WorldWideScience

Sample records for spin relaxation rate

  1. Cross relaxation in nitroxide spin labels

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    Cross relaxation, and mI-dependence of the intrinsic electron spin-lattice relaxation rate We, are incorporated explicitly into the rate equations for the electron-spin population differences that govern the saturation behaviour of 14N- and 15N-nitroxide spin labels. Both prove important in spin......-label EPR and ELDOR, particularly for saturation recovery studies. Neither for saturation recovery, nor for CW-saturation EPR and CW-ELDOR, can cross relaxation be described simply by increasing the value of We, the intrinsic spin-lattice relaxation rate. Independence of the saturation recovery rates from...... the hyperfine line pumped or observed follows directly from solution of the rate equations including cross relaxation, even when the intrinsic spin-lattice relaxation rate We is mI-dependent....

  2. Abrupt relaxation in high-spin molecules

    International Nuclear Information System (INIS)

    Chang, C.-R.; Cheng, T.C.

    2000-01-01

    Mean-field model suggests that the rate of resonant quantum tunneling in high-spin molecules is not only field-dependent but also time-dependent. The relaxation-assisted resonant tunneling in high-spin molecules produces an abrupt magnetization change during relaxation. When the applied field is very close to the resonant field, a time-dependent interaction field gradually shifts the energies of different collective spin states, and magnetization tunneling is observed as two energies of the spin states coincide

  3. Muon spin relaxation in random spin systems

    International Nuclear Information System (INIS)

    Toshimitsu Yamazaki

    1981-01-01

    The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)

  4. Nuclear Spin Relaxation

    Indian Academy of Sciences (India)

    IAS Admin

    In the context of nuclear magnetic resonance (NMR), the term relaxation indicates the process by which the magnetic atomic nuclei reach thermal equilibrium with the chaotic molecular environment. In NMR, this process can be very slow, requiring between a fraction of a second to many minutes, depending on the.

  5. Spin relaxation in disordered media

    International Nuclear Information System (INIS)

    Dzheparov, F S

    2011-01-01

    A review is given on theoretical grounds and typical experimental appearances of spin dynamics and relaxation in solids containing randomly distributed nuclear and/or electronic spins. Brief content is as follows. Disordered and magnetically diluted systems. General outlines of the spin transport theory. Random walks in disordered systems (RWDS). Observable values in phase spin relaxation, free induction decay (FID). Interrelation of longitudinal and transversal relaxation related to dynamics of occupancies and phases. Occupation number representation for equations of motion. Continuum media approximation and inapplicability of moment expansions. Long-range transitions vs percolation theory. Concentration expansion as a general constructive basis for analytical methods. Scaling properties of propagators. Singular point. Dynamical and kinematical memory in RWDS. Ways of regrouping of concentration expansions. CTRW and semi-phenomenology. Coherent medium approximation for nuclear relaxation via paramagnetic impurities. Combining of memory functions and cumulant expansions for calculation of FID. Path integral representations for RWDS. Numerical simulations of RWDS. Spin dynamics in magnetically diluted systems with low Zeeman and medium low dipole temperatures. Cluster expansions, regularization of dipole interactions and spectral dynamics.

  6. Spin-lattice relaxation of individual solid-state spins

    Science.gov (United States)

    Norambuena, A.; Muñoz, E.; Dinani, H. T.; Jarmola, A.; Maletinsky, P.; Budker, D.; Maze, J. R.

    2018-03-01

    Understanding the effect of vibrations on the relaxation process of individual spins is crucial for implementing nanosystems for quantum information and quantum metrology applications. In this work, we present a theoretical microscopic model to describe the spin-lattice relaxation of individual electronic spins associated to negatively charged nitrogen-vacancy centers in diamond, although our results can be extended to other spin-boson systems. Starting from a general spin-lattice interaction Hamiltonian, we provide a detailed description and solution of the quantum master equation of an electronic spin-one system coupled to a phononic bath in thermal equilibrium. Special attention is given to the dynamics of one-phonon processes below 1 K where our results agree with recent experimental findings and analytically describe the temperature and magnetic-field scaling. At higher temperatures, linear and second-order terms in the interaction Hamiltonian are considered and the temperature scaling is discussed for acoustic and quasilocalized phonons when appropriate. Our results, in addition to confirming a T5 temperature dependence of the longitudinal relaxation rate at higher temperatures, in agreement with experimental observations, provide a theoretical background for modeling the spin-lattice relaxation at a wide range of temperatures where different temperature scalings might be expected.

  7. Spin relaxation in quantum dots: Role of the phonon modulated spin-orbit interaction

    Science.gov (United States)

    Alcalde, A. M.; Romano, C. L.; Sanz, L.; Marques, G. E.

    2010-01-01

    We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. We analyze the behavior of the spin relaxation rates as a function of an external magnetic field and mean quantum dot radius. Effects of the spin admixture due to Dresselhaus contribution to spin-orbit interaction are also discussed.

  8. Electron spin-lattice relaxation in fractals

    International Nuclear Information System (INIS)

    Shrivastava, K.N.

    1986-08-01

    We have developed the theory of the spin-fracton interaction for paramagnetic ions in fractal structures. The interaction is exponentially damped by the self-similarity length of the fractal and by the range dimensionality d Φ . The relaxation time of the spin due to the absorption and emission of the fracton has been calculated for a general dimensionality called the Raman dimensionality d R , which for the fractons differs from the Hausdorff (fractal) dimensionality, D, as well as from the Euclidean dimensionality, d. The exponent of the energy level separation in the relaxation rate varies with d R d Φ /D. We have calculated the spin relaxation rate due to a new type of Raman process in which one fracton is absorbed to affect a spin transition from one electronic level to another and later another fracton is emitted along with a spin transition such that the difference in the energies of the two fractons is equal to the electronic energy level separation. The temperature and the dimensionality dependence of such a process has been found in several approximations. In one of the approximations where the van Vleck relaxation rate for a spin in a crystal is known to vary with temperature as T 9 , our calculated variation for fractals turns out to be T 6.6 , whereas the experimental value for Fe 3+ in frozen solutions of myoglobin azide is T 6.3 . Since we used d R =4/3 and the fracton range dimensionality d Φ =D/1.8, we expect to measure the dimensionalities of the problem by measuring the temperature dependence of the relaxation times. We have also calculated the shift of the paramagnetic resonance transition for a spin in a fractal for general dimensionalities. (author)

  9. Pseudogap Behavior of the Nuclear Spin-Lattice Relaxation Rate in FeSe Probed by 77Se-NMR

    Science.gov (United States)

    Shi, Anlu; Arai, Takeshi; Kitagawa, Shunsaku; Yamanaka, Takayoshi; Ishida, Kenji; Böhmer, Anna E.; Meingast, Christoph; Wolf, Thomas; Hirata, Michihiro; Sasaki, Takahiko

    2018-01-01

    We conducted 77Se-nuclear magnetic resonance studies of the iron-based superconductor FeSe in magnetic fields of 0.6 to 19 T to investigate the superconducting and normal-state properties. The nuclear spin-lattice relaxation rate divided by the temperature (T1T)-1 increases below the structural transition temperature Ts but starts to be suppressed below T*, well above the superconducting transition temperature Tc(H), resulting in a broad maximum of (T1T)-1 at Tp(H). This is similar to the pseudogap behavior in optimally doped cuprate superconductors. Because T* and Tp(H) decrease in the same manner as Tc(H) with increasing H, the pseudogap behavior in FeSe is ascribed to superconducting fluctuations, which presumably originate from the theoretically predicted preformed pair above Tc(H).

  10. Nuclear spin-lattice relaxation in nitroxide spin-label EPR

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    that the definition of nitrogen nuclear relaxation rate Wn commonly used in the CW-EPR literature for 14N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14N spin-lattice relaxation rate, b = Wn/(2We), preserves...... of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14N-relaxation: T1 n = 1/Wn. Results are compared and contrasted...... the expressions used for CW-EPR, whilst rendering them consistent with expressions for saturation recovery rates in pulsed EPR. Furthermore, values routinely quoted for nuclear relaxation times that are deduced from EPR spectral diffusion rates in 14N-nitroxyl spin labels do not accord with conventional analysis...

  11. Universal Mechanism of Spin Relaxation in Solids

    Science.gov (United States)

    Chudnovsky, Eugene

    2006-03-01

    Conventional elastic theory ignores internal local twists and torques. Meantime, spin-lattice relaxation is inherently coupled with local elastic twists through conservation of the total angular momentum (spin + lattice). This coupling gives universal lower bound (free of fitting parameters) on the relaxation of the atomic or molecular spin in a solid [1] and on the relaxation of the electron spin in a quantum dot [2]. [1] E. M. Chudnovsky, D. A. Garanin, and R. Schilling, Phys. Rev. B 72, 094426 (2005). [2] C. Calero, E. M. Chudnovsky, and D. A. Garanin, Phys. Rev. Lett. 95, 166603 (2005).

  12. Spin transport and relaxation in graphene

    International Nuclear Information System (INIS)

    Han Wei; McCreary, K.M.; Pi, K.; Wang, W.H.; Li Yan; Wen, H.; Chen, J.R.; Kawakami, R.K.

    2012-01-01

    We review our recent work on spin injection, transport and relaxation in graphene. The spin injection and transport in single layer graphene (SLG) were investigated using nonlocal magnetoresistance (MR) measurements. Spin injection was performed using either transparent contacts (Co/SLG) or tunneling contacts (Co/MgO/SLG). With tunneling contacts, the nonlocal MR was increased by a factor of ∼1000 and the spin injection/detection efficiency was greatly enhanced from ∼1% (transparent contacts) to ∼30%. Spin relaxation was investigated on graphene spin valves using nonlocal Hanle measurements. For transparent contacts, the spin lifetime was in the range of 50-100 ps. The effects of surface chemical doping showed that for spin lifetimes in the order of 100 ps, charged impurity scattering (Au) was not the dominant mechanism for spin relaxation. While using tunneling contacts to suppress the contact-induced spin relaxation, we observed the spin lifetimes as long as 771 ps at room temperature, 1.2 ns at 4 K in SLG, and 6.2 ns at 20 K in bilayer graphene (BLG). Furthermore, contrasting spin relaxation behaviors were observed in SLG and BLG. We found that Elliot-Yafet spin relaxation dominated in SLG at low temperatures whereas Dyakonov-Perel spin relaxation dominated in BLG at low temperatures. Gate tunable spin transport was studied using the SLG property of gate tunable conductivity and incorporating different types of contacts (transparent and tunneling contacts). Consistent with theoretical predictions, the nonlocal MR was proportional to the SLG conductivity for transparent contacts and varied inversely with the SLG conductivity for tunneling contacts. Finally, bipolar spin transport in SLG was studied and an electron-hole asymmetry was observed for SLG spin valves with transparent contacts, in which nonlocal MR was roughly independent of DC bias current for electrons, but varied significantly with DC bias current for holes. These results are very important for

  13. Detailed mechanisms of1H spin-lattice relaxation in ammonium dihydrogen phosphate confirmed by magic angle spinning.

    Science.gov (United States)

    Hayashi, Shigenobu; Jimura, Keiko

    2017-10-01

    Mechanisms of the 1 H spin-lattice relaxation in NH 4 H 2 PO 4 were studied in detail by use of the effect of magic angle spinning on the relaxation. The acid and the ammonium protons have different relaxation times at the spinning rates higher than 10 kHz due to suppression of spin diffusion between the two kinds of protons. The intrinsic relaxation times not affected by the spin diffusion and the spin-diffusion assisted relaxation times were evaluated separately, taking into consideration temperature dependence. Both mechanisms contribute to the 1 H relaxation of the acid protons comparatively. The spin-diffusion assisted relaxation mechanism was suppressed to the level lower than the experimental errors at the spinning rate of 30 kHz. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Spin-flip relaxation via optical phonon scattering in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zi-Wu, E-mail: zwwang@semi.ac.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, Tianjin University, Tianjin 300072 (China); Liu, Lei [Suzhou Institute of Nano-tech and Nano-bionics, CAS, Suzhou 215125 (China); Li, Shu-Shen [Institute of Semiconductor, CAS, Beijing 100083 (China)

    2013-12-14

    Based on the spin-orbit coupling admixture mechanism, we theoretically investigate the spin-flip relaxation via optical phonon scattering in quantum dots by considering the effect of lattice relaxation due to the electron-acoustic phonon deformation potential coupling. The relaxation rate displays a cusp-like structure (or a spin hot spot) that becomes more clearly with increasing temperature. We also calculate the relaxation rate of the spin-conserving process, which follows a Gaussian form and is several orders of magnitude larger than that of spin-flip process. Moreover, we find that the relaxation rate displays the oscillatory behavior due to the interplay effects between the magnetic and spatial confinement for the spin-flip process not for the spin-conserving process. The trends of increasing and decreasing temperature dependence of the relaxation rates for two relaxation processes are obtained in the present model.

  15. Nuclear spin relaxation of methane in solid xenon

    Science.gov (United States)

    Sugimoto, Takeru; Arakawa, Ichiro; Yamakawa, Koichiro

    2018-03-01

    Nuclear spin relaxation of methane in solid xenon has been studied by infrared spectroscopy. From the analysis of the temporal changes of the rovibrational peaks, the rates of the nuclear spin relaxation of I = 2 ← 1 correlated to the rotational relaxation of J = 0 ← 1 were obtained at temperatures of 5.1-11.5 K. On the basis of the temperature dependence of the relaxation rate, the activation energy of the indirect two-phonon process was determined to be 50 ± 6 K, which is in good agreement with the rotational transition energies of J = 2 ← 1 and J = 3 ← 1. Taking into account this result and the spin degeneracy, we argue that the lowest J = 3 level in which the I = 1 and I = 2 states are degenerate acts as the intermediate point of the indirect process.

  16. Field dependence of the electron spin relaxation in quantum dots.

    Science.gov (United States)

    Calero, Carlos; Chudnovsky, E M; Garanin, D A

    2005-10-14

    The interaction of the electron spin with local elastic twists due to transverse phonons is studied. The universal dependence of the spin-relaxation rate on the strength and direction of the magnetic field is obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid. The theory contains no unknown parameters and it can be easily tested in experiment. At high magnetic field it provides a parameter-free lower bound on the electron spin relaxation in quantum dots.

  17. Use of the Strong Collision Model to Calculate Spin Relaxation

    Science.gov (United States)

    Wang, D.; Chow, K. H.; Smadella, M.; Hossain, M. D.; MacFarlane, W. A.; Morris, G. D.; Ofer, O.; Morenzoni, E.; Salman, Z.; Saadaoui, H.; Song, Q.; Kiefl, R. F.

    The strong collision model is used to calculate spin relaxation of a muon or polarized radioactive nucleus in contact with a fluctuating environment. We show that on a time scale much longer than the mean time between collisions (fluctuations) the longitudinal polarization decays exponentially with a relaxation rate equal to a sum of Lorentzians-one for each frequency component in the static polarization function ps(t).

  18. Determination of correlation times from selective and non-selective spin-lattice relaxation rates and their use in drug-drug and drug-albumin interaction studies

    Directory of Open Access Journals (Sweden)

    Tinoco Luzineide Wanderley

    1999-01-01

    Full Text Available The effects of the changes in sample concentration on the NMR chemical shifts and on the selective and non-selective spin-lattice relaxation rates (R1S and R1NS of the three isomers of nitrobenzaldeyde guanyl hydrazone (NBGH pure and with bovine serum albumin (BSA were measured in solution. The results wereused to determine the correlation times (tauc, showing that the degree of intermolecular drug-drug association varies with the nitro group position on the ring and that this degree of association interferes with the interaction of these drugs with BSA. The results suggest that the degree of drug-drug and drug-BSA association are related to the in vitro anti-Trypanosoma cruzi activity of these compounds.

  19. The spin lattice relaxation of 8Li in simple metals

    Science.gov (United States)

    Hossain, M. D.; Saadaoui, H.; Parolin, T. J.; Song, Q.; Wang, D.; Smadella, M.; Chow, K. H.; Egilmez, M.; Fan, I.; Kiefl, R. F.; Kreitzman, S. R.; Levy, C. D. P.; Morris, G. D.; Pearson, M. R.; Salman, Z.; MacFarlane, W. A.

    2009-04-01

    We report the modification to the linear temperature dependence of the Korringa nuclear spin-lattice relaxation rate of an implanted NMR probe in silver, as it makes a thermally activated site change. We develop a simple model of this phenomenon, which is found in a number of metals including Au and Nb.

  20. Mechanisms of relaxation and spin decoherence in nanomagnets

    Science.gov (United States)

    van Tol, Johan

    Relaxation in spin systems is of great interest with respect to various possible applications like quantum information processing and storage, spintronics, and dynamic nuclear polarization (DNP). The implementation of high frequencies and fields is crucial in the study of systems with large zero-field splitting or large interactions, as for example molecular magnets and low dimensional magnetic materials. Here we will focus on the implementation of pulsed Electron Paramagnetic Resonance (ERP) at multiple frequencies of 10, 95, 120, 240, and 336 GHz, and the relaxation and decoherence processes as a function of magnetic field and temperature. Firstly, at higher frequencies the direct single-phonon spin-lattice relaxation (SLR) is considerably enhanced, and will more often than not be the dominant relaxation mechanism at low temperatures, and can be much faster than at lower fields and frequencies. In principle the measurement of the SLR rates as a function of the frequency provides a means to map the phonon density of states. Secondly, the high electron spin polarization at high fields has a strong influence on the spin fluctuations in relatively concentrated spin systems, and the contribution of the electron-electron dipolar interactions to the coherence rate can be partially quenched at low temperatures. This not only allows the study of relatively concentrated spin systems by pulsed EPR (as for example magnetic nanoparticles and molecular magnets), it enables the separation of the contribution of the fluctuations of the electron spin system from other decoherence mechanisms. Besides choice of temperature and field, several strategies in sample design, pulse sequences, or clock transitions can be employed to extend the coherence time in nanomagnets. A review will be given of the decoherence mechanisms with an attempt at a quantitative comparison of experimental rates with theory.

  1. Universal Behavior of Spin Dipolar Relaxation in Atomic Condensates

    Science.gov (United States)

    Deng, Yuangang; Zhou, Yiquan; Deng, Min; Liu, Qi; Tey, Mengkhoon; Gao, Bo; You, Li

    2017-04-01

    The dipolar relaxation of atomic spinor condensates is studied in terms of the semi-analytical scattering wave functions by utilizing the quantum-defect theory. At nonzero magnetic fields, inelastic dipolar relaxation of exothermic reaction leads to loss of the atomic population. By tuning the bias field, we find that the dipolar relaxation rate exhibits a universal behavior involving a unique dip and peak structure, different from the commonly referenced result based on the Born or the distortedwave Born approximations. The positions for the dip and the peak are shown to be determined dominantly by the short-range s-wave scattering length and the Van der Waals radius, independent of the dipolar interaction strength of ultracold atoms. This is confirmed by the precision measured dipolar relaxation decay rate for both spin-polarized atomic coherent spin states and twin-Fock states of F = 1 87 Rb BoseEinstein condensates. We observe the dipolar relaxation suppression as predicted by our theory for the large bias field, a feature not previously studied experimentally. Our results implicate the possibility of extracting the short-range scattering length and the Van der Waals dispersion coefficient from spin dipolar decay measurements.

  2. Spin-Spin Cross Relaxation in Single-Molecule Magnets

    Science.gov (United States)

    Wernsdorfer, W.; Bhaduri, S.; Tiron, R.; Hendrickson, D. N.; Christou, G.

    2002-10-01

    The one-body tunnel picture of single-molecule magnets (SMMs) is not always sufficient to explain the measured tunnel transitions. An improvement to the picture is proposed by including also two-body tunnel transitions such as spin-spin cross relaxation (SSCR) which are mediated by dipolar and weak superexchange interactions between molecules. A Mn4 SMM is used as a model system. At certain external fields, SSCRs lead to additional quantum resonances which show up in hysteresis loop measurements as well-defined steps. A simple model is used to explain quantitatively all observed transitions.

  3. Possible spin frustration in Nd2Ti2O7 probed by muon spin relaxation.

    Science.gov (United States)

    Guo, Hanjie; Xing, Hui; Tong, Jun; Tao, Qian; Watanabe, Isao; Xu, Zhu-an

    2014-10-29

    Muon spin relaxation on Nd2Ti2O7 (NTO) and NdLaTi2O7 (NLTO) compounds are presented. The time spectra for both compounds are as expected for the paramagnetic state at high temperatures, but deviate from the exponential function below around 100 K. Firstly, the muon spin relaxation rate increases with decreasing temperature and then levels off below around 10 K, which is reminiscent of the frustrated systems. An enhancement of the relaxation rate by a longitudinal field in the paramagnetic state is observed for NTO and eliminated by a magnetic dilution for the NLTO sample. This suggests that the spectral density is modified by a magnetic dilution and thus indicates that the spins behave cooperatively rather than individually. The zero-field measurement at 0.3 K indicates that the magnetic ground state for NTO is ferromagnetic.

  4. Relaxation of coupled nuclear spin systems

    International Nuclear Information System (INIS)

    Koenigsberger, E.

    1985-05-01

    The subject of the present work is the relaxation behaviour of scalarly coupled spin-1/2 systems. In the theoretical part the semiclassical Redfield equations are used. Dipolar (D), Chemical Shift Anisotropy (CSA) and Random Field (RF) interactions are considered as relaxation mechanisms. Cross correlations of dipolar interactions of different nuclei pairs and those between the D and the CSA mechanisms are important. The model of anisotropic molecular rotational relaxation and the extreme narrowing approximation are used to obtain the spectral density functions. The longitudinal relaxation data are analyzed into normal modes following Werbelow and Grant. The time evolution of normal modes is derived for the AX system with D-CSA cross terms. In the experimental part the hypothesis of dimerization in the cinnamic acid and the methyl cinnamate - AMX systems with DD cross terms - is corroborated by T 1 -time measurements and a calculation of the diffusion constants. In pentachlorobenzene - an AX system - taking into account of D-CSA cross terms enables the complete determination of movements anosotropy and the determination of the sign of the indirect coupling constant 1 Jsub(CH). (G.Q.)

  5. Spin-lattice relaxation of magnetic centers in molecular crystals at low temperature

    OpenAIRE

    Ho, Le Tuan Anh; Chibotaru, Liviu F.

    2017-01-01

    We study the spin-phonon relaxation rate of both Kramers and non-Kramers molecular magnets in strongly diluted samples at low temperature. Using the "rotational" contribution to the spin-phonon Hamiltonian, universal formulae for the relaxation rate are obtained. Intriguingly, these formulae are all entirely expressed via measurable or \\emph{ab initio} computable physical quantities. Moreover, they are also independent of the energy gaps to excited states involved in the relaxation process. T...

  6. Muon spin-relaxation measurements of spin-correlation decay in spin-glass AgMn

    International Nuclear Information System (INIS)

    Heffner, R.H.; Cooke, D.W.; Leon, M.; Schillaci, M.E.; MacLaughlin, D.E.; Gupta, L.C.

    1983-01-01

    The field (H) dependence of the muon longitudinal spin-lattice relaxation rate well below the spin-glass temperature in AgMn is found to obey an algebraic form given by (H)/sup nu-1/, with nu = 0.54 +- 0.05. This suggests that Mn spin correlations decay with time as t - /sup nu/, in agreement with mean field theories of spin-glass dynamics which yield nu less than or equal to 0.5. Near the glass temperature the agreement between the data and theory is not as good

  7. Relaxations in spin glasses: Similarities and differences from ordinary glasses

    International Nuclear Information System (INIS)

    Ngai, K.L.; Rajagopal, A.K.; Huang, C.Y.

    1984-01-01

    Relaxation phenomena have become a major concern in the physics of spin glasses. There are certain resemblances of these relaxation properties to those of ordinary glasses. In this work, we compare the relaxation properties of spin glasses near the freezing temperature with those of glasses near the glass transition temperature. There are similarities between the two types of glasses. Moreover, the relaxation properties of many glasses and spin glasses are in conformity with two coupled ''universality'' relations predicted by a recent model of relaxations in condensed matter

  8. Electron spin relaxation in organic semiconductors probed through {mu}SR

    Energy Technology Data Exchange (ETDEWEB)

    Nuccio, L; Willis, M; Drew, A J [Queen Mary University of London, Department of Physics, Mile End Road, London, E1 4NS (United Kingdom); Schulz, L; Bernhard, C [Department of Physics and FriMat, University of Fribourg, Ch. du Musee 3, 1700 Fribourg, CH (Germany); Pratt, F L [ISIS Muon Facility, Rutherford Appleton Laboratory, Didcot, OX11 0QX (United Kingdom); Heeney, M; Stingelin, N, E-mail: l.nuccio@qmul.ac.uk [Centre for Plastic Electronics, Imperial College London, Exhibition Road, London, SW7 2AZ, London (United Kingdom)

    2011-04-01

    Muon spin spectroscopy and in particular the avoided level crossing technique is introduced, with the aim of showing it as a very sensitive local probe for electron spin relaxation in organic semiconductors. Avoided level crossing data on TMS-pentacene at different temperatures are presented, and they are analysed to extract the electron spin relaxation rate, that is shown to increase on increasing the temperature from 0.02 MHz to 0.33 MHz at 3 K and 300 K respectively.

  9. Spin relaxation of iron in mixed state hemoproteins

    International Nuclear Information System (INIS)

    Wajnberg, E.; Kalinowski, H.J.; Bemski, G.; Helman, J.S.

    1984-01-01

    In pure states hemoproteins the relaxation of iron depends on its spin state. It is found that in both mixed state met-hemoglobin and met-myoglobin, the low and high spin states relax through an Orbach-like process. Also, very short (approx. 1 ns) and temperature independent transverse relaxation times T 2 were estimated. This peculiar behaviour of the relaxation may result from the unusual electronic structure of mixed state hemoproteins that allows thermal equilibrium and interconversion of the spin states. (Author) [pt

  10. Nuclear magnetic relaxation by the dipolar EMOR mechanism: Multi-spin systems

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2017-08-01

    In aqueous systems with immobilized macromolecules, including biological tissues, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have previously developed a rigorous EMOR relaxation theory for dipole-coupled two-spin and three-spin systems. Here, we extend the stochastic Liouville theory to four-spin systems and use these exact results as a guide for constructing an approximate multi-spin theory, valid for spin systems of arbitrary size. This so-called generalized stochastic Redfield equation (GSRE) theory includes the effects of longitudinal-transverse cross-mode relaxation, which gives rise to an inverted step in the relaxation dispersion profile, and coherent spin mode transfer among solid-like spins, which may be regarded as generalized spin diffusion. The GSRE theory is compared to an existing theory, based on the extended Solomon equations, which does not incorporate these phenomena. Relaxation dispersion profiles are computed from the GSRE theory for systems of up to 16 protons, taken from protein crystal structures. These profiles span the range from the motional narrowing limit, where the coherent mode transfer plays a major role, to the ultra-slow motion limit, where the zero-field rate is closely related to the strong-collision limit of the dipolar relaxation rate. Although a quantitative analysis of experimental data is beyond the scope of this work, it is clear from the magnitude of the predicted relaxation rate and the shape of the relaxation dispersion profile that the dipolar EMOR mechanism is the principal cause of water-1H low-field longitudinal relaxation in aqueous systems of immobilized macromolecules, including soft biological tissues. The relaxation theory developed here therefore provides a basis for molecular-level interpretation of endogenous soft

  11. Spin relaxation mechanism in graphene: resonant scattering by magnetic impurities.

    Science.gov (United States)

    Kochan, Denis; Gmitra, Martin; Fabian, Jaroslav

    2014-03-21

    We propose that the observed small (100 ps) spin relaxation time in graphene is due to resonant scattering by local magnetic moments. At resonances, magnetic moments behave as spin hot spots: the spin-flip scattering rates are as large as the spin-conserving ones, as long as the exchange interaction is greater than the resonance width. Smearing of the resonance peaks by the presence of electron-hole puddles gives quantitative agreement with experiment, for about 1 ppm of local moments. Although magnetic moments can come from a variety of sources, we specifically consider hydrogen adatoms, which are also resonant scatterers. The same mechanism would also work in the presence of a strong local spin-orbit interaction, but this would require heavy adatoms on graphene or a much greater coverage density of light adatoms. To make our mechanism more transparent, we also introduce toy atomic chain models for resonant scattering of electrons in the presence of a local magnetic moment and Rashba spin-orbit interaction.

  12. Spin relaxation near the metal-insulator transition: dominance of the Dresselhaus spin-orbit coupling.

    Science.gov (United States)

    Intronati, Guido A; Tamborenea, Pablo I; Weinmann, Dietmar; Jalabert, Rodolfo A

    2012-01-06

    We identify the Dresselhaus spin-orbit coupling as the source of the dominant spin-relaxation mechanism in the impurity band of a wide class of n-doped zinc blende semiconductors. The Dresselhaus hopping terms are derived and incorporated into a tight-binding model of impurity sites, and they are shown to unexpectedly dominate the spin relaxation, leading to spin-relaxation times in good agreement with experimental values. This conclusion is drawn from two complementary approaches: an analytical diffusive-evolution calculation and a numerical finite-size scaling study of the spin-relaxation time.

  13. Nuclear spin-lattice relaxation in carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Panich, A.M., E-mail: pan@bgu.ac.i [Department of Physics, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Sergeev, N.A. [Institute of Physics, University of Szczecin, 70-451 Szczecin (Poland)

    2010-04-15

    Interpretation of nuclear spin-lattice relaxation data in the carbon nanostructures is usually based on the analysis of fluctuations of dipole-dipole interactions of nuclear spins and anisotropic electron-nuclear interactions responsible for chemical shielding, which are caused by molecular dynamics. However, many nanocarbon systems such as fullerene and nanotube derivatives, nanodiamonds and carbon onions reveal noticeable amount of paramagnetic defects with unpaired electrons originating from dangling bonds. The interaction between nuclear and electron spins strongly influences the nuclear spin-lattice relaxation, but usually is not taken into account, thus the relaxation data are not correctly interpreted. Here we report on the temperature dependent NMR spectra and spin-lattice relaxation measurements of intercalated fullerenes C{sub 60}(MF{sub 6}){sub 2} (M=As and Sb), where nuclear relaxation is caused by both molecular rotation and interaction between nuclei and unpaired electron spins. We present a detailed theoretical analysis of the spin-lattice relaxation data taking into account both these contributions. Good agreement between the experimental data and calculations is obtained. The developed approach would be useful in interpreting the NMR relaxation data in different nanostructures and their intercalation compounds.

  14. PREFACE: Muon spin rotation, relaxation or resonance

    Science.gov (United States)

    Heffner, Robert H.; Nagamine, Kanetada

    2004-10-01

    To a particle physicist a muon is a member of the lepton family, a heavy electron possessing a mass of about 1/9 that of a proton and a spin of 1/2, which interacts with surrounding atoms and molecules electromagnetically. Since its discovery in 1937, the muon has been put to many uses, from tests of special relativity to deep inelastic scattering, from studies of nuclei to tests of weak interactions and quantum electrodynamics, and most recently, as a radiographic tool to see inside heavy objects and volcanoes. In 1957 Richard Garwin and collaborators, while conducting experiments at the Columbia University cyclotron to search for parity violation, discovered that spin-polarized muons injected into materials might be useful to probe internal magnetic fields. This eventually gave birth to the modern field of muSR, which stands for muon spin rotation, relaxation or resonance, and is the subject of this special issue of Journal of Physics: Condensed Matter. Muons are produced in accelerators when high energy protons (generally >500 MeV) strike a target like graphite, producing pions which subsequently decay into muons. Most experiments carried out today use relatively low-energy (~4 MeV), positively-charged muons coming from pions decaying at rest in the skin of the production target. These muons have 100% spin polarization, a range in typical materials of about 180 mg cm-2, and are ideal for experiments in condensed matter physics and chemistry. Negatively-charged muons are also occasionally used to study such things as muonic atoms and muon-catalysed fusion. The muSR technique provides a local probe of internal magnetic fields and is highly complementary to inelastic neutron scattering and nuclear magnetic resonance, for example. There are four primary muSR facilities in the world today: ISIS (Didcot, UK), KEK (Tsukuba, Japan), PSI (Villigen, Switzerland) and TRIUMF (Vancouver, Canada), serving about 500 researchers world-wide. A new facility, JPARC (Tokai, Japan

  15. Electrical detection of spin current and spin relaxation in nonmagnetic semiconductors

    International Nuclear Information System (INIS)

    Miah, M Idrish

    2008-01-01

    We report an electrical method for the detection of spin current and spin relaxation in nonmagnetic semiconductors. Optically polarized spins are dragged by an electric field in GaAs. We use the anomalous Hall effect for the detection of spin current and spin relaxation. It is found that the effect depends on the electric field and doping density as well as on temperature, but not on the excitation power. A calculation for the effect is performed using the measured spin polarization by a pump-probe experiment. The results are also discussed in comparison with a quantitative evaluation of the spin lifetimes of the photogenerated electrons under drift in GaAs

  16. Electrical detection of spin current and spin relaxation in nonmagnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2008-09-21

    We report an electrical method for the detection of spin current and spin relaxation in nonmagnetic semiconductors. Optically polarized spins are dragged by an electric field in GaAs. We use the anomalous Hall effect for the detection of spin current and spin relaxation. It is found that the effect depends on the electric field and doping density as well as on temperature, but not on the excitation power. A calculation for the effect is performed using the measured spin polarization by a pump-probe experiment. The results are also discussed in comparison with a quantitative evaluation of the spin lifetimes of the photogenerated electrons under drift in GaAs.

  17. Low-field cross spin relaxation of L8i in superconducting NbSe2

    Science.gov (United States)

    Hossain, M. D.; Salman, Z.; Wang, D.; Chow, K. H.; Kreitzman, S.; Keeler, T. A.; Levy, C. D. P.; Macfarlane, W. A.; Miller, R. I.; Morris, G. D.; Parolin, T. J.; Pearson, M.; Saadaoui, H.; Kiefl, R. F.

    2009-04-01

    A low energy beam of spin polarized L8i has been used to investigate nuclear spin relaxation in the multiband superconductor NbSe2 . In low magnetic fields there is significant cross relaxation between the L8i and the host N93b spins, which is driven by low frequency fluctuations in the nuclear magnetic dipolar interaction. The rate of cross relaxation is strongly field dependent and thus the 1/T1 spin relaxation rate of the L8i is a sensitive monitor of the static local magnetic field B just below the surface. This in turn is used to determine the absolute value of the magnetic penetration depth λ in the Meissner state. The temperature variations in 1/T1 and λ are consistent with a wide distribution of superconducting gaps expected for a multiband superconductor.

  18. Nuclear spin relaxation/resonance of 8Li in Al

    Science.gov (United States)

    Wang, D.; Salman, Z.; Chow, K. H.; Fan, I.; Hossain, M. D.; Keeler, T. A.; Kiefl, R. F.; Levy, C. D. P.; Mansour, A. I.; Morris, G. D.; Pearson, M. R.; Parolin, T. J.; Saadaoui, H.; Smadella, M.; Song, Q.; MacFarlane, W. A.

    2009-04-01

    A low energy beam of spin polarized 8Li has been used to study the behaviour of isolated 8Li implanted into a 150 nm thick film of Al on an MgO substrate. The spin relaxation rate 1/T1 and β-NMR lineshape were measured as a function of temperature in a large magnetic field of 4.1 T. The resonances from different sites are unresolved due to the large nuclear dipolar interaction with the host 27Al magnetic dipole moments. Nevertheless the temperature variation of the site averaged 1/T1 and Knight shift show evidence for a transition between the octahedral O and substitutional S sites at about 150 K, as observed in other fcc metals.

  19. Relaxation of the electron spin in quantum dots via one- and two-phonon processes

    International Nuclear Information System (INIS)

    Calero, C.; Chudnovsky, E.M.; Garanin, D.A.

    2007-01-01

    We have studied direct and Raman processes of the decay of electron spin states in a quantum dot via radiation of phonons corresponding to elastic twists. Universal dependence of the spin relaxation rate on the strength and direction of the magnetic field has been obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid

  20. Relaxation of the electron spin in quantum dots via one- and two-phonon processes

    Energy Technology Data Exchange (ETDEWEB)

    Calero, C. [Department of Physics and Astronomy, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589 (United States)]. E-mail: carlos.calero-borrallo@lehman.cuny.edu; Chudnovsky, E.M. [Department of Physics and Astronomy, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589 (United States); Garanin, D.A. [Department of Physics and Astronomy, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589 (United States)

    2007-09-15

    We have studied direct and Raman processes of the decay of electron spin states in a quantum dot via radiation of phonons corresponding to elastic twists. Universal dependence of the spin relaxation rate on the strength and direction of the magnetic field has been obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid.

  1. Nuclear spin relaxation in liquids theory, experiments, and applications

    CERN Document Server

    Kowalewski, Jozef

    2006-01-01

    Nuclear magnetic resonance (NMR) is widely used across many fields because of the rich data it produces, and some of the most valuable data come from the study of nuclear spin relaxation in solution. While described to varying degrees in all major NMR books, spin relaxation is often perceived as a difficult, if not obscure, topic, and an accessible, cohesive treatment has been nearly impossible to find.Collecting relaxation theory, experimental techniques, and illustrative applications into a single volume, this book clarifies the nature of the phenomenon, shows how to study it, and explains why such studies are worthwhile. Coverage ranges from basic to rigorous theory and from simple to sophisticated experimental methods, and the level of detail is somewhat greater than most other NMR texts. Topics include cross-relaxation, multispin phenomena, relaxation studies of molecular dynamics and structure, and special topics such as relaxation in systems with quadrupolar nuclei and paramagnetic systems.Avoiding ove...

  2. β -detected NMR spin relaxation in a thin film heterostructure of ferromagnetic EuO

    Science.gov (United States)

    MacFarlane, W. A.; Song, Q.; Ingle, N. J. C.; Chow, K. H.; Egilmez, M.; Fan, I.; Hossain, M. D.; Kiefl, R. F.; Levy, C. D. P.; Morris, G. D.; Parolin, T. J.; Pearson, M. R.; Saadaoui, H.; Salman, Z.; Wang, D.

    2015-08-01

    We present β -detected NMR measurements of the spin-lattice relaxation of +8Li implanted into an epitaxial heterostructure based on a 100 nm thick film of ferromagnetic (FM) EuO as a function of temperature through its FM transition. In the FM state, the spin-lattice relaxation rate follows the same temperature dependence, determined by magnon scattering mechanisms, observed in the bulk by 153Eu NMR, but above 40 K, the signal is wiped out. We also find that +8Li stopped in material adjacent to the magnetic layer exhibits spin relaxation related to the critical slowing of the Eu spins. A particularly strong relaxation in the Au overlayer suggests an unusual strong nonlocal coupling mechanism to 8Li in the metal.

  3. Intrinsic spin-relaxation induced negative tunnel magnetoresistance in a single-molecule magnet

    Science.gov (United States)

    Xie, Haiqing; Wang, Qiang; Xue, Hai-Bin; Jiao, HuJun; Liang, J.-Q.

    2013-06-01

    We investigate theoretically the effects of intrinsic spin-relaxation on the spin-dependent transport through a single-molecule magnet (SMM), which is weakly coupled to ferromagnetic leads. The tunnel magnetoresistance (TMR) is obtained by means of the rate-equation approach including not only the sequential but also the cotunneling processes. It is shown that the TMR is strongly suppressed by the fast spin-relaxation in the sequential region and can vary from a large positive to slight negative value in the cotunneling region. Moreover, with an external magnetic field along the easy-axis of SMM, a large negative TMR is found when the relaxation strength increases. Finally, in the high bias voltage limit the TMR for the negative bias is slightly larger than its characteristic value of the sequential region; however, it can become negative for the positive bias caused by the fast spin-relaxation.

  4. Exchange-mediated spin-lattice relaxation of Fe3+ ions in borate glasses.

    Science.gov (United States)

    Misra, Sushil K; Pilbrow, John R

    2007-03-01

    Spin-lattice relaxation times (T1) of two borate glasses doped with different concentrations of Fe2O3 were measured using the Electron Spin-Echo (ESE) technique at X-band (9.630 GHz) in the temperature range 2-6K. In comparison with a previous investigation of Fe3+-doped silicate glasses, the relaxation rates were comparable and differed by no more than a factor of two. The data presented here extend those previously reported for borate glasses in the 10-250K range but measured using the amplitude-modulation technique. The T1 values were found to depend on temperature (T) as T(n) with n approximately 1 for the 1% and 0.1% Fe2O3-doped glass samples. These results are consistent with spin-lattice relaxation as effected by exchange interaction of a Fe3+ spin exchange-coupled to another Fe3+ spin in an amorphous material.

  5. Two-channel model for spin-relaxation noise

    Science.gov (United States)

    Omar, S.; van Wees, B. J.; Vera-Marun, I. J.

    2017-12-01

    We develop a two-channel resistor model for simulating spin transport with general applicability. Using this model, for the case of graphene as a prototypical material, we calculate the spin signal consistent with experimental values. Using the same model we also simulate the charge and spin-dependent 1 /f noise, both in the local and nonlocal four-probe measurement schemes, and identify the noise from the spin-relaxation resistances as the major source of spin-dependent 1 /f noise.

  6. Relaxation of nuclear spin on holes in semiconductors

    International Nuclear Information System (INIS)

    Gr'ncharova, E.I.; Perel', V.I.

    1977-01-01

    The longitudienal relaxation time T 1 of nuclear spins due to dipole-dipole interaction with holes in semiconductors is calculated. Expressions for T 1 in cubic and uniaxial semiconductors are obtained for non-degenerate and degenerate cases. On the basis of comparison with available experimental data for silicon the agreement with the theoretical results is obtained. It is demonstrated that in uniaxial semiconductors the time of relaxation on holes for a nuclear spin directed along the c axis is considerably greater than that for a spin in the normal direction

  7. Electron spin relaxation in cryptochrome-based magnetoreception

    DEFF Research Database (Denmark)

    Kattnig, Daniel R; Solov'yov, Ilia A; Hore, P J

    2016-01-01

    The magnetic compass sense of migratory birds is thought to rely on magnetically sensitive radical pairs formed photochemically in cryptochrome proteins in the retina. An important requirement of this hypothesis is that electron spin relaxation is slow enough for the Earth's magnetic field to have...... this question for a structurally characterized model cryptochrome expected to share many properties with the putative avian receptor protein. To this end we combine all-atom molecular dynamics simulations, Bloch-Redfield relaxation theory and spin dynamics calculations to assess the effects of spin relaxation...... on the performance of the protein as a compass sensor. Both flavin-tryptophan and flavin-Z˙ radical pairs are studied (Z˙ is a radical with no hyperfine interactions). Relaxation is considered to arise from modulation of hyperfine interactions by librational motions of the radicals and fluctuations in certain...

  8. Spin dynamics of the positive muon radicals in the presence of rapid electron spin exchange: frequency shift and relaxation

    International Nuclear Information System (INIS)

    Senba, Masayoshi; British Columbia Univ., Vancouver, BC

    1991-01-01

    The spin dynamics of the positive muon in a muonium-like radical has been investigated in the case where the unpaired electron of the radical undergoes rapid spin flip collisions. If the spin flip rate λ SF is much faster than the hyperfine frequency of the radical, the behaviour of the muon spin is very similar to that of a positive muon in diamagnetic environments. It has been shown that in a transverse field, the relaxation rate and precession frequency of the apparent diamagnetic muon are related to the time evolution function of the muon spin in muonium. The relaxation rate of such an apparent diamagnetic signal has a characteristic field dependence which is very sensitive to the hyperfine frequency of the radical. The fractional frequency shift with respect to the positive muon precession frequency (ω D -ω μ )/ω μ is shown to be field-dependent, in contrast to the case of Knight shifts in metals. The field dependence of the relaxation and frequency shift will provide a tool to distinguish experimentally the muon in a radical which behaves like a free positive muon from a genuine diamagnetic muon. This work can be applied to a variety of fields involving muonium and hydrogen, such as spin dynamic in the gas phase and the muonium-like (hydrogen-like) states in semiconductors. The case where the muon undergoes both spin flip and charge transfer collisions is also discussed. (author)

  9. Spin-lattice relaxation times and knight shift in InSb and InAs

    International Nuclear Information System (INIS)

    Braun, P.; Grande, S.

    1976-01-01

    For a dominant contact interaction between nuclei and conduction electrons the relaxation rate is deduced. The extreme cases of degenerate and non-degenerate semiconductors are separately discussed. At strong degeneracy the product of the Knight shift and relaxation time gives the Korringa relation for metals. Measurements of the NMR spin-lattice relaxation times of 115 InSb and 115 InAs were made between 4.2 and 300 K for strongly degenerated samples. The different relaxation mechanisms are discussed and the experimental and theoretical results are compared. (author)

  10. Magnetization relaxation in spin glasses above transition point

    International Nuclear Information System (INIS)

    Zajtsev, I.A.; Minakov, A.A.; Galonzka, R.R.

    1988-01-01

    Magnetization relaxation of Cd 0.6 Zn 0.4 Cr 2 Se 4 and Cd 0.6 Mn 0.4 Te monocrystalline samples with T g =21 K and T g =12 K respectively and magnetic colloid is investigated. It is shown that magnetization inexponential relaxation detected experimentally in spin and dipole glasses is essentially higher than T g temperature transition. It is found that at temperatures higher than T g the essential difference is observed in behaviour of spin glasses with different Z and disorder types

  11. Muon Spin Relaxation Evidence for the U(1) Quantum Spin-Liquid Ground State in the Triangular Antiferromagnet YbMgGaO_{4}.

    Science.gov (United States)

    Li, Yuesheng; Adroja, Devashibhai; Biswas, Pabitra K; Baker, Peter J; Zhang, Qian; Liu, Juanjuan; Tsirlin, Alexander A; Gegenwart, Philipp; Zhang, Qingming

    2016-08-26

    Muon spin relaxation (μSR) experiments on single crystals of the structurally perfect triangular antiferromagnet YbMgGaO_{4} indicate the absence of both static long-range magnetic order and spin freezing down to 0.048 K in a zero field. Below 0.4 K, the μ^{+} spin relaxation rates, which are proportional to the dynamic correlation function of the Yb^{3+} spins, exhibit temperature-independent plateaus. All these μSR results unequivocally support the formation of a gapless U(1) quantum spin liquid ground state in the triangular antiferromagnet YbMgGaO_{4}.

  12. Resonant Scattering by Magnetic Impurities as a Model for Spin Relaxation in Bilayer Graphene.

    Science.gov (United States)

    Kochan, Denis; Irmer, Susanne; Gmitra, Martin; Fabian, Jaroslav

    2015-11-06

    We propose that the observed spin relaxation in bilayer graphene is due to resonant scattering by magnetic impurities. We analyze a resonant scattering model due to adatoms on both dimer and nondimer sites, finding that only the former give narrow resonances at the charge neutrality point. Opposite to single-layer graphene, the measured spin-relaxation rate in the graphene bilayer increases with carrier density. Although it has been commonly argued that a different mechanism must be at play for the two structures, our model explains this behavior rather naturally in terms of different broadening scales for the same underlying resonant processes. Not only do our results-using robust and first-principles inspired parameters-agree with experiment, they also predict an experimentally testable sharp decrease of the spin-relaxation rate at high carrier densities.

  13. NMR relaxation rate and the libron energy of solid hydrogen

    Science.gov (United States)

    Sugawara, K.; Woollam, J. A.

    1978-01-01

    By taking the rotational relaxation of orthohydrogen (o-H2) in solid hydrogen into account, the authors have theoretically investigated the longitudinal NMR spin lattice relaxation rate of o-H2. The rate is characterized by an anomalous maximum, as a function of temperature, at temperatures close to the mean libron energy of o-H2. Application of the theory for o-H2 concentrations between 42% and 75% reveals a nearly concentration-independent mean libron energy equivalent to about 1 K. This qualitatively and quantitatively contradicts the conclusions of other theories, but agrees with recent experiments.

  14. Low-frequency spin dynamics and NMR spin-lattice relaxation in antiferromagnetic rings

    Science.gov (United States)

    Itou, T.; Sagane, T.; Oyamada, A.; Maegawa, S.; Igarashi, S.; Yukawa, Y.

    2011-01-01

    We develop a general theory of the spin dynamics of Heisenberg antiferromagnetic rings (HAFRs) that explains the mechanism of NMR spin-lattice relaxation at low temperatures. In HAFRs, the imaginary parts of the q-summed dynamic spin susceptibilities parallel and perpendicular to an applied static field, χsum∥″(ω) and χsum⊥″(ω), are composed of the sum of many slightly broadened δ-functional modes at many frequencies. The NMR relaxation is caused by the quasielastic mode in χsum∥″(ω) at around zero frequency. This quasielastic mode is characterized by two physical quantities, intensity P0∥ and frequency width Γ0∥. Although P0∥ has to date been assumed to be identical to the uniform static susceptibility, we point out that the two quantities are not identical. Without making this unreliable assumption for P0∥, we demonstrate experimentally how P0∥ and Γ0∥ behave, by analyzing the NMR relaxation rates of two different nuclei, H1 and C13, in a real HAFR. This analysis is more rigorous and thus can be used to estimate Γ0∥ and P0∥ more precisely than previously possible. We find that the temperature dependence of P0∥ exhibits activation-type behavior reflecting the first excitation gap. We also find that Γ0∥ decreases monotonically on cooling but saturates to a nonzero value at zero temperature. This strongly suggests that Γ0∥ is dominated not only by the electron-phonon interactions but also by internanomagnet dipole interactions, which have been neglected to date.

  15. Spin diffusion and1H spin-lattice relaxation in Cs2(HSO4)(H2PO4) containing a small amount of ammonium ions.

    Science.gov (United States)

    Hayashi, Shigenobu; Jimura, Keiko

    2017-11-01

    Inorganic solid acid salts with hydrogen bond networks frequently show very long spin-lattice relaxation times even for 1 H because the hydrogen bonds suppress motions. In the present work, the 1 H spin-lattice relaxation in Cs 2 (HSO 4 )(H 2 PO 4 ) containing a small amount of ammonium ions were studied in detail by use of the effect of magic angle spinning (MAS) on the relaxation. The 1 H spin-lattice relaxation times of the acid protons decrease with increase in the content of ammonium ions. Reorientation of the NH 4 group fluctuates the dipole-dipole interaction and relaxes the ammonium protons as well as the acid protons. The 1 H relaxation times of the acid protons are a little bit longer than those of the ammonium protons at the MAS rate of 8 kHz. The spinning at 50 kHz makes the relaxation times of the acid protons longer and those of the ammonium protons shorter. Spin diffusion between the acid and the ammonium protons averages partially the 1 H relaxation of the acid and the ammonium protons at the MAS rate of 8 kHz. The spin diffusion is suppressed completely at the MAS rate of 50 kHz. Spin diffusion between the acid protons is not suppressed at the MAS rate of 50 kHz. The acid protons always show the same relaxation times. The intrinsic relaxation times not affected by spin diffusion are evaluated quantitatively for both the acid and the ammonium protons. Those values are independent of the ammonium content. Contribution of the spin diffusion between the acid and the ammonium protons to the relaxation is estimated quantitatively. Using those parameters, the effect of ammonium ions on the 1 H spin-lattice relaxation can be predicted. The 1 H spin-lattice relaxation is a sensitive tool to study the distribution of ammonium ions in solids. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. NMR relaxation in spin ice at low temperature due to diffusing emergent monopoles

    Science.gov (United States)

    Henley, Christopher L.

    2013-03-01

    At low temperatures, spin dynamics in ideal spin ice is due mainly to dilute, thermally excited magnetic ``monopole'' excitations. I consider how these will affect the longitudinal (T1) and dephasing (T2) relaxation functions of a nuclear spin in the spin-ice pyrochlore Dy2Ti2O4. Up to the time scale for nearby monopoles to be rearranged, a stretched-exponential form of the relaxation functions is expected, due to averaging over nuclei that have different local environments. ror the dephasing (T2) relaxation, the power of time in the stretched exponential is 3/2 in the case of diffusing monopoles, but 1/2 in the case of fixed, fluctuating magnetic impurities. The flip rate and density of fluctuating spins (whatever their nature) can be extracted from the measured relaxation times T1 and T2, and from known parameters. However, the actual experimental relaxation measured by Kitagawa and Takigawa becomes temperature independent in the very low T limit, and the T2 has a power t 1 / 2 in the exponential, neither of which can be explained by monopoles. I suggest the very low T behavior could be due to magnetic impurities on the (normally nonmagnetic) Ti sites. Supported by NSF grant DMR-1005466.

  17. Nuclear paramagnetic spin relaxation theory. Paramagnetic spin probes in homogeneous and micro-heterogeneous solutions

    International Nuclear Information System (INIS)

    Westlund, P.O.

    1994-01-01

    Specific mechanisms of relaxation encountered in paramagnetic systems are described: the T1-NMRD curve and the paramagnetically enhanced nuclear spin relaxation (PER) are first discussed and a general theory of PER is proposed (nuclear paramagnetic spin relaxation theory, lattice operators, decomposition approximation, general expression of dipolar correlation functions for slow tumbling complexes, low-field approach). Numerically calculated NMRD curves are described (reorientation model, pseudo-rotation models, vibration models). Experimental studies are then analyzed: NMRD studies of paramagnetic species in an aqueous system, paramagnetic hydrated metal ions in poly-electrolytes and biochemical systems, lyotropic liquid crystalline phases, polymer solutions. 19 fig., 60 ref

  18. Relaxation of an Isolated Dipolar-Interacting Rydberg Quantum Spin System

    Science.gov (United States)

    Orioli, A. Piñeiro; Signoles, A.; Wildhagen, H.; Günter, G.; Berges, J.; Whitlock, S.; Weidemüller, M.

    2018-02-01

    How do isolated quantum systems approach an equilibrium state? We experimentally and theoretically address this question for a prototypical spin system formed by ultracold atoms prepared in two Rydberg states with different orbital angular momenta. By coupling these states with a resonant microwave driving, we realize a dipolar X Y spin-1 /2 model in an external field. Starting from a spin-polarized state, we suddenly switch on the external field and monitor the subsequent many-body dynamics. Our key observation is density dependent relaxation of the total magnetization much faster than typical decoherence rates. To determine the processes governing this relaxation, we employ different theoretical approaches that treat quantum effects on initial conditions and dynamical laws separately. This allows us to identify an intrinsically quantum component to the relaxation attributed to primordial quantum fluctuations.

  19. Spin-lattice relaxation of magnetic centers in molecular crystals at low temperature

    Science.gov (United States)

    Ho, Le Tuan Anh; Chibotaru, Liviu F.

    2018-01-01

    We study the spin-phonon relaxation rate of both Kramers and non-Kramers molecular magnets in strongly diluted samples at low temperature. Using the "rotational" contribution to the spin-phonon Hamiltonian, universal formulas for the relaxation rate are obtained. Intriguingly, these formulas are all entirely expressed via measurable or ab initio computable physical quantities. Moreover, they are also independent of the energy gaps to excited states involved in the relaxation process. These obtained expressions for direct and Raman processes offer an easy way to determine the lowest limit of the spin-phonon relaxation of any spin system based on magnetic properties of the ground doublet only. In addition, some intriguing properties of Raman process are also found. Particularly, Raman process in Kramers system is found dependent on the magnetic field's orientation but independent of its magnitude, meanwhile, the same process in non-Kramers system is significantly reduced out of resonance, i.e., for an applied external field. Interestingly, Raman process is demonstrated to vary as T9 for both systems. Application of the theory to a recently investigated cobalt(II) complex shows that it can provide a reasonably good description for the relaxation. Based on these findings, a strategy in developing efficient single-molecule magnets by enhancing the mechanical rigidity of the molecular unit is proposed.

  20. Spin-orbit relaxation of Cl(2P½) and F(2P½) in a gas of H2

    NARCIS (Netherlands)

    Abrahamsson, E.; Groenenboom, G.C.; Krems, R.V.

    2007-01-01

    The authors present quantum scattering calculations of rate coefficients for the spin-orbit relaxation of F(P-2(1/2)) atoms in a gas of H-2 molecules and Cl(P-2(1/2)) atoms in a gas of H-2 and D-2 molecules. Their calculation of the thermally averaged rate coefficient for the electronic relaxation

  1. The spin lattice relaxation of {sup 8}Li in simple metals

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, M.D.; Saadaoui, H. [Department of Physics, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Parolin, T.J. [Chemistry Department, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Song, Q.; Wang, D.; Smadella, M. [Department of Physics, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Chow, K.H.; Egilmez, M.; Fan, I. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Kiefl, R.F. [Department of Physics, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Canadian Institute of Advanced Research (Canada); Kreitzman, S.R.; Levy, C.D.P.; Morris, G.D.; Pearson, M.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Salman, Z. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); MacFarlane, W.A., E-mail: wam@chem.ubc.c [Chemistry Department, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada)

    2009-04-15

    We report the modification to the linear temperature dependence of the Korringa nuclear spin-lattice relaxation rate of an implanted NMR probe in silver, as it makes a thermally activated site change. We develop a simple model of this phenomenon, which is found in a number of metals including Au and Nb.

  2. Nuclear magnetic relaxation by the dipolar EMOR mechanism: General theory with applications to two-spin systems.

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2016-02-28

    In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.

  3. Spin relaxation through lateral spin transport in heavily doped n -type silicon

    Science.gov (United States)

    Ishikawa, M.; Oka, T.; Fujita, Y.; Sugiyama, H.; Saito, Y.; Hamaya, K.

    2017-03-01

    We experimentally study temperature-dependent spin relaxation including lateral spin diffusion in heavily doped n -type silicon (n+-Si ) layers by measuring nonlocal magnetoresistance in small-sized CoFe/MgO/Si lateral spin-valve (LSV) devices. Even at room temperature, we observe large spin signals, 50-fold the magnitude of those in previous works on n+-Si . By measuring spin signals in LSVs with various center-to-center distances between contacts, we reliably evaluate the temperature-dependent spin diffusion length (λSi) and spin lifetime (τSi). We find that the temperature dependence of τSi is affected by that of the diffusion constant in the n+-Si layers, meaning that it is important to understand the temperature dependence of the channel mobility. A possible origin of the temperature dependence of τSi is discussed in terms of the recent theories by Dery and co-workers.

  4. Intersubband spin relaxation mechanism in n-doped[110] GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Lena; Chen, Shijian; Doehrmann, Stefanie; Oertel, Stefan; Huebner, Jens; Oestreich, Michael [Institute for Solid State Physics, Gottfried Wilhelm Leibniz University Hannover, Appelstr. 2, 30167 Hannover (Germany); Schuh, Dieter; Wegscheider, Werner [Institute of Experimental and Applied Physics, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg (Germany)

    2008-07-01

    The intersubband spin relaxation mechanism most likely represents the major spin dephasing channel in room temperature applications based upon heterostructures in (110) oriented GaAs for spins oriented along the growth direction. The electron spin relaxation time {tau}{sub s} in n-doped (110)GaAs/AlGaAs quantum wells is investigated by time- and polarisation-resolved photoluminescence measurements in dependence on the subband energy splitting and subband occupancy. The influence by the subband energy splitting on {tau}{sub s} is deduced from well width dependent measurements, whereas different occupancies are adjusted by different sample temperatures. The n-doping suppresses the spin dephasing influence of holes created by the optical excitation. The (110) structure suppresses the Dyakonov-Perel relaxation mechanism for spins pointing in growth direction. Therefore the resulting spin relaxation times are long even at room temperature and the intersubband spin relaxation mechanism becomes the dominating spin relaxation mechanism.

  5. Spin dynamics of the itinerant helimagnet MnSi studied by positive muon spin relaxation

    International Nuclear Information System (INIS)

    Kadono, R.; Matsuzaki, T.; Yamazaki, T.; Kreitzman, S.R.; Brewer, J.H.

    1990-03-01

    The local magnetic fields and spin dynamics of the itinerant helimagnet MnSi(T c ≅ 29.5 K) have been studied experimentally using positive muon spin rotation/relaxation (μ + SR) methods. In the ordered phase (T c ), zero-field μSR was used to measure the hyperfine fields at the muon sites as well as the muon spin-lattice relaxation time T 1 μ . Two magnetically inequivalent interstitial μ + sites were found with hyperfine coupling constants A hf (1) = -3.94 kOe/μ B and A hf (2) = -6.94 kOe/μ B , respectively. In the paramagnetic phase (T > T c ), the muon-nuclear spin double relaxation technique was used to simultaneously but independently determine the spin-lattice relaxation time T 1 Mn of 55 Mn spins and that of positive muons (T 1 μ ) over a wide temperature range (T c 1 Mn and T 1 μ in both phases shows systematic deviations from the predictions of self-consistent renormalization (SCR) theory. (author)

  6. Logarithmically Slow Relaxation in Quasiperiodically Driven Random Spin Chains

    Science.gov (United States)

    Dumitrescu, Philipp T.; Vasseur, Romain; Potter, Andrew C.

    2018-02-01

    We simulate the dynamics of a disordered interacting spin chain subject to a quasiperiodic time-dependent drive, corresponding to a stroboscopic Fibonacci sequence of two distinct Hamiltonians. Exploiting the recursive drive structure, we can efficiently simulate exponentially long times. After an initial transient, the system exhibits a long-lived glassy regime characterized by a logarithmically slow growth of entanglement and decay of correlations analogous to the dynamics at the many-body delocalization transition. Ultimately, at long time scales, which diverge exponentially for weak or rapid drives, the system thermalizes to infinite temperature. The slow relaxation enables metastable dynamical phases, exemplified by a "time quasicrystal" in which spins exhibit persistent oscillations with a distinct quasiperiodic pattern from that of the drive. We show that in contrast with Floquet systems, a high-frequency expansion strictly breaks down above fourth order, and fails to produce an effective static Hamiltonian that would capture the prethermal glassy relaxation.

  7. Muon spin relaxation in ferromagnetic PdMn

    International Nuclear Information System (INIS)

    Dodds, S.A.; Gist, G.A.; Heffner, R.H.; Leon, M.; MacLaughlin, D.E.; Mydosh, J.A.; Nieuwenhuys, G.J.; Schillaci, M.E.

    1983-01-01

    Positive-muon (μ + ) spin relaxation experiments have been carried out in the dilute ferromagnetic alloy Pd + 2 at % Mn (T/sub c/ = 5.8 0 K). In the paramagnetic state the inhomogeneous μ + linewidth is proportional to the bulk magnetization. Below T/sub c/ the μ + linewidth and the width of the μ + local field distribution in zero applied field are both in qualitative accord with the Sherrington-Kirkpatrick theory of disordered magnets

  8. Muon spin relaxation studies in strongly correlated electron systems

    Science.gov (United States)

    Uemura, Y. J.; Luke, G. M.

    1993-05-01

    We describe recent progress of muon spin relaxation (μSR) studies in heavy-fermion (HF) and other strongly correlated electron systems. Measurements of the magnetic field penetration depth λ in HF superconductors UPt 3, URu 2Si 2, UPd 2Al 3 and U 2PtC 2 have revealed that these systems are characterized by large ratios Tc/ TF = 0.1-0.01 of Tc vs Fermi temperature TF derived from λ. This feature is common to high- Tc cuprate and other exotic superconductors. Zero-field μSR studies of magnetic order have elucidated a cross-over from spin glass ordering to nonmagnetic ground states in the ‘quadrupolar Kondo regime’ of (Y 1- xU x)Pd 3, and also suggested a possibility of incommensurate spin-density-wave (SDW) ordering in UNi 2Al 3.

  9. Semiclassical treatment of transport and spin relaxation in spin-orbit coupled systems

    Energy Technology Data Exchange (ETDEWEB)

    Lueffe, Matthias Clemens

    2012-02-10

    The coupling of orbital motion and spin, as derived from the relativistic Dirac equation, plays an important role not only in the atomic spectra but as well in solid state physics. Spin-orbit interactions are fundamental for the young research field of semiconductor spintronics, which is inspired by the idea to use the electron's spin instead of its charge for fast and power saving information processing in the future. However, on the route towards a functional spin transistor there is still some groundwork to be done, e.g., concerning the detailed understanding of spin relaxation in semiconductors. The first part of the present thesis can be placed in this context. We have investigated the processes contributing to the relaxation of a particularly long-lived spin-density wave, which can exist in semiconductor heterostructures with Dresselhaus and Rashba spin-orbit coupling of precisely the same magnitude. We have used a semiclassical spindiffusion equation to study the influence of the Coulomb interaction on the lifetime of this persistent spin helix. We have thus established that, in the presence of perturbations that violate the special symmetry of the problem, electron-electron scattering can have an impact on the relaxation of the spin helix. The resulting temperature-dependent lifetime reproduces the experimentally observed one in a satisfactory manner. It turns out that cubic Dresselhaus spin-orbit coupling is the most important symmetry-breaking element. The Coulomb interaction affects the dynamics of the persistent spin helix also via an Hartree-Fock exchange field. As a consequence, the individual spins precess about the vector of the surrounding local spin density, thus causing a nonlinear dynamics. We have shown that, for an experimentally accessible degree of initial spin polarization, characteristic non-linear effects such as a dramatic increase of lifetime and the appearance of higher harmonics can be expected. Another fascinating solid

  10. Spin Relaxation Time in InAlAs/AlGaAs Quantum Dots

    Directory of Open Access Journals (Sweden)

    N. Sellami

    2014-05-01

    Full Text Available We report systematic temperature dependent measurements of spin relaxation time in self-assembled In0.72Al0.28As/Al0.28Ga0.72As quantum dots by continuous-wave photoluminescence. The degree of circular polarization decreases as a function of temperature. The spin relaxation time tS is deduced from the circular polarization degree using a three dimensional pseudo- spin precession model. The spin relaxation time decreases rapidly from few hundred picoseconds at 10 K to few tens picoseconds at 85 K. This large change of the spin relaxation time is explained in terms of acoustic phonon emission mechanism.

  11. Relaxation times of the two-phonon processes with spin-flip and spin-conserving in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zi-Wu, E-mail: zwwang@semi.ac.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, Tianjin University, Tianjin 300072 (China); Liu, Lei [Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215125 (China); Li, Shu-Shen [Institute of Semiconductor, CAS, Beijing 100083 (China)

    2014-04-07

    We perform a theoretical investigation on the two-phonon processes of the spin-flip and spin-conserving relaxation in quantum dots in the frame of the Huang-Rhys' lattice relaxation model. We find that the relaxation time of the spin-flip is two orders of magnitude longer than that of the spin-conserving, which is in agreement with previous experimental measurements. Moreover, the opposite variational trends of the relaxation time as a function of the energy separation for two-phonon processes are obtained in different temperature regime. The relaxation times display the oscillatory behaviors at the demarcation point with increasing magnetic field, where the energy separation matches the optical phonon energy and results in the optical phonon resonance. These results are useful in understanding the intraband levels' relaxation in quantum dots and could be helpful in designing photoelectric and spin-memory devices.

  12. Contact induced spin relaxation in graphene spin valves with Al2O3 and MgO tunnel barriers

    Directory of Open Access Journals (Sweden)

    Walid Amamou

    2016-03-01

    Full Text Available We investigate spin relaxation in graphene by systematically comparing the roles of spin absorption, other contact-induced effects (e.g., fringe fields, and bulk spin relaxation for graphene spin valves with MgO barriers, Al2O3 barriers, and transparent contacts. We obtain effective spin lifetimes by fitting the Hanle spin precession data with two models that include or exclude the effect of spin absorption. Results indicate that additional contact-induced spin relaxation other than spin absorption dominates the contact effect. For tunneling contacts, we find reasonable agreement between the two models with median discrepancy of ∼20% for MgO and ∼10% for Al2O3.

