WorldWideScience

Sample records for spin relaxation mechanism

  1. Universal Mechanism of Spin Relaxation in Solids

    Science.gov (United States)

    Chudnovsky, Eugene

    2006-03-01

    Conventional elastic theory ignores internal local twists and torques. Meantime, spin-lattice relaxation is inherently coupled with local elastic twists through conservation of the total angular momentum (spin + lattice). This coupling gives universal lower bound (free of fitting parameters) on the relaxation of the atomic or molecular spin in a solid [1] and on the relaxation of the electron spin in a quantum dot [2]. [1] E. M. Chudnovsky, D. A. Garanin, and R. Schilling, Phys. Rev. B 72, 094426 (2005). [2] C. Calero, E. M. Chudnovsky, and D. A. Garanin, Phys. Rev. Lett. 95, 166603 (2005).

  2. Mechanisms of relaxation and spin decoherence in nanomagnets

    Science.gov (United States)

    van Tol, Johan

    Relaxation in spin systems is of great interest with respect to various possible applications like quantum information processing and storage, spintronics, and dynamic nuclear polarization (DNP). The implementation of high frequencies and fields is crucial in the study of systems with large zero-field splitting or large interactions, as for example molecular magnets and low dimensional magnetic materials. Here we will focus on the implementation of pulsed Electron Paramagnetic Resonance (ERP) at multiple frequencies of 10, 95, 120, 240, and 336 GHz, and the relaxation and decoherence processes as a function of magnetic field and temperature. Firstly, at higher frequencies the direct single-phonon spin-lattice relaxation (SLR) is considerably enhanced, and will more often than not be the dominant relaxation mechanism at low temperatures, and can be much faster than at lower fields and frequencies. In principle the measurement of the SLR rates as a function of the frequency provides a means to map the phonon density of states. Secondly, the high electron spin polarization at high fields has a strong influence on the spin fluctuations in relatively concentrated spin systems, and the contribution of the electron-electron dipolar interactions to the coherence rate can be partially quenched at low temperatures. This not only allows the study of relatively concentrated spin systems by pulsed EPR (as for example magnetic nanoparticles and molecular magnets), it enables the separation of the contribution of the fluctuations of the electron spin system from other decoherence mechanisms. Besides choice of temperature and field, several strategies in sample design, pulse sequences, or clock transitions can be employed to extend the coherence time in nanomagnets. A review will be given of the decoherence mechanisms with an attempt at a quantitative comparison of experimental rates with theory.

  3. Spin relaxation mechanism in graphene: resonant scattering by magnetic impurities.

    Science.gov (United States)

    Kochan, Denis; Gmitra, Martin; Fabian, Jaroslav

    2014-03-21

    We propose that the observed small (100 ps) spin relaxation time in graphene is due to resonant scattering by local magnetic moments. At resonances, magnetic moments behave as spin hot spots: the spin-flip scattering rates are as large as the spin-conserving ones, as long as the exchange interaction is greater than the resonance width. Smearing of the resonance peaks by the presence of electron-hole puddles gives quantitative agreement with experiment, for about 1 ppm of local moments. Although magnetic moments can come from a variety of sources, we specifically consider hydrogen adatoms, which are also resonant scatterers. The same mechanism would also work in the presence of a strong local spin-orbit interaction, but this would require heavy adatoms on graphene or a much greater coverage density of light adatoms. To make our mechanism more transparent, we also introduce toy atomic chain models for resonant scattering of electrons in the presence of a local magnetic moment and Rashba spin-orbit interaction.

  4. Intersubband spin relaxation mechanism in n-doped[110] GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Lena; Chen, Shijian; Doehrmann, Stefanie; Oertel, Stefan; Huebner, Jens; Oestreich, Michael [Institute for Solid State Physics, Gottfried Wilhelm Leibniz University Hannover, Appelstr. 2, 30167 Hannover (Germany); Schuh, Dieter; Wegscheider, Werner [Institute of Experimental and Applied Physics, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg (Germany)

    2008-07-01

    The intersubband spin relaxation mechanism most likely represents the major spin dephasing channel in room temperature applications based upon heterostructures in (110) oriented GaAs for spins oriented along the growth direction. The electron spin relaxation time {tau}{sub s} in n-doped (110)GaAs/AlGaAs quantum wells is investigated by time- and polarisation-resolved photoluminescence measurements in dependence on the subband energy splitting and subband occupancy. The influence by the subband energy splitting on {tau}{sub s} is deduced from well width dependent measurements, whereas different occupancies are adjusted by different sample temperatures. The n-doping suppresses the spin dephasing influence of holes created by the optical excitation. The (110) structure suppresses the Dyakonov-Perel relaxation mechanism for spins pointing in growth direction. Therefore the resulting spin relaxation times are long even at room temperature and the intersubband spin relaxation mechanism becomes the dominating spin relaxation mechanism.

  5. Detailed mechanisms of1H spin-lattice relaxation in ammonium dihydrogen phosphate confirmed by magic angle spinning.

    Science.gov (United States)

    Hayashi, Shigenobu; Jimura, Keiko

    2017-10-01

    Mechanisms of the 1 H spin-lattice relaxation in NH 4 H 2 PO 4 were studied in detail by use of the effect of magic angle spinning on the relaxation. The acid and the ammonium protons have different relaxation times at the spinning rates higher than 10 kHz due to suppression of spin diffusion between the two kinds of protons. The intrinsic relaxation times not affected by the spin diffusion and the spin-diffusion assisted relaxation times were evaluated separately, taking into consideration temperature dependence. Both mechanisms contribute to the 1 H relaxation of the acid protons comparatively. The spin-diffusion assisted relaxation mechanism was suppressed to the level lower than the experimental errors at the spinning rate of 30 kHz. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Nuclear magnetic relaxation by the dipolar EMOR mechanism: Multi-spin systems

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2017-08-01

    In aqueous systems with immobilized macromolecules, including biological tissues, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have previously developed a rigorous EMOR relaxation theory for dipole-coupled two-spin and three-spin systems. Here, we extend the stochastic Liouville theory to four-spin systems and use these exact results as a guide for constructing an approximate multi-spin theory, valid for spin systems of arbitrary size. This so-called generalized stochastic Redfield equation (GSRE) theory includes the effects of longitudinal-transverse cross-mode relaxation, which gives rise to an inverted step in the relaxation dispersion profile, and coherent spin mode transfer among solid-like spins, which may be regarded as generalized spin diffusion. The GSRE theory is compared to an existing theory, based on the extended Solomon equations, which does not incorporate these phenomena. Relaxation dispersion profiles are computed from the GSRE theory for systems of up to 16 protons, taken from protein crystal structures. These profiles span the range from the motional narrowing limit, where the coherent mode transfer plays a major role, to the ultra-slow motion limit, where the zero-field rate is closely related to the strong-collision limit of the dipolar relaxation rate. Although a quantitative analysis of experimental data is beyond the scope of this work, it is clear from the magnitude of the predicted relaxation rate and the shape of the relaxation dispersion profile that the dipolar EMOR mechanism is the principal cause of water-1H low-field longitudinal relaxation in aqueous systems of immobilized macromolecules, including soft biological tissues. The relaxation theory developed here therefore provides a basis for molecular-level interpretation of endogenous soft

  7. Nuclear magnetic relaxation by the dipolar EMOR mechanism: General theory with applications to two-spin systems.

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2016-02-28

    In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.

  8. Spin-polarization dependent carrier recombination dynamics and spin relaxation mechanism in asymmetrically doped (110) n-GaAs quantum wells

    Science.gov (United States)

    Teng, Lihua; Jiang, Tianran; Wang, Xia; Lai, Tianshu

    2018-05-01

    Carrier recombination and electron spin relaxation dynamics in asymmetric n-doped (110) GaAs/AlGaAs quantum wells are investigated with time-resolved pump-probe spectroscopy. The experiment results reveal that the measured carrier recombination time depends strongly on the polarization of pump pulse. With the same pump photon flux densities, the recombination time of spin-polarized carriers is always longer than that of the spin-balanced carriers except at low pump photon flux densities, this anomaly originates from the polarization-sensitive nonlinear absorption effect. Differing from the traditional views, in the low carrier density regime, the D'yakonov-Perel' (DP) mechanism can be more important than the Bir-Aronov-Pikus (BAP) mechanism, since the DP mechanism takes effect, the spin relaxation time in (110) GaAs QWs is shortened obviously via asymmetric doping.

  9. Spin transport and relaxation in graphene

    International Nuclear Information System (INIS)

    Han Wei; McCreary, K.M.; Pi, K.; Wang, W.H.; Li Yan; Wen, H.; Chen, J.R.; Kawakami, R.K.

    2012-01-01

    We review our recent work on spin injection, transport and relaxation in graphene. The spin injection and transport in single layer graphene (SLG) were investigated using nonlocal magnetoresistance (MR) measurements. Spin injection was performed using either transparent contacts (Co/SLG) or tunneling contacts (Co/MgO/SLG). With tunneling contacts, the nonlocal MR was increased by a factor of ∼1000 and the spin injection/detection efficiency was greatly enhanced from ∼1% (transparent contacts) to ∼30%. Spin relaxation was investigated on graphene spin valves using nonlocal Hanle measurements. For transparent contacts, the spin lifetime was in the range of 50-100 ps. The effects of surface chemical doping showed that for spin lifetimes in the order of 100 ps, charged impurity scattering (Au) was not the dominant mechanism for spin relaxation. While using tunneling contacts to suppress the contact-induced spin relaxation, we observed the spin lifetimes as long as 771 ps at room temperature, 1.2 ns at 4 K in SLG, and 6.2 ns at 20 K in bilayer graphene (BLG). Furthermore, contrasting spin relaxation behaviors were observed in SLG and BLG. We found that Elliot-Yafet spin relaxation dominated in SLG at low temperatures whereas Dyakonov-Perel spin relaxation dominated in BLG at low temperatures. Gate tunable spin transport was studied using the SLG property of gate tunable conductivity and incorporating different types of contacts (transparent and tunneling contacts). Consistent with theoretical predictions, the nonlocal MR was proportional to the SLG conductivity for transparent contacts and varied inversely with the SLG conductivity for tunneling contacts. Finally, bipolar spin transport in SLG was studied and an electron-hole asymmetry was observed for SLG spin valves with transparent contacts, in which nonlocal MR was roughly independent of DC bias current for electrons, but varied significantly with DC bias current for holes. These results are very important for

  10. Muon spin relaxation in random spin systems

    International Nuclear Information System (INIS)

    Toshimitsu Yamazaki

    1981-01-01

    The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)

  11. Nuclear Spin Relaxation

    Indian Academy of Sciences (India)

    IAS Admin

    In the context of nuclear magnetic resonance (NMR), the term relaxation indicates the process by which the magnetic atomic nuclei reach thermal equilibrium with the chaotic molecular environment. In NMR, this process can be very slow, requiring between a fraction of a second to many minutes, depending on the.

  12. Spin relaxation in disordered media

    International Nuclear Information System (INIS)

    Dzheparov, F S

    2011-01-01

    A review is given on theoretical grounds and typical experimental appearances of spin dynamics and relaxation in solids containing randomly distributed nuclear and/or electronic spins. Brief content is as follows. Disordered and magnetically diluted systems. General outlines of the spin transport theory. Random walks in disordered systems (RWDS). Observable values in phase spin relaxation, free induction decay (FID). Interrelation of longitudinal and transversal relaxation related to dynamics of occupancies and phases. Occupation number representation for equations of motion. Continuum media approximation and inapplicability of moment expansions. Long-range transitions vs percolation theory. Concentration expansion as a general constructive basis for analytical methods. Scaling properties of propagators. Singular point. Dynamical and kinematical memory in RWDS. Ways of regrouping of concentration expansions. CTRW and semi-phenomenology. Coherent medium approximation for nuclear relaxation via paramagnetic impurities. Combining of memory functions and cumulant expansions for calculation of FID. Path integral representations for RWDS. Numerical simulations of RWDS. Spin dynamics in magnetically diluted systems with low Zeeman and medium low dipole temperatures. Cluster expansions, regularization of dipole interactions and spectral dynamics.

  13. Spin relaxation in quantum dots: Role of the phonon modulated spin-orbit interaction

    Science.gov (United States)

    Alcalde, A. M.; Romano, C. L.; Sanz, L.; Marques, G. E.

    2010-01-01

    We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. We analyze the behavior of the spin relaxation rates as a function of an external magnetic field and mean quantum dot radius. Effects of the spin admixture due to Dresselhaus contribution to spin-orbit interaction are also discussed.

  14. Spin relaxation near the metal-insulator transition: dominance of the Dresselhaus spin-orbit coupling.

    Science.gov (United States)

    Intronati, Guido A; Tamborenea, Pablo I; Weinmann, Dietmar; Jalabert, Rodolfo A

    2012-01-06

    We identify the Dresselhaus spin-orbit coupling as the source of the dominant spin-relaxation mechanism in the impurity band of a wide class of n-doped zinc blende semiconductors. The Dresselhaus hopping terms are derived and incorporated into a tight-binding model of impurity sites, and they are shown to unexpectedly dominate the spin relaxation, leading to spin-relaxation times in good agreement with experimental values. This conclusion is drawn from two complementary approaches: an analytical diffusive-evolution calculation and a numerical finite-size scaling study of the spin-relaxation time.

  15. Cross relaxation in nitroxide spin labels

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    Cross relaxation, and mI-dependence of the intrinsic electron spin-lattice relaxation rate We, are incorporated explicitly into the rate equations for the electron-spin population differences that govern the saturation behaviour of 14N- and 15N-nitroxide spin labels. Both prove important in spin......-label EPR and ELDOR, particularly for saturation recovery studies. Neither for saturation recovery, nor for CW-saturation EPR and CW-ELDOR, can cross relaxation be described simply by increasing the value of We, the intrinsic spin-lattice relaxation rate. Independence of the saturation recovery rates from...... the hyperfine line pumped or observed follows directly from solution of the rate equations including cross relaxation, even when the intrinsic spin-lattice relaxation rate We is mI-dependent....

  16. Quantum mechanical alternative to Arrhenius equation in the interpretation of proton spin-lattice relaxation data for the methyl groups in solids

    KAUST Repository

    Bernatowicz, Piotr

    2015-10-01

    Theory of nuclear spin-lattice relaxation in methyl groups in solids has been a recurring problem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for extreme cases of low torsional barriers where special quantum effects are at stake, the relaxation behaviour of the nuclear spins in methyl groups is controlled by thermally activated classical jumps of the methyl group between its three orientations. The temperature effects on the relaxation rates can be modelled by Arrhenius behaviour of the correlation time of the jump process. The entire variety of relaxation effects in protonated methyl groups has recently been given a consistently quantum mechanical explanation not invoking the jump model regardless of the temperature range. It exploits the damped quantum rotation (DQR) theory originally developed to describe NMR line shape effects for hindered methyl groups. In the DQR model, the incoherent dynamics of the methyl group include two quantum rate, i.e., coherence-damping processes. For proton relaxation only one of these processes is relevant. In this paper, temperature-dependent proton spin-lattice relaxation data for the methyl groups in polycrystalline methyltriphenyl silane and methyltriphenyl germanium, both deuterated in aromatic positions, are reported and interpreted in terms of the DQR model. A comparison with the conventional approach exploiting the phenomenological Arrhenius equation is made. The present observations provide further indications that incoherent motions of molecular moieties in condensed phase can retain quantum character over much broad temperature range than is commonly thought.

  17. Relaxation of coupled nuclear spin systems

    International Nuclear Information System (INIS)

    Koenigsberger, E.

    1985-05-01

    The subject of the present work is the relaxation behaviour of scalarly coupled spin-1/2 systems. In the theoretical part the semiclassical Redfield equations are used. Dipolar (D), Chemical Shift Anisotropy (CSA) and Random Field (RF) interactions are considered as relaxation mechanisms. Cross correlations of dipolar interactions of different nuclei pairs and those between the D and the CSA mechanisms are important. The model of anisotropic molecular rotational relaxation and the extreme narrowing approximation are used to obtain the spectral density functions. The longitudinal relaxation data are analyzed into normal modes following Werbelow and Grant. The time evolution of normal modes is derived for the AX system with D-CSA cross terms. In the experimental part the hypothesis of dimerization in the cinnamic acid and the methyl cinnamate - AMX systems with DD cross terms - is corroborated by T 1 -time measurements and a calculation of the diffusion constants. In pentachlorobenzene - an AX system - taking into account of D-CSA cross terms enables the complete determination of movements anosotropy and the determination of the sign of the indirect coupling constant 1 Jsub(CH). (G.Q.)

  18. Mechanical relaxation in glasses

    International Nuclear Information System (INIS)

    Hiki, Y.

    2004-01-01

    The basic properties of glasses and the characteristics of mechanical relaxation in glasses were briefly reviewed, and then our studies concerned were presented. Experimental methods adopted were viscosity, internal friction, ultrasonic attenuation, and Brillouin scattering measurements. The specimens used were several kinds of inorganic, organic, and metallic glasses. The measurements were mainly carried out from the room temperature up to the glass transition temperature, and the relaxation time was determined as a function of temperature. The 'double relaxation' composed of two Arrhenius-type relaxations was observed in many materials. In both relaxations, the 'compensation effect' showing a correlation of the pre-exponential factor and the activation energy was observed. These results were explained by considering the 'complex relaxation' due to cooperative motions of atoms or group of atoms. Values of activation energy near the glass transition determined by the various experimental methods were compared with each other

  19. Abrupt relaxation in high-spin molecules

    International Nuclear Information System (INIS)

    Chang, C.-R.; Cheng, T.C.

    2000-01-01

    Mean-field model suggests that the rate of resonant quantum tunneling in high-spin molecules is not only field-dependent but also time-dependent. The relaxation-assisted resonant tunneling in high-spin molecules produces an abrupt magnetization change during relaxation. When the applied field is very close to the resonant field, a time-dependent interaction field gradually shifts the energies of different collective spin states, and magnetization tunneling is observed as two energies of the spin states coincide

  20. Spin-lattice relaxation of individual solid-state spins

    Science.gov (United States)

    Norambuena, A.; Muñoz, E.; Dinani, H. T.; Jarmola, A.; Maletinsky, P.; Budker, D.; Maze, J. R.

    2018-03-01

    Understanding the effect of vibrations on the relaxation process of individual spins is crucial for implementing nanosystems for quantum information and quantum metrology applications. In this work, we present a theoretical microscopic model to describe the spin-lattice relaxation of individual electronic spins associated to negatively charged nitrogen-vacancy centers in diamond, although our results can be extended to other spin-boson systems. Starting from a general spin-lattice interaction Hamiltonian, we provide a detailed description and solution of the quantum master equation of an electronic spin-one system coupled to a phononic bath in thermal equilibrium. Special attention is given to the dynamics of one-phonon processes below 1 K where our results agree with recent experimental findings and analytically describe the temperature and magnetic-field scaling. At higher temperatures, linear and second-order terms in the interaction Hamiltonian are considered and the temperature scaling is discussed for acoustic and quasilocalized phonons when appropriate. Our results, in addition to confirming a T5 temperature dependence of the longitudinal relaxation rate at higher temperatures, in agreement with experimental observations, provide a theoretical background for modeling the spin-lattice relaxation at a wide range of temperatures where different temperature scalings might be expected.

  1. Electron spin-lattice relaxation in fractals

    International Nuclear Information System (INIS)

    Shrivastava, K.N.

    1986-08-01

    We have developed the theory of the spin-fracton interaction for paramagnetic ions in fractal structures. The interaction is exponentially damped by the self-similarity length of the fractal and by the range dimensionality d Φ . The relaxation time of the spin due to the absorption and emission of the fracton has been calculated for a general dimensionality called the Raman dimensionality d R , which for the fractons differs from the Hausdorff (fractal) dimensionality, D, as well as from the Euclidean dimensionality, d. The exponent of the energy level separation in the relaxation rate varies with d R d Φ /D. We have calculated the spin relaxation rate due to a new type of Raman process in which one fracton is absorbed to affect a spin transition from one electronic level to another and later another fracton is emitted along with a spin transition such that the difference in the energies of the two fractons is equal to the electronic energy level separation. The temperature and the dimensionality dependence of such a process has been found in several approximations. In one of the approximations where the van Vleck relaxation rate for a spin in a crystal is known to vary with temperature as T 9 , our calculated variation for fractals turns out to be T 6.6 , whereas the experimental value for Fe 3+ in frozen solutions of myoglobin azide is T 6.3 . Since we used d R =4/3 and the fracton range dimensionality d Φ =D/1.8, we expect to measure the dimensionalities of the problem by measuring the temperature dependence of the relaxation times. We have also calculated the shift of the paramagnetic resonance transition for a spin in a fractal for general dimensionalities. (author)

  2. Spin-flip relaxation via optical phonon scattering in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zi-Wu, E-mail: zwwang@semi.ac.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, Tianjin University, Tianjin 300072 (China); Liu, Lei [Suzhou Institute of Nano-tech and Nano-bionics, CAS, Suzhou 215125 (China); Li, Shu-Shen [Institute of Semiconductor, CAS, Beijing 100083 (China)

    2013-12-14

    Based on the spin-orbit coupling admixture mechanism, we theoretically investigate the spin-flip relaxation via optical phonon scattering in quantum dots by considering the effect of lattice relaxation due to the electron-acoustic phonon deformation potential coupling. The relaxation rate displays a cusp-like structure (or a spin hot spot) that becomes more clearly with increasing temperature. We also calculate the relaxation rate of the spin-conserving process, which follows a Gaussian form and is several orders of magnitude larger than that of spin-flip process. Moreover, we find that the relaxation rate displays the oscillatory behavior due to the interplay effects between the magnetic and spatial confinement for the spin-flip process not for the spin-conserving process. The trends of increasing and decreasing temperature dependence of the relaxation rates for two relaxation processes are obtained in the present model.

  3. Spin Relaxation Time in InAlAs/AlGaAs Quantum Dots

    Directory of Open Access Journals (Sweden)

    N. Sellami

    2014-05-01

    Full Text Available We report systematic temperature dependent measurements of spin relaxation time in self-assembled In0.72Al0.28As/Al0.28Ga0.72As quantum dots by continuous-wave photoluminescence. The degree of circular polarization decreases as a function of temperature. The spin relaxation time tS is deduced from the circular polarization degree using a three dimensional pseudo- spin precession model. The spin relaxation time decreases rapidly from few hundred picoseconds at 10 K to few tens picoseconds at 85 K. This large change of the spin relaxation time is explained in terms of acoustic phonon emission mechanism.

  4. Nuclear paramagnetic spin relaxation theory. Paramagnetic spin probes in homogeneous and micro-heterogeneous solutions

    International Nuclear Information System (INIS)

    Westlund, P.O.

    1994-01-01

    Specific mechanisms of relaxation encountered in paramagnetic systems are described: the T1-NMRD curve and the paramagnetically enhanced nuclear spin relaxation (PER) are first discussed and a general theory of PER is proposed (nuclear paramagnetic spin relaxation theory, lattice operators, decomposition approximation, general expression of dipolar correlation functions for slow tumbling complexes, low-field approach). Numerically calculated NMRD curves are described (reorientation model, pseudo-rotation models, vibration models). Experimental studies are then analyzed: NMRD studies of paramagnetic species in an aqueous system, paramagnetic hydrated metal ions in poly-electrolytes and biochemical systems, lyotropic liquid crystalline phases, polymer solutions. 19 fig., 60 ref

  5. Spin-Spin Cross Relaxation in Single-Molecule Magnets

    Science.gov (United States)

    Wernsdorfer, W.; Bhaduri, S.; Tiron, R.; Hendrickson, D. N.; Christou, G.

    2002-10-01

    The one-body tunnel picture of single-molecule magnets (SMMs) is not always sufficient to explain the measured tunnel transitions. An improvement to the picture is proposed by including also two-body tunnel transitions such as spin-spin cross relaxation (SSCR) which are mediated by dipolar and weak superexchange interactions between molecules. A Mn4 SMM is used as a model system. At certain external fields, SSCRs lead to additional quantum resonances which show up in hysteresis loop measurements as well-defined steps. A simple model is used to explain quantitatively all observed transitions.

  6. Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe2/graphene/h -BN heterostructures

    Science.gov (United States)

    Zihlmann, Simon; Cummings, Aron W.; Garcia, Jose H.; Kedves, Máté; Watanabe, Kenji; Taniguchi, Takashi; Schönenberger, Christian; Makk, Péter

    2018-02-01

    Large spin-orbital proximity effects have been predicted in graphene interfaced with a transition-metal dichalcogenide layer. Whereas clear evidence for an enhanced spin-orbit coupling has been found at large carrier densities, the type of spin-orbit coupling and its relaxation mechanism remained unknown. We show an increased spin-orbit coupling close to the charge neutrality point in graphene, where topological states are expected to appear. Single-layer graphene encapsulated between the transition-metal dichalcogenide WSe2 and h -BN is found to exhibit exceptional quality with mobilities as high as 1 ×105 cm2 V-1 s-1. At the same time clear weak antilocalization indicates strong spin-orbit coupling, and a large spin relaxation anisotropy due to the presence of a dominating symmetric spin-orbit coupling is found. Doping-dependent measurements show that the spin relaxation of the in-plane spins is largely dominated by a valley-Zeeman spin-orbit coupling and that the intrinsic spin-orbit coupling plays a minor role in spin relaxation. The strong spin-valley coupling opens new possibilities in exploring spin and valley degree of freedom in graphene with the realization of new concepts in spin manipulation.

  7. Relaxations in spin glasses: Similarities and differences from ordinary glasses

    International Nuclear Information System (INIS)

    Ngai, K.L.; Rajagopal, A.K.; Huang, C.Y.

    1984-01-01

    Relaxation phenomena have become a major concern in the physics of spin glasses. There are certain resemblances of these relaxation properties to those of ordinary glasses. In this work, we compare the relaxation properties of spin glasses near the freezing temperature with those of glasses near the glass transition temperature. There are similarities between the two types of glasses. Moreover, the relaxation properties of many glasses and spin glasses are in conformity with two coupled ''universality'' relations predicted by a recent model of relaxations in condensed matter

  8. Spin relaxation of iron in mixed state hemoproteins

    International Nuclear Information System (INIS)

    Wajnberg, E.; Kalinowski, H.J.; Bemski, G.; Helman, J.S.

    1984-01-01

    In pure states hemoproteins the relaxation of iron depends on its spin state. It is found that in both mixed state met-hemoglobin and met-myoglobin, the low and high spin states relax through an Orbach-like process. Also, very short (approx. 1 ns) and temperature independent transverse relaxation times T 2 were estimated. This peculiar behaviour of the relaxation may result from the unusual electronic structure of mixed state hemoproteins that allows thermal equilibrium and interconversion of the spin states. (Author) [pt

  9. Spin-relaxation time in the impurity band of wurtzite semiconductors

    Science.gov (United States)

    Tamborenea, Pablo I.; Wellens, Thomas; Weinmann, Dietmar; Jalabert, Rodolfo A.

    2017-09-01

    The spin-relaxation time for electrons in the impurity band of semiconductors with wurtzite crystal structure is determined. The effective Dresselhaus spin-orbit interaction Hamiltonian is taken as the source of the spin relaxation at low temperature and for doping densities corresponding to the metallic side of the metal-insulator transition. The spin-flip hopping matrix elements between impurity states are calculated and used to set up a tight-binding Hamiltonian that incorporates the symmetries of wurtzite semiconductors. The spin-relaxation time is obtained from a semiclassical model of spin diffusion, as well as from a microscopic self-consistent diagrammatic theory of spin and charge diffusion in doped semiconductors. Estimates are provided for particularly important materials. The theoretical spin-relaxation times compare favorably with the corresponding low-temperature measurements in GaN and ZnO. For InN and AlN we predict that tuning of the spin-orbit coupling constant induced by an external potential leads to a potentially dramatic increase of the spin-relaxation time related to the mechanism under study.

  10. Nuclear spin-lattice relaxation in carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Panich, A.M., E-mail: pan@bgu.ac.i [Department of Physics, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Sergeev, N.A. [Institute of Physics, University of Szczecin, 70-451 Szczecin (Poland)

    2010-04-15

    Interpretation of nuclear spin-lattice relaxation data in the carbon nanostructures is usually based on the analysis of fluctuations of dipole-dipole interactions of nuclear spins and anisotropic electron-nuclear interactions responsible for chemical shielding, which are caused by molecular dynamics. However, many nanocarbon systems such as fullerene and nanotube derivatives, nanodiamonds and carbon onions reveal noticeable amount of paramagnetic defects with unpaired electrons originating from dangling bonds. The interaction between nuclear and electron spins strongly influences the nuclear spin-lattice relaxation, but usually is not taken into account, thus the relaxation data are not correctly interpreted. Here we report on the temperature dependent NMR spectra and spin-lattice relaxation measurements of intercalated fullerenes C{sub 60}(MF{sub 6}){sub 2} (M=As and Sb), where nuclear relaxation is caused by both molecular rotation and interaction between nuclei and unpaired electron spins. We present a detailed theoretical analysis of the spin-lattice relaxation data taking into account both these contributions. Good agreement between the experimental data and calculations is obtained. The developed approach would be useful in interpreting the NMR relaxation data in different nanostructures and their intercalation compounds.

  11. Picosecond spin relaxation in low-temperature-grown GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, M.; Honda, K.; Yasue, Y.; Tackeuchi, A., E-mail: atacke@waseda.jp [Department of Applied Physics, Waseda University, Tokyo 169-8555 (Japan); Lu, S. L.; Dai, P. [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou (China)

    2014-03-24

    The spin relaxation process of low-temperature-grown GaAs is investigated by spin-dependent pump and probe reflectance measurements with a sub-picosecond time resolution. Two very short carrier lifetimes of 2.0 ps and 28 ps, which can be attributed to nonradiative recombinations related to defects, are observed at 10 K. The observed spin polarization shows double exponential decay with spin relaxation times of 46.2 ps (8.0 ps) and 509 ps (60 ps) at 10 K (200 K). The observed picosecond spin relaxation, which is considerably shorter than that of conventional GaAs, indicates the strong relevance of the Elliott-Yafet process as the spin relaxation mechanism. For the first (second) spin relaxation component, the temperature and carrier density dependences of the spin relaxation time indicate that the Bir-Aronov-Pikus process is also effective at temperatures between 10 K and 77 K, and that the D'yakonov-Perel’ process is effective between 125 K (77 K) and 200 K.

  12. β -detected NMR spin relaxation in a thin film heterostructure of ferromagnetic EuO

    Science.gov (United States)

    MacFarlane, W. A.; Song, Q.; Ingle, N. J. C.; Chow, K. H.; Egilmez, M.; Fan, I.; Hossain, M. D.; Kiefl, R. F.; Levy, C. D. P.; Morris, G. D.; Parolin, T. J.; Pearson, M. R.; Saadaoui, H.; Salman, Z.; Wang, D.

    2015-08-01

    We present β -detected NMR measurements of the spin-lattice relaxation of +8Li implanted into an epitaxial heterostructure based on a 100 nm thick film of ferromagnetic (FM) EuO as a function of temperature through its FM transition. In the FM state, the spin-lattice relaxation rate follows the same temperature dependence, determined by magnon scattering mechanisms, observed in the bulk by 153Eu NMR, but above 40 K, the signal is wiped out. We also find that +8Li stopped in material adjacent to the magnetic layer exhibits spin relaxation related to the critical slowing of the Eu spins. A particularly strong relaxation in the Au overlayer suggests an unusual strong nonlocal coupling mechanism to 8Li in the metal.

  13. PREFACE: Muon spin rotation, relaxation or resonance

    Science.gov (United States)

    Heffner, Robert H.; Nagamine, Kanetada

    2004-10-01

    To a particle physicist a muon is a member of the lepton family, a heavy electron possessing a mass of about 1/9 that of a proton and a spin of 1/2, which interacts with surrounding atoms and molecules electromagnetically. Since its discovery in 1937, the muon has been put to many uses, from tests of special relativity to deep inelastic scattering, from studies of nuclei to tests of weak interactions and quantum electrodynamics, and most recently, as a radiographic tool to see inside heavy objects and volcanoes. In 1957 Richard Garwin and collaborators, while conducting experiments at the Columbia University cyclotron to search for parity violation, discovered that spin-polarized muons injected into materials might be useful to probe internal magnetic fields. This eventually gave birth to the modern field of muSR, which stands for muon spin rotation, relaxation or resonance, and is the subject of this special issue of Journal of Physics: Condensed Matter. Muons are produced in accelerators when high energy protons (generally >500 MeV) strike a target like graphite, producing pions which subsequently decay into muons. Most experiments carried out today use relatively low-energy (~4 MeV), positively-charged muons coming from pions decaying at rest in the skin of the production target. These muons have 100% spin polarization, a range in typical materials of about 180 mg cm-2, and are ideal for experiments in condensed matter physics and chemistry. Negatively-charged muons are also occasionally used to study such things as muonic atoms and muon-catalysed fusion. The muSR technique provides a local probe of internal magnetic fields and is highly complementary to inelastic neutron scattering and nuclear magnetic resonance, for example. There are four primary muSR facilities in the world today: ISIS (Didcot, UK), KEK (Tsukuba, Japan), PSI (Villigen, Switzerland) and TRIUMF (Vancouver, Canada), serving about 500 researchers world-wide. A new facility, JPARC (Tokai, Japan

  14. Electrical detection of spin current and spin relaxation in nonmagnetic semiconductors

    International Nuclear Information System (INIS)

    Miah, M Idrish

    2008-01-01

    We report an electrical method for the detection of spin current and spin relaxation in nonmagnetic semiconductors. Optically polarized spins are dragged by an electric field in GaAs. We use the anomalous Hall effect for the detection of spin current and spin relaxation. It is found that the effect depends on the electric field and doping density as well as on temperature, but not on the excitation power. A calculation for the effect is performed using the measured spin polarization by a pump-probe experiment. The results are also discussed in comparison with a quantitative evaluation of the spin lifetimes of the photogenerated electrons under drift in GaAs

  15. Electrical detection of spin current and spin relaxation in nonmagnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2008-09-21

    We report an electrical method for the detection of spin current and spin relaxation in nonmagnetic semiconductors. Optically polarized spins are dragged by an electric field in GaAs. We use the anomalous Hall effect for the detection of spin current and spin relaxation. It is found that the effect depends on the electric field and doping density as well as on temperature, but not on the excitation power. A calculation for the effect is performed using the measured spin polarization by a pump-probe experiment. The results are also discussed in comparison with a quantitative evaluation of the spin lifetimes of the photogenerated electrons under drift in GaAs.

  16. Nuclear spin-lattice relaxation in nitroxide spin-label EPR

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    that the definition of nitrogen nuclear relaxation rate Wn commonly used in the CW-EPR literature for 14N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14N spin-lattice relaxation rate, b = Wn/(2We), preserves...... of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14N-relaxation: T1 n = 1/Wn. Results are compared and contrasted...... the expressions used for CW-EPR, whilst rendering them consistent with expressions for saturation recovery rates in pulsed EPR. Furthermore, values routinely quoted for nuclear relaxation times that are deduced from EPR spectral diffusion rates in 14N-nitroxyl spin labels do not accord with conventional analysis...

  17. Observations of exciton and carrier spin relaxation in Be doped p-type GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Asaka, Naohiro; Harasawa, Ryo; Tackeuchi, Atsushi, E-mail: atacke@waseda.jp [Department of Applied Physics, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Lu, Shulong; Dai, Pan [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Dushu Lake Higher Education Town, Ruoshui Road 398, Suzhou Industrial Park, Suzhou 215028 (China)

    2014-03-17

    We have investigated the exciton and carrier spin relaxation in Be-doped p-type GaAs. Time-resolved spin-dependent photoluminescence (PL) measurements revealed spin relaxation behaviors between 10 and 100 K. Two PL peaks were observed at 1.511 eV (peak 1) and 1.497 eV (peak 2) at 10 K, and are attributed to the recombination of excitons bound to neutral Be acceptors (peak 1) and the band-to-acceptor transition (peak 2). The spin relaxation times of both PL peaks were measured to be 1.3–3.1 ns at 10–100 K, and found to originate from common electron spin relaxation. The observed existence of a carrier density dependence of the spin relaxation time at 10–77 K indicates that the Bir-Aronov-Pikus process is the dominant spin relaxation mechanism.

  18. Nuclear spin relaxation in liquids theory, experiments, and applications

    CERN Document Server

    Kowalewski, Jozef

    2006-01-01

    Nuclear magnetic resonance (NMR) is widely used across many fields because of the rich data it produces, and some of the most valuable data come from the study of nuclear spin relaxation in solution. While described to varying degrees in all major NMR books, spin relaxation is often perceived as a difficult, if not obscure, topic, and an accessible, cohesive treatment has been nearly impossible to find.Collecting relaxation theory, experimental techniques, and illustrative applications into a single volume, this book clarifies the nature of the phenomenon, shows how to study it, and explains why such studies are worthwhile. Coverage ranges from basic to rigorous theory and from simple to sophisticated experimental methods, and the level of detail is somewhat greater than most other NMR texts. Topics include cross-relaxation, multispin phenomena, relaxation studies of molecular dynamics and structure, and special topics such as relaxation in systems with quadrupolar nuclei and paramagnetic systems.Avoiding ove...

  19. Two-channel model for spin-relaxation noise

    Science.gov (United States)

    Omar, S.; van Wees, B. J.; Vera-Marun, I. J.

    2017-12-01

    We develop a two-channel resistor model for simulating spin transport with general applicability. Using this model, for the case of graphene as a prototypical material, we calculate the spin signal consistent with experimental values. Using the same model we also simulate the charge and spin-dependent 1 /f noise, both in the local and nonlocal four-probe measurement schemes, and identify the noise from the spin-relaxation resistances as the major source of spin-dependent 1 /f noise.

  20. Spin relaxation in InGaN quantum disks in GaN nanowires

    KAUST Repository

    Banerjee, Animesh

    2011-12-14

    The spin relaxation time of photoinduced conduction electrons has been measured in InGaN quantum disks in GaN nanowires as a function of temperature and In composition in the disks. The relaxation times are of the order of ∼100 ps at 300 K and are weakly dependent on temperature. Theoretical considerations show that the Elliott-Yafet scattering mechanism is essentially absent in these materials and the results are interpreted in terms of the D\\'yakonov-Perel\\' relaxation mechanism in the presence of Rashba spin-orbit coupling of the wurtzite structure. The calculated spin relaxation times are in good agreement with the measured values. © 2011 American Chemical Society.

  1. Relaxation of nuclear spin on holes in semiconductors

    International Nuclear Information System (INIS)

    Gr'ncharova, E.I.; Perel', V.I.

    1977-01-01

    The longitudienal relaxation time T 1 of nuclear spins due to dipole-dipole interaction with holes in semiconductors is calculated. Expressions for T 1 in cubic and uniaxial semiconductors are obtained for non-degenerate and degenerate cases. On the basis of comparison with available experimental data for silicon the agreement with the theoretical results is obtained. It is demonstrated that in uniaxial semiconductors the time of relaxation on holes for a nuclear spin directed along the c axis is considerably greater than that for a spin in the normal direction

  2. Field dependence of the electron spin relaxation in quantum dots.

    Science.gov (United States)

    Calero, Carlos; Chudnovsky, E M; Garanin, D A

    2005-10-14

    The interaction of the electron spin with local elastic twists due to transverse phonons is studied. The universal dependence of the spin-relaxation rate on the strength and direction of the magnetic field is obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid. The theory contains no unknown parameters and it can be easily tested in experiment. At high magnetic field it provides a parameter-free lower bound on the electron spin relaxation in quantum dots.

  3. Nuclear spin relaxation of methane in solid xenon

    Science.gov (United States)

    Sugimoto, Takeru; Arakawa, Ichiro; Yamakawa, Koichiro

    2018-03-01

    Nuclear spin relaxation of methane in solid xenon has been studied by infrared spectroscopy. From the analysis of the temporal changes of the rovibrational peaks, the rates of the nuclear spin relaxation of I = 2 ← 1 correlated to the rotational relaxation of J = 0 ← 1 were obtained at temperatures of 5.1-11.5 K. On the basis of the temperature dependence of the relaxation rate, the activation energy of the indirect two-phonon process was determined to be 50 ± 6 K, which is in good agreement with the rotational transition energies of J = 2 ← 1 and J = 3 ← 1. Taking into account this result and the spin degeneracy, we argue that the lowest J = 3 level in which the I = 1 and I = 2 states are degenerate acts as the intermediate point of the indirect process.

  4. Electron spin relaxation in cryptochrome-based magnetoreception

    DEFF Research Database (Denmark)

    Kattnig, Daniel R; Solov'yov, Ilia A; Hore, P J

    2016-01-01

    The magnetic compass sense of migratory birds is thought to rely on magnetically sensitive radical pairs formed photochemically in cryptochrome proteins in the retina. An important requirement of this hypothesis is that electron spin relaxation is slow enough for the Earth's magnetic field to have...... this question for a structurally characterized model cryptochrome expected to share many properties with the putative avian receptor protein. To this end we combine all-atom molecular dynamics simulations, Bloch-Redfield relaxation theory and spin dynamics calculations to assess the effects of spin relaxation...... on the performance of the protein as a compass sensor. Both flavin-tryptophan and flavin-Z˙ radical pairs are studied (Z˙ is a radical with no hyperfine interactions). Relaxation is considered to arise from modulation of hyperfine interactions by librational motions of the radicals and fluctuations in certain...

  5. Spin-lattice relaxation times and knight shift in InSb and InAs

    International Nuclear Information System (INIS)

    Braun, P.; Grande, S.

    1976-01-01

    For a dominant contact interaction between nuclei and conduction electrons the relaxation rate is deduced. The extreme cases of degenerate and non-degenerate semiconductors are separately discussed. At strong degeneracy the product of the Knight shift and relaxation time gives the Korringa relation for metals. Measurements of the NMR spin-lattice relaxation times of 115 InSb and 115 InAs were made between 4.2 and 300 K for strongly degenerated samples. The different relaxation mechanisms are discussed and the experimental and theoretical results are compared. (author)

  6. Use of the Strong Collision Model to Calculate Spin Relaxation

    Science.gov (United States)

    Wang, D.; Chow, K. H.; Smadella, M.; Hossain, M. D.; MacFarlane, W. A.; Morris, G. D.; Ofer, O.; Morenzoni, E.; Salman, Z.; Saadaoui, H.; Song, Q.; Kiefl, R. F.

    The strong collision model is used to calculate spin relaxation of a muon or polarized radioactive nucleus in contact with a fluctuating environment. We show that on a time scale much longer than the mean time between collisions (fluctuations) the longitudinal polarization decays exponentially with a relaxation rate equal to a sum of Lorentzians-one for each frequency component in the static polarization function ps(t).

  7. Magnetization relaxation in spin glasses above transition point

    International Nuclear Information System (INIS)

    Zajtsev, I.A.; Minakov, A.A.; Galonzka, R.R.

    1988-01-01

    Magnetization relaxation of Cd 0.6 Zn 0.4 Cr 2 Se 4 and Cd 0.6 Mn 0.4 Te monocrystalline samples with T g =21 K and T g =12 K respectively and magnetic colloid is investigated. It is shown that magnetization inexponential relaxation detected experimentally in spin and dipole glasses is essentially higher than T g temperature transition. It is found that at temperatures higher than T g the essential difference is observed in behaviour of spin glasses with different Z and disorder types

  8. Low-frequency spin dynamics and NMR spin-lattice relaxation in antiferromagnetic rings

    Science.gov (United States)

    Itou, T.; Sagane, T.; Oyamada, A.; Maegawa, S.; Igarashi, S.; Yukawa, Y.

    2011-01-01

    We develop a general theory of the spin dynamics of Heisenberg antiferromagnetic rings (HAFRs) that explains the mechanism of NMR spin-lattice relaxation at low temperatures. In HAFRs, the imaginary parts of the q-summed dynamic spin susceptibilities parallel and perpendicular to an applied static field, χsum∥″(ω) and χsum⊥″(ω), are composed of the sum of many slightly broadened δ-functional modes at many frequencies. The NMR relaxation is caused by the quasielastic mode in χsum∥″(ω) at around zero frequency. This quasielastic mode is characterized by two physical quantities, intensity P0∥ and frequency width Γ0∥. Although P0∥ has to date been assumed to be identical to the uniform static susceptibility, we point out that the two quantities are not identical. Without making this unreliable assumption for P0∥, we demonstrate experimentally how P0∥ and Γ0∥ behave, by analyzing the NMR relaxation rates of two different nuclei, H1 and C13, in a real HAFR. This analysis is more rigorous and thus can be used to estimate Γ0∥ and P0∥ more precisely than previously possible. We find that the temperature dependence of P0∥ exhibits activation-type behavior reflecting the first excitation gap. We also find that Γ0∥ decreases monotonically on cooling but saturates to a nonzero value at zero temperature. This strongly suggests that Γ0∥ is dominated not only by the electron-phonon interactions but also by internanomagnet dipole interactions, which have been neglected to date.

  9. Statistical mechanics of violent relaxation

    International Nuclear Information System (INIS)

    Shu, F.H.

    1978-01-01

    We reexamine the foundations of Lynden-Bell's statistical mechanical discussion of violent relaxation in collisionless stellar systems. We argue that Lynden-Bell's formulation in terms of a continuum description introduces unnecessary complications, and we consider a more conventional formulation in terms of particles. We then find the exclusion principle discovered by Lynden-Bell to be quantitatively important only at phase densities where two-body encounters are no longer negligible. Since the edynamical basis for the exclusion principle vanishes in such cases anyway, Lynden-Bell statistics always reduces in practice to Maxwell-Boltzmann statistics when applied to stellar systems. Lynden-Bell also found the equilibrium distribution function generally to be a sum of Maxwellians with velocity dispersions dependent on the phase density at star formation. We show that this difficulty vanishes in the particulate description for an encounterless stellar system as long as stars of different masses are initially well mixed in phase space. Our methods also demonstrate the equivalence between Gibbs's formalism which uses the microcanonical ensemble and Boltzmann's formalism which uses a coarse-grained continuum description. In addition, we clarify the concept of irreversible behavior on a macroscopic scale for an encounterless stellar system. Finally, we comment on the use of unusual macroscopic constraints to simulate the effects of incomplete relaxation

  10. The spin lattice relaxation of 8Li in simple metals

    Science.gov (United States)

    Hossain, M. D.; Saadaoui, H.; Parolin, T. J.; Song, Q.; Wang, D.; Smadella, M.; Chow, K. H.; Egilmez, M.; Fan, I.; Kiefl, R. F.; Kreitzman, S. R.; Levy, C. D. P.; Morris, G. D.; Pearson, M. R.; Salman, Z.; MacFarlane, W. A.

    2009-04-01

    We report the modification to the linear temperature dependence of the Korringa nuclear spin-lattice relaxation rate of an implanted NMR probe in silver, as it makes a thermally activated site change. We develop a simple model of this phenomenon, which is found in a number of metals including Au and Nb.

  11. Universal Behavior of Spin Dipolar Relaxation in Atomic Condensates

    Science.gov (United States)

    Deng, Yuangang; Zhou, Yiquan; Deng, Min; Liu, Qi; Tey, Mengkhoon; Gao, Bo; You, Li

    2017-04-01

    The dipolar relaxation of atomic spinor condensates is studied in terms of the semi-analytical scattering wave functions by utilizing the quantum-defect theory. At nonzero magnetic fields, inelastic dipolar relaxation of exothermic reaction leads to loss of the atomic population. By tuning the bias field, we find that the dipolar relaxation rate exhibits a universal behavior involving a unique dip and peak structure, different from the commonly referenced result based on the Born or the distortedwave Born approximations. The positions for the dip and the peak are shown to be determined dominantly by the short-range s-wave scattering length and the Van der Waals radius, independent of the dipolar interaction strength of ultracold atoms. This is confirmed by the precision measured dipolar relaxation decay rate for both spin-polarized atomic coherent spin states and twin-Fock states of F = 1 87 Rb BoseEinstein condensates. We observe the dipolar relaxation suppression as predicted by our theory for the large bias field, a feature not previously studied experimentally. Our results implicate the possibility of extracting the short-range scattering length and the Van der Waals dispersion coefficient from spin dipolar decay measurements.

  12. Resonant Scattering by Magnetic Impurities as a Model for Spin Relaxation in Bilayer Graphene.

    Science.gov (United States)

    Kochan, Denis; Irmer, Susanne; Gmitra, Martin; Fabian, Jaroslav

    2015-11-06

    We propose that the observed spin relaxation in bilayer graphene is due to resonant scattering by magnetic impurities. We analyze a resonant scattering model due to adatoms on both dimer and nondimer sites, finding that only the former give narrow resonances at the charge neutrality point. Opposite to single-layer graphene, the measured spin-relaxation rate in the graphene bilayer increases with carrier density. Although it has been commonly argued that a different mechanism must be at play for the two structures, our model explains this behavior rather naturally in terms of different broadening scales for the same underlying resonant processes. Not only do our results-using robust and first-principles inspired parameters-agree with experiment, they also predict an experimentally testable sharp decrease of the spin-relaxation rate at high carrier densities.

  13. Criteria for accurate determination of the magnon relaxation length from the nonlocal spin Seebeck effect

    NARCIS (Netherlands)

    Shan, Juan; Cornelissen, Ludo Johannes; Liu, Jing; Ben Youssef, J.; Liang, Lei; van Wees, Bart

    2017-01-01

    The nonlocal transport of thermally generated magnons not only unveils the underlying mechanism of the spin Seebeck effect, but also allows for the extraction of the magnon relaxation length (λm) in a magnetic material, the average distance over which thermal magnons can propagate. In this study, we

  14. Spin-lattice relaxation of magnetic centers in molecular crystals at low temperature

    Science.gov (United States)

    Ho, Le Tuan Anh; Chibotaru, Liviu F.

    2018-01-01

    We study the spin-phonon relaxation rate of both Kramers and non-Kramers molecular magnets in strongly diluted samples at low temperature. Using the "rotational" contribution to the spin-phonon Hamiltonian, universal formulas for the relaxation rate are obtained. Intriguingly, these formulas are all entirely expressed via measurable or ab initio computable physical quantities. Moreover, they are also independent of the energy gaps to excited states involved in the relaxation process. These obtained expressions for direct and Raman processes offer an easy way to determine the lowest limit of the spin-phonon relaxation of any spin system based on magnetic properties of the ground doublet only. In addition, some intriguing properties of Raman process are also found. Particularly, Raman process in Kramers system is found dependent on the magnetic field's orientation but independent of its magnitude, meanwhile, the same process in non-Kramers system is significantly reduced out of resonance, i.e., for an applied external field. Interestingly, Raman process is demonstrated to vary as T9 for both systems. Application of the theory to a recently investigated cobalt(II) complex shows that it can provide a reasonably good description for the relaxation. Based on these findings, a strategy in developing efficient single-molecule magnets by enhancing the mechanical rigidity of the molecular unit is proposed.

  15. Spin relaxation through lateral spin transport in heavily doped n -type silicon

    Science.gov (United States)

    Ishikawa, M.; Oka, T.; Fujita, Y.; Sugiyama, H.; Saito, Y.; Hamaya, K.

    2017-03-01

    We experimentally study temperature-dependent spin relaxation including lateral spin diffusion in heavily doped n -type silicon (n+-Si ) layers by measuring nonlocal magnetoresistance in small-sized CoFe/MgO/Si lateral spin-valve (LSV) devices. Even at room temperature, we observe large spin signals, 50-fold the magnitude of those in previous works on n+-Si . By measuring spin signals in LSVs with various center-to-center distances between contacts, we reliably evaluate the temperature-dependent spin diffusion length (λSi) and spin lifetime (τSi). We find that the temperature dependence of τSi is affected by that of the diffusion constant in the n+-Si layers, meaning that it is important to understand the temperature dependence of the channel mobility. A possible origin of the temperature dependence of τSi is discussed in terms of the recent theories by Dery and co-workers.

  16. Spin dynamics of the itinerant helimagnet MnSi studied by positive muon spin relaxation

    International Nuclear Information System (INIS)

    Kadono, R.; Matsuzaki, T.; Yamazaki, T.; Kreitzman, S.R.; Brewer, J.H.

    1990-03-01

    The local magnetic fields and spin dynamics of the itinerant helimagnet MnSi(T c ≅ 29.5 K) have been studied experimentally using positive muon spin rotation/relaxation (μ + SR) methods. In the ordered phase (T c ), zero-field μSR was used to measure the hyperfine fields at the muon sites as well as the muon spin-lattice relaxation time T 1 μ . Two magnetically inequivalent interstitial μ + sites were found with hyperfine coupling constants A hf (1) = -3.94 kOe/μ B and A hf (2) = -6.94 kOe/μ B , respectively. In the paramagnetic phase (T > T c ), the muon-nuclear spin double relaxation technique was used to simultaneously but independently determine the spin-lattice relaxation time T 1 Mn of 55 Mn spins and that of positive muons (T 1 μ ) over a wide temperature range (T c 1 Mn and T 1 μ in both phases shows systematic deviations from the predictions of self-consistent renormalization (SCR) theory. (author)

  17. Logarithmically Slow Relaxation in Quasiperiodically Driven Random Spin Chains

    Science.gov (United States)

    Dumitrescu, Philipp T.; Vasseur, Romain; Potter, Andrew C.

    2018-02-01

    We simulate the dynamics of a disordered interacting spin chain subject to a quasiperiodic time-dependent drive, corresponding to a stroboscopic Fibonacci sequence of two distinct Hamiltonians. Exploiting the recursive drive structure, we can efficiently simulate exponentially long times. After an initial transient, the system exhibits a long-lived glassy regime characterized by a logarithmically slow growth of entanglement and decay of correlations analogous to the dynamics at the many-body delocalization transition. Ultimately, at long time scales, which diverge exponentially for weak or rapid drives, the system thermalizes to infinite temperature. The slow relaxation enables metastable dynamical phases, exemplified by a "time quasicrystal" in which spins exhibit persistent oscillations with a distinct quasiperiodic pattern from that of the drive. We show that in contrast with Floquet systems, a high-frequency expansion strictly breaks down above fourth order, and fails to produce an effective static Hamiltonian that would capture the prethermal glassy relaxation.

  18. Muon spin relaxation in ferromagnetic PdMn

    International Nuclear Information System (INIS)

    Dodds, S.A.; Gist, G.A.; Heffner, R.H.; Leon, M.; MacLaughlin, D.E.; Mydosh, J.A.; Nieuwenhuys, G.J.; Schillaci, M.E.

    1983-01-01

    Positive-muon (μ + ) spin relaxation experiments have been carried out in the dilute ferromagnetic alloy Pd + 2 at % Mn (T/sub c/ = 5.8 0 K). In the paramagnetic state the inhomogeneous μ + linewidth is proportional to the bulk magnetization. Below T/sub c/ the μ + linewidth and the width of the μ + local field distribution in zero applied field are both in qualitative accord with the Sherrington-Kirkpatrick theory of disordered magnets

  19. Possible spin frustration in Nd2Ti2O7 probed by muon spin relaxation.

    Science.gov (United States)

    Guo, Hanjie; Xing, Hui; Tong, Jun; Tao, Qian; Watanabe, Isao; Xu, Zhu-an

    2014-10-29

    Muon spin relaxation on Nd2Ti2O7 (NTO) and NdLaTi2O7 (NLTO) compounds are presented. The time spectra for both compounds are as expected for the paramagnetic state at high temperatures, but deviate from the exponential function below around 100 K. Firstly, the muon spin relaxation rate increases with decreasing temperature and then levels off below around 10 K, which is reminiscent of the frustrated systems. An enhancement of the relaxation rate by a longitudinal field in the paramagnetic state is observed for NTO and eliminated by a magnetic dilution for the NLTO sample. This suggests that the spectral density is modified by a magnetic dilution and thus indicates that the spins behave cooperatively rather than individually. The zero-field measurement at 0.3 K indicates that the magnetic ground state for NTO is ferromagnetic.

  20. Muon spin relaxation studies in strongly correlated electron systems

    Science.gov (United States)

    Uemura, Y. J.; Luke, G. M.

    1993-05-01

    We describe recent progress of muon spin relaxation (μSR) studies in heavy-fermion (HF) and other strongly correlated electron systems. Measurements of the magnetic field penetration depth λ in HF superconductors UPt 3, URu 2Si 2, UPd 2Al 3 and U 2PtC 2 have revealed that these systems are characterized by large ratios Tc/ TF = 0.1-0.01 of Tc vs Fermi temperature TF derived from λ. This feature is common to high- Tc cuprate and other exotic superconductors. Zero-field μSR studies of magnetic order have elucidated a cross-over from spin glass ordering to nonmagnetic ground states in the ‘quadrupolar Kondo regime’ of (Y 1- xU x)Pd 3, and also suggested a possibility of incommensurate spin-density-wave (SDW) ordering in UNi 2Al 3.

  1. Semiclassical treatment of transport and spin relaxation in spin-orbit coupled systems

    Energy Technology Data Exchange (ETDEWEB)

    Lueffe, Matthias Clemens

    2012-02-10

    The coupling of orbital motion and spin, as derived from the relativistic Dirac equation, plays an important role not only in the atomic spectra but as well in solid state physics. Spin-orbit interactions are fundamental for the young research field of semiconductor spintronics, which is inspired by the idea to use the electron's spin instead of its charge for fast and power saving information processing in the future. However, on the route towards a functional spin transistor there is still some groundwork to be done, e.g., concerning the detailed understanding of spin relaxation in semiconductors. The first part of the present thesis can be placed in this context. We have investigated the processes contributing to the relaxation of a particularly long-lived spin-density wave, which can exist in semiconductor heterostructures with Dresselhaus and Rashba spin-orbit coupling of precisely the same magnitude. We have used a semiclassical spindiffusion equation to study the influence of the Coulomb interaction on the lifetime of this persistent spin helix. We have thus established that, in the presence of perturbations that violate the special symmetry of the problem, electron-electron scattering can have an impact on the relaxation of the spin helix. The resulting temperature-dependent lifetime reproduces the experimentally observed one in a satisfactory manner. It turns out that cubic Dresselhaus spin-orbit coupling is the most important symmetry-breaking element. The Coulomb interaction affects the dynamics of the persistent spin helix also via an Hartree-Fock exchange field. As a consequence, the individual spins precess about the vector of the surrounding local spin density, thus causing a nonlinear dynamics. We have shown that, for an experimentally accessible degree of initial spin polarization, characteristic non-linear effects such as a dramatic increase of lifetime and the appearance of higher harmonics can be expected. Another fascinating solid

  2. Muon spin-relaxation measurements of spin-correlation decay in spin-glass AgMn

    International Nuclear Information System (INIS)

    Heffner, R.H.; Cooke, D.W.; Leon, M.; Schillaci, M.E.; MacLaughlin, D.E.; Gupta, L.C.

    1983-01-01

    The field (H) dependence of the muon longitudinal spin-lattice relaxation rate well below the spin-glass temperature in AgMn is found to obey an algebraic form given by (H)/sup nu-1/, with nu = 0.54 +- 0.05. This suggests that Mn spin correlations decay with time as t - /sup nu/, in agreement with mean field theories of spin-glass dynamics which yield nu less than or equal to 0.5. Near the glass temperature the agreement between the data and theory is not as good

  3. Relaxation times of the two-phonon processes with spin-flip and spin-conserving in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zi-Wu, E-mail: zwwang@semi.ac.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, Tianjin University, Tianjin 300072 (China); Liu, Lei [Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215125 (China); Li, Shu-Shen [Institute of Semiconductor, CAS, Beijing 100083 (China)

    2014-04-07

    We perform a theoretical investigation on the two-phonon processes of the spin-flip and spin-conserving relaxation in quantum dots in the frame of the Huang-Rhys' lattice relaxation model. We find that the relaxation time of the spin-flip is two orders of magnitude longer than that of the spin-conserving, which is in agreement with previous experimental measurements. Moreover, the opposite variational trends of the relaxation time as a function of the energy separation for two-phonon processes are obtained in different temperature regime. The relaxation times display the oscillatory behaviors at the demarcation point with increasing magnetic field, where the energy separation matches the optical phonon energy and results in the optical phonon resonance. These results are useful in understanding the intraband levels' relaxation in quantum dots and could be helpful in designing photoelectric and spin-memory devices.

  4. Multiscale approach to mechanical behavior of polymeric nanocomposites: an application of T1.rho.(13C) relaxation experiments at variable spin-locking fields

    Czech Academy of Sciences Publication Activity Database

    Kotek, Jiří; Brus, Jiří

    2014-01-01

    Roč. 59, č. 9 (2014), s. 662-666 ISSN 0032-2725 R&D Projects: GA ČR(CZ) GA13-29009S Institutional support: RVO:61389013 Keywords : polyamide 6 * nanocomposite * T1ρ(13C) relaxation Subject RIV: JI - Composite Materials Impact factor: 0.633, year: 2014

  5. Contact induced spin relaxation in graphene spin valves with Al2O3 and MgO tunnel barriers

    Directory of Open Access Journals (Sweden)

    Walid Amamou

    2016-03-01

    Full Text Available We investigate spin relaxation in graphene by systematically comparing the roles of spin absorption, other contact-induced effects (e.g., fringe fields, and bulk spin relaxation for graphene spin valves with MgO barriers, Al2O3 barriers, and transparent contacts. We obtain effective spin lifetimes by fitting the Hanle spin precession data with two models that include or exclude the effect of spin absorption. Results indicate that additional contact-induced spin relaxation other than spin absorption dominates the contact effect. For tunneling contacts, we find reasonable agreement between the two models with median discrepancy of ∼20% for MgO and ∼10% for Al2O3.

  6. Spin-lattice relaxation in phosphorescent triplet state molecules

    International Nuclear Information System (INIS)

    Verbeek, P.J.F.

    1979-01-01

    The present thesis contains the results of a study of spin-lattice relaxation (SLR) in the photo-excited triplet state of aromatic molecules, dissolved in a molecular host crystal. It appears that SLR in phosphorescent triplet state molecules often is related to the presence of so-called (pseudo) localized phonons in the molecular mixed crystals. These local phonons can be thought to correspond with vibrations (librations) of the guest molecule in the force field of the surrounding host molecules. Since the intermolecular forces are relatively weak, the frequencies corresponding with these vibrations are relatively low and usually are of the order of 10-30 cm -1 . (Auth.)

  7. Nuclear spin relaxation/resonance of 8Li in Al

    Science.gov (United States)

    Wang, D.; Salman, Z.; Chow, K. H.; Fan, I.; Hossain, M. D.; Keeler, T. A.; Kiefl, R. F.; Levy, C. D. P.; Mansour, A. I.; Morris, G. D.; Pearson, M. R.; Parolin, T. J.; Saadaoui, H.; Smadella, M.; Song, Q.; MacFarlane, W. A.

    2009-04-01

    A low energy beam of spin polarized 8Li has been used to study the behaviour of isolated 8Li implanted into a 150 nm thick film of Al on an MgO substrate. The spin relaxation rate 1/T1 and β-NMR lineshape were measured as a function of temperature in a large magnetic field of 4.1 T. The resonances from different sites are unresolved due to the large nuclear dipolar interaction with the host 27Al magnetic dipole moments. Nevertheless the temperature variation of the site averaged 1/T1 and Knight shift show evidence for a transition between the octahedral O and substitutional S sites at about 150 K, as observed in other fcc metals.

  8. Application of spin-exchange relaxation-free magnetometry to the Cosmic Axion Spin Precession Experiment

    Science.gov (United States)

    Wang, Tao; Kimball, Derek F. Jackson; Sushkov, Alexander O.; Aybas, Deniz; Blanchard, John W.; Centers, Gary; Kelley, Sean R. O.'; Wickenbrock, Arne; Fang, Jiancheng; Budker, Dmitry

    2018-03-01

    The Cosmic Axion Spin Precession Experiment (CASPEr) seeks to measure oscillating torques on nuclear spins caused by axion or axion-like-particle (ALP) dark matter via nuclear magnetic resonance (NMR) techniques. A sample spin-polarized along a leading magnetic field experiences a resonance when the Larmor frequency matches the axion/ALP Compton frequency, generating precessing transverse nuclear magnetization. Here we demonstrate a Spin-Exchange Relaxation-Free (SERF) magnetometer with sensitivity ≈ 1 fT /√{ Hz } and an effective sensing volume of 0.1 cm3 that may be useful for NMR detection in CASPEr. A potential drawback of SERF-magnetometer-based NMR detection is the SERF's limited dynamic range. Use of a magnetic flux transformer to suppress the leading magnetic field is considered as a potential method to expand the SERF's dynamic range in order to probe higher axion/ALP Compton frequencies.

  9. A fast determination method for transverse relaxation of spin-exchange-relaxation-free magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jixi, E-mail: lujixi@buaa.edu.cn; Qian, Zheng; Fang, Jiancheng [School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191 (China)

    2015-04-15

    We propose a fast and accurate determination method for transverse relaxation of the spin-exchange-relaxation-free (SERF) magnetometer. This method is based on the measurement of magnetic resonance linewidth via a chirped magnetic field excitation and the amplitude spectrum analysis. Compared with the frequency sweeping via separate sinusoidal excitation, our method can realize linewidth determination within only few seconds and meanwhile obtain good frequency resolution. Therefore, it can avoid the drift error in long term measurement and improve the accuracy of the determination. As the magnetic resonance frequency of the SERF magnetometer is very low, we include the effect of the negative resonance frequency caused by the chirp and achieve the coefficient of determination of the fitting results better than 0.998 with 95% confidence bounds to the theoretical equation. The experimental results are in good agreement with our theoretical analysis.

  10. Spin relaxation and antisymmetric exchange in n-doped III-V semiconductors

    Science.gov (United States)

    Gor'kov, L. P.; Krotkov, P. L.

    2003-01-01

    Recently, Kavokin [Phys. Rev. B 64, 075305 (2001)] suggested that the Dzyaloshinskii-Moriya interaction between localized electrons governs slow spin relaxation in n-doped GaAs in the regime close to the metal-insulator transition. We derive the correct spin Hamiltonian and apply it to the determination of spin dephasing time using the method of moments expansion. Our estimates would give longer than the observed values of the spin-relaxation time.

  11. Resonances in field-cycling NMR on molecular crystals. (reversible) Spin dynamics or (irreversible) relaxation?; Resonanzen in Field-Cycling-NMR an Molekuelkristallen. (reversible) Spindynamik oder (irreversible) Relaxation?

