluoride) / hexaferrite, obtained by Blow Spinning Technique; Producao de nanofibras de poli (fluoreto de vinilideno)/hexaferrita, obtidos pela tecnica Blow Spinning

    Energy Technology Data Exchange (ETDEWEB)

    Dias, G.C.; Zadorosny, L.; Malmonge, J.A.; Malmonge, L.F., E-mail: gabriel.fct@gmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil)

    2014-07-01

    In this study, fibrous films of poly (vinylidene fluoride) - PVDF with barium hexaferrite particles were obtained by Solution Blow Spinning technique. In such technique, the polymer solution is injected through an inner nozzle which experiences the action of an accelerated flux of gas that drags and stretches the jet solution forming the nanofibers. The films were obtained from solutions of PVDF/DMF (30% w/v), which was incorporated into barium hexaferrite particles in proportions of 1, 3 and 5% (w / w). The results of the micrographs revealed the formation of a fibrous film with good dispersion of the particles. Xray analyzes showed the predominance of the β crystalline phase of PVDF. The increase of the amount of particles induces the appearance of a characteristic peak of PVDF. EDX measurements confirmed the presence of particles in the films. (author)

  4. Coherent electron-spin-resonance manipulation of three individual spins in a triple quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Noiri, A. [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yoneda, J.; Nakajima, T.; Otsuka, T.; Delbecq, M. R.; Takeda, K.; Tarucha, S. [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); RIKEN, Center for Emergent Matter Science (CEMS), Wako-shi, Saitama 351-0198 (Japan); Amaha, S.; Allison, G. [RIKEN, Center for Emergent Matter Science (CEMS), Wako-shi, Saitama 351-0198 (Japan); Ludwig, A.; Wieck, A. D. [Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany)

    2016-04-11

    Quantum dot arrays provide a promising platform for quantum information processing. For universal quantum simulation and computation, one central issue is to demonstrate the exhaustive controllability of quantum states. Here, we report the addressable manipulation of three single electron spins in a triple quantum dot using a technique combining electron-spin-resonance and a micro-magnet. The micro-magnet makes the local Zeeman field difference between neighboring spins much larger than the nuclear field fluctuation, which ensures the addressable driving of electron-spin-resonance by shifting the resonance condition for each spin. We observe distinct coherent Rabi oscillations for three spins in a semiconductor triple quantum dot with up to 25 MHz spin rotation frequencies. This individual manipulation over three spins enables us to arbitrarily change the magnetic spin quantum number of the three spin system, and thus to operate a triple-dot device as a three-qubit system in combination with the existing technique of exchange operations among three spins.

  5. Experimental determination of the spin-rotation coupling constant in the Cs129Xe and K129Xe molecules

    International Nuclear Information System (INIS)

    Wu, Z.; Happer, W.

    1984-01-01

    Since alkali-noble gas van der Waals molecules are involved in the spin transfer process, the physics can be naturally divided into two parts. One of them is to study the formation and break-up rates of the molecules, the chemical equilibrium constant, etc. The other aspect of this problem is to study how the individual angular momenta evolve during the lifetime of the molecule. The experiments described address the second aspect

  6. Systematic review: what surgical technique provides the best outcome for symptomatic partial articular-sided rotator cuff tears?

    Science.gov (United States)

    Bollier, Matthew; Shea, Kevin

    2012-01-01

    -open repair. Improved long-term results and decreased reoperation rates were reported in the tear completion and repair group. On the basis of the available evidence, no single technique provides superior clinical outcomes. Level I and II comparison studies are needed to determine the optimal treatment of partial articular-sided rotator cuff tears.

  7. Magnetic anisotropy and magnetostriction in nanocrystalline Fe–Al alloys obtained by melt spinning technique

    Energy Technology Data Exchange (ETDEWEB)

    García, J.A.; Carrizo, J. [Depto. de Física de la Universidad de Oviedo, c/Calvo Sotelo s/n, 33007 Oviedo (Spain); Elbaile, L., E-mail: elbaile@uniovi.es [Depto. de Física de la Universidad de Oviedo, c/Calvo Sotelo s/n, 33007 Oviedo (Spain); Lago-Cachón, D.; Rivas, M. [Depto. de Física de la Universidad de Oviedo, c/Calvo Sotelo s/n, 33007 Oviedo (Spain); Castrillo, D. [Depto. de Ciencias de los Materiales de la Universidad de Oviedo, c/Independencia, 33004 Oviedo (Spain); Pierna, A.R. [Depto. de Ingeniería Química y Medio Ambiente, EUPSS, UPV/EHU, San Sebastián (Spain)

    2014-12-15

    A study about the magnetic anisotropy and magnetostriction in ribbons of composition Fe{sub 81}Al{sub 19} and Fe{sub 70}Al{sub 30} obtained by the melt spinning technique is presented. The hysteresis loops indicate that the easy magnetization direction lies in both cases on the plane of the ribbon. Torque magnetometry measurements show that the in-plane magnetic anisotropy constant results 10100 J m{sup −3} and 490 J m{sup −3} for the Fe{sub 81}Al{sub 19} and Fe{sub 70}Al{sub 30} respectively. After a thermal treatment of 2 h at 473 K to remove the residual stresses, the in-plane magnetic anisotropy constants falls down to 2500 J m{sup −3} in the first composition and remains the same in the second one, while the easy direction remains the same. Measurements of the magnetostriction and the residual stresses of both ribbons allow us to explain the above mentioned results about the magnetic anisotropy and to conclude that the residual stresses via magnetostriction are the main source of magnetic anisotropy in the case of Fe{sub 81}Al{sub 19} ribbon but they do not influence this property in the ribbon of composition Fe{sub 70}Al{sub 30}. - Highlights: • The origin of magnetic anisotropy of Fe{sub 81}Al{sub 19} and Fe{sub 70}Al{sub 30} ribbons has been studied. • The magnetic anisotropy lies in the plane of the ribbons. • A huge difference in magnetic anisotropy between two ribbons has been observed. • Magnetostriction and residual stresses explain the magnetic anisotropy in Fe{sub 81}Al{sub 19} ribbon.

  8. Application of SVM and SVD Technique Based on EMD to the Fault Diagnosis of the Rotating Machinery

    Directory of Open Access Journals (Sweden)

    Junsheng Cheng

    2009-01-01

    Full Text Available Targeting the characteristics that periodic impulses usually occur whilst the rotating machinery exhibits local faults and the limitations of singular value decomposition (SVD techniques, the SVD technique based on empirical mode decomposition (EMD is applied to the fault feature extraction of the rotating machinery vibration signals. The EMD method is used to decompose the vibration signal into a number of intrinsic mode functions (IMFs by which the initial feature vector matrices could be formed automatically. By applying the SVD technique to the initial feature vector matrices, the singular values of matrices could be obtained, which could be used as the fault feature vectors of support vector machines (SVMs classifier. The analysis results from the gear and roller bearing vibration signals show that the fault diagnosis method based on EMD, SVD and SVM can extract fault features effectively and classify working conditions and fault patterns of gears and roller bearings accurately even when the number of samples is small.

  9. Spin doctoring

    OpenAIRE

    Vozková, Markéta

    2011-01-01

    1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...

  10. Modified suture-bridge technique to prevent a marginal dog-ear deformity improves structural integrity after rotator cuff repair.

    Science.gov (United States)

    Ryu, Keun Jung; Kim, Bang Hyun; Lee, Yohan; Lee, Yoon Seok; Kim, Jae Hwa

    2015-03-01

    The arthroscopic suture-bridge technique has proved to provide biomechanically firm fixation of the torn rotator cuff to the tuberosity by increasing the footprint contact area and pressure. However, a marginal dog-ear deformity is encountered not infrequently when this technique is used, impeding full restoration of the torn cuff. To evaluate the structural and functional outcomes of the use of a modified suture-bridge technique to prevent a marginal dog-ear deformity compared with a conventional suture-bridge method in rotator cuff repair. Cohort study; Level of evidence 2. A consecutive series of 71 patients aged 50 to 65 years who underwent arthroscopic rotator cuff repair for full-thickness medium-sized to massive tears was evaluated. Patients were divided into 2 groups according to repair technique: a conventional suture-bridge technique (34 patients; group A) versus a modified suture-bridge technique to prevent a marginal dog-ear deformity (37 patients; group B). Radiographic evaluations included postoperative cuff integrity using MRI. Functional evaluations included pre- and postoperative range of motion (ROM), pain visual analog scale (VAS), the University of California, Los Angeles (UCLA) shoulder rating scale, the Constant score, and the American Shoulder and Elbow Surgeons (ASES) score. All patients were followed up clinically at a minimum of 1 year. When the 2 surgical techniques were compared, postoperative structural integrity by Sugaya classification showed the distribution of types I:II:III:IV:V to be 4:20:2:4:4 in group A and 20:12:4:0:1 in group B. More subjects in group B had a favorable Sugaya type compared with group A (P bridge technique repairs were found in the retear group (P = .03). There were significant differences between healed and retear groups in functional outcome scores, with worse results in the retear group. A modified suture-bridge technique to prevent a marginal dog-ear deformity provided better structural outcomes than a

  11. Vertical-to-Horizontal Rotational Myocutaneous Flap for Repairing Cicatricial Lower Lid Ectropion: A Novel Surgical Technique

    Directory of Open Access Journals (Sweden)

    Yu-Fan Chang

    2017-01-01

    Full Text Available Objective. To evaluate the efficacy and complications of a novel surgical technique for cicatricial lower lid ectropion that uses a vertical-to-horizontal (V-to-H rotational myocutaneous flap procedure (Tsai procedure. Methods. We performed the V-to-H rotational myocutaneous flap procedure on 20 eyelids in 20 patients with mild to moderate cicatricial lower lid ectropion. A vertical myocutaneous flap was created from the anterior lamella of the vertical pedicle in the lateral third of the lower eyelid. Following a horizontal relaxing incision from the base of the flap, a vertical myocutaneous flap was created and rotated to horizontal. Two patients with combined cicatricial ectropion and paralytic lagophthalmos simultaneously underwent additional lateral tarsorrhaphy. Results. After a minimum follow-up period of 6 months, all patients showed good anatomical and functional improvement with decreased dependence on topical lubricants and a satisfactory cosmetic appearance. Two patients with combined cicatricial and paralytic ectropion had mild residual asymptomatic lagophthalmos. No patients required further revision surgery and there were no complications or recurrence. Conclusion. The V-to-H rotational myocutaneous flap technique was an effective and simple one-stage procedure for correcting cicatricial lower lid ectropion. It lengthened the anterior lamella and tightened horizontal eyelid laxity without the need for a free skin graft.

  12. Spin-torque transistor

    NARCIS (Netherlands)

    Bauer, G.E.W.; Brataas, A.; Tserkovnyak, Y.; Van Wees, B.J.

    2003-01-01

    A magnetoelectronic thin-film transistor is proposed that can display negative differential resistance and gain. The working principle is the modulation of the soure–drain current in a spin valve by the magnetization of a third electrode, which is rotated by the spin-torque created by a control spin

  13. Adiabatic quantum computing with spin qubits hosted by molecules.

    Science.gov (United States)

    Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji

    2015-01-28

    A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.

  14. Reducing Postoperative Pterygium Recurrence: Comparison of Free Conjunctival Auto-Graft and Conjunctival Rotation Flap Techniques

    International Nuclear Information System (INIS)

    Akhter, W.; Tayyab, A.; Kausar, A.; Masrur, A.

    2014-01-01

    Objective: To compare the recurrence of pterygium between free conjunctival auto-graft and conjunctival rotation flap following simple surgical excision of pterygium. Study Design: Quasi-experimental study. Place and Duration of Study: Shifa Foundation Community Health Clinic, Shifa College of Medicine, Islamabad, from January to November 2012. Methodology: Fifty seven cases aged above 18 years, with a pterygium corneal encroachment of 2 mm which was responsible for visual disability or was cosmetically undesirable were recruited for the study and randomly assigned to conjunctival auto-graft group and conjunctival rotation flap group. Cases with a history of glaucoma or glaucoma suspect, prior pterygium surgery, pterygium with concurrent ocular surface and lid disease, conjunctival inflammation and scarring, pseudo-pterygium or collagen vascular disease were excluded. After simple pterygium excision conjunctival auto-graft group (n=26) cases received a free conjunctival flap was transplanted, while conjunctival rotation flap group (n=31) cases received a conjunctival rotation flap. All cases were followed-up for 6 months after surgery for recurrence and complications. Frequency distribution and significance of association of recurrence using Fisher's exact test and Mann- Whitney U-test was carried out using Statistical Package for Social Sciences (SPSS) version 20. Results: The median (and inter-quartile range) age and surgery duration in conjunctival auto-graft group and conjunctival rotation flap group were 60 (51.50 - 63.00) and 57 (45.00 - 60.00) years, 28.50 (27.00 - 30.50) and 16.00 (15.00 - 17.00) minutes respectively. Recurrence was seen in 2 (7.96%) and 3 (9.76%) cases in auto-graft and rotation flap groups respectively. No significant difference was seen in postoperative complications between the two groups (p=0.60). Conclusion: The surgical time for conjunctival rotation flap procedure is less as compared to free auto-graft, while their recurrence and

  15. Fast fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging of the brain: a comparison of multi-shot echo-planar and fast spin-echo techniques

    International Nuclear Information System (INIS)

    Sargent, M.A.; Poskitt, K.J.

    1997-01-01

    Purpose. To evaluate fast spin-echo and multi-shot echo-planar fluid-attenuated inversion recovery (FLAIR) sequences in paediatric brain imaging. Materials and methods. Matched images from 32 patients with suspected tumour or white matter disease were independently evaluated by two paediatric neuroradiologists. The observer preferences for image quality and lesion detection were analysed for differences between fast spin-echo FLAIR and multi-shot echo-planar FLAIR. Diagnostic quality was compared with that of fast spin-echo T2-weighted images. Results. Images of a diagnostic quality equivalent to that of fast spin-echo T2-weighted images were achieved with both FLAIR techniques. Grey and white matter differentiation and cerebrospinal fluid (CSF) nulling were significantly better on fast spin-echo FLAIR sequences. CSF flow artefact was reduced on multi-shot echo-planar FLAIR. There was no difference in lesion detection. Fast spin-echo FLAIR images were visually preferred at the expense of longer imaging time. Conclusion. Fast FLAIR techniques are complementary to fast spin-echo T2-weighted sequences in imaging of the paediatric brain. We find that the fast spin-echo FLAIR sequence is preferable to the multi-shot echo-planar technique. (orig.). With 5 figs., 2 tabs

  16. Electronic phase diagrams and competing ground states of complex iron pnictides and chalcogenides. A Moessbauer spectroscopy and muon spin rotation/relaxation study

    Energy Technology Data Exchange (ETDEWEB)

    Kamusella, Sirko

    2017-03-01

    In this thesis the superconducting and magnetic phases of LiOH(Fe,Co)(Se,S), CuFeAs/CuFeSb, and LaFeP{sub 1-x}As{sub x}O - belonging to the 11, 111 and 1111 structural classes of iron-based arsenides and chalcogenides - are investigated by means of {sup 57}Fe Moessbauer spectroscopy and muon spin rotation/relaxation (μSR). Of major importance in this study is the application of high magnetic fields in Moessbauer spectroscopy to distinguish and characterize ferro- (FM) and antiferromagnetic (AFM) order. A user-friendly Moessbauer data analysis program was developed to provide suitable model functions not only for high field spectra, but relaxation spectra or parameter distributions in general. In LaFeP{sub 1-x}As{sub x}O the reconstruction of the Fermi surface is described by the vanishing of the Γ hole pocket with decreasing x. The continuous change of the orbital character and the covalency of the d-electrons is shown by Moessbauer spectroscopy. A novel antiferromagnetic phase with small magnetic moments of ∼ 0.1 μ{sub B} state is characterized. The superconducting order parameter is proven to continuously change from a nodal to a fully gapped s-wave like Fermi surface in the superconducting regime as a function of x, partially investigated on (O,F) substituted samples. LiOHFeSe is one of the novel intercalated FeSe compounds, showing strongly increased T{sub C} = 43 K mainly due to increased interlayer spacing and resulting two-dimensionality of the Fermi surface. The primary interest of the samples of this thesis is the simultaneously observed ferromagnetism and superconductivity. The local probe techniques prove that superconducting sample volume gets replaced by ferromagnetic volume. Ferromagnetism arises from magnetic order with T{sub C} = 10 K of secondary iron in the interlayer. The tendency of this system to show (Li,Fe) disorder is preserved upon (Se,S) substitution. However, superconductivity gets suppressed. The results of Moessbauer spectroscopy

  17. The neutron spin-echo spectrometer: a new high resolution technique in neutron scattering

    International Nuclear Information System (INIS)

    Nicholson, L.K.

    1981-01-01

    The neutron spin-echo (NSE) spectrometer provides the highest energy resolution available in neutron scattering experiments. The article describes the principles behind the first NSE spectrometer (at the Institute Laue-Langevin, Grenoble, France) and, as an example of one of its applications, some recent results on polymer chain dynamics are presented. (author)

  18. Transverse partial stent ablation with rotational atherectomy for suboptimal culotte technique in left main stem bifurcation.

    Science.gov (United States)

    De Maria, Giovanni Luigi; Kharbanda, Rajesh; Banning, Adrian P

    2017-11-06

    Longitudinal rotational atherectomy of metal struts is well described as bail-out strategy to treat undilatable instent restenosis. Ablation of metal stent struts jailing the ostium of a major side branch in a coronary bifurcation is not described. In the current report, we describe a case of "transverse" rotational atherectomy to treat a failure of culotte stenting in a left main stem bifurcation. We document for the first time in vivo and in man the effect of this strategy using optical coherence tomography. © 2017 Wiley Periodicals, Inc.

  19. Vibration-rotational overtones absorption of solid hydrogens using optoacoustic spectroscopy technique

    International Nuclear Information System (INIS)

    Vieira, M.M.F.

    1985-01-01

    Vibrational-rotational overtones absorption solid hydrogens (H 2 , D 2 , HD) is studied using pulsed laser piezoeletric transducer (PULPIT) optoacoustic spectroscopy is studied. A general downward shift in energy from isolated molecular energies is observed. Studying normal-hydrogen it was observed that the phonon excitations associated with double-molecular transitions are predominantly transverse-optical phonons, whereas the excitations associated with single-molecular transitions are predominantly longitudinal - optical phonons. Multiplet structures were observed for certain double transitions in parahydrogen and orthodeuterium. The HD spectrum, besides presenting the sharp zero-phonon lines and the associated phonon side bands, like H 2 and D 2 , showed also two different features. This observation was common to all the transitions involving pure rotational excitation in H 2 and D 2 , which showed broad linewidths. This, together with some other facts (fluorescence lifetime *approx*10 5 sec; weak internal vibration and lattice coupling), led to the proposition of a mechanism for the fast nonradiative relaxation in solid hydrogens, implied from some observed experimental evidences. This relaxation, due to strong coupling, would happen in two steps: the internal vibration modes would relax to the rotational modes of the molecules, and then this rotational modes would relax to the lattice vibration modes. (Author) [pt

  20. The rotator cuff: from bench to bedside. Developments in tissue engineering, surgical techniques and pathogenetic factors

    NARCIS (Netherlands)

    Longo, U.G.

    2012-01-01

    This thesis originates from the difficulties in the management of patients with rotator cuff tears. Since tendon healing rate is relatively slow compared with other connective tissues, we reviewed the available literature on tissue engineered biological augmentation for tendon healing, including

  1. Visualizing rotational wave functions of electronically excited nitric oxide molecules by using an ion imaging technique.

    Science.gov (United States)

    Mizuse, Kenta; Chizuwa, Nao; Ikeda, Dai; Imajo, Takashi; Ohshima, Yasuhiro

    2018-01-31

    Here we report the dissociative ionization imaging of electronically excited nitric oxide (NO) molecules to visualize rotational wave functions in the electronic excited state (A 2 Σ + ). The NO molecules were excited to a single rotational energy eigenstate in the first electronic excited state by a resonant nanosecond ultraviolet pulse. The molecules were then irradiated by a strong, circularly polarized femtosecond imaging pulse. Spatial distribution of the ejected N + and O + fragment ions from the dissociative NO 2+ was recorded as a direct measure of the molecular axis distribution using a high-resolution slice ion imaging apparatus. The circularly polarized probe pulse realizes the isotropic ionization and thus undistorted shapes of the functions can be visualized. Due to the higher ionization efficiency of the excited molecules relative to the ground state ones, signals from the excited NO were enhanced. We can, therefore, extract shapes of the square of rotational wave functions in the electronic excited state although the unexcited ground state molecules are the majority in an ensemble. The observed images show s-function-like and p-function-like shapes depending on the excitation wavelengths. These shapes well reflect the rotational (angular momentum) character of the prepared states. The present approach directly leads to the evaluation method of the molecular axis alignment in photo-excited ensembles, and it could also lead to a visualization method for excited state molecular dynamics.

  2. Spin-orbit driven ferromagnetic resonance: a nanoscale magnetic characterisation technique

    Czech Academy of Sciences Publication Activity Database

    Fang, D.; Kurebayashi, H.; Wunderlich, Joerg; Výborný, Karel; Zarbo, Liviu; Campion, R. P.; Casiraghi, A.; Gallagher, B. L.; Jungwirth, Tomáš; Ferguson, A.J.

    2011-01-01

    Roč. 6, č. 7 (2011), s. 413-417 ISSN 1748-3387 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510; GA AV ČR KJB100100802; GA MŠk(CZ) 7E08087 EU Projects: European Commission(XE) 214499 - NAMASTE; European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic resonance * spin-orbit coupling * nanomagnets Subject RIV: BM - Solid Matter Physics ; Magnet ism Impact factor: 27.270, year: 2011

  3. Mechanistic study of the accelerated crucible rotation technique applied to vertical Bridgman growth of cadmium zinc telluride

    Science.gov (United States)

    Divecha, Mia S.; Derby, Jeffrey J.

    2017-08-01

    With cadmium zinc telluride's (CZT) success as a gamma and x-ray detector material, there is need for high-quality, monocrystalline CZT in large volumes. Bridgman and gradient freeze growth methods have consistently produced material containing significant amounts of micron-sized, tellurium-rich inclusions, which are detrimental to device performance. These inclusions are believed to arise from a morphological instability of the growth interface driven by constitutional undercooling. Repeatedly rotating the crucible back and forth via the accelerated crucible rotation technique (ACRT) has been shown to reduce the size and number of inclusions. Via numerical techniques, we analyze the impact of two different applied temperature gradients, 10 K/cm and 30 K/cm, on the flow, temperature, tellurium distribution, and undercooling during growth with and without applied ACRT. Under growth without rotation, a higher axial thermal gradient results in stronger thermal-buoyancy driven flows, faster interface growth velocity, greater tellurium segregation, and stronger undercooling. ACRT improves the stability of the growth interfaces for both systems; however, contrary to conventional wisdom, the case of the shallow thermal gradient is predicted to exhibit a more stable growth interface, which may result in fewer inclusions and higher quality material.

  4. Spin-Mechatronics

    Science.gov (United States)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  5. Measurement of vortex motion in a type-II superconductor: A novel use of the neutron spin-echo technique

    Science.gov (United States)

    Forgan; Kealey; Johnson; Pautrat; Simon; Lee; Aegerter; Cubitt; Farago; Schleger

    2000-10-16

    We have used the neutron spin-echo technique to measure the small energy change of neutrons which are diffracted by a moving vortex lattice in a low-pinning Nb-Ta superconducting sample. A transport current was passed in the mixed state to cause flux line movement. In the case of uniform motion, the flux velocity v(L) was given as expected by the values of electric and magnetic fields, via E = -v(L)wedgeB. We show that with a nonuniformly moving vortex lattice, one can measure the dispersion of the velocities, opening up new possibilities for investigating moving vortex lines.

  6. Units of rotational information

    Science.gov (United States)

    Yang, Yuxiang; Chiribella, Giulio; Hu, Qinheping

    2017-12-01

    Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.

  7. Measurements of the spin rotation parameter A in the elastic pion-proton scattering in the D13(1700) resonance region

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, I.G.; Budkovsky, P.E.; Kanavets, V.P.; Koroleva, L.I.; Morozov, B.V.; Nesterov, V.M.; Ryltsov, V.V.; Sulimov, A.D.; Svirida, D.N.; Zhurkin, V.V. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Bazhanov, N.A.; Bunyatova, E.I. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Beloglazov, Yu.A.; Kovalev, A.I.; Kruglov, S.P.; Novinsky, D.V.; Shchedrov, V.A.; Sumachev, V.V.; Trautman, V.Yu. [St. Petersburg Inst. of Nuclear Physics, Gatchina (Russian Federation)

    2001-09-01

    The spin rotation parameters A and R were measured for the elastic pion-proton scattering by the PNPI-ITEP collaboration in the D{sub 13}(1700) resonance region. The main goal of the experimental program is to resolve the current partial-wave analyses (PWA) uncertainties. Simultaneously with A and R the polarization parameter P was measured with the purpose to improve the experimental database and estimate systematic errors. The constraint which demands a smooth energy dependence of all {pi}{sup -}p transverse amplitude zeros in the complex plane together with the new experimental data on A parameter can lead to the conclusion that the Barrelet branch of ''zero trajectories'' is chosen improperly in PWA of the Carnegie-Mellon-Lawrence-Berkeley-Laboratory groups at the range of the pion beam momentum near 1.0 GeV/c. The setup included a longitudinally polarized proton target with superconductive magnet, multiwire spark chambers and carbon polarimeter with thick filter. The experiment was performed at the ITEP proton synchrotron, Moscow. (orig.)

  8. Measurements of the spin rotation parameterf A in the elastic pion- proton scattering in the D$_{13}$(1700) resonance region

    CERN Document Server

    Alekseev, I G; Beloglasov, Yu A; Budkovsky, P E; Bunyatova, E I; Kanavets, V P; Kovalev, A I; Koroleva, L I; Kruglov, S P; Morozov, B V; Nesterov, V M; Novinsky, D V; Ryltzov, V V; Shchedrov, V A; Sulimov, A D; Sumachev, Yu V; Svirida, D N; Trautman, V Yu; Zhurkin, V V

    2001-01-01

    The spin rotation parameters A and R were measured for the elastic pion-proton scattering by the PNPI-ITEP collaboration in the D/sub 13 /(1700) resonance region. The main goal of the experimental program is to resolve the current partial-wave analyses (PWA) uncertainties. Simultaneously with A and R the polarization parameter P was measured with the purpose to improve the experimental database and estimate systematic errors. The constraint which demands a smooth energy dependence of all pi /sup -/p transverse amplitude zeros in the complex plane together with the new experimental data on the A parameter can lead to the conclusion that the Barrelet branch of "zero trajectories" is chosen improperly in PWA of the Carnegie- Mellon-Lawrence-Berkeley-Laboratory groups at the range of the pion beam momentum near 1.0 GeV/c. The setup included a longitudinally polarized proton target with superconductive magnet, multiwire spark chambers and carbon polarimeter with thick filter. The experiment was performed at the IT...

  9. Which technique is better for reduction of anterior shoulder dislocation? External rotation or Milch method. A review of literature

    Directory of Open Access Journals (Sweden)

    Niaz Mohammad Jafari Chokan

    2016-11-01

    Full Text Available Anterior shoulder dislocation is the most common joint dislocation in human body. Many methods are traditionally described for reduction of shoulder dislocation. Most of these techniques are painful to patients and may be associated with further injury. An ideal method should be easy, effective, and less painful, not associated with iatrogenic complications and should be easy to teach and learn. Among different methods of reduction, external rotation and Milch methods are more popular. Both methods are found to be atraumatic, relatively painless and can be performed without anesthesia. In this article, we aimed to review the literatures regarding these two methods of reduction and comparing their success rate and outcome. We reviewed the literature to find articles related to reduction of anterior shoulder dislocations applying one of two techniques described above. We searched PubMed and Google Scholar. In total, 46 articles were found, of them 17 articles -which mainly focused on anterior shoulder dislocation reduction by means of two above methods-were included in this review. The results showed that both techniques were effective, safe, relatively painless, and were well tolerated with no complications, but the external rotation method was superior.

  10. Fabrication of Antireflection Nanodiamond Particle Film by the Spin Coating Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available Diamond-based antireflective (AR coatings were fabricated using a spin coating of diamond suspension at room temperature as nucleation enhancement procedure and microwave plasma enhanced chemical vapour deposition. Various working pressures were used to investigate their effect on the optical characterization of the as-deposited diamond films. Scanning electron microscopy (SEM and atomic forced microscopy (AFM were employed to analyze the surface properties of the diamond films. Raman spectra and transmission electron microscopy (TEM also were used for analysis of the microstructure of the films. The results showed that working pressure had a significant effect on thickness, surface roughness, and wettability of the as-deposited diamond films. Deposited under 35 Torr or working pressure, the film possessed a low surface roughness of 13.8 nm and fine diamond grain sizes of 35 nm. Reflectance measurements of the films also were carried out using UV-Vis spectrometer and revealed a low reflectance value of the diamond films. The achievement demonstrated feasibility of the proposed spin-coating procedure for large scale production and thus opens up a prospect application of diamond film as an AR coating in industrial optoelectronic device.

  11. Hepatic lesions: improved image quality and detection with the periodically rotated overlapping parallel lines with enhanced reconstruction technique--evaluation of SPIO-enhanced T2-weighted MR images.

    Science.gov (United States)

    Hirokawa, Yuusuke; Isoda, Hiroyoshi; Maetani, Yoji S; Arizono, Shigeki; Shimada, Kotaro; Okada, Tomohisa; Shibata, Toshiya; Togashi, Kaori

    2009-05-01

    To evaluate the effectiveness of the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique for superparamagnetic iron oxide (SPIO)-enhanced T2-weighted magnetic resonance (MR) imaging with respiratory compensation with the prospective acquisition correction (PACE) technique in the detection of hepatic lesions. The institutional human research committee approved this prospective study, and all patients provided written informed consent. Eighty-one patients (mean age, 58 years) underwent hepatic 1.5-T MR imaging. Fat-saturated T2-weighted turbo spin-echo images were acquired with the PACE technique and with and without the PROPELLER method after administration of SPIO. Images were qualitatively evaluated for image artifacts, depiction of liver edge and intrahepatic vessels, overall image quality, and presence of lesions. Three radiologists independently assessed these characteristics with a five-point confidence scale. Diagnostic performance was assessed with receiver operating characteristic (ROC) curve analysis. Quantitative analysis was conducted by measuring the liver signal-to-noise ratio (SNR) and the lesion-to-liver contrast-to-noise ratio (CNR). The Wilcoxon signed rank test and two-tailed Student t test were used, and P techniques resulted in significantly improved image quality, higher sensitivity, and greater area under the ROC curve for hepatic lesion detection than did MR imaging with the PACE technique alone (P technique than without it (P technique and SPIO enhancement is a promising method with which to improve the detection of hepatic lesions. (c) RSNA, 2009.

  12. Statistical techniques for automating the detection of anomalous performance in rotating machinery

    International Nuclear Information System (INIS)

    Piety, K.R.; Magette, T.E.

    1979-01-01

    The level of technology utilized in automated systems that monitor industrial rotating equipment and the potential of alternative surveillance methods are assessed. It is concluded that changes in surveillance methodology would upgrade ongoing programs and yet still be practical for implementation. An improved anomaly recognition methodology is formulated and implemented on a minicomputer system. The effectiveness of the monitoring system was evaluated in laboratory tests on a small rotor assembly, using vibrational signals from both displacement probes and accelerometers. Time and frequency domain descriptors are selected to compose an overall signature that characterizes the monitored equipment. Limits for normal operation of the rotor assembly are established automatically during an initial learning period. Thereafter, anomaly detection is accomplished by applying an approximate statistical test to each signature descriptor. As demonstrated over months of testing, this monitoring system is capable of detecting anomalous conditions while exhibiting a false alarm rate below 0.5%

  13. Mixed Models and Reduction Techniques for Large-Rotation, Nonlinear Analysis of Shells of Revolution with Application to Tires

    Science.gov (United States)

    Noor, A. K.; Andersen, C. M.; Tanner, J. A.

    1984-01-01

    An effective computational strategy is presented for the large-rotation, nonlinear axisymmetric analysis of shells of revolution. The three key elements of the computational strategy are: (1) use of mixed finite-element models with discontinuous stress resultants at the element interfaces; (2) substantial reduction in the total number of degrees of freedom through the use of a multiple-parameter reduction technique; and (3) reduction in the size of the analysis model through the decomposition of asymmetric loads into symmetric and antisymmetric components coupled with the use of the multiple-parameter reduction technique. The potential of the proposed computational strategy is discussed. Numerical results are presented to demonstrate the high accuracy of the mixed models developed and to show the potential of using the proposed computational strategy for the analysis of tires.

  14. Shoulder 3D range of motion and humerus rotation in two volleyball spike techniques: injury prevention and performance.

    Science.gov (United States)

    Seminati, Elena; Marzari, Alessandra; Vacondio, Oreste; Minetti, Alberto E

    2015-06-01

    Repetitive stresses and movements on the shoulder in the volleyball spike expose this joint to overuse injuries, bringing athletes to a career threatening injury. Assuming that specific spike techniques play an important role in injury risk, we compared the kinematic of the traditional (TT) and the alternative (AT) techniques in 21 elite athletes, evaluating their safety with respect to performance. Glenohumeral joint was set as the centre of an imaginary sphere, intersected by the distal end of the humerus at different angles. Shoulder range of motion and angular velocities were calculated and compared to the joint limits. Ball speed and jump height were also assessed. Results indicated the trajectory of the humerus to be different for the TT, with maximal flexion of the shoulder reduced by 10 degrees, and horizontal abduction 15 degrees higher. No difference was found for external rotation angles, while axial rotation velocities were significantly higher in AT, with a 5% higher ball speed. Results suggest AT as a potential preventive solution to shoulder chronic pathologies, reducing shoulder flexion during spiking. The proposed method allows visualisation of risks associated with different overhead manoeuvres, by depicting humerus angles and velocities with respect to joint limits in the same 3D space.

  15. Homogenization of Doppler broadening in spin-noise spectroscopy

    Science.gov (United States)

    Petrov, M. Yu.; Ryzhov, I. I.; Smirnov, D. S.; Belyaev, L. Yu.; Potekhin, R. A.; Glazov, M. M.; Kulyasov, V. N.; Kozlov, G. G.; Aleksandrov, E. B.; Zapasskii, V. S.

    2018-03-01

    The spin-noise spectroscopy, being a nonperturbative linear optics tool, is still reputed to reveal a number of capabilities specific to nonlinear optics techniques. The effect of the Doppler broadening homogenization discovered in this work essentially widens these unique properties of spin-noise spectroscopy. We investigate spin noise of a classical system—cesium atoms vapor with admixture of buffer gas—by measuring the spin-induced Faraday rotation fluctuations in the region of D 2 line. The line, under our experimental conditions, is strongly inhomogeneously broadened due to the Doppler effect. Despite that, optical spectrum of the spin-noise power has the shape typical for the homogeneously broadened line with a dip at the line center. This fact is in stark contrast with the results of previous studies of inhomogeneous quantum dot ensembles and Doppler broadened atomic systems. In addition, the two-color spin-noise measurements have shown, in a highly spectacular way, that fluctuations of the Faraday rotation within the line are either correlated or anticorrelated depending on whether the two wavelengths lie on the same side or on different sides of the resonance. The experimental data are interpreted in the frame of the developed theoretical model which takes into account both kinetics and spin dynamics of Cs atoms. It is shown that the unexpected behavior of the Faraday rotation noise spectra and effective homogenization of the optical transition in the spin-noise measurements are related to smallness of the momentum relaxation time of the atoms as compared with their spin-relaxation time. Our findings demonstrate abilities of spin-noise spectroscopy for studying dynamic properties of inhomogeneously broadened ensembles of randomly moving spins.