  13. Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe2/graphene/h -BN heterostructures

    Science.gov (United States)

    Zihlmann, Simon; Cummings, Aron W.; Garcia, Jose H.; Kedves, Máté; Watanabe, Kenji; Taniguchi, Takashi; Schönenberger, Christian; Makk, Péter

    2018-02-01

    Large spin-orbital proximity effects have been predicted in graphene interfaced with a transition-metal dichalcogenide layer. Whereas clear evidence for an enhanced spin-orbit coupling has been found at large carrier densities, the type of spin-orbit coupling and its relaxation mechanism remained unknown. We show an increased spin-orbit coupling close to the charge neutrality point in graphene, where topological states are expected to appear. Single-layer graphene encapsulated between the transition-metal dichalcogenide WSe2 and h -BN is found to exhibit exceptional quality with mobilities as high as 1 ×105 cm2 V-1 s-1. At the same time clear weak antilocalization indicates strong spin-orbit coupling, and a large spin relaxation anisotropy due to the presence of a dominating symmetric spin-orbit coupling is found. Doping-dependent measurements show that the spin relaxation of the in-plane spins is largely dominated by a valley-Zeeman spin-orbit coupling and that the intrinsic spin-orbit coupling plays a minor role in spin relaxation. The strong spin-valley coupling opens new possibilities in exploring spin and valley degree of freedom in graphene with the realization of new concepts in spin manipulation.

  14. Spin-lattice relaxation in phosphorescent triplet state molecules

    International Nuclear Information System (INIS)

    Verbeek, P.J.F.

    1979-01-01

    The present thesis contains the results of a study of spin-lattice relaxation (SLR) in the photo-excited triplet state of aromatic molecules, dissolved in a molecular host crystal. It appears that SLR in phosphorescent triplet state molecules often is related to the presence of so-called (pseudo) localized phonons in the molecular mixed crystals. These local phonons can be thought to correspond with vibrations (librations) of the guest molecule in the force field of the surrounding host molecules. Since the intermolecular forces are relatively weak, the frequencies corresponding with these vibrations are relatively low and usually are of the order of 10-30 cm -1 . (Auth.)

  15. Investigation of proton spin relaxation in water with dispersed silicon nanoparticles for potential magnetic resonance imaging applications

    Science.gov (United States)

    Kargina, Yu. V.; Gongalsky, M. B.; Perepukhov, A. M.; Gippius, A. A.; Minnekhanov, A. A.; Zvereva, E. A.; Maximychev, A. V.; Timoshenko, V. Yu.

    2018-03-01

    Porous and nonporous silicon (Si) nanoparticles (NPs) prepared by ball-milling of electrochemically etched porous Si layers and crystalline Si wafers were studied as potential agents for enhancement of the proton spin relaxation in aqueous media. While nonporous Si NPs did not significantly influence the spin relaxation, the porous ones resulted in strong shortening of the transverse relaxation times. In order to investigate an effect of the electron spin density in porous Si NPs on the proton spin relaxation, we use thermal annealing of the NPs in vacuum or in air. The transverse relaxation rate of about 0.5 l/(g s) was achieved for microporous Si NPs, which were thermally annealing in vacuum to obtain the electron spin density of the order of 1017 g-1. The transverse relaxation rate was found to be almost proportional to the concentration of porous Si NPs in the range from 0.1 to 20 g/l. The obtained results are discussed in view of possible biomedical applications of Si NPs as contrast agents for magnetic resonance imaging.

  16. Application of spin-exchange relaxation-free magnetometry to the Cosmic Axion Spin Precession Experiment

    Science.gov (United States)

    Wang, Tao; Kimball, Derek F. Jackson; Sushkov, Alexander O.; Aybas, Deniz; Blanchard, John W.; Centers, Gary; Kelley, Sean R. O.'; Wickenbrock, Arne; Fang, Jiancheng; Budker, Dmitry

    2018-03-01

    The Cosmic Axion Spin Precession Experiment (CASPEr) seeks to measure oscillating torques on nuclear spins caused by axion or axion-like-particle (ALP) dark matter via nuclear magnetic resonance (NMR) techniques. A sample spin-polarized along a leading magnetic field experiences a resonance when the Larmor frequency matches the axion/ALP Compton frequency, generating precessing transverse nuclear magnetization. Here we demonstrate a Spin-Exchange Relaxation-Free (SERF) magnetometer with sensitivity ≈ 1 fT /√{ Hz } and an effective sensing volume of 0.1 cm3 that may be useful for NMR detection in CASPEr. A potential drawback of SERF-magnetometer-based NMR detection is the SERF's limited dynamic range. Use of a magnetic flux transformer to suppress the leading magnetic field is considered as a potential method to expand the SERF's dynamic range in order to probe higher axion/ALP Compton frequencies.

  17. A fast determination method for transverse relaxation of spin-exchange-relaxation-free magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jixi, E-mail: lujixi@buaa.edu.cn; Qian, Zheng; Fang, Jiancheng [School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191 (China)

    2015-04-15

    We propose a fast and accurate determination method for transverse relaxation of the spin-exchange-relaxation-free (SERF) magnetometer. This method is based on the measurement of magnetic resonance linewidth via a chirped magnetic field excitation and the amplitude spectrum analysis. Compared with the frequency sweeping via separate sinusoidal excitation, our method can realize linewidth determination within only few seconds and meanwhile obtain good frequency resolution. Therefore, it can avoid the drift error in long term measurement and improve the accuracy of the determination. As the magnetic resonance frequency of the SERF magnetometer is very low, we include the effect of the negative resonance frequency caused by the chirp and achieve the coefficient of determination of the fitting results better than 0.998 with 95% confidence bounds to the theoretical equation. The experimental results are in good agreement with our theoretical analysis.

  18. Quantitative study of optical pumping in the presence of spin-exchange relaxation

    Science.gov (United States)

    Shi, Yongqi; Scholtes, Theo; Grujić, Zoran D.; Lebedev, Victor; Dolgovskiy, Vladimir; Weis, Antoine

    2018-01-01

    We have performed quantitative measurements of the variation of the on-resonance absorption coefficients κ0 of the four hyperfine components of the Cs D1 transition as a function of laser power P , for pumping with linearly and with circularly polarized light. Sublevel populations derived from rate equations assuming isotropic population relaxation (at a rate γ1) yield algebraic κ0(P ) dependences that do not reproduce the experimental findings from Cs vapor in a paraffin-coated cell. However, numerical results that consider spin-exchange relaxation (at a rate γse) and isotropic relaxation fit the experimental data perfectly well. The fit parameters, viz., the absolute value of κ0, the optical pumping saturation power Psat, and the ratio γse/γ1 , are well described by the experimental conditions and yield absolute values for γ1 and γse. The latter is consistent with the previously published Cs-Cs spin-exchange relaxation cross section.

  19. Spin relaxation and antisymmetric exchange in n-doped III-V semiconductors

    Science.gov (United States)

    Gor'kov, L. P.; Krotkov, P. L.

    2003-01-01

    Recently, Kavokin [Phys. Rev. B 64, 075305 (2001)] suggested that the Dzyaloshinskii-Moriya interaction between localized electrons governs slow spin relaxation in n-doped GaAs in the regime close to the metal-insulator transition. We derive the correct spin Hamiltonian and apply it to the determination of spin dephasing time using the method of moments expansion. Our estimates would give longer than the observed values of the spin-relaxation time.

  20. The effect of a broad activation energy distribution on deuteron spin-lattice relaxation.

    Science.gov (United States)

    Ylinen, E E; Punkkinen, M; Birczyński, A; Lalowicz, Z T

    2015-10-01

    Deuteron NMR spectra and spin-lattice relaxation were studied experimentally in zeolite NaY(2.4) samples containing 100% or 200% of CD3OH or CD3OD molecules of the total coverage of Na atoms in the temperature range 20-150K. The activation energies describing the methyl and hydroxyl motions show broad distributions. The relaxation data were interpreted by improving a recent model (Stoch et al., 2013 [16]) in which the nonexponential relaxation curves are at first described by a sum of three exponentials with adjustable relaxation rates and weights. Then a broad distribution of activation energies (the mean activation energy A0 and the width σ) was assumed for each essentially different methyl and hydroxyl position. The correlation times were calculated from the Arrhenius equation (containing the pre-exponential factor τ0), individual relaxation rates computed and classified into three classes, and finally initial relaxation rates and weights for each class formed. These were compared with experimental data, motional parameters changed slightly and new improved rates and weights for each class calculated, etc. This method was improved by deriving for the deuterons of the A and E species methyl groups relaxation rates, which depend explicitly on the tunnel frequency ωt. The temperature dependence of ωt and of the low-temperature correlation time were obtained by using the solutions of the Mathieu equation for a threefold potential. These dependencies were included in the simulations and as the result sets of A0, σ and τ0 obtained, which describe the methyl and hydroxyl motions in different positions in zeolite. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Probing the Nuclear Spin-Lattice Relaxation Time at the Nanoscale

    NARCIS (Netherlands)

    Wagenaar, J.C.; Den Haan, A. M J; de Voogd, J.M.; Bossoni, L; de Jong, T.A.; de Wit, M.; Bastiaans, K. M.; Thoen, D.J.; Endo, A.; Klapwijk, T.M.; Zaanen, J.; Oosterkamp, TH

    2016-01-01

    Nuclear spin-lattice relaxation times are measured on copper using magnetic-resonance force microscopy performed at temperatures down to 42 mK. The low temperature is verified by comparison with the Korringa relation. Measuring spin-lattice relaxation times locally at very low temperatures opens up

  2. Optically-detected spin-echo method for relaxation times measurements in a Rb atomic vapor

    Science.gov (United States)

    Gharavipour, M.; Affolderbach, C.; Gruet, F.; Radojičić, I. S.; Krmpot, A. J.; Jelenković, B. M.; Mileti, G.

    2017-06-01

    We introduce and demonstrate an experimental method, optically-detected spin-echo (ODSE), to measure ground-state relaxation times of a rubidium (Rb) atomic vapor held in a glass cell with buffer-gas. The work is motivated by our studies on high-performance Rb atomic clocks, where both population and coherence relaxation times (T 1 and T 2, respectively) of the ‘clock transition’ (52S1/2 | {F}g = 1,{m}F=0> ≤ftrightarrow | {F}g=2,{m}F=0> ) are relevant. Our ODSE method is inspired by classical nuclear magnetic resonance spin-echo method, combined with optical detection. In contrast to other existing methods, like continuous-wave double-resonance (CW-DR) and Ramsey-DR, principles of the ODSE method allow suppression of decoherence arising from the inhomogeneity of the static magnetic field across the vapor cell, thus enabling measurements of intrinsic relaxation rates, as properties of the cell alone. Our experimental result for the coherence relaxation time, specific for the clock transition, measured with the ODSE method is in good agreement with the theoretical prediction, and the ODSE results are validated by comparison to those obtained with Franzen, CW-DR and Ramsey-DR methods. The method is of interest for a wide variety of quantum optics experiments with optical signal readout.

  3. Spin-exchange and spin-destruction rates for the 3He-Na system

    International Nuclear Information System (INIS)

    Borel, P.I.; Soegaard, L.V.; Svendsen, W.E.; Andersen, N.

    2003-01-01

    Optically pumped Na is used as a spin-exchange partner to polarize 3 He. Polarizations around 20% have routinely been achieved in sealed spherical glass cells containing 3 He, N 2 , and a few droplets of Na. An optical technique has been developed to determine the Na- 3 He spin-exchange rate coefficient. By monitoring the Na spin relaxation ''in the dark,'' the average Na-Na spin-destruction cross section at 330 degree sign C is estimated to be around 5x10 -19 cm 2 . This value is 2-5 (15-30) times smaller than the previously reported values for the K-K (Rb-Rb) spin-relaxation cross section. In the temperature range 310-355 degree sign C the spin-exchange rate coefficient is found to be (6.1±0.6)x10 -20 cm 3 /s with no detectable temperature dependence. This value is in good agreement with a previous theoretical estimate reported by Walker and it is only slightly lower than the corresponding Rb- 3 He spin-exchange rate coefficient. The total Na- 3 He spin-destruction rate coefficient is, within errors, found to be the same as the Na- 3 He spin-exchange rate coefficient, thereby indicating that the maximum possible photon efficiency may approach unity for the Na- 3 He system. A technique, in which a charge-coupled device camera is used to take images of faint unquenched fluorescence light, has been utilized to allow for an instantaneous determination of the sodium number densities during the rate coefficient measurements

  4. Electron Tunneling in Lithium Ammonia Solutions Probed by Frequency-Dependent Electron-Spin Relaxation Studies

    Science.gov (United States)

    Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.

    2012-01-01

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential

  5. Electron tunneling in lithium-ammonia solutions probed by frequency-dependent electron spin relaxation studies.

    Science.gov (United States)

    Maeda, Kiminori; Lodge, Matthew T J; Harmer, Jeffrey; Freed, Jack H; Edwards, Peter P

    2012-06-06

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T(1)) and spin-spin (T(2)) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multiexponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1-10) × 10(-12) s over a temperature range 230-290 K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a time scale of ∼10(-13) s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great

  6. Theory of relaxation phenomena in a spin-3/2 Ising system near the second-order phase transition temperature

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Canko, Osman

    2005-01-01

    The relaxation behavior of the spin-3/2 Ising model Hamiltonian with bilinear and biquadratic interactions near the second-order phase transition temperature or critical temperature is studied by means of the Onsager's theory of irreversible thermodynamics or the Onsager reciprocity theorem (ORT). First, we give the equilibrium case briefly within the molecular-field approximation in order to study the relaxation behavior by using the ORT. Then, the ORT is applied to the model and the kinetic equations are obtained. By solving these equations, three relaxation times are calculated and examined for temperatures near the second-order phase transition temperature. It is found that one of the relaxation times goes to infinity near the critical temperature on either side, the second relaxation time makes a cusp at the critical temperature and third one behaves very differently in which it terminates at the critical temperature while approaching it, then showing a 'flatness' property and then decreases. We also study the influences of the Onsager rate coefficients on the relaxation times. The behavior of these relaxation times is discussed and compared with the spin-1/2 and spin-1 Ising systems

  7. Cross-Correlated Relaxation of Dipolar Coupling and Chemical-Shift Anisotropy in Magic-Angle Spinning R1ρ NMR Measurements: Application to Protein Backbone Dynamics Measurements

    Science.gov (United States)

    Kurauskas, Vilius; Weber, Emmanuelle; Hessel, Audrey; Ayala, Isabel; Marion, Dominique; Schanda, Paul

    2016-01-01

    Transverse relaxation rate measurements in MAS solid-state NMR provide information about molecular motions occurring on nanoseconds-to-milliseconds (ns-ms) time scales. The measurement of heteronuclear (13C, 15N) relaxation rate constants in the presence of a spin-lock radio-frequency field (R1ρ relaxation) provides access to such motions, and an increasing number of studies involving R1ρ relaxation in proteins has been reported. However, two factors that influence the observed relaxation rate constants have so far been neglected, namely (i) the role of CSA/dipolar cross-correlated relaxation (CCR), and (ii) the impact of fast proton spin flips (i.e. proton spin diffusion and relaxation). We show that CSA/D CCR in R1ρ experiments is measurable, and that this cross-correlated relaxation rate constant depends on ns-ms motions, and can thus itself provide insight into dynamics. We find that proton spin-diffusion attenuates this cross-correlated relaxation, due to its decoupling effect on the doublet components. For measurements of dynamics, the use of R1ρ rate constants has practical advantages over the use of CCR rates, and the present manuscript reveals factors that have so far been disregarded and which are important for accurate measurements and interpretation. PMID:27500976

  8. Dynamical transition in molecular glasses and proteins observed by spin relaxation of nitroxide spin probes and labels

    Science.gov (United States)

    Golysheva, Elena A.; Shevelev, Georgiy Yu.; Dzuba, Sergei A.

    2017-08-01

    In glassy substances and biological media, dynamical transitions are observed in neutron scattering that manifests itself as deviations of the translational mean-squared displacement, , of hydrogen atoms from harmonic dynamics. In biological media, the deviation occurs at two temperature intervals, at ˜100-150 K and at ˜170-230 K, and it is attributed to the motion of methyl groups in the former case and to the transition from harmonic to anharmonic or diffusive motions in the latter case. In this work, electron spin echo (ESE) spectroscopy—a pulsed version of electron paramagnetic resonance—is applied to study the spin relaxation of nitroxide spin probes and labels introduced in molecular glass former o-terphenyl and in protein lysozyme. The anisotropic contribution to the rate of the two-pulse ESE decay, ΔW, is induced by spin relaxation appearing because of restricted orientational stochastic molecular motion; it is proportional to τc, where is the mean-squared angle of reorientation of the nitroxide molecule around the equilibrium position and τc is the correlation time of reorientation. The ESE time window allows us to study motions with τc τc temperature dependence shows a transition near 240 K, which is in agreement with the literature data on . For spin probes of essentially different size, the obtained data were found to be close, which evidences that motion is cooperative, involving a nanocluster of several neighboring molecules. For the dry lysozyme, the τc values below 260 K were found to linearly depend on the temperature in the same way as it was observed in neutron scattering for . As spin relaxation is influenced only by stochastic motion, the harmonic motions seen in ESE must be overdamped. In the hydrated lysozyme, ESE data show transitions near 130 K for all nitroxides, near 160 K for the probe located in the hydration layer, and near 180 K for the label in the protein interior. For this system, the two latter transitions are not

  9. Spin-Relaxation Anisotropy in a GaAs Quantum Dot

    NARCIS (Netherlands)

    Scarlino, P.; Kawakami, E.; Stano, P.; Shafiei, M.; Reichl, C.; Wegscheider, W.; Vandersypen, L.M.K.

    2014-01-01

    We report that the electron spin-relaxation time T1 in a GaAs quantum dot with a spin-1/2 ground state has a 180° periodicity in the orientation of the in-plane magnetic field. This periodicity has been predicted for circular dots as being due to the interplay of Rashba and Dresselhaus spin orbit

  10. Spin-relaxation time in the impurity band of wurtzite semiconductors

    Science.gov (United States)

    Tamborenea, Pablo I.; Wellens, Thomas; Weinmann, Dietmar; Jalabert, Rodolfo A.

    2017-09-01

    The spin-relaxation time for electrons in the impurity band of semiconductors with wurtzite crystal structure is determined. The effective Dresselhaus spin-orbit interaction Hamiltonian is taken as the source of the spin relaxation at low temperature and for doping densities corresponding to the metallic side of the metal-insulator transition. The spin-flip hopping matrix elements between impurity states are calculated and used to set up a tight-binding Hamiltonian that incorporates the symmetries of wurtzite semiconductors. The spin-relaxation time is obtained from a semiclassical model of spin diffusion, as well as from a microscopic self-consistent diagrammatic theory of spin and charge diffusion in doped semiconductors. Estimates are provided for particularly important materials. The theoretical spin-relaxation times compare favorably with the corresponding low-temperature measurements in GaN and ZnO. For InN and AlN we predict that tuning of the spin-orbit coupling constant induced by an external potential leads to a potentially dramatic increase of the spin-relaxation time related to the mechanism under study.

  11. Picosecond spin relaxation in low-temperature-grown GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, M.; Honda, K.; Yasue, Y.; Tackeuchi, A., E-mail: atacke@waseda.jp [Department of Applied Physics, Waseda University, Tokyo 169-8555 (Japan); Lu, S. L.; Dai, P. [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou (China)

    2014-03-24

    The spin relaxation process of low-temperature-grown GaAs is investigated by spin-dependent pump and probe reflectance measurements with a sub-picosecond time resolution. Two very short carrier lifetimes of 2.0 ps and 28 ps, which can be attributed to nonradiative recombinations related to defects, are observed at 10 K. The observed spin polarization shows double exponential decay with spin relaxation times of 46.2 ps (8.0 ps) and 509 ps (60 ps) at 10 K (200 K). The observed picosecond spin relaxation, which is considerably shorter than that of conventional GaAs, indicates the strong relevance of the Elliott-Yafet process as the spin relaxation mechanism. For the first (second) spin relaxation component, the temperature and carrier density dependences of the spin relaxation time indicate that the Bir-Aronov-Pikus process is also effective at temperatures between 10 K and 77 K, and that the D'yakonov-Perel’ process is effective between 125 K (77 K) and 200 K.

  12. Cross-correlated relaxation rates between protein backbone H–X dipolar interactions

    Energy Technology Data Exchange (ETDEWEB)

    Vögeli, Beat, E-mail: beat.vogeli@ucdenver.edu [University of Colorado Denver, Department of Biochemistry and Molecular Genetics (United States)

    2017-03-15

    The relaxation interference between dipole–dipole interactions of two separate spin pairs carries structural and dynamics information. In particular, when compared to individual dynamic behavior of those spin pairs, such cross-correlated relaxation (CCR) rates report on the correlation between the spin pairs. We have recently mapped out correlated motion along the backbone of the protein GB3, using CCR rates among and between consecutive H{sup N}–N and H{sup α}–C{sup α} dipole–dipole interactions. Here, we provide a detailed account of the measurement of the four types of CCR rates. All rates were obtained from at least two different pulse sequences, of which the yet unpublished ones are presented. Detailed comparisons between the different methods and corrections for unwanted pathways demonstrate that the averaged CCR rates are highly accurate and precise with errors of 1.5–3% of the entire value ranges.

  13. Cross-correlated relaxation rates between protein backbone H–X dipolar interactions

    International Nuclear Information System (INIS)

    Vögeli, Beat

    2017-01-01

    The relaxation interference between dipole–dipole interactions of two separate spin pairs carries structural and dynamics information. In particular, when compared to individual dynamic behavior of those spin pairs, such cross-correlated relaxation (CCR) rates report on the correlation between the spin pairs. We have recently mapped out correlated motion along the backbone of the protein GB3, using CCR rates among and between consecutive H N –N and H α –C α dipole–dipole interactions. Here, we provide a detailed account of the measurement of the four types of CCR rates. All rates were obtained from at least two different pulse sequences, of which the yet unpublished ones are presented. Detailed comparisons between the different methods and corrections for unwanted pathways demonstrate that the averaged CCR rates are highly accurate and precise with errors of 1.5–3% of the entire value ranges.

  14. Spin-Spin Relaxation and Karyagin-Gol'danskii Effect in FeCl3·6H2O

    DEFF Research Database (Denmark)

    Thrane, N.; Trumpy, Georg

    1970-01-01

    . Qualitatively, the experimental results can be explained by a combination of a temperature-and magnetic-field-dependent spin-spin relaxation and the Karyagin-Gol'danskii effect. This implies that the zero-field splitting is about 20°K between the lowest-lying Kramers doublet, found to be the |±1 / 2...

  15. Magnetic properties and proton spin-lattice relaxation in molecular clusters

    International Nuclear Information System (INIS)

    Allalen, M.

    2006-01-01

    In this work we studied magnetic properties of molecular magnets of the new heteropolyanion {Cu 20 }, dodecanuclear cluster {Ni 12 }, and the heterometallic {Cr 7 M} wheels, in which one of the Cr III ions of Cr 8 has been replaced by a Fe, Cu, Zn, Ni, ion with this extra-spin acts as local probe for the spin dynamics. Such systems have been synthesized recently and they are well described using the Heisenberg spin Hamiltonian with a Zeeman term of an applied magnetic field along the z-axis. Using the numerical exact diagonalization method, we have calculated the energy spectrum and the eigenstates for different compounds, and we have used them for reexamining the available experimental susceptibility data to determine the values of exchange parameters. We have studied the thermodynamic properties such magnetization, susceptibility, heat-capacity. At low temperature regions molecular magnets act as individual quantum nanomagnets and can display super-paramagnetic phenomena like macroscopic quantum tunneling, ground state degeneracy, level-crossing. A crucial issue for understanding these phenomena is the coupling between magnetic molecular levels and the environment such as nuclear spins. We have modeled the behavior of the proton spin lattice relaxation rate as a function of applied magnetic field for low temperatures as it is measured in Nuclear Magnetic Resonance (NMR) experiments. (orig.)

  16. Muon spin relaxation study of spin dynamics in the extended kagome systems YBaCo4O7 +δ (δ =0 ,0.1 )

    Science.gov (United States)

    Lee, S.; Lee, Wonjun; Lee, K. J.; Kim, ByungJun; Suh, B. J.; Zheng, H.; Mitchell, J. F.; Choi, K.-Y.

    2018-03-01

    We present muon spin relaxation (μ SR ) measurements of the extended kagome systems YBaCo4O7 +δ (δ =0 ,0.1 ), comprising two interpenetrating kagome sublattice of Co (I) 3 + (S =3 /2 ) and a triangle sublattice of Co (II) 2 + (S =2 ). The zero- and longitudinal-field μ SR spectra of the stoichiometric compound YBaCo4O7 unveil that the triangular subsystem orders at TN=101 K. In contrast, the muon spin relaxation rate pertaining to the kagome subsystem shows persistent spin dynamics down to T =20 K and then a sublinear decrease λ (T ) ˜T0.66 (5 ) on cooling towards T =4 K. In addition, the introduction of interstitial oxygen (δ =0.1 ) is found to drastically affect the magnetism. For the fast-cooling experiment (>10 K/min), YBaCo4O7.1 enters a regime characterized by persistent spin dynamics below 90 K. For the slow-cooling experiment (1 K/min), evidence is obtained for the phase separation into interstitial oxygen-poor and oxygen-rich regions with distinct correlation times. The observed temperature, cooling rate, and oxygen content dependencies of spin dynamics are discussed in terms of a broad range of spin-spin correlation times, relying on a different degree of frustration between the kagome and triangle sublattices as well as of oxygen migration.

  17. Observations of exciton and carrier spin relaxation in Be doped p-type GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Asaka, Naohiro; Harasawa, Ryo; Tackeuchi, Atsushi, E-mail: atacke@waseda.jp [Department of Applied Physics, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Lu, Shulong; Dai, Pan [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Dushu Lake Higher Education Town, Ruoshui Road 398, Suzhou Industrial Park, Suzhou 215028 (China)

    2014-03-17

    We have investigated the exciton and carrier spin relaxation in Be-doped p-type GaAs. Time-resolved spin-dependent photoluminescence (PL) measurements revealed spin relaxation behaviors between 10 and 100 K. Two PL peaks were observed at 1.511 eV (peak 1) and 1.497 eV (peak 2) at 10 K, and are attributed to the recombination of excitons bound to neutral Be acceptors (peak 1) and the band-to-acceptor transition (peak 2). The spin relaxation times of both PL peaks were measured to be 1.3–3.1 ns at 10–100 K, and found to originate from common electron spin relaxation. The observed existence of a carrier density dependence of the spin relaxation time at 10–77 K indicates that the Bir-Aronov-Pikus process is the dominant spin relaxation mechanism.

  18. Simple expressions of the nuclear relaxation rate enhancement due to quadrupole nuclei in slowly tumbling molecules

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Pascal H., E-mail: pascal-h.fries@cea.fr [Université Grenoble Alpes, INAC-SCIB, RICC, F-38000 Grenoble (France); CEA, INAC-SCIB, RICC, F-38000 Grenoble (France); Belorizky, Elie [Université Grenoble Alpes, LIPHY, F-38000 Grenoble (France); CEA, Leti-Clinatec, F-38000 Grenoble (France)

    2015-07-28

    For slowly tumbling entities or quasi-rigid lattices, we derive very simple analytical expressions of the quadrupole relaxation enhancement (QRE) of the longitudinal relaxation rate R{sub 1} of nuclear spins I due to their intramolecular magnetic dipolar coupling with quadrupole nuclei of arbitrary spins S ≥ 1. These expressions are obtained by using the adiabatic approximation for evaluating the time evolution operator of the quantum states of the quadrupole nuclei S. They are valid when the gyromagnetic ratio of the spin S is much smaller than that of the spin I. The theory predicts quadrupole resonant peaks in the dispersion curve of R{sub 1} vs magnetic field. The number, positions, relative intensities, Lorentzian shapes, and widths of these peaks are explained in terms of the following properties: the magnitude of the quadrupole Hamiltonian and the asymmetry parameter of the electric field gradient (EFG) acting on the spin S, the S-I inter-spin orientation with respect to the EFG principal axes, the rotational correlation time of the entity carrying the S–I pair, and/or the proper relaxation time of the spin S. The theory is first applied to protein amide protons undergoing dipolar coupling with fast-relaxing quadrupole {sup 14}N nuclei and mediating the QRE to the observed bulk water protons. The theoretical QRE agrees well with its experimental counterpart for various systems such as bovine pancreatic trypsin inhibitor and cartilages. The anomalous behaviour of the relaxation rate of protons in synthetic aluminium silicate imogolite nano-tubes due to the QRE of {sup 27}Al (S = 5/2) nuclei is also explained.

  19. Nuclear spin relaxation/resonance of {sup 8}Li in Al

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Salman, Z. [Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); ISIS Facility, Rutherford-Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Chow, K.H.; Fan, I. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Hossain, M.D.; Keeler, T.A. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Kiefl, R.F., E-mail: kiefl@triumf.c [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Canadian Institute for Advanced Research (Canada); Levy, C.D.P. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Mansour, A.I. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Morris, G.D.; Pearson, M.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Parolin, T.J. [Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z3 (Canada); Saadaoui, H.; Smadella, M.; Song, Q. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); MacFarlane, W.A. [Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z3 (Canada)

    2009-04-15

    A low energy beam of spin polarized {sup 8}Li has been used to study the behaviour of isolated {sup 8}Li implanted into a 150 nm thick film of Al on an MgO substrate. The spin relaxation rate 1/T{sub 1} and beta-NMR lineshape were measured as a function of temperature in a large magnetic field of 4.1 T. The resonances from different sites are unresolved due to the large nuclear dipolar interaction with the host {sup 27}Al magnetic dipole moments. Nevertheless the temperature variation of the site averaged 1/T{sub 1} and Knight shift show evidence for a transition between the octahedral O and substitutional S sites at about 150 K, as observed in other fcc metals.

  20. Electron spin-relaxation via vibronic level of nickel (I) and nickel (III) cyanide complexes in NaCl single crystals.

    Science.gov (United States)

    Vugman, N V; de Araújo, M B; Pinhal, N M; Magon, C J; da Costa Filho, A J

    2004-05-01

    Electron spin-lattice relaxation rates for the low spin [Ni(CN)(4)](1-) and [Ni(CN)(4)](3-) complexes in NaCl host lattice were measured by the inversion recovery technique in the temperature range 7-50K. The data for both paramagnetic species fit very well to a relaxation process involving localized anharmonic vibration modes, also responsible for the g-tensor temperature dependence.

  1. A statistical correlation investigation for the role of surface spins to the spin relaxation of nitrogen vacancy centers

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xuerui; Zhang, Jian; Feng, Fupan; Wang, Junfeng; Zhang, Wenlong; Lou, Liren; Zhu, Wei; Wang, Guanzhong, E-mail: gzwang@ustc.edu.cn [Hefei National Laboratory for Physical Science at Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026 (China)

    2014-04-15

    We investigated the influence of spins on surface of nanodiamonds (NDs) to the longitudinal relaxation time (T{sub 1}) and transverse relaxation time (T{sub 2}) of nitrogen vacancy (NV) centers in ND. A spherical model of the NDs was suggested to account for the experimental results of T{sub 1} and T{sub 2}, and the density of surface spins was roughly estimated based on the statistical analysis of experimental results of 72 NDs containing a single NV center. For NDs studied here, the T{sub 1} of NV center inside is highly dependent to the surface spins of the NDs. However, for the T{sub 2} of NV center, intrinsic contributions must be much pronounced than that by surface spins. In other words, T{sub 1} of an NV center in NDs is more sensitive to the change of the surface spin density than T{sub 2}.

  2. A statistical correlation investigation for the role of surface spins to the spin relaxation of nitrogen vacancy centers

    Directory of Open Access Journals (Sweden)

    Xuerui Song

    2014-04-01

    Full Text Available We investigated the influence of spins on surface of nanodiamonds (NDs to the longitudinal relaxation time (T1 and transverse relaxation time (T2 of nitrogen vacancy (NV centers in ND. A spherical model of the NDs was suggested to account for the experimental results of T1 and T2, and the density of surface spins was roughly estimated based on the statistical analysis of experimental results of 72 NDs containing a single NV center. For NDs studied here, the T1 of NV center inside is highly dependent to the surface spins of the NDs. However, for the T2 of NV center, intrinsic contributions must be much pronounced than that by surface spins. In other words, T1 of an NV center in NDs is more sensitive to the change of the surface spin density than T2.

  3. The spin relaxation of nitrogen donors in 6H SiC crystals as studied by the electron spin echo method

    Science.gov (United States)

    Savchenko, D.; Shanina, B.; Kalabukhova, E.; Pöppl, A.; Lančok, J.; Mokhov, E.

    2016-04-01

    We present the detailed study of the spin kinetics of the nitrogen (N) donor electrons in 6H SiC wafers grown by the Lely method and by the sublimation "sandwich method" (SSM) with a donor concentration of about 1017 cm-3 at T = 10-40 K. The donor electrons of the N donors substituting quasi-cubic "k1" and "k2" sites (Nk1,k2) in both types of the samples revealed the similar temperature dependence of the spin-lattice relaxation rate (T1-1), which was described by the direct one-phonon and two-phonon processes induced by the acoustic phonons proportional to T and to T9, respectively. The character of the temperature dependence of the T1-1 for the donor electrons of N substituting hexagonal ("h") site (Nh) in both types of 6H SiC samples indicates that the donor electrons relax through the fast-relaxing centers by means of the cross-relaxation process. The observed enhancement of the phase memory relaxation rate (Tm-1) with the temperature increase for the Nh donors in both types of the samples, as well as for the Nk1,k2 donors in Lely grown 6H SiC, was explained by the growth of the free electron concentration with the temperature increase and their exchange scattering at the N donor centers. The observed significant shortening of the phase memory relaxation time Tm for the Nk1,k2 donors in the SSM grown sample with the temperature lowering is caused by hopping motion of the electrons between the occupied and unoccupied states of the N donors at Nh and Nk1,k2 sites. The impact of the N donor pairs, triads, distant donor pairs formed in n-type 6H SiC wafers on the spin relaxation times was discussed.

  4. Generalized extended Navier-Stokes theory: multiscale spin relaxation in molecular fluids.

    Science.gov (United States)

    Hansen, J S

    2013-09-01

    This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia per unit mass. In the regime of large moment of inertia the fast relaxation is wave-vector independent and dominated by the coupling between spin and the fluid streaming velocity, whereas for small inertia the relaxation is slow and spin diffusion plays a significant role. The fast wave-vector-independent relaxation is also observed for highly packed systems. The transverse and longitudinal spin modes have, to a good approximation, identical relaxation, indicating that the longitudinal and transverse spin viscosities have same value. The relaxation is also shown to be isomorphic invariant. Finally, the effect of the coupling in the zero frequency and wave-vector limit is quantified by a characteristic length scale; if the system dimension is comparable to this length the coupling must be included into the fluid dynamical description. It is found that the length scale is independent of moment of inertia but dependent on the state point.

  5. Generalized extended Navier-Stokes theory: Multiscale spin relaxation in molecular fluids

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2013-01-01

    This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia...

  6. Solute-Vacancy Clustering In Al-Mg-Si Alloys Studied By Muon Spin Relaxation Technique

    Directory of Open Access Journals (Sweden)

    Nishimura K.

    2015-06-01

    Full Text Available Zero-field muon spin relaxation experiments were carried out with Al-1.6%Mg2Si, Al-0.5%Mg, and Al-0.5%Si alloys. Observed relaxation spectra were compared with the calculated relaxation functions based on the Monte Carlo simulation to extract the dipolar width (Δ, trapping (νt, and detrapping rates (νd, with the initially trapped muon fraction (P0. The fitting analysis has elucidated that the muon trapping rates depended on the heat treatment and solute concentrations. The dissolved Mg in Al dominated the νt at lower temperatures below 120 K, therefore the similar temperature variations of νt were observed with the samples mixed with Mg. The νt around 200 K remarkably reflected the heat treatment effect on the samples, and the largest νt value was found with the sample annealed at 100°C among Al-1.6%Mg2Si alloys. The as-quenched Al-0.5%Si sample showed significant νt values between 80 and 280 K relating with Si-vacancy clusters, but such clusters disappeared with the natural aged Al-0.5%Si sample.

  7. 55Mn nuclear spin relaxation and lifetime of magnons in MnF2 near the spin-flop transition

    International Nuclear Information System (INIS)

    Boucher, J.P.; King, A.R.

    1977-01-01

    A divergence in the nuclear relaxation rate (T 1 -1 ) of 55 Mn is observed in MnF 2 when the magnetic field approaches the field of the spin-flop transition (H=92.94Oe). The field dependence of T 1 -1 at 4.2 and 2K was studied together with its temperature dependence at 92.4 and 85 kOe. Near the transition, T 1 -1 is governed, below 8K, by the processes induced by the dipolar coupling and, above 8K, by those induced by exchange interactions. On the contrary, in weaker fields (H=85Oe), the only exchange induced processes are important [fr

  8. Measurements of the nuclear spin-spin relaxation times for commensurate {sup 3}He-Ne films adsorbed on hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Parks, C; Sullivan, N S [Department of Physics, University of Florida, Gainesville, FL 32611 (United States); Stachowiak, P [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wroclaw (Poland)], E-mail: Sullivan@phys.ufl.edu

    2009-02-01

    Measurements of the {sup 3}He nuclear spin-spin relaxation time, T{sub 2}, have been carried out for commensurate layers of {sup 3}He-Ne mixtures adsorbed on hexagonal boron nitride for temperatures 0.2< T <10 K. A temperature independent relaxation is observed at low temperatures and is interpreted in terms of the effective exchange frequencies for {sup 3}He particle exchange on the surface. The results show a strong dependence on the fraction of neon in the adsorbed layer. This variation is discussed in terms of a multiple spin exchange model for {sup 3}He in a monolayer. The contributions to T{sub 2} from different components of the exchange, 2-spin exchange (J{sub 2}), 3-spin exchange (J{sub 3}), 4-spin exchange (J{sub 4}) and higher exchange permutations depend on the {sup 3}He coverage and thus permit the separation of the amplitudes of the different exchange rates, and in particular allow one to deduce the relative strengths of 2-atom and 3-atom exchange where other methods are sensitive only to the effective two-particle term J{sub eff} = J{sub 2} - 2J{sub 3}.

  9. The eigenmode perspective of NMR spin relaxation in proteins

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Yury E., E-mail: shapiro@nmrsgi4.ls.biu.ac.il, E-mail: eva.meirovitch@biu.ac.il; Meirovitch, Eva, E-mail: shapiro@nmrsgi4.ls.biu.ac.il, E-mail: eva.meirovitch@biu.ac.il [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900-02 (Israel)

    2013-12-14

    We developed in recent years the two-body (protein and probe) coupled-rotator slowly relaxing local structure (SRLS) approach for elucidating protein dynamics from NMR spin relaxation. So far we used as descriptors the set of physical parameters that enter the SRLS model. They include the global (protein-related) diffusion tensor, D{sub 1}, the local (probe-related) diffusion tensor, D{sub 2}, and the local coupling/ordering potential, u. As common in analyzes based on mesoscopic dynamic models, these parameters have been determined with data-fitting techniques. In this study, we describe structural dynamics in terms of the eigenmodes comprising the SRLS time correlation functions (TCFs) generated by using the best-fit parameters as input to the Smoluchowski equation. An eigenmode is a weighted exponential with decay constant given by an eigenvalue of the Smoluchowski operator, and weighting factor determined by the corresponding eigenvector. Obviously, both quantities depend on the SRLS parameters as determined by the SRLS model. Unlike the set of best-fit parameters, the eigenmodes represent patterns of motion of the probe-protein system. The following new information is obtained for the typical probe, the {sup 15}N−{sup 1}H bond. Two eigenmodes, associated with the protein and the probe, dominate when the time scale separation is large (i.e., D{sub 2} ≫ D{sub 1}), the tensorial properties are simple, and the local potential is either very strong or very weak. When the potential exceeds these limits while the remaining conditions are preserved, new eigenmodes arise. The multi-exponentiality of the TCFs is associated in this case with the restricted nature of the local motion. When the time scale separation is no longer large, the rotational degrees of freedom of the protein and the probe become statistically dependent (coupled dynamically). The multi-exponentiality of the TCFs is associated in this case with the restricted nature of both the local and the

  10. The eigenmode perspective of NMR spin relaxation in proteins

    Science.gov (United States)

    Shapiro, Yury E.; Meirovitch, Eva

    2013-12-01

    We developed in recent years the two-body (protein and probe) coupled-rotator slowly relaxing local structure (SRLS) approach for elucidating protein dynamics from NMR spin relaxation. So far we used as descriptors the set of physical parameters that enter the SRLS model. They include the global (protein-related) diffusion tensor, D1, the local (probe-related) diffusion tensor, D2, and the local coupling/ordering potential, u. As common in analyzes based on mesoscopic dynamic models, these parameters have been determined with data-fitting techniques. In this study, we describe structural dynamics in terms of the eigenmodes comprising the SRLS time correlation functions (TCFs) generated by using the best-fit parameters as input to the Smoluchowski equation. An eigenmode is a weighted exponential with decay constant given by an eigenvalue of the Smoluchowski operator, and weighting factor determined by the corresponding eigenvector. Obviously, both quantities depend on the SRLS parameters as determined by the SRLS model. Unlike the set of best-fit parameters, the eigenmodes represent patterns of motion of the probe-protein system. The following new information is obtained for the typical probe, the 15N-1H bond. Two eigenmodes, associated with the protein and the probe, dominate when the time scale separation is large (i.e., D2 ≫ D1), the tensorial properties are simple, and the local potential is either very strong or very weak. When the potential exceeds these limits while the remaining conditions are preserved, new eigenmodes arise. The multi-exponentiality of the TCFs is associated in this case with the restricted nature of the local motion. When the time scale separation is no longer large, the rotational degrees of freedom of the protein and the probe become statistically dependent (coupled dynamically). The multi-exponentiality of the TCFs is associated in this case with the restricted nature of both the local and the global motion. The effects of local

  11. Spin relaxation in InGaN quantum disks in GaN nanowires

    KAUST Repository

    Banerjee, Animesh

    2011-12-14

    The spin relaxation time of photoinduced conduction electrons has been measured in InGaN quantum disks in GaN nanowires as a function of temperature and In composition in the disks. The relaxation times are of the order of ∼100 ps at 300 K and are weakly dependent on temperature. Theoretical considerations show that the Elliott-Yafet scattering mechanism is essentially absent in these materials and the results are interpreted in terms of the D\\'yakonov-Perel\\' relaxation mechanism in the presence of Rashba spin-orbit coupling of the wurtzite structure. The calculated spin relaxation times are in good agreement with the measured values. © 2011 American Chemical Society.

  12. Wall relaxation rates for an optically pumped NA vapor

    International Nuclear Information System (INIS)

    Swenson, D.R.; Anderson, L.W.

    1986-01-01

    The wall relaxation rates for an optically pumped Na vapor have been measured for a variety of wall surfaces. We find that fluorocarbon rubber (Fluorel, Viton) and organosilicones (silicone rubber, dry film) at a temperature of 250 C have respectively relaxation rates that correspond on the average to 10 to 15 and 200 to 500 bounces before depolarization occurs. 7 refs., 3 figs

  13. Oxygen-17-induced proton relaxation rates for alcohols and alcohol solutions

    Directory of Open Access Journals (Sweden)

    Farrar Thomas C.

    1999-01-01

    Full Text Available The use of 17O enriched samples of alcohols to measure the correlation time of the OH internuclear vector works well when the hydroxyl proton exchanges rapidly. For alcohols such as methanol and ethanol the hydroxyl exchange rate for neat samples is relatively slow even at room temperature and significant systematic errors result if slow exchange effects are not considered. For slow exchange the hydroxyl proton, 17OH, signal is a relatively complex function of the chemical exchange rate of the hydroxyl proton, the OH spin coupling (about 80 Hz for alcohols and water and the relaxation time for the oxygen. The OH linewidth can become so large due to scalar relaxation with the rapidly relaxing oxygen nucleus that the signal becomes very difficult to detect. For neat 17O enriched ethanol at room temperature the oxygen relaxation time is about 3.0 ms and the hydroxyl proton linewidth is over 1000 Hz.

  14. Spin lattice relaxation of 8Li in a ferromagnetic EuO epitaxial thin film

    Science.gov (United States)

    Song, Q.; Chow, K. H.; Egilmez, M.; Fan, I.; Hossain, M. D.; Kiefl, R. F.; Kreitzman, S. R.; Levy, C. D. P.; Morris, G. D.; Parolin, T. J.; Pearson, M. R.; Salman, Z.; Saadaoui, H.; Smadella, M.; Wang, D.; Ingle, N. J. C.; MacFarlane, W. A.

    2009-04-01

    We inject a low energy spin polarized Li+8 beam into an epitaxially grown multilayer film consisting of Au(20 nm)/EuO(100 nm)/ LaAlO3, and investigate the nuclear spin relaxation at 3.33 T. The relaxation varies with implantation energy below 28 keV as the fraction of the probe Li8 stopping in each layer changes. We attribute the fast relaxating component to the EuO, while the much slower relaxation has contributions from both the Au and the substrate. However, fast relaxation is still observed at the lowest implantation energy where all the Li8 stops in the Au capping layer. This may be due to a proximity effect from the EuO.

  15. Spin lattice relaxation of {sup 8}Li in a ferromagnetic EuO epitaxial thin film

    Energy Technology Data Exchange (ETDEWEB)

    Song, Q., E-mail: susan@phas.ubc.c [Department of Physics, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Chow, K.H.; Egilmez, M.; Fan, I. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Hossain, M.D. [Department of Physics, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Kiefl, R.F. [Department of Physics, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Canadian Institute of Advanced Research (Canada); Kreitzman, S.R.; Levy, C.D.P.; Morris, G.D. [TRIMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Parolin, T.J. [Chemistry Department, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Pearson, M.R. [TRIMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Salman, Z. [TRIMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Physics Department, Oxford University, Parks Road, Oxford, OX1 3PU (United Kingdom); Saadaoui, H.; Smadella, M.; Wang, D. [Department of Physics, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Ingle, N.J.C. [AMPEL, University of British Columbia, Vancouver (Canada); MacFarlane, W.A. [Chemistry Department, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada)

    2009-04-15

    We inject a low energy spin polarized {sup 8}Li{sup +} beam into an epitaxially grown multilayer film consisting of Au(20 nm)/EuO(100 nm)/LaAlO{sub 3}, and investigate the nuclear spin relaxation at 3.33 T. The relaxation varies with implantation energy below 28 keV as the fraction of the probe {sup 8}Li stopping in each layer changes. We attribute the fast relaxating component to the EuO, while the much slower relaxation has contributions from both the Au and the substrate. However, fast relaxation is still observed at the lowest implantation energy where all the {sup 8}Li stops in the Au capping layer. This may be due to a proximity effect from the EuO.

  16. Energy relaxation between low lying tunnel split spin-states of the single molecule magnet Ni4

    Science.gov (United States)

    de Loubens, G.; Chaves-O'Flynn, G. D.; Kent, A. D.; Ramsey, C.; Del Barco, E.; Beedle, C.; Hendrickson, D. N.

    2007-03-01

    We have developed integrated magnetic sensors to study quantum tunneling of magnetization (QTM) in single molecule magnet (SMMs) single crystals. These sensors incorporate a microstrip resonator (30 GHz) and a micro-Hall effect magnetometer. They have been used to investigate the relaxation rates between the 2 lowest lying tunnel split spin-states of the SMM Ni4 (S=4). EPR spectroscopy at 30 GHz and 0.4 K and concurrent magnetization measurements of several Ni4 single crystals are presented. EPR enables measurement of the energy splitting between the 2 lowest lying superposition states as a function of the longitudinal and transverse fields. The energy relaxation rate is determined in two ways. First, in cw microwave experiments the change in spin-population together with the microwave absorption directly gives the relaxation time from energy conservation in steady-state. Second, direct time-resolved measurements of the magnetization with pulsed microwave radiation have been performed. The relaxation time is found to vary by several orders of magnitude in different crystals, from a few seconds down to smaller than 100 μs. We discuss this and the form of the relaxation found for different crystals and pulse conditions.

  17. Constraints on relaxation rates for N-level quantum systems

    International Nuclear Information System (INIS)

    Schirmer, S.G.; Solomon, A.I.

    2004-01-01

    We study the constraints imposed on the population and phase relaxation rates by the physical requirement of completely positive evolution for open N-level systems. The Lindblad operators that govern the evolution of the system are expressed in terms of observable relaxation rates, explicit formulas for the decoherence rates due to population relaxation are derived, and it is shown that there are additional, nontrivial constraints on the pure dephasing rates for N>2. Explicit, experimentally testable inequality constraints for the decoherence rates are derived for three- and four-level systems, and the implications of the results are discussed for generic ladder, Λ, and V systems and transitions between degenerate energy levels

  18. High field electron-spin transport and observation of the Dyakonov-Perel spin relaxation of drifting electrons in low temperature-grown gallium arsenide

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2008-01-01

    High field electron-spin transport in low temperature-grown gallium arsenide is studied. We generate electron spins in the samples by optical pumping. During transport, we observe the Dyakonov-Perel (DP) [M.I. Dyakonov, V.I. Perel, Zh. Eksp. Teor. Fiz. 60 (1971) 1954] spin relaxation of the drifting electrons. The results are discussed and are compared with those obtained in calculations of the DP spin relaxation frequency of the hot electrons. A good agreement is obtained

  19. High field electron-spin transport and observation of the Dyakonov-Perel spin relaxation of drifting electrons in low temperature-grown gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong-4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2008-11-17

    High field electron-spin transport in low temperature-grown gallium arsenide is studied. We generate electron spins in the samples by optical pumping. During transport, we observe the Dyakonov-Perel (DP) [M.I. Dyakonov, V.I. Perel, Zh. Eksp. Teor. Fiz. 60 (1971) 1954] spin relaxation of the drifting electrons. The results are discussed and are compared with those obtained in calculations of the DP spin relaxation frequency of the hot electrons. A good agreement is obtained.

  20. Local spin dynamics at low temperature in the slowly relaxing molecular chain [Dy(hfac)3(NIT(C6H4OPh))]: A μ{sup +} spin relaxation study

    Energy Technology Data Exchange (ETDEWEB)

    Arosio, Paolo, E-mail: paolo.arosio@guest.unimi.it; Orsini, Francesco [Department of Physics, Università degli Studi di Milano, and INSTM, Milano (Italy); Corti, Maurizio [Department of Physics, Università degli Studi di Pavia and INSTM, Pavia (Italy); Mariani, Manuel [Department of Physics and Astronomy, Università degli Studi di Bologna, Bologna (Italy); Bogani, Lapo [Physikalisches Institut, Universität Stuttgart, Stuttgart (Germany); Caneschi, Andrea [INSTM and Department of Chemistry, University of Florence, Firenze (Italy); Lago, Jorge [Departamento de Quimica Inorganica, Universidad del Pais Vasco, Bilbao (Spain); Lascialfari, Alessandro [Department of Physics, Università degli Studi di Milano, and INSTM, Milano (Italy); Centro S3, Istituto Nanoscienze - CNR, Modena (Italy)

    2015-05-07

    The spin dynamics of the molecular magnetic chain [Dy(hfac){sub 3}(NIT(C{sub 6}H{sub 4}OPh))] were investigated by means of the Muon Spin Relaxation (μ{sup +}SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac){sub 3}(NIT(C{sub 6}H{sub 4}OPh))] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ{sup +}SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λ{sub interm}(T), associated with the intermediate relaxing component. The experimental λ{sub interm}(T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ{sub 0} exp(Δ/k{sub B}T), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state.

  1. Spin Liquid State in the 3D Frustrated Antiferromagnet PbCuTe_{2}O_{6}: NMR and Muon Spin Relaxation Studies.

    Science.gov (United States)

    Khuntia, P; Bert, F; Mendels, P; Koteswararao, B; Mahajan, A V; Baenitz, M; Chou, F C; Baines, C; Amato, A; Furukawa, Y

    2016-03-11

    PbCuTe_{2}O_{6} is a rare example of a spin liquid candidate featuring a three-dimensional magnetic lattice. Strong geometric frustration arises from the dominant antiferromagnetic interaction that generates a hyperkagome network of Cu^{2+} ions although additional interactions enhance the magnetic lattice connectivity. Through a combination of magnetization measurements and local probe investigations by NMR and muon spin relaxation down to 20 mK, we provide robust evidence for the absence of magnetic freezing in the ground state. The local spin susceptibility probed by the NMR shift hardly deviates from the macroscopic one down to 1 K pointing to a homogeneous magnetic system with a low defect concentration. The saturation of the NMR shift and the sublinear power law temperature (T) evolution of the 1/T_{1} NMR relaxation rate at low T point to a nonsinglet ground state favoring a gapless fermionic description of the magnetic excitations. Below 1 K a pronounced slowing down of the spin dynamics is witnessed, which may signal a reconstruction of spinon Fermi surface. Nonetheless, the compound remains in a fluctuating spin liquid state down to the lowest temperature of the present investigation.

  2. Spin-spin cross relaxation and spin-Hamiltonian spectroscopy by optical pumping of Pr/sup 3+/:LaF3

    International Nuclear Information System (INIS)

    Lukac, M.; Otto, F.W.; Hahn, E.L.

    1989-01-01

    We report the observation of an anticrossing in solid-state laser spectroscopy produced by cross relaxation. Spin-spin cross relaxation between the /sup 141/Pr- and /sup 19/F-spin reservoirs in Pr/sup 3+/:LaF 3 and its influence on the /sup 141/Pr NMR spectrum is detected by means of optical pumping. The technique employed combines optical pumping and hole burning with either external magnetic field sweep or rf resonance saturation in order to produce slow transient changes in resonant laser transmission. At a certain value of the external Zeeman field, where the energy-level splittings of Pr and F spins match, a level repulsion and discontinuity of the Pr/sup 3+/ NMR lines is observed. This effect is interpreted as the ''anticrossing'' of the combined Pr-F spin-spin reservoir energy states. The Zeeman-quadrupole-Hamiltonian spectrum of the hyperfine optical ground states of Pr/sup 3+/:LaF 3 is mapped out over a wide range of Zeeman magnetic fields. A new scheme is proposed for dynamic polarization of nuclei by means of optical pumping, based on resonant cross relaxation between rare spins and spin reservoirs

  3. Heteronuclear relaxation in time-dependent spin systems: 15N-T1ρ dispersion during adiabatic fast passage

    International Nuclear Information System (INIS)

    Konrat, Robert; Tollinger, Martin

    1999-01-01

    A novel NMR experiment comprising adiabatic fast passage techniques for the measurement of heteronuclear self-relaxation rates in fully 15N-enriched proteins is described. Heteronuclear self-relaxation is monitored by performing adiabatic fast passage (AFP) experiments at variable adiabaticity (e.g., variation of RF spin-lock field intensity). The experiment encompasses gradient- selection and sensitivity-enhancement. It is shown that transverse relaxation rates derived with this method are in good agreement with the ones measured by the classical Carr-Purcell-Meiboom-Gill (CPMG) sequences. An application of this method to the study of the carboxyl-terminal LIM domain of quail cysteine and glycine-rich protein qCRP2(LIM2) is presented

  4. Spin relaxation and the Kondo effect in transition metal dichalcogenide monolayers

    International Nuclear Information System (INIS)

    Rostami, Habib; Moghaddam, Ali G; Asgari, Reza

    2016-01-01

    We investigate the spin relaxation and Kondo resistivity caused by magnetic impurities in doped transition metal dichalcogenide monolayers. We show that momentum and spin relaxation times, due to the exchange interaction by magnetic impurities, are much longer when the Fermi level is inside the spin-split region of the valence band. In contrast to the spin relaxation, we find that the dependence of Kondo temperature T K on the doping is not strongly affected by the spin–orbit induced splitting, although only one of the spin species are present at each valley. This result, which is obtained using both perturbation theory and the poor man’s scaling methods, originates from the intervalley spin-flip scattering in the spin-split region. We further demonstrate the decline in the conductivity with temperatures close to T K , which can vary with the doping. Our findings reveal the qualitative difference with the Kondo physics in conventional metallic systems and other Dirac materials. (paper)

  5. Relaxation theory of spin-3/2 Ising system near phase transition temperatures

    International Nuclear Information System (INIS)

    Canko, Osman; Keskin, Mustafa

    2010-01-01

    Dynamics of a spin-3/2 Ising system Hamiltonian with bilinear and biquadratic nearest-neighbour exchange interactions is studied by a simple method in which the statistical equilibrium theory is combined with the Onsager's theory of irreversible thermodynamics. First, the equilibrium behaviour of the model in the molecular-field approximation is given briefly in order to obtain the phase transition temperatures, i.e. the first- and second-order and the tricritical points. Then, the Onsager theory is applied to the model and the kinetic or rate equations are obtained. By solving these equations three relaxation times are calculated and their behaviours are examined for temperatures near the phase transition points. Moreover, the z dynamic critical exponent is calculated and compared with the z values obtained for different systems experimentally and theoretically, and they are found to be in good agrement. (general)

  6. Measurements of spin-lattice relaxation time in mixed alkali halide crystals

    International Nuclear Information System (INIS)

    Tannus, A.

    1983-01-01

    Using magneto-optic techniques the ground state spin-lattice relaxation times (T1) of 'F' centers in mixed Alkali Halide cristals (KCl-KBr), was studied. A computer assisted system to optically measure short relaxation times (approx. = 1mS), was described. The technique is based on the measurement of the Magnetic Circular Dicroism (MCD) presented by F centers. The T1 magnetic field dependency at 2 K (up to 65 KGauss), was obtained as well as the MCD spectra for different relative concentration at the mixed matrices. The theory developed by Panepucci and Mollenauer for F centers spin-lattice relaxation in pure matrices was modified to explain the behaviour of T1 in mixed cristals. The Direct Process results (T approx. = 2.0 K) compared against that theory shows that the main relaxation mecanism, up to 25 KGauss, continues to be phonon modulation of the hiperfine iteraction between F electrons and surrounding nuclei. (Author) [pt

  7. Solid state proton spin-lattice relaxation in four structurally related organic molecules

    International Nuclear Information System (INIS)

    Beckmann, Peter A.; Burbank, Kendra S.; Lau, Matty M.W.; Ree, Jessica N.; Weber, Tracy L.

    2003-01-01

    We report and interpret the temperature dependence of the proton spin-lattice relaxation rate at 8.50 and 22.5 MHz in four polycrystalline solids composed of structurally related molecules: 2-ethylanthracene, 2-t-butylanthracene, 2-ethylanthraquinone, and 2-t-butylanthraquinone. We have been unable to grow single crystals and therefore do not know the crystal structures. Hence, we use the NMR relaxometry data to make predictions about the solid state structures. As expected, we are able to conclude that the ethyl groups do not reorient in the solid state but that the t-butyl groups do. The anthraquinones have a ''simpler'' structure than the anthracenes. The best dynamical models suggest that there is a unique crystallographic site for the t-butyl groups in 2-t-butylanthraquinone and two sites, each with half the molecules, for the ethyl groups in 2-ethylanthraquinone. There are also two sites in 2-ethylanthracene, but with unequal weights, suggesting four sites in the unit cell with lower symmetry than the two anthraquinones. Finally, the observed relaxation rate data in 2-t-butylanthracene is very complex and its interpretation demonstrates the uniqueness problem that arises in interpreting relaxometry data without the knowledge of the crystal structure

  8. Mn-based hard magnets with small saturation magnetization and low spin relaxation for spintronics

    International Nuclear Information System (INIS)

    Mizukami, S.; Sakuma, A.; Sugihara, A.; Suzuki, K.Z.; Ranjbar, R.

    2016-01-01

    The pursuit of high saturation magnetization is an important area of hard magnetic materials research. However, spintronics requires hard magnets exhibiting small saturation magnetization and low spin relaxation. Mn-based alloys that are composed of Mn and light group III and/or group IV elements exhibit such properties and may belong to a new category of magnetic materials. In this article, we review the magnetic properties of Mn-based hard magnet films. In particular, we focus on low spin relaxation as a new viewpoint for hard magnets, and we discuss the origin of their extraordinary magnetism in terms of their unique electronic structures.

  9. Optimal Configuration for Relaxation Times Estimation in Complex Spin Echo Imaging

    Directory of Open Access Journals (Sweden)

    Fabio Baselice

    2014-01-01

    Full Text Available Many pathologies can be identified by evaluating differences raised in the physical parameters of involved tissues. In a Magnetic Resonance Imaging (MRI framework, spin-lattice T1 and spin-spin T2 relaxation time parameters play a major role in such an identification. In this manuscript, a theoretical study related to the evaluation of the achievable performances in the estimation of relaxation times in MRI is proposed. After a discussion about the considered acquisition model, an analysis on the ideal imaging acquisition parameters in the case of spin echo sequences, i.e., echo and repetition times, is conducted. In particular, the aim of the manuscript consists in providing an empirical rule for optimal imaging parameter identification with respect to the tissues under investigation. Theoretical results are validated on different datasets in order to show the effectiveness of the presented study and of the proposed methodology.

  10. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Shmyreva, Anna A. [Center for Magnetic Resonance, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Safdari, Majid; Furó, István [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Dvinskikh, Sergey V., E-mail: sergeid@kth.se [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034 (Russian Federation)

    2016-06-14

    Orders of magnitude decrease of {sup 207}Pb and {sup 199}Hg NMR longitudinal relaxation times T{sub 1} upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX{sub 2} (Me = Pb, Hg and X = Cl, Br, I). In lead(II) halides, the most dramatic decrease of T{sub 1} relative to that in a static sample is in PbI{sub 2}, while it is smaller but still significant in PbBr{sub 2}, and not detectable in PbCl{sub 2}. The effect is magnetic-field dependent but independent of the spinning speed in the range 200–15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.

  11. Matrix-assisted relaxation in Fe(phen)2(NCS)2 spin-crossover microparticles, experimental and theoretical investigations

    International Nuclear Information System (INIS)

    Enachescu, Cristian; Stancu, Alexandru; Tanasa, Radu; Tissot, Antoine; Laisney, Jérôme; Boillot, Marie-Laure

    2016-01-01

    In this study, we present the influence of the embedding matrix on the relaxation of Fe(phen) 2 (NCS) 2 (phen = 1,10-phenanthroline) spin-transition microparticles as revealed by experiments and provide an explanation within the framework of an elastic model based on a Monte-Carlo method. Experiments show that the shape of the high-spin → low-spin relaxation curves is drastically changed when the particles are dispersed in glycerol. This effect was considered in the model by means of interactions between the microparticles and the matrix. A faster start of the relaxation for microparticles embedded in glycerol is due to an initial positive local pressure acting on the edge spin-crossover molecules from the matrix side. This local pressure diminishes and eventually becomes negative during relaxation, as an effect of the decrease of the volume of spin-crossover microparticles from high-spin to low-spin.

  12. Spin relaxation studies of Li+ion dynamics in polymer gel electrolytes.

    Science.gov (United States)

    Brinkkötter, M; Gouverneur, M; Sebastião, P J; Vaca Chávez, F; Schönhoff, M

    2017-03-08

    Two ternary polymer gel electrolyte systems are compared, containing either polyethylene oxide (PEO) or the poly-ionic liquid poly(diallyldimethylammonium) bis(trifluoromethyl sulfonyl)imide (PDADMA-TFSI). Both gel types are based on the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl sulfonyl)imide (P 14 TFSI) and LiTFSI. We study the influence of the polymers on the local lithium ion dynamics at different polymer concentrations using 7 Li spin-lattice relaxation data in dependence on frequency and temperature. In all cases the relaxation rates are well described by the Cole-Davidson motional model with Arrhenius dependence of the correlation time and a temperature dependent quadrupole coupling constant. For both polymers the correlation times are found to increase with polymer concentration. The activation energy of local motions slightly increases with increasing PEO concentration, and slightly decreases with increasing PDADMA-TFSI concentration. Thus the local Li + motion is reduced by the presence of either polymer; however, the reduction is less effective in the PDADMA + samples. We thus conclude that mechanical stabilization of a liquid electrolyte by a polymer can be achieved at a lower decrease of Li + motion when a cationic polymer is used instead of PEO.

  13. Direct and two-phonon Orbach-Aminov type spin-lattice relaxation in molecular magnet V15

    Science.gov (United States)

    Tarantul, Alex; Tsukerblat, Boris

    2011-10-01

    In this article we propose a model of spin-phonon relaxation in K6[VIV 15As6O42(H2O)]-8H2O, the so called V15 cluster exhibiting the unique layered magnetic structure. The work is motivated by the recent observation of the Rabi oscillation [1] in this system and aimed to elucidate the role of spin-phonon interaction as a source of decoherence. The spin-phonon coupling is assumed to appear as a result of the modulation of the isotropic and antisymmetric (Dzyaloshinsky-Moriya) exchange interactions in the central triangular layer of vanadium ions by the acoustic lattice vibrations. The relaxation rates are estimated within the Debye model for the lattice vibrations. Within the pseudo-angular momentum representation the selection rules for the direct (one-phonon) transitions between Zeeman levels are derived and a special role of the antisymmetric exchange is underlined. The probabilities of the two-phonon Orbach-Aminov type processes are evaluated as well, while the Raman type relaxation is shown to have a negligible importance at low temperatures at which the Rabi oscillations have been detected.

  14. Long Spin-Relaxation Times in a Transition-Metal Atom in Direct Contact to a Metal Substrate.

    Science.gov (United States)

    Hermenau, Jan; Ternes, Markus; Steinbrecher, Manuel; Wiesendanger, Roland; Wiebe, Jens

    2018-03-14

    Long spin-relaxation times are a prerequisite for the use of spins in data storage or nanospintronics technologies. An atomic-scale solid-state realization of such a system is the spin of a transition-metal atom adsorbed on a suitable substrate. For the case of a metallic substrate, which enables the direct addressing of the spin by conduction electrons, the experimentally measured lifetimes reported to date are on the order of only hundreds of femtoseconds. Here, we show that the spin states of iron atoms adsorbed directly on a conductive platinum substrate have a surprisingly long spin-relaxation time in the nanosecond regime, which is comparable to that of a transition metal atom decoupled from the substrate electrons by a thin decoupling layer. The combination of long spin-relaxation times and strong coupling to conduction electrons implies the possibility to use flexible coupling schemes to process the spin information.

  15. Long Spin-Relaxation Times in a Transition-Metal Atom in Direct Contact to a Metal Substrate

    Science.gov (United States)

    Hermenau, Jan; Ternes, Markus; Steinbrecher, Manuel; Wiesendanger, Roland; Wiebe, Jens

    2018-03-01

    Long spin relaxation times are a prerequisite for the use of spins in data storage or nanospintronics technologies. An atomic-scale solid-state realization of such a system is the spin of a transition metal atom adsorbed on a suitable substrate. For the case of a metallic substrate, which enables directly addressing the spin by conduction electrons, the experimentally measured lifetimes reported to date are on the order of only hundreds of femtoseconds. Here, we show that the spin states of iron atoms adsorbed directly on a conductive platinum substrate have an astonishingly long spin relaxation time in the nanosecond regime, which is comparable to that of a transition metal atom decoupled from the substrate electrons by a thin decoupling layer. The combination of long spin relaxation times and strong coupling to conduction electrons implies the possibility to use flexible coupling schemes in order to process the spin-information.

  16. Rb-129Xe spin-exchange rates due to binary and three-body collisions at high Xe pressures

    International Nuclear Information System (INIS)

    Cates, G.D.; Fitzgerald, R.J.; Barton, A.S.; Bogorad, P.; Gatzke, M.; Newbury, N.R.; Saam, B.