    Energy Technology Data Exchange (ETDEWEB)

    Tacke, Christian

    2015-07-01

    Multi spin systems with spin 1/2 nuclei and dipolar coupled quadrupolar nuclei can show so called ''quadrupolar dips''. There are two main reasons for this behavior: polarization transfer and relaxation. They look quite alike and without additional research cannot be differentiated easily in most cases. These two phenomena have quite different physical and theoretical backgrounds. For no or very slow dynamics, polarization transfer will take place, which is energy conserving inside the spin system. This effect can entirely be described using quantum mechanics on the spin system. Detailed knowledge about the crystallography is needed, because this affects the relevant hamiltonians directly. For systems with fast enough dynamics, relaxation takes over, and the energy flows from the spin system to the lattice; thus a more complex theoretical description is needed. This description has to include a dynamic model, usually in the form of a spectral density function. Both models should include detailed modelling of the complete spin system. A software library was developed to be able to model complex spin systems. It allows to simulate polarization transfer or relaxation effects. NMR measurements were performed on the protonic conductor K{sub 3}H(SO{sub 4}){sub 2}. A single crystal shows sharp quadrupolar dips at room temperature. Dynamics could be excluded using relaxation measurements and literature values. Thus, a polarization transfer analysis was used to describe those dips with good agreement. As a second system, imidazolium based molecular crystals were analyzed. The quadrupolar dips were expected to be caused by polarization transfer; this was carefully analyzed and found not to be true. A relaxation based analysis shows good agreement with the measured data in the high temperature area. It leverages a two step spectral density function, which indicates two distinct dynamic processes happening in this system.

  12. Electron Tunneling in Lithium Ammonia Solutions Probed by Frequency-Dependent Electron-Spin Relaxation Studies

    Science.gov (United States)

    Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.

    2012-01-01

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential

  13. Electron tunneling in lithium-ammonia solutions probed by frequency-dependent electron spin relaxation studies.

    Science.gov (United States)

    Maeda, Kiminori; Lodge, Matthew T J; Harmer, Jeffrey; Freed, Jack H; Edwards, Peter P

    2012-06-06

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T(1)) and spin-spin (T(2)) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multiexponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1-10) × 10(-12) s over a temperature range 230-290 K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a time scale of ∼10(-13) s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great

  14. Probing the Nuclear Spin-Lattice Relaxation Time at the Nanoscale

    NARCIS (Netherlands)

    Wagenaar, J.C.; Den Haan, A. M J; de Voogd, J.M.; Bossoni, L; de Jong, T.A.; de Wit, M.; Bastiaans, K. M.; Thoen, D.J.; Endo, A.; Klapwijk, T.M.; Zaanen, J.; Oosterkamp, TH

    2016-01-01

    Nuclear spin-lattice relaxation times are measured on copper using magnetic-resonance force microscopy performed at temperatures down to 42 mK. The low temperature is verified by comparison with the Korringa relation. Measuring spin-lattice relaxation times locally at very low temperatures opens up

  15. Spin-lattice relaxation of magnetic centers in molecular crystals at low temperature

    OpenAIRE

    Ho, Le Tuan Anh; Chibotaru, Liviu F.

    2017-01-01

    We study the spin-phonon relaxation rate of both Kramers and non-Kramers molecular magnets in strongly diluted samples at low temperature. Using the "rotational" contribution to the spin-phonon Hamiltonian, universal formulae for the relaxation rate are obtained. Intriguingly, these formulae are all entirely expressed via measurable or \\emph{ab initio} computable physical quantities. Moreover, they are also independent of the energy gaps to excited states involved in the relaxation process. T...

  16. Electron spin relaxation in organic semiconductors probed through {mu}SR

    Energy Technology Data Exchange (ETDEWEB)

    Nuccio, L; Willis, M; Drew, A J [Queen Mary University of London, Department of Physics, Mile End Road, London, E1 4NS (United Kingdom); Schulz, L; Bernhard, C [Department of Physics and FriMat, University of Fribourg, Ch. du Musee 3, 1700 Fribourg, CH (Germany); Pratt, F L [ISIS Muon Facility, Rutherford Appleton Laboratory, Didcot, OX11 0QX (United Kingdom); Heeney, M; Stingelin, N, E-mail: l.nuccio@qmul.ac.uk [Centre for Plastic Electronics, Imperial College London, Exhibition Road, London, SW7 2AZ, London (United Kingdom)

    2011-04-01

    Muon spin spectroscopy and in particular the avoided level crossing technique is introduced, with the aim of showing it as a very sensitive local probe for electron spin relaxation in organic semiconductors. Avoided level crossing data on TMS-pentacene at different temperatures are presented, and they are analysed to extract the electron spin relaxation rate, that is shown to increase on increasing the temperature from 0.02 MHz to 0.33 MHz at 3 K and 300 K respectively.

  17. Spin-Relaxation Anisotropy in a GaAs Quantum Dot

    NARCIS (Netherlands)

    Scarlino, P.; Kawakami, E.; Stano, P.; Shafiei, M.; Reichl, C.; Wegscheider, W.; Vandersypen, L.M.K.

    2014-01-01

    We report that the electron spin-relaxation time T1 in a GaAs quantum dot with a spin-1/2 ground state has a 180° periodicity in the orientation of the in-plane magnetic field. This periodicity has been predicted for circular dots as being due to the interplay of Rashba and Dresselhaus spin orbit

  18. Spin-Spin Relaxation and Karyagin-Gol'danskii Effect in FeCl3·6H2O

    DEFF Research Database (Denmark)

    Thrane, N.; Trumpy, Georg

    1970-01-01

    . Qualitatively, the experimental results can be explained by a combination of a temperature-and magnetic-field-dependent spin-spin relaxation and the Karyagin-Gol'danskii effect. This implies that the zero-field splitting is about 20°K between the lowest-lying Kramers doublet, found to be the |±1 / 2...

  19. Low-field cross spin relaxation of L8i in superconducting NbSe2

    Science.gov (United States)

    Hossain, M. D.; Salman, Z.; Wang, D.; Chow, K. H.; Kreitzman, S.; Keeler, T. A.; Levy, C. D. P.; Macfarlane, W. A.; Miller, R. I.; Morris, G. D.; Parolin, T. J.; Pearson, M.; Saadaoui, H.; Kiefl, R. F.

    2009-04-01

    A low energy beam of spin polarized L8i has been used to investigate nuclear spin relaxation in the multiband superconductor NbSe2 . In low magnetic fields there is significant cross relaxation between the L8i and the host N93b spins, which is driven by low frequency fluctuations in the nuclear magnetic dipolar interaction. The rate of cross relaxation is strongly field dependent and thus the 1/T1 spin relaxation rate of the L8i is a sensitive monitor of the static local magnetic field B just below the surface. This in turn is used to determine the absolute value of the magnetic penetration depth λ in the Meissner state. The temperature variations in 1/T1 and λ are consistent with a wide distribution of superconducting gaps expected for a multiband superconductor.

  20. Intrinsic spin-relaxation induced negative tunnel magnetoresistance in a single-molecule magnet

    Science.gov (United States)

    Xie, Haiqing; Wang, Qiang; Xue, Hai-Bin; Jiao, HuJun; Liang, J.-Q.

    2013-06-01

    We investigate theoretically the effects of intrinsic spin-relaxation on the spin-dependent transport through a single-molecule magnet (SMM), which is weakly coupled to ferromagnetic leads. The tunnel magnetoresistance (TMR) is obtained by means of the rate-equation approach including not only the sequential but also the cotunneling processes. It is shown that the TMR is strongly suppressed by the fast spin-relaxation in the sequential region and can vary from a large positive to slight negative value in the cotunneling region. Moreover, with an external magnetic field along the easy-axis of SMM, a large negative TMR is found when the relaxation strength increases. Finally, in the high bias voltage limit the TMR for the negative bias is slightly larger than its characteristic value of the sequential region; however, it can become negative for the positive bias caused by the fast spin-relaxation.

  1. A statistical correlation investigation for the role of surface spins to the spin relaxation of nitrogen vacancy centers

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xuerui; Zhang, Jian; Feng, Fupan; Wang, Junfeng; Zhang, Wenlong; Lou, Liren; Zhu, Wei; Wang, Guanzhong, E-mail: gzwang@ustc.edu.cn [Hefei National Laboratory for Physical Science at Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026 (China)

    2014-04-15

    We investigated the influence of spins on surface of nanodiamonds (NDs) to the longitudinal relaxation time (T{sub 1}) and transverse relaxation time (T{sub 2}) of nitrogen vacancy (NV) centers in ND. A spherical model of the NDs was suggested to account for the experimental results of T{sub 1} and T{sub 2}, and the density of surface spins was roughly estimated based on the statistical analysis of experimental results of 72 NDs containing a single NV center. For NDs studied here, the T{sub 1} of NV center inside is highly dependent to the surface spins of the NDs. However, for the T{sub 2} of NV center, intrinsic contributions must be much pronounced than that by surface spins. In other words, T{sub 1} of an NV center in NDs is more sensitive to the change of the surface spin density than T{sub 2}.

  2. A statistical correlation investigation for the role of surface spins to the spin relaxation of nitrogen vacancy centers

    Directory of Open Access Journals (Sweden)

    Xuerui Song

    2014-04-01

    Full Text Available We investigated the influence of spins on surface of nanodiamonds (NDs to the longitudinal relaxation time (T1 and transverse relaxation time (T2 of nitrogen vacancy (NV centers in ND. A spherical model of the NDs was suggested to account for the experimental results of T1 and T2, and the density of surface spins was roughly estimated based on the statistical analysis of experimental results of 72 NDs containing a single NV center. For NDs studied here, the T1 of NV center inside is highly dependent to the surface spins of the NDs. However, for the T2 of NV center, intrinsic contributions must be much pronounced than that by surface spins. In other words, T1 of an NV center in NDs is more sensitive to the change of the surface spin density than T2.

  3. Exchange-mediated spin-lattice relaxation of Fe3+ ions in borate glasses.

    Science.gov (United States)

    Misra, Sushil K; Pilbrow, John R

    2007-03-01

    Spin-lattice relaxation times (T1) of two borate glasses doped with different concentrations of Fe2O3 were measured using the Electron Spin-Echo (ESE) technique at X-band (9.630 GHz) in the temperature range 2-6K. In comparison with a previous investigation of Fe3+-doped silicate glasses, the relaxation rates were comparable and differed by no more than a factor of two. The data presented here extend those previously reported for borate glasses in the 10-250K range but measured using the amplitude-modulation technique. The T1 values were found to depend on temperature (T) as T(n) with n approximately 1 for the 1% and 0.1% Fe2O3-doped glass samples. These results are consistent with spin-lattice relaxation as effected by exchange interaction of a Fe3+ spin exchange-coupled to another Fe3+ spin in an amorphous material.

  4. Generalized extended Navier-Stokes theory: multiscale spin relaxation in molecular fluids.

    Science.gov (United States)

    Hansen, J S

    2013-09-01

    This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia per unit mass. In the regime of large moment of inertia the fast relaxation is wave-vector independent and dominated by the coupling between spin and the fluid streaming velocity, whereas for small inertia the relaxation is slow and spin diffusion plays a significant role. The fast wave-vector-independent relaxation is also observed for highly packed systems. The transverse and longitudinal spin modes have, to a good approximation, identical relaxation, indicating that the longitudinal and transverse spin viscosities have same value. The relaxation is also shown to be isomorphic invariant. Finally, the effect of the coupling in the zero frequency and wave-vector limit is quantified by a characteristic length scale; if the system dimension is comparable to this length the coupling must be included into the fluid dynamical description. It is found that the length scale is independent of moment of inertia but dependent on the state point.

  5. Generalized extended Navier-Stokes theory: Multiscale spin relaxation in molecular fluids

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2013-01-01

    This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia...

  6. Relaxation of the electron spin in quantum dots via one- and two-phonon processes

    International Nuclear Information System (INIS)

    Calero, C.; Chudnovsky, E.M.; Garanin, D.A.

    2007-01-01

    We have studied direct and Raman processes of the decay of electron spin states in a quantum dot via radiation of phonons corresponding to elastic twists. Universal dependence of the spin relaxation rate on the strength and direction of the magnetic field has been obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid

  7. Relaxation of the electron spin in quantum dots via one- and two-phonon processes

    Energy Technology Data Exchange (ETDEWEB)

    Calero, C. [Department of Physics and Astronomy, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589 (United States)]. E-mail: carlos.calero-borrallo@lehman.cuny.edu; Chudnovsky, E.M. [Department of Physics and Astronomy, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589 (United States); Garanin, D.A. [Department of Physics and Astronomy, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589 (United States)

    2007-09-15

    We have studied direct and Raman processes of the decay of electron spin states in a quantum dot via radiation of phonons corresponding to elastic twists. Universal dependence of the spin relaxation rate on the strength and direction of the magnetic field has been obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid.

  8. Spin dynamics of the positive muon radicals in the presence of rapid electron spin exchange: frequency shift and relaxation

    International Nuclear Information System (INIS)

    Senba, Masayoshi; British Columbia Univ., Vancouver, BC

    1991-01-01

    The spin dynamics of the positive muon in a muonium-like radical has been investigated in the case where the unpaired electron of the radical undergoes rapid spin flip collisions. If the spin flip rate λ SF is much faster than the hyperfine frequency of the radical, the behaviour of the muon spin is very similar to that of a positive muon in diamagnetic environments. It has been shown that in a transverse field, the relaxation rate and precession frequency of the apparent diamagnetic muon are related to the time evolution function of the muon spin in muonium. The relaxation rate of such an apparent diamagnetic signal has a characteristic field dependence which is very sensitive to the hyperfine frequency of the radical. The fractional frequency shift with respect to the positive muon precession frequency (ω D -ω μ )/ω μ is shown to be field-dependent, in contrast to the case of Knight shifts in metals. The field dependence of the relaxation and frequency shift will provide a tool to distinguish experimentally the muon in a radical which behaves like a free positive muon from a genuine diamagnetic muon. This work can be applied to a variety of fields involving muonium and hydrogen, such as spin dynamic in the gas phase and the muonium-like (hydrogen-like) states in semiconductors. The case where the muon undergoes both spin flip and charge transfer collisions is also discussed. (author)

  9. The eigenmode perspective of NMR spin relaxation in proteins

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Yury E., E-mail: shapiro@nmrsgi4.ls.biu.ac.il, E-mail: eva.meirovitch@biu.ac.il; Meirovitch, Eva, E-mail: shapiro@nmrsgi4.ls.biu.ac.il, E-mail: eva.meirovitch@biu.ac.il [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900-02 (Israel)

    2013-12-14

    We developed in recent years the two-body (protein and probe) coupled-rotator slowly relaxing local structure (SRLS) approach for elucidating protein dynamics from NMR spin relaxation. So far we used as descriptors the set of physical parameters that enter the SRLS model. They include the global (protein-related) diffusion tensor, D{sub 1}, the local (probe-related) diffusion tensor, D{sub 2}, and the local coupling/ordering potential, u. As common in analyzes based on mesoscopic dynamic models, these parameters have been determined with data-fitting techniques. In this study, we describe structural dynamics in terms of the eigenmodes comprising the SRLS time correlation functions (TCFs) generated by using the best-fit parameters as input to the Smoluchowski equation. An eigenmode is a weighted exponential with decay constant given by an eigenvalue of the Smoluchowski operator, and weighting factor determined by the corresponding eigenvector. Obviously, both quantities depend on the SRLS parameters as determined by the SRLS model. Unlike the set of best-fit parameters, the eigenmodes represent patterns of motion of the probe-protein system. The following new information is obtained for the typical probe, the {sup 15}N−{sup 1}H bond. Two eigenmodes, associated with the protein and the probe, dominate when the time scale separation is large (i.e., D{sub 2} ≫ D{sub 1}), the tensorial properties are simple, and the local potential is either very strong or very weak. When the potential exceeds these limits while the remaining conditions are preserved, new eigenmodes arise. The multi-exponentiality of the TCFs is associated in this case with the restricted nature of the local motion. When the time scale separation is no longer large, the rotational degrees of freedom of the protein and the probe become statistically dependent (coupled dynamically). The multi-exponentiality of the TCFs is associated in this case with the restricted nature of both the local and the

  10. The eigenmode perspective of NMR spin relaxation in proteins

    Science.gov (United States)

    Shapiro, Yury E.; Meirovitch, Eva

    2013-12-01

    We developed in recent years the two-body (protein and probe) coupled-rotator slowly relaxing local structure (SRLS) approach for elucidating protein dynamics from NMR spin relaxation. So far we used as descriptors the set of physical parameters that enter the SRLS model. They include the global (protein-related) diffusion tensor, D1, the local (probe-related) diffusion tensor, D2, and the local coupling/ordering potential, u. As common in analyzes based on mesoscopic dynamic models, these parameters have been determined with data-fitting techniques. In this study, we describe structural dynamics in terms of the eigenmodes comprising the SRLS time correlation functions (TCFs) generated by using the best-fit parameters as input to the Smoluchowski equation. An eigenmode is a weighted exponential with decay constant given by an eigenvalue of the Smoluchowski operator, and weighting factor determined by the corresponding eigenvector. Obviously, both quantities depend on the SRLS parameters as determined by the SRLS model. Unlike the set of best-fit parameters, the eigenmodes represent patterns of motion of the probe-protein system. The following new information is obtained for the typical probe, the 15N-1H bond. Two eigenmodes, associated with the protein and the probe, dominate when the time scale separation is large (i.e., D2 ≫ D1), the tensorial properties are simple, and the local potential is either very strong or very weak. When the potential exceeds these limits while the remaining conditions are preserved, new eigenmodes arise. The multi-exponentiality of the TCFs is associated in this case with the restricted nature of the local motion. When the time scale separation is no longer large, the rotational degrees of freedom of the protein and the probe become statistically dependent (coupled dynamically). The multi-exponentiality of the TCFs is associated in this case with the restricted nature of both the local and the global motion. The effects of local

  11. Spin lattice relaxation of 8Li in a ferromagnetic EuO epitaxial thin film

    Science.gov (United States)

    Song, Q.; Chow, K. H.; Egilmez, M.; Fan, I.; Hossain, M. D.; Kiefl, R. F.; Kreitzman, S. R.; Levy, C. D. P.; Morris, G. D.; Parolin, T. J.; Pearson, M. R.; Salman, Z.; Saadaoui, H.; Smadella, M.; Wang, D.; Ingle, N. J. C.; MacFarlane, W. A.

    2009-04-01

    We inject a low energy spin polarized Li+8 beam into an epitaxially grown multilayer film consisting of Au(20 nm)/EuO(100 nm)/ LaAlO3, and investigate the nuclear spin relaxation at 3.33 T. The relaxation varies with implantation energy below 28 keV as the fraction of the probe Li8 stopping in each layer changes. We attribute the fast relaxating component to the EuO, while the much slower relaxation has contributions from both the Au and the substrate. However, fast relaxation is still observed at the lowest implantation energy where all the Li8 stops in the Au capping layer. This may be due to a proximity effect from the EuO.

  12. Spin lattice relaxation of {sup 8}Li in a ferromagnetic EuO epitaxial thin film

    Energy Technology Data Exchange (ETDEWEB)

    Song, Q., E-mail: susan@phas.ubc.c [Department of Physics, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Chow, K.H.; Egilmez, M.; Fan, I. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Hossain, M.D. [Department of Physics, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Kiefl, R.F. [Department of Physics, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Canadian Institute of Advanced Research (Canada); Kreitzman, S.R.; Levy, C.D.P.; Morris, G.D. [TRIMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Parolin, T.J. [Chemistry Department, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Pearson, M.R. [TRIMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Salman, Z. [TRIMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Physics Department, Oxford University, Parks Road, Oxford, OX1 3PU (United Kingdom); Saadaoui, H.; Smadella, M.; Wang, D. [Department of Physics, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Ingle, N.J.C. [AMPEL, University of British Columbia, Vancouver (Canada); MacFarlane, W.A. [Chemistry Department, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada)

    2009-04-15

    We inject a low energy spin polarized {sup 8}Li{sup +} beam into an epitaxially grown multilayer film consisting of Au(20 nm)/EuO(100 nm)/LaAlO{sub 3}, and investigate the nuclear spin relaxation at 3.33 T. The relaxation varies with implantation energy below 28 keV as the fraction of the probe {sup 8}Li stopping in each layer changes. We attribute the fast relaxating component to the EuO, while the much slower relaxation has contributions from both the Au and the substrate. However, fast relaxation is still observed at the lowest implantation energy where all the {sup 8}Li stops in the Au capping layer. This may be due to a proximity effect from the EuO.

  13. High field electron-spin transport and observation of the Dyakonov-Perel spin relaxation of drifting electrons in low temperature-grown gallium arsenide

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2008-01-01

    High field electron-spin transport in low temperature-grown gallium arsenide is studied. We generate electron spins in the samples by optical pumping. During transport, we observe the Dyakonov-Perel (DP) [M.I. Dyakonov, V.I. Perel, Zh. Eksp. Teor. Fiz. 60 (1971) 1954] spin relaxation of the drifting electrons. The results are discussed and are compared with those obtained in calculations of the DP spin relaxation frequency of the hot electrons. A good agreement is obtained

  14. High field electron-spin transport and observation of the Dyakonov-Perel spin relaxation of drifting electrons in low temperature-grown gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong-4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2008-11-17

    High field electron-spin transport in low temperature-grown gallium arsenide is studied. We generate electron spins in the samples by optical pumping. During transport, we observe the Dyakonov-Perel (DP) [M.I. Dyakonov, V.I. Perel, Zh. Eksp. Teor. Fiz. 60 (1971) 1954] spin relaxation of the drifting electrons. The results are discussed and are compared with those obtained in calculations of the DP spin relaxation frequency of the hot electrons. A good agreement is obtained.

  15. NMR relaxation in spin ice at low temperature due to diffusing emergent monopoles

    Science.gov (United States)

    Henley, Christopher L.

    2013-03-01

    At low temperatures, spin dynamics in ideal spin ice is due mainly to dilute, thermally excited magnetic ``monopole'' excitations. I consider how these will affect the longitudinal (T1) and dephasing (T2) relaxation functions of a nuclear spin in the spin-ice pyrochlore Dy2Ti2O4. Up to the time scale for nearby monopoles to be rearranged, a stretched-exponential form of the relaxation functions is expected, due to averaging over nuclei that have different local environments. ror the dephasing (T2) relaxation, the power of time in the stretched exponential is 3/2 in the case of diffusing monopoles, but 1/2 in the case of fixed, fluctuating magnetic impurities. The flip rate and density of fluctuating spins (whatever their nature) can be extracted from the measured relaxation times T1 and T2, and from known parameters. However, the actual experimental relaxation measured by Kitagawa and Takigawa becomes temperature independent in the very low T limit, and the T2 has a power t 1 / 2 in the exponential, neither of which can be explained by monopoles. I suggest the very low T behavior could be due to magnetic impurities on the (normally nonmagnetic) Ti sites. Supported by NSF grant DMR-1005466.

  16. Spin-spin cross relaxation and spin-Hamiltonian spectroscopy by optical pumping of Pr/sup 3+/:LaF3

    International Nuclear Information System (INIS)

    Lukac, M.; Otto, F.W.; Hahn, E.L.

    1989-01-01

    We report the observation of an anticrossing in solid-state laser spectroscopy produced by cross relaxation. Spin-spin cross relaxation between the /sup 141/Pr- and /sup 19/F-spin reservoirs in Pr/sup 3+/:LaF 3 and its influence on the /sup 141/Pr NMR spectrum is detected by means of optical pumping. The technique employed combines optical pumping and hole burning with either external magnetic field sweep or rf resonance saturation in order to produce slow transient changes in resonant laser transmission. At a certain value of the external Zeeman field, where the energy-level splittings of Pr and F spins match, a level repulsion and discontinuity of the Pr/sup 3+/ NMR lines is observed. This effect is interpreted as the ''anticrossing'' of the combined Pr-F spin-spin reservoir energy states. The Zeeman-quadrupole-Hamiltonian spectrum of the hyperfine optical ground states of Pr/sup 3+/:LaF 3 is mapped out over a wide range of Zeeman magnetic fields. A new scheme is proposed for dynamic polarization of nuclei by means of optical pumping, based on resonant cross relaxation between rare spins and spin reservoirs

  17. Anelastic Relaxation Mechanisms Characterization by Moessbauer Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Soberon Mobarak, Martin Jesus, E-mail: msoberon@sep.gob.mx [Secretaria de Educacion Publica (Mexico)

    2005-02-15

    Anelastic behavior of crystalline solids is generated by several microstructural processes. Its experimental study yields valuable information about materials, namely: modulus, dissipation mechanisms and activation enthalpies. However, conventional techniques to evaluate it are complicated, expensive, time consuming and not easily replicated. As a new approach, in this work a Moessbauer spectrum of an iron specimen is obtained with the specimen at repose being its parameters the 'base parameters'. After that, the same specimen is subjected to an alternated stress-relaxation cycle at frequency {omega}{sub 1} and a new Moessbauer spectrum is obtained under this excited condition; doing the same at several increasing frequencies {omega}{sub n} in order to scan a wide frequencies spectrum. The differences between the Moessbauer parameters obtained at each excitation frequency and the base parameters are plotted against frequency, yielding an 'anelastic spectrum' that reveals the different dissipation mechanisms involved, its characteristic frequency and activation energy. Results are in good agreement with the obtained with other techniques

  18. Spin relaxation and the Kondo effect in transition metal dichalcogenide monolayers

    International Nuclear Information System (INIS)

    Rostami, Habib; Moghaddam, Ali G; Asgari, Reza

    2016-01-01

    We investigate the spin relaxation and Kondo resistivity caused by magnetic impurities in doped transition metal dichalcogenide monolayers. We show that momentum and spin relaxation times, due to the exchange interaction by magnetic impurities, are much longer when the Fermi level is inside the spin-split region of the valence band. In contrast to the spin relaxation, we find that the dependence of Kondo temperature T K on the doping is not strongly affected by the spin–orbit induced splitting, although only one of the spin species are present at each valley. This result, which is obtained using both perturbation theory and the poor man’s scaling methods, originates from the intervalley spin-flip scattering in the spin-split region. We further demonstrate the decline in the conductivity with temperatures close to T K , which can vary with the doping. Our findings reveal the qualitative difference with the Kondo physics in conventional metallic systems and other Dirac materials. (paper)

  19. Relaxation of an Isolated Dipolar-Interacting Rydberg Quantum Spin System

    Science.gov (United States)

    Orioli, A. Piñeiro; Signoles, A.; Wildhagen, H.; Günter, G.; Berges, J.; Whitlock, S.; Weidemüller, M.

    2018-02-01

    How do isolated quantum systems approach an equilibrium state? We experimentally and theoretically address this question for a prototypical spin system formed by ultracold atoms prepared in two Rydberg states with different orbital angular momenta. By coupling these states with a resonant microwave driving, we realize a dipolar X Y spin-1 /2 model in an external field. Starting from a spin-polarized state, we suddenly switch on the external field and monitor the subsequent many-body dynamics. Our key observation is density dependent relaxation of the total magnetization much faster than typical decoherence rates. To determine the processes governing this relaxation, we employ different theoretical approaches that treat quantum effects on initial conditions and dynamical laws separately. This allows us to identify an intrinsically quantum component to the relaxation attributed to primordial quantum fluctuations.

  20. Measurements of spin-lattice relaxation time in mixed alkali halide crystals

    International Nuclear Information System (INIS)

    Tannus, A.

    1983-01-01

    Using magneto-optic techniques the ground state spin-lattice relaxation times (T1) of 'F' centers in mixed Alkali Halide cristals (KCl-KBr), was studied. A computer assisted system to optically measure short relaxation times (approx. = 1mS), was described. The technique is based on the measurement of the Magnetic Circular Dicroism (MCD) presented by F centers. The T1 magnetic field dependency at 2 K (up to 65 KGauss), was obtained as well as the MCD spectra for different relative concentration at the mixed matrices. The theory developed by Panepucci and Mollenauer for F centers spin-lattice relaxation in pure matrices was modified to explain the behaviour of T1 in mixed cristals. The Direct Process results (T approx. = 2.0 K) compared against that theory shows that the main relaxation mecanism, up to 25 KGauss, continues to be phonon modulation of the hiperfine iteraction between F electrons and surrounding nuclei. (Author) [pt

  1. Mn-based hard magnets with small saturation magnetization and low spin relaxation for spintronics

    International Nuclear Information System (INIS)

    Mizukami, S.; Sakuma, A.; Sugihara, A.; Suzuki, K.Z.; Ranjbar, R.

    2016-01-01

    The pursuit of high saturation magnetization is an important area of hard magnetic materials research. However, spintronics requires hard magnets exhibiting small saturation magnetization and low spin relaxation. Mn-based alloys that are composed of Mn and light group III and/or group IV elements exhibit such properties and may belong to a new category of magnetic materials. In this article, we review the magnetic properties of Mn-based hard magnet films. In particular, we focus on low spin relaxation as a new viewpoint for hard magnets, and we discuss the origin of their extraordinary magnetism in terms of their unique electronic structures.

  2. Optimal Configuration for Relaxation Times Estimation in Complex Spin Echo Imaging

    Directory of Open Access Journals (Sweden)

    Fabio Baselice

    2014-01-01

    Full Text Available Many pathologies can be identified by evaluating differences raised in the physical parameters of involved tissues. In a Magnetic Resonance Imaging (MRI framework, spin-lattice T1 and spin-spin T2 relaxation time parameters play a major role in such an identification. In this manuscript, a theoretical study related to the evaluation of the achievable performances in the estimation of relaxation times in MRI is proposed. After a discussion about the considered acquisition model, an analysis on the ideal imaging acquisition parameters in the case of spin echo sequences, i.e., echo and repetition times, is conducted. In particular, the aim of the manuscript consists in providing an empirical rule for optimal imaging parameter identification with respect to the tissues under investigation. Theoretical results are validated on different datasets in order to show the effectiveness of the presented study and of the proposed methodology.

  3. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Shmyreva, Anna A. [Center for Magnetic Resonance, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Safdari, Majid; Furó, István [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Dvinskikh, Sergey V., E-mail: sergeid@kth.se [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034 (Russian Federation)

    2016-06-14

    Orders of magnitude decrease of {sup 207}Pb and {sup 199}Hg NMR longitudinal relaxation times T{sub 1} upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX{sub 2} (Me = Pb, Hg and X = Cl, Br, I). In lead(II) halides, the most dramatic decrease of T{sub 1} relative to that in a static sample is in PbI{sub 2}, while it is smaller but still significant in PbBr{sub 2}, and not detectable in PbCl{sub 2}. The effect is magnetic-field dependent but independent of the spinning speed in the range 200–15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.

  4. Matrix-assisted relaxation in Fe(phen)2(NCS)2 spin-crossover microparticles, experimental and theoretical investigations

    International Nuclear Information System (INIS)

    Enachescu, Cristian; Stancu, Alexandru; Tanasa, Radu; Tissot, Antoine; Laisney, Jérôme; Boillot, Marie-Laure

    2016-01-01

    In this study, we present the influence of the embedding matrix on the relaxation of Fe(phen) 2 (NCS) 2 (phen = 1,10-phenanthroline) spin-transition microparticles as revealed by experiments and provide an explanation within the framework of an elastic model based on a Monte-Carlo method. Experiments show that the shape of the high-spin → low-spin relaxation curves is drastically changed when the particles are dispersed in glycerol. This effect was considered in the model by means of interactions between the microparticles and the matrix. A faster start of the relaxation for microparticles embedded in glycerol is due to an initial positive local pressure acting on the edge spin-crossover molecules from the matrix side. This local pressure diminishes and eventually becomes negative during relaxation, as an effect of the decrease of the volume of spin-crossover microparticles from high-spin to low-spin.

  5. Spin relaxation studies of Li+ion dynamics in polymer gel electrolytes.

    Science.gov (United States)

    Brinkkötter, M; Gouverneur, M; Sebastião, P J; Vaca Chávez, F; Schönhoff, M

    2017-03-08

    Two ternary polymer gel electrolyte systems are compared, containing either polyethylene oxide (PEO) or the poly-ionic liquid poly(diallyldimethylammonium) bis(trifluoromethyl sulfonyl)imide (PDADMA-TFSI). Both gel types are based on the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl sulfonyl)imide (P 14 TFSI) and LiTFSI. We study the influence of the polymers on the local lithium ion dynamics at different polymer concentrations using 7 Li spin-lattice relaxation data in dependence on frequency and temperature. In all cases the relaxation rates are well described by the Cole-Davidson motional model with Arrhenius dependence of the correlation time and a temperature dependent quadrupole coupling constant. For both polymers the correlation times are found to increase with polymer concentration. The activation energy of local motions slightly increases with increasing PEO concentration, and slightly decreases with increasing PDADMA-TFSI concentration. Thus the local Li + motion is reduced by the presence of either polymer; however, the reduction is less effective in the PDADMA + samples. We thus conclude that mechanical stabilization of a liquid electrolyte by a polymer can be achieved at a lower decrease of Li + motion when a cationic polymer is used instead of PEO.

  6. Temperature dependence of electron spin-lattice relaxation of radiation-produced silver atoms in polycrystalline aqueous and glassy organic matrices. Importance of relaxation by tunneling modes in disordered matrices

    International Nuclear Information System (INIS)

    Michalik, J.; Kevan, L.

    1978-01-01

    The electron spin-lattice relaxation of trapped silver atoms in polycrystalline ice matrices and in methanol, ethanol, propylene carbonate, and 2-methyltetrahydrofuran organic glasses has been directly studied as a function of temperature by the saturation-recovery method. Below 40 K the dominant electron spin-lattice relaxation mechanism involves modulation of the electron nuclear dipolar interaction with nuclei in the radical's environment by tunneling of those nuclei between two nearly equal energy configurations. This relaxation mechanism occurs with high efficiency, has a characteristic linear temperature dependence, and is typically found in highly disordered matrices. The efficiency of this relaxation mechanism seems to decrease with decreasing polarity of the matrix. Deuteration experiments show that the tunneling nuclei are protons and in methanol it is shown that the methyl protons have more tunneling modes available than the hydroxyl protons. In polycrystalline ice matrices silver atoms can be stabilized with two different orientations of surrounding water molecules; the efficiency of the tunneling relaxation reflects this difference. From these and previous results on tunneling relaxation of trapped electrons in glassy matrices it appears that tunneling relaxation may be used to distinguish models with different geometrical configurations and to determine the relative rigidity of such configurations around trapped radicals in disordered solids. (author)

  7. Long Spin-Relaxation Times in a Transition-Metal Atom in Direct Contact to a Metal Substrate.

    Science.gov (United States)

    Hermenau, Jan; Ternes, Markus; Steinbrecher, Manuel; Wiesendanger, Roland; Wiebe, Jens

    2018-03-14

    Long spin-relaxation times are a prerequisite for the use of spins in data storage or nanospintronics technologies. An atomic-scale solid-state realization of such a system is the spin of a transition-metal atom adsorbed on a suitable substrate. For the case of a metallic substrate, which enables the direct addressing of the spin by conduction electrons, the experimentally measured lifetimes reported to date are on the order of only hundreds of femtoseconds. Here, we show that the spin states of iron atoms adsorbed directly on a conductive platinum substrate have a surprisingly long spin-relaxation time in the nanosecond regime, which is comparable to that of a transition metal atom decoupled from the substrate electrons by a thin decoupling layer. The combination of long spin-relaxation times and strong coupling to conduction electrons implies the possibility to use flexible coupling schemes to process the spin information.

  8. Long Spin-Relaxation Times in a Transition-Metal Atom in Direct Contact to a Metal Substrate

    Science.gov (United States)

    Hermenau, Jan; Ternes, Markus; Steinbrecher, Manuel; Wiesendanger, Roland; Wiebe, Jens

    2018-03-01

    Long spin relaxation times are a prerequisite for the use of spins in data storage or nanospintronics technologies. An atomic-scale solid-state realization of such a system is the spin of a transition metal atom adsorbed on a suitable substrate. For the case of a metallic substrate, which enables directly addressing the spin by conduction electrons, the experimentally measured lifetimes reported to date are on the order of only hundreds of femtoseconds. Here, we show that the spin states of iron atoms adsorbed directly on a conductive platinum substrate have an astonishingly long spin relaxation time in the nanosecond regime, which is comparable to that of a transition metal atom decoupled from the substrate electrons by a thin decoupling layer. The combination of long spin relaxation times and strong coupling to conduction electrons implies the possibility to use flexible coupling schemes in order to process the spin-information.

  9. Nonmaxwell relaxation in disordered media: Physical mechanisms and fractional relaxation equations

    International Nuclear Information System (INIS)

    Arkhincheev, V.E.

    2004-12-01

    The problem of charge relaxation in disordered systems has been solved. It is shown, that due to the inhomogeneity of the medium the charge relaxation has a non-Maxwell character. The two physical mechanisms of a such behavior have been founded. The first one is connected with the 'fractality' of conducting ways. The second mechanism of nonexponential non-Maxwell behavior is connected with the frequency dispersion of effective conductivity of heterogeneous medium, initially consisting of conducting phases without dispersion. The new generalized relaxation equations in the form of fractional temporal integro-differential equations are deduced. (author)

  10. The spin lattice relaxation of {sup 8}Li in simple metals

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, M.D.; Saadaoui, H. [Department of Physics, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Parolin, T.J. [Chemistry Department, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Song, Q.; Wang, D.; Smadella, M. [Department of Physics, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Chow, K.H.; Egilmez, M.; Fan, I. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Kiefl, R.F. [Department of Physics, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Canadian Institute of Advanced Research (Canada); Kreitzman, S.R.; Levy, C.D.P.; Morris, G.D.; Pearson, M.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Salman, Z. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); MacFarlane, W.A., E-mail: wam@chem.ubc.c [Chemistry Department, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada)

    2009-04-15

    We report the modification to the linear temperature dependence of the Korringa nuclear spin-lattice relaxation rate of an implanted NMR probe in silver, as it makes a thermally activated site change. We develop a simple model of this phenomenon, which is found in a number of metals including Au and Nb.

  11. Thermal conduction effects in spin-lattice relaxation experiments on ytterbium chloride hexahydrate

    NARCIS (Netherlands)

    Flokstra, Jakob; Gerritsma, G.J.; Blokhuis, A.C.

    1979-01-01

    The anomalous behaviour of the spin-lattice relaxation observed for single crystals of ytterbium chloride hexahydrate at fields stronger than 5 kOe is due to the poor heat transfer in the liquid-helium bath. The thermal conduction effects can be explained by means of a thermal conduction model for

  12. Muon Spin Relaxation Evidence for the U(1) Quantum Spin-Liquid Ground State in the Triangular Antiferromagnet YbMgGaO_{4}.

    Science.gov (United States)

    Li, Yuesheng; Adroja, Devashibhai; Biswas, Pabitra K; Baker, Peter J; Zhang, Qian; Liu, Juanjuan; Tsirlin, Alexander A; Gegenwart, Philipp; Zhang, Qingming

    2016-08-26

    Muon spin relaxation (μSR) experiments on single crystals of the structurally perfect triangular antiferromagnet YbMgGaO_{4} indicate the absence of both static long-range magnetic order and spin freezing down to 0.048 K in a zero field. Below 0.4 K, the μ^{+} spin relaxation rates, which are proportional to the dynamic correlation function of the Yb^{3+} spins, exhibit temperature-independent plateaus. All these μSR results unequivocally support the formation of a gapless U(1) quantum spin liquid ground state in the triangular antiferromagnet YbMgGaO_{4}.

  13. Mechanism of kolaviron-induced relaxation of rabbit aortic smooth ...

    African Journals Online (AJOL)

    There is a considerable evidence linking kolaviron (KV), a biflavanoid-complex of Garcinia kola Heckel seed (gKola) to smooth muscle relaxation. The present study was designed to characterize the mechanism of kolaviron-induced relaxation on contractile responses in ring preparations of vascular smooth muscle (VSM) of ...

  14. Spin diffusion and1H spin-lattice relaxation in Cs2(HSO4)(H2PO4) containing a small amount of ammonium ions.

    Science.gov (United States)

    Hayashi, Shigenobu; Jimura, Keiko

    2017-11-01

    Inorganic solid acid salts with hydrogen bond networks frequently show very long spin-lattice relaxation times even for 1 H because the hydrogen bonds suppress motions. In the present work, the 1 H spin-lattice relaxation in Cs 2 (HSO 4 )(H 2 PO 4 ) containing a small amount of ammonium ions were studied in detail by use of the effect of magic angle spinning (MAS) on the relaxation. The 1 H spin-lattice relaxation times of the acid protons decrease with increase in the content of ammonium ions. Reorientation of the NH 4 group fluctuates the dipole-dipole interaction and relaxes the ammonium protons as well as the acid protons. The 1 H relaxation times of the acid protons are a little bit longer than those of the ammonium protons at the MAS rate of 8 kHz. The spinning at 50 kHz makes the relaxation times of the acid protons longer and those of the ammonium protons shorter. Spin diffusion between the acid and the ammonium protons averages partially the 1 H relaxation of the acid and the ammonium protons at the MAS rate of 8 kHz. The spin diffusion is suppressed completely at the MAS rate of 50 kHz. Spin diffusion between the acid protons is not suppressed at the MAS rate of 50 kHz. The acid protons always show the same relaxation times. The intrinsic relaxation times not affected by spin diffusion are evaluated quantitatively for both the acid and the ammonium protons. Those values are independent of the ammonium content. Contribution of the spin diffusion between the acid and the ammonium protons to the relaxation is estimated quantitatively. Using those parameters, the effect of ammonium ions on the 1 H spin-lattice relaxation can be predicted. The 1 H spin-lattice relaxation is a sensitive tool to study the distribution of ammonium ions in solids. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Spin-Mechanical Inertia in Antiferromagnet

    Science.gov (United States)

    Cheng, Ran; Wu, Xiaochuan; Xiao, Di

    Interplay between spin dynamics and mechanical motions is responsible for numerous striking phenomena, which has shaped a rapidly expanding field known as spin-mechanics. The guiding principle of this field has been the conservation of angular momentum that involves both quantum spins and classical mechanical rotations. However, in an antiferromagnet, the macroscopic magnetization vanishes while the order parameter (Néel order) does not carry an angular momentum. It is therefore not clear whether the order parameter dynamics has any mechanical consequence as its ferromagnetic counterparts. Here we demonstrate that the Néel order dynamics affects the mechanical motion of a rigid body by modifying its inertia tensor in the presence of strong magnetocrystalline anisotropy. This effect depends on temperature when magnon excitations are considered. Such a spin-mechanical inertia can produce measurable consequences at nanometer scales. Our discovery establishes spin-mechanical inertia as an essential ingredient to properly describe spin-mechanical effects in AFs, which supplements the known governing physics from angular momentum conservation. This work was supported by the DOE, Basic Energy Sciences, Grant No. DE-SC0012509. D.X. also acknowledges support from a Research Corporation for Science Advancement Cottrell Scholar Award.

  16. Electric field dependence of the spin relaxation anisotropy in (111) GaAs/AlGaAs quantum wells

    International Nuclear Information System (INIS)

    Balocchi, A; Amand, T; Renucci, P; Duong, Q H; Marie, X; Wang, G; Liu, B L

    2013-01-01

    Time-resolved optical spectroscopy experiments in (111)-oriented GaAs/AlGaAs quantum wells (QWs) show a strong electric field dependence of the conduction electron spin relaxation anisotropy. This results from the interplay between the Dresselhaus and Rashba spin splitting in this system with C 3v symmetry. By varying the electric field applied perpendicular to the QW plane from 20 to 50 kV cm −1 the anisotropy of the spin relaxation time parallel (τ s ∥ ) and perpendicular (τ s ⊥ ) to the growth axis can be first canceled and eventually inversed with respect to the one usually observed in III–V zinc-blende QW (τ s ⊥ = 2τ s ∥ ). This dependence stems from the nonlinear contributions of the k-dependent conduction band spin splitting terms which begin to play the dominant spin relaxing role while the linear Dresselhaus terms are compensated by the Rashba ones through the applied bias. A spin density matrix model for the conduction band spin splitting including both linear and cubic terms of the Dresselhaus Hamiltonian is used which allows a quantitative description of the measured electric field dependence of the spin relaxation anisotropy. The existence of an isotropic point where the spin relaxation tensor reduces to a scalar is predicted and confirmed experimentally. The spin splitting compensation electric field and collision processes type in the QW can be likewise directly extracted from the model without complementary measurements. (paper)

  17. Spin-controlled mechanics in nanoelectromechanical systems

    Energy Technology Data Exchange (ETDEWEB)

    Radić, D., E-mail: dradic@phy.hr

    2015-03-01

    We consider a dc-electronic tunneling transport through a carbon nanotube suspended between normal-metal source and arbitrarily spin-polarized drain lead in the presence of an external magnetic field. We show that magnetomotive coupling between electrical current through the nanotube and its mechanical vibrations may lead to an electromechanical instability and give an onset of self-excited mechanical vibrations depending on spin polarization of the drain lead and frequency of vibrations. The self-excitation mechanism is based on correlation between the occupancy of quantized Zeeman-split electronic states in the nanotube and the direction of velocity of its mechanical motion. It is an effective gating effect by the presence of electron in the spin state which, through the Coulomb blockade, permits tunneling of electron to the drain predominantly only during a particular phase of mechanical vibration thus coherently changing mechanical momentum and leading into instability if mechanical damping is overcome.

  18. Mechanisms underlying epithelium-dependent relaxation in rat bronchioles

    DEFF Research Database (Denmark)

    Kroigaard, Christel; Dalsgaard, Thomas; Simonsen, Ulf

    2010-01-01

    This study investigated the mechanisms underlying epithelium-derived hyperpolarizing factor (EpDHF)-type relaxation in rat bronchioles. Immunohistochemistry was performed, and rat bronchioles and pulmonary arteries were mounted in microvascular myographs for functional studies. An opener of small...

  19. Electron spin echo study of the E'-center phase relaxation in γ-irradiated quartz glass

    International Nuclear Information System (INIS)

    Dudkin, V.I.; Petrun'kin, V.Yu.; Rubinov, S.V.; Uspenskij, L.I.

    1986-01-01

    Experimental studies of phase relaxation of E'-centres in γ-irradiated quartz glass are conducted by the method of electron spin echo (ESE) for different concentrations of paramagnetic centres. Contribution of mechanisms of spectral and prompt diffusion to kinetics of amplitude drop of echo signal is proved to reduce with growth of delay time between exciting microwave pulse that results in increase of phase memory time at large delays. The mentioned property can be used in electric controlled delay lines on the base of ESE

  20. An inversion-relaxation approach for sampling stationary points of spin model Hamiltonians

    International Nuclear Information System (INIS)

    Hughes, Ciaran; Mehta, Dhagash; Wales, David J.

    2014-01-01

    Sampling the stationary points of a complicated potential energy landscape is a challenging problem. Here, we introduce a sampling method based on relaxation from stationary points of the highest index of the Hessian matrix. We illustrate how this approach can find all the stationary points for potentials or Hamiltonians bounded from above, which includes a large class of important spin models, and we show that it is far more efficient than previous methods. For potentials unbounded from above, the relaxation part of the method is still efficient in finding minima and transition states, which are usually the primary focus of attention for atomistic systems

  1. The impact of structural relaxation on spin polarization and magnetization reversal of individual nano structures studied by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Sander, Dirk; Phark, Soo-Hyon; Corbetta, Marco; Fischer, Jeison A; Oka, Hirofumi; Kirschner, Jürgen

    2014-10-01

    The application of low temperature spin-polarized scanning tunneling microscopy and spectroscopy in magnetic fields for the quantitative characterization of spin polarization, magnetization reversal and magnetic anisotropy of individual nano structures is reviewed. We find that structural relaxation, spin polarization and magnetic anisotropy vary on the nm scale near the border of a bilayer Co island on Cu(1 1 1). This relaxation is lifted by perimetric decoration with Fe. We discuss the role of spatial variations of the spin-dependent electronic properties within and at the edge of a single nano structure for its magnetic properties.

  2. Dynamical transition in molecular glasses and proteins observed by spin relaxation of nitroxide spin probes and labels

    Science.gov (United States)

    Golysheva, Elena A.; Shevelev, Georgiy Yu.; Dzuba, Sergei A.

    2017-08-01

    In glassy substances and biological media, dynamical transitions are observed in neutron scattering that manifests itself as deviations of the translational mean-squared displacement, , of hydrogen atoms from harmonic dynamics. In biological media, the deviation occurs at two temperature intervals, at ˜100-150 K and at ˜170-230 K, and it is attributed to the motion of methyl groups in the former case and to the transition from harmonic to anharmonic or diffusive motions in the latter case. In this work, electron spin echo (ESE) spectroscopy—a pulsed version of electron paramagnetic resonance—is applied to study the spin relaxation of nitroxide spin probes and labels introduced in molecular glass former o-terphenyl and in protein lysozyme. The anisotropic contribution to the rate of the two-pulse ESE decay, ΔW, is induced by spin relaxation appearing because of restricted orientational stochastic molecular motion; it is proportional to τc, where is the mean-squared angle of reorientation of the nitroxide molecule around the equilibrium position and τc is the correlation time of reorientation. The ESE time window allows us to study motions with τc τc temperature dependence shows a transition near 240 K, which is in agreement with the literature data on . For spin probes of essentially different size, the obtained data were found to be close, which evidences that motion is cooperative, involving a nanocluster of several neighboring molecules. For the dry lysozyme, the τc values below 260 K were found to linearly depend on the temperature in the same way as it was observed in neutron scattering for . As spin relaxation is influenced only by stochastic motion, the harmonic motions seen in ESE must be overdamped. In the hydrated lysozyme, ESE data show transitions near 130 K for all nitroxides, near 160 K for the probe located in the hydration layer, and near 180 K for the label in the protein interior. For this system, the two latter transitions are not

  3. A post-processing method for multiexponential spin-spin relaxation analysis of MRI signals

    Energy Technology Data Exchange (ETDEWEB)

    Gensanne, D [Laboratoire de Chimie Bioinorganique Medicale, Imagerie therapeutique et diagnostique, CNRS FR 2599, Universite Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex (France); Josse, G [Centre Europeen de Recherche et d' Evaluation sur la Peau et les Epitheliums de Revetement, Institut de Recherche Pierre Fabre, 2, rue Viguerie, BP 3071 31025 Toulouse Cedex 3 (France); Lagarde, J M [Centre Europeen de Recherche et d' Evaluation sur la Peau et les Epitheliums de Revetement, Institut de Recherche Pierre Fabre, 2, rue Viguerie, BP 3071 31025 Toulouse Cedex 3 (France); Vincensini, D [Laboratoire de Chimie Bioinorganique Medicale, Imagerie therapeutique et diagnostique, CNRS FR 2599, Universite Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex (France)

    2005-08-21

    Quantitative MR imaging is a potential tool for tissue characterization; in particular, proton density and proton relaxation times can be derived from MR signal analysis. However, MR image noise affects the accuracy of measurements and the number of tissue parameters that can be reliably estimated. Filtering can be used to limit image noise; however this reduces spatial resolution. In this work we studied, using both simulations and experiments, a filter called a 'selective blurring filter'. Compared to other classical filters, this filter achieves the best compromise between spatial resolution and noise reduction. The filter was specifically used to reliably determine the bi-component transverse relaxation of protons in adipose tissue. Long and short relaxation times and the relative proton fraction of each component were obtained with a degree of uncertainty of less than 10% and an accuracy of 95%.

  4. Quantitative study of optical pumping in the presence of spin-exchange relaxation

    Science.gov (United States)

    Shi, Yongqi; Scholtes, Theo; Grujić, Zoran D.; Lebedev, Victor; Dolgovskiy, Vladimir; Weis, Antoine

    2018-01-01

    We have performed quantitative measurements of the variation of the on-resonance absorption coefficients κ0 of the four hyperfine components of the Cs D1 transition as a function of laser power P , for pumping with linearly and with circularly polarized light. Sublevel populations derived from rate equations assuming isotropic population relaxation (at a rate γ1) yield algebraic κ0(P ) dependences that do not reproduce the experimental findings from Cs vapor in a paraffin-coated cell. However, numerical results that consider spin-exchange relaxation (at a rate γse) and isotropic relaxation fit the experimental data perfectly well. The fit parameters, viz., the absolute value of κ0, the optical pumping saturation power Psat, and the ratio γse/γ1 , are well described by the experimental conditions and yield absolute values for γ1 and γse. The latter is consistent with the previously published Cs-Cs spin-exchange relaxation cross section.

  5. Optically-detected spin-echo method for relaxation times measurements in a Rb atomic vapor

    Science.gov (United States)

    Gharavipour, M.; Affolderbach, C.; Gruet, F.; Radojičić, I. S.; Krmpot, A. J.; Jelenković, B. M.; Mileti, G.

    2017-06-01

    We introduce and demonstrate an experimental method, optically-detected spin-echo (ODSE), to measure ground-state relaxation times of a rubidium (Rb) atomic vapor held in a glass cell with buffer-gas. The work is motivated by our studies on high-performance Rb atomic clocks, where both population and coherence relaxation times (T 1 and T 2, respectively) of the ‘clock transition’ (52S1/2 | {F}g = 1,{m}F=0> ≤ftrightarrow | {F}g=2,{m}F=0> ) are relevant. Our ODSE method is inspired by classical nuclear magnetic resonance spin-echo method, combined with optical detection. In contrast to other existing methods, like continuous-wave double-resonance (CW-DR) and Ramsey-DR, principles of the ODSE method allow suppression of decoherence arising from the inhomogeneity of the static magnetic field across the vapor cell, thus enabling measurements of intrinsic relaxation rates, as properties of the cell alone. Our experimental result for the coherence relaxation time, specific for the clock transition, measured with the ODSE method is in good agreement with the theoretical prediction, and the ODSE results are validated by comparison to those obtained with Franzen, CW-DR and Ramsey-DR methods. The method is of interest for a wide variety of quantum optics experiments with optical signal readout.

  6. TU-EF-BRA-02: Longitudinal Proton Spin Relaxation and T1-Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lemen, L. [Univ Cincinnati (United States)

    2015-06-15

    can be introduced with either of two approaches. In the first, one thinks (loosely) of the nuclei of hydrogen atoms as (rotating and charged and therefore) magnetic objects, whose spin-axes tend to align in a strong external magnetic field, much like a compass needle. As with the Bohr atom, this spin-up/spin-down picture is a highly abridged version of the full quantum mechanical treatment, but still it leads to some useful, legitimate pictures of the NMR process occurring within a voxel: When RF photons of the correct (Larmor) frequency elevate protons in a fixed magnetic field out of their lower-energy spin state into the upper, the NMR phenomenon is indicated by the detectable absorption of RF power. With the addition of a linear gradient field along a multi-voxel, one-dimensional patient/phantom, as well, we can determine the water content of each compartment – an example of a real MRI study, albeit in 1D. Part I concludes with a discussion of the net magnetization at position x, m0(x), under conditions of dynamic thermal equilibrium, which leads into: Part II. Net Voxel Magnetization, m(x,t); T1-MRI; The MRI Device (Lemen), investigates the biophysics of the form of proton spin relaxation process characterized by the time T1. It then moves on to the creation of an MR image that displays the spatial variation in the values of this clinically relevant parameter, again in 1D. Finally, the design and workings of a clinical MRI machine are sketched, in preparation for: Part III. ‘Classical’ NMR; FID Imaging in 1D via k-Space (Yanasak) presents the second standard approach to NMR and MRI, the classical model. It focuses on the time dependence of the net nuclear magnetization, m(x,t), the overall magnetic field generated by the cohort of protons in the voxel at position x. Quite remarkably, this nuclear net magnetization itself acts in a strong magnetic field like a gyroscope in a gravitational field. This tack is better for explaining Free Induction Decay (FID

  7. TU-EF-BRA-02: Longitudinal Proton Spin Relaxation and T1-Imaging

    International Nuclear Information System (INIS)

    Lemen, L.

    2015-01-01

    can be introduced with either of two approaches. In the first, one thinks (loosely) of the nuclei of hydrogen atoms as (rotating and charged and therefore) magnetic objects, whose spin-axes tend to align in a strong external magnetic field, much like a compass needle. As with the Bohr atom, this spin-up/spin-down picture is a highly abridged version of the full quantum mechanical treatment, but still it leads to some useful, legitimate pictures of the NMR process occurring within a voxel: When RF photons of the correct (Larmor) frequency elevate protons in a fixed magnetic field out of their lower-energy spin state into the upper, the NMR phenomenon is indicated by the detectable absorption of RF power. With the addition of a linear gradient field along a multi-voxel, one-dimensional patient/phantom, as well, we can determine the water content of each compartment – an example of a real MRI study, albeit in 1D. Part I concludes with a discussion of the net magnetization at position x, m0(x), under conditions of dynamic thermal equilibrium, which leads into: Part II. Net Voxel Magnetization, m(x,t); T1-MRI; The MRI Device (Lemen), investigates the biophysics of the form of proton spin relaxation process characterized by the time T1. It then moves on to the creation of an MR image that displays the spatial variation in the values of this clinically relevant parameter, again in 1D. Finally, the design and workings of a clinical MRI machine are sketched, in preparation for: Part III. ‘Classical’ NMR; FID Imaging in 1D via k-Space (Yanasak) presents the second standard approach to NMR and MRI, the classical model. It focuses on the time dependence of the net nuclear magnetization, m(x,t), the overall magnetic field generated by the cohort of protons in the voxel at position x. Quite remarkably, this nuclear net magnetization itself acts in a strong magnetic field like a gyroscope in a gravitational field. This tack is better for explaining Free Induction Decay (FID

  8. Spin-spin cross-relaxation of optically-excited rare-earth ions in crystals

    International Nuclear Information System (INIS)

    Otto, F.W.; D'Amato, F.X.; Hahn, E.L.; Lukas, M.

    1986-01-01

    A laser saturation grating experiment is applied for the measurement of electron hyperfine state spin orientation diffusion among Tm +2 impurity ion hyperfine ground states in SrF 2 . A strong laser pulse at λ 1 produces a spatial grating of excited spin states followed by a probe at λ 2 . The probe transmission intensity is to assess diffusion of non-equilibrium spin population into regions not excited by the pulse at λ 1 . In a second experiment, a field sweep laser hole burning method enables measurement of Pr +3 optical ion hyperfine coupling of optical ground states to the reservoir of F nuclear moments in LaF 3 by level crossing. A related procedure with external RF resonance sweep excitation maps out the nuclear Zeeman-electric quadrupole coupled spectrum of Pr +3 over a wide range by monitoring laser beam transmission absorption

  9. NMR water-proton spin-lattice relaxation time of human red blood cells and red blood cell suspensions

    International Nuclear Information System (INIS)

    Sullivan, S.G.; Rosenthal, J.S.; Winston, A.; Stern, A.

    1988-01-01

    NMR water-proton spin-lattice relaxation times were studied as probes of water structure in human red blood cells and red blood cell suspensions. Normal saline had a relaxation time of about 3000 ms while packed red blood cells had a relaxation time of about 500 ms. The relaxation time of a red blood cell suspension at 50% hematocrit was about 750 ms showing that surface charges and polar groups of the red cell membrane effectively structure extracellular water. Incubation of red cells in hypotonic saline increases relaxation time whereas hypertonic saline decreases relaxation time. Relaxation times varied independently of mean corpuscular volume and mean corpuscular hemoglobin concentration in a sample population. Studies with lysates and resealed membrane ghosts show that hemoglobin is very effective in lowering water-proton relaxation time whereas resealed membrane ghosts in the absence of hemoglobin are less effective than intact red cells. 9 refs.; 3 figs.; 1 table

  10. Spin Canting and Magnetic Relaxation Phenomena in Mn0.25Zn0.75Fe2O4

    DEFF Research Database (Denmark)

    Anhøj, T. A.; Olsen, Brian Bilenberg; Thomsen, Benjamin

    2003-01-01

    affected by transverse relaxation at relatively low temperatures. A third group of 13-site ions has negligible canting at low temperatures and these ions are only slightly affected by relaxation below 60 K. At low temperatures the material can be described as a cluster spin glass. Above 60 K part...

  11. Spin-orbit relaxation of Cl(2P½) and F(2P½) in a gas of H2

    NARCIS (Netherlands)

    Abrahamsson, E.; Groenenboom, G.C.; Krems, R.V.

    2007-01-01

    The authors present quantum scattering calculations of rate coefficients for the spin-orbit relaxation of F(P-2(1/2)) atoms in a gas of H-2 molecules and Cl(P-2(1/2)) atoms in a gas of H-2 and D-2 molecules. Their calculation of the thermally averaged rate coefficient for the electronic relaxation

  12. Spin-lattice relaxation within a dimerized Ising chain in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Erdem, Rıza, E-mail: rerdem@akdeniz.edu.tr, E-mail: rerdem29@hotmail.com [Department of Physics, Akdeniz University, 07058 Antalya (Turkey); Gülpınar, Gül [Department of Physics, Dokuz Eylül University, 35160 İzmir (Turkey); Yalçın, Orhan [Department of Physics, Niğde University, 51240 Niğde (Turkey); Pawlak, Andrzej [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61–614 Poznań (Poland)

    2014-07-21

    A qualitative study of the spin-lattice relaxation within a dimerized Ising chain in a magnetic field is presented. We have first determined the time dependence of the deviation of the lattice distortion parameter δΔ from the equilibrium state within framework of a technique combining the statistical equilibrium theory based on the transfer matrix method and the linear theory of irreversible thermodynamics. We have shown that the time dependence of the lattice distortion parameter is characterized by a single time constant (τ) which diverges around the critical point in both dimerized (Δ≠0) and uniform (Δ=0) phase regions. When the temperature and magnetic field are fixed to certain values, the time τ depends only on exchange coupling between the spins. It is a characteristic time associated with the long wavelength fluctuations of distortion. We have also taken into account the effects of spatial fluctuations on the relaxation time using the full Landau-Ginzburg free energy functional. We have found an explicit expression for the relaxation time as a function of temperature, coupling constant and wave vector (q) and shown that the critical mode corresponds to the case q=0. Finally, our results are found to be in good qualitative agreement with the results obtained in recent experimental study on synchrotron x-ray scattering and muon spin relaxation in diluted material Cu{sub 1−y}Mg{sub y}GeO{sub 3} where the composition y is very close to 0.0209. These results can be considered as natural extensions of some previous works on static aspects of the problem.

  13. The effect of a broad activation energy distribution on deuteron spin-lattice relaxation.

    Science.gov (United States)

    Ylinen, E E; Punkkinen, M; Birczyński, A; Lalowicz, Z T

    2015-10-01

    Deuteron NMR spectra and spin-lattice relaxation were studied experimentally in zeolite NaY(2.4) samples containing 100% or 200% of CD3OH or CD3OD molecules of the total coverage of Na atoms in the temperature range 20-150K. The activation energies describing the methyl and hydroxyl motions show broad distributions. The relaxation data were interpreted by improving a recent model (Stoch et al., 2013 [16]) in which the nonexponential relaxation curves are at first described by a sum of three exponentials with adjustable relaxation rates and weights. Then a broad distribution of activation energies (the mean activation energy A0 and the width σ) was assumed for each essentially different methyl and hydroxyl position. The correlation times were calculated from the Arrhenius equation (containing the pre-exponential factor τ0), individual relaxation rates computed and classified into three classes, and finally initial relaxation rates and weights for each class formed. These were compared with experimental data, motional parameters changed slightly and new improved rates and weights for each class calculated, etc. This method was improved by deriving for the deuterons of the A and E species methyl groups relaxation rates, which depend explicitly on the tunnel frequency ωt. The temperature dependence of ωt and of the low-temperature correlation time were obtained by using the solutions of the Mathieu equation for a threefold potential. These dependencies were included in the simulations and as the result sets of A0, σ and τ0 obtained, which describe the methyl and hydroxyl motions in different positions in zeolite. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Formation of local spin-state concentration waves during the relaxation from a photoinduced state in a spin-crossover polymer.

    Science.gov (United States)

    Mariette, Céline; Trzop, Elzbieta; Zerdane, Serhane; Fertey, Pierre; Zhang, Daopeng; Valverde-Muñoz, Francisco J; Real, José Antonio; Collet, Eric

    2017-08-01

    The complex relaxation from the photoinduced high-spin phase (PIHS) to the low-spin phase of the bimetallic two-dimensional coordination spin-crossover polymer [Fe[(Hg(SCN) 3 ) 2 ](4,4'-bipy) 2 ] n is reported. During the thermal relaxation, commensurate and incommensurate spin-state concentration waves (SSCWs) form. However, contrary to the steps forming at thermal equilibrium, associated with long-range SSCW order, the SSCWs forming during the relaxation from the PIHS phase correspond to short-range order, revealed by diffuse X-ray scattering. This is interpreted as resulting from the competition between the two types of SSCW order and another structural symmetry breaking, due to ligand ordering, occurring at low temperature and precluding long-range SSCW order.

  15. Magnetic properties and proton spin-lattice relaxation in molecular clusters

    International Nuclear Information System (INIS)

    Allalen, M.

    2006-01-01

    In this work we studied magnetic properties of molecular magnets of the new heteropolyanion {Cu 20 }, dodecanuclear cluster {Ni 12 }, and the heterometallic {Cr 7 M} wheels, in which one of the Cr III ions of Cr 8 has been replaced by a Fe, Cu, Zn, Ni, ion with this extra-spin acts as local probe for the spin dynamics. Such systems have been synthesized recently and they are well described using the Heisenberg spin Hamiltonian with a Zeeman term of an applied magnetic field along the z-axis. Using the numerical exact diagonalization method, we have calculated the energy spectrum and the eigenstates for different compounds, and we have used them for reexamining the available experimental susceptibility data to determine the values of exchange parameters. We have studied the thermodynamic properties such magnetization, susceptibility, heat-capacity. At low temperature regions molecular magnets act as individual quantum nanomagnets and can display super-paramagnetic phenomena like macroscopic quantum tunneling, ground state degeneracy, level-crossing. A crucial issue for understanding these phenomena is the coupling between magnetic molecular levels and the environment such as nuclear spins. We have modeled the behavior of the proton spin lattice relaxation rate as a function of applied magnetic field for low temperatures as it is measured in Nuclear Magnetic Resonance (NMR) experiments. (orig.)

  16. Investigation of proton spin relaxation in water with dispersed silicon nanoparticles for potential magnetic resonance imaging applications

    Science.gov (United States)

    Kargina, Yu. V.; Gongalsky, M. B.; Perepukhov, A. M.; Gippius, A. A.; Minnekhanov, A. A.; Zvereva, E. A.; Maximychev, A. V.; Timoshenko, V. Yu.

    2018-03-01

    Porous and nonporous silicon (Si) nanoparticles (NPs) prepared by ball-milling of electrochemically etched porous Si layers and crystalline Si wafers were studied as potential agents for enhancement of the proton spin relaxation in aqueous media. While nonporous Si NPs did not significantly influence the spin relaxation, the porous ones resulted in strong shortening of the transverse relaxation times. In order to investigate an effect of the electron spin density in porous Si NPs on the proton spin relaxation, we use thermal annealing of the NPs in vacuum or in air. The transverse relaxation rate of about 0.5 l/(g s) was achieved for microporous Si NPs, which were thermally annealing in vacuum to obtain the electron spin density of the order of 1017 g-1. The transverse relaxation rate was found to be almost proportional to the concentration of porous Si NPs in the range from 0.1 to 20 g/l. The obtained results are discussed in view of possible biomedical applications of Si NPs as contrast agents for magnetic resonance imaging.