  16. A non-invasive thermal drift compensation technique applied to a spin-valve magnetoresistive current sensor.

    Science.gov (United States)

    Sánchez Moreno, Jaime; Ramírez Muñoz, Diego; Cardoso, Susana; Casans Berga, Silvia; Navarro Antón, Asunción Edith; Peixeiro de Freitas, Paulo Jorge

    2011-01-01

    A compensation method for the sensitivity drift of a magnetoresistive (MR) Wheatstone bridge current sensor is proposed. The technique was carried out by placing a ruthenium temperature sensor and the MR sensor to be compensated inside a generalized impedance converter circuit (GIC). No internal modification of the sensor bridge arms is required so that the circuit is capable of compensating practical industrial sensors. The method is based on the temperature modulation of the current supplied to the bridge, which improves previous solutions based on constant current compensation. Experimental results are shown using a microfabricated spin-valve MR current sensor. The temperature compensation has been solved in the interval from 0 °C to 70 °C measuring currents from -10 A to +10 A.

  17. Preparation and Adsorption Property of Imido-acetic Acid Type Chelating Nano-fibers by Electro-spinning Technique

    Science.gov (United States)

    Yang, Jiali; Lu, Lansi; Zhang, Zhu; Liao, Minhui; He, Huirong; Li, Lingxing; Chen, Jida; Chen, Shijin

    2017-12-01

    A novel nano-fibrous adsorbent from imino-acetic acid (IDA) and polyvinyl alcohol (PVA) mixture solution was prepared by electro-spinning technique. The nano-fibrous adsorbents with imino-acetic acid functional groups were characterized and demonstrated by fourier transform infrared spectrometry (FT-IR) and the scanning electron microscopy (SEM). The effect of the adsorbents to remove heavy metals such as lead (Pb) and copper (Cu) ions from the aqueous solution was studied. The maximum adsorption percentage (SP) of the metal ions can reach 93.08% for Cu (II) and 96.69% for Pb(II), respectively. Furthermore, it shows that the adsorption procedure of the adsorbents is spontaneous and endothermic, and adsorption rate fits well with pseudo-second-order kinetic model. Most importantly, the reusability of the nanofibers for removal of metal ions was also demonstrated to be used at least five times.

  18. A Non-Invasive Thermal Drift Compensation Technique Applied to a Spin-Valve Magnetoresistive Current Sensor

    Directory of Open Access Journals (Sweden)

    Paulo Jorge Peixeiro de Freitas

    2011-02-01

    Full Text Available A compensation method for the sensitivity drift of a magnetoresistive (MR Wheatstone bridge current sensor is proposed. The technique was carried out by placing a ruthenium temperature sensor and the MR sensor to be compensated inside a generalized impedance converter circuit (GIC. No internal modification of the sensor bridge arms is required so that the circuit is capable of compensating practical industrial sensors. The method is based on the temperature modulation of the current supplied to the bridge, which improves previous solutions based on constant current compensation. Experimental results are shown using a microfabricated spin-valve MR current sensor. The temperature compensation has been solved in the interval from 0 °C to 70 °C measuring currents from −10 A to +10 A.

  19. A new perspective on turbulent Galactic magnetic fields through comparison of linear polarization decomposition techniques

    Science.gov (United States)

    Robitaille, J.-F.; Scaife, A. M. M.; Carretti, E.; Gaensler, B. M.; McEwen, J. D.; Leistedt, B.; Haverkorn, M.; Bernardi, G.; Kesteven, M. J.; Poppi, S.; Staveley-Smith, L.

    2017-07-01

    We compare two rotationally invariant decomposition techniques on linear polarization data: the spin-2 spherical harmonic decomposition in two opposite parities, the E- and B-mode, and the multiscale analysis of the gradient of linear polarization, |\

  20. Solute-Vacancy Clustering In Al-Mg-Si Alloys Studied By Muon Spin Relaxation Technique

    Directory of Open Access Journals (Sweden)

    Nishimura K.

    2015-06-01

    Full Text Available Zero-field muon spin relaxation experiments were carried out with Al-1.6%Mg2Si, Al-0.5%Mg, and Al-0.5%Si alloys. Observed relaxation spectra were compared with the calculated relaxation functions based on the Monte Carlo simulation to extract the dipolar width (Δ, trapping (νt, and detrapping rates (νd, with the initially trapped muon fraction (P0. The fitting analysis has elucidated that the muon trapping rates depended on the heat treatment and solute concentrations. The dissolved Mg in Al dominated the νt at lower temperatures below 120 K, therefore the similar temperature variations of νt were observed with the samples mixed with Mg. The νt around 200 K remarkably reflected the heat treatment effect on the samples, and the largest νt value was found with the sample annealed at 100°C among Al-1.6%Mg2Si alloys. The as-quenched Al-0.5%Si sample showed significant νt values between 80 and 280 K relating with Si-vacancy clusters, but such clusters disappeared with the natural aged Al-0.5%Si sample.

  1. The quantum brachistochrone problem for an arbitrary spin in a magnetic field

    Science.gov (United States)

    Kuzmak, A. R.; Tkachuk, V. M.

    2015-06-01

    We consider quantum brachistochrone evolution for a spin-s system on rotational manifolds. Such manifolds are determined by the rotation of the eigenstates of the operator of projection of spin-s on some direction. The Fubini-Study metrics of these manifolds are those of spheres with radii dependent on the value of the spin and on the value of the spin projection. The conditions for optimal evolution of the spin-s system on rotational manifolds are obtained.

  2. Simultaneous time-optimal control of the inversion of two spin-(1/2) particles

    International Nuclear Information System (INIS)

    Assemat, E.; Lapert, M.; Sugny, D.; Zhang, Y.; Braun, M.; Glaser, S. J.

    2010-01-01

    We analyze the simultaneous time-optimal control of two-spin systems. The two noncoupled spins, which differ in the value of their chemical offsets, are controlled by the same magnetic fields. Using an appropriate rotating frame, we restrict the study to the case of opposite shifts. We then show that the optimal solution of the inversion problem in a rotating frame is composed of a pulse sequence of maximum intensity and is similar to the optimal solution for inverting only one spin by using a nonresonant control field in the laboratory frame. An example is implemented experimentally using nuclear magnetic resonance techniques.

  3. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian

    2014-12-08

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green\\'s function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  4. In Vivo EPR Resolution Enhancement Using Techniques Known from Quantum Computing Spin Technology.

    Science.gov (United States)

    Rahimi, Robabeh; Halpern, Howard J; Takui, Takeji

    2017-01-01

    A crucial issue with in vivo biological/medical EPR is its low signal-to-noise ratio, giving rise to the low spectroscopic resolution. We propose quantum hyperpolarization techniques based on 'Heat Bath Algorithmic Cooling', allowing possible approaches for improving the resolution in magnetic resonance spectroscopy and imaging.

  5. Muon spin rotation research program

    Science.gov (United States)

    Stronach, C. E.

    1980-01-01

    Data from cyclotron experiments and room temperature studies of dilute iron alloys and iron crystals under strain were analyzed. The Fe(Mo) data indicate that the effect upon the contact hyperfine field in Fe due to the introduction of Mo is considerably less than that expected from pure dilution, and the muon (+) are attracted to the Mo impurity sites. There is a significant change in the interstitial magnetic field with Nb concentration. The Fe(Ti) data, for which precession could clearly be observed early only at 468K and above, show that the Ti impurities are attractive to muon (+), and the magnitude of B(hf) is reduced far beyond the amount expected from pure dilution. Changes in the intersitital magnetic field with the introduction of Cr, W, Ge, and Si are also discussed. When strained to the elastic limit, the interstitial magnetic field in Fe crystals is reduced by 33 gauss, and the relaxation rate of the precession signal increases by 47%.

  6. Analysis of the accelerated crucible rotation technique applied to the gradient freeze growth of cadmium zinc telluride

    Science.gov (United States)

    Divecha, Mia S.; Derby, Jeffrey J.

    2017-06-01

    We employ finite-element modeling to assess the effects of the accelerated crucible rotation technique (ACRT) on cadmium zinc telluride (CZT) crystals grown from a gradient freeze system. Via consideration of tellurium segregation and transport, we show, for the first time, that steady growth from a tellurium-rich melt produces persistent undercooling in front of the growth interface, likely leading to morphological instability. The application of ACRT rearranges melt flows and tellurium transport but, in contrast to conventional wisdom, does not altogether eliminate undercooling of the melt. Rather, a much more complicated picture arises, where spatio-temporal realignment of undercooled melt may act to locally suppress instability. A better understanding of these mechanisms and quantification of their overall effects will allow for future growth optimization.

  7. Total Skin Electron Therapy for Cutaneous T-Cell Lymphoma Using a Modern Dual-Field Rotational Technique

    Energy Technology Data Exchange (ETDEWEB)

    Heumann, Thatcher R. [Emory University School of Medicine, Emory University, Atlanta, Georgia (United States); Esiashvili, Natia [Department of Radiation Oncology, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute (WCI), Emory University, Atlanta, Georgia (United States); Parker, Sareeta [Department of Dermatology, Emory University, Atlanta, Georgia (United States); Switchenko, Jeffrey M. [Biostatistics Shared Core Resource at WCI, Emory University, Atlanta, Georgia (United States); Dhabbaan, Anees [Department of Radiation Oncology, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute (WCI), Emory University, Atlanta, Georgia (United States); Goodman, Michael [Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia (United States); Lechowicz, Mary Jo; Flowers, Christopher R. [Department of Radiation Oncology, Emory University, Atlanta, Georgia (United States); Department of Hematology and Oncology, Emory University, Atlanta, Georgia (United States); Khan, Mohammad K., E-mail: drkhurram2000@gmail.com [Department of Radiation Oncology, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute (WCI), Emory University, Atlanta, Georgia (United States)

    2015-05-01

    Purpose: To report our experience with rotational total skin electron irradiation (RTSEI) in cutaneous T-cell lymphoma (CTCL), and to examine response by disease stage and race. Methods and Materials: We reviewed our outcomes for 68 CTCL patients who received RTSEI (≥30 Gy) from 2000 to 2013. Primary outcomes were complete clinical response (CCR), recurrence-free survival (RFS), and overall survival (OS). Using log–rank tests and Cox proportional hazards, OS and RFS were compared across tumor stages at time of RTSEI with further racial subgroup analysis. Results: Median age at diagnosis and at time of radiation was 52 and 56 years, respectively. Median follow-up was 5.1 years, 49% were African American, and 49% were female. At time of treatment, 18, 37, and 13 patients were T stage 2, 3, and 4, respectively. At 6 weeks after RTSEI, overall CCR was 82% (88%, 83%, and 69% for T2, T3, and T4, respectively). Median RFS was 11 months for all patients and 14, 10, and 12 months for stage T2, T3, and T4, respectively. Tumor stage was not associated with RFS or CCR. Maintenance therapy after RTSEI was associated with improved RFS in both crude and multivariable analysis, controlling for T stage. Median OS was 76 months (91 and 59 months for T3 and T4, respectively). With the exception of improved OS in African Americans compared with whites at stage T2, race was not associated with CCR, RFS, or OS. Conclusions: These results represent the largest RTSEI clinical outcomes study in the modern era using a dual-field rotational technique. Our observed response rates match or improve upon the standard set by previous outcome studies using conventional TSEI techniques, despite a large percentage of advanced CTCL lesions in our cohort. We found that clinical response after RTSEI did not seem to be affected by T stage or race.

  8. Postmastectomy radiotherapy of the chest wall. Comparison of electron-rotation technique and common tangential photon fields

    International Nuclear Information System (INIS)

    Hehr, T.; Classen, J.; Huth, M.; Durst, I.; Bamberg, M.; Budach, W.; Christ, G.

    2004-01-01

    electron-rotation technique (LRC 92%) or with the photon-based technique (LRC 89%; p = 0.9). A subgroup analysis of tumors resected with ''close margins'' showed a higher LRF rate of 25% after electron-beam-rotation irradiation (n = 180) compared to an LRF of 13% with tangential opposed 6-MV photon fields (n = 107; p < 0.05). Large primary tumors of ≥ 5 cm developed LRF in 29% of patients treated with electron-beam-rotation irradiation and in 17% of patients with photon-based irradiation (p = 0.1). Conclusion: in locally advanced breast cancer, the LRC after postmastectomy irradiation with both techniques is comparable with published data from randomized studies. The tangential opposed photon field technique seems to be beneficial after marginal resection (histopathologic ''close margins'') of the primary tumor. (orig.)

  9. Visualizing molecular unidirectional rotation

    Science.gov (United States)

    Lin, Kang; Song, Qiying; Gong, Xiaochun; Ji, Qinying; Pan, Haifeng; Ding, Jingxin; Zeng, Heping; Wu, Jian

    2015-07-01

    We directly visualize the spatiotemporal evolution of a unidirectional rotating molecular rotational wave packet. Excited by two time-delayed polarization-skewed ultrashort laser pulses, the cigar- or disk-shaped rotational wave packet is impulsively kicked to unidirectionally rotate as a quantum rotor which afterwards disperses and exhibits field-free revivals. The rich dynamics can be coherently controlled by varying the timing or polarization of the excitation laser pulses. The numerical simulations very well reproduce the experimental observations and intuitively revivify the thoroughgoing evolution of the molecular rotational wave packet of unidirectional spin.

  10. Spin Transport in Bose Gases

    NARCIS (Netherlands)

    van Driel, H.J.

    2012-01-01

    In this Thesis, we show that in a rotating two-component Bose mixture, the spin drag between the two different spin species shows a Hall effect. This spin drag Hall effect can be observed experimentally by studying the out-of-phase dipole mode of the mixture. We determine the damping of this mode

  11. Quantitative assessment of an MR technique for reducing metal artifact: application to spin-echo imaging in a phantom

    International Nuclear Information System (INIS)

    Lee, M.J.; Janzen, D.L.; Munk, P.L.; McGowen, A.; MacKay, A.; Xiang, Q.S.

    2001-01-01

    Objective. To quantify image artifact reduction using a new technique (MARS - metal artifact reduction sequence) in vitro.Design. Coronal T1-weighted MR images were obtained through two metal phantoms (titanium/chromium-cobalt and stainless steel femoral prostheses) immersed in water. Comparison of artifact volume was made with images obtained using conventional and modified (MARS) T1-weighted sequences. Signal intensity values outside a range of ±40% the average signal intensity for water were considered artifact and segmented into low or high signal artifact categories. Considering the arbitrary selection of this threshold value, volumetric calculations of artifact were also evaluated at ±50%, 60%, 70%, and 80% the mean signal for water.Results. Conventional T1-weighted images produced 87% more low signal artifact and 212% more high signal artifact compared with the MARS modified T1-weighted images of the stainless steel prosthesis. Conventional T1-weighted images of the titanium prosthesis produced 84% more low signal artifact and 211% more high signal artifact than the MARS modified sequence. The level of artifact reduction was essentially uniform for the various threshold levels tested and was greatest at ±20% the global signal intensity average for water.Conclusion. The MARS technique reduces the volume of image signal artifact produced by stainless steel and titanium/chromium-cobalt femoral prostheses on T1-weighted spin-echo images in a tissue phantom model. (orig.)

  12. A technique to capture, analyze, and quantify anterior teeth rotations for application in court cases involving tooth marks.

    Science.gov (United States)

    Bernitz, Herman; van Heerden, Willie F P; Solheim, Tore; Owen, Johanna H

    2006-05-01

    Anterior teeth within the human dentition have a specific numerical rotation value. Bite marks show an array of angled indentations, abrasions, microlacerations, and contusions. These marks generally represent the incisal surfaces of the suspect's dentition reflecting the rotation values of the teeth in the dental arch. This study described a method for capturing and analyzing anterior dental rotations. The rotations of individual anterior teeth within the study population were categorized as common, uncommon, and very uncommon according to Allen's classification. In the absence of a large number of incisal patterns present in a bite mark, a single but heavily weighted tooth rotation could be of equal discriminatory potential to several common rotation values. No prevalence studies quantifying individual tooth rotations are available. The measurement of each individual tooth rotation together with its individual discrimination potential will enhance the evaluation of the concordant features observed in bite marks.

  13. Dual-axis rotational coronary angiography: a new technique for detecting graft coronary vasculopathy in pediatric heart transplant recipients.

    Science.gov (United States)

    Gudausky, Todd M; Pelech, Andrew N; Stendahl, Gail; Tillman, Kathryn; Mattice, Judy; Berger, Stuart; Zangwill, Steven

    2013-03-01

    Annual surveillance coronary angiograpyhy to screen for graft coronary vasculopathy is routine practice after orthotopic heart transplantation. Traditionally, this is performed with direct coronary angiography using static single-plane or biplane angiography. Recently, technological advances have made it possible to perform dual-axis rotational coronary angiography (RA). This technique differs from standard static single-plane or biplane angiography in that a single detector is preprogrammed to swing through a complex 80° arc during a single injection. It has the advantage of providing a perspective of the vessels from a full arc of images rather than from one or two static images per contrast injection. The current study evaluated two coronary angiography techniques used consecutively at a single center to evaluate pediatric heart transplant recipients for graft coronary vasculopathy. A total of 23 patients underwent routine coronary angiography using both biplane static coronary angiography (BiP) and RA techniques at the Children's Hospital of Wisconsin from February 2009 to September 2010. Demographic and procedure data were collected from each procedure and analyzed for significance utilizing a Wilcoxon rank sum test. No significant demographic or procedural differences between the BiP and the RA procedures were noted. Specific measures of radiation dose including fluoroscopy time and dose area product were similar among the imaging techniques. The findings show that RA can be performed safely and reproducibly in pediatric heart transplant recipients. Compared with standard BiP, RA does not increase radiation exposure or contrast use and in our experience has provided superior angiographic imaging for the evaluation of graft coronary vasculopathy.

  14. Electron spin resonance as a high sensitivity technique for environmental magnetism: determination of contamination in carbonate sediments

    Science.gov (United States)

    Crook, Nigel P.; Hoon, Stephen R.; Taylor, Kevin G.; Perry, Chris T.

    2002-05-01

    This study investigates the application of high sensitivity electron spin resonance (ESR) to environmental magnetism in conjunction with the more conventional techniques of magnetic susceptibility, vibrating sample magnetometry (VSM) and chemical compositional analysis. Using these techniques we have studied carbonate sediment samples from Discovery Bay, Jamaica, which has been impacted to varying degrees by a bauxite loading facility. The carbonate sediment samples contain magnetic minerals ranging from moderate to low concentrations. The ESR spectra for all sites essentially contain three components. First, a six-line spectra centred around g = 2 resulting from Mn2+ ions within a carbonate matrix; second a g = 4.3 signal from isolated Fe3+ ions incorporated as impurities within minerals such as gibbsite, kaolinite or quartz; third a ferrimagnetic resonance with a maxima at 230 mT resulting from the ferrimagnetic minerals present within the bauxite contamination. Depending upon the location of the sites within the embayment these signals vary in their relative amplitude in a systematic manner related to the degree of bauxite input. Analysis of the ESR spectral components reveals linear relationships between the amplitude of the Mn2+ and ferrimagnetic signals and total Mn and Fe concentrations. To assist in determining the origin of the ESR signals coral and bauxite reference samples were employed. Coral representative of the matrix of the sediment was taken remote from the bauxite loading facility whilst pure bauxite was collected from nearby mining facilities. We find ESR to be a very sensitive technique particularly appropriate to magnetic analysis of ferri- and para-magnetic components within environmental samples otherwise dominated by diamagnetic (carbonate) minerals. When employing typical sample masses of 200 mg the practical detection limit of ESR to ferri- and para-magnetic minerals within a diamagnetic carbonate matrix is of the order of 1 ppm and 1 ppb

  15. Potential errors in conventional DOT measurement techniques in shake flasks and verification using a rotating flexitube optical sensor

    Directory of Open Access Journals (Sweden)

    Käser Andreas

    2011-05-01

    Full Text Available Abstract Background Dissolved oxygen tension (DOT is an important parameter for evaluating a bioprocess. Conventional means to measure DOT in shake flasks using fixed Clark-type electrodes immersed in the bulk liquid are problematic, because they inherently alter the hydrodynamics of the systems. Other approaches to measure DOT that apply fluorescing sensor spots fixed at the inside wall of a shake flask are also suboptimal. At low filling volumes for cultivating microorganisms with a high oxygen demand, the measured DOT signal may be erroneous. Here, the sensor spot is sometimes exposed to gas in the head space of the flask. Merely repositioning the sensor spot elsewhere in the flask does not address this problem, since there is no location in the shake flask that is always covered by the rotating bulk liquid. Thus, the aim of this prospective study is first, to verify the systemic error of Clark-type electrodes for measuring DOT in shake flasks. The second principle aim is to use the newly built "flexitube optical sensor" to verify potential errors in conventional optical DOT measurements based on fixed sensor spots. Results With the Clark-type electrode, the maximum oxygen transfer capacity in shake flasks rose compared to that of an analogous system without an electrode. This proves changed hydrodynamics in the system with the Clark-type electrode. Furthermore, regarding the sensor spot experiments under oxygen-limited conditions where the DOT value ought to approach zero, the acquired signals were clearly above zero. This implies that the sensor spot is influenced by oxygen present in the headspace and not only by oxygen in the bulk liquid. Conclusions The Clark-type electrode is unsuitable for measuring DOT. Moreover, the newly built rotating flexitube optical sensor is useful to verify potential errors of conventional optical DOT measurement techniques applying fixed sensor spots.

  16. Outcome and Structural Integrity of Rotator Cuff after Arthroscopic Treatment of Large and Massive Tears with Double Row Technique: A 2-Year Followup

    Directory of Open Access Journals (Sweden)

    Ignacio Carbonel

    2013-01-01

    Full Text Available Purpose. The purpose of this study was to evaluate the functional outcome and the tendon healing after arthroscopic double row rotator cuff repair of large and massive rotator cuff tears. Methods. 82 patients with a full-thickness large and massive rotator cuff tear underwent arthroscopic repair with double row technique. Results were evaluated by use of the UCLA, ASES, and Constant questionnaires, the Shoulder Strength Index (SSI, and range of motion. Follow-up time was 2 years. Magnetic resonance imaging (MRI studies were performed on each shoulder preoperatively and 2 years after repair. Results. 100% of the patients were followed up. UCLA, ASES, and Constant questionnaires showed significant improvement compared with preoperatively (P<0.001. Range of motion and SSI in flexion, abduction, and internal and external rotation also showed significant improvement (P<0.001. MRI studies showed 24 cases of tear after repair (29%. Only 8 cases were a full-thickness tear. Conclusions. At two years of followup, in large and massive rotator cuff tears, an arthroscopic double row rotator cuff repair technique produces an excellent functional outcome and structural integrity.

  17. Muon spin rotation study of magnetism and superconductivity in Ba(Fe1-xCox)2As2 single crystals

    OpenAIRE

    Bernhard, C.; Wang, C. N.; Nuccio, L.; Schulz, L.; Zaharko, O.; Larsen, Jacob; Aristizabal, C.; Willis, M.; Drew, A. J.; Varma, G. D.; Wolf, T.; Niedermayer, Ch.

    2012-01-01

    Using muon spin rotation (μSR) we investigated the magnetic and superconducting properties of a series of Ba(Fe1−xCox)2As2 single crystals with 0 ≤x ≤0.15. Our study details how the antiferromagnetic order is suppressed upon Co substitution and how it coexists with superconductivity. In the nonsuperconducting samples at 0

  18. Spin at Lausanne

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    From 25 September to 1 October, some 150 spin enthusiasts gathered in Lausanne for the 1980 International Symposium on High Energy Physics with Polarized Beams and Polarized Targets. The programme was densely packed, covering physics interests with spin as well as the accelerator and target techniques which make spin physics possible

  19. Analytical study of the effects of soft tissue artefacts on functional techniques to define axes of rotation.

    Science.gov (United States)

    De Rosario, Helios; Page, Álvaro; Besa, Antonio

    2017-09-06

    The accurate location of the main axes of rotation (AoR) is a crucial step in many applications of human movement analysis. There are different formal methods to determine the direction and position of the AoR, whose performance varies across studies, depending on the pose and the source of errors. Most methods are based on minimizing squared differences between observed and modelled marker positions or rigid motion parameters, implicitly assuming independent and uncorrelated errors, but the largest error usually results from soft tissue artefacts (STA), which do not have such statistical properties and are not effectively cancelled out by such methods. However, with adequate methods it is possible to assume that STA only account for a small fraction of the observed motion and to obtain explicit formulas through differential analysis that relate STA components to the resulting errors in AoR parameters. In this paper such formulas are derived for three different functional calibration techniques (Geometric Fitting, mean Finite Helical Axis, and SARA), to explain why each technique behaves differently from the others, and to propose strategies to compensate for those errors. These techniques were tested with published data from a sit-to-stand activity, where the true axis was defined using bi-planar fluoroscopy. All the methods were able to estimate the direction of the AoR with an error of less than 5°, whereas there were errors in the location of the axis of 30-40mm. Such location errors could be reduced to less than 17mm by the methods based on equations that use rigid motion parameters (mean Finite Helical Axis, SARA) when the translation component was calculated using the three markers nearest to the axis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Direct observation of hopping induced spin polarization current in oxygen deficient Co-doped ZnO by Andreev reflection technique

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kung-Shang; Huang, Tzu-Yu; Dwivedi, G.D. [Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Lin, Lu-Kuei; Lee, Shang-Fan [Taiwan Institute of Physics, Academia Sinica, Taipei, Taiwan (China); Sun, Shih-Jye [Department of Applied Physics, National Kaohsiung University, Kaohsiung, Taiwan (China); Chou, Hsiung, E-mail: hchou@mail.nsysu.edu.tw [Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China)

    2017-07-01

    Highlights: • Co-doped ZnO thin-films were grown with varying V{sub O} concentartion. • PCAR measurements were done to study the SPC. • High spin polarization was observed above a certain V{sub O} concentartion. • High V{sub O} samples provide a high density of completed percolation path. • This complete percolation path gives rise to high SPC. - Abstract: Oxygen vacancy induced ferromagnetic coupling in diluted magnetic oxide (DMO) semiconductors have been reported in several studies, but technologically more crucial spin-polarized current (SPC) is still under-developed in DMOs. Few studies have claimed that VRH mechanism can originate the SPC, but, how VRH mechanism associated with percolation path, is not clearly understood. We used Point-contact Andreev reflection (PCAR) technique to probe the SPC in Co-doped ZnO (CZO) films. Since the high resistance samples cause broadening in conductance(G)-voltage(V) curves, which may result in an unreliable evaluation of spin polarization, we include two extra parameters, (i) effective temperature and (ii) spreading resistance, for the simulation to avoid the uncertainty in extracting spin polarization. The effective G-V curves and higher spin polarization can be obtained above a certain oxygen vacancy concentration. The number of completed and fragmentary percolation paths is proportional to the concentration of oxygen vacancies. For low oxygen vacancy samples, the Pb-tip has a higher probability of covering fragmentary percolation paths than the complete ones, due to its small contact size. The completed paths may remain independent of one another and get polarized in different directions, resulting in lower spin-polarization value. High oxygen vacancy samples provide a high density of completed path, most of them link to one another by crossing over, and gives rise to high spin-polarization value.

  1. Longitudinal Field Muon Spin Rotation Study of Magnetic Freezing in Fe Rich FeSe0.25Te0.75

    Science.gov (United States)

    MacFarlane, W. A.; Ofer, O.; Chow, K. H.; Hossain, M. D.; Parolin, T. J.; Saadaoui, H.; Song, Q.; Wang, D.; Arseneau, D. J.; Hitti, B.; Yeh, K.-W.; Ke, C.-T.; Wu, M.-K.

    We study the freezing of magnetic fluctuations in an Fe rich sample of the "11" iron-based superconductor using longitudinal field muon spin relaxation. The magnetic relaxation rate peaks at 15 K indicating spin glass freezing that nearly coincides with the superconducting transition of the corresponding Fe stoichiometric phase. At this temperature, the magnetic field dependence of the relaxation indicates slow magnetic fluctuations on the nanosecond timescale.

  2. Concentration influence on structural and optical properties of SnO2 thin films synthesized by the spin coating technique.

    Science.gov (United States)

    Belhamri, Soumia; Hamdadou, Nasr-Eddine

    2016-10-01

    Tin dioxide is an n-type semiconductor, with wide band gap 3.6 eV and special properties such as high optical transmission in the visible range, the infrared reflection and chemical stability. The objective of our work is to study the effect of solution concentration on the properties of SnO2 thin films, which were deposited on glass substrate by sol-gel spin coating technique and characterized by X-ray diffraction, UV-visible spectroscopy after annealing for one hour at 500°C. X ray diffraction spectra (XRD) showed that the films deposited at different concentrations (0.7 mol/l, 1 mol/l, 1.5 mol/l) are polycrystalline with a rutile type tetragonal. The grains have two preferred orientations along the directions (110) and (101) corresponding to 2θ = 26,744° and 34,113° respectively. We have also noted that the grain size change between 20 and 40 nm. The peak of diffraction becomes less intense when the solution concentration is more than 0.7 mol / l. The opticall transmittance of the films in the visible spectrum was in the range of 59 - 44%.

  3. Characterization and photocatalytic properties of cotton fibers modified with ZnO nanoparticles using sol–gel spin coating technique

    Directory of Open Access Journals (Sweden)

    Mohamed Shaban

    2016-09-01

    Full Text Available Zinc oxide nanoparticles (ZnO NPs were prepared using the sol–gel method. Cotton fibers were loaded with ZnO nanoparticles using sol–gel spin coating technique. The prepared ZnO NPs and ZnO-coated cotton were characterized by scanning electron microscope (SEM and energy dispersive X-ray spectroscopy (EDX. The self-cleaning property of ZnO-coated cotton and the photocatalytic removal of methyl orange dye from the contaminated water and cotton fibers were studied by measuring the optical absorbance after exposure to sunlight and Philips 200W lamp illumination. The results showed that the cotton loaded with ZnO nanoparticles could efficiently decompose 73% of methyl orange dye in the sunlight and 30.7% in the lamp illumination after 12 hours. ZnO nanoparticles decomposed methyl orange dye by 92.7% in the sunlight and 26.4% in the lamp illumination after 7 hours.

  4. Comparison of Passive Stiffness Changes in the Supraspinatus Muscle after Double-row and Knotless Transosseous-equivalent Rotator Cuff Repair Techniques: A Cadaveric Study

    Science.gov (United States)

    Hatta, Taku; Giambini, Hugo; Hooke, Alexander W.; Zhao, Chunfeng; Sperling, John W.; Steinmann, Scott P.; Yamamoto, Nobuyuki; Itoi, Eiji; An, Kai-Nan

    2016-01-01

    Purpose To investigate the alteration of passive stiffness in the supraspinatus muscle after double-row (DR) and knotless transosseous-equivalent (KL-TOE) repair techniques, using the shear wave elastography (SWE) in cadavers with rotator cuff tears. We also aimed to compare altered muscular stiffness after these repairs to that obtained from shoulders with intact rotator cuff tendon. Methods Twelve fresh-frozen cadaveric shoulders with rotator cuff tear (tear size; small [6], medium-large [6]) were used. Passive stiffness of four anatomical regions in the supraspinatus muscle was measured based on an established SWE method. Each specimen underwent DR and KL-TOE footprint repairs at 30° glenohumeral abduction. SWE values, obtained at 0°, 10°, 20°, 30°, 60°, and 90° abduction, were assessed in 3 different conditions: preoperative (torn) and postoperative conditions with the 2 techniques. The increase ratio of SWE values after repair was compared among the four regions to assess stiffness distribution. In addition, SWE values were obtained on 12 shoulders with intact rotator cuff tendons as control. Results In shoulders with medium-large size tears, supraspinatus muscles showed an increased passive stiffness after rotator cuff repairs, and this was significantly observed at adducted positions. KL-TOE repair showed uniform stiffness changes among the four regions of the supraspinatus muscle (mean, 189-218% increase after repair), whereas, DR repair caused a significantly heterogeneous stiffness distribution within the muscle (mean, 187-319% after repair, P = 0.002). Although a repair-induced increase in muscle stiffness was observed also in small size tear, there were no significant differences in repaired stiffness changes between DR and KL-TOE (mean, 127-138% and 127-130% after repairs, respectively). Shoulders with intact rotator cuff tendon showed uniform SWE values among the four regions of the supraspinatus muscle (mean, 38.2-43.0 kPa). Conclusion Passive

  5. Rotational atherectomy as endovascular haute couture: a road map of tools and techniques for the interventional management of burr entrapment.

    Science.gov (United States)

    Dahdouh, Ziad; Abdel-Massih, Tony; Roule, Vincent; Sarkis, Antoine; Grollier, Gilles

    2013-12-01

    Rotational atherectomy (RA) is used as a debulking technique prior to stenting in some specialized cardiac centers for calcified coronary lesions amenable to percutaneous coronary intervention (PCI). A specific possible complication, burr entrapment, is unusual but carries serious risks and may sometimes necessitate surgery as a rescue procedure. However, different modalities using a percutaneous approach were proposed as a bail-out. We aim to propose a framework for possible management for trapped RA burr. A literature review of the most relevant cases of entrapped burr during PCI was performed. Twelve cases were reported and different solutions were discussed. Surgery was needed in only 1 patient to retrieve the trapped burr, and in all the other cases, different percutaneous solutions were successful to retract the trapped device. These cases illustrate that burr entrapment during RA, albeit rare, may occur and may transform a relatively simple PCI to a procedure failure. Although prevention is better than treatment, the operators should be aware of such serious complication and they should keep in mind that various possible percutaneous solutions may be successful to retrieve the burr and to avoid surgery. © 2013, Wiley Periodicals, Inc.

  6. J-Modulation in ID NMR 1H Spectrum of Taurine and Aspartate Using Spin-Echo Technique

    Science.gov (United States)

    Oturak, Halil; Sağlam, Adnan; Bahçeli, Semiha

    1999-05-01

    This study reports on a theoretical calculation of Hahn's spin-echo experiment in case of a model A2B2 spin system with a strongly coupling character and gives the experimental results of one-dimension 1H high-resolution NMR spectra of taurine and aspartate. The calculated amplitudes of the spin-echoes for two different proton groups of taurine are given. Using results of our calculations for taurine, the computer simulations of J-modulation are implemented. It is shown that the agreement be-tween the experimental and simulated spectra is good.

  7. Design for coordinated measurements of Faraday rotation and line-of-sight electron density using heterodyne techniques

    International Nuclear Information System (INIS)

    Jacobson, A.R.

    1977-07-01

    This report proposes a device which can overcome certain of the compromises of conventional Faraday rotation methods and at the same time measure the optical phase as well as the polarization. This would be useful for unfolding the Faraday rotation signal using the line-of-sight density along exactly the same path. Preliminary design parameters using a CO 2 laser are presented

  8. Utility of single shot fast spin echo technique in evaluating pancreaticobiliary diseases: T2-weighted image and magnetic resonance cholangiopancreatography

    International Nuclear Information System (INIS)

    Choi, Byoung Wook; Kim, Myeong Jin; Chung, Jae Bok; Ko, Heung Kyu; Kim, Dong Joon; Kim, Joo Hee; Chung, Jae Joon; Yoo, Hyung Sik; Lee, Jong Tae

    1999-01-01

    To evaluate the accuracy of T2-weighted imaging an MR cholangiopancreatography using the single shot fast spin-echo technique for evaluating pancreaticobiliary disease. Between March and July 1997, axial and coronal T2-weighted images(TE: 80-200 msec) and MR cholangiopancreatograms (TE: 800-1200 msec) were obtained in two ways [single slab (thickness: 30-50 mm) and multislice acquisition under chemical fat saturation] using SSFSE pulse sequencing in 131 cases of suspected pancreati-cobiliary disease. The accuracy of SSFSE MR imaging was assessed in 89 lesions of 74 patients [male, 48; female, 26; age range, 30-86 (mean, 59) years] confirmed surgicopathologically (50 lesions in 39 patients) and clinically (39 lesions in 35 patients). Two radiologists reviewed the MR images and diagnosis was determined by consensus. Correct diagnosis was confirmed in 84 of 89 lesions (94%). Seven lesions were falsely interpreted, false positive and false negative results accounting for two and five cases, respectively. Two pancreatic cancers were misdiagnosed as pancreatitis and a cancer of the proximal common bile duct(CBD) was interpreted as a distal CBD cancer. The sensitivity of SSFSE MR imaging for malignancy was 93 %. One CBD stone revealed by endoscopic retrograde cholangiopancreatography (ERCP) was not detected on MR images. In contrast, a stone in the CBD seen on MR images was not apparent on subsequent ERCP. Sensitivity and specificity for calculous disease were 96% and 99.7%, respectively. A benign stricture of the ampulla of Vater was falsely interpreted as normal, and correct diagnosis was possible in two falsely diagnosed cases when MR images were reviewed retrospectively. The combination of T2-weighted and cholangiographic images using SSFSE is an accurate method for diagnosing pancreatcobiliary diseases

  9. Fluid Motion in a Spinning, Coning Cylinder via Spatial Eigenfunction Expansion.

    Science.gov (United States)

    1987-08-01

    Herbert, T., "Highly Viscous Fuid Flow in a Spinning and Nutating Cylinder," Second Army Conference on Applied Mathematics and Computing, Army Research...sufficiently accurate initial estimates are required. The flow variables are expanded in an eiyenfunction series with coefficients determined by...undisturbed basic flow is solid body rotation. In principle, the same techniques could be used for the spin-up problem. To put this work in perspective

  10. Evaluation of motion correction effect and image quality with the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) (BLADE) and parallel imaging acquisition technique in the upper abdomen.