    1992-01-01

    We have studied the spin relaxation of 129 Xe nuclei due to collisions with Rb atoms at Xe pressures of 245--1817 Torr. Our results can be characterized by two parameters, the Rb- 129 Xe velocity-averaged binary spin-exchange cross section left-angle σv right-angle and a rate γ M that characterizes spin relaxation due to van der Waals molecules. Our results complement earlier studies performed at Xe pressures of about 1 Torr and N 2 pressures of 10--100 Torr. This work is useful for predicting spin-exchange rates between polarized Rb atoms and 129 Xe nuclei

  17. Relaxation theory of the electronic spin of a complexed paramagnetic metal ion in solution beyond the Redfield limit

    Science.gov (United States)

    Fries, Pascal H.; Belorizky, Elie

    2007-05-01

    The relaxation of the electronic spin S of a paramagnetic metal ion with fully quenched orbital angular momentum in its ground state is investigated in an external magnetic field through a systematic study of the time correlation functions governing the evolution of the statistical operator (density matrix). Let ω0 be the Larmor angular frequency of S. When the relaxation is induced by a time-fluctuating perturbing Hamiltonian ℏH1(t ) of time correlation τc, it is demonstrated that after a transient period the standard Redfield approximation is relevant to calculate the evolution of the populations of the spin states if ∥H1∥2τc2/(1+ω02τc2)≪1 and that this transient period becomes shorter than τc at sufficiently high field for a zero-field splitting perturbing Hamiltonian. This property, proven analytically and confirmed by numerical simulation, explains the surprising success of several simple expressions of the longitudinal electronic relaxation rate 1/T1e derived from the Redfield approximation well beyond its expected validity range ∥H1∥τc≪1. It has favorable practical consequences on the interpretation of the paramagnetic relaxation enhancement of nuclei used for structural and dynamic studies.

  18. Thermal conduction effects in spin-lattice relaxation experiments on ytterbium chloride hexahydrate

    NARCIS (Netherlands)

    Flokstra, Jakob; Gerritsma, G.J.; Blokhuis, A.C.

    1979-01-01

    The anomalous behaviour of the spin-lattice relaxation observed for single crystals of ytterbium chloride hexahydrate at fields stronger than 5 kOe is due to the poor heat transfer in the liquid-helium bath. The thermal conduction effects can be explained by means of a thermal conduction model for

  19. Criteria for accurate determination of the magnon relaxation length from the nonlocal spin Seebeck effect

    NARCIS (Netherlands)

    Shan, Juan; Cornelissen, Ludo Johannes; Liu, Jing; Ben Youssef, J.; Liang, Lei; van Wees, Bart

    2017-01-01

    The nonlocal transport of thermally generated magnons not only unveils the underlying mechanism of the spin Seebeck effect, but also allows for the extraction of the magnon relaxation length (λm) in a magnetic material, the average distance over which thermal magnons can propagate. In this study, we

  20. High spin rate magnetic controller for nanosatellites

    Science.gov (United States)

    Slavinskis, A.; Kvell, U.; Kulu, E.; Sünter, I.; Kuuste, H.; Lätt, S.; Voormansik, K.; Noorma, M.

    2014-02-01

    This paper presents a study of a high rate closed-loop spin controller that uses only electromagnetic coils as actuators. The controller is able to perform spin rate control and simultaneously align the spin axis with the Earth's inertial reference frame. It is implemented, optimised and simulated for a 1-unit CubeSat ESTCube-1 to fulfil its mission requirements: spin the satellite up to 360 deg s-1 around the z-axis and align its spin axis with the Earth's polar axis with a pointing error of less than 3°. The attitude of the satellite is determined using a magnetic field vector, a Sun vector and angular velocity. It is estimated using an Unscented Kalman Filter and controlled using three electromagnetic coils. The algorithm is tested in a simulation environment that includes models of space environment and environmental disturbances, sensor and actuator emulation, attitude estimation, and a model to simulate the time delay caused by on-board calculations. In addition to the normal operation mode, analyses of reduced satellite functionality are performed: significant errors of attitude estimation due to non-operational Sun sensors; and limited actuator functionality due to two non-operational coils. A hardware-in-the-loop test is also performed to verify on-board software.

  1. Intramolecular Energy Relaxation and Statistical Rate Theory

    OpenAIRE

    Okitsugu, KAJIMOTO; Department of Chemistry, Kyoto University

    1994-01-01

    Statistical rate theory is essentially based on the state counting without any restrictions other than the energy and the angular momentum conservation. In this work, two kinds of restrictions are introduced into the statistical theory. The first restriction is related to the intramolecular energy flow within the reacting molecular system. The excess energy of reaction is made distributed with some bias favoring a specific degree of freedom. That is, the statistical weight of each product sta...

  2. Quantum mechanical alternative to Arrhenius equation in the interpretation of proton spin-lattice relaxation data for the methyl groups in solids

    KAUST Repository

    Bernatowicz, Piotr

    2015-10-01

    Theory of nuclear spin-lattice relaxation in methyl groups in solids has been a recurring problem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for extreme cases of low torsional barriers where special quantum effects are at stake, the relaxation behaviour of the nuclear spins in methyl groups is controlled by thermally activated classical jumps of the methyl group between its three orientations. The temperature effects on the relaxation rates can be modelled by Arrhenius behaviour of the correlation time of the jump process. The entire variety of relaxation effects in protonated methyl groups has recently been given a consistently quantum mechanical explanation not invoking the jump model regardless of the temperature range. It exploits the damped quantum rotation (DQR) theory originally developed to describe NMR line shape effects for hindered methyl groups. In the DQR model, the incoherent dynamics of the methyl group include two quantum rate, i.e., coherence-damping processes. For proton relaxation only one of these processes is relevant. In this paper, temperature-dependent proton spin-lattice relaxation data for the methyl groups in polycrystalline methyltriphenyl silane and methyltriphenyl germanium, both deuterated in aromatic positions, are reported and interpreted in terms of the DQR model. A comparison with the conventional approach exploiting the phenomenological Arrhenius equation is made. The present observations provide further indications that incoherent motions of molecular moieties in condensed phase can retain quantum character over much broad temperature range than is commonly thought.

  3. Electric field dependence of the spin relaxation anisotropy in (111) GaAs/AlGaAs quantum wells

    International Nuclear Information System (INIS)

    Balocchi, A; Amand, T; Renucci, P; Duong, Q H; Marie, X; Wang, G; Liu, B L

    2013-01-01

    Time-resolved optical spectroscopy experiments in (111)-oriented GaAs/AlGaAs quantum wells (QWs) show a strong electric field dependence of the conduction electron spin relaxation anisotropy. This results from the interplay between the Dresselhaus and Rashba spin splitting in this system with C 3v symmetry. By varying the electric field applied perpendicular to the QW plane from 20 to 50 kV cm −1 the anisotropy of the spin relaxation time parallel (τ s ∥ ) and perpendicular (τ s ⊥ ) to the growth axis can be first canceled and eventually inversed with respect to the one usually observed in III–V zinc-blende QW (τ s ⊥ = 2τ s ∥ ). This dependence stems from the nonlinear contributions of the k-dependent conduction band spin splitting terms which begin to play the dominant spin relaxing role while the linear Dresselhaus terms are compensated by the Rashba ones through the applied bias. A spin density matrix model for the conduction band spin splitting including both linear and cubic terms of the Dresselhaus Hamiltonian is used which allows a quantitative description of the measured electric field dependence of the spin relaxation anisotropy. The existence of an isotropic point where the spin relaxation tensor reduces to a scalar is predicted and confirmed experimentally. The spin splitting compensation electric field and collision processes type in the QW can be likewise directly extracted from the model without complementary measurements. (paper)

  4. An inversion-relaxation approach for sampling stationary points of spin model Hamiltonians

    International Nuclear Information System (INIS)

    Hughes, Ciaran; Mehta, Dhagash; Wales, David J.

    2014-01-01

    Sampling the stationary points of a complicated potential energy landscape is a challenging problem. Here, we introduce a sampling method based on relaxation from stationary points of the highest index of the Hessian matrix. We illustrate how this approach can find all the stationary points for potentials or Hamiltonians bounded from above, which includes a large class of important spin models, and we show that it is far more efficient than previous methods. For potentials unbounded from above, the relaxation part of the method is still efficient in finding minima and transition states, which are usually the primary focus of attention for atomistic systems

  5. The impact of structural relaxation on spin polarization and magnetization reversal of individual nano structures studied by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Sander, Dirk; Phark, Soo-Hyon; Corbetta, Marco; Fischer, Jeison A; Oka, Hirofumi; Kirschner, Jürgen

    2014-10-01

    The application of low temperature spin-polarized scanning tunneling microscopy and spectroscopy in magnetic fields for the quantitative characterization of spin polarization, magnetization reversal and magnetic anisotropy of individual nano structures is reviewed. We find that structural relaxation, spin polarization and magnetic anisotropy vary on the nm scale near the border of a bilayer Co island on Cu(1 1 1). This relaxation is lifted by perimetric decoration with Fe. We discuss the role of spatial variations of the spin-dependent electronic properties within and at the edge of a single nano structure for its magnetic properties.

  6. Photoluminescence quenching and enhanced spin relaxation in Fe doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ovhal, Manoj M.; Santhosh Kumar, A. [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Khullar, Prerna [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Kumar, Manjeet [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Abhyankar, A.C., E-mail: ashutoshabhyankar@gmail.com [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India)

    2017-07-01

    Cost-effective ultrasonically assisted precipitation method is utilized to synthesize Zinc oxide (ZnO) nanoparticles (NPs) at room temperature and the effect of Iron (Fe) doping on structural, optical and spin relaxation properties also presented. As-synthesized pure and Fe doped ZnO NPs possess a perfect hexagonal growth habit of wurtzite zinc oxide, along the (101) direction of preference. With Fe doping, ‘c/a’ ratio and compressive lattice strain in ZnO NPs are found to reduce and increase, respectively. Raman studies demonstrate that the E{sub 1} longitudinal optical (LO) vibrational mode is very weak in pure which remarkably enhanced with Fe doping into ZnO NPs. The direct band gap energy (E{sub g}) of the ZnO NPs has been increased from 3.02 eV to 3.11 eV with Fe doping. A slight red-shift observed with strong green emission band, in photoluminescence spectra, is strongly quenched in 6 wt.% Fe doped ZnO NPs. The field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) reveals spherical shape of ZnO NPs with 60–70 nm, which reduces substantially on Fe doping. The energy dispersive X-ray spectrum and elemental mapping confirms the homogeneous distribution of Fe in ZnO NPs. Moreover, the specific relaxation rate (R{sub 2sp} = 1/T{sub 2}) has been measured using Carr-Purcell-Meiboom-Gill (CPMG) method and found to be maximum in 6 wt.% Fe doped ZnO NPs. Further, the correlation of structural, optical and dynamic properties is proposed. - Highlights: • Pure ZnO and Fe doped ZnO NPs were successfully prepared by cost effective ultrasonically assisted precipitation method. • The optical band gap of ZnO has been enhanced form 3.02–3.11 eV with Fe doping. • PL quenching behaviour has been observed with Fe{sup 3+} ions substitution in ZnO lattice. • Specific relaxation rate (R{sub 2sp} = 1/T{sub 2}) has been varied with Fe doping and found to be maximum in 6 wt.% Fe doped ZnO NPs.

  7. NMR spin relaxation in proteins: The patterns of motion that dissipate power to the bath

    Science.gov (United States)

    Shapiro, Yury E.; Meirovitch, Eva

    2014-04-01

    We developed in recent years the two-body coupled-rotator slowly relaxing local structure (SRLS) approach for the analysis of NMR relaxation in proteins. The two bodies/rotators are the protein (diffusion tensor D1) and the spin-bearing probe, e.g., the 15N-1H bond (diffusion tensor, D2), coupled by a local potential (u). A Smoluchowski equation is solved to yield the generic time correlation functions (TCFs), which are sums of weighted exponentials (eigenmodes). By Fourier transformation one obtains the generic spectral density functions (SDFs) which underlie the experimental relaxation parameters. The typical paradigm is to characterize structural dynamics in terms of the best-fit values of D1, D2, and u. Additional approaches we pursued employ the SRLS TCFs, SDFs, or eigenmodes as descriptors. In this study we develop yet another perspective. We consider the SDF as function of the angular velocity associated with the fluctuating fields underlying NMR relaxation. A parameter called j-fraction, which represents the relative contribution of eigenmode, i, to a given value of the SDF function at a specific frequency, ω, is defined. j-fraction profiles of the dominant eigenmodes are derived for 0 ≤ ω ≤ 1012 rad/s. They reveal which patterns of motion actuate power dissipation at given ω-values, what are their rates, and what is their relative contribution. Simulations are carried out to determine the effect of timescale separation, D1/D2, axial potential strength, and local diffusion axiality. For D1/D2 ≤ 0.01 and strong local potential of 15 kBT, power is dissipated by global diffusion, renormalized (by the strong potential) local diffusion, and probe diffusion on the surface of a cone (to be called cone diffusion). For D1/D2 = 0.1, power is dissipated by mixed eigenmodes largely of a global-diffusion-type or cone-diffusion-type, and a nearly bare renormalized-local-diffusion eigenmode. For D1/D2 > 0.1, most eigenmodes are of a mixed type. The analysis is

  8. Magnetic field penetration depth of La(1.85)Sr(0.15)CuO4 measured by muon spin relaxation

    Science.gov (United States)

    Kossler, W. J.; Kempton, J. R.; Yu, X. H.; Schone, H. E.; Uemura, Y. J.

    1987-01-01

    Muon-spin-relaxation measurements have been performed on a high-Tc superconductor La(1.85)Sr(0.15)CuO4. In an external transverse magnetic field of 500 G, a magnetic field penetration depth of 2000 A at T = 10 K has been determined from the muon-spin-relaxation rate which increased with decreasing temperature below Tc. From this depth and the Pauli susceptibility, the superconducting carrier density is estimated at 3 x 10 to the 21st per cu cm. The zero-field relaxation rates above and below Tc were equal, which suggests that the superconducting state in this sample is not associated with detectable static magnetic ordering.

  9. A post-processing method for multiexponential spin-spin relaxation analysis of MRI signals

    Energy Technology Data Exchange (ETDEWEB)

    Gensanne, D [Laboratoire de Chimie Bioinorganique Medicale, Imagerie therapeutique et diagnostique, CNRS FR 2599, Universite Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex (France); Josse, G [Centre Europeen de Recherche et d' Evaluation sur la Peau et les Epitheliums de Revetement, Institut de Recherche Pierre Fabre, 2, rue Viguerie, BP 3071 31025 Toulouse Cedex 3 (France); Lagarde, J M [Centre Europeen de Recherche et d' Evaluation sur la Peau et les Epitheliums de Revetement, Institut de Recherche Pierre Fabre, 2, rue Viguerie, BP 3071 31025 Toulouse Cedex 3 (France); Vincensini, D [Laboratoire de Chimie Bioinorganique Medicale, Imagerie therapeutique et diagnostique, CNRS FR 2599, Universite Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex (France)

    2005-08-21

    Quantitative MR imaging is a potential tool for tissue characterization; in particular, proton density and proton relaxation times can be derived from MR signal analysis. However, MR image noise affects the accuracy of measurements and the number of tissue parameters that can be reliably estimated. Filtering can be used to limit image noise; however this reduces spatial resolution. In this work we studied, using both simulations and experiments, a filter called a 'selective blurring filter'. Compared to other classical filters, this filter achieves the best compromise between spatial resolution and noise reduction. The filter was specifically used to reliably determine the bi-component transverse relaxation of protons in adipose tissue. Long and short relaxation times and the relative proton fraction of each component were obtained with a degree of uncertainty of less than 10% and an accuracy of 95%.

  10. Spin-spin cross-relaxation of optically-excited rare-earth ions in crystals

    International Nuclear Information System (INIS)

    Otto, F.W.; D'Amato, F.X.; Hahn, E.L.; Lukas, M.

    1986-01-01

    A laser saturation grating experiment is applied for the measurement of electron hyperfine state spin orientation diffusion among Tm +2 impurity ion hyperfine ground states in SrF 2 . A strong laser pulse at λ 1 produces a spatial grating of excited spin states followed by a probe at λ 2 . The probe transmission intensity is to assess diffusion of non-equilibrium spin population into regions not excited by the pulse at λ 1 . In a second experiment, a field sweep laser hole burning method enables measurement of Pr +3 optical ion hyperfine coupling of optical ground states to the reservoir of F nuclear moments in LaF 3 by level crossing. A related procedure with external RF resonance sweep excitation maps out the nuclear Zeeman-electric quadrupole coupled spectrum of Pr +3 over a wide range by monitoring laser beam transmission absorption

  11. Spin dynamics of Mn12-acetate in the thermally activated tunneling regime: ac susceptibility and magnetization relaxation

    Science.gov (United States)

    Pohjola, Teemu; Schoeller, Herbert

    2000-12-01

    In this work, we study the spin dynamics of Mn12-acetate molecules in the regime of thermally assisted tunneling. In particular, we describe the system in the presence of a strong transverse magnetic field. Similar to recent experiments, the relaxation time/rate is found to display a series of resonances; their Lorentzian shape is found to stem from the tunneling. The dynamic susceptibility χ(ω) is calculated starting from the microscopic Hamiltonian and the resonant structure manifests itself also in χ(ω). Similar to recent results reported on another molecular magnet, Fe8, we find oscillations of the relaxation rate as a function of the transverse magnetic field when the field is directed along a hard axis of the molecules. This phenomenon is attributed to the interference of the geometrical or Berry phase. We propose susceptibility experiments to be carried out for strong transverse magnetic fields to study these oscillations and for a better resolution of the sharp satellite peaks in the relaxation rates.

  12. NMR water-proton spin-lattice relaxation time of human red blood cells and red blood cell suspensions

    International Nuclear Information System (INIS)

    Sullivan, S.G.; Rosenthal, J.S.; Winston, A.; Stern, A.

    1988-01-01

    NMR water-proton spin-lattice relaxation times were studied as probes of water structure in human red blood cells and red blood cell suspensions. Normal saline had a relaxation time of about 3000 ms while packed red blood cells had a relaxation time of about 500 ms. The relaxation time of a red blood cell suspension at 50% hematocrit was about 750 ms showing that surface charges and polar groups of the red cell membrane effectively structure extracellular water. Incubation of red cells in hypotonic saline increases relaxation time whereas hypertonic saline decreases relaxation time. Relaxation times varied independently of mean corpuscular volume and mean corpuscular hemoglobin concentration in a sample population. Studies with lysates and resealed membrane ghosts show that hemoglobin is very effective in lowering water-proton relaxation time whereas resealed membrane ghosts in the absence of hemoglobin are less effective than intact red cells. 9 refs.; 3 figs.; 1 table

  13. Resonances in field-cycling NMR on molecular crystals. (reversible) Spin dynamics or (irreversible) relaxation?; Resonanzen in Field-Cycling-NMR an Molekuelkristallen. (reversible) Spindynamik oder (irreversible) Relaxation?

    Energy Technology Data Exchange (ETDEWEB)

    Tacke, Christian

    2015-07-01

    Multi spin systems with spin 1/2 nuclei and dipolar coupled quadrupolar nuclei can show so called ''quadrupolar dips''. There are two main reasons for this behavior: polarization transfer and relaxation. They look quite alike and without additional research cannot be differentiated easily in most cases. These two phenomena have quite different physical and theoretical backgrounds. For no or very slow dynamics, polarization transfer will take place, which is energy conserving inside the spin system. This effect can entirely be described using quantum mechanics on the spin system. Detailed knowledge about the crystallography is needed, because this affects the relevant hamiltonians directly. For systems with fast enough dynamics, relaxation takes over, and the energy flows from the spin system to the lattice; thus a more complex theoretical description is needed. This description has to include a dynamic model, usually in the form of a spectral density function. Both models should include detailed modelling of the complete spin system. A software library was developed to be able to model complex spin systems. It allows to simulate polarization transfer or relaxation effects. NMR measurements were performed on the protonic conductor K{sub 3}H(SO{sub 4}){sub 2}. A single crystal shows sharp quadrupolar dips at room temperature. Dynamics could be excluded using relaxation measurements and literature values. Thus, a polarization transfer analysis was used to describe those dips with good agreement. As a second system, imidazolium based molecular crystals were analyzed. The quadrupolar dips were expected to be caused by polarization transfer; this was carefully analyzed and found not to be true. A relaxation based analysis shows good agreement with the measured data in the high temperature area. It leverages a two step spectral density function, which indicates two distinct dynamic processes happening in this system.

  14. Spin Canting and Magnetic Relaxation Phenomena in Mn0.25Zn0.75Fe2O4

    DEFF Research Database (Denmark)

    Anhøj, T. A.; Olsen, Brian Bilenberg; Thomsen, Benjamin

    2003-01-01

    affected by transverse relaxation at relatively low temperatures. A third group of 13-site ions has negligible canting at low temperatures and these ions are only slightly affected by relaxation below 60 K. At low temperatures the material can be described as a cluster spin glass. Above 60 K part...

  15. Spin-lattice relaxation within a dimerized Ising chain in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Erdem, Rıza, E-mail: rerdem@akdeniz.edu.tr, E-mail: rerdem29@hotmail.com [Department of Physics, Akdeniz University, 07058 Antalya (Turkey); Gülpınar, Gül [Department of Physics, Dokuz Eylül University, 35160 İzmir (Turkey); Yalçın, Orhan [Department of Physics, Niğde University, 51240 Niğde (Turkey); Pawlak, Andrzej [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61–614 Poznań (Poland)

    2014-07-21

    A qualitative study of the spin-lattice relaxation within a dimerized Ising chain in a magnetic field is presented. We have first determined the time dependence of the deviation of the lattice distortion parameter δΔ from the equilibrium state within framework of a technique combining the statistical equilibrium theory based on the transfer matrix method and the linear theory of irreversible thermodynamics. We have shown that the time dependence of the lattice distortion parameter is characterized by a single time constant (τ) which diverges around the critical point in both dimerized (Δ≠0) and uniform (Δ=0) phase regions. When the temperature and magnetic field are fixed to certain values, the time τ depends only on exchange coupling between the spins. It is a characteristic time associated with the long wavelength fluctuations of distortion. We have also taken into account the effects of spatial fluctuations on the relaxation time using the full Landau-Ginzburg free energy functional. We have found an explicit expression for the relaxation time as a function of temperature, coupling constant and wave vector (q) and shown that the critical mode corresponds to the case q=0. Finally, our results are found to be in good qualitative agreement with the results obtained in recent experimental study on synchrotron x-ray scattering and muon spin relaxation in diluted material Cu{sub 1−y}Mg{sub y}GeO{sub 3} where the composition y is very close to 0.0209. These results can be considered as natural extensions of some previous works on static aspects of the problem.

  16. Vibrational energy transfer in selectively excited diatomic molecules. [Relaxation rates, self-relaxation, upper limits

    Energy Technology Data Exchange (ETDEWEB)

    Dasch, C.J.

    1978-09-01

    Single rovibrational states of HCl(v=2), HBr(v=2), DCl(v=2), and CO(v=2) were excited with a pulsed optical parametric oscillator (OPO). Total vibrational relaxation rates near - resonance quenchers were measured at 295/sup 0/K using time resolved infrared fluorescence. These rates are attributed primarily to V - V energy transfer, and they generally conform to a simple energy gap law. A small deviation was found for the CO(v) + DCl(v') relaxation rates. Upper limits for the self relaxation by V - R,T of HCl(v=2) and HBr(v=2) and for the two quantum exchange between HCl and HBr were determined. The HF dimer was detected at 295/sup 0/K and 30 torr HF pressure with an optoacoustic spectrometer using the OPO. Pulsed and chopped, resonant and non-resonant spectrophones are analyzed in detail. From experiments and first order perturbation theory, these V - V exchange rates appear to behave as a first order perturbation in the vibrational coordinates. The rotational dynamics are known to be complicated however, and the coupled rotational - vibrational dynamics were investigated theoreticaly in infinite order by the Dillon and Stephenson and the first Magnus approximations. Large ..delta..J transitions appear to be important, but these calculations differ by orders of magnitude on specific rovibrational transition rates. Integration of the time dependent semiclassical equations by a modified Gordon method and a rotationally distorted wave approximation are discussed as methods which would treat the rotational motion more accurately. 225 references.

  17. Formation of local spin-state concentration waves during the relaxation from a photoinduced state in a spin-crossover polymer.

    Science.gov (United States)

    Mariette, Céline; Trzop, Elzbieta; Zerdane, Serhane; Fertey, Pierre; Zhang, Daopeng; Valverde-Muñoz, Francisco J; Real, José Antonio; Collet, Eric

    2017-08-01

    The complex relaxation from the photoinduced high-spin phase (PIHS) to the low-spin phase of the bimetallic two-dimensional coordination spin-crossover polymer [Fe[(Hg(SCN) 3 ) 2 ](4,4'-bipy) 2 ] n is reported. During the thermal relaxation, commensurate and incommensurate spin-state concentration waves (SSCWs) form. However, contrary to the steps forming at thermal equilibrium, associated with long-range SSCW order, the SSCWs forming during the relaxation from the PIHS phase correspond to short-range order, revealed by diffuse X-ray scattering. This is interpreted as resulting from the competition between the two types of SSCW order and another structural symmetry breaking, due to ligand ordering, occurring at low temperature and precluding long-range SSCW order.

  18. Pairwise NMR experiments for the determination of protein backbone dihedral angle Φ based on cross-correlated spin relaxation

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Shimada, Ichio

    2007-01-01

    Novel cross-correlated spin relaxation (CCR) experiments are described, which measure pairwise CCR rates for obtaining peptide dihedral angles Φ. The experiments utilize intra-HNCA type coherence transfer to refocus 2-bond J NCα coupling evolution and generate the N (i)-C α (i) or C'(i-1)-C α (i) multiple quantum coherences which are required for measuring the desired CCR rates. The contribution from other coherences is also discussed and an appropriate setting of the evolution delays is presented. These CCR experiments were applied to 15 N- and 13 C-labeled human ubiquitin. The relevant CCR rates showed a high degree of correlation with the Φ angles observed in the X-ray structure. By utilizing these CCR experiments in combination with those previously established for obtaining dihedral angle Ψ, we can determine high resolution structures of peptides that bind weakly to large target molecules

  19. Calculation of the electron spin relaxation time in a quantum limit using a state-independent projection reduction method

    Science.gov (United States)

    Kang, Nam Lyong

    2018-02-01

    A new formula for determining the electron spin relaxation time in a system of electrons interacting with acoustic deformation phonons through phonon-modulated spin–orbit coupling is derived using the state-independent projection reduction method. The spin flip and conserving processes are explained in an organized manner because the obtained results properly contain the distribution functions for electrons and phonons. The electron spin relaxation time is calculated directly from the lineshape function without calculating the magnetic susceptibility. The temperature (T) and magnetic field (B) dependences of the electron spin relaxation time (T 1) in Si are shown by T 1 ≈ T ‑1.55 and T 1 ≈ B ‑1.96 in the quantum limit, respectively.

  20. Realization of a scenario with two relaxation rates in the Hubbard Falicov-Kimball model

    Science.gov (United States)

    Barman, H.; Laad, M. S.; Hassan, S. R.

    2018-02-01

    A single transport relaxation rate governs the decay of both longitudinal and Hall currents in Landau Fermi liquids (FL). Breakdown of this fundamental feature, first observed in two-dimensional cuprates and subsequently in other three-dimensional correlated systems close to the Mott metal-insulator transition, played a pivotal role in emergence of a non-FL (NFL) paradigm in higher dimensions D (>1 ) . Motivated hereby, we explore the emergence of this "two relaxation rates" scenario in the Hubbard Falicov-Kimball model (HFKM) using the dynamical mean-field theory (DMFT). Specializing to D =3 , we find, beyond a critical Falicov-Kimball (FK) interaction, that two distinct relaxation rates governing distinct temperature (T ) dependence of the longitudinal and Hall currents naturally emerges in the NFL metal. Our results show good accord with the experiment in V2 -yO3 near the metal-to-insulator transition (MIT). We rationalize this surprising finding by an analytical analysis of the structure of charge and spin Hamiltonians in the underlying impurity problem, specifically through a bosonization method applied to the Wolff model and connecting it to the x-ray edge problem.

  1. Nuclear spin relaxation of 8Li in a thin film of La 0.67Ca 0.33MnO 3

    Science.gov (United States)

    Miller, R. I.; Arseneau, D.; Chow, K. H.; Daviel, S.; Engelbertz, A.; Hossain, MD.; Keeler, T.; Kiefl, R. F.; Kreitzman, S.; Levy, C. D. P.; Morales, P.; Morris, G. D.; MacFarlane, W. A.; Parolin, T. J.; Poutissou, R.; Saadaoui, H.; Salman, Z.; Wang, D.; Wei, J. Y. T.

    2006-03-01

    We report β-NMR measurements of the nuclear spin relaxation rate (1/T1) in a thin film of La 0.67Ca 0.33MnO 3 (LCMO) using a low-energy beam of spin-polarized 8Li. In a small magnetic field of 150 G, there is a broad peak in 1/T1 near the Curie temperature (Tc=259 K) and a dramatic decrease in 1/T1 at lower temperatures. This is attributed to a critical slowing down of the spin fluctuations near Tc and freezing of the magnetic excitations at low temperatures, respectively. In addition, there is a small amplitude, slow relaxing component at high temperatures, which we attribute to 8Li in the SrTiO 3 substrate. There is an indication that the spin relaxation rate in the substrate is also peaked at Tc due to close proximity to the magnetic film. These results establish that low-energy β-NMR can be used as a probe of magnetic fluctuations in magnetic thin films over a wide range of temperatures.

  2. Insight into lithium transport in lithium nitridometallate battery materials from muon spin relaxation.

    Science.gov (United States)

    Powell, Andrew S; Stoeva, Zlatka; Lord, James S; Smith, Ronald I; Gregory, Duncan H; Titman, Jeremy J

    2013-01-21

    Muon spin relaxation and powder neutron diffraction have been combined to study three lithium cobalt nitride battery materials. Neutron diffraction shows that these retain the P6/mmm space group of Li(3)N with Co located only on Li(1) sites. The lattice parameters vary smoothly with the degree of metal substitution, such that the [Li(2)N] layers expand while the layer separation contracts, as observed previously for similar series of Cu- and Ni-substituted materials. However, in contrast to the latter, the Li(3-x-y)Co(x)N phases exhibit Curie-Weiss paramagnetism and this prevents the use of nuclear magnetic resonance to measure Li(+) transport parameters. Therefore, muon spin relaxation has been employed here as an alternative technique to obtain quantitative information about Li(+) diffusion. Muon spin relaxation shows that Li(+) diffusion in Li(3-x-y)Co(x)N is anisotropic with transport confined to the [Li(2)N] plane at low temperature and exchange between Li(1) and Li(2) sites dominant at high temperature. By a comparison with previous studies some general trends have been established across a range of Cu-, Ni- and Co-substituted materials. For intra-layer diffusion E(a) decreases as metal substitution increases and the corresponding expansion of the layers results in a more open pathway for Li(+) diffusion. However, an optimal value of x is found with a ≈ 3.69 Å after which the concomitant contraction in layer spacing reduces the polarizability of the lattice framework.

  3. Lattice Distortion Mediated Paramagnetic Relaxation in High-Spin High-Symmetry Molecular Magnets

    Science.gov (United States)

    Garg, Anupam

    1998-08-01

    Field-dependent maxima in the relaxation rate of the magnetic molecules Mn12-Ac and Fe8-tacn have commonly been ascribed to some resonant tunneling phenomena. We argue instead that the relaxation is purely due to phonons. The rate maxima arise because of a Jahn-Teller-like distortion caused by the coupling of phonons to degenerate Zeeman levels of the molecule at the top of the barrier. The binding energy of the distorted intermediate states lowers the barrier height and increases the relaxation rate. A nonperturbative calculation of this effect is carried out for a model system. An approximate result for the field variation near a maximum is found to agree reasonably with experiment.

  4. Relaxation rates studies in an argon cylindrical plasma

    International Nuclear Information System (INIS)

    Hernandez, M.A.; Dengra, A.; Colomer, V.

    1986-01-01

    The single Langmuir probe method has been used to determine the relaxation rates of the electron density and temperature in an argon afterglow dc cylindrical plasma. The ion-electron recombination was found to be the fundamental mechanism of density decay during the early afterglow while the ambipolar diffusion controlles the density decay for later afterglow. Electron temperature cooling curves have been interpreted via electron-neutral collisons. Measurements of the electron-ion recombination and the ambipolar diffusion coefficients have been made, as well as of the electron-neutral collision frequency and the momentum transfer cross sections. Good agreement is obtained with previously published data. (author)

  5. Dependence of transmon qubit relaxation rate on readout drive power

    Science.gov (United States)

    Mundhada, S. O.; Shankar, S.; Narla, A.; Zalys-Geller, E.; Girvin, S. M.; Devoret, M. H.

    In circuit QED experiments, microwave drives are applied to the readout mode for qubit measurement, control and to realize various multi-photon processes. These microwave drives have been observed to detrimentally affect the qubit mode by increasing the qubit relaxation rates for both upward and downward transitions. These transitions demolish the qubit state during a measurement, limiting the maximum measurement strength and thus the readout fidelity and speed. Here, we experimentally investigate this effect for transmon qubits coupled to different realizations of the readout mode: 3-dimensional microwave cavities, strip-line resonators and nonlinear readout modes in a waveguide. Work supported by: NSF, ARO, AFOSR and YINQE.

  6. NMR spin relaxation in proteins: The patterns of motion that dissipate power to the bath

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Yury E., E-mail: eva.meirovitch@biu.ac.il, E-mail: yuryeshapiro@gmail.com; Meirovitch, Eva, E-mail: eva.meirovitch@biu.ac.il, E-mail: yuryeshapiro@gmail.com [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900-02 (Israel)

    2014-04-21

    We developed in recent years the two-body coupled-rotator slowly relaxing local structure (SRLS) approach for the analysis of NMR relaxation in proteins. The two bodies/rotators are the protein (diffusion tensor D{sub 1}) and the spin-bearing probe, e.g., the {sup 15}N−{sup 1}H bond (diffusion tensor, D{sub 2}), coupled by a local potential (u). A Smoluchowski equation is solved to yield the generic time correlation functions (TCFs), which are sums of weighted exponentials (eigenmodes). By Fourier transformation one obtains the generic spectral density functions (SDFs) which underlie the experimental relaxation parameters. The typical paradigm is to characterize structural dynamics in terms of the best-fit values of D{sub 1}, D{sub 2}, and u. Additional approaches we pursued employ the SRLS TCFs, SDFs, or eigenmodes as descriptors. In this study we develop yet another perspective. We consider the SDF as function of the angular velocity associated with the fluctuating fields underlying NMR relaxation. A parameter called j-fraction, which represents the relative contribution of eigenmode, i, to a given value of the SDF function at a specific frequency, ω, is defined. j-fraction profiles of the dominant eigenmodes are derived for 0 ≤ ω ≤ 10{sup 12} rad/s. They reveal which patterns of motion actuate power dissipation at given ω-values, what are their rates, and what is their relative contribution. Simulations are carried out to determine the effect of timescale separation, D{sub 1}/D{sub 2}, axial potential strength, and local diffusion axiality. For D{sub 1}/D{sub 2} ≤ 0.01 and strong local potential of 15 k{sub B}T, power is dissipated by global diffusion, renormalized (by the strong potential) local diffusion, and probe diffusion on the surface of a cone (to be called cone diffusion). For D{sub 1}/D{sub 2} = 0.1, power is dissipated by mixed eigenmodes largely of a global-diffusion-type or cone-diffusion-type, and a nearly bare renormalized

  7. Coexisting static magnetic ordering and superconductivity in CeCu2.1Si2 found by muon spin relaxation

    Science.gov (United States)

    Uemura, Y. J.; Kossler, W. J.; Yu, X. H.; Schone, H. E.; Kempton, J. R.; Stronach, C. E.; Barth, S.; Gygax, F. N.; Hitti, B.; Schenck, A.

    1988-01-01

    Zero- and longitudinal-field muon spin relaxation measurements on a heavy fermion system CeCu2.1 Si2 have revealed an onset of static magnetic ordering below T(M) approximately 0.8 K, which coexists with superconductivity below T(c) = 0.7 K. The line shapes of the observed muon spin depolarization functions suggest an ordering in either spin glass or incommensurate spin-density-wave state, with a small averaged static moment of the order of 0.1 micro-B per formula unit at T approaches 0.

  8. Unconventional superconductivity in Y5Rh6Sn18 probed by muon spin relaxation.

    Science.gov (United States)

    Bhattacharyya, Amitava; Adroja, Devashibhai; Kase, Naoki; Hillier, Adrian; Akimitsu, Jun; Strydom, Andre

    2015-08-19

    Conventional superconductors are robust diamagnets that expel magnetic fields through the Meissner effect. It would therefore be unexpected if a superconducting ground state would support spontaneous magnetics fields. Such broken time-reversal symmetry states have been suggested for the high-temperature superconductors, but their identification remains experimentally controversial. We present magnetization, heat capacity, zero field and transverse field muon spin relaxation experiments on the recently discovered caged type superconductor Y5Rh6Sn18 ( TC= 3.0 K). The electronic heat capacity of Y5Rh6Sn18 shows a T(3) dependence below Tc indicating an anisotropic superconducting gap with a point node. This result is in sharp contrast to that observed in the isostructural Lu5Rh6Sn18 which is a strong coupling s-wave superconductor. The temperature dependence of the deduced superfluid in density Y5Rh6Sn18 is consistent with a BCS s-wave gap function, while the zero-field muon spin relaxation measurements strongly evidences unconventional superconductivity through a spontaneous appearance of an internal magnetic field below the superconducting transition temperature, signifying that the superconducting state is categorized by the broken time-reversal symmetry.

  9. Magnetization and 13C NMR spin-lattice relaxation of nanodiamond powder

    Energy Technology Data Exchange (ETDEWEB)

    Levin, E.M.; Fang, X.W.; Bud' ko, S.L.; Straszheim, W.E.; McCallum, R.W.; Schmidt-Rohr, K.

    2008-02-15

    The bulk magnetization at temperatures of 1.8-400 K and in magnetic fields up to 70 kOe, the ambient temperature {sup 13}C NMR spin-lattice relaxation, T{sub 1,c}, and the elemental composition of three nanodiamond powder samples have been studied. The total magnetization of nanodiamond can be explained in terms of contributions from (1) the diamagnetic effect of carbon, (2) the paramagnetic effect of unpaired electrons present in nanodiamond grains, and (3) ferromagnetic-like and (4) superparamagnetic contributions from Fe-containing particles detected in spatially resolved energy-dispersive spectroscopy. Contributions (1) and (2) are intrinsic to nanodiamond, while contributions (3) and (4) arise from impurities naturally present in detonation nanodiamond samples. {sup 13}C NMR T{sub 1,c} relaxation would be unaffected by the presence of the ferromagnetic particles with the bulk magnetization of {approx} 0.01 emu/g at 300 K. Thus, a reduction of T{sub 1,c} by 3 orders of magnitude compared to natural and synthetic microdiamonds confirms the presence of unpaired electrons in the nanodiamond grains. The spin concentration in nanodiamond powder corresponds to {approx}30 unpaired electrons per {approx}4.6 nm diameter nanodiamond grain.

  10. Spin-polarization dependent carrier recombination dynamics and spin relaxation mechanism in asymmetrically doped (110) n-GaAs quantum wells

    Science.gov (United States)

    Teng, Lihua; Jiang, Tianran; Wang, Xia; Lai, Tianshu

    2018-05-01

    Carrier recombination and electron spin relaxation dynamics in asymmetric n-doped (110) GaAs/AlGaAs quantum wells are investigated with time-resolved pump-probe spectroscopy. The experiment results reveal that the measured carrier recombination time depends strongly on the polarization of pump pulse. With the same pump photon flux densities, the recombination time of spin-polarized carriers is always longer than that of the spin-balanced carriers except at low pump photon flux densities, this anomaly originates from the polarization-sensitive nonlinear absorption effect. Differing from the traditional views, in the low carrier density regime, the D'yakonov-Perel' (DP) mechanism can be more important than the Bir-Aronov-Pikus (BAP) mechanism, since the DP mechanism takes effect, the spin relaxation time in (110) GaAs QWs is shortened obviously via asymmetric doping.

  11. Optical Transient-Grating Measurements of Spin Diffusion and Relaxation in a Two-Dimensional Electron Gas

    International Nuclear Information System (INIS)

    Weber, Christopher P.

    2005-01-01

    Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field

  12. Optical Transient-Grating Measurements of Spin Diffusion andRelaxation in a Two-Dimensional Electron Gas

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Christopher Phillip [Univ. of California, Berkeley, CA (United States)

    2005-01-01

    Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field.

  13. Interaction study of polyisobutylene with paraffins by NMR using the evaluation of spin-lattice relaxation times for hydrogen nuclei

    International Nuclear Information System (INIS)

    Marques, Rosana G.G.; Tavares, Maria I.B.

    2001-01-01

    The evaluation of spin-lattice relaxation times of 1 H for polyisobutylene/paraffin systems, were obtained using the classic inversion recovery technique, and also through Cross Polarization Magic Angle Spinning (CP/MAS) techniques varying the contact time and also by the delayed contact time pulse sequence. NMR results showed that the polyisobutylene/paraffin systems in which high molecular weight paraffins were used, is heterogeneous. However, for paraffins with low molecular weight, the system presents good homogeneity. (author)

  14. Matrix-assisted relaxation in Fe(phen){sub 2}(NCS){sub 2} spin-crossover microparticles, experimental and theoretical investigations

    Energy Technology Data Exchange (ETDEWEB)

    Enachescu, Cristian, E-mail: cristian.enachescu@uaic.ro; Stancu, Alexandru [Faculty of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Tanasa, Radu [Faculty of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom); Tissot, Antoine [Institut de Chimie Moléculaire et des Matériaux d' Orsay, Université Paris Sud, Université Paris-Saclay, CNRS, 91405 Orsay (France); Institut Lavoisier de Versailles, UMR 8180, CNRS, Université de Versailles-Saint Quentin en Yvelines, 78035 Versailles (France); Laisney, Jérôme; Boillot, Marie-Laure, E-mail: marie-laure.boillot@u-psud.fr [Institut de Chimie Moléculaire et des Matériaux d' Orsay, Université Paris Sud, Université Paris-Saclay, CNRS, 91405 Orsay (France)

    2016-07-18

    In this study, we present the influence of the embedding matrix on the relaxation of Fe(phen){sub 2}(NCS){sub 2} (phen = 1,10-phenanthroline) spin-transition microparticles as revealed by experiments and provide an explanation within the framework of an elastic model based on a Monte-Carlo method. Experiments show that the shape of the high-spin → low-spin relaxation curves is drastically changed when the particles are dispersed in glycerol. This effect was considered in the model by means of interactions between the microparticles and the matrix. A faster start of the relaxation for microparticles embedded in glycerol is due to an initial positive local pressure acting on the edge spin-crossover molecules from the matrix side. This local pressure diminishes and eventually becomes negative during relaxation, as an effect of the decrease of the volume of spin-crossover microparticles from high-spin to low-spin.

  15. Electron spin-lattice relaxation of the S0 state of the oxygen-evolving complex in photosystem II and of dinuclear manganese model complexes.

    Science.gov (United States)

    Kulik, L V; Lubitz, W; Messinger, J

    2005-07-05

    The temperature dependence of the electron spin-lattice relaxation time T1 was measured for the S0 state of the oxygen-evolving complex (OEC) in photosystem II and for two dinuclear manganese model complexes by pulse EPR using the inversion-recovery method. For [Mn(III)Mn(IV)(mu-O)2 bipy4]ClO4, the Raman relaxation process dominates at temperatures below 50 K. In contrast, Orbach type relaxation was found for [Mn(II)Mn(III)(mu-OH)(mu-piv)2(Me3 tacn)2](ClO4)2 between 4.3 and 9 K. For the latter complex, an energy separation of 24.7-28.0 cm(-1) between the ground and the first excited electronic state was determined. In the S0 state of photosystem II, the T1 relaxation times were measured in the range of 4.3-6.5 K. A comparison with the relaxation data (rate and pre-exponential factor) of the two model complexes and of the S2 state of photosystem II indicates that the Orbach relaxation process is dominant for the S0 state and that its first excited state lies 21.7 +/- 0.4 cm(-1) above its ground state. The results are discussed with respect to the structure of the OEC in photosystem II.

  16. Dependence of transmon qubit relaxation rate on cavity photon population

    Science.gov (United States)

    Mundhada, S. O.; Shankar, S.; Liu, Y.; Hatridge, M.; Narla, A.; Sliwa, K. M.; Girvin, S. M.; Devoret, M. H.

    2015-03-01

    In circuit QED experiments, a qubit is dispersively coupled to a cavity such that the cavity frequency depends on the qubit state. This dispersive shift enables quantum non-demolition readout of the qubit by exciting the cavity with a microwave pulse and detecting the phase shift of the reflected signal. However, this cavity excitation has been observed in experiments to increase the qubit relaxation rate, hence demolishing the qubit state and limiting the maximum measurement strength. Here we experimentally study this effect in a transmon qubit coupled to a three-dimensional superconducting cavity. We also explore alternate qubit circuits designed to mitigate this demolition effect. Work supported by: IARPA, ARO, and NSF.

  17. Study of the operation temperature in the spin-exchange relaxation free magnetometer

    International Nuclear Information System (INIS)

    Fang, Jiancheng; Li, Rujie; Duan, Lihong; Chen, Yao; Quan, Wei

    2015-01-01

    We study the influence of the cell temperature on the sensitivity of the spin-exchange relaxation free (SERF) magnetometer and analyze the possibility of operating at a low temperature. Utilizing a 25 × 25 × 25 mm 3 Cs vapor cell with a heating temperature of 85  ∘ C, which is almost half of the value of potassium, we obtain a linewidth of 1.37 Hz and achieve a magnetic field sensitivity of 55 fT/Hz 1/2 in a single channel. Theoretical analysis shows that fundamental sensitivity limits of this device with an active volume of 1 cm 3 could approach 1 fT/Hz 1/2 . Taking advantage of the higher saturated vapor pressure, SERF magnetometer based on Cs opens up the possibility for low cost and portable sensors and is particularly appropriate for lower temperature applications

  18. Study of the operation temperature in the spin-exchange relaxation free magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jiancheng; Li, Rujie, E-mail: lirujie@buaa.edu.cn; Duan, Lihong; Chen, Yao; Quan, Wei [School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191 (China)

    2015-07-15

    We study the influence of the cell temperature on the sensitivity of the spin-exchange relaxation free (SERF) magnetometer and analyze the possibility of operating at a low temperature. Utilizing a 25 × 25 × 25 mm{sup 3} Cs vapor cell with a heating temperature of 85 {sup ∘}C, which is almost half of the value of potassium, we obtain a linewidth of 1.37 Hz and achieve a magnetic field sensitivity of 55 fT/Hz{sup 1/2} in a single channel. Theoretical analysis shows that fundamental sensitivity limits of this device with an active volume of 1 cm{sup 3} could approach 1 fT/Hz{sup 1/2}. Taking advantage of the higher saturated vapor pressure, SERF magnetometer based on Cs opens up the possibility for low cost and portable sensors and is particularly appropriate for lower temperature applications.

  19. Gaussian signal relaxation around spin echoes: Implications for precise reversible transverse relaxation quantification of pulmonary tissue at 1.5 and 3 Tesla.

    Science.gov (United States)

    Zapp, Jascha; Domsch, Sebastian; Weingärtner, Sebastian; Schad, Lothar R

    2017-05-01

    To characterize the reversible transverse relaxation in pulmonary tissue and to study the benefit of a quadratic exponential (Gaussian) model over the commonly used linear exponential model for increased quantification precision. A point-resolved spectroscopy sequence was used for comprehensive sampling of the relaxation around spin echoes. Measurements were performed in an ex vivo tissue sample and in healthy volunteers at 1.5 Tesla (T) and 3 T. The goodness of fit using χred2 and the precision of the fitted relaxation time by means of its confidence interval were compared between the two relaxation models. The Gaussian model provides enhanced descriptions of pulmonary relaxation with lower χred2 by average factors of 4 ex vivo and 3 in volunteers. The Gaussian model indicates higher sensitivity to tissue structure alteration with increased precision of reversible transverse relaxation time measurements also by average factors of 4 ex vivo and 3 in volunteers. The mean relaxation times of the Gaussian model in volunteers are T2,G' = (1.97 ± 0.27) msec at 1.5 T and T2,G' = (0.83 ± 0.21) msec at 3 T. Pulmonary signal relaxation was found to be accurately modeled as Gaussian, providing a potential biomarker T2,G' with high sensitivity. Magn Reson Med 77:1938-1945, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Scan Rate Dependent Spin Crossover Iron(II) Complex with Two Different Relaxations and Thermal Hysteresis fac-[Fe(II)(HL(n-Pr))3]Cl·PF6 (HL(n-Pr) = 2-Methylimidazol-4-yl-methylideneamino-n-propyl).

    Science.gov (United States)

    Fujinami, Takeshi; Nishi, Koshiro; Hamada, Daisuke; Murakami, Keishiro; Matsumoto, Naohide; Iijima, Seiichiro; Kojima, Masaaki; Sunatsuki, Yukinari

    2015-08-03

    Solvent-free spin crossover Fe(II) complex fac-[Fe(II)(HL(n-Pr))3]Cl·PF6 was prepared, where HL(n-Pr) denotes 2-methylimidazol-4-yl-methylideneamino-n-propyl. The magnetic susceptibility measurements at scan rate of 0.5 K min(-1) showed two successive spin transition processes consisting of the first spin transition T1 centered at 122 K (T1↑ = 127.1 K, T1↓ = 115.8 K) and the second spin transition T2 centered at ca. 105 K (T2↑ = 115.8 K, T2↓ = 97.2 K). The magnetic susceptibility measurements at the scan rate of 2.0, 1.0, 0.5, 0.25, and 0.1 K min(-1) showed two scan speed dependent spin transitions, while the Mössbauer spectra detected only the first spin transition T1. The crystal structures were determined at 160, 143, 120, 110, 95 K in the cooling mode, and 110, 120, and 130 K in the warming mode so as to follow the spin transition process of high-spin HS → HS(T1) → HS(T2) → low-spin LS → LS(T2) → LS(T1) → HS. The crystal structures at all temperatures have a triclinic space group P1̅ with Z = 2. The complex-cation has an octahedral N6 coordination geometry with three bidentate ligands and assume a facial-isomer with Δ- and Λ-enantimorphs. Three imidazole groups of fac-[Fe(II)(HL(n-Pr))3](2+) are hydrogen-bonded to three Cl(-) ions. The 3:3 NH(imidazole)···Cl(-) hydrogen-bonds form a stepwise ladder assembly structure, which is maintained during the spin transition process. The spin transition process is related to the structural changes of the FeN6 coordination environment, the order-disorder of PF6(-) anion, and the conformation change of n-propyl groups. The Fe-N bond distance in the HS state is longer by 0.2 Å than that in the LS state. Disorder of PF6(-) anion is not observed in the LS state but in the HS state. The conformational changes of n-propyl groups are found in the spin transition processes except for HS → HS(T1) → HS(T2).

  1. Anisotropic Rotational Diffusion Studied by Nuclear Spin Relaxation and Molecular Dynamics Simulation: An Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Fuson, Michael M.

    2017-01-01

    Laboratories studying the anisotropic rotational diffusion of bromobenzene using nuclear spin relaxation and molecular dynamics simulations are described. For many undergraduates, visualizing molecular motion is challenging. Undergraduates rarely encounter laboratories that directly assess molecular motion, and so the concept remains an…

  2. Phonon-bottlenecked spin relaxation of Er3+:Y2SiO5 at sub-kelvin temperatures

    Science.gov (United States)

    Budoyo, Rangga P.; Kakuyanagi, Kosuke; Toida, Hiraku; Matsuzaki, Yuichiro; Munro, William J.; Yamaguchi, Hiroshi; Saito, Shiro

    2018-04-01

    We report on electron spin relaxation measurements of Er3+ dopants in a Y2SiO5 crystal using an electron paramagnetic resonance spectrometer based on a Josephson bifurcation amplifier. We observed the change in the induced flux as a function of time for two spin transitions (at different crystallographic sites) after an excitation microwave pulse or a change in the static magnetic field. Low-microwave-power measurements showed relaxation times of approximately 10 h at 20 mK, and 1/T 1 followed a T 2 dependence between 30 and 200 mK. We observed no difference in behavior between the two transitions. The microwave power and temperature dependences suggest that a phonon-bottleneck-like process limits relaxation.

  3. Far-from-Equilibrium Field Theory of Many-Body Quantum Spin Systems: Prethermalization and Relaxation of Spin Spiral States in Three Dimensions

    Directory of Open Access Journals (Sweden)

    Mehrtash Babadi

    2015-10-01

    Full Text Available We study theoretically the far-from-equilibrium relaxation dynamics of spin spiral states in the three-dimensional isotropic Heisenberg model. The investigated problem serves as an archetype for understanding quantum dynamics of isolated many-body systems in the vicinity of a spontaneously broken continuous symmetry. We present a field-theoretical formalism that systematically improves on the mean field for describing the real-time quantum dynamics of generic spin-1/2 systems. This is achieved by mapping spins to Majorana fermions followed by a 1/N expansion of the resulting two-particle-irreducible effective action. Our analysis reveals rich fluctuation-induced relaxation dynamics in the unitary evolution of spin spiral states. In particular, we find the sudden appearance of long-lived prethermalized plateaus with diverging lifetimes as the spiral winding is tuned toward the thermodynamically stable ferro- or antiferromagnetic phases. The emerging prethermalized states are characterized by different bosonic modes being thermally populated at different effective temperatures and by a hierarchical relaxation process reminiscent of glassy systems. Spin-spin correlators found by solving the nonequilibrium Bethe-Salpeter equation provide further insight into the dynamic formation of correlations, the fate of unstable collective modes, and the emergence of fluctuation-dissipation relations. Our predictions can be verified experimentally using recent realizations of spin spiral states with ultracold atoms in a quantum gas microscope [S. Hild et al., Phys. Rev. Lett. 113, 147205 (2014PRLTAO0031-900710.1103/PhysRevLett.113.147205].

  4. Lattice dynamics, phase transitions and spin relaxation in [Fe(C{sub 5}H{sub 5}){sub 2}] PF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Herber, R. H.; Felner, I.; Nowik, I., E-mail: nowik@vms.huji.ac.il [The Hebrew University, Racah Institute of Physics (Israel)

    2016-12-15

    The organometallic compound ferrocenium hexafluorophosphate, [Fe(C{sub 5}H{sub 5}){sub 2}] PF{sub 6}, has been studied by Mössbauer spectroscopy in the past, mainly to determine the crystal structure at high temperatures. Here we present studies at 95 K to 305 K and analyze the spectra in terms of spin relaxation theory which yields accurately the hyperfine interaction parameters and the spin-spin and spin-lattice relaxation rates in this paramagnetic compound. The spectral area under the resonance curve yields the recoil free fraction and thus the mean square of the vibration amplitude . One observes a large discontinuity in the slope of versus T at 210 K, indicative of a phase transition. The analysis of the spectra proves that the quadrupole interaction is small but certainly negative, ½e{sup 2}qQ = -0.12(2) mm/s, and causes the asymmetry observed in the spectra. The detailed analysis yields also, for the first time, the fluctuating effective magnetic hyperfine field, H {sub eff} = 180(50) kOe.

  5. Characterization of Chemical Exchange Using Relaxation Dispersion of Hyperpolarized Nuclear Spins.

    Science.gov (United States)

    Liu, Mengxiao; Kim, Yaewon; Hilty, Christian

    2017-09-05

    Chemical exchange phenomena are ubiquitous in macromolecules, which undergo conformational change or ligand complexation. NMR relaxation dispersion (RD) spectroscopy based on a Carr-Purcell-Meiboom-Gill pulse sequence is widely applied to identify the exchange and measure the lifetime of intermediate states on the millisecond time scale. Advances in hyperpolarization methods improve the applicability of NMR spectroscopy when rapid acquisitions or low concentrations are required, through an increase in signal strength by several orders of magnitude. Here, we demonstrate the measurement of chemical exchange from a single aliquot of a ligand hyperpolarized by dissolution dynamic nuclear polarization (D-DNP). Transverse relaxation rates are measured simultaneously at different pulsing delays by dual-channel 19 F NMR spectroscopy. This two-point measurement is shown to allow the determination of the exchange term in the relaxation rate expression. For the ligand 4-(trifluoromethyl)benzene-1-carboximidamide binding to the protein trypsin, the exchange term is found to be equal within error limits in neutral and acidic environments from D-DNP NMR spectroscopy, corresponding to a pre-equilibrium of trypsin deprotonation. This finding illustrates the capability for determination of binding mechanisms using D-DNP RD. Taking advantage of hyperpolarization, the ligand concentration in the exchange measurements can reach on the order of tens of μM and protein concentration can be below 1 μM, i.e., conditions typically accessible in drug discovery.

  6. In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jiancheng; Wang, Tao, E-mail: wangtaowt@aspe.buaa.edu.cn; Quan, Wei; Yuan, Heng; Li, Yang [School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191 (China); Zhang, Hong; Zou, Sheng [School of Instrument Science and Engineering, Southeast University, Nanjing 210096 (China)

    2014-06-15

    A novel method to compensate the residual magnetic field for an atomic magnetometer consisting of two perpendicular beams of polarizations was demonstrated in this paper. The method can realize magnetic compensation in the case where the pumping rate of the probe beam cannot be ignored. In the experiment, the probe beam is always linearly polarized, whereas, the probe beam contains a residual circular component due to the imperfection of the polarizer, which leads to the pumping effect of the probe beam. A simulation of the probe beam's optical rotation and pumping rate was demonstrated. At the optimized points, the wavelength of the probe beam was optimized to achieve the largest optical rotation. Although, there is a small circular component in the linearly polarized probe beam, the pumping rate of the probe beam was non-negligible at the optimized wavelength which if ignored would lead to inaccuracies in the magnetic field compensation. Therefore, the dynamic equation of spin evolution was solved by considering the pumping effect of the probe beam. Based on the quasi-static solution, a novel magnetic compensation method was proposed, which contains two main steps: (1) the non-pumping compensation and (2) the sequence compensation with a very specific sequence. After these two main steps, a three-axis in situ magnetic compensation was achieved. The compensation method was suitable to design closed-loop spin-exchange relaxation-free magnetometer. By a combination of the magnetic compensation and the optimization, the magnetic field sensitivity was approximately 4 fT/Hz{sup 1/2}, which was mainly dominated by the noise of the magnetic shield.

  7. Spin Rate and Deflection Ratio of a Ping Pong Ball

    Directory of Open Access Journals (Sweden)

    Byung Joon Ahn

    2013-12-01

    Full Text Available To investigate the effects of a spherical object’s spin rate on the curvature of its flight, Ping Pong balls, of varying spin rates, were hit horizontally and recorded from above with a high-speed camera. It was shown that there was a proportional relationship between the ball’s spin rate and deflection ratio. Additionally, using the results of the analyzed data, a coefficient of skin friction of the Ping Pong ball was found to be approximately 0.2 under the specific conditions of this investigation.

  8. Spin Rate and Deflection Ratio of a Ping Pong Ball

    Directory of Open Access Journals (Sweden)

    Byung Joon Ahn

    2013-01-01

    Full Text Available To investigate the effects of a spherical object’s spin rate on the curvature of its flight, Ping Pong balls, of varying spin rates, were hit horizontally and recorded from above with a high-speed camera. It was shown that there was a proportional relationship between the ball’s spin rate and deflection ratio. Additionally, using the results of the analyzed data, a coefficient of skin friction of the Ping Pong ball was found to be approximately 0.2 under the specific conditions of this investigation.

  9. TU-EF-BRA-02: Longitudinal Proton Spin Relaxation and T1-Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lemen, L. [Univ Cincinnati (United States)

    2015-06-15

    NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm. MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other common

  10. TU-EF-BRA-02: Longitudinal Proton Spin Relaxation and T1-Imaging

    International Nuclear Information System (INIS)

    Lemen, L.

    2015-01-01

    NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm. MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other common

  11. Proton Relaxation and Spin Label Studies of Papaverine Localization in Ionic Micelles

    Science.gov (United States)

    Yushmanov, V. E.; Imasato, H.; Perussi, J. R.; Tabak, M.

    The localization of papaverine (PAV) in micelles of zwitterionic N-hexadecyl- N, N-dimethyl-3-ammonio-1-propanesulfonate (HPS), cationic cetyltrimethylammonium chloride (CTAC), and anionic sodium dodecyl sulfate (SDS) in D 2O was studied by 1H NMR and ESR in the presence and absence of 5-doxyl- or 12-doxyl-stearic acid. PAV, surfactants, and spin probes are characterized by restricted anisotropic motion in micelles. The rotational correlation time of doxyl fragment was in the range of 0.2 to 0.5 nanoseconds. Binding of PAV to micelles decreases the mobility of both probes, suggesting the localization of PAV inside the hydrophobic part of micelles near the micelle-water interface. According to the NOE data, the methoxy groups of PAV are located in the vicinity of the nitrogen atom in CTAC and HPS micelles, the methoxy groups of the PAV heterocycle being immersed slightly deeper inside the micelle. The T1 relaxation enhancements by two different spin probes show that the H5 and methoxy substituents of the PAV heterocycle are in close proximity to the α-CH 2 of acyl chains in all types of micelles, whereas H3 and H12 are the most distant from the α-CH 2. No significant differences were found for the protonated and neutral PAV in SDS micelles at pD 4.9 and 11.2. These data show that the geometry of the PAV-micelle complex is practically independent of the PAV charge and surfactant headgroup.

  12. Off-centre dynamic Jahn-Teller effect studied by electron spin relaxation of Cu2+ ions in SrF2 crystal

    International Nuclear Information System (INIS)

    Hoffmann, S.K.

    2000-01-01

    Temperature cw-EPR and pulsed EPR electron spin echo experiments were performed for a low concentration of Cu 2+ ions in cubic SrF 2 crystals. The well resolved EPR spectrum at low temperatures (below 30 K) with parameters g parallel = 2.493, g perpendicular = 2.083, A parallel = 121, A perpendicular = 8.7, A parallel ( 19 F) = 135, A parallel ( 19 F) = 33.0 (A-values in 10 -4 cm -1 ) is transformed continuously into a single broad line above 225 K on heating, due to the g-factor shift and EPR line broadening. These data along with the angular variation EPR data are described in terms of a pseudo-Jahn-Teller effect of (T 2g +A 2u )x(a 1g +e g +t 1u ) type producing six off-centre positions of the Cu 2+ ion in the fluorine cube. Above 30 K a two-step averaging g -factor process occurs and is governed by vibronic dynamics between potential wells of the off-centre positions. This dynamics governs the electron spin relaxation in the whole temperature range. The electron spin-lattice relaxation rate 1/T 1 grows rapidly by six orders of magnitude in the temperature range 30-100 K and is determined by the Orbach-type process with excitations to two excited vibronic levels of energy 83 and 174 cm -1 . For higher temperatures the relaxation is dominated by overbarrier jumps leading to the isotropic EPR spectrum above 225 K. The phase memory time T M has the rigid lattice value 3.5 μs determined by nuclear spectral diffusion and its temperature variation is governed by the vibronic dynamics indicating that the excitations between vibronic levels produce a dephasing of the electron spin precessional motion. (author)

  13. Measurement of Projectile Rate of Spin

    Science.gov (United States)

    1976-02-12

    an~d Idendtir by block nsmbor) Projectile *Yaw Cards *SabotN rSpin *New 1%A@SrACT (Clod~aw - a’u M abe oft% p N mfseFsid tim flr 6r. black n~mbw) 1...a distance that permits about five revolutions of behe projectile between It and the first camera. Additional cameras may beused to increase the...or in "dark boxes ." Microflash techniques may be used to obtain adequate lighting tinder these conditions. The projectile is momentarily illuminated

  14. Muon spin relaxation study of Zr(H2PO4)(PO4).2H2O.

    Science.gov (United States)

    Clayden, Nigel J; Cottrell, Stephen P

    2006-07-14

    Muon spin relaxation has been used to study the muon dynamics in the layered zirconium phosphate Zr(H(2)PO(4))(PO(4)).2H(2)O as a function of temperature. Radiofrequency decoupling was used to establish the origin of the local dipolar field as coupling with (1)H spins. Muons were trapped at two sites, one identified as HMuO and the other consistent with PO-Mu on the basis of their zero-field second moments. Although a small decrease in the local nuclear dipolar field was seen with temperature, the muons remained essentially static over the temperature range 20-300 K.

  15. Electron spin-lattice relaxation of low-symmetry Ni.sup.2+./sup. centers in LiF

    Czech Academy of Sciences Publication Activity Database

    Azamat, Dmitry; Badalyan, A. G.; Dejneka, Alexandr; Jastrabík, Lubomír; Lančok, Ján

    2014-01-01

    Roč. 104, č. 25 (2014), "252902-1"-"252902-4" ISSN 0003-6951 R&D Projects: GA MŠk(CZ) LM2011029; GA TA ČR TA01010517; GA ČR GAP108/12/1941 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : Ni 2+ centers * LiF single crystals * electron spin-lattice relaxation * electron spin echo technique Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.302, year: 2014

  16. Spin time-relaxation within strongly coupled paramagnetic systems exhibiting paramagnetic-ferrimagnetic transitions

    CERN Document Server

    Chahid, M

    2000-01-01

    The purpose of the present work is a quantitative study of the spin time relaxation within superweak ferrimagnetic materials exhibiting a paramagnetic-ferrimagnetic transition, when the temperature is changed from an initial value T sub i to a final one T sub f very close to the critical temperature T sub c. From a magnetic point of view, the material under investigation is considered to be made of two strongly coupled paramagnetic sublattices of respective moments phi (cursive,open) Greek and psi. Calculations are made within a Landau mean-field theory, whose free energy involves, in addition to quadratic and quartic terms in both moments phi (cursive,open) Greek and psi, a lowest-order coupling - Cphi (cursive,open) Greek psi, where C<0 stands for the coupling constant measuring the interaction between the two sublattices. We first determine the time dependence of the shifts of the order parameters delta phi (cursive,open) Greek and delta psi from the equilibrium state. We find that this time dependence ...

  17. Suppression of vapor cell temperature error for spin-exchange-relaxation-free magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jixi, E-mail: lujixi@buaa.edu.cn; Qian, Zheng; Fang, Jiancheng; Quan, Wei [School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191 (China)

    2015-08-15

    This paper presents a method to reduce the vapor cell temperature error of the spin-exchange-relaxation-free (SERF) magnetometer. The fluctuation of cell temperature can induce variations of the optical rotation angle, resulting in a scale factor error of the SERF magnetometer. In order to suppress this error, we employ the variation of the probe beam absorption to offset the variation of the optical rotation angle. The theoretical discussion of our method indicates that the scale factor error introduced by the fluctuation of the cell temperature could be suppressed by setting the optical depth close to one. In our experiment, we adjust the probe frequency to obtain various optical depths and then measure the variation of scale factor with respect to the corresponding cell temperature changes. Our experimental results show a good agreement with our theoretical analysis. Under our experimental condition, the error has been reduced significantly compared with those when the probe wavelength is adjusted to maximize the probe signal. The cost of this method is the reduction of the scale factor of the magnetometer. However, according to our analysis, it only has minor effect on the sensitivity under proper operating parameters.

  18. Proton spin lattice relaxation studies in lithium ammonium sulfate LiNH4SO4

    International Nuclear Information System (INIS)

    Shenoy, R.K.; Ramakrishna, J.

    1979-01-01

    Lithium ammonium sulfate (LAS) undergoes a phase transition at Tsub(c1) = 459.5deg K from a paraelectric phase (phase 1) to a ferroelectric phase (phase II) and again at Tsub(c2) = 283deg K to a polar ferroelastic phase (phase III). Proton spin lattice relaxation investigations in the temperature range 480-77deg K at 10 MHz show discontinuous changes in Tsub(1) at the transition temperatures, indicating first order phase transitions. The absence of the slow motion region (ωsub(not)tausub(not)>>1) shows that the ammonium ions are reorienting fast enough to keep the resonance absorption line narrow down to liquid nitrogen temperatures. The possibility of a second minimum and a low activation energy, Esub(a) = 2.659 kcal/mole, in phase III suggest the possibility of tunnelling of the protons at low temperatures. The nature of the transitions have been discussed in the light of the available literature. The unusually high activation energy, Esub(a) = 17.845 kcal/mole, in the paraelectric phase has been attributed to the possible diffusion of protons. (auth.)