  17. Calculation of the electron spin relaxation time in a quantum limit using a state-independent projection reduction method

    Science.gov (United States)

    Kang, Nam Lyong

    2018-02-01

    A new formula for determining the electron spin relaxation time in a system of electrons interacting with acoustic deformation phonons through phonon-modulated spin–orbit coupling is derived using the state-independent projection reduction method. The spin flip and conserving processes are explained in an organized manner because the obtained results properly contain the distribution functions for electrons and phonons. The electron spin relaxation time is calculated directly from the lineshape function without calculating the magnetic susceptibility. The temperature (T) and magnetic field (B) dependences of the electron spin relaxation time (T 1) in Si are shown by T 1 ≈ T ‑1.55 and T 1 ≈ B ‑1.96 in the quantum limit, respectively.

  18. Molecular motions in thermotropic liquid crystals studied by NMR spin-lattice relaxation

    International Nuclear Information System (INIS)

    Zamar, R.C.; Gonzalez, C.E.; Mensio, O.

    1998-01-01

    Nuclear magnetic resonance relaxation experiments with field cycling techniques proved to be a valuable tool for studying molecular motions in liquid crystals, allowing a very broad Larmor frequency variation, sufficient to separate the cooperative motions from the liquid like molecular diffusion. In new experiments combining NMR field cycling with the Jeener-Broekaert order-transfer pulse sequence, it is possible to measure the dipolar order relaxation time (T 1D ), in addition to the conventional Zeeman relaxation time (T 1Z ) in a frequency range of several decades. When applying this technique to nematic thermotropic liquid crystals, T 1D showed to depend almost exclusively on the order fluctuation of the director mechanism in the whole frequency range. This unique characteristic of T 1D makes dipolar order relaxation experiments specially useful for studying the frequency and temperature dependence of the spectral properties of the collective motions. (author)

  19. Quantum mechanical calculation of electron spin

    Science.gov (United States)

    Zhao, Hai-Long

    2017-11-01

    The classical and quantum mechanical methods are used respectively to calculate the electron spin. It is shown that the classical method cannot derive the correct magnetic moment value. Assuming that the rest energy of the electron originates from the kinetic energy of the virtual particles, the electron spin motion equation and spin wave function can be derived. In the case of the quantum numbers of spin angular momentum and magnetic moment being 1/2 and 1 respectively, their correct values can be obtained. In the meanwhile, the anomalous magnetic moment is evaluated based on the wave function of the spinning electron. Suppose the probability of virtual photons converting into electron-positron pairs to be 0.00141, the result agrees with that of quantum electrodynamics. Given that the energy of the virtual photon obeys the classical Maxwell-Boltzmann distribution, the self-energy of the electron will be finite. In addition, the hierarchy problem can be solved with the same hypothesis.

  20. Insight into lithium transport in lithium nitridometallate battery materials from muon spin relaxation.

    Science.gov (United States)

    Powell, Andrew S; Stoeva, Zlatka; Lord, James S; Smith, Ronald I; Gregory, Duncan H; Titman, Jeremy J

    2013-01-21

    Muon spin relaxation and powder neutron diffraction have been combined to study three lithium cobalt nitride battery materials. Neutron diffraction shows that these retain the P6/mmm space group of Li(3)N with Co located only on Li(1) sites. The lattice parameters vary smoothly with the degree of metal substitution, such that the [Li(2)N] layers expand while the layer separation contracts, as observed previously for similar series of Cu- and Ni-substituted materials. However, in contrast to the latter, the Li(3-x-y)Co(x)N phases exhibit Curie-Weiss paramagnetism and this prevents the use of nuclear magnetic resonance to measure Li(+) transport parameters. Therefore, muon spin relaxation has been employed here as an alternative technique to obtain quantitative information about Li(+) diffusion. Muon spin relaxation shows that Li(+) diffusion in Li(3-x-y)Co(x)N is anisotropic with transport confined to the [Li(2)N] plane at low temperature and exchange between Li(1) and Li(2) sites dominant at high temperature. By a comparison with previous studies some general trends have been established across a range of Cu-, Ni- and Co-substituted materials. For intra-layer diffusion E(a) decreases as metal substitution increases and the corresponding expansion of the layers results in a more open pathway for Li(+) diffusion. However, an optimal value of x is found with a ≈ 3.69 Å after which the concomitant contraction in layer spacing reduces the polarizability of the lattice framework.

  1. Nuclear spin relaxation/resonance of {sup 8}Li in Al

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Salman, Z. [Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); ISIS Facility, Rutherford-Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Chow, K.H.; Fan, I. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Hossain, M.D.; Keeler, T.A. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Kiefl, R.F., E-mail: kiefl@triumf.c [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Canadian Institute for Advanced Research (Canada); Levy, C.D.P. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Mansour, A.I. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Morris, G.D.; Pearson, M.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Parolin, T.J. [Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z3 (Canada); Saadaoui, H.; Smadella, M.; Song, Q. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); MacFarlane, W.A. [Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z3 (Canada)

    2009-04-15

    A low energy beam of spin polarized {sup 8}Li has been used to study the behaviour of isolated {sup 8}Li implanted into a 150 nm thick film of Al on an MgO substrate. The spin relaxation rate 1/T{sub 1} and beta-NMR lineshape were measured as a function of temperature in a large magnetic field of 4.1 T. The resonances from different sites are unresolved due to the large nuclear dipolar interaction with the host {sup 27}Al magnetic dipole moments. Nevertheless the temperature variation of the site averaged 1/T{sub 1} and Knight shift show evidence for a transition between the octahedral O and substitutional S sites at about 150 K, as observed in other fcc metals.

  2. 55Mn nuclear spin relaxation and lifetime of magnons in MnF2 near the spin-flop transition

    International Nuclear Information System (INIS)

    Boucher, J.P.; King, A.R.

    1977-01-01

    A divergence in the nuclear relaxation rate (T 1 -1 ) of 55 Mn is observed in MnF 2 when the magnetic field approaches the field of the spin-flop transition (H=92.94Oe). The field dependence of T 1 -1 at 4.2 and 2K was studied together with its temperature dependence at 92.4 and 85 kOe. Near the transition, T 1 -1 is governed, below 8K, by the processes induced by the dipolar coupling and, above 8K, by those induced by exchange interactions. On the contrary, in weaker fields (H=85Oe), the only exchange induced processes are important [fr

  3. Coexisting static magnetic ordering and superconductivity in CeCu2.1Si2 found by muon spin relaxation

    Science.gov (United States)

    Uemura, Y. J.; Kossler, W. J.; Yu, X. H.; Schone, H. E.; Kempton, J. R.; Stronach, C. E.; Barth, S.; Gygax, F. N.; Hitti, B.; Schenck, A.

    1988-01-01

    Zero- and longitudinal-field muon spin relaxation measurements on a heavy fermion system CeCu2.1 Si2 have revealed an onset of static magnetic ordering below T(M) approximately 0.8 K, which coexists with superconductivity below T(c) = 0.7 K. The line shapes of the observed muon spin depolarization functions suggest an ordering in either spin glass or incommensurate spin-density-wave state, with a small averaged static moment of the order of 0.1 micro-B per formula unit at T approaches 0.

  4. Theory of relaxation phenomena in a spin-3/2 Ising system near the second-order phase transition temperature

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Canko, Osman

    2005-01-01

    The relaxation behavior of the spin-3/2 Ising model Hamiltonian with bilinear and biquadratic interactions near the second-order phase transition temperature or critical temperature is studied by means of the Onsager's theory of irreversible thermodynamics or the Onsager reciprocity theorem (ORT). First, we give the equilibrium case briefly within the molecular-field approximation in order to study the relaxation behavior by using the ORT. Then, the ORT is applied to the model and the kinetic equations are obtained. By solving these equations, three relaxation times are calculated and examined for temperatures near the second-order phase transition temperature. It is found that one of the relaxation times goes to infinity near the critical temperature on either side, the second relaxation time makes a cusp at the critical temperature and third one behaves very differently in which it terminates at the critical temperature while approaching it, then showing a 'flatness' property and then decreases. We also study the influences of the Onsager rate coefficients on the relaxation times. The behavior of these relaxation times is discussed and compared with the spin-1/2 and spin-1 Ising systems

  5. Unconventional superconductivity in Y5Rh6Sn18 probed by muon spin relaxation.

    Science.gov (United States)

    Bhattacharyya, Amitava; Adroja, Devashibhai; Kase, Naoki; Hillier, Adrian; Akimitsu, Jun; Strydom, Andre

    2015-08-19

    Conventional superconductors are robust diamagnets that expel magnetic fields through the Meissner effect. It would therefore be unexpected if a superconducting ground state would support spontaneous magnetics fields. Such broken time-reversal symmetry states have been suggested for the high-temperature superconductors, but their identification remains experimentally controversial. We present magnetization, heat capacity, zero field and transverse field muon spin relaxation experiments on the recently discovered caged type superconductor Y5Rh6Sn18 ( TC= 3.0 K). The electronic heat capacity of Y5Rh6Sn18 shows a T(3) dependence below Tc indicating an anisotropic superconducting gap with a point node. This result is in sharp contrast to that observed in the isostructural Lu5Rh6Sn18 which is a strong coupling s-wave superconductor. The temperature dependence of the deduced superfluid in density Y5Rh6Sn18 is consistent with a BCS s-wave gap function, while the zero-field muon spin relaxation measurements strongly evidences unconventional superconductivity through a spontaneous appearance of an internal magnetic field below the superconducting transition temperature, signifying that the superconducting state is categorized by the broken time-reversal symmetry.

  6. Magnetization and 13C NMR spin-lattice relaxation of nanodiamond powder

    Energy Technology Data Exchange (ETDEWEB)

    Levin, E.M.; Fang, X.W.; Bud' ko, S.L.; Straszheim, W.E.; McCallum, R.W.; Schmidt-Rohr, K.

    2008-02-15

    The bulk magnetization at temperatures of 1.8-400 K and in magnetic fields up to 70 kOe, the ambient temperature {sup 13}C NMR spin-lattice relaxation, T{sub 1,c}, and the elemental composition of three nanodiamond powder samples have been studied. The total magnetization of nanodiamond can be explained in terms of contributions from (1) the diamagnetic effect of carbon, (2) the paramagnetic effect of unpaired electrons present in nanodiamond grains, and (3) ferromagnetic-like and (4) superparamagnetic contributions from Fe-containing particles detected in spatially resolved energy-dispersive spectroscopy. Contributions (1) and (2) are intrinsic to nanodiamond, while contributions (3) and (4) arise from impurities naturally present in detonation nanodiamond samples. {sup 13}C NMR T{sub 1,c} relaxation would be unaffected by the presence of the ferromagnetic particles with the bulk magnetization of {approx} 0.01 emu/g at 300 K. Thus, a reduction of T{sub 1,c} by 3 orders of magnitude compared to natural and synthetic microdiamonds confirms the presence of unpaired electrons in the nanodiamond grains. The spin concentration in nanodiamond powder corresponds to {approx}30 unpaired electrons per {approx}4.6 nm diameter nanodiamond grain.

  7. Solute-Vacancy Clustering In Al-Mg-Si Alloys Studied By Muon Spin Relaxation Technique

    Directory of Open Access Journals (Sweden)

    Nishimura K.

    2015-06-01

    Full Text Available Zero-field muon spin relaxation experiments were carried out with Al-1.6%Mg2Si, Al-0.5%Mg, and Al-0.5%Si alloys. Observed relaxation spectra were compared with the calculated relaxation functions based on the Monte Carlo simulation to extract the dipolar width (Δ, trapping (νt, and detrapping rates (νd, with the initially trapped muon fraction (P0. The fitting analysis has elucidated that the muon trapping rates depended on the heat treatment and solute concentrations. The dissolved Mg in Al dominated the νt at lower temperatures below 120 K, therefore the similar temperature variations of νt were observed with the samples mixed with Mg. The νt around 200 K remarkably reflected the heat treatment effect on the samples, and the largest νt value was found with the sample annealed at 100°C among Al-1.6%Mg2Si alloys. The as-quenched Al-0.5%Si sample showed significant νt values between 80 and 280 K relating with Si-vacancy clusters, but such clusters disappeared with the natural aged Al-0.5%Si sample.

  8. Microstructural stress relaxation mechanics in functionally different tendons.

    Science.gov (United States)

    Screen, H R C; Toorani, S; Shelton, J C

    2013-01-01

    Tendons experience widely varying loading conditions in vivo. They may be categorised by their function as either positional tendons, which are used for intricate movements and experience lower stress, or as energy storage tendons which act as highly stressed springs during locomotion. Structural and compositional differences between tendons are thought to enable an optimisation of their properties to suit their functional environment. However, little is known about structure-function relationships in tendon. This study adopts porcine flexor and extensor tendon fascicles as examples of high stress and low stress tendons, comparing their mechanical behaviour at the micro-level in order to understand their stress relaxation response. Stress-relaxation was shown to occur predominantly through sliding between collagen fibres. However, in the more highly stressed flexor tendon fascicles, more fibre reorganisation was evident when the tissue was exposed to low strains. By contrast, the low load extensor tendon fascicles appears to have less capacity for fibre reorganisation or shearing than the energy storage tendon, relying more heavily on fibril level relaxation. The extensor fascicles were also unable to sustain loads without rapid and complete stress relaxation. These findings highlight the need to optimise tendon repair solutions for specific tendons, and match tendon properties when using grafts in tendon repairs. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Structural and magnetic relaxations of mechanically alloyed Fe–Mo

    Czech Academy of Sciences Publication Activity Database

    Jirásková, Yvonna; Buršík, Jiří; Turek, Ilja; Cizek, J.; Prochazka, I.

    2014-01-01

    Roč. 47, č. 43 (2014), s. 35001-35001 ISSN 0022-3727 R&D Projects: GA ČR(CZ) GAP108/11/1350 Grant - others:KU(CZ) P108-13-09436S Institutional support: RVO:68081723 Keywords : mechanical alloying * nanostructure * magnetic properties * relaxation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.721, year: 2014

  10. Optical Transient-Grating Measurements of Spin Diffusion and Relaxation in a Two-Dimensional Electron Gas

    International Nuclear Information System (INIS)

    Weber, Christopher P.

    2005-01-01

    Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field

  11. Optical Transient-Grating Measurements of Spin Diffusion andRelaxation in a Two-Dimensional Electron Gas

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Christopher Phillip [Univ. of California, Berkeley, CA (United States)

    2005-01-01

    Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field.

  12. Interaction study of polyisobutylene with paraffins by NMR using the evaluation of spin-lattice relaxation times for hydrogen nuclei

    International Nuclear Information System (INIS)

    Marques, Rosana G.G.; Tavares, Maria I.B.

    2001-01-01

    The evaluation of spin-lattice relaxation times of 1 H for polyisobutylene/paraffin systems, were obtained using the classic inversion recovery technique, and also through Cross Polarization Magic Angle Spinning (CP/MAS) techniques varying the contact time and also by the delayed contact time pulse sequence. NMR results showed that the polyisobutylene/paraffin systems in which high molecular weight paraffins were used, is heterogeneous. However, for paraffins with low molecular weight, the system presents good homogeneity. (author)

  13. Matrix-assisted relaxation in Fe(phen){sub 2}(NCS){sub 2} spin-crossover microparticles, experimental and theoretical investigations

    Energy Technology Data Exchange (ETDEWEB)

    Enachescu, Cristian, E-mail: cristian.enachescu@uaic.ro; Stancu, Alexandru [Faculty of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Tanasa, Radu [Faculty of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom); Tissot, Antoine [Institut de Chimie Moléculaire et des Matériaux d' Orsay, Université Paris Sud, Université Paris-Saclay, CNRS, 91405 Orsay (France); Institut Lavoisier de Versailles, UMR 8180, CNRS, Université de Versailles-Saint Quentin en Yvelines, 78035 Versailles (France); Laisney, Jérôme; Boillot, Marie-Laure, E-mail: marie-laure.boillot@u-psud.fr [Institut de Chimie Moléculaire et des Matériaux d' Orsay, Université Paris Sud, Université Paris-Saclay, CNRS, 91405 Orsay (France)

    2016-07-18

    In this study, we present the influence of the embedding matrix on the relaxation of Fe(phen){sub 2}(NCS){sub 2} (phen = 1,10-phenanthroline) spin-transition microparticles as revealed by experiments and provide an explanation within the framework of an elastic model based on a Monte-Carlo method. Experiments show that the shape of the high-spin → low-spin relaxation curves is drastically changed when the particles are dispersed in glycerol. This effect was considered in the model by means of interactions between the microparticles and the matrix. A faster start of the relaxation for microparticles embedded in glycerol is due to an initial positive local pressure acting on the edge spin-crossover molecules from the matrix side. This local pressure diminishes and eventually becomes negative during relaxation, as an effect of the decrease of the volume of spin-crossover microparticles from high-spin to low-spin.

  14. Muon spin relaxation study of spin dynamics in the extended kagome systems YBaCo4O7 +δ (δ =0 ,0.1 )

    Science.gov (United States)

    Lee, S.; Lee, Wonjun; Lee, K. J.; Kim, ByungJun; Suh, B. J.; Zheng, H.; Mitchell, J. F.; Choi, K.-Y.

    2018-03-01

    We present muon spin relaxation (μ SR ) measurements of the extended kagome systems YBaCo4O7 +δ (δ =0 ,0.1 ), comprising two interpenetrating kagome sublattice of Co (I) 3 + (S =3 /2 ) and a triangle sublattice of Co (II) 2 + (S =2 ). The zero- and longitudinal-field μ SR spectra of the stoichiometric compound YBaCo4O7 unveil that the triangular subsystem orders at TN=101 K. In contrast, the muon spin relaxation rate pertaining to the kagome subsystem shows persistent spin dynamics down to T =20 K and then a sublinear decrease λ (T ) ˜T0.66 (5 ) on cooling towards T =4 K. In addition, the introduction of interstitial oxygen (δ =0.1 ) is found to drastically affect the magnetism. For the fast-cooling experiment (>10 K/min), YBaCo4O7.1 enters a regime characterized by persistent spin dynamics below 90 K. For the slow-cooling experiment (1 K/min), evidence is obtained for the phase separation into interstitial oxygen-poor and oxygen-rich regions with distinct correlation times. The observed temperature, cooling rate, and oxygen content dependencies of spin dynamics are discussed in terms of a broad range of spin-spin correlation times, relying on a different degree of frustration between the kagome and triangle sublattices as well as of oxygen migration.

  15. Computational mechanics of classical spin systems

    Science.gov (United States)

    Feldman, David Polant

    How does nature self-organize and how can scientists discover such organization? Is there an objective notion of pattern, or is the discovery of patterns a purely subjective process? And what mathematical vocabulary is appropriate for describing and quantifying pattern, structure, and organization? This dissertation compares and contrasts the way in which statistical mechanics, information theory, and computational mechanics address these questions. After an in-depth review of the statistical mechanical, information theoretic, and computational mechanical approaches to structure and pattern, I present exact analytic results for the excess entropy and ɛ- machines for one-dimensional, finite-range discrete classical spin systems. The excess entropy, a form of mutual information, is an information theoretic measure of apparent spatial memory. The ɛ-machine-the central object of computational mechanics-is defined as the minimal model capable of statistically reproducing a given configuration, where the model is chosen to belong to the least powerful model class(es) in a stochastic generalization of the discrete computation hierarchy. These results for one-dimensional spin systems demonstrate that the measures of pattern from information theory and computational mechanics differ from known thermodynamic and statistical mechanical functions. Moreover, they capture important structural features that are otherwise missed. In particular, the excess entropy serves to detect ordered, low entropy density patterns. It is superior in many respects to other functions used to probe the structure of a distribution, such as structure factors and the specific heat. More generally, ɛ-machines are seen to be the most direct approach to revealing the group and semigroup symmetries possessed by the spatial patterns and to estimating the minimum amount of memory required to reproduce the configuration ensemble, a quantity known as the statistical complexity. It is shown that the

  16. Relaxation theory of spin-3/2 Ising system near phase transition temperatures

    International Nuclear Information System (INIS)

    Canko, Osman; Keskin, Mustafa

    2010-01-01

    Dynamics of a spin-3/2 Ising system Hamiltonian with bilinear and biquadratic nearest-neighbour exchange interactions is studied by a simple method in which the statistical equilibrium theory is combined with the Onsager's theory of irreversible thermodynamics. First, the equilibrium behaviour of the model in the molecular-field approximation is given briefly in order to obtain the phase transition temperatures, i.e. the first- and second-order and the tricritical points. Then, the Onsager theory is applied to the model and the kinetic or rate equations are obtained. By solving these equations three relaxation times are calculated and their behaviours are examined for temperatures near the phase transition points. Moreover, the z dynamic critical exponent is calculated and compared with the z values obtained for different systems experimentally and theoretically, and they are found to be in good agrement. (general)

  17. Study of the operation temperature in the spin-exchange relaxation free magnetometer

    International Nuclear Information System (INIS)

    Fang, Jiancheng; Li, Rujie; Duan, Lihong; Chen, Yao; Quan, Wei

    2015-01-01

    We study the influence of the cell temperature on the sensitivity of the spin-exchange relaxation free (SERF) magnetometer and analyze the possibility of operating at a low temperature. Utilizing a 25 × 25 × 25 mm 3 Cs vapor cell with a heating temperature of 85  ∘ C, which is almost half of the value of potassium, we obtain a linewidth of 1.37 Hz and achieve a magnetic field sensitivity of 55 fT/Hz 1/2 in a single channel. Theoretical analysis shows that fundamental sensitivity limits of this device with an active volume of 1 cm 3 could approach 1 fT/Hz 1/2 . Taking advantage of the higher saturated vapor pressure, SERF magnetometer based on Cs opens up the possibility for low cost and portable sensors and is particularly appropriate for lower temperature applications

  18. Study of the operation temperature in the spin-exchange relaxation free magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jiancheng; Li, Rujie, E-mail: lirujie@buaa.edu.cn; Duan, Lihong; Chen, Yao; Quan, Wei [School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191 (China)

    2015-07-15

    We study the influence of the cell temperature on the sensitivity of the spin-exchange relaxation free (SERF) magnetometer and analyze the possibility of operating at a low temperature. Utilizing a 25 × 25 × 25 mm{sup 3} Cs vapor cell with a heating temperature of 85 {sup ∘}C, which is almost half of the value of potassium, we obtain a linewidth of 1.37 Hz and achieve a magnetic field sensitivity of 55 fT/Hz{sup 1/2} in a single channel. Theoretical analysis shows that fundamental sensitivity limits of this device with an active volume of 1 cm{sup 3} could approach 1 fT/Hz{sup 1/2}. Taking advantage of the higher saturated vapor pressure, SERF magnetometer based on Cs opens up the possibility for low cost and portable sensors and is particularly appropriate for lower temperature applications.

  19. Gaussian signal relaxation around spin echoes: Implications for precise reversible transverse relaxation quantification of pulmonary tissue at 1.5 and 3 Tesla.

    Science.gov (United States)

    Zapp, Jascha; Domsch, Sebastian; Weingärtner, Sebastian; Schad, Lothar R

    2017-05-01

    To characterize the reversible transverse relaxation in pulmonary tissue and to study the benefit of a quadratic exponential (Gaussian) model over the commonly used linear exponential model for increased quantification precision. A point-resolved spectroscopy sequence was used for comprehensive sampling of the relaxation around spin echoes. Measurements were performed in an ex vivo tissue sample and in healthy volunteers at 1.5 Tesla (T) and 3 T. The goodness of fit using χred2 and the precision of the fitted relaxation time by means of its confidence interval were compared between the two relaxation models. The Gaussian model provides enhanced descriptions of pulmonary relaxation with lower χred2 by average factors of 4 ex vivo and 3 in volunteers. The Gaussian model indicates higher sensitivity to tissue structure alteration with increased precision of reversible transverse relaxation time measurements also by average factors of 4 ex vivo and 3 in volunteers. The mean relaxation times of the Gaussian model in volunteers are T2,G' = (1.97 ± 0.27) msec at 1.5 T and T2,G' = (0.83 ± 0.21) msec at 3 T. Pulmonary signal relaxation was found to be accurately modeled as Gaussian, providing a potential biomarker T2,G' with high sensitivity. Magn Reson Med 77:1938-1945, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Solid state proton spin-lattice relaxation in four structurally related organic molecules

    International Nuclear Information System (INIS)

    Beckmann, Peter A.; Burbank, Kendra S.; Lau, Matty M.W.; Ree, Jessica N.; Weber, Tracy L.

    2003-01-01

    We report and interpret the temperature dependence of the proton spin-lattice relaxation rate at 8.50 and 22.5 MHz in four polycrystalline solids composed of structurally related molecules: 2-ethylanthracene, 2-t-butylanthracene, 2-ethylanthraquinone, and 2-t-butylanthraquinone. We have been unable to grow single crystals and therefore do not know the crystal structures. Hence, we use the NMR relaxometry data to make predictions about the solid state structures. As expected, we are able to conclude that the ethyl groups do not reorient in the solid state but that the t-butyl groups do. The anthraquinones have a ''simpler'' structure than the anthracenes. The best dynamical models suggest that there is a unique crystallographic site for the t-butyl groups in 2-t-butylanthraquinone and two sites, each with half the molecules, for the ethyl groups in 2-ethylanthraquinone. There are also two sites in 2-ethylanthracene, but with unequal weights, suggesting four sites in the unit cell with lower symmetry than the two anthraquinones. Finally, the observed relaxation rate data in 2-t-butylanthracene is very complex and its interpretation demonstrates the uniqueness problem that arises in interpreting relaxometry data without the knowledge of the crystal structure

  1. The spin relaxation of nitrogen donors in 6H SiC crystals as studied by the electron spin echo method

    Science.gov (United States)

    Savchenko, D.; Shanina, B.; Kalabukhova, E.; Pöppl, A.; Lančok, J.; Mokhov, E.

    2016-04-01

    We present the detailed study of the spin kinetics of the nitrogen (N) donor electrons in 6H SiC wafers grown by the Lely method and by the sublimation "sandwich method" (SSM) with a donor concentration of about 1017 cm-3 at T = 10-40 K. The donor electrons of the N donors substituting quasi-cubic "k1" and "k2" sites (Nk1,k2) in both types of the samples revealed the similar temperature dependence of the spin-lattice relaxation rate (T1-1), which was described by the direct one-phonon and two-phonon processes induced by the acoustic phonons proportional to T and to T9, respectively. The character of the temperature dependence of the T1-1 for the donor electrons of N substituting hexagonal ("h") site (Nh) in both types of 6H SiC samples indicates that the donor electrons relax through the fast-relaxing centers by means of the cross-relaxation process. The observed enhancement of the phase memory relaxation rate (Tm-1) with the temperature increase for the Nh donors in both types of the samples, as well as for the Nk1,k2 donors in Lely grown 6H SiC, was explained by the growth of the free electron concentration with the temperature increase and their exchange scattering at the N donor centers. The observed significant shortening of the phase memory relaxation time Tm for the Nk1,k2 donors in the SSM grown sample with the temperature lowering is caused by hopping motion of the electrons between the occupied and unoccupied states of the N donors at Nh and Nk1,k2 sites. The impact of the N donor pairs, triads, distant donor pairs formed in n-type 6H SiC wafers on the spin relaxation times was discussed.

  2. Anisotropic Rotational Diffusion Studied by Nuclear Spin Relaxation and Molecular Dynamics Simulation: An Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Fuson, Michael M.

    2017-01-01

    Laboratories studying the anisotropic rotational diffusion of bromobenzene using nuclear spin relaxation and molecular dynamics simulations are described. For many undergraduates, visualizing molecular motion is challenging. Undergraduates rarely encounter laboratories that directly assess molecular motion, and so the concept remains an…

  3. Neural mechanism of acupuncture-induced gastric relaxations in rats.

    Science.gov (United States)

    Tada, Hitoshi; Fujita, Mikio; Harris, Mary; Tatewaki, Makoto; Nakagawa, Kazuhiko; Yamamura, Takehira; Pappas, Theodore N; Takahashi, Toku

    2003-01-01

    Acupuncture has been used to treat gastrointestinal symptoms in China for more than 3000 years. However, the mechanism of the beneficial effects of acupuncture remains unknown. Strain gauge transducers were implanted on the serosal surface of the stomach to record circular muscle contractions in thiobutabarbital-anesthetized rats. Acupuncture on the right lower abdomen caused a transient relaxation of the stomach. Acupuncture-induced gastric relaxations were abolished by guanethidine, propranolol, splanchnic ganglionectomy, spinal cord transection, and spinomedullary transection. In contrast, N(G)-nitro-L-arginine, phentolamine, truncal vagotomy, and pontomedullary transection had no effect. Acupuncture increased the number of c-Fos immunopositive cells at the ventrolateral medulla (VLM). It is concluded that acupuncture-induced gastric relaxations are mediated via the somatosympathetic reflex. Its afferent limb is composed of abdominal cutaneous and muscle afferent nerves. Its efferent limb is the gastric sympathetic nerve and the reflex center is within the medulla. VLM neurons may play an important role in mediating this reflex.

  4. Measurements of the nuclear spin-spin relaxation times for commensurate {sup 3}He-Ne films adsorbed on hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Parks, C; Sullivan, N S [Department of Physics, University of Florida, Gainesville, FL 32611 (United States); Stachowiak, P [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wroclaw (Poland)], E-mail: Sullivan@phys.ufl.edu

    2009-02-01

    Measurements of the {sup 3}He nuclear spin-spin relaxation time, T{sub 2}, have been carried out for commensurate layers of {sup 3}He-Ne mixtures adsorbed on hexagonal boron nitride for temperatures 0.2< T <10 K. A temperature independent relaxation is observed at low temperatures and is interpreted in terms of the effective exchange frequencies for {sup 3}He particle exchange on the surface. The results show a strong dependence on the fraction of neon in the adsorbed layer. This variation is discussed in terms of a multiple spin exchange model for {sup 3}He in a monolayer. The contributions to T{sub 2} from different components of the exchange, 2-spin exchange (J{sub 2}), 3-spin exchange (J{sub 3}), 4-spin exchange (J{sub 4}) and higher exchange permutations depend on the {sup 3}He coverage and thus permit the separation of the amplitudes of the different exchange rates, and in particular allow one to deduce the relative strengths of 2-atom and 3-atom exchange where other methods are sensitive only to the effective two-particle term J{sub eff} = J{sub 2} - 2J{sub 3}.

  5. Phonon-bottlenecked spin relaxation of Er3+:Y2SiO5 at sub-kelvin temperatures

    Science.gov (United States)

    Budoyo, Rangga P.; Kakuyanagi, Kosuke; Toida, Hiraku; Matsuzaki, Yuichiro; Munro, William J.; Yamaguchi, Hiroshi; Saito, Shiro

    2018-04-01

    We report on electron spin relaxation measurements of Er3+ dopants in a Y2SiO5 crystal using an electron paramagnetic resonance spectrometer based on a Josephson bifurcation amplifier. We observed the change in the induced flux as a function of time for two spin transitions (at different crystallographic sites) after an excitation microwave pulse or a change in the static magnetic field. Low-microwave-power measurements showed relaxation times of approximately 10 h at 20 mK, and 1/T 1 followed a T 2 dependence between 30 and 200 mK. We observed no difference in behavior between the two transitions. The microwave power and temperature dependences suggest that a phonon-bottleneck-like process limits relaxation.

  6. Far-from-Equilibrium Field Theory of Many-Body Quantum Spin Systems: Prethermalization and Relaxation of Spin Spiral States in Three Dimensions

    Directory of Open Access Journals (Sweden)

    Mehrtash Babadi

    2015-10-01

    Full Text Available We study theoretically the far-from-equilibrium relaxation dynamics of spin spiral states in the three-dimensional isotropic Heisenberg model. The investigated problem serves as an archetype for understanding quantum dynamics of isolated many-body systems in the vicinity of a spontaneously broken continuous symmetry. We present a field-theoretical formalism that systematically improves on the mean field for describing the real-time quantum dynamics of generic spin-1/2 systems. This is achieved by mapping spins to Majorana fermions followed by a 1/N expansion of the resulting two-particle-irreducible effective action. Our analysis reveals rich fluctuation-induced relaxation dynamics in the unitary evolution of spin spiral states. In particular, we find the sudden appearance of long-lived prethermalized plateaus with diverging lifetimes as the spiral winding is tuned toward the thermodynamically stable ferro- or antiferromagnetic phases. The emerging prethermalized states are characterized by different bosonic modes being thermally populated at different effective temperatures and by a hierarchical relaxation process reminiscent of glassy systems. Spin-spin correlators found by solving the nonequilibrium Bethe-Salpeter equation provide further insight into the dynamic formation of correlations, the fate of unstable collective modes, and the emergence of fluctuation-dissipation relations. Our predictions can be verified experimentally using recent realizations of spin spiral states with ultracold atoms in a quantum gas microscope [S. Hild et al., Phys. Rev. Lett. 113, 147205 (2014PRLTAO0031-900710.1103/PhysRevLett.113.147205].

  7. Determining Mechanical Parameters for Spin in Tennis Strings

    DEFF Research Database (Denmark)

    Bendtsen, Kaare; Rasmussen, Kasper; Hansen, Martin B.

    2015-01-01

    The ability to generate spin is a key element for any tennis player. However, the mechanical parameters of tennis strings which contribute to producing spin are poorly understood. This study attempted to determine some of these parameters through a spin test and a tensile test. Nine different...

  8. Local spin dynamics at low temperature in the slowly relaxing molecular chain [Dy(hfac)3(NIT(C6H4OPh))]: A μ{sup +} spin relaxation study

    Energy Technology Data Exchange (ETDEWEB)

    Arosio, Paolo, E-mail: paolo.arosio@guest.unimi.it; Orsini, Francesco [Department of Physics, Università degli Studi di Milano, and INSTM, Milano (Italy); Corti, Maurizio [Department of Physics, Università degli Studi di Pavia and INSTM, Pavia (Italy); Mariani, Manuel [Department of Physics and Astronomy, Università degli Studi di Bologna, Bologna (Italy); Bogani, Lapo [Physikalisches Institut, Universität Stuttgart, Stuttgart (Germany); Caneschi, Andrea [INSTM and Department of Chemistry, University of Florence, Firenze (Italy); Lago, Jorge [Departamento de Quimica Inorganica, Universidad del Pais Vasco, Bilbao (Spain); Lascialfari, Alessandro [Department of Physics, Università degli Studi di Milano, and INSTM, Milano (Italy); Centro S3, Istituto Nanoscienze - CNR, Modena (Italy)

    2015-05-07

    The spin dynamics of the molecular magnetic chain [Dy(hfac){sub 3}(NIT(C{sub 6}H{sub 4}OPh))] were investigated by means of the Muon Spin Relaxation (μ{sup +}SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac){sub 3}(NIT(C{sub 6}H{sub 4}OPh))] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ{sup +}SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λ{sub interm}(T), associated with the intermediate relaxing component. The experimental λ{sub interm}(T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ{sub 0} exp(Δ/k{sub B}T), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state.

  9. NMR spin relaxation in proteins: The patterns of motion that dissipate power to the bath

    Science.gov (United States)

    Shapiro, Yury E.; Meirovitch, Eva

    2014-04-01

    We developed in recent years the two-body coupled-rotator slowly relaxing local structure (SRLS) approach for the analysis of NMR relaxation in proteins. The two bodies/rotators are the protein (diffusion tensor D1) and the spin-bearing probe, e.g., the 15N-1H bond (diffusion tensor, D2), coupled by a local potential (u). A Smoluchowski equation is solved to yield the generic time correlation functions (TCFs), which are sums of weighted exponentials (eigenmodes). By Fourier transformation one obtains the generic spectral density functions (SDFs) which underlie the experimental relaxation parameters. The typical paradigm is to characterize structural dynamics in terms of the best-fit values of D1, D2, and u. Additional approaches we pursued employ the SRLS TCFs, SDFs, or eigenmodes as descriptors. In this study we develop yet another perspective. We consider the SDF as function of the angular velocity associated with the fluctuating fields underlying NMR relaxation. A parameter called j-fraction, which represents the relative contribution of eigenmode, i, to a given value of the SDF function at a specific frequency, ω, is defined. j-fraction profiles of the dominant eigenmodes are derived for 0 ≤ ω ≤ 1012 rad/s. They reveal which patterns of motion actuate power dissipation at given ω-values, what are their rates, and what is their relative contribution. Simulations are carried out to determine the effect of timescale separation, D1/D2, axial potential strength, and local diffusion axiality. For D1/D2 ≤ 0.01 and strong local potential of 15 kBT, power is dissipated by global diffusion, renormalized (by the strong potential) local diffusion, and probe diffusion on the surface of a cone (to be called cone diffusion). For D1/D2 = 0.1, power is dissipated by mixed eigenmodes largely of a global-diffusion-type or cone-diffusion-type, and a nearly bare renormalized-local-diffusion eigenmode. For D1/D2 > 0.1, most eigenmodes are of a mixed type. The analysis is

  10. Spin Liquid State in the 3D Frustrated Antiferromagnet PbCuTe_{2}O_{6}: NMR and Muon Spin Relaxation Studies.

    Science.gov (United States)

    Khuntia, P; Bert, F; Mendels, P; Koteswararao, B; Mahajan, A V; Baenitz, M; Chou, F C; Baines, C; Amato, A; Furukawa, Y

    2016-03-11

    PbCuTe_{2}O_{6} is a rare example of a spin liquid candidate featuring a three-dimensional magnetic lattice. Strong geometric frustration arises from the dominant antiferromagnetic interaction that generates a hyperkagome network of Cu^{2+} ions although additional interactions enhance the magnetic lattice connectivity. Through a combination of magnetization measurements and local probe investigations by NMR and muon spin relaxation down to 20 mK, we provide robust evidence for the absence of magnetic freezing in the ground state. The local spin susceptibility probed by the NMR shift hardly deviates from the macroscopic one down to 1 K pointing to a homogeneous magnetic system with a low defect concentration. The saturation of the NMR shift and the sublinear power law temperature (T) evolution of the 1/T_{1} NMR relaxation rate at low T point to a nonsinglet ground state favoring a gapless fermionic description of the magnetic excitations. Below 1 K a pronounced slowing down of the spin dynamics is witnessed, which may signal a reconstruction of spinon Fermi surface. Nonetheless, the compound remains in a fluctuating spin liquid state down to the lowest temperature of the present investigation.

  11. Characterization of Chemical Exchange Using Relaxation Dispersion of Hyperpolarized Nuclear Spins.

    Science.gov (United States)

    Liu, Mengxiao; Kim, Yaewon; Hilty, Christian

    2017-09-05

    Chemical exchange phenomena are ubiquitous in macromolecules, which undergo conformational change or ligand complexation. NMR relaxation dispersion (RD) spectroscopy based on a Carr-Purcell-Meiboom-Gill pulse sequence is widely applied to identify the exchange and measure the lifetime of intermediate states on the millisecond time scale. Advances in hyperpolarization methods improve the applicability of NMR spectroscopy when rapid acquisitions or low concentrations are required, through an increase in signal strength by several orders of magnitude. Here, we demonstrate the measurement of chemical exchange from a single aliquot of a ligand hyperpolarized by dissolution dynamic nuclear polarization (D-DNP). Transverse relaxation rates are measured simultaneously at different pulsing delays by dual-channel 19 F NMR spectroscopy. This two-point measurement is shown to allow the determination of the exchange term in the relaxation rate expression. For the ligand 4-(trifluoromethyl)benzene-1-carboximidamide binding to the protein trypsin, the exchange term is found to be equal within error limits in neutral and acidic environments from D-DNP NMR spectroscopy, corresponding to a pre-equilibrium of trypsin deprotonation. This finding illustrates the capability for determination of binding mechanisms using D-DNP RD. Taking advantage of hyperpolarization, the ligand concentration in the exchange measurements can reach on the order of tens of μM and protein concentration can be below 1 μM, i.e., conditions typically accessible in drug discovery.

  12. Generation of spin currents due to mechanical rotation

    Science.gov (United States)

    Matsuo, Mamoru; Ieda, Jun'ichi; Saitoh, Eiji; Maekawa, Sadamichi

    2011-03-01

    In the frontier of spintronics, much attention is paid on the control and generation of spin currents. Due to the exciting progress of nanomechatrononics, the importance of mechanical manipulation of electron spin will increase. We discuss theoretically effects of mechanical rotation on spin currents using generally covariant Dirac equation with gauge fields in the non-relativistic limit. We derive semi-classical equations of motion for a wavepacket of electrons in two dimentional planes subject to the spin-orbit interaction argumented by a mechanical rotation. We show that a circular spin current is created by the mechanical rotation with a magnetic field. The magnitude of the spin current becomes 108A/m2 in Pt with the magnetic field ~ 1 T and the rotational velocity ~ 1 kHz.

  13. Energy relaxation between low lying tunnel split spin-states of the single molecule magnet Ni4

    Science.gov (United States)

    de Loubens, G.; Chaves-O'Flynn, G. D.; Kent, A. D.; Ramsey, C.; Del Barco, E.; Beedle, C.; Hendrickson, D. N.

    2007-03-01

    We have developed integrated magnetic sensors to study quantum tunneling of magnetization (QTM) in single molecule magnet (SMMs) single crystals. These sensors incorporate a microstrip resonator (30 GHz) and a micro-Hall effect magnetometer. They have been used to investigate the relaxation rates between the 2 lowest lying tunnel split spin-states of the SMM Ni4 (S=4). EPR spectroscopy at 30 GHz and 0.4 K and concurrent magnetization measurements of several Ni4 single crystals are presented. EPR enables measurement of the energy splitting between the 2 lowest lying superposition states as a function of the longitudinal and transverse fields. The energy relaxation rate is determined in two ways. First, in cw microwave experiments the change in spin-population together with the microwave absorption directly gives the relaxation time from energy conservation in steady-state. Second, direct time-resolved measurements of the magnetization with pulsed microwave radiation have been performed. The relaxation time is found to vary by several orders of magnitude in different crystals, from a few seconds down to smaller than 100 μs. We discuss this and the form of the relaxation found for different crystals and pulse conditions.

  14. Proton Relaxation and Spin Label Studies of Papaverine Localization in Ionic Micelles

    Science.gov (United States)

    Yushmanov, V. E.; Imasato, H.; Perussi, J. R.; Tabak, M.

    The localization of papaverine (PAV) in micelles of zwitterionic N-hexadecyl- N, N-dimethyl-3-ammonio-1-propanesulfonate (HPS), cationic cetyltrimethylammonium chloride (CTAC), and anionic sodium dodecyl sulfate (SDS) in D 2O was studied by 1H NMR and ESR in the presence and absence of 5-doxyl- or 12-doxyl-stearic acid. PAV, surfactants, and spin probes are characterized by restricted anisotropic motion in micelles. The rotational correlation time of doxyl fragment was in the range of 0.2 to 0.5 nanoseconds. Binding of PAV to micelles decreases the mobility of both probes, suggesting the localization of PAV inside the hydrophobic part of micelles near the micelle-water interface. According to the NOE data, the methoxy groups of PAV are located in the vicinity of the nitrogen atom in CTAC and HPS micelles, the methoxy groups of the PAV heterocycle being immersed slightly deeper inside the micelle. The T1 relaxation enhancements by two different spin probes show that the H5 and methoxy substituents of the PAV heterocycle are in close proximity to the α-CH 2 of acyl chains in all types of micelles, whereas H3 and H12 are the most distant from the α-CH 2. No significant differences were found for the protonated and neutral PAV in SDS micelles at pD 4.9 and 11.2. These data show that the geometry of the PAV-micelle complex is practically independent of the PAV charge and surfactant headgroup.

  15. Photoluminescence quenching and enhanced spin relaxation in Fe doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ovhal, Manoj M.; Santhosh Kumar, A. [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Khullar, Prerna [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Kumar, Manjeet [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Abhyankar, A.C., E-mail: ashutoshabhyankar@gmail.com [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India)

    2017-07-01

    Cost-effective ultrasonically assisted precipitation method is utilized to synthesize Zinc oxide (ZnO) nanoparticles (NPs) at room temperature and the effect of Iron (Fe) doping on structural, optical and spin relaxation properties also presented. As-synthesized pure and Fe doped ZnO NPs possess a perfect hexagonal growth habit of wurtzite zinc oxide, along the (101) direction of preference. With Fe doping, ‘c/a’ ratio and compressive lattice strain in ZnO NPs are found to reduce and increase, respectively. Raman studies demonstrate that the E{sub 1} longitudinal optical (LO) vibrational mode is very weak in pure which remarkably enhanced with Fe doping into ZnO NPs. The direct band gap energy (E{sub g}) of the ZnO NPs has been increased from 3.02 eV to 3.11 eV with Fe doping. A slight red-shift observed with strong green emission band, in photoluminescence spectra, is strongly quenched in 6 wt.% Fe doped ZnO NPs. The field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) reveals spherical shape of ZnO NPs with 60–70 nm, which reduces substantially on Fe doping. The energy dispersive X-ray spectrum and elemental mapping confirms the homogeneous distribution of Fe in ZnO NPs. Moreover, the specific relaxation rate (R{sub 2sp} = 1/T{sub 2}) has been measured using Carr-Purcell-Meiboom-Gill (CPMG) method and found to be maximum in 6 wt.% Fe doped ZnO NPs. Further, the correlation of structural, optical and dynamic properties is proposed. - Highlights: • Pure ZnO and Fe doped ZnO NPs were successfully prepared by cost effective ultrasonically assisted precipitation method. • The optical band gap of ZnO has been enhanced form 3.02–3.11 eV with Fe doping. • PL quenching behaviour has been observed with Fe{sup 3+} ions substitution in ZnO lattice. • Specific relaxation rate (R{sub 2sp} = 1/T{sub 2}) has been varied with Fe doping and found to be maximum in 6 wt.% Fe doped ZnO NPs.

  16. Muon spin relaxation study of Zr(H2PO4)(PO4).2H2O.

    Science.gov (United States)

    Clayden, Nigel J; Cottrell, Stephen P

    2006-07-14

    Muon spin relaxation has been used to study the muon dynamics in the layered zirconium phosphate Zr(H(2)PO(4))(PO(4)).2H(2)O as a function of temperature. Radiofrequency decoupling was used to establish the origin of the local dipolar field as coupling with (1)H spins. Muons were trapped at two sites, one identified as HMuO and the other consistent with PO-Mu on the basis of their zero-field second moments. Although a small decrease in the local nuclear dipolar field was seen with temperature, the muons remained essentially static over the temperature range 20-300 K.

  17. Electron spin-lattice relaxation of low-symmetry Ni.sup.2+./sup. centers in LiF

    Czech Academy of Sciences Publication Activity Database

    Azamat, Dmitry; Badalyan, A. G.; Dejneka, Alexandr; Jastrabík, Lubomír; Lančok, Ján

    2014-01-01

    Roč. 104, č. 25 (2014), "252902-1"-"252902-4" ISSN 0003-6951 R&D Projects: GA MŠk(CZ) LM2011029; GA TA ČR TA01010517; GA ČR GAP108/12/1941 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : Ni 2+ centers * LiF single crystals * electron spin-lattice relaxation * electron spin echo technique Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.302, year: 2014

  18. Spin time-relaxation within strongly coupled paramagnetic systems exhibiting paramagnetic-ferrimagnetic transitions

    CERN Document Server

    Chahid, M

    2000-01-01

    The purpose of the present work is a quantitative study of the spin time relaxation within superweak ferrimagnetic materials exhibiting a paramagnetic-ferrimagnetic transition, when the temperature is changed from an initial value T sub i to a final one T sub f very close to the critical temperature T sub c. From a magnetic point of view, the material under investigation is considered to be made of two strongly coupled paramagnetic sublattices of respective moments phi (cursive,open) Greek and psi. Calculations are made within a Landau mean-field theory, whose free energy involves, in addition to quadratic and quartic terms in both moments phi (cursive,open) Greek and psi, a lowest-order coupling - Cphi (cursive,open) Greek psi, where C<0 stands for the coupling constant measuring the interaction between the two sublattices. We first determine the time dependence of the shifts of the order parameters delta phi (cursive,open) Greek and delta psi from the equilibrium state. We find that this time dependence ...

  19. Suppression of vapor cell temperature error for spin-exchange-relaxation-free magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jixi, E-mail: lujixi@buaa.edu.cn; Qian, Zheng; Fang, Jiancheng; Quan, Wei [School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191 (China)

    2015-08-15

    This paper presents a method to reduce the vapor cell temperature error of the spin-exchange-relaxation-free (SERF) magnetometer. The fluctuation of cell temperature can induce variations of the optical rotation angle, resulting in a scale factor error of the SERF magnetometer. In order to suppress this error, we employ the variation of the probe beam absorption to offset the variation of the optical rotation angle. The theoretical discussion of our method indicates that the scale factor error introduced by the fluctuation of the cell temperature could be suppressed by setting the optical depth close to one. In our experiment, we adjust the probe frequency to obtain various optical depths and then measure the variation of scale factor with respect to the corresponding cell temperature changes. Our experimental results show a good agreement with our theoretical analysis. Under our experimental condition, the error has been reduced significantly compared with those when the probe wavelength is adjusted to maximize the probe signal. The cost of this method is the reduction of the scale factor of the magnetometer. However, according to our analysis, it only has minor effect on the sensitivity under proper operating parameters.

  20. Proton spin lattice relaxation studies in lithium ammonium sulfate LiNH4SO4

    International Nuclear Information System (INIS)

    Shenoy, R.K.; Ramakrishna, J.

    1979-01-01

    Lithium ammonium sulfate (LAS) undergoes a phase transition at Tsub(c1) = 459.5deg K from a paraelectric phase (phase 1) to a ferroelectric phase (phase II) and again at Tsub(c2) = 283deg K to a polar ferroelastic phase (phase III). Proton spin lattice relaxation investigations in the temperature range 480-77deg K at 10 MHz show discontinuous changes in Tsub(1) at the transition temperatures, indicating first order phase transitions. The absence of the slow motion region (ωsub(not)tausub(not)>>1) shows that the ammonium ions are reorienting fast enough to keep the resonance absorption line narrow down to liquid nitrogen temperatures. The possibility of a second minimum and a low activation energy, Esub(a) = 2.659 kcal/mole, in phase III suggest the possibility of tunnelling of the protons at low temperatures. The nature of the transitions have been discussed in the light of the available literature. The unusually high activation energy, Esub(a) = 17.845 kcal/mole, in the paraelectric phase has been attributed to the possible diffusion of protons. (auth.)

  1. Stress relaxation insensitive designs for metal compliant mechanism threshold accelerometers

    Directory of Open Access Journals (Sweden)

    Carlos Vilorio

    2015-12-01

    Full Text Available We present two designs for metal compliant mechanisms for use as threshold accelerometers which require zero external power. Both designs rely on long, thin flexures positioned orthogonally to a flat body. The first design involves cutting or stamping a thin spring-steel sheet and then bending elements to form the necessary thin flexors. The second design uses precut spring-steel flexure elements mounted into a mold which is then filled with molten tin to form a bimetallic device. Accelerations necessary to switch the devices between bistable states were measured using a centrifuge. Both designs showed very little variation in threshold acceleration due to stress relaxation over a period of several weeks. Relatively large variations in threshold acceleration were observed for devices of the same design, most likely due to variations in the angle of the flexor elements relative to the main body of the devices.

  2. PREFACE: 13th International Conference on Muon Spin Rotation, Relaxation and Resonance

    Science.gov (United States)

    2014-12-01

    The 13th International Conference on Muon Spin Rotation, Relaxation and Resonance (μSR2014) organized by the Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute in collaboration with the University of Zurich and the University of Fribourg, was held in Grindelwald, Switzerland from 1st to 6th June 2014. The conference provided a forum for researchers from around the world with interests in the applications of μSR to study a wide range of topics including condensed matter physics, materials and molecular sciences, chemistry and biology. Polarized muons provide a unique and versatile probe of matter, enabling studies at the atomic level of electronic structure and dynamics in a wide range of systems. The conference was the thirteenth in a series, which began in Rorschach in 1978 and it took place for the third time in Switzerland. The previous conferences were held in Cancun, Mexico (2011), Tsukuba, Japan (2008), Oxford, UK (2005), Williamsburg, USA (2002), Les Diablerets, Switzerland (1999), Nikko, Japan (1996), Maui, USA (1993), Oxford, UK (1990), Uppsala, Sweden (1986), Shimoda, Japan (1983), Vancouver, Canada (1980), and Rorschach, Switzerland (1978). These conference proceedings contain 67 refereed publications from presentations covering magnetism, superconductivity, chemistry, semiconductors, biophysics and techniques. The conference logo, displayed in the front pages of these proceedings, represents both the location of μSR2014 in the Alps and the muon-spin rotation technique. The silhouette represents the famous local mountains Eiger, Mönch and Jungfrau as drawn by the Swiss painter Ferdinand Hodler and the apple with arrow is at the same time a citation of the Wilhelm Tell legend and a remembrance of the key role played by the muon spin and the asymmetric muon decay (which for the highest positron energy has an apple like shape). More than 160 participants (including 32 registered as students and 13 as accompanying persons) from 19 countries

  3. Direct and two-phonon Orbach-Aminov type spin-lattice relaxation in molecular magnet V15

    Science.gov (United States)

    Tarantul, Alex; Tsukerblat, Boris

    2011-10-01

    In this article we propose a model of spin-phonon relaxation in K6[VIV 15As6O42(H2O)]-8H2O, the so called V15 cluster exhibiting the unique layered magnetic structure. The work is motivated by the recent observation of the Rabi oscillation [1] in this system and aimed to elucidate the role of spin-phonon interaction as a source of decoherence. The spin-phonon coupling is assumed to appear as a result of the modulation of the isotropic and antisymmetric (Dzyaloshinsky-Moriya) exchange interactions in the central triangular layer of vanadium ions by the acoustic lattice vibrations. The relaxation rates are estimated within the Debye model for the lattice vibrations. Within the pseudo-angular momentum representation the selection rules for the direct (one-phonon) transitions between Zeeman levels are derived and a special role of the antisymmetric exchange is underlined. The probabilities of the two-phonon Orbach-Aminov type processes are evaluated as well, while the Raman type relaxation is shown to have a negligible importance at low temperatures at which the Rabi oscillations have been detected.

  4. Heteronuclear relaxation in time-dependent spin systems: 15N-T1ρ dispersion during adiabatic fast passage

    International Nuclear Information System (INIS)

    Konrat, Robert; Tollinger, Martin

    1999-01-01

    A novel NMR experiment comprising adiabatic fast passage techniques for the measurement of heteronuclear self-relaxation rates in fully 15N-enriched proteins is described. Heteronuclear self-relaxation is monitored by performing adiabatic fast passage (AFP) experiments at variable adiabaticity (e.g., variation of RF spin-lock field intensity). The experiment encompasses gradient- selection and sensitivity-enhancement. It is shown that transverse relaxation rates derived with this method are in good agreement with the ones measured by the classical Carr-Purcell-Meiboom-Gill (CPMG) sequences. An application of this method to the study of the carboxyl-terminal LIM domain of quail cysteine and glycine-rich protein qCRP2(LIM2) is presented

  5. Cross-Correlated Relaxation of Dipolar Coupling and Chemical-Shift Anisotropy in Magic-Angle Spinning R1ρ NMR Measurements: Application to Protein Backbone Dynamics Measurements

    Science.gov (United States)

    Kurauskas, Vilius; Weber, Emmanuelle; Hessel, Audrey; Ayala, Isabel; Marion, Dominique; Schanda, Paul

    2016-01-01

    Transverse relaxation rate measurements in MAS solid-state NMR provide information about molecular motions occurring on nanoseconds-to-milliseconds (ns-ms) time scales. The measurement of heteronuclear (13C, 15N) relaxation rate constants in the presence of a spin-lock radio-frequency field (R1ρ relaxation) provides access to such motions, and an increasing number of studies involving R1ρ relaxation in proteins has been reported. However, two factors that influence the observed relaxation rate constants have so far been neglected, namely (i) the role of CSA/dipolar cross-correlated relaxation (CCR), and (ii) the impact of fast proton spin flips (i.e. proton spin diffusion and relaxation). We show that CSA/D CCR in R1ρ experiments is measurable, and that this cross-correlated relaxation rate constant depends on ns-ms motions, and can thus itself provide insight into dynamics. We find that proton spin-diffusion attenuates this cross-correlated relaxation, due to its decoupling effect on the doublet components. For measurements of dynamics, the use of R1ρ rate constants has practical advantages over the use of CCR rates, and the present manuscript reveals factors that have so far been disregarded and which are important for accurate measurements and interpretation. PMID:27500976

  6. Thermal relaxation and heat transport in spin ice Dy{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Klemke, Bastian; Meissner, M.; Tennant, D.A. [Helmholtz-Zentrum Berlin (Germany); Technische Universitaet Berlin (Germany); Strehlow, P. [Technische Universitaet Berlin (Germany); Physikalisch Technische Bundesanstalt, Institut Berlin (Germany); Kiefer, K. [Helmholtz-Zentrum Berlin (Germany); Grigera, S.A. [School of Physics and Astronomy, St. Andrews (United Kingdom); Instituto de Fisica de Liquidos y Sistemas Biologicos, CONICET, UNLP, La Plata (Argentina)

    2011-07-01

    The thermal properties of single crystalline Dy{sub 2}Ti{sub 2}O{sub 7} have been studied at temperature below 30 K and magnetic fields applied along [110] direction up to 1.5 T. Based on a thermodynamic field theory (TFT) various heat relaxation and thermal transport measurements were analysed. So we were able to present not only the heat capacity of Dy{sub 2}Ti{sub 2}O{sub 7}, but also for the first time the different contributions of the magnetic excitations and their corresponding relaxation times in the spin ice phase. In addition, the thermal conductivity and the shortest relaxation time were determined by thermodynamic analysis of steady state heat transport measurements. Finally, we were able to reproduce the temperature profiles recorded in heat pulse experiments on the basis of TFT using the previously determined heat capacity and thermal conductivity data without additional parameters. Thus, TFT has been proved to be thermodynamically consistent in describing three thermal transport experiments on different time scales. The observed temperature and field dependencies of heat capacity contributions and relaxation times indicate the magnetic excitations in the spin ice Dy{sub 2}Ti{sub 2}O{sub 7} as thermally activated monopole-antimonopole defects.

  7. A new problem in the correlation of nuclear-spin relaxation and ionic conductivity in superionic glasses

    Science.gov (United States)

    Tatsumisago, M.; Angell, C. A.; Martin, S. W.

    1992-11-01

    Following the recent resolution of the longstanding problem of reconciling constant frequency nuclear-spin lattice relaxation (SLR) activation energies and d.c. conductivity activity energies in ion conducting glasses, we point out a new problem which seems not to have been discussed previously. We report conductivity data measured at a series of fixed frequencies and variable temperatures on a lithium chloroborate glass and compare them with SLR data on identically prepared samples, also using different fixed frequencies. While phenomenological similarities due to comparable departures from exponential relaxation are found in each case, pronounced differences in the most probable relaxation times themselves are observed. The conductivity relaxation at 500 K occurs on a time scale shorter by some 2 orders of magnitude than the 7Li SLR correlation, and has a significantly lower activation energy. We show from a literature review that this distinction is a common but unreported finding for highly decoupled (fast-ion conducting) systems, and that an inverse relationship is found in supercoupled salt/polymer ``solid'' electrolytes. In fast-ion conducting glasses, the slower SLR process would imply special features in the fast-ion motion which permit spin correlations to survive many more successive ion displacements than previously expected. It is conjectured that the SLR in superionic glasses depends on the existence of a class of low-lying traps infrequently visited by migrating ions.

  8. Relaxation theory of the electronic spin of a complexed paramagnetic metal ion in solution beyond the Redfield limit

    Science.gov (United States)

    Fries, Pascal H.; Belorizky, Elie

    2007-05-01

    The relaxation of the electronic spin S of a paramagnetic metal ion with fully quenched orbital angular momentum in its ground state is investigated in an external magnetic field through a systematic study of the time correlation functions governing the evolution of the statistical operator (density matrix). Let ω0 be the Larmor angular frequency of S. When the relaxation is induced by a time-fluctuating perturbing Hamiltonian ℏH1(t ) of time correlation τc, it is demonstrated that after a transient period the standard Redfield approximation is relevant to calculate the evolution of the populations of the spin states if ∥H1∥2τc2/(1+ω02τc2)≪1 and that this transient period becomes shorter than τc at sufficiently high field for a zero-field splitting perturbing Hamiltonian. This property, proven analytically and confirmed by numerical simulation, explains the surprising success of several simple expressions of the longitudinal electronic relaxation rate 1/T1e derived from the Redfield approximation well beyond its expected validity range ∥H1∥τc≪1. It has favorable practical consequences on the interpretation of the paramagnetic relaxation enhancement of nuclei used for structural and dynamic studies.

  9. Active site dynamics in NADH oxidase from Thermus thermophilus studied by NMR spin relaxation

    International Nuclear Information System (INIS)

    Miletti, Teresa; Farber, Patrick J.; Mittermaier, Anthony

    2011-01-01

    We have characterized the backbone dynamics of NADH oxidase from Thermus thermophilus (NOX) using a recently-developed suite of NMR experiments designed to isolate exchange broadening, together with 15 N R 1 , R 1ρ , and { 1 H}- 15 N steady-state NOE relaxation measurements performed at 11.7 and 18.8 T. NOX is a 54 kDa homodimeric enzyme that belongs to a family of structurally homologous flavin reductases and nitroreductases with many potential biotechnology applications. Prior studies have suggested that flexibility is involved in the catalytic mechanism of the enzyme. The active site residue W47 was previously identified as being particularly important, as its level of solvent exposure correlates with enzyme activity, and it was observed to undergo “gating” motions in computer simulations. The NMR data are consistent with these findings. Signals from W47 are dynamically broadened beyond detection and several other residues in the active site have significant R ex contributions to transverse relaxation rates. In addition, the backbone of S193, whose side chain hydroxyl proton hydrogen bonds directly with the FMN cofactor, exhibits extensive mobility on the ns–ps timescale. We hypothesize that these motions may facilitate structural rearrangements of the active site that allow NOX to accept both FMN and FAD as cofactors.

  10. Static magnetic ordering of CeCu2.1Si2 found by muon spin relaxation

    Science.gov (United States)

    Uemura, Y. J.; Kossler, W. J.; Yu, X. H.; Schone, H. E.; Kempton, J. R.; Stronach, C. E.; Barth, S.; Gygax, F. N.; Hitti, B.; Schenck, A.

    1988-01-01

    Zero- and longitudinal-field muon spin relaxation measurements on a polycrystal sample of a heavy fermion superconductor CeCu2.1 Si2 (T(c) = 0.7 K) have revealed an onset of static magnetic ordering below T approximately 0.8 K. The line shapes of the observed spectra in zero field indicate a wide distribution of static random local fields at muon sites, suggesting that the ordering is either spin glass or incommensurate spin-density-wave state. The observed width of the random local field at T = 0.05 K corresponds to a small averaged static moment of the order of 0.1 micro-B per formula unit.

  11. Electron spin-relaxation via vibronic level of nickel (I) and nickel (III) cyanide complexes in NaCl single crystals.

    Science.gov (United States)

    Vugman, N V; de Araújo, M B; Pinhal, N M; Magon, C J; da Costa Filho, A J

    2004-05-01

    Electron spin-lattice relaxation rates for the low spin [Ni(CN)(4)](1-) and [Ni(CN)(4)](3-) complexes in NaCl host lattice were measured by the inversion recovery technique in the temperature range 7-50K. The data for both paramagnetic species fit very well to a relaxation process involving localized anharmonic vibration modes, also responsible for the g-tensor temperature dependence.

  12. NMR spin relaxation in proteins: The patterns of motion that dissipate power to the bath

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Yury E., E-mail: eva.meirovitch@biu.ac.il, E-mail: yuryeshapiro@gmail.com; Meirovitch, Eva, E-mail: eva.meirovitch@biu.ac.il, E-mail: yuryeshapiro@gmail.com [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900-02 (Israel)

    2014-04-21

    We developed in recent years the two-body coupled-rotator slowly relaxing local structure (SRLS) approach for the analysis of NMR relaxation in proteins. The two bodies/rotators are the protein (diffusion tensor D{sub 1}) and the spin-bearing probe, e.g., the {sup 15}N−{sup 1}H bond (diffusion tensor, D{sub 2}), coupled by a local potential (u). A Smoluchowski equation is solved to yield the generic time correlation functions (TCFs), which are sums of weighted exponentials (eigenmodes). By Fourier transformation one obtains the generic spectral density functions (SDFs) which underlie the experimental relaxation parameters. The typical paradigm is to characterize structural dynamics in terms of the best-fit values of D{sub 1}, D{sub 2}, and u. Additional approaches we pursued employ the SRLS TCFs, SDFs, or eigenmodes as descriptors. In this study we develop yet another perspective. We consider the SDF as function of the angular velocity associated with the fluctuating fields underlying NMR relaxation. A parameter called j-fraction, which represents the relative contribution of eigenmode, i, to a given value of the SDF function at a specific frequency, ω, is defined. j-fraction profiles of the dominant eigenmodes are derived for 0 ≤ ω ≤ 10{sup 12} rad/s. They reveal which patterns of motion actuate power dissipation at given ω-values, what are their rates, and what is their relative contribution. Simulations are carried out to determine the effect of timescale separation, D{sub 1}/D{sub 2}, axial potential strength, and local diffusion axiality. For D{sub 1}/D{sub 2} ≤ 0.01 and strong local potential of 15 k{sub B}T, power is dissipated by global diffusion, renormalized (by the strong potential) local diffusion, and probe diffusion on the surface of a cone (to be called cone diffusion). For D{sub 1}/D{sub 2} = 0.1, power is dissipated by mixed eigenmodes largely of a global-diffusion-type or cone-diffusion-type, and a nearly bare renormalized

  13. Spin and Uncertainty in the Interpretation of Quantum Mechanics.

    Science.gov (United States)

    Hestenes, David

    1979-01-01

    Points out that quantum mechanics interpretations, using Heisenberg's Uncertainty Relations for the position and momentum of an electron, have their drawbacks. The interpretations are limited to the Schrodinger theory and fail to take into account either spin or relativity. Shows why spin cannot be ignored. (Author/GA)

  14. Irradiation creep, stress relaxation and a mechanical equation of state

    International Nuclear Information System (INIS)

    Foster, J.P.