    Science.gov (United States)

    Hirokawa, Yuusuke; Isoda, Hiroyoshi; Maetani, Yoji S; Arizono, Shigeki; Shimada, Kotaro; Togashi, Kaori

    2008-10-01

    To evaluate motion correction effect and image quality in the upper abdomen with the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) (BLADE) and parallel imaging acquisition technique. A total of 50 consecutive patients underwent abdominal MR imaging. Fat-saturated T2-weighted turbo spin-echo sequences were obtained by respiratory triggering. The subjects were examined with three different conditions of echo train length (ETL), blade width, and percent k-space coverage in the same scanning time: 19/30/100%, 30/30/100%, and 30/52/175%, which were designated as L/C(1), L/C(2), and L/C(3), respectively. The parallel imaging acquisition technique was used to either reduce ETL from 30 to 19 in L/C(1) or increase k-space coverage from 100% to 175% in L/C(3) compared with L/C(2). Motion and streak artifacts, and overall image quality were evaluated visually by two radiologists, independently. Motion and streak artifacts were mostly reduced in L/C(3) condition. The L/C(3) image also gave the best overall image quality compared with other conditions (P parallel imaging in the same scanning time. (c) 2008 Wiley-Liss, Inc.

  11. Application of magnetic resonance force microscopy cyclic adiabatic inversion for a single-spin measurement

    CERN Document Server

    Berman, G P; Chapline, G; Gurvitz, S A; Hammel, P C; Pelekhov, D V; Suter, A; Tsifrinovich, V I

    2003-01-01

    We consider the process of a single-spin measurement using magnetic resonance force microscopy (MRFM) with a cyclic adiabatic inversion (CAI). This technique is also important for different applications, including a measurement of a qubit state in quantum computation. The measurement takes place through the interaction of a single spin with a cantilever modelled by a quantum oscillator in a coherent state in a quasi-classical range of parameters. The entire system is treated rigorously within the framework of the Schroedinger equation. For a many-spin system our equations accurately describe conventional MRFM experiments involving CAI of the spin system. Our computer simulations of the quantum spin-cantilever dynamics show that the probability distribution for the cantilever position develops two asymmetric peaks with the total relative probabilities mainly dependent on the initial angle between the directions of the average spin and the effective magnetic field, in the rotating frame. We show that each of th...

  12. Solid-State 1H CRAMPS NMR Imaging with Pulsed Rotating Magnetic Field Gradients

    Science.gov (United States)

    Sun, Y. H.; Xiong, J. C.; Lock, H.; Buszko, M. L.; Haase, J. A.; Maciel, G. E.

    By synchronizing a pulsed rotating magnetic field gradient with the rotation of a sample undergoing magic-angle spinning, a series of transverse-plane 1H NMR images was obtained. Both spatial-spatial two-dimensional images and spatial-spectral two-dimensional images are presented. The TREV-8 and BR-24 CRAMPS techniques were used for line narrowing in obtaining these images. Results are shown for both "soft" and "hard" solids.

  13. Spin-polarized spin excitation spectroscopy

    International Nuclear Information System (INIS)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2010-01-01

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  14. Ultrafast electron, lattice and spin dynamics on rare earth metal surfaces. Investigated with linear and nonlinear optical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Radu, I.E.

    2006-03-15

    This thesis presents the femtosecond laser-induced electron, lattice and spin dynamics on two representative rare-earth systems: The ferromagnetic gadolinium Gd(0001) and the paramagnetic yttrium Y(0001) metals. The employed investigation tools are the time-resolved linear reflectivity and second-harmonic generation, which provide complementary information about the bulk and surface/interface dynamics, respectively. The femtosecond laser excitation of the exchange-split surface state of Gd(0001) triggers simultaneously the coherent vibrational dynamics of the lattice and spin subsystems in the surface region at a frequency of 3 THz. The coherent optical phonon corresponds to the vibration of the topmost atomic layer against the underlying bulk along the normal direction to the surface. The coupling mechanism between phonons and magnons is attributed to the modulation of the exchange interaction J between neighbour atoms due to the coherent lattice vibration. This leads to an oscillatory motion of the magnetic moments having the same frequency as the lattice vibration. Thus these results reveal a new type of phonon-magnon coupling mediated by the modulation of the exchange interaction and not by the conventional spin-orbit interaction. Moreover, we show that coherent spin dynamics in the THz frequency domain is achievable, which is at least one order of magnitude faster than previously reported. The laser-induced (de)magnetization dynamics of the ferromagnetic Gd(0001) thin films have been studied. Upon photo-excitation, the nonlinear magneto-optics measurements performed in this work show a sudden drop in the spin polarization of the surface state by more than 50% in a <100 fs time interval. Under comparable experimental conditions, the time-resolved photoemission studies reveal a constant exchange splitting of the surface state. The ultrafast decrease of spin polarization can be explained by the quasi-elastic spin-flip scattering of the hot electrons among spin

  15. Comparison of Y{sub 2}O{sub 3}:Bi{sup 3+} phosphor thin films fabricated by the spin coating and radio frequency magnetron techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jafer, R.M.; Yousif, A. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Department of Physics, Faculty of Education, University of Khartoum, P.O. Box 321, Postal Code 11115 Omdurman (Sudan); Kumar, Vinod [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India); Pathak, Trilok Kumar [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Semiconductor Physics Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Purohit, L.P. [Semiconductor Physics Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Coetsee, E., E-mail: CoetseeE@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa)

    2016-09-15

    The reactive radio-frequency (RF) magnetron sputtering and spin coating fabrication techniques were used to fabricate Y{sub 2−x}O{sub 3}:Bi{sub x=0.5%} phosphor thin films. The two techniques were analysed and compared as part of investigations being done on the application of down-conversion materials for a Si solar cell. The morphology, structural and optical properties of these thin films were investigated. The X-ray diffraction results of the thin films fabricated by both techniques showed cubic structures with different space groups. The optical properties showed different results because the Bi{sup 3+} ion is very sensitive towards its environment. The luminescence results for the thin film fabricated by the spin coating technique is very similar to the luminescence observed in the powder form. It showed three obvious emission bands in the blue and green regions centered at about 360, 410 and 495 nm. These emissions were related to the {sup 3}P{sub 1}–{sup 1}S{sub 0} transition of the Bi{sup 3+} ion situated in the two different sites of the Y{sub 2}O{sub 3} matrix with I a-3(206) space group. Whereas the thin film fabricated by the radio frequency magnetron technique showed a broad single emission band in the blue region centered at about 416 nm. This was assigned to the {sup 3}P{sub 1}–{sup 1}S{sub 0} transition of the Bi{sup 3+} ion situated in one of the Y{sub 2}O{sub 3} matrix's sites with a Fm-3 (225) space group. The spin coating fabrication technique is suggested to be the best technique to fabricate the Y{sub 2}O{sub 3}:Bi{sup 3+} phosphor thin films. - Highlights: • RF sputtering and spin coating were used to fabricate Y{sub 2−x}O{sub 3}:Bi{sub x=0.5%} phosphor thin films. • XRD results of the two films showed cubic structures with different space groups. • PL showed different emission for the Bi{sup 3+} ions in the two films. • Three emission bands in the blue and green regions centered at about 360, 410 and 495 nm. • RF

  16. Magnetism of the chromium thio-spinels Fe1-xCuxCr2S4 studied using muon spin rotation and relaxation.

    Science.gov (United States)

    Kalvius, G M; Krimmel, A; Wäppling, R; Hartmann, O; Litterst, F J; Wagner, F E; Tsurkan, V; Loidl, A

    2013-05-08

    Powder samples of Fe1-xCuxCr2S4 with x = 0,0.2,0.5,0.8 were studied, between 5 and 300 K. The results reveal that for x < 1, the magnetic order in the series is more varied than the simple collinear ferrimagnetic structure traditionally assumed to exist everywhere from the Curie point to T → 0. In FeCr2S4 several ordered magnetic phases are present, with the ground state likely to have an incommensurate cone-like helical structure. Fe0.8Cu0.2Cr2S4 is the compound for which simple collinear ferrimagnetism is best developed. In Fe0.5Cu0.5Cr2S4 the ferrimagnetic spin structure is not stable, causing spin reorientation around 90 K. In Fe0.2Cu0.8Cr2S4 the ferrimagnetic structure is at low temperatures considerably distorted locally, but with rising temperature this disorder shows a rapid reduction, coupled to increased spin fluctuation rates. In summary, the present data show that the changes induced by the replacement of Fe by Cu have more profound influences on the magnetic properties of the Fe1-xCuxCr2S4 compounds than merely a shift of Curie temperature, saturation magnetization and internal field magnitude.

  17. Spin dynamics of the itinerant helimagnet MnSi studied by positive muon spin relaxation

    International Nuclear Information System (INIS)

    Kadono, R.; Matsuzaki, T.; Yamazaki, T.; Kreitzman, S.R.; Brewer, J.H.

    1990-03-01

    The local magnetic fields and spin dynamics of the itinerant helimagnet MnSi(T c ≅ 29.5 K) have been studied experimentally using positive muon spin rotation/relaxation (μ + SR) methods. In the ordered phase (T c ), zero-field μSR was used to measure the hyperfine fields at the muon sites as well as the muon spin-lattice relaxation time T 1 μ . Two magnetically inequivalent interstitial μ + sites were found with hyperfine coupling constants A hf (1) = -3.94 kOe/μ B and A hf (2) = -6.94 kOe/μ B , respectively. In the paramagnetic phase (T > T c ), the muon-nuclear spin double relaxation technique was used to simultaneously but independently determine the spin-lattice relaxation time T 1 Mn of 55 Mn spins and that of positive muons (T 1 μ ) over a wide temperature range (T c 1 Mn and T 1 μ in both phases shows systematic deviations from the predictions of self-consistent renormalization (SCR) theory. (author)

  18. Diffusion-weighted MRI of the cervical spinal cord using a single-shot fast spin-echo technique: findings in normal subjects and in myelomalacia

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K.; Katase, S.; Fujikawa, A.; Hachiya, J. [Department of Radiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, 181-8611, Tokyo (Japan); Kanazawa, H. [Toshiba Corporation, 1-1-1 Shibaura, Minato-ku, 105-8001, Tokyo (Japan); Yodo, K. [Toshiba Medical Systems, 3-26-5 Hongo, Bunkyo-ku, 113-8456, Tokyo (Japan)

    2003-02-01

    We have implemented a new diffusion-weighted MRI (DWI) sequence based on the single-shot fast spin-echo technique. We hypothesised that this would add information to conventional MRI for diagnosis of lesions of the cervical spinal cord. DWI was performed using a technique in which echo collection after the application of motion-probing gradients was done in the same manner as in the single-shot fast spin-echo technique. We first imaged six healthy volunteers to demonstrate the cervical spinal cord using the sequence. Then we applied the sequence to 12 patients with cervical myelomalacia due to chronic cord compression. The spinal cord was well seen in all subjects without the distortion associated with echo-planar DWI. In the patients, lesions appeared as areas of low- or isointense signal on DWI. Calculated apparent diffusion coefficients of the lesions (3.30{+-}0.38 x 10{sup -3} mm{sup 2}/s) were significantly higher than those of normal volunteers (2.26{+-}0.08 x 10{sup -3} mm{sup 2}/s). Increased diffusion in areas of cervical myelomalacia, suggesting irreversible damage, can be detected using this technique. (orig.)

  19. Band head spin assignment of superdeformed bands in 133Pr using two-parameter formulae

    Science.gov (United States)

    Sharma, Honey; Mittal, H. M.

    2018-03-01

    The two-parameter formulae viz. the power index formula, the nuclear softness formula and the VMI model are adopted to accredit the band head spin (I0) of four superdeformed rotational bands in 133Pr. The technique of least square fitting is used to accredit the band head spin for four superdeformed rotational bands in 133Pr. The root mean deviation among the computed transition energies and well-known experimental transition energies are attained by extracting the model parameters from the two-parameter formulae. The determined transition energies are in excellent agreement with the experimental transition energies, whenever exact spins are accredited. The power index formula coincides well with the experimental data and provides minimum root mean deviation. So, the power index formula is more efficient tool than the nuclear softness formula and the VMI model. The deviation of dynamic moment of inertia J(2) against the rotational frequency is also examined.

  20. Spin Dynamics in (111) GaAs/AlGaAs Undoped Asymmetric Quantum Wells

    International Nuclear Information System (INIS)

    Wang Gang; Ye Hui-Qi; Shi Zhen-Wu; Wang Wen-Xin; Liu Bao-Li; Xavier Marie; Andrea Balocchi; Thierry Amand

    2012-01-01

    The electron spin dynamics is investigated by the time-resolved Kerr rotation technique in a pair of special GaAs/AlGaAs asymmetric quantum well samples grown on (111)-oriented substrates, whose structures are the same except for their opposite directions of potential asymmetry. A large difference of spin lifetimes between the two samples is observed at low temperature. This difference is interpreted in terms of a cancellation effect between the Dresselhaus spin-splitting term in the conduction band and another term induced by interface inversion asymmetry. The deviation decreases with the increasing temperature, and almost disappears when T > 100 K because the cubic Dresselhaus term becomes more important

  1. Techniques for the construction of an elliptical-cylindrical model using circular rotating tools in non CNC machines

    International Nuclear Information System (INIS)

    Villalobos Mendoza, Brenda; Cordero Davila, Alberto; Gonzalez Garcia, Jorge

    2011-01-01

    This paper describes the construction of an elliptical-cylindrical model without spherical aberration using vertical rotating tools. The engine of the circular tool is placed on one arm so that the tool fits on the surface and this in turn is moved by an X-Y table. The test method and computer algorithms that predict the desired wear are described.

  2. The quantum brachistochrone problem for an arbitrary spin in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmak, A.R., E-mail: andrijkuzmak@gmail.com; Tkachuk, V.M., E-mail: voltkachuk@gmail.com

    2015-06-26

    We consider quantum brachistochrone evolution for a spin-s system on rotational manifolds. Such manifolds are determined by the rotation of the eigenstates of the operator of projection of spin-s on some direction. The Fubini–Study metrics of these manifolds are those of spheres with radii dependent on the value of the spin and on the value of the spin projection. The conditions for optimal evolution of the spin-s system on rotational manifolds are obtained. - Highlights: • The Fubini–Study metrics of rotational manifolds of spin-s system are considered. • It is shown that they are spheres. • The brachistochrone problem for a spin-s system on rotational manifolds is examined.

  3. FITTING HELICAL SNAKE AND ROTATOR FIELD STRENGTH MEASUREMENTS IN RHIC

    International Nuclear Information System (INIS)

    RANJBAR, V.; LUCCIO, A.U.; MACKAY, W.W.; TSOUPAS, N.

    2001-01-01

    We examined recent multi-pole measurements for the helical snakes and rotators in RHIC to generate a full field map. Since multi-pole measurements yield real field values for B, field components we developed a unique technique to evaluate the full fields using a traditional finite element analysis software [1]. From these measurements we employed SNIG [2] to generate orbit and Spin plots. From orbit values we generated a transfer matrix for the first snake

  4. New NASA-Ames wind-tunnel techniques for studying airplane spin and two-dimensional unsteady aerodynamics

    Science.gov (United States)

    Malcolm, G. N.; Davis, S. S.

    1978-01-01

    Two new wind tunnel test apparatuses were developed at NASA-Ames Research Center. The first is a rotary-balance apparatus to be used in the Ames 12-Foot Pressure Tunnel for investigating the effects of Reynolds number, spin rate, and angle of attack on the aerodynamics of fighter and general aviation aircraft in a steady spin motion. The second apparatus provides capability for oscillating a large two dimensional wing (0.5 m chord, 1.35 m span) instrumented with steady and unsteady pressure transducers in the Ames 11 x 11 ft. Transonic Wind Tunnel. A complete description of both apparatuses, their capabilities, and some typical wind tunnel results are presented.

  5. Antiferromagnetic spin Seebeck effect.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand

    2016-03-03

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2. A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF2(110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2–80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9T) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.

  6. Rotational spectra and molecular structure

    CERN Document Server

    Wollrab, James E

    1967-01-01

    Physical Chemistry, A Series of Monographs: Rotational Spectra and Molecular Structure covers the energy levels and rotational transitions. This book is divided into nine chapters that evaluate the rigid asymmetric top molecules and the nuclear spin statistics for asymmetric tops. Some of the topics covered in the book are the asymmetric rotor functions; rotational transition intensities; classes of molecules; nuclear spin statistics for linear molecules and symmetric tops; and classical appearance of centrifugal and coriolis forces. Other chapters deal with the energy levels and effects of ce

  7. Measurement of total electron content of midlatitude ionosphere and protonosphere via Faraday rotation and group relay techniques using transmission from geostationary satellites ATS-3 and ATS-6

    Science.gov (United States)

    Paul, M. P.

    1982-01-01

    Measurement of integrated columnar electron content and total electron content for the local ionosphere and the overlying protonosphere via Faraday rotation and group delay techniques has proven very useful. A field station was established having the geographic location of 31.5 deg N latitude and 91.06 deg W longitude to accomplish these objectives. A polarimeter receiving system was set up in the beginning to measure the Faraday rotation of 137.35 MHz radio signal from geostationary satellite ATS 3 to yield the integrated columnar electron content of the local ionosphere. The measurement was continued regularly, and the analysis of the data thus collected provided a synopsis of the statistical variation of the ionosphere along with the transient variations that occurred during the periods of geomagnetic and other disturbances.

  8. A new primary cleft lip repair technique tailored for Asian patients that combines three surgical concepts: Comparison with rotation--advancement and straight-line methods.

    Science.gov (United States)

    Funayama, Emi; Yamamoto, Yuhei; Furukawa, Hiroshi; Murao, Naoki; Shichinohe, Ryuji; Hayashi, Toshihiko; Oyama, Akihiko

    2016-01-01

    Various techniques have been described for unilateral cleft lip repair. These may be broadly classified into three types of procedure/concept: the straight-line method (SL; Rose-Thompson effect); rotation-advancement (RA; upper-lip Z-plasty); and the triangular flap method (TA; lower-lip Z-plasty). Based on these procedures, cleft lip repair has evolved in recent decades. The cleft lip repair method in our institution has also undergone several changes. However, we have found that further modifications are needed for Asian patients who have wider philtral dimples and columns than Caucasians, while following the principles of the original techniques mentioned above. Here, we have incorporated the advantages of each procedure and propose a refined hybrid operating technique, seeking a more appropriate procedure for Asian patients. To evaluate our new technique, a comparison study was performed to evaluate RA, SL, and our technique. We have used our new technique to treat 137 consecutive cleft lip cases of all types and degrees of severity, with or without a cleft palate, since 2009. In the time since we adopted the hybrid technique, we have observed improved esthetics of the repaired lip. Our technique demonstrated higher glance impression average scores than RA/SL. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  9. Optical spin generation/detection and spin transport lifetimes

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  10. Optical spin generation/detection and spin transport lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-02-25

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  11. Spin Hall effect and spin swapping in diffusive superconductors

    Science.gov (United States)

    Espedal, Camilla; Lange, Peter; Sadjina, Severin; Mal'shukov, A. G.; Brataas, Arne

    2017-02-01

    We consider the spin-orbit-induced spin Hall effect and spin swapping in diffusive superconductors. By employing the nonequilibrium Keldysh Green's function technique in the quasiclassical approximation, we derive coupled transport equations for the spectral spin and particle distributions and for the energy density in the elastic scattering regime. We compute four contributions to the spin Hall conductivity, namely, skew scattering, side jump, anomalous velocity, and the Yafet contribution. The reduced density of states in the superconductor causes a renormalization of the spin Hall angle. We demonstrate that all four of these contributions to the spin Hall conductivity are renormalized in the same way in the superconducting state. In its simplest manifestation, spin swapping transforms a primary spin current into a secondary spin current with swapped current and polarization directions. We find that the spin-swapping coefficient is not explicitly but only implicitly affected by the superconducting gap through the renormalized diffusion coefficients. We discuss experimental consequences for measurements of the (inverse) spin Hall effect and spin swapping in four-terminal geometries. In our geometry, below the superconducting transition temperature, the spin-swapping signal is increased an order of magnitude while changes in the (inverse) spin Hall signal are moderate.

  12. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  13. High-resolution NMR spectroscopy of biological tissues usingprojected Magic Angle Spinning

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Rachel W.; Jachmann, Rebecca C.; Sakellariou, Dimitris; Nielsen, Ulla Gro; Pines, Alexander

    2005-01-27

    High-resolution NMR spectra of materials subject toanisotropic broadening are usually obtained by rotating the sample aboutthe magic angle, which is 54.7 degrees to the static magnetic field. Inprojected Magic Angle Spinning (p-MAS), the sample is spun about twoangles, neither of which is the magic angle. This provides a method ofobtaining isotropic spectra while spinning at shallow angles. The p-MASexperiment may be used in situations where spinning the sample at themagic angle is not possible due to geometric or other constraints,allowing the choice of spinning angle to be determined by factors such asthe shape of the sample, rather than by the spin physics. The applicationof this technique to bovine tissue samples is demonstrated as a proof ofprinciple for future biological or medical applications.

  14. A thick-walled sphere rotating in a uniform magnetic field: The next step to de-spin a space object

    Science.gov (United States)

    Nurge, Mark A.; Youngquist, Robert C.; Caracciolo, Ryan A.; Peck, Mason; Leve, Frederick A.

    2017-08-01

    Modeling the interaction between a moving conductor and a static magnetic field is critical to understanding the operation of induction motors, eddy current braking, and the dynamics of satellites moving through Earth's magnetic field. Here, we develop the case of a thick-walled sphere rotating in a uniform magnetic field, which is the simplest, non-trivial, magneto-statics problem that leads to complete closed-form expressions for the resulting potentials, fields, and currents. This solution requires knowledge of all of Maxwell's time independent equations, scalar and vector potential equations, and the Lorentz force law. The paper presents four cases and their associated experimental results, making this topic appropriate for an advanced student lab project.

  15. Quantitative analysis of the breath-holding half-Fourier acquisition single-shot turbo spin-echo technique in abdominal MRI

    Science.gov (United States)

    Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan

    2013-01-01

    A consecutive series of 50 patients (28 males and 22 females) who underwent hepatic magnetic resonance imaging (MRI) from August to December 2011 were enrolled in this study. The appropriate parameters for abdominal MRI scans were determined by comparing the images (TE = 90 and 128 msec) produced using the half-Fourier acquisition single-shot turbo spin-echo (HASTE) technique at different signal acquisition times. The patients consisted of 15 normal patients, 25 patients with a hepatoma and 10 patients with a hemangioma. The TE in a single patient was set to either 90 msec or 128 msec. This was followed by measurements using the four normal rendering methods of the biliary tract system and the background signal intensity using the maximal signal intensity techniques in the liver, spleen, pancreas, gallbladder, fat, muscles and hemangioma. The signal-to-noise and the contrast-to-noise ratios were obtained. The image quality was assessed subjectively, and the results were compared. The signal-to-noise and the contrast-to-noise ratios were significantly higher at TE = 128 msec than at TE = 90 when diseases of the liver, spleen, pancreas, gallbladder, and fat and muscles, hepatocellular carcinomas and hemangiomas, and rendering the hepatobiliary tract system based on the maximum signal intensity technique were involved (p breath-hold half-Fourier acquisition single-shot turbo spin-echo (HASTE) was found to be effective in illustrating the abdominal organs for TE = 128 msec. Overall, the image quality at TE = 128 msec was better than that at TE = 90 msec due to the improved signal-to-noise (SNR) and contrast-to-noise (CNR) ratios. Overall, the HASTE technique for abdominal MRI based on a high-magnetic field (3.0 T) at a TE of 128 msec can provide useful data.

  16. Spin Injection in Indium Arsenide

    Directory of Open Access Journals (Sweden)

    Mark eJohnson

    2015-08-01

    Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.

  17. Investigation of antimagnetic rotation in 100Pd

    International Nuclear Information System (INIS)

    Zhu, S.; Garg, U.; Afanasjev, A. V.; Frauendorf, S.; Kharraja, B.; Ghugre, S. S.; Chintalapudi, S. N.; Janssens, R. V. F.; Carpenter, M. P.; Kondev, F. G.

    2001-01-01

    High spin states have been studied in the nucleus 100 Pd with the aim of investigating the novel phenomenon of ''antimagnetic rotation.'' A cascade of four ''rotational-band-like'' transitions is proposed as corresponding to antimagnetic rotation, based on the observed spectroscopic properties and a comparison with calculations in the configuration-dependent cranked Nilsson-Strutinsky formalism

  18. Nuclear spins in nanostructures

    International Nuclear Information System (INIS)

    Coish, W.A.; Baugh, J.

    2009-01-01

    We review recent theoretical and experimental advances toward understanding the effects of nuclear spins in confined nanostructures. These systems, which include quantum dots, defect centers, and molecular magnets, are particularly interesting for their importance in quantum information processing devices, which aim to coherently manipulate single electron spins with high precision. On one hand, interactions between confined electron spins and a nuclear-spin environment provide a decoherence source for the electron, and on the other, a strong effective magnetic field that can be used to execute local coherent rotations. A great deal of effort has been directed toward understanding the details of the relevant decoherence processes and to find new methods to manipulate the coupled electron-nuclear system. A sequence of spectacular new results have provided understanding of spin-bath decoherence, nuclear spin diffusion, and preparation of the nuclear state through dynamic polarization and more general manipulation of the nuclear-spin density matrix through ''state narrowing.'' These results demonstrate the richness of this physical system and promise many new mysteries for the future. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  19. HIGH-RESOLUTION CALCULATION OF THE SOLAR GLOBAL CONVECTION WITH THE REDUCED SPEED OF SOUND TECHNIQUE. II. NEAR SURFACE SHEAR LAYER WITH THE ROTATION

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, H.; Rempel, M. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO (United States); Yokoyama, T., E-mail: hotta@ucar.edu [Department of Earth and Planetary Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2015-01-01

    We present a high-resolution, highly stratified numerical simulation of rotating thermal convection in a spherical shell. Our aim is to study in detail the processes that can maintain a near surface shear layer (NSSL) as inferred from helioseismology. Using the reduced speed of sound technique, we can extend our global convection simulation to 0.99 R {sub ☉} and include, near the top of our domain, small-scale convection with short timescales that is only weakly influenced by rotation. We find the formation of an NSSL preferentially in high latitudes in the depth range of r = 0.95-0.975 R {sub ☉}. The maintenance mechanisms are summarized as follows. Convection under the weak influence of rotation leads to Reynolds stresses that transport angular momentum radially inward in all latitudes. This leads to the formation of a strong poleward-directed meridional flow and an NSSL, which is balanced in the meridional plane by forces resulting from the 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 correlation of turbulent velocities. The origin of the required correlations depends to some degree on latitude. In high latitudes, a positive correlation 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 is induced in the NSSL by the poleward meridional flow whose amplitude increases with the radius, while a negative correlation is generated by the Coriolis force in bulk of the convection zone. In low latitudes, a positive correlation 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 results from rotationally aligned convection cells ({sup b}anana cells{sup )}. The force caused by these Reynolds stresses is in balance with the Coriolis force in the NSSL.

  20. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  1. Fused-Ring Derivatives of Quinoxalines: Spectroscopic Characterization and Photoinduced Processes Investigated by EPR Spin Trapping Technique

    Directory of Open Access Journals (Sweden)

    Zuzana Barbieriková

    2014-08-01

    Full Text Available 10-Ethyl-7-oxo-7,10-dihydropyrido[2,3-f]quinoxaline derivatives, synthesized as promising biologically/photobiologically active compounds were characterized by UV/vis, FT-IR and fluorescent spectroscopy. Photoinduced processes of these derivatives were studied by EPR spectroscopy, monitoring in situ the generation of reactive intermediates upon UVA (λmax = 365 nm irradiation. The formation of reactive oxygen species and further oxygen- and carbon-centered radical intermediates was detected and possible reaction routes were suggested. To quantify the investigated processes, the quantum yields of the superoxide radical anion spin-adduct and 4-oxo-2,2,6,6-tetramethylpiperidine N-oxyl generation were determined, reflecting the activation of molecular oxygen by the excited state of the quinoxaline derivative.

  2. THE COMBINED EFFECTIVENESS OF GLENOHUMERAL END-RANGE MOBILIZATION AND CONTRACT-RELAX TECHNIQUE FOR GLENOHUMERAL INTERNAL ROTATORS IN SUBJECTS WITH ADHESIVE CAPSULITIS

    Directory of Open Access Journals (Sweden)

    Abhijit Kalita

    2015-10-01

    Full Text Available Background: Frozen shoulder is an insidious condition that begins with pain and gradual restriction of movement in the shoulder region. There are various methods of treating frozen shoulder (both surgical and non-surgical.Among the non-surgical methods there is no specific method accepted universally. Purpose of this study is to determine the combined effectiveness of Glenohumeral End-Range Mobilization and Contract-Relax technique for glenohumeral internal rotators in patients with adhesive capsulitis. Methods: 60 frozen shoulder patients randomized 30 subjects into each experimental and control group. Group A (experimental group received Glenohumeral End-Range Mobilization, Contract-Relax Technique for glenohumeral internal rotators and Shoulder Pendular Exercises 2 times a week for a period of 4 weeks (8 sessions.Group B (control group received Shoulder Pendular exercises 2 times a week for a period of 4 weeks (8 sessions. Outcome measures included are VAS, SPADI and goniometry for assessing pain, functional ability and ROM for the shoulder joint. Results: The average improvement of VAS for Group A and Group B were 4.5 and 3 respectively using median. The U-value was 176, which is statistically highly significant (p value = 0.000.The average improvement of Shoulder Pain and Disability Index for Group A and group B were 56.9333 and 10.3667 respectively using mean and Standard Deviation. The t-value was 35.91181, which is statistically highly significant (p value = 0.000. Conclusion: The results indicated that both Group A and Group B had significant improvement in the scores of VAS, SPADI and GONIOMETRY scores at the 4th week when compared to base line values, but when comparing the end results of group A and group B it has been found out that group A intervention is more effective then Group B in treating the internal rotators of patients with adhesive capsulitis

  3. Polarisation in spin-echo experiments: Multi-point and lock-in measurements

    Science.gov (United States)

    Tamtögl, Anton; Davey, Benjamin; Ward, David J.; Jardine, Andrew P.; Ellis, John; Allison, William

    2018-02-01

    Spin-echo instruments are typically used to measure diffusive processes and the dynamics and motion in samples on ps and ns time scales. A key aspect of the spin-echo technique is to determine the polarisation of a particle beam. We present two methods for measuring the spin polarisation in spin-echo experiments. The current method in use is based on taking a number of discrete readings. The implementation of a new method involves continuously rotating the spin and measuring its polarisation after being scattered from the sample. A control system running on a microcontroller is used to perform the spin rotation and to calculate the polarisation of the scattered beam based on a lock-in amplifier. First experimental tests of the method on a helium spin-echo spectrometer show that it is clearly working and that it has advantages over the discrete approach, i.e., it can track changes of the beam properties throughout the experiment. Moreover, we show that real-time numerical simulations can perfectly describe a complex experiment and can be easily used to develop improved experimental methods prior to a first hardware implementation.

  4. 3D fast spin echo with out-of-slab cancellation: a technique for high-resolution structural imaging of trabecular bone at 7 Tesla.

    Science.gov (United States)

    Magland, Jeremy F; Rajapakse, Chamith S; Wright, Alexander C; Acciavatti, Raymond; Wehrli, Felix W

    2010-03-01

    Spin-echo-based pulse sequences are desirable for the application of high-resolution imaging of trabecular bone but tend to involve high-power deposition. Increased availability of ultrahigh field scanners has opened new possibilities for imaging with increased signal-to-noise ratio (SNR) efficiency, but many pulse sequences that are standard at 1.5 and 3 T exceed specific absorption rate limits at 7 T. A modified, reduced specific absorption rate, three-dimensional, fast spin-echo pulse sequence optimized specifically for in vivo trabecular bone imaging at 7 T is introduced. The sequence involves a slab-selective excitation pulse, low-power nonselective refocusing pulses, and phase cycling to cancel undesired out-of-slab signal. In vivo images of the distal tibia were acquired using the technique at 1.5, 3, and 7 T field strengths, and SNR was found to increase at least linearly using receive coils of identical geometry. Signal dependence on the choice of refocusing flip angles in the echo train was analyzed experimentally and theoretically by combining the signal from hundreds of coherence pathways, and it is shown that a significant specific absorption rate reduction can be achieved with negligible SNR loss. (c) 2010 Wiley-Liss, Inc.

  5. Physics of Resonating Valence Bond Spin Liquids

    Science.gov (United States)

    Wildeboer, Julia Saskia

    This thesis will investigate various aspects of the physics of resonating valence bond spin liquids. After giving an introduction to the world that lies beyond Landau's priciple of symmetry breaking, e.g. giving an overview of exotic magnetic phases and how they can be described and (possibly) found, we will study a spin-rotationally invariant model system with a known parent Hamiltonian, and argue its ground state to lie within a highly sought after exotic phase, namely the Z2 quantum spin liquid phase. A newly developed numerical procedure --Pfaffian Monte Carlo-- will be introduced to amass evidence that our model Hamiltonian indeed exhibits a Z2 quantum spin liquid phase. Subsequently, we will prove a useful mathematical property of the resonating valence bond states: these states are shown to be linearly independent. Various lattices are investigated concerning this property, and its applications and usefullness are discussed. Eventually, we present a simplified model system describing the interplay of the well known Heisenberg interaction and the Dzyaloshinskii-Moriya (DM) interaction term acting on a sawtooth chain. The effect of the interplay between the two interaction couplings on the phase diagram is investigated. To do so, we employ modern techniques such as the density matrix renormalization group (DMRG) scheme. We find that for weak DM interaction the system exhibits valence bond order. However, a strong enough DM coupling destroys this order.

  6. Arthroscopic Repair of Articular Surface Partial-Thickness Rotator Cuff Tears: Transtendon Technique versus Repair after Completion of the Tear—A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Yohei Ono

    2016-01-01

    Full Text Available Articular surface partial-thickness rotator cuff tears (PTRCTs are commonly repaired using two different surgical techniques: transtendon repair or repair after completion of the tear. Although a number of studies have demonstrated excellent clinical outcomes, it is unclear which technique may provide superior clinical outcomes and tendon healing. The purpose was to evaluate and compare the clinical outcomes following arthroscopic repair of articular surface PTRCT using a transtendon technique or completion of the tear. A systematic review of the literature was performed following PRISMA guidelines and checklist. The objective outcome measures evaluated in this study were the Constant Score, American Shoulder and Elbow Surgeons score, Visual Analogue Scale, physical examination, and complications. Three studies met our criteria. All were prospective randomized comparative studies with level II evidence and published from 2012 to 2013. A total of 182 shoulders (mean age 53.7 years; mean follow-up 40.5 months were analyzed as part of this study. Both procedures provided excellent clinical outcomes with no significant difference in Constant Score and other measures between the procedures. Both procedures demonstrated improved clinical outcomes. However, there were no significant differences between each technique. Further studies are required to determine the long-term outcome of each technique.