  19. $^{11}$B and $^{27}$Al NMR spin-lattice relaxation and Knight shift study of Mg$_{1-x}$Al$_x$B$_2$. Evidence for anisotropic Fermi surface

    OpenAIRE

    Papavassiliou, G.; Pissas, M.; Karayanni, M.; Fardis, M.; Koutandos, S.; Prassides, K.

    2002-01-01

    We report a detailed study of $^{11}$B and $^{27}$Al NMR spin-lattice relaxation rates ($1/T_1$), as well as of $^{27}$Al Knight shift (K) of Mg$_{1-x}$Al$_x$B$_2$, $0\\leq x\\leq 1$. The obtained ($1/T_1T$) and K vs. x plots are in excellent agreement with ab initio calculations. This asserts experimentally the prediction that the Fermi surface is highly anisotropic, consisting mainly of hole-type 2-D cylindrical sheets from bonding $2p_{x,y}$ boron orbitals. It is also shown that the density ...

  20. The influence of motor cortical stimulus intensity on the relaxation rate of human lower limb muscles

    NARCIS (Netherlands)

    McNeil, C.J.; Bredius, M.S.; Molenaar, J.P.F.; Gandevia, S.C.

    2013-01-01

    Transcranial magnetic stimulation (TMS) allows an in vivo assessment of the rate of muscle relaxation during a voluntary contraction. It is unknown if this method can be applied to lower limb muscles, and the effect of stimulus intensity on relaxation rate has not been investigated in any muscle

  1. PREFACE: 13th International Conference on Muon Spin Rotation, Relaxation and Resonance

    Science.gov (United States)

    2014-12-01

    The 13th International Conference on Muon Spin Rotation, Relaxation and Resonance (μSR2014) organized by the Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute in collaboration with the University of Zurich and the University of Fribourg, was held in Grindelwald, Switzerland from 1st to 6th June 2014. The conference provided a forum for researchers from around the world with interests in the applications of μSR to study a wide range of topics including condensed matter physics, materials and molecular sciences, chemistry and biology. Polarized muons provide a unique and versatile probe of matter, enabling studies at the atomic level of electronic structure and dynamics in a wide range of systems. The conference was the thirteenth in a series, which began in Rorschach in 1978 and it took place for the third time in Switzerland. The previous conferences were held in Cancun, Mexico (2011), Tsukuba, Japan (2008), Oxford, UK (2005), Williamsburg, USA (2002), Les Diablerets, Switzerland (1999), Nikko, Japan (1996), Maui, USA (1993), Oxford, UK (1990), Uppsala, Sweden (1986), Shimoda, Japan (1983), Vancouver, Canada (1980), and Rorschach, Switzerland (1978). These conference proceedings contain 67 refereed publications from presentations covering magnetism, superconductivity, chemistry, semiconductors, biophysics and techniques. The conference logo, displayed in the front pages of these proceedings, represents both the location of μSR2014 in the Alps and the muon-spin rotation technique. The silhouette represents the famous local mountains Eiger, Mönch and Jungfrau as drawn by the Swiss painter Ferdinand Hodler and the apple with arrow is at the same time a citation of the Wilhelm Tell legend and a remembrance of the key role played by the muon spin and the asymmetric muon decay (which for the highest positron energy has an apple like shape). More than 160 participants (including 32 registered as students and 13 as accompanying persons) from 19 countries

  2. Anomalous 125Te Nuclear Spin Relaxation Coincident with Charge Kondo Behavior in Superconducting Pb1-xTlxTe

    Science.gov (United States)

    Mukuda, Hidekazu; Matsumura, Takashi; Maki, Shota; Yashima, Mitsuharu; Kitaoka, Yoshio; Miyake, Kazumasa; Murakami, Hironaru; Giraldo-Gallo, Paula; Geball, Theodore H.; Fisher, Ian R.

    2018-02-01

    We report the results of a 125Te NMR study of single crystalline Pb1-xTlxTe (x = 0, 0.35, 1.0%) as a window on the novel electronic states associated with the thallium impurities in PbTe. The Knight shift is enhanced as x increases, corresponding to an increase in the average density of states (DOS) coupled to a strong spatial variation in the local DOS surrounding each Tl dopant. Remarkably, for the superconducting composition (x = 1.0%), the 125Te nuclear spin relaxation rate (1/T1T) for Te ions that are close to the Tl dopants is unexpectedly enhanced in the normal state below a characteristic temperature of ˜10 K, below which the resistivity experiences an upturn. Such a simultaneous upturn in both the resistivity and (1/T1T) was not suppressed in the high magnetic field. We suggest that these observations are consistently accounted for by dynamical charge fluctuations in the absence of paramagnetism, which is anticipated by the charge Kondo scenario associated with the Tl dopants. In contrast, such anomalies were not detected in the non-superconducting samples (x = 0 and 0.35%), suggesting a connection between dynamical valence fluctuations and the occurrence of superconductivity in Pb1-xTlxTe.

  3. Thermal relaxation and heat transport in spin ice Dy{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Klemke, Bastian; Meissner, M.; Tennant, D.A. [Helmholtz-Zentrum Berlin (Germany); Technische Universitaet Berlin (Germany); Strehlow, P. [Technische Universitaet Berlin (Germany); Physikalisch Technische Bundesanstalt, Institut Berlin (Germany); Kiefer, K. [Helmholtz-Zentrum Berlin (Germany); Grigera, S.A. [School of Physics and Astronomy, St. Andrews (United Kingdom); Instituto de Fisica de Liquidos y Sistemas Biologicos, CONICET, UNLP, La Plata (Argentina)

    2011-07-01

    The thermal properties of single crystalline Dy{sub 2}Ti{sub 2}O{sub 7} have been studied at temperature below 30 K and magnetic fields applied along [110] direction up to 1.5 T. Based on a thermodynamic field theory (TFT) various heat relaxation and thermal transport measurements were analysed. So we were able to present not only the heat capacity of Dy{sub 2}Ti{sub 2}O{sub 7}, but also for the first time the different contributions of the magnetic excitations and their corresponding relaxation times in the spin ice phase. In addition, the thermal conductivity and the shortest relaxation time were determined by thermodynamic analysis of steady state heat transport measurements. Finally, we were able to reproduce the temperature profiles recorded in heat pulse experiments on the basis of TFT using the previously determined heat capacity and thermal conductivity data without additional parameters. Thus, TFT has been proved to be thermodynamically consistent in describing three thermal transport experiments on different time scales. The observed temperature and field dependencies of heat capacity contributions and relaxation times indicate the magnetic excitations in the spin ice Dy{sub 2}Ti{sub 2}O{sub 7} as thermally activated monopole-antimonopole defects.

  4. A new problem in the correlation of nuclear-spin relaxation and ionic conductivity in superionic glasses

    Science.gov (United States)

    Tatsumisago, M.; Angell, C. A.; Martin, S. W.

    1992-11-01

    Following the recent resolution of the longstanding problem of reconciling constant frequency nuclear-spin lattice relaxation (SLR) activation energies and d.c. conductivity activity energies in ion conducting glasses, we point out a new problem which seems not to have been discussed previously. We report conductivity data measured at a series of fixed frequencies and variable temperatures on a lithium chloroborate glass and compare them with SLR data on identically prepared samples, also using different fixed frequencies. While phenomenological similarities due to comparable departures from exponential relaxation are found in each case, pronounced differences in the most probable relaxation times themselves are observed. The conductivity relaxation at 500 K occurs on a time scale shorter by some 2 orders of magnitude than the 7Li SLR correlation, and has a significantly lower activation energy. We show from a literature review that this distinction is a common but unreported finding for highly decoupled (fast-ion conducting) systems, and that an inverse relationship is found in supercoupled salt/polymer ``solid'' electrolytes. In fast-ion conducting glasses, the slower SLR process would imply special features in the fast-ion motion which permit spin correlations to survive many more successive ion displacements than previously expected. It is conjectured that the SLR in superionic glasses depends on the existence of a class of low-lying traps infrequently visited by migrating ions.

  5. Static magnetic ordering of CeCu2.1Si2 found by muon spin relaxation

    Science.gov (United States)

    Uemura, Y. J.; Kossler, W. J.; Yu, X. H.; Schone, H. E.; Kempton, J. R.; Stronach, C. E.; Barth, S.; Gygax, F. N.; Hitti, B.; Schenck, A.

    1988-01-01

    Zero- and longitudinal-field muon spin relaxation measurements on a polycrystal sample of a heavy fermion superconductor CeCu2.1 Si2 (T(c) = 0.7 K) have revealed an onset of static magnetic ordering below T approximately 0.8 K. The line shapes of the observed spectra in zero field indicate a wide distribution of static random local fields at muon sites, suggesting that the ordering is either spin glass or incommensurate spin-density-wave state. The observed width of the random local field at T = 0.05 K corresponds to a small averaged static moment of the order of 0.1 micro-B per formula unit.

  6. Active site dynamics in NADH oxidase from Thermus thermophilus studied by NMR spin relaxation

    International Nuclear Information System (INIS)

    Miletti, Teresa; Farber, Patrick J.; Mittermaier, Anthony

    2011-01-01

    We have characterized the backbone dynamics of NADH oxidase from Thermus thermophilus (NOX) using a recently-developed suite of NMR experiments designed to isolate exchange broadening, together with 15 N R 1 , R 1ρ , and { 1 H}- 15 N steady-state NOE relaxation measurements performed at 11.7 and 18.8 T. NOX is a 54 kDa homodimeric enzyme that belongs to a family of structurally homologous flavin reductases and nitroreductases with many potential biotechnology applications. Prior studies have suggested that flexibility is involved in the catalytic mechanism of the enzyme. The active site residue W47 was previously identified as being particularly important, as its level of solvent exposure correlates with enzyme activity, and it was observed to undergo “gating” motions in computer simulations. The NMR data are consistent with these findings. Signals from W47 are dynamically broadened beyond detection and several other residues in the active site have significant R ex contributions to transverse relaxation rates. In addition, the backbone of S193, whose side chain hydroxyl proton hydrogen bonds directly with the FMN cofactor, exhibits extensive mobility on the ns–ps timescale. We hypothesize that these motions may facilitate structural rearrangements of the active site that allow NOX to accept both FMN and FAD as cofactors.

  7. The influence of motor cortical stimulus intensity on the relaxation rate of human lower limb muscles.

    Science.gov (United States)

    McNeil, Chris J; Bredius, Marlous S; Molenaar, Joery P; Gandevia, Simon C

    2013-07-01

    Transcranial magnetic stimulation (TMS) allows an in vivo assessment of the rate of muscle relaxation during a voluntary contraction. It is unknown if this method can be applied to lower limb muscles, and the effect of stimulus intensity on relaxation rate has not been investigated in any muscle group. The present study sought to address these unknowns. A secondary aim was to test the sensitivity of the method to a change in muscle length by comparing the relaxation rate of the plantar flexor muscles with the gastrocnemius at short and long lengths. Seven subjects performed 21 maximal voluntary isometric contractions (MVCs) of the dorsiflexors (DF) and plantar flexors with a knee angle of either 90° or 180° (PF90 and PF180, respectively). TMS intensity ranged from 40 to 100% stimulator output in intervals of 10%. Relaxation rates increased with stimulus intensity but were equivalent to maximal output at 50 (DF and PF90) or 60% (PF180). MVC torque was greater, and the rate of relaxation was faster for PF180 compared to PF90. The main findings are that TMS can be used to measure relaxation rates of lower limb muscles, and these rates are robust provided the stimulus intensity is above a critical threshold. The dependency of plantar flexor relaxation rate on the length of the fast-twitch gastrocnemius fibers reinforces published temperature and fatigue data which show that the method is sensitive to the contractile properties of the muscle fibers which are actively contributing to torque production.

  8. Accurate determination of rates from non-uniformly sampled relaxation data

    International Nuclear Information System (INIS)

    Stetz, Matthew A.; Wand, A. Joshua

    2016-01-01

    The application of non-uniform sampling (NUS) to relaxation experiments traditionally used to characterize the fast internal motion of proteins is quantitatively examined. Experimentally acquired Poisson-gap sampled data reconstructed with iterative soft thresholding are compared to regular sequentially sampled (RSS) data. Using ubiquitin as a model system, it is shown that 25 % sampling is sufficient for the determination of quantitatively accurate relaxation rates. When the sampling density is fixed at 25 %, the accuracy of rates is shown to increase sharply with the total number of sampled points until eventually converging near the inherent reproducibility of the experiment. Perhaps contrary to some expectations, it is found that accurate peak height reconstruction is not required for the determination of accurate rates. Instead, inaccuracies in rates arise from inconsistencies in reconstruction across the relaxation series that primarily manifest as a non-linearity in the recovered peak height. This indicates that the performance of an NUS relaxation experiment cannot be predicted from comparison of peak heights using a single RSS reference spectrum. The generality of these findings was assessed using three alternative reconstruction algorithms, eight different relaxation measurements, and three additional proteins that exhibit varying degrees of spectral complexity. From these data, it is revealed that non-linearity in peak height reconstruction across the relaxation series is strongly correlated with errors in NUS-derived relaxation rates. Importantly, it is shown that this correlation can be exploited to reliably predict the performance of an NUS-relaxation experiment by using three or more RSS reference planes from the relaxation series. The RSS reference time points can also serve to provide estimates of the uncertainty of the sampled intensity, which for a typical relaxation times series incurs no penalty in total acquisition time.

  9. Accurate determination of rates from non-uniformly sampled relaxation data

    Energy Technology Data Exchange (ETDEWEB)

    Stetz, Matthew A.; Wand, A. Joshua, E-mail: wand@upenn.edu [University of Pennsylvania Perelman School of Medicine, Johnson Research Foundation and Department of Biochemistry and Biophysics (United States)

    2016-08-15

    The application of non-uniform sampling (NUS) to relaxation experiments traditionally used to characterize the fast internal motion of proteins is quantitatively examined. Experimentally acquired Poisson-gap sampled data reconstructed with iterative soft thresholding are compared to regular sequentially sampled (RSS) data. Using ubiquitin as a model system, it is shown that 25 % sampling is sufficient for the determination of quantitatively accurate relaxation rates. When the sampling density is fixed at 25 %, the accuracy of rates is shown to increase sharply with the total number of sampled points until eventually converging near the inherent reproducibility of the experiment. Perhaps contrary to some expectations, it is found that accurate peak height reconstruction is not required for the determination of accurate rates. Instead, inaccuracies in rates arise from inconsistencies in reconstruction across the relaxation series that primarily manifest as a non-linearity in the recovered peak height. This indicates that the performance of an NUS relaxation experiment cannot be predicted from comparison of peak heights using a single RSS reference spectrum. The generality of these findings was assessed using three alternative reconstruction algorithms, eight different relaxation measurements, and three additional proteins that exhibit varying degrees of spectral complexity. From these data, it is revealed that non-linearity in peak height reconstruction across the relaxation series is strongly correlated with errors in NUS-derived relaxation rates. Importantly, it is shown that this correlation can be exploited to reliably predict the performance of an NUS-relaxation experiment by using three or more RSS reference planes from the relaxation series. The RSS reference time points can also serve to provide estimates of the uncertainty of the sampled intensity, which for a typical relaxation times series incurs no penalty in total acquisition time.

  10. Accurate determination of rates from non-uniformly sampled relaxation data

    Science.gov (United States)

    Stetz, Matthew A.; Wand, A. Joshua

    2016-01-01

    The application of non-uniform sampling (NUS) to relaxation experiments traditionally used to characterize the fast internal motion of proteins is quantitatively examined. Experimentally acquired Poisson-gap sampled data reconstructed with iterative soft thresholding (IST) are compared to regular sequentially sampled (RSS) data. Using ubiquitin as a model system, it is shown that 25% sampling is sufficient for the determination of quantitatively accurate relaxation rates. When the sampling density is fixed at 25%, the accuracy of rates is shown to increase sharply with the total number of sampled points until eventually converging near the inherent reproducibility of the experiment. Perhaps contrary to some expectations, it is found that accurate peak height reconstruction is not required for the determination of accurate rates. Instead, inaccuracies in rates arise from inconsistencies in reconstruction across the relaxation series that primarily manifest as a non-linearity in the recovered peak height. This indicates that the performance of an NUS relaxation experiment cannot be predicted from comparison of peak heights using a single RSS reference spectrum. The generality of these findings was assessed using three alternative reconstruction algorithms, eight different relaxation measurements, and three additional proteins that exhibit varying degrees of spectral complexity. From these data, it is revealed that non-linearity in peak height reconstruction across the relaxation series is strongly correlated with errors in NUS-derived relaxation rates. Importantly, it is shown that this correlation can be exploited to reliably predict the performance of an NUS-relaxation experiment by using three or more RSS reference planes from the relaxation series. The RSS reference time points can also serve to provide estimates of the uncertainty of the sampled intensity, which for a typical relaxation times series incurs no penalty in total acquisition time. PMID:27393626

  11. The spin relaxation of nitrogen donors in 6H SiC crystals as studied by the electron spin echo method

    Czech Academy of Sciences Publication Activity Database

    Savchenko, Dariia; Shanina, B.; Kalabukhova, E.; Pöppl, A.; Lančok, Ján; Mokhov, E.

    2016-01-01

    Roč. 119, č. 13 (2016), 1-7, č. článku 135706. ISSN 0021-8979 R&D Projects: GA ČR GP13-06697P; GA MŠk LO1409; GA MŠk LM2015088 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : electron spin resonance * SiC * nitrogen donors * relaxation times Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.068, year: 2016

  12. Polymer dynamics near the surface and in the bulk of poly(tetrafluoroethylene) probed by zero-field muon-spin-relaxation spectroscopy.

    Science.gov (United States)

    McKenzie, Iain; Salman, Zaher; Giblin, Sean R; Han, Yun Yu; Leach, Gary W; Morenzoni, Elvezio; Prokscha, Thomas; Suter, Andreas

    2014-02-01

    The results of many experiments on polymers such as polystyrene indicate that the polymer chains near a free surface exhibit enhanced dynamics when compared with the bulk. We have investigated whether this is the case for poly(tetrafluoroethylene) (PTFE) by using zero-field muon-spin-relaxation spectroscopy to characterize a local probe, the F-Mu(+)-F state, which forms when spin-polarized positive muons are implanted in PTFE. Low-energy muons (implantation energies from 2.0 to 23.0 keV) were used to study the F-Mu(+)-F state between ∼ 23 and 191 nm from the free surface of PTFE. Measurements were also made with surface muons (4.1 MeV) where the mean implantation depth is on the order of ∼ 0.6 mm. The relaxation rate of the F-Mu(+)-F state up to ∼ 150 K was found to be significantly higher for muons implanted at 2.0 keV than for higher implantation energies, which suggests that the polymer chains in a region on the order of a few tens of nanometers from the free surface are more mobile than those in the bulk.

  13. Nuclear spin relaxation of {sup 8}Li in a thin film of La{sub 0.67}Ca{sub 0.33}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.I. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada V6T 2A3 (Canada); Arseneau, D. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Chow, K.H. [Department of Physics, University of Alberta, Edmonton, Alta., T6G 2J1 (Canada); Daviel, S. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Engelbertz, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Hossain, MD. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Keeler, T. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Kiefl, R.F. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)]|[Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z1 (Canada)]|[Canadian Institute for Advanced Research, Toronto, Ont., Canada M5G 1Z8 (Canada)]. E-mail: kiefl@triumf.ca; Kreitzman, S. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Levy, C.D.P. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Morales, P. [Department of Physics, University of Toronto, Toronto, Ont., M5S 1A7 (Canada); Morris, G.D. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); MacFarlane, W.A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada): Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Parolin, T.J. [Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Poutissou, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Saadaoui, H.; Wang, D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Salman, Z. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Wei, J.Y.T. [Canadian Institute for Advanced Research, Toronto, Ont., M5G 1Z8 (Canada)]|[Department of Physics, University of Toronto, Toronto, Ont., M5S 1A7 (Canada)

    2006-03-31

    We report {beta}-NMR measurements of the nuclear spin relaxation rate (1/T{sub 1}) in a thin film of La{sub 0.67}Ca{sub 0.33}MnO{sub 3} (LCMO) using a low-energy beam of spin-polarized {sup 8}Li. In a small magnetic field of 150G, there is a broad peak in 1/T{sub 1} near the Curie temperature (T{sub c}=259K) and a dramatic decrease in 1/T{sub 1} at lower temperatures. This is attributed to a critical slowing down of the spin fluctuations near T{sub c} and freezing of the magnetic excitations at low temperatures, respectively. In addition, there is a small amplitude, slow relaxing component at high temperatures, which we attribute to {sup 8}Li in the SrTiO{sub 3} substrate. There is an indication that the spin relaxation rate in the substrate is also peaked at T{sub c} due to close proximity to the magnetic film. These results establish that low-energy {beta}-NMR can be used as a probe of magnetic fluctuations in magnetic thin films over a wide range of temperatures.

  14. Electron spin echo study of the E'-center phase relaxation in γ-irradiated quartz glass

    International Nuclear Information System (INIS)

    Dudkin, V.I.; Petrun'kin, V.Yu.; Rubinov, S.V.; Uspenskij, L.I.

    1986-01-01

    Experimental studies of phase relaxation of E'-centres in γ-irradiated quartz glass are conducted by the method of electron spin echo (ESE) for different concentrations of paramagnetic centres. Contribution of mechanisms of spectral and prompt diffusion to kinetics of amplitude drop of echo signal is proved to reduce with growth of delay time between exciting microwave pulse that results in increase of phase memory time at large delays. The mentioned property can be used in electric controlled delay lines on the base of ESE

  15. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source.

    Science.gov (United States)

    Lord, J S; McKenzie, I; Baker, P J; Blundell, S J; Cottrell, S P; Giblin, S R; Good, J; Hillier, A D; Holsman, B H; King, P J C; Lancaster, T; Mitchell, R; Nightingale, J B; Owczarkowski, M; Poli, S; Pratt, F L; Rhodes, N J; Scheuermann, R; Salman, Z

    2011-07-01

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  16. Relaxation rates of gene expression kinetics reveal the feedback signs of autoregulatory gene networks

    Science.gov (United States)

    Jia, Chen; Qian, Hong; Chen, Min; Zhang, Michael Q.

    2018-03-01

    The transient response to a stimulus and subsequent recovery to a steady state are the fundamental characteristics of a living organism. Here we study the relaxation kinetics of autoregulatory gene networks based on the chemical master equation model of single-cell stochastic gene expression with nonlinear feedback regulation. We report a novel relation between the rate of relaxation, characterized by the spectral gap of the Markov model, and the feedback sign of the underlying gene circuit. When a network has no feedback, the relaxation rate is exactly the decaying rate of the protein. We further show that positive feedback always slows down the relaxation kinetics while negative feedback always speeds it up. Numerical simulations demonstrate that this relation provides a possible method to infer the feedback topology of autoregulatory gene networks by using time-series data of gene expression.

  17. Combined Diffusion Tensor Imaging and Apparent Transverse Relaxation Rate Differentiate Parkinson Disease and Atypical Parkinsonism.

    Science.gov (United States)

    Du, G; Lewis, M M; Kanekar, S; Sterling, N W; He, L; Kong, L; Li, R; Huang, X

    2017-05-01

    Both diffusion tensor imaging and the apparent transverse relaxation rate have shown promise in differentiating Parkinson disease from atypical parkinsonism (particularly multiple system atrophy and progressive supranuclear palsy). The objective of the study was to assess the ability of DTI, the apparent transverse relaxation rate, and their combination for differentiating Parkinson disease, multiple system atrophy, progressive supranuclear palsy, and controls. A total of 106 subjects (36 controls, 35 patients with Parkinson disease, 16 with multiple system atrophy, and 19 with progressive supranuclear palsy) were included. DTI and the apparent transverse relaxation rate measures from the striatal, midbrain, limbic, and cerebellar regions were obtained and compared among groups. The discrimination performance of DTI and the apparent transverse relaxation rate among groups was assessed by using Elastic-Net machine learning and receiver operating characteristic curve analysis. Compared with controls, patients with Parkinson disease showed significant apparent transverse relaxation rate differences in the red nucleus. Compared to those with Parkinson disease, patients with both multiple system atrophy and progressive supranuclear palsy showed more widespread changes, extending from the midbrain to striatal and cerebellar structures. The pattern of changes, however, was different between the 2 groups. For instance, patients with multiple system atrophy showed decreased fractional anisotropy and an increased apparent transverse relaxation rate in the subthalamic nucleus, whereas patients with progressive supranuclear palsy showed an increased mean diffusivity in the hippocampus. Combined, DTI and the apparent transverse relaxation rate were significantly better than DTI or the apparent transverse relaxation rate alone in separating controls from those with Parkinson disease/multiple system atrophy/progressive supranuclear palsy; controls from those with Parkinson

  18. Molecular motions in thermotropic liquid crystals studied by NMR spin-lattice relaxation

    International Nuclear Information System (INIS)

    Zamar, R.C.; Gonzalez, C.E.; Mensio, O.

    1998-01-01

    Nuclear magnetic resonance relaxation experiments with field cycling techniques proved to be a valuable tool for studying molecular motions in liquid crystals, allowing a very broad Larmor frequency variation, sufficient to separate the cooperative motions from the liquid like molecular diffusion. In new experiments combining NMR field cycling with the Jeener-Broekaert order-transfer pulse sequence, it is possible to measure the dipolar order relaxation time (T 1D ), in addition to the conventional Zeeman relaxation time (T 1Z ) in a frequency range of several decades. When applying this technique to nematic thermotropic liquid crystals, T 1D showed to depend almost exclusively on the order fluctuation of the director mechanism in the whole frequency range. This unique characteristic of T 1D makes dipolar order relaxation experiments specially useful for studying the frequency and temperature dependence of the spectral properties of the collective motions. (author)

  19. Near-threshold photoionization of the Xe 3d spin-orbit doublet: Relativistic, relaxation, and intershell interaction effects

    International Nuclear Information System (INIS)

    Radojevic, V.; Davidovic, D.M.; Amusia, M.Ya.

    2003-01-01

    Results of calculations of the near-threshold photoionization of the xenon 3d spin-orbit doublet are reported. Our theoretical analysis is undertaken in order to interpret and enlighten the very detailed measurements of this process [A. Kivimaeki et al., Phys. Rev. A 63, 012716 (2001)], which revealed a previously unobserved interesting feature--an additional broad maximum--in the partial xenon 3d 5/2 cross section. This double maximum was not produced by earlier calculations, except in the recent study by Amusia et al. [Phys. Rev. Lett. 88, 093002 (2002)], which, in contrast to the present one, is not ab initio and relativistic in character. The partial photoionization cross sections of 3d 5/2 and 3d 3/2 subshells, photoelectron anisotropy parameters, and spin-polarization parameters that were so far not studied either experimentally or theoretically are calculated. Many-electron correlations, relativistic effects, and relaxation effects of the ionic core in the ionization process are taken into account by using the relativistic random-phase approximation, modified to include the relaxation of the considered subshell

  20. Randomized controlled trial of relaxation music to reduce heart rate in patients undergoing cardiac CT.

    Science.gov (United States)

    Ng, Ming Yen; Karimzad, Yasser; Menezes, Ravi J; Wintersperger, Bernd J; Li, Qin; Forero, Julian; Paul, Narinder S; Nguyen, Elsie T

    2016-10-01

    To evaluate the heart rate lowering effect of relaxation music in patients undergoing coronary CT angiography (CCTA), pulmonary vein CT (PVCT) and coronary calcium score CT (CCS). Patients were randomised to a control group (i.e. standard of care protocol) or to a relaxation music group (ie. standard of care protocol with music). The groups were compared for heart rate, radiation dose, image quality and dose of IV metoprolol. Both groups completed State-Trait Anxiety Inventory anxiety questionnaires to assess patient experience. One hundred and ninety-seven patients were recruited (61.9 % males); mean age 56y (19-86 y); 127 CCTA, 17 PVCT, 53 CCS. No significant difference in heart rate, radiation dose, image quality, metoprolol dose and anxiety scores. 86 % of patients enjoyed the music. 90 % of patients in the music group expressed a strong preference to have music for future examinations. The patient cohort demonstrated low anxiety levels prior to CT. Relaxation music in CCTA, PVCT and CCS does not reduce heart rate or IV metoprolol use. Patients showed low levels of anxiety indicating that anxiolytics may not have a significant role in lowering heart rate. Music can be used in cardiac CT to improve patient experience. • Relaxation music does not reduce heart rate in cardiac CT • Relaxation music does not reduce beta-blocker use in cardiac CT • Relaxation music has no effect on cardiac CT image quality • Low levels of anxiety are present in patients prior to cardiac CT • Patients enjoyed the relaxation music and this results in improved patient experience.

  1. Microscale consolidation analysis of relaxation behavior of single living chondrocytes subjected to varying strain-rates.

    Science.gov (United States)

    Nguyen, Trung Dung; Oloyede, Adekunle; Singh, Sanjleena; Gu, YuanTong

    2015-09-01

    Besides the elastic stiffness, the relaxation behavior of single living cells is also of interest of various researchers when studying cell mechanics. It is hypothesized that the relaxation response of the cells is governed by both intrinsic viscoelasticity of the solid phase and fluid-solid interactions mechanisms. There are a number of mechanical models have been developed to investigate the relaxation behavior of single cells. However, there is lack of model enable to accurately capture both of the mechanisms. Therefore, in this study, the porohyperelastic (PHE) model, which is an extension of the consolidation theory, combined with inverse Finite Element Analysis (FEA) technique was used at the first time to investigate the relaxation response of living chondrocytes. This model was also utilized to study the dependence of relaxation behavior of the cells on strain-rates. The stress-relaxation experiments under the various strain-rates were conducted with the Atomic Force Microscopy (AFM). The results have demonstrated that the PHE model could effectively capture the stress-relaxation behavior of the living chondrocytes, especially at intermediate to high strain-rates. Although this model gave some errors at lower strain-rates, its performance was acceptable. Therefore, the PHE model is properly a promising model for single cell mechanics studies. Moreover, it has been found that the hydraulic permeability of living chondrocytes reduced with decreasing of strain-rates. It might be due to the intracellular fluid volume fraction and the fluid pore pressure gradients of chondrocytes were higher when higher strain-rates applied. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Temperature dependence of electron spin-lattice relaxation of radiation-produced silver atoms in polycrystalline aqueous and glassy organic matrices. Importance of relaxation by tunneling modes in disordered matrices

    International Nuclear Information System (INIS)

    Michalik, J.; Kevan, L.

    1978-01-01

    The electron spin-lattice relaxation of trapped silver atoms in polycrystalline ice matrices and in methanol, ethanol, propylene carbonate, and 2-methyltetrahydrofuran organic glasses has been directly studied as a function of temperature by the saturation-recovery method. Below 40 K the dominant electron spin-lattice relaxation mechanism involves modulation of the electron nuclear dipolar interaction with nuclei in the radical's environment by tunneling of those nuclei between two nearly equal energy configurations. This relaxation mechanism occurs with high efficiency, has a characteristic linear temperature dependence, and is typically found in highly disordered matrices. The efficiency of this relaxation mechanism seems to decrease with decreasing polarity of the matrix. Deuteration experiments show that the tunneling nuclei are protons and in methanol it is shown that the methyl protons have more tunneling modes available than the hydroxyl protons. In polycrystalline ice matrices silver atoms can be stabilized with two different orientations of surrounding water molecules; the efficiency of the tunneling relaxation reflects this difference. From these and previous results on tunneling relaxation of trapped electrons in glassy matrices it appears that tunneling relaxation may be used to distinguish models with different geometrical configurations and to determine the relative rigidity of such configurations around trapped radicals in disordered solids. (author)

  3. Electron spin relaxation can enhance the performance of a cryptochrome-based magnetic compass sensor

    DEFF Research Database (Denmark)

    Kattnig, Daniel R; Sowa, Jakub K; Solov'yov, Ilia A

    2016-01-01

    The radical pair model of the avian magnetoreceptor relies on long-lived electron spin coherence. Dephasing, resulting from interactions of the spins with their fluctuating environment, is generally assumed to degrade the sensitivity of this compass to the direction of the Earth's magnetic field...... to an Earth-strength magnetic field. Supported by calculations using toy radical pair models, we argue that these enhancements could be consistent with the molecular dynamics and magnetic interactions in avian cryptochromes....

  4. Cadmium-113 NMR spin-lattice relaxation and exchange kinetics in concanavalin A: A double saturation transfer experiment

    Science.gov (United States)

    Ellis, Paul D.; Yang, Ping P.; Palmert, Allen R.

    The field dependence of the 113Cd relaxation rate in cadmium-substituted Concanavalin A was investigated at three magnetic field strengths, 2.3, 4.7, and 9.4 T. Because of the anomalously large relaxation rate observed for the resonance corresponding to free cadmium in the system and our prior knowledge that cadmium is undergoing chemical exchange in this system, a detailed analysis was undertaken of the relaxation data obtained at 9.4 T to investigate the relative importance of chemical exchange dynamics upon the observed relaxation time constants. The differential equations for the resulting restricted three-site exchange network can be solved in closed form by employing a double saturation transfer experiment in conjunction with a saturation-recovery T1 experiment. The analysis of these data demonstrate that chemical exchange processes contribute 14, 75, and 20% to the observed relaxation time constants for the 113Cd resonances for the S1 site, free cadmium and the S2 site respectively. If the possibility of exchange contributions to the NOE were ignored, then the observed field dependence of T1 could not be discussed in terms of conventional single correlation time theories of relaxation. In this case the data could be discussed in terms of correlation times involving overall motion of the protein coupled with correlation times describing "internal motions." These internal motions may be the result of the formation of "abortive" complexes with exogenous ligands for those metalloproteins where the metal can be readily removed from the protein. However, for Con A, it is shown that the weak field dependence observed for the heteronuclear NOE is not due to internal motions, but rather to exchange processes.

  5. EPR studies of the Mo-enzyme aldehyde oxidoreductase from Desulfovibrio gigas: an application of the Bloch-Wangsness-Redfield theory to a system containing weakly-coupled paramagnetic redox centers with different relaxation rates.

    Science.gov (United States)

    González, Pablo J; Barrera, Guillermo I; Rizzi, Alberto C; Moura, José J G; Passeggi, Mario C G; Brondino, Carlos D

    2009-10-01

    Electron transfer proteins and redox enzymes containing paramagnetic redox centers with different relaxation rates are widespread in nature. Despite both the long distances and chemical paths connecting these centers, they can present weak magnetic couplings produced by spin-spin interactions such as dipolar and isotropic exchange. We present here a theoretical model based on the Bloch-Wangsness-Redfield theory to analyze the dependence with temperature of EPR spectra of interacting pairs of spin 1/2 centers having different relaxation rates, as is the case of the molybdenum-containing enzyme aldehyde oxidoreductase from Desulfovibrio gigas. We analyze the changes of the EPR spectra of the slow relaxing center (Mo(V)) induced by the faster relaxing center (FeS center). At high temperatures, when the relaxation time T(1) of the fast relaxing center is very short, the magnetic coupling between centers is averaged to zero. Conversely, at low temperatures when T(1) is longer, no modulation of the coupling between metal centers can be detected.

  6. Addition and spin exchange rate constants by longitudinal field μSR: the Mu + NO reaction

    International Nuclear Information System (INIS)

    Senba, Masayoshi; Gonzalez, A.C.; Kempton, J.R.; Arseneau, D.J.; Pan, J.J.; Tempelmann, A.; Fleming, D.G.

    1991-01-01

    The addition reaction Mu + NO + M → MuNO + M and the spin exchange reaction Mu(↑) + NO(↓)→Mu(↓)+NO(↑) have been measured by longitudinal field μSR at room temperature in the presence of up to 58 atm of N 2 as inert collider. The pressure dependence of the longitudinal relaxation rate due to the addition reaction (λ c ) demonstrates that the system is still in the low pressure regime in this pressure range. The corresponding termolecular rate constant has been determined as k 0.Mu =(1.10±0.25)x10 -32 cm 6 molecules -2 s -1 , almost 4 times smaller than the corresponding H atom reaction k 0,H =3.90x10 -32 cm 6 molecules -2 s -1 . The average value of the spin exchange rate constants in the 2.5-58 atm pressure range, k SE = (3.16±0.06)x10 -10 cm 3 molecule -1 s -1 , is in good agreement with previous values obtained by transverse field μSR. (orig.)

  7. Calculation of the expected zero-field muon relaxation rate in the geometrically frustrated rare earth pyrochlore Gd(2)Sn(2)O(7) antiferromagnet.

    Science.gov (United States)

    McClarty, P A; Cosman, J N; Del Maestro, A G; Gingras, M J P

    2011-04-27

    The magnetic insulator Gd(2)Sn(2)O(7) is one of many geometrically frustrated magnetic materials known to exhibit a nonzero muon spin polarization relaxation rate, λ(T), down to the lowest temperature (T) studied. Such behaviour is typically interpreted as signalling the presence of persistent spin dynamics (PSD) of the host material. In the case of Gd(2)Sn(2)O(7), such PSD comes as a surprise since magnetic specific heat measurements suggest conventional gapped magnons, which would naively lead to an exponentially vanishing λ(T) as T → 0. In contrast to most materials that display PSD, the ordered phase of Gd(2)Sn(2)O(7) is well characterized and both the nature and the magnitude of the interactions have been inferred from the magnetic structure and the temperature dependence of the magnetic specific heat. Based on this understanding, the temperature dependence of the muon spin polarization relaxation through the scattering of spin waves (magnons) is calculated. The result explicitly shows that, despite the unusual extensive number of weakly dispersive (gapped) excitations characterizing Gd(2)Sn(2)O(7), a remnant of the zero modes of the parent frustrated pyrochlore Heisenberg antiferromagnet, the temperature dependence of the calculated λ(T) differs dramatically from the experimental one. Indeed, the calculation conforms to the naive expectation of an exponential collapse of λ(T) at temperatures below ∼ 0.7 K. This result, for the first time, illustrates crisply and quantitatively the paradox that presents itself with the pervasive occurrence of PSD in highly frustrated magnetic systems as evinced by muon spin relaxation measurements.

  8. High-resolution magic angle spinning proton NMR analysis of human prostate tissue with slow spinning rates.

    Science.gov (United States)

    Taylor, Jennifer L; Wu, Chin-Lee; Cory, David; Gonzalez, R Gilberto; Bielecki, Anthony; Cheng, Leo L

    2003-09-01

    The development of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy for intact tissue analysis and the correlations between the measured tissue metabolites and disease pathologies have inspired investigations of slow-spinning methodologies to maximize the protection of tissue pathology structures from HR-MAS centrifuging damage. Spinning sidebands produced by slow-rate spinning must be suppressed to prevent their complicating the spectral region of metabolites. Twenty-two human prostatectomy samples were analyzed on a 14.1T spectrometer, with HR-MAS spinning rates of 600 Hz, 700 Hz, and 3.0 kHz, a repetition time of 5 sec, and employing various rotor-synchronized suppression methods, including DANTE, WATERGATE, TOSS, and PASS pulse sequences. Among them, DANTE, as the simplest scheme, has shown the most potential in suppression of tissue water signals and spinning sidebands, as well as in quantifying metabolic concentrations. Copyright 2003 Wiley-Liss, Inc.

  9. Surface dependent structural phase transition in SrTiO 3 observed with spin relaxation of 8Li

    Science.gov (United States)

    Smadella, M.; Salman, Z.; Chow, K. H.; Egilmez, M.; Fan, I.; Hossain, M. D.; Kiefl, R. F.; Kreitzman, S. R.; Levy, C. D. P.; MacFarlane, W. A.; Mansour, A. I.; Morris, G. D.; Parolin, T. J.; Pearson, M.; Saadaoui, H.; Song, Q.; Wang, D.

    2009-04-01

    We investigate the 105 K structural phase transition in SrTiO 3 using depth controlled measurements of the spin relaxation of 8Li. The measurements were performed in zero external magnetic field and rely on the local electric field gradient (EFG) at the crystalline implantation site of the 8Li ( I=2) to hold the nuclear polarization. The tetragonal distortion accompanying the phase transition modifies the EFG in some 8Li implantation sites, resulting in an observable loss of 8Li polarization. This loss of polarization begins at a temperature T*=150 K, indicating there is some loss of cubic symmetry well above the bulk transition. We find that the value of T* is unaffected by the range of implantation depths available (10-150 nm); however, the temperature dependence of the polarization depends on the surface preparation of the SrTiO 3 sample.

  10. Surface dependent structural phase transition in SrTiO{sub 3} observed with spin relaxation of {sup 8}Li

    Energy Technology Data Exchange (ETDEWEB)

    Smadella, M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Salman, Z. [Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); ISIS Facility, Rutherford-Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Chow, K.H.; Egilmez, M.; Fan, I. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Hossain, M.D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Kiefl, R.F., E-mail: kiefl@triumf.c [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Canadian Institute for Advanced Research (Canada); Kreitzman, S.R.; Levy, C.D.P. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); MacFarlane, W.A. [Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z3 (Canada); Mansour, A.I. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Morris, G.D. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Parolin, T.J. [Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z3 (Canada); Pearson, M. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Saadaoui, H.; Song, Q.; Wang, D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada)

    2009-04-15

    We investigate the 105 K structural phase transition in SrTiO{sub 3} using depth controlled measurements of the spin relaxation of {sup 8}Li. The measurements were performed in zero external magnetic field and rely on the local electric field gradient (EFG) at the crystalline implantation site of the {sup 8}Li (I=2) to hold the nuclear polarization. The tetragonal distortion accompanying the phase transition modifies the EFG in some {sup 8}Li implantation sites, resulting in an observable loss of {sup 8}Li polarization. This loss of polarization begins at a temperature T{sup *}=150K, indicating there is some loss of cubic symmetry well above the bulk transition. We find that the value of T{sup *} is unaffected by the range of implantation depths available (10-150 nm); however, the temperature dependence of the polarization depends on the surface preparation of the SrTiO{sub 3} sample.

  11. Duchenne muscular dystrophy carriers. Proton spin-lattice relaxation times of skeletal muscles on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, K.; Nakano, I. (Shimoshizu National Hospital, Chiba (Japan). Dept. of Neurology); Fukuda, N.; Ikehira, H.; Tateno, Y. (National Inst. of Radiological Sciences, Chiba (Japan). Div. of Clinical Research); Aoki, Y. (National Inst. of Radiological Sciences, Chiba (Japan))

    1989-11-01

    By means of magnetic resonance imaging (MRI), the proton spin-lattice relaxation times (T1 values) of the skeletal muscles were measured in Duchenne muscular dystrophy (DMD) carriers and normal controls. The bound water fraction (BWF) was calculated from the T1 values obtained, according to the fast proton diffusion model. In the DMD carriers, T1 values of the gluteus maximus and quadriceps femoris muscles were significantly higher, and BWFs of these muscles were significantly lower than in normal control. Degenerative muscular changes accompanied by interstitial edema were presumed responsible for this abnormality. No correlation was observed between the muscle T1 and serum creatine kinase values. The present study showed that MRI could be a useful method for studying the dynamic state of water in both normal and pathological skeletal muscles. Its possible utility for DMD carrier detection was discussed briefly. (orig.).

  12. Relating PAC damping to EFG fluctuation rates through the PAC relaxation peak

    Energy Technology Data Exchange (ETDEWEB)

    Park, Tyler [Utah Valley University, Department of Physics (United States); Hodges, Jeffery A. [University of Utah, Department of Physics (United States); Moreno, Carlos; Stufflebeam, Michael; Evenson, William E., E-mail: bill@evenson.ch; Matheson, P. [Utah Valley University, Department of Physics (United States); Zacate, M. O. [Northern Kentucky University, Department of Physics and Geology (United States); Collins, Gary S. [Washington State University, Department of Physics and Astronomy (United States)

    2011-07-15

    A perturbed angular correlation (PAC) experiment that measures dynamic damping also needs information about the fundamental quadrupole frequency to relate the damping as a function of temperature to the EFG fluctuation rate. When the experiment is unable to access slow electric field gradient (EFG) fluctuations that show the fundamental quadrupole frequency directly, one needs additional information to determine the hyperfine field parameters and thereby the connection between observed damping and EFG fluctuation rates. One way to solve this problem is to estimate the hyperfine parameters from the fluctuation rate for maximum damping (i.e. at the relaxation peak) or from the rate of maximum damping. This work relates both the maximum damping rate and the fluctuation rate at the relaxation peak to EFG magnitudes (or quadrupole frequencies) for five dynamic N-state symmetric models of fluctuating EFGs.

  13. Relating PAC damping to EFG fluctuation rates through the PAC relaxation peak

    International Nuclear Information System (INIS)

    Park, Tyler; Hodges, Jeffery A.; Moreno, Carlos; Stufflebeam, Michael; Evenson, William E.; Matheson, P.; Zacate, M. O.; Collins, Gary S.

    2011-01-01

    A perturbed angular correlation (PAC) experiment that measures dynamic damping also needs information about the fundamental quadrupole frequency to relate the damping as a function of temperature to the EFG fluctuation rate. When the experiment is unable to access slow electric field gradient (EFG) fluctuations that show the fundamental quadrupole frequency directly, one needs additional information to determine the hyperfine field parameters and thereby the connection between observed damping and EFG fluctuation rates. One way to solve this problem is to estimate the hyperfine parameters from the fluctuation rate for maximum damping (i.e. at the relaxation peak) or from the rate of maximum damping. This work relates both the maximum damping rate and the fluctuation rate at the relaxation peak to EFG magnitudes (or quadrupole frequencies) for five dynamic N-state symmetric models of fluctuating EFGs.

  14. Studies of a Large Odd-Numbered Odd-Electron Metal Ring: Inelastic Neutron Scattering and Muon Spin Relaxation Spectroscopy of Cr8 Mn.

    Science.gov (United States)

    Baker, Michael L; Lancaster, Tom; Chiesa, Alessandro; Amoretti, Giuseppe; Baker, Peter J; Barker, Claire; Blundell, Stephen J; Carretta, Stefano; Collison, David; Güdel, Hans U; Guidi, Tatiana; McInnes, Eric J L; Möller, Johannes S; Mutka, Hannu; Ollivier, Jacques; Pratt, Francis L; Santini, Paolo; Tuna, Floriana; Tregenna-Piggott, Philip L W; Vitorica-Yrezabal, Iñigo J; Timco, Grigore A; Winpenny, Richard E P

    2016-01-26

    The spin dynamics of Cr8 Mn, a nine-membered antiferromagnetic (AF) molecular nanomagnet, are investigated. Cr8 Mn is a rare example of a large odd-membered AF ring, and has an odd-number of 3d-electrons present. Odd-membered AF rings are unusual and of interest due to the presence of competing exchange interactions that result in frustrated-spin ground states. The chemical synthesis and structures of two Cr8 Mn variants that differ only in their crystal packing are reported. Evidence of spin frustration is investigated by inelastic neutron scattering (INS) and muon spin relaxation spectroscopy (μSR). From INS studies we accurately determine an appropriate microscopic spin Hamiltonian and we show that μSR is sensitive to the ground-spin-state crossing from S=1/2 to S=3/2 in Cr8 Mn. The estimated width of the muon asymmetry resonance is consistent with the presence of an avoided crossing. The investigation of the internal spin structure of the ground state, through the analysis of spin-pair correlations and scalar-spin chirality, shows a non-collinear spin structure that fluctuates between non-planar states of opposite chiralities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electron Spin Relaxation Can Enhance the Performance of a Cryptochrome-Based Magnetic Compass Sensor

    Science.gov (United States)

    2016-08-19

    2016 PUBLISHED 9 June 2016 Original content from this workmay be used under the terms of the Creative CommonsAttribution 3.0 licence . Any further...24], is normally expected to attenuate the sensitivity of the compass by destroying the spin coherence that is essential for its operation [35]. It...μT) and the symmetry axis of the hyperfine tensor. qF ( )S was determined using the equation ofmotion for the radical pair density operator , r̂ ( )t

  16. Music for relaxation: a comparison of musicians and nonmusicians on ratings of selected musical recordings.

    Science.gov (United States)

    Wolfe, David E; O'Connell, Audree S; Waldon, Eric G

    2002-01-01

    The purpose of this study was to determine the kinds of musical selections/CDs to place in a portfolio to be used within a music listening/relaxation program for parents of children in a pediatric hospital. A panel of experts (4 music therapy graduate students and 2 music therapy instructors) listened to a selection of CD recordings (n = 10) which reported to contain music for relaxation. These 10 recordings were chosen based either on words within the title suggestive of sedative/relaxing music, or the literature (booklet) accompanying the CD that contained claims of such therapeutic value. Average number of selections across the 10 recordings was 9.8 with a total of 98 musical selections presented to the panel. A 1 1/2-minute segment from each selection (starting at the beginning of each piece) was played on a stereo CD unit, and time was given to complete a response form following each of the musical selections. The panel was asked to rate the relaxation quality of each piece, and to specify the musical characteristics that enhanced and/or distracted from relaxation. Weekly listening sessions of 40-50 minutes in duration were scheduled across a 10-week time period. Based on the results of the experts, 10 of the 98 musical selections were chosen for presentation to a group of nonmusicians. Again, as with the experts, the nonmusicians listened to 1 1/2-minute segments from each selection and completed a response form similar to the form completed by the panel. Additional questions asked the nonmusicians whether they listened to music for relaxation, and if so, what kind(s) of music they preferred to use for this purpose. Results from the panel of experts and nonmusicians were compiled, and descriptive statistics were used to compare the data. Suggestions were given concerning possible inclusion of musical recordings that may be used in a music listening/ relaxation program for parents of children within a pediatric setting.

  17. Spin-lattice relaxation attenuation coefficients for on-line nuclear orientation experiments

    CERN Document Server

    Vénos, D; Severijns, N

    2003-01-01

    In on-line nuclear orientation experiments the relaxation process is of great importance. During implantation of the radioactive beam, the nuclear sublevel populations attain a secular equilibrium. For this case secular orientation parameters are introduced: B sublambda(sec)=rho sublambda B sublambda(th). Previously attenuation coefficients rho sublambda have already been tabulated, but only for lambda=2,4. In the last few years the number of nuclear orientation experiments in which beta or alpha particles are studied has increased. For these experiments the terms with lambda=1,3,6, and 8 are also necessary. Therefore, we have calculated the values of rho sublambda in full scope.

  18. Low-Dimensional Nanoparticle Clustering in Polymer Micelles and Their Transverse Relaxivity Rates

    Science.gov (United States)

    Hickey, Robert J.; Meng, Xin; Zhang, Peijun; Park, So-Jung

    2015-01-01

    One- or two-dimensional arrays of iron oxide nanoparticles were formed in colloidal assemblies of amphiphilic polymers. Electron tomography imaging revealed that nanoparticles are arranged into one-dimensional strings in magneto-micelles or two-dimensional sheets in magneto-core/shell assemblies. The distinct directional assembly behavior was attributed to the interparticle interaction relative to the nanoparticle–polymer interaction, which was modulated by varying the cosolvent used for the solution phase self-assembly. Magneto-core/shell assemblies with varying structural parameters were formed with a range of different sized as-synthesized nanoparticles. The transverse magnetic relaxivity rates (r2) of a series of different assemblies were determined to examine the effect of nanoparticle arrangement on the magnetic relaxivity for their potential applications in MRI. The results indicated that the assembly structure of nanoparticles in polymer micelles significantly affects the r2 of surrounding water, providing a way to control magnetic relaxivity. PMID:23731021

  19. Training and recovery behaviors of exchange bias in FeNi/Cu/Co/FeMn spin valves at high field sweep rates

    Energy Technology Data Exchange (ETDEWEB)

    Yang, D.Z. [Institutt for fysikk, NTNU, NO-7491 Trondheim (Norway); Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Kapelrud, A.; Saxegaard, M. [Institutt for fysikk, NTNU, NO-7491 Trondheim (Norway); Wahlstroem, E., E-mail: erik.wahlstrom@ntnu.no [Institutt for fysikk, NTNU, NO-7491 Trondheim (Norway)

    2012-09-15

    Training and recovery of exchange bias in FeNi/Cu/Co/FeMn spin valves have been studied by magnetoresistance curves with field sweep rates from 1000 to 4800 Oe/s. It is found that training and recovery of exchange field are proportional to the logarithm of the training cycles and recovery time, respectively. These behaviors are explained within the model based on thermal activation. For the field sweep rates of 1000, 2000 and 4000 Oe/s, the relaxation time of antiferromagnet spins are 61.4, 27.6, and 11.5 in the unit of ms, respectively, much shorter than the long relaxation time ({approx}10{sup 2}s) in conventional magnetometry measurements. - Highlights: Black-Right-Pointing-Pointer We measure antiferromagnet (AFM) spin dynamic behaviors at high field sweep rates. Black-Right-Pointing-Pointer Increasing the field sweep rates will reduce the AFM recovery and relaxation time. Black-Right-Pointing-Pointer AFM spin is in millisecond timescale, shorter the conventional report ({approx}10{sup 2}-10{sup 4}).

  20. Membrane docking geometry of GRP1 PH domain bound to a target lipid bilayer: an EPR site-directed spin-labeling and relaxation study.

    Directory of Open Access Journals (Sweden)

    Huai-Chun Chen

    Full Text Available The second messenger lipid PIP(3 (phosphatidylinositol-3,4,5-trisphosphate is generated by the lipid kinase PI3K (phosphoinositide-3-kinase in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP(3-specific pleckstrin homology (PH domains to the membrane surface. Despite the broad importance of PIP(3-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP(3 lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP(3. The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i PIP(3 target lipid that provides specificity and affinity, and (ii PS facilitator lipid that enhances the PIP(3 on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP(3 headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP(3 headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP(3 headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral

  1. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Kjær, Kasper Skov; Alonso-Mori, Roberto

    2017-01-01

    iron complexes with four cyanide (CN-;) ligands and one 2,2′-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL......) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2-. The two experimental techniques are highly complementary; the time-resolved UV...

  2. Relaxation of polarized nuclei in superconducting rhodium

    DEFF Research Database (Denmark)

    Knuuttila, T.A.; Tuoriniemi, J.T.; Lefmann, K.

    2000-01-01

    Nuclear spin lattice relaxation rates were measured in normal and superconducting (sc) rhodium with nuclear polarizations up to p = 0.55. This was sufficient to influence the sc state of Rh, whose T, and B-c, are exceptionally low. Because B-c ... is unchanged, the nuclear spin entropy was fully sustained across the sc transition. The relaxation in the sc state was slower at all temperatures without the coherence enhancement close to T-c. Nonzero nuclear polarization strongly reduced the difference between the relaxation rates in the sc and normal...

  3. Superionic phase transitions and nuclear spin phonon relaxation by Raman processes in Me3H(SeO4)2 (Me = Na, K, and Rb) single crystals by 1H and Me NMR

    International Nuclear Information System (INIS)

    Lim, Ae Ran

    2007-01-01

    Me 3 H(SeO 4 ) 2 (Me = Na, K, and Rb) single crystals were grown by the slow evaporation method, and the relaxation times of the 1 H and Me nuclei in these crystals were investigated using FT NMR spectrometry. The 1 H T 1 NMR results for K 3 H(SeO 4 ) 2 and Rb 3 H(SeO 4 ) 2 single crystals were very different from those for Na 3 H(SeO 4 ) 2 crystals. Short 1 H relaxation times were found for K 3 H(SeO 4 ) 2 and Rb 3 H(SeO 4 ) 2 at high temperatures, but not for Na 3 H(SeO 4 ) 2 , which are attributed to the destruction and reconstruction of hydrogen bonds; thus K 3 H(SeO 4 ) 2 and Rb 3 H(SeO 4 ) 2 have superionic phases, whereas Na 3 H(SeO 4 ) 2 does not. The temperature dependence of the relaxation rate for the 23 Na nucleus in Na 3 H(SeO 4 ) 2 crystals was in accord with a Raman process for nuclear spin-lattice relaxation (T 1 -1 ∝T 2 . In contrast, the spin-lattice relaxation rates for the 39 K and 87 Rb nuclei in K 3 H(SeO 4 ) 2 and Rb 3 H(SeO 4 ) 2 single crystals exhibited a very strong temperature dependence, T 1 -1 ∝T 7 . The motions giving rise to this strong temperature dependence may be related to the high electrical conductivities of these crystals at high temperatures

  4. Randomized controlled trial of relaxation music to reduce heart rate in patients undergoing cardiac CT

    International Nuclear Information System (INIS)

    Ng, Ming Yen; Karimzad, Yasser; Menezes, Ravi J.; Wintersperger, Bernd J.; Li, Qin; Forero, Julian; Paul, Narinder S.; Nguyen, Elsie T.

    2016-01-01

    To evaluate the heart rate lowering effect of relaxation music in patients undergoing coronary CT angiography (CCTA), pulmonary vein CT (PVCT) and coronary calcium score CT (CCS). Patients were randomised to a control group (i.e. standard of care protocol) or to a relaxation music group (ie. standard of care protocol with music). The groups were compared for heart rate, radiation dose, image quality and dose of IV metoprolol. Both groups completed State-Trait Anxiety Inventory anxiety questionnaires to assess patient experience. One hundred and ninety-seven patients were recruited (61.9 % males); mean age 56y (19-86 y); 127 CCTA, 17 PVCT, 53 CCS. No significant difference in heart rate, radiation dose, image quality, metoprolol dose and anxiety scores. 86 % of patients enjoyed the music. 90 % of patients in the music group expressed a strong preference to have music for future examinations. The patient cohort demonstrated low anxiety levels prior to CT. Relaxation music in CCTA, PVCT and CCS does not reduce heart rate or IV metoprolol use. Patients showed low levels of anxiety indicating that anxiolytics may not have a significant role in lowering heart rate. Music can be used in cardiac CT to improve patient experience. (orig.)

  5. Randomized controlled trial of relaxation music to reduce heart rate in patients undergoing cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Ming Yen [University of Toronto, Department of Medical Imaging, Toronto General Hospital, Toronto, ON (Canada); The University of Hong Kong, Queen Mary Hospital, Department of Diagnostic Radiology, Hong Kong (China); Karimzad, Yasser; Menezes, Ravi J.; Wintersperger, Bernd J.; Li, Qin; Forero, Julian; Paul, Narinder S.; Nguyen, Elsie T. [University of Toronto, Department of Medical Imaging, Toronto General Hospital, Toronto, ON (Canada)

    2016-10-15

    To evaluate the heart rate lowering effect of relaxation music in patients undergoing coronary CT angiography (CCTA), pulmonary vein CT (PVCT) and coronary calcium score CT (CCS). Patients were randomised to a control group (i.e. standard of care protocol) or to a relaxation music group (ie. standard of care protocol with music). The groups were compared for heart rate, radiation dose, image quality and dose of IV metoprolol. Both groups completed State-Trait Anxiety Inventory anxiety questionnaires to assess patient experience. One hundred and ninety-seven patients were recruited (61.9 % males); mean age 56y (19-86 y); 127 CCTA, 17 PVCT, 53 CCS. No significant difference in heart rate, radiation dose, image quality, metoprolol dose and anxiety scores. 86 % of patients enjoyed the music. 90 % of patients in the music group expressed a strong preference to have music for future examinations. The patient cohort demonstrated low anxiety levels prior to CT. Relaxation music in CCTA, PVCT and CCS does not reduce heart rate or IV metoprolol use. Patients showed low levels of anxiety indicating that anxiolytics may not have a significant role in lowering heart rate. Music can be used in cardiac CT to improve patient experience. (orig.)

  6. Potentiation increases peak twitch torque by enhancing rates of torque development and relaxation.

    Science.gov (United States)

    Froyd, Christian; Beltrami, Fernando Gabe; Jensen, Jørgen; Noakes, Timothy David

    2013-01-01

    The aim of this study was to measure the extent to which potentiation changes in response to an isometric maximal voluntary contraction. Eleven physically active subjects participated in two separate studies. Single stimulus of electrical stimulation of the femoral nerve was used to measure torque at rest in unpotentiated quadriceps muscles (study 1 and 2), and potentiated quadriceps muscles torque in a 10 min period after a 5 s isometric maximal voluntary contraction of the quadriceps muscles (study 1). Additionally, potentiated quadriceps muscles torque was measured every min after a further 10 maximal voluntary contractions repeated every min (study 2). Electrical stimulation repeated several times without previous maximal voluntary contraction showed similar peak twitch torque. Peak twitch torque 4 s after a 5 s maximal voluntary contraction increased by 45±13% (study 1) and by 56±10% (study 2), the rate of torque development by 53±13% and 82±29%, and the rate of relaxation by 50±17% and 59±22%, respectively, but potentiation was lost already two min after a 5 s maximal voluntary contraction. There was a tendency for peak twitch torque to increase for the first five repeated maximal voluntary contractions, suggesting increased potentiation with additional maximal voluntary contractions. Correlations for peak twitch torque vs the rate of torque development and for the rate of relaxation were r(2)= 0.94 and r(2)=0.97. The correlation between peak twitch torque, the rate of torque development and the rate of relaxation suggests that potentiation is due to instantaneous changes in skeletal muscle contractility and relaxation.

  7. Reconstruction of mono-vacancies in carbon nanotubes: Atomic relaxation vs. spin polarization

    International Nuclear Information System (INIS)

    Berber, S.; Oshiyama, A.

    2006-01-01

    We have investigated the reconstruction of mono-vacancies in carbon nanotubes using density functional theory (DFT) geometry optimization and electronic structure calculations, employing a numerical basis set. We considered mono-vacancies in achiral nanotubes with diameter range ∼4-9A. Contrary to previous tight-binding calculations, our results indicate that mono-vacancies could have several metastable geometries, confirming the previous plane-wave DFT results. Formation energy of mono-vacancies is 4.5-5.5eV, increasing with increasing tube diameter. Net magnetic moment decreases from ideal mono-vacancy value after reconstruction, reflecting the reduction of the number of dangling bonds. In spite of the existence of a dangling bond, ground state of mono-vacancies in semiconducting tubes have no spin polarization. Metallic carbon nanotubes show net magnetic moment for most stable structure of mono-vacancy, except for very small diameter tubes

  8. Slow spin relaxation induced by magnetic field in [NdCo(bpdo)(H2O)4(CN)6]⋅3H2O.

    Science.gov (United States)

    Vrábel, P; Orendáč, M; Orendáčová, A; Čižmár, E; Tarasenko, R; Zvyagin, S; Wosnitza, J; Prokleška, J; Sechovský, V; Pavlík, V; Gao, S

    2013-05-08

    We report on a comprehensive investigation of the magnetic properties of [NdCo(bpdo)(H2O)4(CN)6]⋅3H2O (bpdo=4, 4'-bipyridine-N,N'-dioxide) by use of electron paramagnetic resonance, magnetization, specific heat and susceptibility measurements. The studied material was identified as a magnet with an effective spin S = 1/2 and a weak exchange interaction J/kB = 25 mK. The ac susceptibility studies conducted at audio frequencies and at temperatures from 1.8 to 9 K revealed that the application of a static magnetic field induces a slow spin relaxation. It is suggested that the relaxation in the magnetic field appears due to an Orbach-like process between the two lowest doublet energy states of the magnetic Nd(3+) ion. The appearance of the slow relaxation in a magnetic field cannot be associated with a resonant phonon trapping. The obtained results suggest that the relaxation is influenced by nuclear spin driven quantum tunnelling which is suppressed by external magnetic field.

  9. PROGRESSIVE MUSCLE RELAXATION INCREASE PEAK EXPIRATORY FLOW RATE ON CHRONIC OBSTRUCTIVE PULMONARY DISEASE PATIENTS

    Directory of Open Access Journals (Sweden)

    Tintin Sukartini

    2017-07-01

    Full Text Available Introduction: Limited progressive air flow in Chronic Obstructive Pulmonary Disease (COPD can caused by small airway disease (bronchiolitis obstructive and loss of elasticity of the lung (emphysema. Further it can be decreasing the quality of life in COPD patients because dyspnea and uncomfortable in activity. Progressive muscle relaxation (PMR is one of the relaxation technique that can repair pulmonary ventilation by decreasing chronic constriction of the respiratory muscles. The objective of this study was to analyze the effect of progressive muscle relaxation on raised peak expiratory flow rate (PEFR. Method: A pre-experimental one group pre-post test design was used in this study. Population was all of the COPD patients at Pulmonary Specialist Polyclinic Dr Mohamad Soewandhie Surabaya. There were 8 respondents taken by using purposive sampling. PEFR was counted by using peak flow meter every six day. Data were analyzed by using Paired t-Test with significance level  p≤0.05. Result: The result showed that PMR had significance level on increasing of PEFR (p=0.012. Discussion: It can be concluded that PMR has an effect on raise PEFR. Further studies are recommended to measure the effect of PMR on respiratory rate (RR, heart rate (HR subjective dyspnoe symptoms, forced expiration volume on the first minute (FEV1 and mid maximum flow rate (MMFR in COPD patients.

  10. Dynamics of spin-flip photon-assisted tunneling

    NARCIS (Netherlands)

    Braakman, F.R.; Danon, J.; Schreiber, L.R.; Wegscheider, W.; Vandersypen, L.M.K.

    2014-01-01

    We present time-resolved measurements of spin-flip photon-assisted tunneling and spin-flip relaxation in a doubly occupied double quantum dot. The photon-assisted excitation rate as a function of magnetic field indicates that spin-orbit coupling is the dominant mechanism behind the spin-flip under

  11. Determination of proton transverse relaxation times in homonuclear-coupled Spin Systems

    Science.gov (United States)

    Gochin, Miriam

    A new method is described for obtaining proton transverse relaxation times in homonuclear-coupled systems. The oscillatory effect of the coupling on the T2 decay was removed by using the attached heteronucleus as a filter. A BIRD pulse (J. R. Garbow, D. P. Weitekamp, and A. Pines, Chem. Phys. Lett.93, 504, 1982) was applied in the center of the T2 decay period, causing protons directly and remotely connected to the heteronucleus to be decoupled from each other. Protons directly bound to the heteronucleus were inverted, leaving remote protons unaffected. Thus the method works well in natural-abundance 13C and 15N systems or for 15N-enriched biological materials, where no NN connectivities exist. The importance of obtaining proton T2 values pertains to their usefulness and sensitivity in quantitating structure and mobility in molecules. Sequences for obtaining proton T2 values were described and demonstrated on formate, alcohol, and gramicidin S. The accuracy of the measured T2 as a function of X-nucleus offset and heteronuclear coupling constant was assessed.

  12. Effect of spatial spin modulation on relaxation and NMR frequencies of sup 5 sup 7 Fe nuclei in ferroelectric antiferromagnetic BiFeO sub 3

    CERN Document Server

    Zalessky, A V; Zvezdin, A K; Gippius, A A; Morozova, E N; Khozeev, D F; Bush, A S; Pokatilov, V S

    2002-01-01

    The NMR spectra on the iron nuclei in the BiFeO sub 3 antiferromagnetic sample enriched by the sup 5 sup 7 Fe (95.43%) with the spatially-modulated magnetic structure are studied. It is established that the cycloid-type spin modulation in the BiFeO sub 3 produces spatial modulation of the nuclear spin-spin relaxation velocity and leads to the spectral nonuniform widening of the NMR local line. It is determined also that the local magnetic moments of the iron ions on various cycloid sections differently depend on temperature which testifies to different character of the spin waves excitation. The analogy of the experimental results with the NMR regularities in the Bloch wall is discussed

  13. An optimized method for (15)N R(1) relaxation rate measurements in non-deuterated proteins.

    Science.gov (United States)

    Gairí, Margarida; Dyachenko, Andrey; González, M Teresa; Feliz, Miguel; Pons, Miquel; Giralt, Ernest

    2015-06-01

    (15)N longitudinal relaxation rates are extensively used for the characterization of protein dynamics; however, their accurate measurement is hindered by systematic errors. (15)N CSA/(1)H-(15)N dipolar cross-correlated relaxation (CC) and amide proton exchange saturation transfer from water protons are the two main sources of systematic errors in the determination of (15)N R1 rates through (1)H-(15)N HSQC-based experiments. CC is usually suppressed through a train of 180° proton pulses applied during the variable (15)N relaxation period (T), which can perturb water magnetization. Thus CC cancellation is required in such a way as to minimize water saturation effects. Here we examined the level of water saturation during the T period caused by various types of inversion proton pulses to suppress CC: (I) amide-selective IBURP-2; (II) cosine-modulated IBURP-2; (III) Watergate-like blocks; and (IV) non-selective hard. We additionally demonstrate the effect of uncontrolled saturation of aliphatic protons on (15)N R1 rates. In this paper we present an optimized pulse sequence that takes into account the crucial effect of controlling also the saturation of the aliphatic protons during (15)N R1 measurements in non-deuterated proteins. We show that using cosine-modulated IBURP-2 pulses spaced 40 ms to cancel CC in this optimized pulse program is the method of choice to minimize systematic errors coming from water and aliphatic protons saturation effects.