    1976-01-01

    Irradiation creep and stress relaxation data are available from the United Kingdom for 20 percent CW M316, 20 percent CW FV 548 and FHT PE16 using pure torsion in the absence of swelling at 300 0 C. Irradiation creep models were used to calculate the relaxation and permanent deflection of the stress relaxation tests. Two relationships between irradiation creep and stress relaxation were assessed by comparing the measured and calculated stress relaxation and permanent deflection. The results show that for M316 and FV548, the stress relaxation and deflection may be calculated using irradiation creep models when the stress rate term arising from the irradiation creep model is set equal to zero. In the case of PE16, the inability to calculate the stress relaxation and permanent deflection from the irradiation creep data was attributed to differences in creep behavior arising from lot-to-lot variations in alloying elements and impurity content. A modification of the FV548 and PE16 irradiation creep coefficients was necessary in order to calculate the stress relaxation and deflection. The modifications in FV548 and PE16 irradiation creep properties reduces the large variation in the transient or incubation parameter predicted by irradiation creep tests for M316, FV548 and PE16

  15. A new parallel algorithm for simulation of spin glasses on scales of space-time periods of external fields with consideration of relaxation effects

    International Nuclear Information System (INIS)

    Gevorkyan, A.S.; Abajyan, H.G.

    2011-01-01

    We have investigated the statistical properties of an ensemble of disordered 1D spatial spin chains (SSCs) of finite length, placed in an external field, with consideration of relaxation effects. The short-range interaction complex-classical Hamiltonian was first used for solving this problem. A system of recurrent equations is obtained on the nodes of the spin-chain lattice. An efficient mathematical algorithm is developed on the basis of these equations with consideration of the advanced Sylvester conditions which allow step by step construct a huge number of stable spin chains in parallel. The distribution functions of different parameters of spin-glass system are constructed from the first principles of the complex classical mechanics by analyzing the calculation results of the 1D SSCs ensemble. It is shown that the behavior of the parameter distributions is quite different depending on the external fields. The energy ensembles and constants of spin-spin interactions are changed smoothly depending on the external field in the limit of statistical equilibrium, while some of them such as the mean value of polarizations of ensemble and parameters of its orderings are frustrated. We have also studied some critical properties of the ensemble of such catastrophes in the Clausius-Mossotti equation depending on the value of the external field. We have shown that the generalized complex-classical approach excludes these catastrophes allowing one to organize continuous parallel computing on the whole region of values of the external field including critical points. A new representation of the partition function based on these investigations is suggested. As opposed to usual definition, this function is a complex one and its derivatives are everywhere defined, including critical points

  16. Hyperpolarized 13C Urea Relaxation Mechanism Reveals Renal Changes in Diabetic Nephropathy

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Stokholm Nørlinger, Thomas; Christoffer Hansen, David

    2016-01-01

    Purpose: Our aim was to assess a novel 13C radial fast spin echo golden ratio single shot method for interrogating early renal changes in the diabetic kidney, using hyperpolarized (HP) [13C,15N2]urea as a T2 relaxation based contrast bio-probe. Methods: A novel HP 13C MR contrast experiment...

  17. Mechanisms of optical orientation of an individual Mn2+ ion spin in a II–VI quantum dot

    Science.gov (United States)

    Smoleński, T.; Cywiński, Ł.; Kossacki, P.

    2018-02-01

    We provide a theoretical description of the optical orientation of a single Mn2+ ion spin under quasi-resonant excitation demonstrated experimentally by Goryca et al (2009 Phys. Rev. Lett. 103 087401). We build and analyze a hierarchy of models by starting with the simplest assumptions (transfer of perfectly spin-polarized excitons from Mn-free dot to the other dot containing a single Mn2+ spin, followed by radiative recombination) and subsequently adding more features, such as spin relaxation of electrons and holes. Particular attention is paid to the role of the influx of the dark excitons and the process of biexciton formation, which are shown to contribute significantly to the orientation process in the quasi-resonant excitation case. Analyzed scenarios show how multiple features of the excitonic complexes in magnetically-doped quantum dots, such as the values of exchange integrals, spin relaxation times, etc, lead to a plethora of optical orientation processes, characterized by distinct dependencies on light polarization and laser intensity, and occurring on distinct timescales. Comparison with experimental data shows that the correct description of the optical orientation mechanism requires taking into account Mn2+ spin-flip processes occurring not only when the exciton is already in the orbital ground state of the light-emitting dot, but also those that happen during the exciton transfer from high-energy states to the ground state. Inspired by the experimental results on energy relaxation of electrons and holes in nonmagnetic dots, we focus on the process of biexciton creation allowed by mutual spin-flip of an electron and the Mn2+ spin, and we show that by including it in the model, we obtain good qualitative and quantitative agreement with the experimental data on quasi-resonantly driven Mn2+ spin orientation.

  18. The spin relaxation of nitrogen donors in 6H SiC crystals as studied by the electron spin echo method

    Czech Academy of Sciences Publication Activity Database

    Savchenko, Dariia; Shanina, B.; Kalabukhova, E.; Pöppl, A.; Lančok, Ján; Mokhov, E.

    2016-01-01

    Roč. 119, č. 13 (2016), 1-7, č. článku 135706. ISSN 0021-8979 R&D Projects: GA ČR GP13-06697P; GA MŠk LO1409; GA MŠk LM2015088 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : electron spin resonance * SiC * nitrogen donors * relaxation times Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.068, year: 2016

  19. Mechanical relaxation in chalcogenide glasses of the Ge-As-S system

    International Nuclear Information System (INIS)

    Bilanych, V.S.; Melnychenko, T.D.; Rizak, V.M.; Makauz, I.I.

    2006-01-01

    The temperature and frequency-related dependences of the internal friction and the shear modulus in Ge x As 40-x S 60 glasses have been studied. The maxima of internal friction of both the relaxation and non relaxation types have been found in the low-temperature range. A relaxation maximum has been revealed in the vitrification region, and its parameters have been determined. Possible mechanisms of these processes have been discussed

  20. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source.

    Science.gov (United States)

    Lord, J S; McKenzie, I; Baker, P J; Blundell, S J; Cottrell, S P; Giblin, S R; Good, J; Hillier, A D; Holsman, B H; King, P J C; Lancaster, T; Mitchell, R; Nightingale, J B; Owczarkowski, M; Poli, S; Pratt, F L; Rhodes, N J; Scheuermann, R; Salman, Z

    2011-07-01

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  1. Hard sphere colloidal dispersions: Mechanical relaxation pertaining to thermodynamic forces

    NARCIS (Netherlands)

    Mellema, J.; de Kruif, C.G.; Blom, C.; Vrij, A.

    1987-01-01

    The complex viscosity of sterically stabilized (hard) silica spheres in cyclohexane has been measured between 80 Hz and 170 kHz with torsion pendulums and a nickel tube resonator. The observed relaxation behaviour can be attributed to the interplay of hydrodynamic and thermodynamic forces. The

  2. Near-threshold photoionization of the Xe 3d spin-orbit doublet: Relativistic, relaxation, and intershell interaction effects

    International Nuclear Information System (INIS)

    Radojevic, V.; Davidovic, D.M.; Amusia, M.Ya.

    2003-01-01

    Results of calculations of the near-threshold photoionization of the xenon 3d spin-orbit doublet are reported. Our theoretical analysis is undertaken in order to interpret and enlighten the very detailed measurements of this process [A. Kivimaeki et al., Phys. Rev. A 63, 012716 (2001)], which revealed a previously unobserved interesting feature--an additional broad maximum--in the partial xenon 3d 5/2 cross section. This double maximum was not produced by earlier calculations, except in the recent study by Amusia et al. [Phys. Rev. Lett. 88, 093002 (2002)], which, in contrast to the present one, is not ab initio and relativistic in character. The partial photoionization cross sections of 3d 5/2 and 3d 3/2 subshells, photoelectron anisotropy parameters, and spin-polarization parameters that were so far not studied either experimentally or theoretically are calculated. Many-electron correlations, relativistic effects, and relaxation effects of the ionic core in the ionization process are taken into account by using the relativistic random-phase approximation, modified to include the relaxation of the considered subshell

  3. Materials developed by mechanical alloying and melt spinning

    OpenAIRE

    Suñol Martínez, Joan Josep; Fort, Joaquim

    2008-01-01

    Materials science is a multidisciplinary research topic related to the development of physics and technology. Mechanical alloying of ribbon flakes is a two steps route to develop advanced materials. In this work, a Fe based alloy was obtained using three pathways: mechanical alloying, melt-spinning and mechanical alloying of previously melt-spun samples. Processing conditions allow us to obtain amorphous or nanocrystalline structures. Furthermore, a bibliographic revision of mechanical al...

  4. Resolving the mesospheric nighttime 4.3 µm emission puzzle: Laboratory demonstration of new mechanism for OH(υ) relaxation

    Science.gov (United States)

    Kalogerakis, Konstantinos S.; Matsiev, Daniel; Sharma, Ramesh D.; Wintersteiner, Peter P.

    2016-09-01

    We report laboratory results that support a recently proposed mechanism for relaxation of highly vibrationally excited hydroxyl radical by ground-state oxygen atoms (Sharma et al., GRL 42, 4639-4647 (2015)). According to this mechanism, which eventually leads to an enhancement of nocturnal 4.3 µm CO2 emissions in the mesosphere, the deactivation of OH(high υ) by O(3P) involves a fast, spin-allowed, multiquantum vibration-to-electronic (V-E) energy transfer process generating O(1D). We present laser-based experiments that demonstrate these energy transfer processes in action and discuss some implications of the new mechanism for mesospheric OH. These developments represent a breakthrough addressing the long-standing problem of unacceptably large discrepancies between models and observations of the nocturnal mesospheric 4.3 µm emission.

  5. Spin dynamics of Mn12-acetate in the thermally activated tunneling regime: ac susceptibility and magnetization relaxation

    Science.gov (United States)

    Pohjola, Teemu; Schoeller, Herbert

    2000-12-01

    In this work, we study the spin dynamics of Mn12-acetate molecules in the regime of thermally assisted tunneling. In particular, we describe the system in the presence of a strong transverse magnetic field. Similar to recent experiments, the relaxation time/rate is found to display a series of resonances; their Lorentzian shape is found to stem from the tunneling. The dynamic susceptibility χ(ω) is calculated starting from the microscopic Hamiltonian and the resonant structure manifests itself also in χ(ω). Similar to recent results reported on another molecular magnet, Fe8, we find oscillations of the relaxation rate as a function of the transverse magnetic field when the field is directed along a hard axis of the molecules. This phenomenon is attributed to the interference of the geometrical or Berry phase. We propose susceptibility experiments to be carried out for strong transverse magnetic fields to study these oscillations and for a better resolution of the sharp satellite peaks in the relaxation rates.

  6. Electron spin relaxation can enhance the performance of a cryptochrome-based magnetic compass sensor

    DEFF Research Database (Denmark)

    Kattnig, Daniel R; Sowa, Jakub K; Solov'yov, Ilia A

    2016-01-01

    The radical pair model of the avian magnetoreceptor relies on long-lived electron spin coherence. Dephasing, resulting from interactions of the spins with their fluctuating environment, is generally assumed to degrade the sensitivity of this compass to the direction of the Earth's magnetic field...... to an Earth-strength magnetic field. Supported by calculations using toy radical pair models, we argue that these enhancements could be consistent with the molecular dynamics and magnetic interactions in avian cryptochromes....

  7. About the velocity operator for spinning particles in quantum mechanics

    International Nuclear Information System (INIS)

    Salesi, Giovanni; Recami, Erasmo; Rodrigues Junior, Waldyr A.

    1995-12-01

    Starting from the formal expressions of the hydrodynamical (or local) quantities employed in the applications of Clifford Algebras to quantum mechanics, we introduce - in terms of the ordinary tensorial framework - a new definition for the field of a generic quantity. By translating from Clifford into sensor algebra, we also propose a new (non-relativistic) velocity operator for a spin 1/2 particle. This operator is the sum of the ordinary part p/m describing the mean motion (the motion of the center-of-mass), and of a second part associated with the so-called Zitterbewegung, which is the spin internal motion observed in the center-of-mass frame. This spin component of the velocity operator is non-zero not only in the Pauli theoretical framework in presence of external magnetic fields and spin precession, but also in the Schroedinger case, when the wave-function is a spin eigenstate. In the latter case, one gets a decomposition of the velocity field for the Madelueng fluid into two distinct parts: which constitutes the non-relativistic analogue of the Gordon decomposition for the Dirac current. We find furthermore that the Zitterbewegung motion involves a velocity field which is solenoidal, and that the local angular velocity is parallel to the spin vector. In presence of a non-constant spin vector (Pauli case) we have, besides the component normal to spin present even in the Schroedinger theory, also a component of the local velocity which is parallel to the rotor of the spin vector. (author). 19 refs

  8. Lattice Distortion Mediated Paramagnetic Relaxation in High-Spin High-Symmetry Molecular Magnets

    Science.gov (United States)

    Garg, Anupam

    1998-08-01

    Field-dependent maxima in the relaxation rate of the magnetic molecules Mn12-Ac and Fe8-tacn have commonly been ascribed to some resonant tunneling phenomena. We argue instead that the relaxation is purely due to phonons. The rate maxima arise because of a Jahn-Teller-like distortion caused by the coupling of phonons to degenerate Zeeman levels of the molecule at the top of the barrier. The binding energy of the distorted intermediate states lowers the barrier height and increases the relaxation rate. A nonperturbative calculation of this effect is carried out for a model system. An approximate result for the field variation near a maximum is found to agree reasonably with experiment.

  9. Nuclear and hadronic reaction mechanisms producing spin asymmetry

    Indian Academy of Sciences (India)

    naka

    This may be possible in the framework of the QRC model by considering an annihilation and creation mechanism, as shown in figure 2, where the initial valence u quark, which carries the proton's spin information, annihilates with u in the target proton and then ss pair is created through the gluon propagation, and the s ...

  10. Surface dependent structural phase transition in SrTiO 3 observed with spin relaxation of 8Li

    Science.gov (United States)

    Smadella, M.; Salman, Z.; Chow, K. H.; Egilmez, M.; Fan, I.; Hossain, M. D.; Kiefl, R. F.; Kreitzman, S. R.; Levy, C. D. P.; MacFarlane, W. A.; Mansour, A. I.; Morris, G. D.; Parolin, T. J.; Pearson, M.; Saadaoui, H.; Song, Q.; Wang, D.

    2009-04-01

    We investigate the 105 K structural phase transition in SrTiO 3 using depth controlled measurements of the spin relaxation of 8Li. The measurements were performed in zero external magnetic field and rely on the local electric field gradient (EFG) at the crystalline implantation site of the 8Li ( I=2) to hold the nuclear polarization. The tetragonal distortion accompanying the phase transition modifies the EFG in some 8Li implantation sites, resulting in an observable loss of 8Li polarization. This loss of polarization begins at a temperature T*=150 K, indicating there is some loss of cubic symmetry well above the bulk transition. We find that the value of T* is unaffected by the range of implantation depths available (10-150 nm); however, the temperature dependence of the polarization depends on the surface preparation of the SrTiO 3 sample.

  11. Surface dependent structural phase transition in SrTiO{sub 3} observed with spin relaxation of {sup 8}Li

    Energy Technology Data Exchange (ETDEWEB)

    Smadella, M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Salman, Z. [Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); ISIS Facility, Rutherford-Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Chow, K.H.; Egilmez, M.; Fan, I. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Hossain, M.D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Kiefl, R.F., E-mail: kiefl@triumf.c [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Canadian Institute for Advanced Research (Canada); Kreitzman, S.R.; Levy, C.D.P. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); MacFarlane, W.A. [Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z3 (Canada); Mansour, A.I. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Morris, G.D. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Parolin, T.J. [Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z3 (Canada); Pearson, M. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Saadaoui, H.; Song, Q.; Wang, D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada)

    2009-04-15

    We investigate the 105 K structural phase transition in SrTiO{sub 3} using depth controlled measurements of the spin relaxation of {sup 8}Li. The measurements were performed in zero external magnetic field and rely on the local electric field gradient (EFG) at the crystalline implantation site of the {sup 8}Li (I=2) to hold the nuclear polarization. The tetragonal distortion accompanying the phase transition modifies the EFG in some {sup 8}Li implantation sites, resulting in an observable loss of {sup 8}Li polarization. This loss of polarization begins at a temperature T{sup *}=150K, indicating there is some loss of cubic symmetry well above the bulk transition. We find that the value of T{sup *} is unaffected by the range of implantation depths available (10-150 nm); however, the temperature dependence of the polarization depends on the surface preparation of the SrTiO{sub 3} sample.

  12. Pairwise NMR experiments for the determination of protein backbone dihedral angle Φ based on cross-correlated spin relaxation

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Shimada, Ichio

    2007-01-01

    Novel cross-correlated spin relaxation (CCR) experiments are described, which measure pairwise CCR rates for obtaining peptide dihedral angles Φ. The experiments utilize intra-HNCA type coherence transfer to refocus 2-bond J NCα coupling evolution and generate the N (i)-C α (i) or C'(i-1)-C α (i) multiple quantum coherences which are required for measuring the desired CCR rates. The contribution from other coherences is also discussed and an appropriate setting of the evolution delays is presented. These CCR experiments were applied to 15 N- and 13 C-labeled human ubiquitin. The relevant CCR rates showed a high degree of correlation with the Φ angles observed in the X-ray structure. By utilizing these CCR experiments in combination with those previously established for obtaining dihedral angle Ψ, we can determine high resolution structures of peptides that bind weakly to large target molecules

  13. Pseudogap Behavior of the Nuclear Spin-Lattice Relaxation Rate in FeSe Probed by 77Se-NMR

    Science.gov (United States)

    Shi, Anlu; Arai, Takeshi; Kitagawa, Shunsaku; Yamanaka, Takayoshi; Ishida, Kenji; Böhmer, Anna E.; Meingast, Christoph; Wolf, Thomas; Hirata, Michihiro; Sasaki, Takahiko

    2018-01-01

    We conducted 77Se-nuclear magnetic resonance studies of the iron-based superconductor FeSe in magnetic fields of 0.6 to 19 T to investigate the superconducting and normal-state properties. The nuclear spin-lattice relaxation rate divided by the temperature (T1T)-1 increases below the structural transition temperature Ts but starts to be suppressed below T*, well above the superconducting transition temperature Tc(H), resulting in a broad maximum of (T1T)-1 at Tp(H). This is similar to the pseudogap behavior in optimally doped cuprate superconductors. Because T* and Tp(H) decrease in the same manner as Tc(H) with increasing H, the pseudogap behavior in FeSe is ascribed to superconducting fluctuations, which presumably originate from the theoretically predicted preformed pair above Tc(H).

  14. Duchenne muscular dystrophy carriers. Proton spin-lattice relaxation times of skeletal muscles on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, K.; Nakano, I. (Shimoshizu National Hospital, Chiba (Japan). Dept. of Neurology); Fukuda, N.; Ikehira, H.; Tateno, Y. (National Inst. of Radiological Sciences, Chiba (Japan). Div. of Clinical Research); Aoki, Y. (National Inst. of Radiological Sciences, Chiba (Japan))

    1989-11-01

    By means of magnetic resonance imaging (MRI), the proton spin-lattice relaxation times (T1 values) of the skeletal muscles were measured in Duchenne muscular dystrophy (DMD) carriers and normal controls. The bound water fraction (BWF) was calculated from the T1 values obtained, according to the fast proton diffusion model. In the DMD carriers, T1 values of the gluteus maximus and quadriceps femoris muscles were significantly higher, and BWFs of these muscles were significantly lower than in normal control. Degenerative muscular changes accompanied by interstitial edema were presumed responsible for this abnormality. No correlation was observed between the muscle T1 and serum creatine kinase values. The present study showed that MRI could be a useful method for studying the dynamic state of water in both normal and pathological skeletal muscles. Its possible utility for DMD carrier detection was discussed briefly. (orig.).

  15. Studies of a Large Odd-Numbered Odd-Electron Metal Ring: Inelastic Neutron Scattering and Muon Spin Relaxation Spectroscopy of Cr8 Mn.

    Science.gov (United States)

    Baker, Michael L; Lancaster, Tom; Chiesa, Alessandro; Amoretti, Giuseppe; Baker, Peter J; Barker, Claire; Blundell, Stephen J; Carretta, Stefano; Collison, David; Güdel, Hans U; Guidi, Tatiana; McInnes, Eric J L; Möller, Johannes S; Mutka, Hannu; Ollivier, Jacques; Pratt, Francis L; Santini, Paolo; Tuna, Floriana; Tregenna-Piggott, Philip L W; Vitorica-Yrezabal, Iñigo J; Timco, Grigore A; Winpenny, Richard E P

    2016-01-26

    The spin dynamics of Cr8 Mn, a nine-membered antiferromagnetic (AF) molecular nanomagnet, are investigated. Cr8 Mn is a rare example of a large odd-membered AF ring, and has an odd-number of 3d-electrons present. Odd-membered AF rings are unusual and of interest due to the presence of competing exchange interactions that result in frustrated-spin ground states. The chemical synthesis and structures of two Cr8 Mn variants that differ only in their crystal packing are reported. Evidence of spin frustration is investigated by inelastic neutron scattering (INS) and muon spin relaxation spectroscopy (μSR). From INS studies we accurately determine an appropriate microscopic spin Hamiltonian and we show that μSR is sensitive to the ground-spin-state crossing from S=1/2 to S=3/2 in Cr8 Mn. The estimated width of the muon asymmetry resonance is consistent with the presence of an avoided crossing. The investigation of the internal spin structure of the ground state, through the analysis of spin-pair correlations and scalar-spin chirality, shows a non-collinear spin structure that fluctuates between non-planar states of opposite chiralities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Smooth muscle relaxant activity of Crocus sativus (saffron) and its constituents: possible mechanisms.

    Science.gov (United States)

    Mokhtari-Zaer, Amin; Khazdair, Mohammad Reza; Boskabady, Mohammad Hossein

    2015-01-01

    Saffron, Crocus sativus L. (C. sativus) is rich in carotenoids and used in traditional medicine for treatment of various conditions such as coughs, stomach disorders, amenorrhea, asthma and cardiovascular disorders. These therapeutic effects of the plant are suggested to be due to its relaxant effect on smooth muscles. The effect of C. sativus and its constituents on different smooth muscles and the underlying mechanisms have been studied. Several studies have shown the relaxant effects of C. sativus and its constituents including safranal, crocin, crocetin and kaempferol on blood vessels. In addition, it was reported that saffron stigma lowers systolic blood pressure. The present review highlights the relaxant effects of C. sativus and its constituents on various smooth muscles. The possible mechanisms of this relaxing effect including activation of ß2-adrenoceptors, inhibition of histamine H1 and muscarinic receptors and calcium channels and modulation of nitric oxide (NO) are also reviewed.

  17. Smooth muscle relaxant activity of Crocus sativus (saffron and its constituents: possible mechanisms

    Directory of Open Access Journals (Sweden)

    Amin Mokhtari-Zaer

    2015-08-01

    Full Text Available Saffron, Crocus sativus L. (C. sativus is rich in carotenoids and used in traditional medicine for treatment of various conditions such as coughs, stomach disorders, amenorrhea, asthma and cardiovascular disorders. These therapeutic effects of the plant are suggested to be due to its relaxant effect on smooth muscles. The effect of C. sativus and its constituents on different smooth muscles and the underlying mechanisms have been studied. Several studies have shown the relaxant effects of C. sativus and its constituents including safranal, crocin, crocetin and kaempferol on blood vessels. In addition, it was reported that saffron stigma lowers systolic blood pressure. The present review highlights the relaxant effects of C. sativus and its constituents on various smooth muscles. The possible mechanisms of this relaxing effect including activation of ß2-adrenoceptors, inhibition of histamine H1 and muscarinic receptors and calcium channels and modulation of nitric oxide (NO are also reviewed.

  18. Electron Spin Relaxation Can Enhance the Performance of a Cryptochrome-Based Magnetic Compass Sensor

    Science.gov (United States)

    2016-08-19

    2016 PUBLISHED 9 June 2016 Original content from this workmay be used under the terms of the Creative CommonsAttribution 3.0 licence . Any further...24], is normally expected to attenuate the sensitivity of the compass by destroying the spin coherence that is essential for its operation [35]. It...μT) and the symmetry axis of the hyperfine tensor. qF ( )S was determined using the equation ofmotion for the radical pair density operator , r̂ ( )t

  19. Mechanisms of endothelium-dependent relaxation evoked by anandamide in isolated human pulmonary arteries

    OpenAIRE

    Baranowska-Kuczko, Marta; Kozłowska, Hanna; Kozłowski, Mirosław; Schlicker, Eberhard; Kloza, Monika; Surażyński, Arkadiusz; Grzęda, Emilia; Malinowska, Barbara

    2014-01-01

    Endocannabinoids contract, relax or do not affect vessels with different calibre and tone in the pulmonary circulation in four species. The aim of the present study was to determine the mechanisms involved in the anandamide-induced relaxation of human pulmonary arteries (hPAs). Studies were performed in the isolated hPAs pre-constricted with the prostanoid TP receptor agonist, U-46619. To detect fatty acid amide hydrolase (FAAH) expression, Western blots were used. Anandamide concentration de...

  20. Smooth muscle relaxant activity of Crocus sativus (saffron) and its constituents: possible mechanisms

    OpenAIRE

    Mokhtari-Zaer, Amin; Khazdair, Mohammad Reza; Boskabady, Mohammad Hossein

    2015-01-01

    Saffron, Crocus sativus L. (C. sativus) is rich in carotenoids and used in traditional medicine for treatment of various conditions such as coughs, stomach disorders, amenorrhea, asthma and cardiovascular disorders. These therapeutic effects of the plant are suggested to be due to its relaxant effect on smooth muscles. The effect of C. sativus and its constituents on different smooth muscles and the underlying mechanisms have been studied. Several studies have shown the relaxant effects of C....

  1. Membrane docking geometry of GRP1 PH domain bound to a target lipid bilayer: an EPR site-directed spin-labeling and relaxation study.

    Directory of Open Access Journals (Sweden)

    Huai-Chun Chen

    Full Text Available The second messenger lipid PIP(3 (phosphatidylinositol-3,4,5-trisphosphate is generated by the lipid kinase PI3K (phosphoinositide-3-kinase in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP(3-specific pleckstrin homology (PH domains to the membrane surface. Despite the broad importance of PIP(3-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP(3 lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP(3. The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i PIP(3 target lipid that provides specificity and affinity, and (ii PS facilitator lipid that enhances the PIP(3 on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP(3 headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP(3 headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP(3 headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral

  2. Spin-lattice relaxation attenuation coefficients for on-line nuclear orientation experiments

    CERN Document Server

    Vénos, D; Severijns, N

    2003-01-01

    In on-line nuclear orientation experiments the relaxation process is of great importance. During implantation of the radioactive beam, the nuclear sublevel populations attain a secular equilibrium. For this case secular orientation parameters are introduced: B sublambda(sec)=rho sublambda B sublambda(th). Previously attenuation coefficients rho sublambda have already been tabulated, but only for lambda=2,4. In the last few years the number of nuclear orientation experiments in which beta or alpha particles are studied has increased. For these experiments the terms with lambda=1,3,6, and 8 are also necessary. Therefore, we have calculated the values of rho sublambda in full scope.

  3. Diffusional mechanisms augment the fluorine MR relaxation in paramagnetic perfluorocarbon nanoparticles that provides a "relaxation switch" for detecting cellular endosomal activation.

    Science.gov (United States)

    Hu, Lingzhi; Zhang, Lei; Chen, Junjie; Lanza, Gregory M; Wickline, Samuel A

    2011-09-01

    To develop a physical model for the (19)F relaxation enhancement in paramagnetic perfluorocarbon nanoparticles (PFC NP) and demonstrate its application in monitoring cellular endosomal functionality through a "(19)F relaxation switch" phenomenon. An explicit expression for (19)F longitudinal relaxation enhancement was derived analytically. Monte-Carlo simulation was performed to confirm the gadolinium-induced magnetic field inhomogeneity inside the PFC NP. Field-dependent T(1) measurements for three types of paramagnetic PFC NPs were carried out to validate the theoretical prediction. Based on the physical model, (19)F and (1)H relaxation properties of macrophage internalized paramagnetic PFC NPs were measured to evaluate the intracellular process of NPs by macrophages in vitro. The theoretical description was confirmed experimentally by field-dependent T(1) measurements. The shortening of (19)F T(1) was found to be attributed to the Brownian motion of PFC molecules inside the NP in conjunction with their ability to permeate into the lipid surfactant coating. A dramatic change of (19)F T(1) was observed upon endocytosis, revealing the transition from intact bound PFC NP to processed constituents. The proposed first-principle analysis of (19)F spins in paramagnetic PFC NP relates their structural parameters to the special MR relaxation features. The demonstrated "(19)F relaxation switch" phenomenon is potentially useful for monitoring cellular endosomal functionality. Copyright © 2011 Wiley-Liss, Inc.

  4. Magnetic field penetration depth of La(1.85)Sr(0.15)CuO4 measured by muon spin relaxation

    Science.gov (United States)

    Kossler, W. J.; Kempton, J. R.; Yu, X. H.; Schone, H. E.; Uemura, Y. J.

    1987-01-01

    Muon-spin-relaxation measurements have been performed on a high-Tc superconductor La(1.85)Sr(0.15)CuO4. In an external transverse magnetic field of 500 G, a magnetic field penetration depth of 2000 A at T = 10 K has been determined from the muon-spin-relaxation rate which increased with decreasing temperature below Tc. From this depth and the Pauli susceptibility, the superconducting carrier density is estimated at 3 x 10 to the 21st per cu cm. The zero-field relaxation rates above and below Tc were equal, which suggests that the superconducting state in this sample is not associated with detectable static magnetic ordering.

  5. Perinatal development influences mechanisms of bradykinin-induced relaxations in pulmonary resistance and conduit arteries differently.

    Science.gov (United States)

    Boels, P J; Deutsch, J; Gao, B; Haworth, S G

    2001-07-01

    As bradykinin (BYK) relaxes conduit (EPA) and resistance (RPA) pulmonary arteries from both perinatal and adult lungs, we investigated whether this vasodilator's relaxation-mechanisms were altered during perinatal development, differed between EPA and RPA and differed with other endothelium-dependent vasodilators, acetyicholine (ACH) and substance P (SP). Arteries from mature foetal (5 days), neonatal (approximately 5 min), newborn (60-84 h) and adult pigs (> or =6 months) were isolated, mounted for in vitro isometric force recording, activated with PGF(2alpha) (30 micromol/l) and relaxed with BYK (10 pmol/l-1 micromol/l), SP (10 pmol/l-0.1 micromol/l) or ACH (1 nmol/l-1 mmol/l). (i) BYK: L-NAME (100 micromol/l) attenuated relaxations in foetal EPA ( approximately 55%) but nearly abolished them in the adult ( approximately 80%). In RPA, L-NAME nearly abolished ( approximately 90%) relaxations in the foetus and this effect diminished progressively with age to approximately 20% in the adult. Indomethacin (IND, micromol/l) attenuated relaxations in neonatal (approximately 25%), new-born and adult EPA (both approximately 45%). Together, L-NAME and IND abolished relaxations in all EPA and in neonatal RPA but not in older RPA. SKF525a (100 micromol/l) attenuated relaxations in foetal RPA ( approximately 4%), diminishing in the adult RPA to approximately 10%. Together, SKF52Sa and L-NAME largely abolished relaxations in postnatal RPA (approximately 80%). Activation with K(+)=125 mmol/l attenuated relaxations in adult EPA (approximately 80%), foetal RPA ( approximately 45%) and neonatal RPA (approximately 75%) and abolished relaxations in RPA from older ages. (ii) ACH: L-NAME abolished relaxations in new-born EPA and RPA. In adult EPA, combined L-NAME and IND moderately attenuated relaxations. (iii) SP: Combined application of L-NAME and IND attenuated relaxations to a similar degree in new-born and adult EPA and RPA. In postnatal EPA, BYK-relaxations depend completely on

  6. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Kjær, Kasper Skov; Alonso-Mori, Roberto

    2017-01-01

    iron complexes with four cyanide (CN-;) ligands and one 2,2′-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL......) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2-. The two experimental techniques are highly complementary; the time-resolved UV...

  7. Mechanism of kolaviron-induced relaxation of rabbit aortic smooth ...

    African Journals Online (AJOL)

    (KV) and the exert mechanisms of action on VSM of rabbit aorta have not been reported. The present study examines the vascular effect of kolaviron on VSM of rabbit aorta and the possible mechanism of its vasorelaxant effect. MATERIALS AND METHODS. Extraction of Kolaviron (KV). Garcinia Kola seeds were obtained ...

  8. Viscoelastic characterization of compacted pharmaceutical excipient materials by analysis of frequency-dependent mechanical relaxation processes

    Science.gov (United States)

    Welch, K.; Mousavi, S.; Lundberg, B.; Strømme, M.

    2005-09-01

    A newly developed method for determining the frequency-dependent complex Young's modulus was employed to analyze the mechanical response of compacted microcrystalline cellulose, sorbitol, ethyl cellulose and starch for frequencies up to 20 kHz. A Debye-like relaxation was observed in all the studied pharmaceutical excipient materials and a comparison with corresponding dielectric spectroscopy data was made. The location in frequency of the relaxation peak was shown to correlate to the measured tensile strength of the tablets, and the relaxation was interpreted as the vibrational response of the interparticle hydrogen and van der Waals bindings in the tablets. Further, the measured relaxation strength, holding information about the energy loss involved in the relaxation processes, showed that the weakest material in terms of tensile strength, starch, is the material among the four tested ones that is able to absorb the most energy within its structure when exposed to external perturbations inducing vibrations in the studied frequency range. The results indicate that mechanical relaxation analysis performed over relatively broad frequency ranges should be useful for predicting material properties of importance for the functionality of a material in applications such as, e.g., drug delivery, drug storage and handling, and also for clarifying the origin of hitherto unexplained molecular processes.

  9. Dynamics of spin-flip photon-assisted tunneling

    NARCIS (Netherlands)

    Braakman, F.R.; Danon, J.; Schreiber, L.R.; Wegscheider, W.; Vandersypen, L.M.K.

    2014-01-01

    We present time-resolved measurements of spin-flip photon-assisted tunneling and spin-flip relaxation in a doubly occupied double quantum dot. The photon-assisted excitation rate as a function of magnetic field indicates that spin-orbit coupling is the dominant mechanism behind the spin-flip under

  10. Spin and rotations in Galois field quantum mechanics

    International Nuclear Information System (INIS)

    Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; Takeuchi, Tatsu

    2013-01-01

    We discuss the properties of Galois field quantum mechanics constructed on a vector space over the finite Galois field GF(q). In particular, we look at two-level systems analogous to spin, and discuss how SO(3) rotations could be embodied in such a system. We also consider two-particle ‘spin’ correlations and show that the Clauser–Horne-Shimony–Holt inequality is nonetheless not violated in this model. (paper)

  11. Reconstruction of mono-vacancies in carbon nanotubes: Atomic relaxation vs. spin polarization

    International Nuclear Information System (INIS)

    Berber, S.; Oshiyama, A.

    2006-01-01

    We have investigated the reconstruction of mono-vacancies in carbon nanotubes using density functional theory (DFT) geometry optimization and electronic structure calculations, employing a numerical basis set. We considered mono-vacancies in achiral nanotubes with diameter range ∼4-9A. Contrary to previous tight-binding calculations, our results indicate that mono-vacancies could have several metastable geometries, confirming the previous plane-wave DFT results. Formation energy of mono-vacancies is 4.5-5.5eV, increasing with increasing tube diameter. Net magnetic moment decreases from ideal mono-vacancy value after reconstruction, reflecting the reduction of the number of dangling bonds. In spite of the existence of a dangling bond, ground state of mono-vacancies in semiconducting tubes have no spin polarization. Metallic carbon nanotubes show net magnetic moment for most stable structure of mono-vacancy, except for very small diameter tubes

  12. Mechanical properties of plant cell walls probed by relaxation spectra

    DEFF Research Database (Denmark)

    Hansen, Steen Laugesen; Ray, Peter Martin; Karlsson, Anders Ola

    2011-01-01

    Transformants and mutants with altered cell wall composition are expected to display a biomechanical phenotype due to the structural role of the cell wall. It is often quite difficult, however, to distinguish the mechanical behavior of a mutant's or transformant's cell walls from that of the wild...

  13. Slow spin relaxation induced by magnetic field in [NdCo(bpdo)(H2O)4(CN)6]⋅3H2O.

    Science.gov (United States)

    Vrábel, P; Orendáč, M; Orendáčová, A; Čižmár, E; Tarasenko, R; Zvyagin, S; Wosnitza, J; Prokleška, J; Sechovský, V; Pavlík, V; Gao, S

    2013-05-08

    We report on a comprehensive investigation of the magnetic properties of [NdCo(bpdo)(H2O)4(CN)6]⋅3H2O (bpdo=4, 4'-bipyridine-N,N'-dioxide) by use of electron paramagnetic resonance, magnetization, specific heat and susceptibility measurements. The studied material was identified as a magnet with an effective spin S = 1/2 and a weak exchange interaction J/kB = 25 mK. The ac susceptibility studies conducted at audio frequencies and at temperatures from 1.8 to 9 K revealed that the application of a static magnetic field induces a slow spin relaxation. It is suggested that the relaxation in the magnetic field appears due to an Orbach-like process between the two lowest doublet energy states of the magnetic Nd(3+) ion. The appearance of the slow relaxation in a magnetic field cannot be associated with a resonant phonon trapping. The obtained results suggest that the relaxation is influenced by nuclear spin driven quantum tunnelling which is suppressed by external magnetic field.

  14. Nuclear spin relaxation of 8Li in a thin film of La 0.67Ca 0.33MnO 3

    Science.gov (United States)

    Miller, R. I.; Arseneau, D.; Chow, K. H.; Daviel, S.; Engelbertz, A.; Hossain, MD.; Keeler, T.; Kiefl, R. F.; Kreitzman, S.; Levy, C. D. P.; Morales, P.; Morris, G. D.; MacFarlane, W. A.; Parolin, T. J.; Poutissou, R.; Saadaoui, H.; Salman, Z.; Wang, D.; Wei, J. Y. T.

    2006-03-01

    We report β-NMR measurements of the nuclear spin relaxation rate (1/T1) in a thin film of La 0.67Ca 0.33MnO 3 (LCMO) using a low-energy beam of spin-polarized 8Li. In a small magnetic field of 150 G, there is a broad peak in 1/T1 near the Curie temperature (Tc=259 K) and a dramatic decrease in 1/T1 at lower temperatures. This is attributed to a critical slowing down of the spin fluctuations near Tc and freezing of the magnetic excitations at low temperatures, respectively. In addition, there is a small amplitude, slow relaxing component at high temperatures, which we attribute to 8Li in the SrTiO 3 substrate. There is an indication that the spin relaxation rate in the substrate is also peaked at Tc due to close proximity to the magnetic film. These results establish that low-energy β-NMR can be used as a probe of magnetic fluctuations in magnetic thin films over a wide range of temperatures.

  15. Peroxynitrite-induced relaxation in isolated canine cerebral arteries and mechanisms of action

    International Nuclear Information System (INIS)

    Li Jianfeng; Li Wenyan; Altura, Bella T.; Altura, Burton M.

    2004-01-01

    The present study was undertaken to determine the vascular actions of peroxynitrite (ONOO - ), the product of superoxide and nitric oxide (NO), in isolated canine cerebral arteries and to gain insight into its potential mechanisms of action. In the absence of any vasoactive agent, ONOO - (from 10 -7 to 10 -6 M) was able to reduce the basal tension. In prostaglandin F2α-precontracted canine basilar arterial rings, ONOO - elicited concentration-dependent relaxation at concentrations from 10 -8 to 10 -5 M. The effective concentrations producing approximately 50% maximal relaxation (EC 50 ) to ONOO - were 4.06 x 10 -6 and 4.12 x 10 -6 M in intact and denuded rings, respectively (P > 0.05). No significant differences in relaxation responses were found in ring preparations with or without endothelium (P > 0.05). The presence of either 5 μM methylene blue (MB) or 5 μM 1H-[1,2,4]oxadiazolo-[4,3-α]quinoxalin-1-one (ODQ) significantly inhibited the relaxations induced by ONOO - . Tetraethylammonium chloride (T-2265) significantly decreased the ONOO - -induced relaxations in a concentration-dependent manner. However, ONOO - had no effect on rings precontracted by high KCL (P > 0.05). Addition of low concentrations of calyculin A (50 nM) was able to abolish the ONOO - -induced relaxation. Furthermore, ONOO - significantly inhibited calcium-induced contractions of K + -depolarized canine cerebral rings in a concentration-related manner. Lastly, a variety of pharmacological agents and antagonists including L-NMMA, L-arginine, indomethacin, atropine, naloxone, diphenhydramine, cimetine, glibenclamide, haloperidol, etc., did not influence the relaxant effects of ONOO - on the rings. Our new results suggest that ONOO - -triggered relaxation, on canine cerebral arteries, is mediated by elevation of cyclic guanosine monophosphate (cGMP) levels, membrane hyperpolarization via K+ channel activation, activation of myosin light chain phosphatase activity, and interference with

  16. Determination of proton transverse relaxation times in homonuclear-coupled Spin Systems

    Science.gov (United States)

    Gochin, Miriam

    A new method is described for obtaining proton transverse relaxation times in homonuclear-coupled systems. The oscillatory effect of the coupling on the T2 decay was removed by using the attached heteronucleus as a filter. A BIRD pulse (J. R. Garbow, D. P. Weitekamp, and A. Pines, Chem. Phys. Lett.93, 504, 1982) was applied in the center of the T2 decay period, causing protons directly and remotely connected to the heteronucleus to be decoupled from each other. Protons directly bound to the heteronucleus were inverted, leaving remote protons unaffected. Thus the method works well in natural-abundance 13C and 15N systems or for 15N-enriched biological materials, where no NN connectivities exist. The importance of obtaining proton T2 values pertains to their usefulness and sensitivity in quantitating structure and mobility in molecules. Sequences for obtaining proton T2 values were described and demonstrated on formate, alcohol, and gramicidin S. The accuracy of the measured T2 as a function of X-nucleus offset and heteronuclear coupling constant was assessed.

  17. Effect of spatial spin modulation on relaxation and NMR frequencies of sup 5 sup 7 Fe nuclei in ferroelectric antiferromagnetic BiFeO sub 3

    CERN Document Server

    Zalessky, A V; Zvezdin, A K; Gippius, A A; Morozova, E N; Khozeev, D F; Bush, A S; Pokatilov, V S

    2002-01-01

    The NMR spectra on the iron nuclei in the BiFeO sub 3 antiferromagnetic sample enriched by the sup 5 sup 7 Fe (95.43%) with the spatially-modulated magnetic structure are studied. It is established that the cycloid-type spin modulation in the BiFeO sub 3 produces spatial modulation of the nuclear spin-spin relaxation velocity and leads to the spectral nonuniform widening of the NMR local line. It is determined also that the local magnetic moments of the iron ions on various cycloid sections differently depend on temperature which testifies to different character of the spin waves excitation. The analogy of the experimental results with the NMR regularities in the Bloch wall is discussed

  18. In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jiancheng; Wang, Tao, E-mail: wangtaowt@aspe.buaa.edu.cn; Quan, Wei; Yuan, Heng; Li, Yang [School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191 (China); Zhang, Hong; Zou, Sheng [School of Instrument Science and Engineering, Southeast University, Nanjing 210096 (China)

    2014-06-15

    A novel method to compensate the residual magnetic field for an atomic magnetometer consisting of two perpendicular beams of polarizations was demonstrated in this paper. The method can realize magnetic compensation in the case where the pumping rate of the probe beam cannot be ignored. In the experiment, the probe beam is always linearly polarized, whereas, the probe beam contains a residual circular component due to the imperfection of the polarizer, which leads to the pumping effect of the probe beam. A simulation of the probe beam's optical rotation and pumping rate was demonstrated. At the optimized points, the wavelength of the probe beam was optimized to achieve the largest optical rotation. Although, there is a small circular component in the linearly polarized probe beam, the pumping rate of the probe beam was non-negligible at the optimized wavelength which if ignored would lead to inaccuracies in the magnetic field compensation. Therefore, the dynamic equation of spin evolution was solved by considering the pumping effect of the probe beam. Based on the quasi-static solution, a novel magnetic compensation method was proposed, which contains two main steps: (1) the non-pumping compensation and (2) the sequence compensation with a very specific sequence. After these two main steps, a three-axis in situ magnetic compensation was achieved. The compensation method was suitable to design closed-loop spin-exchange relaxation-free magnetometer. By a combination of the magnetic compensation and the optimization, the magnetic field sensitivity was approximately 4 fT/Hz{sup 1/2}, which was mainly dominated by the noise of the magnetic shield.

  19. A mechanical approach to mean field spin models

    Science.gov (United States)

    Genovese, Giuseppe; Barra, Adriano

    2009-05-01

    Inspired by the bridge pioneered by Guerra among statistical mechanics on lattice and analytical mechanics on 1+1 continuous Euclidean space time, we built a self-consistent method to solve for the thermodynamics of mean field models defined on lattice, whose order parameters self-average. We show the whole procedure by analyzing in full detail the simplest test case, namely, the Curie-Weiss model. Further, we report some applications also to models whose order parameters do not self-average by using the Sherrington-Kirkpatrick spin glass as a guide.

  20. Acrolein relaxes mouse isolated tracheal smooth muscle via a TRPA1-dependent mechanism.

    Science.gov (United States)

    Cheah, Esther Y; Burcham, Philip C; Mann, Tracy S; Henry, Peter J

    2014-05-01

    Airway sensory C-fibres express TRPA1 channels which have recently been identified as a key chemosensory receptor for acrolein, a toxic and highly prevalent component of smoke. TRPA1 likely plays an intermediary role in eliciting a range of effects induced by acrolein including cough and neurogenic inflammation. Currently, it is not known whether acrolein-induced activation of TRPA1 produces other airway effects including relaxation of mouse airway smooth muscle. The aims of this study were to examine the effects of acrolein on airway smooth muscle tone in mouse isolated trachea, and to characterise the cellular and molecular mechanisms underpinning the effects of acrolein. Isometric tension recording studies were conducted on mouse isolated tracheal segments to characterise acrolein-induced relaxation responses. Release of the relaxant PGE₂ was measured by EIA to examine its role in the response. Use of selective antagonists/inhibitors permitted pharmacological characterisation of the molecular and cellular mechanisms underlying this relaxation response. Acrolein induced dose-dependent relaxation responses in mouse isolated tracheal segments. Importantly, these relaxation responses were significantly inhibited by the TRPA1 antagonists AP-18 and HC-030031, an NK₁ receptor antagonist RP-67580, and the EP₂ receptor antagonist PF-04418948, whilst completely abolished by the non-selective COX inhibitor indomethacin. Acrolein also caused rapid PGE₂ release which was suppressed by HC-030031. In summary, acrolein induced a novel bronchodilator response in mouse airways. Pharmacologic studies indicate that acrolein-induced relaxation likely involves interplay between TRPA1-expressing airway sensory C-fibres, NK₁ receptor-expressing epithelial cells, and EP₂-receptor expressing airway smooth muscle cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Rotational dynamics in supercooled water from nuclear spin relaxation and molecular simulations.

    Science.gov (United States)

    Qvist, Johan; Mattea, Carlos; Sunde, Erik P; Halle, Bertil

    2012-05-28

    Structural dynamics in liquid water slow down dramatically in the supercooled regime. To shed further light on the origin of this super-Arrhenius temperature dependence, we report high-precision (17)O and (2)H NMR relaxation data for H(2)O and D(2)O, respectively, down to 37 K below the equilibrium freezing point. With the aid of molecular dynamics (MD) simulations, we provide a detailed analysis of the rotational motions probed by the NMR experiments. The NMR-derived rotational correlation time τ(R) is the integral of a time correlation function (TCF) that, after a subpicosecond librational decay, can be described as a sum of two exponentials. Using a coarse-graining algorithm to map the MD trajectory on a continuous-time random walk (CTRW) in angular space, we show that the slowest TCF component can be attributed to large-angle molecular jumps. The mean jump angle is ∼48° at all temperatures and the waiting time distribution is non-exponential, implying dynamical heterogeneity. We have previously used an analogous CTRW model to analyze quasielastic neutron scattering data from supercooled water. Although the translational and rotational waiting times are of similar magnitude, most translational jumps are not synchronized with a rotational jump of the same molecule. The rotational waiting time has a stronger temperature dependence than the translation one, consistent with the strong increase of the experimentally derived product τ(R) D(T) at low temperatures. The present CTRW jump model is related to, but differs in essential ways from the extended jump model proposed by Laage and co-workers. Our analysis traces the super-Arrhenius temperature dependence of τ(R) to the rotational waiting time. We present arguments against interpreting this temperature dependence in terms of mode-coupling theory or in terms of mixture models of water structure.

  2. Spin Glass a Bridge Between Quantum Computation and Statistical Mechanics

    Science.gov (United States)

    Ohzeki, Masayuki

    2013-09-01

    In this chapter, we show two fascinating topics lying between quantum information processing and statistical mechanics. First, we introduce an elaborated technique, the surface code, to prepare the particular quantum state with robustness against decoherence. Interestingly, the theoretical limitation of the surface code, accuracy threshold, to restore the quantum state has a close connection with the problem on the phase transition in a special model known as spin glasses, which is one of the most active researches in statistical mechanics. The phase transition in spin glasses is an intractable problem, since we must strive many-body system with complicated interactions with change of their signs depending on the distance between spins. Fortunately, recent progress in spin-glass theory enables us to predict the precise location of the critical point, at which the phase transition occurs. It means that statistical mechanics is available for revealing one of the most interesting parts in quantum information processing. We show how to import the special tool in statistical mechanics into the problem on the accuracy threshold in quantum computation. Second, we show another interesting technique to employ quantum nature, quantum annealing. The purpose of quantum annealing is to search for the most favored solution of a multivariable function, namely optimization problem. The most typical instance is the traveling salesman problem to find the minimum tour while visiting all the cities. In quantum annealing, we introduce quantum fluctuation to drive a particular system with the artificial Hamiltonian, in which the ground state represents the optimal solution of the specific problem we desire to solve. Induction of the quantum fluctuation gives rise to the quantum tunneling effect, which allows nontrivial hopping from state to state. We then sketch a strategy to control the quantum fluctuation efficiently reaching the ground state. Such a generic framework is called

  3. Anomalous 125Te Nuclear Spin Relaxation Coincident with Charge Kondo Behavior in Superconducting Pb1-xTlxTe

    Science.gov (United States)

    Mukuda, Hidekazu; Matsumura, Takashi; Maki, Shota; Yashima, Mitsuharu; Kitaoka, Yoshio; Miyake, Kazumasa; Murakami, Hironaru; Giraldo-Gallo, Paula; Geball, Theodore H.; Fisher, Ian R.

    2018-02-01

    We report the results of a 125Te NMR study of single crystalline Pb1-xTlxTe (x = 0, 0.35, 1.0%) as a window on the novel electronic states associated with the thallium impurities in PbTe. The Knight shift is enhanced as x increases, corresponding to an increase in the average density of states (DOS) coupled to a strong spatial variation in the local DOS surrounding each Tl dopant. Remarkably, for the superconducting composition (x = 1.0%), the 125Te nuclear spin relaxation rate (1/T1T) for Te ions that are close to the Tl dopants is unexpectedly enhanced in the normal state below a characteristic temperature of ˜10 K, below which the resistivity experiences an upturn. Such a simultaneous upturn in both the resistivity and (1/T1T) was not suppressed in the high magnetic field. We suggest that these observations are consistently accounted for by dynamical charge fluctuations in the absence of paramagnetism, which is anticipated by the charge Kondo scenario associated with the Tl dopants. In contrast, such anomalies were not detected in the non-superconducting samples (x = 0 and 0.35%), suggesting a connection between dynamical valence fluctuations and the occurrence of superconductivity in Pb1-xTlxTe.

  4. Spin wave relaxation and magnetic properties in [M/Cu] super-lattices; M=Fe, Co and Ni

    International Nuclear Information System (INIS)

    Fahmi, A.; Qachaou, A.

    2009-01-01

    In this work, we study the elementary excitations and magnetic properties of the [M/Cu] super-lattices with: M=Fe, Co and Ni, represented by a Heisenberg ferromagnetic system with N atomic planes. The nearest neighbour (NN), next nearest neighbour (NNN) exchange, dipolar interactions and surface anisotropy effects are taken into account and the Hamiltonian is studied in the framework of the linear spin wave theory. In the presence of the exchange alone, the excitation spectrum E(k) and the magnetization z >/S analytical expressions are obtained using the Green's function formalism. The obtained relaxation time of the magnon populations is nearly the same in the Fe and Co-based super-lattices, while these magnetic excitations would last much longer in the Ni-based super lattice. A numerical study of the surface anisotropy and long-ranged dipolar interaction combined effects are also reported. The exchange integral values deduced from a comparison with experience for the three super-lattices are coherent.

  5. Accuracy enhancement of magnetic field distribution measurements within a large cell spin-exchange relaxation-free magnetometer

    Science.gov (United States)

    Gusarov, Alexander; Ben-Amar Baranga, Andrei; Levron, David; Shuker, Reuben

    2018-04-01

    The factorial design technique is implemented to achieve greater accuracy in the determination of magnetic field distribution within a single cell of spin-exchange relaxation-free atomic magnetometer. Three-dimensional magnetic field distribution within a single vapor cell can be found by consecutively pumping, layer by layer, all the cell volumes perpendicular to the probe laser beam, detected by a photodiode array. Thus each element of the array collects information about the magnetic field in the small volume (voxel) which forms when the corresponding part of the probe beam and optically pumped layer cross. One of the most effective ways to enhance measurement accuracy is repeated pumping of the layers and averaging the measured results. However, the measurement time is multiplied several times due to the repeated scanning of the cell volume. The suggested technique enables increased measurement accuracy of each voxel while preserving the number of measurements. Magnetic field distribution is determined by the illumination of the cell layers one by one or simultaneously, according to a special algorithm, with subsequent multifactorial analysis of the obtained results.

  6. Screening of point charge impurities in highly anisotropic metals: application to mu+-spin relaxation in underdoped cuprate superconductors.

    Science.gov (United States)

    Shekhter, Arkady; Shu, Lei; Aji, Vivek; MacLaughlin, D E; Varma, C M

    2008-11-28

    We calculate the screening charge density distribution due to a point charge, such as that of a positive muon (mu+), placed between the planes of a highly anisotropic layered metal. In underdoped hole cuprates the screening charge converts the charge density in the metallic-plane unit cells in the vicinity of the mu+ to nearly its value in the insulating state. The current-loop-ordered state observed by polarized neutron diffraction then vanishes in such cells, and also in nearby cells over a distance of order the intrinsic correlation length of the loop-ordered state. This strongly suppresses the magnetic field at the mu+ site. We estimate this suppressed field in underdoped YBa2Cu3O6+x and La2-xSrxCuO4, and find consistency with the observed approximately 0.2 G field in the former case and the observed upper bound of approximately 0.2 G in the latter case. This resolves the controversy between the neutron diffraction and mu-spin relaxation experiments.

  7. Effect of dislocations of forest on relaxation of mechanical stresses in irradiated zinc crystals

    International Nuclear Information System (INIS)

    Troitskij, O.A.; Kalymbetov, P.U.; Kusainov, S.G.; Shambulov, N.B.

    1988-01-01

    Effect of forest dislocations on the value of electron-plastic effect (EPE) in zinc crystals during their irradiation by accelerated electron packets is investigated. The following mechanical parameters are determined experimentally: total relaxation of voltages Δσ for 180s; change in reforming voltage Δσpl in single pulses of irradiation on the slope and bottom of relaxation curves. The results obtained testify to the effectiveness of forest dislocations as surmountable obstacles for the dislocations shiding in the basis plane

  8. Mechanisms of endothelium-dependent relaxation evoked by anandamide in isolated human pulmonary arteries.

    Science.gov (United States)

    Baranowska-Kuczko, Marta; Kozłowska, Hanna; Kozłowski, Mirosław; Schlicker, Eberhard; Kloza, Monika; Surażyński, Arkadiusz; Grzęda, Emilia; Malinowska, Barbara

    2014-05-01

    Endocannabinoids contract, relax or do not affect vessels with different calibre and tone in the pulmonary circulation in four species. The aim of the present study was to determine the mechanisms involved in the anandamide-induced relaxation of human pulmonary arteries (hPAs). Studies were performed in the isolated hPAs pre-constricted with the prostanoid TP receptor agonist, U-46619. To detect fatty acid amide hydrolase (FAAH) expression, Western blots were used. Anandamide concentration dependently relaxed the endothelium-intact hPAs pre-constricted with U-46619. The anandamide-induced relaxation was virtually abolished by removal of the endothelium and strongly attenuated by inhibitors of cyclooxygenases (indomethacin, COX-1/COX-2, and nimesulide, COX-2), nitric oxide synthase (N (G) -nitro-L-arginine methyl ester) given separately or in combination, FAAH (URB597), and the prostanoid IP receptor antagonist, RO1138452. The anandamide-evoked relaxation in the endothelium-intact vessels was attenuated in KCl pre-constricted preparations or by the inhibitor of large-conductance Ca(2+)-activated K(+) channels, iberiotoxin. In experiments performed in the presence of URB597 to exclude effects of anandamide metabolites, the antagonist of the endothelial cannabinoid receptor, O-1918, diminished the anandamide-evoked relaxation whereas the antagonists of cannabinoid CB1, CB2 and vanilloid TRPV1 receptors, AM251, SR144528 and capsazepine, respectively, had no effect. Western blot studies revealed the occurrence of FAAH protein in the hPAs. The present study shows that anandamide breakdown products, cyclooxygenase pathways, nitric oxide, potassium channels and the O-1918-sensitive cannabinoid receptor play a role in the anandamide-induced relaxation of the hPAs with intact endothelium.

  9. Spin diffusion length of Permalloy using spin absorption in lateral spin valves

    Science.gov (United States)

    Sagasta, Edurne; Omori, Yasutomo; Isasa, Miren; Otani, YoshiChika; Hueso, Luis E.; Casanova, Fèlix

    2017-08-01

    We employ the spin absorption technique in lateral spin valves to extract the spin diffusion length of Permalloy (Py) as a function of temperature and resistivity. A linear dependence of the spin diffusion length with the conductivity of Py is observed, evidencing that the Elliott-Yafet mechanism is the dominant spin relaxation mechanism in Permalloy. Completing the dataset with additional data found in the literature, we obtain λPy = (0.91 ± 0.04) (fΩm2)/ρPy.

  10. Comparison of the Magnetic Anisotropy and Spin Relaxation Phenomenon of Dinuclear Terbium(III) Phthalocyaninato Single-Molecule Magnets Using the Geometric Spin Arrangement.

    Science.gov (United States)

    Morita, Takaumi; Damjanović, Marko; Katoh, Keiichi; Kitagawa, Yasutaka; Yasuda, Nobuhiro; Lan, Yanhua; Wernsdorfer, Wolfgang; Breedlove, Brian K; Enders, Markus; Yamashita, Masahiro

    2018-02-28

    Herein we report the synthesis and characterization of a dinuclear Tb III single-molecule magnet (SMM) with two [TbPc 2 ] 0 units connected via a fused-phthalocyaninato ligand. The stable and robust complex [(obPc)Tb(Fused-Pc)Tb(obPc)] (1) was characterized by using synchrotron radiation measurements and other spectroscopic techniques (ESI-MS, FT-IR, UV). The magnetic couplings between the Tb III ions and the two π radicals present in 1 were explored by means of density functional theory (DFT). Direct and alternating current magnetic susceptibility measurements were conducted on magnetically diluted and nondiluted samples of 1, indicating this compound to be an SMM with improved properties compared to those of the well-known [TbPc 2 ] -/0/+ and the axially symmetric dinuclear Tb III phthalocyaninato triple-decker complex (Tb 2 (obPc) 3 ). Assuming that the probability of quantum tunneling of the magnetization (QTM) occurring in one TbPc 2 unit is P QTM , the probability of QTM simultaneously occurring in 1 is P QTM 2 , meaning that QTM is effectively suppressed. Furthermore, nondiluted samples of 1 underwent slow magnetic relaxation times (τ ≈ 1000 s at 0.1 K), and the blocking temperature (T B ) was determined to be ca. 16 K with an energy barrier for spin reversal (U eff ) of 588 cm -1 (847 K) due to D 4d geometry and weak inter- and intramolecular magnetic interactions as an exchange bias (H bias ), reducing QTM. Four hyperfine steps were observed by micro-SQUID measurement. Furthermore, solution NMR measurements (one-dimensional, two-dimensional, and dynamic) were done on 1, which led to the determination of the high rotation barrier (83 ± 10 kJ/mol) of the obPc ligand. A comparison with previously reported Tb III triple-decker compounds shows that ambient temperature NMR measurements can indicate improvements in the design of coordination environments for SMMs. A large U eff causes strong uniaxial magnetic anisotropy in 1, leading to a χ ax value (1.39

  11. Nuclear spin bath effects in molecular nanomagnets: Direct quantum mechanical simulations

    Science.gov (United States)

    Sinitsyn, N. A.; Dobrovitski, V. V.

    2004-11-01

    We investigate the influence of nuclear spins on the electronic spin tunneling in magnetic molecules such as Fe8 , focusing on the role of the spin diffusion in the nuclear spin bath. We simulate the quantum spin dynamics by numerically solving the time-dependent Schrödinger equation for the compound system (the electronic spin plus the bath spins). Our results demonstrate that the effect of the spin bath cannot always be modeled as a randomly varying magnetic field acting on the electronic spin. We consider two dynamical regimes: the spin relaxation in a constant magnetic field, and the spin tunneling in the linearly varying magnetic field passing the avoided level crossing, so-called Landau-Zener-Stückelberg (LZS) transition. For the first regime, we confirmed that the hole in the magnetization distribution has the width of the hyperfine fields distribution. For the second regime, we found that the transition probability for moderately slow sweeps deviates from the standard LZS prediction, while for the fast sweeps the deviation is negligible.

  12. Electron spin-lattice relaxation of the S0 state of the oxygen-evolving complex in photosystem II and of dinuclear manganese model complexes.

    Science.gov (United States)

    Kulik, L V; Lubitz, W; Messinger, J

    2005-07-05

    The temperature dependence of the electron spin-lattice relaxation time T1 was measured for the S0 state of the oxygen-evolving complex (OEC) in photosystem II and for two dinuclear manganese model complexes by pulse EPR using the inversion-recovery method. For [Mn(III)Mn(IV)(mu-O)2 bipy4]ClO4, the Raman relaxation process dominates at temperatures below 50 K. In contrast, Orbach type relaxation was found for [Mn(II)Mn(III)(mu-OH)(mu-piv)2(Me3 tacn)2](ClO4)2 between 4.3 and 9 K. For the latter complex, an energy separation of 24.7-28.0 cm(-1) between the ground and the first excited electronic state was determined. In the S0 state of photosystem II, the T1 relaxation times were measured in the range of 4.3-6.5 K. A comparison with the relaxation data (rate and pre-exponential factor) of the two model complexes and of the S2 state of photosystem II indicates that the Orbach relaxation process is dominant for the S0 state and that its first excited state lies 21.7 +/- 0.4 cm(-1) above its ground state. The results are discussed with respect to the structure of the OEC in photosystem II.

  13. The relaxant effect of Nigella sativa on smooth muscles, its possible mechanisms and clinical applications

    Science.gov (United States)

    Keyhanmanesh, Rana; Gholamnezhad, Zahra; Boskabady, Mohammad Hossien

    2014-01-01

    Nigella sativa (N. sativa) is a spice plant which has been traditionally used for culinary and medicinal purposes. Different therapeutic properties including the beneficial effects on asthma and dyspnea, digestive and gynecology disorders have been described for the seeds of N. sativa. There is evidence of the relaxant effects of this plant and some of its constituents on different types of smooth muscle including rabbit aorta, rabbit jejunum and trachea. The relaxant effect of N. sativa could be of therapeutic importance such as bronchodilation in asthma, vasodilation in hypertension and therapeutic effect on digestive or urogenital disorders. Therefore in the present article, the relaxant effects of N. sativa and its constituents on smooth muscles and its possible mechanisms as well as clinical application of this effect were reviewed. PMID:25859297

  14. Mechanics and transport phenomena in agarose-based hydrogels studied by compression-relaxation tests.

    Science.gov (United States)

    Caccavo, Diego; Cascone, Sara; Poto, Serena; Lamberti, Gaetano; Barba, Anna Angela

    2017-07-01

    Hydrogels are widespread materials, used in several frontier fields, due to their peculiar behavior: they couple solvent mass transport to system mechanics, exhibiting viscoelastic and poroelastic characteristics. The full understanding of this behavior is crucial to correctly design such complex systems. In this study agarose gels has been investigated through experimental stress-relaxation tests and with the aid of a 3D poroviscoelastic model. At the investigated experimental conditions, the agarose gels samples show a prevalent viscoelastic behavior, revealing limited water transport and an increase of the stiffness as well as of the relaxation time along with the polymer concentration. The model parameters, derived from the fitting of some experimental data, have been generalized and used to purely predict the behavior of another set of gels. The stress-relaxation tests coupled with mathematical modeling demonstrated to be a powerful tool to study hydrogels' behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Near-Surface Structural Phase Transition of SrTiO3 Studied with Zero-Field β-Detected Nuclear Spin Relaxation and Resonance

    Science.gov (United States)

    Salman, Z.; Kiefl, R. F.; Chow, K. H.; Hossain, M. D.; Keeler, T. A.; Kreitzman, S. R.; Levy, C. D. P.; Miller, R. I.; Parolin, T. J.; Pearson, M. R.; Saadaoui, H.; Schultz, J. D.; Smadella, M.; Wang, D.; Macfarlane, W. A.

    2006-04-01

    We demonstrate that zero-field β-detected nuclear quadrupole resonance and spin relaxation of low energy Li8 can be used as a sensitive local probe of structural phase transitions near a surface. We find that the transition near the surface of a SrTiO3 single crystal occurs at Tc˜150K, i.e., ˜45K higher than Tcbulk, and that the tetragonal domains formed below Tc are randomly oriented.