  7. Rotational IMRT techniques compared to fixed gantry IMRT and Tomotherapy: multi-institutional planning study for head-and-neck cases

    Directory of Open Access Journals (Sweden)

    Lutters Gerd

    2011-02-01

    Full Text Available Abstract Background Recent developments enable to deliver rotational IMRT with standard C-arm gantry based linear accelerators. This upcoming treatment technique was benchmarked in a multi-center treatment planning study against static gantry IMRT and rotational IMRT based on a ring gantry for a complex parotid gland sparing head-and-neck technique. Methods Treatment plans were created for 10 patients with head-and-neck tumours (oropharynx, hypopharynx, larynx using the following treatment planning systems (TPS for rotational IMRT: Monaco (ELEKTA VMAT solution, Eclipse (Varian RapidArc solution and HiArt for the helical tomotherapy (Tomotherapy. Planning of static gantry IMRT was performed with KonRad, Pinnacle and Panther DAO based on step&shoot IMRT delivery and Eclipse for sliding window IMRT. The prescribed doses for the high dose PTVs were 65.1Gy or 60.9Gy and for the low dose PTVs 55.8Gy or 52.5Gy dependend on resection status. Plan evaluation was based on target coverage, conformity and homogeneity, DVHs of OARs and the volume of normal tissue receiving more than 5Gy (V5Gy. Additionally, the cumulative monitor units (MUs and treatment times of the different technologies were compared. All evaluation parameters were averaged over all 10 patients for each technique and planning modality. Results Depending on IMRT technique and TPS, the mean CI values of all patients ranged from 1.17 to 2.82; and mean HI values varied from 0.05 to 0.10. The mean values of the median doses of the spared parotid were 26.5Gy for RapidArc and 23Gy for VMAT, 14.1Gy for Tomo. For fixed gantry techniques 21Gy was achieved for step&shoot+KonRad, 17.0Gy for step&shoot+Panther DAO, 23.3Gy for step&shoot+Pinnacle and 18.6Gy for sliding window. V5Gy values were lowest for the sliding window IMRT technique (3499 ccm and largest for RapidArc (5480 ccm. The lowest mean MU value of 408 was achieved by Panther DAO, compared to 1140 for sliding window IMRT. Conclusions All

  8. Probing the superconducting ground state of the rare-earth ternary boride superconductors R RuB2 (R = Lu,Y) using muon-spin rotation and relaxation

    Science.gov (United States)

    Barker, J. A. T.; Singh, R. P.; Hillier, A. D.; Paul, D. McK.

    2018-03-01

    The superconductivity in the rare-earth transition-metal ternary borides R RuB2 (where R =Lu and Y) has been investigated using muon-spin rotation and relaxation. Measurements made in zero field suggest that time-reversal symmetry is preserved upon entering the superconducting state in both materials; a small difference in depolarization is observed above and below the superconducting transition in both compounds, however, this has been attributed to quasistatic magnetic fluctuations. Transverse-field measurements of the flux-line lattice indicate that the superconductivity in both materials is fully gapped, with a conventional s -wave pairing symmetry and BCS-like magnitudes for the zero-temperature gap energies. The electronic properties of the charge carriers in the superconducting state have been calculated, with effective masses m*/me=9.8 ±0.1 and 15.0 ±0.1 in the Lu and Y compounds, respectively, with superconducting carrier densities ns=(2.73 ±0.04 ) ×1028m-3 and (2.17 ±0.02 ) ×1028m-3 . The materials have been classified according to the Uemura scheme for superconductivity, with values for Tc/TF of 1 /(414 ±6 ) and 1 /(304 ±3 ) , implying that the superconductivity may not be entirely conventional in nature.

  9. Characterizations of Cuprous Oxide Thin Films Prepared by Sol-Gel Spin Coating Technique with Different Additives for the Photoelectrochemical Solar Cell

    Directory of Open Access Journals (Sweden)

    D. S. C. Halin

    2014-01-01

    Full Text Available Cuprous oxide (Cu2O thin films were deposited onto indium tin oxide (ITO coated glass substrate by sol-gel spin coating technique using different additives, namely, polyethylene glycol and ethylene glycol. It was found that the organic additives added had a significant influence on the formation of Cu2O films and lead to different microstructures and optical properties. The films were characterized by X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, and ultraviolet-visible spectroscopy (UV-Vis. Based on the FESEM micrographs, the grain size of film prepared using polyethylene glycol additive has smaller grains of about 83 nm with irregular shapes. The highest optical absorbance film was obtained by the addition of polyethylene glycol. The Cu2O thin films were used as a working electrode in the application of photoelectrochemical solar cell (PESC.

  10. Vibration dependence of the tensor spin-spin and scalar spin-spin hyperfine interactions by precision measurement of hyperfine structures of 127I2 near 532 nm

    International Nuclear Information System (INIS)

    Hong Fenglei; Zhang Yun; Ishikawa, Jun; Onae, Atsushi; Matsumoto, Hirokazu

    2002-01-01

    Hyperfine structures of the R(87)33-0, R(145)37-0, and P(132)36-0 transitions of molecular iodine near 532 nm are measured by observing the heterodyne beat-note signal of two I 2 -stabilized lasers, whose frequencies are bridged by an optical frequency comb generator. The measured hyperfine splittings are fit to a four-term Hamiltonian, which includes the electric quadrupole, spin-rotation, tensor spin-spin, and scalar spin-spin interactions, with an accuracy of ∼720 Hz. High-accurate hyperfine constants are obtained from this fit. Vibration dependences of the tensor spin-spin and scalar spin-spin hyperfine constants are determined for molecular iodine, for the first time to our knowledge. The observed hyperfine transitions are good optical frequency references in the 532-nm region

  11. Rotational scanography

    International Nuclear Information System (INIS)

    Moore, R.; Amplatz, K.

    1981-01-01

    With rotational scanography contrast and resolution of X-ray images are improved. The technique bases on the principle of a narrow X-ray passing along an object, thus exposing the whole film. The X-ray is limited by a primary shield next to the X-ray tube. A second shield between object and film prevents that scattered rays spoil the film. The X-ray tube is turned around a horizontal axis, whilst the shield is shifted so that the irradiation intensity remains constant and the smallest projected focal size is obtained. This technique permits to enlarge the X-ray images by 3 or 6 times its size. Thus, films up to a length of 96 cm can be exposed. Main advantages of rotary scanography are reduced exposure to radiation of patient and applicant, improved contrast and resolution of the X-ray image, and a larger play of exposure for the X-ray technique. Disadvantages are a longer exposure time and the consequently increased demands on X-ray generator and treatment head. When a multi-slit shield is used, the patient must be cooperative in order to prevent movement artifacts. This imaging technique is highly sensitive to artifacts, particularly if the tube voltage provides large fluctuations. Supplementary units are necessary. The significance of the rotational scanography is that it permits the reduction of the radiation dose, whilst contrast and resolution of the images are improved. This can be illustrated by X-ray images of a CT-phantom and of pelvic, hand and gastrointenstinal phantoms. (orig./MG) [de

  12. Design and implementation of a rotational radiotherapy technique for breast cancer treatment and their comparison with 3-D-Crt irradiation technique

    International Nuclear Information System (INIS)

    Gutierrez M, J. G.; Lopez V, A.; Rivera M, T.; Velazquez T, J. J.; Adame G, C. S.; Rubio N, O.; Chagoya G, A.; Hernandez G, J. C.

    2015-10-01

    Breast cancer is one of oncological diseases worldwide, as well in Mexico, which causes even more deaths than cervical cancer; this condition is the second death cause in women aged 30-54 years and threatens all socio-economic groups. The treatment is highly dependent on the stage which is detected and based on protocols that include a combination of surgery, chemotherapy and radiotherapy. This paper studies the main irradiation technique for patients with mastectomy, breast full cycle (irradiation of the chest well and supraclavicular nodes) in their mode Three Dimensional - Conformal Radiation Therapy (3-D-Crt), and compared with the Volumetric Modulated Arc Therapy (VMAT) technique proposed in this paper. In both techniques the prescription was 50 Gy divided into 25 fractions. The techniques were applied in three female patients (being an initial study) with disease of the left side, the target volume and organs at risk were delineated by the medical treating radiation oncologist, the planning system used was Eclipse version 10; for quantitative comparison of both plans indexes of homogeneity were used, con formality, the target volume coverage and normal tissue, sub factors and overdosing, the conformation number and coverage quality. They were evaluated and compared the media, maximum and minimum dose of the organs at risk, based on the fact that the coverage of the target volume, dose gradient and dose at risk organs are acceptable (prescription dose greater that 90% coverage, gradient less that 20% and organs at risk in accordance with the Quantec limitations for both versions). (Author)

  13. NMR system and method having a permanent magnet providing a rotating magnetic field

    Science.gov (United States)

    Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA

    2009-05-19

    Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.

  14. Long-lived nanosecond spin coherence in high-mobility 2DEGs confined in double and triple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, S.; Gusev, G. M.; Hernandez, F. G. G., E-mail: felixggh@if.usp.br [Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, CEP 05315-970 São Paulo, SP (Brazil); Bakarov, A. K. [Institute of Semiconductor Physics and Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-06-07

    We investigated the spin coherence of high-mobility two-dimensional electron gases confined in multilayer GaAs quantum wells. The dynamics of the spin polarization was optically studied using pump-probe techniques: time-resolved Kerr rotation and resonant spin amplification. For double and triple quantum wells doped beyond the metal-to-insulator transition, the spin-orbit interaction was tailored by the sample parameters of structural symmetry (Rashba constant), width, and electron density (Dresselhaus linear and cubic constants) which allow us to attain long dephasing times in the nanoseconds range. The determination of the scales, namely, transport scattering time, single-electron scattering time, electron-electron scattering time, and spin polarization decay time further supports the possibility of using n-doped multilayer systems for developing spintronic devices.

  15. Anisotropic in-plane spin splitting in an asymmetric (001 GaAs/AlGaAs quantum well

    Directory of Open Access Journals (Sweden)

    Zhang Xiuwen

    2011-01-01

    Full Text Available Abstract The in-plane spin splitting of conduction-band electron has been investigated in an asymmetric (001 GaAs/Al x Ga1-x As quantum well by time-resolved Kerr rotation technique under a transverse magnetic field. The distinctive anisotropy of the spin splitting was observed while the temperature is below approximately 200 K. This anisotropy emerges from the combined effect of Dresselhaus spin-orbit coupling plus asymmetric potential gradients. We also exploit the temperature dependence of spin-splitting energy. Both the anisotropy of spin splitting and the in-plane effective g-factor decrease with increasing temperature. PACS: 78.47.jm, 71.70.Ej, 75.75.+a, 72.25.Fe,

  16. Fast Electrical Control of Single Electron Spins in Quantum Dots with Vanishing Influence from Nuclear Spins

    Science.gov (United States)

    Yoneda, J.; Otsuka, T.; Nakajima, T.; Takakura, T.; Obata, T.; Pioro-Ladrière, M.; Lu, H.; Palmstrøm, C. J.; Gossard, A. C.; Tarucha, S.

    2014-12-01

    We demonstrate fast universal electrical spin manipulation with inhomogeneous magnetic fields. With fast Rabi frequency up to 127 MHz, we leave the conventional regime of strong nuclear-spin influence and observe a spin-flip fidelity >96 % , a distinct chevron Rabi pattern in the spectral-time domain, and a spin resonance linewidth limited by the Rabi frequency, not by the dephasing rate. In addition, we establish fast z rotations up to 54 MHz by directly controlling the spin phase. Our findings will significantly facilitate tomography and error correction with electron spins in quantum dots.

  17. Quantum spin quadrumer

    Science.gov (United States)

    Khatua, Subhankar; Shankar, R.; Ganesh, R.

    2018-02-01

    A fundamental motif in frustrated magnetism is the fully mutually coupled cluster of N spins, with each spin coupled to every other spin. Clusters with N =2 and 3 have been extensively studied as building blocks of square and triangular lattice antiferromagnets. In both cases, large-S semiclassical descriptions have been fruitfully constructed, providing insights into the physics of macroscopic magnetic systems. Here, we develop a semiclassical theory for the N =4 cluster. This problem has rich mathematical structure with a ground-state space that has nontrivial topology. We show that ground states are appropriately parametrized by a unit vector order parameter and a rotation matrix. Remarkably, in the low-energy description, the physics of the cluster reduces to that of an emergent free spin-S spin and a rigid rotor. This successfully explains the spectrum of the quadrumer and its associated degeneracies. However, this mapping does not hold in the vicinity of collinear ground states due to a subtle effect that arises from the nonmanifold nature of the ground-state space. We demonstrate this by an analysis of soft fluctuations, showing that collinear states have a larger number of soft modes. Nevertheless, as these singularities only occur on a subset of measure zero, the mapping to a spin and a rotor provides a good description of the quadrumer. We interpret thermodynamic properties of the quadrumer that are accessible in molecular magnets, in terms of the rotor and spin degrees of freedom. Our study paves the way for field theoretic descriptions of systems such as pyrochlore magnets.

  18. Identification of Combined Power Quality Disturbances Using Singular Value Decomposition (SVD and Total Least Squares-Estimation of Signal Parameters via Rotational Invariance Techniques (TLS-ESPRIT

    Directory of Open Access Journals (Sweden)

    Huaishuo Xiao

    2017-11-01

    Full Text Available In order to identify various kinds of combined power quality disturbances, the singular value decomposition (SVD and the improved total least squares-estimation of signal parameters via rotational invariance techniques (TLS-ESPRIT are combined as the basis of disturbance identification in this paper. SVD is applied to identify the catastrophe points of disturbance intervals, based on which the disturbance intervals are segmented. Then the improved TLS-ESPRIT optimized by singular value norm method is used to analyze each data segment, and extract the amplitude, frequency, attenuation coefficient and initial phase of various kinds of disturbances. Multi-group combined disturbance test signals are constructed by MATLAB and the proposed method is also tested by the measured data of IEEE Power and Energy Society (PES Database. The test results show that the new method proposed has a relatively higher accuracy than conventional TLS-ESPRIT, which could be used in the identification of measured data.

  19. Numerical analysis of continuous charge of lithium niobate in a double-crucible Czochralski system using the accelerated crucible rotation technique

    Science.gov (United States)

    Kitashima, Tomonori; Liu, Lijun; Kitamura, Kenji; Kakimoto, Koichi

    2004-05-01

    The transport mechanism of supplied raw material in a double-crucible Czochralski system using the accelerated crucible rotation technique (ACRT) was investigated by three-dimensional and time-dependent numerical simulation. The calculation clarified that use of the ACRT resulted in enhancement of the mixing effect of the supplied raw material. It is, therefore, possible to maintain the composition of the melt in an inner crucible during crystal growth by using the ACRT. The effect of the continuous charge of the raw material on melt temperature was also investigated. Our results showed that the effect of feeding lithium niobate granules on melt temperature was small, since the feeding rate of the granules is small. Therefore, solidification of the melt surface due to the heat of fusion in this system is not likely.

  20. Technique for shaping microcatheter tips in coil embolization of paraclinoid aneurysms using full-scale volume rendering images of 3D rotational angiography.

    Science.gov (United States)

    Toyota, S; Fujimoto, Y; Iwamoto, F; Wakayama, A; Yoshimine, T

    2009-08-01

    In coil embolization of paraclinoid aneurysms, it is sometimes difficult to introduce and stabilize microcatheter tips in the aneurysms. We report a new technique for shaping microcatheter tips in the coil embolization of paraclinoid aneurysms. From May 2007 to May 2008, this new technique was applied to 10 paraclinoid aneurysms undergoing coil embolization. Before coil embolization, 3D rotational angiography was performed, and volume-rendering images were reconstructed. Vinyl-coated handicraft wire was shaped 3-dimensionally to fit full-scale volume-rendering images on the monitor, from the C5 portion of the internal carotid artery to the center of the dome of the aneurysm from various angles. The microcatheter tip was then shaped with steam to fit the vinyl-coated wire. Thereafter, the microcatheter tip was introduced into the aneurysm and coil embolization was performed. Microcatheter tips could be easily shaped and could be introduced smoothly into aneurysms, and were stable during coil embolization. This technique is feasible for shaping microcatheter tips precisely for coil embolization of paraclinoid aneurysms. Georg Thieme Verlag KG Stuttgart * New York.

  1. The fast spin of near-Earth asteroid (455213) 2001 OE84, revisited after 14 years: Constraints on internal structure

    Science.gov (United States)

    Polishook, D.; Moskovitz, N.; Thirouin, A.; Bosh, A.; Levine, S.; Zuluaga, C.; Tegler, S. C.; Aharonson, O.

    2017-11-01

    At a mean diameter of ∼650 m, the near-Earth asteroid (455213) 2001 OE84 (OE84 for short) has a rapid rotation period of 0.486542 ± 0.000002 h, which is uncommon for asteroids larger than ∼200 m. We revisited OE84 14 years after it was first, and last, observed by Pravec et al. (2002) in order to measure again its spin rate and to search for changes. We have confirmed the rapid rotation and, by fitting the photometric data from 2001 and 2016 using the lightcurve inversion technique, we determined a retrograde sense of rotation, with the spin axis close to the ecliptic south pole; an oblate shape model of a / b = 1.32 ± 0.04 and b / c = 1.8 ± 0.2 ; and no change in spin rate between 2001 and 2016. Using these parameters we constrained the body's internal strength, and found that current estimations of asteroid cohesion (up to ∼80 Pa) are insufficient to maintain an intact rubble pile at the measured spin rate of OE84. Therefore, we argue that a monolithic asteroid, that can rotate at the rate of OE84 without shedding mass and without slowing down its spin rate, is the most plausible for OE84, and we give constraints on its age, since the time it was liberated from its parent body, between 2 - 10 million years.

  2. Spin diffusion length of Permalloy using spin absorption in lateral spin valves

    Science.gov (United States)

    Sagasta, Edurne; Omori, Yasutomo; Isasa, Miren; Otani, YoshiChika; Hueso, Luis E.; Casanova, Fèlix

    2017-08-01

    We employ the spin absorption technique in lateral spin valves to extract the spin diffusion length of Permalloy (Py) as a function of temperature and resistivity. A linear dependence of the spin diffusion length with the conductivity of Py is observed, evidencing that the Elliott-Yafet mechanism is the dominant spin relaxation mechanism in Permalloy. Completing the dataset with additional data found in the literature, we obtain λPy = (0.91 ± 0.04) (fΩm2)/ρPy.

  3. Rotational seismology

    Science.gov (United States)

    Lee, William H K.

    2016-01-01

    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

  4. Effect of iron doping on structural and optical properties of TiO2 thin film by sol–gel routed spin coating technique

    Directory of Open Access Journals (Sweden)

    Stephen Lourduraj

    2017-08-01

    Full Text Available Thin films of iron (Fe-doped titanium dioxide (Fe:TiO2 were prepared by sol–gel spin coating technique and further calcined at 450∘C. The structural and optical properties of Fe-doped TiO2 thin films were investigated by X-ray diffraction (XRD, scanning electron microscopy (SEM, ultraviolet–visible spectroscopy (UV–vis and atomic force microscopic (AFM techniques. The XRD results confirm the nanostructured TiO2 thin films having crystalline nature with anatase phase. The characterization results show that the calcined thin films having high crystallinity and the effect of iron substitution lead to decreased crystallinity. The SEM investigations of Fe-doped TiO2 films also gave evidence that the films were continuous spherical shaped particles with a nanometric range of grain size and film was porous in nature. AFM analysis establishes that the uniformity of the TiO2 thin film with average roughness values. The optical measurements show that the films having high transparency in the visible region and the optical band gap energy of Fe-doped TiO2 film with iron (Fe decrease with increase in iron content. These important requirements for the Fe:TiO2 films are to be used as window layers in solar cells.

  5. Spin Transport in Nondegenerate Si with a Spin MOSFET Structure at Room Temperature

    Science.gov (United States)

    Sasaki, Tomoyuki; Ando, Yuichiro; Kameno, Makoto; Tahara, Takayuki; Koike, Hayato; Oikawa, Tohru; Suzuki, Toshio; Shiraishi, Masashi

    2014-09-01

    Spin transport in nondegenerate semiconductors is expected to pave the way to the creation of spin transistors, spin logic devices, and reconfigurable logic circuits, because room-temperature (RT) spin transport in Si has already been achieved. However, RT spin transport has been limited to degenerate Si, which makes it difficult to produce spin-based signals because a gate electric field cannot be used to manipulate such signals. Here, we report the experimental demonstration of spin transport in nondegenerate Si with a spin metal-oxide-semiconductor field-effect transistor (MOSFET) structure. We successfully observe the modulation of the Hanle-type spin-precession signals, which is a characteristic spin dynamics in nondegenerate semiconductors. We obtain long spin transport of more than 20 μm and spin rotation greater than 4π at RT. We also observe gate-induced modulation of spin-transport signals at RT. The modulation of the spin diffusion length as a function of a gate voltage is successfully observed, which we attribute to the Elliott-Yafet spin relaxation mechanism. These achievements are expected to lead to the creation of practical Si-based spin MOSFETs.

  6. Retrievals of aerosol optical depth and total column ozone from Ultraviolet Multifilter Rotating Shadowband Radiometer measurements based on an optimal estimation technique

    Science.gov (United States)

    Liu, Chaoshun; Chen, Maosi; Shi, Runhe; Gao, Wei

    2014-12-01

    A Bayesian optimal estimation (OE) retrieval technique was used to retreive aerosol optical depth (AOD), aerosol single scattering albedo (SSA), and an asymmetry factor ( g) at seven ultraviolet wavelengths, along with total column ozone (TOC), from the measurements of the UltraViolet Multifilter Rotating Shadowband Radiometer (UV-MFRSR) deployed at the Southern Great Plains (SGP) site during March through November in 2009. The OE technique specifies appropriate error covariance matrices and optimizes a forward model (Tropospheric ultraviolet radiative transfer model, TUV), and thus provides a supplemental method for use across the network of the Department of Agriculture UV-B Monitoring and Research Program (USDA UVMRP) for the retrieval of aerosol properties and TOC with reasonable accuracy in the UV spectral range under various atmospheric conditions. In order to assess the accuracy of the OE technique, we compared the AOD retreivals from this method with those from Beer's Law and the AErosol RObotic Network (AERONET) AOD product. We also examine the OE retrieved TOC in comparison with the TOC from the U.S. Department of Agriculture UV-B Monitoring and Research Program (USDA UVMRP) and the Ozone Monitoring Instrument (OMI) satellite data. The scatterplots of the estimated AOD from the OE method agree well with those derived from Beer's law and the collocated AERONETAOD product, showing high values of correlation coefficients, generally 0.98 and 0.99, and large slopes, ranging from 0.95 to 1.0, as well as small offsets, less than 0.02 especially at 368 nm. The comparison of TOC retrievals also indicates the promising accuracy of the OE method in that the standard deviations of the difference between the OE derived TOC and other TOC products are about 5 to 6 Dobson Units (DU). Validation of the OE retrievals on these selected dates suggested that the OE technique has its merits and can serve as a supplemental tool in further analyzing UVMRP data.

  7. Determination of the spin diffusion length in germanium by spin optical orientation and electrical spin injection

    Science.gov (United States)

    Rinaldi, C.; Bertoli, S.; Asa, M.; Baldrati, L.; Manzoni, C.; Marangoni, M.; Cerullo, G.; Bianchi, M.; Sordan, R.; Bertacco, R.; Cantoni, M.

    2016-10-01

    The measurement of the spin diffusion length and/or lifetime in semiconductors is a key issue for the realisation of spintronic devices, exploiting the spin degree of freedom of carriers for storing and manipulating information. In this paper, we address such parameters in germanium (0 0 1) at room temperature (RT) by three different measurement methods. Exploiting optical spin orientation in the semiconductor and spin filtering across an insulating MgO barrier, the dependence of the resistivity on the spin of photo-excited carriers in Fe/MgO/Ge spin photodiodes (spin-PDs) was electrically detected. A spin diffusion length of 0.9  ±  0.2 µm was obtained by fitting the photon energy dependence of the spin signal by a mathematical model. Electrical techniques, comprising non-local four-terminal and Hanle measurements performed on CoFeB/MgO/Ge lateral devices, led to spin diffusion lengths of 1.3  ±  0.2 µm and 1.3  ±  0.08 µm, respectively. Despite minor differences due to experimental details, the order of magnitude of the spin diffusion length is the same for the three techniques. Although standard electrical methods are the most employed in semiconductor spintronics for spin diffusion length measurements, here we demonstrate optical spin orientation as a viable alternative for the determination of the spin diffusion length in semiconductors allowing for optical spin orientation.

  8. Rotation-induced shape transitions in Dy nuclei

    International Nuclear Information System (INIS)

    Emling, H.; Grosse, E.; Kulessa, R.; Schwalm, D.; Wollersheim, H.J.

    1984-01-01

    Lifetimes of states with spins up to 30(h/2π) have been measured in the nuclei 156 Dy, 157 Dy, and 158 Dy using the recoil-distance technique together with inverse reactions of the type Mg( 136 Xe,xn). The applied method, which benefited from the high velocities of the fusion residues as well as from improvements of the recoil-distance technique, allowed us to determine liefetimes and feeding times down to 0.1 ps. Below the first backbending the resultant B(E2) values in the ground-state band of sup(156,158)Dy increase faster with increasing rotational frequency than expected for rigid rotors, reaching values similar to those observed for the well-deformed neutron-rich Dy isotopes. In contrast to this, the E2-transition probabilities between high-spin states are clearly retarded. The retardation gradually evolves from the rotation alignment of nucleons and indicates deformation changes most likely towards a triaxial shape. From the analysis of the side-feeding times of the high-spin yrast states it could be furthermore deduced that the E2 component of the preyrast γ-decay stems from transitions along highly collective bands. (orig.)

  9. Relativistic motion of spinning particles in a gravitational field

    International Nuclear Information System (INIS)

    Chicone, C.; Mashhoon, B.; Punsly, B.

    2005-01-01

    The relative motion of a classical relativistic spinning test particle is studied with respect to a nearby free test particle in the gravitational field of a rotating source. The effects of the spin-curvature coupling force are elucidated and the implications of the results for the motion of rotating plasma clumps in astrophysical jets are discussed

  10. Improved focal liver lesion detection: comparison of single-shot diffusion-weighted echoplanar and single-shot T-2 weighted turbo spin echo techniques

    NARCIS (Netherlands)

    Coenegrachts, K.; Delanote, J.; ter Beek, L.; Haspeslagh, M.; Bipat, S.; Stoker, J.; van Kerkhove, F.; Steyaert, L.; Rigauts, H.; Casselman, J. W.

    2007-01-01

    The purpose of this study was to compare diffusion-weighted respiratory-triggered single-shot spin echo echoplanar imaging (SS SE-EPI) sequence using four b-values (b=0, b=20, b=300, b=800 s mm(-2)) and single-shot T-2 weighted turbo spin echo (T2W SS TSE) in patients with focal liver lesions, with

  11. High spin rotational bands in Zn

    Indian Academy of Sciences (India)

    lies in a region of nuclei where the shape is changing rapidly as a function of neutron and proton number. ... most recent attempt to describe the structure of its low-lying levels [6] concluded that the first positive parity level ... This work con- firms almost all the states reported in earlier experiment [6], which had used « induced.

  12. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2017-01-01

    Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.

  13. Evolution of nuclear shapes at high spins

    International Nuclear Information System (INIS)

    Johnson, N.R.

    1985-01-01

    The dynamic electric quadrupole (E2) moments are a direct reflection of the collective aspects of the nuclear wave functions. For this, Doppler-shift lifetime measurements have been done utilizing primarily the recoil-distance technique. The nuclei with neutron number N approx. 90 possess many interesting properties. These nuclei have very shallow minima in their potential energy surfaces, and thus, are very susceptible to deformation driving influences. It is the evolution of nuclear shapes as a function of spin or rotational frequency for these nuclei that has commanded much interest in the lifetime measurements discussed here. There is growing evidence that many deformed nuclei which have prolate shapes in their ground states conform to triaxial or oblate shapes at higher spins. Since the E2 matrix elements along the yrast line are sensitive indicators of deformation changes, measurements of lifetimes of these states to provide the matrix elements has become the major avenue for tracing the evolving shape of a nucleus at high spin. Of the several nuclei we have studied with N approx. 90, those to be discussed here are /sup 160,161/Yb and 158 Er. In addition, the preliminary, but interesting and surprising results from our recent investigation of the N = 98 nucleus, 172 W are briefly discussed. 14 refs., 5 figs

  14. Asymptotics of relativistic spin networks

    International Nuclear Information System (INIS)

    Barrett, John W; Steele, Christopher M

    2003-01-01

    The stationary phase technique is used to calculate asymptotic formulae for SO(4) relativistic spin networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j-symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the spin network evaluation. Finally, we discuss the asymptotics of the SO(3, 1) 10j-symbol

  15. Abnormal intraluminal signal within the pulmonary arteries on MR imaging: Differentiation between slow blood flow and thrombus using an ECG-gated; multiphasic: Spin-echo technique

    International Nuclear Information System (INIS)

    White, R.D.; Higgins, C.B.

    1986-01-01

    The authors evaluated abnormal MR imaging signal patterns in the pulmonary arteries of 22 patients with pulmonary hypertension (n = 13), pulmonary embolus (n = 4), or both (n = 5). Using multiphasic (five or six phases; 19 patients) or standard (three patients with pulmonary embolus) ECG-gated, double spin-echo techniques, they were able to differentiate between causes of such abnormal signal patterns. The pattern of slow blood flow (abnormal signal in systole with fluctuating distribution during cardiac cycle, and intensity increasing visually from first to second echo) was noted in 89% of patients with pulmonary hypertension alone or in combination with pulmonary embolism, and was characteristic of high systolic pulmonary pressures (12 of 12 patients with pressure > 80 mm Hg, vs. 3 of 5 patients with pressure 55 mm Hg vs. 5 of 7 patients with pressures <55 mm Hg). This pattern was differentiated from that of thrombus (persistent signal with fixed distribution during cardiac cycle, and little to no visible intensity change from first to second echo), which was noted in six of seven proved embolus cases. Thus, gated multiphase MR imaging shows potential for the noninvasive visualization of pulmonary embolus and the differentiation of this entity from the slow blood flow of pulmonary hypertension

  16. Silver Doped TiO2 Nanostructure Composite Photocatalyst Film Synthesized by Sol-Gel Spin and Dip Coating Technique on Glass

    Directory of Open Access Journals (Sweden)

    Mojtaba Nasr-Esfahani

    2008-01-01

    Full Text Available New composite films (P25SGF-MC-Ag, MPC500SGF-MC-Ag, and ANPSGF-MC-Ag have been synthesized by a modified sol-gel method using different particle sizes of TiO2 powder and silver addition. Nanostructure TiO2/Ag composite thin films were prepared by a sol-gel spin and dip coating technique. while, by introducing methyl cellulose (MC porous, TiO2/Ag films were obtained after calcining at a temperature of 500°C. The as-prepared TiO2 and TiO2/Ag films were characterized by X-ray diffractometry, and scanning electron microscopy to reveal the structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methyl orange (MO under UV irradiation. After 500°C calcination, the microstructure of MC-TiO2 film without Ag addition exhibited a microstructure, while significant sintering effect was noticed with Ag additions and the films exhibited a porous microstructure. Nanostructure anatase-phase TiO2 can be observed with respect to the sharpening of XRD diffraction peaks. The photodegradation of porous TiO2 deposited with 5×10−4 mol Ag exhibited the best photocatalytic efficiency, where 69% methyl orange can be decomposed after UV exposure for 1 hour.

  17. Spin Electronics

    Science.gov (United States)

    2003-08-01

    applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a...physical phenomena in II-VI and III-V semiconductors. In II-VI systems, the Mn2+ ions act to boost the electron spin precession up to terahertz ...conductors, proximity effect between ferromagnets and superconductors , and the effects of spin injection on the physical properties of the

  18. Rotational glitches in radio pulsars and magnetars

    NARCIS (Netherlands)

    Antonopoulou, D.

    2015-01-01

    Neutron stars are the most compact known stars; their cores are of higher density than an atomic nucleus. Their rotation rates are generally very predictable, with a slow decrease over time. This spin-down is occasionally interrupted, however, by abrupt 'glitches' when the rotation rate increases

  19. Electropumping of water with rotating electric fields

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; De Luca, Sergio; Todd, Billy

    2013-01-01

    exploiting the coupling of spin angular momentum to linear streaming momentum. A spatially uniform rotating electric field is applied to water molecules, which couples to their permanent electric dipole moments. The resulting molecular rotational momentum is converted into linear streaming momentum...

  20. Spin Hall conductance in a Y-shaped junction device in presence of tunable spin-orbit coupling

    Science.gov (United States)

    Ganguly, Sudin; Basu, Saurabh

    2017-06-01

    We study spin Hall effect in a three terminal Y-shaped device in presence of tunable spin-orbit (SO) interactions via Landauer-Büttiker formalism. We have evolved a fabrication technique for creating different angular separation between the two arms of the Y-shaped device so as to investigate the effect of angular width on the spin Hall conductance (SHC). A smaller angular separation yields a larger conductance. Also arbitrary orientation of the spin quantization axes yields interesting three dimensional contour maps for the SHC corresponding to different angular separation of the Y-shaped device. In addition to the GSH demonstrating bounded behaviour for different angular separations, there are distinct symmetry axes about which SHC demonstrates reflection symmetry. The results explicitly show breaking of the spin rotational symmetry. Further a systematic study is carried out to compare and contrast between the different SO terms, such as Rashba and Dresselhaus SO interactions and the interplay of the angular separation therein.

  1. Global rotation

    International Nuclear Information System (INIS)

    Rosquist, K.

    1980-01-01

    Global rotation in cosmological models is defined on an observational basis. A theorem is proved saying that, for rigid motion, the global rotation is equal to the ordinary local vorticity. The global rotation is calculated in the space-time homogeneous class III models, with Godel's model as a special case. It is shown that, with the exception of Godel's model, the rotation in these models becomes infinite for finite affine parameter values. In some directions the rotation changes sign and becomes infinite in a direction opposite to the local vorticity. The points of infinite rotation are identified as conjugate points along the null geodesics. The physical interpretation of the infinite rotation is discussed, and a comparison with the behaviour of the area distance at conjugate points is given. (author)

  2. Image quality assessment of single-shot turbo spin echo diffusion-weighted imaging with parallel imaging technique: a phantom study.

    Science.gov (United States)

    Yoshida, Tsukasa; Urikura, Atsushi; Shirata, Kensei; Nakaya, Yoshihiro; Terashima, Shingo; Hosokawa, Yoichiro

    2016-09-01

    This study aimed to evaluate the image quality and apparent diffusion coefficient (ADC) values of single-shot turbo spin echo (TSE) diffusion-weighted (DW) images obtained using a parallel imaging (PI) technique. All measurements were performed on a 3.0-T whole-body MRI system and 32-channel phased-array coil. Signal-to-noise ratio (SNR) and ADC values were measured with a DW imaging (DWI) phantom comprising granulated sugar and agar. The SNRs were calculated using a subtraction method and compared among TSE-DW images at acceleration factors (AFs) of 1-4. Image blur was visually assessed on TSE-DW images of a pin phantom at AFs of 1-4. The ADC values were calculated using DW images with b = 0 and 1000 s mm(-2). The ADC values of TSE-DW images and echo-planar imaging EPI-DW images were compared. The SNRs decreased as AFs increased, despite selecting the shortest echo time. A lower AF caused increased image blur in the phase-encoding direction. The ADC values of TSE-DWI tended to be lower than those of EPI-DWI, and AFs of 3 and 4 yielded variable ADC values on TSE-DW images. TSE-DWI with an AF of 3 or 4 yielded reduced SNRs; in addition, the image noise and artefacts associated with PI technique may have affected ADC measurements, despite improving image blur in the phase-encoding direction. Optimizing the imaging parameters of TSE-DWI is useful for providing good image quality and accurate ADC measurements.