  14. Rotational dynamics in supercooled water from nuclear spin relaxation and molecular simulations.

    Science.gov (United States)

    Qvist, Johan; Mattea, Carlos; Sunde, Erik P; Halle, Bertil

    2012-05-28

    Structural dynamics in liquid water slow down dramatically in the supercooled regime. To shed further light on the origin of this super-Arrhenius temperature dependence, we report high-precision (17)O and (2)H NMR relaxation data for H(2)O and D(2)O, respectively, down to 37 K below the equilibrium freezing point. With the aid of molecular dynamics (MD) simulations, we provide a detailed analysis of the rotational motions probed by the NMR experiments. The NMR-derived rotational correlation time τ(R) is the integral of a time correlation function (TCF) that, after a subpicosecond librational decay, can be described as a sum of two exponentials. Using a coarse-graining algorithm to map the MD trajectory on a continuous-time random walk (CTRW) in angular space, we show that the slowest TCF component can be attributed to large-angle molecular jumps. The mean jump angle is ∼48° at all temperatures and the waiting time distribution is non-exponential, implying dynamical heterogeneity. We have previously used an analogous CTRW model to analyze quasielastic neutron scattering data from supercooled water. Although the translational and rotational waiting times are of similar magnitude, most translational jumps are not synchronized with a rotational jump of the same molecule. The rotational waiting time has a stronger temperature dependence than the translation one, consistent with the strong increase of the experimentally derived product τ(R) D(T) at low temperatures. The present CTRW jump model is related to, but differs in essential ways from the extended jump model proposed by Laage and co-workers. Our analysis traces the super-Arrhenius temperature dependence of τ(R) to the rotational waiting time. We present arguments against interpreting this temperature dependence in terms of mode-coupling theory or in terms of mixture models of water structure.

  15. Spin wave relaxation and magnetic properties in [M/Cu] super-lattices; M=Fe, Co and Ni

    International Nuclear Information System (INIS)

    Fahmi, A.; Qachaou, A.

    2009-01-01

    In this work, we study the elementary excitations and magnetic properties of the [M/Cu] super-lattices with: M=Fe, Co and Ni, represented by a Heisenberg ferromagnetic system with N atomic planes. The nearest neighbour (NN), next nearest neighbour (NNN) exchange, dipolar interactions and surface anisotropy effects are taken into account and the Hamiltonian is studied in the framework of the linear spin wave theory. In the presence of the exchange alone, the excitation spectrum E(k) and the magnetization z >/S analytical expressions are obtained using the Green's function formalism. The obtained relaxation time of the magnon populations is nearly the same in the Fe and Co-based super-lattices, while these magnetic excitations would last much longer in the Ni-based super lattice. A numerical study of the surface anisotropy and long-ranged dipolar interaction combined effects are also reported. The exchange integral values deduced from a comparison with experience for the three super-lattices are coherent.

  16. Accuracy enhancement of magnetic field distribution measurements within a large cell spin-exchange relaxation-free magnetometer

    Science.gov (United States)

    Gusarov, Alexander; Ben-Amar Baranga, Andrei; Levron, David; Shuker, Reuben

    2018-04-01

    The factorial design technique is implemented to achieve greater accuracy in the determination of magnetic field distribution within a single cell of spin-exchange relaxation-free atomic magnetometer. Three-dimensional magnetic field distribution within a single vapor cell can be found by consecutively pumping, layer by layer, all the cell volumes perpendicular to the probe laser beam, detected by a photodiode array. Thus each element of the array collects information about the magnetic field in the small volume (voxel) which forms when the corresponding part of the probe beam and optically pumped layer cross. One of the most effective ways to enhance measurement accuracy is repeated pumping of the layers and averaging the measured results. However, the measurement time is multiplied several times due to the repeated scanning of the cell volume. The suggested technique enables increased measurement accuracy of each voxel while preserving the number of measurements. Magnetic field distribution is determined by the illumination of the cell layers one by one or simultaneously, according to a special algorithm, with subsequent multifactorial analysis of the obtained results.

  17. Screening of point charge impurities in highly anisotropic metals: application to mu+-spin relaxation in underdoped cuprate superconductors.

    Science.gov (United States)

    Shekhter, Arkady; Shu, Lei; Aji, Vivek; MacLaughlin, D E; Varma, C M

    2008-11-28

    We calculate the screening charge density distribution due to a point charge, such as that of a positive muon (mu+), placed between the planes of a highly anisotropic layered metal. In underdoped hole cuprates the screening charge converts the charge density in the metallic-plane unit cells in the vicinity of the mu+ to nearly its value in the insulating state. The current-loop-ordered state observed by polarized neutron diffraction then vanishes in such cells, and also in nearby cells over a distance of order the intrinsic correlation length of the loop-ordered state. This strongly suppresses the magnetic field at the mu+ site. We estimate this suppressed field in underdoped YBa2Cu3O6+x and La2-xSrxCuO4, and find consistency with the observed approximately 0.2 G field in the former case and the observed upper bound of approximately 0.2 G in the latter case. This resolves the controversy between the neutron diffraction and mu-spin relaxation experiments.

  18. Stress relaxation of entangled polystyrene solution after constant-rate, uniaxial elongation

    DEFF Research Database (Denmark)

    Matsumiya, Yumi; Masubuchi, Yuichi; Watanabe, Hiroshi

    For an entangled solution of linear polystyrene (PS 545k; M = 545k) in dibutyl phthalate (DBP), the stress relaxation after constant-rate uniaxial elongation was examined with an extensional viscosity fixture mounted on ARES (TA Instruments). The PS concentration, c = 52 wt%, was chosen in a way...... that the entanglement density M/Me of the solution coincided with that of PS 290k melt (M = 290k). After the elongation at the Rouse-based Weissenberg number Wi(R) ~ 3 up to the Hencky strain of 3, the short time stress relaxation of the solution was accelerated by a factor of ~4, which was less significant compared...... but this reduction weakens on an increase of the concentration of un-stretchable solvent molecules. This change of the stretch/orientation reduction of the friction with the solvent concentration appears to be consistent with the monotonic thinning of the steady-state elongational viscosity seen for melts...

  19. Comparison of the Magnetic Anisotropy and Spin Relaxation Phenomenon of Dinuclear Terbium(III) Phthalocyaninato Single-Molecule Magnets Using the Geometric Spin Arrangement.

    Science.gov (United States)

    Morita, Takaumi; Damjanović, Marko; Katoh, Keiichi; Kitagawa, Yasutaka; Yasuda, Nobuhiro; Lan, Yanhua; Wernsdorfer, Wolfgang; Breedlove, Brian K; Enders, Markus; Yamashita, Masahiro

    2018-02-28

    Herein we report the synthesis and characterization of a dinuclear Tb III single-molecule magnet (SMM) with two [TbPc 2 ] 0 units connected via a fused-phthalocyaninato ligand. The stable and robust complex [(obPc)Tb(Fused-Pc)Tb(obPc)] (1) was characterized by using synchrotron radiation measurements and other spectroscopic techniques (ESI-MS, FT-IR, UV). The magnetic couplings between the Tb III ions and the two π radicals present in 1 were explored by means of density functional theory (DFT). Direct and alternating current magnetic susceptibility measurements were conducted on magnetically diluted and nondiluted samples of 1, indicating this compound to be an SMM with improved properties compared to those of the well-known [TbPc 2 ] -/0/+ and the axially symmetric dinuclear Tb III phthalocyaninato triple-decker complex (Tb 2 (obPc) 3 ). Assuming that the probability of quantum tunneling of the magnetization (QTM) occurring in one TbPc 2 unit is P QTM , the probability of QTM simultaneously occurring in 1 is P QTM 2 , meaning that QTM is effectively suppressed. Furthermore, nondiluted samples of 1 underwent slow magnetic relaxation times (τ ≈ 1000 s at 0.1 K), and the blocking temperature (T B ) was determined to be ca. 16 K with an energy barrier for spin reversal (U eff ) of 588 cm -1 (847 K) due to D 4d geometry and weak inter- and intramolecular magnetic interactions as an exchange bias (H bias ), reducing QTM. Four hyperfine steps were observed by micro-SQUID measurement. Furthermore, solution NMR measurements (one-dimensional, two-dimensional, and dynamic) were done on 1, which led to the determination of the high rotation barrier (83 ± 10 kJ/mol) of the obPc ligand. A comparison with previously reported Tb III triple-decker compounds shows that ambient temperature NMR measurements can indicate improvements in the design of coordination environments for SMMs. A large U eff causes strong uniaxial magnetic anisotropy in 1, leading to a χ ax value (1.39

  20. [Effects of Monochord Music on Heart Rate Variability and Self-Reports of Relaxation in Healthy Adults].

    Science.gov (United States)

    Gäbel, Christine; Garrido, Natalia; Koenig, Julian; Hillecke, Thomas Karl; Warth, Marco

    Music-based interventions are considered an effective and low-cost treatment option for stress-related symptoms. The present study aimed to examine the trajectories of the psychophysiological response in apparently healthy participants during a music-based relaxation intervention compared to a verbal relaxation exercise. 70 participants were assigned to either receptive live music (experimental group) or a prerecorded verbal relaxation exercise (control group). Self-ratings of relaxation were assessed before and after each intervention on visual analogue scales and the Relaxation Inventory (RI). The heart rate variability (HRV) was continuously recorded throughout the sessions. Statistical analysis focused on HRV parameters indicative of parasympathetic cardiovascular outflow. We found significant quadratic main effects for time on the mean R-R interval (heart rate), the high-frequency power of HRV (indicative of parasympathetic activity), and the self-ratings of relaxation in both groups. A significant group × time interaction was observed for the cognitive tension subscale of the RI. Participants in both groups showed psychophysiological changes indicative of greater relaxation over the course of the interventions. However, differences between groups were only marginal. Music might be effective in relieving stress and promoting relaxation by altering the autonomic nervous system function. Future studies need to explore the long-term outcomes of such interventions. © 2017 S. Karger GmbH, Freiburg.

  1. A comparison of methods for calculating NMR cross-relaxation rates (NOESY and ROESY intensities) in small peptides

    NARCIS (Netherlands)

    Feenstra, K Anton; Peter, Christine; Scheek, Ruud M; van Gunsteren, Wilfred F; Mark, Alan E

    Three methods for calculating nuclear magnetic resonance cross-relaxation rates from molecular dynamics simulations of small flexible molecules have been compared in terms of their ability to reproduce relaxation data obtained experimentally and to produce consistent descriptions of the system. The

  2. Near-Surface Structural Phase Transition of SrTiO3 Studied with Zero-Field β-Detected Nuclear Spin Relaxation and Resonance

    Science.gov (United States)

    Salman, Z.; Kiefl, R. F.; Chow, K. H.; Hossain, M. D.; Keeler, T. A.; Kreitzman, S. R.; Levy, C. D. P.; Miller, R. I.; Parolin, T. J.; Pearson, M. R.; Saadaoui, H.; Schultz, J. D.; Smadella, M.; Wang, D.; Macfarlane, W. A.

    2006-04-01

    We demonstrate that zero-field β-detected nuclear quadrupole resonance and spin relaxation of low energy Li8 can be used as a sensitive local probe of structural phase transitions near a surface. We find that the transition near the surface of a SrTiO3 single crystal occurs at Tc˜150K, i.e., ˜45K higher than Tcbulk, and that the tetragonal domains formed below Tc are randomly oriented.

  3. Strain Rate Dependence of Compressive Yield and Relaxation in DGEBA Epoxies

    Science.gov (United States)

    Arechederra, Gabriel K.; Reprogle, Riley C.; Clarkson, Caitlyn M.; McCoy, John D.; Kropka, Jamie M.; Long, Kevin N.; Chambers, Robert S.

    2015-03-01

    The mechanical response in uniaxial compression of two diglycidyl ether of bisphenol-A epoxies were studied. These were 828DEA (Epon 828 cured with diethanolamine (DEA)) and 828T403 (Epon 828 cured with Jeffamine T-403). Two types of uniaxial compression tests were performed: A) constant strain rate compression and B) constant strain rate compression followed by a constant strain relaxation. The peak (yield) stress was analyzed as a function of strain rate from Eyring theory for activation volume. Runs at different temperatures permitted the construction of a mastercurve, and the resulting shift factors resulted in an activation energy. Strain and hold tests were performed for a low strain rate where a peak stress was lacking and for a higher strain rate where the peak stress was apparent. Relaxation from strains at different places along the stress-strain curve was tracked and compared. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Relaxation training assisted by heart rate variability biofeedback: Implication for a military predeployment stress inoculation protocol.

    Science.gov (United States)

    Lewis, Gregory F; Hourani, Laurel; Tueller, Stephen; Kizakevich, Paul; Bryant, Stephanie; Weimer, Belinda; Strange, Laura

    2015-09-01

    Decreased heart rate variability (HRV) is associated with posttraumatic stress disorder (PTSD) and depression symptoms, but PTSD's effects on the autonomic stress response and the potential influence of HRV biofeedback in stress relaxation training on improving PTSD symptoms are not well understood. The objective of this study was to examine the impact of a predeployment stress inoculation training (PRESTINT) protocol on physiologic measures of HRV in a large sample of the military population randomly assigned to experimental HRV biofeedback-assisted relaxation training versus a control condition. PRESTINT altered the parasympathetic regulation of cardiac activity, with experimental subjects exhibiting greater HRV, that is, less arousal, during a posttraining combat simulation designed to heighten arousal. Autonomic reactivity was also found to be related to PTSD and self-reported use of mental health services. Future PRESTINT training could be appropriate for efficiently teaching self-help skills to reduce the psychological harm following trauma exposure by increasing the capacity for parasympathetically modulated reactions to stress and providing a coping tool (i.e., relaxation method) for use following a stressful situation. © 2015 Society for Psychophysiological Research.

  5. On the Rate of Relaxation for the Landau Kinetic Equation and Related Models

    Science.gov (United States)

    Bobylev, Alexander; Gamba, Irene M.; Zhang, Chenglong

    2017-08-01

    We study the rate of relaxation to equilibrium for Landau kinetic equation and some related models by considering the relatively simple case of radial solutions of the linear Landau-type equations. The well-known difficulty is that the evolution operator has no spectral gap, i.e. its spectrum is not separated from zero. Hence we do not expect purely exponential relaxation for large values of time t>0. One of the main goals of our work is to numerically identify the large time asymptotics for the relaxation to equilibrium. We recall the work of Strain and Guo (Arch Rat Mech Anal 187:287-339 2008, Commun Partial Differ Equ 31:17-429 2006), who rigorously show that the expected law of relaxation is \\exp (-ct^{2/3}) with some c > 0. In this manuscript, we find an heuristic way, performed by asymptotic methods, that finds this "law of two thirds", and then study this question numerically. More specifically, the linear Landau equation is approximated by a set of ODEs based on expansions in generalized Laguerre polynomials. We analyze the corresponding quadratic form and the solution of these ODEs in detail. It is shown that the solution has two different asymptotic stages for large values of time t and maximal order of polynomials N: the first one focus on intermediate asymptotics which agrees with the "law of two thirds" for moderately large values of time t and then the second one on absolute, purely exponential asymptotics for very large t, as expected for linear ODEs. We believe that appearance of intermediate asymptotics in finite dimensional approximations must be a generic behavior for different classes of equations in functional spaces (some PDEs, Boltzmann equations for soft potentials, etc.) and that our methods can be applied to related problems.

  6. Investigation of the Temperature Dependence of the Acceptor Center Relaxation Rate in Silicon by the mu^-SR-Method

    CERN Document Server

    Mamedov, T N; Stojkov, A V; Andrianov, D G; Gerlach, D; Zimmermann, U; Gorelkin, V N; Kormann, O; Major, J V; Shevchik, M

    2000-01-01

    Results on the temperature dependence of the residual polarization of negative muons in silicon with phosphorus (3.2 cdot 10^12, 2.3 cdot 10^15 and 4.5 cdot 10^18 cm^-3) and aluminium (2 cdot 10^14 and 2.4 cdot 10^18 cm^-3) impurities are presented. The measurements were carried out in a transverse to the direction of the muon spin magnetic field of 2000 Oe in the temperature range 4.2-300 K. The temperature dependence of the relaxation rate of the magnetic moment of the Al shallow acceptor centre in undeformed silicon is determined for the first time. The constant of the hyperfine interaction between the magnetic moment of the muon and that of the electron shell of the muonic atom A_hf/2pi approx 3 cdot 10^7 s^-1) and the coefficient for capture of free electrons by a neutral aluminium atom in silicon (beta (Al^0) approx 7 cdot 10^-14 cm^3 s^-1 at 30 K) are estimated.

  7. Inhalation/Exhalation ratio modulates the effect of slow breathing on heart rate variability and relaxation.

    Science.gov (United States)

    Van Diest, Ilse; Verstappen, Karen; Aubert, André E; Widjaja, Devy; Vansteenwegen, Debora; Vlemincx, Elke

    2014-12-01

    Slow breathing is widely applied to improve symptoms of hyperarousal, but it is unknown whether its beneficial effects relate to the reduction in respiration rate per se, or, to a lower inhalation/exhalation (i/e) ratio. The present study examined the effects of four ventilatory patterns on heart rate variability and self-reported dimensions of relaxation. Thirty participants were instructed to breathe at 6 or 12 breaths/min, and with an i/e ratio of 0.42 or 2.33. Participants reported increased relaxation, stress reduction, mindfulness and positive energy when breathing with the low compared to the high i/e ratio. A lower compared to a higher respiration rate was associated only with an increased score on positive energy. A low i/e ratio was also associated with more power in the high frequency component of heart rate variability, but only for the slow breathing pattern. Our results show that i/e ratio is an important modulator for the autonomic and subjective effects of instructed ventilatory patterns.

  8. Systematic variation of magnetic-field penetration depth in high-Tc superconductors studied by muon-spin relaxation

    Science.gov (United States)

    Uemura, Y. J.; Emery, V. J.; Moodenbaugh, A. R.; Suenaga, M.; Johnston, D. C.

    1988-01-01

    The muon relaxation rate (sigma) was measured in the high critical temperature superconductors YBa2Cu3O(x) for x = 6.66, 6.95, 7.0, and La1.85 SrO.15 CuO4 in transverse external magnetic fields 1 is approximately 4 kG. A simple relation is found which connects the transition temperature T(c), the magnetic field penetration depth lambda(L), the carrier concentration n(s) and the effective mass m* as T(c) varies as sigma which varies as 1/lambda(L) squared which varies as n(s)/m*. The linear dependence T(c) varies as n(s)/m* suggests a high energy scale for the coupling between superconducting carriers.

  9. Systematic variation of magnetic-field penetration depth in high-T(c) superconductors studied by muon spin relaxation

    Science.gov (United States)

    Uemura, Y. J.; Emery, V. J.; Moodenbaugh, A. R.; Suenaga, M.; Johnston, D. C.; Jacobson, A. J.; Lewandowski, J. T.; Brewer, J. H.; Kiefl, R. F.; Kreitzman, S. R.

    1988-01-01

    The muon relaxation rate (sigma) was measured in the high critical temperature superconductors YBa2Cu3O(x) for x = 6.66, 6.95, 7.0, and La1.85 Sr0.15 CuO4 in transverse external magnetic fields 1 is approximately 4kG. A simple relation is found which connects the transition temperature T(c), the magnetic field penetration depth lambda(L), the carrier concentration n(s) and the effective mass m* as T(c) varies as sigma which varies as 1/lambda(L) squared which varies as n(s)/m*. The linear dependence T(c) varies as n(s)/m* suggests a high energy scale for the coupling between superconducting carriers.

  10. Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jiancheng; Wang, Tao, E-mail: wangtao@buaa.edu.cn; Li, Yang [School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191 (China); Zhang, Hong; Zou, Sheng [School of Instrument Science and Engineering, Southeast University, Nanjing 210096 (China)

    2014-12-15

    The hybrid optical pumping atomic magnetometers have not realized its theoretical sensitivity, the optimization is critical for optimal performance. The optimizations proposed in this paper are suitable for hybrid optical pumping atomic magnetometer, which contains two alkali species. To optimize the parameters, the dynamic equations of spin evolution with two alkali species were solved, whose steady-state solution is used to optimize the parameters. The demand of the power of the pump beam is large for hybrid optical pumping. Moreover, the sensitivity of the hybrid optical pumping magnetometer increases with the increase of the power density of the pump beam. The density ratio between the two alkali species is especially important for hybrid optical pumping magnetometer. A simple expression for optimizing the density ratio is proposed in this paper, which can help to determine the mole faction of the alkali atoms in fabricating the hybrid cell before the cell is sealed. The spin-exchange rate between the two alkali species is proportional to the saturated density of the alkali vapor, which is highly dependent on the temperature of the cell. Consequently, the sensitivity of the hybrid optical pumping magnetometer is dependent on the temperature of the cell. We proposed the thermal optimization of the hybrid cell for a hybrid optical pumping magnetometer, which can improve the sensitivity especially when the power of the pump beam is low. With these optimizations, a sensitivity of approximately 5 fT/Hz{sup 1/2} is achieved with gradiometer arrangement.

  11. Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping

    International Nuclear Information System (INIS)

    Fang, Jiancheng; Wang, Tao; Li, Yang; Zhang, Hong; Zou, Sheng

    2014-01-01

    The hybrid optical pumping atomic magnetometers have not realized its theoretical sensitivity, the optimization is critical for optimal performance. The optimizations proposed in this paper are suitable for hybrid optical pumping atomic magnetometer, which contains two alkali species. To optimize the parameters, the dynamic equations of spin evolution with two alkali species were solved, whose steady-state solution is used to optimize the parameters. The demand of the power of the pump beam is large for hybrid optical pumping. Moreover, the sensitivity of the hybrid optical pumping magnetometer increases with the increase of the power density of the pump beam. The density ratio between the two alkali species is especially important for hybrid optical pumping magnetometer. A simple expression for optimizing the density ratio is proposed in this paper, which can help to determine the mole faction of the alkali atoms in fabricating the hybrid cell before the cell is sealed. The spin-exchange rate between the two alkali species is proportional to the saturated density of the alkali vapor, which is highly dependent on the temperature of the cell. Consequently, the sensitivity of the hybrid optical pumping magnetometer is dependent on the temperature of the cell. We proposed the thermal optimization of the hybrid cell for a hybrid optical pumping magnetometer, which can improve the sensitivity especially when the power of the pump beam is low. With these optimizations, a sensitivity of approximately 5 fT/Hz 1/2 is achieved with gradiometer arrangement

  12. The Effect of Tungsten and Niobium on the Stress Relaxation Rates of Disk Alloy CH98

    Science.gov (United States)

    Gayda, John

    2003-01-01

    Gas turbine engines for future subsonic transports will probably have higher pressure ratios which will require nickel-base superalloy disks with 1300 to 1400 F temperature capability. Several advanced disk alloys are being developed to fill this need. One of these, CH98, is a promising candidate for gas turbine engines and is being studied in NASA s Advanced Subsonic Technology (AST) program. For large disks, residual stresses generated during quenching from solution heat treatment are often reduced by a stabilization heat treatment, in which the disk is heated to 1500 to 1600 F for several hours followed by a static air cool. The reduction in residual stress levels lessens distortion during machining of disks. However, previous work on CH98 has indicated that stabilization treatments decrease creep capability. Additions of the refractory elements tungsten and niobium improve tensile and creep properties after stabilization, while maintaining good crack growth resistance at elevated temperatures. As the additions of refractory elements increase creep capability, they might also effect stress relaxation rates and therefore the reduction in residual stress levels obtained for a given stabilization treatment. To answer this question, the stress relaxation rates of CH98 with and without tungsten and niobium additions are compared in this paper for temperatures and times generally employed in stabilization treatments on modern disk alloys.

  13. Nuclear Spin Relaxation

    Indian Academy of Sciences (India)

    IAS Admin

    Nuclei occur in many different species, called nuclides, which are defined by the numbers of protons and neutrons they contain. The chemical nature of an atom is defined by the number of protons in its nucleus. For example, all atoms of carbon have six protons in the nucleus, and all atoms of hydrogen have a single proton ...

  14. Calculation of energy relaxation rates of fast particles by phonons in crystals

    Energy Technology Data Exchange (ETDEWEB)

    Prange, Micah P.; Campbell, Luke W.; Wu, Dangxin; Gao, Fei; Kerisit, Sebastien N.

    2015-03-01

    We present ab initio calculations of the temperature-dependent exchange of energy between a classical charged point-particle and the phonons of a crystalline material. The phonons, which are computed using density functional perturbation theory (DFPT) methods, interact with the mov- ing particle via the Coulomb interaction between the density induced in the material by phonon excitation and the charge of the classical particle. Energy relaxation rates are computed using time- dependent perturbation theory. The method, which is applicable wherever DFPT is, is illustrated with results for CsI, an important scintillator whose performance is affected by electron thermal- ization. We discuss the influence of the form assumed for quasiparticle dispersion on theoretical estimates of electron cooling rates.

  15. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Benjamin Michael [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    As time progresses, the world is using up more of the planet's natural resources. Without technological advances, the day will eventually arrive when these natural resources will no longer be sufficient to supply all of the energy needs. As a result, society is seeing a push for the development of alternative fuel sources such as wind power, solar power, fuel cells, and etc. These pursuits are even occurring in the state of Iowa with increasing social pressure to incorporate larger percentages of ethanol in gasoline. Consumers are increasingly demanding that energy sources be more powerful, more durable, and, ultimately, more cost efficient. Fast Ionic Conducting (FIC) glasses are a material that offers great potential for the development of new batteries and/or fuel cells to help inspire the energy density of battery power supplies. This dissertation probes the mechanisms by which ions conduct in these glasses. A variety of different experimental techniques give a better understanding of the interesting materials science taking place within these systems. This dissertation discusses Nuclear Magnetic Resonance (NMR) techniques performed on FIC glasses over the past few years. These NMR results have been complimented with other measurement techniques, primarily impedance spectroscopy, to develop models that describe the mechanisms by which ionic conduction takes place and the dependence of the ion dynamics on the local structure of the glass. The aim of these measurements was to probe the cause of a non-Arrhenius behavior of the conductivity which has been seen at high temperatures in the silver thio-borosilicate glasses. One aspect that will be addressed is if this behavior is unique to silver containing fast ion conducting glasses. more specifically, this study will determine if a non-Arrhenius correlation time, τ, can be observed in the Nuclear Spin Lattice Relaxation (NSLR) measurements. If so, then can this behavior be modeled with a new single

  16. A carbon-13 NMR spin-lattice relaxation study of the molecular conformation of the nootropic drug 2-oxopyrrolidin-1-ylacetamide

    Science.gov (United States)

    Baldo, M.; Grassi, A.; Guidoni, L.; Nicolini, M.; Pappalardo, G. C.; Viti, V.

    The spin-lattice relaxation times ( T1) of carbon-13 resonances of the drug 2-oxopyrrolidin- 1-ylacetamide ( 2OPYAC) were determined in CDCl 3 + DMSO and H 2O solutions to investigate the internal conformational flexibility. The measured T1s for the hydrogen-bearing carbon atoms of the 2-pyrrolidone ring fragment were diagnostic of a rigid conformation with respect to the acetamide linked moiety. The model of anisotropic reorientation of a rigid body was used to analyse the measured relaxation data in terms of a single conformation. Owing to the small number of T1 data available the fitting procedure for each of the possible conformations failed. The structure corresponding to the rigid conformation was therefore considered to be the one that is strongly stabilized by internal hydrogen bonding as predicted on the basis of theoretical MO ab initio quantum chemical calculations.

  17. Muon spin relaxation study on itinerant ferromagnet CeCrGe₃ and the effect of Ti substitution on magnetism of CeCrGe₃.

    Science.gov (United States)

    Das, Debarchan; Bhattacharyya, A; Anand, V K; Hillier, A D; Taylor, J W; Gruner, T; Geibel, C; Adroja, D T; Hossain, Z

    2015-01-14

    A Muon spin relaxation (µSR) study has been performed on the Kondo lattice heavy fermion itinerant ferromagnet CeCrGe3. Recent investigations of bulk properties have revealed a long-range ordering of Cr moments at Tc = 70 K in this compound. Our µSR investigation between 1.2 K and 125 K confirm the bulk magnetic order which is marked by a loss in initial asymmetry below 70 K accompanied with a sharp increase in the muon depolarization rate. Field dependent µSR spectra show that the internal field at the muon site is higher than 0.25 T apparently due to the ferromagnetic nature of ordering. The effect of Ti substitution on the magnetism in CeCrGe3 is presented. A systematic study has been made on polycrystalline CeCr(1-x)Ti(x)Ge3 (0 ⩽ x ⩽ 1) using magnetic susceptibility χ(T), isothermal magnetization M(H), specific heat C(T) and electrical resistivity ρ(T) measurements which clearly reveal that the substitution of Ti for Cr in CeCrGe3 strongly influences the exchange interaction and ferromagnetic ordering of Cr moments. The Cr moment ordering temperature is suppressed gradually with increasing Ti concentration up to x = 0.50 showing Tc = 7 K beyond which Ce moment ordering starts to dominate and a crossover between Cr and Ce moment ordering is observed with a Ce moment ordering Tc = 14 K for x = 1.0. The Kondo lattice behavior is evident from temperature dependence of ρ(T) in all CeCr(1-x)Ti(x)Ge3 samples.

  18. Near-surface structural phase transition of SrTiO3 studied with zero-field beta-detected nuclear spin relaxation and resonance.

    Science.gov (United States)

    Salman, Z; Kiefl, R F; Chow, K H; Hossain, M D; Keeler, T A; Kreitzman, S R; Levy, C D P; Miller, R I; Parolin, T J; Pearson, M R; Saadaoui, H; Schultz, J D; Smadella, M; Wang, D; MacFarlane, W A

    2006-04-14

    We demonstrate that zero-field beta-detected nuclear quadrupole resonance and spin relaxation of low energy (8)Li can be used as a sensitive local probe of structural phase transitions near a surface. We find that the transition near the surface of a SrTiO(3) single crystal occurs at T(c) approximately 150K, i.e., approximately 45K higher than T(c)bulk, and that the tetragonal domains formed below T(c) are randomly oriented.

  19. Quasistatic internal magnetic field detected in the pseudogap phase of Bi2 +xSr2 -xCaCu2O8 +δ by muon spin relaxation

    Science.gov (United States)

    Pal, A.; Dunsiger, S. R.; Akintola, K.; Fang, A. C. Y.; Elhosary, A.; Ishikado, M.; Eisaki, H.; Sonier, J. E.

    2018-02-01

    We report muon spin relaxation (μ SR ) measurements of optimally doped and overdoped Bi2 +xSr2 -xCaCu2O8 +δ single crystals that reveal the presence of a weak temperature-dependent quasistatic internal magnetic field of electronic origin in the superconducting and pseudogap (PG) phases. In both samples the internal magnetic field persists up to 160 K, but muon diffusion prevents following the evolution of the field to higher temperatures. We consider the evidence from our measurements in support of PG order parameter candidates, namely, electronic loop currents and magnetoelectric quadrupoles.

  20. Mitigating Thermoelastic Dissipation of Flexural Micromechanical Resonators by Decoupling Resonant Frequency from Thermal Relaxation Rate

    Science.gov (United States)

    Zhou, Xin; Xiao, Dingbang; Wu, Xuezhong; Li, Qingsong; Hou, Zhanqiang; He, Kaixuan; Wu, Yulie

    2017-12-01

    This paper reports an alternative design strategy to reduce thermoelastic dissipation (TED) for isothermal-mode micromechanical resonators. This involves hanging lumped masses on a frame structure to decouple the resonant frequency and the effective beamwidth of the resonators, which enables the separation of the thermal relaxation rate and frequency of vibration. This approach is validated using silicon-based micromechanical disklike resonators engineered to isolate TED. A threefold improvement in the quality factor and a tenfold improvement in the decay-time constant is demonstrated. This work proposes a solution for isothermal-mode (flexural) micromechanical resonators to effectively mitigate TED. Specifically, this approach is ideal for designing high-performance gyroscope resonators based on microelectromechanical systems (MEMS) technology. It may pave the way for the next generation inertial-grade MEMS gyroscope, which remains a great challenge and is very appealing.

  1. Muon-spin relaxation study of the double perovskite insulators Sr2 BOsO6 (B  =  Fe, Y, ln).

    Science.gov (United States)

    Williams, R C; Xiao, F; Thomas, I O; Clark, S J; Lancaster, T; Cornish, G A; Blundell, S J; Hayes, W; Paul, A K; Felser, C; Jansen, M

    2016-02-24

    We present the results of zero-field muon-spin relaxation measurements made on the double perovskite insulators Sr2 BOsO6 (B = Fe,Y, In). Spontaneous muon-spin precession indicative of quasistatic long range magnetic ordering is observed in Sr2FeOsO6 within the AF1 antiferromagnetic phase for temperatures below [Formula: see text] K. Upon cooling below T2≈67 K the oscillations cease to be resolvable owing to the coexistence of the AF1 and AF2 phases, which leads to a broader range of internal magnetic fields. Using density functional calculations we identify a candidate muon stopping site within the unit cell, which dipole field simulations show to be consistent with the proposed magnetic structure. The possibility of incommensurate magnetic ordering is discussed for temperatures below TN = 53 K and 25 K for Sr2YOsO6 and Sr2InOsO6, respectively.

  2. A new parallel algorithm for simulation of spin glasses on scales of space-time periods of external fields with consideration of relaxation effects

    International Nuclear Information System (INIS)

    Gevorkyan, A.S.; Abajyan, H.G.

    2011-01-01

    We have investigated the statistical properties of an ensemble of disordered 1D spatial spin chains (SSCs) of finite length, placed in an external field, with consideration of relaxation effects. The short-range interaction complex-classical Hamiltonian was first used for solving this problem. A system of recurrent equations is obtained on the nodes of the spin-chain lattice. An efficient mathematical algorithm is developed on the basis of these equations with consideration of the advanced Sylvester conditions which allow step by step construct a huge number of stable spin chains in parallel. The distribution functions of different parameters of spin-glass system are constructed from the first principles of the complex classical mechanics by analyzing the calculation results of the 1D SSCs ensemble. It is shown that the behavior of the parameter distributions is quite different depending on the external fields. The energy ensembles and constants of spin-spin interactions are changed smoothly depending on the external field in the limit of statistical equilibrium, while some of them such as the mean value of polarizations of ensemble and parameters of its orderings are frustrated. We have also studied some critical properties of the ensemble of such catastrophes in the Clausius-Mossotti equation depending on the value of the external field. We have shown that the generalized complex-classical approach excludes these catastrophes allowing one to organize continuous parallel computing on the whole region of values of the external field including critical points. A new representation of the partition function based on these investigations is suggested. As opposed to usual definition, this function is a complex one and its derivatives are everywhere defined, including critical points

  3. Digital operation and eye diagrams in spin-lasers

    International Nuclear Information System (INIS)

    Wasner, Evan; Bearden, Sean; Žutić, Igor; Lee, Jeongsu

    2015-01-01

    Digital operation of lasers with injected spin-polarized carriers provides an improved operation over their conventional counterparts with spin-unpolarized carriers. Such spin-lasers can attain much higher bit rates, crucial for optical communication systems. The overall quality of a digital signal in these two types of lasers is compared using eye diagrams and quantified by improved Q-factors and bit-error-rates in spin-lasers. Surprisingly, an optimal performance of spin-lasers requires finite, not infinite, spin-relaxation times, giving a guidance for the design of future spin-lasers

  4. Relaxation-compensated difference spin diffusion NMR for detecting 13C–13C long-range correlations in proteins and polysaccharides

    International Nuclear Information System (INIS)

    Wang, Tuo; Williams, Jonathan K.; Schmidt-Rohr, Klaus; Hong, Mei

    2015-01-01

    The measurement of long-range distances remains a challenge in solid-state NMR structure determination of biological macromolecules. In 2D and 3D correlation spectra of uniformly 13 C-labeled biomolecules, inter-residue, inter-segmental, and intermolecular 13 C– 13 C cross peaks that provide important long-range distance constraints for three-dimensional structures often overlap with short-range cross peaks that only reflect the covalent structure of the molecule. It is therefore desirable to develop new approaches to obtain spectra containing only long-range cross peaks. Here we show that a relaxation-compensated modification of the commonly used 2D 1 H-driven spin diffusion (PDSD) experiment allows the clean detection of such long-range cross peaks. By adding a z-filter to keep the total z-period of the experiment constant, we compensate for 13 C T 1 relaxation. As a result, the difference spectrum between a long- and a scaled short-mixing time spectrum show only long-range correlation signals. We show that one- and two-bond cross peaks equalize within a few tens of milliseconds. Within ∼200 ms, the intensity equilibrates within an amino acid residue and a monosaccharide to a value that reflects the number of spins in the local network. With T 1 relaxation compensation, at longer mixing times, inter-residue and inter-segmental cross peaks increase in intensity whereas intra-segmental cross-peak intensities remain unchanged relative to each other and can all be subtracted out. Without relaxation compensation, the difference 2D spectra exhibit both negative and positive intensities due to heterogeneous T 1 relaxation in most biomolecules, which can cause peak cancellation. We demonstrate this relaxation-compensated difference PDSD approach on amino acids, monosaccharides, a crystalline model peptide, a membrane-bound peptide and a plant cell wall sample. The resulting difference spectra yield clean multi-bond, inter-residue and intermolecular correlation peaks

  5. Molecular interactions in the ionic liquid emim acetate and water binary mixtures probed via NMR spin relaxation and exchange spectroscopy.

    Science.gov (United States)

    Allen, Jesse J; Bowser, Sage R; Damodaran, Krishnan

    2014-05-07

    Interactions of ionic liquids (ILs) with water are of great interest for many potential IL applications. 1-Ethyl-3-methylimidazolium (emim) acetate, in particular, has shown interesting interactions with water including hydrogen bonding and even chemical exchange. Previous studies have shown the unusual behavior of emim acetate when in the presence of 0.43 mole fraction of water, and a combination of NMR techniques is used herein to investigate the emim acetate-water system and the unusual behavior at 0.43 mole fraction of water. NMR relaxometry techniques are used to describe the effects of water on the molecular motion and interactions of emim acetate with water. A discontinuity is seen in nuclear relaxation behavior at the concentration of 0.43 mole fraction of water, and this is attributed to the formation of a hydrogen bonded network. EXSY measurements are used to determine the exchange rates between the H2 emim proton and water, which show a complex dependence on the concentration of the mixture. The findings support and expand our previous results, which suggested the presence of an extended hydrogen bonding network in the emim acetate-water system at concentrations close to 0.50 mole fraction of H2O.

  6. Rate equation modelling of the optically pumped spin-exchange source

    International Nuclear Information System (INIS)

    Stenger, J.; Rith, K.

    1995-01-01

    Sources for spin polarized hydrogen or deuterium, polarized via spin-exchange of a laser optically pumped alkali metal, can be modelled by rate equations. The rate equations for this type of source, operated either with hydrogen or deuterium, are given explicitly with the intention of providing a useful tool for further source optimization and understanding. Laser optical pumping of alkali metal, spin-exchange collisions of hydrogen or deuterium atoms with each other and with alkali metal atoms are included, as well as depolarization due to flow and wall collisions. (orig.)

  7. Discovery of spin-rate-dependent asteroid thermal inertia

    OpenAIRE

    Harris, Alan; Drube, Line

    2016-01-01

    Knowledge of the surface thermal inertia of an asteroid can provide insight into surface structure: porous material has a lower thermal inertia than rock. Using WISE/NEOWISE data and our new asteroid thermal-inertia estimator we show that the thermal inertia of main-belt asteroids (MBAs) appears to increase with spin period. Similar behavior is found in the case of thermophysically-modeled thermal inertia values of near-Earth objects (NEOs). We interpret our results in terms of rapidly increa...

  8. Spin-controlled atom-ion chemistry.

    Science.gov (United States)

    Sikorsky, Tomas; Meir, Ziv; Ben-Shlomi, Ruti; Akerman, Nitzan; Ozeri, Roee

    2018-03-02

    Quantum control of chemical reactions is an important goal in chemistry and physics. Ultracold chemical reactions are often controlled by preparing the reactants in specific quantum states. Here we demonstrate spin-controlled atom-ion inelastic (spin-exchange) processes and chemical (charge-exchange) reactions in an ultracold Rb-Sr + mixture. The ion's spin state is controlled by the atomic hyperfine spin state via spin-exchange collisions, which polarize the ion's spin parallel to the atomic spin. We achieve ~ 90% spin polarization due to the absence of strong spin-relaxation channel. Charge-exchange collisions involving electron transfer are only allowed for (RbSr) + colliding in the singlet manifold. Initializing the atoms in various spin states affects the overlap of the collision wave function with the singlet molecular manifold and therefore also the reaction rate. Our observations agree with theoretical predictions.

  9. Investigations of effect of phase change mass transfer rate on cavitation process with homogeneous relaxation model

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhixia; Zhang, Liang; Saha, Kaushik; Som, Sibendu; Duan, Lian; Wang, Qian

    2017-12-01

    The super high fuel injection pressure and micro size of nozzle orifice has been an important development trend for the fuel injection system. Accordingly, cavitation transient process, fuel compressibility, amount of noncondensable gas in the fuel and cavitation erosion have attracted more attention. Based on the fact of cavitation in itself is a kind of thermodynamic phase change process, this paper takes the perspective of the cavitation phase change mass transfer process to analyze above mentioned phenomenon. The two-phase cavitating turbulent flow simulations with VOF approach coupled with HRM cavitation model and U-RANS of standard k-ε turbulence model were performed for investigations of cavitation phase change mass transfer process. It is concluded the mass transfer time scale coefficient in the Homogenous Relaxation Model (HRM) representing mass transfer rate should tend to be as small as possible in a condition that ensured the solver stable. At very fast mass transfer rate, the phase change occurs at very thin interface between liquid and vapor phase and condensation occurs more focused and then will contribute predictably to a more serious cavitation erosion. Both the initial non-condensable gas in fuel and the fuel compressibility can accelerate the cavitation mass transfer process.

  10. Relating PAC damping to EFG fluctuation rates through the PAC relaxation peak. Dynamic N-state symmetric models

    Science.gov (United States)

    Park, Tyler; Hodges, Jeffery A.; Moreno, Carlos; Stufflebeam, Michael; Evenson, William E.; Matheson, P.; Zacate, M. O.; Collins, Gary S.

    2011-07-01

    A perturbed angular correlation (PAC) experiment that measures dynamic damping also needs information about the fundamental quadrupole frequency to relate the damping as a function of temperature to the EFG fluctuation rate. When the experiment is unable to access slow electric field gradient (EFG) fluctuations that show the fundamental quadrupole frequency directly, one needs additional information to determine the hyperfine field parameters and thereby the connection between observed damping and EFG fluctuation rates. One way to solve this problem is to estimate the hyperfine parameters from the fluctuation rate for maximum damping (i.e. at the relaxation peak) or from the rate of maximum damping. This work relates both the maximum damping rate and the fluctuation rate at the relaxation peak to EFG magnitudes (or quadrupole frequencies) for five dynamic N-state symmetric models of fluctuating EFGs.

  11. Templated growth of PFO-DBT nanorod bundles by spin coating: effect of spin coating rate on the morphological, structural, and optical properties

    OpenAIRE

    Fakir, Muhamad Saipul; Supangat, Azzuliani; Sulaiman, Khaulah

    2014-01-01

    In this study, the spin coating of template-assisted method is used to synthesize poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) nanorod bundles. The morphological, structural, and optical properties of PFO-DBT nanorod bundles are enhanced by varying the spin coating rate (100, 500, and 1,000 rpm) of the common spin coater. The denser morphological distributions of PFO-DBT nanorod bundles are favorably yielded at the low spin coating rate of 100 rp...

  12. A High-Spin Rate Measurement Method for Projectiles Using a Magnetoresistive Sensor Based on Time-Frequency Domain Analysis.

    Science.gov (United States)

    Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting

    2016-06-16

    Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment.

  13. F center-molecular ion couples in alkali halides: Magneto-optics study (part two). Spin lattice relaxation time and electron spin memory; Studi di magnetoottica sulla coppia centro F-ione molecolare negli alogenuri alcalini: Parte 2. Misura del tempo di rilassamento spin-reticolo e della memoria di spin dell`elettrone nel ciclo ottico

    Energy Technology Data Exchange (ETDEWEB)

    Baldacchini, G.; Botti, S.; Grassano, U.M.; Luty, F.

    1991-10-01

    The spin-lattice relaxation time in the ground state, T/sub 1/, and the spin-mixing parameter during the optical cycle, epsilon, were measured in FH(OH) and FH(CN) centers in various alkali halides (KCl, KBr, KI, CsCl, and CsBr). For a close comparison, all experiments were performed before and after the optical association of the F center and molecular ion. T/sub 1/ becomes shorter before and still more after aggregation with respect to the values measured in the pure crystal, especially at very low magnetic fields. Epsilon decreases a little in crystals doped with OH-, while it increases a lot in crystals doped with CN-. Part of these results can be interpreted within the actual knowledge of the F-center physics. Part have been used to shed some light on the various unknown aspects of the energy transfer between the excited F-center and the molecular ion.

  14. Interaction study of polyisobutylene with paraffins by NMR using the evaluation of spin-lattice relaxation times for hydrogen nuclei; Estudo da interacao do poliisobutileno com parafinas por RMN no estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Rosana G.G. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas - CENPES]. E-mail: garrido@cenpes.petrobras.com.br; Tavares, Maria I.B. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas]. E-mail: mibt@ima.ufrj.br

    2001-07-01

    The evaluation of spin-lattice relaxation times of {sup 1}H for polyisobutylene/paraffin systems, were obtained using the classic inversion recovery technique, and also through Cross Polarization Magic Angle Spinning (CP/MAS) techniques varying the contact time and also by the delayed contact time pulse sequence. NMR results showed that the polyisobutylene/paraffin systems in which high molecular weight paraffins were used, is heterogeneous. However, for paraffins with low molecular weight, the system presents good homogeneity. (author)

  15. A study of the effect of relaxing music on heart rate recovery after exercise among healthy students.

    Science.gov (United States)

    Tan, Fuitze; Tengah, Asrin; Nee, Lo Yah; Fredericks, Salim

    2014-05-01

    Music has been employed in various clinical settings to reduce anxiety. However, meta-analysis has shown music to have little influence on haemodynamic parameters. This study aimed at investigating the effect of relaxing music on heart rate recovery after exercise. Twenty-three student volunteers underwent treadmill exercise and were assessed for heart rate recovery and saliva analysis; comparing exposure to sedative music with exposure to silence during the recovery period immediately following exercise. No differences were found between music and non-music exposure regarding: heart rate recovery, resting pulse rate, and salivary cortisol. Music was no different to silence in affecting these physiological measures, which are all associated with anxiety. Relaxing music unaccompanied by meditation techniques or other such interventions may not have a major role in reducing anxiety in certain experimental settings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Spin Transport Measurements in Hydrogenated Graphene Devices

    Science.gov (United States)

    Koon, Gavin; Balakrishnan, Jayakumar; Oezyilmaz, Barbaros

    2013-03-01

    Graphene with all its extraordinary properties still fall short when it comes to manipulation of electron spins. Chemically modified Graphene has been explored by many to further enhance Graphene properties, tailoring it to suit desired application purposes. Here we study the effects of hydrogenation rate on graphene spin transport, spin relaxation time and length in this defected system. These findings are important for future theoretical and experimental studies on other adatoms modified Graphene.

  17. Templated growth of PFO-DBT nanorod bundles by spin coating: effect of spin coating rate on the morphological, structural, and optical properties.

    Science.gov (United States)

    Fakir, Muhamad Saipul; Supangat, Azzuliani; Sulaiman, Khaulah

    2014-01-01

    In this study, the spin coating of template-assisted method is used to synthesize poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) nanorod bundles. The morphological, structural, and optical properties of PFO-DBT nanorod bundles are enhanced by varying the spin coating rate (100, 500, and 1,000 rpm) of the common spin coater. The denser morphological distributions of PFO-DBT nanorod bundles are favorably yielded at the low spin coating rate of 100 rpm, while at high spin coating rate, it is shown otherwise. The auspicious morphologies of highly dense PFO-DBT nanorod bundles are supported by the augmented absorption and photoluminescence.

  18. NMR spin-lattice relaxation study of 7Li and 93Nb nuclei in Ti- or Fe-doped LiNbO3:Mg single crystals

    Directory of Open Access Journals (Sweden)

    Tae Ho Yeom

    2016-04-01

    Full Text Available In this study, to understand the effects of paramagnetic impurities, we investigated the temperature dependent of the spin-lattice relaxation times of pure LiNbO3, LiNbO3:Mg, LiNbO3:Mg/Ti, LiNbO3:Mg/Fe, and LiNbO3:Mg/Fe (thermally treated at 500°C single crystals. The results for the LiNbO3:Mg single crystals doped with Fe3+ or Ti3+ are discussed with respect to the site distribution and atomic mobility of Li and Nb. In addition, the effects of a thermal treatment on LiNbO3:Mg/Fe single crystals were examined based on the T1 analysis of 7Li and 93Nb. It was found that the presence of impurities in the crystals induced systematic changes of activation energies concerning atomic mobility.

  19. Unconventional Superconductivity in La(7)Ir(3) Revealed by Muon Spin Relaxation: Introducing a New Family of Noncentrosymmetric Superconductor That Breaks Time-Reversal Symmetry.

    Science.gov (United States)

    Barker, J A T; Singh, D; Thamizhavel, A; Hillier, A D; Lees, M R; Balakrishnan, G; Paul, D McK; Singh, R P

    2015-12-31

    The superconductivity of the noncentrosymmetric compound La(7)Ir(3) is investigated using muon spin rotation and relaxation. Zero-field measurements reveal the presence of spontaneous static or quasistatic magnetic fields below the superconducting transition temperature T(c)=2.25  K-a clear indication that the superconducting state breaks time-reversal symmetry. Furthermore, transverse-field rotation measurements suggest that the superconducting gap is isotropic and that the pairing symmetry of the superconducting electrons is predominantly s wave with an enhanced binding strength. The results indicate that the superconductivity in La(7)Ir(3) may be unconventional and paves the way for further studies of this family of materials.

  20. Using Nice-Ohvms Lineshapes to Study Relaxation Rates and Transition Dipole Moments

    Science.gov (United States)

    Hodges, James N.; McCall, Benjamin J.

    2016-06-01

    Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy (NICE-OHVMS) is a successful technique that we have developed to sensitively, precisely, and accurately record transitions of molecular ions. It has been used exclusively as a method for precise transition frequency measurement via saturation and fitting of the resultant Lamb dips. NICE-OHVMS has been employed to improve the uncertainties on H_3^+, CH_5^+, HeH^+, and OH^+, reducing the transition frequency uncertainties by two orders of magnitude. Because NICE-OHVMS is a saturation technique, this provides a unique opportunity to access information about the ratio of the transition dipole moment to the relaxation rate of the transition. This can be done in two ways, either through comparison of Lamb dip depth to the transition profile or comparison of the absorption intensity and dispersion intensity. Due to the complexity of the modulation scheme, there are many parameters that affect the apparent intensity of the recorded lineshape. A complete understanding of the lineshape is required to make the measurements of interest. Here we present a model that accounts for the heterodyne modulation and velocity modulation, assuming that the fundamental lineshape is represented by a Voigt profile. Fits to data are made and interpreted in order to extract the saturation parameter. K.N. Crabtree et al., Chem. Phys. Lett. 551, 1 (2012). J.N. Hodges et al., J. Chem. Phys. 139, 164201 (2013). A.J. Perry et al., J. Mol. Spectrosc. 317, 71 (2015). A.J. Perry et al., J. Chem. Phys. 141, 101101 (2014). C.R. Marcus et al., Astrophys. J. 817, 138 (2016).

  1. Maximum rate of pressure development and maximal relaxation rate of respiratory muscles in patients with cystic fibrosis.

    Science.gov (United States)

    Dassios, Theodore G; Doudounakis, Stavros; Dimitriou, Gabriel

    2013-03-01

    Respiratory muscle function in patients with cystic fibrosis (CF) has been studied by measurement of maximal inspiratory pressure (P(Imax)), maximal expiratory pressure (P(Emax)), and the pressure-time index of the respiratory muscles (PTI(mus)). The maximum rate of pressure development (MRPD) during P(Imax) (MRPD-P(Imax)), MRPD during P(Emax) (MRPD-P(Emax)), maximal relaxation rate (MRR) during P(Imax) (MRR-P(imax)), and MRR during P(Emax) (MRR-P(Emax)) have not been studied in CF. Our aim was to study MRPD and MRR and investigate their possible application as accessory indices of respiratory muscle function in patients with CF. FEVY, FVC, and maximal expiratory flow between 25% and 75% of vital capacity, body mass index (BMI), upper arm muscle area, P(imax), P(Emax), PTI(mus), MRPD-P(Imax), MRPD-P(Emax), MRR-P(imax), and MRR-P(Emax) were assessed in 123 CF patients and in a control group of 123 healthy subjects matched for age and sex. MRR-P(Emax) was significantly increased and MRPD-P(Emax) was significantly decreased in the CF patients, compared to the healthy controls. In the CF patients MRR-P(Imax) was significantly related to PTI(mus) (P = .02), FEV1 (P = .03), FVC (P = .001), BMI (P muscle area (P muscle area (P respiratory effort, compared to controls. The differences in MRR-P(imax) and MRPD-P(Imax) between the controls and the complete group of CF patients were not significant. MRPD and MRR were significantly related to nutritional and pulmonary function impairment in CF patients. MRPD strongly correlated to maximal respiratory muscle pressures, and MRR strongly correlated to PTI(mus) in patients with CF. These findings suggest that CF patients are at increased risk of respiratory muscle fatigue. Regular determination of MRPD and MRR may be clinically useful in CF patients and help to initiate inspiratory muscle training and noninvasive ventilation.

  2. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2′-bipyridine2(CN2

    Directory of Open Access Journals (Sweden)

    Kasper S. Kjær

    2017-07-01

    Full Text Available We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy2(CN2], where bpy=2,2′-bipyridine, initiated by metal-to-ligand charge transfer (MLCT excitation. The excited-state absorption in the transient UV-visible spectra, associated with the 2,2′-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state of [Fe(bpy2(CN2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a short lived metal-centered triplet transient species. These measurements of [Fe(bpy2(CN2] complement prior measurement performed on [Fe(bpy3]2+ and [Fe(bpy(CN4]2− in dimethylsulfoxide solution and help complete the chemical series [Fe(bpyN(CN6–2N]2N-4, where N = 1–3. The measurements confirm that simple ligand modifications can significantly change the relaxation pathways and excited state lifetimes and support the further investigation of light harvesting and photocatalytic applications of 3d transition metal complexes.

  3. Synthesis, crystal structures, and magnetic properties of cyanide-bridged W(V)Mn(III) anionic coordination polymers containing divalent cationic moieties: slow magnetic relaxations and spin crossover phenomenon.

    Science.gov (United States)

    Yoon, Jung Hee; Lim, Kwang Soo; Ryu, Dae Won; Lee, Woo Ram; Yoon, Sung Won; Suh, Byoung Jin; Hong, Chang Seop

    2014-10-06

    Two trimetallic coordination complexes were prepared by self-assembly of [W(CN)8](3-) and the Mn(III) Schiff base followed by the addition of a Zn(II) or Fe(II) cationic unit. The octacyanotungstate connects neighboring Mn(III) centers to form a one-dimensional chain. The anionic chain requires cationic units of Zn(II) or Fe(II) to maintain charge balance in the structure. The Zn-containing complex shows ferrimagnetic behavior originating from the antiparallel alignment of W(V) and Mn(III) spins within the chain, which leads to slow magnetic relaxation at low temperatures. For the Fe(II)-containing compound, Fe(II) moieties are integrated into the ferrimagnetic chains, altering their spin states depending on the temperature. It appears that the coexistence of high- and low-spin states in the low temperature regime is responsible for the slower and faster relaxations of the magnetization.

  4. Strange metal from Gutzwiller correlations in infinite dimensions: Transverse transport, optical response, and rise of two relaxation rates

    Science.gov (United States)

    Ding, Wenxin; Žitko, Rok; Shastry, B. Sriram

    2017-09-01

    Using two approaches to strongly correlated systems, the extremely correlated Fermi liquid theory and the dynamical mean field theory, we compute the transverse transport coefficients, namely, the Hall constants RH and Hall angles θH, and the longitudinal and transverse optical response of the U =∞ Hubbard model in the limit of infinite dimensions. We focus on two successive low-temperature regimes, the Gutzwiller-correlated Fermi liquid (GCFL) and the Gutzwiller-correlated strange metal (GCSM). We find that the Hall angle cotθH is proportional to T2 in the GCFL regime, while upon warming into the GCSM regime it first passes through a downward bend and then continues as T2. Equivalently, RH is weakly temperature dependent in the GCFL regime, but becomes strongly temperature dependent in the GCSM regime. Drude peaks are found for both the longitudinal optical conductivity σx x(ω ) and the optical Hall angles tanθH(ω ) below certain characteristic energy scales. By comparing the relaxation rates extracted from fitting to the Drude formula, we find that in the GCFL regime there is a single relaxation rate controlling both longitudinal and transverse transport, while in the GCSM regime two different relaxation rates emerge. We trace the origin of this behavior to the dynamical particle-hole asymmetry of the Dyson self-energy, arguably a generic feature of doped Mott insulators.

  5. Asteroid spin-rate studies using large sky-field surveys

    Science.gov (United States)

    Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen; Prince, Thomas A.; Kulkarni, Shrinivas R.; Levitan, David; Laher, Russ; Surace, Jason

    2017-12-01

    Eight campaigns to survey asteroid rotation periods have been carried out using the intermediate Palomar Transient Factory in the past 3 years. 2780 reliable rotation periods were obtained, from which we identified two new super-fast rotators (SFRs), (335433) 2005 UW163 and (40511) 1999 RE88, and 23 candidate SFRs. Along with other three known super-fast rotators, there are five known SFRs so far. Contrary to the case of rubble-pile asteroids (i.e., bounded aggregations by gravity only), an internal cohesion, ranging from 100 to 1000 Pa, is required to prevent these five SFRs from flying apart because of their super-fast rotations. This cohesion range is comparable with that of lunar regolith. However, some candidates of several kilometers in size require unusually high cohesion (i.e., a few thousands of Pa). Therefore, the confirmation of these kilometer-sized candidates can provide important information about asteroid interior structure. From the rotation periods we collected, we also found that the spin-rate limit of C-type asteroids, which has a lower bulk density, is lower than for S-type asteroids. This result is in agreement with the general picture of rubble-pile asteroids (i.e., lower bulk density, lower spin-rate limit). Moreover, the spin-rate distributions of asteroids of 3 5 rev/day, regardless of the location in the main belt. The YORP effect is indicated to be less efficient in altering asteroid spin rates from our results when compared with the flat distribution found by Pravec et al. (Icarus 197:497-504, 2008. doi: 10.1016/j.icarus.2008.05.012). We also found a significant number drop at f = 5 rev/day in the spin-rate distributions of asteroids of D < 3 km.

  6. A parametric study of the behavior of the angular momentum vector during spin rate changes of rigid body spacecraft

    Science.gov (United States)

    Longuski, J. M.

    1982-01-01

    During a spin-up or spin-down maneuver of a spinning spacecraft, it is usual to have not only a constant body-fixed torque about the desired spin axis, but also small undesired constant torques about the transverse axes. This causes the orientation of the angular momentum vector to change in inertial space. Since an analytic solution is available for the angular momentum vector as a function of time, this behavior can be studied for large variations of the dynamic parameters, such as the initial spin rate, the inertial properties and the torques. As an example, the spin-up and spin-down maneuvers of the Galileo spacecraft was studied and as a result, very simple heuristic solutions were discovered which provide very good approximations to the parametric behavior of the angular momentum vector orientation.

  7. Effect of thermal annealing on electron spin relaxation of beryllium-doped In{sub 0.8}Ga{sub 0.2}As{sub 0.45}P{sub 0.55} bulk

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao; Harasawa, Ryo; Yasue, Yuya; Aritake, Takanori; Jiang, Canyu; Tackeuchi, Atsushi, E-mail: atacke@waseda.jp [Department of Applied Physics, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Ji, Lian; Lu, Shulong [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Dushu Lake Higher Education Town, Ruoshui Road 398, Suzhou Industrial Park, Suzhou (China)

    2016-08-15

    The effect of thermal annealing on the electron spin relaxation of beryllium-doped In{sub 0.8}Ga{sub 0.2}As{sub 0.45}P{sub 0.55} bulk was investigated by time-resolved spin-dependent pump and probe reflection measurement with a high time resolution of 200 fs. Three similar InGaAsP samples were examined one of which was annealed at 800 °C for 1 s, one was annealed at 700 °C for 1 s and the other was not annealed after crystal growth by molecular beam epitaxy. Although the carrier lifetimes of the 700 °C-annealed sample and the unannealed sample were similar, that of the 800 °C-annealed sample was extended to 11.6 (10.4) ns at 10 (300) K, which was more than two (four) times those of the other samples. However, interestingly the spin relaxation time of the 800 °C-annealed sample was found to be similar to those of the other two samples. Particularly at room temperature, the spin relaxation times are 143 ps, 147 ps, and 111 ps for the 800 °C-annealed sample, 700 °C-annealed sample, and the unannealed sample, respectively.

  8. Effect of thermal annealing on electron spin relaxation of beryllium-doped In0.8Ga0.2As0.45P0.55 bulk

    Directory of Open Access Journals (Sweden)

    Hao Wu

    2016-08-01

    Full Text Available The effect of thermal annealing on the electron spin relaxation of beryllium-doped In0.8Ga0.2As0.45P0.55 bulk was investigated by time-resolved spin-dependent pump and probe reflection measurement with a high time resolution of 200 fs. Three similar InGaAsP samples were examined one of which was annealed at 800 °C for 1 s, one was annealed at 700 °C for 1 s and the other was not annealed after crystal growth by molecular beam epitaxy. Although the carrier lifetimes of the 700 °C-annealed sample and the unannealed sample were similar, that of the 800 °C-annealed sample was extended to 11.6 (10.4 ns at 10 (300 K, which was more than two (four times those of the other samples. However, interestingly the spin relaxation time of the 800 °C-annealed sample was found to be similar to those of the other two samples. Particularly at room temperature, the spin relaxation times are 143 ps, 147 ps, and 111 ps for the 800 °C-annealed sample, 700 °C-annealed sample, and the unannealed sample, respectively.

  9. Semiclassical Monte Carlo simulation studies of spin dephasing in InP and InSb nanowires

    Directory of Open Access Journals (Sweden)

    Ashish Kumar

    2012-03-01

    Full Text Available We use semiclassical Monte Carlo approach to investigate spin polarized transport in InP and InSb nanowires. D’yakonov-Perel (DP relaxation and Elliott-Yafet (EY relaxation are the two main relaxation mechanisms for spin dephasing in III-V channels. The DP relaxation occurs because of bulk inversion asymmetry (Dresselhaus spin-orbit interaction and structural inversion asymmetry (Rashba spin-orbit interaction. The injection polarization direction studied is that along the length of the channel. The dephasing rate is found to be very strong for InSb as compared to InP which has larger spin dephasing lengths. The ensemble averaged spin components vary differently for both InP and InSb nanowires. The steady state spin distribution also shows a difference between the two III-V nanowires.

  10. Disproportional plastome-wide increase of substitution rates and relaxed purifying selection in genes of carnivorous Lentibulariaceae.

    Science.gov (United States)

    Wicke, Susann; Schäferhoff, Bastian; dePamphilis, Claude W; Müller, Kai F

    2014-03-01

    Carnivorous Lentibulariaceae exhibit the most sophisticated implementation of the carnivorous syndrome in plants. Their unusual lifestyle coincides with distinct genomic peculiarities such as the smallest angiosperm nuclear genomes and extremely high nucleotide substitution rates across all genomic compartments. Here, we report the complete plastid genomes from each of the three genera Pinguicula, Utricularia, and Genlisea, and investigate plastome-wide changes in their molecular evolution as the carnivorous syndrome unfolds. We observe a size reduction by up to 9% mostly due to the independent loss of genes for the plastid NAD(P)H dehydrogenase and altered proportions of plastid repeat DNA, as well as a significant plastome-wide increase of substitution rates and microstructural changes. Protein-coding genes across all gene classes show a disproportional elevation of nonsynonymous substitutions, particularly in Utricularia and Genlisea. Significant relaxation of purifying selection relative to noncarnivores occurs in the plastid-encoded fraction of the photosynthesis ATP synthase complex, the photosystem I, and in several other photosynthesis and metabolic genes. Shifts in selective regimes also affect housekeeping genes including the plastid-encoded polymerase, for which evidence for relaxed purifying selection was found once during the transition to carnivory, and a second time during the diversification of the family. Lentibulariaceae significantly exhibit enhanced rates of nucleotide substitution in most of the 130 noncoding regions. Various factors may underlie the observed patterns of relaxation of purifying selection and substitution rate increases, such as reduced net photosynthesis rates, alternative paths of nutrient uptake (including organic carbon), and impaired DNA repair mechanisms.

  11. Effects of Loading Rate on the Relaxation and Recovery Ability of an Epoxy-Based Shape Memory Polymer

    Directory of Open Access Journals (Sweden)

    Amber J.W. McClung

    2017-03-01

    Full Text Available The majority of aerospace structural composites use thermoset resins for their processing flexibility, temperature capability, and environmental durability. In this study, the recovery behavior of Veriflex-E, an epoxy-based, thermosetting, thermally-triggered shape memory polymer (SMP resin, is investigated in glassy (25 °C and rubbery (130 °C states, as a function of shape memory cycles, and as a means to evaluate its potential as a resin for a shape memory composite. At 25 °C, Veriflex-E exhibits a promising high elastic modulus and a positive, nonlinear strain rate sensitivity in monotonic loading. At 130 °C, the strain rate sensitivity in monotonic loading decreases. Stress relaxation after storage in the deformed temporary state and subsequent shape recovery is of particular interest, a challenge to measure, and has not been widely reported for SMPs. The current experimental program measures the influence of strain rate changes in the 10−4–10−2 s−1 range on the stress relaxation response of the material, as well as on the strain recovery behavior at both 25 °C and 130 °C. As expected, the post-relaxation strain is larger with faster loading. Unexpectedly, the total strain recovered after shape memory cycling is more similar to the low temperature deformation. Overall, the results suggest that, while being influenced by both the loading rate and the test temperature, Veriflex-E is a promising candidate for a shape memory composite which could enable adaptive structures.

  12. Endo- vs. exogenous shocks and relaxation rates in book and music “sales”

    Science.gov (United States)

    Lambiotte, R.; Ausloos, M.