  16. Relaxant effects of Ocimum basilicum on guinea pig tracheal chains and its possible mechanism(s

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Boskabady

    2005-01-01

    Full Text Available Therapeutic effects of Ocimum basilicum on respiratory diseases especially dyspnea have been reported in Iranian ancient medical books. In the present study, the relaxant effects of macerated and soxhlet extracts of this plant on tracheal chains of guinea pigs were evaluated. The relaxant effects of 4 cumulative concentrations of macerated and soxhlet extracts (0.25, 0.5, 0.75 and 1.0 W/V in comparison with saline as negative control and 4 cumulative concentrations of theophylline (0.25, 0.5, 0.75, and 1.0 mM as positive control were examined on precontracted tracheal chains of two groups of 6 guinea pig by 60 mM KCl (group 1 and 10 µM methacholine (group 2. Decrease in contractile tone of tracheal chains was considered as relaxant effect. In group 1 experiments only the last two higher concentrations of theophylline showed significant relaxant effect compared to that of saline (p<0.001 for both concentrations, which were significantly greater than those of macerated and soxhlet extracts (p<0.001 for all cases and in group 2 experiments both macerated and soxhlet extracts showed concentrationdependent relaxant effects compared to that of saline (p<0.05 to p<0.001 for both extracts. There were significant differences between the relaxant effects of both extracts with those of theophylline in group 2 experiments (p<0.01 to p<0.001. The relaxant effects of macerated and soxhlet extracts in group 1 were significantly lower than those of groups 2. These results showed a potent relaxant effect of Ocimum basilicum on tracheal chains of guinea pigs which were lower than theophylline at concentrations used.

  17. High-temperature mechanical relaxation in glass-like B2O3

    International Nuclear Information System (INIS)

    Lomovskoj, V.A.

    1987-01-01

    The study of high-temperature mechanical relaxation in glass-like B 2 O 3 was carried out at the temperatures from 470 to 620 K using the method of internal friction at freely damped tortional vibrations (frequency range is 0.05 - 10 Hz) and forced torsional vibrations (frequency range is 0.1 -0.00001 Hz). Possible mechanisms of high-temperature mechanical relaxation are considered. It is shown that several possible mechanisms of high-temperature mechanical relaxation in glass-like B 2 O 3 can be singled out. Switching of B-O bridge bond between two boroxol cycles of boroxol grouping for oxygen vacancy in spatial structure of glass-like B 2 O 3 , formed as a result of thermal breaking of one out of three B-O bonds, according to diffusion theory of glass viscosity. The slip of one layer boroxol groupings as to another one in the presence of only tricoordinated boron atoms in the structure of glass-like B 2 O 3

  18. Lattice dynamics, phase transitions and spin relaxation in [Fe(C{sub 5}H{sub 5}){sub 2}] PF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Herber, R. H.; Felner, I.; Nowik, I., E-mail: nowik@vms.huji.ac.il [The Hebrew University, Racah Institute of Physics (Israel)

    2016-12-15

    The organometallic compound ferrocenium hexafluorophosphate, [Fe(C{sub 5}H{sub 5}){sub 2}] PF{sub 6}, has been studied by Mössbauer spectroscopy in the past, mainly to determine the crystal structure at high temperatures. Here we present studies at 95 K to 305 K and analyze the spectra in terms of spin relaxation theory which yields accurately the hyperfine interaction parameters and the spin-spin and spin-lattice relaxation rates in this paramagnetic compound. The spectral area under the resonance curve yields the recoil free fraction and thus the mean square of the vibration amplitude . One observes a large discontinuity in the slope of versus T at 210 K, indicative of a phase transition. The analysis of the spectra proves that the quadrupole interaction is small but certainly negative, ½e{sup 2}qQ = -0.12(2) mm/s, and causes the asymmetry observed in the spectra. The detailed analysis yields also, for the first time, the fluctuating effective magnetic hyperfine field, H {sub eff} = 180(50) kOe.

  19. Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes

    Science.gov (United States)

    Avsar, Ahmet; Tan, Jun Y.; Kurpas, Marcin; Gmitra, Martin; Watanabe, Kenji; Taniguchi, Takashi; Fabian, Jaroslav; Özyilmaz, Barbaros

    2017-09-01

    Two-dimensional materials offer new opportunities for both fundamental science and technological applications, by exploiting the electron's spin. Although graphene is very promising for spin communication due to its extraordinary electron mobility, the lack of a bandgap restricts its prospects for semiconducting spin devices such as spin diodes and bipolar spin transistors. The recent emergence of two-dimensional semiconductors could help overcome this basic challenge. In this letter we report an important step towards making two-dimensional semiconductor spin devices. We have fabricated a spin valve based on ultrathin (~5 nm) semiconducting black phosphorus (bP), and established fundamental spin properties of this spin channel material, which supports all electrical spin injection, transport, precession and detection up to room temperature. In the non-local spin valve geometry we measure Hanle spin precession and observe spin relaxation times as high as 4 ns, with spin relaxation lengths exceeding 6 μm. Our experimental results are in a very good agreement with first-principles calculations and demonstrate that the Elliott-Yafet spin relaxation mechanism is dominant. We also show that spin transport in ultrathin bP depends strongly on the charge carrier concentration, and can be manipulated by the electric field effect.

  20. Electron Spin Dynamics in Semiconductor Quantum Dots

    International Nuclear Information System (INIS)

    Marie, X.; Belhadj, T.; Urbaszek, B.; Amand, T.; Krebs, O.; Lemaitre, A.; Voisin, P.

    2011-01-01

    An electron spin confined to a semiconductor quantum dot is not subject to the classical spin relaxation mechanisms known for free carriers but it strongly interacts with the nuclear spin system via the hyperfine interaction. We show in time resolved photoluminescence spectroscopy experiments on ensembles of self assembled InAs quantum dots in GaAs that this interaction leads to strong electron spin dephasing.

  1. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Benjamin Michael [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    As time progresses, the world is using up more of the planet's natural resources. Without technological advances, the day will eventually arrive when these natural resources will no longer be sufficient to supply all of the energy needs. As a result, society is seeing a push for the development of alternative fuel sources such as wind power, solar power, fuel cells, and etc. These pursuits are even occurring in the state of Iowa with increasing social pressure to incorporate larger percentages of ethanol in gasoline. Consumers are increasingly demanding that energy sources be more powerful, more durable, and, ultimately, more cost efficient. Fast Ionic Conducting (FIC) glasses are a material that offers great potential for the development of new batteries and/or fuel cells to help inspire the energy density of battery power supplies. This dissertation probes the mechanisms by which ions conduct in these glasses. A variety of different experimental techniques give a better understanding of the interesting materials science taking place within these systems. This dissertation discusses Nuclear Magnetic Resonance (NMR) techniques performed on FIC glasses over the past few years. These NMR results have been complimented with other measurement techniques, primarily impedance spectroscopy, to develop models that describe the mechanisms by which ionic conduction takes place and the dependence of the ion dynamics on the local structure of the glass. The aim of these measurements was to probe the cause of a non-Arrhenius behavior of the conductivity which has been seen at high temperatures in the silver thio-borosilicate glasses. One aspect that will be addressed is if this behavior is unique to silver containing fast ion conducting glasses. more specifically, this study will determine if a non-Arrhenius correlation time, τ, can be observed in the Nuclear Spin Lattice Relaxation (NSLR) measurements. If so, then can this behavior be modeled with a new single

  2. Relaxation of the chemical bond skin chemisorption size matter ZTP mechanics H2O myths

    CERN Document Server

    Sun, Chang Q

    2014-01-01

    The aim of this book is to explore the detectable properties of a material to the parameters of bond and non-bond involved and to clarify the interdependence of various properties. This book is composed of four parts; Part I deals with the formation and relaxation dynamics of bond and non-bond during chemisorptions with uncovering of the correlation among the chemical bond, energy band, and surface potential barrier (3B) during reactions; Part II is focused on the relaxation of bonds between atoms with fewer neighbors than the ideal in bulk with unraveling of the bond order-length-strength (BOLS) correlation mechanism, which clarifies the nature difference between nanostructures and bulk of the same substance; Part III deals with the relaxation dynamics of bond under heating and compressing with revealing of rules on the temperature-resolved elastic and plastic properties of low-dimensional materials; Part IV is focused on the asymmetric relaxation dynamics of the hydrogen bond (O:H-O) and the anomalous behav...

  3. Off-centre dynamic Jahn-Teller effect studied by electron spin relaxation of Cu2+ ions in SrF2 crystal

    International Nuclear Information System (INIS)

    Hoffmann, S.K.

    2000-01-01

    Temperature cw-EPR and pulsed EPR electron spin echo experiments were performed for a low concentration of Cu 2+ ions in cubic SrF 2 crystals. The well resolved EPR spectrum at low temperatures (below 30 K) with parameters g parallel = 2.493, g perpendicular = 2.083, A parallel = 121, A perpendicular = 8.7, A parallel ( 19 F) = 135, A parallel ( 19 F) = 33.0 (A-values in 10 -4 cm -1 ) is transformed continuously into a single broad line above 225 K on heating, due to the g-factor shift and EPR line broadening. These data along with the angular variation EPR data are described in terms of a pseudo-Jahn-Teller effect of (T 2g +A 2u )x(a 1g +e g +t 1u ) type producing six off-centre positions of the Cu 2+ ion in the fluorine cube. Above 30 K a two-step averaging g -factor process occurs and is governed by vibronic dynamics between potential wells of the off-centre positions. This dynamics governs the electron spin relaxation in the whole temperature range. The electron spin-lattice relaxation rate 1/T 1 grows rapidly by six orders of magnitude in the temperature range 30-100 K and is determined by the Orbach-type process with excitations to two excited vibronic levels of energy 83 and 174 cm -1 . For higher temperatures the relaxation is dominated by overbarrier jumps leading to the isotropic EPR spectrum above 225 K. The phase memory time T M has the rigid lattice value 3.5 μs determined by nuclear spectral diffusion and its temperature variation is governed by the vibronic dynamics indicating that the excitations between vibronic levels produce a dephasing of the electron spin precessional motion. (author)

  4. Ovariectomy increases the participation of hyperpolarizing mechanisms in the relaxation of rat aorta.

    Directory of Open Access Journals (Sweden)

    Ana Sagredo

    Full Text Available This study examines the downstream NO release pathway and the contribution of different vasodilator mediators in the acetylcholine-induced response in rat aorta 5-months after the loss of ovarian function. Aortic segments from ovariectomized and control female Sprague-Dawley rats were used to measure: the levels of superoxide anion, the superoxide dismutases (SODs activity, the cGMP formation, the cGMP-dependent protein kinase (PKG activity and the involvement of NO, cGMP, hydrogen peroxide and hyperpolarizing mechanisms in the ACh-induced relaxation. The results showed that ovariectomy did not alter ACh-induced relaxation; incubation with L-NAME, a NO synthase inhibitor, decreased the ACh-induced response to a lesser extent in aorta from ovariectomized than from control rats, while ODQ, a guanylate cyclase inhibitor, decreased that response to a similar extent; the blockade of hyperpolarizing mechanisms, by precontracting arteries with KCl, decreased the ACh-induced response to a greater extent in aortas from ovariectomized than those from control rats; catalase, that decomposes hydrogen peroxide, decreased the ACh-induced response only in aorta from ovariectomized rats. In addition, ovariectomy increased superoxide anion levels and SODs activity, decreased cGMP formation and increased PKG activity. Despite the increased superoxide anion and decreased cGMP in aorta from ovariectomized rats, ACh-induced relaxation is maintained by the existence of hyperpolarizing mechanisms in which hydrogen peroxide participates. The greater contribution of hydrogen peroxide in ACh-induced relaxation is due to increased SOD activity, in an attempt to compensate for increased superoxide anion formation. Increased PKG activity could represent a redundant mechanism to ensure vasodilator function in the aorta of ovariectomized rats.

  5. Quasilinear Relaxation as a Mechanism for Electron Temperature Saturation in the Earth's Plasmasphere

    Science.gov (United States)

    Chernov, A. A.

    2018-03-01

    A mechanism is presented according to which quasi-linear relaxation can cause electron temperature saturation at the observed level when the plasmasphere is heated by magnetohydrodynamic waves. An algorithm for calculating saturation temperatures is proposed, and they are numerically estimated. At low wave frequencies, saturation occurs at temperatures of 3-5 eV, and in the vicinity of cyclotron frequencies, it occurs at 2-4 eV.

  6. Mechanically equivalent elastic-plastic deformations and the problem of plastic spin

    Directory of Open Access Journals (Sweden)

    Steigmann David J.

    2011-01-01

    Full Text Available The problem of plastic spin is phrased in terms of a notion of mechanical equivalence among local intermediate configurations of an elastic/ plastic crystalline solid. This idea is used to show that, without further qualification, the plastic spin may be suppressed at the constitutive level. However, the spin is closely tied to an underlying undistorted crystal lattice which, once specified, eliminates the freedom afforded by mechanical equivalence. As a practical matter a constitutive specification of plastic spin is therefore required. Suppression of plastic spin thus emerges as merely one such specification among many. Restrictions on these are derived in the case of rate-independent response.

  7. Single-molecule magnetism in three related {Co(III)2Dy(III)2}-acetylacetonate complexes with multiple relaxation mechanisms.

    Science.gov (United States)

    Langley, Stuart K; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S

    2013-06-17

    Three new heterometallic complexes with formulas of [Dy(III)2Co(III)2(OMe)2(teaH)2(acac)4(NO3)2] (1), [Dy(III)2Co(III)2(OH)2(teaH)2(acac)4(NO3)2]·4H2O (2), and [Dy(III)2Co(III)2(OMe)2(mdea)2(acac)4(NO3)2] (3) were characterized by single-crystal X-ray diffraction and by dc and ac magnetic susceptibility measurements. All three complexes have an identical "butterfly"-type metallic core that consists of two Dy(III) ions occupying the "body" position and two diamagnetic low-spin Co(III) ions occupying the outer "wing-tips". Each complex displays single-molecule magnet (SMM) behavior in zero applied magnetic field, with thermally activated anisotropy barriers of 27, 28, and 38 K above 7.5 K for 1-3, respectively, as well as observing a temperature-independent mechanism of relaxation below 5 K for 1 and 2 and at 3 K for 3, indicating fast quantum tunneling of magnetization (QTM). A second, faster thermally activated relaxation mechanism may also be active under a zero applied dc field as derived from the Cole-Cole data. Interestingly, these complexes demonstrate further relaxation modes that are strongly dependent upon the application of a static dc magnetic field. Dilution experiments that were performed on 1, in the {Y(III)2Co(III)2} diamagnetic analog, show that the slow magnetic relaxation is of a single-ion origin, but it was found that the neighboring ion also plays an important role in the overall relaxation dynamics.

  8. Nuclear Spin Relaxation

    Indian Academy of Sciences (India)

    IAS Admin

    Nuclei occur in many different species, called nuclides, which are defined by the numbers of protons and neutrons they contain. The chemical nature of an atom is defined by the number of protons in its nucleus. For example, all atoms of carbon have six protons in the nucleus, and all atoms of hydrogen have a single proton ...

  9. Modeling of the mechanical behavior of austenitic stainless steels under pure fatigue and fatigue relaxation loadings

    International Nuclear Information System (INIS)

    Hajjaji-Rachdi, Fatima

    2015-01-01

    Austenitic stainless steels are potential candidates for structural components of sodium-cooled fast neutron reactors. Many of these components will be subjected to cyclic loadings including long hold times (1 month) under creep or relaxation at high temperature. These hold times are unattainable experimentally. The aim of the present study is to propose mechanical models which take into account the involved mechanisms and their interactions during such complex loadings. First, an experimental study of the pure fatigue and fatigue-relaxation behavior of 316L(N) at 500 C has been carried out with very long hold times (10 h and 50 h) compared with the ones studied in literature. Tensile tests at 600 C with different applied strain rates have been undertaken in order to study the dynamic strain ageing phenomenon. Before focusing on more complex loadings, the mean field homogenization approach has been used to predict the mechanical behavior of different FCC metals and alloys under low cycle fatigue at room temperature. Both Hill-Hutchinson and Kroener models have been used. Next, a physically-based model based on dislocation densities has been developed and its parameters measured. The model allows predictions in a qualitative agreement with experimental data for tensile loadings. Finally, this model has been enriched to take into account visco-plasticity, dislocation climb and interaction between dislocations and solute atoms, which are influent during creep-fatigue or fatigue relaxation at high temperature. The proposed model uses three adjustable parameters only and allows rather accurate prediction of the behavior of 316L(N) steel under tensile loading and relaxation. (author) [fr

  10. Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Enio, E-mail: lima@cab.cnea.gov.ar; De Biasi, Emilio; Zysler, Roberto D.; Vasquez Mansilla, Marcelo; Mojica-Pisciotti, Mary L. [Centro Atómico Bariloche/CONICET (Argentina); Torres, Teobaldo E.; Calatayud, M. Pilar; Marquina, C.; Ricardo Ibarra, M.; Goya, Gerardo F. [Universidad de Zaragoza, Instituto de Nanociencia de Aragón INA (Spain)

    2014-12-15

    We present a versatile diagram to envisage the dominant relaxation mechanism of single-domain magnetic nanoparticles (MNPs) under alternating magnetic fields, as those used in magnetic fluid hyperthermia (MFH). The diagram allows estimating the heating efficiency, measured by the Specific Power Absorption (SPA), originated in the magnetic and viscous relaxation times of single-domain MNPs for a given frequency of the ac magnetic field (AFM). The diagram has been successfully applied to different colloids, covering a wide variety of MNPs with different magnetic anisotropy and particle size, and dispersed in different viscous liquid carriers. From the general diagram, we derived a specific chart based on the Linear Response Theory in order to easily estimate the experimental condition for the optimal SPA values of most colloids currently used in MFH.

  11. Mechanical relaxations and 1/f noise in Bi, Nb, and Fe films

    International Nuclear Information System (INIS)

    Alers, G.B.; Weissman, M.B.

    1991-01-01

    Anelastic piezoresistance and 1/f noise were measured in the same samples to compare mechanical relaxations with 1/f noise. In bismuth below 200 K, both effects could be fitted to a model invoking one class of mobile defects. In niobium, both the anelastic piezoresistance and the noise scaled with the concentration of dissolved hydrogen. A well-defined peak in noise versus temperature was observed without any peak in the anelastic response. In iron, noise apparently from a carbon Snoek relaxation was observed at 220 K in a sample with high impurity concentration and at 300 K with low impurity concentration. No anelastic feature was found at 220 K in the high-impurity-concentration sample. The broad nature of 1/f noise appears to arise not from a fundamental source but from the generally poor quality of thin films

  12. A carbon-13 NMR spin-lattice relaxation study of the molecular conformation of the nootropic drug 2-oxopyrrolidin-1-ylacetamide

    Science.gov (United States)

    Baldo, M.; Grassi, A.; Guidoni, L.; Nicolini, M.; Pappalardo, G. C.; Viti, V.

    The spin-lattice relaxation times ( T1) of carbon-13 resonances of the drug 2-oxopyrrolidin- 1-ylacetamide ( 2OPYAC) were determined in CDCl 3 + DMSO and H 2O solutions to investigate the internal conformational flexibility. The measured T1s for the hydrogen-bearing carbon atoms of the 2-pyrrolidone ring fragment were diagnostic of a rigid conformation with respect to the acetamide linked moiety. The model of anisotropic reorientation of a rigid body was used to analyse the measured relaxation data in terms of a single conformation. Owing to the small number of T1 data available the fitting procedure for each of the possible conformations failed. The structure corresponding to the rigid conformation was therefore considered to be the one that is strongly stabilized by internal hydrogen bonding as predicted on the basis of theoretical MO ab initio quantum chemical calculations.

  13. Quantum Entanglement of a Tunneling Spin with Mechanical Modes of a Torsional Resonator

    Directory of Open Access Journals (Sweden)

    D. A. Garanin

    2011-08-01

    Full Text Available We solve the Schrödinger equation for various quantum regimes describing a tunneling macrospin coupled to a torsional oscillator. The energy spectrum and freezing of spin tunneling are studied. Magnetic susceptibility, noise spectrum, and decoherence due to entanglement of spin and mechanical modes are computed. We show that the presence of a tunneling spin can be detected via splitting of the mechanical mode at the resonance. Our results apply to experiments with magnetic molecules coupled to nanoresonators.

  14. Newton-Wigner position operator and the corresponding spin operator in relativistic quantum mechanics

    Science.gov (United States)

    Choi, Taeseung

    2015-03-01

    A relativistic spin operator is the difference between the total and the orbital angular momentum. As the unique position operator for a localized state, the remarkable Newton-Wigner position operator, which has all the desirable commutation relations of a position operator, can give a proper spin operator. Historically, the three important spin operators proposed by Bogolubov et al., Pryce, and Foldy-Woutheysen, respectively were investigated to manifest a spin operator corresponding to the Newton-Wigner position operator. We clarify a unique spin operator in relativistic quantum mechanics, which can be described by using the Dirac Hamiltonian.

  15. Near-surface structural phase transition of SrTiO3 studied with zero-field beta-detected nuclear spin relaxation and resonance.

    Science.gov (United States)

    Salman, Z; Kiefl, R F; Chow, K H; Hossain, M D; Keeler, T A; Kreitzman, S R; Levy, C D P; Miller, R I; Parolin, T J; Pearson, M R; Saadaoui, H; Schultz, J D; Smadella, M; Wang, D; MacFarlane, W A

    2006-04-14

    We demonstrate that zero-field beta-detected nuclear quadrupole resonance and spin relaxation of low energy (8)Li can be used as a sensitive local probe of structural phase transitions near a surface. We find that the transition near the surface of a SrTiO(3) single crystal occurs at T(c) approximately 150K, i.e., approximately 45K higher than T(c)bulk, and that the tetragonal domains formed below T(c) are randomly oriented.

  16. $^{11}$B and $^{27}$Al NMR spin-lattice relaxation and Knight shift study of Mg$_{1-x}$Al$_x$B$_2$. Evidence for anisotropic Fermi surface

    OpenAIRE

    Papavassiliou, G.; Pissas, M.; Karayanni, M.; Fardis, M.; Koutandos, S.; Prassides, K.

    2002-01-01

    We report a detailed study of $^{11}$B and $^{27}$Al NMR spin-lattice relaxation rates ($1/T_1$), as well as of $^{27}$Al Knight shift (K) of Mg$_{1-x}$Al$_x$B$_2$, $0\\leq x\\leq 1$. The obtained ($1/T_1T$) and K vs. x plots are in excellent agreement with ab initio calculations. This asserts experimentally the prediction that the Fermi surface is highly anisotropic, consisting mainly of hole-type 2-D cylindrical sheets from bonding $2p_{x,y}$ boron orbitals. It is also shown that the density ...

  17. Quasistatic internal magnetic field detected in the pseudogap phase of Bi2 +xSr2 -xCaCu2O8 +δ by muon spin relaxation

    Science.gov (United States)

    Pal, A.; Dunsiger, S. R.; Akintola, K.; Fang, A. C. Y.; Elhosary, A.; Ishikado, M.; Eisaki, H.; Sonier, J. E.

    2018-02-01

    We report muon spin relaxation (μ SR ) measurements of optimally doped and overdoped Bi2 +xSr2 -xCaCu2O8 +δ single crystals that reveal the presence of a weak temperature-dependent quasistatic internal magnetic field of electronic origin in the superconducting and pseudogap (PG) phases. In both samples the internal magnetic field persists up to 160 K, but muon diffusion prevents following the evolution of the field to higher temperatures. We consider the evidence from our measurements in support of PG order parameter candidates, namely, electronic loop currents and magnetoelectric quadrupoles.

  18. Muon-spin relaxation study of the double perovskite insulators Sr2 BOsO6 (B  =  Fe, Y, ln).

    Science.gov (United States)

    Williams, R C; Xiao, F; Thomas, I O; Clark, S J; Lancaster, T; Cornish, G A; Blundell, S J; Hayes, W; Paul, A K; Felser, C; Jansen, M

    2016-02-24

    We present the results of zero-field muon-spin relaxation measurements made on the double perovskite insulators Sr2 BOsO6 (B = Fe,Y, In). Spontaneous muon-spin precession indicative of quasistatic long range magnetic ordering is observed in Sr2FeOsO6 within the AF1 antiferromagnetic phase for temperatures below [Formula: see text] K. Upon cooling below T2≈67 K the oscillations cease to be resolvable owing to the coexistence of the AF1 and AF2 phases, which leads to a broader range of internal magnetic fields. Using density functional calculations we identify a candidate muon stopping site within the unit cell, which dipole field simulations show to be consistent with the proposed magnetic structure. The possibility of incommensurate magnetic ordering is discussed for temperatures below TN = 53 K and 25 K for Sr2YOsO6 and Sr2InOsO6, respectively.

  19. Mechanical spectroscopy of thermal stress relaxation in aluminium alloys reinforced with short alumina fibres

    Energy Technology Data Exchange (ETDEWEB)

    Carreno-Morelli, E.; Schaller, R. [Ecole Polytechnique Federale, Lausanne (Switzerland). Inst. de Genie Atomique; Urreta, S.E.

    1998-05-01

    The mechanical behaviour under low temperature thermal cycling of aluminium-based composites reinforced with short Al{sub 2}O{sub 3} SAFFIL fibres has been investigated by mechanical spectroscopy (mechanical loss and elastic shear modulus measurements). A mechanical loss maximum has been observed during cooling which originates in the relaxation of thermal stresses at the interfaces due to the differential thermal expansion between matrix and reinforcement. The maximum height increases with the volumetric fibre content. In addition, if the matrix strength is increased by the appropriated choice of alloy and thermal treatment, the maximum diminishes and shifts to lower temperatures. No damage accumulation at the interfaces has been detected during long period thermal cycling in the range 100 to 500 K. A description of the damping behaviour is made in terms of the development of microplastic zones which surround the fibres. (orig.) 9 refs.

  20. Mechanisms behind the relaxing effect of furosemide on the isolated rabbit ear artery

    Energy Technology Data Exchange (ETDEWEB)

    Tian, R.; Aalkjaer, C.; Andreasen, F. (Institute of Pharmacology, University of Aarhus, Aarhus (Denmark))

    1991-01-01

    The effect of furosemide on isometric contration and {sup 86}Rb uptake were studied in the isolated rabbit central ear artery (CEA). A concentration-dependent relaxing effect of furosemide (0.06 mM-1.0 mM) was found in vessel segments with intact endothelium. The maximal relaxation was 28.6+-3.9% (10). The effect was not diminished in segments deprived of endothelium, and removal of endothelium itself caused no change of the force development to electrical field stimualtion. The relaxing effect was time-dependent and stimulation-dependent and was not significantly affected by membrane depolarization induced by increasing external (K{sup +}) from 10 to 120 mM. The {sup 86}Rb uptake was inhibited by both furosemide and ouabain (8.0+-0.5(8) and 5.3+-0.5(8) versus 12.8+-0.9(16) nmol (K{sup +})x mm{sup -1}x(10 min.){sup -1} in the furosemide (1.0 mM), ouabain (1.0 mM) and control groups, respectively) without interaction between the two drugs. The {sup 86}Rb uptake was not further inhibited by increasing the furosemide concentration from 0.12 mM to 1.0 mM. Our results suggest: firstly, the direct relaxing effect of furosemide on isolated vessel segments in endothelium-independent and secondly, the inhibition of the Na{sup +}-K{sup +}-Cl{sup -} cotransport and a possible consequent hyperpolarization of the membrane is unlikely to be the sole mechanism responsible for the vasorelaxant effect of furosemide. The demonstrated direct effect on vascular tone may be of clinical importance in situations with very high plasma concentrations of the drug or very low concentrations of serum albumin. (aluthor).

  1. Relaxation-compensated difference spin diffusion NMR for detecting 13C–13C long-range correlations in proteins and polysaccharides

    International Nuclear Information System (INIS)

    Wang, Tuo; Williams, Jonathan K.; Schmidt-Rohr, Klaus; Hong, Mei

    2015-01-01

    The measurement of long-range distances remains a challenge in solid-state NMR structure determination of biological macromolecules. In 2D and 3D correlation spectra of uniformly 13 C-labeled biomolecules, inter-residue, inter-segmental, and intermolecular 13 C– 13 C cross peaks that provide important long-range distance constraints for three-dimensional structures often overlap with short-range cross peaks that only reflect the covalent structure of the molecule. It is therefore desirable to develop new approaches to obtain spectra containing only long-range cross peaks. Here we show that a relaxation-compensated modification of the commonly used 2D 1 H-driven spin diffusion (PDSD) experiment allows the clean detection of such long-range cross peaks. By adding a z-filter to keep the total z-period of the experiment constant, we compensate for 13 C T 1 relaxation. As a result, the difference spectrum between a long- and a scaled short-mixing time spectrum show only long-range correlation signals. We show that one- and two-bond cross peaks equalize within a few tens of milliseconds. Within ∼200 ms, the intensity equilibrates within an amino acid residue and a monosaccharide to a value that reflects the number of spins in the local network. With T 1 relaxation compensation, at longer mixing times, inter-residue and inter-segmental cross peaks increase in intensity whereas intra-segmental cross-peak intensities remain unchanged relative to each other and can all be subtracted out. Without relaxation compensation, the difference 2D spectra exhibit both negative and positive intensities due to heterogeneous T 1 relaxation in most biomolecules, which can cause peak cancellation. We demonstrate this relaxation-compensated difference PDSD approach on amino acids, monosaccharides, a crystalline model peptide, a membrane-bound peptide and a plant cell wall sample. The resulting difference spectra yield clean multi-bond, inter-residue and intermolecular correlation peaks

  2. Coherent Control of a Nitrogen-Vacancy Center Spin Ensemble with a Diamond Mechanical Resonator

    Science.gov (United States)

    Guo, F.; Macquarrie, E. R.; Gosavi, T. A.; Moehle, A. M.; Jungwirth, N. R.; Bhave, S. A.; Fuchs, G. D.

    2015-03-01

    In contrast to the traditional coherent control of the nitrogen vacancy (NV) center in diamond's triplet spin state with ac magnetic fields, we recently demonstrated that gigahertz-frequency lattice strain resonant with the ms= +1 to -1 spin state splitting can also be used to drive spin transitions. We present coherent spin control over NV center ensembles with a bulk-mode mechanical microresonator that generates large amplitude ac stress within the diamond substrate. Using these structures, we mechanically drive coherent Rabi oscillations between the -1 and +1 states. We also accurately model the Rabi dephasing with a combination of a spatially inhomogeneous mechanical driving field and magnetic noise from a fluctuating spin bath. Understanding mechanically driven dynamics in spin ensembles could have applications in sensing and quantum optomechanics where interactions can be enhanced by the number of spins. Moreover, these results demonstrate coherent mechanical control of the magnetically forbidden -1 to +1 spin transition, thus closing the loop on NV center ground state spin control and enabling the creation of a coherent Δ-system within the NV center ground state. We gratefully acknowledge support from the ONR.

  3. Polymer dynamics near the surface and in the bulk of poly(tetrafluoroethylene) probed by zero-field muon-spin-relaxation spectroscopy.

    Science.gov (United States)

    McKenzie, Iain; Salman, Zaher; Giblin, Sean R; Han, Yun Yu; Leach, Gary W; Morenzoni, Elvezio; Prokscha, Thomas; Suter, Andreas

    2014-02-01

    The results of many experiments on polymers such as polystyrene indicate that the polymer chains near a free surface exhibit enhanced dynamics when compared with the bulk. We have investigated whether this is the case for poly(tetrafluoroethylene) (PTFE) by using zero-field muon-spin-relaxation spectroscopy to characterize a local probe, the F-Mu(+)-F state, which forms when spin-polarized positive muons are implanted in PTFE. Low-energy muons (implantation energies from 2.0 to 23.0 keV) were used to study the F-Mu(+)-F state between ∼ 23 and 191 nm from the free surface of PTFE. Measurements were also made with surface muons (4.1 MeV) where the mean implantation depth is on the order of ∼ 0.6 mm. The relaxation rate of the F-Mu(+)-F state up to ∼ 150 K was found to be significantly higher for muons implanted at 2.0 keV than for higher implantation energies, which suggests that the polymer chains in a region on the order of a few tens of nanometers from the free surface are more mobile than those in the bulk.

  4. Spin injection from a normal metal into a mesoscopic superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Michael J.; Kolenda, Stefan [Institut fuer Nanotechnologie, KIT, 76021 Karlsruhe (Germany); Huebler, Florian [Institut fuer Nanotechnologie, KIT, 76021 Karlsruhe (Germany); Center for Functional Nanostructures, KIT, 76131 Karlsruhe (Germany); Institut fuer Festkoerperphysik, KIT, 76021 Karlsruhe (Germany); Loehneysen, Hilbert v. [Center for Functional Nanostructures, KIT, 76131 Karlsruhe (Germany); Institut fuer Festkoerperphysik, KIT, 76021 Karlsruhe (Germany); Physikalisches Institut, KIT, 76128 Karlsruhe (Germany); Beckmann, Detlef [Institut fuer Nanotechnologie, KIT, 76021 Karlsruhe (Germany); Center for Functional Nanostructures, KIT, 76131 Karlsruhe (Germany)

    2013-07-01

    We report on nonlocal transport in superconductor hybrid structures, with ferromagnetic as well as normal-metal tunnel junctions attached to the superconductor. In the presence of a strong Zeeman splitting of the density of states, both charge and spin imbalance is injected into the superconductor. While previous experiments demonstrated spin injection from ferromagnetic electrodes, we show that spin imbalance is also created for normal-metal injector contacts. Using the combination of ferromagnetic and normal-metal detectors allows us to directly discriminate between charge and spin injection, and demonstrate a complete separation of charge and spin imbalance. The relaxation length of the spin imbalance is of the order of several μm and is found to increase with a magnetic field, but is independent of temperature. We further discuss possible relaxation mechanisms for the explanation of the spin relaxation length.

  5. Cadmium-113 NMR spin-lattice relaxation and exchange kinetics in concanavalin A: A double saturation transfer experiment

    Science.gov (United States)

    Ellis, Paul D.; Yang, Ping P.; Palmert, Allen R.

    The field dependence of the 113Cd relaxation rate in cadmium-substituted Concanavalin A was investigated at three magnetic field strengths, 2.3, 4.7, and 9.4 T. Because of the anomalously large relaxation rate observed for the resonance corresponding to free cadmium in the system and our prior knowledge that cadmium is undergoing chemical exchange in this system, a detailed analysis was undertaken of the relaxation data obtained at 9.4 T to investigate the relative importance of chemical exchange dynamics upon the observed relaxation time constants. The differential equations for the resulting restricted three-site exchange network can be solved in closed form by employing a double saturation transfer experiment in conjunction with a saturation-recovery T1 experiment. The analysis of these data demonstrate that chemical exchange processes contribute 14, 75, and 20% to the observed relaxation time constants for the 113Cd resonances for the S1 site, free cadmium and the S2 site respectively. If the possibility of exchange contributions to the NOE were ignored, then the observed field dependence of T1 could not be discussed in terms of conventional single correlation time theories of relaxation. In this case the data could be discussed in terms of correlation times involving overall motion of the protein coupled with correlation times describing "internal motions." These internal motions may be the result of the formation of "abortive" complexes with exogenous ligands for those metalloproteins where the metal can be readily removed from the protein. However, for Con A, it is shown that the weak field dependence observed for the heteronuclear NOE is not due to internal motions, but rather to exchange processes.

  6. Spin wave mediated interaction as a mechanism of pairs formation in iron-based superconductors

    Science.gov (United States)

    Lima, Leonardo S.

    2018-03-01

    The spin wave mediated interaction between electrons has been proposed as mechanism to formation of electron pairs in iron-based superconductors. We employe the diagrammatic expansion to calculate the binding energy of electrons pairs mediated by spin wave. Therefore, we propose the coupling of electrons in high-temperature superconductors mediated by spin waves, since that is well known that this class of superconductors materials if relates with spin-1/2 two-dimensional antiferromagnets, where it is well known there be an interplay between antiferromagnetism 2D and high-temperature superconductivity.

  7. Relaxation processes and conduction mechanism in bismuth ferrite lead titanate composites

    Science.gov (United States)

    Sahu, Truptimayee; Behera, Banarji

    2018-02-01

    In this study, samarium (Sm)-doped multiferroic composites of 0.8BiSmxFe1-xO3-0.2PbTiO3 where x = 0.05, 0.10, 0.15, and 0.20 were prepared via the conventional solid state reaction route. The electrical properties of these composites were analyzed using an impedance analyzer over a wide range of temperatures and frequencies (102-106 Hz). The impedance and modulus analyses confirmed the presence of both bulk and grain boundary effects in the materials. The temperature dependence of impedance and modulus spectrum indicated the negative temperature coefficient of resistance behavior. The dielectric relaxation exhibited non-Debye type behavior and it was temperature dependent. The relaxation time (τ) and DC conductivity followed an Arrhenius type behavior. The frequency-dependent AC conductivity obeyed Jonscher's power law. The correlated barrier hopping model was appropriate to understand the conduction mechanism in the composites considered.

  8. Relaxation of the magnetization in magnetic molecules

    Science.gov (United States)

    Carretta, S.; Bianchi, A.; Liviotti, E.; Santini, P.; Amoretti, G.

    2006-04-01

    Several mechanisms characterize the relaxation dynamics in magnetic molecules. We investigate two of them, spin-lattice coupling and incoherent quantum tunneling. The effect of the phonon heat bath is studied by analyzing the exponential time decay of the autocorrelation of the magnetization. We show that in ferromagnetic (Cu6) and antiferromagnetic (Fe6) molecular rings this decay is characterized by a single characteristic time. At very low temperature, relaxation through incoherent quantum tunneling may occur in nanomagnets such as Fe8 or Ni4. The mixing between levels with different values of the total spin (S mixing) greatly influences this mechanism. In particular, we demonstrate that a fourth-order anisotropy term O44, required to interpret experimental electron paramagnetic resonance and relaxation data in Ni4, naturally arises when S mixing is considered in calculations.

  9. F center-molecular ion couples in alkali halides: Magneto-optics study (part two). Spin lattice relaxation time and electron spin memory; Studi di magnetoottica sulla coppia centro F-ione molecolare negli alogenuri alcalini: Parte 2. Misura del tempo di rilassamento spin-reticolo e della memoria di spin dell`elettrone nel ciclo ottico

    Energy Technology Data Exchange (ETDEWEB)

    Baldacchini, G.; Botti, S.; Grassano, U.M.; Luty, F.

    1991-10-01

    The spin-lattice relaxation time in the ground state, T/sub 1/, and the spin-mixing parameter during the optical cycle, epsilon, were measured in FH(OH) and FH(CN) centers in various alkali halides (KCl, KBr, KI, CsCl, and CsBr). For a close comparison, all experiments were performed before and after the optical association of the F center and molecular ion. T/sub 1/ becomes shorter before and still more after aggregation with respect to the values measured in the pure crystal, especially at very low magnetic fields. Epsilon decreases a little in crystals doped with OH-, while it increases a lot in crystals doped with CN-. Part of these results can be interpreted within the actual knowledge of the F-center physics. Part have been used to shed some light on the various unknown aspects of the energy transfer between the excited F-center and the molecular ion.

  10. Interaction study of polyisobutylene with paraffins by NMR using the evaluation of spin-lattice relaxation times for hydrogen nuclei; Estudo da interacao do poliisobutileno com parafinas por RMN no estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Rosana G.G. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas - CENPES]. E-mail: garrido@cenpes.petrobras.com.br; Tavares, Maria I.B. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas]. E-mail: mibt@ima.ufrj.br

    2001-07-01

    The evaluation of spin-lattice relaxation times of {sup 1}H for polyisobutylene/paraffin systems, were obtained using the classic inversion recovery technique, and also through Cross Polarization Magic Angle Spinning (CP/MAS) techniques varying the contact time and also by the delayed contact time pulse sequence. NMR results showed that the polyisobutylene/paraffin systems in which high molecular weight paraffins were used, is heterogeneous. However, for paraffins with low molecular weight, the system presents good homogeneity. (author)

  11. No Stress! Relax! Mechanisms Governing Growth and Shape in Plant Cells

    Directory of Open Access Journals (Sweden)

    Gea Guerriero

    2014-03-01

    Full Text Available The mechanisms through which plant cells control growth and shape are the result of the coordinated action of many events, notably cell wall stress relaxation and turgor-driven expansion. The scalar nature of turgor pressure would drive plant cells to assume spherical shapes; however, this is not the case, as plant cells show an amazing variety of morphologies. Plant cell walls are dynamic structures that can display alterations in matrix polysaccharide composition and concentration, which ultimately affect the wall deformation rate. The wide varieties of plant cell shapes, spanning from elongated cylinders (as pollen tubes and jigsaw puzzle-like epidermal cells, to very long fibres and branched stellate leaf trichomes, can be understood if the underlying mechanisms regulating wall biosynthesis and cytoskeletal dynamics are addressed. This review aims at gathering the available knowledge on the fundamental mechanisms regulating expansion, growth and shape in plant cells by putting a special emphasis on the cell wall-cytoskeleton system continuum. In particular, we discuss from a molecular point of view the growth mechanisms characterizing cell types with strikingly different geometries and describe their relationship with primary walls. The purpose, here, is to provide the reader with a comprehensive overview of the multitude of events through which plant cells manage to expand and control their final shapes.

  12. The role of temperature on dielectric relaxation and conductivity mechanism of dark conglomerate liquid crystal phase

    International Nuclear Information System (INIS)

    Yildiz, Alptekin; Canli, Nimet Yilmaz; Özdemir, Zeynep Güven; Ocak, Hale; Eran, Belkız Bilgin; Okutan, Mustafa

    2016-01-01

    In this study, dielectric properties and ac conductivity mechanism of the bent-core liquid crystal 3′-{4-[4-(3,7-Dimethyloctyloxy)benzoyloxy]benzoyloxy}-4-{4- [4-[6-(1,1,3,3,5,5,5-heptamethyltrisiloxan-1yl)hex-1-yloxy]benzoyloxy] benzoyloxy}biphenyl (DBB) have been analyzed by impedance spectroscopy measurements at different temperatures. According to the polarizing microscopy results, DBB liquid crystal compound exhibits a dark conglomerate mesophase (DC [*] phase) which can be identified by the occurrence of a conglomerate of domains with opposite chirality. The chiral domains of this low-birefringent mesophase become more visible by rotating the polarizer. The variation of the real (ε′) and imaginary (ε″) parts of dielectric constant with angular frequency and Cole–Cole curves of DBB have been analyzed. The fitting results for dispersion curves at different temperatures revealed that DBB system exhibits nearly Debye-type relaxation except for 125 °C. Moreover, it has been determined that while the relaxation frequencies shift to higher frequencies as the temperature increases from 25 °C to 125 °C, the peak intensities remarkably decrease with increasing temperature. According to Cole–Cole plot and phase angle versus frequency curve, it has been determined that DBB LC may have a possibility of utilizing as a super-capacitor at room temperature. Furthermore, it has been found that the conductivity mechanism of the DBB alters from Correlated Barrier Hoping (CBH) model to Quantum Tunneling Model (QMT) with in increasing temperature at high frequency region. In terms of CBH model, optical band gaps at 25 °C and 75 °C temperatures have also been calculated. Finally, activation energies for some selected angular frequencies have also been calculated.

  13. The role of temperature on dielectric relaxation and conductivity mechanism of dark conglomerate liquid crystal phase

    Science.gov (United States)

    Yildiz, Alptekin; Canli, Nimet Yilmaz; Özdemir, Zeynep Güven; Ocak, Hale; Eran, Belkız Bilgin; Okutan, Mustafa

    2016-03-01

    In this study, dielectric properties and ac conductivity mechanism of the bent-core liquid crystal 3‧-{4-[4-(3,7-Dimethyloctyloxy)benzoyloxy]benzoyloxy}-4-{4-[4-[6-(1,1,3,3,5,5,5-heptamethyltrisiloxan-1yl)hex-1-yloxy]benzoyloxy]benzoyloxy}biphenyl (DBB) have been analyzed by impedance spectroscopy measurements at different temperatures. According to the polarizing microscopy results, DBB liquid crystal compound exhibits a dark conglomerate mesophase (DC[*] phase) which can be identified by the occurrence of a conglomerate of domains with opposite chirality. The chiral domains of this low-birefringent mesophase become more visible by rotating the polarizer. The variation of the real (ε‧) and imaginary (ε″) parts of dielectric constant with angular frequency and Cole-Cole curves of DBB have been analyzed. The fitting results for dispersion curves at different temperatures revealed that DBB system exhibits nearly Debye-type relaxation except for 125 °C. Moreover, it has been determined that while the relaxation frequencies shift to higher frequencies as the temperature increases from 25 °C to 125 °C, the peak intensities remarkably decrease with increasing temperature. According to Cole-Cole plot and phase angle versus frequency curve, it has been determined that DBB LC may have a possibility of utilizing as a super-capacitor at room temperature. Furthermore, it has been found that the conductivity mechanism of the DBB alters from Correlated Barrier Hoping (CBH) model to Quantum Tunneling Model (QMT) with in increasing temperature at high frequency region. In terms of CBH model, optical band gaps at 25 °C and 75 °C temperatures have also been calculated. Finally, activation energies for some selected angular frequencies have also been calculated.

  14. Spin-drift transport in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong, Chittagong-4331 (Bangladesh)

    2008-02-07

    We present a study on spin transport in semiconductors under applied electric fields. Our experiments detect photoinjected electron spins and their relaxation during drift transport in intrinsic and moderately n-doped GaAs, based on the extraordinary Hall (eH) effect. For relatively low electric field (E), the optically spin-induced eH effect in n-doped GaAs is found to be enhanced with increasing doping density and not to depend much on E, indicating that a substantial amount of optical spin polarization is preserved during the drift transport in these extrinsic semiconductors. However, when the spin-oriented electrons are injected with a high E, a very significant decrease is observed in the eH voltage (V{sub eH}) due to an increase in the spin precession frequency of the hot electrons. Spin relaxation by the D'yakonov-Perel' mechanism is calculated, and is suggested to be the reason for such a rapid spin relaxation for hot electrons under a high E. However, in an intrinsic GaAs (i-GaAs), a much weaker V{sub eH} is observed and, as the electron spins scattered by holes due to the Coulomb interaction in i-GaAs, the spin relaxation by the Bir-Aronov-Pikus mechanism is considered. Skew scattering and side jump as possible mechanisms of the optically spin-induced transverse Hall currents are discussed. Based on a spin drift-diffusion model, drift and diffusion contributions to the V{sub eH} are examined. The results are also discussed in comparison with theoretical investigations.

  15. NMR spin-lattice relaxation study of 7Li and 93Nb nuclei in Ti- or Fe-doped LiNbO3:Mg single crystals

    Directory of Open Access Journals (Sweden)

    Tae Ho Yeom

    2016-04-01

    Full Text Available In this study, to understand the effects of paramagnetic impurities, we investigated the temperature dependent of the spin-lattice relaxation times of pure LiNbO3, LiNbO3:Mg, LiNbO3:Mg/Ti, LiNbO3:Mg/Fe, and LiNbO3:Mg/Fe (thermally treated at 500°C single crystals. The results for the LiNbO3:Mg single crystals doped with Fe3+ or Ti3+ are discussed with respect to the site distribution and atomic mobility of Li and Nb. In addition, the effects of a thermal treatment on LiNbO3:Mg/Fe single crystals were examined based on the T1 analysis of 7Li and 93Nb. It was found that the presence of impurities in the crystals induced systematic changes of activation energies concerning atomic mobility.

  16. Determination of correlation times from selective and non-selective spin-lattice relaxation rates and their use in drug-drug and drug-albumin interaction studies

    Directory of Open Access Journals (Sweden)

    Tinoco Luzineide Wanderley

    1999-01-01

    Full Text Available The effects of the changes in sample concentration on the NMR chemical shifts and on the selective and non-selective spin-lattice relaxation rates (R1S and R1NS of the three isomers of nitrobenzaldeyde guanyl hydrazone (NBGH pure and with bovine serum albumin (BSA were measured in solution. The results wereused to determine the correlation times (tauc, showing that the degree of intermolecular drug-drug association varies with the nitro group position on the ring and that this degree of association interferes with the interaction of these drugs with BSA. The results suggest that the degree of drug-drug and drug-BSA association are related to the in vitro anti-Trypanosoma cruzi activity of these compounds.

  17. Unconventional Superconductivity in La(7)Ir(3) Revealed by Muon Spin Relaxation: Introducing a New Family of Noncentrosymmetric Superconductor That Breaks Time-Reversal Symmetry.

    Science.gov (United States)

    Barker, J A T; Singh, D; Thamizhavel, A; Hillier, A D; Lees, M R; Balakrishnan, G; Paul, D McK; Singh, R P

    2015-12-31

    The superconductivity of the noncentrosymmetric compound La(7)Ir(3) is investigated using muon spin rotation and relaxation. Zero-field measurements reveal the presence of spontaneous static or quasistatic magnetic fields below the superconducting transition temperature T(c)=2.25  K-a clear indication that the superconducting state breaks time-reversal symmetry. Furthermore, transverse-field rotation measurements suggest that the superconducting gap is isotropic and that the pairing symmetry of the superconducting electrons is predominantly s wave with an enhanced binding strength. The results indicate that the superconductivity in La(7)Ir(3) may be unconventional and paves the way for further studies of this family of materials.

  18. A review of the relaxant effect of various medicinal plants on tracheal smooth muscle, their possible mechanism(s) and potency.

    Science.gov (United States)

    Shakeri, Farzaneh; Boskabady, Mohammad Hossein

    2015-12-04

    The therapeutic effects of the medicinal plants described in the current review on obstructive pulmonary diseases have found mention in ancient Iranian medical texts and in traditional folk medicine. These effects are attributed to their bronchodilatory activity, which relaxes the smooth muscles of the airway. Therefore, in the present review, the relaxant effects of various extracts, fractions and constituents of medicinal plants on tracheal smooth muscle are reviewed in light of their therapeutic effects on obstructive pulmonary diseases. The online literature was searched using Medline, PubMed, ScienceDirect, Scopus, Google Scholar, Web of Science and SID (for articles written in Persian). Moreover, local books on ethnopharmacology from 1918 to 2014 were searched with keywords such as tracheal smooth muscle, airway smooth muscle, relaxant effect, bronchodilatory effect and related mechanisms to identify studies on the relaxant effects of medicinal plants on tracheal smooth muscle and the possible mechanism(s) of these effects. All studied plants showed significant relaxant effects on tracheal smooth muscle, which were similar or superior to the effect of theophylline at the used concentrations. According to the results, most of these plants also showed an inhibitory effect on muscarinic and histamine (H1) receptors, whereas some plants showed more pronounced stimulatory effects on the beta-adrenergic receptor. Some of the studied plants also showed inhibitory effects on calcium and potassium channels. The present article reviewed the relaxant effects of several medicinal plants on tracheal smooth muscle, which were comparable or superior to the effect of theophylline at the studied concentration. The possible mechanisms of the relaxant effects of the studied medicinal plants and a comparison of these effects were also reviewed. This review presents the fractions and constituents of plants with potent relaxant effects on tracheal smooth muscle, which can be used

  19. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2′-bipyridine2(CN2

    Directory of Open Access Journals (Sweden)

    Kasper S. Kjær

    2017-07-01

    Full Text Available We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy2(CN2], where bpy=2,2′-bipyridine, initiated by metal-to-ligand charge transfer (MLCT excitation. The excited-state absorption in the transient UV-visible spectra, associated with the 2,2′-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state of [Fe(bpy2(CN2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a short lived metal-centered triplet transient species. These measurements of [Fe(bpy2(CN2] complement prior measurement performed on [Fe(bpy3]2+ and [Fe(bpy(CN4]2− in dimethylsulfoxide solution and help complete the chemical series [Fe(bpyN(CN6–2N]2N-4, where N = 1–3. The measurements confirm that simple ligand modifications can significantly change the relaxation pathways and excited state lifetimes and support the further investigation of light harvesting and photocatalytic applications of 3d transition metal complexes.

  20. Gate-Driven Pure Spin Current in Graphene

    Science.gov (United States)

    Lin, Xiaoyang; Su, Li; Si, Zhizhong; Zhang, Youguang; Bournel, Arnaud; Zhang, Yue; Klein, Jacques-Olivier; Fert, Albert; Zhao, Weisheng

    2017-09-01

    The manipulation of spin current is a promising solution for low-power devices beyond CMOS. However, conventional methods, such as spin-transfer torque or spin-orbit torque for magnetic tunnel junctions, suffer from large power consumption due to frequent spin-charge conversions. An important challenge is, thus, to realize long-distance transport of pure spin current, together with efficient manipulation. Here, the mechanism of gate-driven pure spin current in graphene is presented. Such a mechanism relies on the electrical gating of carrier-density-dependent conductivity and spin-diffusion length in graphene. The gate-driven feature is adopted to realize the pure spin-current demultiplexing operation, which enables gate-controllable distribution of the pure spin current into graphene branches. Compared with the Elliott-Yafet spin-relaxation mechanism, the D'yakonov-Perel spin-relaxation mechanism results in more appreciable demultiplexing performance. The feature of the pure spin-current demultiplexing operation will allow a number of logic functions to be cascaded without spin-charge conversions and open a route for future ultra-low-power devices.

  1. Detailed characterization of lithium diffusion mechanisms in crystalline silicon using the kinetic Activation-Relaxation Technique

    Science.gov (United States)

    Trochet, Mickaël; Restrepo Gutierrez, Oscar Antonio; Mousseau, Normand

    Silicon displays a potential for high-capacity anode material for lithium-ion batteries as it can absorb large quantities of this metal. Yet, very little is understood about the evolution of diffusion mechanisms and migration barriers as the concentration of lithium increases. Until now, for example, simulations studies were limited by the time scale over which diffusion takes place. Here, we use the kinetic activation relaxation technique (kART), an unbiased off-lattice Monte Carlo method with on-the fly catalog building, coupled with the ReaxFF forcefield to follow diffusion of Li in c - Si over timescale of seconds and more at room temperature, obtaining detailed information about the whole set of possible diffusion mechanisms as the local environment evolves. We first present a detailed characterization of Li diffusion in the presence of 1 to 3 impurities and then show the evolution of systems with a higher concentration of solute as Li aggregate. These results provide a first detailed picture of the onset of Li aggregating into this high-capacity material, as it modifies the structure through local rearrangements and long-range elastic deformations, crucial information for the development of the next generation of high-capacity anode. ∖pard ∖pard.

  2. Mechanical Impedance of the non-loaded Lower Leg with Relaxed Muscles in the Transverse Plane

    Directory of Open Access Journals (Sweden)

    Evandro Maicon Ficanha

    2015-12-01

    Full Text Available This paper describes the protocols and results of the experiments for the estimation of the mechanical impedance of the humans’ lower leg in the External-Internal (EI direction in the transverse plane under non-load bearing condition and with relaxed muscles. The objectives of the estimation of the lower leg’s mechanical impedance are to facilitate the design of passive and active prostheses with mechanical characteristics similar to the humans’ lower leg, and to define a reference that can be compared to the values from the patients suffering from spasticity. The experiments were performed with 10 unimpaired male subjects using a lower extremity rehabilitation robot (Anklebot, Interactive Motion Technologies, Inc. capable of applying torque perturbations to the foot. The subjects were in a seated position, and the Anklebot recorded the applied torques and the resulting angular movement of the lower leg. In this configuration, the recorded dynamics are due mainly to the rotations of the ankle’s talocrural and the subtalar joints, and any contribution of the tibiofibular joints and knee joint. The dynamic mechanical impedance of the lower leg was estimated in the frequency domain with an average coherence of 0.92 within the frequency range of 0 to 30Hz, showing a linear correlation between the displacement and the torques within this frequency range under the conditions of the experiment. The mean magnitude of the quasi-static stiffness of the lower leg (the impedance magnitude averaged in the range of 0-1 Hz was determined as 4.9±0.74 Nm/rad. The direct estimation of the quasi-static stiffness of the lower leg results in the mean value of 5.8±0.81 Nm/rad. An analysis of variance (ANOVA shows that the estimated values for the quasi-static stiffness from the two experiments are not statistically different.

  3. Synthesis, crystal structures, and magnetic properties of cyanide-bridged W(V)Mn(III) anionic coordination polymers containing divalent cationic moieties: slow magnetic relaxations and spin crossover phenomenon.

    Science.gov (United States)

    Yoon, Jung Hee; Lim, Kwang Soo; Ryu, Dae Won; Lee, Woo Ram; Yoon, Sung Won; Suh, Byoung Jin; Hong, Chang Seop

    2014-10-06

    Two trimetallic coordination complexes were prepared by self-assembly of [W(CN)8](3-) and the Mn(III) Schiff base followed by the addition of a Zn(II) or Fe(II) cationic unit. The octacyanotungstate connects neighboring Mn(III) centers to form a one-dimensional chain. The anionic chain requires cationic units of Zn(II) or Fe(II) to maintain charge balance in the structure. The Zn-containing complex shows ferrimagnetic behavior originating from the antiparallel alignment of W(V) and Mn(III) spins within the chain, which leads to slow magnetic relaxation at low temperatures. For the Fe(II)-containing compound, Fe(II) moieties are integrated into the ferrimagnetic chains, altering their spin states depending on the temperature. It appears that the coexistence of high- and low-spin states in the low temperature regime is responsible for the slower and faster relaxations of the magnetization.

  4. Dielectric and shear mechanical relaxations in glass-forming liquids: A test of the Gemant-DiMarzio-Bishop model

    DEFF Research Database (Denmark)

    Niss, K.; Jakobsen, B.; Olsen, N.B.

    2005-01-01

    that the Gemant-DiMarzio-Bishop model is correct on a qualitative level. The quantitative agreement between the model and the data is on the other hand moderate to poor. It is discussed if a model-free comparison between the dielectric and shear mechanical relaxations is relevant, and it is concluded...

  5. Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jiancheng; Wang, Tao, E-mail: wangtao@buaa.edu.cn; Li, Yang [School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191 (China); Zhang, Hong; Zou, Sheng [School of Instrument Science and Engineering, Southeast University, Nanjing 210096 (China)

    2014-12-15

    The hybrid optical pumping atomic magnetometers have not realized its theoretical sensitivity, the optimization is critical for optimal performance. The optimizations proposed in this paper are suitable for hybrid optical pumping atomic magnetometer, which contains two alkali species. To optimize the parameters, the dynamic equations of spin evolution with two alkali species were solved, whose steady-state solution is used to optimize the parameters. The demand of the power of the pump beam is large for hybrid optical pumping. Moreover, the sensitivity of the hybrid optical pumping magnetometer increases with the increase of the power density of the pump beam. The density ratio between the two alkali species is especially important for hybrid optical pumping magnetometer. A simple expression for optimizing the density ratio is proposed in this paper, which can help to determine the mole faction of the alkali atoms in fabricating the hybrid cell before the cell is sealed. The spin-exchange rate between the two alkali species is proportional to the saturated density of the alkali vapor, which is highly dependent on the temperature of the cell. Consequently, the sensitivity of the hybrid optical pumping magnetometer is dependent on the temperature of the cell. We proposed the thermal optimization of the hybrid cell for a hybrid optical pumping magnetometer, which can improve the sensitivity especially when the power of the pump beam is low. With these optimizations, a sensitivity of approximately 5 fT/Hz{sup 1/2} is achieved with gradiometer arrangement.

  6. Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping

    International Nuclear Information System (INIS)

    Fang, Jiancheng; Wang, Tao; Li, Yang; Zhang, Hong; Zou, Sheng

    2014-01-01

    The hybrid optical pumping atomic magnetometers have not realized its theoretical sensitivity, the optimization is critical for optimal performance. The optimizations proposed in this paper are suitable for hybrid optical pumping atomic magnetometer, which contains two alkali species. To optimize the parameters, the dynamic equations of spin evolution with two alkali species were solved, whose steady-state solution is used to optimize the parameters. The demand of the power of the pump beam is large for hybrid optical pumping. Moreover, the sensitivity of the hybrid optical pumping magnetometer increases with the increase of the power density of the pump beam. The density ratio between the two alkali species is especially important for hybrid optical pumping magnetometer. A simple expression for optimizing the density ratio is proposed in this paper, which can help to determine the mole faction of the alkali atoms in fabricating the hybrid cell before the cell is sealed. The spin-exchange rate between the two alkali species is proportional to the saturated density of the alkali vapor, which is highly dependent on the temperature of the cell. Consequently, the sensitivity of the hybrid optical pumping magnetometer is dependent on the temperature of the cell. We proposed the thermal optimization of the hybrid cell for a hybrid optical pumping magnetometer, which can improve the sensitivity especially when the power of the pump beam is low. With these optimizations, a sensitivity of approximately 5 fT/Hz 1/2 is achieved with gradiometer arrangement

  7. Possible mechanism(s of the relaxant effect of asafoetida (Ferula assa-foetida oleo-gum-resin extract on guinea-pig tracheal smooth muscle

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Boskabady

    2011-12-01

    Full Text Available Objective: Asafoetida (Ferula assa-foetida is known as a valuable remedy for whooping cough, pneumonia, bronchitis in children and asthma treatment in folk medicine. In the present study the relaxant effects of the asafoetida on tracheal smooth muscle of guinea pigs and its probable mechanism(s were examined.Materials and Methods: The relaxant effects of three cumulative concentrations of the aqueous extract (2, 5 and 10 mg/ml, theophylline (0.25, 0.5 and 0.75 mM and saline were examined on non-incubated tracheal smooth muscle of guinea pig precontracted by 10 µM methacholine (group 1; preincubated tissues by propranolol and chlorpheniramine, contracted by methacholine (group 2 and preincubated tissues by propranolol, contracted by methacholine (group 3, (n=6 for each group. Results: All concentrations of theophylline in group 1 and all concentrations of the extract in the other three groups showed significant relaxant effects compared to that of saline (p<0.001 for all cases. There was not significant difference in the relaxant effect of the extract between three groups. The relaxant effects of two last concentrations of the extract (5 and 10 mg/ml only in group 2 were significantly lower than that of theophylline (p<0.05 for both case. There was no significant difference between relaxant effects of the extract and theophylline in group 2. There were significant positive correlations between the relaxant effects of the extract with their concentrations in all three groups (p<0.001 for all cases. Conclusion: These results showed a potent relaxant effect for the asafoetida extract on tracheal smooth muscle which is perhaps due to muscarinic receptor blockade.

  8. Systematic variation of magnetic-field penetration depth in high-Tc superconductors studied by muon-spin relaxation

    Science.gov (United States)

    Uemura, Y. J.; Emery, V. J.; Moodenbaugh, A. R.; Suenaga, M.; Johnston, D. C.

    1988-01-01

    The muon relaxation rate (sigma) was measured in the high critical temperature superconductors YBa2Cu3O(x) for x = 6.66, 6.95, 7.0, and La1.85 SrO.15 CuO4 in transverse external magnetic fields 1 is approximately 4 kG. A simple relation is found which connects the transition temperature T(c), the magnetic field penetration depth lambda(L), the carrier concentration n(s) and the effective mass m* as T(c) varies as sigma which varies as 1/lambda(L) squared which varies as n(s)/m*. The linear dependence T(c) varies as n(s)/m* suggests a high energy scale for the coupling between superconducting carriers.

  9. Systematic variation of magnetic-field penetration depth in high-T(c) superconductors studied by muon spin relaxation

    Science.gov (United States)

    Uemura, Y. J.; Emery, V. J.; Moodenbaugh, A. R.; Suenaga, M.; Johnston, D. C.; Jacobson, A. J.; Lewandowski, J. T.; Brewer, J. H.; Kiefl, R. F.; Kreitzman, S. R.

    1988-01-01

    The muon relaxation rate (sigma) was measured in the high critical temperature superconductors YBa2Cu3O(x) for x = 6.66, 6.95, 7.0, and La1.85 Sr0.15 CuO4 in transverse external magnetic fields 1 is approximately 4kG. A simple relation is found which connects the transition temperature T(c), the magnetic field penetration depth lambda(L), the carrier concentration n(s) and the effective mass m* as T(c) varies as sigma which varies as 1/lambda(L) squared which varies as n(s)/m*. The linear dependence T(c) varies as n(s)/m* suggests a high energy scale for the coupling between superconducting carriers.

  10. Spin Transport in Nondegenerate Si with a Spin MOSFET Structure at Room Temperature

    Science.gov (United States)

    Sasaki, Tomoyuki; Ando, Yuichiro; Kameno, Makoto; Tahara, Takayuki; Koike, Hayato; Oikawa, Tohru; Suzuki, Toshio; Shiraishi, Masashi

    2014-09-01

    Spin transport in nondegenerate semiconductors is expected to pave the way to the creation of spin transistors, spin logic devices, and reconfigurable logic circuits, because room-temperature (RT) spin transport in Si has already been achieved. However, RT spin transport has been limited to degenerate Si, which makes it difficult to produce spin-based signals because a gate electric field cannot be used to manipulate such signals. Here, we report the experimental demonstration of spin transport in nondegenerate Si with a spin metal-oxide-semiconductor field-effect transistor (MOSFET) structure. We successfully observe the modulation of the Hanle-type spin-precession signals, which is a characteristic spin dynamics in nondegenerate semiconductors. We obtain long spin transport of more than 20 μm and spin rotation greater than 4π at RT. We also observe gate-induced modulation of spin-transport signals at RT. The modulation of the spin diffusion length as a function of a gate voltage is successfully observed, which we attribute to the Elliott-Yafet spin relaxation mechanism. These achievements are expected to lead to the creation of practical Si-based spin MOSFETs.

  11. The relaxant effect of Ferula assafoetida on smooth muscles and the possible mechanisms

    Directory of Open Access Journals (Sweden)

    Khazdair Mohammad Reza

    2015-04-01

    Full Text Available Asafoetida (Ferula asafoetida an oleo-gum-resin belongs to the Apiaceae family which obtained from the living underground rhizome or tap roots of the plant. F. assa-foetida is used in traditional medicine for the treatment of variety of disorders. Asafoetida is used as a culinary spice and in folk medicine has been used to treat several diseases, including intestinal parasites, weak digestion, gastrointestinal disorders, asthma and influenza. A wide range of chemical compounds including sugars, sesquiterpene coumarins and polysulfides have been isolated from this plant. This oleo-gum-resin is known to possess antifungal, anti-diabetic, anti-inflammatory, anti-mutagenic and antiviral activities. Several studies investigated the effects of F. asafoetida gum extract on the contractile responses induced by acetylcholine, methacholin, histamine and KCl on different smooth muscles. The present review summarizes the information regarding the relaxant effect of asafetida and its extracts on different smooth muscles and the possible mechanisms of this effect.

  12. Three-stage decoherence dynamics of an electron spin qubit in an optically active quantum dot

    Science.gov (United States)

    Bechtold, Alexander; Rauch, Dominik; Li, Fuxiang; Simmet, Tobias; Ardelt, Per-Lennart; Regler, Armin; Müller, Kai; Sinitsyn, Nikolai A.; Finley, Jonathan J.