  3. Perturbative approaches for the analysis of the spin-orbit problem

    CERN Document Server

    Celletti, A

    2006-01-01

    We review some results concerning perturbation techniques applied to the spin--orbit problem. In particular, we start byconstructing periodic orbits by means of a combination of theimplicit function theorem and of perturbation theory. Next, we focus onrotational and librational invariant tori, whose existence is provedby KAM theory. Applications to the Moon and Mercury are presented.This paper is the text of an invited lecture at the meeting "The rotation of celestial bodies" Festschrift Jacques Henrard.

  4. Correlation Effects and Hidden Spin-Orbit Entangled Electronic Order in Parent and Electron-Doped Iridates Sr_{2}IrO_{4}

    Directory of Open Access Journals (Sweden)

    Sen Zhou

    2017-10-01

    Full Text Available Analogs of the high-T_{c} cuprates have been long sought after in transition metal oxides. Because of the strong spin-orbit coupling, the 5d perovskite iridates Sr_{2}IrO_{4} exhibit a low-energy electronic structure remarkably similar to the cuprates. Whether a superconducting state exists as in the cuprates requires understanding the correlated spin-orbit entangled electronic states. Recent experiments discovered hidden order in the parent and electron-doped iridates, some with striking analogies to the cuprates, including Fermi surface pockets, Fermi arcs, and pseudogap. Here, we study the correlation and disorder effects in a five-orbital model derived from the band theory. We find that the experimental observations are consistent with a d-wave spin-orbit density wave order that breaks the symmetry of a joint twofold spin-orbital rotation followed by a lattice translation. There is a Berry phase and a plaquette spin flux due to spin procession as electrons hop between Ir atoms, akin to the intersite spin-orbit coupling in quantum spin Hall insulators. The associated staggered circulating J_{eff}=1/2 spin current can be probed by advanced techniques of spin-current detection in spintronics. This electronic order can emerge spontaneously from the intersite Coulomb interactions between the spatially extended iridium 5d orbitals, turning the metallic state into an electron-doped quasi-2D Dirac semimetal with important implications on the possible superconducting state suggested by recent experiments.

  5. Symmetry fractionalization of visons in Z2 spin liquids

    Science.gov (United States)

    Qi, Yang; Cheng, Meng; Fang, Chen

    In this work we study symmetry fractionalization of vison excitations in topological Z2 spin liquids. We show that in the presence of the full SO (3) spin-rotational symmetry and if there is an odd number of spin-1/2 per unit cell, the symmetry fractionalization of visons is completely fixed. On the other hand, visons can have different classes of symmetry fractionalization if the spin-rotational symmetry is reduced. As a concrete example, we show that visons in the Balents-Fisher-Girvin Z2 spin liquid have crystal symmetry fractionalization classes which are not allowed in SO (3) symmetric spin liquids, due to the reduced spin-rotational symmetry.

  6. Spin currents in metallic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Czeschka, Franz Dominik

    2011-09-05

    A pure spin current, i.e., a flow of angular momentum without accompanying net charge current, is a key ingredient in the field of spintronics. In this thesis, we experimentally investigated two different concepts for pure spin current sources suggested by theory. The first is based on a time-dependent magnetization precession which ''pumps'' a pure spin current into an adjacent non-magnetic conductor. Our experiments quantitatively corroborated important predictions expected theoretically for this approach, including the dependence of the spin current on the sample geometry and the microwave power. Even more important, we could show for the first time that the spin pumping concept is viable in a large variety of ferromagnetic materials and that it only depends on the magnetization damping. Therefore, our experiments established spin pumping as generic phenomenon and demonstrated that it is a powerful way to generate pure spin currents. The second theoretical concept is based on the conversion of charge currents into spin currents in non-magnetic nanostructures via the spin Hall effect. We experimentally investigated this approach in H-shaped, metallic nanodevices, and found that the predictions are linked to requirements not realizable with the present experimental techniques, neither in sample fabrication nor in measurement technique. Indeed, our experimental data could be consistently understood by a spin-independent transport model describing the transition from diffusive to ballistic transport. In addition, the implementation of advanced fabrication and measurement techniques allowed to discover a new non-local phenomenon, the non-local anisotropic magnetoresistance. Finally, we also studied spin-polarized supercurrents carried by spin-triplet Cooper pairs. We found that low resistance interfaces are a key requirement for further experiments in this direction. (orig.)

  7. Growth and Characterization of Detector-Grade Cd0.9Zn0.1Te Crystals by the Traveling Heater Method with the Accelerated Crucible Rotation Technique

    Science.gov (United States)

    Zhou, Boru; Jie, Wanqi; Wang, Tao; Xu, Yadong; Yang, Fan; Yin, Liying; Zhang, Binbin; Nan, Ruihua

    2018-02-01

    The accelerated crucible rotation technique has been applied in the traveling heater method process for the growth of CdZnTe:In (CZT:In) ingots. Full single crystalline wafers with a diameter of 53 mm were obtained under optimized growth conditions. The crystalline quality and the photoelectric properties of the CZT crystals were characterized using infrared transmission microscopy, infrared transmittance spectra, current-voltage (I-V) analysis and gamma ray radiation response measurements. The CZT crystals show no Te inclusions over 3 μm in size and those smaller than 3 μm have a density of 105 cm-3. The resistivity of the crystals reaches 3.92 × 1010 Ω/cm-1 by fitting the I-V curve. The mobility-lifetime ( μτ) product of the electrons is 4.12 × 10-3 cm2/V. Based on the CZT crystals, planar configuration and quasi-hemispherical configuration detectors were fabricated and show a resolution of 3.67% at 241Am@59.5 keV and 1.95% at 137Cs@662 keV, respectively, which indicates a superior detection performance.

  8. Decoherence in Quantum Spin Systems

    NARCIS (Netherlands)

    De Raedt, H; Dobrovitski, VV; Landau, DP; Lewis, SP; Schuttler, HB

    2003-01-01

    Computer simulations of decoherence in quantum spin systems require the solution of the time-dependent Schrodinger equation for interacting quantum spin systems over extended periods of time. We use exact diagonalization, the Chebyshev polynomial technique, four Suzuki-formula algorithms, and the

  9. Black Hole Spin Measurement Uncertainty

    Science.gov (United States)

    Salvesen, Greg; Begelman, Mitchell C.

    2018-01-01

    Angular momentum, or spin, is one of only two fundamental properties of astrophysical black holes, and measuring its value has numerous applications. For instance, obtaining reliable spin measurements could constrain the growth history of supermassive black holes and reveal whether relativistic jets are powered by tapping into the black hole spin reservoir. The two well-established techniques for measuring black hole spin can both be applied to X-ray binaries, but are in disagreement for cases of non-maximal spin. This discrepancy must be resolved if either technique is to be deemed robust. We show that the technique based on disc continuum fitting is sensitive to uncertainties regarding the disc atmosphere, which are observationally unconstrained. By incorporating reasonable uncertainties into black hole spin probability density functions, we demonstrate that the spin measured by disc continuum fitting can become highly uncertain. Future work toward understanding how the observed disc continuum is altered by atmospheric physics, particularly magnetic fields, will further strengthen black hole spin measurement techniques.

  10. Observations and Analyses of Heliospheric Faraday Rotation of a Coronal Mass Ejection (CME) Using the LOw Frequency ARray (LOFAR) and Space-Based Imaging Techniques

    Science.gov (United States)

    Bisi, Mario Mark; Jensen, Elizabeth; Sobey, Charlotte; Fallows, Richard; Jackson, Bernard; Barnes, David; Giunta, Alessandra; Hick, Paul; Eftekhari, Tarraneh; Yu, Hsiu-Shan; Odstrcil, Dusan; Tokumaru, Munetoshi; Wood, Brian

    2017-04-01

    Geomagnetic storms of the highest intensity are general driven by coronal mass ejections (CMEs) impacting the Earth's space environment. Their intensity is driven by the speed, density, and, most-importantly, their magnetic-field orientation and magnitude of the incoming solar plasma. The most-significant magnetic-field factor is the North-South component (Bz in Geocentric Solar Magnetic - GSM - coordinates). At present, there are no reliable prediction methods available for this magnetic-field component ahead of the in-situ monitors around the Sun-Earth L1 point. Observations of Faraday rotation (FR) can be used to attempt to determine average magnetic-field orientations in the inner heliosphere. Such a technique has already been well demonstrated through the corona, ionosphere, and also the interstellar medium. Measurements of the polarisation of astronomical (or spacecraft in superior conjunction) radio sources (beacons/radio frequency carriers) through the inner corona of the Sun to obtain the FR have been demonstrated but mostly at relatively-high radio frequencies. Here we show some initial results of true heliospheric FR using the Low Frequency Array (LOFAR) below 200 MHz to investigate the passage of a coronal mass ejection (CME) across the line of sight. LOFAR is a next-generation low-frequency radio interferometer, and a pathfinder to the Square Kilometre Array (SKA) - LOW telescope. We demonstrate preliminary heliospheric FR results through the analysis of observations of pulsar J1022+1001, which commenced on 13 August 2014 at 13:00UT and spanned over 150 minutes in duration. We also show initial comparisons to the FR results via various modelling techniques and additional context information to understand the structure of the inner heliosphere being detected. This observation could indeed pave the way to an experiment which might be implemented for space-weather purposes that will eventually lead to a near-global method for determining the magnetic

  11. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  12. Application of magnetic resonance force microscopy cyclic adiabatic inversion for a single-spin measurement

    International Nuclear Information System (INIS)

    Berman, G P; Borgonovi, F; Chapline, G; Gurvitz, S A; Hammel, P C; Pelekhov, D V; Suter, A; Tsifrinovich, V I

    2003-01-01

    We consider the process of a single-spin measurement using magnetic resonance force microscopy (MRFM) with a cyclic adiabatic inversion (CAI). This technique is also important for different applications, including a measurement of a qubit state in quantum computation. The measurement takes place through the interaction of a single spin with a cantilever modelled by a quantum oscillator in a coherent state in a quasi-classical range of parameters. The entire system is treated rigorously within the framework of the Schroedinger equation. For a many-spin system our equations accurately describe conventional MRFM experiments involving CAI of the spin system. Our computer simulations of the quantum spin-cantilever dynamics show that the probability distribution for the cantilever position develops two asymmetric peaks with the total relative probabilities mainly dependent on the initial angle between the directions of the average spin and the effective magnetic field, in the rotating frame. We show that each of the peaks is correlated with the direction of the average spin (being along or opposite to the direction of the effective magnetic field). This generates two possible outcomes of a single-spin measurement, similar to the Stern-Gerlach effect. We demonstrate that the generation of the second peak can be significantly suppressed by turning on adiabatically the amplitude of the rf magnetic field. We also show that MRFM CAI can be used both for detecting a signal from a single spin, and for measuring the single-spin state by measuring the phase of the cantilever driving oscillations

  13. SnS and SnS2 thin films deposited using a spin-coating technique from intramolecularly coordinated organotin sulfides

    Czech Academy of Sciences Publication Activity Database

    Řečica, T.; Střižík, L.; Dostál, L.; Bouška, M.; Vlček, Milan; Beneš, L.; Wágner, T.; Jambor, R.

    2015-01-01

    Roč. 29, č. 3 (2015), s. 176-180 ISSN 0268-2605 Institutional support: RVO:61389013 Keywords : organotin sulfide * single - source precursor * spin - coating process Subject RIV: CA - Inorganic Chemistry Impact factor: 2.452, year: 2015

  14. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas

    2012-01-01

    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  15. Test of parity-conserving time-reversal invariance using polarized neutrons and nuclear spin aligned holmium

    International Nuclear Information System (INIS)

    Huffman, P.R.; Roberson, N.R.; Wilburn, W.S.; Gould, C.R.; Haase, D.G.; Keith, C.D.; Raichle, B.W.; Seely, M.L.; Walston, J.R.

    1997-01-01

    A test of parity-conserving, time-reversal noninvariance (PC TRNI) has been performed in 5.9 MeV polarized neutron transmission through nuclear spin aligned holmium. The experiment searches for the T-violating fivefold correlation via a double modulation technique emdash flipping the neutron spin while rotating the alignment axis of the holmium. Relative cross sections for spin-up and spin-down neutrons are found to be equal to within 1.2x10 -5 (80% confidence). This is a two orders of magnitude improvement compared to traditional detailed balance studies of time reversal, and represents the most precise test of PC TRNI in a dynamical process, to our knowledge. copyright 1997 The American Physical Society

  16. Rotating Wavepackets

    Science.gov (United States)

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  17. The rotator

    DEFF Research Database (Denmark)

    Jensen, Eva B. Vedel; Gundersen, Hans Jørgen Gottlieb

    1993-01-01

    The mean particle volume can be stereologically estimated using the nucleator principle. In the present paper, we discuss another principle for estimating mean particle volume, namely the rotator. The vertical rotator has already been previously described and is supplemented in the present paper ...

  18. spinning self-dual particles

    International Nuclear Information System (INIS)

    Gamboa, J.; Rivelles, V.O.

    1989-01-01

    Self-dual particles in two-dimensions are presented. They were obtained from chiral boson particle by square root technique. The propagator of spinning self-dual particle is calculated using the BFV formalism. (M.C.K.)

  19. Estimating the accuracy of the technique of reconstructing the rotational motion of a satellite based on the measurements of its angular velocity and the magnetic field of the Earth

    Science.gov (United States)

    Belyaev, M. Yu.; Volkov, O. N.; Monakhov, M. I.; Sazonov, V. V.

    2017-09-01

    The paper has studied the accuracy of the technique that allows the rotational motion of the Earth artificial satellites (AES) to be reconstructed based on the data of onboard measurements of angular velocity vectors and the strength of the Earth magnetic field (EMF). The technique is based on kinematic equations of the rotational motion of a rigid body. Both types of measurement data collected over some time interval have been processed jointly. The angular velocity measurements have been approximated using convenient formulas, which are substituted into the kinematic differential equations for the quaternion that specifies the transition from the body-fixed coordinate system of a satellite to the inertial coordinate system. Thus obtained equations represent a kinematic model of the rotational motion of a satellite. The solution of these equations, which approximate real motion, has been found by the least-square method from the condition of best fitting between the data of measurements of the EMF strength vector and its calculated values. The accuracy of the technique has been estimated by processing the data obtained from the board of the service module of the International Space Station ( ISS). The reconstruction of station motion using the aforementioned technique has been compared with the telemetry data on the actual motion of the station. The technique has allowed us to reconstruct the station motion in the orbital orientation mode with a maximum error less than 0.6° and the turns with a maximal error of less than 1.2°.

  20. Spin-driven ferroelectricity in ferroaxial crystals

    Science.gov (United States)

    Chapon, Laurent

    2012-02-01

    Spin-driven ferroelectricity in most non-collinear magnets, such as TbMnO3, is induced by the so-called inverse Dzyalonshinskii-Moriya mechanism and requires a cycloidal magnetic structure, an ordered magnetic state that is not truly chiral (or lacks helicity). Conversely, in a truly chiral magnetic state (proper helix), the pseudo-scalar helicity can not couple directly to the electric polarization, and therefore can't induce ferroelectric order. However, in systems of specific crystal symmetry, named here ``ferroaxials,'' the presence of collective structural rotations mediates an indirect coupling between magnetic helicity and ferroelectricity. I will review our recent experimental results for new compounds of this class, obtained by magnetic X-ray and neutron diffraction techniques, including a clear demonstration that the magnetic helicity can be controlled by an electric field.

  1. A minimally interactive method to segment enlarged lymph nodes in 3D thoracic CT images using a rotatable spiral-scanning technique

    Science.gov (United States)

    Wang, Lei; Moltz, Jan H.; Bornemann, Lars; Hahn, Horst K.

    2012-03-01

    Precise size measurement of enlarged lymph nodes is a significant indicator for diagnosing malignancy, follow-up and therapy monitoring of cancer diseases. The presence of diverse sizes and shapes, inhomogeneous enhancement and the adjacency to neighboring structures with similar intensities, make the segmentation task challenging. We present a semi-automatic approach requiring minimal user interactions to fast and robustly segment the enlarged lymph nodes. First, a stroke approximating the largest diameter of a specific lymph node is drawn manually from which a volume of interest (VOI) is determined. Second, Based on the statistical analysis of the intensities on the dilated stroke area, a region growing procedure is utilized within the VOI to create an initial segmentation of the target lymph node. Third, a rotatable spiral-scanning technique is proposed to resample the 3D boundary surface of the lymph node to a 2D boundary contour in a transformed polar image. The boundary contour is found by seeking the optimal path in 2D polar image with dynamic programming algorithm and eventually transformed back to 3D. Ultimately, the boundary surface of the lymph node is determined using an interpolation scheme followed by post-processing steps. To test the robustness and efficiency of our method, a quantitative evaluation was conducted with a dataset of 315 lymph nodes acquired from 79 patients with lymphoma and melanoma. Compared to the reference segmentations, an average Dice coefficient of 0.88 with a standard deviation of 0.08, and an average absolute surface distance of 0.54mm with a standard deviation of 0.48mm, were achieved.

  2. Rotational elasticity

    Science.gov (United States)

    Vassiliev, Dmitri

    2017-04-01

    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833

  3. TOPICAL REVIEW: Spin current, spin accumulation and spin Hall effect

    Directory of Open Access Journals (Sweden)

    Saburo Takahashi and Sadamichi Maekawa

    2008-01-01

    Full Text Available Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1 and detector (F2 electrodes connected to a normal conductor (N is studied. We reveal how the spin transport depends on interface resistance, electrode resistance, spin polarization and spin diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and spin current in the device. It is demonstrated that the spin Hall effect is caused by spin–orbit scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge currents in a nonlocal device. A method of evaluating spin–orbit coupling in nonmagnetic metals is proposed.

  4. The hyperfine structure in the rotational spectra of D{sub 2}{sup 17}O and HD{sup 17}O: Confirmation of the absolute nuclear magnetic shielding scale for oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Puzzarini, Cristina, E-mail: cristina.puzzarini@unibo.it; Cazzoli, Gabriele [Dipartimento di Chimica “Giacomo Ciamician,” Università degli Studi di Bologna, Via Selmi 2, I-40126 Bologna (Italy); Harding, Michael E. [Institut für Nanotechnologie, Karlsruher Institut für Technologie (KIT), Campus Nord, Postfach 3640, D-76021 Karlsruhe (Germany); Center for Theoretical Chemistry, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712 (United States); Vázquez, Juana [Center for Theoretical Chemistry, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712 (United States); Gauss, Jürgen, E-mail: gauss@uni-mainz.de [Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz (Germany)

    2015-03-28

    Guided by theoretical predictions, the hyperfine structures of the rotational spectra of mono- and bideuterated-water containing {sup 17}O have been experimentally investigated. To reach sub-Doppler resolution, required to resolve the hyperfine structure due to deuterium quadrupole coupling as well as to spin-rotation (SR) and dipolar spin-spin couplings, the Lamb-dip technique has been employed. The experimental investigation and in particular, the spectral analysis have been supported by high-level quantum-chemical computations employing coupled-cluster techniques and, for the first time, a complete experimental determination of the hyperfine parameters involved was possible. The experimentally determined {sup 17}O spin-rotation constants of D{sub 2}{sup 17}O and HD{sup 17}O were used to derive the paramagnetic part of the corresponding nuclear magnetic shielding constants. Together with the computed diamagnetic contributions as well as the vibrational and temperature corrections, the latter constants have been employed to confirm the oxygen nuclear magnetic shielding scale, recently established on the basis of spin-rotation data for H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)].

  5. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  6. Spin glasses

    International Nuclear Information System (INIS)

    Fischer, K.H.; Hertz, J.A.

    1993-01-01

    Spin glasses, simply defined by the authors as a collection of spins (i.e., magnetic moments) whose low-temperature state is a frozen disordered one, represent one of the fascinating new fields of study in condensed matter physics, and this book is the first to offer a comprehensive account of the subject. Included are discussions of the most important developments in theory, experimental work, and computer modeling of spin glasses, all of which have taken place essentially within the last two decades. The first part of the book gives a general introduction to the basic concepts and a discussion of mean field theory, while the second half concentrates on experimental results, scaling theory, and computer simulation of the structure of spin glasses

  7. Electric-field assisted spin torque nano-oscillator and binary frequency shift keying modulation

    Science.gov (United States)

    Zhang, Xiangli; Chen, Hao-Hsuan; Zhang, Zongzhi; Liu, Yaowen

    2018-04-01

    Electric-controlled magnetization precession introduces technologically relevant possibility for developing spin torque nano-oscillators (STNO) with potential applications in microwave emission. Using the perpendicularly magnetized magnetic tunnel junction (MTJ), we show that the magnetization oscillation frequency can be tuned by the co-action of electric field and spin polarized current. The dynamical phase diagram of MTJ-based STNO is analytically predicted through coordinate transformation from the laboratory frame to the rotation frame, by which the nonstationary out-of-plane magnetization precession process is therefore transformed into the stationary process in the rotation frame. Furthermore, using this STNO as a microwave source, we numerically demonstrate that the bit signal can be transmitted by a binary frequency shift keying (BFSK) modulation technique. The BFSK scheme shows good modulation features with no transient state.

  8. Spin dynamics in high-mobility two-dimensional electron systems embedded in GaAs/AlGaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Griesbeck, Michael

    2012-11-22

    Since many years there has been great effort to explore the spin dynamics in low-dimensional electron systems embedded in GaAs/AlGaAs based heterostructures for the purpose of quantum computation and spintronics applications. Advances in technology allow for the design of high quality and well-defined two-dimensional electron systems (2DES), which are perfectly suited for the study of the underlying physics that govern the dynamics of the electron spin system. In this work, spin dynamics in high-mobility 2DES is studied by means of the all-optical time-resolved Kerr/Faraday rotation technique. In (001)-grown 2DES, a strong in-plane spin dephasing anisotropy is studied, resulting from the interference of comparable Rashba and Dresselhaus contributions to the spin-orbit field (SOF). The dependence of this anisotropy on parameters like the confinement length of the 2DES, the sample temperature, as well as the electron density is demonstrated. Furthermore, coherent spin dynamics of an ensemble of ballistically moving electrons is studied without and within an applied weak magnetic field perpendicular to the sample plane, which forces the electrons to move on cyclotron orbits. Finally, strongly anisotropic spin dynamics is investigated in symmetric (110)-grown 2DES, using the resonant spin amplification method. Here, extremely long out-of-plane spin dephasing times can be achieved, in consequence of the special symmetry of the Dresselhaus SOF.

  9. SPIN-selling

    CERN Document Server

    Rackham, Neil

    1995-01-01

    True or false? In selling high-value products or services: "closing" increases your chance of success; it is essential to describe the benefits of your product or service to the customer; objection handling is an important skill; and open questions are more effective than closed questions. All false, says Neil Rackham. He and his team studied more than 35,000 sales calls made by 10,000 sales people in 23 countries over 12 years. Their findings revealed that many of the methods developed for selling low-value goods just don't work for major sales. Rackham went on to introduce his SPIN-selling method, where SPIN describes the whole selling process - Situation questions, Problem questions, Implication questions, Need-payoff questions. SPIN-selling provides you with a set of simple and practical techniques which have been tried in many of today's leading companies with dramatic improvements to their sales performance.

  10. Slowly Spinning Southern M Dwarfs

    Science.gov (United States)

    Newton, Elisabeth; Mondrik, Nicholas; Irwin, Jonathan; Charbonneau, David

    2018-01-01

    M dwarf stars are the most common type of star in the galaxy, but their ages are challenging to determine due to their trillion-year lifetimes on the main sequence. Consequently, the evolution of rotation and magnetism at field ages is difficult to investigate observationally. M dwarfs in the Solar Neighborhood provide a unique opportunity to make progress in this area due to the availability of parallaxes and the accessibility of spectroscopy. We have used new rotation period measurements and our compilation of H-alpha emission for nearby M dwarfs to explore two questions: 1) What is the longest rotation period an M dwarf can have? And 2) Do M dwarfs undergo an era of rapid angular momentum evolution? Here, we focus on the view from the Southern hemisphere, presenting approximately 200 new rotation periods for fully convective M dwarfs. Amongst the highest-quality datasets, we identify rotation periods in three-quarters of all stars; of these, half have rotation periods longer than 70 days. The longest rotation period we detect is 148 days, which is for a 0.15 solar-mass star. The lack of M dwarfs with intermediate rotation periods that we previously identified persists, supporting our hypothesis that M dwarfs rapidly spin down from 10-day to 100-day periods.ERN is supported by the National Science Foundation Astronomy & Astrophysics Postdoctoral Fellowship. We gratefully acknowledge support from the David and Lucille Packard Foundation, the National Science Foundation, and the John Templeton Foundation.

  11. Evaluation of aqueductal patency in patients with hydrocephalus: Three-dimensional high-sampling efficiency technique(SPACE) versus two-dimensional turbo spin echo at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Ucar, Murat; Guryildirim, Melike; Tokgoz, Nil; Kilic, Koray; Borcek, Alp; Oner, Yusuf; Akkan, Koray; Tali, Turgut [School of Medicine, Gazi University, Ankara (Turkey)

    2014-12-15

    To compare the accuracy of diagnosing aqueductal patency and image quality between high spatial resolution three-dimensional (3D) high-sampling-efficiency technique (sampling perfection with application optimized contrast using different flip angle evolutions [SPACE]) and T2-weighted (T2W) two-dimensional (2D) turbo spin echo (TSE) at 3-T in patients with hydrocephalus. This retrospective study included 99 patients diagnosed with hydrocephalus. T2W 3D-SPACE was added to the routine sequences which consisted of T2W 2D-TSE, 3D-constructive interference steady state (CISS), and cine phase-contrast MRI (PC-MRI). Two radiologists evaluated independently the patency of cerebral aqueduct and image quality on the T2W 2D-TSE and T2W 3D-SPACE. PC-MRI and 3D-CISS were used as the reference for aqueductal patency and image quality, respectively. Inter-observer agreement was calculated using kappa statistics. The evaluation of the aqueductal patency by T2W 3D-SPACE and T2W 2D-TSE were in agreement with PC-MRI in 100% (99/99; sensitivity, 100% [83/83]; specificity, 100% [16/16]) and 83.8% (83/99; sensitivity, 100% [67/83]; specificity, 100% [16/16]), respectively (p < 0.001). No significant difference in image quality between T2W 2D-TSE and T2W 3D-SPACE (p = 0.056) occurred. The kappa values for inter-observer agreement were 0.714 for T2W 2D-TSE and 0.899 for T2W 3D-SPACE. Three-dimensional-SPACE is superior to 2D-TSE for the evaluation of aqueductal patency in hydrocephalus. T2W 3D-SPACE may hold promise as a highly accurate alternative treatment to PC-MRI for the physiological and morphological evaluation of aqueductal patency.

  12. Overview of spin physics

    Energy Technology Data Exchange (ETDEWEB)

    Yokosawa, A.

    1992-12-23

    Spin physics activities at medium and high energies became significantly active when polarized targets and polarized beams became accessible for hadron-hadron scattering experiments. My overview of spin physics will be inclined to the study of strong interaction using facilities at Argonne ZGS, Brookhaven AGS (including RHIC), CERN, Fermilab, LAMPF, an SATURNE. In 1960 accelerator physicists had already been convinced that the ZGS could be unique in accelerating a polarized beam; polarized beams were being accelerated through linear accelerators elsewhere at that time. However, there was much concern about going ahead with the construction of a polarized beam because (i) the source intensity was not high enough to accelerate in the accelerator, (ii) the use of the accelerator would be limited to only polarized-beam physics, that is, proton-proton interaction, and (iii) p-p elastic scattering was not the most popular topic in high-energy physics. In fact, within spin physics, [pi]-nucleon physics looked attractive, since the determination of spin and parity of possible [pi]p resonances attracted much attention. To proceed we needed more data beside total cross sections and elastic differential cross sections; measurements of polarization and other parameters were urgently needed. Polarization measurements had traditionally been performed by analyzing the spin of recoil protons. The drawbacks of this technique are: (i) it involves double scattering, resulting in poor accuracy of the data, and (ii) a carbon analyzer can only be used for a limited region of energy.

  13. Broadband rotational resonance in solid state NMR spectroscopy.

    Science.gov (United States)

    Chan, Jerry C C; Tycko, Robert

    2004-05-08

    A new technique for restoring nuclear magnetic dipole-dipole couplings under magic-angle spinning (MAS) in solid state nuclear magnetic resonance (NMR) spectroscopy is described and demonstrated. In this technique, called broadband rotational resonance (BroBaRR), the coupling between a pair of nuclear spins with NMR frequency difference close (but not necessarily equal) to the MAS frequency is restored by the application of a train of weak radio-frequency pulses at a carrier frequency close to the average of the two NMR frequencies. Phase or amplitude modulation of the pulse train at half the MAS frequency splits the carrier into sidebands close to the two NMR frequencies. The pulse train then removes offsets from the exact rotational resonance condition, leading to dipolar recoupling over a bandwidth controlled by the amplitude of the pulse train. (13)C NMR experiments on uniformly (15)N,(13)C-labeled L-valineHClH(2)O powder validate the theoretical analysis. BroBaRR will be useful in studies of molecular structures by solid state NMR, for example in the detection of long-range couplings between carbons in uniformly labeled organic and biological materials.

  14. Effect of feedback techniques for lower back pain on gluteus maximus and oblique abdominal muscle activity and angle of pelvic rotation during the clam exercise.

    Science.gov (United States)

    Koh, Eun-Kyung; Park, Kyue-Nam; Jung, Do-Young

    2016-11-01

    This study was conducted in order to determine the effect of feedback tools on activities of the gluteus maximus (Gmax) and oblique abdominal muscles and the angle of pelvic rotation during clam exercise (CE). Comparative study using repeated measures. University laboratory. Sixteen subjects with lower back pain. Each subject performed the CE without feedback, the CE using a pressure biofeedback unit (CE-PBU), and the CE with palpation and visual feedback (CE-PVF). Electromyographic (EMG) activity and the angles of pelvic rotation were measured using surface EMG and a three-dimensional motion-analysis system, respectively. One-way repeated-measures ANOVA followed by the Bonferroni post hoc test were used to compare the EMG activity in each muscle as well as the angle of pelvic rotation during the CE, CE-PBU, and CE-PVF. The results of post-hoc testing showed a significantly reduced angle of pelvic rotation and significantly more Gmax EMG activity during the CE-PVF compared with during the CE and CE-PBU. These findings suggest that palpation and visual feedback is effective for activating the Gmax and controlling pelvic rotation during the CE in subjects with lower back pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Electrical resistivity, susceptibility and heat capacity of cubic Kondo compound YbCu.sub.5./sub. prepared by melt-spinning technique

    Czech Academy of Sciences Publication Activity Database

    Reiffers, M.; Idzikowski, B.; Šebek, Josef; Šantavá, Eva; Ilkovič, S.; Pristáš, G.

    378-380, - (2006), s. 738-739 ISSN 0921-4526 Institutional research plan: CEZ:AV0Z10100520 Keywords : YbCu 5 * susceptibility * electrical resistivity * melt spinning Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.872, year: 2006

  16. Effect of temperature on thermal oxidation of palmitic acid studied by combination of EPR spin trapping technique and SPME-GC-MS/MS.

    Science.gov (United States)

    Chen, Hongjian; Wang, Yong; Cao, Peirang; Liu, Yuanfa

    2017-11-01

    Effect of temperatures on thermal oxidation of palmitic acid was studied by the combination of EPR and GC-MS/MS. DMPO was used as the spin trap. The experimental spectrum was simulated with alkyl and alkoxyl spin adducts. Total amount of spins, a parameter to indicate radical concentrations, detected at 180°C was nearly 10 times higher than that at 175°C. Besides, total amounts of spins detected at 180°C decreased rapidly because of the reaction between radical adducts and newly formed radicals. Signal intensities of alkyl radical adducts increased rapidly from 0.405 to 4.785 from 175°C to 180°C. Besides, more palmitic acid degraded to oxidized compounds from 175°C to 180°C than that of other temperature ranges. The C-C linkages between carbons 2 to 6 were easier to be oxidized at 180°C. The results all implied that oxidation rates of palmitic acid samples increased rapidly from 175°C to 180°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Reynolds-Stress and Triple-Product Models Applied to Flows with Rotation and Curvature

    Science.gov (United States)

    Olsen, Michael E.

    2016-01-01

    Predictions for Reynolds-stress and triple product turbulence models are compared for flows with significant rotational effects. Driver spinning cylinder flowfield and Zaets rotating pipe case are to be investigated at a minimum.

  18. Field assessment of the relative agronomic effectiveness of phosphate rock materials in a soybean - Maize crop rotation using 32P isotope techniques

    International Nuclear Information System (INIS)

    Mahisarakul, J.; Siripaibool, C.; Claimon, J.; Pakkong, P.

    2002-01-01

    Field experiments were conducted at Phrabudhabart Field Crop Research Station, Lopbur Province during the period 1995-1997 to determine the relative agronomic effectiveness (RAE) in a soybean- maize crop rotation using 32 P isotope techniques. The soil of the experimental site was the Pakchong soil series (Oxic Paleustults). Four PRs were applied at 120 kg P ha -1 , namely Algerian PR (ARPR), North Carolina PR from USA (NCPR), Petchaburi PR from Thailand (PBPR) and Ratchaburi PR from Thailand (RBPR) and TSP was added at three rates (40, 60, 120 kg P ha -1 ). For the first year harvest, soybeans absorbed more P from TSP fertilizer (% FPU) applied at 40 kg P ha -1 than maize, but there was no yield response. Among four PRs, North Carolina phosphate rock (NCPR) gave the highest % Pdff as well as the highest RAE. Maize was planted after soybean to study the residual effect of TSP and PRs. The results were the same as in soybean. In the second year (1996) the grain yield of soybean was higher than in the first year (1995), and there was significant response to P from TSP. The RAE of NCPR was very high. Maize showed the opposite results. In this case Algerian PR (ARPR) had the highest RAE. In 1997, TSP and six PRs (same four used in 1995 and 1996, Morocco PR (MCPR), and Lumphun PR (LPPR)) were applied at 60 kg P ha -1 . Phosphate rocks were applied either alone or in combination with TSP (50:50). Application of TSP resulted in high yields of soybean. In terms of RAE the P sources ranked as follows: LPPR+TSP>ARPR>LPPR> MCPR>NCPR+TSP>NCPR. The residual effect of P on the following maize crop resulted in a high RAE for MCPR and LPPR. It was concluded that TSP should be applied to every crop. The reactivity of PRs in the first and the second year experiments were: ARPR>NCPR>RBPR>PBPR. Morocco PR and LPPR were also reactive PRs in the third experiment. The combination of PR and TSP resulted in better P uptake (%Pdff). (author)

  19. Experimental study on the spin-orbit coupling property in low-dimensional semiconductor structures

    International Nuclear Information System (INIS)

    Zhao, Hongming

    2010-01-01

    The spin-orbit coupling and optical properties have been studied in several low-dimensional semiconductor structures. First, the spin dynamics in (001) GaAs/AlGaAs two-dimensional electron gas was investigated by time resolved Kerr rotation technique under a transverse magnetic field. The in-plane spin lifetime is found to be anisotropic. The results show that the electron density in two-dimensional electron gas channel strongly affects the Rashba spin-orbit coupling. Then, a large anisotropy of the magnitude of in-plane conduction electron g factor in asymmetric (001) GaAs/AlGaAs QWs was observed and its tendency of temperature dependence was studied. Second, the experimental study of the in-plane-orientation dependent spin splitting in the C(0001) GaN/AlGaN two-dimensional electron gas at room temperature was reported. The measurement of circular photo-galvanic effect current clearly shows the isotropic in-plane spin splitting in this system for the first time. Third, the first measurement of conduction electron g factor in GaAsN at room temperature was done by using time resolved Kerr rotation technique. It demonstrates that the g factor can be modified drastically by introducing a small amount of nitrogen in GaAs bulk. Finally, the optical characteristic of indirect type II transition in a series of size and shape-controlled linear CdTe/CdSe/CdTe heterostructure nano-rods was studied by steady-state and time resolved photoluminescence. Results show the steady transfer from the direct optical transition (type I) within CdSe to the indirect transition (type II) between CdSe/CdTe as the length of the nano-rods increases. (author)

  20. Particle-rotation coupling in atomic nuclei

    International Nuclear Information System (INIS)

    Almberger, J.