    2006-04-01

    In this paper, we analyse the response of music and book sales to an external field and a buyer herding. We distinguish endogenous and exogenous shocks. We focus on some case studies, whose data have been collected from ranking on amazon.com. We show that an ensemble of equivalent systems quantitatively respond in a same way to a similar “external shock”, indicating roads to universality features. In contrast to Sornette et al. [Phys. Rev. Lett. 93 (2004) 228701] who seemed to find power-law behaviours, in particular at long times, a law interpreted in terms of an epidemic activity, we observe that the relaxation process can be as well seen as an exponential one that saturates toward an asymptotic state, itself different from the pre-shock state. By studying an ensemble of 111 shocks, on books or records, we show that exogenous and endogenous shocks are discriminated by their short-time behaviour: the relaxation time seems to be twice shorter in endogenous shocks than in exogenous ones. We interpret the finding through a simple thermodynamic model with a dissipative force.

  13. Estimating the Backup Reaction Wheel Orientation Using Reaction Wheel Spin Rates Flight Telemetry from a Spacecraft

    Science.gov (United States)

    Rizvi, Farheen

    2013-01-01

    A report describes a model that estimates the orientation of the backup reaction wheel using the reaction wheel spin rates telemetry from a spacecraft. Attitude control via the reaction wheel assembly (RWA) onboard a spacecraft uses three reaction wheels (one wheel per axis) and a backup to accommodate any wheel degradation throughout the course of the mission. The spacecraft dynamics prediction depends upon the correct knowledge of the reaction wheel orientations. Thus, it is vital to determine the actual orientation of the reaction wheels such that the correct spacecraft dynamics can be predicted. The conservation of angular momentum is used to estimate the orientation of the backup reaction wheel from the prime and backup reaction wheel spin rates data. The method is applied in estimating the orientation of the backup wheel onboard the Cassini spacecraft. The flight telemetry from the March 2011 prime and backup RWA swap activity on Cassini is used to obtain the best estimate for the backup reaction wheel orientation.

  14. Distribution of glass transition temperatures Tg in polystyrene thin films as revealed by low-energy muon spin relaxation: A comparison with neutron reflectivity results.

    Science.gov (United States)

    Kanaya, Toshiji; Ogawa, Hiroki; Kishimoto, Mizuki; Inoue, Rintaro; Suter, Andreas; Prokscha, Thomas

    2015-08-01

    In a previous paper [Phys. Rev. E 83, 021801 (2011)] we performed neutron reflectivity (NR) measurements on a five-layer polystyrene (PS) thin film consisting of alternatively stacked deuterated polystyrene (dPS) and hydrogenated polystyrene (hPS) layers (dPS/hPS/dPS/hPS/dPS, ∼100 nm thick) on a Si substrate to reveal the distribution of Tg along the depth direction. Information on the Tg distribution is very useful to understand the interesting but unusual properties of polymer thin films. However, one problem that we have to clarify is if there are effects of deuterium labeling on Tg or not. To tackle the problem we performed low-energy muon spin relaxation (μSR) measurements on the above-mentioned deuterium-labeled five-layer PS thin film as well as dPS and hPS single-layer thin films ∼100 nm thick as a function of muon implantation energy. It was found that the deuterium labeling had no significant effects on the Tg distribution, guaranteeing that we can safely discuss the unusual thin film properties based on the Tg distribution revealed by NR on the deuterium-labeled thin films. In addition, the μSR result suggested that the higher Tg near the Si substrate is due to the strong orientation of phenyl rings.

  15. An optimized method for {sup 15}N R{sub 1} relaxation rate measurements in non-deuterated proteins

    Energy Technology Data Exchange (ETDEWEB)

    Gairí, Margarida, E-mail: mgairi@rmn.ub.edu [University of Barcelona (CCiTUB), NMR Facility, Scientific and Technological Centers (Spain); Dyachenko, Andrey [Institute for Research in Biomedicine (IRB) (Spain); González, M. Teresa; Feliz, Miguel [University of Barcelona (CCiTUB), NMR Facility, Scientific and Technological Centers (Spain); Pons, Miquel [University of Barcelona, Biomolecular NMR Laboratory and Organic Chemistry Department (Spain); Giralt, Ernest, E-mail: ernest.giralt@irbbarcelona.org [Institute for Research in Biomedicine (IRB) (Spain)

    2015-06-15

    {sup 15}N longitudinal relaxation rates are extensively used for the characterization of protein dynamics; however, their accurate measurement is hindered by systematic errors. {sup 15}N CSA/{sup 1}H–{sup 15}N dipolar cross-correlated relaxation (CC) and amide proton exchange saturation transfer from water protons are the two main sources of systematic errors in the determination of {sup 15}N R{sub 1} rates through {sup 1}H–{sup 15}N HSQC-based experiments. CC is usually suppressed through a train of 180° proton pulses applied during the variable {sup 15}N relaxation period (T), which can perturb water magnetization. Thus CC cancellation is required in such a way as to minimize water saturation effects. Here we examined the level of water saturation during the T period caused by various types of inversion proton pulses to suppress CC: (I) amide-selective IBURP-2; (II) cosine-modulated IBURP-2; (III) Watergate-like blocks; and (IV) non-selective hard. We additionally demonstrate the effect of uncontrolled saturation of aliphatic protons on {sup 15}N R{sub 1} rates. In this paper we present an optimized pulse sequence that takes into account the crucial effect of controlling also the saturation of the aliphatic protons during {sup 15}N R{sub 1} measurements in non-deuterated proteins. We show that using cosine-modulated IBURP-2 pulses spaced 40 ms to cancel CC in this optimized pulse program is the method of choice to minimize systematic errors coming from water and aliphatic protons saturation effects.

  16. Magnetism of the chromium thio-spinels Fe1-xCuxCr2S4 studied using muon spin rotation and relaxation.

    Science.gov (United States)

    Kalvius, G M; Krimmel, A; Wäppling, R; Hartmann, O; Litterst, F J; Wagner, F E; Tsurkan, V; Loidl, A

    2013-05-08

    Powder samples of Fe1-xCuxCr2S4 with x = 0,0.2,0.5,0.8 were studied, between 5 and 300 K. The results reveal that for x < 1, the magnetic order in the series is more varied than the simple collinear ferrimagnetic structure traditionally assumed to exist everywhere from the Curie point to T → 0. In FeCr2S4 several ordered magnetic phases are present, with the ground state likely to have an incommensurate cone-like helical structure. Fe0.8Cu0.2Cr2S4 is the compound for which simple collinear ferrimagnetism is best developed. In Fe0.5Cu0.5Cr2S4 the ferrimagnetic spin structure is not stable, causing spin reorientation around 90 K. In Fe0.2Cu0.8Cr2S4 the ferrimagnetic structure is at low temperatures considerably distorted locally, but with rising temperature this disorder shows a rapid reduction, coupled to increased spin fluctuation rates. In summary, the present data show that the changes induced by the replacement of Fe by Cu have more profound influences on the magnetic properties of the Fe1-xCuxCr2S4 compounds than merely a shift of Curie temperature, saturation magnetization and internal field magnitude.

  17. How does relaxing the algorithm for autism affect DSM-V prevalence rates?

    Science.gov (United States)

    Matson, Johnny L; Hattier, Megan A; Williams, Lindsey W

    2012-08-01

    Although it is still unclear what causes autism spectrum disorders (ASDs), over time researchers and clinicians have become more precise with detecting and diagnosing ASD. Many diagnoses, however, are based on the criteria established within the Diagnostic and Statistical Manual of Mental Disorders (DSM); thus, any change in these diagnostic criteria can have a great effect upon children with ASD and their families. It is predicted that the prevalence of ASD diagnoses will dramatically decrease with the adoption of the proposed DSM-5 criteria in 2013. The aim of this current study was to inspect the changes in prevalence first using a diagnostic criteria set which was modified slightly from the DSM-5 criteria (Modified-1 criteria) and again using a set of criteria which was relaxed even a bit more (Modified-2 criteria). Modified-1 resulted in 33.77 % fewer toddlers being diagnosed with ASD compared to the DSM-IV, while Modified-2 resulted in only a 17.98 % decrease in ASD diagnoses. Children diagnosed with the DSM-5 criteria exhibited the greatest levels of autism symptomatology, but the Mod-1, Mod-2, and DSM-IV groups still demonstrated significant impairments. Implications of these findings are discussed.

  18. Muonium spin exchange as a Poisson process: magnetic field dependence in transverse fields

    International Nuclear Information System (INIS)

    Senba, Masayoshi; British Columbia Univ., Vancouver, BC

    1993-01-01

    The muonium spin exchange has been investigated as a function of transverse magnetic field strength, where the Poisson nature of collisions is exploited to simplify the calculation. In intermediate fields where the so-called two-frequency muonium signal is observed, the muonium relaxation due to spin exchange is 1.5 times faster than in low fields. In even higher fields, the observed relaxation rate drops back to the low field value. Since the relaxation rate due to a chemical reaction is field independent, such a distinct field dependence in spin exchange can be used in distinguishing experimentally spin exchange from chemical reactions. The time evolution of the muon spin polarization in the presence of muonium spin exchange has been expressed in a simple analytical closed form. (author)

  19. On the Dependence of the X-Ray Burst Rate on Accretion and Spin Rate

    Science.gov (United States)

    Cavecchi, Yuri; Watts, Anna L.; Galloway, Duncan K.

    2017-12-01

    Nuclear burning and its dependence on the mass accretion rate are fundamental ingredients for describing the complicated observational phenomenology of neutron stars (NSs) in binary systems. Motivated by high-quality burst rate data emerging from large statistical studies, we report general calculations relating the bursting rate to the mass accretion rate and NS rotation frequency. In this first work, we ignore general relativistic effects and accretion topology, although we discuss where their inclusion should play a role. The relations we derive are suitable for different burning regimes and provide a direct link between parameters predicted by theory and what is to be expected in observations. We illustrate this for analytical relations of different unstable burning regimes that operate on the surface of an accreting NS. We also use the observed behavior of the burst rate to suggest new constraints on burning parameters. We are able to provide an explanation for the long-standing problem of the observed decrease of the burst rate with increasing mass accretion that follows naturally from these calculations: when the accretion rate crosses a certain threshold, ignition moves away from its initially preferred site, and this can cause a net reduction of the burst rate due to the effects of local conditions that set local differences in both the burst rate and stabilization criteria. We show under which conditions this can happen even if locally the burst rate keeps increasing with accretion.

  20. Correlation of heart rate and radionuclide index of left ventricular contraction and relaxation

    International Nuclear Information System (INIS)

    Adachi, Haruhiko; Sugihara, Hiroki; Nakagawa, Hiroaki; Inagaki, Suetsugu; Kubota, Yasushi; Nakagawa, Masao

    1990-01-01

    Since the cardiac function indices derived from radionuclide ventriculography (RNV) are considered to depend on the heart rate, we studied the relationship between systolic or diastolic indices and heart rates in patients with normal RNV and devised a method of correcting these indices according to the heart rate. For the systolic indices, the heart rate showed significant correlation with ET (r=-0.640), PER (r=0.791) and TPE (r=-0.401) but not with EF, 1/3 EF, MNSER or 1/3 MNSER. For the diastolic indices, the heart rate correlated well with FT (r=-0.938), RFT (r=-0.736), SFT (r=-0.803), 1/3 FF (r=-0.758), PFR (r=0.759), 1/3 PFR (r=0.742) and TPF (r=-0.389) but not with AFT, 1/3 MNDFR or AFF. These results indicate that many systolic and diastolic indices derived from RNV are affected by the heart rate, So when cardiac function is evaluated with the use of radionuclide indices, those which are independent of the heart rate should be used, or they should be corrected for the heart rate. As a method of correction, we proposed a rotating method obtained by manipulation of the regression equation of heart rates and indices. This new method is certain and easier to use when the correcting equations are set into a computer program. (author)

  1. Proton NMR relaxation of hydrated insulin powder

    International Nuclear Information System (INIS)

    Sanches, R.; Donoso, J.P.; Mascarenhas, S.; Panepucci, H.C.

    1985-01-01

    Water proton nuclear magnetic relaxation measurements were obtained for hydrated insulin powder as a function of the water content. For samples containing enough water to complete the hydration shell, the data for the spin-lattice and spin-spin relaxation times are consistent with a model in which water molecules exist in two phases, one exhibiting restricted motion and identified with water of hydration and another identified as free water with motions similar to ordinary water. For samples containing only water of hydration, a model for the spin-spin relaxation time is discussed, in which the water molecules relaxation is described in terms for four relaxation times. Estimates are obtained for these relaxation times, in good agreement with the experimental data. (Author) [pt

  2. Longitudinal Field Muon Spin Rotation Study of Magnetic Freezing in Fe Rich FeSe0.25Te0.75

    Science.gov (United States)

    MacFarlane, W. A.; Ofer, O.; Chow, K. H.; Hossain, M. D.; Parolin, T. J.; Saadaoui, H.; Song, Q.; Wang, D.; Arseneau, D. J.; Hitti, B.; Yeh, K.-W.; Ke, C.-T.; Wu, M.-K.

    We study the freezing of magnetic fluctuations in an Fe rich sample of the "11" iron-based superconductor using longitudinal field muon spin relaxation. The magnetic relaxation rate peaks at 15 K indicating spin glass freezing that nearly coincides with the superconducting transition of the corresponding Fe stoichiometric phase. At this temperature, the magnetic field dependence of the relaxation indicates slow magnetic fluctuations on the nanosecond timescale.

  3. Direct measurement of the electron-phonon relaxation rate in thin copper films

    Energy Technology Data Exchange (ETDEWEB)

    Taskinen, L.J.; Karvonen, J.T.; Maasilta, I.J. [NanoScience Center, Department of Physics, P.O. Box 35, FIN-40014 University of Jyvaeskylae (Finland); Kivioja, J.M. [Low Temperature Laboratory, Helsinki University of Technology, P.O. Box 2200, 02015 HUT Helsinki (Finland)

    2004-11-01

    We have used normal metal-insulator-superconductor (NIS) tunnel junction pairs, known as SINIS structures, for ultrasensitive thermometry at sub-Kelvin temperatures. With the help of these thermometers, we have developed an ac-technique to measure the electron-phonon (e-p) scattering rate directly, without any other material or geometry dependent parameters, based on overheating the electron gas. The technique is based on Joule heating the electrons in the frequency range DC-10 MHz, and measuring the electron temperature in DC. Because of the nonlinearity of the electron-phonon coupling with respect to temperature, even the DC response will be affected, when the heating frequency reaches the natural cut-off determined by the e-p scattering rate. Results on thin Cu films show a T{sup 4} behavior for the scattering rate, in agreement with indirect measurement of similar samples and numerical modeling of the non-linear response. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Direct measurement of the electron-phonon relaxation rate in thin metal films

    Science.gov (United States)

    Maasilta, Ilari; Kivioja, Jani

    2005-03-01

    We have used normal metal-insulator-superconductor (NIS) tunnel junctions for ultrasensitive thermometry at sub-Kelvin temperatures. With the help of these thermometers, we have developed an ac-technique to measure the electron-phonon (e-p) scattering rate directly, without any other material or geometry dependent parameters, based on overheating the electron gas. The technique is based on Joule heating the electrons in the frequency range DC-10 MHz, and measuring the electron temperature in DC. Because of the nonlinearity of the electron-phonon coupling with respect to temperature, even the DC response will be affected, when the heating frequency reaches the natural cut-off determined by the e-p scattering rate. Results on thin Cu films show a T^4 behavior for the scattering rate, in agreement with indirect measurement of similar samples and numerical modeling of the non-linear response.ootnotetextL. J. Taskinen, J. M. Kivioja, J. T. Karvonen, and I. J. Maasilta, phys. stat. sol. (c) 1, 2856 (2004). ,ootnotetextJ. T. Karvonen, L. J. Taskinen, I. J. Maasilta, phys. stat. sol. (c) 1, 2799 (2004).

  5. Confinement sensitivity in quantum dot singlet-triplet relaxation

    Science.gov (United States)

    Wesslén, C. J.; Lindroth, E.

    2017-11-01

    Spin-orbit mediated phonon relaxation in a two-dimensional quantum dot is investigated using different confining potentials. Elliptical harmonic oscillator and cylindrical well results are compared to each other in the case of a two-electron GaAs quantum dot subjected to a tilted magnetic field. The lowest energy set of two-body singlet and triplet states are calculated including spin-orbit and magnetic effects. These are used to calculate the phonon induced transition rate from the excited triplet to the ground state singlet for magnetic fields up to where the states cross. The roll of the cubic Dresselhaus effect, which is found to be much more important than previously assumed, and the positioning of ‘spin hot-spots’ are discussed and relaxation rates for a few different systems are exhibited.

  6. Electronic phase diagrams and competing ground states of complex iron pnictides and chalcogenides. A Moessbauer spectroscopy and muon spin rotation/relaxation study

    Energy Technology Data Exchange (ETDEWEB)

    Kamusella, Sirko

    2017-03-01

    In this thesis the superconducting and magnetic phases of LiOH(Fe,Co)(Se,S), CuFeAs/CuFeSb, and LaFeP{sub 1-x}As{sub x}O - belonging to the 11, 111 and 1111 structural classes of iron-based arsenides and chalcogenides - are investigated by means of {sup 57}Fe Moessbauer spectroscopy and muon spin rotation/relaxation (μSR). Of major importance in this study is the application of high magnetic fields in Moessbauer spectroscopy to distinguish and characterize ferro- (FM) and antiferromagnetic (AFM) order. A user-friendly Moessbauer data analysis program was developed to provide suitable model functions not only for high field spectra, but relaxation spectra or parameter distributions in general. In LaFeP{sub 1-x}As{sub x}O the reconstruction of the Fermi surface is described by the vanishing of the Γ hole pocket with decreasing x. The continuous change of the orbital character and the covalency of the d-electrons is shown by Moessbauer spectroscopy. A novel antiferromagnetic phase with small magnetic moments of ∼ 0.1 μ{sub B} state is characterized. The superconducting order parameter is proven to continuously change from a nodal to a fully gapped s-wave like Fermi surface in the superconducting regime as a function of x, partially investigated on (O,F) substituted samples. LiOHFeSe is one of the novel intercalated FeSe compounds, showing strongly increased T{sub C} = 43 K mainly due to increased interlayer spacing and resulting two-dimensionality of the Fermi surface. The primary interest of the samples of this thesis is the simultaneously observed ferromagnetism and superconductivity. The local probe techniques prove that superconducting sample volume gets replaced by ferromagnetic volume. Ferromagnetism arises from magnetic order with T{sub C} = 10 K of secondary iron in the interlayer. The tendency of this system to show (Li,Fe) disorder is preserved upon (Se,S) substitution. However, superconductivity gets suppressed. The results of Moessbauer spectroscopy

  7. The effect of dissolved oxygen on the relaxation rates of blood plasma: Implications for hyperoxia calibrated BOLD.

    Science.gov (United States)

    Ma, Yuhan; Berman, Avery J L; Pike, G Bruce

    2016-12-01

    To determine the contribution of paramagnetic dissolved oxygen in blood plasma to blood-oxygenation-level-dependent (BOLD) signal changes in hyperoxic calibrated BOLD studies. Bovine blood plasma samples were prepared with partial pressures of oxygen (pO 2 ) ranging from 110 to 600 mmHg. R 1 , R 2 , and R 2 * of the plasma with dissolved oxygen were measured using quantitative MRI sequences at 3 Tesla. Simulations were performed to predict the relative effects of dissolved oxygen and deoxyhemoglobin changes in hyperoxia calibrated BOLD. The relaxivities of dissolved oxygen in plasma were found to be r 1, O2 =1.97 ± 0.09 ×10 -4 s -1 mmHg -1 , r 2, O2 =2.3 ± 0.7 ×10 -4 s -1 mmHg -1 , and r 2, O2 * = 2.3 ± 0.7 ×10 -4 s -1 mmHg -1 . Simulations predict that neither the transverse nor longitudinal relaxation rates of dissolved oxygen contribute significantly to the BOLD signal during hyperoxia. During hyperoxia, the increases in R 2 and R 2 * of blood from dissolved oxygen in plasma are considerably less than the decreases in R 2 and R 2 * from venous deoxyhemoglobin. R 1 effects due to dissolved oxygen are also predicted to be negligible. As a result, dissolved oxygen in arteries should not contribute significantly to the hyperoxic calibrated BOLD signal. Magn Reson Med 76:1905-1911, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  8. Is meditation always relaxing? Investigating heart rate, heart rate variability, experienced effort and likeability during training of three types of meditation.

    Science.gov (United States)

    Lumma, Anna-Lena; Kok, Bethany E; Singer, Tania

    2015-07-01

    Meditation is often associated with a relaxed state of the body. However, meditation can also be regarded as a type of mental task and training, associated with mental effort and physiological arousal. The cardiovascular effects of meditation may vary depending on the type of meditation, degree of mental effort, and amount of training. In the current study we assessed heart rate (HR), high-frequency heart rate variability (HF-HRV) and subjective ratings of effort and likeability during three types of meditation varying in their cognitive and attentional requirements, namely breathing meditation, loving-kindness meditation and observing-thoughts meditation. In the context of the ReSource project, a one-year longitudinal mental training study, participants practiced each meditation exercise on a daily basis for 3 months. As expected HR and effort were higher during loving-kindness meditation and observing-thoughts meditation compared to breathing meditation. With training over time HR and likeability increased, while HF-HRV and the subjective experience of effort decreased. The increase in HR and decrease in HF-HRV over training was higher for loving-kindness meditation and observing-thoughts meditation compared to breathing meditation. In contrast to implicit beliefs that meditation is always relaxing and associated with low arousal, the current results show that core meditations aiming at improving compassion and meta-cognitive skills require effort and are associated with physiological arousal compared to breathing meditation. Overall these findings can be useful in making more specific suggestions about which type of meditation is most adaptive for a given context and population. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Rate of Molecular Transfer of Allyl Alcohol across an AOT Surfactant Layer Using Muon Spin Spectroscopy.

    Science.gov (United States)

    Jayasooriya, Upali A; Clayden, Nigel J; Steytler, David C; Oganesyan, Vasily S; Peck, Jamie N T; Khasanov, Rustem; Scheuermann, Robert; Stoykov, Alexey

    2016-01-26

    The transfer rate of a probe molecule across the interfacial layer of a water-in-oil (w/o) microemulsion was investigated using a combination of transverse field muon spin rotation (TF-μSR), avoided level crossing muon spin resonance (ALC-μSR), and Monte Carlo simulations. Reverse microemulsions consist of nanometer-sized water droplets dispersed in an apolar solvent separated by a surfactant monolayer. Although the thermodynamic, static model of these systems has been well described, our understanding of their dynamics is currently incomplete. For example, what is the rate of solute transfer between the aqueous and apolar solvents, and how this is influenced by the structure of the interface? With an appropriate choice of system and probe molecule, μSR offers a unique opportunity to directly probe these interfacial transfer dynamics. Here, we have employed a well characterized w/o microemulsion stabilized by bis(2-ethylhexyl) sodium sulfosuccinate (Aerosol OT), with allyl alcohol (CH2═CH-CH2-OH, AA) as the probe. Resonances due to both muoniated radicals, CMuH2-C*H-CH2-OH and C*H2-CHMu-CH2-OH, were observed with the former being the dominant species. All resonances displayed solvent dependence, with those in the microemulsion observed as a single resonance located at intermediate magnetic fields to those present in either of the pure solvents. Observation of a single resonance is strong evidence for interfacial transfer being in the fast exchange limit. Monte Carlo calculations of the ΔM = 0 ALC resonances are consistent with the experimental data, indicating exchange rates greater than 10(9) s(-1), placing the rate of interfacial transfer at the diffusion limit.

  10. Fractional Spin Fluctuations as a Precursor of Quantum Spin Liquids: Majorana Dynamical Mean-Field Study for the Kitaev Model.

    Science.gov (United States)

    Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi

    2016-10-07

    Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.

  11. Dipolar Spin Ice States with a Fast Monopole Hopping Rate in CdEr2X4 (X =Se , S)

    Science.gov (United States)

    Gao, Shang; Zaharko, O.; Tsurkan, V.; Prodan, L.; Riordan, E.; Lago, J.; Fâk, B.; Wildes, A. R.; Koza, M. M.; Ritter, C.; Fouquet, P.; Keller, L.; Canévet, E.; Medarde, M.; Blomgren, J.; Johansson, C.; Giblin, S. R.; Vrtnik, S.; Luzar, J.; Loidl, A.; Rüegg, Ch.; Fennell, T.

    2018-03-01

    Excitations in a spin ice behave as magnetic monopoles, and their population and mobility control the dynamics of a spin ice at low temperature. CdEr2 Se4 is reported to have the Pauling entropy characteristic of a spin ice, but its dynamics are three orders of magnitude faster than the canonical spin ice Dy2 Ti2 O7 . In this Letter we use diffuse neutron scattering to show that both CdEr2 Se4 and CdEr2 S4 support a dipolar spin ice state—the host phase for a Coulomb gas of emergent magnetic monopoles. These Coulomb gases have similar parameters to those in Dy2 Ti2 O7 , i.e., dilute and uncorrelated, and so cannot provide three orders faster dynamics through a larger monopole population alone. We investigate the monopole dynamics using ac susceptometry and neutron spin echo spectroscopy, and verify the crystal electric field Hamiltonian of the Er3 + ions using inelastic neutron scattering. A quantitative calculation of the monopole hopping rate using our Coulomb gas and crystal electric field parameters shows that the fast dynamics in CdEr2X4 (X =Se , S) are primarily due to much faster monopole hopping. Our work suggests that CdEr2X4 offer the possibility to study alternative spin ice ground states and dynamics, with equilibration possible at much lower temperatures than the rare earth pyrochlore examples.

  12. Muon spin spectroscopy of ferrocene: characterization of muoniated ferrocenyl radicals.

    Science.gov (United States)

    McKenzie, Iain

    2014-06-14

    Radicals formed by the reaction of muonium (Mu), a light isotope of hydrogen, with ferrocene and ferrocene-d10 have been studied with the avoided level crossing muon spin resonance (ALC-μSR) and longitudinal field muon spin relaxation (LF-μSR) techniques between 10 and 100 K. A single type of radical was observed in each compound and the muon hyperfine coupling constants (hfcc) and the muon spin relaxation rates were measured as a function of temperature. A previous report concerning the observation of Mu adducts of ferrocene (U. A. Jayasooriya et al. Chem. - Eur. J., 2007, 13, 2266-2276) appears to be incorrect. DFT calculations were performed to aid in the assignment of the ALC-μSR spectra. A tentative assignment is that the observed radicals were formed by Mu addition to the exterior of the cyclopentadienyl rings and that the structures are distorted due to interactions with neighbouring molecules. The temperature dependence of the muon hfcc can be explained assuming the population of two levels with different muon hfccs separated by 1.4 ± 0.1 kJ mol(-1). The temperature dependence of the width and amplitude of the Δ1 resonance and the muon spin relaxation rate suggests that the electron spin relaxation rate increase with temperature, but the relaxation mechanism is unknown.

  13. Proton NMR relaxation in hydrous melts

    International Nuclear Information System (INIS)

    Braunstein, J.; Bacarella, A.L.; Benjamin, B.M.; Brown, L.L.; Girard, C.

    1976-01-01

    Pulse and continuous wave NMR measurements are reported for protons in hydrous melts of calcium nitrate at temperatures between -4 and 120 0 C. Although measured in different temperature ranges, spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation times appear to be nearly equal to each other and proportional to the self-diffusion coefficients of solute metal cations such as Cd 2+ . At temperatures near 50 0 C, mean Arrhenius coefficients Δ H/sub T 1 / (kcal/mol) are 7.9, 7.3, and 4.8, respectively, for melts containing 2.8, 4.0, and 8.0 moles of water per mole of calcium nitrate, compared to 4.6 kcal/mol for pure water. Temperature dependence of T 1 and T 2 in Ca(NO 3 ) 2 -2.8 H 2 O between -4 and 120 0 C are non-Arrhenius and can be represented by a Fulcher-type equation with a ''zero mobility temperature'' (T 0 ) of 225 0 K, close to the value of T 0 for solute diffusion, electrical conductance and viscosity. Resolution of the relaxation rates into correlation times for intramolecular (rotational) and intermolecular (translational) diffusional motion is discussed in terms of the Bloembergen-Purcell-Pound and more recent models for dipolar relaxation

  14. Precession relaxation of viscoelastic oblate rotators

    Science.gov (United States)

    Frouard, Julien; Efroimsky, Michael

    2018-01-01

    Perturbations of all sorts destabilize the rotation of a small body and leave it in a non-principal spin state. In such a state, the body experiences alternating stresses generated by the inertial forces. This yields nutation relaxation, i.e. evolution of the spin towards the principal rotation about the maximal-inertia axis. Knowledge of the time-scales needed to damp the nutation is crucial in studies of small bodies' dynamics. In the literature hitherto, nutation relaxation has always been described with aid of an empirical quality factor Q introduced to parametrize the energy dissipation rate. Among the drawbacks of this approach was its inability to describe the dependence of the relaxation rate upon the current nutation angle. This inability stemmed from our lack of knowledge of the quality factor's dependence on the forcing frequency. In this article, we derive our description of nutation damping directly from the rheological law obeyed by the material. This renders us the nutation damping rate as a function of the current nutation angle, as well as of the shape and the rheological parameters of the body. In contradistinction from the approach based on an empirical Q factor, our development gives a zero damping rate in the spherical-shape limit. Our method is generic and applicable to any shape and to any linear rheological law. However, to simplify the developments, here we consider a dynamically oblate rotator with a Maxwell rheology.

  15. Generalized approach to non-exponential relaxation

    Indian Academy of Sciences (India)

    Abstract. Non-exponential relaxation is a universal feature of systems as diverse as glasses, spin glasses, earthquakes, financial markets and the universe. Complex relaxation results from hierarchically constrained dynamics with the strength of the constraints being directly related to the form of the relaxation, which ...

  16. Competition between domain walls and the reverse magnetization in the magnetic relaxation of a Pt/Co/Ir/Co/Pt spin switcher

    Science.gov (United States)

    Morgunov, R. B.; L'vova, G. L.; Hamadeh, A.; Mangin, S.

    2018-01-01

    A multilayer Pt/Co/Ir/Co/Pt/GaAs heterostructures demonstrates a long term (to several hours) magnetic relaxation between two stable states of the magnetization of the system. The magnetization reversal of the heterostructure layers occurs both due to the formation of nuclei of the reverse magnetization domains and as a result of their further growth by means of motion of domain walls. The competition between two these processes provides a nonexponential character of the magnetic relaxation. At 300 K, the contributions of these processes to the relaxation are commensurable, while, at temperatures lower than 200 K, the contribution of the nucleation is suppressed and the magnetic relaxation occurs as a result of motion of the domain walls.

  17. Analysing the response in R2* relaxation rate of intracranial tumours to hyperoxic and hypercapnic respiratory challenges: initial results

    International Nuclear Information System (INIS)

    Mueller, A.; Traeber, F.; Koenig, R.; Willinek, W.A.; Schild, H.H.; Muertz, P.; Remmele, S.; Wenningmann, I.; Clusmann, H.; Flacke, S.; Gieseke, J.

    2011-01-01

    To investigate the response in R2 * relaxation rate of human intracranial tumours during hyperoxic and hypercapnic respiratory challenges. In seven patients with different intracranial tumours, cerebral R2 * changes during carbogen and CO 2 /air inhalation were monitored at 3 T using a dynamic multigradient-echo sequence of high temporal and spatial resolution. The R2 * time series of each voxel was tested for significant change. Regions of interest were analysed with respect to response amplitude and velocity. The tumours showed heterogeneous R2 * responses with large interindividual variability. In the 'contrast-enhancing' area of five patients and in the 'non-tumoral' tissue most voxels showed a decrease in R2 * for carbogen. For the 'contrast-enhancing' area of two patients hardly any responses were found. In areas of 'necrosis' and perifocal 'oedema' typically voxels with R2 * increase and no response were found for both gases. For tissue responding to CO 2 /air, the R2 * changes were of the same order of magnitude as those for carbogen. The response kinetic was generally attenuated in tumoral tissue. The spatially resolved determination of R2 * changes reveals the individual heterogeneous response characteristic of intracranial human tumours during hyperoxic and hypercapnic respiratory challenges. (orig.)

  18. Delta Relaxation Enhanced Magnetic Resonance

    Science.gov (United States)

    Alford, Jamu K.

    synchronizes this waveform with the rest of the MRI pulse sequence. On two separate dreMR systems, images were obtained having contrast which was directly proportional to the magnetic field dependence of the sample's relaxation rates. This contrast unambiguously indicated the presence of the bound probe, and its imaging therefore yields a map of the targeted biological molecule. Keywords Magnetic Resonance Imaging; Field-Cycled MRI; MR Probe; Targeted Contrast Agent; Gadolinium; Insert Coil; Power Supply; Relaxation Rate; Relaxivity; Actively Shielded; dreMR; Delta Relaxation Enhanced MRI; MRI Hardware; Gradient Echo; Spin Echo; Spoiled Gradient; Echo iv

  19. [Quantitative magnetic resonance imaging of brain iron deposition: comparison between quantitative susceptibility mapping and transverse relaxation rate (R2*) mapping].

    Science.gov (United States)

    Guan, Ji-Jing; Feng, Yan-Qiu

    2018-03-20

    To evaluate the accuracy and sensitivity of quantitative susceptibility mapping (QSM) and transverse relaxation rate (R2*) mapping in the measurement of brain iron deposition. Super paramagnetic iron oxide (SPIO) phantoms and mouse models of Parkinson's disease (PD) related to iron deposition in the substantia nigra (SN) underwent 7.0 T magnetic resonance (MR) scans (Bruker, 70/16) with a multi-echo 3D gradient echo sequence, and the acquired data were processed to obtain QSM and R2*. Linear regression analysis was performed for susceptibility and R2* in the SPIO phantoms containing 5 SPIO concentrations (30, 15, 7.5, 3.75 and 1.875 µg/mL) to evaluate the accuracy of QSM and R2* in quantitative iron analysis. The sensitivities of QSM and R2* mapping in quantitative detection of brain iron deposition were assessed using mouse models of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahy-dropyridine (MPTP) in comparison with the control mice. In SPIO phantoms, QSM provided a higher accuracy than R2* mapping and their goodness-of-fit coefficients (R 2 ) were 0.98 and 0.89, respectively. In the mouse models of PD and control mice, the susceptibility of the SN was significantly higher in the PD models (5.19∓1.58 vs 2.98∓0.88, n=5; Pbrain iron deposition than R2*, and the susceptibility derived by QSM can be a potentially useful biomarker for studying PD.

  20. Quantum-Classical Phase Transition of the Escape Rate of Two-Sublattice Antiferromagnetic Large Spins

    Science.gov (United States)

    Owerre, Solomon Akaraka; Paranjape, M. B.

    2014-11-01

    The Hamiltonian of a two-sublattice antiferromagnetic spins, with single (hard-axis) and double ion anisotropies described by H = J {\\hat S}1...\\hatS 2-2Jz \\hat {S}1z\\hat {S}2z+K(\\hat {S}1z2 +\\hat {S}2z2) is investigated using the method of effective potential. The problem is mapped to a single particle quantum-mechanical Hamiltonian in terms of the relative coordinate and reduced mass. We study the quantum-classical phase transition of the escape rate of this model. We show that the first-order phase transition for this model sets in at the critical value Jc = (Kc+Jz, c)/2 while for the anisotropic Heisenberg coupling H = J(S1xS2x +S1yS2y) + JzS1zS2z + K(S1z2+ S2z2) we obtain Jc = (2Kc-Jz, c)/3. The phase diagrams of the transition are also studied.

  1. Multiscale approach to mechanical behavior of polymeric nanocomposites: an application of T1.rho.(13C) relaxation experiments at variable spin-locking fields

    Czech Academy of Sciences Publication Activity Database

    Kotek, Jiří; Brus, Jiří

    2014-01-01

    Roč. 59, č. 9 (2014), s. 662-666 ISSN 0032-2725 R&D Projects: GA ČR(CZ) GA13-29009S Institutional support: RVO:61389013 Keywords : polyamide 6 * nanocomposite * T1ρ(13C) relaxation Subject RIV: JI - Composite Materials Impact factor: 0.633, year: 2014

  2. AC relaxation in the iron(8) molecular magnet

    Science.gov (United States)

    Rose, Geordie

    2000-11-01

    We investigate the low energy magnetic relaxation characteristics of the ``iron eight'' (Fe8) molecular magnet. Each molecule in this material contains a cluster of eight Fe 3+ ions surrounded by organic ligands. The molecules arrange themselves into a regular lattice with triclinic symmetry. At sufficiently low energies, the electronic spins of the Fe3+ ions lock together into a ``quantum rotator'' with spin S = 10. We derive a low energy effective Hamiltonian for this system, valid for temperatures less than Tc ~ 360 mK , where Tc is the temperature at which the Fe8 system crosses over into a ``quantum regime'' where relaxation characteristics become temperature independent. We show that in this regime the dominant environmental coupling is to the environmental spin bath in the molecule. We show how to explicitly calculate these couplings, given crystallographic information about the molecule, and do this for Fe8. We use this information to calculate the linewidth, topological decoherence and orthogonality blocking parameters. All of these quantities are shown to exhibit an isotope effect. We demonstrate that orthogonality blocking in Fe8 is significant and suppresses coherent tunneling. We then use our low energy effective Hamiltonian to calculate the single-molecule relaxation rate in the presence of an external magnetic field with both AC and DC components by solving the Landau-Zener problem in the presence of a nuclear spin bath. Both sawtooth and sinusoidal AC fields are analyzed. This single-molecule relaxation rate is then used as input into a master equation in order to take into account the many-molecule nature of the full system. Our results are then compared to quantum regime relaxation experiments performed on the Fe8 system.

  3. Studies of diluted antiferromagnets MnxMg1-xTiO3 with x=0.55 and 0.70 by muon spin relaxation method

    International Nuclear Information System (INIS)

    Fukaya, A.; Ito, A.; Torikai, E.; Nishiyama, K.; Nagamine, K.

    1997-01-01

    Longitudinal fields μSR measurements have been performed in order to probe the spin dynamics in the diluted antiferromagnets Mn x Mg 1-x TiO 3 with x=0.70 and 0.55. In the x=0.70 sample which forms the antiferromagnetic long-range order, the static and fluctuating fields coexist at the muon stopping site below T N . On the other hand, in the x=0.55 sample which shows the spin-glass behavior, the local fields fluctuate rather fast even below T SG . We infer that this drastic change occurs when Mn x Mg 1-x TiO 3 transforms from an antiferromagnetic system to a spin-glass system by dilution

  4. Impurity effects in a S=1/2 Heisenberg spin chain probed by {sup 63}Cu NMR

    Energy Technology Data Exchange (ETDEWEB)

    Utz, Yannic; Bruening, Eva Maria; Hammerath, Franziska; Rudisch, Christian; Grafe, Hans-Joachim; Mohan, Ashwin; Hess, Christian; Nishimoto, Satoshi; Drechsler, Stefan-Ludwig; Buechner, Bernd [IFW Dresden (Germany); Saint-Martin, Romuald; Revcolevschi, Alexandre [LPCES, Orsay (France)

    2013-07-01

    We present {sup 63}Cu NMR measurements on undoped, Ni doped and Mg doped SrCuO{sub 2} single crystals. SrCuO{sub 2} is a good realization of a one-dimensional S=1/2 Heisenberg spin chain. This is confirmed by the theoretically-expected temperature independent NMR spin-lattice relaxation rate T{sup -1}{sub 1}. Doping with Ni, which can be regarded as a S=1 impurity, has a major impact on the magnetic properties of the spin chains. On the one hand, this is manifested by unusual features in the NMR spectra below 100 K, revealing the existence of an impurity-induced local alternating magnetisation. On the other hand, exponentially decaying spin lattice relaxation rates towards low temperatures indicate the opening of a spin gap similar to Ca doped SrCuO{sub 2}. Mg doping (S=0) has, however, no influence on the magnetic properties of the spin chains. Neither the NMR spectra nor the spin lattice relaxation rates differ from those measured on pure SrCuO{sub 2}. While the different impact of Ni and Mg doping on the spin chains could be explained by their different impurity spins, the opening of a spin gap in case of Ni doping is totally unexpected and not yet understood.

  5. Behavior of cesium and thallium cations inside a calixarene cavity as probed by nuclear spin relaxation. Evidence of cation-pi interactions in water.

    Science.gov (United States)

    Cuc, Diana; Bouguet-Bonnet, Sabine; Morel-Desrosiers, Nicole; Morel, Jean-Pierre; Mutzenhardt, Pierre; Canet, Daniel

    2009-08-06

    We have studied the complexes formed between the p-sulfonatocalix[4]arene and cesium or thallium metal cation, first by carbon-13 longitudinal relaxation of the calixarene molecule at two values of the magnetic field B(0). From the longitudinal relaxation times of an aromatic carbon directly bonded to a proton, thus subjected essentially to the dipolar interaction with that proton, we could obtain the correlation time describing the reorientation of the CH bond. The rest of this study has demonstrated that it is also the correlation time describing the tumbling of the whole calixarene assembly. From three non-proton-bearing carbons of the aromatic cycles (thus subjected to the chemical shift anisotropy and dipolar mechanisms), we have been able to determine the variation of the chemical shift anisotropy when going from the free to the complex form of the calixarene. These variations not only provide the location of the cation inside the calixarene cavity but also constitute a direct experimental proof of the cation-pi interactions. These results are complemented by cesium and thallium relaxation measurements performed again at two values of the magnetic field B(0). An estimation of the mean distance between the cation and the calixarene protons could be obtained. These measurements have also revealed an important chemical shift anisotropy of thallium upon complexation.

  6. ν =2 /3 fractional quantum Hall state in an AlAs quantum well probed by electron spin resonance

    Science.gov (United States)

    Shchepetilnikov, A. V.; Frolov, D. D.; Nefyodov, Yu. A.; Kukushkin, I. V.; Tiemann, L.; Reichl, C.; Dietsche, W.; Wegscheider, W.

    2017-10-01

    The electron spin resonance (ESR) of two-dimensional electrons confined in a high-quality, 16-nm AlAs quantum well was investigated near the filling factor ν =2 /3 of the fractional quantum Hall effect (FQHE). The spin resonance was robust in the vicinity of the fractional filling ν =2 /3 , indicating that the ν =2 /3 state is at least partially spin polarized. The formation of the 2 /3 FQHE state did not result in any modifications of the ESR linewidth and, hence, of the electron spin relaxation rate. Yet the nuclear spin-lattice relaxation rate extracted from the time decay of the ESR Overhauser shift demonstrated a strong nonmonotonic dependence on the electron filling factor with a minimum near ν =2 /3 . This observation suggests the enhancement of the energy gap in the spin excitation spectrum of two-dimensional electrons at the ν =2 /3 state.

  7. Dynamic properties of water in swollen hypercrosslinked polystyrenes, according to NMR relaxation and diffusion data

    Science.gov (United States)

    Babushkina, T. A.; Novikov, V. V.; Koretskaya, V. S.; Klimova, T. P.; Tsyurupa, M. P.; Blinnikova, Z. K.; Davankov, V. A.

    2015-08-01

    Dynamic properties of the water filling of the internal space of hypercrosslinked polystyrene networks are studied via NMR cryoporometry, spin relaxation, and diffusometry. It is found that in the temperature range of 210-240 K, where frozen water melts in the thin pores of the polymer and seems to become a viscous liquid, the main type of molecular motion is rotational and the main relaxation mechanism ( T 1) is spin-rotational interaction between protons. Above 240 K, dipole-dipole coupling is shown to become the main relaxation mechanism T 1. In the temperature range of 210-295 K, the hypercrosslinked polystyrene matrix displays a set of water spin-spin relaxation rates that suggest the structure has cavities (pores) with different sizes and different conditions for the molecular motion of water. We conclude that the shorter (tens of ms) relaxation times T 1 and T 2 of water in the polymer at the temperature above 265 K compared to free water (2-3 s) indicate features of the dynamic characteristics of water in hydrophobic pores (or thin films on the surfaces of granules) that differ from those of free water. The tortuosity coefficients of the water's path of molecular motion are found to change in a symbate manner with a change in the water content in the hypercrosslinked network.

  8. Properties of the manganese(II) binding site in ternary complexes of Mnter dot ADP and Mnter dot ATP with chloroplast coupling factor 1: Magnetic field dependence of solvent sup 1 H and sup 2 H NMR relaxation rates

    Energy Technology Data Exchange (ETDEWEB)

    Haddy, A.E.; Frasch, W.D.; Sharp, R.R. (Univ. of Michigan, Ann Arbor (USA))

    1989-05-02

    The influence of the binding of ADP and ATP on the high-affinity Mn(II) binding site of chloroplast coupling factor 1 (CF{sub 1}) was studied by analysis of field-dependent solvent proton and deuteron spin-lattice relaxation data. In order to characterize metal-nucleotide complexes of CF{sub 1} under conditions similar to those of the NMR experiments, the enzyme was analyzed for bound nucleotides and Mn(II) after incubation with AdN and MnCl{sub 2} and removal of labile ligands by extensive gel filtration chromatography. In the field-dependent NMR experiments, the Mn(II) binding site of CF{sub 1} was studied for three mole ratios of added Mn(II) to CF{sub 1}, 0.5, 1.0, and 1.5, in the presence of an excess of either ADP or ATP. The results were extrapolated to zero Mn(II) concentration to characterize the environment of the first Mn(II) binding site of Cf{sub 1}. In the presence of both adenine nucleotides, pronounced changes in the Mn(II) environment relative to that in Mn(II)-CF{sub 1} were evident; the local relaxation rate maxima were more pronounced and shifted to higher field strengths, and the relaxation rate per bound Mn(II) increased at all field strengths. Analysis of the data revealed that the number of exchangeable water molecules liganded to bound Mn(II) increased from one in the binary Mn(II)-CF{sub 1} complex to three and two in the ternary Mn(II)-ADP-CF{sub 1} and Mn(II)-ATP-CF{sub 1} complexes, respectively; these results suggest that a water ligand to bound Mn(II) in the Mn(II)-ADP-CF{sub 1} complex is replaced by the {gamma}-phosphate of ATP in the Mn(II)-ATP-CF{sub 1} complex. A binding model is presented to account for these observations.

  9. THE PARTICIPATION OF THE NITRERGIC PATHWAY IN INCREASED RATE OF TRANSITORY RELAXATION OF LOWER ESOPHAGEAL SPHINCTER INDUCED BY RECTAL DISTENSION IN DOGS

    Directory of Open Access Journals (Sweden)

    Michel Santos PALHETA

    2014-04-01

    Full Text Available Context The rectal distension in dogs increases the rate of transitory lower esophageal sphincter relaxation considered the main factor causing gastroesophageal reflux. Objectives The aim of this study was evaluate the participation of the nitrergic pathway in the increased transitory lower esophageal sphincter relaxation rate induced by rectal distension in anesthetized dogs. Methods Male mongrel dogs (n = 21, weighing 10-15 kg, were fasted for 12 hours, with water ad libitum. Thereafter, they were anesthetized (ketamine 10 mg.Kg-1 + xylazine 20 mg.Kg-1, so as to carry out the esophageal motility evaluation protocol during 120 min. After a 30-minute basal period, the animals were randomly intravenous treated whith: saline solution 0.15M (1ml.Kg-1, L-NAME (3 mg.Kg-1, L-NAME (3 mg.Kg-1 + L-Arginine (200 mg.Kg-1, glibenclamide (1 mg.Kg-1 or methylene blue (3 mg.Kg-1. Forty-five min after these pre-treatments, the rectum was distended (rectal distension, 5 mL.Kg-1 or not (control with a latex balloon, with changes in the esophageal motility recorded over 45 min. Data were analyzed using ANOVA followed by Student Newman-Keuls test. Results In comparison to the respective control group, rectal distension induces an increase in transitory lower esophageal sphincter relaxation. Pre-treatment with L-NAME or methylene blue prevents (P<0.05 this phenomenon, which is reversible by L-Arginine plus L-NAME. However, pretreating with glibenclamide failed to abolish this process. Conclusions Therefore, these experiments suggested, that rectal distension increases transitory lower esophageal sphincter relaxation in dogs via through nitrergic pathways.

  10. Complex methyl groups dynamics in [(CH3)4P]3Sb2Br9 (PBA) from low to high temperatures by proton spin-lattice relaxation and narrowing of proton NMR spectrum.

    Science.gov (United States)

    Latanowicz, L; Medycki, W; Jakubas, R

    2009-11-01

    Molecular dynamics of a polycrystalline sample of [(CH(3))(4)P](3)Sb(2)Br(9) (PBA) has been studied on the basis of the T(1) (24.7 MHz) relaxation time measurement, the proton second moment of NMR and the earlier published T(1) (90 MHz) relaxation times. The study was performed in a wide range of temperatures (30-337 K). The tunnel splitting omega(T) of the methyl groups was estimated as of low frequency (from kHz to few MHz). The proton spin pairs of the methyl group are known to perform a complex internal motion being a resultant of four components. Three of them involve mass transportation over and through the potential barrier and are characterized by the correlation times tau(3) and tau(T)of the jumps over the barrier and tunnel jumps in the threefold potential of the methyl group and tau(iso) the correlation time of isotropic rotation of the whole TMP cation. For tau(3) and tau(iso) the Arrhenius temperature dependence was assumed, while for tau(T)--the Schrödinger one. The fourth motion causes fluctuations of the tunnel splitting frequency, omega(T), and it is related to the lifetime of the methyl spin at the energy level. The correlation function for this fourth motion (tau(omega) correlation time) has been proposed by Müller-Warmuth et al. In this paper a formula for the correlation function and spectral density of the complex motion made of the above-mentioned four components was derived and used in interpretation of the T(1) relaxation time. The second moment of proton NMR line at temperatures below 50K is four times lower than its value for the rigid structure. The three components of the internal motion characterized by tau(T), tau(H), and tau(iso) were proved to reduce the second moment of the NMR line. The tunnel jumps of the methyl group reduce M(2) at almost 0K, the classical jumps over the barrier reduce M(2) in the vicinity of 50K, while the isotropic motion near 150K. Results of the study on the dynamics of CH(3) groups of TMP cation based on

  11. Spin transport in graphene nanostructures

    NARCIS (Netherlands)

    Guimaraes, M. H. D.; van den Berg, J. J.; Vera-Marun, I. J.; Zomer, P. J.; van Wees, B. J.

    2014-01-01

    Graphene is an interesting material for spintronics, showing long spin relaxation lengths even at room temperature. For future spintronic devices it is important to understand the behavior of the spins and the limitations for spin transport in structures where the dimensions are smaller than the

  12. Critical quench dynamics of random quantum spin chains: ultra-slow relaxation from initial order and delayed ordering from initial disorder

    Science.gov (United States)

    Roósz, Gergö; Lin, Yu-Cheng; Iglói, Ferenc

    2017-02-01

    By means of free fermionic techniques combined with multiple precision arithmetic we study the time evolution of the average magnetization, \\overline{m}(t), of the random transverse-field Ising chain after global quenches. We observe different relaxation behaviors for quenches starting from different initial states to the critical point. Starting from a fully ordered initial state, the relaxation is logarithmically slow described by \\overline{m}(t)∼ {{ln}}at, and in a finite sample of length L the average magnetization saturates at a size-dependent plateau {\\overline{m}}p(L)∼ {L}-b; here the two exponents satisfy the relation b/a=\\psi =1/2. Starting from a fully disordered initial state, the magnetization stays at zero for a period of time until t={t}{{d}} with {ln}{t}{{d}}∼ {L}\\psi and then starts to increase until it saturates to an asymptotic value {\\overline{m}}p(L)∼ {L}-b^{\\prime }, with b\\prime ≈ 1.5. For both quenching protocols, finite-size scaling is satisfied in terms of the scaled variable {ln}t/{L}\\psi . Furthermore, the distribution of long-time limiting values of the magnetization shows that the typical and the average values scale differently and the average is governed by rare events. The non-equilibrium dynamical behavior of the magnetization is explained through semi-classical theory.

  13. Spin Transport in High-Quality Suspended Graphene Devices

    NARCIS (Netherlands)

    Guimaraes, Marcos H. D.; Veligura, A.; Zomer, P. J.; Maassen, T.; Vera-Marun, I. J.; Tombros, N.; van Arees, B. J.; Wees, B.J. van

    We measure spin transport in high mobility suspended graphene (mu approximate to 10(5)cm(2)/(V s)), obtaining a (spin) diffusion coefficient of 0.1 m(2)/s and giving a lower bound on the spin relaxation time (tau(s) approximate to 150 ps) and spin relaxation length (lambda(s) = 4.7 mu m) for

  14. Evidence for an internal-field-induced spin-flop configuration in the extended kagome YBaCo4O7

    Science.gov (United States)

    Hoch, M. J. R.; Kuhns, P. L.; Yuan, S.; Besara, T.; Whalen, J. B.; Siegrist, T.; Reyes, A. P.; Brooks, J. S.; Zheng, H.; Mitchell, J. F.

    2013-02-01

    The spin structure and spin dynamics in the extended kagome frustrated antiferromagnet YBaCo4O7 have been investigated using zero field and low applied field 59Co NMR. The YBaCo4O7 lattice is made up of bipyramid Co-ion units that form alternating planes of edge-sharing spin triangles and corner-sharing kagome spin triangles in an unusual exchange topology. Our low-temperature spin configuration results, based on hyperfine field orientations, are consistent with those from neutron scattering for the triangle spins which order antiferromagnetically below 106 K. For the kagome spins at low temperatures the static hyperfine fields are found to be oriented orthogonal to those of the triangle spins in a spin-flop configuration that is in disagreement with the neutron findings. Nuclear relaxation rate measurements made as a function of temperature show that inhomogeneous dynamic spin disorder occurs in kagome planes well below the Néel point.

  15. Comparison of Physiological and Psychological Relaxation Using Measurements of Heart Rate Variability, Prefrontal Cortex Activity, and Subjective Indexes after Completing Tasks with and without Foliage Plants.

    Science.gov (United States)

    Park, Sin-Ae; Song, Chorong; Oh, Yun-Ah; Miyazaki, Yoshifumi; Son, Ki-Cheol

    2017-09-20

    The objective of this study was to compare physiological and psychological relaxation by assessing heart rate variability (HRV), prefrontal cortex activity, and subjective indexes while subjects performed a task with and without foliage plants. In a crossover experimental design, 24 university students performed a task transferring pots with and without a foliage plant for 3 min. HRV and oxyhemoglobin (oxy-Hb) concentration in the prefrontal cortex were continuously measured. Immediately thereafter, subjective evaluation of emotions was performed using a modified semantic differential (SD) method and a profile of mood state questionnaire (POMS). Results showed that the natural logarithmic (ln) ratio of low frequency/high frequency, as an estimate of sympathetic nerve activity, was significantly lower while performing the task with foliage plants for the average 3 min measurement interval. Oxy-Hb concentration in the left prefrontal cortex showed a tendency to decrease in the 2-3 min interval in the task with foliage plants compared to the task without plants. Moreover, significant psychological relaxation according to POMS score and SD was demonstrated when the task involved foliage plants. In conclusion, the task involving foliage plants led to more physiological and psychological relaxation compared with the task without foliage plants.

  16. Comparison of Physiological and Psychological Relaxation Using Measurements of Heart Rate Variability, Prefrontal Cortex Activity, and Subjective Indexes after Completing Tasks with and without Foliage Plants

    Directory of Open Access Journals (Sweden)

    Sin-Ae Park

    2017-09-01

    Full Text Available The objective of this study was to compare physiological and psychological relaxation by assessing heart rate variability (HRV, prefrontal cortex activity, and subjective indexes while subjects performed a task with and without foliage plants. In a crossover experimental design, 24 university students performed a task transferring pots with and without a foliage plant for 3 min. HRV and oxyhemoglobin (oxy-Hb concentration in the prefrontal cortex were continuously measured. Immediately thereafter, subjective evaluation of emotions was performed using a modified semantic differential (SD method and a profile of mood state questionnaire (POMS. Results showed that the natural logarithmic (ln ratio of low frequency/high frequency, as an estimate of sympathetic nerve activity, was significantly lower while performing the task with foliage plants for the average 3 min measurement interval. Oxy-Hb concentration in the left prefrontal cortex showed a tendency to decrease in the 2–3 min interval in the task with foliage plants compared to the task without plants. Moreover, significant psychological relaxation according to POMS score and SD was demonstrated when the task involved foliage plants. In conclusion, the task involving foliage plants led to more physiological and psychological relaxation compared with the task without foliage plants.

  17. Spin Hall and spin swapping torques in diffusive ferromagnets

    KAUST Repository

    Pauyac, C. O.

    2017-12-08

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  18. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2′-bipyridine)2(CN)2

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Zhang, Wenkai; Alonso-Mori, Roberto

    2017-01-01

    -visible spectra, associated with the 2,2′-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state...... of [Fe(bpy)2(CN)2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a short lived metal-centered triplet transient species. These measurements of [Fe(bpy)2(CN)2] complement prior measurement performed on [Fe(bpy)3]2+ and [Fe(bpy)(CN)4]2− in dimethylsulfoxide solution......We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy)2(CN)2], where bpy=2,2′-bipyridine, initiated by metal-to-ligand charge transfer (MLCT) excitation. The excited-state absorption in the transient UV...

  19. A general model to calculate the spin-lattice (T1) relaxation time of blood, accounting for haematocrit, oxygen saturation and magnetic field strength.

    Science.gov (United States)

    Hales, Patrick W; Kirkham, Fenella J; Clark, Christopher A

    2016-02-01

    Many MRI techniques require prior knowledge of the T1-relaxation time of blood (T1bl). An assumed/fixed value is often used; however, T1bl is sensitive to magnetic field (B0), haematocrit (Hct), and oxygen saturation (Y). We aimed to combine data from previous in vitro measurements into a mathematical model, to estimate T1bl as a function of B0, Hct, and Y. The model was shown to predict T1bl from in vivo studies with a good accuracy (± 87 ms). This model allows for improved estimation of T1bl between 1.5-7.0 T while accounting for variations in Hct and Y, leading to improved accuracy of MRI-derived perfusion measurements. © The Author(s) 2015.

  20. Polarons induced electronic transport, dielectric relaxation and magnetodielectric coupling in spin frustrated Ba{sub 2}FeWO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Pezhumkattil Palakkal, Jasnamol [Academy of Scientific and Innovative Research (AcSIR), CSIR—National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Campus, Trivandrum 695 019 (India); Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019 (India); Lekshmi, P. Neenu; Thomas, Senoy [Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019 (India); Valant, Matjaz [Materials Research Laboratory, University of Nova Gorica, Nova Gorica 5000 (Slovenia); Suresh, K.G. [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400 076 (India); Varma, Manoj Raama, E-mail: manoj@niist.res.in [Academy of Scientific and Innovative Research (AcSIR), CSIR—National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Campus, Trivandrum 695 019 (India); Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019 (India)

    2016-04-15

    Highlights: • Ordered double perovskite Ba{sub 2}FeWO{sub 6} synthesized in reducing atmosphere possess a tetragonal I4/m crystal structure with mixed valent Fe/W cations. • Ba{sub 2}FeWO{sub 6} has an antiferromagnetic structure with T{sub N} at 19 K. • Insulating Ba{sub 2}FeWO{sub 6} shows different conducting mechanisms at different temperature regions and dielectric relaxation. • The polarons invoked by the mixed valence state of cations and their disordered arrangements are solely responsible for the various physical phenomena observed in Ba{sub 2}FeWO{sub 6}. - Abstract: Mixed valent double perovskite Ba{sub 2}FeWO{sub 6}, with tetragonal crystal structure, synthesized in a highly controlled reducing atmosphere, shows antiferromagnetic transition at T{sub N} = 19 K. A cluster glass-like transition is observed around 30 K arising from the competing interactions between inhomogeneous magnetic states. The structural distortion leads to the formation of polarons that are not contributing to DC conduction below charge ordering temperature, T{sub CO} = 279 K. Above T{sub CO}, small polarons will start to hop by exploiting thermal energy and participate in the conduction mechanism. The polarons are also responsible for the dielectric relaxor behavior, in which the dielectric relaxation time follows non-linearity in temperature as proposed by Fulcher. The material also exhibits a small room temperature magnetoresistance of 1.7% at 90 kOe. An intrinsic magnetodielectric coupling of ∼4% near room temperature and at lower temperatures, as well as an extrinsic magnetodielectric coupling change from +4% to −6% at around 210 K are reported.

  1. Rapid monitoring of iron-chelating therapy in thalassemia major by a new cardiovascular MR measure: the reduced transverse relaxation rate

    Science.gov (United States)

    Kim, Daniel; Jensen, Jens H.; Wu, Ed X.; Feng, Li; Au, Wing-Yan; Cheung, Jerry S.; Ha, Shau-Yin; Sheth, Sujit S.; Brittenham, Gary M.

    2011-01-01

    In iron overload, almost all the excess iron is stored intracellularly as rapidly mobilizable ferritin iron and slowly exchangeable hemosiderin iron. Increases in cytosolic iron may produce oxidative damage that ultimately results in cardiomyocyte dysfunction. Because intracellular ferritin iron is evidently in equilibrium with the low-molecular-weight cytosolic iron pool, measurements of ferritin iron potentially provide a clinically useful indicator of changes in cytosolic iron. The cardiovascular magnetic resonance (CMR) index of cardiac iron used clinically, the effective transverse relaxation rate (R2*), is principally influenced by hemosiderin iron and changes only slowly over several months, even with intensive iron-chelating therapy. Another conventional CMR index of cardiac iron, the transverse relaxation rate (R2), is sensitive to both hemosiderin iron and ferritin iron. We have developed a new MRI measure, the ‘reduced transverse relaxation rate’ (RR2), and have proposed in previous studies that this measure is primarily sensitive to ferritin iron and largely independent of hemosiderin iron in phantoms mimicking ferritin iron and human liver explants. We hypothesized that RR2 could detect changes produced by 1 week of iron-chelating therapy in patients with transfusion-dependent thalassemia. We imaged 10 patients with thalassemia major at 1.5 T in mid-ventricular short-axis planes of the heart, initially after suspending iron-chelating therapy for 1 week and subsequently after resuming oral deferasirox. After resuming iron-chelating therapy, significant decreases were observed in the mean myocardial RR2 (7.8%, p 0.90). Although the difference between changes in RR2 and R2 was not significant (p > 0.3), RR2 was consistently more sensitive than R2 (and R2*) to the resumption of iron-chelating therapy, as judged by the effect sizes of relaxation rate differences detected. Although further studies are needed, myocardial RR2 may be a promising

  2. Alternating spin chain compound AgVOAsO4 probed by 75As NMR

    Science.gov (United States)

    Ahmed, N.; Khuntia, P.; Ranjith, K. M.; Rosner, H.; Baenitz, M.; Tsirlin, A. A.; Nath, R.

    2017-12-01

    75As NMR measurements were performed on a polycrystalline sample of spin-1/2 alternating spin chain Heisenberg antiferromagnet AgVOAsO4. The temperature-dependent NMR shift K (T ) , which is a direct measure of the intrinsic spin susceptibility, agrees very well with the spin-1/2 alternating-chain model, justifying the assignment of the spin lattice. From the analysis of K (T ) , magnetic exchange parameters were estimated as follows: the leading exchange J /kB≃38.4 K and the alternation ratio α =J'/J ≃0.69 . The transferred hyperfine coupling between the 75As nucleus and V4 + spins obtained by comparing the NMR shift with the bulk susceptibility amounts to Ahf≃3.3 TμB. The effect of interchain couplings on the low-temperature activated behavior of K (T ) and the spin-lattice relaxation rate 1 /T1 is identified.

  3. Relaxing music prevents stress-induced increases in subjective anxiety, systolic blood pressure, and heart rate in healthy males and females.

    Science.gov (United States)

    Knight, W E; Rickard PhD, N S

    2001-01-01

    Previous research suggests that while subjective anxiety is reduced by relaxing music, the effect of music on physiological stress indices is less consistent. In the current study, the effect of relaxing music on participants' subjective and physiological response to stress was explored, with attention paid to methodological factors and mediating variables that might have contributed to inconsistencies in previous studies. Undergraduate students (43 females & 44 males) were exposed to a cognitive stressor task involving preparation for an oral presentation either in the presence of Pachelbel's Canon in D major, or in silence. Measures of subjective anxiety, heart rate, blood pressure, cortisol, and salivary IgA were obtained during rest and after presentation of the stressor. The stressor caused significant increases in subjective anxiety, heart rate, and systolic blood pressure in male and female controls. These stress-induced increases were each prevented by exposure to music, and this effect was independent of gender. Music also enhanced baseline salivary IgA levels in the absence of any stress-induced effects. These findings provide experimental support for claims that music is an effective anxiolytic treatment, the robustness of which is demonstrated by retention of the effect in the presence of a range of potentially mediating variables.

  4. The change of longitudinal relaxation rate in oxygen enhanced pulmonary MRI depends on age and BMI but not diffusing capacity of carbon monoxide in healthy never-smokers.

    Directory of Open Access Journals (Sweden)

    Simon Sven Ivan Kindvall

    Full Text Available Oxygen enhanced pulmonary MRI is a promising modality for functional lung studies and has been applied to a wide range of pulmonary conditions. The purpose of this study was to characterize the oxygen enhancement effect in the lungs of healthy, never-smokers, in light of a previously established relationship between oxygen enhancement and diffusing capacity of carbon monoxide in the lung (DL,CO in patients with lung disease.In 30 healthy never-smoking volunteers, an inversion recovery with gradient echo read-out (Snapshot-FLASH was used to quantify the difference in longitudinal relaxation rate, while breathing air and 100% oxygen, ΔR1, at 1.5 Tesla. Measurements were performed under multiple tidal inspiration breath-holds.In single parameter linear models, ΔR1 exhibit a significant correlation with age (p = 0.003 and BMI (p = 0.0004, but not DL,CO (p = 0.33. Stepwise linear regression of ΔR1 yields an optimized model including an age-BMI interaction term.In this healthy, never-smoking cohort, age and BMI are both predictors of the change in MRI longitudinal relaxation rate when breathing oxygen. However, DL,CO does not show a significant correlation with the oxygen enhancement. This is possibly because oxygen transfer in the lung is not diffusion limited at rest in healthy individuals. This work stresses the importance of using a physiological model to understand results from oxygen enhanced MRI.

  5. Optical spin generation/detection and spin transport lifetimes

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  6. Optical spin generation/detection and spin transport lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-02-25

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  7. Magnetic Relaxation in Aluminosilicate Structures Containing Manganese(II) and Gadolinium(III) Complexes

    Science.gov (United States)

    Sur, S. K.; Heinsbergen, J. F.; Bryant, R. G.

    Electron-spin-resonance spectra and nuclear-magnetic-relaxation-dispersion measurements are reported for several aluminosilicate structures to which manganese (II) and gadolinium(III) ions have been added in several structurally distinct ways. EPR spectra demonstrate that diffusion of the hexaaquomanganese(II) ion or the aquogadolinium(III) ion into the zeolite structures is facile, apparently displacing sodium ion or protons. The addition of a complexing agent such as ethylenediaminetetraacetic acid or diethylenetriaminepentaacetic acid to the metal-loaded zeolite then yields a complex which in the gadolinium case forms inside the zeolite but in the manganese(II) case forms largely outside the zeolite under our preparation conditions. For the intrazeolite complexes, the gadolinium system is stable to both low pH and high sodium concentrations. The field dependence of the water-proton relaxation displays strong paramagnetic effects that increase with increasing temperature, consistent with exchange limitations on the access of the water-proton spin system to the paramagnetic centers. The shape of the relaxation-dispersion curves demonstrates the importance of anisotropy in the metal-ion EPR spectrum, which leads to a considerable distribution of electron-spin Larmor frequencies and a consequent weak dependence of the nuclear-spin-relaxation rate on the magnetic-field strength.

  8. Influence of intrinsic spin-flip processes on spin-polarized transport through quantum dots in the cotunneling regime

    International Nuclear Information System (INIS)

    Weymann, I.; Barnas, J.