    2015-12-01

    The control of solid-state qubits requires a detailed understanding of the decoherence mechanisms. Despite considerable progress in uncovering the qubit dynamics in strong magnetic fields, decoherence at very low magnetic fields remains puzzling, and the role of quadrupole coupling of nuclear spins is poorly understood. For spin qubits in semiconductor quantum dots, phenomenological models of decoherence include two basic types of spin relaxation: fast dephasing due to static but randomly distributed hyperfine fields (~2 ns) and a much slower process (>1 μs) of irreversible monotonic relaxation due either to nuclear spin co-flips or other complex many-body interaction effects. Here we show that this is an oversimplification; the spin qubit relaxation is determined by three rather than two distinct stages. The additional stage corresponds to the effect of coherent precession processes that occur in the nuclear spin bath itself, leading to a relatively fast but incomplete non-monotonic relaxation at intermediate timescales (~750 ns).

  13. Semiclassical Monte Carlo simulation studies of spin dephasing in InP and InSb nanowires

    Directory of Open Access Journals (Sweden)

    Ashish Kumar

    2012-03-01

    Full Text Available We use semiclassical Monte Carlo approach to investigate spin polarized transport in InP and InSb nanowires. D’yakonov-Perel (DP relaxation and Elliott-Yafet (EY relaxation are the two main relaxation mechanisms for spin dephasing in III-V channels. The DP relaxation occurs because of bulk inversion asymmetry (Dresselhaus spin-orbit interaction and structural inversion asymmetry (Rashba spin-orbit interaction. The injection polarization direction studied is that along the length of the channel. The dephasing rate is found to be very strong for InSb as compared to InP which has larger spin dephasing lengths. The ensemble averaged spin components vary differently for both InP and InSb nanowires. The steady state spin distribution also shows a difference between the two III-V nanowires.

  14. Effects of Contract-Relax, Static Stretching, and Isometric Contractions on Muscle-Tendon Mechanics.

    Science.gov (United States)

    Kay, Anthony D; Husbands-Beasley, Jade; Blazevich, Anthony J

    2015-10-01

    Loading characteristics of stretching techniques likely influence the specific mechanisms responsible for acute increases in range of motion (ROM). Therefore, the effects of a version of contract-relax (CR) proprioceptive neuromuscular facilitation stretching, static stretching (SS), and maximal isometric contraction (Iso) interventions were studied in 17 healthy human volunteers. Passive ankle moment was recorded on an isokinetic dynamometer, with EMG recording from the triceps surae, simultaneous real-time motion analysis, and ultrasound-imaging-recorded gastrocnemius medialis muscle and Achilles tendon elongation. Subjects then performed each intervention randomly on separate days before reassessment. Significant increases in dorsiflexion ROM (2.5°-5.3°; P muscle-tendon stiffness (10.1%-21.0%; P stretching (P stretching and Iso (17.7%-22.1%; P 0.05), whereas significant reductions in muscle stiffness occurred after CR stretching and SS (16.0%-20.5%; P 0.05). Increases in peak passive moment (stretch tolerance) occurred after Iso (6.8%; P stretching (10.6%; P = 0.08), and SS (5.2%; P = 0.08); no difference in changes between conditions was found (P > 0.05). Significant correlations (rs = 0.69-0.82; P muscle and tendon stiffness are distinct. Concomitant reductions in muscle and tendon stiffness after CR stretching suggest a broader adaptive response that likely explains its superior efficacy in acutely increasing ROM. Although mechanical changes appear tissue-specific between interventions, similar increases in stretch tolerance after all interventions are strongly correlated with changes in ROM.

  15. Behavior of cesium and thallium cations inside a calixarene cavity as probed by nuclear spin relaxation. Evidence of cation-pi interactions in water.

    Science.gov (United States)

    Cuc, Diana; Bouguet-Bonnet, Sabine; Morel-Desrosiers, Nicole; Morel, Jean-Pierre; Mutzenhardt, Pierre; Canet, Daniel

    2009-08-06

    We have studied the complexes formed between the p-sulfonatocalix[4]arene and cesium or thallium metal cation, first by carbon-13 longitudinal relaxation of the calixarene molecule at two values of the magnetic field B(0). From the longitudinal relaxation times of an aromatic carbon directly bonded to a proton, thus subjected essentially to the dipolar interaction with that proton, we could obtain the correlation time describing the reorientation of the CH bond. The rest of this study has demonstrated that it is also the correlation time describing the tumbling of the whole calixarene assembly. From three non-proton-bearing carbons of the aromatic cycles (thus subjected to the chemical shift anisotropy and dipolar mechanisms), we have been able to determine the variation of the chemical shift anisotropy when going from the free to the complex form of the calixarene. These variations not only provide the location of the cation inside the calixarene cavity but also constitute a direct experimental proof of the cation-pi interactions. These results are complemented by cesium and thallium relaxation measurements performed again at two values of the magnetic field B(0). An estimation of the mean distance between the cation and the calixarene protons could be obtained. These measurements have also revealed an important chemical shift anisotropy of thallium upon complexation.

  16. Identification of mechanisms involved in the relaxation of rabbit cavernous smooth muscle by a new nitric oxide donor ruthenium compound

    Directory of Open Access Journals (Sweden)

    João Batista Gadelha de Cerqueira

    2012-10-01

    Full Text Available PURPOSE: The aim of this study was to evaluate the relaxation in vitro of cavernous smooth muscle induced by a new NO donor of the complex nitrosil-ruthenium, named trans-[Ru(NH34(caffeine(NO]C13 (Rut-Caf and sodium nitroprusside (SNP. MATERIALS AND METHODS: The tissues, immersed in isolated bath systems, were pre-contracted with phenilephrine (PE (1 µM and then concentration-response curves (10-12 - 10-4 M were obtained. To clarify the mechanism of action involved, it was added to the baths ODQ (10 µM, 30 µM, oxyhemoglobin (10 µM, L-cysteine (100 µM, hydroxicobalamine (100 µM, glibenclamide, iberotoxin and apamine. Tissue samples were frozen in liquid nitrogen to measure the amount of cGMP and cAMP produced. RESULTS: The substances provoked significant relaxation of the cavernous smooth muscle. Both Rut-Caf and SNP determined dose-dependent relaxation with similar potency (pEC50 and maximum effect (Emax. The substances showed activity through activation of the soluble guanylyl cyclase (sGC, because the relaxations were inhibited by ODQ. Oxyhemoglobin significantly diminished the relaxation effect of the substances. L-cysteine failed to modify the relaxations caused by the agents. Hydroxicobalamine significantly diminished the relaxation effect of Rut-Caf. Glibenclamide significantly increased the efficacy of Rut-Caf (pEC50 4.09 x 7.09. There were no alterations of potency or maximum effect of the substances with the addition of the other ion channel blockers. Rut-Caf induced production of significant amounts of cGMP and cAMP during the relaxation process. CONCLUSIONS: In conclusion, Rut-Caf causes relaxation of smooth muscle of corpus cavernosum by means of activation of sGC with intracellular production of cGMP and cAMP; and also by release of NO in the intracellular environment. Rut-Caf releases the NO free radical and it does not act directly on the potassium ion channels.

  17. Spin Gauge Interactions as a Topological Mechanism of Superconductivity

    Science.gov (United States)

    Dutta Choudhury, Ishita

    2017-12-01

    We talk about a low energy, effective, topological theory of superconductivity in which a topological mass term is radiatively induced in one loop effective action. In this field theoretic model, an antisymmetric tensor field couples with the vorticity current of charged Dirac fermions in the Lagrangian. The fermion loop generates a coupling between the gauge field and the antisymmetric tensor field below an ultraviolet cut-off. The spin interactions mediated by the antisymmetric tensor field induces a mass for the photon field indicating Meissner effect. The dual antisymmetric tensor field produces a current which satisfies the relativistic version of the London equations of superconductivity. In the non-relativistic limit, the static effective potential shows a linear, always attractive term between two electrons. Thus, the theory can be considered as an alternative, low energy, effective field theory of superconductivity without spontaneous symmetry breaking.

  18. Spin Gauge Interactions as a Topological Mechanism of Superconductivity

    Directory of Open Access Journals (Sweden)

    Dutta Choudhury Ishita

    2017-01-01

    Full Text Available We talk about a low energy, effective, topological theory of superconductivity in which a topological mass term is radiatively induced in one loop effective action. In this field theoretic model, an antisymmetric tensor field couples with the vorticity current of charged Dirac fermions in the Lagrangian. The fermion loop generates a coupling between the gauge field and the antisymmetric tensor field below an ultraviolet cut-off. The spin interactions mediated by the antisymmetric tensor field induces a mass for the photon field indicating Meissner effect. The dual antisymmetric tensor field produces a current which satisfies the relativistic version of the London equations of superconductivity. In the non-relativistic limit, the static effective potential shows a linear, always attractive term between two electrons. Thus, the theory can be considered as an alternative, low energy, effective field theory of superconductivity without spontaneous symmetry breaking.

  19. Influence of mechanical strain on magnetic characteristics of spin valves

    Science.gov (United States)

    Áč, V.; Anwarzai, B.; Luby, S.; Majkova, E.

    2008-03-01

    Giant magnetoresistance (GMR) of Co and Fe-Co based e-beam evaporated spin valves with Cu and Au spacers was studied. The effect of strain on samples, which is detrimental in standard GMR sensors, was measured in a bending configuration. The different dependences of coercivity Hc and magnetic field Hip in the point of inflection of MR loops vs. strain were found. For sample with Co/Au/Co core, Hc, Hip increase with increasing compressive stress, whereas for sample with FeCo/Cu/Co core they increase with tensile stress. The highest relative change of MR ratio vs. bending in the strain interval ± 300 × 10-6 is 1-2 % of the basic magnetoresistance and, practically, it does not influence the SV output.

  20. Influence of mechanical strain on magnetic characteristics of spin valves

    International Nuclear Information System (INIS)

    Ac, V; Anwarzai, B; Luby, S; Majkova, E

    2008-01-01

    Giant magnetoresistance (GMR) of Co and Fe-Co based e-beam evaporated spin valves with Cu and Au spacers was studied. The effect of strain on samples, which is detrimental in standard GMR sensors, was measured in a bending configuration. The different dependences of coercivity H c and magnetic field H ip in the point of inflection of MR loops vs. strain were found. For sample with Co/Au/Co core, H c , H ip increase with increasing compressive stress, whereas for sample with FeCo/Cu/Co core they increase with tensile stress. The highest relative change of MR ratio vs. bending in the strain interval ± 300 x 10 -6 is 1-2 % of the basic magnetoresistance and, practically, it does not influence the SV output

  1. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Bodek, K.; Rozpędzik, D.; Zejma, J.; Caban, P.; Rembieliński, J.; Włodarczyk, M.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.

    2013-01-01

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass

  2. Effect of thermal annealing on electron spin relaxation of beryllium-doped In{sub 0.8}Ga{sub 0.2}As{sub 0.45}P{sub 0.55} bulk

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao; Harasawa, Ryo; Yasue, Yuya; Aritake, Takanori; Jiang, Canyu; Tackeuchi, Atsushi, E-mail: atacke@waseda.jp [Department of Applied Physics, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Ji, Lian; Lu, Shulong [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Dushu Lake Higher Education Town, Ruoshui Road 398, Suzhou Industrial Park, Suzhou (China)

    2016-08-15

    The effect of thermal annealing on the electron spin relaxation of beryllium-doped In{sub 0.8}Ga{sub 0.2}As{sub 0.45}P{sub 0.55} bulk was investigated by time-resolved spin-dependent pump and probe reflection measurement with a high time resolution of 200 fs. Three similar InGaAsP samples were examined one of which was annealed at 800 °C for 1 s, one was annealed at 700 °C for 1 s and the other was not annealed after crystal growth by molecular beam epitaxy. Although the carrier lifetimes of the 700 °C-annealed sample and the unannealed sample were similar, that of the 800 °C-annealed sample was extended to 11.6 (10.4) ns at 10 (300) K, which was more than two (four) times those of the other samples. However, interestingly the spin relaxation time of the 800 °C-annealed sample was found to be similar to those of the other two samples. Particularly at room temperature, the spin relaxation times are 143 ps, 147 ps, and 111 ps for the 800 °C-annealed sample, 700 °C-annealed sample, and the unannealed sample, respectively.

  3. Effect of thermal annealing on electron spin relaxation of beryllium-doped In0.8Ga0.2As0.45P0.55 bulk

    Directory of Open Access Journals (Sweden)

    Hao Wu

    2016-08-01

    Full Text Available The effect of thermal annealing on the electron spin relaxation of beryllium-doped In0.8Ga0.2As0.45P0.55 bulk was investigated by time-resolved spin-dependent pump and probe reflection measurement with a high time resolution of 200 fs. Three similar InGaAsP samples were examined one of which was annealed at 800 °C for 1 s, one was annealed at 700 °C for 1 s and the other was not annealed after crystal growth by molecular beam epitaxy. Although the carrier lifetimes of the 700 °C-annealed sample and the unannealed sample were similar, that of the 800 °C-annealed sample was extended to 11.6 (10.4 ns at 10 (300 K, which was more than two (four times those of the other samples. However, interestingly the spin relaxation time of the 800 °C-annealed sample was found to be similar to those of the other two samples. Particularly at room temperature, the spin relaxation times are 143 ps, 147 ps, and 111 ps for the 800 °C-annealed sample, 700 °C-annealed sample, and the unannealed sample, respectively.

  4. Nuclear spin relaxation of {sup 8}Li in a thin film of La{sub 0.67}Ca{sub 0.33}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.I. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada V6T 2A3 (Canada); Arseneau, D. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Chow, K.H. [Department of Physics, University of Alberta, Edmonton, Alta., T6G 2J1 (Canada); Daviel, S. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Engelbertz, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Hossain, MD. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Keeler, T. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Kiefl, R.F. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)]|[Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z1 (Canada)]|[Canadian Institute for Advanced Research, Toronto, Ont., Canada M5G 1Z8 (Canada)]. E-mail: kiefl@triumf.ca; Kreitzman, S. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Levy, C.D.P. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Morales, P. [Department of Physics, University of Toronto, Toronto, Ont., M5S 1A7 (Canada); Morris, G.D. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); MacFarlane, W.A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada): Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Parolin, T.J. [Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Poutissou, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Saadaoui, H.; Wang, D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Salman, Z. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Wei, J.Y.T. [Canadian Institute for Advanced Research, Toronto, Ont., M5G 1Z8 (Canada)]|[Department of Physics, University of Toronto, Toronto, Ont., M5S 1A7 (Canada)

    2006-03-31

    We report {beta}-NMR measurements of the nuclear spin relaxation rate (1/T{sub 1}) in a thin film of La{sub 0.67}Ca{sub 0.33}MnO{sub 3} (LCMO) using a low-energy beam of spin-polarized {sup 8}Li. In a small magnetic field of 150G, there is a broad peak in 1/T{sub 1} near the Curie temperature (T{sub c}=259K) and a dramatic decrease in 1/T{sub 1} at lower temperatures. This is attributed to a critical slowing down of the spin fluctuations near T{sub c} and freezing of the magnetic excitations at low temperatures, respectively. In addition, there is a small amplitude, slow relaxing component at high temperatures, which we attribute to {sup 8}Li in the SrTiO{sub 3} substrate. There is an indication that the spin relaxation rate in the substrate is also peaked at T{sub c} due to close proximity to the magnetic film. These results establish that low-energy {beta}-NMR can be used as a probe of magnetic fluctuations in magnetic thin films over a wide range of temperatures.

  5. Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels

    International Nuclear Information System (INIS)

    Roberts, R.E.; Allen, S.; Chang, A.P.Y.; Henderson, H.; Hobson, G.C.; Karania, B.; Morgan, K.N.; Pek, A.S.Y.; Raghvani, K.; Shee, C.Y.; Shikotra, J.; Street, E.; Abbas, Z.; Ellis, K.; Heer, J.K.; Alexander, S.P.H.

    2013-01-01

    German chamomile (Matricaria recutita L.), a widely-used herbal medicine, has been reported to have a wide range of biological effects, including smooth muscle relaxation. The aim of this study was to compare the effects of representative compounds from chamomile (apigenin, luteolin, (−)-α-bisabolol, farnesene, umbelliferone; 3–30 μM) on vascular tone using porcine coronary and splenic arteries mounted for isometric tension recording in isolated tissue baths and precontracted with the thromboxane-mimetic U46619. Apigenin, luteolin, and (−)-α-bisabolol produced slow, concentration-dependent relaxations in both the coronary and splenic arteries that were not blocked by inhibition of nitric oxide synthase or potassium channels. Removal of extracellular calcium inhibited the relaxations to all three compounds, and these compounds also inhibited calcium re-addition-evoked contractions, indicating that the relaxation response may be mediated through inhibition of calcium influx. Apigenin and luteolin, but not (−)-α-bisabolol, enhanced the relaxation to the nitric oxide donor sodium nitroprusside, indicating that apigenin and luteolin may act to regulate cyclic GMP levels. Umbelliferone produced a rapid, transient relaxation in the splenic artery, but not the coronary artery, that was inhibited by L-NAME and removal of the endothelium, suggesting an influence on nitric oxide production. Farnesene, at concentrations up to 30 μM, was without effect in either blood vessel. In conclusion, hydroxylated compounds (apigenin, luteolin and (−)-α-bisabolol) found in chamomile all caused a slow relaxation of isolated blood vessels through an effect on calcium influx. Umbelliferone, on the other hand, produced a rapid, transient relaxation dependent upon release of nitric oxide from the endothelium. - Highlights: • Apigenin, luteolin, and (-)-α-bisabolol are present in chamomile. • They produced slow, concentration-dependent relaxations in arteries. • These

  6. Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.E., E-mail: Richard.roberts@nottingham.ac.uk; Allen, S.; Chang, A.P.Y.; Henderson, H.; Hobson, G.C.; Karania, B.; Morgan, K.N.; Pek, A.S.Y.; Raghvani, K.; Shee, C.Y.; Shikotra, J.; Street, E.; Abbas, Z.; Ellis, K.; Heer, J.K.; Alexander, S.P.H., E-mail: steve.alexander@nottingham.ac.uk

    2013-11-01

    German chamomile (Matricaria recutita L.), a widely-used herbal medicine, has been reported to have a wide range of biological effects, including smooth muscle relaxation. The aim of this study was to compare the effects of representative compounds from chamomile (apigenin, luteolin, (−)-α-bisabolol, farnesene, umbelliferone; 3–30 μM) on vascular tone using porcine coronary and splenic arteries mounted for isometric tension recording in isolated tissue baths and precontracted with the thromboxane-mimetic U46619. Apigenin, luteolin, and (−)-α-bisabolol produced slow, concentration-dependent relaxations in both the coronary and splenic arteries that were not blocked by inhibition of nitric oxide synthase or potassium channels. Removal of extracellular calcium inhibited the relaxations to all three compounds, and these compounds also inhibited calcium re-addition-evoked contractions, indicating that the relaxation response may be mediated through inhibition of calcium influx. Apigenin and luteolin, but not (−)-α-bisabolol, enhanced the relaxation to the nitric oxide donor sodium nitroprusside, indicating that apigenin and luteolin may act to regulate cyclic GMP levels. Umbelliferone produced a rapid, transient relaxation in the splenic artery, but not the coronary artery, that was inhibited by L-NAME and removal of the endothelium, suggesting an influence on nitric oxide production. Farnesene, at concentrations up to 30 μM, was without effect in either blood vessel. In conclusion, hydroxylated compounds (apigenin, luteolin and (−)-α-bisabolol) found in chamomile all caused a slow relaxation of isolated blood vessels through an effect on calcium influx. Umbelliferone, on the other hand, produced a rapid, transient relaxation dependent upon release of nitric oxide from the endothelium. - Highlights: • Apigenin, luteolin, and (-)-α-bisabolol are present in chamomile. • They produced slow, concentration-dependent relaxations in arteries. • These

  7. Spin-Mechanical Scheme with Color Centers in Hexagonal Boron Nitride Membranes

    Science.gov (United States)

    Abdi, Mehdi; Hwang, Myung-Joong; Aghtar, Mortaza; Plenio, Martin B.

    2017-12-01

    Recently observed quantum emitters in hexagonal boron nitride (hBN) membranes have a potential for achieving high accessibility and controllability thanks to the lower spatial dimension. Moreover, these objects naturally have a high sensitivity to vibrations of the hosting membrane due to its low mass density and high elasticity modulus. Here, we propose and analyze a spin-mechanical system based on color centers in a suspended hBN mechanical resonator. Through group theoretical analyses and ab initio calculation of the electronic and spin properties of such a system, we identify a spin doublet ground state and demonstrate that a spin-motion interaction can be engineered, which enables ground-state cooling of the mechanical resonator. We also present a toolbox for initialization, rotation, and readout of the defect spin qubit. As a result, the proposed setup presents the possibility for studying a wide range of physics. To illustrate its assets, we show that a fast and noise-resilient preparation of a multicomponent cat state and a squeezed state of the mechanical resonator is possible; the latter is achieved by realizing the extremely detuned, ultrastrong coupling regime of the Rabi model, where a phonon superradiant phase transition is expected to occur.

  8. Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels.

    Science.gov (United States)

    Roberts, R E; Allen, S; Chang, A P Y; Henderson, H; Hobson, G C; Karania, B; Morgan, K N; Pek, A S Y; Raghvani, K; Shee, C Y; Shikotra, J; Street, E; Abbas, Z; Ellis, K; Heer, J K; Alexander, S P H

    2013-11-01

    German chamomile (Matricaria recutita L.), a widely-used herbal medicine, has been reported to have a wide range of biological effects, including smooth muscle relaxation. The aim of this study was to compare the effects of representative compounds from chamomile (apigenin, luteolin, (-)-α-bisabolol, farnesene, umbelliferone; 3-30 μM) on vascular tone using porcine coronary and splenic arteries mounted for isometric tension recording in isolated tissue baths and precontracted with the thromboxane-mimetic U46619. Apigenin, luteolin, and (-)-α-bisabolol produced slow, concentration-dependent relaxations in both the coronary and splenic arteries that were not blocked by inhibition of nitric oxide synthase or potassium channels. Removal of extracellular calcium inhibited the relaxations to all three compounds, and these compounds also inhibited calcium re-addition-evoked contractions, indicating that the relaxation response may be mediated through inhibition of calcium influx. Apigenin and luteolin, but not (-)-α-bisabolol, enhanced the relaxation to the nitric oxide donor sodium nitroprusside, indicating that apigenin and luteolin may act to regulate cyclic GMP levels. Umbelliferone produced a rapid, transient relaxation in the splenic artery, but not the coronary artery, that was inhibited by L-NAME and removal of the endothelium, suggesting an influence on nitric oxide production. Farnesene, at concentrations up to 30 μM, was without effect in either blood vessel. In conclusion, hydroxylated compounds (apigenin, luteolin and (-)-α-bisabolol) found in chamomile all caused a slow relaxation of isolated blood vessels through an effect on calcium influx. Umbelliferone, on the other hand, produced a rapid, transient relaxation dependent upon release of nitric oxide from the endothelium. © 2013.

  9. Molecular interactions in the ionic liquid emim acetate and water binary mixtures probed via NMR spin relaxation and exchange spectroscopy.

    Science.gov (United States)

    Allen, Jesse J; Bowser, Sage R; Damodaran, Krishnan

    2014-05-07

    Interactions of ionic liquids (ILs) with water are of great interest for many potential IL applications. 1-Ethyl-3-methylimidazolium (emim) acetate, in particular, has shown interesting interactions with water including hydrogen bonding and even chemical exchange. Previous studies have shown the unusual behavior of emim acetate when in the presence of 0.43 mole fraction of water, and a combination of NMR techniques is used herein to investigate the emim acetate-water system and the unusual behavior at 0.43 mole fraction of water. NMR relaxometry techniques are used to describe the effects of water on the molecular motion and interactions of emim acetate with water. A discontinuity is seen in nuclear relaxation behavior at the concentration of 0.43 mole fraction of water, and this is attributed to the formation of a hydrogen bonded network. EXSY measurements are used to determine the exchange rates between the H2 emim proton and water, which show a complex dependence on the concentration of the mixture. The findings support and expand our previous results, which suggested the presence of an extended hydrogen bonding network in the emim acetate-water system at concentrations close to 0.50 mole fraction of H2O.

  10. Nonequilibrium Spin Dynamics in a Trapped Fermi Gas with Effective Spin-Orbit Interactions

    International Nuclear Information System (INIS)

    Stanescu, Tudor D.; Zhang Chuanwei; Galitski, Victor

    2007-01-01

    We consider a trapped atomic system in the presence of spatially varying laser fields. The laser-atom interaction generates a pseudospin degree of freedom (referred to simply as spin) and leads to an effective spin-orbit coupling for the fermions in the trap. Reflections of the fermions from the trap boundaries provide a physical mechanism for effective momentum relaxation and nontrivial spin dynamics due to the emergent spin-orbit coupling. We explicitly consider evolution of an initially spin-polarized Fermi gas in a two-dimensional harmonic trap and derive nonequilibrium behavior of the spin polarization. It shows periodic echoes with a frequency equal to the harmonic trapping frequency. Perturbations, such as an asymmetry of the trap, lead to the suppression of the spin echo amplitudes. We discuss a possible experimental setup to observe spin dynamics and provide numerical estimates of relevant parameters

  11. Nitrergic Pathway Is the Main Contributing Mechanism in the Human Gastric Fundus Relaxation: An In Vitro Study.

    Directory of Open Access Journals (Sweden)

    Yang Won Min

    Full Text Available Human gastric fundus relaxation is mediated by intrinsic inhibitory pathway. We investigated the roles of nitrergic and purinergic pathways, two known inhibitory factors in gastric motility, on spontaneous and nerve-evoked contractions in human gastric fundus muscles.Gastric fundus muscle strips (12 circular and 13 longitudinal were obtained from patients without previous gastrointestinal motility disorder who underwent gastrectomy for stomach cancer. Using these specimens, we examined basal tone, peak, amplitude, and frequency of spontaneous contractions, and peak and nadir values under electrical field stimulation (EFS, 150 V, 0.3 ms, 10 Hz, 20 s. To examine responses to purinergic and nitrergic inhibition without cholinergic innervation, atropine (muscarinic antagonist, 1 μM, MRS2500 (a purinergic P2Y1 receptor antagonist, 1 μM, and N-nitro-L-arginine (L-NNA, a nitric oxide synthase inhibitor, 100 μM were added sequentially for spontaneous and electrically-stimulated contractions. Tetrodotoxin was used to confirm any neuronal involvement.In spontaneous contraction, L-NNA increased basal tone and peak in both muscle layers, while amplitude and frequency were unaffected. EFS (up to 10 Hz uniformly induced initial contraction and subsequent relaxation in a frequency-dependent manner. Atropine abolished initial on-contraction and induced only relaxation during EFS. While MRS2500 showed no additional influence, L-NNA reversed relaxation (p = 0.012 in circular muscle, and p = 0.006 in longitudinal muscle. Tetrodotoxin abolished any EFS-induced motor response.The relaxation of human gastric fundus muscle is reduced by nitrergic inhibition. Hence, nitrergic pathway appears to be the main mechanism for the human gastric fundus relaxation.

  12. Microscopic understanding of spin current probed by shot noise

    Science.gov (United States)

    Arakawa, Tomonori

    The spin currents is one of key issue in the spintronics field and the generation and detection of those have been intensively studied by using various materials. The analysis of experiments, however, relies on phenomenological parameters such as spin relaxation length and spin flip time. The microscopic nature of the spin current such as energy distribution and energy relaxation mechanism, has not yet well understood. To establish a better microscopic understanding of spin currents, I focused on the shot noise measurement which is well established technique in the field of mesoscopic physics [Y. M. Blanter and M. B üttiker, Phys. Rep. 336, 1 (2000).]. Although there are many theoretically works about shot noise in the presence of spin currents, for example detection of spin accumulation [J. Meair, P. Stano, and P. Jacquod, Phys. Rev. B 84 (2011).], estimation of spin flip currents, and so on, these predictions have never been experimentally confirmed. In this context, we reported the first experimental detention of shot noise in the presence of the spin accumulation in a (Ga,Mn)As/tunnel barrier/n-GaAs based lateral spin valve device [T. Arakawa et al., Phys. Rev. Lett. 114, 016601 (2015).]. Together with this result, we found however that the effective temperature of the spin current drastically increases due to the spin injection process. This heating of electron system could be a big problem to realize future spin current devices by using quantum coherence, because the effective temperature rise directly related to the destruction of the coherence of the spin current. Therefore, then we focused on the mechanism of this heating and the energy relaxation in a diffusive channel. By measuring current noise and the DC offset voltage in the usual non-local spin valve signal as a function of the spin diffusion channel length, we clarified that the electron-electron interaction length, which is the characteristic length for the relaxation of the electron system, is

  13. The reduction of weaning time from mechanical ventilation using tidal volume and relaxation biofeedback.

    Science.gov (United States)

    Holliday, J E; Hyers, T M

    1990-05-01

    We sought to determine if biofeedback could reduce weaning time for the hard-to-wean patient by improving important weaning factors that are not effectively dealt with by present weaning methods. These include respiratory muscle electromyograph (EMG) efficiency, respiratory drive, and the anxiety of the ventilator-dependent patient. After the patient had received mechanical ventilation for 7 days and the day weaning began (start), the patient was randomly assigned to biofeedback or to the control group. There were 20 patients assigned to each group, with mean ages of 60.2 (biofeedback) and 59.3 (control) yr. The patients assigned to the biofeedback group received daily, until extubation or being placed on no resuscitation status (termination), frontalis electromyographic (EMG) relaxation feedback for anxiety reduction and improved respiratory muscle EMG efficiency, tidal volume/diaphragm EMG (VT/DAP), and VT feedback for increasing VT and respiratory drive defined as tidal volume/inspiratory time (VT/TI). The control group was visited daily to control for attention and reassurance. The results showed a significant (p less than 0.01) reduction in mean ventilator days for the biofeedback group of 20.6 +/- 8.9 SD compared with 32.6 +/- 17.6 SD mean days for the control group. From start to termination, there was a significant (p less than 0.01) increase in baseline VT, from 295 +/- 41 to 415 +/- 45 ml, and a significant (p less than 0.02) increase in VT/DAP, from 0.33 +/- 0.09 to 0.94 +/- 0.22 L/mV for the biofeedback group but no significant change in these parameters for the control group.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Peroxynitrite-induced relaxation in isolated rat aortic rings and mechanisms of action

    International Nuclear Information System (INIS)

    Li Jianfeng; Li Wenyan; Altura, Bella T.; Altura, Burton M.

    2005-01-01

    The present study was designed to evaluate the effects of peroxynitrite (ONOO - ), the product of superoxide and nitric oxide, on isolated segments of rat aorta. In the absence of any vasoactive agent, ONOO - (from 10 -8 to 10 -4 M) failed to alter the basal tension. In phenylephrine (PE; 5 x 10 -7 M)-precontracted rat aortic rings (RAR), ONOO - elicited concentration-dependent relaxation at concentrations of from 10 -8 to 10 -4 M. The effective concentrations producing approximately 50% of maximal relaxation (ED 5 ) to ONOO - were 1.84 x 10 -5 M and 1.96 x 10 -5 M in intact and denuded RAR, respectively (P > 0.05). No significant differences in the relaxation responses were found between RAR with or without endothelium (P > 0.05). The presence of either 5 μM methylene blue (MB) or 5 μM 1H-[1,2,4]oxadiazolo-[4,3-α]quinoxalin-1-one (ODQ) significantly inhibited the relaxations induced by ONOO - . Sildenafil (10 -7 M), on the other hand, significantly potentiated the ONOO - -induced relaxations. Tetraethylammonium chloride (T-2265) significantly decreased the ONOO - -induced relaxations in a concentration-dependent manner. However, ONOO - had no effect on RAR precontracted by high KCL (40 mM, n = 6, P > 0.05). Addition of calyculin A also significantly decreased the ONOO - -induced relaxation in a dose-dependent manner. Furthermore, ONOO - significantly inhibited calcium-induced contractions of K + -depolarized aortic rings in a concentration-related manner. Lastly, a variety of other pharmacological agents and antagonists including L-NMMA, L-arginine, indomethacin, atropine, naloxone, diphenhydramine, cimetine, glibenclamide, haloperidol, superoxide dismutase (SOD), and catalase did not influence the relaxant effects of ONOO - on RAR. Our new results suggest that ONOO - -triggered relaxation on rat aortic rings is mediated by elevation of cGMP levels, membrane hyperpolarization via K + -channel activation, activation of myosin phosphatase activity, and

  15. Distribution of glass transition temperatures Tg in polystyrene thin films as revealed by low-energy muon spin relaxation: A comparison with neutron reflectivity results.

    Science.gov (United States)

    Kanaya, Toshiji; Ogawa, Hiroki; Kishimoto, Mizuki; Inoue, Rintaro; Suter, Andreas; Prokscha, Thomas

    2015-08-01

    In a previous paper [Phys. Rev. E 83, 021801 (2011)] we performed neutron reflectivity (NR) measurements on a five-layer polystyrene (PS) thin film consisting of alternatively stacked deuterated polystyrene (dPS) and hydrogenated polystyrene (hPS) layers (dPS/hPS/dPS/hPS/dPS, ∼100 nm thick) on a Si substrate to reveal the distribution of Tg along the depth direction. Information on the Tg distribution is very useful to understand the interesting but unusual properties of polymer thin films. However, one problem that we have to clarify is if there are effects of deuterium labeling on Tg or not. To tackle the problem we performed low-energy muon spin relaxation (μSR) measurements on the above-mentioned deuterium-labeled five-layer PS thin film as well as dPS and hPS single-layer thin films ∼100 nm thick as a function of muon implantation energy. It was found that the deuterium labeling had no significant effects on the Tg distribution, guaranteeing that we can safely discuss the unusual thin film properties based on the Tg distribution revealed by NR on the deuterium-labeled thin films. In addition, the μSR result suggested that the higher Tg near the Si substrate is due to the strong orientation of phenyl rings.

  16. Coherent Dynamics of a Hybrid Quantum Spin-Mechanical Oscillator System

    Science.gov (United States)

    Lee, Kenneth William, III

    A fully functional quantum computer must contain at least two important components: a quantum memory for storing and manipulating quantum information and a quantum data bus to securely transfer information between quantum memories. Typically, a quantum memory is composed of a matter system, such as an atom or an electron spin, due to their prolonged quantum coherence. Alternatively, a quantum data bus is typically composed of some propagating degree of freedom, such as a photon, which can retain quantum information over long distances. Therefore, a quantum computer will likely be a hybrid quantum device, consisting of two or more disparate quantum systems. However, there must be a reliable and controllable quantum interface between the memory and bus in order to faithfully interconvert quantum information. The current engineering challenge for quantum computers is scaling the device to large numbers of controllable quantum systems, which will ultimately depend on the choice of the quantum elements and interfaces utilized in the device. In this thesis, we present and characterize a hybrid quantum device comprised of single nitrogen-vacancy (NV) centers embedded in a high quality factor diamond mechanical oscillator. The electron spin of the NV center is a leading candidate for the realization of a quantum memory due to its exceptional quantum coherence times. On the other hand, mechanical oscillators are highly sensitive to a wide variety of external forces, and have the potential to serve as a long-range quantum bus between quantum systems of disparate energy scales. These two elements are interfaced through crystal strain generated by vibrations of the mechanical oscillator. Importantly, a strain interface allows for a scalable architecture, and furthermore, opens the door to integration into a larger quantum network through coupling to an optical interface. There are a few important engineering challenges associated with this device. First, there have been no

  17. Symmetry and Degeneracy in Quantum Mechanics. Self-Duality in Finite Spin Systems

    Science.gov (United States)

    Osacar, C.; Pacheco, A. F.

    2009-01-01

    The symmetry of self-duality (Savit 1980 "Rev. Mod. Phys. 52" 453) of some models of statistical mechanics and quantum field theory is discussed for finite spin blocks of the Ising chain in a transverse magnetic field. The existence of this symmetry in a specific type of these blocks, and not in others, is manifest by the degeneracy of their…

  18. Relaxant effect of Thymus vulgaris on guinea-pig tracheal chains and its possible mechanism(s).

    Science.gov (United States)

    Boskabady, M H; Aslani, M R; Kiani, S

    2006-01-01

    Thymus vulgaris for the treatment of respiratory diseases is indicated widely, and relaxant effects on smooth muscle have been shown previously. In the present study, the relaxant effects of macerated and aqueous extracts of Thymus vulgaris on tracheal chains of guinea-pigs were examined using cumulative concentrations of macerated and aqueous extracts in comparison with saline (as the negative control) and theophylline (as the positive control). The relaxant effects of four cumulative concentrations of macerated and aqueous extracts (0.25, 0.5, 0.75 and 1.0 g %) in comparison with saline (as the negative control) and four cumulative concentrations of theophylline (0.25, 0.5, 0.75 and 1.0 mm; as the positive control) were examined for their relaxant effects on precontracted tracheal chains of guinea-pig by 60 mm KCl and 10 microm methacholine in two different conditions: non-incubated tissues and incubated tissues with 1 microm propranolol and 1 microm chlorphenamine. There were significant correlations between the relaxant effects and the concentrations for both extracts and theophylline in all experimental groups (p Thymus vulgaris on guinea-pig tracheal chains that was comparable to theophylline at the concentrations used. Copyright 2006 John Wiley & Sons, Ltd.

  19. Strain modulations as a mechanism to reduce stress relaxation in laryngeal tissues.

    Science.gov (United States)

    Hunter, Eric J; Siegmund, Thomas; Chan, Roger W

    2014-01-01

    Vocal fold tissues in animal and human species undergo deformation processes at several types of loading rates: a slow strain involved in vocal fold posturing (on the order of 1 Hz or so), cyclic and faster posturing often found in speech tasks or vocal embellishment (1-10 Hz), and shear strain associated with vocal fold vibration during phonation (100 Hz and higher). Relevant to these deformation patterns are the viscous properties of laryngeal tissues, which exhibit non-linear stress relaxation and recovery. In the current study, a large strain time-dependent constitutive model of human vocal fold tissue is used to investigate effects of phonatory posturing cyclic strain in the range of 1 Hz to 10 Hz. Tissue data for two subjects are considered and used to contrast the potential effects of age. Results suggest that modulation frequency and extent (amplitude), as well as the amount of vocal fold overall strain, all affect the change in stress relaxation with modulation added. Generally, the vocal fold cover reduces the rate of relaxation while the opposite is true for the vocal ligament. Further, higher modulation frequencies appear to reduce the rate of relaxation, primarily affecting the ligament. The potential benefits of cyclic strain, often found in vibrato (around 5 Hz modulation) and intonational inflection, are discussed in terms of vocal effort and vocal pitch maintenance. Additionally, elderly tissue appears to not exhibit these benefits to modulation. The exacerbating effect such modulations may have on certain voice disorders, such as muscle tension dysphonia, are explored.

  20. Investigation of spin-zero bosons in q-deformed relativistic quantum mechanics

    Science.gov (United States)

    Sobhani, H.; Chung, W. S.; Hassanabadi, H.

    2018-04-01

    In this article, Scattering states of Klein-Gordon equation for three scatter potentials of single and double Dirac delta and a potential well in the q-deformed formalism of relativistic quantum mechanics have been derived. At first, we discussed how q-deformed formalism can be constructed and used. Postulates of this q-deformed quantum mechanics are noted. Then scattering problems for spin-zero bosons are studied.

  1. Mechanical design of a rotary balance system for NASA. Langley Research Center's vertical spin tunnel

    Science.gov (United States)

    Allred, J. W.; Fleck, V. J.

    1992-01-01

    A new lightweight Rotary Balance System is presently being fabricated and installed as part of a major upgrade to the existing 20 Foot Vertical Spin Tunnel. This upgrade to improve model testing productivity of the only free spinning vertical wind tunnel includes a modern fan/drive and tunnel control system, an updated video recording system, and the new rotary balance system. The rotary balance is a mechanical apparatus which enables the measurement of aerodynamic force and moment data under spinning conditions (100 rpm). This data is used in spin analysis and is vital to the implementation of large amplitude maneuvering simulations required for all new high performance aircraft. The new rotary balance system described in this report will permit greater test efficiency and improved data accuracy. Rotary Balance testing with the model enclosed in a tare bag can also be performed to obtain resulting model forces from the spinning operation. The rotary balance system will be stored against the tunnel sidewall during free flight model testing.

  2. Relaxant effect of Crocus sativus (saffron) on guinea-pig tracheal chains and its possible mechanisms.

    Science.gov (United States)

    Boskabady, M H; Aslani, M R

    2006-10-01

    As indicated in ancient Iranian medical books, Crocus sativus has therapeutic effects on respiratory diseases. The relaxant effect of this plant has been observed also on smooth muscles in previous studies. Therefore, in this study the relaxant effects of aqueous-ethanolic extracts of C. sativus and one of its main constituents, safranal, were examined on guinea-pig tracheal chains. The relaxant effects of four cumulative concentrations of aqueous-ethanolic extract (0.15, 0.3, 0.45, and 0.60 g %) and safranal (0.15, 0.30, 0.45, and 0.60 mL 0.2 mg mL(-1) solution) in comparison with saline, as negative control, and four cumulative concentrations of theophylline (0.15, 0.30, 0.45, and 0.60 mM), as positive control, were examined using guinea-pig precontracted tracheal chains. The tracheal chains had been precontracted by three different methods. Group 1 had been precontracted using 10 microM methacholine. The other two groups had been precontracted using 60 mM KCl at two different conditions: non-incubated tissues (group 2) and tissues incubated with 1 microM propranolol, 1 microM chlorpheniramine and 1 microM atropine (group 3) (for each group, n = 6). In group 1 all concentrations of theophylline, extract and safranal showed significant relaxant effects compared with saline (P effects also compared with saline (P effect (P effects of the last concentration of safranal (0.60 mL 0.2 mg mL(-1) solution) in group 1, and all its concentrations in group 2 were significantly lower than those of theophylline (P effects of safranal 0.45 and 0.60 mL 0.2 mg mL(-1) solution in groups 1 and 2 were significantly lower than that of C. sativus extract. There were significant correlations between the relaxant effects and concentrations for extract, safranal and theophylline in all experimental groups (P effect of C. sativus on tracheal chains of guinea-pigs that was comparable to or even higher than that of theophylline at the concentrations used. The results indicated that

  3. Muon spin relaxation study on itinerant ferromagnet CeCrGe₃ and the effect of Ti substitution on magnetism of CeCrGe₃.

    Science.gov (United States)

    Das, Debarchan; Bhattacharyya, A; Anand, V K; Hillier, A D; Taylor, J W; Gruner, T; Geibel, C; Adroja, D T; Hossain, Z

    2015-01-14

    A Muon spin relaxation (µSR) study has been performed on the Kondo lattice heavy fermion itinerant ferromagnet CeCrGe3. Recent investigations of bulk properties have revealed a long-range ordering of Cr moments at Tc = 70 K in this compound. Our µSR investigation between 1.2 K and 125 K confirm the bulk magnetic order which is marked by a loss in initial asymmetry below 70 K accompanied with a sharp increase in the muon depolarization rate. Field dependent µSR spectra show that the internal field at the muon site is higher than 0.25 T apparently due to the ferromagnetic nature of ordering. The effect of Ti substitution on the magnetism in CeCrGe3 is presented. A systematic study has been made on polycrystalline CeCr(1-x)Ti(x)Ge3 (0 ⩽ x ⩽ 1) using magnetic susceptibility χ(T), isothermal magnetization M(H), specific heat C(T) and electrical resistivity ρ(T) measurements which clearly reveal that the substitution of Ti for Cr in CeCrGe3 strongly influences the exchange interaction and ferromagnetic ordering of Cr moments. The Cr moment ordering temperature is suppressed gradually with increasing Ti concentration up to x = 0.50 showing Tc = 7 K beyond which Ce moment ordering starts to dominate and a crossover between Cr and Ce moment ordering is observed with a Ce moment ordering Tc = 14 K for x = 1.0. The Kondo lattice behavior is evident from temperature dependence of ρ(T) in all CeCr(1-x)Ti(x)Ge3 samples.

  4. Study of mechanical compression of spin-polarized 3He gas

    International Nuclear Information System (INIS)

    Becker, J.; Heil, W.; Krug, B.; Leduc, M.; Meyerhoff, M.; Nacher, P.J.; Otten, E.W.; Prokscha, T.; Schearer, L.D.; Surkau, R.

    1994-01-01

    We have piloted mechanical compression of spinpolarized 3He by a titanium piston compressor. Questions of materials and design are discussed, followed by a thorough investigation of relaxation sources in the course of compression. The latter are traced mainly to regions with large surface to volume ratio, through which fast passage is demanded, therefore. We conclude from this feasibility study that polarized 3He may be compressed this way up to many bars without serious polarization losses. ((orig.))

  5. Study of conduction mechanisms and relaxation processes in NiCl2-PVA composites

    International Nuclear Information System (INIS)

    Basha, A.F.; Amin, M.; Abdel Samad, H.A.

    1985-07-01

    Electric conduction measurements were made at different temperatures and fields on thin films NiCl 2 -PVA composites prepared by casting. The conduction is assumed to be generally ionic in nature and polarization contribution is suggested to operate mainly at higher temperatures. Space-charge limited conduction and relaxation phenomena have been observed. The obtained results made it possible to determine a complete set of conduction parameters including carrier mobility, carrier concentration, traps density, Fermi energy, activation energy, etc. (author)

  6. Strain modulations as a mechanism to reduce stress relaxation in laryngeal tissues.

    Directory of Open Access Journals (Sweden)

    Eric J Hunter

    Full Text Available Vocal fold tissues in animal and human species undergo deformation processes at several types of loading rates: a slow strain involved in vocal fold posturing (on the order of 1 Hz or so, cyclic and faster posturing often found in speech tasks or vocal embellishment (1-10 Hz, and shear strain associated with vocal fold vibration during phonation (100 Hz and higher. Relevant to these deformation patterns are the viscous properties of laryngeal tissues, which exhibit non-linear stress relaxation and recovery. In the current study, a large strain time-dependent constitutive model of human vocal fold tissue is used to investigate effects of phonatory posturing cyclic strain in the range of 1 Hz to 10 Hz. Tissue data for two subjects are considered and used to contrast the potential effects of age. Results suggest that modulation frequency and extent (amplitude, as well as the amount of vocal fold overall strain, all affect the change in stress relaxation with modulation added. Generally, the vocal fold cover reduces the rate of relaxation while the opposite is true for the vocal ligament. Further, higher modulation frequencies appear to reduce the rate of relaxation, primarily affecting the ligament. The potential benefits of cyclic strain, often found in vibrato (around 5 Hz modulation and intonational inflection, are discussed in terms of vocal effort and vocal pitch maintenance. Additionally, elderly tissue appears to not exhibit these benefits to modulation. The exacerbating effect such modulations may have on certain voice disorders, such as muscle tension dysphonia, are explored.

  7. Polarons induced electronic transport, dielectric relaxation and magnetodielectric coupling in spin frustrated Ba{sub 2}FeWO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Pezhumkattil Palakkal, Jasnamol [Academy of Scientific and Innovative Research (AcSIR), CSIR—National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Campus, Trivandrum 695 019 (India); Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019 (India); Lekshmi, P. Neenu; Thomas, Senoy [Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019 (India); Valant, Matjaz [Materials Research Laboratory, University of Nova Gorica, Nova Gorica 5000 (Slovenia); Suresh, K.G. [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400 076 (India); Varma, Manoj Raama, E-mail: manoj@niist.res.in [Academy of Scientific and Innovative Research (AcSIR), CSIR—National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Campus, Trivandrum 695 019 (India); Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019 (India)

    2016-04-15

    Highlights: • Ordered double perovskite Ba{sub 2}FeWO{sub 6} synthesized in reducing atmosphere possess a tetragonal I4/m crystal structure with mixed valent Fe/W cations. • Ba{sub 2}FeWO{sub 6} has an antiferromagnetic structure with T{sub N} at 19 K. • Insulating Ba{sub 2}FeWO{sub 6} shows different conducting mechanisms at different temperature regions and dielectric relaxation. • The polarons invoked by the mixed valence state of cations and their disordered arrangements are solely responsible for the various physical phenomena observed in Ba{sub 2}FeWO{sub 6}. - Abstract: Mixed valent double perovskite Ba{sub 2}FeWO{sub 6}, with tetragonal crystal structure, synthesized in a highly controlled reducing atmosphere, shows antiferromagnetic transition at T{sub N} = 19 K. A cluster glass-like transition is observed around 30 K arising from the competing interactions between inhomogeneous magnetic states. The structural distortion leads to the formation of polarons that are not contributing to DC conduction below charge ordering temperature, T{sub CO} = 279 K. Above T{sub CO}, small polarons will start to hop by exploiting thermal energy and participate in the conduction mechanism. The polarons are also responsible for the dielectric relaxor behavior, in which the dielectric relaxation time follows non-linearity in temperature as proposed by Fulcher. The material also exhibits a small room temperature magnetoresistance of 1.7% at 90 kOe. An intrinsic magnetodielectric coupling of ∼4% near room temperature and at lower temperatures, as well as an extrinsic magnetodielectric coupling change from +4% to −6% at around 210 K are reported.

  8. Statistical mechanics of relativistic spin-1 bosons in a magnetic field

    International Nuclear Information System (INIS)

    Daicic, J.; Frankel, N.E.

    1993-01-01

    This paper investigates the statistical mechanics of a gas of spin-1 particles with pair creation in a homogeneous magnetic field. It is shown that expansions for the thermodynamic potential and magnetization in fields below the mass scale of the constituent particles are well behaved. However, when the field is at or above the mass scale, an intrinsic pathology of the single-particle energy spectrum manifests itself in the statistical mechanics of the system. Whilst for the spin-0 and spin-1/2 analog of this system there seemed to be no barrier ab initio to the field strength, the nature of the vacuum, and the role of interactions, were always borne in mind as matters to be considered in a high-order treatment, particularly when the field was at or above the mass scale. In the spin-1 case, the pathology in the single-particle energy spectrum heralds this from the beginning, and seems to be a warning that a single particle non-interacting picture of physics at high energies needs some reconsideration. 10 refs

  9. Proton NMR relaxation of hydrated insulin powder

    International Nuclear Information System (INIS)

    Sanches, R.; Donoso, J.P.; Mascarenhas, S.; Panepucci, H.C.

    1985-01-01

    Water proton nuclear magnetic relaxation measurements were obtained for hydrated insulin powder as a function of the water content. For samples containing enough water to complete the hydration shell, the data for the spin-lattice and spin-spin relaxation times are consistent with a model in which water molecules exist in two phases, one exhibiting restricted motion and identified with water of hydration and another identified as free water with motions similar to ordinary water. For samples containing only water of hydration, a model for the spin-spin relaxation time is discussed, in which the water molecules relaxation is described in terms for four relaxation times. Estimates are obtained for these relaxation times, in good agreement with the experimental data. (Author) [pt

  10. QM/MM studies on the excited-state relaxation mechanism of a semisynthetic dTPT3 base.

    Science.gov (United States)

    Guo, Wei-Wei; Zhang, Teng-Shuo; Fang, Wei-Hai; Cui, Ganglong

    2018-02-14

    Semisynthetic alphabets can potentially increase the genetic information stored in DNA through the formation of unusual base pairs. Recent experiments have shown that near-visible-light irradiation of the dTPT3 chromophore could lead to the formation of a reactive triplet state and of singlet oxygen in high quantum yields. However, the detailed excited-state relaxation paths that populate the lowest triplet state are unclear. Herein, we have for the first time employed the QM(MS-CASPT2//CASSCF)/MM method to explore the spectroscopic properties and excited-state relaxation mechanism of the aqueous dTPT3 chromophore. On the basis of the results, we have found that (1) the S 2 ( 1 ππ*) state of dTPT3 is the initially populated excited singlet state upon near-visible light irradiation; and (2) there are two efficient relaxation pathways to populate the lowest triplet state, i.e. T 1 ( 3 ππ*). In the first one, the S 2 ( 1 ππ*) system first decays to the S 1 ( 1 nπ*) state near the S 2 /S 1 conical intersection, which is followed by an efficient S 1 → T 1 intersystem crossing process at the S 1 /T 1 crossing point; in the second one, an efficient S 2 → T 2 intersystem crossing takes place first, and then, the T 2 ( 3 nπ*) system hops to the T 1 ( 3 ππ*) state through an internal conversion process at the T 2 /T 1 conical intersection. Moreover, an S 2 /S 1 /T 2 intersection region is found to play a vital role in the excited-state relaxation. These new mechanistic insights help in understanding the photophysics and photochemistry of unusual base pairs.

  11. Resonance fluorescence and electron spin in semiconductor quantum dots

    International Nuclear Information System (INIS)

    Zhao, Yong

    2009-01-01

    The work presented in this dissertation contains the first observation of spin-resolved resonance fluorescence from a single quantum dot and its application of direct measurement of electron spin dynamics. The Mollow triplet and the Mollow quintuplet, which are the hallmarks of resonance fluorescence, are presented as the non-spin-resolved and spin-resolved resonance fluorescence spectrum, respectively. The negligible laser background contribution, the near pure radiative broadened spectrum and the anti-bunching photon statistics imply the sideband photons are background-free and near transform-limited single photons. This demonstration is a promising step towards the heralded single photon generation and electron spin readout. Instead of resolving spectrum, an alternative spin-readout scheme by counting resonance fluorescence photons under moderate laser power is demonstrated. The measurements of n-shot time-resolved resonance fluorescence readout are carried out to reveal electron spin dynamics of the measurement induced back action and the spin relaxation. Hyperfine interaction and heavy-light hole mixing are identified as the relevant mechanisms for the back action and phonon-assistant spin-orbit interaction dominates the spin relaxation. After a detailed discussion on charge-spin configurations in coupled quantum dots system, the single-shot readout on electron spin are proposed. (orig.)

  12. Resonance fluorescence and electron spin in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yong

    2009-11-18

    The work presented in this dissertation contains the first observation of spin-resolved resonance fluorescence from a single quantum dot and its application of direct measurement of electron spin dynamics. The Mollow triplet and the Mollow quintuplet, which are the hallmarks of resonance fluorescence, are presented as the non-spin-resolved and spin-resolved resonance fluorescence spectrum, respectively. The negligible laser background contribution, the near pure radiative broadened spectrum and the anti-bunching photon statistics imply the sideband photons are background-free and near transform-limited single photons. This demonstration is a promising step towards the heralded single photon generation and electron spin readout. Instead of resolving spectrum, an alternative spin-readout scheme by counting resonance fluorescence photons under moderate laser power is demonstrated. The measurements of n-shot time-resolved resonance fluorescence readout are carried out to reveal electron spin dynamics of the measurement induced back action and the spin relaxation. Hyperfine interaction and heavy-light hole mixing are identified as the relevant mechanisms for the back action and phonon-assistant spin-orbit interaction dominates the spin relaxation. After a detailed discussion on charge-spin configurations in coupled quantum dots system, the single-shot readout on electron spin are proposed. (orig.)

  13. Superionic phase transitions and nuclear spin phonon relaxation by Raman processes in Me3H(SeO4)2 (Me = Na, K, and Rb) single crystals by 1H and Me NMR

    International Nuclear Information System (INIS)

    Lim, Ae Ran

    2007-01-01

    Me 3 H(SeO 4 ) 2 (Me = Na, K, and Rb) single crystals were grown by the slow evaporation method, and the relaxation times of the 1 H and Me nuclei in these crystals were investigated using FT NMR spectrometry. The 1 H T 1 NMR results for K 3 H(SeO 4 ) 2 and Rb 3 H(SeO 4 ) 2 single crystals were very different from those for Na 3 H(SeO 4 ) 2 crystals. Short 1 H relaxation times were found for K 3 H(SeO 4 ) 2 and Rb 3 H(SeO 4 ) 2 at high temperatures, but not for Na 3 H(SeO 4 ) 2 , which are attributed to the destruction and reconstruction of hydrogen bonds; thus K 3 H(SeO 4 ) 2 and Rb 3 H(SeO 4 ) 2 have superionic phases, whereas Na 3 H(SeO 4 ) 2 does not. The temperature dependence of the relaxation rate for the 23 Na nucleus in Na 3 H(SeO 4 ) 2 crystals was in accord with a Raman process for nuclear spin-lattice relaxation (T 1 -1 ∝T 2 . In contrast, the spin-lattice relaxation rates for the 39 K and 87 Rb nuclei in K 3 H(SeO 4 ) 2 and Rb 3 H(SeO 4 ) 2 single crystals exhibited a very strong temperature dependence, T 1 -1 ∝T 7 . The motions giving rise to this strong temperature dependence may be related to the high electrical conductivities of these crystals at high temperatures

  14. Numerical study on physical mechanism of vortex breakdown occurrence in spin-up process

    OpenAIRE

    "小出, 輝明"; Teruaki", "Koide

    2008-01-01

    "A Numerical study presented on a vortex breakdown in spin-up process in an enclosed cylindrical container. In a transitional state, momentary vortex breakdowns can occur for particular parameter values ofthe Reynolds number and aspect ratio where no vortex breakdown appears in a steady state. This transient vortex breakdown flow is convenient to consider a mechanism for the occurrence of a vortex breakdown. It isdiscussed that periodical increase and decrease of angular momentum in upstream ...

  15. A study of nuclear relaxation to the electron non-Zeeman system

    International Nuclear Information System (INIS)

    Honten, J. van.

    1979-01-01

    An examination of the nuclear spin-lattice relaxation mechanism in a series of diluted copper-caesium Tutton salt crystals, containing different percentages of D 2 O in the waters of hydration, is described. Results of relaxation measurements are presented and a strong angular dependence is observed. It is proved, however, that under most experimental conditions applied, the bottleneck in the relaxation path is not the cross-relaxation but the thermal contact between the proton Zeeman system and the electron dipole-dipole interaction system. Hence the proton spin-lattice relaxation measurements have enabled determination of the time constant of this thermal contact. The microscopic coupling process which provides thermal contact, is a simultaneous transition of two electron spins and one proton spin. This so-called three-spin transition is described and calculations presented. Double resonance experiments are performed, where the resonance signal of deuterium or caesium spins is saturated and the effect on the proton resonance signal observed. (C.F.)

  16. Electronic phase diagrams and competing ground states of complex iron pnictides and chalcogenides. A Moessbauer spectroscopy and muon spin rotation/relaxation study

    Energy Technology Data Exchange (ETDEWEB)

    Kamusella, Sirko

    2017-03-01

    In this thesis the superconducting and magnetic phases of LiOH(Fe,Co)(Se,S), CuFeAs/CuFeSb, and LaFeP{sub 1-x}As{sub x}O - belonging to the 11, 111 and 1111 structural classes of iron-based arsenides and chalcogenides - are investigated by means of {sup 57}Fe Moessbauer spectroscopy and muon spin rotation/relaxation (μSR). Of major importance in this study is the application of high magnetic fields in Moessbauer spectroscopy to distinguish and characterize ferro- (FM) and antiferromagnetic (AFM) order. A user-friendly Moessbauer data analysis program was developed to provide suitable model functions not only for high field spectra, but relaxation spectra or parameter distributions in general. In LaFeP{sub 1-x}As{sub x}O the reconstruction of the Fermi surface is described by the vanishing of the Γ hole pocket with decreasing x. The continuous change of the orbital character and the covalency of the d-electrons is shown by Moessbauer spectroscopy. A novel antiferromagnetic phase with small magnetic moments of ∼ 0.1 μ{sub B} state is characterized. The superconducting order parameter is proven to continuously change from a nodal to a fully gapped s-wave like Fermi surface in the superconducting regime as a function of x, partially investigated on (O,F) substituted samples. LiOHFeSe is one of the novel intercalated FeSe compounds, showing strongly increased T{sub C} = 43 K mainly due to increased interlayer spacing and resulting two-dimensionality of the Fermi surface. The primary interest of the samples of this thesis is the simultaneously observed ferromagnetism and superconductivity. The local probe techniques prove that superconducting sample volume gets replaced by ferromagnetic volume. Ferromagnetism arises from magnetic order with T{sub C} = 10 K of secondary iron in the interlayer. The tendency of this system to show (Li,Fe) disorder is preserved upon (Se,S) substitution. However, superconductivity gets suppressed. The results of Moessbauer spectroscopy

  17. Adsorbate-induced lifting of substrate relaxation is a general mechanism governing titania surface chemistry.

    Science.gov (United States)

    Silber, David; Kowalski, Piotr M; Traeger, Franziska; Buchholz, Maria; Bebensee, Fabian; Meyer, Bernd; Wöll, Christof

    2016-09-30

    Under ambient conditions, almost all metals are coated by an oxide. These coatings, the result of a chemical reaction, are not passive. Many of them bind, activate and modify adsorbed molecules, processes that are exploited, for example, in heterogeneous catalysis and photochemistry. Here we report an effect of general importance that governs the bonding, structure formation and dissociation of molecules on oxidic substrates. For a specific example, methanol adsorbed on the rutile TiO 2 (110) single crystal surface, we demonstrate by using a combination of experimental and theoretical techniques that strongly bonding adsorbates can lift surface relaxations beyond their adsorption site, which leads to a significant substrate-mediated interaction between adsorbates. The result is a complex superstructure consisting of pairs of methanol molecules and unoccupied adsorption sites. Infrared spectroscopy reveals that the paired methanol molecules remain intact and do not deprotonate on the defect-free terraces of the rutile TiO 2 (110) surface.

  18. The mechanism of gentisic acid-induced relaxation of the guinea pig isolated trachea: the role of potassium channels and vasoactive intestinal peptide receptors.

    Science.gov (United States)

    Cunha, J F; Campestrini, F D; Calixto, J B; Scremin, A; Paulino, N

    2001-03-01

    We examined some of the mechanisms by which the aspirin metabolite and the naturally occurring metabolite gentisic acid induced relaxation of the guinea pig trachea in vitro. In preparations with or without epithelium and contracted by histamine, gentisic acid caused concentration-dependent and reproducible relaxation, with mean EC(50) values of 18 microM and E(max) of 100% (N = 10) or 20 microM and E(max) of 92% (N = 10), respectively. The relaxation caused by gentisic acid was of slow onset in comparison to that caused by norepinephrine, theophylline or vasoactive intestinal peptide (VIP). The relative rank order of potency was: salbutamol 7.9 > VIP 7.0 > gentisic acid 4.7 > theophylline 3.7. Gentisic acid-induced relaxation was markedly reduced (24 +/- 7.0, 43 +/- 3.9 and 78 +/- 5.6%) in preparations with elevated potassium concentration in the medium (20, 40 or 80 mM, respectively). Tetraethylammonium (100 microM), a nonselective blocker of the potassium channels, partially inhibited the relaxation response to gentisic acid, while 4-AP (10 microM), a blocker of the voltage potassium channel, inhibited gentisic acid-induced relaxation by 41 +/- 12%. Glibenclamide (1 or 3 microM), at a concentration which markedly inhibited the relaxation induced by the opener of ATP-sensitive K(+) channels, levcromakalim, had no effect on the relaxation induced by gentisic acid. Charybdotoxin (0.1 or 0.3 microM), a selective blocker of the large-conductance Ca(2+)-activated K(+) channels, caused rightward shifts (6- and 7-fold) of the gentisic acid concentration-relaxation curve. L-N(G)-nitroarginine (100 microM), a NO synthase inhibitor, had no effect on the relaxant effect of gentisic acid, and caused a slight displacement to the right in the relaxant effect of the gentisic acid curve at 300 microM, while methylene blue (10 or 30 microM) or ODQ (1 microM), the inhibitors of soluble guanylate cyclase, all failed to affect gentisic acid-induced relaxation. D-(P)-Cl-Phe(6),Leu(17

  19. Relaxin as a relaxant of the isolated rat uterus: comparison with its mechanism of action in vivo.

    Science.gov (United States)

    Hughes, S J; Hollingsworth, M

    1997-11-01

    1. Glibenclamide, a blocker of ATP-sensitive potassium channels, has been shown to antagonize relaxin as a uterine relaxant in the rat in vivo but not in vitro. The aim, therefore, was to investigate whether the discrepancy between the two studies was a consequence of differences in (1) muscle layers, (2) hormonal conditions or (3) spasmogens utilized. Relaxin was compared with salbutamol and levcromakalim. 2. Relaxin was of similar potency as a uterine relaxant against oxytocin (0.2 mM)-induced spasm with tension measured in the circular or longitudinal muscle layers. Glibenclamide (10 microM) did not antagonize relaxin or salbutamol in these preparations but greatly antagonized levcromakalim (91-fold). Relaxin was a relaxant of tension activated by transmural electrical stimulation in uteri from rats that had been ovariectomized, although the maximal effect was only 30 +/- 15%, and in uteri from rats that had been treated with 17 beta-estradiol benzoate. Glibenclamide was not an antagonist of relaxin in the latter preparation but did antagonize levcromakalim (118-fold). Relaxin also inhibited spontaneous phasic tension development in uteri from ovariectomized rats but again was not antagonized by glibenclamide. 3. Because relaxin was not antagonized by glibenclamide under any of these various conditions, it would appear that the in vivo-in vitro discrepancy in the antagonism of relaxin by glibenclamide is not attributable to the effects of different muscle layers, hormonal conditions or spasmogens. It may be that the mechanism of action of relaxin or glibenclamide or both differs between in vivo and in vitro preparations.

  20. Spin diffusion in bulk GaN measured with MnAs spin injector

    KAUST Repository

    Jahangir, Shafat

    2012-07-16

    Spin injection and precession in bulk wurtzite n-GaN with different doping densities are demonstrated with a ferromagnetic MnAs contact using the three-terminal Hanle measurement technique. Theoretical analysis using minimum fitting parameters indicates that the spin accumulation is primarily in the n-GaN channel rather than at the ferromagnet (FM)/semiconductor (SC) interface states. Spin relaxation in GaN is interpreted in terms of the D’yakonov-Perel mechanism, yielding a maximum spin lifetime of 44 ps and a spin diffusion length of 175 nm at room temperature. Our results indicate that epitaxial ferromagnetic MnAs is a suitable high-temperature spin injector for GaN.

  1. Natural relaxation

    Science.gov (United States)

    Marzola, Luca; Raidal, Martti

    2016-11-01

    Motivated by natural inflation, we propose a relaxation mechanism consistent with inflationary cosmology that explains the hierarchy between the electroweak scale and Planck scale. This scenario is based on a selection mechanism that identifies the low-scale dynamics as the one that is screened from UV physics. The scenario also predicts the near-criticality and metastability of the Standard Model (SM) vacuum state, explaining the Higgs boson mass observed at the Large Hadron Collider (LHC). Once Majorana right-handed neutrinos are introduced to provide a viable reheating channel, our framework yields a corresponding mass scale that allows for the seesaw mechanism as well as for standard thermal leptogenesis. We argue that considering singlet scalar dark matter extensions of the proposed scenario could solve the vacuum stability problem and discuss how the cosmological constant problem is possibly addressed.