    1980-01-01

    Recently an increased interest in the rotational nuclei has been spurred by the new experimental high-spin activities and by the possibilities for lower spins to interpret an impressive amount of experimental data by some comparatively simple model calculations. The author discusses the particle modes of excitation for rotational nuclei in the pairing regime where some puzzles in the theoretical description remain to be resolved. A model comparison is made between the particle-rotor and cranking models which have different definitions of the collective rotation. The cranking model is found to imply a smaller value of the quasiparticle spin alignment than the particle-rotor model. Rotational spectra for both even and odd nuclei are investigated with the use of the many-BCS-quasiparticles plus rotor model. This model gives an accurate description of the ground and S-bands in many even-even rare-earth nuclei. However, the discrepancies for odd-A nuclei between theory and experiments point to the importance of additional physical components. Therefore the rotationally induced quadrupole pair field is considered. This field has an effect on the low spin states in odd-A nuclei, but is not sufficient to account for the experimental data. Another topic considered is the interaction matrix element in crossings for given spin between quasiparticle rotational bands. The matrix elements are found to oscillate as a function of the number of particles, thereby influencing the sharpness of the backbending. Finally the low-spin continuation of the S-band is studied and it is shown that such states can be populated selectively by means of one-particle pickup reactions involving high angular momentum transfer. (Auth.)

  1. Spin noise spectroscopy of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Hauke; Huebner, Jens; Oestreich, Michael [Institute for Solid State Physics, Gottfried Wilhelm Leibniz University Hannover (Germany); Marie, Xavier; Balocchi, Andrea [INSA-CNRS-UPS, LPCNO, Universite de Toulouse (France)

    2010-07-01

    ZnO is a promising material for optical spintronics showing long electron spin lifetimes due to the large band gap and low amount of nuclear spin isotopes. Here, we use spin noise spectroscopy to access the electron spin dynamics of this material in thermal equilibrium while avoiding carrier heating and excitation of electron hole pairs. A linear polarized laser beam (E{sub UV-Laser}=3.32 eV) close to the direct band gap of ZnO (E{sub D}{sup 0}{sub X}=3.36 eV) is used to detect the spin dynamics of neutral donors in ZnO with off-resonant, non-demolition Faraday rotation. The stochastic oriented electron spins induce polarization fluctuations of the transmitted laser beam. The fluctuation strength of N non-interacting, paramagnetic spins follow the Poisson statistics and generate measurable noise {proportional_to}{radical}(N) spins. These fluctuations are measured via a polarization bridge in the radio frequency regime and Fourier transformed in real-time. A magnetic field B is applied in Voigt-geometry and modulates the noise signal with the Larmor frequency of the electron spins {omega}{sub L}=g{mu}{sub B}B/{Dirac_h}. From the recorded noise spectra we can extract the electron g-factor, spin lifetimes, and densities.

  2. Imaging and controlling spins in semiconductors and ferromagnets

    Science.gov (United States)

    Nowakowski, Mark Edward

    Spins possess robust coherent and exchange-driven properties in semiconductors and ferromagnets. In this work, we investigate three experiments that incorporate and exploit these spin properties to demonstrate innovated quantum information processing, magnetic detection and control techniques. In the first experiment we spatially confine an effective magnetic field to control the coherent state of moving electron spins. Optically-injected electron spin ensembles are transported through a gate-controlled, spatially-isolated region with a large effective magnetic field created by locally polarized nuclear spins within a GaAs channel at T = 8 K. By tuning the localized effective field strength and drift velocity we detect, using time-resolved Kerr rotation (TRKR), induced spin rotations of up to 5pi radians in 6 ns over a 30 mum distance. In the second experiment, we develop a sensitive electrical technique derived from the anomalous Hall effect (AHE) to measure domain wall (DW) motion with nanometer precision. We then use this system to study the elastic properties of single ferromagnetic DWs in (Ga,Mn)As. Full understanding of the electrical signal is only possible after accurately determining the DW location with respect to the electrical contacts. Therefore, we image the DWs using a custom-built, diffraction-limited video magneto-optical Kerr effect (MOKE) microscopy system while simultaneously measuring the AHE. By combining these detection schemes we are able to precisely measure temperature-dependent elastic DW dynamics and kinetics below TC. Finally, the third experiment relates our progress toward understanding the coupling between the multiferroic oxide BiFeO3 (BFO) and a CoFe magnetic layer. The exchange-bias mediated coupling between ferroelectric domains of the BFO and ferromagnetic domains in the CoFe layer suggest a pathway to realize electrical control of the magnetization properties. We investigate and model the ferroelectric influence on

  3. Developing an Asteroid Rotational Theory

    Science.gov (United States)

    Geis, Gena; Williams, Miguel; Linder, Tyler; Pakey, Donald

    2018-01-01

    The goal of this project is to develop a theoretical asteroid rotational theory from first principles. Starting at first principles provides a firm foundation for computer simulations which can be used to analyze multiple variables at once such as size, rotation period, tensile strength, and density. The initial theory will be presented along with early models of applying the theory to the asteroid population. Early results confirm previous work by Pravec et al. (2002) that show the majority of the asteroids larger than 200m have negligible tensile strength and have spin rates close to their critical breakup point. Additionally, results show that an object with zero tensile strength has a maximum rotational rate determined by the object’s density, not size. Therefore, an iron asteroid with a density of 8000 kg/m^3 would have a minimum spin period of 1.16h if the only forces were gravitational and centrifugal. The short-term goal is to include material forces in the simulations to determine what tensile strength will allow the high spin rates of asteroids smaller than 150m.

  4. A graphical simulator for teaching basic and advanced MR imaging techniques

    DEFF Research Database (Denmark)

    Hanson, Lars G

    2007-01-01

    for radiologists, radiographers, and technical staff alike, but it is notoriously challenging to explain spin dynamics by using traditional teaching tools. The author developed a freely available graphical simulator based on the Bloch equations to aid in the teaching of topics ranging from precession......Teaching of magnetic resonance (MR) imaging techniques typically involves considerable handwaving, literally, to explain concepts such as resonance, rotating frames, dephasing, refocusing, sequences, and imaging. A proper understanding of MR contrast and imaging techniques is crucial...

  5. Spin-spin correlations in the tt'-Hubbard model

    International Nuclear Information System (INIS)

    Husslein, T.; Newns, D.M.; Mattutis, H.G.; Pattnaik, P.C.; Morgenstern, I.; Singer, J.M.; Fettes, W.; Baur, C.

    1994-01-01

    We present calculations of the tt'-Hubbard model using Quantum Monte Carlo techniques. The parameters are chosen so that the van Hove Singularity in the density of states and the Fermi level coincide. We study the behaviour of the system with increasing Hubbard interaction U. Special emphasis is on the spin-spin correlation (SSC). Unusual behaviour for large U is observed there and in the momentum distribution function (n(q)). (orig.)

  6. Rotating preventers

    International Nuclear Information System (INIS)

    Tangedahl, M.J.; Stone, C.R.

    1992-01-01

    This paper reports that recent changes in the oil and gas industry and ongoing developments in horizontal and underbalanced drilling necessitated development of a better rotating head. A new device called the rotating blowout preventer (RBOP) was developed by Seal-Tech. It is designed to replace the conventional rotating control head on top of BOP stacks and allows drilling operations to continue even on live (underbalanced) wells. Its low wear characteristics and high working pressure (1,500 psi) allow drilling rig crews to drill safely in slightly underbalanced conditions or handle severe well control problems during the time required to actuate other BOPs in the stack. Drilling with a RBOP allows wellbores to be completely closed in tat the drill floor rather than open as with conventional BOPs

  7. Interference Spins

    DEFF Research Database (Denmark)

    Popovski, Petar; Simeone, Osvaldo; Nielsen, Jimmy Jessen

    2015-01-01

    on traffic load and interference condition leads to performance gains. In this letter, a general network of multiple interfering two-way links is studied under the assumption of a balanced load in the two directions for each link. Using the notion of interference spin, we introduce an algebraic framework...

  8. Spinning worlds

    NARCIS (Netherlands)

    Schwarz, H.

    2017-01-01

    The thesis "Spinning Worlds" is about the characterisation of two types of gas-giant exoplanets: Hot Jupiters, with orbital periods of fewer than five days, and young, wide-orbit gas giants, with orbital periods as long as thousands of years. The thesis is based on near-infrared observations of 1

  9. Design and Analysis of A Spin-Stabilized Projectile Experimental Apparatus

    Science.gov (United States)

    Siegel, Noah; Rodebaugh, Gregory; Elkins, Christopher; van Poppel, Bret; Benson, Michael; Cremins, Michael; Lachance, Austin; Ortega, Raymond; Vanderyacht, Douglas

    2017-11-01

    Spinning objects experience an effect termed `The Magnus Moment' due to an uneven pressure distribution based on rotation within a crossflow. Unlike the Magnus force, which is often small for spin-stabilized projectiles, the Magnus moment can have a strong detrimental effect on aerodynamic flight stability. Simulations often fail to accurately predict the Magnus moment in the subsonic flight regime. In an effort to characterize the conditions that cause the Magnus moment, researchers in this work employed Magnetic Resonance Velocimetry (MRV) techniques to measure three dimensional, three component, sub-millimeter resolution fluid velocity fields around a scaled model of a spinning projectile in flight. The team designed, built, and tested using a novel water channel apparatus that was fully MRI-compliant - water-tight and non-ferrous - and capable of spinning a projectile at a constant rotational speed. A supporting numerical simulation effort informed the design process of the scaled projectile to thicken the hydrodynamic boundary layer near the outer surface of the projectile. Preliminary testing produced two-dimensional and three-dimensional velocity data and revealed an asymmetric boundary layer around the projectile, which is indicative of the Magnus effect.

  10. The kinematic differences between off-spin and leg-spin bowling in cricket.

    Science.gov (United States)

    Beach, Aaron J; Ferdinands, René E D; Sinclair, Peter J

    2016-09-01

    Spin bowling is generally coached using a standard technical framework, but this practice has not been based upon a comparative biomechanical analysis of leg-spin and off-spin bowling. This study analysed the three-dimensional (3D) kinematics of 23 off-spin and 20 leg-spin bowlers using a Cortex motion analysis system to identify how aspects of the respective techniques differed. A multivariate ANOVA found that certain data tended to validate some of the stated differences in the coaching literature. Off-spin bowlers had a significantly shorter stride length (p = 0.006) and spin rate (p = 0.001), but a greater release height than leg-spinners (p = 0.007). In addition, a number of other kinematic differences were identified that were not previously documented in coaching literature. These included a larger rear knee flexion (p = 0.007), faster approach speed (p < 0.001), and flexing elbow action during the arm acceleration compared with an extension action used by most of the off-spin bowlers. Off-spin and leg-spin bowlers also deviated from the standard coaching model for the shoulder alignment, front knee angle at release, and forearm mechanics. This study suggests that off-spin and leg-spin are distinct bowling techniques, supporting the development of two different coaching models in spin bowling.

  11. Mergers of Black-Hole Binaries with Aligned Spins: Waveform Characteristics

    Science.gov (United States)

    Kelly, Bernard J.; Baker, John G.; vanMeter, James R.; Boggs, William D.; McWilliams, Sean T.; Centrella, Joan

    2011-01-01

    "We apply our gravitational-waveform analysis techniques, first presented in the context of nonspinning black holes of varying mass ratio [1], to the complementary case of equal-mass spinning black-hole binary systems. We find that, as with the nonspinning mergers, the dominant waveform modes phases evolve together in lock-step through inspiral and merger, supporting the previous model of the binary system as an adiabatically rigid rotator driving gravitational-wave emission - an implicit rotating source (IRS). We further apply the late-merger model for the rotational frequency introduced in [1], along with a new mode amplitude model appropriate for the dominant (2, plus or minus 2) modes. We demonstrate that this seven-parameter model performs well in matches with the original numerical waveform for system masses above - 150 solar mass, both when the parameters are freely fit, and when they are almost completely constrained by physical considerations."

  12. Orbital angular momentum transfer and spin desalignment mechanisms in the deep inelastic collisions Ar+Bi and Ni+Pb using the sequential fission method

    International Nuclear Information System (INIS)

    Steckmeyer, J.C.

    1984-10-01

    Angular momentum transfer and spin dealignment mechanisms have been studied in the deep inelastic collisions Ar+Bi and Ni+Pb using the sequential fission method. This experimental technique consists to measure the angular distribution of the fission fragments of a heavy nucleus in coincidence with the reaction partner, and leads to a complete determination of the heavy nucleus spin distribution. High spin values are transferred to the heavy nucleus in the interaction and indicate that the dinuclear system has reached the rigid rotation limit. A theoretical model, taking into account the excitation of surface vibrations of the nuclei and the nucleon transfer between the two partners, is able to reproduce the high spin values measured in our experiments. The spin fluctuations are important, with values of the order of 15 to 20 h units. These fluctuations increase with the charge transfer from the projectile to the target and the total kinetic energy loss. The spin dealignment mechanisms act mainly in a plane approximately perpendicular to the heavy recoil direction in the laboratory system. These results are well described by a dynamical transport model based on the stochastic exchange of individual nucleons between the two nuclei during the interaction. The origin of the dealignment mechanisms in the spin transfer processes is then related to the statistical nature of the nucleon exchange. However other mechanisms can contribute to the spin dealignment as the surface vibrations, the nuclear deformations as well their relative orientations [fr

  13. Improving Data Collection and Analysis Interface for the Data Acquisition Software of the Spin Laboratory at NASA Glenn Research Center

    Science.gov (United States)

    Abdul-Aziz, Ali; Curatolo, Ben S.; Woike, Mark R.

    2011-01-01

    In jet engines, turbines spin at high rotational speeds. The forces generated from these high speeds make the rotating components of the turbines susceptible to developing cracks that can lead to major engine failures. The current inspection technologies only allow periodic examinations to check for cracks and other anomalies due to the requirements involved, which often necessitate entire engine disassembly. Also, many of these technologies cannot detect cracks that are below the surface or closed when the crack is at rest. Therefore, to overcome these limitations, efforts at NASA Glenn Research Center are underway to develop techniques and algorithms to detect cracks in rotating engine components. As a part of these activities, a high-precision spin laboratory is being utilized to expand and conduct highly specialized tests to develop methodologies that can assist in detecting predetermined cracks in a rotating turbine engine rotor. This paper discusses the various features involved in the ongoing testing at the spin laboratory and elaborates on its functionality and on the supporting data system tools needed to enable successfully running optimal tests and collecting accurate results. The data acquisition system and the associated software were updated and customized to adapt to the changes implemented on the test rig system and to accommodate the data produced by various sensor technologies. Discussion and presentation of these updates and the new attributes implemented are herein reported

  14. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  15. New theory for vibrational and rotational energy transfer in the collisions of atoms with symmetric top molecules

    Energy Technology Data Exchange (ETDEWEB)

    Clary, D.C.

    1984-11-15

    A new three-dimensional quantum-mechanical theory is described for calculating vibrational and rotational relaxation cross sections and rate constants for the collisions of atoms with prolate symmetric top or near-symmetric top molecules. The technique uses a wave function expansion in vibrational states coupled with azimuthal basis functions which describe the spinning of the top about its symmetry axis. The infinite-order-sudden method is used for the total rotational angular momentum of the molecule. The technique is applied to the computation of vibrational relaxation rate constants for the collisions of C/sub 2/H/sub 4/ with He atoms. Comparison is made with results calculated previously by using the sudden approximation for both the total and azimuthal rotational motion. Good agreement is obtained with vibrational relaxation rate constants measured in an infrared double resonance experiment.

  16. Observation of the in-plane spin-dephasing anisotropy in [111]-grown GaAs/AlGaAs quantum well

    International Nuclear Information System (INIS)

    Zhao, Chunbo; Li, Junbin; Yu, Ying; Ni, Haiqiao; Niu, Zhichuan; Zhang, Xinhui

    2014-01-01

    The electron density and temperature dependent in-plane spin-dephasing anisotropy in [111]-grown GaAs quantum well (QW) has been investigated by time-resolved magneto-Kerr rotation technique. Due to the specific symmetry of [111]-grown quantum well, the in-plane Rashba and linear Dresselhaus effective spin-orbit magnetic field is parallel to each other for electron wave vectors in all directions. However, an obvious in-plane spin-dephasing anisotropy comparing [2 ¯ 11] with [01 ¯ 1] crystalline orientations has been observed and discussed in this work. Our results demonstrate the innegligible spin dephasing channel through inhomogeneous broadening induced by the out-of-plane non-linear Dresselhaus field, which arises naturally from the C 3 symmetry of [111]-grown GaAs QW

  17. Atom-diatom scattering dynamics of spinning molecules

    Energy Technology Data Exchange (ETDEWEB)

    Eyles, C. J. [Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin (Germany); Floß, J.; Averbukh, I. Sh. [Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Leibscher, M. [Institut für Theoretische Physik, Leibniz Universität Hannover, 30167 Hannover (Germany)

    2015-01-14

    We present full quantum mechanical scattering calculations using spinning molecules as target states for nuclear spin selective atom-diatom scattering of reactive D+H{sub 2} and F+H{sub 2} collisions. Molecules can be forced to rotate uni-directionally by chiral trains of short, non-resonant laser pulses, with different nuclear spin isomers rotating in opposite directions. The calculations we present are based on rotational wavepackets that can be created in this manner. As our simulations show, target molecules with opposite sense of rotation are predominantly scattered in opposite directions, opening routes for spatially and quantum state selective scattering of close chemical species. Moreover, two-dimensional state resolved differential cross sections reveal detailed information about the scattering mechanisms, which can be explained to a large degree by a classical vector model for scattering with spinning molecules.

  18. An Air Bearing Balance with 1-DOF Spin Capability

    National Research Council Canada - National Science Library

    Magill, J. C; McManus, K. R; Malonson, M. R; Ziehler, J. A; Hinds, M. F

    1998-01-01

    .... Five load components are measured by sensing pressures in the air bearing film. The sixth component - rolling torque - is determined by sensing the current needed by the brushless spin motor to maintain a given rotation rate...

  19. Zero-temperature phase of the XY spin glass in two dimensions: Genetic embedded matching heuristic

    Science.gov (United States)

    Weigel, Martin; Gingras, Michel J. P.

    2008-03-01

    For many real spin-glass materials, the Edwards-Anderson model with continuous-symmetry spins is more realistic than the rather better understood Ising variant. In principle, the nature of an occurring spin-glass phase in such systems might be inferred from an analysis of the zero-temperature properties. Unfortunately, with few exceptions, the problem of finding ground-state configurations is a nonpolynomial problem computationally, such that efficient approximation algorithms are called for. Here, we employ the recently developed genetic embedded matching (GEM) heuristic to investigate the nature of the zero-temperature phase of the bimodal XY spin glass in two dimensions. We analyze bulk properties such as the asymptotic ground-state energy and the phase diagram of disorder strength vs disorder concentration. For the case of a symmetric distribution of ferromagnetic and antiferromagnetic bonds, we find that the ground state of the model is unique up to a global O(2) rotation of the spins. In particular, there are no extensive degeneracies in this model. The main focus of this work is on an investigation of the excitation spectrum as probed by changing the boundary conditions. Using appropriate finite-size scaling techniques, we consistently determine the stiffness of spin and chiral domain walls and the corresponding fractal dimensions. Most noteworthy, we find that the spin and chiral channels are characterized by two distinct stiffness exponents and, consequently, the system displays spin-chirality decoupling at large length scales. Results for the overlap distribution do not support the possibility of a multitude of thermodynamic pure states.

  20. Interfacial spin-orbit splitting and current-driven spin torque in anisotropic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2011-05-17

    Spin transport in magnetic tunnel junctions comprising a single magnetic layer in the presence of interfacial spin-orbit interaction (SOI) is investigated theoretically. Due to the presence of interfacial SOI, a current-driven spin torque can be generated at the second order in SOI, even in the absence of an external spin polarizer. This torque possesses two components, one in plane and one perpendicular to the plane of rotation, that can induce either current-driven magnetization switching from an in-plane to out-of-plane configuration or magnetization precessions, similar to spin transfer torque in spin valves. Consequently, it appears that it is possible to control the magnetization steady state and dynamics by either varying the bias voltage or electrically modifying the SOI at the interface.

  1. Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2014-05-28

    Current-driven spin torques in metallic spin valves composed of antiferromagnets are theoretically studied using the nonequilibrium Green\\'s function method implemented on a tight-binding model. We focus our attention on G-type and L-type antiferromagnets in both clean and disordered regimes. In such structures, spin torques can either rotate the magnetic order parameter coherently (coherent torque) or compete with the internal antiferromagnetic exchange (exchange torque). We show that, depending on the symmetry of the spin valve, the coherent and exchange torques can either be in the plane, ∝n×(q×n) or out of the plane ∝n×q, where q and n are the directions of the order parameter of the polarizer and the free antiferromagnetic layers, respectively. Although disorder conserves the symmetry of the torques, it strongly reduces the torque magnitude, pointing out the need for momentum conservation to ensure strong spin torque in antiferromagnetic spin valves.

  2. Examining transition metal hydrosulfides: The pure rotational spectrum of ZnSH (X̃2A').

    Science.gov (United States)

    Bucchino, M P; Adande, G R; Halfen, D T; Ziurys, L M

    2017-10-21

    The pure rotational spectrum of the ZnSH (X̃ 2 A') radical has been measured using millimeter-wave direct absorption and Fourier transform microwave (FTMW) methods across the frequency range 18-468 GHz. This work is the first gas-phase detection of ZnSH by any spectroscopic technique. Spectra of the 66 ZnSH, 68 ZnSH, and 64 ZnSD isotopologues were also recorded. In the mm-wave study, ZnSH was synthesized in a DC discharge by the reaction of zinc vapor, generated by a Broida-type oven, with H 2 S; for FTMW measurements, the radical was made in a supersonic jet expansion by the same reactants but utilizing a discharge-assisted laser ablation source. Between 7 and 9 rotational transitions were recorded for each isotopologue. Asymmetry components with K a = 0 through 6 were typically measured in the mm-wave region, each split into spin-rotation doublets. In the FTMW spectra, hyperfine interactions were also resolved, arising from the hydrogen or deuterium nuclear spins of I = 1/2 or I = 1, respectively. The data were analyzed using an asymmetric top Hamiltonian, and rotational, spin-rotation, and magnetic hyperfine parameters were determined for ZnSH, as well as the quadrupole coupling constant for ZnSD. The observed spectra clearly indicate that ZnSH has a bent geometry. The r m (1) structure was determined to be r Zn-S = 2.213(5) Å, r S-H = 1.351(3) Å, and θ Zn-S-H = 90.6(1)°, suggesting that the bonding occurs primarily through sulfur p orbitals, analogous to H 2 S. The hyperfine constants indicate that the unpaired electron in ZnSH primarily resides on the zinc nucleus.

  3. Examining transition metal hydrosulfides: The pure rotational spectrum of ZnSH (X ˜ 2A')

    Science.gov (United States)

    Bucchino, M. P.; Adande, G. R.; Halfen, D. T.; Ziurys, L. M.

    2017-10-01

    The pure rotational spectrum of the ZnSH (X ˜ 2A') radical has been measured using millimeter-wave direct absorption and Fourier transform microwave (FTMW) methods across the frequency range 18-468 GHz. This work is the first gas-phase detection of ZnSH by any spectroscopic technique. Spectra of the 66ZnSH, 68ZnSH, and 64ZnSD isotopologues were also recorded. In the mm-wave study, ZnSH was synthesized in a DC discharge by the reaction of zinc vapor, generated by a Broida-type oven, with H2S; for FTMW measurements, the radical was made in a supersonic jet expansion by the same reactants but utilizing a discharge-assisted laser ablation source. Between 7 and 9 rotational transitions were recorded for each isotopologue. Asymmetry components with Ka = 0 through 6 were typically measured in the mm-wave region, each split into spin-rotation doublets. In the FTMW spectra, hyperfine interactions were also resolved, arising from the hydrogen or deuterium nuclear spins of I = 1/2 or I = 1, respectively. The data were analyzed using an asymmetric top Hamiltonian, and rotational, spin-rotation, and magnetic hyperfine parameters were determined for ZnSH, as well as the quadrupole coupling constant for ZnSD. The observed spectra clearly indicate that ZnSH has a bent geometry. The rm(1) structure was determined to be rZn-S = 2.213(5) Å, rS-H = 1.351(3) Å, and θZn-S-H = 90.6(1)°, suggesting that the bonding occurs primarily through sulfur p orbitals, analogous to H2S. The hyperfine constants indicate that the unpaired electron in ZnSH primarily resides on the zinc nucleus.

  4. Eating a planet and spinning up

    Science.gov (United States)

    Qureshi, Ahmed; Naoz, Smadar; Shkolnik, Evgenya L.

    2018-01-01

    One of the predictions of high eccentricity planetary migration is that many planets will end up plunging into their host stars. We investigate the consequence of planetary mergers on their stellar hosts’ spin-period. Energy and angular momentum conservation yield that a planet consumption by a star will spin-up of the star. We find that our calculations align with the observed bifurcation in the stellar spin-period in young clusters. After a Sun-like star has eaten a planet, it will then, spin down due to magnetic braking, consistent with the observed lack of fast rotators in old clusters. The agreement between the calculations presented here and the observed spin-period of stars in young clusters provides circumstantial evidence that planetary accretion onto their host stars is a generic feature in planetary-system evolution.

  5. RHIC spin flipper AC dipole controller

    Energy Technology Data Exchange (ETDEWEB)

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  6. Measuring protein self-diffusion in protein-protein mixtures using a pulsed gradient spin-echo technique with WATERGATE and isotope filtering

    Science.gov (United States)

    Nesmelova, Irina V.; Idiyatullin, Djaudat; Mayo, Kevin H.

    2004-01-01

    Here we report a modified pulsed gradient spin-echo (PGSTE) pulse sequence to measure diffusion coefficients. This approach incorporates WATERGATE combined with isotopic filtering into a standard PGSTE experiment. Doing this eliminates much of the disadvantages from the combination of diffusion encoding and heteronuclear selection intervals and allows for facile modification of the diffusion pulse sequence with flexibility of the time period between RF pulses. The new diffusion pulse sequence is demonstrated using an 15N-labeled peptide and an 15N-labeled protein in a mixture with a protein of similar size.

  7. In a spin at Brookhaven spin physics

    CERN Document Server

    Makdisi, Y I

    2003-01-01

    The mysterious quantity that is spin took centre stage at Brookhaven for the SPIN2002 meeting last September. The 15th biennial International Spin Physics Symposium (SPIN2002) was held at Brookhaven National Laboratory on 9-14 September 2002. Some 250 spin enthusiasts attended, including experimenters and theorists in both nuclear and high-energy physics, as well as accelerator physicists and polarized target and polarized source experts. The six-day symposium included 23 plenary talks and 150 parallel talks. SPIN2002 was preceded by a one-day spin physics tutorial for students, postdocs, and anyone else who felt the need for a refresher course. (2 refs).

  8. Constraints on Spin Axis and Thermal Properties of Asteroids in the WISE Catalog

    Science.gov (United States)

    MacLennan, Eric M.; Emery, J. P.

    2013-10-01

    It has widely been accepted that dynamical state of asteroids can strongly be influenced by radiation forces (e.g., Yarkovsky and YORP). Determination of an object’s thermal properties and spin state are a critical step towards understanding the effects of these forces. In this respect, observations of thermal flux emitted from the surfaces of asteroids are a powerful tool. The emission of flux is determined by the temperature distribution which is controlled by the thermal inertia, rotation rate, and spin axis orientation. By gathering data at multiple viewing geometries, the temperature distribution can be modeled accurately enough to separate the effects attributed to (some of) these parameters. Over the length of its mission, the Wide-Field Infrared Survey Explorer (WISE) observed many asteroids in two epochs (i.e., on either side of opposition) such that data for both morning and afternoon times were gathered. We have begun a project that employs a Thermophysical Model (TPM) in order to analyze these multi-epoch thermal observations with the goal of deriving the thermal properties and spin axis of a large number of asteroids. Here, we first investigate the validity and limits of our method on objects with a previously determined spin axis. Asteroid (413) Edburga has a published spin axis of λ = 202o, β = - 45o (ecliptic longitude and latitude, respectively) using the lightcurve inversion method. With our technique, we estimate a solution consistent with the previous estimate. Applying our TPM to WISE multi-epoch thermal observations of (155) Scylla (no known spin axis estimate), we also place estimates for the ecliptic longitude and latitude of its spin axis. Analysis of multi-epoch thermal data enables determination of spin axis orientation without knowing the rotation period, in contrast to the lightcurve inversion method. This is due to the coupling of thermal inertia and rotation rate in determining the longitudinal distribution of temperature. Their

  9. Thermal imaging of spin Peltier effect

    Science.gov (United States)

    Daimon, Shunsuke; Iguchi, Ryo; Hioki, Tomosato; Saitoh, Eiji; Uchida, Ken-Ichi

    2016-12-01

    The Peltier effect modulates the temperature of a junction comprising two different conductors in response to charge currents across the junction, which is used in solid-state heat pumps and temperature controllers in electronics. Recently, in spintronics, a spin counterpart of the Peltier effect was observed. The `spin Peltier effect' modulates the temperature of a magnetic junction in response to spin currents. Here we report thermal imaging of the spin Peltier effect; using active thermography technique, we visualize the temperature modulation induced by spin currents injected into a magnetic insulator from an adjacent metal. The thermal images reveal characteristic distribution of spin-current-induced heat sources, resulting in the temperature change confined only in the vicinity of the metal/insulator interface. This finding allows us to estimate the actual magnitude of the temperature modulation induced by the spin Peltier effect, which is more than one order of magnitude greater than previously believed.

  10. Spin-Circuit Representation of Spin Pumping

    Science.gov (United States)

    Roy, Kuntal

    2017-07-01

    Circuit theory has been tremendously successful in translating physical equations into circuit elements in an organized form for further analysis and proposing creative designs for applications. With the advent of new materials and phenomena in the field of spintronics and nanomagnetics, it is imperative to construct the spin-circuit representations for different materials and phenomena. Spin pumping is a phenomenon by which a pure spin current can be injected into the adjacent layers. If the adjacent layer is a material with a high spin-orbit coupling, a considerable amount of charge voltage can be generated via the inverse spin Hall effect allowing spin detection. Here we develop the spin-circuit representation of spin pumping. We then combine it with the spin-circuit representation for the materials having spin Hall effect to show that it reproduces the standard results as in the literature. We further show how complex multilayers can be analyzed by simply writing a netlist.

  11. Generalized Faraday law derived from classical forces in a rotating frame

    International Nuclear Information System (INIS)

    Choi, Taeseung

    2010-01-01

    We show that an additional spin-dependent classical force due to the rotation of an electron spin's rest frame is essential to derive a spin-Faraday law that has the same form as the usual Faraday law. We show that the contribution of the additional spin-dependent force to the spin-Faraday law is the same as the time derivative of the spin geometric phase. With this observations, the spin-Faraday law is generalized to include both an Aharonov-Casher (AC) effect and a scalar AC effect in a unified manner.

  12. Spin Coherence in Semiconductor Nanostructures

    National Research Council Canada - National Science Library

    Flatte, Michael E

    2006-01-01

    ... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...

  13. Emergent dynamic chirality in a thermally driven artificial spin ratchet

    Science.gov (United States)

    Gliga, Sebastian; Hrkac, Gino; Donnelly, Claire; Büchi, Jonathan; Kleibert, Armin; Cui, Jizhai; Farhan, Alan; Kirk, Eugenie; Chopdekar, Rajesh V.; Masaki, Yusuke; Bingham, Nicholas S.; Scholl, Andreas; Stamps, Robert L.; Heyderman, Laura J.

    2017-11-01

    Modern nanofabrication techniques have opened the possibility to create novel functional materials, whose properties transcend those of their constituent elements. In particular, tuning the magnetostatic interactions in geometrically frustrated arrangements of nanoelements called artificial spin ice can lead to specific collective behaviour, including emergent magnetic monopoles, charge screening and transport, as well as magnonic response. Here, we demonstrate a spin-ice-based active material in which energy is converted into unidirectional dynamics. Using X-ray photoemission electron microscopy we show that the collective rotation of the average magnetization proceeds in a unique sense during thermal relaxation. Our simulations demonstrate that this emergent chiral behaviour is driven by the topology of the magnetostatic field at the edges of the nanomagnet array, resulting in an asymmetric energy landscape. In addition, a bias field can be used to modify the sense of rotation of the average magnetization. This opens the possibility of implementing a magnetic Brownian ratchet, which may find applications in novel nanoscale devices, such as magnetic nanomotors, actuators, sensors or memory cells.

  14. Unified description of bulk and interface-enhanced spin pumping

    NARCIS (Netherlands)

    Watts, SM; Grollier, J; van der Wal, CH; van Wees, BJ

    2006-01-01

    We describe a mechanism for generating nonequilibrium electron-spin accumulation in semiconductors or metals by rf magnetic field pumping. With a semiclassical model we show that a rotating applied magnetic field (or the precessing magnetization inside a weak ferromagnet) generates a dc spin

  15. Slow Manifold and Hannay Angle in the Spinning Top

    Science.gov (United States)

    Berry, M. V.; Shukla, P.

    2011-01-01

    The spin of a top can be regarded as a fast variable, coupled to the motion of the axis which is slow. In pure precession, the rotation of the axis round a cone (without nutation), can be considered as the result of a reaction from the fast spin. The resulting restriction of the total state space of the top is an illustrative example, at…

  16. Spin-wave propagation and spin-polarized electron transport in single-crystal iron films

    Science.gov (United States)

    Gladii, O.; Halley, D.; Henry, Y.; Bailleul, M.

    2017-11-01

    The techniques of propagating spin-wave spectroscopy and current-induced spin-wave Doppler shift are applied to a 20-nm-thick Fe/MgO(001) film. The magnetic parameters extracted from the position of the spin-wave resonance peaks are very close to those tabulated for bulk iron. From the zero-current propagating wave forms, a group velocity of 4 km/s and an attenuation length of about 6 μ m are extracted for 1.6-μ m -wavelength spin wave at 18 GHz. From the measured current-induced spin-wave Doppler shift, we extract a surprisingly high degree of spin polarization of the current of 83 % , which constitutes the main finding of this work. This set of results makes single-crystalline iron a promising candidate for building devices utilizing high-frequency spin waves and spin-polarized currents.

  17. A new spin on nuclei

    International Nuclear Information System (INIS)

    Clark, R.; Wadsworth, B.