    2006-01-01

    The influence of intrinsic spin relaxation on spin-polarized cotunneling through quantum dots coupled to ferromagnetic leads is analyzed theoretically. It is shown that the zero bias anomaly, which occurs due to the interplay of single-barrier and double-barrier cotunneling processes, becomes suppressed by spin relaxation processes on the dot. Diode-like features of the transport characteristics in the cotunneling regime have been found in asymmetrical systems. These features are also suppressed by the spin relaxation processes

  9. Nuclear spin polarization of targets

    International Nuclear Information System (INIS)

    Happer, W.

    1990-01-01

    Lasers can be used to produce milligrams to grams of noble gas nuclei with spin polarizations in excess of 50%. These quantities are sufficient to be very useful targets in nuclear physics experiments. Alkali-metal atoms are used to capture the angular momentum of circularly polarized laser photons, and the alkali-metal atoms transfer their angular momentum to noble gas atoms in binary or three-body collisions. Non-radiative collisions between the excited alkali atoms and molecular quenching gases are essential to avoid radiation trapping. The spin exchange can involve gas-phase van der Waals molecules, consisting of a noble gas atom and an alkali metal atom. Surface chemistry is also of great importance in determining the wall-induced relaxation rates of the noble gases

  10. Multi-Quanta Spin-Locking Nuclear Magnetic Resonance Relaxation Measurements: An Analysis of the Long-Time Dynamical Properties of Ions and Water Molecules Confined within Dense Clay Sediments

    Directory of Open Access Journals (Sweden)

    Patrice Porion

    2017-11-01

    Full Text Available Solid/liquid interfaces are exploited in various industrial applications because confinement strongly modifies the physico-chemical properties of bulk fluids. In that context, investigating the dynamical properties of confined fluids is crucial to identify and better understand the key factors responsible for their behavior and to optimize their structural and dynamical properties. For that purpose, we have developed multi-quanta spin-locking nuclear magnetic resonance relaxometry of quadrupolar nuclei in order to fill the gap between the time-scales accessible by classical procedures (like dielectric relaxation, inelastic and quasi-elastic neutron scattering and obtain otherwise unattainable dynamical information. This work focuses on the use of quadrupolar nuclei (like 2H, 7Li and 133Cs, because quadrupolar isotopes are the most abundant NMR probes in the periodic table. Clay sediments are the confining media selected for this study because they are ubiquitous materials implied in numerous industrial applications (ionic exchange, pollutant absorption, drilling, waste storing, cracking and heterogeneous catalysis.

  11. Probing the superconducting ground state of the rare-earth ternary boride superconductors R RuB2 (R = Lu,Y) using muon-spin rotation and relaxation

    Science.gov (United States)

    Barker, J. A. T.; Singh, R. P.; Hillier, A. D.; Paul, D. McK.

    2018-03-01

    The superconductivity in the rare-earth transition-metal ternary borides R RuB2 (where R =Lu and Y) has been investigated using muon-spin rotation and relaxation. Measurements made in zero field suggest that time-reversal symmetry is preserved upon entering the superconducting state in both materials; a small difference in depolarization is observed above and below the superconducting transition in both compounds, however, this has been attributed to quasistatic magnetic fluctuations. Transverse-field measurements of the flux-line lattice indicate that the superconductivity in both materials is fully gapped, with a conventional s -wave pairing symmetry and BCS-like magnitudes for the zero-temperature gap energies. The electronic properties of the charge carriers in the superconducting state have been calculated, with effective masses m*/me=9.8 ±0.1 and 15.0 ±0.1 in the Lu and Y compounds, respectively, with superconducting carrier densities ns=(2.73 ±0.04 ) ×1028m-3 and (2.17 ±0.02 ) ×1028m-3 . The materials have been classified according to the Uemura scheme for superconductivity, with values for Tc/TF of 1 /(414 ±6 ) and 1 /(304 ±3 ) , implying that the superconductivity may not be entirely conventional in nature.

  12. Spin-dependent energy distribution of B-hadrons from polarized top decays considering the azimuthal correlation rate

    Directory of Open Access Journals (Sweden)

    S.M. Moosavi Nejad

    2016-04-01

    Full Text Available Basically, the energy distribution of bottom-flavored hadrons produced through polarized top quark decays t(↑→W++b(→Xb, is governed by the unpolarized rate and the polar and the azimuthal correlation functions which are related to the density matrix elements of the decay t(↑→bW+. Here we present, for the first time, the analytical expressions for the O(αs radiative corrections to the differential azimuthal decay rates of the partonic process t(↑→b+W+ in two helicity systems, which are needed to study the azimuthal distribution of the energy spectrum of the hadrons produced in polarized top decays. These spin-momentum correlations between the top quark spin and its decay product momenta will allow the detailed studies of the top decay mechanism. Our predictions of the hadron energy distributions also enable us to deepen our knowledge of the hadronization process and to test the universality and scaling violations of the bottom-flavored meson fragmentation functions.

  13. Nuclear relaxation in semiconductors doped with magnetic impurities

    International Nuclear Information System (INIS)

    Mel'nichuk, S.V.; Tovstyuk, N.K.

    1984-01-01

    The temperature and concentration dependences are investigated of the nuclear spin-lattice relaxation time with account of spin diffusion for degenerated and non-degenerated semicon- ductors doped with magnetic impurities. In case of the non-degenerated semiconductor the time is shown to grow with temperature, while in case of degenerated semiconductor it is practically independent of temperature. The impurity concentration growth results in decreasing the spin-lattice relaxation time

  14. Evidence of refilled chamber gas pressure enhancing cooling rate during melt spinning of a Zr50Cu40Al10 alloy

    Directory of Open Access Journals (Sweden)

    Hong-wang Yang

    2015-07-01

    Full Text Available The influence of the refilled gas pressure on the glass forming behaviour of one of the best ternary glass forming alloys Zr50Cu40Al10 was studied for the melt spinning process. The amorphicity of as-quenched ribbons was characterized by X-ray diffraction (XRD and differential scanning calorimetry (DSC. The refilled chamber atmospheric pressure is crucial to the cooling rate of melt spinning. At high vacuum, at pressure less than 0.0001 atm, fully crystalline fragments are obtained. Monolithic amorphous ribbons were only obtained at a gas pressure of 0.1 atm or higher. The extended contact length between thecribbons and the copper wheel contributes to the high cooling rate of melt spinning. Higher chamber gas pressure leads to more turbulence of liquid metal beneath the nozzle; therefore, lower pressure is preferable at practical melt spinning processes once glass forming conditions are fulfilled.

  15. Coherent and correlated spin transport in nanoscale superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Morten, Jan Petter

    2008-03-15

    Motivated by the desire for better understanding of nano electronic systems, we theoretically study the conductance and noise characteristics of current flow between superconductors, ferromagnets, and normal-metals. Such nano structures can reveal information about superconductor proximity effects, spin-relaxation processes, and spintronic effects with potential applications for different areas of mesoscopic physics. We employ the quasiclassical theory of superconductivity in the Keldysh formalism, and calculate the nonequilibrium transport of spin and charge using various approaches like the circuit theory of quantum transport and full counting statistics. For two of the studied structures, we have been able to compare our theory to experimental data and obtain good agreement. Transport and relaxation of spin polarized current in superconductors is governed by energy-dependent transport coefficients and spin-flip rates which are determined by quantum interference effects. We calculate the resulting temperature-dependent spin flow in ferromagnet-superconductor devices. Experimental data for spin accumulation and spin relaxation in a superconducting nano wire is in agreement with the theory, and allows for a spin-flip spectroscopy that determines the dominant mechanism for spin-flip relaxation in the studied samples. A ferromagnet precessing under resonance conditions can give rise to pure spin current injection into superconductors. We find that the absorbed spin current is measurable as a temperature dependent Gilbert damping, which we calculate and compare to experimental data. Crossed Andreev reflection denotes superconducting pairing of electrons flowing from different normal-metal or ferromagnet terminals into a superconductor. We calculate the nonlocal currents resulting from this process in competition with direct electron transport between the normal-metal terminals. We take dephasing into account, and study the nonlocal current when the types of contact in

  16. Model expressions for the spin-orbit interaction and phonon-mediated spin dynamics in quantum dots

    Science.gov (United States)

    Vaughan, M. P.; Rorison, J. M.

    2018-01-01

    Model expressions for the spin-orbit interaction in a quantum dot are obtained. The resulting form does not neglect cubic terms and allows for a generalized structural inversion asymmetry. We also obtain analytical expressions for the coupling between states for the electron-phonon interaction and use these to derive spin-relaxation rates, which are found to be qualitatively similar to those derived elsewhere in the literature. We find that, due to the inclusion of cubic terms, the Dresselhaus contribution to the ground state spin relaxation disappears for spherical dots. A comparison with previous theory and existing experimental results shows good agreement thereby presenting a clear analytical formalism for future developments. Comparative calculations for potential materials are presented.

  17. Low-energy spin fluctuations in the non-Fermi-liquid compound YbRh2Si2

    Directory of Open Access Journals (Sweden)

    O. Stockert et al

    2007-01-01

    Full Text Available We report on inelastic neutron scattering experiments on YbRh2Si2 powder to study the low-energy spin dynamics at temperatures between T=0.8 and 22 K. The low-energy magnetic response is quasielastic. However, it exhibits an unusual form not modelled by a simple relaxation rate yielding a Lorentzian lineshape, but can satisfactorily be described by a phenomenological model involving a distribution of relaxation rates. The lower bound of the relaxation rates varies roughly linear with temperature indicating a pronounced slowing down of the critical modes above the antiferromagnetic ordering temperature TNapprox70 mK.

  18. Zero-field Spin Depolarization of Low-Energy Muons in Ferromagnetic Nickel and Silver Metal

    Science.gov (United States)

    Saadaoui, H.; Salman, Z.; Prokscha, T.; Suter, A.; Wojek, B. M.; Morenzoni, E.

    We present zero-field muon-spin depolarization measurements in nickel and silver performed using low-energy muon-spin relaxation technique.Ni or Ag are usually used in this depth-resolved technique as a backing material to enable background subtraction when studying small crystals or materials with weak magnetism. The depolarization rate of the asymmetry in silver and that of the slow relaxing part of the asymmetry in nickel are small(≤ 0.05 μs-1), and weakly temperature and energy-dependent.

  19. Spin coherence in phosphorescent triplet states

    International Nuclear Information System (INIS)

    Hof, C.A. van 't

    1977-01-01

    The electron spin echo is studied on the dephasing mechanism in the photo-excited triplet state of quinoline in a durene host. First, a comparative investigation of the merits of the different spin echo techniques is presented. It turns out that the rotary echo generally yields a longer phase memory time than the two-pulse echo, whereas in the Carr-Purcell experiment, the dephasing can even be largely suppressed. Secondly, it is shown that the dephasing mechanism is determined by the nuclear spins of the guest molecules as well as those in the host material. A theoretical basis for interpreting the effect of vibronic relaxation on the decay rate of the rotary echo, as observed in parabenzoquinone, is given. Similar experiments in aniline reveal also that in this molecule, two close-lying triplet states exist, which is attributed to an inversion vibration analogous to the well-known example in ammonia

  20. Enhanced ultrafast relaxation rate in the Weyl semimetal phase of MoTe2 measured by time- and angle-resolved photoelectron spectroscopy

    Science.gov (United States)

    Crepaldi, A.; Autès, G.; Gatti, G.; Roth, S.; Sterzi, A.; Manzoni, G.; Zacchigna, M.; Cacho, C.; Chapman, R. T.; Springate, E.; Seddon, E. A.; Bugnon, Ph.; Magrez, A.; Berger, H.; Vobornik, I.; Kalläne, M.; Quer, A.; Rossnagel, K.; Parmigiani, F.; Yazyev, O. V.; Grioni, M.

    2017-12-01

    MoTe2 has recently been shown to realize in its low-temperature phase the type-II Weyl semimetal (WSM). We investigated by time- and angle- resolved photoelectron spectroscopy (tr-ARPES) the possible influence of the Weyl points on the electron dynamics above the Fermi level EF, by comparing the ultrafast response of MoTe2 in the trivial and topological phases. In the low-temperature WSM phase, we report an enhanced relaxation rate of electrons optically excited to the conduction band, which we interpret as a fingerprint of the local gap closure when Weyl points form. By contrast, we find that the electron dynamics of the related compound WTe2 is slower and temperature independent, consistent with a topologically trivial nature of this material. Our results shows that tr-ARPES is sensitive to the small modifications of the unoccupied band structure accompanying the structural and topological phase transition of MoTe2.

  1. On the electronic phase diagram of Ba{sub 1-x}K{sub x}(Fe{sub 1-y}Co{sub y}){sub 2}As{sub 2} and EuFe{sub 2}(As{sub 1-x}P{sub x}){sub 2} superconductors. A local probe study using Moessbauer spectroscopy and muon spin relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Goltz, Til

    2015-10-28

    hyperfine field below T{sup AFM}{sub Eu} at which the Eu subsystem orders into a canted A-type AFM magnetic structure. Furthermore, an additional temperature dependent out-of-plane tilting of the static Fe hyperfine field is observed below the onset of static Eu ordering. ZF-μSR shows a strong increase of the local field at the muon site below T{sup AFM}{sub Eu} ∼ 20 K and a crossover from isotropic to anisotropic Eu spin-dynamics between 30 and 10 K. The temperature dependence of the spin dynamics, as derived from the μSR dynamic relaxation rates, are related to a critical slowing down of Eu-spin fluctuations which extends to even much higher temperatures (∼100 K). They also effect the experimental linewidth observed in the {sup 57}Fe MS experiments. The strong influence of the Eu magnetic order onto the primary observables in both methods prevents conclusive interpretation of the experimental data with respect to a putative interplay of Fe magnetism and superconductivity.

  2. Probing quantum coherence in single-atom electron spin resonance

    Science.gov (United States)

    Willke, Philip; Paul, William; Natterer, Fabian D.; Yang, Kai; Bae, Yujeong; Choi, Taeyoung; Fernández-Rossier, Joaquin; Heinrich, Andreas J.; Lutz, Christoper P.

    2018-01-01

    Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins. PMID:29464211

  3. Probing quantum coherence in single-atom electron spin resonance.

    Science.gov (United States)

    Willke, Philip; Paul, William; Natterer, Fabian D; Yang, Kai; Bae, Yujeong; Choi, Taeyoung; Fernández-Rossier, Joaquin; Heinrich, Andreas J; Lutz, Christoper P

    2018-02-01

    Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T 2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T 2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins.

  4. Nonlinear fractional relaxation

    Indian Academy of Sciences (India)

    Abstract. We define a nonlinear model for fractional relaxation phenomena. We use ε-expansion method to analyse this model. By studying the fundamental solutions of this model we find that when t → 0 the model exhibits a fast decay rate and when t → ∞ the model exhibits a power-law decay. By analysing the frequency ...

  5. Persistent low-temperature spin dynamics in the mixed-valence iridate Ba3InIr2O9

    Science.gov (United States)

    Dey, Tusharkanti; Majumder, M.; Orain, J. C.; Senyshyn, A.; Prinz-Zwick, M.; Bachus, S.; Tokiwa, Y.; Bert, F.; Khuntia, P.; Büttgen, N.; Tsirlin, A. A.; Gegenwart, P.

    2017-11-01

    Using thermodynamic measurements, neutron diffraction, nuclear magnetic resonance, and muon spin relaxation, we establish putative quantum spin-liquid behavior in Ba3InIr2O9 , where unpaired electrons are localized on mixed-valence Ir2O9 dimers with Ir4.5 + ions. Despite the antiferromagnetic Curie-Weiss temperature on the order of 10 K, neither long-range magnetic order nor spin freezing are observed down to at least 20 mK, such that spins are short-range correlated and dynamic over nearly three decades in temperature. Quadratic power-law behavior of both the spin-lattice relaxation rate and specific heat indicates the gapless nature of the ground state. We envisage that this exotic behavior may be related to an unprecedented combination of the triangular and buckled honeycomb geometries of nearest-neighbor exchange couplings in the mixed-valence setting.

  6. Electronic spin transport in graphene field-effect transistors

    NARCIS (Netherlands)

    Popinciuc, M.; Jozsa, C.; Zomer, P. J.; Tombros, N.; Veligura, A.; Jonkman, H. T.; van Wees, B. J.

    2009-01-01

    Spin transport experiments in graphene, a single layer of carbon atoms ordered in a honeycomb lattice, indicate spin-relaxation times that are significantly shorter than the theoretical predictions. We investigate experimentally whether these short spin-relaxation times are due to extrinsic factors,

  7. Effects of progressive relaxation and classical music on measurements of attention, relaxation, and stress responses.

    Science.gov (United States)

    Scheufele, P M

    2000-04-01

    The present experiment examined relaxation using different experimental conditions to test whether the effects of individual elements of relaxation could be measured, whether specific effects were revealed, or whether relaxation resulted from a generalized "relaxation response." Sixty-seven normal, male volunteers were exposed to a stress manipulation and then to one of two relaxation (Progressive Relaxation, Music) or control (Attention Control, Silence) conditions. Measurements of attention, relaxation, and stress responses were obtained during each phase of the experiment. All four groups exhibited similar performance on behavioral measures of attention that suggested a reduction in physiological arousal following their relaxation or control condition, as well as a decreased heart rate. Progressive Relaxation, however, resulted in the greatest effects on behavioral and self-report measures of relaxation, suggesting that cognitive cues provided by stress management techniques contribute to relaxation.

  8. Dynamics of unloaded and green tea extract loaded lecithin based liposomal dispersions investigated by nuclear magnetic resonance T2relaxation.

    Science.gov (United States)

    Kirtil, Emrah; Dag, Damla; Guner, Selen; Unal, Kubra; Oztop, Mecit H

    2017-09-01

    Liposomes are lipid bilayer vesicles that can be used as encapsulation systems for bioactive agents to provide increased protection against environmental stresses (such as pH or temperature extremes). Time Domain Nuclear Magnetic Resonance (TD-NMR) that is based on differentiation of specimen contents with respect to magnetic relaxation rates provides detailed information on amount, state and distribution of water and oil and provide reproducible results on the samples. These make TD-NMR particularly suitable for time-dependent monitoring of emulsion system dynamics. In this study, spin-spin (T 2 ) relaxation times and relaxation spectra were used for characterizing green tea extract loaded and unloaded liposomes prepared with soy (S75) and egg lecithins (E80) by different preparation methods (such as homogenization type, pressure and solvent type). Mean particle sizes of liposomes were found to be the most influential factor in shaping mono-exponential T 2 relaxation times. The differences in particle sizes of E80 and S75 samples along with samples with different homogenization pressures could be monitored with T 2 relaxation times. Additionally, T 2 relaxation times were found to be correlated with particle shape irregularity, and chemical instability of samples due to lipid oxidation. With relaxation spectrum analysis, particular components in the sample could be distinguished (internal/external water and lipid bilayers), which gave more elaborate results on mechanisms of instability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effect of wrist posture, rate of force development/relaxation, and isotonic contractions on finger force independence.

    Science.gov (United States)

    May, Stephen E; Keir, Peter J

    2018-02-01

    The multi-articular anatomy and inter-connections of the extrinsic finger muscles suggests that wrist posture may affect enslaved finger forces. The purpose of this study was to determine the effects of (i) wrist posture on enslaved finger forces during ramp and isotonic exertions, and (ii) the rate of force development on enslaved forces and error. Twelve men performed 3 repetitions of isometric finger flexion and extension force with index and ring fingers with the wrist in 30° flexion, neutral, and 30° extension. Trials consisted of an isotonic contraction at 25% of maximum, and two ramp contractions performed at 25% MVC/s and 10% MVC/s up to 50% MVC, returning to zero at the same rate. Electromyography was recorded from compartments of extensor digitorum (ED) and flexor digitorum superficialis and analyzed at 25% MVC. Wrist posture significantly affected enslaving effect (EE) during extension exertions (F 4, 44  > 2.6, p < .05) with higher EE, error, and muscle activity of ED in wrist extension. Contraction condition significantly affected EE for index and ring finger exertions (p = .001). In fingers adjacent to the task finger, descending phase EE was higher than ascending phase, independent of muscle activity. Mechanical factors such as posture, and neural factors both contribute to enslaved finger actions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Angular dependence and symmetry of Rashba spin torque in ferromagnetic heterostructures

    KAUST Repository

    Ortiz Pauyac, Christian

    2013-06-26

    In a ferromagnetic heterostructure, the interplay between Rashba spin-orbit coupling and exchange splitting gives rise to a current-driven spin torque. In a realistic device setup, we investigate the Rashba spin torque in the diffusive regime and report two major findings: (i) a nonvanishing torque exists at the edges of the device even when the magnetization and effective Rashba field are aligned; (ii) anisotropic spin relaxation rates driven by the Rashba spin-orbit coupling assign the spin torque a general expression T = T y (θ) m × (y × m) + T y (θ) y × m + T z (θ) m × (z × m) + T z (θ) z × m, where the coefficients T, y, z depend on the magnetization direction. Our results agree with recent experiments. © 2013 AIP Publishing LLC.

  11. Magnetoconductance correction in zinc-blende semiconductor nanowires with spin-orbit coupling

    Science.gov (United States)

    Kammermeier, Michael; Wenk, Paul; Schliemann, John; Heedt, Sebastian; Gerster, Thomas; Schäpers, Thomas

    2017-12-01

    We study the effects of spin-orbit coupling on the magnetoconductivity in diffusive cylindrical semiconductor nanowires. Following up on our former study on tubular semiconductor nanowires, we focus in this paper on nanowire systems where no surface accumulation layer is formed but instead the electron wave function extends over the entire cross section. We take into account the Dresselhaus spin-orbit coupling resulting from a zinc-blende lattice and the Rashba spin-orbit coupling, which is controlled by a lateral gate electrode. The spin relaxation rate due to Dresselhaus spin-orbit coupling is found to depend neither on the spin density component nor on the wire growth direction and is unaffected by the radial boundary. In contrast, the Rashba spin relaxation rate is strongly reduced for a wire radius that is smaller than the spin precession length. The derived model is fitted to the data of magnetoconductance measurements of a heavily doped back-gated InAs nanowire and transport parameters are extracted. At last, we compare our results to previous theoretical and experimental studies and discuss the occurring discrepancies.

  12. Effect of spin-orbit scattering on transport properties of low-dimensional dilute alloys

    Energy Technology Data Exchange (ETDEWEB)

    Heers, Swantje

    2011-09-21

    The scope of this thesis is to gain insight, by means of ab initio-calculations, into the physics of momentum and spin relaxation phenomena induced by electron scattering at impurities and defects in the noble metals copper, silver and gold. The main results are subdivided in three parts. In the first part, momentum- and spinrelaxation times due to scattering at 3d, 4sp, 4d, 5sp, 5d and 6sp impurities in copper and gold fcc bulk are investigated. The inversion symmetry of the crystals leads to a two-fold degeneracy of all states on the Fermi surface, and therefore spin relaxation is dominated by the Elliott-Yafet mechanism as well as the spin-orbit coupling of the impurity. For impurities in gold, we calculate much shorter spin-relaxation times than in copper because of the stronger spin-orbit coupling of the gold host. Furthermore, we have found important qualitative differences between the relaxation times obtained for the d- and the sp- impurities. As scattering at d-impurities is resonant, the electrons spend much more time at the impurity sites than in the case of the sp-impurities; therefore, they are much longer exhibited to the spin-orbit coupling of the impurity. This results in considerably shorter spin-relaxation times, even if the momentum scattering rates are in the same order of magnitude. Finally, the investigation of interference of scattering processes at impurity dimers reveals that relevant differences to the independent-impurity approximation appear only for strong d-scatterer, placed at nearest neighboring sites. In the second part we investigate the reduction of spin-conserving surface-state lifetimes induced by adatom- and impurity-scattering on the (111) surfaces of copper, silver and gold films with different thicknesses. We have found strong qualitative differences in the lifetimes when comparing the results for adatoms to those of impurities in the first and second layer. The trends for the latter ones are similar to those calculated in

  13. Spin Structures in Magnetic Nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Brok, Erik; Frandsen, Cathrine

    2013-01-01

    Spin structures in nanoparticles of ferrimagnetic materials may deviate locally in a nontrivial way from ideal collinear spin structures. For instance, magnetic frustration due to the reduced numbers of magnetic neighbors at the particle surface or around defects in the interior can lead to spin...... canting and hence a reduced magnetization. Moreover, relaxation between almost degenerate canted spin states can lead to anomalous temperature dependences of the magnetization at low temperatures. In ensembles of nanoparticles, interparticle exchange interactions can also result in spin reorientation...

  14. Modulation bandwidth of a spin laser

    Science.gov (United States)

    Banerjee, D.; Adari, R.; Murthy, M.; Suggisetti, P.; Ganguly, S.; Saha, D.

    2011-04-01

    We have studied small signal frequency response of a spin laser. We have shown that the response is characterized by two distinct resonant peaks corresponding to the two polarization modes of the spin laser. It is observed that the modulation bandwidth of a spin laser can be smaller or larger than that of a conventional laser depending upon the current bias and spin relaxation time constant. A small value for spin relaxation constant may not be detrimental for modulation bandwidth. This anomalous observation is explained by considering both the amplitude and phase response of the two polarization modes. A spin laser can act as a combination of low-pass and bandpass filters. The passband frequency range is tunable by external bias. We have also studied the evolution of resonant peaks and modulation bandwidth as a function of spin relaxation time constant.

  15. Spin diffusion length of Permalloy using spin absorption in lateral spin valves

    Science.gov (United States)

    Sagasta, Edurne; Omori, Yasutomo; Isasa, Miren; Otani, YoshiChika; Hueso, Luis E.; Casanova, Fèlix

    2017-08-01

    We employ the spin absorption technique in lateral spin valves to extract the spin diffusion length of Permalloy (Py) as a function of temperature and resistivity. A linear dependence of the spin diffusion length with the conductivity of Py is observed, evidencing that the Elliott-Yafet mechanism is the dominant spin relaxation mechanism in Permalloy. Completing the dataset with additional data found in the literature, we obtain λPy = (0.91 ± 0.04) (fΩm2)/ρPy.

  16. Production of highly spin-polarized atomic hydrogen and deuterium by spin-exchange

    International Nuclear Information System (INIS)

    Redsun, S.G.

    1990-01-01

    The first part of this work is a study of the production of highly spin-polarized atomic hydrogen and deuterium by spin-exchange optical pumping. A tunable ring dye laser is used to polarize rubidium atoms by optical pumping. The cell containing the rubidium vapor is coated with paraffin in order to reduce spin relaxation due to wall collisions. Hydrogen gas is dissociated in an inductive discharge and flows continuously through the cell, in which the hydrogen atoms are polarized by spin-exchange collisions with the polarized rubidium atoms. The hydrogen polarization is determined by a combination of fluorescence monitoring and magnetic resonance spectroscopy. Atomic hydrogen polarization as high as 2 z > H = 0.72(6) has been observed, which is the highest degree of polarization yet produced by this method. However, the polarization may be limited to this value due to the depolarization of the rubidium by radiation trapping. The spin-relaxation rate of atomic hydrogen on a paraffin-coated cell is also measured for the first time, and corresponds to about 3,800 wall bounces before electron-spin randomization. The second part of this work is a theoretical analysis of the problem of radiation trapping in a dense optically pumped alkali vapor. A Monte Carlo routine is used to simulate the trajectories of multiply scattered photons. The average spin angular momentum transfer from the photons to the vapor is used to determine the equilibrium polarization of the vapor as a function of the alkali density and the frequency of the pumping light

  17. Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes

    Science.gov (United States)

    Avsar, Ahmet; Tan, Jun Y.; Kurpas, Marcin; Gmitra, Martin; Watanabe, Kenji; Taniguchi, Takashi; Fabian, Jaroslav; Özyilmaz, Barbaros

    2017-09-01

    Two-dimensional materials offer new opportunities for both fundamental science and technological applications, by exploiting the electron's spin. Although graphene is very promising for spin communication due to its extraordinary electron mobility, the lack of a bandgap restricts its prospects for semiconducting spin devices such as spin diodes and bipolar spin transistors. The recent emergence of two-dimensional semiconductors could help overcome this basic challenge. In this letter we report an important step towards making two-dimensional semiconductor spin devices. We have fabricated a spin valve based on ultrathin (~5 nm) semiconducting black phosphorus (bP), and established fundamental spin properties of this spin channel material, which supports all electrical spin injection, transport, precession and detection up to room temperature. In the non-local spin valve geometry we measure Hanle spin precession and observe spin relaxation times as high as 4 ns, with spin relaxation lengths exceeding 6 μm. Our experimental results are in a very good agreement with first-principles calculations and demonstrate that the Elliott-Yafet spin relaxation mechanism is dominant. We also show that spin transport in ultrathin bP depends strongly on the charge carrier concentration, and can be manipulated by the electric field effect.

  18. Non-uniform sampling of NMR relaxation data

    DEFF Research Database (Denmark)

    Schwarz-Linnet, Troels; Teilum, Kaare

    2016-01-01

    The use of non-uniform sampling of NMR spectra may give significant reductions in the data acquisition time. For quantitative experiments such as the measurement of spin relaxation rates, non-uniform sampling is however not widely used as inaccuracies in peak intensities may lead to errors...... of the multi-dimensional decomposition and iterative re-weighted least-squares algorithms in reconstructing spectra with accurate peak intensities. As long as a single fully sampled spectrum is included in a series of otherwise non-uniform sampled two-dimensional spectra, multi-dimensional decomposition...... in the extracted dynamic parameters. By systematic reducing the coverage of the Nyquist grid of (15)N Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion datasets for four different proteins and performing a full data analysis of the resulting non-uniform sampled datasets, we have compared the performance...

  19. Noisy Spins and the Richardson-Gaudin Model

    Science.gov (United States)

    Rowlands, Daniel A.; Lamacraft, Austen

    2018-03-01

    We study a system of spins (qubits) coupled to a common noisy environment, each precessing at its own frequency. The correlated noise experienced by the spins implies long-lived correlations that relax only due to the differing frequencies. We use a mapping to a non-Hermitian integrable Richardson-Gaudin model to find the exact spectrum of the quantum master equation in the high-temperature limit and, hence, determine the decay rate. Our solution can be used to evaluate the effect of inhomogeneous splittings on a system of qubits coupled to a common bath.

  20. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae

    Science.gov (United States)

    Zrake, Jonathan; Arons, Jonathan

    2017-09-01

    We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ-problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ-ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.

  1. The effect of the melting spinning cooling rate on transformation temperatures in ribbons Ti-Ni-Cu shape memory

    International Nuclear Information System (INIS)

    Ramos, A.P.; Castro, W.B.; Anselmo, G.C. dos S.

    2014-01-01

    Ti-Ni-Cu alloys have been attracting attention by their high performance of shape memory effect and decrease of thermal and stress hysteresis in comparison with Ti-Ni binary alloys. One important challenge of microsystems design is the implementation of miniaturized actuation principles efficient at the micro-scale. Shape memory alloys (SMAs) have early on been considered as a potential solution to this problem as these materials offer attractive properties like a high-power to weight ratio, large deformation and the capability to be processed at the micro-scale. Shape memory characteristics of Ti-37,8Cu-18,7Ni alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray diffraction. In these experiments particular attention has been paid to change of the velocity of cooling wheel from 21 to 63 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate on austenitic and martensitic transformations behaviors is discussed. (author)

  2. Spin dynamics in the single molecule magnet Ni4 under microwave irradiation

    Science.gov (United States)

    de Loubens, Gregoire

    2009-03-01

    Quantum mechanical effects such as quantum tunneling of magnetization (QTM) and quantum phase interference have been intensively studied in single molecule magnets (SMMs). These materials have also been suggested as candidates for qubits and are promising for molecular spintronics. Understanding decoherence and energy relaxation mechanisms in SMMs is then both of fundamental interest and important for the use of SMMs in applications. Interestingly, the single-spin relaxation rate due to direct process of a SMM embedded in an elastic medium can be derived without any unknown coupling constant [1]. Moreover, nontrivial relaxation mechanisms are expected from collective effects in SMM single crystals, such as phonon superradiance or phonon bottleneck. In order to investigate the spin relaxation between the two lowest lying spin-states of the S=4 single molecule magnet Ni4, we have developed an integrated sensor that combines a microstrip resonator and micro-Hall effect magnetometer on a chip [2]. This sensor enables both real time studies of magnetization dynamics under pulse irradiation as well as simultaneous measurements of the absorbed power and magnetization changes under continuous microwave irradiation. The latter technique permits the study of small deviations from equilibrium under steady state conditions, i.e. small amplitude cw microwave irradiation. This has been used to determine the energy relaxation rate of a Ni4 single crystal as a function of temperature at two frequencies, 10 and 27.8 GHz. A strong temperature dependence is observed below 1.5 K, which is not consistent with a direct spin-phonon relaxation process. The data instead suggest that the spin relaxation is dominated by a phonon bottleneck at low temperatures and occurs by an Orbach process involving excited spin-levels at higher temperatures [3]. Experimental results will be compared with detailed calculations of the relaxation rate using the density matrix equation with the relaxation

  3. Light-free magnetic resonance force microscopy for studies of electron spin polarized systems

    International Nuclear Information System (INIS)

    Pelekhov, Denis V.; Selcu, Camelia; Banerjee, Palash; Chung Fong, Kin; Chris Hammel, P.; Bhaskaran, Harish; Schwab, Keith

    2005-01-01

    Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its excellent sensitivity opens the possibility for magnetic resonance studies of spin accumulation resulting from the injection of spin polarized currents into a para-magnetic collector. The method is based on mechanical detection of magnetic resonance which requires low noise detection of cantilever displacement; so far, this has been accomplished using optical interferometry. This is undesirable for experiments on doped silicon, where the presence of light is known to enhance spin relaxation rates. We report a non-optical displacement detection scheme based on sensitive microwave capacitive readout

  4. Human-brain ferritin studied by muon spin rotation: a pilot study.

    Science.gov (United States)

    Bossoni, Lucia; Grand Moursel, Laure; Bulk, Marjolein; Simon, Brecht G; Webb, Andrew; van der Weerd, Louise; Huber, Martina; Carretta, Pietro; Lascialfari, Alessandro; Oosterkamp, Tjerk H

    2017-10-18

    Muon spin rotation is employed to investigate the spin dynamics of ferritin proteins isolated from the brain of an Alzheimer's disease (AD) patient and of a healthy control, using a sample of horse-spleen ferritin as a reference. A model based on the Néel theory of superparamagnetism is developed in order to interpret the spin relaxation rate of the muons stopped by the core of the protein. Using this model, our preliminary observations show that ferritins from the healthy control are filled with a mineral compatible with ferrihydrite, while ferritins from the AD patient contain a crystalline phase with a larger magnetocrystalline anisotropy, possibly compatible with magnetite or maghemite.

  5. Natural relaxation

    Science.gov (United States)

    Marzola, Luca; Raidal, Martti

    2016-11-01

    Motivated by natural inflation, we propose a relaxation mechanism consistent with inflationary cosmology that explains the hierarchy between the electroweak scale and Planck scale. This scenario is based on a selection mechanism that identifies the low-scale dynamics as the one that is screened from UV physics. The scenario also predicts the near-criticality and metastability of the Standard Model (SM) vacuum state, explaining the Higgs boson mass observed at the Large Hadron Collider (LHC). Once Majorana right-handed neutrinos are introduced to provide a viable reheating channel, our framework yields a corresponding mass scale that allows for the seesaw mechanism as well as for standard thermal leptogenesis. We argue that considering singlet scalar dark matter extensions of the proposed scenario could solve the vacuum stability problem and discuss how the cosmological constant problem is possibly addressed.

  6. Intermolecular nuclear relaxation in paramagnetic solutions: from free radicals to rare earths

    Energy Technology Data Exchange (ETDEWEB)

    Belorizky, E. [Universite Joseph-Fourier, Lab. de Spectrometrie Physique, CNRS-UMR 5588, 38 - Saint Martin d' Heres (France); Fries, P.H.; Rast, S. [CEA Grenoble, Laboratoire de Reconnaissance ionique, Service de Chimie Inorganique et Biologique UMR 5046, Dept. de Recherche Fondamentale sur la Matiere Condensee, 38 (France)

    2001-11-01

    The principles of the intermolecular relaxation of a nuclear spin by its fluctuating magnetic dipolar interactions with the electronic spins of the paramagnetic surrounding species in solution are briefly recalled. It is shown that a very high dynamic nuclear polarization (DNP) of solvent protons is obtained by saturating allowed transitions of free radicals with a hyperfine structure, and that this effect can be used in efficient Earth field magnetometers. Recent work on trivalent lanthanide Ln{sup 3+} aqua complexes in heavy water solutions is discussed, including paramagnetic shift and relaxation rate measurements of the {sup 1}H NMR lines of probe solutes. This allows a determination of the effective electronic magnetic moments of the various Ln{sup 3+} ions in these complexes, and an estimation of their longitudinal and transverse electronic relaxation times T{sub 1e} and T{sub 2e}. Particular attention is given to Gd(III) hydrated chelates which can serve as contrast agents in magnetic resonance imaging (MRI). The full experimental electronic paramagnetic resonance (EPR) spectra of these complexes can be interpreted within the Redfield relaxation theory. Monte-Carlo simulations are used to explore situations beyond the validity of the Redfield approximation. For each Gd(III) complex, the EPR study leads to an accurate prediction of T{sub 1e}, which can be also derived from an independent relaxation dispersion study of the protons of the probe solutes. (authors)

  7. Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter Arendt; Jensen, Anker Degn

    2016-01-01

    because the free radicals were trapped in a char consisting of a molten amorphous silica at heating rates of 103-104 K s-1. The experimental electron spin resonance spectroscopy spectra were analyzed by fitting to simulated data in order to identify radical types, based on g-values and line widths...

  8. Nuclear magnetic resonance in high magnetic fields: Study of singlet-ground-state due to 1-D quantum spin effect

    Science.gov (United States)

    Chiba, Meiro; Ajiro, Yoshitami; Satoh, Eiji; Kubo, Takeji

    1996-02-01

    In one-dimensional (1-D) magnets the singlet-ground-state (SGS) due to the quantum spin effect is one of the most interesting phenomena. The temperature and the field dependences of the proton spin-lattice relaxation under magnetic fields up to 15 T have been observed for SGS materials, namely, NENP (Haldane system) and CuCI 2(γ-picoline) 2 (alternating antiferromagnetic chain). The results clearly show the excitation of SGS with a characteristic energy gap in the magnetic excited state. The observed relaxation rate is discussed in terms of the number of magnetic excitons in focussing on the dissimilarity between two systems.

  9. Prognostic Significance of Transverse Relaxation Rate (R2* in Blood Oxygenation Level-Dependent Magnetic Resonance Imaging in Patients with Invasive Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Hye Young Choi

    Full Text Available To examine the relationship between magnetic resonance transverse relaxation rate (R2* and prognostic factors.A total of 159 women with invasive ductal carcinomas (IDCs underwent breast magnetic resonance imaging (MRI including blood oxygenation level-dependent (BOLD sequence at 3 T. The distribution of the measured R2* values were analyzed, and the correlation between R2* and various prognostic factors (age, tumor size, histologic grade, lymphovascular invasion, and axillary lymph node status, as well as expression of estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, p53, and Ki-67 were retrospectively assessed using patient medical records.The baseline R2* values of the IDCs were very heterogeneous with wide range among the patients. The mean R2* value was (32.8 ± 14.0 Hz with a median of 29.3 Hz (range 13.5-109.4 Hz. In multivariate analysis, older age was associated with decreased R2* value (P = 0.011 and IDCs with p53-overexpression showed higher R2* values than those without p53-overexpression group (P = 0.031. Other prognostic factors were not significantly correlated with R2* value.In this study, R2* values were significantly correlated with age and expression of p53. Further studies are necessary to determine the prognostic value of BOLD-MRI.

  10. Quantum one dimensional spin systems. Disorder and impurities; Systemes de spins quantiques unidimensionnels. Desordre et impuretes

    Energy Technology Data Exchange (ETDEWEB)

    Brunel, V

    1999-06-29

    This thesis presents three studies that are respectively the spin-1 disordered chain, the non magnetic impurities in the spin-1/2 chain and the reaction-diffusion process. The spin-1 chain of weak disorder is performed by the Abelian bosonization and the renormalization group. This allows to take into account the competition between the disorder and the interactions and predicts the effects of various spin-1 anisotropy chain phases under many different disorders. A second work uses the non magnetic impurities as local probes of the correlations in the spin-1/2 chain. When the impurities are connected to the chain boundary, the author predicts a temperature dependence of the relaxation rate (1/T) of the nuclear spin impurities, different from the case of these impurities connected to the whole chain. The last work deals with one dimensional reaction-diffusion problem. The Jordan-Wigner transformation allows to consider a fermionic field theory that critical exponents follow from the renormalization group. (A.L.B.)

  11. Investigation of the Maximum Spin-Up Coefficients of Friction Obtained During Tests of a Landing Gear Having a Static-Load Rating of 20,000 Pounds

    Science.gov (United States)

    Batterson, Sidney A.

    1959-01-01

    An experimental investigation was made at the Langley landing loads track to obtain data on the maximum spin-up coefficients of friction developed by a landing gear having a static-load rating of 20,000 pounds. The forward speeds ranged from 0 to approximately 180 feet per second and the sinking speeds, from 2.7 feet per second to 9.4 feet per second. The results indicated the variation of the maximum spin-up coefficient of friction with forward speed and vertical load. Data obtained during this investigation are also compared with some results previously obtained for nonrolling tires to show the effect of forward speed.

  12. Rouse mode analysis of chain relaxation in polymer nanocomposites.

    Science.gov (United States)

    Kalathi, Jagannathan T; Kumar, Sanat K; Rubinstein, Michael; Grest, Gary S

    2015-05-28

    Large-scale molecular dynamics simulations are used to study the internal relaxations of chains in nanoparticle (NP)/polymer composites. We examine the Rouse modes of the chains, a quantity that is closest in spirit to the self-intermediate scattering function, typically determined in an (incoherent) inelastic neutron scattering experiment. Our simulations show that for weakly interacting mixtures of NPs and polymers, the effective monomeric relaxation rates are faster than in a neat melt when the NPs are smaller than the entanglement mesh size. In this case, the NPs serve to reduce both the monomeric friction and the entanglements in the polymer melt, as in the case of a polymer-solvent system. However, for NPs larger than half the entanglement mesh size, the effective monomer relaxation is essentially unaffected for low NP concentrations. Even in this case, we observe a strong reduction in chain entanglements for larger NP loadings. Thus, the role of NPs is to always reduce the number of entanglements, with this effect only becoming pronounced for small NPs or for high concentrations of large NPs. Our studies of the relaxation of single chains resonate with recent neutron spin echo (NSE) experiments, which deduce a similar entanglement dilution effect.

  13. Analytical description of spin-Rabi oscillation controlled electronic transitions rates between weakly coupled pairs of paramagnetic states with S=(1)/(2)

    Science.gov (United States)

    Glenn, R.; Baker, W. J.; Boehme, C.; Raikh, M. E.

    2013-04-01

    We report on the theoretical and experimental study of spin-dependent electronic transition rates which are controlled by a radiation-induced spin-Rabi oscillation of weakly spin-exchange and spin-dipolar coupled paramagnetic states (S=(1)/(2)). The oscillation components [the Fourier content, F(s)] of the net transition rates within spin-pair ensembles are derived for randomly distributed spin resonances, with an account of a possible correlation between the two distributions corresponding to individual pair partners. Our study shows that when electrically detected Rabi spectroscopy is conducted under an increasing driving field B1, the Rabi spectrum, F(s), evolves from a single peak at s=ΩR, where ΩR=γB1 is the Rabi frequency (γ is the gyromagnetic ratio), to three peaks at s=ΩR, s=2ΩR, and low s≪ΩR. The crossover between the two regimes takes place when ΩR exceeds the expectation value δ0 of the difference in the Zeeman energies within the pairs, which corresponds to the broadening of the magnetic resonance by disorder caused by a hyperfine field or distributions of Landé g factors. We capture this crossover by analytically calculating the shapes of all three peaks at an arbitrary relation between ΩR and δ0. When the peaks are well developed their widths are Δs˜δ02/ΩR. We find a good quantitative agreement between the theory and experiment.

  14. Linear scaling between momentum and spin scattering in graphene

    NARCIS (Netherlands)

    Jozsa, C.; Maassen, T.; Popinciuc, M.; Zomer, P. J.; Veligura, A.; Jonkman, H. T.; van Wees, B. J.

    2009-01-01

    Spin transport in graphene carries the potential of a long spin-diffusion length at room temperature. However, extrinsic relaxation processes limit the current experimental values to 1-2 mu m. We present Hanle spin precession measurements in gated lateral spin valve devices in the low to high (up to

  15. Breathing and Relaxation

    Science.gov (United States)

    ... Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make an Appointment Ask a Question ... level is often dependent on his or her breathing pattern. Therefore, people with chronic lung conditions may ...

  16. Relaxation to Negative Temperatures in Double Domain Systems

    Science.gov (United States)

    Hama, Yusuke; Munro, William J.; Nemoto, Kae

    2018-02-01

    The engineering of quantum systems and their environments has led to our ability now to design composite or complex systems with the properties one desires. In fact, this allows us to couple two or more distinct systems to the same environment where potentially unusual behavior and dynamics can be exhibited. In this Letter we investigate the relaxation of two giant spins or collective spin ensembles individually coupled to the same reservoir. We find that, depending on the configuration of the two individual spin ensembles, the steady state of the composite system does not necessarily reach the ground state of the individual systems, unlike what one would expect for independent environments. Further, when the size of one individual spin ensemble is much larger than the second, collective relaxation can drive the second system to an excited steady state even when it starts in the ground state; that is, the second spin ensemble relaxes towards a negative-temperature steady state.

  17. Electron Spin Dynamics in Semiconductor Quantum Dots

    International Nuclear Information System (INIS)

    Marie, X.; Belhadj, T.; Urbaszek, B.; Amand, T.; Krebs, O.; Lemaitre, A.; Voisin, P.

    2011-01-01

    An electron spin confined to a semiconductor quantum dot is not subject to the classical spin relaxation mechanisms known for free carriers but it strongly interacts with the nuclear spin system via the hyperfine interaction. We show in time resolved photoluminescence spectroscopy experiments on ensembles of self assembled InAs quantum dots in GaAs that this interaction leads to strong electron spin dephasing.

  18. Weak antilocalization and spin precession in quantum wells

    Science.gov (United States)

    Knap, W.; Skierbiszewski, C.; Zduniak, A.; Litwin-Staszewska, E.; Bertho, D.; Kobbi, F.; Robert, J. L.; Pikus, G. E.; Pikus, F. G.; Iordanskii, S. V.; Mosser, V.; Zekentes, K.; Lyanda-Geller, Yu. B.

    1996-02-01

    The results of magnetoconductivity measurements in GaxIn1-xAs quantum wells are presented. The observed magnetoconductivity appears due to the quantum interference, which lead to the weak localization effect. It is established that the details of the weak localization are controlled by the spin splitting of electron spectra. A theory is developed that takes into account both linear and cubic in electron wave-vector terms in spin splitting, which arise due to the lack of inversion center in the crystal, as well as the linear terms that appear when the well itself is asymmetric. It is established that, unlike spin-relaxation rate, contributions of different terms into magnetoconductivity are not additive. It is demonstrated that in the interval of electron densities under investigation [(0.98-1.85)×1012 cm-2 ] all three contributions are comparable and have to be taken into account to achieve a good agreement between the theory and experiment. The results obtained from comparison of the experiment and the theory have allowed us to determine what mechanisms dominate the spin-relaxation in quantum wells and to improve the accuracy of determination of spin-splitting parameters in A3B5 crystals and two-dimensional structures.

  19. Spin excitation in granular structures with ferromagnetic nanoparticles

    CERN Document Server

    Lutsev, L V

    2002-01-01

    In terms of s-d-exchange model one studied spin excitations and relaxation in granular structures with metallic ferromagnetic nanoparticles in an insulating amorphous matrix. One studies spins of granule as a d-system; s-system represents a multitude of localized electrons of amorphous matrix. In terms of single-ring approximation on the basis of s-d-exchange interaction for the Green spin function expansion one determined spectrum of spin excitations composed of spin-wave excitations of granules and spin-polarization excitations. One studied spin-polarization relaxation occurring by way of spin-polarization excitations. Spin-polarization relaxation was determined to be efficient one within wide range of frequencies. Evaluations made for structures containing cobalt granules show that one should observe it in the centimeter, the millimeter and the submillimeter ranges of wavelength

  20. Relaxed states of tokamak plasmas

    International Nuclear Information System (INIS)

    Kucinski, M.Y.; Okano, V.

    1993-01-01

    The relaxed states of tokamak plasmas are studied. It is assumed that the plasma relaxes to a quasi-steady state which is characterized by a minimum entropy production rate, compatible with a number of prescribed conditions and pressure balance. A poloidal current arises naturally due to the anisotropic resistivity. The minimum entropy production theory is applied, assuming the pressure equilibrium as fundamental constraint on the final state. (L.C.J.A.)

  1. Spin diffusion in Fermi gases

    DEFF Research Database (Denmark)

    Bruun, Georg

    2011-01-01

    We examine spin diffusion in a two-component homogeneous Fermi gas in the normal phase. Using a variational approach, analytical results are presented for the spin diffusion coefficient and the related spin relaxation time as a function of temperature and interaction strength. For low temperatures......, strong correlation effects are included through the Landau parameters which we extract from Monte Carlo results. We show that the spin diffusion coefficient has a minimum for a temperature somewhat below the Fermi temperature with a value that approaches the quantum limit ~/m in the unitarity regime...

  2. NMR relaxation in systems with magnetic nanoparticles: a temperature study.

    Science.gov (United States)

    Issa, Bashar; Obaidat, Ihab M; Hejasee, Rola H; Qadri, Shahnaz; Haik, Yousef

    2014-03-01

    To measure and model nuclear magnetic resonance (NMR) relaxation enhancement due to the presence of gadolinium (Gd)-substituted Zn-Mn ferrite magnetic nanoparticles (MNP) at different temperatures. Relaxation rates were measured at 1.5 T using fast spin echo (FSE) sequences in samples of agarose gel doped with uncoated and polyethylene glycol (PEG)-coated Mn0.5 Zn0.5 Gd0.02 Fe1.98 O4 nanoparticles over the temperature range 8-58°C. Physical characterization of the MNPs synthesized using chemical coprecipitation included scanning (SEM) and transmission (TEM) electron microscopy, inductively coupled plasma (ICP), dynamic light scattering (DLS), and magnetometry. Relaxivity (in s(-1) mM(-1) Fe) for the uncoated and coated particles, respectively, increased as follows: from 2.5 to 3.2 and 0.4 to 0.7 for T1, while for T2 it increased from 162.3 to 253.7 and 59.7 to 82.2 over the temperature range 8-58°C. T2 data were fitted to the echo limited motional regime using one fitting parameter that reflects the degree of agglomeration of particles into a cluster. This parameter was found to increase linearly with temperature and was larger for the PEG-coated particles than the uncoated ones. The increase of 1/T2 with temperature is modeled successfully using echo limited motional regime where both diffusion of the protons and nanoparticle cluster size increase with temperature. Both transverse and longitudinal relaxation efficiencies are reduced by PEG coating at all temperatures. If prediction of relaxation rates under different particle concentrations and operating temperatures is possible then the use of MNP in temperature monitoring and hyperthermia applications may be achieved. Copyright © 2013 Wiley Periodicals, Inc.

  3. Nanosecond-timescale spin transfer using individual electrons in a quadruple-quantum-dot device

    Energy Technology Data Exchange (ETDEWEB)

    Baart, T. A.; Jovanovic, N.; Vandersypen, L. M. K. [QuTech and Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Reichl, C.; Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)

    2016-07-25

    The ability to coherently transport electron-spin states between different sites of gate-defined semiconductor quantum dots is an essential ingredient for a quantum-dot-based quantum computer. Previous shuttles using electrostatic gating were too slow to move an electron within the spin dephasing time across an array. Here, we report a nanosecond-timescale spin transfer of individual electrons across a quadruple-quantum-dot device. Utilizing enhanced relaxation rates at a so-called hot spot, we can upper bound the shuttle time to at most 150 ns. While actual shuttle times are likely shorter, 150 ns is already fast enough to preserve spin coherence in, e.g., silicon based quantum dots. This work therefore realizes an important prerequisite for coherent spin transfer in quantum dot arrays.

  4. Spin-selective recombination reactions of radical pairs: Experimental test of validity of reaction operators

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Kiminori [Department of Chemistry, University of Oxford, Centre for Advanced Electron Spin Resonance, Inorganic Chemistry Laboratory, Oxford (United Kingdom); Liddell, Paul; Gust, Devens [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, 85287-1604 (United States); Hore, P. J. [Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, Oxford (United Kingdom)

    2013-12-21

    Spin-selective reactions of radical pairs are conventionally modelled using an approach that dates back to the 1970s [R. Haberkorn, Mol. Phys. 32, 1491 (1976)]. An alternative approach based on the theory of quantum measurements has recently been suggested [J. A. Jones and P. J. Hore, Chem. Phys. Lett. 488, 90 (2010)]. We present here the first experimental attempt to discriminate between the two models. Pulsed electron paramagnetic resonance spectroscopy has been used to investigate intramolecular electron transfer in the radical pair form of a carotenoid-porphyrin-fullerene molecular triad. The rate of spin-spin relaxation of the fullerene radical in the triad was found to be inconsistent with the quantum measurement description of the spin-selective kinetics, and in accord with the conventional model when combined with spin-dephasing caused by rotational modulation of the anisotropic g-tensor of the fullerene radical.

  5. Detailing magnetic field strength dependence and segmental artifact distribution of myocardial effective transverse relaxation rate at 1.5, 3.0, and 7.0 T.

    Science.gov (United States)

    Meloni, Antonella; Hezel, Fabian; Positano, Vincenzo; Keilberg, Petra; Pepe, Alessia; Lombardi, Massimo; Niendorf, Thoralf

    2014-06-01

    Realizing the challenges and opportunities of effective transverse relaxation rate (R2 *) mapping at high and ultrahigh fields, this work examines magnetic field strength (B0 ) dependence and segmental artifact distribution of myocardial R2 * at 1.5, 3.0, and 7.0 T. Healthy subjects were considered. Three short-axis views of the left ventricle were examined. R2 * was calculated for 16 standard myocardial segments. Global and mid-septum R2 * were determined. For each segment, an artifactual factor was estimated as the deviation of segmental from global R2 * value. The global artifactual factor was significantly enlarged at 7.0 T versus 1.5 T (P = 0.010) but not versus 3.0 T. At 7.0 T, the most severe susceptibility artifacts were detected in the inferior lateral wall. The mid-septum showed minor artifactual factors at 7.0 T, similar to those at 1.5 and 3.0 T. Mean R2 * increased linearly with the field strength, with larger changes for global heart R2 * values. At 7.0 T, segmental heart R2 * analysis is challenging due to macroscopic susceptibility artifacts induced by the heart-lung interface and the posterior vein. Myocardial R2 * depends linearly on the magnetic field strength. The increased R2 * sensitivity at 7.0 T might offer means for susceptibility-weighted and oxygenation level-dependent MR imaging of the myocardium. Copyright © 2013 Wiley Periodicals, Inc.

  6. Tunneling spin injection into single layer graphene.

    Science.gov (United States)

    Han, Wei; Pi, K; McCreary, K M; Li, Yan; Wong, Jared J I; Swartz, A G; Kawakami, R K

    2010-10-15

    We achieve tunneling spin injection from Co into single layer graphene (SLG) using TiO₂ seeded MgO barriers. A nonlocal magnetoresistance (ΔR(NL)) of 130  Ω is observed at room temperature, which is the largest value observed in any material. Investigating ΔR(NL) vs SLG conductivity from the transparent to the tunneling contact regimes demonstrates the contrasting behaviors predicted by the drift-diffusion theory of spin transport. Furthermore, tunnel barriers reduce the contact-induced spin relaxation and are therefore important for future investigations of spin relaxation in graphene.

  7. Relaxation of the magnetization in magnetic molecules

    Science.gov (United States)

    Carretta, S.; Bianchi, A.; Liviotti, E.; Santini, P.; Amoretti, G.

    2006-04-01

    Several mechanisms characterize the relaxation dynamics in magnetic molecules. We investigate two of them, spin-lattice coupling and incoherent quantum tunneling. The effect of the phonon heat bath is studied by analyzing the exponential time decay of the autocorrelation of the magnetization. We show that in ferromagnetic (Cu6) and antiferromagnetic (Fe6) molecular rings this decay is characterized by a single characteristic time. At very low temperature, relaxation through incoherent quantum tunneling may occur in nanomagnets such as Fe8 or Ni4. The mixing between levels with different values of the total spin (S mixing) greatly influences this mechanism. In particular, we demonstrate that a fourth-order anisotropy term O44, required to interpret experimental electron paramagnetic resonance and relaxation data in Ni4, naturally arises when S mixing is considered in calculations.

  8. Cooling-history effects on magnetic relaxation through quantum tunneling

    Science.gov (United States)

    Fernandez, Julio; Alonso, Juan

    2003-03-01

    Magnetic clusters, such as Fe8 and Mn_12, that make up the core of large organometallic molecules, behave at low temperatures as large single spins S. In crystals, magnetic anisotropy energies U inhibit magnetic relaxation of these spins, which can then proceed at very small temperatures (at k_BT tunneling (MQT). Magnetic dipolar interactions then play an essential role. We study how an Ising system of spins that interact through magnetic dipolar fields relaxes. A spin is allowed to flip, at rate Γ, only if the magnetic field h acting on it is within some tunnel window -hw < h< h_w. We let (1) this system be initially held for some time at some temperature Ta that is above both the long-range ordering temperature and T ˜ U/S, and (2) apply a magnetic field at t=0, inmediately after the system is quenched to T < 0.1U/S. This is somewhat as in the experiments of Wernsdorfer et al on Fe_8. The time evolution of the magnetiztion m and field distributions after the field is applied at t=0 is studied. For small applied fields H, m ˜= hw HF(Γ t). In addition, F(Γ t)˜= cΓ t for Γ t < 1 and F(Γ t)˜= cΓ t for 1 <Γ t < (h_d/h_w)^2, where hd is a nearest neighbor dipolar field. We will show how c depends on the cooling protocol. Finally, m saturates at m_s˜= 0.13\\varepsilon_aH.

  9. Chemical exchange effects during refocusing pulses in constant-time CPMG relaxation dispersion experiments

    International Nuclear Information System (INIS)

    Myint, Wazo; Ishima, Rieko

    2009-01-01

    In the analysis of the constant-time Carr-Purcell-Meiboom-Gill (CT-CPMG) relaxation dispersion experiment, chemical exchange parameters, such as rate of exchange and population of the exchanging species, are typically optimized using equations that predict experimental relaxation rates recorded as a function of effective field strength. In this process, the effect of chemical exchange during the CPMG pulses is typically assumed to be the same as during the free-precession. This approximation may introduce systematic errors into the analysis of data because the number of CPMG pulses is incremented during the constant-time relaxation period, and the total pulse duration therefore varies as a function of the effective field strength. In order to estimate the size of such errors, we simulate the time-dependence of magnetization during the entire constant time period, explicitly taking into account the effect of the CPMG pulses on the spin relaxation rate. We show that in general the difference in the relaxation dispersion profile calculated using a practical pulse width from that calculated using an extremely short pulse width is small, but under certain circumstances can exceed 1 s -1 . The difference increases significantly when CPMG pulses are miscalibrated

  10. Predicting acoustic relaxation absorption in gas mixtures for extraction of composition relaxation contributions.

    Science.gov (United States)

    Liu, Tingting; Wang, Shu; Zhu, Ming

    2017-12-01

    The existing molecular relaxation models based on both parallel relaxation theory and series relaxation theory cannot extract the contributions of gas compositions to acoustic relaxation absorption in mixtures. In this paper, we propose an analytical model to predict acoustic relaxation absorption and clarify composition relaxation contributions based on the rate-determining energy transfer processes in molecular relaxation in excitable gases. By combining parallel and series relaxation theory, the proposed model suggests that the vibration-translation process of the lowest vibrational mode in each composition provides the primary deexcitation path of the relaxation energy, and the rate-determining vibration-vibration processes between the lowest mode and others dominate the coupling energy transfer between different modes. Thus, each gas composition contributes directly one single relaxation process to the molecular relaxation in mixture, which can be illustrated by the decomposed acoustic relaxation absorption spectrum of the single relaxation process. The proposed model is validated by simulation results in good agreement with experimental data such as N 2 , O 2 , CO 2 , CH 4 and their mixtures.

  11. Coupling nitrogen-vacancy centers to a dynamic ferromagnetic vortex for fast, nanoscale spin addressability and control

    Science.gov (United States)

    Berezovsky, Jesse

    As we begin to look at how spin qubits might be integrated into a scalable platform, a promising strategy is to engineer the magnetic environment of the spins using micron- or nanometer-scale ferromagnetic (FM) elements, for functionalities such as nanoscale addressability, spin-wave mediated coupling, or enhanced sensing. The promise of these FM/spin interactions brings with it the question of how the coherence properties of the spin will be affected by coupling to these complex mesoscopic systems. To explore the physics of individual spins coupled to a proximal, dynamic ferromagnetic structure, we have studied interactions between individual nitrogen-vacancy (NV) spins and a model FM system - a vortex magnetization state. The complex, yet controllable, spin texture of a FM vortex, formed in a thin disk or nanowire, allows one to study different regimes of interaction with a nearby confined spin. The vortex core produces a large static dipole-like fringe field. The vortex state also displays discrete dynamic modes ranging from several 100 MHz to GHz. By applying an in-plane magnetic field, the position of the vortex core relative to the NV spin can be controlled with nanometer-scale resolution, and time resolution of 10s of nanoseconds. As the vortex core is translated into proximity with an NV spin, the fringe field from the core generates a large position-dependent spin splitting, permitting nanoscale spin addressability. We also find that the dynamic interaction of the vortex, NV spin, and applied microwave field results in amplification of the Rabi transition rate by more than an order of magnitude. Finally, we explore how spin decoherence and relaxation mechanisms are enhanced as the vortex core approaches the NVs, with implications for proposed technology incorporating coherent spins and proximal FM elements. We acknowledge support from DOE, Award No. DE-SC008148.

  12. NMR evidence for peculiar spin gaps in a doped S=1/2 Heisenberg spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Utz, Yannic; Rudisch, Christian; Hammerath, Franziska; Grafe, Hans-Joachim; Mohan, Ashwin; Ribeiro, Patrick; Hess, Christian; Wolter, Anja; Kataev, Vladislav; Nishimoto, Satoshi; Drechsler, Stefan-Ludwig; Buechner, Bernd [IFW Dresden (Germany); Singh, Surjeet [Indian Institute of Science Education and Research, Pune (India); Saint-Martin, Romuald; Revcolevschi, Alexandre [Laboratoire de Physico-Chimie de l' Etat Solide, Universite Paris-Sud, Orsay (France)

    2012-07-01

    We present {sup 63}Cu Nuclear Magnetic Resonance (NMR) measurements on undoped, Ca-doped and Ni-doped SrCuO{sub 2} single crystals. SrCuO{sub 2} is a good realization of a one-dimensional S=1/2 Heisenberg spin chain. This is manifested by the theoretically-expected temperature-independent NMR spin-lattice relaxation rate T{sub 1}{sup -1}. In Sr{sub 0.9}Ca{sub 0.1}CuO{sub 2} an exponential decrease of T{sub 1}{sup -1} below 90 K evidences the opening of a gap in the spin excitation spectrum, which amounts to {Delta}=50 K. DMRG calculations are presented to discuss the origin of this spin gap. New results on SrCu{sub 0.99}Ni{sub 0.01}O{sub 2} also indicate the presence of a spin gap, which is twice as large as in Sr{sub 0.9}Ca{sub 0.1}CuO{sub 2}, despite the minor doping level of Ni compared to Ca. We discuss different possible impacts of Ca (S=0) and Ni (S=1) doping on structural and magnetic properties of the parent compound.

  13. Observation of quantum-limited spin transport in strongly interacting two-dimensional Fermi gases

    Science.gov (United States)

    Olsen, Ben A.; Luciuk, Chris; Smale, Scott; Böttcher, Florian; Sharum, Haille; Trotzky, Stefan; Enss, Tilman; Thywissen, Joseph H.

    2017-04-01

    Conjectured quantum bounds on transport appear to be respected in many strongly interacting many-body systems. Since transport occurs as a system relaxes to equilibrium, many such bounds can be recast as an upper bound on the local relaxation rate kB T / ℏ . Systems saturating this ``Planckian'' bound lack well defined quasiparticles promoting transport. We measure the transport properties of 2D ultracold Fermi gases of 40K during transverse demagnetization in a magnetic field gradient. Using a phase-coherent spin-echo sequence, we distinguish bare spin diffusion from the Leggett-Rice effect, in which demagnetization is slowed by the precession of spin current around the local magnetization. When the 2D scattering length is tuned near an s-wave Feshbach resonance to be comparable to the inverse Fermi wave vector kF- 1 , we find that the bare transverse spin diffusivity reaches a minimum of 1 . 7(6) ℏ / m . Demagnetization is also reflected in the growth rate of the s-wave contact, observed using time-resolved rf spectroscopy. At unitarity, the contact rises to 0 . 28(3) kF2 per particle, measuring the breaking of scaling symmetry. Our observations support the conjecture that under strong scattering, the local relaxation rate is bounded from above by kB T / ℏ .

  14. Zero field spin splitting in asymmetric quantum wells

    International Nuclear Information System (INIS)

    Hao Yafei

    2012-01-01

    Spin splitting of asymmetric quantum wells is theoretically investigated in the absence of any electric field, including the contribution of interface-related Rashba spin-orbit interaction as well as linear and cubic Dresselhaus spin-orbit interaction. The effect of interface asymmetry on three types of spin-orbit interaction is discussed. The results show that interface-related Rashba and linear Dresselhaus spin-orbit interaction can be increased and cubic Dresselhaus spin-orbit interaction can be decreased by well structure design. For wide quantum wells, the cubic Dresselhaus spin-orbit interaction dominates under certain conditions, resulting in decreased spin relaxation time.

  15. Studies on rheological, structural, optical, electrical and surface properties of LiMn2O4 thin films by varied spin rates

    Directory of Open Access Journals (Sweden)

    Balakrishnan T.

    2017-10-01

    Full Text Available LiMn2O4 thin films prepared by cost-effective spin coating method using optimized coating conditions are reported. Spin rate was varied and spin rate dependent properties were studied. Prepared films were characterized for their structural, morphological and optical properties. X-ray diffraction study of LiMn2O4 thin films confirmed the cubic spinel structure with the preferred orientation along (1 1 1 plane. Optical absorption studies showed band gap energy of 3.02 eV for the grown LiMn2O4 films. FT-IR bands assigned to asymmetric stretching modes of MnO6 group were located around 623 cm-1 and 514 cm-1 for the LiMn2O4 thin films. The weak band observed at 437 cm-1 was attributed to the LiO4 tetrahedra. The films showed high conductivity value 0.79 S/cm indicating the generation of effective network of the film for enhanced charge transport. AFM micrographs of the LiMn2O4 films deposited at 3000 rpm and 3500 rpm showed uniform distribution of fine grains throughout the surface without any dark pits, pinholes and cracks.