  2. Generalized approach to non-exponential relaxation

    Indian Academy of Sciences (India)

    Abstract. Non-exponential relaxation is a universal feature of systems as diverse as glasses, spin glasses, earthquakes, financial markets and the universe. Complex relaxation results from hierarchically constrained dynamics with the strength of the constraints being directly related to the form of the relaxation, which ...

  3. Tuning the effective spin-orbit coupling in molecular semiconductors

    KAUST Repository

    Schott, Sam

    2017-05-11

    The control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven difficult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high-mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We correlate the above g-shifts to spin-lattice relaxation times over four orders of magnitude, from 200 to 0.15 μs, for isolated molecules in solution and relate our findings for isolated molecules in solution to the spin relaxation mechanisms that are likely to be relevant in solid state systems.

  4. Competition between domain walls and the reverse magnetization in the magnetic relaxation of a Pt/Co/Ir/Co/Pt spin switcher

    Science.gov (United States)

    Morgunov, R. B.; L'vova, G. L.; Hamadeh, A.; Mangin, S.

    2018-01-01

    A multilayer Pt/Co/Ir/Co/Pt/GaAs heterostructures demonstrates a long term (to several hours) magnetic relaxation between two stable states of the magnetization of the system. The magnetization reversal of the heterostructure layers occurs both due to the formation of nuclei of the reverse magnetization domains and as a result of their further growth by means of motion of domain walls. The competition between two these processes provides a nonexponential character of the magnetic relaxation. At 300 K, the contributions of these processes to the relaxation are commensurable, while, at temperatures lower than 200 K, the contribution of the nucleation is suppressed and the magnetic relaxation occurs as a result of motion of the domain walls.

  5. Nuclear spin singlet states as a contrast mechanism for NMR spectroscopy.

    Science.gov (United States)

    Devience, Stephen J; Walsworth, Ronald L; Rosen, Matthew S

    2013-10-01

    Nuclear magnetic resonance (NMR) spectra of complex chemical mixtures often contain unresolved or hidden spectral components, especially when strong background signals overlap weaker peaks. In this article we demonstrate a quantum filter utilizing nuclear spin singlet states, which allows undesired NMR spectral background to be removed and target spectral peaks to be uncovered. The quantum filter is implemented by creating a nuclear spin singlet state with spin quantum numbers j = 0, mz  = 0 in a target molecule, applying a continuous RF field to both preserve the singlet state and saturate the magnetization of undesired molecules and then mapping the target molecule singlet state back into an NMR observable state so that its spectrum can be read out unambiguously. The preparation of the target singlet state can be carefully controlled with pulse sequence parameters, so that spectral contrast can be achieved between molecules with very similar structures. We name this NMR contrast mechanism 'Suppression of Undesired Chemicals using Contrast-Enhancing Singlet States' (SUCCESS) and we demonstrate it in vitro for three target molecules relevant to neuroscience: aspartate, threonine and glutamine. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Electric-field effects in optically generated spin transport

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2009-05-25

    Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.

  7. Acoustically induced spin transport in (110)GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Couto, Odilon D.D. Jr.

    2008-09-29

    In this work, we employ surface acoustic waves (SAWs) to transport and manipulate optically generated spin ensembles in (110) GaAs quantum wells (QWs). The strong carrier confinement into the SAW piezoelectric potential allows for the transport of spin-polarized carrier packets along well-defined channels with the propagation velocity of the acoustic wave. In this way, spin transport over distances exceeding 60 m is achieved, corresponding to spin lifetimes longer than 20 ns. The demonstration of such extremely long spin lifetimes is enabled by three main factors: (i) Suppression of the D'yakonov-Perel' spin relaxation mechanism for z-oriented spins in (110) IIIV QWs; (ii) Suppression of the Bir-Aronov-Pikus spin relaxation mechanism caused by the type-II SAW piezoelectric potential; (iii) Suppression of spin relaxation induced by the mesoscopic carrier confinement into narrow stripes along the SAW wave front direction. A spin transport anisotropy under external magnetic fields (B{sub ext}) is demonstrated for the first time. Employing the well-defined average carrier momentum impinged by the SAW, we analyze the spin dephasing dynamics during transport along the [001] and [1 anti 10] in-plane directions. For transport along [001], fluctuations of the internal magnetic field (B{sub int}), which arises from the spin-orbit interaction associated with the bulk inversion asymmetry of the crystal, lead to decoherence within 2 ns as the spins precess around B{sub ext}. In contrast, for transport along the [1 anti 10] direction, the z-component of the spin polarization is maintained for times one order of magnitude longer due to the non-zero average value of B{sub int}. The dephasing anisotropy between the two directions is fully understood in terms of the dependence of the spin-orbit coupling on carrier momentum direction, as predicted by the D'yakonov-Perel' mechanism for the (110) system. (orig.)

  8. Black cohosh (Cimicifuga racemosa) relaxes the isolated rat thoracic aorta through endothelium-dependent and -independent mechanisms.

    Science.gov (United States)

    Kim, Eun-Young; Lee, Young Joo; Rhyu, Mee-Ra

    2011-11-18

    The rhizome of the Cimicifuga racemosa (commonly known as black cohosh) has been used in treatment of climacteric complaints for decades in North America and Europe. A number of studies investigated the estrogenic potential of black cohosh, but its effectiveness is still controversial. Recently, it was reported that the extract of black cohosh acted as an agonist at the serotonin (5-HT) receptor and 5-HT derivative was isolated out of the black cohosh extract. Because it is well known that the 5-HT elicited the various cardiovascular effects including vasorelaxation, we investigated the vasorelaxant effects of the extract of black cohosh and its possible mechanisms of action. The extract of black cohosh (BcEx) was examined for its vasorelaxant effects in isolated rat aorta. The aortic rings were equilibrated under resting tension and induced reproducible contraction in organ bath. The control contraction was produced by 300 nM NE, and then BcEx were added. In experiments where specific inhibitors were used, they were added 20 min before NE contraction. BcEx elicited two phases of relaxation in rat aorta pre-contracted with norepinephrine. The first, a rapid relaxation, which occurred within seconds of BcEx administration, was eliminated by pretreatment with N(G)-nitro-l-arginine (l-NNA) or methylene blue. The endogenous NO synthase substrate l-Arg markedly reversed the action of l-NNA, indicating that BcEx elicited the vasorelaxant effect via the NO/cGMP pathway. The second, slowly developing relaxation was not affected by the endothelium denudation. BcEx-induced endothelium-independent vasorelaxation appears to involve the inhibition of calcium influx mediated by the opening of inward rectifier potassium channels. BcEx elicits the vasorelaxant effect via endothelium-dependent and -independent mechanisms and may contribute to a better understanding of a potential link between the use of black cohosh and its beneficial effects on vascular health. Copyright © 2011

  9. Quantitative Study of Longitudinal Relaxation (T 1) Contrast Mechanisms in Brain MRI

    Science.gov (United States)

    Jiang, Xu

    Longitudinal relaxation (T1) contrast in MRI is important for studying brain morphology and is widely used in clinical applications. Although MRI only detects signals from water hydrogen ( 1H) protons (WPs), T1 contrast is known to be influenced by other species of 1H protons, including those in macromolecules (MPs), such as lipids and proteins, through magnetization transfer (MT) between WPs and MPs. This complicates the use and quantification of T1 contrast for studying the underlying tissue composition and the physiology of the brain. MT contributes to T1 contrast to an extent that is generally dependent on MT kinetics, as well as the concentration and NMR spectral properties of MPs. However, the MP spectral properties and MT kinetics are both difficult to measure directly, as the signal from MPs is generally invisible to MRI. Therefore, to investigate MT kinetics and further quantify T1 contrast, we first developed a reliable way to indirectly measure the MP fraction and their exchange rate with WPs, with minimal dependence on the spectral properties of MPs. For this purpose, we used brief, highpower radiofrequency (RF) NMR excitation pulses to almost completely saturate the magnetization of MPs. Based on this, both MT kinetics and the contribution of MPs to T1 contrast through MT were studied. The thus obtained knowledge allowed us to subsequently infer the spectral properties of MPs by applying low-power, frequencyselective off-resonance RF pulses and measuring the offset-frequency dependent effect of MPs on the WP MRI signal. A two-pool exchange model was used in both cases to account for direct effects of the RF pulse on WP magnetization. Consistent with earlier works using MRI at low-field and post-mortem analysis of brain tissue, our novel measurement approach found that MPs constitute an up to 27% fraction of the total 1H protons in human brain white matter, and their spectrum follows a super-Lorentzian line with a T2 of 9.6+/-0.6 mus and a resonance

  10. Relaxation of Anisotropic Glasses

    DEFF Research Database (Denmark)

    Deubener, Joachim; Martin, Birgit; Wondraczek, Lothar

    2004-01-01

    . When the load was removed at room temperature a permanent optical anisotropy (birefringence) was observed only perpendicular to cylinder axis and the pressure direction indicating complete elimination of thermal stresses. Relaxation of structural anisotropy was studied from reheating experiments using...... the energy release, thermo-mechanical and optical relaxation behaviour are drawn....

  11. Muon spin spectroscopy of ferrocene: characterization of muoniated ferrocenyl radicals.

    Science.gov (United States)

    McKenzie, Iain

    2014-06-14

    Radicals formed by the reaction of muonium (Mu), a light isotope of hydrogen, with ferrocene and ferrocene-d10 have been studied with the avoided level crossing muon spin resonance (ALC-μSR) and longitudinal field muon spin relaxation (LF-μSR) techniques between 10 and 100 K. A single type of radical was observed in each compound and the muon hyperfine coupling constants (hfcc) and the muon spin relaxation rates were measured as a function of temperature. A previous report concerning the observation of Mu adducts of ferrocene (U. A. Jayasooriya et al. Chem. - Eur. J., 2007, 13, 2266-2276) appears to be incorrect. DFT calculations were performed to aid in the assignment of the ALC-μSR spectra. A tentative assignment is that the observed radicals were formed by Mu addition to the exterior of the cyclopentadienyl rings and that the structures are distorted due to interactions with neighbouring molecules. The temperature dependence of the muon hfcc can be explained assuming the population of two levels with different muon hfccs separated by 1.4 ± 0.1 kJ mol(-1). The temperature dependence of the width and amplitude of the Δ1 resonance and the muon spin relaxation rate suggests that the electron spin relaxation rate increase with temperature, but the relaxation mechanism is unknown.

  12. Kinetics and Mechanism of Ultrasonic Activation of Persulfate: An in Situ EPR Spin Trapping Study.

    Science.gov (United States)

    Wei, Zongsu; Villamena, Frederick A; Weavers, Linda K

    2017-03-21

    Ultrasound (US) was shown to activate persulfate (PS) providing an alternative activation method to base or heat as an in situ chemical oxidation (ISCO) method. The kinetics and mechanism of ultrasonic activation of PS were examined in aqueous solution using an in situ electron paramagnetic resonance (EPR) spin trapping technique and radical trapping with probe compounds. Using the spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), hydroxyl radical ( • OH) and sulfate radical anion (SO 4 •- ) were measured from ultrasonic activation of persulfate (US-PS). The yield of • OH was up to 1 order of magnitude greater than that of SO 4 •- . The comparatively high • OH yield was attributed to the hydrolysis of SO 4 •- in the warm interfacial region of cavitation bubbles formed from US. Using steady-state approximations, the dissociation rate of PS in cavitating bubble systems was determined to be 3 orders of magnitude greater than control experiments without sonication at ambient temperature. From calculations of the interfacial volume surrounding cavitation bubbles and using the Arrhenius equation, an effective mean temperature of 340 K at the bubble-water interface was estimated. Comparative studies using the probe compounds tert-butyl alcohol and nitrobenzene verified the bubble-water interface as the location for PS activation by high temperature with • OH contributing a minor role in activating PS to SO 4 •- . The mechanisms unveiled in this study provide a basis for optimizing US-PS as an ISCO technology.

  13. Dynamic properties of water in swollen hypercrosslinked polystyrenes, according to NMR relaxation and diffusion data

    Science.gov (United States)

    Babushkina, T. A.; Novikov, V. V.; Koretskaya, V. S.; Klimova, T. P.; Tsyurupa, M. P.; Blinnikova, Z. K.; Davankov, V. A.

    2015-08-01

    Dynamic properties of the water filling of the internal space of hypercrosslinked polystyrene networks are studied via NMR cryoporometry, spin relaxation, and diffusometry. It is found that in the temperature range of 210-240 K, where frozen water melts in the thin pores of the polymer and seems to become a viscous liquid, the main type of molecular motion is rotational and the main relaxation mechanism ( T 1) is spin-rotational interaction between protons. Above 240 K, dipole-dipole coupling is shown to become the main relaxation mechanism T 1. In the temperature range of 210-295 K, the hypercrosslinked polystyrene matrix displays a set of water spin-spin relaxation rates that suggest the structure has cavities (pores) with different sizes and different conditions for the molecular motion of water. We conclude that the shorter (tens of ms) relaxation times T 1 and T 2 of water in the polymer at the temperature above 265 K compared to free water (2-3 s) indicate features of the dynamic characteristics of water in hydrophobic pores (or thin films on the surfaces of granules) that differ from those of free water. The tortuosity coefficients of the water's path of molecular motion are found to change in a symbate manner with a change in the water content in the hypercrosslinked network.

  14. On the effects of thermal history on the development and relaxation of thermo-mechanical stress in cryopreservation

    Science.gov (United States)

    Eisenberg, David P.; Steif, Paul S.; Rabin, Yoed

    2014-11-01

    This study investigates the effects of the thermal protocol on the development and relaxation of thermo-mechanical stress in cryopreservation by means of glass formation, also known as vitrification. The cryopreserved medium is modeled as a homogeneous viscoelastic domain, constrained within either a stiff cylindrical container or a highly compliant bag. Annealing effects during the cooling phase of the cryopreservation protocol are analyzed. Results demonstrate that an intermediate temperature-hold period can significantly reduce the maximum tensile stress, thereby decreasing the potential for structural damage. It is also demonstrated that annealing at temperatures close to glass transition significantly weakens the dependency of thermo-mechanical stress on the cooling rate. Furthermore, a slower initial rewarming rate after cryogenic storage may drastically reduce the maximum tensile stress in the material, which supports previous experimental observations on the likelihood of fracture at this stage. This study discusses the dependency of the various stress components on the storage temperature. Finally, it is demonstrated that the stiffness of the container wall can affect the location of maximum stress, with implications on the development of cryopreservation protocols.

  15. On the Effects of Thermal History on the Development and Relaxation of Thermo-Mechanical Stress in Cryopreservation.

    Science.gov (United States)

    Eisenberg, David P; Steif, Paul S; Rabin, Yoed

    2014-01-01

    This study investigates the effects of the thermal protocol on the development and relaxation of thermo-mechanical stress in cryopreservation by means of glass formation, also known as vitrification. The cryopreserved medium is modeled as a homogeneous viscoelastic domain, constrained within either a stiff cylindrical container or a highly compliant bag. Annealing effects during the cooling phase of the cryopreservation protocol are analyzed. Results demonstrate that an intermediate temperature-hold period can significantly reduce the maximum tensile stress, thereby decreasing the potential for structural damage. It is also demonstrated that annealing at temperatures close to glass transition significantly weakens the dependency of thermo-mechanical stress on the cooling rate. Furthermore, a slower initial rewarming rate after cryogenic storage may drastically reduce the maximum tensile stress in the material, which supports previous experimental observations on the likelihood of fracture at this stage. This study discusses the dependency of the various stress components on the storage temperature. Finally, it is demonstrated that the stiffness of the container wall can affect the location of maximum stress, with implications on the development of cryopreservation protocols.

  16. Limiting factor of defect-engineered spin-filtering effect at room temperature

    Science.gov (United States)

    Puttisong, Y.; Buyanova, I. A.; Chen, W. M.

    2014-05-01

    We identify hyperfine-induced electron and nuclear spin cross-relaxation as the dominant physical mechanism for the longitudinal electron spin relaxation time 1 of the spin-filtering Gai2+ defects in GaNAs alloys. This conclusion is based on our experimental findings that T1 is insensitive to temperature over 4-300 K, and its exact value is directly correlated with the hyperfine coupling strength of the defects that varies between different configurations of the Gai2+ defects present in the alloys. These results thus provide a guideline for further improvements of the spin-filtering efficiency by optimizing growth and processing conditions to preferably incorporate the Gai2+ defects with a weak hyperfine interaction and by searching for new spin-filtering defects with zero nuclear spin.

  17. Studies of diluted antiferromagnets MnxMg1-xTiO3 with x=0.55 and 0.70 by muon spin relaxation method

    International Nuclear Information System (INIS)

    Fukaya, A.; Ito, A.; Torikai, E.; Nishiyama, K.; Nagamine, K.

    1997-01-01

    Longitudinal fields μSR measurements have been performed in order to probe the spin dynamics in the diluted antiferromagnets Mn x Mg 1-x TiO 3 with x=0.70 and 0.55. In the x=0.70 sample which forms the antiferromagnetic long-range order, the static and fluctuating fields coexist at the muon stopping site below T N . On the other hand, in the x=0.55 sample which shows the spin-glass behavior, the local fields fluctuate rather fast even below T SG . We infer that this drastic change occurs when Mn x Mg 1-x TiO 3 transforms from an antiferromagnetic system to a spin-glass system by dilution

  18. Spin-coating: A new approach for improving dispersion of cellulose nanocrystals and mechanical properties of poly (lactic acid) composites.

    Science.gov (United States)

    Shojaeiarani, Jamileh; Bajwa, Dilpreet S; Stark, Nicole M

    2018-06-15

    This study systematically evaluated the influence of masterbatch preparation techniques, solvent casting and spin-coating methods, on composite properties. Composites were manufactured by combining CNCs masterbatches and PLA resin using twin screw extruder followed by injection molding. Different microscopy techniques were used to investigate the dispersion of CNCs in masterbatches and composites. Thermal, thermomechanical, and mechanical properties of composites were evaluated. Scanning electron microscopy (SEM) images showed superior dispersion of CNCs in spin-coated masterbatches compared to solvent cast masterbatches. At lower CNCs concentrations, both SEM and optical microscope images confirmed more uniform CNCs dispersion in spin-coated composites than solvent cast samples. Degree of crystallinity of PLA exhibited a major enhancement by 147% and 380% in solvent cast and spin-coated composites, respectively. Spin-coated composites with lower CNCs concentration exhibited a noticeable improvement in mechanical properties. However, lower thermal characteristics in spin-coated composites were observed, which could be attributed to the residual solvents in masterbatches. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Nonradiative Relaxation Mechanisms of UV Excited Phenylalanine Residues: A Comparative Computational Study

    Directory of Open Access Journals (Sweden)

    Momir Mališ

    2017-03-01

    Full Text Available The present work is directed toward understanding the mechanisms of excited state deactivation in three neutral model peptides containing the phenylalanine residue. The excited state dynamics of theγL(g+folded form of N-acetylphenylalaninylamide (NAPA B and its amide-N-methylated derivative (NAPMA B is reviewed and compared to the dynamics of the monohydrated structure of NAPA (NAPAH. The goal is to unravel how the environment, and in particular solvation, impacts the photodynamics of peptides. The systems are investigated using reaction path calculations and surface hopping nonadiabatic dynamics based on the coupled cluster doubles (CC2 method and time-dependent density functional theory. The work emphasizes the role that excitation transfer from the phenylππ*to amidenπ*state plays in the deactivation of the three systems and shows how the ease of out-of-plane distortions of the amide group determines the rate of population transfer between the two electronic states. The subsequent dynamics on thenπ*state is barrierless along several pathways and leads to fast deactivation to the ground electronic state.

  20. Spin mediated magneto-electro-thermal transport behavior in Ni80Fe20/MgO/p-Si thin films

    Science.gov (United States)

    Lou, P. C.; Beyermann, W. P.; Kumar, S.

    2017-09-01

    In Si, the spin-phonon interaction is the primary spin relaxation mechanism. At low temperatures, the absence of spin-phonon relaxation will lead to enhanced spin accumulation. Spin accumulation may change the electro-thermal transport within the material, and thus may serve as an investigative tool for characterizing spin-mediated behavior. Here, we present the first experimental proof of spin accumulation induced electro-thermal transport behavior in a Pd (1 nm)/Ni80Fe20 (25 nm)/MgO (1 nm)/p-Si (2 μm) specimen. The spin accumulation originates from the spin-Hall effect. The spin accumulation changes the phononic thermal transport in p-Si causing the observed magneto-electro-thermal transport behavior. We also observe the inverted switching behavior in magnetoresistance measurement at low temperatures in contrast to magnetic characterization, which is attributed to the canted spin states in p-Si due to spin accumulation. The spin accumulation is elucidated by current dependent anomalous Hall resistance measurement, which shows a decrease as the electric current is increased. This result may open a new paradigm in the field of spin-mediated transport behavior in semiconductor and semiconductor spintronics.

  1. The spin-charge-family-theory unifies spin and charges and offers the mechanism for generating families and scalar fields

    International Nuclear Information System (INIS)

    Mankoc-Borstnik, N.S.

    2011-01-01

    The theory unifying the spin, charges and families predicts the number of families and their properties, explains the origin of the scalar and vector gauge fields and their properties, manifesting at low energies effectively the Higgs, Yukawa coupling and known gauge fields, respectively. The theory predicts that the fourth family could possibly be observed at the LHC, while the stable fifth family baryons might constitute the dark matter. It also predicts that searching for scalar fields will show up the differences between the Higgs and the scalar fields

  2. Predicition of the first spinning cylinder test using continuum damage mechanics

    International Nuclear Information System (INIS)

    Lidbury, D.P.G.; Sherry, A.H.; Bilby, B.A.; Howard, I.C.; Li, Z.H.; Eripret, C.

    1993-01-01

    For many years large-scale experiments have been performed world-wide to validate aspects of fracture mechanics methodology. Special emphasis has been given to correlations between small- and large-scale specimen behaviour in quantifying the structural behaviour of pressure vessels, piping and closures. Within this context, the first three Spinning Cylinder Tests, performed by AEA Technology at its Risley Laboratory, addressed the phenomenon of stable crack growth by ductile tearing in contained yield and conditions simulating pressurized thermal shock loading in a PWR reactor pressure vessel. A notable feature of the test data was that the effective resistance to crack growth, as measured in terms of the J R-curve, was appreciably greater than that anticipated from small-scale testing, both at initiation and after small amounts (a few millimeters) of tearing. In the present paper, two independent finite element analyses of the First Spinning Cylinder Test (SC 1) are presented and compared. Both involved application of the Rousselier ductile damage theory in an attempt to better understand the transferability of test data from small specimens to structural validation tests. In each instance, the parameters associated with the theory's constitutive equation were calibrated in terms of data from notched-tensile and (or) fracture mechanics tests, metallographic observation and (or) chemical composition. The evolution of ductile damage local to the crack tip during SC 1 was thereby calculated and, together with a crack growth criterion based on the maximization of opening-mode stress, used as the basis for predicting cylinder R-Curves (angular velocity vs. Δa, J-integral vs. Δa). The results show the Rousselier model to be capable of correctly predicting the enhancement of tearing toughness of the cylinder relative to that of conventional test specimens, given an appropriate choice of finite element cell size in the region representing the crack tip

  3. Single-molecule supercoil-relaxation assay as a screening tool to determine the mechanism and efficacy of human topoisomerase IB inhibitors

    Science.gov (United States)

    Seol, Yeonee; Zhang, Hongliang; Agama, Keli; Lorence, Nicholas; Pommier, Yves; Neuman, Keir C.

    2015-01-01

    Human nuclear type IB topoisomerase (Top1) inhibitors are widely used and powerful anti-cancer agents. In this study, we introduce and validate a single-molecule supercoil relaxation assay as a molecular pharmacology tool for characterizing therapeutically relevant Top1 inhibitors. Using this assay, we determined the effects on Top1 supercoil relaxation activity of four Top1 inhibitors; three clinically relevant: camptothecin, LMP-400, LMP-776 (both indenoisoquinoline derivatives), and one natural product in preclinical development, lamellarin-D. Our results demonstrate that Top1 inhibitors have two distinct effects on Top1 activity: a decrease in supercoil relaxation rate and an increase in religation inhibition. The type and magnitude of the inhibition mode depend both on the specific inhibitor and on the topology of the DNA substrate. In general, the efficacy of inhibition is significantly higher with supercoiled than with relaxed DNA substrates. Comparing single-molecule inhibition with cell growth inhibition (IC50) measurements showed a correlation between the binding time of the Top1 inhibitors and their cytotoxic efficacy, independent of the mode of inhibition. This study demonstrates that the single-molecule supercoil relaxation assay is a sensitive method to elucidate the detailed mechanisms of Top1 inhibitors and is relevant for the cellular efficacy of Top1 inhibitors. PMID:26351326

  4. The ent-15α-Acetoxykaur-16-en-19-oic Acid Relaxes Rat Artery Mesenteric Superior via Endothelium-Dependent and Endothelium-Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Êurica Adélia Nogueira Ribeiro

    2012-01-01

    Full Text Available The objective of the study was to investigate the mechanism of the relaxant activity of the ent-15α-acetoxykaur-16-en-19-oic acid (KA-acetoxy. In rat mesenteric artery rings, KA-acetoxy induced a concentration-dependent relaxation in vessels precontracted with phenylephrine. In the absence of endothelium, the vasorelaxation was significantly shifted to the right without reduction of the maximum effect. Endothelium-dependent relaxation was significantly attenuated by pretreatment with L-NAME, an inhibitor of the NO-synthase (NOS, indomethacin, an inhibitor of the cyclooxygenase, L-NAME + indomethacin, atropine, a nonselective antagonist of the muscarinic receptors, ODQ, selective inhibitor of the guanylyl cyclase enzyme, or hydroxocobalamin, a nitric oxide scavenger. The relaxation was completely reversed in the presence of L-NAME + 1 mM L-arginine or L-arginine, an NO precursor. Diterpene-induced relaxation was not affected by TEA, a nonselective inhibitor of K+ channels. The KA-acetoxy antagonized CaCl2-induced contractions in a concentration-dependent manner and also inhibited an 80 mM KCl-induced contraction. The KA-acetoxy did not interfere with Ca2+ release from intracellular stores. The vasorelaxant induced by KA-acetoxy seems to involve the inhibition of the Ca2+ influx and also, at least in part, by endothelial muscarinic receptors activation, NO and PGI2 release.

  5. The mechanism of gentisic acid-induced relaxation of the guinea pig isolated trachea: the role of potassium channels and vasoactive intestinal peptide receptors

    Directory of Open Access Journals (Sweden)

    J.F. Cunha

    2001-03-01

    Full Text Available We examined some of the mechanisms by which the aspirin metabolite and the naturally occurring metabolite gentisic acid induced relaxation of the guinea pig trachea in vitro. In preparations with or without epithelium and contracted by histamine, gentisic acid caused concentration-dependent and reproducible relaxation, with mean EC50 values of 18 µM and Emax of 100% (N = 10 or 20 µM and Emax of 92% (N = 10, respectively. The relaxation caused by gentisic acid was of slow onset in comparison to that caused by norepinephrine, theophylline or vasoactive intestinal peptide (VIP. The relative rank order of potency was: salbutamol 7.9 > VIP 7.0 > gentisic acid 4.7 > theophylline 3.7. Gentisic acid-induced relaxation was markedly reduced (24 ± 7.0, 43 ± 3.9 and 78 ± 5.6% in preparations with elevated potassium concentration in the medium (20, 40 or 80 mM, respectively. Tetraethylammonium (100 µM, a nonselective blocker of the potassium channels, partially inhibited the relaxation response to gentisic acid, while 4-AP (10 µM, a blocker of the voltage potassium channel, inhibited gentisic acid-induced relaxation by 41 ± 12%. Glibenclamide (1 or 3 µM, at a concentration which markedly inhibited the relaxation induced by the opener of ATP-sensitive K+ channels, levcromakalim, had no effect on the relaxation induced by gentisic acid. Charybdotoxin (0.1 or 0.3 µM, a selective blocker of the large-conductance Ca2+-activated K+ channels, caused rightward shifts (6- and 7-fold of the gentisic acid concentration-relaxation curve. L-N G-nitroarginine (100 µM, a NO synthase inhibitor, had no effect on the relaxant effect of gentisic acid, and caused a slight displacement to the right in the relaxant effect of the gentisic acid curve at 300 µM, while methylene blue (10 or 30 µM or ODQ (1 µM, the inhibitors of soluble guanylate cyclase, all failed to affect gentisic acid-induced relaxation. D-P-Cl-Phe6,Leu17[VIP] (0.1 µM, a VIP receptor antagonist

  6. Magnetism of the chromium thio-spinels Fe1-xCuxCr2S4 studied using muon spin rotation and relaxation.

    Science.gov (United States)

    Kalvius, G M; Krimmel, A; Wäppling, R; Hartmann, O; Litterst, F J; Wagner, F E; Tsurkan, V; Loidl, A

    2013-05-08

    Powder samples of Fe1-xCuxCr2S4 with x = 0,0.2,0.5,0.8 were studied, between 5 and 300 K. The results reveal that for x < 1, the magnetic order in the series is more varied than the simple collinear ferrimagnetic structure traditionally assumed to exist everywhere from the Curie point to T → 0. In FeCr2S4 several ordered magnetic phases are present, with the ground state likely to have an incommensurate cone-like helical structure. Fe0.8Cu0.2Cr2S4 is the compound for which simple collinear ferrimagnetism is best developed. In Fe0.5Cu0.5Cr2S4 the ferrimagnetic spin structure is not stable, causing spin reorientation around 90 K. In Fe0.2Cu0.8Cr2S4 the ferrimagnetic structure is at low temperatures considerably distorted locally, but with rising temperature this disorder shows a rapid reduction, coupled to increased spin fluctuation rates. In summary, the present data show that the changes induced by the replacement of Fe by Cu have more profound influences on the magnetic properties of the Fe1-xCuxCr2S4 compounds than merely a shift of Curie temperature, saturation magnetization and internal field magnitude.

  7. Complex methyl groups dynamics in [(CH3)4P]3Sb2Br9 (PBA) from low to high temperatures by proton spin-lattice relaxation and narrowing of proton NMR spectrum.

    Science.gov (United States)

    Latanowicz, L; Medycki, W; Jakubas, R

    2009-11-01

    Molecular dynamics of a polycrystalline sample of [(CH(3))(4)P](3)Sb(2)Br(9) (PBA) has been studied on the basis of the T(1) (24.7 MHz) relaxation time measurement, the proton second moment of NMR and the earlier published T(1) (90 MHz) relaxation times. The study was performed in a wide range of temperatures (30-337 K). The tunnel splitting omega(T) of the methyl groups was estimated as of low frequency (from kHz to few MHz). The proton spin pairs of the methyl group are known to perform a complex internal motion being a resultant of four components. Three of them involve mass transportation over and through the potential barrier and are characterized by the correlation times tau(3) and tau(T)of the jumps over the barrier and tunnel jumps in the threefold potential of the methyl group and tau(iso) the correlation time of isotropic rotation of the whole TMP cation. For tau(3) and tau(iso) the Arrhenius temperature dependence was assumed, while for tau(T)--the Schrödinger one. The fourth motion causes fluctuations of the tunnel splitting frequency, omega(T), and it is related to the lifetime of the methyl spin at the energy level. The correlation function for this fourth motion (tau(omega) correlation time) has been proposed by Müller-Warmuth et al. In this paper a formula for the correlation function and spectral density of the complex motion made of the above-mentioned four components was derived and used in interpretation of the T(1) relaxation time. The second moment of proton NMR line at temperatures below 50K is four times lower than its value for the rigid structure. The three components of the internal motion characterized by tau(T), tau(H), and tau(iso) were proved to reduce the second moment of the NMR line. The tunnel jumps of the methyl group reduce M(2) at almost 0K, the classical jumps over the barrier reduce M(2) in the vicinity of 50K, while the isotropic motion near 150K. Results of the study on the dynamics of CH(3) groups of TMP cation based on

  8. Spin storage in quantum dot ensembles and single quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Dominik

    2009-10-15

    This thesis deals with the investigation of spin relaxation of electrons and holes in small ensembles of self-assembled quantum dots using optical techniques. Furthermore, a method to detect the spin orientation in a single quantum dot was developed in the framework of this thesis. A spin storage device was used to optically generate oriented electron spins in small frequency selected quantum dot ensembles using circularly polarized optical excitation. The spin orientation can be determined by the polarization of the time delayed electroluminescence signal generated by the device after a continuously variable storage time. The degree of spin polarized initialization was found to be limited to 0.6 at high magnetic fields, where anisotropic effects are compensated. The spin relaxation was directly measured as a function of magnetic field, lattice temperature and s-shell transition energy of the quantum dot by varying the spin storage time up to 30 ms. Very long spin lifetimes are obtained with a lower limit of T{sub 1}=20 ms at B=4 T and T=1 K. A strong magnetic field dependence T{sub 1}{proportional_to}B{sup -5} has been observed for low temperatures of T=1 K which weakens as the temperature is increased. In addition, the temperature dependence has been determined with T{sub 1}{proportional_to}T{sup -1}. The characteristic dependencies on magnetic field and temperature lead to the identification of the spin relaxation mechanism, which is governed by spin-orbit coupling and mediated by single phonon scattering. This finding is qualitatively supported by the energy dependent measurements. The investigations were extended to a modified device design that enabled studying the spin relaxation dynamics of heavy holes in self-assembled quantum dots. The measurements show a polarization memory effect for holes with up to 0.1 degree of polarization. Furthermore, investigations of the time dynamics of the hole spin relaxation reveal surprisingly long lifetimes T{sub 1}{sup h

  9. Spin storage in quantum dot ensembles and single quantum dots

    International Nuclear Information System (INIS)

    Heiss, Dominik

    2009-01-01

    This thesis deals with the investigation of spin relaxation of electrons and holes in small ensembles of self-assembled quantum dots using optical techniques. Furthermore, a method to detect the spin orientation in a single quantum dot was developed in the framework of this thesis. A spin storage device was used to optically generate oriented electron spins in small frequency selected quantum dot ensembles using circularly polarized optical excitation. The spin orientation can be determined by the polarization of the time delayed electroluminescence signal generated by the device after a continuously variable storage time. The degree of spin polarized initialization was found to be limited to 0.6 at high magnetic fields, where anisotropic effects are compensated. The spin relaxation was directly measured as a function of magnetic field, lattice temperature and s-shell transition energy of the quantum dot by varying the spin storage time up to 30 ms. Very long spin lifetimes are obtained with a lower limit of T 1 =20 ms at B=4 T and T=1 K. A strong magnetic field dependence T 1 ∝B -5 has been observed for low temperatures of T=1 K which weakens as the temperature is increased. In addition, the temperature dependence has been determined with T 1 ∝T -1 . The characteristic dependencies on magnetic field and temperature lead to the identification of the spin relaxation mechanism, which is governed by spin-orbit coupling and mediated by single phonon scattering. This finding is qualitatively supported by the energy dependent measurements. The investigations were extended to a modified device design that enabled studying the spin relaxation dynamics of heavy holes in self-assembled quantum dots. The measurements show a polarization memory effect for holes with up to 0.1 degree of polarization. Furthermore, investigations of the time dynamics of the hole spin relaxation reveal surprisingly long lifetimes T 1 h in the microsecond range, therefore, comparable with

  10. Spin-Excitation Mechanisms in Skyrme-Force Time-Dependent Hartree-Fock

    OpenAIRE

    Maruhn, J. A.; Reinhard, P. -G.; Stevenson, P. D.; Strayer, M. R.

    2006-01-01

    We investigate the role of odd-odd (with respect to time inversion) couplings in the Skyrme force on collisions of light nuclei, employing a fully three-dimensional numerical treatment without any symmetry restrictions and with modern Skyrme functionals. We demonstrate the necessity of these couplings to suppress spurious spin excitations owing to the spin-orbit force in free translational motion of a nucleus but show that in a collision situation there is a strong spin excitation even in spi...

  11. Spin transport in graphene nanostructures

    NARCIS (Netherlands)

    Guimaraes, M. H. D.; van den Berg, J. J.; Vera-Marun, I. J.; Zomer, P. J.; van Wees, B. J.

    2014-01-01

    Graphene is an interesting material for spintronics, showing long spin relaxation lengths even at room temperature. For future spintronic devices it is important to understand the behavior of the spins and the limitations for spin transport in structures where the dimensions are smaller than the

  12. Elastic, mechanical, and thermodynamic properties of Bi-Sb binaries: Effect of spin-orbit coupling

    Science.gov (United States)

    Singh, Sobhit; Valencia-Jaime, Irais; Pavlic, Olivia; Romero, Aldo H.

    2018-02-01

    Using first-principles calculations, we systematically study the elastic stiffness constants, mechanical properties, elastic wave velocities, Debye temperature, melting temperature, and specific heat of several thermodynamically stable crystal structures of BixSb1 -x (0 spin-orbit coupling (SOC) effects, and topological features in the electronic band structure. We analyze the bulk modulus (B ), Young's modulus (E ), shear modulus (G ), B /G ratio, and Poisson's ratio (ν ) as a function of the Bi concentration in BixSb1 -x . The effect of SOC on the above-mentioned properties is further investigated. In general, we observe that the SOC effects cause elastic softening in most of the studied structures. Three monoclinic structures of Bi-Sb binaries are found to exhibit significantly large auxetic behavior due to the hingelike geometric structure of bonds. The Debye temperature and the magnitude of the elastic wave velocities monotonically increase with increasing Sb concentration. However, anomalies were observed at very low Sb concentration. We also discuss the specific-heat capacity versus temperature data for all studied binaries. Our theoretical results are in excellent agreement with the existing experimental and theoretical data. The comprehensive understanding of the material properties such as hardness, mechanical strength, melting temperature, propagation of the elastic waves, auxeticity, and heat capacity is vital for practical applications of the studied binaries.

  13. Electron spin interactions in chemistry and biology fundamentals, methods, reactions mechanisms, magnetic phenomena, structure investigation

    CERN Document Server

    Likhtenshtein, Gertz

    2016-01-01

    This book presents the versatile and pivotal role of electron spin interactions in nature. It provides the background, methodologies and tools for basic areas related to spin interactions, such as spin chemistry and biology, electron transfer, light energy conversion, photochemistry, radical reactions, magneto-chemistry and magneto-biology. The book also includes an overview of designing advanced magnetic materials, optical and spintronic devices and photo catalysts. This monograph appeals to scientists and graduate students working in the areas related to spin interactions physics, biophysics, chemistry and chemical engineering.

  14. Critical quench dynamics of random quantum spin chains: ultra-slow relaxation from initial order and delayed ordering from initial disorder

    Science.gov (United States)

    Roósz, Gergö; Lin, Yu-Cheng; Iglói, Ferenc

    2017-02-01

    By means of free fermionic techniques combined with multiple precision arithmetic we study the time evolution of the average magnetization, \\overline{m}(t), of the random transverse-field Ising chain after global quenches. We observe different relaxation behaviors for quenches starting from different initial states to the critical point. Starting from a fully ordered initial state, the relaxation is logarithmically slow described by \\overline{m}(t)∼ {{ln}}at, and in a finite sample of length L the average magnetization saturates at a size-dependent plateau {\\overline{m}}p(L)∼ {L}-b; here the two exponents satisfy the relation b/a=\\psi =1/2. Starting from a fully disordered initial state, the magnetization stays at zero for a period of time until t={t}{{d}} with {ln}{t}{{d}}∼ {L}\\psi and then starts to increase until it saturates to an asymptotic value {\\overline{m}}p(L)∼ {L}-b^{\\prime }, with b\\prime ≈ 1.5. For both quenching protocols, finite-size scaling is satisfied in terms of the scaled variable {ln}t/{L}\\psi . Furthermore, the distribution of long-time limiting values of the magnetization shows that the typical and the average values scale differently and the average is governed by rare events. The non-equilibrium dynamical behavior of the magnetization is explained through semi-classical theory.

  15. Spin Transport in High-Quality Suspended Graphene Devices

    NARCIS (Netherlands)

    Guimaraes, Marcos H. D.; Veligura, A.; Zomer, P. J.; Maassen, T.; Vera-Marun, I. J.; Tombros, N.; van Arees, B. J.; Wees, B.J. van

    We measure spin transport in high mobility suspended graphene (mu approximate to 10(5)cm(2)/(V s)), obtaining a (spin) diffusion coefficient of 0.1 m(2)/s and giving a lower bound on the spin relaxation time (tau(s) approximate to 150 ps) and spin relaxation length (lambda(s) = 4.7 mu m) for

  16. Strain, stress, and mechanical relaxation in fin-patterned Si/SiGe multilayers for sub-7 nm nanosheet gate-all-around device technology

    Science.gov (United States)

    Reboh, S.; Coquand, R.; Barraud, S.; Loubet, N.; Bernier, N.; Audoit, G.; Rouviere, J.-L.; Augendre, E.; Li, J.; Gaudiello, J.; Gambacorti, N.; Yamashita, T.; Faynot, O.

    2018-01-01

    Pre-strained fin-patterned Si/SiGe multilayer structures for sub-7 nm stacked gate-all-around Si-technology transistors that have been grown onto bulk-Si, virtually relaxed SiGe, strained Silicon-On-Insulator, and compressive SiGe-On-Insulator were investigated. From strain maps with a nanometer spatial resolution obtained by transmission electron microscopy, we developed 3D quantitative numerical models describing the mechanics of the structures. While elastic interactions describe every other system reported here, the patterning on the compressive SiGe-On-Insulator substrate that is fabricated by Ge-condensation results in relaxation along the semiconductor/insulator interface, revealing a latent plasticity mechanism. As a consequence, Si layers with a uniaxial stress of 1.4 GPa are obtained, bringing fresh perspectives for strain engineering in advanced devices. These findings could be extended to other semiconductor technologies.

  17. Spin Hall and spin swapping torques in diffusive ferromagnets

    KAUST Repository

    Pauyac, C. O.

    2017-12-08

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  18. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2′-bipyridine)2(CN)2

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Zhang, Wenkai; Alonso-Mori, Roberto

    2017-01-01

    -visible spectra, associated with the 2,2′-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state...... of [Fe(bpy)2(CN)2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a short lived metal-centered triplet transient species. These measurements of [Fe(bpy)2(CN)2] complement prior measurement performed on [Fe(bpy)3]2+ and [Fe(bpy)(CN)4]2− in dimethylsulfoxide solution......We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy)2(CN)2], where bpy=2,2′-bipyridine, initiated by metal-to-ligand charge transfer (MLCT) excitation. The excited-state absorption in the transient UV...

  19. A general model to calculate the spin-lattice (T1) relaxation time of blood, accounting for haematocrit, oxygen saturation and magnetic field strength.

    Science.gov (United States)

    Hales, Patrick W; Kirkham, Fenella J; Clark, Christopher A

    2016-02-01

    Many MRI techniques require prior knowledge of the T1-relaxation time of blood (T1bl). An assumed/fixed value is often used; however, T1bl is sensitive to magnetic field (B0), haematocrit (Hct), and oxygen saturation (Y). We aimed to combine data from previous in vitro measurements into a mathematical model, to estimate T1bl as a function of B0, Hct, and Y. The model was shown to predict T1bl from in vivo studies with a good accuracy (± 87 ms). This model allows for improved estimation of T1bl between 1.5-7.0 T while accounting for variations in Hct and Y, leading to improved accuracy of MRI-derived perfusion measurements. © The Author(s) 2015.

  20. Spin coherence in phosphorescent triplet states

    International Nuclear Information System (INIS)

    Hof, C.A. van 't

    1977-01-01

    The electron spin echo is studied on the dephasing mechanism in the photo-excited triplet state of quinoline in a durene host. First, a comparative investigation of the merits of the different spin echo techniques is presented. It turns out that the rotary echo generally yields a longer phase memory time than the two-pulse echo, whereas in the Carr-Purcell experiment, the dephasing can even be largely suppressed. Secondly, it is shown that the dephasing mechanism is determined by the nuclear spins of the guest molecules as well as those in the host material. A theoretical basis for interpreting the effect of vibronic relaxation on the decay rate of the rotary echo, as observed in parabenzoquinone, is given. Similar experiments in aniline reveal also that in this molecule, two close-lying triplet states exist, which is attributed to an inversion vibration analogous to the well-known example in ammonia

  1. A spin transition mechanism for cooperative adsorption in metal-organic frameworks

    Science.gov (United States)

    Reed, Douglas A.; Keitz, Benjamin K.; Oktawiec, Julia; Mason, Jarad A.; Runčevski, Tomče; Xiao, Dianne J.; Darago, Lucy E.; Crocellà, Valentina; Bordiga, Silvia; Long, Jeffrey R.

    2017-10-01

    Cooperative binding, whereby an initial binding event facilitates the uptake of additional substrate molecules, is common in biological systems such as haemoglobin. It was recently shown that porous solids that exhibit cooperative binding have substantial energetic benefits over traditional adsorbents, but few guidelines currently exist for the design of such materials. In principle, metal-organic frameworks that contain coordinatively unsaturated metal centres could act as both selective and cooperative adsorbents if guest binding at one site were to trigger an electronic transformation that subsequently altered the binding properties at neighbouring metal sites. Here we illustrate this concept through the selective adsorption of carbon monoxide (CO) in a series of metal-organic frameworks featuring coordinatively unsaturated iron(II) sites. Functioning via a mechanism by which neighbouring iron(II) sites undergo a spin-state transition above a threshold CO pressure, these materials exhibit large CO separation capacities with only small changes in temperature. The very low regeneration energies that result may enable more efficient Fischer-Tropsch conversions and extraction of CO from industrial waste feeds, which currently underutilize this versatile carbon synthon. The electronic basis for the cooperative adsorption demonstrated here could provide a general strategy for designing efficient and selective adsorbents suitable for various separations.

  2. Spin-Mechatronics

    Science.gov (United States)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  3. Statistical mechanics of magnetic excitations from spin waves to stripes and checkerboards

    CERN Document Server

    Rastelli, Enrico

    2013-01-01

    The aim of this advanced textbook is to provide the reader with a comprehensive explanation of the ground state configurations, the spin wave excitations and the equilibrium properties of spin lattices described by the Ising-Heisenberg Hamiltonians in the presence of short (exchange) and long range (dipole) interactions.The arguments are presented in such detail so as to enable advanced undergraduate and graduate students to cross the threshold of active research in magnetism by using both analytic calculations and Monte Carlo simulations.Recent results about unorthodox spin configurations suc

  4. An Ising spin state explanation for financial asset allocation

    Science.gov (United States)

    Horvath, Philip A.; Roos, Kelly R.; Sinha, Amit

    2016-03-01

    We build on the developments in the application of statistical mechanics, notably the identity of the spin degree of freedom in the Ising model, to explain asset price dynamics in financial markets with a representative agent. Specifically, we consider the value of an individual spin to represent the proportional holdings in various assets. We use partial moment arguments to identify asymmetric reactions to information and develop an extension of a plunging and dumping model. This unique identification of the spin is a relaxation of the conventional discrete state limitation on an Ising spin to accommodate a new archetype in Ising model-finance applications wherein spin states may take on continuous values, and may evolve in time continuously, or discretely, depending on the values of the partial moments.

  5. Relaxation of polarized nuclei in superconducting rhodium

    DEFF Research Database (Denmark)

    Knuuttila, T.A.; Tuoriniemi, J.T.; Lefmann, K.

    2000-01-01

    Nuclear spin lattice relaxation rates were measured in normal and superconducting (sc) rhodium with nuclear polarizations up to p = 0.55. This was sufficient to influence the sc state of Rh, whose T, and B-c, are exceptionally low. Because B-c ... is unchanged, the nuclear spin entropy was fully sustained across the sc transition. The relaxation in the sc state was slower at all temperatures without the coherence enhancement close to T-c. Nonzero nuclear polarization strongly reduced the difference between the relaxation rates in the sc and normal...

  6. Mechanism of radiation destruction of dyes in polymers: a new method to improve the stability of dyed polymers based on vibrational cross-relaxation

    International Nuclear Information System (INIS)

    Belichenko, A.S.; Dyumaev, K.M.; Maslyukov, A.P.; Matyushin, G.A.; Nechitajlo, V.S.

    1990-01-01

    The mechanism of radiation destruction of dyes (vanadyl phthalocyanine and dithiobenzyl complex of nickel) is studied experimentally. The dyes were subjected to exposure at 300 K in air using a 60 Co source (1.2 Gy/s dose rate) by subsequent 100 Gy doses up to the total dose of 10 kGy. It is shown that the introduction of additions which initiate vibrational cross-relaxation between macromolecules and molecules of the addition, is an efficient method for enhancing radiation resistance of dyes in polymers. The introduction of organic dyes allows to investigate the mechanism of polymer radiolysis under small gamma-radiation doses

  7. Optical spin generation/detection and spin transport lifetimes

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  8. Optical spin generation/detection and spin transport lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-02-25

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  9. Orbital angular momentum transfer and spin desalignment mechanisms in the deep inelastic collisions Ar+Bi and Ni+Pb using the sequential fission method

    International Nuclear Information System (INIS)

    Steckmeyer, J.C.

    1984-10-01

    Angular momentum transfer and spin dealignment mechanisms have been studied in the deep inelastic collisions Ar+Bi and Ni+Pb using the sequential fission method. This experimental technique consists to measure the angular distribution of the fission fragments of a heavy nucleus in coincidence with the reaction partner, and leads to a complete determination of the heavy nucleus spin distribution. High spin values are transferred to the heavy nucleus in the interaction and indicate that the dinuclear system has reached the rigid rotation limit. A theoretical model, taking into account the excitation of surface vibrations of the nuclei and the nucleon transfer between the two partners, is able to reproduce the high spin values measured in our experiments. The spin fluctuations are important, with values of the order of 15 to 20 h units. These fluctuations increase with the charge transfer from the projectile to the target and the total kinetic energy loss. The spin dealignment mechanisms act mainly in a plane approximately perpendicular to the heavy recoil direction in the laboratory system. These results are well described by a dynamical transport model based on the stochastic exchange of individual nucleons between the two nuclei during the interaction. The origin of the dealignment mechanisms in the spin transfer processes is then related to the statistical nature of the nucleon exchange. However other mechanisms can contribute to the spin dealignment as the surface vibrations, the nuclear deformations as well their relative orientations [fr

  10. Influence of intrinsic spin-flip processes on spin-polarized transport through quantum dots in the cotunneling regime

    International Nuclear Information System (INIS)

    Weymann, I.; Barnas, J.

    2006-01-01

    The influence of intrinsic spin relaxation on spin-polarized cotunneling through quantum dots coupled to ferromagnetic leads is analyzed theoretically. It is shown that the zero bias anomaly, which occurs due to the interplay of single-barrier and double-barrier cotunneling processes, becomes suppressed by spin relaxation processes on the dot. Diode-like features of the transport characteristics in the cotunneling regime have been found in asymmetrical systems. These features are also suppressed by the spin relaxation processes

  11. Coherent and correlated spin transport in nanoscale superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Morten, Jan Petter

    2008-03-15

    Motivated by the desire for better understanding of nano electronic systems, we theoretically study the conductance and noise characteristics of current flow between superconductors, ferromagnets, and normal-metals. Such nano structures can reveal information about superconductor proximity effects, spin-relaxation processes, and spintronic effects with potential applications for different areas of mesoscopic physics. We employ the quasiclassical theory of superconductivity in the Keldysh formalism, and calculate the nonequilibrium transport of spin and charge using various approaches like the circuit theory of quantum transport and full counting statistics. For two of the studied structures, we have been able to compare our theory to experimental data and obtain good agreement. Transport and relaxation of spin polarized current in superconductors is governed by energy-dependent transport coefficients and spin-flip rates which are determined by quantum interference effects. We calculate the resulting temperature-dependent spin flow in ferromagnet-superconductor devices. Experimental data for spin accumulation and spin relaxation in a superconducting nano wire is in agreement with the theory, and allows for a spin-flip spectroscopy that determines the dominant mechanism for spin-flip relaxation in the studied samples. A ferromagnet precessing under resonance conditions can give rise to pure spin current injection into superconductors. We find that the absorbed spin current is measurable as a temperature dependent Gilbert damping, which we calculate and compare to experimental data. Crossed Andreev reflection denotes superconducting pairing of electrons flowing from different normal-metal or ferromagnet terminals into a superconductor. We calculate the nonlocal currents resulting from this process in competition with direct electron transport between the normal-metal terminals. We take dephasing into account, and study the nonlocal current when the types of contact in

  12. Multi-Quanta Spin-Locking Nuclear Magnetic Resonance Relaxation Measurements: An Analysis of the Long-Time Dynamical Properties of Ions and Water Molecules Confined within Dense Clay Sediments

    Directory of Open Access Journals (Sweden)

    Patrice Porion

    2017-11-01

    Full Text Available Solid/liquid interfaces are exploited in various industrial applications because confinement strongly modifies the physico-chemical properties of bulk fluids. In that context, investigating the dynamical properties of confined fluids is crucial to identify and better understand the key factors responsible for their behavior and to optimize their structural and dynamical properties. For that purpose, we have developed multi-quanta spin-locking nuclear magnetic resonance relaxometry of quadrupolar nuclei in order to fill the gap between the time-scales accessible by classical procedures (like dielectric relaxation, inelastic and quasi-elastic neutron scattering and obtain otherwise unattainable dynamical information. This work focuses on the use of quadrupolar nuclei (like 2H, 7Li and 133Cs, because quadrupolar isotopes are the most abundant NMR probes in the periodic table. Clay sediments are the confining media selected for this study because they are ubiquitous materials implied in numerous industrial applications (ionic exchange, pollutant absorption, drilling, waste storing, cracking and heterogeneous catalysis.

  13. Probing the superconducting ground state of the rare-earth ternary boride superconductors R RuB2 (R = Lu,Y) using muon-spin rotation and relaxation

    Science.gov (United States)

    Barker, J. A. T.; Singh, R. P.; Hillier, A. D.; Paul, D. McK.

    2018-03-01

    The superconductivity in the rare-earth transition-metal ternary borides R RuB2 (where R =Lu and Y) has been investigated using muon-spin rotation and relaxation. Measurements made in zero field suggest that time-reversal symmetry is preserved upon entering the superconducting state in both materials; a small difference in depolarization is observed above and below the superconducting transition in both compounds, however, this has been attributed to quasistatic magnetic fluctuations. Transverse-field measurements of the flux-line lattice indicate that the superconductivity in both materials is fully gapped, with a conventional s -wave pairing symmetry and BCS-like magnitudes for the zero-temperature gap energies. The electronic properties of the charge carriers in the superconducting state have been calculated, with effective masses m*/me=9.8 ±0.1 and 15.0 ±0.1 in the Lu and Y compounds, respectively, with superconducting carrier densities ns=(2.73 ±0.04 ) ×1028m-3 and (2.17 ±0.02 ) ×1028m-3 . The materials have been classified according to the Uemura scheme for superconductivity, with values for Tc/TF of 1 /(414 ±6 ) and 1 /(304 ±3 ) , implying that the superconductivity may not be entirely conventional in nature.

  14. Nuclear relaxation in semiconductors doped with magnetic impurities

    International Nuclear Information System (INIS)

    Mel'nichuk, S.V.; Tovstyuk, N.K.

    1984-01-01

    The temperature and concentration dependences are investigated of the nuclear spin-lattice relaxation time with account of spin diffusion for degenerated and non-degenerated semicon- ductors doped with magnetic impurities. In case of the non-degenerated semiconductor the time is shown to grow with temperature, while in case of degenerated semiconductor it is practically independent of temperature. The impurity concentration growth results in decreasing the spin-lattice relaxation time

  15. Insight into the labeling mechanism of acceleration selective arterial spin labeling

    DEFF Research Database (Denmark)

    Schmid, Sophie; Petersen, Esben T; Van Osch, Matthias J P

    2017-01-01

    OBJECTIVES: Acceleration selective arterial spin labeling (AccASL) is a spatially non-selective labeling technique, used in traditional ASL methods, which labels spins based on their flow acceleration rather than spatial localization. The exact origin of the AccASL signal within the vasculature......-ASL, combined AccASL and VS-ASL signal, and signal from one module with crushing from the other. RESULTS: The label created with AccASL has an overlap of approximately 50% in the vascular region with VS-ASL, but also originates from smaller vessels closer to the capillaries. CONCLUSION: AccASL is able to label...

  16. Effect of spin-orbit scattering on transport properties of low-dimensional dilute alloys

    Energy Technology Data Exchange (ETDEWEB)

    Heers, Swantje

    2011-09-21

    The scope of this thesis is to gain insight, by means of ab initio-calculations, into the physics of momentum and spin relaxation phenomena induced by electron scattering at impurities and defects in the noble metals copper, silver and gold. The main results are subdivided in three parts. In the first part, momentum- and spinrelaxation times due to scattering at 3d, 4sp, 4d, 5sp, 5d and 6sp impurities in copper and gold fcc bulk are investigated. The inversion symmetry of the crystals leads to a two-fold degeneracy of all states on the Fermi surface, and therefore spin relaxation is dominated by the Elliott-Yafet mechanism as well as the spin-orbit coupling of the impurity. For impurities in gold, we calculate much shorter spin-relaxation times than in copper because of the stronger spin-orbit coupling of the gold host. Furthermore, we have found important qualitative differences between the relaxation times obtained for the d- and the sp- impurities. As scattering at d-impurities is resonant, the electrons spend much more time at the impurity sites than in the case of the sp-impurities; therefore, they are much longer exhibited to the spin-orbit coupling of the impurity. This results in considerably shorter spin-relaxation times, even if the momentum scattering rates are in the same order of magnitude. Finally, the investigation of interference of scattering processes at impurity dimers reveals that relevant differences to the independent-impurity approximation appear only for strong d-scatterer, placed at nearest neighboring sites. In the second part we investigate the reduction of spin-conserving surface-state lifetimes induced by adatom- and impurity-scattering on the (111) surfaces of copper, silver and gold films with different thicknesses. We have found strong qualitative differences in the lifetimes when comparing the results for adatoms to those of impurities in the first and second layer. The trends for the latter ones are similar to those calculated in

  17. Insight into the labeling mechanism of acceleration selective arterial spin labeling.

    Science.gov (United States)

    Schmid, Sophie; Petersen, Esben T; Van Osch, Matthias J P

    2017-04-01

    Acceleration selective arterial spin labeling (AccASL) is a spatially non-selective labeling technique, used in traditional ASL methods, which labels spins based on their flow acceleration rather than spatial localization. The exact origin of the AccASL signal within the vasculature is not completely understood. To obtain more insight into this, the acceleration selective module was performed followed by a velocity selective module, which is used in velocity selective arterial spin labeling (VS-ASL). Nine healthy volunteers were scanned with various combinations of the control and label conditions in both the acceleration and velocity selective module. The cut-off acceleration (0.59 m/s 2 ) or velocity (2 cm/s) was kept constant in one module, while it was varied over a large range in the other module. With the right subtractions this resulted in AccASL, VS-ASL, combined AccASL and VS-ASL signal, and signal from one module with crushing from the other. The label created with AccASL has an overlap of approximately 50% in the vascular region with VS-ASL, but also originates from smaller vessels closer to the capillaries. AccASL is able to label spins both in the macro- and meso-vasculature, as well as in the microvasculature.

  18. Dynamics of unloaded and green tea extract loaded lecithin based liposomal dispersions investigated by nuclear magnetic resonance T2relaxation.

    Science.gov (United States)

    Kirtil, Emrah; Dag, Damla; Guner, Selen; Unal, Kubra; Oztop, Mecit H

    2017-09-01

    Liposomes are lipid bilayer vesicles that can be used as encapsulation systems for bioactive agents to provide increased protection against environmental stresses (such as pH or temperature extremes). Time Domain Nuclear Magnetic Resonance (TD-NMR) that is based on differentiation of specimen contents with respect to magnetic relaxation rates provides detailed information on amount, state and distribution of water and oil and provide reproducible results on the samples. These make TD-NMR particularly suitable for time-dependent monitoring of emulsion system dynamics. In this study, spin-spin (T 2 ) relaxation times and relaxation spectra were used for characterizing green tea extract loaded and unloaded liposomes prepared with soy (S75) and egg lecithins (E80) by different preparation methods (such as homogenization type, pressure and solvent type). Mean particle sizes of liposomes were found to be the most influential factor in shaping mono-exponential T 2 relaxation times. The differences in particle sizes of E80 and S75 samples along with samples with different homogenization pressures could be monitored with T 2 relaxation times. Additionally, T 2 relaxation times were found to be correlated with particle shape irregularity, and chemical instability of samples due to lipid oxidation. With relaxation spectrum analysis, particular components in the sample could be distinguished (internal/external water and lipid bilayers), which gave more elaborate results on mechanisms of instability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Electronic spin transport in graphene field-effect transistors

    NARCIS (Netherlands)

    Popinciuc, M.; Jozsa, C.; Zomer, P. J.; Tombros, N.; Veligura, A.; Jonkman, H. T.; van Wees, B. J.

    2009-01-01

    Spin transport experiments in graphene, a single layer of carbon atoms ordered in a honeycomb lattice, indicate spin-relaxation times that are significantly shorter than the theoretical predictions. We investigate experimentally whether these short spin-relaxation times are due to extrinsic factors,

  20. Dynamic Nuclear Polarization and Relaxation of H and D Atoms in Solid Mixtures of Hydrogen Isotopes

    Science.gov (United States)

    Sheludiakov, S.; Ahokas, J.; Järvinen, J.; Vainio, O.; Lehtonen, L.; Vasiliev, S.; Lee, D. M.; Khmelenko, V. V.

    2017-04-01

    We report on a study of dynamic nuclear polarization and electron and nuclear spin relaxation of atomic hydrogen and deuterium in solid molecular matrices of H2, D2, and HD mixtures. The electron and nuclear spin relaxation times (T_{1e} and T_{1N}) were measured within the temperature range 0.15-2.5 K in a magnetic field of 4.6 T, conditions which ensure a high polarization of electron spins. We found that T_{1e} is nearly temperature independent in this temperature range, while T_{1N} decreased by two orders of magnitude upon raising temperature. Such strong temperature dependence is typical for the nuclear Orbach mechanism of relaxation via the electron spins. We found that the nuclear spins of H atoms in solid D2 and D2{:}HD can be efficiently polarized by the Overhauser effect. Pumping the forbidden transitions of H atoms also leads to DNP, with the efficiency strongly dependent on the concentration of D atoms. This behavior indicates the cross effect mechanism of the DNP and nuclear relaxation, which turns out to be well resolved in the conditions of our experiments. Efficient DNP of H atoms was also observed when pumping the middle D line located in the center of the ESR spectrum. This phenomenon can be explained in terms of clusters or pairs of H atoms with a strong exchange interaction. These clusters have partially allowed transitions in the center of the ESR spectrum, and DNP may be created via the resolved cross effect.

  1. Spin dynamics and magnetoelectric coupling mechanism of C o4N b2O9

    Science.gov (United States)

    Deng, Guochu; Cao, Yiming; Ren, Wei; Cao, Shixun; Studer, Andrew J.; Gauthier, Nicolas; Kenzelmann, Michel; Davidson, Gene; Rule, Kirrily C.; Gardner, Jason S.; Imperia, Paolo; Ulrich, Clemens; McIntyre, Garry J.

    2018-02-01

    Neutron powder diffraction experiments reveal that C o4N b2O9 forms a noncollinear in-plane magnetic structure with C o2 + moments lying in the a b plane. The spin-wave excitations of this magnet were measured by using inelastic neutron scattering and soundly simulated by a dynamic model involving nearest- and next-nearest-neighbor exchange interactions, in-plane anisotropy, and the Dzyaloshinskii-Moriya interaction. The in-plane magnetic structure of C o4N b2O9 is attributed to the large in-plane anisotropy, while the noncollinearity of the spin configuration is attributed to the Dzyaloshinskii-Moriya interaction. The high magnetoelectric coupling effect of C o4N b2O9 in fields can be explained by its special in-plane magnetic structure.

  2. Mechanisms of stress generation and relaxation during pulsed laser deposition of epitaxial Fe-Pd magnetic shape memory alloy films on MgO

    International Nuclear Information System (INIS)

    Edler, Tobias; Mayr, S G; Buschbeck, Joerg; Mickel, Christine; Faehler, Sebastian

    2008-01-01

    Mechanical stress generation during epitaxial growth of Fe-Pd thin films on MgO from pulsed laser deposition is a key parameter for the suitability in shape memory applications. By employing in situ substrate curvature measurements, we determine the stress states as a function of film thickness and composition. Depending on composition, different stress states are observed during initial film growth, which can be attributed to different misfits. Compressive stress generation by atomic peening is observed in the later stages of growth. Comparison with ex situ x-ray based strain measurements allows integral and local stress to be distinguished and yields heterogeneities of the stress state between coherent and incoherent regions. In combination with cross-sectional TEM measurements the relevant stress relaxation mechanism is identified to be stress-induced martensite formation with (111) twinning

  3. Spin Structures in Magnetic Nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Brok, Erik; Frandsen, Cathrine

    2013-01-01

    Spin structures in nanoparticles of ferrimagnetic materials may deviate locally in a nontrivial way from ideal collinear spin structures. For instance, magnetic frustration due to the reduced numbers of magnetic neighbors at the particle surface or around defects in the interior can lead to spin...... canting and hence a reduced magnetization. Moreover, relaxation between almost degenerate canted spin states can lead to anomalous temperature dependences of the magnetization at low temperatures. In ensembles of nanoparticles, interparticle exchange interactions can also result in spin reorientation...

  4. Light-free magnetic resonance force microscopy for studies of electron spin polarized systems

    International Nuclear Information System (INIS)

    Pelekhov, Denis V.; Selcu, Camelia; Banerjee, Palash; Chung Fong, Kin; Chris Hammel, P.; Bhaskaran, Harish; Schwab, Keith

    2005-01-01

    Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its excellent sensitivity opens the possibility for magnetic resonance studies of spin accumulation resulting from the injection of spin polarized currents into a para-magnetic collector. The method is based on mechanical detection of magnetic resonance which requires low noise detection of cantilever displacement; so far, this has been accomplished using optical interferometry. This is undesirable for experiments on doped silicon, where the presence of light is known to enhance spin relaxation rates. We report a non-optical displacement detection scheme based on sensitive microwave capacitive readout

  5. Spin dynamics in the single molecule magnet Ni4 under microwave irradiation

    Science.gov (United States)

    de Loubens, Gregoire

    2009-03-01

    Quantum mechanical effects such as quantum tunneling of magnetization (QTM) and quantum phase interference have been intensively studied in single molecule magnets (SMMs). These materials have also been suggested as candidates for qubits and are promising for molecular spintronics. Understanding decoherence and energy relaxation mechanisms in SMMs is then both of fundamental interest and important for the use of SMMs in applications. Interestingly, the single-spin relaxation rate due to direct process of a SMM embedded in an elastic medium can be derived without any unknown coupling constant [1]. Moreover, nontrivial relaxation mechanisms are expected from collective effects in SMM single crystals, such as phonon superradiance or phonon bottleneck. In order to investigate the spin relaxation between the two lowest lying spin-states of the S=4 single molecule magnet Ni4, we have developed an integrated sensor that combines a microstrip resonator and micro-Hall effect magnetometer on a chip [2]. This sensor enables both real time studies of magnetization dynamics under pulse irradiation as well as simultaneous measurements of the absorbed power and magnetization changes under continuous microwave irradiation. The latter technique permits the study of small deviations from equilibrium under steady state conditions, i.e. small amplitude cw microwave irradiation. This has been used to determine the energy relaxation rate of a Ni4 single crystal as a function of temperature at two frequencies, 10 and 27.8 GHz. A strong temperature dependence is observed below 1.5 K, which is not consistent with a direct spin-phonon relaxation process. The data instead suggest that the spin relaxation is dominated by a phonon bottleneck at low temperatures and occurs by an Orbach process involving excited spin-levels at higher temperatures [3]. Experimental results will be compared with detailed calculations of the relaxation rate using the density matrix equation with the relaxation

  6. Modulation bandwidth of a spin laser

    Science.gov (United States)

    Banerjee, D.; Adari, R.; Murthy, M.; Suggisetti, P.; Ganguly, S.; Saha, D.