    1998-01-01

    Magnetic rotation is a new phenomenon that is forcing physicists to rethink their understanding of what goes on inside the nucleus The rotation of quantum objects has a long and distinguished history in physics. In 1912 the Danish scientist Niels Bjerrum was the first to recognize that the rotation of molecules is quantized. In 1938 Edward Teller and John Wheeler observed similar features in the spectra of excited nuclei, and suggested that this was caused by the nucleus rotating. But a more complete explanation had to wait until 1951, when Aage Bohr (the son of Niels) pointed out that rotation was a consequence of the nucleus deforming from its spherical shape. We owe much of our current understanding of nuclear rotation to the work of Bohr and Ben Mottelson, who shared the 1975 Nobel Prize for Physics with James Rainwater for developing a model of the nucleus that combined the individual and collective motions of the neutrons and protons inside the nucleus. What makes it possible for a nucleus to rotate? Quantum mechanically, a perfect sphere cannot rotate because it appears the same when viewed from any direction and there is no point of reference against which its change in position can be detected. To see the rotation the spherical symmetry must be broken to allow an orientation in space to be defined. For example, a diatomic molecule, which has a dumbbell shape, can rotate about the two axes perpendicular to its axis of symmetry. A quantum mechanical treatment of a diatomic molecule leads to a very simple relationship between rotational energy, E, and angular momentum. This energy is found to be proportional to J(J + 1), where J is the angular momentum quantum number. The molecule also has a magnetic moment that is proportional to J. These concepts can be applied to the atomic nucleus. If the distribution of mass and/or charge inside the nucleus becomes non-spherical then the nucleus will be able to rotate. The rotation is termed ''collective'' because many

  18. Effect of Orbital Hybridization on Spin-Polarized Tunneling across Co/C60 Interfaces.

    Science.gov (United States)

    Wang, Kai; Strambini, Elia; Sanderink, Johnny G M; Bolhuis, Thijs; van der Wiel, Wilfred G; de Jong, Michel P

    2016-10-26

    The interaction between ferromagnetic surfaces and organic semiconductors leads to the formation of hybrid interfacial states. As a consequence, the local magnetic moment is altered, a hybrid interfacial density of states (DOS) is formed, and spin-dependent shifts of energy levels occur. Here, we show that this hybridization affects spin transport across the interface significantly. We report spin-dependent electronic transport measurements for tunnel junctions comprising C 60 molecular thin films grown on top of face-centered-cubic (fcc) epitaxial Co electrodes, an AlO x tunnel barrier, and an Al counter electrode. Since only one ferromagnetic electrode (Co) is present, spin-polarized transport is due to tunneling anisotropic magnetoresistance (TAMR). An in-plane TAMR ratio of approximately 0.7% has been measured at 5 K under application of a magnetic field of 800 mT. The magnetic switching behavior shows some remarkable features, which are attributed to the rotation of interfacial magnetic moments. This behavior can be ascribed to the magnetic coupling between the Co thin films and the newly formed Co/C 60 hybridized interfacial states. Using the Tedrow-Meservey technique, the tunnel spin polarization of the Co/C 60 interface was found to be 43%.

  19. Wall effects on a rotating sphere

    NARCIS (Netherlands)

    Liu, Qianlong; Prosperetti, Andrea

    2010-01-01

    The flow induced by a spherical particle spinning in the presence of no-slip planar boundaries is studied by numerical means. In addition to the reference case of an infinite fluid, the situations considered include a sphere rotating near one or two infinite plane walls parallel or perpendicular to

  20. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.

    Science.gov (United States)

    Hayashi, Shinichi; Okada, Yasushi

    2015-05-01

    Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. © 2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Application of an Aligned and Unaligned Signal Processing Technique to Investigate Tones and Broadband Noise in Fan and Contra-Rotating Open Rotor Acoustic Spectra

    Science.gov (United States)

    Miles, Jeffrey Hilton; Hultgren, Lennart S.

    2015-01-01

    The study of noise from a two-shaft contra-rotating open rotor (CROR) is challenging since the shafts are not phase locked in most cases. Consequently, phase averaging of the acoustic data keyed to a single shaft rotation speed is not meaningful. An unaligned spectrum procedure that was developed to estimate a signal coherence threshold and reveal concealed spectral lines in turbofan engine combustion noise is applied to fan and CROR acoustic data in this paper (also available as NASA/TM-2015-218865). The NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject supported the current work. The fan and open rotor data were obtained under previous efforts supported by the NASA Quiet Aircraft Technology (QAT) Project and the NASA Environmentally Responsible Aviation (ERA) Project of the Integrated Systems Research Program in collaboration with GE Aviation, respectively. The overarching goal of the Advanced Air Transport (AATT) Project is to explore and develop technologies and concepts to revolutionize the energy efficiency and environmental compatibility of fixed wing transport aircrafts. These technological solutions are critical in reducing the impact of aviation on the environment even as this industry and the corresponding global transportation system continue to grow.

  2. Intrinsic spin lifetimes in GaAs (110) quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Georg; Roemer, Michael; Huebner, Jens; Oestreich, Michael [Institut fuer Festkoerperphysik, Gottfried Wilhelm Leibniz Universitaet Hannover, Hannover (Germany); Schuh, Dieter; Wegscheider, Werner [Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg (Germany)

    2009-07-01

    GaAs(110) quantum wells attract great attention due to the long spin lifetime for electron spins along the growth axis and are, therefore, of interest for future spin based optoelectronic devices. At low temperatures, optical injection of a finite spin polarization yields strongly enhanced spin dephasing due to the Bir Aronov Pikus mechanism that arises from the exchange interaction between electrons and holes. Thus, the intrinsic spin lifetime in GaAs(110) quantum wells has been unknown. In this work, the non-demolition technique of spin noise spectroscopy, which only relies on statistical spin fluctuations, is applied to GaAs(110) quantum wells in order to measure the intrinsic spin lifetimes. Furthermore, the Brownian motion of the electrons modifies the linewidth of the measured spin noise spectra due to time of flight broadening. This effect uniquely allows to study electronic motion at thermal equilibrium.

  3. Majorana spin in magnetic atomic chain systems

    Science.gov (United States)

    Li, Jian; Jeon, Sangjun; Xie, Yonglong; Yazdani, Ali; Bernevig, B. Andrei

    2018-03-01

    In this paper, we establish that Majorana zero modes emerging from a topological band structure of a chain of magnetic atoms embedded in a superconductor can be distinguished from trivial localized zero energy states that may accidentally form in this system using spin-resolved measurements. To demonstrate this key Majorana diagnostics, we study the spin composition of magnetic impurity induced in-gap Shiba states in a superconductor using a hybrid model. By examining the spin and spectral densities in the context of the Bogoliubov-de Gennes (BdG) particle-hole symmetry, we derive a sum rule that relates the spin densities of localized Shiba states with those in the normal state without superconductivity. Extending our investigations to a ferromagnetic chain of magnetic impurities, we identify key features of the spin properties of the extended Shiba state bands, as well as those associated with a localized Majorana end mode when the effect of spin-orbit interaction is included. We then formulate a phenomenological theory for the measurement of the local spin densities with spin-polarized scanning tunneling microscopy (STM) techniques. By combining the calculated spin densities and the measurement theory, we show that spin-polarized STM measurements can reveal a sharp contrast in spin polarization between an accidental-zero-energy trivial Shiba state and a Majorana zero mode in a topological superconducting phase in atomic chains. We further confirm our results with numerical simulations that address generic parameter settings.

  4. Quantum computing with acceptor spins in silicon.

    Science.gov (United States)

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-17

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  5. Experimental Investigations of Flow past Spinning Cylinders

    Science.gov (United States)

    Carlucci, Pasquale; Buckley, Liam; Mehmedagic, Igbal; Carlucci, Donald; Thangam, Siva

    2015-11-01

    Experimental investigations of flow past spinning cylinders is presented in the context of their application and relevance to flow past projectiles. A subsonic wind tunnel is used to perform experiments on flow past spinning cylinders that are sting-mounted and oriented such that their axis of rotation is aligned with the mean flow. The experiments cover a Reynolds number range of up to 300000 and rotation numbers of up to 2 (based on cylinder diameter). The experimental validation of the tunnel characteristics and the benchmarking of the flow field in the tunnel are described. The experimental results for spinning cylinders with both rear-mounted and fore-mounted stings are presented along with available computational and experimental findings. This work was funded in part by U. S. Army ARDEC.

  6. Heat and spin interconversion

    International Nuclear Information System (INIS)

    Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji

    2017-01-01

    Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)

  7. Universality in bipartite mean field spin glasses

    Science.gov (United States)

    Genovese, Giuseppe

    2012-12-01

    In this work, we give a proof of universality with respect to the choice of the statistical distribution of the quenched noise, for mean field bipartite spin glasses. We use mainly techniques of spin glasses theory, as Guerra's interpolation and the cavity approach.

  8. Investigation of antimagnetic rotation in {sup 100}Pd

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, S.; Garg, U.; Afanasjev, A. V.; Frauendorf, S.; Kharraja, B.; Ghugre, S. S.; Chintalapudi, S. N.; Janssens, R. V. F.; Carpenter, M. P.; Kondev, F. G. (and others)

    2001-10-01

    High spin states have been studied in the nucleus {sup 100}Pd with the aim of investigating the novel phenomenon of ''antimagnetic rotation.'' A cascade of four ''rotational-band-like'' transitions is proposed as corresponding to antimagnetic rotation, based on the observed spectroscopic properties and a comparison with calculations in the configuration-dependent cranked Nilsson-Strutinsky formalism.

  9. Accurate and efficient spin integration for particle accelerators

    Directory of Open Access Journals (Sweden)

    Dan T. Abell

    2015-02-01

    Full Text Available Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code gpuSpinTrack. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.

  10. Habitability of extrasolar planets and tidal spin evolution.

    Science.gov (United States)

    Heller, René; Barnes, Rory; Leconte, Jérémy

    2011-12-01

    Stellar radiation has conservatively been used as the key constraint to planetary habitability. We review here the effects of tides, exerted by the host star on the planet, on the evolution of the planetary spin. Tides initially drive the rotation period and the orientation of the rotation axis into an equilibrium state but do not necessarily lead to synchronous rotation. As tides also circularize the orbit, eventually the rotation period does equal the orbital period and one hemisphere will be permanently irradiated by the star. Furthermore, the rotational axis will become perpendicular to the orbit, i.e. the planetary surface will not experience seasonal variations of the insolation. We illustrate here how tides alter the spins of planets in the traditional habitable zone. As an example, we show that, neglecting perturbations due to other companions, the Super-Earth Gl581d performs two rotations per orbit and that any primordial obliquity has been eroded.

  11. Spin lattices of walking droplets

    Science.gov (United States)

    Saenz, Pedro; Pucci, Giuseppe; Goujon, Alexis; Dunkel, Jorn; Bush, John

    2017-11-01

    We present the results of an experimental investigation of the spontaneous emergence of collective behavior in spin lattice of droplets walking on a vibrating fluid bath. The bottom topography consists of relatively deep circular wells that encourage the walking droplets to follow circular trajectories centered at the lattice sites, in one direction or the other. Wave-mediated interactions between neighboring drops are enabled through a thin fluid layer between the wells. The sense of rotation of the walking droplets may thus become globally coupled. When the coupling is sufficiently strong, interactions with neighboring droplets may result in switches in spin that lead to preferred global arrangements, including correlated (all drops rotating in the same direction) or anti-correlated (neighboring drops rotating in opposite directions) states. Analogies with ferromagnetism and anti-ferromagnetism are drawn. Different spatial arrangements are presented in 1D and 2D lattices to illustrate the effects of topological frustration. This work was supported by the US National Science Foundation through Grants CMMI-1333242 and DMS-1614043.

  12. Rotating Shadowband Spectroradiometer (RSS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Kiedron, P; Schlemmer, J; Klassen, M

    2005-01-01

    The rotating shawdowband spectroradiometer (RSS) implements the same automated shadowbanding technique used by the multifilter rotating shadowband radiometer (MFRSR), and so it too provides spectrally-resolved, direct-normal, diffuse-horizontal, and total-horizontal irradiances, and can be calibrated in situ via Langley regression. The irradiance spectra are measured simultaneously at all spectral elements (pixels) in 360-nm to 1050-nm range.

  13. Coherent manipulation of single spins in semiconductors.

    Science.gov (United States)

    Hanson, Ronald; Awschalom, David D

    2008-06-19

    During the past few years, researchers have gained unprecedented control over spins in the solid state. What was considered almost impossible a decade ago, in both conceptual and practical terms, is now a reality: single spins can be isolated, initialized, coherently manipulated and read out using both electrical and optical techniques. Progress has been made towards full control of the quantum states of single and coupled spins in a variety of semiconductors and nanostructures, and towards understanding the mechanisms through which spins lose coherence in these systems. These abilities will allow pioneering investigations of fundamental quantum-mechanical processes and provide pathways towards applications in quantum information processing.

  14. Investigations of Flow past Spinning Cylinders

    Science.gov (United States)

    Mehmedagic, Igbal; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald; Aljallis, Elias; Thangam, Siva

    2013-11-01

    A subsonic wind tunnel is used to perform experiments on flow past spinning cylinders. The blunt cylinders are sting-mounted and oriented such that their axis of rotation is aligned with the mean flow. The experiments cover a Reynolds number range of up to 300000 and rotation numbers of up to 1.2 (based on cylinder diameter). The results for spinning cylinders with both rear-mounted and fore-mounted stings are presented. Computations are performed using a two-equation anisotropic turbulence model that is based on proper representation of the energy spectrum to capture rotation and curvature. The model performance is validated with benchmark experimental flows and implemented for analyzing the flow configuration used in the experimental study. Funded in part by U. S. Army, ARDEC.

  15. Flying spin-qubit gates implemented through Dresselhaus and Rashba spin-orbit couplings

    International Nuclear Information System (INIS)

    Gong, S.J.; Yang, Z.Q.

    2007-01-01

    A theoretical scheme is proposed to implement flying spin-qubit gates based on two semiconductor wires with Dresselhaus and Rashba spin-orbit couplings (SOCs), respectively. It is found that under the manipulation of the Dresselhaus/Rashba SOC, spin rotates around x/y axis in the three-dimensional spin space. By combining the two kinds of manipulations, i.e. connecting the two kinds of semiconductor wires in series, we obtain a universal set of losses flying single-qubit gates including Hadamard, phase, and π/8 gates. A ballistic switching effect of electronic flow is also found in the investigation. Our results may be useful in future spin or nanoscale electronics

  16. Field control of anisotropic spin transport and spin helix dynamics in a modulation-doped GaAs quantum well

    Science.gov (United States)

    Anghel, S.; Passmann, F.; Singh, A.; Ruppert, C.; Poshakinskiy, A. V.; Tarasenko, S. A.; Moore, J. N.; Yusa, G.; Mano, T.; Noda, T.; Li, X.; Bristow, A. D.; Betz, M.

    2018-03-01

    Electron spin transport and dynamics are investigated in a single, high-mobility, modulation-doped, GaAs quantum well using ultrafast two-color Kerr-rotation microspectroscopy, supported by qualitative kinetic theory simulations of spin diffusion and transport. Evolution of the spins is governed by the Dresselhaus bulk and Rashba structural inversion asymmetries, which manifest as an effective magnetic field that can be extracted directly from the experimental coherent spin precession. A spin-precession length λSOI is defined as one complete precession in the effective magnetic field. It is observed that application of (i) an out-of-plane electric field changes the spin decay time and λSOI through the Rashba component of the spin-orbit coupling, (ii) an in-plane magnetic field allows for extraction of the Dresselhaus and Rashba parameters, and (iii) an in-plane electric field markedly modifies both the λSOI and diffusion coefficient.

  17. Evaluation of the rotating disk sorptive extraction technique with polymeric sorbent for multiresidue determination of pesticides in water by ultra-high-performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Donato, Filipe F; Bandeira, Nelson M G; Dos Santos, Gabriel C; Prestes, Osmar D; Adaime, Martha B; Zanella, Renato

    2017-09-22

    The use of pesticides has been associated with the increase of productivity of crops and control of vectors that cause diseases. However, excessive use of these compounds can cause human health and environmental problems, especially regarding to water resources. In this work, a method for multiresidue determination of 62 pesticides in surface water using the rotating disk sorptive extraction (RDSE) technique for sample preparation and ultra-high-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) for analysis was optimized and validated. The parameters time and rotational disk velocity for the extraction step, types and amounts of sorbents, sample pH, ionic strength, time and velocity of the rotating disk in the desorption step, as well different desorption solvents were evaluated. The best results were obtained using 50mL of sample, acidified at pH 2.0, and 2.5g of sodium chloride. The selected velocity of rotation in the extraction step was 1600rpm for 80min. Inside the disk cavity, a small amount (20mg) of the polymeric sorbent Oasis ® HLB was used. The desorption step was performed immerging the disk in 3mL of methanol and rotating the disk at 1600rpm for 60min. Procedural calibration curves showed linearity between 0.05 or 0.1-2μgL -1 , with r 2 >0.99 for all compounds. The method presented practical limit of quantification of 0.05 or 0.1μgL -1 and suitable accuracy and precision, with recoveries from 70.1 to 119.9% and RSD≤20% for the levels 0.05, 0.1, 0.5 and 2μgL -1 . The validated method was applied to surface water samples from different river and residues of atrazine, azoxystrobin, clomazone, difenoconazole, epoxiconazole, propoxur, simazine and tebuconazole were found in the range of 0.06-0.35μgL -1 . The results indicate that the proposed method is suitable for the determination of pesticide residues in surface water, allowing an easy and simultaneously preparation of several samples with low material consumption

  18. Spin-forming Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Switzner, Nathan; Henry, Dick

    2009-03-20

    In a second development order, spin-forming equipment was again evaluated using the test shape, a hemispherical shell. In this second development order, pure vanadium and alloy titanium (Ti-6Al-4V) were spin-formed, as well as additional copper and 21-6-9 stainless. In the first development order the following materials had been spin-formed: copper (alloy C11000 ETP), 6061 aluminum, 304L stainless steel, 21-6-9 stainless steel, and tantalum-2.5% tungsten. Significant challenges included properly adjusting the rotations-per-minute (RPM), cracking at un-beveled edges and laser marks, redressing of notches, surface cracking, non-uniform temperature evolution in the titanium, and cracking of the tailstock. Lessons learned were that 300 RPM worked better than 600 RPM for most materials (at the feed rate of 800 mm/min); beveling the edges to lower the stress reduces edge cracking; notches, laser marks, or edge defects in the preform doom the process to cracking and failure; coolant is required for vanadium spin-forming; increasing the number of passes to nine or more eliminates surface cracking for vanadium; titanium develops a hot zone in front of the rollers; and the tailstock should be redesigned to eliminate the cylindrical stress concentrator in the center.

  19. Analysis of spin-Hamiltonian and molecular orbital coefficients of Cu2+ doped C8H11KO8 single crystal through EPR technique

    Science.gov (United States)

    Juliet sheela, K.; Krishnan, S. Radha; Shanmugam, V. M.; Subramanian, P.

    2018-04-01

    Electron paramagnetic resonance (EPR) studies have been investigated at X-band microwave frequency on Cu2+ ion incorporated into the single crystal of potassium succinate-succinic acid (KSSA) at room temperature. The angular variation of the EPR spectra has shown two magnetically in-equivalent Cu2+ sites in the KSSA single crystal system. The spin Hamiltonian parameters g and A are determined which reveals that the site I and site II occupied in rhombic and axial local field symmetry around the impurity ion. Among the two paramagnetic impurity ions, sites one occupies at substituitional position in the place of monovalent cation (K+) in the crystal whereas the other enters in its lattice interstitially by the correlation of EPR and crystal structure data. From the calculated principle values gxx, gyy, gzz and Axx, Ayy, Azz of both the sites, the admixture coefficients and molecular orbital coefficients were evaluated which gives the information of ground state wave function and types of bonding of impurity ions with the ligands.

  20. Spin trapping in γ-irradiated system

    International Nuclear Information System (INIS)

    Taniguchi, Hitoshi

    1998-01-01

    Spin trapping techniques, allowing one to visualize transient free radical populations by reacting short-lived radicals with a spin trap to produce persistent spin adduct radicals, require that the rate constant for parent radical addition to the spin trap be sufficiently large. The study on the rate of spin trapping reactions, dependent upon steric and electronic (polar) interactions in the complex, has been extended to nitrone spin trapping using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap. We concentrated on the trapping of carboxyalkyl radicals which feature strong hydrogen bonding between the hydroxyl group of the spin addend carboxyl function and the aminosyl oxygen, and a strongly electron withdrawing effect of the spin addend on the DMPO ring. These two features in these radicals, enhancing the polarization of the N 1 -C 2 bond to produce spin adduct fragmentation, were found to be significantly more pronounced than in the case of hydroxylalkyl radical adducts to DMPO. (J.P.N.)

  1. Spin chains and string theory.

    Science.gov (United States)

    Kruczenski, Martin

    2004-10-15

    Recently, an important test of the anti de Sitter/conformal field theory correspondence has been done using rotating strings with two angular momenta. We show that such a test can be described more generally as the agreement between two actions: one a low energy description of a spin chain appearing in the field theory side, and the other a limit of the string action in AdS5xS5. This gives a map between the mean value of the spin in the boundary theory and the position of the string in the bulk, and shows how a string action can emerge from a gauge theory in the large-N limit.

  2. Nuclear spin pumping and electron spin susceptibilities

    NARCIS (Netherlands)

    Danon, J.; Nazarov, Y.V.

    2011-01-01

    In this work we present a new formalism to evaluate the nuclear spin dynamics driven by hyperfine interaction with nonequilibrium electron spins. To describe the dynamics up to second order in the hyperfine coupling it suffices to evaluate the susceptibility and fluctuations of the electron spin.

  3. An optimized velocity selective arterial spin labeling module with reduced eddy current sensitivity for improved perfusion quantification.

    Science.gov (United States)

    Meakin, James A; Jezzard, Peter

    2013-03-01

    Velocity-selective (VS) arterial spin labeling is a promising method for measuring perfusion in areas of slow or collateral flow by eliminating the bolus arrival delay associated with other spin labeling techniques. However, B(0) and B(1) inhomogeneities and eddy currents during the VS preparation hinder accurate quantification of perfusion with VS arterial spin labeling. In this study, it is demonstrated through simulations and experiments in healthy volunteers that eddy currents cause erroneous tagging of static tissue. Consequently, mean gray matter perfusion is overestimated by up to a factor of 2, depending on the VS preparation used. A novel eight-segment B(1) insensitive rotation VS preparation is proposed to reduce eddy current effects while maintaining the B(0) and B(1) insensitivity of previous preparations. Compared to two previous VS preparations, the eight-segment B(1) insensitive rotation is the most robust to eddy currents and should improve the quality and reliability of VS arterial spin labeling measurements in future studies. Copyright © 2012 Wiley Periodicals, Inc.

  4. Spin Hall effects in metallic antiferromagnets – perspectives for future spin-orbitronics

    Directory of Open Access Journals (Sweden)

    Joseph Sklenar

    2016-05-01

    Full Text Available We investigate angular dependent spin-orbit torques from the spin Hall effect in a metallic antiferromagnet using the spin-torque ferromagnetic resonance technique. The large spin Hall effect exists in PtMn, a prototypical CuAu-I-type metallic antiferromagnet. By applying epitaxial growth, we previously reported an appreciable difference in spin-orbit torques for c- and a-axis orientated samples, implying anisotropic effects in magnetically ordered materials. In this work we demonstrate through bipolar-magnetic-field experiments a small but noticeable asymmetric behavior in the spin-transfer-torque that appears as a hysteresis effect. We also suggest that metallic antiferromagnets may be good candidates for the investigation of various unidirectional effects related to novel spin-orbitronics phenomena.

  5. Electron spin resonance and spin-valley physics in a silicon double quantum dot.

    Science.gov (United States)

    Hao, Xiaojie; Ruskov, Rusko; Xiao, Ming; Tahan, Charles; Jiang, HongWen

    2014-05-14

    Silicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance. An anticrossing of the driven dot energy levels is observed when the Zeeman and valley splittings coincide. A detected anticrossing splitting of 60 MHz is interpreted as a direct measure of spin and valley mixing, facilitated by spin-orbit interaction in the presence of non-ideal interfaces. A lower bound of spin dephasing time of 63 ns is extracted. We also describe a possible experimental evidence of an unconventional spin-valley blockade, despite the assumption of non-ideal interfaces. This understanding of silicon spin-valley physics should enable better control and read-out techniques for the spin qubits in an all CMOS silicon approach.

  6. Gravitational lensing by rotating wormholes

    Science.gov (United States)

    Jusufi, Kimet; Ã-vgün, Ali

    2018-01-01

    In this paper the deflection angle of light by a rotating Teo wormhole spacetime is calculated in the weak limit approximation. We mainly focus on the weak deflection angle by revealing the gravitational lensing as a partially global topological effect. We apply the Gauss-Bonnet theorem (GBT) to the optical geometry osculating the Teo-Randers wormhole optical geometry to calculate the deflection angle. Furthermore we find the same result using the standard geodesic method. We have found that the deflection angle can be written as a sum of two terms, namely the first term is proportional to the throat of the wormhole and depends entirely on the geometry, while the second term is proportional to the spin angular momentum parameter of the wormhole. A direct observation using lensing can shed light and potentially test the nature of rotating wormholes by comparing with the black holes systems.

  7. Accelerating and rotating black holes

    International Nuclear Information System (INIS)

    Griffiths, J B; Podolsky, J

    2005-01-01

    An exact solution of Einstein's equations which represents a pair of accelerating and rotating black holes (a generalized form of the spinning C-metric) is presented. The starting point is a form of the Plebanski-Demianski metric which, in addition to the usual parameters, explicitly includes parameters which describe the acceleration and angular velocity of the sources. This is transformed to a form which explicitly contains the known special cases for either rotating or accelerating black holes. Electromagnetic charges and a NUT parameter are included, the relation between the NUT parameter l and the Plebanski-Demianski parameter n is given, and the physical meaning of all parameters is clarified. The possibility of finding an accelerating NUT solution is also discussed

  8. Drift-Induced Enhancement of Cubic Dresselhaus Spin-Orbit Interaction in a Two-Dimensional Electron Gas

    Science.gov (United States)

    Kunihashi, Yoji; Sanada, Haruki; Tanaka, Yusuke; Gotoh, Hideki; Onomitsu, Koji; Nakagawara, Keita; Kohda, Makoto; Nitta, Junsaku; Sogawa, Tetsuomi

    2017-11-01

    We investigated the effect of an in-plane electric field on drifting spins in a GaAs quantum well. Kerr rotation images of the drifting spins revealed that the spin precession wavelength increases with increasing drift velocity regardless of the transport direction. A model developed for drifting spins with a heated electron distribution suggests that the in-plane electric field enhances the effective magnetic field component originating from the cubic Dresselhaus spin-orbit interaction.

  9. Tibial rotational osteotomy and distal tuberosity transfer for patella subluxation secondary to excessive external tibial torsion: surgical technique and clinical outcome.

    Science.gov (United States)

    Drexler, M; Dwyer, T; Dolkart, O; Goldstein, Y; Steinberg, E L; Chakravertty, R; Cameron, J C

    2014-11-01

    Recurrent patella subluxation may be secondary to excessive external tibial torsion. The purpose of this study is to evaluate the clinical and radiographic outcome of patients undergoing tibial derotation osteotomy and tibial tuberosity transfer for recurrent patella subluxation in association with excessive external tibial torsion. A combined tibial derotation osteotomy and tibial tuberosity transfer was performed in 15 knees (12 patients) with recurrent patella subluxation secondary to excessive external tibial torsion. Clinical evaluation was carried out using preoperative and post-operative Knee Society Score (KSS), Kujala Patellofemoral score, the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) questionnaire, the short form-12 (SF-12) and a visual analogue score (VAS) pain scale. The median follow-up period was 84 months (range 15-156) and median patient age was 34 years (range 19-57 years). The median preoperative external tibial torsion was 62° (range 55°-70°), with a median rotational correction of 36° (range 30°-45°) after surgery. Significant improvement (p 45° who underwent tibial derotation osteotomy and tibial tuberosity transfer achieved a satisfactory outcome in terms of pain relief and improved function. A significant complication was seen in 2/15 patients. Case series, Level IV.

  10. Superselective pseudocontinuous arterial spin labeling

    NARCIS (Netherlands)

    Helle, M.; Norris, D.G.; Rufer, S.; Alfke, K.; Jansen, O.; van Osch, M.J.

    2010-01-01

    A new technique for the imaging of flow territories of individual extra- and intracranial arteries is presented. The method is based on balanced pseudocontinuous arterial spin labeling but employs additional time-varying gradients in between the radiofrequency pulses of the long labeling train. The

  11. Deformed ground states and double backbending at high spins in light Kr isotopes

    CERN Document Server

    Hamilton, J H; Cleemann, L; Döring, J; Eberth, J; Frauendorf, S; Funke, L; Heck, T; Kim, H J; Lin, J; Maguire, C F; Neumann, W; Nolte, M; Piercey, R B; Ramayya, A V; Rester, A C; Robinson, R L; Roth, J; Soundranayagam, R; Sun, X J; Wells, J C; Winter, G; Zhao, Z Z

    1981-01-01

    The energy levels in /sup 74,76/Kr have been studied with a range of in-beam, gamma -spectroscopy techniques following heavy-ion reactions and in /sup 76/Kr via the radioactive decay of /sup 76/Rb. Breaks in the level energies and moments of inertia in /sup 74,76/Kr are observed at low spins. These data can be understood in terms of the crossing of bands built on near-spherical and deformed shapes with the ground states having very large deformation. In /sup 74/Kr the yrast cascade is observed to a tentative 20/sup +/ level. Double backbending of J is observed at spins of 12/sup +/ and 16/sup +/. These changes are interpreted in terms of rotation-aligned structures. (17 refs).

  12. On Physical Interpretation of the In-Site Measurement of Earth Rotation by Ring Laser Gyrometers

    Science.gov (United States)

    Chao, B. F.

    2004-01-01

    Large ring laser gyrometers under development have demonstrated the capability of detecting minute ground motions and deformations on a wide range of timescales. The next challenge and goal is to measure the Earth's rotation variations to a precision that rivals that of the present space-geodesy techniques, thus providing an in-situ (and cost effective alternatives of Earth rotation measurement for geophysical research and geodetic applications. Aside from thermal and mechanical instabilities, "undesirable" ground motion and tilt that appear in the signal will need to be removed before any variation in Earth rotation can be detected. Removal of these signals, some of them are larger than the sought rotation signals, has been a typical procedure in many precise geophysical instruments, such as gravimeters, seismometers, and tiltmeters. The remaining Earth rotation signal resides in both the spin around the axis and in the orientation of the axis. In the case of the latter, the in-situ measurement is complementary to the space-geodetic observables in terms of polar motion and nutation, a fact to be exploited.

  13. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  14. TRISP: Three axes spin echo spectrometer

    Directory of Open Access Journals (Sweden)

    Thomas Keller

    2015-12-01

    Full Text Available TRISP, operated by the Max-Planck-Institute for Solid State Research, is a high-resolution neutron spectrometer combining the three axes and neutron resonance spin echo (NRSE techniques.

  15. Resonant pinning spectroscopy with spin-vortex pairs

    Science.gov (United States)

    Holmgren, E.; Bondarenko, A.; Ivanov, B. A.; Korenivski, V.

    2018-03-01

    Vortex pairs in magnetic nanopillars with strongly coupled cores and pinning of one of the cores by a morphological defect, are used to perform resonant pinning spectroscopy, in which a microwave excitation applied to the nanopillar produces pinning or depinning of the cores only when the excitation is in resonance with the rotational or gyrational eigenmodes of the specific initial state of the core-core pair. The shift in the eigenmode frequencies between the pinned and depinned states is determined experimentally and explained theoretically, and illustrates the potential for multicore spin-vortex memory with resonant writing of information onto various stable vortex pair states. Further, it is shown how the same resonant spectroscopy techniques applied to a vortex pair can be used as a sensitive nanoscale probe for characterizing morphological defects in magnetic films.

  16. Study of the nuclear structure far from stability: Coulomb excitation of neutron-rich Rb isotopes around N=60; Production of nuclear spin polarized beams using the tilted foils technique

    International Nuclear Information System (INIS)

    Sotty, C.

    2013-01-01

    The underlying structure in the region A ∼ 100, N ∼ 60 has been under intensive and extensive investigation, mainly by β-decay and γ-ray spectroscopy from fission processes. Around N ∼ 60, by adding just few neutrons, protons a rapid shape change occurs from spherical-like to well deformed g.s. shape. Shape coexistence has been observed in the Sr and Zr nuclei, and is expected to take place in the whole region. The mechanisms involved in the appearance of the deformation is not well understood. The interplay between down-sloping and up-sloping neutron Nilsson orbital is evoked as one of the main reasons for the sudden shape change. However, a clear identification of the active proton and neutron orbitals was still on-going. For that purpose, the neutron rich 93;95;97;99 Rb isotopes have been studied by Coulomb excitation at CERN (ISOLDE) using the REX-ISOLDE post-accelerator and the MINIBALL setup. The completely unknown structures of 97;99 Rb have been populated and observed. Prompt γ-ray coincidences of low-lying states have been observed and time-correlated in order to build level schemes. The associated transition strengths have been extracted with the GOSIA code. The observed matrix elements of the electromagnetic operator constituted new inputs of further theoretical calculations giving new insight on the involved orbitals. The sensitivity of such experiment can be increased using nuclear spin polarized radioactive ion beam. For that purpose the Tilted Foils Technique (TFT) of polarization has been investigated at CERN. This technique consists to spin polarize the ion beam, passing through thin foils tilted at an oblique angle with respect to the beam direction. The initially obtained atomic polarization is transferred to the nucleus by hyperfine interaction. This technique does not depend on the chemical nature of the element. Short lived nuclei can be polarized in-flight without any need to be stopped in a catcher. It opens up the possibility to

  17. Control of spin injection by direct current in lateral spin valves

    OpenAIRE

    Casanova, Fèlix; Sharoni, Amos; Erekhinsky, Mikhail; Schuller, Ivan K.

    2008-01-01

    The spin injection and accumulation in metallic lateral spin valves with transparent interfaces is studied using d.c. injection current. Unlike a.c.-based techniques, this allows investigating the effects of the direction and magnitude of the injected current. We find that the spin accumulation is reversed by changing the direction of the injected current, whereas its magnitude does not change. The injection mechanism for both current directions is thus perfectly symmetric, leading to the sam...

  18. Solid state NMR, basic theory and recent progress for quadrupole nuclei with half-integer spin

    International Nuclear Information System (INIS)

    Dieter, F.

    1998-01-01

    This review describes the basic theory and some recently developed techniques for the study of quadrupole nuclei with half integer spins in powder materials. The latter is connected to the introduction of the double rotation (DOR) by A. Samoson et al. (1) and to the introduction of the multiple quantum magic-angle spinning (MQ MAS) technique by L. Frydman et. al. (2). For integer spins, especially the solid-state deuterium magnetic resonance, we refer to the review of G.L. Hoatson and R.L. Vold: '' 2 H-NMR Spectroscopy of Solids and Liquid Crystals'' (3). For single crystals we refer to O. Kanert and M. Mehring: ''Static quadrupole effects in disordered cubic solids''(4) and we would like also to mention the ''classic'' review of M.H. Cohen and F. Reif: ''Quadrupole effects in NMR studies of solids'' (5). Some more recent reviews in the field under study are D. Freude and J. Haase ''Quadrupole effects in solid-state NMR'' (6). Ch. Jager: ''Satellite Transition Spectroscopy of Quadrupolar Nuclei'' (7) and B.F. Chmelka and J.W. Zwanziger: ''Solid State NMR Line Narrowing Methods for Quadrupolar Nuclei - Double Rotation and Dynamic-Angle Spinning'' (8). A survey of nuclear quadrupole frequency data published before the end of 1982 is given by H. Chihara and N. Nakamura in Landolt-Bornstein, Vol. 20 (9). Values of the chemical shift of quadrupole nuclei in solids can be found in books such as ''Multinuclear NMR'' edited by J. Mason (10). In section 9 of ref (6) some electric field gradient and chemical shift data published from 1983 to 1992 for the most studied quadrupole nuclei sup 27 Al, sup 23 Na, and sup 17 O are given

  19. Application of the postulates to some simple cases: spin 1/2 and two level systems

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Franck.