  16. In-vivo measurement of proton relaxation time (T1 and T2) in paediatric brain by MRI

    International Nuclear Information System (INIS)

    Masumura, Michio

    1986-01-01

    The clinical application of MRI led to the detailed imaging of the three-dimentional structure of the brain. Thus, significant information has been obtained with respect to the diagnosis of various diseases, rating severity, evaluation of curative effects, etc. On the other hand, the proportion of the comparative length of the relaxation time to the signal intensity of the images (especially the Spin-Echo image) was not necessarily linear. Consquently, the evaluation of severity was not easy to make. However, if we can obtain T 1 and T 2 precisely as the parameters costituting the images, it will be possible to overcome the above-mentioned difficulties. Further, the usefulness of MRI in activities such as determining the water metabolism of the brain is expected to increase even more. By means of VISTA-MR (0.15 Tesla, resistive magnet ; Picker International Co.) we measured the proton relaxation time (spin-lattice relaxation time (T 1 ) and spin-spin relaxation time (T 2 )) of various intracerebral lesions in paediatric cases. As the control group, 43 children, 4 adolescents and 6 adults were used. The T 1 and T 2 in the normal infantile cases prolonged significantly as compared with adult case. Thereafter, they become shortened by aging. In the age of two or three years, they reach the normal level of adult case. In the cases of degenerative disease, brain tumor, and cerebral contusion, the remarkable prolongation of both T 1 and T 2 , compared with normal value of the same age was observed. In the cases of brain atrophy and epilepsy, T 1 and T 2 were slightly short or within normal value of the same age. In the cases of intracerebral hemorrhage, T 1 was shortened. The in-vivo proton relaxation time obtained by MRI have various limits, but they can be a noninvasive and useful index in evaluation of severity or curative effects in various cerebral diseases. (author)

  17. Low temperature ballistic spin transport in the S=1/2 antiferromagnetic Heisenberg chain compound SrCuO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Maeter, H.; Klauss, H.H. [Institut fuer Festkoerperphysik, TU Dresden (Germany); Zvyagin, A.A. [Institut fuer Festkoerperphysik, TU Dresden (Germany); Institute for Low Temperature Physics and Engineering, NAS of Ukraine, Kharkov (Ukraine); Luetkens, H.; Pascua, G.; Shermadini, Z. [Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institute, Villigen (Switzerland); Hess, C.; Hlubek, N.; Buechner, B. [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung, Dresden (Germany); Saint-Matin, R.; Revcolevschi, A. [Laboratoire de Physico-Chimie de L' Etat Solide, ICMMO, UMR 8182, Universite Paris-Sud, Orsay (France)

    2011-07-01

    For one-dimensional quantum spin chain systems recent experimental and theoretical studies indicate unexpectedly large, in some cases diverging spin and heat transport coefficients. Local probes, like e.g. muon spin relaxation ({mu}SR) can indirectly characterize the spin transport properties of low dimensional systems via the magnetic field dependence of the spin lattice relaxation rate {lambda}(B). For diffusive spin transport {lambda}{proportional_to}B{sup -0.5} is expected. For the ground state of the isotropic spin-1/2 antiferromagnetic Heisenberg chain the eigenstates of the Heisenberg Hamiltonian dominate the spin transport, which is then ballistic. Using the Mueller ansatz {lambda}{proportional_to}B{sup -1} is expected in this case. For SrCuO{sub 2} we find {lambda}{proportional_to}B{sup -0.9(3)}. This result is temperature independent for 5 K{<=}T {<=}300 K. Within conformal field theory and using the Mueller ansatz we conclude ballistic spin transport in SrCuO{sub 2}.

  18. Spin coating apparatus

    Science.gov (United States)

    Torczynski, John R.

    2000-01-01

    A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.

  19. Structural and dynamical characterization of piroxicam by 1H- and 13C-NMR relaxation studies

    International Nuclear Information System (INIS)

    Rossi, C.; Casini, A.; Picchi, M.P.; Laschi, F.; Calabria, A.; Marcolongo, R.

    1987-01-01

    Carbon spin-lattice relaxation rates of anti-inflammatory drug, piroxicam, have been measured. These results have been used in determining the reorientational rates of the proton carbon vectors. An analysis of internal motions within the pyridinyl moiety of piroxicam was carried out. Selective proton-carbon nuclear Overhauser effect (NOE) measurements were made in order to determine the solution structure of piroxicam. The effect of indirect NOE arising from exchangeable protons has been analyzed and considered. 20 refs.; 4 figs.; 3 tabs

  20. Spin excitations in the quasi-two-dimensional charge-ordered insulator α -(BEDT-TTF ) 2I3 probed via 13C NMR

    Science.gov (United States)

    Ishikawa, Kyohei; Hirata, Michihiro; Liu, Dong; Miyagawa, Kazuya; Tamura, Masafumi; Kanoda, Kazushi

    2016-08-01

    The spin excitations from the nonmagnetic charge-ordered insulating state of α -(BEDT-TTF ) 2I3 at ambient pressure have been investigated by probing the static and low-frequency dynamic spin susceptibilities via site-selective nuclear magnetic resonance at 13C sites. The site-dependent values of the shift and the spin-lattice relaxation rate 1 /T1 below the charge-ordering transition temperature (TCO≈135 K ) demonstrate a spin density imbalance in the unit cell, in accord with the charge-density ratio reported earlier. The shift and 1 /T1 show activated temperature dependence with a static (shift) gap ΔS≈47 -52 meV and a dynamic (1 /T1 ) gap ΔR≈40 meV . The sizes of the gaps are well described in terms of a localized spin model, where spin-1/2 antiferromagnetic dimer chains are weakly coupled with each other.

  1. Exciton-relaxation dynamics in lead halides

    International Nuclear Information System (INIS)

    Iwanaga, Masanobu; Hayashi, Tetsusuke

    2003-01-01

    We survey recent comprehensive studies of exciton relaxation in the crystals of lead halides. The luminescence and electron-spin-resonance studies have revealed that excitons in lead bromide spontaneously dissociate and both electrons and holes get self-trapped individually. Similar relaxation has been also clarified in lead chloride. The electron-hole separation is ascribed to repulsive correlation via acoustic phonons. Besides, on the basis of the temperature profiles of self-trapped states, we discuss the origin of luminescence components which are mainly induced under one-photon excitation into the exciton band in lead fluoride, lead chloride, and lead bromide

  2. Relaxation study of a paramagnetic ion by the observation of nuclear resonance signals

    International Nuclear Information System (INIS)

    Landesman, A.

    1960-01-01

    Dynamic polarization of protons in water containing the paramagnetic ion NO(SO 3 ) 2 was studied, both theoretically and experimentally, as a function of magnetic field. The enhancement of the proton polarization depends appreciably on the relaxation process of the electron spin and so enables us to decide which is the real relaxation process. We tried the two following processes: a) The electron spin is coupled with the nitrogen magnetic moment by hyperfine interaction; if this interaction has an anisotropic part, a relaxation process for the electronic spin will result through the Brownian motion of the ion. b) The relaxation of the electron spin takes place through spin-orbit coupling of the electron spin. Experimental results showed that the relaxation took place through the second process with the help of dynamic polarization we were able to study the relaxation of an electron spin in a liquid without using any electron resonance spectrometer, simply by observing the resonance of a nuclear spin coupled with the electron spin. Reprint of a paper published in Le Journal de Physique et le Radium, t. 20, p. 937-948, 1959 [fr

  3. Spin transport in two-layer-CVD-hBN/graphene/hBN heterostructures

    Science.gov (United States)

    Gurram, M.; Omar, S.; Zihlmann, S.; Makk, P.; Li, Q. C.; Zhang, Y. F.; Schönenberger, C.; van Wees, B. J.

    2018-01-01

    We study room-temperature spin transport in graphene devices encapsulated between a layer-by-layer-stacked two-layer-thick chemical vapor deposition (CVD) grown hexagonal boron nitride (hBN) tunnel barrier, and a few-layer-thick exfoliated-hBN substrate. We find mobilities and spin-relaxation times comparable to that of SiO2 substrate-based graphene devices, and we obtain a similar order of magnitude of spin relaxation rates for both the Elliott-Yafet and D'Yakonov-Perel' mechanisms. The behavior of ferromagnet/two-layer-CVD-hBN/graphene/hBN contacts ranges from transparent to tunneling due to inhomogeneities in the CVD-hBN barriers. Surprisingly, we find both positive and negative spin polarizations for high-resistance two-layer-CVD-hBN barrier contacts with respect to the low-resistance contacts. Furthermore, we find that the differential spin-injection polarization of the high-resistance contacts can be modulated by dc bias from -0.3 to +0.3 V with no change in its sign, while its magnitude increases at higher negative bias. These features point to the distinctive spin-injection nature of the two-layer-CVD-hBN compared to the bilayer-exfoliated-hBN tunnel barriers.

  4. Effect of physiological heart rate variability on quantitative T2 measurement with ECG-gated Fast Spin Echo (FSE) sequence and its retrospective correction.

    Science.gov (United States)

    de Roquefeuil, Marion; Vuissoz, Pierre-André; Escanyé, Jean-Marie; Felblinger, Jacques

    2013-11-01

    Quantitative T2 measurement is applied in cardiac Magnetic Resonance Imaging (MRI) for the diagnosis and follow-up of myocardial pathologies. Standard Electrocardiogram (ECG)-gated fast spin echo pulse sequences can be used clinically for T2 assessment, with multiple breath-holds. However, heart rate is subject to physiological variability, which causes repetition time variations and affects the recovery of longitudinal magnetization between TR periods. The bias caused by heart rate variability on quantitative T2 measurements is evaluated for fast spin echo pulse sequence. Its retrospective correction based on an effective TR is proposed. Heart rate variations during breath-holds are provided by the ECG recordings from healthy volunteers. T2 measurements were performed on a phantom with known T2 values, by synchronizing the sequence with the recorded ECG. Cardiac T2 measurements were performed twice on six volunteers. The impact of T1 on T2 is also studied. Maximum error in T2 is 26% for phantoms and 18% for myocardial measurement. It is reduced by the proposed compensation method to 20% for phantoms and 10% for in vivo measurements. Only approximate knowledge of T1 is needed for T2 correction. Heart rate variability may cause a bias in T2 measurement with ECG-gated FSE. It needs to be taken into account to avoid a misleading diagnosis from the measurements. © 2013.

  5. Determination of the magnetic impurities contribution to the nuclear relaxation in metals

    International Nuclear Information System (INIS)

    Cohen, A.M.

    1982-01-01

    The renormalization group techniques developed by Wilson for the Kondo problem are applied, for the first time, to the calculation of nuclear spin relaxation rates in dilute magnetic alloys. A procedure that calculates the longitudinal relaxation time T 1 over the entire temperature range 0 B T 1 is derived; for distances R between the impurity and the nucleus large compared to the inverse Fermi momentum H f , the result is identical to Korringa's expression for the nuclear spin relaxation rate in the pure metal. For smaller k F R, T 1 increases and becomes infinite as k F R→0. A numerical approach, capable of calculating T 1 at finite temperatures, is presented and tested by calculating T 1 for T→0; the numerical results are in excellent agreement with the analytical expression discussed above. Only for k F R→ infinity do the results for T 1 at T=0 agree with those found by Roshen and Saam, who recently analysed this problem in the light of Nozieres's Fermi liquid theory. The reasons for the discrepancy for finite k F R are discussed. (author) [pt

  6. An NMR study of 1H, 31P, and 23Na relaxation and molecular dynamics in the polycrystalline sodium salts of adenosine Di- and triphosphate

    Science.gov (United States)

    Reynhardt, E. C.; Jurga, K.; Andrew, E. R.

    Proton spin-lattice relaxation times in the laboratory frame, T1(H),have been measured as a function of frequency and temperature (333K> T > 80 K). The spin-lattice relaxation times in the rotating frame, T1 ϱ(H), have been measured at two different rotating fields while M2(H), the proton second moment, has been extracted from the shape of the FID. In addition, T 1( 31P) and T 1( 23Na) have been measured as functions of temperature at 81 and 50 MHz, respectively. The results demonstrate clearly that the water content of the compounds influences the results to a large extent. It seems that water molecules at some of the lattice sites can be removed from the structure by evacuation, while others are more tightly bound to the ADP and ATP molecules. The more loosely bound water molecules are very mobile and dominate the relaxation results in the high-temperature region via the spin-rotation and dipolar mechanisms. The more tightly bound water molecules rotate about their twofold axes and this motion, characterized by a distribution of correlation times, results in a T1(H) minimum in the low-temperature region. The results have been interpreted in terms of a Fuoss-Kirkwood distribution function. The 23Na spin-lattice relaxation rates are dominated by the quadrupolar interactions, which provide a dominating relaxation mechanism for the proton spins in the rotating frame. In the case of Na 2ATP, T1(P) is independent of the degree of hydration of the sample, but the NaADP T1(H), values are influenced strongly by a change in the water content. An X-ray determination of the lengths of the a axes of the unit cells has provided supporting evidence for the interpretation of the NMR results.

  7. Spin-drift transport in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong, Chittagong-4331 (Bangladesh)

    2008-02-07

    We present a study on spin transport in semiconductors under applied electric fields. Our experiments detect photoinjected electron spins and their relaxation during drift transport in intrinsic and moderately n-doped GaAs, based on the extraordinary Hall (eH) effect. For relatively low electric field (E), the optically spin-induced eH effect in n-doped GaAs is found to be enhanced with increasing doping density and not to depend much on E, indicating that a substantial amount of optical spin polarization is preserved during the drift transport in these extrinsic semiconductors. However, when the spin-oriented electrons are injected with a high E, a very significant decrease is observed in the eH voltage (V{sub eH}) due to an increase in the spin precession frequency of the hot electrons. Spin relaxation by the D'yakonov-Perel' mechanism is calculated, and is suggested to be the reason for such a rapid spin relaxation for hot electrons under a high E. However, in an intrinsic GaAs (i-GaAs), a much weaker V{sub eH} is observed and, as the electron spins scattered by holes due to the Coulomb interaction in i-GaAs, the spin relaxation by the Bir-Aronov-Pikus mechanism is considered. Skew scattering and side jump as possible mechanisms of the optically spin-induced transverse Hall currents are discussed. Based on a spin drift-diffusion model, drift and diffusion contributions to the V{sub eH} are examined. The results are also discussed in comparison with theoretical investigations.

  8. Spin injection from a normal metal into a mesoscopic superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Michael J.; Kolenda, Stefan [Institut fuer Nanotechnologie, KIT, 76021 Karlsruhe (Germany); Huebler, Florian [Institut fuer Nanotechnologie, KIT, 76021 Karlsruhe (Germany); Center for Functional Nanostructures, KIT, 76131 Karlsruhe (Germany); Institut fuer Festkoerperphysik, KIT, 76021 Karlsruhe (Germany); Loehneysen, Hilbert v. [Center for Functional Nanostructures, KIT, 76131 Karlsruhe (Germany); Institut fuer Festkoerperphysik, KIT, 76021 Karlsruhe (Germany); Physikalisches Institut, KIT, 76128 Karlsruhe (Germany); Beckmann, Detlef [Institut fuer Nanotechnologie, KIT, 76021 Karlsruhe (Germany); Center for Functional Nanostructures, KIT, 76131 Karlsruhe (Germany)

    2013-07-01

    We report on nonlocal transport in superconductor hybrid structures, with ferromagnetic as well as normal-metal tunnel junctions attached to the superconductor. In the presence of a strong Zeeman splitting of the density of states, both charge and spin imbalance is injected into the superconductor. While previous experiments demonstrated spin injection from ferromagnetic electrodes, we show that spin imbalance is also created for normal-metal injector contacts. Using the combination of ferromagnetic and normal-metal detectors allows us to directly discriminate between charge and spin injection, and demonstrate a complete separation of charge and spin imbalance. The relaxation length of the spin imbalance is of the order of several μm and is found to increase with a magnetic field, but is independent of temperature. We further discuss possible relaxation mechanisms for the explanation of the spin relaxation length.

  9. Low temperature magnetic properties and spin dynamics in single crystals of Cr{sub 8}Zn antiferromagnetic molecular rings

    Energy Technology Data Exchange (ETDEWEB)

    Adelnia, Fatemeh [Dipartimento di Fisica, Università degli Studi di Milano and INSTM, I-20133 Milano (Italy); Dipartimento di Fisica, Università degli Studi di Pavia and INSTM, I-27100 Pavia (Italy); Chiesa, Alessandro; Bordignon, Sara; Carretta, Stefano [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Parma, I-43124 Parma (Italy); Ghirri, Alberto; Candini, Andrea [CNR Institute Nanosciences S3, I- 41125 Modena (Italy); Cervetti, Christian [Dipartimento di Scienze Fisiche, Informatiche, Matematiche, Università di Modena e Reggio Emilia, I-41125 Modena (Italy); Evangelisti, Marco [CNR Institute Nanosciences S3, I- 41125 Modena (Italy); Dipartimento di Scienze Fisiche, Informatiche, Matematiche, Università di Modena e Reggio Emilia, I-41125 Modena (Italy); Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain); Affronte, Marco [CNR Institute Nanosciences S3, I- 41125 Modena (Italy); Dipartimento di Scienze Fisiche, Informatiche, Matematiche, Università di Modena e Reggio Emilia, I-41125 Modena (Italy); Sheikin, Ilya [Grenoble High Magnetic Field Laboratory, CNRS-LNCMI, 25, B.P. 166, 38042 Grenoble Cedex 9 (France); Winpenny, Richard; Timco, Grigore [The Lewis Magnetism Laboratory, The University of Manchester, M13 9PL Manchester (United Kingdom); Borsa, Ferdinando [Dipartimento di Fisica, Università degli Studi di Pavia and INSTM, I-27100 Pavia (Italy); and others

    2015-12-28

    A detailed experimental investigation of the effects giving rise to the magnetic energy level structure in the vicinity of the level crossing (LC) at low temperature is reported for the open antiferromagnetic molecular ring Cr{sub 8}Zn. The study is conducted by means of thermodynamic techniques (torque magnetometry, magnetization and specific heat measurements) and microscopic techniques (nuclear magnetic resonance line width, nuclear spin lattice, and spin-spin relaxation measurements). The experimental results are shown to be in excellent agreement with theoretical calculations based on a minimal spin model Hamiltonian, which includes a Dzyaloshinskii-Moriya interaction. The first ground state level crossing at μ{sub 0}H{sub c1} = 2.15 T is found to be an almost true LC while the second LC at μ{sub 0}H{sub c2} = 6.95 T has an anti-crossing gap of Δ{sub 12} = 0.19 K. In addition, both NMR and specific heat measurements show the presence of a level anti-crossing between excited states at μ{sub 0}H = 4.5 T as predicted by the theory. In all cases, the fit of the experimental data is improved by introducing a distribution of the isotropic exchange couplings (J), i.e., using a J strain model. The peaks at the first and second LCs in the nuclear spin-lattice relaxation rate are dominated by inelastic scattering and a value of Γ ∼ 10{sup 10} rad/s is inferred for the life time broadening of the excited state of the open ring, due to spin phonon interaction. A loss of NMR signal (wipe-out effect) is observed for the first time at LC and is explained by the enhancement of the spin-spin relaxation rate due to the inelastic scattering.

  10. Spin noise spectroscopy on donors in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Bernien, Hannes; Mueller, Georg; Roemer, Michael; Huebner, Jens; Oestreich, Michael [Institute for Solid State Physics, Gottfried Wilhelm Leibniz University Hannover (Germany)

    2009-07-01

    In recent experiments spin noise spectroscopy (SNS) has proven to be a very sensitive technique to study electron spin dynamics in semiconductors at thermal equilibrium. Here we present SNS-measurements on donor bound electrons in very low doped bulk GaAs. In this environment the donors do not interact with each other and form artificial atoms. We discuss the detection of single donor bound electron spins, which should have extremely long spin relaxation times compared to ensemble spin relaxation times. In further experiments the electron bound to the donor will be used to probe and study the local nuclear magnetic field at the donor site.

  11. A mixed relaxed clock model

    Science.gov (United States)

    2016-01-01

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325829

  12. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  13. Onsager relaxation of toroidal plasmas

    International Nuclear Information System (INIS)

    Samain, A.; Nguyen, F.

    1997-01-01

    The slow relaxation of isolated toroidal plasmas towards their thermodynamical equilibrium is studied in an Onsager framework based on the entropy metric. The basic tool is a variational principle, equivalent to the kinetic equation, involving the profiles of density, temperature, electric potential, electric current. New minimization procedures are proposed to obtain entropy and entropy production rate functionals. (author)

  14. Emission Mössbauer spectroscopy study of fluence dependence of paramagnetic relaxation in Mn/Fe implanted ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Masenda, H., E-mail: hilary.masenda@wits.ac.za [University of the Witwatersrand, School of Physics (South Africa); Geburt, S. [University of Jena, Institute of Solid State Physics (Germany); Bharuth-Ram, K. [Durban University of Technology, Physics Department (South Africa); Naidoo, D. [University of the Witwatersrand, School of Physics (South Africa); Gunnlaugsson, H. P.; Johnston, K. [PH Dept, ISOLDE/CERN (Switzerland); Mantovan, R. [Laboratorio MDM, IMM-CNR (Italy); Mølholt, T. E. [PH Dept, ISOLDE/CERN (Switzerland); Ncube, M. [University of the Witwatersrand, School of Physics (South Africa); Shayestehaminzadeh, S. [RWTH Aachen University, Institute of Materials Chemistry (Germany); Gislason, H. P. [University of Iceland, Science Institute (Iceland); Langouche, G. [Instituut voor Kern-en Stralingsfysica, KU Leuven (Belgium); Ólafsson, S. [University of Iceland, Science Institute (Iceland); Ronning, C. [University of Jena, Institute of Solid State Physics (Germany); Collaboration: ISOLDE Collaboration

    2016-12-15

    Emission Mössbauer Spectroscopy following the implantation of radioactive precursor isotope {sup 57}Mn{sup +} (T{sub 1/2}= 1.5 min) into ZnO single crystals at ISOLDE/CERN shows that a large fraction of {sup 57}Fe atoms produced in the {sup 57}Mn beta decay is created as paramagnetic Fe{sup 3+} with relatively long spin-lattice relaxation times. Here we report on ZnO pre-implanted with {sup 56}Fe to fluences of 2×10{sup 13}, 5×10 {sup 13} and 8 × 10{sup 13} ions/cm{sup 2} in order to investigate the dependence of the paramagnetic relaxation rate of Fe{sup 3+} on fluence. The spectra are dominated by magnetic features displaying paramagnetic relaxation effects. The extracted spin-lattice relaxation rates show a slight increase with increasing ion fluence at corresponding temperatures and the area fraction of Fe{sup 3+} at room temperature reaches a maximum contribution of 80(3)% in the studied fluence range.

  15. Spin correlations in (Mn,Fe2(P,Si magnetocaloric compounds above Curie temperature

    Directory of Open Access Journals (Sweden)

    X.F. Miao

    2016-06-01

    Full Text Available The longitudinal-field muon-spin relaxation (LF-μSR technique was employed to study the spin correlations in (Mn,Fe2(P,Si compounds above the ferromagnetic transition temperature (TC. The (Mn,Fe2(P,Si compound under study is found to show itinerant magnetism. The standard deviation of the magnetic field distribution of electronic origin increases with a decrease in temperature, which is attributed to the development of spin correlations. The anomalously low magnetic fluctuation rate is suggested to be another signature of the spin correlations. The development of pronounced magnetic fluctuations is in agreement with the observed deviation of the paramagnetic susceptibility from Curie–Weiss behavior. Our study sheds light on the magneto-elastic transition and the mixed magnetism in (Mn,Fe2(P,Si compounds.

  16. Spin-charge separation and superconductivity from the t-J model

    International Nuclear Information System (INIS)

    Rice, M.J.; Wang, Y.R.

    1993-01-01

    With use of a spin-charge-separation treatment of the t-J model that accurately imposes the constraint of single electron site occupancy, a number of interesting results are obtained for the superconducting state. The most relevant is that superconductivity arises from $p----wave pairing of holons. This pairing leads to temperature (T) dependences of the electronic properties that are essentially the same as those given by s-wave BCS theory and suggests the possibility that the electrons are correlated in singlet pairs that are symmetric with respect to interchange of spin. On the other hand, the magnetic properties are dominated by the excitations of the spin liquid, leading to a spin susceptibility χ s that is proportional to T and a nuclear-magnetic-resonance relaxation rate 1/T 1 T that is proportional to T 2

  17. Magnetoresistance in hybrid organic spin valves at the onset of multiple-step tunneling.

    Science.gov (United States)

    Schoonus, J J H M; Lumens, P G E; Wagemans, W; Kohlhepp, J T; Bobbert, P A; Swagten, H J M; Koopmans, B

    2009-10-02

    By combining experiments with simple model calculations, we obtain new insight in spin transport through hybrid, CoFeB/Al2O3(1.5 nm)/tris(8-hydroxyquinoline)aluminium (Alq3)/Co spin valves. We have measured the characteristic changes in the I-V behavior as well as the intrinsic loss of magnetoresistance at the onset of multiple-step tunneling. In the regime of multiple-step tunneling, under the condition of low hopping rates, spin precession in the presence of hyperfine coupling is conjectured to be the relevant source of spin relaxation. A quantitative analysis leads to the prediction of a symmetric magnetoresistance around zero magnetic field in addition to the hysteretic magnetoresistance curves, which are indeed observed in our experiments.

  18. Sensitivity optimization of Bell-Bloom magnetometers by manipulation of atomic spin synchronization

    Science.gov (United States)

    Ranjbaran, M.; Tehranchi, M. M.; Hamidi, S. M.; Khalkhali, S. M. H.

    2018-05-01

    Many efforts have been devoted to the developments of atomic magnetometers for achieving the high sensitivity required in biomagnetic applications. To reach the high sensitivity, many types of atomic magnetometers have been introduced for optimization of the creation and relaxation rates of atomic spin polarization. In this paper, regards to sensitivity optimization techniques in the Mx configuration, we have proposed a novelty approach for synchronization of the spin precession in the Bell-Bloom magnetometers. We have utilized the phenomenological Bloch equations to simulate the spin dynamics when modulation of pumping light and radio frequency magnetic field were both used for atomic spin synchronization. Our results showed that the synchronization process, improved the magnetometer sensitivity respect to the classical configurations.

  19. NV-NV electron-electron spin and NV-N S electron - electron and electron-nuclear spin interaction in diamond

    Science.gov (United States)

    Armstrong, Seiji; Rogers, Lachlan J.; McMurtrie, Roger L.; Manson, Neil B.

    2010-02-01

    Features associated with the cross relaxation between spin of the ground electric state of the nitrogen vacancy centre (NV) and other impurity spins, mainly substitutional nitrogen, NS, are observed as changes of the emission intensity as a function of external magnetic field. The features are attributed to NV-NV electron-electron spin interaction, NV- NS electron-nuclear spin interaction and NV electron spin interaction with simultaneous change of an NS electron and nuclear spin change.

  20. Optimizing Water Exchange Rates and Rotational Mobility for High-Relaxivity of a Novel Gd-DO3A Derivative Complex Conjugated to Inulin as Macromolecular Contrast Agents for MRI.

    Science.gov (United States)

    Granato, Luigi; Vander Elst, Luce; Henoumont, Celine; Muller, Robert N; Laurent, Sophie

    2018-02-01

    Thanks to the understanding of the relationships between the residence lifetime τ M of the coordinated water molecules to macrocyclic Gd-complexes and the rotational mobility τ R of these structures, and according to the theory for paramagnetic relaxation, it is now possible to design macromolecular contrast agents with enhanced relaxivities by optimizing these two parameters through ligand structural modification. We succeeded in accelerating the water exchange rate by inducing steric compression around the water binding site, and by removing the amide function from the DOTA-AA ligand [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono(p-aminoanilide)] (L) previously designed. This new ligand 10[2(1-oxo-1-p-propylthioureidophenylpropyl]-1,4,7,10-tetraazacyclodecane-1,4,7-tetraacetic acid (L 1 ) was then covalently conjugated to API [O-(aminopropyl)inulin] to get the complex API-(GdL 1 )x with intent to slow down the rotational correlation time (τ R ) of the macromolecular complex. The evaluation of the longitudinal relaxivity at different magnetic fields and the study of the 17 O-NMR at variable temperature of the low-molecular-weight compound (GdL 1 ) showed a slight decrease of the τ M value (τM310 = 331 ns vs. τM310 = 450 ns for the GdL complex). Consequently to the increase of the size of the API-(GdL 1 )x complex, the rotational correlation time becomes about 360 times longer compared to the monomeric GdL 1 complex (τ R  = 33,700 ps), which results in an enhanced proton relaxivity. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  1. Location of a metallic cation complexed in a calixarene cavity as determined by calixarene 13C spin relaxation. application to cesium and thallium complexed by p-sulfonatocalix[4]arene in water.

    Science.gov (United States)

    Cuc, Diana; Bouguet-Bonnet, Sabine; Morel-Desrosiers, Nicole; Morel, Jean-Pierre; Mutzenhardt, Pierre; Canet, Daniel

    2009-03-19

    This study deals with the exact location of the monovalent metal cations Cs(+) and Tl(+) which are complexed by the p-sulfonatocalix[4]arene in water. This determination rests on the measurements of longitudinal relaxation times of carbon-13 not directly bonded to protons. The difference between the relaxation times of the free calixarene and of the complex definitely demonstrates that the monovalent metal cation is well inside the calixarene cavity. These features are in fact enhanced by the presence of paramagnetic species which act in a different way in the complexed form. Experimental results also show without any ambiguity that the calixarene cavity is essentially hydrophobic. Finally, it is observed that thallium is more mobile than cesium within the calixarene cavity.

  2. Photoexcited Muon Spin Spectroscopy: A New Method for Measuring Excess Carrier Lifetime in Bulk Silicon.

    Science.gov (United States)

    Yokoyama, K; Lord, J S; Miao, J; Murahari, P; Drew, A J

    2017-12-01

    We have measured excess carrier lifetime in silicon using photoexcited muon spin spectroscopy. Positive muons implanted deep in a wafer can interact with the optically injected excess carriers and directly probe the bulk carrier lifetime while minimizing the effect from surface recombination. The method is based on the relaxation rate of muon spin asymmetry, which depends on the excess carrier density. The underlying microscopic mechanism has been understood by simulating the four-state muonium model in Si under illumination. We apply the technique to different injection levels and temperatures, and demonstrate its ability for injection- and temperature-dependent lifetime spectroscopy.

  3. What is the surface specific area of porous cement-based material? A nuclear magnetic relaxation dispersion approach.

    Science.gov (United States)

    Barberon, F; Korb, J-P; Petit, D; Morin, V; Bermejo, E

    2003-01-01

    We propose a new NMR method to measure and follow the evolution of the surface specific area, Sp, of a porous cement-based material. This method, that does not require any preliminary drying process, uses nuclear magnetic relaxation dispersion (NMRD), the measurement of spin-lattice relaxation rate as a function of magnetic field strength or nuclear Larmor frequency. The method is applied for three different mortars samples prepared by mixing cement, sand, silica fume, water and superplasticizer with a water to cement ratio w/c=0.25, 0.38 and 0.65, respectively. The evolution of Sp grows linearly with the degree of advancement of chemical reactions measured by thermal heating and we evidence two relaxation processes independent of the w/c ratio.

  4. Quantum spin transport in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Christoph

    2012-05-15

    In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.

  5. Quantum spin transport in semiconductor nanostructures

    International Nuclear Information System (INIS)

    Schindler, Christoph

    2012-01-01

    In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.

  6. Spin dynamics in granular CoxCu1-x by μSR

    International Nuclear Information System (INIS)

    Kalvius, G.M.; Noakes, D.R.; Waeppling, R.; Schreier, E.; Marcano, N.; Roessler, U.K.; Nenkov, K.; Mueller, K.-H.; Idzikowski, B.

    2003-01-01

    Co x Cu 1-x samples with x=0.01,0.02,0.05 produced by melt spinning were probed with zero-field and longitudinal field μSR. For x=0.05, freezing into a spin glass state below 15 K is seen. Spectra between 15 and ∼150 K consist of the sum of two relaxation functions: a weakly dynamic Lorentzian Kubo-Toyabe (DLKT) and a root exponential (REX) relaxation. The cause is either a size distribution of precipitates or a strong heterogeneity in the spatial cluster arrangement. Above ∼150 K, relaxation is purely REX with the slow rate of 1.5 μs -1 , nearly independent of temperature. Persistent correlations between the clusters slow down the fluctuations of cluster moments and the state of free cluster moments is not reached in the temperature range investigated. The μSR response of the samples with lower Co concentration (0.2 and 0.1 at%) is characterized mainly by an increase of spin dynamics and a smaller mean field, implying a reduction of cluster-cluster couplings and a reduction of the moment of the precipitates. For x=0.1, a spin glass state is not formed down to 2 K

  7. Spin Transport in Nondegenerate Si with a Spin MOSFET Structure at Room Temperature

    Science.gov (United States)

    Sasaki, Tomoyuki; Ando, Yuichiro; Kameno, Makoto; Tahara, Takayuki; Koike, Hayato; Oikawa, Tohru; Suzuki, Toshio; Shiraishi, Masashi

    2014-09-01

    Spin transport in nondegenerate semiconductors is expected to pave the way to the creation of spin transistors, spin logic devices, and reconfigurable logic circuits, because room-temperature (RT) spin transport in Si has already been achieved. However, RT spin transport has been limited to degenerate Si, which makes it difficult to produce spin-based signals because a gate electric field cannot be used to manipulate such signals. Here, we report the experimental demonstration of spin transport in nondegenerate Si with a spin metal-oxide-semiconductor field-effect transistor (MOSFET) structure. We successfully observe the modulation of the Hanle-type spin-precession signals, which is a characteristic spin dynamics in nondegenerate semiconductors. We obtain long spin transport of more than 20 μm and spin rotation greater than 4π at RT. We also observe gate-induced modulation of spin-transport signals at RT. The modulation of the spin diffusion length as a function of a gate voltage is successfully observed, which we attribute to the Elliott-Yafet spin relaxation mechanism. These achievements are expected to lead to the creation of practical Si-based spin MOSFETs.

  8. Tuning the relaxation rates of dual-mode T1/T2 nanoparticle contrast agents: a study into the ideal system

    Science.gov (United States)

    Keasberry, Natasha A.; Bañobre-López, Manuel; Wood, Christopher; Stasiuk, Graeme. J.; Gallo, Juan; Long, Nicholas. J.

    2015-09-01

    Magnetic resonance imaging (MRI) is an excellent imaging modality. However the low sensitivity of the technique poses a challenge to achieving an accurate image of function at the molecular level. To overcome this, contrast agents are used; typically gadolinium based agents for T1 weighted imaging, or iron oxide based agents for T2 imaging. Traditionally, only one imaging mode is used per diagnosis although several physiological situations are known to interfere with the signal induced by the contrast agents in each individual imaging mode acquisition. Recently, the combination of both T1 and T2 imaging capabilities into a single platform has emerged as a tool to reduce uncertainties in MR image analysis. To date, contradicting reports on the effect on the contrast of the coupling of a T1 and T2 agent have hampered the application of these specialised probes. Herein, we present a systematic experimental study on a range of gadolinium-labelled magnetite nanoparticles envisioned to bring some light into the mechanism of interaction between T1 and T2 components, and advance towards the design of efficient (dual) T1 and T2 MRI probes. Unexpected behaviours observed in some of the constructs will be discussed. In this study, we demonstrate that the relaxivity of such multimodal probes can be rationally tuned to obtain unmatched potentials in MR imaging, exemplified by preparation of the magnetite-based nanoparticle with the highest T2 relaxivity described to date.Magnetic resonance imaging (MRI) is an excellent imaging modality. However the low sensitivity of the technique poses a challenge to achieving an accurate image of function at the molecular level. To overcome this, contrast agents are used; typically gadolinium based agents for T1 weighted imaging, or iron oxide based agents for T2 imaging. Traditionally, only one imaging mode is used per diagnosis although several physiological situations are known to interfere with the signal induced by the contrast agents in

  9. Crossover between spin swapping and Hall effect in disordered systems

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2015-07-16

    We theoretically study the crossover between spin Hall effect and spin swapping, a recently predicted phenomenon that consists of the interchange between the current flow and its spin polarization directions [M. B. Lifshits and M. I. Dyakonov, Phys. Rev. Lett. 103, 186601 (2009)]. Using a tight-binding model with spin-orbit coupled disorder, spin Hall effect, spin relaxation, and spin swapping are treated on equal footing. We demonstrate that spin swapping and spin Hall effect present very different dependencies as a function of the spin-orbit coupling and disorder strengths and confirm that the former exceeds the latter in the parameter range considered. Three setups are proposed for the experimental observation of the spin swapping effect.

  10. Generation of spin waves by a train of fs-laser pulses: a novel approach for tuning magnon wavelength.

    Science.gov (United States)

    Savochkin, I V; Jäckl, M; Belotelov, V I; Akimov, I A; Kozhaev, M A; Sylgacheva, D A; Chernov, A I; Shaposhnikov, A N; Prokopov, A R; Berzhansky, V N; Yakovlev, D R; Zvezdin, A K; Bayer, M

    2017-07-18

    Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional control of spin waves and switching between their different types. For further progress in this direction it is important to manipulate with the spectrum of the optically generated spin waves. Here we tackle this problem by launching spin waves by a sequence of femtosecond laser pulses with pulse interval much shorter than the relaxation time of the magnetization oscillations. This leads to the cumulative phenomenon and allows us to generate magnons in a specific narrow range of wavenumbers. The wavelength of spin waves can be tuned from 15 μm to hundreds of microns by sweeping the external magnetic field by only 10 Oe or by slight variation of the pulse repetition rate. Our findings expand the capabilities of the optical spin pump-probe technique and provide a new method for the spin wave generation and control.

  11. Relaxation of the Shallow Acceptor Center Magnetic Moment in a Highly Doped Silicon

    CERN Document Server

    Mamedov, T N; Herlach, D; Gorelkin, V N; Gritsaj, K I; Duginov, V N; Kormann, O; Major, J V; Stoikov, A V; Zimmermann, U

    2001-01-01

    Results on the temperature dependence of the residual polarization of negative muons in crystalline silicon with germanium, boron and phosphorus impurities are presented. The measurements were carried out in a magnetic field of 0.1 T transverse to the direction of the muon spin in the temperature range 4.2-300 K. It is found that in a silicon sample with a high concentration of germanium impurity (9\\cdot 10^{19} cm^{-3}), as in the samples of n- and p-type silicon with impurity concentrations up to \\sim 10^{17} cm^{-3}, the relaxation rate \

  12. Zero-field NMR study on a spin glass: iron-doped 2H-niobium diselenide

    International Nuclear Information System (INIS)

    Chen, M.C.

    1982-01-01

    Spin echoes are used to study the 93 Nb NQR in 2H-NbSe 2 Fe/sub x/. Measured are (intensity) x (temperature), and T/sub 1P/ (spin-lattice relaxation parameter) and T 2 (spin-spin relaxation time) as a function of temperature. Data reveal dramatic differences between non-spin glass samples (x = 0, 0.25%, 1% and 5%) and spin glass samples (x = 8%, 10% and 12%). All of the NQR results and the model calculation of the correlation times of Fe spins are best described by the phase transition picture of spin glasses

  13. Mechanical relaxation in glasses

    International Nuclear Information System (INIS)

    Hiki, Y.

    2004-01-01

    The basic properties of glasses and the characteristics of mechanical relaxation in glasses were briefly reviewed, and then our studies concerned were presented. Experimental methods adopted were viscosity, internal friction, ultrasonic attenuation, and Brillouin scattering measurements. The specimens used were several kinds of inorganic, organic, and metallic glasses. The measurements were mainly carried out from the room temperature up to the glass transition temperature, and the relaxation time was determined as a function of temperature. The 'double relaxation' composed of two Arrhenius-type relaxations was observed in many materials. In both relaxations, the 'compensation effect' showing a correlation of the pre-exponential factor and the activation energy was observed. These results were explained by considering the 'complex relaxation' due to cooperative motions of atoms or group of atoms. Values of activation energy near the glass transition determined by the various experimental methods were compared with each other

  14. Influence of cooling rate in planar thermally assisted magnetic random access memory: Improved writeability due to spin-transfer-torque influence

    International Nuclear Information System (INIS)

    Chavent, A.; Ducruet, C.; Portemont, C.; Creuzet, C.; Alvarez-Hérault, J.; Vila, L.; Sousa, R. C.; Prejbeanu, I. L.; Dieny, B.

    2015-01-01

    This paper investigates the effect of a controlled cooling rate on magnetic field reversal assisted by spin transfer torque (STT) in thermally assisted magnetic random access memory. By using a gradual linear decrease of the voltage at the end of the write pulse, the STT decays more slowly or at least at the same rate as the temperature. This condition is necessary to make sure that the storage layer magnetization remains in the desired written direction during cooling of the cell. The influence of the write current pulse decay rate was investigated on two exchange biased synthetic ferrimagnet (SyF) electrodes. For a NiFe based electrode, a significant improvement in writing reproducibility was observed using a gradual linear voltage transition. The write error rate decreases by a factor of 10 when increasing the write pulse fall-time from ∼3 ns to 70 ns. For comparison, a second CoFe/NiFe based electrode was also reversed by magnetic field assisted by STT. In this case, no difference between sharp and linear write pulse fall shape was observed. We attribute this observation to the higher thermal stability of the CoFe/NiFe electrode during cooling. In real-time measurements of the magnetization reversal, it was found that Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling in the SyF electrode vanishes for the highest pulse voltages that were used due to the high temperature reached during write. As a result, during the cooling phase, the final state is reached through a spin-flop transition of the SyF storage layer

  15. Spin injection, accumulation, and precession in a mesoscopic nonmagnetic metal island

    NARCIS (Netherlands)

    Zaffalon, M; van Wees, BJ

    We experimentally study spin accumulation in an aluminum island with all dimensions smaller than the spin-relaxation length, so that the spin imbalance throughout the island is uniform. Electrical injection and detection of the spin accumulation are carried out in a four-terminal geometry by means

  16. Nuclear magnetic relaxation in aqueous praseodymium and europium solutions

    International Nuclear Information System (INIS)

    Lopez, J.L.; Diaz, D.

    1991-01-01

    A general theory for the relaxation of the nuclear spin in paramagnetic complexes where the electronic spin is within a slow-movement regime was presented by Benetis et al. and applied to d-group elements (Ni 2+ , Co 2+ ). This paper show the possibility to apply such formalism to f-group elements and it was developed for S=3(Eu 3+ ). A group of magnitudes characterizing the microstructure and dynamics of these solutions is reported with the approximations used. The dispersion of the nuclear magnetic relaxation (NMRD) for the proton of the variable field was also assessed which had a similar behaviour to what was experimentally reported

  17. Lattice relaxation theory of localized excitations in quasi-one-dimensional systems

    International Nuclear Information System (INIS)

    Wang Chuilin; Su Zhaobin; Yu Lu.

    1993-04-01

    The lattice relaxation theory developed earlier by Su and Yu for solitons and polarons in conducting polymers is applied to systems with both electron-phonon and electron-electron interactions, described by a single band Peierls-Hubbard model. The localized excitations in the competing bond-order-wave (BOW), charge-density-wave (CDW) and spin-density-wave (SDW) systems show interesting new features in their dynamics. In particular, a non-monotonic dependence of the relaxation rate on the coupling strength is predicted from the theory. The possible connection of this effect with photo-luminescence experiments is discussed. Similar phenomena may occur in other quasi-one-dimensional systems as well. (author). 21 refs, 4 figs

  18. Studies of superconducting materials with muon spin rotation

    Science.gov (United States)

    Davis, Michael R.; Stronach, Carey E.; Kossler, W. J.; Schone, H. E.; Yu, X. H.; Uemura, Y. J.; Sternlieb, B. J.; Kempton, J. R.; Oostens, J.; Lankford, W. F.

    1989-01-01

    The muon spin rotation/relaxation technique was found to be an exceptionally effective means of measuring the magnetic properties of superconductors, including the new high temperature superconductor materials, at the microscopic level. The technique directly measures the magnetic penetration depth (type II superconductors (SC's)) and detects the presence of magnetic ordering (antiferromagnetism or spin-glass ordering were observed in some high temperature superconductor (HTSC's) and in many closely related compounds). Extensive studies of HTSC materials were conducted by the Virginia State University - College of William and Mary - Columbia University collaboration at Brookhaven National Laboratory and TRIUMF (Vancouver). A survey of LaSrCuO and YBaCaCuO systems shows an essentially linear relationship between the transition temperature T(sub c) and the relaxation rate. This appears to be a manifestation of the proportionality between T(sub c) and the Fermi energy, which suggests a high energy scale for the SC coupling, and which is not consistent with the weak coupling of phonon-mediated SC. Studies of LaCuO and YBaCuO parent compounds show clear evidence of antiferromagnetism. YBa2Cu(3-x)CO(x)O7 shows the simultaneous presence of spin-glass magnetic ordering and superconductivity. Three-dimensional SC, (Ba, K) BiO3, unlike the layered CuO-based compounds, shows no suggestion of magnetic ordering. Experimental techniques and theoretical implications are discussed.

  19. Spin Hall effect-driven spin torque in magnetic textures

    KAUST Repository

    Manchon, Aurelien

    2011-07-13

    Current-induced spin torque and magnetization dynamics in the presence of spin Hall effect in magnetic textures is studied theoretically. The local deviation of the charge current gives rise to a current-induced spin torque of the form (1 - ΒM) × [(u 0 + αH u 0 M) ∇] M, where u0 is the direction of the injected current, H is the Hall angle and is the non-adiabaticity parameter due to spin relaxation. Since αH and ×can have a comparable order of magnitude, we show that this torque can significantly modify the current-induced dynamics of both transverse and vortex walls. © 2011 American Institute of Physics.

  20. Nonequilibrium Spin Dynamics in a Trapped Fermi Gas with Effective Spin-Orbit Interactions

    International Nuclear Information System (INIS)

    Stanescu, Tudor D.; Zhang Chuanwei; Galitski, Victor

    2007-01-01

    We consider a trapped atomic system in the presence of spatially varying laser fields. The laser-atom interaction generates a pseudospin degree of freedom (referred to simply as spin) and leads to an effective spin-orbit coupling for the fermions in the trap. Reflections of the fermions from the trap boundaries provide a physical mechanism for effective momentum relaxation and nontrivial spin dynamics due to the emergent spin-orbit coupling. We explicitly consider evolution of an initially spin-polarized Fermi gas in a two-dimensional harmonic trap and derive nonequilibrium behavior of the spin polarization. It shows periodic echoes with a frequency equal to the harmonic trapping frequency. Perturbations, such as an asymmetry of the trap, lead to the suppression of the spin echo amplitudes. We discuss a possible experimental setup to observe spin dynamics and provide numerical estimates of relevant parameters

  1. Spin transport studies in encapsulated CVD graphene

    Science.gov (United States)

    Avsar, Ahmet; You Tan, Jun; Ho, Yuda; Koon, Gavin; Oezyilmaz, Barbaros

    2013-03-01

    Spin transport studies in exfoliated graphene on SiO2/Si substrates have shown spin relaxation times that are orders of magnitude shorter than the theoretical predictions. Similar to the charge transport case, the underlying substrate is expected to be the limiting factor. The recent work Zomer, P. J. et al. shows that spin transport over lengths up to 20um is possible in high mobility exfoliated graphene devices on boron nitride (BN) substrates. Here we discuss our initial attempts to repeat such spin transport experiments with CVD graphene on BN substrates. The effect of encapsulation of such devices with an extra BN layer will be also discussed.

  2. Exploring catalyst passivation with NMR relaxation.

    Science.gov (United States)

    Robinson, Neil; Gladden, Lynn F; D'Agostino, Carmine

    2017-10-26

    NMR relaxation has recently emerged as a novel and non-invasive tool for probing the surface dynamics of adsorbate molecules within liquid-saturated mesoporous catalysts. The elucidation of such dynamics is of particular relevance to the study and development of solvated green catalytic processes, such as the production of chemicals and fuels from bio-resources. In this paper we develop and implement a protocol using high field 1 H NMR spin-lattice relaxation as a probe of the reorientational dynamics of liquids imbibed within mesoporous oxide materials. The observed relaxation of liquids within mesoporous materials is highly sensitive to the adsorbed surface layer, giving insight into tumbling behaviour of spin-bearing chemical environments at the pore surface. As a prototypical example of relevance to liquid-phase catalytic systems, we examine the mobility of liquid methanol within a range of common catalyst supports. In particular, through the calculation and comparison of a suitable interaction parameter, we assess and quantify changes to these surface dynamics upon replacing surface hydroxyl groups with hydrophobic alkyl chains. Our results indicate that the molecular tumbling of adsorbed methanol is enhanced upon surface passivation due to the suppression of surface-adsorbate hydrogen bonding interactions, and tends towards that of the unrestricted bulk liquid. A complex analysis in which we account for the influence of changing pore structure and surface chemistry upon passivation is discussed. The results presented highlight the use of NMR spin-lattice relaxation measurements as a non-invasive probe of molecular dynamics at surfaces of interest to liquid-phase heterogeneous catalysis.

  3. Relaxation of Anisotropic Glasses

    DEFF Research Database (Denmark)

    Deubener, Joachim; Martin, Birgit; Wondraczek, Lothar

    2004-01-01

    . When the load was removed at room temperature a permanent optical anisotropy (birefringence) was observed only perpendicular to cylinder axis and the pressure direction indicating complete elimination of thermal stresses. Relaxation of structural anisotropy was studied from reheating experiments using...... the energy release, thermo-mechanical and optical relaxation behaviour are drawn....

  4. Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures

    Science.gov (United States)

    Savero Torres, W.; Sierra, J. F.; Benítez, L. A.; Bonell, F.; Costache, M. V.; Valenzuela, S. O.

    2017-12-01

    Spin Hall effects have surged as promising phenomena for spin logics operations without ferromagnets. However, the magnitude of the detected electric signals at room temperature in metallic systems has been so far underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the signal in monolayer graphene/Pt devices when compared to their fully metallic counterparts. The enhancement stems in part from efficient spin injection and the large spin resistance of graphene but we also observe 100% spin absorption in Pt and find an unusually large effective spin Hall angle of up to 0.15. The large spin-to-charge conversion allows us to characterise spin precession in graphene under the presence of a magnetic field. Furthermore, by developing an analytical model based on the 1D diffusive spin-transport, we demonstrate that the effective spin-relaxation time in graphene can be accurately determined using the (inverse) spin Hall effect as a means of detection. This is a necessary step to gather full understanding of the consequences of spin absorption in spin Hall devices, which is known to suppress effective spin lifetimes in both metallic and graphene systems.

  5. Effect of residual stress relaxation by means of local rapid induction heating on stress corrosion cracking behavior and electrochemical characterization of welded Ti-6Al-4V alloy under slow strain rate test

    Science.gov (United States)

    Liu, Yan; Tang, Shawei; Liu, Guangyi; Sun, Yue; Hu, Jin

    2017-05-01

    In this study, a welded Ti-6Al-4V alloy was treated by means of local rapid induction heating in order to relax the residual stress existed in the weldment. The welded samples were heat treated at the different temperatures. The stress corrosion cracking behavior and electrochemical characterization of the as-welded samples before and after the post weld heat treatment as a function of residual stress were investigated. Electrochemical impedance spectroscopy measurements of the samples under slow strain rate test were performed in a LiCl-methanol solution. The results demonstrated that the residual stress in the as-welded sample was dramatically reduced after the post weld heat treatment, and the residual stress decreased with the increase in the heat treatment temperature. The stress corrosion cracking susceptibility and electrochemical activity of the as-welded sample were significantly reduced after the heat treatment due to the relaxation of the residual stress, which gradually decreased with the decreasing value of the residual stress distributed in the heat treated samples.

  6. Instrumentation for cryogenic magic angle spinning dynamic nuclear polarization using 90L of liquid nitrogen per day.

    Science.gov (United States)

    Albert, Brice J; Pahng, Seong Ho; Alaniva, Nicholas; Sesti, Erika L; Rand, Peter W; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Barnes, Alexander B

    2017-10-01

    Cryogenic sample temperatures can enhance NMR sensitivity by extending spin relaxation times to improve dynamic nuclear polarization (DNP) and by increasing Boltzmann spin polarization. We have developed an efficient heat exchanger with a liquid nitrogen consumption rate of only 90L per day to perform magic-angle spinning (MAS) DNP experiments below 85K. In this heat exchanger implementation, cold exhaust gas from the NMR probe is returned to the outer portion of a counterflow coil within an intermediate cooling stage to improve cooling efficiency of the spinning and variable temperature gases. The heat exchange within the counterflow coil is calculated with computational fluid dynamics to optimize the heat transfer. Experimental results using the novel counterflow heat exchanger demonstrate MAS DNP signal enhancements of 328±3 at 81±2K, and 276±4 at 105±2K. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Microscopic understanding of spin current probed by shot noise

    Science.gov (United States)

    Arakawa, Tomonori

    The spin currents is one of key issue in the spintronics field and the generation and detection of those have been intensively studied by using various materials. The analysis of experiments, however, relies on phenomenological parameters such as spin relaxation length and spin flip time. The microscopic nature of the spin current such as energy distribution and energy relaxation mechanism, has not yet well understood. To establish a better microscopic understanding of spin currents, I focused on the shot noise measurement which is well established technique in the field of mesoscopic physics [Y. M. Blanter and M. B üttiker, Phys. Rep. 336, 1 (2000).]. Although there are many theoretically works about shot noise in the presence of spin currents, for example detection of spin accumulation [J. Meair, P. Stano, and P. Jacquod, Phys. Rev. B 84 (2011).], estimation of spin flip currents, and so on, these predictions have never been experimentally confirmed. In this context, we reported the first experimental detention of shot noise in the presence of the spin accumulation in a (Ga,Mn)As/tunnel barrier/n-GaAs based lateral spin valve device [T. Arakawa et al., Phys. Rev. Lett. 114, 016601 (2015).]. Together with this result, we found however that the effective temperature of the spin current drastically increases due to the spin injection process. This heating of electron system could be a big problem to realize future spin current devices by using quantum coherence, because the effective temperature rise directly related to the destruction of the coherence of the spin current. Therefore, then we focused on the mechanism of this heating and the energy relaxation in a diffusive channel. By measuring current noise and the DC offset voltage in the usual non-local spin valve signal as a function of the spin diffusion channel length, we clarified that the electron-electron interaction length, which is the characteristic length for the relaxation of the electron system, is

  8. Solid-state NMR paramagnetic relaxation enhancement immersion depth studies in phospholipid bilayers

    KAUST Repository

    Chu, Shidong

    2010-11-01

    A new approach for determining the membrane immersion depth of a spin-labeled probe has been developed using paramagnetic relaxation enhancement (PRE) in solid-state NMR spectroscopy. A DOXYL spin label was placed at different sites of 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine (PSPC) phospholipid bilayers as paramagnetic moieties and the resulting enhancements of the longitudinal relaxation (T1) times of 31P nuclei on the surface of the bilayers were measured by a standard inversion recovery pulse sequence. The 31P NMR spin-lattice relaxation times decrease steadily as the DOXYL spin label moves closer to the surface as well as the concentration of the spin-labeled lipids increase. The enhanced relaxation vs. the position and concentration of spin-labels indicate that PRE induced by the DOXYL spin label are significant to determine longer distances over the whole range of the membrane depths. When these data were combined with estimated correlation times τc, the r-6-weighted, time-averaged distances between the spin-labels and the 31P nuclei on the membrane surface were estimated. The application of using this solid-state NMR PRE approach coupled with site-directed spin labeling (SDSL) may be a powerful method for measuring membrane protein immersion depth. © 2010 Elsevier Inc. All rights reserved.

  9. Coexistence of spin frozen state and persistent spin dynamics in NaSrCo{sub 2}F{sub 7} as probed by μSR and NMR

    Energy Technology Data Exchange (ETDEWEB)

    Dengre, Shanu; Sarkar, Rajib; Braeuninger, Sascha Albert; Brueckner, Felix; Materne, Philipp; Klauss, Hans-Henning [Institute for Solid State Physics, TU Dresden (Germany); Krizan, Jason W.; Cava, Robert J. [Department of Chemistry, Princeton University, Princeton, NJ (United States); Luetkens, Hubertus; Baines, Chris [Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institute, Villigen (Switzerland)

    2016-07-01

    {sup 23}Na -and {sup 19}F NMR, and μSR experiments are performed to explore the microscopic properties of NaSrCo{sub 2}F{sub 7}, which is a newly discovered magnetically frustrated pyrochlore with weak bond disorder and with a frustration index of f = 42. While {sup 23}Na and {sup 19}F NMR experiments clearly suggest the presence of quasi static field distribution below ∝3 K as reflected in the huge NMR line broadening and wipe out effect of NMR signal intensity, μSR experiments on the other hand remains passive to this spin frozen state. Both NMR and μSR results indicate the slowing down of the magnetic (spin) fluctuations upon cooling towards the NMR spin frozen state. μSR relaxation rate increases slightly below ∝ 3 K, and remains not only constant down to 20 mK, but also stands independent in longitudinal magnetic field upto 4000 G implying that the spin fluctuations are dynamic. These observations suggest the coexistence of partial spin frozen state and persistent spin dynamics in NaSrCo{sub 2}F{sub 7}.

  10. New directions in the theory of spin-polarized atomic hydrogen and deuterium

    International Nuclear Information System (INIS)

    Koelman, J.M.V.A.

    1988-01-01

    The three chapters of this thesis dealing with collisions between hydrogen (or deuterium) atoms in their ground state, each treat a different development in the theory of atomic hydrogen or deuterium gas. The decay due to interatomic collisions hindered till now all attempts to reach the low temperature, high-density regime where effects due to degeneracy are expected to show up. In ch. 2 a simple way out is presented for the case of Fermi gases: In spin-polarized Fermi systems at very low temperatures collisions are much effective than in Bose systems. For the Fermi gas, consisting of magnetically confined deuterium atoms, it appears that fast spin-exchange collisions automatically lead to a completely spin-polarized gas for which the spin-relaxation limited lifetime increases dramatically with decreasing temperature. As also the ratio of internal thermalization rate over decay rate increases with decreasing temperature, this gas can be cooled by forced evaporation down to very low temperatures. In ch. 3 it iis shown that the nuclear spin dynamics due to the hyperfine interaction during collisions, strongly limits the improvement in frequency stability attainable by H masers operating at low temperatures. In ch. 4 the phenomenon of spin waves is studied. It is shown that, despite the fact that interactions between two atoms are nuclear-spin independent, the outcome of a scattering event does not depend on the nuclear spins involved due to the particle indistinguishability effects at low collision energies. This effect gives rise to quantum phenomena on a macroscopic scale via the occurrence of spin waves. (author). 185 refs.; 34 figs

  11. Measurement of the spin and temperature dependence of the ddμ-molecule formation rate in solid and liquid deuterium

    International Nuclear Information System (INIS)

    Demin, D.L.; Drebushko, A.E.; Dzhelepov, V.P.

    1996-01-01

    Ddμ molecule formation rates have been measured from the two hyperfine states of the dμ-atom in the temperature range of T=5-30 K. Results are consistent with the measurement of the TRIUMF group at T=3 K and contradict theoretical predictions. The work was performed on the JINR phasotron (Dubna). 23 refs., 10 figs.; 2 tabs

  12. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2017-01-01

    Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.

  13. Spin Electronics

    Science.gov (United States)

    2003-08-01

    applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a...physical phenomena in II-VI and III-V semiconductors. In II-VI systems, the Mn2+ ions act to boost the electron spin precession up to terahertz ...conductors, proximity effect between ferromagnets and superconductors , and the effects of spin injection on the physical properties of the

  14. Spin doctoring

    OpenAIRE

    Vozková, Markéta

    2011-01-01

    1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...

  15. Electrical Spin Generation and Transport in Spin-Orbit Coupled Systems

    Science.gov (United States)

    Niu, Qian

    2005-03-01

    We consider spin generation and transport in bands with built-in spin-orbit coupling. A number of fundamental issues will be discussed: (1) the existence of spin-dipole and torque-dipole of wave packets which model the carriers; (2) source terms in the continuity equation (spin generation and relaxation); (3) the composition of the spin current (Berry phase and more); (4) spin Hall conductivity and its reciprocal; (5) the spin current responsible for spin accumulation. *References: *1 D. Culcer, J. Sinova, N. A. Sinitsyn, T. Jungwirth, A. H.MacDonald, Q. Niu, `Semiclassical theory of spin transport in spin-orbit coupled systems', Phys. Rev. Lett. 93, 046602 (2004). *2 P. Zhang and Q. Niu, `Charge-Hall effect driven by spin force: reciprocal of the spin-Hall effect' Cond-mat/0406436. *3 D. Culcer, Y. G. Yao, A. H. MacDonald, and Q. Niu, `Electric generation of spin in crystals with reduced symmetry', Cond-mat/0408020.

  16. Zn and Ni substitutional effects on spin fluctuations in YBa sub 2 Cu sub 3 O sub 7 by sup 6 sup 3 sup , sup 6 sup 5 Cu NQR

    CERN Document Server

    Han, K S; Mean, B J; Lee, K H; Seo, S W; Lee, M H; Lee, W C

    2000-01-01

    We have prepared Zn- and Ni-substituted YBa sub 2 Cu sub 3 O sub 7 (YBa sub 2 Cu sub 3 sub - sub x M sub x O sub 7 , M=Zn or Ni, x=0.00 approx 0.09) and performed sup 6 sup 3 sup , sup 6 sup 5 Cu nuclear quadrupole resonance (NQR) measurements for the plane site at 300 and 100 K. Substitutional effects on the relaxation rates are markedly different. Both the spin-lattice and the spin-spin relaxation rates decrease for Zn-doped YBCO. However, those increase for Ni-doped YBCO. This contrast in local electronic dynamics provides clear microscopic evidence that Zn forms no local moment while Ni develops a local moment. Consequently, the antiferromagnetic spin fluctuation is suppressed by Zn doping whereas it is preserved by Ni doping. This is also confirmed by the ratio of the sup 6 sup 3 sup , sup 6 sup 5 Cu spin-lattice relaxation rates for the plane coppers.

  17. Relaxation of the one child policy and trends in caesarean section rates and birth outcomes in China between 2012 and 2016: observational study of nearly seven million health facility births.

    Science.gov (United States)

    Liang, Juan; Mu, Yi; Li, Xiaohong; Tang, Wen; Wang, Yanping; Liu, Zheng; Huang, Xiaona; Scherpbier, Robert W; Guo, Sufang; Li, Mingrong; Dai, Li; Deng, Kui; Deng, Changfei; Li, Qi; Kang, Leni; Zhu, Jun; Ronsmans, Carine

    2018-03-05

    To examine how the relaxation of the one child policy and policies to reduce caesarean section rates might have affected trends over time in caesarean section rates and perinatal and pregnancy related mortality in China. Observational study. China's National Maternal Near Miss Surveillance System (NMNMSS). 6 838 582 births at 28 completed weeks or more of gestation or birth weight ≥1000 g in 438 hospitals in the NMNMSS between 2012 and 2016. Obstetric risk was defined using a modified Robson classification. The main outcome measures were changes in parity and age distributions and relative frequency of each Robson group, crude and adjusted trends over time in caesarean section rates within each risk category (using Poisson regression with a robust variance estimator), and trends in perinatal and pregnancy related mortality over time. Caesarean section rates declined steadily between 2012 and 2016 (crude relative risk 0.91, 95% confidence interval 0.89 to 0.93), reaching an overall hospital based rate of 41.1% in 2016. The relaxation of the one child policy was associated with an increase in the proportion of multiparous births (from 34.1% in 2012 to 46.7% in 2016), and births in women with a uterine scar nearly doubled (from 9.8% to 17.7% of all births). Taking account of these changes, the decline in caesarean sections was amplified over time (adjusted relative risk 0.82, 95% confidence interval 0.81 to 0.84). Caesarean sections declined noticeably in nulliparous women (0.75, 0.73 to 0.77) but also declined in multiparous women without a uterine scar (0.65, 0.62 to 0.77). The decrease in caesarean section rates was most pronounced in hospitals with the highest rates in 2012, consistent with the government's policy of targeting hospitals with the highest rates. Perinatal mortality declined from 10.1 to 7.2 per 1000 births over the same period (0.87, 0.83 to 0.91), and there was no change in pregnancy related mortality over time. China is the only country that

  18. Nanoscale spin sensing in artificial cell membranes

    International Nuclear Information System (INIS)

    Simpson David

    2014-01-01

    The use of the nitrogen-vacancy (NV) centre in diamond as a single spin sensor or magnetometer has attracted considerable interest in recent years because of its unique combination of sensitivity, nanoscale resolution, and optical initialisation and readout at room temperature. Nanodiamonds in particular hold great promise as an optical magnetometer probe for bio applications. In this work we employ nanodiamonds containing single NV spins to detect freely diffusing Mn2+ ions by detecting changes in the transverse relaxation time (T2) of the single spin probe. We also report the detection of gadolinium spin labels present in an artificial cell membrane by measuring changes in the longitudinal relaxation time (T1) of the probe. (author)

  19. Physics and application of persistent spin helix state in semiconductor heterostructures

    Science.gov (United States)

    Kohda, Makoto; Salis, Gian

    2017-07-01

    In order to utilize the spin degree of freedom in semiconductors, control of spin states and transfer of the spin information are fundamental requirements for future spintronic devices and quantum computing. Spin orbit (SO) interaction generates an effective magnetic field for moving electrons and enables spin generation, spin manipulation and spin detection without using external magnetic field and magnetic materials. However, spin relaxation also takes place due to a momentum dependent SO-induced effective magnetic field. As a result, SO interaction is considered to be a double-edged sword facilitating spin control but preventing spin transport over long distances. The persistent spin helix (PSH) state solves this problem since uniaxial alignment of the SO field with SU(2) symmetry enables the suppression of spin relaxation while spin precession can still be controlled. Consequently, understanding the PSH becomes an important step towards future spintronic technologies for classical and quantum applications. Here, we review recent progress of PSH in semiconductor heterostructures and its device application. Fundamental physics of SO interaction and the conditions of a PSH state in semiconductor heterostructures are discussed. We introduce experimental techniques to observe a PSH and explain both optical and electrical measurements for detecting a long spin relaxation time and the formation of a helical spin texture. After emphasizing the bulk Dresselhaus SO coefficient γ, the application of PSH states for spin transistors and logic circuits are discussed.

  20. ON THE INFERENCE OF THE COSMIC-RAY IONIZATION RATE ζ FROM THE HCO{sup +}-to-DCO{sup +} ABUNDANCE RATIO: THE EFFECT OF NUCLEAR SPIN

    Energy Technology Data Exchange (ETDEWEB)

    Shingledecker, Christopher N.; Le Gal, Romane; Hincelin, Ugo; Herbst, Eric [Department of Chemistry, University of Virginia, Charlottesville, VA 22904 (United States); Bergner, Jennifer B. [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 (United States); Öberg, Karin I., E-mail: shingledecker@virginia.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-10-20

    The chemistry of dense interstellar regions was analyzed using a time-dependent gas–grain astrochemical simulation and a new chemical network that incorporates deuterated chemistry, taking into account nuclear spin states for the hydrogen chemistry and its deuterated isotopologues. With this new network, the utility of the [HCO{sup +}]/[DCO{sup +}] abundance ratio as a probe of the cosmic-ray ionization rate has been re-examined, with special attention paid to the effect of the initial value of the ortho-to-para ratio (OPR) of molecular hydrogen. After discussing the use of the probe for cold cores, we compare our results with previous theoretical and observational results for a molecular cloud close to the supernova remnant W51C, which is thought to have an enhanced cosmic-ray ionization rate ζ caused by the nearby γ -ray source. In addition, we attempt to use our approach to estimate the cosmic-ray ionization rate for L1174, a dense core with an embedded star. Beyond the previously known sensitivity of [HCO{sup +}]/[DCO{sup +}] to ζ , we demonstrate its additional dependence on the initial OPR and, secondarily, on the age of the source, its temperature, and its density. We conclude that the usefulness of the [HCO{sup +}]/[DCO{sup +}] abundance ratio in constraining the cosmic-ray ionization rate in dense regions increases with the age of the source and the ionization rate as the ratio becomes far less sensitive to the initial value of the OPR.