    1977-01-01

    Particle of spin 1/2 (quantization of kinetic momentum), illustration of the postulates of quantum mechanics on the spin 1/2 case and study of two level systems are presented. In complement are exposed: Pauli matrix; diagonalization of 2x2 hermitian matrix; fictitious spin 1/2 associated with a two level system; the two spin 1/2 system; density matrix of spin 1/2; spin 1/2 in static magnetic field and rotating field (magnetic resonance); study of the ammonia molecule by a simple model; effects of a coupling between a steady and a unsteady state [fr

  20. On the distribution of stellar-sized black hole spins

    OpenAIRE

    Nielsen, Alex B.

    2016-01-01

    Black hole spin will have a large impact on searches for gravitational waves with advanced detectors. While only a few stellar mass black hole spins have been measured using X- ray techniques, gravitational wave detectors have the capacity to greatly increase the statistics of black hole spin measurements. We show what we might learn from these measurements and how the black hole spin values are influenced by their formation channels.

  1. On the distribution of stellar-sized black hole spins

    International Nuclear Information System (INIS)

    Nielsen, Alex B.

    2016-01-01

    Black hole spin will have a large impact on searches for gravitational waves with advanced detectors. While only a few stellar mass black hole spins have been measured using X- ray techniques, gravitational wave detectors have the capacity to greatly increase the statistics of black hole spin measurements. We show what we might learn from these measurements and how the black hole spin values are influenced by their formation channels. (paper)

  2. Synthesis and optical characterization of ternary chalcogenide Cu3BiS3 thin film by spin coating

    Science.gov (United States)

    Rawal, Neha; Hadi, Mohammed Kamal; Modi, B. P.

    2017-05-01

    In this work, ternary Chalcogenide Cu3BiS3(CBS) thin films have been prepared and modified by using spin coating technique. Lucratively, spin coating technique is easy going and simple though it hasn't given an enclosure and extensive focus of researches for Cu3BiS3 thin films formation. The surface smoothness and the homogeneity of the obtained thin films have been optimized throughout varying the annealing temperature, concentration and rotation speed. It had been found that as prepared films the value of the energy band gap is 1.4 eV, the absorption coefficient 105 cm-1. Each values of the EBG (Energy Band Gap) and AC (Absorption coefficient) was found in quite agreement with the published work of CBS thin film formation by other methods as CBD, dip coating etc. It signifies that Cu3BiS3 films can be used as an absorber layer for thin film solar cell.

  3. Flow of micropolar fluid over an off centered rotating disk with modified Darcy's law

    Directory of Open Access Journals (Sweden)

    N.A. Khan

    2017-12-01

    Full Text Available The problem of the steady, incompressible, three dimensional stagnation point flow of a micropolar fluid over an off centered infinite rotating disk in a porous medium is studied in this article. Injection/suction is applied uniformly throughout the surface of porous disk. The Darcy's resistance for the micropolar fluid is also formulated. The partial differential equations are converted into the set of ordinary differential equation by utilizing the suitable transformation. The system of equations is analytically solved by the means of a non-perturbative technique, homotopy analysis method (HAM. The influence of rotational parameter, material parameter, spin gradient viscosity parameter, micro-inertia density parameter, porosity parameter and suction/injection parameter on velocity functions is presented in graphical form and discussed in detail. Verification of the solutions is made by a numerical comparison with the previous study.

  4. Modes of uncontrolled rotational motion of the Progress M-29M spacecraft

    Science.gov (United States)

    Belyaev, M. Yu.; Matveeva, T. V.; Monakhov, M. I.; Rulev, D. N.; Sazonov, V. V.

    2018-01-01

    We have reconstructed the uncontrolled rotational motion of the Progress M-29M transport cargo spacecraft in the single-axis solar orientation mode (the so-called sunward spin) and in the mode of the gravitational orientation of a rotating satellite. The modes were implemented on April 3-7, 2016 as a part of preparation for experiments with the DAKON convection sensor onboard the Progress spacecraft. The reconstruction was performed by integral statistical techniques using the measurements of the spacecraft's angular velocity and electric current from its solar arrays. The measurement data obtained in a certain time interval have been jointly processed using the least-squares method by integrating the equations of the spacecraft's motion relative to the center of mass. As a result of processing, the initial conditions of motion and parameters of the mathematical model have been estimated. The motion in the sunward spin mode is the rotation of the spacecraft with an angular velocity of 2.2 deg/s about the normal to the plane of solar arrays; the normal is oriented toward the Sun or forms a small angle with this direction. The duration of the mode is several orbit passes. The reconstruction has been performed over time intervals of up to 1 h. As a result, the actual rotational motion of the spacecraft relative to the Earth-Sun direction was obtained. In the gravitational orientation mode, the spacecraft was rotated about its longitudinal axis with an angular velocity of 0.1-0.2 deg/s; the longitudinal axis executed small oscillated relative to the local vertical. The reconstruction of motion relative to the orbital coordinate system was performed in time intervals of up to 7 h using only the angularvelocity measurements. The measurements of the electric current from solar arrays were used for verification.

  5. Decoherence dynamics of a single spin versus spin ensemble

    NARCIS (Netherlands)

    Dobrovitski, V.V.; Feiguin, A.E.; Awschalom, D.D.; Hanson, R.

    2008-01-01

    We study decoherence of central spins by a spin bath, focusing on the difference between measurement of a single central spin and measurement of a large number of central spins (as found in typical spin-resonance experiments). For a dilute spin bath, the single spin demonstrates Gaussian

  6. Pure spin current manipulation in antiferromagnetically exchange coupled heterostructures

    Science.gov (United States)

    Avilés-Félix, L.; Butera, A.; González-Chávez, D. E.; Sommer, R. L.; Gómez, J. E.

    2018-03-01

    We present a model to describe the spin currents generated by ferromagnet/spacer/ferromagnet exchange coupled trilayer systems and heavy metal layers with strong spin-orbit coupling. By exploiting the magnitude of the exchange coupling (oscillatory RKKY-like coupling) and the spin-flop transition in the magnetization process, it has been possible to produce spin currents polarized in arbitrary directions. The spin-flop transition of the trilayer system originates pure spin currents whose polarization vector depends on the exchange field and the magnetization equilibrium angles. We also discuss a protocol to control the polarization sign of the pure spin current injected into the metallic layer by changing the initial conditions of magnetization of the ferromagnetic layers previously to the spin pumping and inverse spin Hall effect experiments. The small differences in the ferromagnetic layers lead to a change in the magnetization vector rotation that permits the control of the sign of the induced voltage components due to the inverse spin Hall effect. Our results can lead to important advances in hybrid spintronic devices with new functionalities, particularly, the ability to control microscopic parameters such as the polarization direction and the sign of the pure spin current through the variation of macroscopic parameters, such as the external magnetic field or the thickness of the spacer in antiferromagnetic exchange coupled systems.

  7. Spin precession and spin waves in a chiral electron gas: Beyond Larmor's theorem

    Science.gov (United States)

    Karimi, Shahrzad; Baboux, Florent; Perez, Florent; Ullrich, Carsten A.; Karczewski, Grzegorz; Wojtowicz, Tomasz

    2017-07-01

    Larmor's theorem holds for magnetic systems that are invariant under spin rotation. In the presence of spin-orbit coupling this invariance is lost and Larmor's theorem is broken: for systems of interacting electrons, this gives rise to a subtle interplay between the spin-orbit coupling acting on individual single-particle states and Coulomb many-body effects. We consider a quasi-two-dimensional, partially spin-polarized electron gas in a semiconductor quantum well in the presence of Rashba and Dresselhaus spin-orbit coupling. Using a linear-response approach based on time-dependent density-functional theory, we calculate the dispersions of spin-flip waves. We obtain analytic results for small wave vectors and up to second order in the Rashba and Dresselhaus coupling strengths α and β . Comparison with experimental data from inelastic light scattering allows us to extract α and β as well as the spin-wave stiffness very accurately. We find significant deviations from the local density approximation for spin-dependent electron systems.

  8. Topological spinon bands and vison excitations in spin-orbit coupled quantum spin liquids

    Science.gov (United States)

    Sonnenschein, Jonas; Reuther, Johannes

    2017-12-01

    Spin liquids are exotic quantum states characterized by the existence of fractional and deconfined quasiparticle excitations, referred to as spinons and visons. Their fractional nature establishes topological properties such as a protected ground-state degeneracy. This work investigates spin-orbit coupled spin liquids where, additionally, topology enters via nontrivial band structures of the spinons. We revisit the Z2 spin-liquid phases that have recently been identified in a projective symmetry-group analysis on the square lattice when spin-rotation symmetry is maximally lifted [J. Reuther et al., Phys. Rev. B 90, 174417 (2014), 10.1103/PhysRevB.90.174417]. We find that in the case of nearest-neighbor couplings only, Z2 spin liquids on the square lattice always exhibit trivial spinon bands. Adding second-neighbor terms, the simplest projective symmetry-group solution closely resembles the Bernevig-Hughes-Zhang model for topological insulators. Assuming that the emergent gauge fields are static, we investigate vison excitations, which we confirm to be deconfined in all investigated spin phases. Particularly, if the spinon bands are topological, the spinons and visons form bound states consisting of several spinon-Majorana zero modes coupling to one vison. The existence of such zero modes follows from an exact mapping between these spin phases and topological p +i p superconductors with vortices. We propose experimental probes to detect such states in real materials.

  9. Magnons, Spin Current and Spin Seebeck Effect

    Science.gov (United States)

    Maekawa, Sadamichi

    2012-02-01

    When metals and semiconductors are placed in a temperature gradient, the electric voltage is generated. This mechanism to convert heat into electricity, the so-called Seebeck effect, has attracted much attention recently as the mechanism for utilizing wasted heat energy. [1]. Ferromagnetic insulators are good conductors of spin current, i.e., the flow of electron spins [2]. When they are placed in a temperature gradient, generated are magnons, spin current and the spin voltage [3], i.e., spin accumulation. Once the spin voltage is converted into the electric voltage by inverse spin Hall effect in attached metal films such as Pt, the electric voltage is obtained from heat energy [4-5]. This is called the spin Seebeck effect. Here, we present the linear-response theory of spin Seebeck effect based on the fluctuation-dissipation theorem [6-8] and discuss a variety of the devices. [4pt] [1] S. Maekawa et al, Physics of Transition Metal Oxides (Springer, 2004). [0pt] [2] S. Maekawa: Nature Materials 8, 777 (2009). [0pt] [3] Concept in Spin Electronics, eds. S. Maekawa (Oxford University Press, 2006). [0pt] [4] K. Uchida et al., Nature 455, 778 (2008). [0pt] [5] K. Uchida et al., Nature Materials 9, 894 (2010) [0pt] [6] H. Adachi et al., APL 97, 252506 (2010) and Phys. Rev. B 83, 094410 (2011). [0pt] [7] J. Ohe et al., Phys. Rev. B (2011) [0pt] [8] K. Uchida et al., Appl. Phys. Lett. 97, 104419 (2010).

  10. Evaluation of layback spin in figure skating

    Directory of Open Access Journals (Sweden)

    Jastšenjski Ksenija

    2011-01-01

    Full Text Available Layback spin is considered as one of the most beautiful and elegant spins performed in figure skating. It is also one of the required spins in competitive short program in female category. Different techniques of executing layback spin with variations in changing the positions of free parts of the body, as well as the evaluation of layback spin in accordance with ISU rules and regulations, which have been used in all International Skating Federation competitions since 2004 (World and European championships, Olympic Games are presented in this paper. Due to very difficult position of the body while performing a layback spin, it is essential that the skaters who want to master it should have excellent agility (especially of the spinal column and shoulder and knee joints and balance. Layback spin performance requires significant skating knowledge, so it cannot be performed by beginners. Depending on the fl exibility and creativity, a skater can execute various positions of the head, arms, body and free leg while performing a layback spin. In some cases, these variations can increase the level of difficulty, and in others only the mark given for executing this spin.

  11. Third-order-harmonic generation in coherently spinning molecules

    Science.gov (United States)

    Prost, E.; Zhang, H.; Hertz, E.; Billard, F.; Lavorel, B.; Bejot, P.; Zyss, Joseph; Averbukh, Ilya Sh.; Faucher, O.

    2017-10-01

    The rotational Doppler effect occurs when circularly polarized light interacts with a rotating anisotropic material. It is manifested by the appearance of a spectral shift ensuing from the transfer of angular momentum and energy between radiation and matter. Recently, we reported terahertz-range rotational Doppler shifts produced in third-order nonlinear optical conversion [O. Faucher et al., Phys. Rev. A 94, 051402(R) (2016), 10.1103/PhysRevA.94.051402]. The experiment was performed in an ensemble of coherently spinning molecules prepared by a short laser pulse exhibiting a twisted linear polarization. The present work provides an extensive analysis of the rotational Doppler effect in third-order-harmonic generation from spinning linear molecules. The underlying physics is investigated both experimentally and theoretically. The implication of the rotational Doppler effect in higher-order processes like high-order-harmonic generation is discussed.

  12. Accurate and efficient spin integration for particle accelerators

    International Nuclear Information System (INIS)

    Abell, Dan T.; Meiser, Dominic; Ranjbar, Vahid H.; Barber, Desmond P.

    2015-01-01

    Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code GPUSPINTRACK. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.

  13. Accurate and efficient spin integration for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Abell, Dan T.; Meiser, Dominic [Tech-X Corporation, Boulder, CO (United States); Ranjbar, Vahid H. [Brookhaven National Laboratory, Upton, NY (United States); Barber, Desmond P. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-01-15

    Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code GPUSPINTRACK. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.

  14. Spin state switching in iron coordination compounds

    Directory of Open Access Journals (Sweden)

    Philipp Gütlich

    2013-02-01

    Full Text Available The article deals with coordination compounds of iron(II that may exhibit thermally induced spin transition, known as spin crossover, depending on the nature of the coordinating ligand sphere. Spin transition in such compounds also occurs under pressure and irradiation with light. The spin states involved have different magnetic and optical properties suitable for their detection and characterization. Spin crossover compounds, though known for more than eight decades, have become most attractive in recent years and are extensively studied by chemists and physicists. The switching properties make such materials potential candidates for practical applications in thermal and pressure sensors as well as optical devices.The article begins with a brief description of the principle of molecular spin state switching using simple concepts of ligand field theory. Conditions to be fulfilled in order to observe spin crossover will be explained and general remarks regarding the chemical nature that is important for the occurrence of spin crossover will be made. A subsequent section describes the molecular consequences of spin crossover and the variety of physical techniques usually applied for their characterization. The effects of light irradiation (LIESST and application of pressure are subjects of two separate sections. The major part of this account concentrates on selected spin crossover compounds of iron(II, with particular emphasis on the chemical and physical influences on the spin crossover behavior. The vast variety of compounds exhibiting this fascinating switching phenomenon encompasses mono-, oligo- and polynuclear iron(II complexes and cages, polymeric 1D, 2D and 3D systems, nanomaterials, and polyfunctional materials that combine spin crossover with another physical or chemical property.

  15. Manipulation of incoherent and coherent spin ensembles in diluted magnetic semiconductors via ferromagnetic fringe fields; Manipulation inkohaerenter und kohaerenter Spinensembles in verduennt-magnetischen Halbleitern mittels ferromagnetischer Streufelder

    Energy Technology Data Exchange (ETDEWEB)

    Halm, Simon

    2009-05-19

    In this thesis it is demonstrated that fringe fields of nanostructured ferromagnets provide the opportunity to manipulate both incoherent and coherent spin ensembles in a dilute magnetic semiconductor (DMS). Fringe fields of Fe/Tb ferromagnets with a remanent out-of-plane magnetization induce a local magnetization in a (Zn,Cd,Mn)Se DMS. Due to the sp-d exchange interaction, optically generated electron-hole pairs align their spin along the DMS magnetization. One obtains a local, remanent spin polarization which was probed by spatially resolved, polarization sensitive photoluminescence spectroscopy. Fringe fields from in-plane magnetized Co ferromagnets allow to locally modify the precession frequency of the Manganese magnetic moments of the DMS in an external magnetic field. This was probed by time-resolved Kerr rotation technique. The inhomogeneity of the fringe field leads to a shortening of the ensemble decoherence time and to the effect of a time-dependent ensemble precession frequency. (orig.)

  16. J-NSE: Neutron spin echo spectrometer

    Directory of Open Access Journals (Sweden)

    Olaf Holderer

    2015-08-01

    Full Text Available Neutron Spin-Echo (NSE spectroscopy is well known as the only neutron scattering technique that achieves energy resolution of several neV. By using the spin precession of polarized neutrons in magnetic field one can measure tiny velocity changes of the individual neutron during the scattering process. Contrary to other inelastic neutron scattering techniques, NSE measures the intermediate scattering function S(Q,t in reciprocal space and time directly. The Neutron Spin-Echo spectrometer J-NSE, operated by JCNS, Forschungszentrum Jülich at the Heinz Maier-Leibnitz Zentrum (MLZ in Garching, covers a time range (2 ps to 200 ns on length scales accessible by small angle scattering technique. Along with conventional NSE spectroscopy that allows bulk measurements in transmission mode, J-NSE offers a new possibility - gracing incidence spin echo spectroscopy (GINSENS, developed to be used as "push-button" option in order to resolve the depth dependent near surface dynamics.

  17. Quark Deconfinement in Rotating Neutron Stars

    Directory of Open Access Journals (Sweden)

    Richard D. Mellinger

    2017-01-01

    Full Text Available In this paper, we use a three flavor non-local Nambu–Jona-Lasinio (NJL model, an improved effective model of Quantum Chromodynamics (QCD at low energies, to investigate the existence of deconfined quarks in the cores of neutron stars. Particular emphasis is put on the possible existence of quark matter in the cores of rotating neutron stars (pulsars. In contrast to non-rotating neutron stars, whose particle compositions do not change with time (are frozen in, the type and structure of the matter in the cores of rotating neutron stars depends on the spin frequencies of these stars, which opens up a possible new window on the nature of matter deep in the cores of neutron stars. Our study shows that, depending on mass and rotational frequency, up to around 8% of the mass of a massive neutron star may be in the mixed quark-hadron phase, if the phase transition is treated as a Gibbs transition. We also find that the gravitational mass at which quark deconfinement occurs in rotating neutron stars varies quadratically with spin frequency, which can be fitted by a simple formula.

  18. Innovative Measurement Diagnostics for Analysis of Jet Interactions in Rotating Flowfields; TOPICAL

    International Nuclear Information System (INIS)

    AMATUCCI, VINCENT A.; BERESH, STEVEN J.; HENFLING, JOHN F.; ERVEN, ROCKY J.; BOURDON, CHRIS J.

    2002-01-01

    baseline non-rotating experiments to validate the durability of the technologies and techniques. The program successfully investigated a wide variety of instrumentation and experimental techniques and ended with basic experiments for a non-rotating model with jet-on with the onboard jets operating and both rotating and non-rotating model conditions

  19. Computer modeling of the dynamics of surface tension on rotating fluids in low and microgravity environments

    Science.gov (United States)

    Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, Fred W.

    1989-01-01

    Time-dependent evolutions of the profile of the free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low- and microgravity environments, (2) linear functions of increasing and decreasing gravity environments at high- and low-rotating cylinder speeds, and (3) step functions of spin-up and spin-down in a low-gravity environment.

  20. Rotator cuff impingement syndrome: MR imaging

    International Nuclear Information System (INIS)

    Kieft, G.J.; Obermann, W.R.; Rozing, P.M.; Bloem, J.L.

    1987-01-01

    This paper summarizes the authors' experience using MR as a diagnostic tool in evaluating the rotator cuff empingement syndrome. Twenty patients with clinically suspected rotator cuff impingement syndrome were prospectively evaluated using standard radiography, double-contrast arthrography and MR imaging. MR is capable of demonstrating cuff abnormalities due to impingement. The most important findings is an area of abnormal signal intensity on both relatively T1- and T2-weighted spin-echo images. Surgery confirmed that these areas corresponded with inflamed degenerative supraspinatus tendon. Cuff changes can be depicted with MR in patients with arthrographically and radiographically normal shoulders

  1. Rotation and solvation of ammonium ion

    International Nuclear Information System (INIS)

    Perrin, C.L.; Gipe, R.K.

    1987-01-01

    From nitrogen-15 spin-lattice relaxation times and nuclear Overhauser enhancements, the rotational correlations time tau/sub c/ for 15 NH 4 + was determined in s series of solvents. Values of tau/sub c/ range from 0.46 to 20 picoseconds. The solvent dependent of tau/sub c/ cannot be explained in terms of solvent polarity, molecular dipole moment, solvent basicity, solvent dielectric relaxation, or solvent viscosity. The rapid rotation and the variation with solvent can be accounted for by a model that involves hydrogen bonding of an NH proton to more than one solvent molecule in a disordered solvation environment. 25 references, 1 table

  2. Rotating Cavitation Supression Project

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT proposes development of a rotating cavitation (RC) suppressor for liquid rocket engine turbopump inducers. Cavitation instabilities, such as rotating cavitation,...

  3. Spin inelastic electron tunneling spectroscopy on local spin adsorbed on surface.

    Science.gov (United States)

    Fransson, J

    2009-06-01

    The recent experimental conductance measurements taken on magnetic impurities on metallic surfaces, using scanning tunneling microscopy technique and suggesting occurrence of inelastic scattering processes, are theoretically addressed. We argue that the observed conductance signatures are caused by transitions between the spin states that have opened due to, for example, exchange coupling between the local spins and the tunneling electrons, and are directly interpretable in terms of inelastic transitions energies. Feasible measurements using spin-polarized scanning tunneling microscopy that would enable new information about the excitation spectrum of the local spins are discussed.

  4. Rotating Drive for Electrical-Arc Machining

    Science.gov (United States)

    Fransen, C. D.

    1986-01-01

    Rotating drive improves quality of holes made by electrical-arc machining. Mechanism (Uni-tek, rotary head, or equivalent) attached to electrical-arc system. Drive rotates electrode as though it were mechanical drill, while an arc disintegrates metal in workpiece, thereby creating hole. Rotating electrode method often used in electric-discharge machining. NASA innovation is application of technique to electrical-arc machining.

  5. Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas Bagger Stibius

    2015-01-01

    We report significant details of the magnetic structure and spin dynamics of LiFePO4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis...... with earlier susceptibility measurements. Using a spin Hamiltonian, we show that the spin dimensionality is intermediate between XY- and Ising-like, with an easy b axis and a hard c axis. It is shown that both next-nearest neighbor exchange couplings in the bc plane are in competition with the strongest...

  6. Generalized spins and yours applications

    International Nuclear Information System (INIS)

    Melnikoff, M.

    1978-01-01

    The correlation between the colinear SU(6) sub(W,STRONG) group, of classification, builded by Melosh in 1974 inside th Null-Plane formalism, and the static SU(6) group classical of classification of the Flat-Plane formalism which is a chiral SU(6) x SU(6) algebra sub-group of Feynman-Gell-Mann-Zweig, is analized. It is shown that is possible to define the 'static limit', in the weak sense, for the SU(6) sub(W,STRONG). Furthermore, rotational symmetries of the Hamiltonian H=α vector. p vector + mβ + ω(x) (1+β) + Ω(x)α vector. x vector are wanted. It is possible to define, in the Flat-Plane formalism a conserved spin but that dont't one relate with the canonical spin by no unitary transformations. The generalized operator of total angular momentum which is conserved, in the Null-Plane formalism in its 'non-orthogonal' version, is found. A generalized spin, conserved, obtained by a exact Melosh transformation appropriate for the case is also found [pt

  7. Spin diffusion in bulk GaN measured with MnAs spin injector

    KAUST Repository

    Jahangir, Shafat

    2012-07-16

    Spin injection and precession in bulk wurtzite n-GaN with different doping densities are demonstrated with a ferromagnetic MnAs contact using the three-terminal Hanle measurement technique. Theoretical analysis using minimum fitting parameters indicates that the spin accumulation is primarily in the n-GaN channel rather than at the ferromagnet (FM)/semiconductor (SC) interface states. Spin relaxation in GaN is interpreted in terms of the D’yakonov-Perel mechanism, yielding a maximum spin lifetime of 44 ps and a spin diffusion length of 175 nm at room temperature. Our results indicate that epitaxial ferromagnetic MnAs is a suitable high-temperature spin injector for GaN.

  8. Electron spin resonance studies on reduction process of nitroxyl spin radicals used in molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dhas, M. Kumara; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, NMSSVN College, Nagamalai, Madurai-625019, Tamilnadu (India); Jawahar, A. [Department of Chemistry, NMSSVN College, Nagamalai, Madurai-625019, Tamilnadu (India)

    2014-04-24

    The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM {sup 14}N labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters such as signal intensity ratio, line width, g-value, hyperfine coupling constant and rotational correlation time were determined. The half life time was estimated for 1mM {sup 14}N labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. The ESR study reveals that the TEMPONE has narrowest line width and fast tumbling motion compared with TEMPO and TEMPOL. From the results, TEMPONE has long half life time and high stability compared with TEMPO and TEMPOL radical. Therefore, this study reveals that the TEMPONE radical can act as a good redox sensitive spin probe for molecular imaging.

  9. Electron spin resonance studies on reduction process of nitroxyl spin radicals used in molecular imaging

    Science.gov (United States)

    Dhas, M. Kumara; Jawahar, A.; Benial, A. Milton Franklin

    2014-04-01

    The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM 14N labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters such as signal intensity ratio, line width, g-value, hyperfine coupling constant and rotational correlation time were determined. The half life time was estimated for 1mM 14N labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. The ESR study reveals that the TEMPONE has narrowest line width and fast tumbling motion compared with TEMPO and TEMPOL. From the results, TEMPONE has long half life time and high stability compared with TEMPO and TEMPOL radical. Therefore, this study reveals that the TEMPONE radical can act as a good redox sensitive spin probe for molecular imaging.

  10. Electron spin control and spin-libration coupling of a levitated nanodiamond

    Science.gov (United States)

    Hoang, Thai; Ma, Yue; Ahn, Jonghoon; Bang, Jaehoon; Robicheaux, Francis; Gong, Ming; Yin, Zhang-Qi; Li, Tongcang

    2017-04-01

    Hybrid spin-mechanical systems have great potentials in sensing, macroscopic quantum mechanics, and quantum information science. Recently, we optically levitated a nanodiamond and demonstrated electron spin control of its built-in nitrogen-vacancy (NV) centers in vacuum. We also observed the libration (torsional vibration) of a nanodiamond trapped by a linearly polarized laser beam in vacuum. We propose to achieve strong coupling between the electron spin of a NV center and the libration of a levitated nanodiamond with a uniform magnetic field. With a uniform magnetic field, multiple spins can couple to the torsional vibration at the same time. We propose to use this strong coupling to realize the Lipkin-Meshkov-Glick (LMG) model and generate rotational superposition states. This work is supported by the National Science Foundation under Grant No. 1555035-PHY.

  11. Spin-Mechanical Inertia in Antiferromagnet

    Science.gov (United States)

    Cheng, Ran; Wu, Xiaochuan; Xiao, Di

    Interplay between spin dynamics and mechanical motions is responsible for numerous striking phenomena, which has shaped a rapidly expanding field known as spin-mechanics. The guiding principle of this field has been the conservation of angular momentum that involves both quantum spins and classical mechanical rotations. However, in an antiferromagnet, the macroscopic magnetization vanishes while the order parameter (Néel order) does not carry an angular momentum. It is therefore not clear whether the order parameter dynamics has any mechanical consequence as its ferromagnetic counterparts. Here we demonstrate that the Néel order dynamics affects the mechanical motion of a rigid body by modifying its inertia tensor in the presence of strong magnetocrystalline anisotropy. This effect depends on temperature when magnon excitations are considered. Such a spin-mechanical inertia can produce measurable consequences at nanometer scales. Our discovery establishes spin-mechanical inertia as an essential ingredient to properly describe spin-mechanical effects in AFs, which supplements the known governing physics from angular momentum conservation. This work was supported by the DOE, Basic Energy Sciences, Grant No. DE-SC0012509. D.X. also acknowledges support from a Research Corporation for Science Advancement Cottrell Scholar Award.

  12. Rotational Failure of Rubble-pile Bodies: Influences of Shear and Cohesive Strengths

    Science.gov (United States)

    Zhang, Yun; Richardson, Derek C.; Barnouin, Olivier S.; Michel, Patrick; Schwartz, Stephen R.; Ballouz, Ronald-Louis

    2018-04-01

    The shear and cohesive strengths of a rubble-pile asteroid could influence the critical spin at which the body fails and its subsequent evolution. We present results using a soft-sphere discrete element method to explore the mechanical properties and dynamical behaviors of self-gravitating rubble piles experiencing increasing rotational centrifugal forces. A comprehensive contact model incorporating translational and rotational friction and van der Waals cohesive interactions is developed to simulate rubble-pile asteroids. It is observed that the critical spin depends strongly on both the frictional and cohesive forces between particles in contact; however, the failure behaviors only show dependence on the cohesive force. As cohesion increases, the deformation of the simulated body prior to disruption is diminished, the disruption process is more abrupt, and the component size of the fissioned material is increased. When the cohesive strength is high enough, the body can disaggregate into similar-size fragments, which could be a plausible mechanism to form asteroid pairs or active asteroids. The size distribution and velocity dispersion of the fragments in high-cohesion simulations show similarities to the disintegrating asteroid P/2013 R3, indicating that this asteroid may possess comparable cohesion in its structure and experience rotational fission in a similar manner. Additionally, we propose a method for estimating a rubble pile’s friction angle and bulk cohesion from spin-up numerical experiments, which provides the opportunity for making quantitative comparisons with continuum theory. The results show that the present technique has great potential for predicting the behaviors and estimating the material strengths of cohesive rubble-pile asteroids.

  13. Episodic Spin-up and Spin-down Torque on Earth

    Science.gov (United States)

    Slabinski, Victor J.; Mendonca, Antonio A.

    2018-04-01

    Variations in Earth rotation angle are traditionally expressed by the time difference (ΔT=TT-UT1) between Terrestrial Time (TT) as told by atomic clocks and Universal Time UT1, the time variable used by the Earth-rotation formula. A plot of ΔT versus TT over the past 160 years shows a continuous curve with approximate straight-line segments with different spans of order ~20 years. Removing the tidal and seasonal variations from the data gives these line segments which represent the “decadal variations” in Earth rotation.The slope of a straight-line segment is proportional to the departure of Earth rotation rate from a reference value at the time. The change in slope over the relatively short time between segments indicates an episodic spin-up or spin-down in Earth rotation. The daily combination of VLBI, SLR, and other modern data available since 1973 gives us accurate, daily values of ΔT and the corresponding LOD (Length Of Day) values during these episodes. These allow us to determine the rotational acceleration occurring then.The three largest spin-speed changes found during the VLBI era have the following characteristics:Episode _____________ Duration__ ΔLOD__LOD Rate1983 Dec 30-1984 Jan 28 ... 29 d ...-0.65 ms ..-8.3 ms/y ..........spin-up1989 Mar 15-1989 May 23 ...69 d ....0.68 .......+3.6 ..............spin-down1994 Jan 21-2001 Apr 01 ... 6.5 y ...-2.2 .........-0.36 ..extended spin-upFor the first two episodes listed, we find the acceleration grows from zero (or at least a relatively small value) to its extreme value in ~1 day, stays approximately constant at this value for 29 or 69 days, and then decays back to zero over ~1 day. The acceleration, while it occurs, gives an LOD rate much greater than the 0.02 ms/y rate from tidal friction.The third episode shows that occasionally a several-year-long episode occurs. The acceleration magnitude is smaller but can make a larger total change in LOD (and spin rate). Tidal friction requires >100 y to equal

  14. Two-dimensional spin diffusion in multiterminal lateral spin valves

    Science.gov (United States)

    Saha, D.; Basu, D.; Holub, M.; Bhattacharya, P.

    2008-01-01

    The effects of two-dimensional spin diffusion on spin extraction in lateral semiconductor spin valves have been investigated experimentally and theoretically. A ferromagnetic collector terminal of variable size is placed between the ferromagnetic electron spin injector and detector of a conventional lateral spin valve for spin extraction. It is observed that transverse spin diffusion beneath the collector terminal plays an important role along with the conventional longitudinal spin diffusion in describing the overall transport of spin carriers. Two-dimensional spin diffusion reduces the perturbation of the channel electrochemical potentials and improves spin extraction.

  15. Rotational hysteresis measurements on alumite perpendicular media

    NARCIS (Netherlands)

    van Drent, W.P.; van Drent, W.P.; Sterringa, E.R.; Sterringa, E.R.; Lodder, J.C.; Bottoni, G.; Candolfo, D.; Cecchetti, A.; Masoli, F.

    1991-01-01

    Rotational hysteresis energy loss measurements have been performed to support the analysis of the magnetization processes of Fe- and Co-alumite perpendicular recording media. Two measurement techniques gave comparable results within error limits. The rotational hysteresis integral is severly lowered

  16. On spin dependence of relativistic acoustic geometry

    International Nuclear Information System (INIS)

    Pu, Hung-Yi; Chang, Hsiang-Kuang; Maity, Ishita; Das, Tapas Kumar

    2012-01-01

    This work makes the first ever attempt to understand the influence of the black hole background spacetime in determining the fundamental properties of the embedded relativistic acoustic geometry. To accomplish such task, we investigate the role of the spin angular momentum of the astrophysical black hole (the Kerr parameter a—a representative feature of the background black hole metric) in estimating the value of the acoustic surface gravity (the representative feature of the corresponding analogue spacetime). Since almost all astrophysical black holes are supposed to posses some degree of intrinsic rotation, the influence of the Kerr parameter on classical analogue models is very important to understand. We study the general relativistic, axially symmetric, non-self-gravitating inflow of the hydrodynamic fluid onto a rotating astrophysical black hole from the dynamical systems point of view. In this work the location of the acoustic horizon inside such fluid flow is identified and the associated acoustic surface gravity is estimated. We study the dependence of such surface gravity as a function of the Kerr parameter as well as with other dynamical and thermodynamic variables governing the fluid flow under strong gravity, and demonstrate that for retrograde flow, the surface gravity (and hence the associated analogue Hawking temperature) correlates with the black hole spin in general, whereas for the prograde flow, the surface gravity as well as the analogue temperature correlates with the black hole spin for slow to moderately rotating holes, but anti-correlates with the spin for fast to extremely rotating holes. We found that for certain values of the initial boundary conditions, more than one acoustic horizons, namely two black hole types and one white hole type, may form, and the surface gravity may become formally infinite at the acoustic white hole. We discuss the possible connection between the corresponding analogue Hawking temperature and astrophysically

  17. A graphical simulator for teaching basic and advanced MR imaging techniques

    DEFF Research Database (Denmark)

    Hanson, Lars G

    2007-01-01

    Teaching of magnetic resonance (MR) imaging techniques typically involves considerable handwaving, literally, to explain concepts such as resonance, rotating frames, dephasing, refocusing, sequences, and imaging. A proper understanding of MR contrast and imaging techniques is crucial for radiolog......Teaching of magnetic resonance (MR) imaging techniques typically involves considerable handwaving, literally, to explain concepts such as resonance, rotating frames, dephasing, refocusing, sequences, and imaging. A proper understanding of MR contrast and imaging techniques is crucial...... for radiologists, radiographers, and technical staff alike, but it is notoriously challenging to explain spin dynamics by using traditional teaching tools. The author developed a freely available graphical simulator based on the Bloch equations to aid in the teaching of topics ranging from precession...

  18. Spin-spin correlations of magnetic impurities in graphene

    OpenAIRE

    Guclu, A. D.; Bulut, Nejat

    2014-01-01

    We study the interaction between two magnetic adatom impurities in graphene using the Anderson model. The two-impurity Anderson Hamiltonian is solved numerically by using the quantum Monte Carlo technique. We find that the inter-impurity spin susceptibility is strongly enhanced at low temperatures, significantly diverging from the well-known Ruderman-Kittel-Kasuya-Yoshida (RKKY) result which decays as $R^{-3}$.

  19. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  20. Spin-flip configuration interaction singles with exact spin-projection: Theory and applications to strongly correlated systems.

    Science.gov (United States)

    Tsuchimochi, Takashi

    2015-10-14

    Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.