    2011-04-01

    We have studied small signal frequency response of a spin laser. We have shown that the response is characterized by two distinct resonant peaks corresponding to the two polarization modes of the spin laser. It is observed that the modulation bandwidth of a spin laser can be smaller or larger than that of a conventional laser depending upon the current bias and spin relaxation time constant. A small value for spin relaxation constant may not be detrimental for modulation bandwidth. This anomalous observation is explained by considering both the amplitude and phase response of the two polarization modes. A spin laser can act as a combination of low-pass and bandpass filters. The passband frequency range is tunable by external bias. We have also studied the evolution of resonant peaks and modulation bandwidth as a function of spin relaxation time constant.

  7. Hund Interaction, Spin-Orbit Coupling, and the Mechanism of Superconductivity in Strongly Hole-Doped Iron Pnictides

    Science.gov (United States)

    Vafek, Oskar; Chubukov, Andrey V.

    2017-02-01

    We present a novel mechanism of s -wave pairing in Fe-based superconductors. The mechanism involves holes near dx z/dy z pockets only and is applicable primarily to strongly hole doped materials. We argue that as long as the renormalized Hund's coupling J exceeds the renormalized interorbital Hubbard repulsion U', any finite spin-orbit coupling gives rise to s -wave superconductivity. This holds even at weak coupling and regardless of the strength of the intraorbital Hubbard repulsion U . The transition temperature grows as the hole density decreases. The pairing gaps are fourfold symmetric, but anisotropic, with the possibility of eight accidental nodes along the larger pocket. The resulting state is consistent with the experiments on KFe2 As2 .

  8. Relaxation from particle production

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; Marques-Tavares, Gustavo [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305 (United States)

    2016-12-20

    We consider using particle production as a friction force by which to implement a “Relaxion” solution to the electroweak hierarchy problem. Using this approach, we are able to avoid superplanckian field excursions and avoid any conflict with the strong CP problem. The relaxation mechanism can work before, during or after inflation allowing for inflationary dynamics to play an important role or to be completely decoupled.

  9. Baryogenesis via Elementary Goldstone Higgs Relaxation

    DEFF Research Database (Denmark)

    Gertov, Helene; Pearce, Lauren; Sannino, Francesco

    2016-01-01

    We extend the relaxation mechanism to the Elementary Goldstone Higgs framework. Besides studying the allowed parameter space of the theory we add the minimal ingredients needed for the framework to be phenomenologically viable. The very nature of the extended Higgs sector allows to consider very...... flat scalar potential directions along which the relaxation mechanism can be implemented. This fact translates into wider regions of applicability of the relaxation mechanism when compared to the Standard Model Higgs case. Our results show that, if the electroweak scale is not fundamental...... but radiatively generated, it is possible to generate the observed matter-antimatter asymmetry via the relaxation mechanism....

  10. Mode-hopping mechanism generating colored noise in a magnetic tunnel junction based spin torque oscillator

    International Nuclear Information System (INIS)

    Sharma, Raghav; Dürrenfeld, P.; Iacocca, E.; Heinonen, O. G.; Åkerman, J.; Muduli, P. K.

    2014-01-01

    The frequency noise spectrum of a magnetic tunnel junction based spin torque oscillator is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. We find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layer is aligned away from the anti-parallel orientation w.r.t the reference layer. These results indicate that the origin of 1/f frequency noise is related to mode-hopping, which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.

  11. Projection operator techniques in nonequilibrium statistical mechanics

    International Nuclear Information System (INIS)

    Grabert, H.

    1982-01-01

    This book is an introduction to the application of the projection operator technique to the statistical mechanics of irreversible processes. After a general introduction to the projection operator technique and statistical thermodynamics the Fokker-Planck and the master equation approach are described together with the response theory. Then, as applications the damped harmonic oscillator, simple fluids, and the spin relaxation are considered. (HSI)

  12. A Low Spin Manganese(IV) Nitride Single Molecule Magnet.

    Science.gov (United States)

    Ding, Mei; Cutsail, George E; Aravena, Daniel; Amoza, Martín; Rouzières, Mathieu; Dechambenoit, Pierre; Losovyj, Yaroslav; Pink, Maren; Ruiz, Eliseo; Clérac, Rodolphe; Smith, Jeremy M

    2016-09-01

    Structural, spectroscopic and magnetic methods have been used to characterize the tris(carbene)borate compound PhB(MesIm) 3 Mn≡N as a four-coordinate manganese(IV) complex with a low spin ( S = 1/2) configuration. The slow relaxation of the magnetization in this complex, i.e. its single-molecule magnet (SMM) properties, is revealed under an applied dc field. Multireference quantum mechanical calculations indicate that this SMM behavior originates from an anisotropic ground doublet stabilized by spin-orbit coupling. Consistent theoretical and experiment data show that the resulting magnetization dynamics in this system is dominated by ground state quantum tunneling, while its temperature dependence is influenced by Raman relaxation.

  13. Magnons, Spin Current and Spin Seebeck Effect

    Science.gov (United States)

    Maekawa, Sadamichi

    2012-02-01

    When metals and semiconductors are placed in a temperature gradient, the electric voltage is generated. This mechanism to convert heat into electricity, the so-called Seebeck effect, has attracted much attention recently as the mechanism for utilizing wasted heat energy. [1]. Ferromagnetic insulators are good conductors of spin current, i.e., the flow of electron spins [2]. When they are placed in a temperature gradient, generated are magnons, spin current and the spin voltage [3], i.e., spin accumulation. Once the spin voltage is converted into the electric voltage by inverse spin Hall effect in attached metal films such as Pt, the electric voltage is obtained from heat energy [4-5]. This is called the spin Seebeck effect. Here, we present the linear-response theory of spin Seebeck effect based on the fluctuation-dissipation theorem [6-8] and discuss a variety of the devices. [4pt] [1] S. Maekawa et al, Physics of Transition Metal Oxides (Springer, 2004). [0pt] [2] S. Maekawa: Nature Materials 8, 777 (2009). [0pt] [3] Concept in Spin Electronics, eds. S. Maekawa (Oxford University Press, 2006). [0pt] [4] K. Uchida et al., Nature 455, 778 (2008). [0pt] [5] K. Uchida et al., Nature Materials 9, 894 (2010) [0pt] [6] H. Adachi et al., APL 97, 252506 (2010) and Phys. Rev. B 83, 094410 (2011). [0pt] [7] J. Ohe et al., Phys. Rev. B (2011) [0pt] [8] K. Uchida et al., Appl. Phys. Lett. 97, 104419 (2010).

  14. Weak antilocalization and spin precession in quantum wells

    Science.gov (United States)

    Knap, W.; Skierbiszewski, C.; Zduniak, A.; Litwin-Staszewska, E.; Bertho, D.; Kobbi, F.; Robert, J. L.; Pikus, G. E.; Pikus, F. G.; Iordanskii, S. V.; Mosser, V.; Zekentes, K.; Lyanda-Geller, Yu. B.

    1996-02-01

    The results of magnetoconductivity measurements in GaxIn1-xAs quantum wells are presented. The observed magnetoconductivity appears due to the quantum interference, which lead to the weak localization effect. It is established that the details of the weak localization are controlled by the spin splitting of electron spectra. A theory is developed that takes into account both linear and cubic in electron wave-vector terms in spin splitting, which arise due to the lack of inversion center in the crystal, as well as the linear terms that appear when the well itself is asymmetric. It is established that, unlike spin-relaxation rate, contributions of different terms into magnetoconductivity are not additive. It is demonstrated that in the interval of electron densities under investigation [(0.98-1.85)×1012 cm-2 ] all three contributions are comparable and have to be taken into account to achieve a good agreement between the theory and experiment. The results obtained from comparison of the experiment and the theory have allowed us to determine what mechanisms dominate the spin-relaxation in quantum wells and to improve the accuracy of determination of spin-splitting parameters in A3B5 crystals and two-dimensional structures.

  15. Linear scaling between momentum and spin scattering in graphene

    NARCIS (Netherlands)

    Jozsa, C.; Maassen, T.; Popinciuc, M.; Zomer, P. J.; Veligura, A.; Jonkman, H. T.; van Wees, B. J.

    2009-01-01

    Spin transport in graphene carries the potential of a long spin-diffusion length at room temperature. However, extrinsic relaxation processes limit the current experimental values to 1-2 mu m. We present Hanle spin precession measurements in gated lateral spin valve devices in the low to high (up to

  16. Distinct effects of subcellular glycogen localization on tetanic relaxation time and endurance in mechanically skinned rat skeletal muscle fibres

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Schrøder, H D; Rix, C G

    2009-01-01

    by transmission electron microscopy. The other segment was mechanically skinned and, in the presence of high and constant myoplasmic ATP and PCr, electrically stimulated (10 Hz, 0.8 s every 3 s) eliciting repeated tetanic contractions until the force response was decreased by 50% (mean +/- S.E.M., 81 +/- 16...

  17. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  18. Breathing and Relaxation

    Science.gov (United States)

    ... Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make an Appointment Ask a Question ... level is often dependent on his or her breathing pattern. Therefore, people with chronic lung conditions may ...

  19. Multispin-assisted optical pumping of bulk 13C nuclear spin polarization in diamond

    Science.gov (United States)

    Pagliero, Daniela; Rao, K. R. Koteswara; Zangara, Pablo R.; Dhomkar, Siddharth; Wong, Henry H.; Abril, Andrea; Aslam, Nabeel; Parker, Anna; King, Jonathan; Avalos, Claudia E.; Ajoy, Ashok; Wrachtrup, Joerg; Pines, Alexander; Meriles, Carlos A.

    2018-01-01

    One of the most remarkable properties of the nitrogen-vacancy (NV) center in diamond is that optical illumination initializes its electronic spin almost completely, a feature that can be exploited to polarize other spin species in their proximity. Here we use field-cycled nuclear magnetic resonance to investigate the mechanisms of spin-polarization transfer from NVs to 13C spins in diamond at room temperature. We focus on the dynamics near 51 mT, where a fortuitous combination of energy-matching conditions between electron and nuclear spin levels gives rise to alternative polarization transfer channels. By monitoring the 13C spin polarization as a function of the applied magnetic field, we show 13C spin pumping takes place via a multispin cross-relaxation process involving the N V- spin and the electronic and nuclear spins of neighboring P1 centers. Further, we find that this mechanism is insensitive to the crystal orientation relative to the magnetic field, although the absolute level of 13C polarization—reaching up to ˜3 % under optimal conditions—can vary substantially depending on the interplay between optical pumping efficiency, photogenerated carriers, and laser-induced heating.

  20. Relaxation to Negative Temperatures in Double Domain Systems

    Science.gov (United States)

    Hama, Yusuke; Munro, William J.; Nemoto, Kae

    2018-02-01

    The engineering of quantum systems and their environments has led to our ability now to design composite or complex systems with the properties one desires. In fact, this allows us to couple two or more distinct systems to the same environment where potentially unusual behavior and dynamics can be exhibited. In this Letter we investigate the relaxation of two giant spins or collective spin ensembles individually coupled to the same reservoir. We find that, depending on the configuration of the two individual spin ensembles, the steady state of the composite system does not necessarily reach the ground state of the individual systems, unlike what one would expect for independent environments. Further, when the size of one individual spin ensemble is much larger than the second, collective relaxation can drive the second system to an excited steady state even when it starts in the ground state; that is, the second spin ensemble relaxes towards a negative-temperature steady state.

  1. Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures [Thermo-mechanical modeling of laser-induced structural relaxation and deformation of SiO2 glass

    Energy Technology Data Exchange (ETDEWEB)

    Vignes, Ryan M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Soules, Thomas F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Stolken, James S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Settgast, Randolph R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Elhadj, Selim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Matthews, Manyalibo J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Mauro, J.

    2012-12-17

    In a fully coupled thermomechanical model of the nanoscale deformation in amorphous SiO2 due to laser heating is presented. Direct measurement of the transient, nonuniform temperature profiles was used to first validate a nonlinear thermal transport model. Densification due to structural relaxation above the glass transition point was modeled using the Tool-Narayanaswamy (TN) formulation for the evolution of structural relaxation times and fictive temperature. TN relaxation parameters were derived from spatially resolved confocal Raman scattering measurements of Si–O–Si stretching mode frequencies. These thermal and microstructural data were used to simulate fictive temperatures which are shown to scale nearly linearly with density, consistent with previous measurements from Shelby et al. Volumetric relaxation coupled with thermal expansion occurring in the liquid-like and solid-like glassy states lead to residual stresses and permanent deformation which could be quantified. But, experimental surface deformation profiles between 1700 and 2000 K could only be reconciled with our simulation by assuming a roughly 2 × larger liquid thermal expansion for a-SiO2 with a temperature of maximum density ~150 K higher than previously estimated by Bruckner et al. Calculated stress fields agreed well with recent laser-induced critical fracture measurements, demonstrating accurate material response prediction under processing conditions of practical interest.

  2. Preparation of nanocrystalline Ce1-xSmx(Fe,Co)11Ti by melt spinning and mechanical alloying

    Science.gov (United States)

    Wuest, H.; Bommer, L.; Huber, A. M.; Goll, D.; Weissgaerber, T.; Kieback, B.

    2017-04-01

    Permanent magnetic materials based on Ce(Fe, Co)12-xTix with the ThMn12 structure are promising candidates for replacing NdFeB magnets. Its intrinsic magnetic properties are not far below the values of Nd2Fe14B, and the high amount of Fe and the fact that Ce is much more abundant and less expensive than Nd encourages the reasonable interest in these compounds. Nanocrystalline magnetic material of the composition Ce1-xSmxFe11-yCoyTi (x=0-1 and y=0; 1.95) has been produced by both melt spinning and mechanical alloying. Alloys containing only Ce as rare earth element (x=0) show coercivities below 77 kA/m, while for x=1 Hc,J values up to 392 kA/m are reached. Coercivity shows rather an exponential than a linear dependence on the gradual substitution of Ce by Sm.

  3. Mechanism of Basal-Plane Antiferromagnetism in the Spin-Orbit Driven Iridate Ba_{2}IrO_{4}

    Directory of Open Access Journals (Sweden)

    Vamshi M. Katukuri

    2014-06-01

    Full Text Available By ab initio many-body quantum chemistry calculations, we determine the strength of the symmetric anisotropy in the 5d^{5} j≈1/2 layered material Ba_{2}IrO_{4}. While the calculated anisotropic couplings come out in the range of a few meV, orders of magnitude stronger than in analogous 3d transition-metal compounds, the Heisenberg superexchange still defines the largest energy scale. The ab initio results reveal that individual layers of Ba_{2}IrO_{4} provide a close realization of the quantum spin-1/2 Heisenberg-compass model on the square lattice. We show that the experimentally observed basal-plane antiferromagnetism can be accounted for by including additional interlayer interactions and the associated order-by-disorder quantum-mechanical effects, in analogy to undoped layered cuprates.

  4. Electric conductance of a mechanically strained molecular junction from first principles: Crucial role of structural relaxation and conformation sampling

    Science.gov (United States)

    Nguyen, Huu Chuong; Szyja, Bartłomiej M.; Doltsinis, Nikos L.

    2014-09-01

    Density functional theory (DFT) based molecular dynamics simulations have been performed of a 1,4-benzenedithiol molecule attached to two gold electrodes. To model the mechanical manipulation in typical break junction and atomic force microscopy experiments, the distance between two electrodes was incrementally increased up to the rupture point. For each pulling distance, the electric conductance was calculated using the DFT nonequilibrium Green's-function approach for a statistically relevant sample of configurations extracted from the simulation. With increasing mechanical strain, the formation of monoatomic gold wires is observed. The conductance decreases by three orders of magnitude as the initial twofold coordination of the thiol sulfur to the gold is reduced to a single S-Au bond at each electrode and the order in the electrodes is destroyed. Independent of the pulling distance, the conductance was found to fluctuate by at least two orders of magnitude depending on the instantaneous junction geometry.

  5. Sandpile model for relaxation in complex systems

    International Nuclear Information System (INIS)

    Vazquez, A.; Sotolongo-Costa, O.; Brouers, F.

    1997-10-01

    The relaxation in complex systems is, in general, nonexponential. After an initial rapid decay the system relaxes slowly following a long time tail. In the present paper a sandpile moderation of the relaxation in complex systems is analysed. Complexity is introduced by a process of avalanches in the Bethe lattice and a feedback mechanism which leads to slower decay with increasing time. In this way, some features of relaxation in complex systems: long time tails relaxation, aging, and fractal distribution of characteristic times, are obtained by simple computer simulations. (author)

  6. Spin excitation in granular structures with ferromagnetic nanoparticles

    CERN Document Server

    Lutsev, L V

    2002-01-01

    In terms of s-d-exchange model one studied spin excitations and relaxation in granular structures with metallic ferromagnetic nanoparticles in an insulating amorphous matrix. One studies spins of granule as a d-system; s-system represents a multitude of localized electrons of amorphous matrix. In terms of single-ring approximation on the basis of s-d-exchange interaction for the Green spin function expansion one determined spectrum of spin excitations composed of spin-wave excitations of granules and spin-polarization excitations. One studied spin-polarization relaxation occurring by way of spin-polarization excitations. Spin-polarization relaxation was determined to be efficient one within wide range of frequencies. Evaluations made for structures containing cobalt granules show that one should observe it in the centimeter, the millimeter and the submillimeter ranges of wavelength

  7. Spin diffusion in Fermi gases

    DEFF Research Database (Denmark)

    Bruun, Georg

    2011-01-01

    We examine spin diffusion in a two-component homogeneous Fermi gas in the normal phase. Using a variational approach, analytical results are presented for the spin diffusion coefficient and the related spin relaxation time as a function of temperature and interaction strength. For low temperatures......, strong correlation effects are included through the Landau parameters which we extract from Monte Carlo results. We show that the spin diffusion coefficient has a minimum for a temperature somewhat below the Fermi temperature with a value that approaches the quantum limit ~/m in the unitarity regime...

  8. Tunneling spin injection into single layer graphene.

    Science.gov (United States)

    Han, Wei; Pi, K; McCreary, K M; Li, Yan; Wong, Jared J I; Swartz, A G; Kawakami, R K

    2010-10-15

    We achieve tunneling spin injection from Co into single layer graphene (SLG) using TiO₂ seeded MgO barriers. A nonlocal magnetoresistance (ΔR(NL)) of 130  Ω is observed at room temperature, which is the largest value observed in any material. Investigating ΔR(NL) vs SLG conductivity from the transparent to the tunneling contact regimes demonstrates the contrasting behaviors predicted by the drift-diffusion theory of spin transport. Furthermore, tunnel barriers reduce the contact-induced spin relaxation and are therefore important for future investigations of spin relaxation in graphene.

  9. Spin-controlled atom-ion chemistry.

    Science.gov (United States)

    Sikorsky, Tomas; Meir, Ziv; Ben-Shlomi, Ruti; Akerman, Nitzan; Ozeri, Roee

    2018-03-02

    Quantum control of chemical reactions is an important goal in chemistry and physics. Ultracold chemical reactions are often controlled by preparing the reactants in specific quantum states. Here we demonstrate spin-controlled atom-ion inelastic (spin-exchange) processes and chemical (charge-exchange) reactions in an ultracold Rb-Sr + mixture. The ion's spin state is controlled by the atomic hyperfine spin state via spin-exchange collisions, which polarize the ion's spin parallel to the atomic spin. We achieve ~ 90% spin polarization due to the absence of strong spin-relaxation channel. Charge-exchange collisions involving electron transfer are only allowed for (RbSr) + colliding in the singlet manifold. Initializing the atoms in various spin states affects the overlap of the collision wave function with the singlet molecular manifold and therefore also the reaction rate. Our observations agree with theoretical predictions.

  10. Coupling nitrogen-vacancy centers to a dynamic ferromagnetic vortex for fast, nanoscale spin addressability and control

    Science.gov (United States)

    Berezovsky, Jesse

    As we begin to look at how spin qubits might be integrated into a scalable platform, a promising strategy is to engineer the magnetic environment of the spins using micron- or nanometer-scale ferromagnetic (FM) elements, for functionalities such as nanoscale addressability, spin-wave mediated coupling, or enhanced sensing. The promise of these FM/spin interactions brings with it the question of how the coherence properties of the spin will be affected by coupling to these complex mesoscopic systems. To explore the physics of individual spins coupled to a proximal, dynamic ferromagnetic structure, we have studied interactions between individual nitrogen-vacancy (NV) spins and a model FM system - a vortex magnetization state. The complex, yet controllable, spin texture of a FM vortex, formed in a thin disk or nanowire, allows one to study different regimes of interaction with a nearby confined spin. The vortex core produces a large static dipole-like fringe field. The vortex state also displays discrete dynamic modes ranging from several 100 MHz to GHz. By applying an in-plane magnetic field, the position of the vortex core relative to the NV spin can be controlled with nanometer-scale resolution, and time resolution of 10s of nanoseconds. As the vortex core is translated into proximity with an NV spin, the fringe field from the core generates a large position-dependent spin splitting, permitting nanoscale spin addressability. We also find that the dynamic interaction of the vortex, NV spin, and applied microwave field results in amplification of the Rabi transition rate by more than an order of magnitude. Finally, we explore how spin decoherence and relaxation mechanisms are enhanced as the vortex core approaches the NVs, with implications for proposed technology incorporating coherent spins and proximal FM elements. We acknowledge support from DOE, Award No. DE-SC008148.

  11. Dynamics of relaxed inflation

    Science.gov (United States)

    Tangarife, Walter; Tobioka, Kohsaku; Ubaldi, Lorenzo; Volansky, Tomer

    2018-02-01

    The cosmological relaxation of the electroweak scale has been proposed as a mechanism to address the hierarchy problem of the Standard Model. A field, the relaxion, rolls down its potential and, in doing so, scans the squared mass parameter of the Higgs, relaxing it to a parametrically small value. In this work, we promote the relaxion to an inflaton. We couple it to Abelian gauge bosons, thereby introducing the necessary dissipation mechanism which slows down the field in the last stages. We describe a novel reheating mechanism, which relies on the gauge-boson production leading to strong electro-magnetic fields, and proceeds via the vacuum production of electron-positron pairs through the Schwinger effect. We refer to this mechanism as Schwinger reheating. We discuss the cosmological dynamics of the model and the phenomenological constraints from CMB and other experiments. We find that a cutoff close to the Planck scale may be achieved. In its minimal form, the model does not generate sufficient curvature perturbations and additional ingredients, such as a curvaton field, are needed.

  12. Systems Cancer Biology and the Controlling Mechanisms for the J-Shaped Cancer Dose Response: Towards Relaxing the LNT Hypothesis.

    Science.gov (United States)

    Lou, In Chio; Zhao, Yuchao; Wu, Yingjie; Ricci, Paolo F

    2012-01-01

    The hormesis phenomena or J-shaped dose response have been accepted as a common phenomenon regardless of the involved biological model, endpoint measured and chemical class/physical stressor. This paper first introduced a mathematical dose response model based on systems biology approach. It links molecular-level cell cycle checkpoint control information to clonal growth cancer model to predict the possible shapes of the dose response curves of Ionizing Radiation (IR) induced tumor transformation frequency. J-shaped dose response curves have been captured with consideration of cell cycle checkpoint control mechanisms. The simulation results indicate the shape of the dose response curve relates to the behavior of the saddle-node points of the model in the bifurcation diagram. A simplified version of the model in previous work of the authors was used mathematically to analyze behaviors relating to the saddle-node points for the J-shaped dose response curve. It indicates that low-linear energy transfer (LET) is more likely to have a J-shaped dose response curve. This result emphasizes the significance of systems biology approach, which encourages collaboration of multidiscipline of biologists, toxicologists and mathematicians, to illustrate complex cancer-related events, and confirm the biphasic dose-response at low doses.

  13. In situ X-ray micro-CT characterization of chemo-mechanical relaxations during Sn lithiation

    Science.gov (United States)

    Gonzalez, Joseph F.; Antartis, Dimitrios A.; Chasiotis, Ioannis; Dillon, Shen J.; Lambros, John

    2018-03-01

    Sn has been proposed for use as a high capacity anode material. Because of its ductile metallic nature, Sn may exhibit unique stress evolution during lithiation. Here, 2D radiography and 3D tomography are employed to visualize the evolution of geometry, internal structure, alloying, and damage during lithiation, delithiation, and rest of Sn wires with micron scale diameters. Lithiation proceeds isotropically, resulting in geometric and dimensional changes after 25% of total lithiation when the tensile stresses are sufficiently high to exceed the flow stress of the unlithiated Sn core and cause elongation and diameter increase. Damage occurs at later stages in the form of cracks terminating at the wire surface and voids forming in the unlithiated core. Notably, significant fragmentation occurs during delithiation which, due to void formation that accommodates the resulting stresses, does not measurably alter the wire cross-section and length. The distinguishing feature of the chemo-mechanics of Sn compared to Si or Ge is the pronounced creep rate at applied strain rates as high as 10-6 s-1, which promotes large strains in the core, eventually leading to void nucleation in the unlithiated core during lithiation, and more importantly, continues driving the deformation of the anode while at rest.

  14. Spin-engineered quantum dots

    OpenAIRE

    Fleurov, V.; Ivanov, V. A.; Peeters, F. M.; Vagner, I. D.

    2001-01-01

    Spatially nonhomogeneously spin polarized nuclei are proposed as a new mechanism to monitor electron states in a nanostructure, or as a means to createn and, if necessary, reshape such nanostructures in the course of the experiment. We found that a polarization of nulear spins may lift the spin polarization of the electron states in a nanostructure and, if sufficiently strong, leads to a polarization of the electron spins. Polarized nuclear spins may form an energy landscape capable of bindin...

  15. Theory of spin Hall effect

    OpenAIRE

    Chudnovsky, Eugene M.

    2007-01-01

    An extension of Drude model is proposed that accounts for spin and spin-orbit interaction of charge carriers. Spin currents appear due to combined action of the external electric field, crystal field and scattering of charge carriers. The expression for spin Hall conductivity is derived for metals and semiconductors that is independent of the scattering mechanism. In cubic metals, spin Hall conductivity $\\sigma_s$ and charge conductivity $\\sigma_c$ are related through $\\sigma_s = [2 \\pi \\hbar...

  16. Spin noise spectroscopy from acoustic to GHz frequencies

    Science.gov (United States)

    Hübner, Jens

    2010-03-01

    Performing perturbation free measurements on semiconductor quantum systems has long been banished to textbooks on quantum mechanics. The emergent technique of spin noise spectroscopy is challenging this restriction. Empowered only by the ever present intrinsic spin fluctuation dynamics in thermal equilibrium, spin noise spectroscopy is capable to directly deduce several physical properties of carriers spins in semiconductors from these fluctuations. Originating from spin noise measurements on alkali metal vapors in quantum optics [1] the method has become a powerful technique to unravel the intrinsic spin dynamics in semiconductors [2]. In this talk I will present the recent progress of spin noise spectroscopy and how it is used to monitor the spin dynamic in semiconductor quantum wells at thermal equilibrium and as a consequence thereof directly detect the spatial dynamics of the carriers being marked with their own spin on a microscopic scale [3]. Further I will present measurements of how the non-perturbative nature of spin noise spectroscopy gives valuable insight into the delicate dependence of the spin relaxation time of electrons on doping density and temperature in semiconductors n-doped in the vicinity of the metal-insulator transition where hyperfine and intra-band depolarization compete [4]. Also the measurement bandwidth can be extended to GHz frequencies by ultrafast optical probing [5] yielding in conjunction with depth resolved spin noise measurements insights into the origin of inhomogeneous spin dephasing effects at high magnetic fields [5]. Additionally I will present how spin noise spectroscopy can be employed to spatially depth resolve doping profiles with optical resolution [6] and give a summary on easy to implement techniques of spin noise spectroscopy at acoustic frequencies in alkali metal vapors. [4pt] [1] E. Aleksandrov and V. Zapassky, Zh. Eksp. Teor. Fiz. 81, 132 (1981); S. A. Crooker, D. G. Rickel, A. V. Balatsky, and D. L. Smith

  17. Quantum mechanics of electromagnetically bounded spin-1/2 particles in an expanding universe

    International Nuclear Information System (INIS)

    Audretsch, J.; Schaefer, G.

    1978-01-01

    The quantum mechanically described electron in an external electromagnetic field, both embedded in an expanding universe with shear, is discussed. This is important for the fundamental question as to whether a quantum mechanically treated atomic clock in curved space-time (based on a hydrogen atom) shows proper or gravitational time. Contradictory results reported by other authors seem to imply that quantum mechanics cannot be reconciled with curved space-time. It is shown that this is not the case for expanding Robertson-Walker universes. A Hilbert space formulation of the problem with special regard to the Hamiltonian is given. The respective influence of the cosmic expansion and the intrinsic and extrinsic curvatures of the cosmic hypersurfaces on bound quantum mechanical systems is treated in general. For the special case of an expanding 3-flat (epsilon= 0) Robertson-Walker universe it is shown that the energy levels of a hydrogen atom agree completely with the one in 4-flat space-time, so that in this case the hydrogen atom can be taken as atomic clock showing proper time. (author)

  18. Chemical Shifts of the Carbohydrate Binding Domain of Galectin-3 from Magic Angle Spinning NMR and Hybrid Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Kraus, Jodi; Gupta, Rupal; Yehl, Jenna; Lu, Manman; Case, David A; Gronenborn, Angela M; Akke, Mikael; Polenova, Tatyana

    2018-03-22

    Magic angle spinning NMR spectroscopy is uniquely suited to probe the structure and dynamics of insoluble proteins and protein assemblies at atomic resolution, with NMR chemical shifts containing rich information about biomolecular structure. Access to this information, however, is problematic, since accurate quantum mechanical calculation of chemical shifts in proteins remains challenging, particularly for 15 N H . Here we report on isotropic chemical shift predictions for the carbohydrate recognition domain of microcrystalline galectin-3, obtained from using hybrid quantum mechanics/molecular mechanics (QM/MM) calculations, implemented using an automated fragmentation approach, and using very high resolution (0.86 Å lactose-bound and 1.25 Å apo form) X-ray crystal structures. The resolution of the X-ray crystal structure used as an input into the AF-NMR program did not affect the accuracy of the chemical shift calculations to any significant extent. Excellent agreement between experimental and computed shifts is obtained for 13 C α , while larger scatter is observed for 15 N H chemical shifts, which are influenced to a greater extent by electrostatic interactions, hydrogen bonding, and solvation.

  19. An NMR study of 1H, 31P, and 23Na relaxation and molecular dynamics in the polycrystalline sodium salts of adenosine Di- and triphosphate

    Science.gov (United States)

    Reynhardt, E. C.; Jurga, K.; Andrew, E. R.

    Proton spin-lattice relaxation times in the laboratory frame, T1(H),have been measured as a function of frequency and temperature (333K> T > 80 K). The spin-lattice relaxation times in the rotating frame, T1 ϱ(H), have been measured at two different rotating fields while M2(H), the proton second moment, has been extracted from the shape of the FID. In addition, T 1( 31P) and T 1( 23Na) have been measured as functions of temperature at 81 and 50 MHz, respectively. The results demonstrate clearly that the water content of the compounds influences the results to a large extent. It seems that water molecules at some of the lattice sites can be removed from the structure by evacuation, while others are more tightly bound to the ADP and ATP molecules. The more loosely bound water molecules are very mobile and dominate the relaxation results in the high-temperature region via the spin-rotation and dipolar mechanisms. The more tightly bound water molecules rotate about their twofold axes and this motion, characterized by a distribution of correlation times, results in a T1(H) minimum in the low-temperature region. The results have been interpreted in terms of a Fuoss-Kirkwood distribution function. The 23Na spin-lattice relaxation rates are dominated by the quadrupolar interactions, which provide a dominating relaxation mechanism for the proton spins in the rotating frame. In the case of Na 2ATP, T1(P) is independent of the degree of hydration of the sample, but the NaADP T1(H), values are influenced strongly by a change in the water content. An X-ray determination of the lengths of the a axes of the unit cells has provided supporting evidence for the interpretation of the NMR results.

  20. Relationship between β-relaxation and structural stability of lysozyme: Microscopic insight on thermostabilization mechanism by trehalose from Raman spectroscopy experiments

    International Nuclear Information System (INIS)

    Hédoux, Alain; Paccou, Laurent; Guinet, Yannick

    2014-01-01

    Raman investigations were carried out in the low-frequency and amide I regions on lysozyme aqueous solutions in absence and presence of trehalose. Raman spectroscopy gives the unique opportunity to analyze the protein and solvent dynamics in the low-frequency range while monitoring the unfolding process by capturing the spectrum of the amide I band. From the analysis of the quasielastic intensity, a dynamic change is firstly observed in a highly hydrated protein, around 70 °C, and interpreted in relation with the denaturation mechanism of the protein. The use of heavy water and partly deuterated trehalose gives clear information on protein–trehalose interactions in the native state of lysozyme (at room temperature) and during the thermal denaturation process of lysozyme. At room temperature, it was found that trehalose is preferentially excluded from the protein surface, and has a main effect on the tetrahedral local order of water molecules corresponding to a stiffening of the H-bond network in the solvent. The consequence is a significant reduction of the amplitude of fast relaxational motions, inducing a less marked dynamic transition shifted toward the high temperatures. Upon heating, interaction between trehalose and lysozyme is detected during the solvent penetration within the protein, i.e., while the native globular state softens into a molten globule (MG) state. Addition of trehalose reduces the protein flexibility in the MG state, improving the structural stability of the protein, and inhibiting the protein aggregation

  1. Relationship between β-relaxation and structural stability of lysozyme: Microscopic insight on thermostabilization mechanism by trehalose from Raman spectroscopy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hédoux, Alain, E-mail: alain.hedoux@univ-lille1.fr; Paccou, Laurent; Guinet, Yannick [Université Lille Nord de France, F-59000 Lille France, USTL UMET UMR 8207 F-59655 Villeneuve d’Ascq (France)

    2014-06-14

    Raman investigations were carried out in the low-frequency and amide I regions on lysozyme aqueous solutions in absence and presence of trehalose. Raman spectroscopy gives the unique opportunity to analyze the protein and solvent dynamics in the low-frequency range while monitoring the unfolding process by capturing the spectrum of the amide I band. From the analysis of the quasielastic intensity, a dynamic change is firstly observed in a highly hydrated protein, around 70 °C, and interpreted in relation with the denaturation mechanism of the protein. The use of heavy water and partly deuterated trehalose gives clear information on protein–trehalose interactions in the native state of lysozyme (at room temperature) and during the thermal denaturation process of lysozyme. At room temperature, it was found that trehalose is preferentially excluded from the protein surface, and has a main effect on the tetrahedral local order of water molecules corresponding to a stiffening of the H-bond network in the solvent. The consequence is a significant reduction of the amplitude of fast relaxational motions, inducing a less marked dynamic transition shifted toward the high temperatures. Upon heating, interaction between trehalose and lysozyme is detected during the solvent penetration within the protein, i.e., while the native globular state softens into a molten globule (MG) state. Addition of trehalose reduces the protein flexibility in the MG state, improving the structural stability of the protein, and inhibiting the protein aggregation.

  2. Zero field spin splitting in asymmetric quantum wells

    International Nuclear Information System (INIS)

    Hao Yafei

    2012-01-01

    Spin splitting of asymmetric quantum wells is theoretically investigated in the absence of any electric field, including the contribution of interface-related Rashba spin-orbit interaction as well as linear and cubic Dresselhaus spin-orbit interaction. The effect of interface asymmetry on three types of spin-orbit interaction is discussed. The results show that interface-related Rashba and linear Dresselhaus spin-orbit interaction can be increased and cubic Dresselhaus spin-orbit interaction can be decreased by well structure design. For wide quantum wells, the cubic Dresselhaus spin-orbit interaction dominates under certain conditions, resulting in decreased spin relaxation time.

  3. A stochastic picture of spin

    International Nuclear Information System (INIS)

    Faris, W.G.

    1981-01-01

    Dankel has shown how to incorporate spin into stochastic mechanics. The resulting non-local hidden variable theory gives an appealing picture of spin correlation experiments in which Bell's inequality is violated. (orig.)

  4. Relaxation schemes for the shallow water equations

    Science.gov (United States)

    Delis, A. I.; Katsaounis, Th.

    2003-03-01

    We present a class of first and second order in space and time relaxation schemes for the shallow water (SW) equations. A new approach of incorporating the geometrical source term in the relaxation model is also presented. The schemes are based on classical relaxation models combined with Runge-Kutta time stepping mechanisms. Numerical results are presented for several benchmark test problems with or without the source term present.

  5. A new vibration mechanism of balancing machine for satellite-borne spinning rotors

    Directory of Open Access Journals (Sweden)

    Wang Qiuxiao

    2014-10-01

    Full Text Available The centrifugal force and overturning moment generated by satellite-borne rotating payload have a significant impact on the stability of on-orbit satellite attitude, which must be controlled to the qualified range. For the satellite-borne rotors’ low working revs and large centroidal deviation and height, and that the horizontal vibration produced by centrifugal force is not of the same magnitude as the torsional vibration by overturning moment, the balancing machine’s measurement accuracy is low. Analysis shows that the mixture of horizontal vibration and torsional vibration of the vibrational mechanism contribute mainly to the machine’s performance, as well as the instability of vibration center position. A vibrational mechanism was put forward, in which the horizontal and torsional vibration get separated effectively by way of fixing the vibration center. From experimental results, the separation between the weak centrifugal force signal and the strong moment signal was realized, errors caused by unstable vibration center are avoided, and the balancing machine based on this vibration structure is able to meet the requirements of dynamic balancing for the satellite’s rotating payloads in terms of accuracy and stability.

  6. Mechanical behavior of silk during the evolution of orb-web spinning spiders.

    Science.gov (United States)

    Elices, Manuel; Plaza, Gustavo R; Arnedo, Miquel A; Pérez-Rigueiro, José; Torres, Fernando G; Guinea, Gustavo V

    2009-07-13

    The development of an accurate and reproducible approach to measuring the tensile behavior of spider silk has allowed characterizing and comparing the range of mechanical properties exhibited by different spider species with unprecedented detail. The comparison of silks spun by spiders belonging to different phylogenetic groups has revealed that evolution locked in many of the important properties of spider silks very early in the history of orb-web weaving spiders, despite the fact that the silk gland system is relatively isolated in physiological terms from the rest of the organism and should thus mutate quickly. The variations observed between species may be grouped in at least two patterns that are shown not to be related to phylogeny. Beyond the relevance of these results for the evolutionary biology of spiders and silks, the conservation of the basic traits observed in the mechanical behavior of spider silks is likely to set a limit to the range of properties that can be expected from artificial fibers bioinspired in natural silks.

  7. Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya; Maksimyak, P. P.

    2012-01-01

    The internal energy flow in a light beam can be divided into the "orbital" and "spin" parts, associated with the spatial and polarization degrees of freedom of light. In contrast to the orbital one, experimental observation of the spin flow seems problematic because it is converted into an orbital...

  8. Tuning Interfacial States Using Organic Molecules as Spin Filters

    Science.gov (United States)

    Deloach, Andrew; Wang, Jingying; Papa, Christopher M.; Myahkostupov, Mykhaylo; Castellano, Felix N.; Dougherty, Daniel B.; Jiang, Wei; Liu, Feng

    Organic semiconductors are known to have long spin relaxation times which makes them a good candidate for spintronics. However, an issue with these materials is that at metal-organic interfaces there is a conductivity mismatch problem that suppresses spin injection. To overcome this, orbital mixing at the interface can be tuned with an organic spacer layer to promote the formation of spin polarized interface states. These states act as a ``spin filters'' and have been proposed as an explanation for the large tunneling magnetoresistance seen in devices using tris-(8-hydroxyquinolate)-aluminum(Alq3). Here, we show that the spin polarized interface states can be tuned from metallic to resistive by subtle changes in molecular orbitals. This is done using spin polarized scanning tunneling microscopy with three different tris-(8-hydroxyquinolate) compounds: aluminum, chromium, and iron. Differences in d-orbital mixing results in different mechanisms of interfacial coupling, giving rise to metallic or resistive interface states. Supported by the U.S. DoE award No. DE-SC0010324.

  9. A mechanism for the downturn in inverse susceptibility in triangle-based frustrated spin systems

    International Nuclear Information System (INIS)

    Isoda, M

    2008-01-01

    A mechanism for the downturn of inverse magnetic susceptibility below an intermediate temperature, recently observed in many experiments, is proposed as an intrinsic feature of lattices with triangle-based frustrated geometries. The temperature at the bending of the inverse susceptibility curve may be related to the features of other thermodynamic properties; the hump of the specific heat and the emergence of a 1/3 plateau in magnetization under a magnetic field. This fact is derived through a Monte Carlo simulation study of the Ising model on triangular and kagome lattices, and the exact calculation for the single and small-sized triangle clusters, on both the Ising and Heisenberg models. These results may indicate the dominance of S(S z ) = 1/2 quantum (classical) trimer formation in the intermediate-energy regime in two-dimensional triangle-based lattices

  10. Spin Properties of Transition-Metallorganic Self-Assembled Molecules

    International Nuclear Information System (INIS)

    Yu, Zhi Gang

    2010-01-01

    This report summarizes SRI's accomplishments on the project, 'Spin Properties of Transition-Metallorganic Self-Assembled Molecules' funded by the Office of Basic Energy Sciences, US Department of Energy. We have successfully carried out all tasks identified in our proposal and gained significant knowledge and understanding of spin-polarized electronic structure, spin relaxation, and spin-dependent transport in transition-metallorganic molecules and enhohedral fullerenes. These molecules contain integrated spin and charge components and will enable us to achieve sophisticated functions in spintronics and quantum computing at molecular level with simple circuitry and easy fabrication. We have developed microscopic theories that describe the underlying mechanisms of spin-dependent porcesses and constructed quantitative modeling tools that compute several important spin properties. These results represent the basic principles governing the spin-dependent behaviors in nanostructures containing such molecules. Based on these results we have shown that novel device functions, such as electrically controlled g-factor and noninvasive electrical detection of spin dynamics, can be achieved in these nanostructures. Some of our results have been published in peer-reviewed journals and presented at professional conferences. In addition, we have established a close collaboration with experimentalists at Oxford University, UK (Dr. J. Morton and Prof. G. Briggs), Princeton University (Dr. A. Tyryshkin and Prof. S. Lyon), University of Delaware (Prof. E. Nowak), and University of California (Profs. R. Kawakami and J. Shi), who have been studying related systems and supplying us with new experimental data. We have provided our understanding and physical insights to the experimentalists and helped analyze their experimental measurements. The collaboration with experimentalists has also broadened our research scope and helped us focus on the most relevant issues concerning these

  11. Spin Properties of Transition-Metallorganic Self-Assembled Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Zhi Gang Yu

    2010-06-30

    This report summarizes SRI's accomplishments on the project, 'Spin Properties of Transition-Metallorganic Self-Assembled Molecules' funded by the Office of Basic Energy Sciences, US Department of Energy. We have successfully carried out all tasks identified in our proposal and gained significant knowledge and understanding of spin-polarized electronic structure, spin relaxation, and spin-dependent transport in transition-metallorganic molecules and enhohedral fullerenes. These molecules contain integrated spin and charge components and will enable us to achieve sophisticated functions in spintronics and quantum computing at molecular level with simple circuitry and easy fabrication. We have developed microscopic theories that describe the underlying mechanisms of spin-dependent porcesses and constructed quantitative modeling tools that compute several important spin properties. These results represent the basic principles governing the spin-dependent behaviors in nanostructures containing such molecules. Based on these results we have shown that novel device functions, such as electrically controlled g-factor and noninvasive electrical detection of spin dynamics, can be achieved in these nanostructures. Some of our results have been published in peer-reviewed journals and presented at professional conferences. In addition, we have established a close collaboration with experimentalists at Oxford University, UK (Dr. J. Morton and Prof. G. Briggs), Princeton University (Dr. A. Tyryshkin and Prof. S. Lyon), University of Delaware (Prof. E. Nowak), and University of California (Profs. R. Kawakami and J. Shi), who have been studying related systems and supplying us with new experimental data. We have provided our understanding and physical insights to the experimentalists and helped analyze their experimental measurements. The collaboration with experimentalists has also broadened our research scope and helped us focus on the most relevant issues

  12. Distinguishing the laser-induced spin precession excitation mechanism in Fe/MgO(001) through field orientation dependent measurements

    Science.gov (United States)

    Ma, T. P.; Zhang, S. F.; Yang, Y.; Chen, Z. H.; Zhao, H. B.; Wu, Y. Z.

    2015-01-01

    Rotational field dependence of laser-induced magnetization precession in a single-crystal Fe/MgO(001) sample was studied by the time resolved magneto-optical Kerr effect. Polar and longitudinal magnetization components were separated by measuring precession dynamics under opposite fields. When the applied field is weaker than the anisotropy field of an Fe film, the precession amplitude is small for the field direction near the easy axis and becomes larger as the field rotates towards the hard axis, showing a four-fold symmetry in agreement with the in-plane magnetic anisotropy; whereas at higher fields, the amplitude displays a drop near the hard axis. Such precession behavior can be well reproduced using an excitation model with rapidly modified but slowly recovered magnetic anisotropy and considering the elliptical precession trajectory. Our results indicate that the dominant mechanism for triggering Fe spin precession is the anisotropy modulation correlating with the lattice thermalization, rather than the transient anisotropy modulation due to the high electron temperature within 1 ps.

  13. Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction

    KAUST Repository

    Ortiz Pauyac, Christian

    2016-06-19

    In the present thesis we introduce the reader to the field of spintronics and explore new phenomena, such as spin transfer torques, spin filtering, and three types of spin-orbit torques, Rashba, spin Hall, and spin swapping, which have emerged very recently and are promising candidates for a new generation of memory devices in computer technology. A general overview of these phenomena is presented in Chap. 1. In Chap. 2 we study spin transfer torques in tunnel junctions in the presence of spin filtering. In Chap. 3 we discuss the Rashba torque in ferromagnetic films, and in Chap. 4 we study spin Hall effect and spin swapping in ferromagnetic films, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives are summarized in Chap. 5.

  14. Spin transport in two-layer-CVD-hBN/graphene/hBN heterostructures

    Science.gov (United States)

    Gurram, M.; Omar, S.; Zihlmann, S.; Makk, P.; Li, Q. C.; Zhang, Y. F.; Schönenberger, C.; van Wees, B. J.

    2018-01-01

    We study room-temperature spin transport in graphene devices encapsulated between a layer-by-layer-stacked two-layer-thick chemical vapor deposition (CVD) grown hexagonal boron nitride (hBN) tunnel barrier, and a few-layer-thick exfoliated-hBN substrate. We find mobilities and spin-relaxation times comparable to that of SiO2 substrate-based graphene devices, and we obtain a similar order of magnitude of spin relaxation rates for both the Elliott-Yafet and D'Yakonov-Perel' mechanisms. The behavior of ferromagnet/two-layer-CVD-hBN/graphene/hBN contacts ranges from transparent to tunneling due to inhomogeneities in the CVD-hBN barriers. Surprisingly, we find both positive and negative spin polarizations for high-resistance two-layer-CVD-hBN barrier contacts with respect to the low-resistance contacts. Furthermore, we find that the differential spin-injection polarization of the high-resistance contacts can be modulated by dc bias from -0.3 to +0.3 V with no change in its sign, while its magnitude increases at higher negative bias. These features point to the distinctive spin-injection nature of the two-layer-CVD-hBN compared to the bilayer-exfoliated-hBN tunnel barriers.

  15. Exciton-relaxation dynamics in lead halides

    International Nuclear Information System (INIS)

    Iwanaga, Masanobu; Hayashi, Tetsusuke

    2003-01-01

    We survey recent comprehensive studies of exciton relaxation in the crystals of lead halides. The luminescence and electron-spin-resonance studies have revealed that excitons in lead bromide spontaneously dissociate and both electrons and holes get self-trapped individually. Similar relaxation has been also clarified in lead chloride. The electron-hole separation is ascribed to repulsive correlation via acoustic phonons. Besides, on the basis of the temperature profiles of self-trapped states, we discuss the origin of luminescence components which are mainly induced under one-photon excitation into the exciton band in lead fluoride, lead chloride, and lead bromide

  16. Relaxation study of a paramagnetic ion by the observation of nuclear resonance signals

    International Nuclear Information System (INIS)

    Landesman, A.

    1960-01-01

    Dynamic polarization of protons in water containing the paramagnetic ion NO(SO 3 ) 2 was studied, both theoretically and experimentally, as a function of magnetic field. The enhancement of the proton polarization depends appreciably on the relaxation process of the electron spin and so enables us to decide which is the real relaxation process. We tried the two following processes: a) The electron spin is coupled with the nitrogen magnetic moment by hyperfine interaction; if this interaction has an anisotropic part, a relaxation process for the electronic spin will result through the Brownian motion of the ion. b) The relaxation of the electron spin takes place through spin-orbit coupling of the electron spin. Experimental results showed that the relaxation took place through the second process with the help of dynamic polarization we were able to study the relaxation of an electron spin in a liquid without using any electron resonance spectrometer, simply by observing the resonance of a nuclear spin coupled with the electron spin. Reprint of a paper published in Le Journal de Physique et le Radium, t. 20, p. 937-948, 1959 [fr

  17. Photoexcited Muon Spin Spectroscopy: A New Method for Measuring Excess Carrier Lifetime in Bulk Silicon.

    Science.gov (United States)

    Yokoyama, K; Lord, J S; Miao, J; Murahari, P; Drew, A J

    2017-12-01

    We have measured excess carrier lifetime in silicon using photoexcited muon spin spectroscopy. Positive muons implanted deep in a wafer can interact with the optically injected excess carriers and directly probe the bulk carrier lifetime while minimizing the effect from surface recombination. The method is based on the relaxation rate of muon spin asymmetry, which depends on the excess carrier density. The underlying microscopic mechanism has been understood by simulating the four-state muonium model in Si under illumination. We apply the technique to different injection levels and temperatures, and demonstrate its ability for injection- and temperature-dependent lifetime spectroscopy.

  18. Two-component spin-coated Ag/CNT composite films based on a silver heterogeneous nucleation mechanism adhesion-enhanced by mechanical interlocking and chemical grafting

    Science.gov (United States)

    Zhang, Yang; Kang, Zhixin; Bessho, Takeshi

    2017-03-01

    In this paper, a new method for the synthesis of silver carbon nanotube (Ag/CNT) composite films as conductive connection units for flexible electronic devices is presented. This method is about a two-component solution process by spin coating with an after-treatment annealing process. In this method, multi-walled carbon nanotubes (MWCNTs) act as the core of silver heterogeneous nucleation, which can be observed and analyzed by a field-emission scanning electron microscope. With the effects of mechanical interlocking, chemical grafting, and annealing, the interfacial adhesive strength between films and PET sheets was enhanced to 12 N cm-1. The tensile strength of the Ag/CNT composite films was observed to increase by 38% by adding 5 g l-1 MWCNTs. In the four-probe method, the resistivity of Ag/CNT-5 declined by 78.2% compared with pristine Ag films. The anti-fatigue performance of the Ag/CNT composite films was monitored by cyclic bending deformation and the results revealed that the growth rate of electrical resistance during the deformation was obviously retarded. As for industrial application, this method provides an efficient low-cost way to prepare Ag/CNT composite films and can be further applied to other coating systems.

  19. Spin Transport Measurements in Hydrogenated Graphene Devices

    Science.gov (United States)

    Koon, Gavin; Balakrishnan, Jayakumar; Oezyilmaz, Barbaros

    2013-03-01

    Graphene with all its extraordinary properties still fall short when it comes to manipulation of electron spins. Chemically modified Graphene has been explored by many to further enhance Graphene properties, tailoring it to suit desired application purposes. Here we study the effects of hydrogenation rate on graphene spin transport, spin relaxation time and length in this defected system. These findings are important for future theoretical and experimental studies on other adatoms modified Graphene.

  20. Spin noise spectroscopy on donors in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Bernien, Hannes; Mueller, Georg; Roemer, Michael; Huebner, Jens; Oestreich, Michael [Institute for Solid State Physics, Gottfried Wilhelm Leibniz University Hannover (Germany)

    2009-07-01

    In recent experiments spin noise spectroscopy (SNS) has proven to be a very sensitive technique to study electron spin dynamics in semiconductors at thermal equilibrium. Here we present SNS-measurements on donor bound electrons in very low doped bulk GaAs. In this environment the donors do not interact with each other and form artificial atoms. We discuss the detection of single donor bound electron spins, which should have extremely long spin relaxation times compared to ensemble spin relaxation times. In further experiments the electron bound to the donor will be used to probe and study the local nuclear magnetic field at the donor site.

  1. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  2. NV-NV electron-electron spin and NV-N S electron - electron and electron-nuclear spin interaction in diamond

    Science.gov (United States)

    Armstrong, Seiji; Rogers, Lachlan J.; McMurtrie, Roger L.; Manson, Neil B.

    2010-02-01

    Features associated with the cross relaxation between spin of the ground electric state of the nitrogen vacancy centre (NV) and other impurity spins, mainly substitutional nitrogen, NS, are observed as changes of the emission intensity as a function of external magnetic field. The features are attributed to NV-NV electron-electron spin interaction, NV- NS electron-nuclear spin interaction and NV electron spin interaction with simultaneous change of an NS electron and nuclear spin change.

  3. Location of a metallic cation complexed in a calixarene cavity as determined by calixarene 13C spin relaxation. application to cesium and thallium complexed by p-sulfonatocalix[4]arene in water.

    Science.gov (United States)

    Cuc, Diana; Bouguet-Bonnet, Sabine; Morel-Desrosiers, Nicole; Morel, Jean-Pierre; Mutzenhardt, Pierre; Canet, Daniel

    2009-03-19

    This study deals with the exact location of the monovalent metal cations Cs(+) and Tl(+) which are complexed by the p-sulfonatocalix[4]arene in water. This determination rests on the measurements of longitudinal relaxation times of carbon-13 not directly bonded to protons. The difference between the relaxation times of the free calixarene and of the complex definitely demonstrates that the monovalent metal cation is well inside the calixarene cavity. These features are in fact enhanced by the presence of paramagnetic species which act in a different way in the complexed form. Experimental results also show without any ambiguity that the calixarene cavity is essentially hydrophobic. Finally, it is observed that thallium is more mobile than cesium within the calixarene cavity.

  4. Delta Relaxation Enhanced Magnetic Resonance

    Science.gov (United States)

    Alford, Jamu K.

    synchronizes this waveform with the rest of the MRI pulse sequence. On two separate dreMR systems, images were obtained having contrast which was directly proportional to the magnetic field dependence of the sample's relaxation rates. This contrast unambiguously indicated the presence of the bound probe, and its imaging therefore yields a map of the targeted biological molecule. Keywords Magnetic Resonance Imaging; Field-Cycled MRI; MR Probe; Targeted Contrast Agent; Gadolinium; Insert Coil; Power Supply; Relaxation Rate; Relaxivity; Actively Shielded; dreMR; Delta Relaxation Enhanced MRI; MRI Hardware; Gradient Echo; Spin Echo; Spoiled Gradient; Echo iv

  5. Digital operation and eye diagrams in spin-lasers

    International Nuclear Information System (INIS)

    Wasner, Evan; Bearden, Sean; Žutić, Igor; Lee, Jeongsu

    2015-01-01

    Digital operation of lasers with injected spin-polarized carriers provides an improved operation over their conventional counterparts with spin-unpolarized carriers. Such spin-lasers can attain much higher bit rates, crucial for optical communication systems. The overall quality of a digital signal in these two types of lasers is compared using eye diagrams and quantified by improved Q-factors and bit-error-rates in spin-lasers. Surprisingly, an optimal performance of spin-lasers requires finite, not infinite, spin-relaxation times, giving a guidance for the design of future spin-lasers

  6. Quantum spin transport in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Christoph

    2012-05-15

    In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.

  7. Quantum spin transport in semiconductor nanostructures

    International Nuclear Information System (INIS)

    Schindler, Christoph

    2012-01-01

    In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.

  8. Mechanical disequilibria in two-phase flow models: approaches by relaxation and by a reduced model; Modelisation des desequilibres mecaniques dans les ecoulements diphasiques: approches par relaxation et par modele reduit

    Energy Technology Data Exchange (ETDEWEB)

    Labois, M

    2008-10-15

    This thesis deals with hyperbolic models for the simulation of compressible two-phase flows, to find alternatives to the classical bi-fluid model. We first establish a hierarchy of two-phase flow models, obtained according to equilibrium hypothesis between the physical variables of each phase. The use of Chapman-Enskog expansions enables us to link the different existing models to each other. Moreover, models that take into account small physical unbalances are obtained by means of expansion to the order one. The second part of this thesis focuses on the simulation of flows featuring velocity unbalances and pressure balances, in two different ways. First, a two-velocity two-pressure model is used, where non-instantaneous velocity and pressure relaxations are applied so that a balancing of these variables is obtained. A new one-velocity one-pressure dissipative model is then proposed, where the arising of second-order terms enables us to take into account unbalances between the phase velocities. We develop a numerical method based on a fractional step approach for this model. (author)

  9. Insight into electronic, mechanical and transport properties of quaternary CoVTiAl: Spin-polarized DFT + U approach

    Energy Technology Data Exchange (ETDEWEB)

    Yousuf, Saleem, E-mail: nengroosaleem17@gmail.com; Gupta, D.C., E-mail: sosfizix@gmail.com

    2017-07-15

    Highlights: • 100% spin-polarized material important for the application in spintronics. • It is ferromagnetic and ductile in nature. • Shows semiconducting behavior with a band gap of 1.06 eV. • Possibly efficient high temperature thermoelectric material. - Abstract: We present a preliminary investigation of band structure and thermoelectric properties of new quaternary CoVTiAl Heusler alloy. Structural, magnetic property and 100% spin polarization of equiatomic CoVTiAl predicts ferromagnetic stable ground state. Band profile outlines the indirect semiconducting behavior in spin down channel with band gap of 1.06 eV, and the magnetic moment of 3 µ{sub B} in accordance with Slater-Pauling rule. To evaluate the accuracy of different approximations in predicting thermoelectric properties, the comparison with available experimental data is made which shows fair agreement for the transport coefficients. The high temperature (800 K) positive Seebeck coefficient of 73.71 µV/K describes the p-type character of the material with high efficiency due to highly influential semiconducting behavior around the Fermi level. Considering the combination of 100% spin-polarization, high Seebeck coefficient and large figure of merit, ferromagnetic semiconducting CoVTiAl may prove as a potential candidate for high temperature thermoelectrics and an ideal spin source material for spintronic applications.

  10. Proton NMR relaxation in hydrous melts

    International Nuclear Information System (INIS)

    Braunstein, J.; Bacarella, A.L.; Benjamin, B.M.; Brown, L.L.; Girard, C.

    1976-01-01

    Pulse and continuous wave NMR measurements are reported for protons in hydrous melts of calcium nitrate at temperatures between -4 and 120 0 C. Although measured in different temperature ranges, spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation times appear to be nearly equal to each other and proportional to the self-diffusion coefficients of solute metal cations such as Cd 2+ . At temperatures near 50 0 C, mean Arrhenius coefficients Δ H/sub T 1 / (kcal/mol) are 7.9, 7.3, and 4.8, respectively, for melts containing 2.8, 4.0, and 8.0 moles of water per mole of calcium nitrate, compared to 4.6 kcal/mol for pure water. Temperature dependence of T 1 and T 2 in Ca(NO 3 ) 2 -2.8 H 2 O between -4 and 120 0 C are non-Arrhenius and can be represented by a Fulcher-type equation with a ''zero mobility temperature'' (T 0 ) of 225 0 K, close to the value of T 0 for solute diffusion, electrical conductance and viscosity. Resolution of the relaxation rates into correlation times for intramolecular (rotational) and intermolecular (translational) diffusional motion is discussed in terms of the Bloembergen-Purcell-Pound and more recent models for dipolar relaxation

  11. Brillouin zone spin filtering mechanism of enhanced tunneling magnetoresistance and correlation effects in a Co(0001 )/h -BN/Co(0001 ) magnetic tunnel junction

    Science.gov (United States)

    Faleev, Sergey V.; Parkin, Stuart S. P.; Mryasov, Oleg N.

    2015-12-01

    The Brillouin zone spin filtering mechanism of enhanced tunneling magnetoresistance (TMR) is described for magnetic tunnel junctions (MTJs) and studied for an example of the MTJ with hcp Co electrodes and hexagonal BN (h -BN) spacer. Our calculations based on the local density approximation of density-functional theory (LDA-DFT) for Co(0001 )/h -BN/Co(0001 ) MTJ predict high TMR in this device due to Brillouin zone filtering mechanism. Owning to the specific complex band structure of the h -BN the spin-dependent tunneling conductance of the system is ultrasensitive to small variations of the Fermi energy position inside the BN band gap. Doping of the BN and, consequentially, changing the Fermi energy position could lead to variation of the TMR by several orders of magnitude. We show also that taking into account correlation effects on beyond DFT level is required to accurately describe position of the Fermi level and thus transport properties of the system. Our study suggests that new MTJ based on hcp Co-Pt or Co-Pd disordered alloy electrodes and p -doped hexagonal BN spacer is a promising candidate for the spin-transfer torque magnetoresistive random-access memory.

  12. Mechanism of initiation of oxidation in mayonnaise enriched with fish oil as studied by electron spin resonance spectroscopy

    DEFF Research Database (Denmark)

    Thomsen, M.K.; Jacobsen, Charlotte; Skibsted, L.H.

    2000-01-01

    Electron spin resonance spectroscopy (spin trapping technique) has been used to identify the most important single factor for initiation of lipid oxidation in mayonnaise enriched with fish oil. Low pH increases the formation of radicals during incubation under mildly accelerated conditions at 37...... degreesC as quantified using 12-doxylstearic acid. Sugar, NaCl and potassium sorbate have no effect on radical formation while EDTA (down to 50 mug/g) has an antioxidative effect. Iron bound to phosvitin in egg yolk, inactive at pH similar to6, is considered to be exposed to the solvent (the aqueous phase...

  13. Crossover between spin swapping and Hall effect in disordered systems

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2015-07-16

    We theoretically study the crossover between spin Hall effect and spin swapping, a recently predicted phenomenon that consists of the interchange between the current flow and its spin polarization directions [M. B. Lifshits and M. I. Dyakonov, Phys. Rev. Lett. 103, 186601 (2009)]. Using a tight-binding model with spin-orbit coupled disorder, spin Hall effect, spin relaxation, and spin swapping are treated on equal footing. We demonstrate that spin swapping and spin Hall effect present very different dependencies as a function of the spin-orbit coupling and disorder strengths and confirm that the former exceeds the latter in the parameter range considered. Three setups are proposed for the experimental observation of the spin swapping effect.

  14. Mechanism of ({sup 14}N, {sup 12}B) reactions at intermediate energy leading to large spin-polarization of {sup 12}B

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuoka, Shin-ichi [Osaka Univ., Ibaraki (Japan). Research Center for Nuclear Physics; Shimoda, Tadashi; Miyatake, Hiroari [and others

    1996-05-01

    To study mechanisms of the ({sup 14}N, {sup 12}B) reactions at intermediate energies, double differential cross section and nuclear spin-polarization of the {sup 12}B projectile-like fragments have been measured as a function of longitudinal momentum in the angular range of 0deg - 9deg. Large spin-polarization of the reaction products {sup 12}B has been observed in the {sup 9}Be({sup 14}N, {sup 12}B) reaction at 39.3 MeV/u. The momentum distributions at forward angles exhibit characteristic features which can not be understood by the current projectile fragmentation picture. It is shown that by assuming the existence of direct two-proton transfer process in addition to the fragmentation process, both the cross section and polarization of {sup 12}B fragments are successfully explained. The target and incident energy dependence of the momentum distribution are also explained reasonably. (author)

  15. Quantum mechanics and the theories of local hidden variables: an experimental test by measuring the spin correlation function in p-p scattering

    International Nuclear Information System (INIS)

    Lamehi-Rachti, Mohammad.

    1976-01-01

    The Einstein-Podolsky-Rosen paradox is briefly exposed with the Bell theorem on hidden variables and the locality principle. The conditions for an ideal experiment are discussed and the results from γ-γ correlation experiments are given. The principle of an experimental measurement of the spin correlation function predicted by the quantum mechanics theory is derived, new hypotheses to be introduced are discussed. The formula giving the dependence of the counting asymmetry on the spin correlation function, polarimeter analyzing power, and geometric correlation is developed. The principle of a Monte Carlo calculation is also exposed. The experimental device is described with the methods for measuring the subsidiary quantities and experimental results are analyzed [fr

  16. Zero-field NMR study on a spin glass: iron-doped 2H-niobium diselenide

    International Nuclear Information System (INIS)

    Chen, M.C.

    1982-01-01

    Spin echoes are used to study the 93 Nb NQR in 2H-NbSe 2 Fe/sub x/. Measured are (intensity) x (temperature), and T/sub 1P/ (spin-lattice relaxation parameter) and T 2 (spin-spin relaxation time) as a function of temperature. Data reveal dramatic differences between non-spin glass samples (x = 0, 0.25%, 1% and 5%) and spin glass samples (x = 8%, 10% and 12%). All of the NQR results and the model calculation of the correlation times of Fe spins are best described by the phase transition picture of spin glasses

  17. PREFACE: Spin Electronics

    Science.gov (United States)

    Dieny, B.; Sousa, R.; Prejbeanu, L.

    2007-04-01

    Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic

  18. Part I: Spin wave dynamics in YIG spheres

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    An experimental study is made of the interactions between spin wave modes excited in a sphere of yttrium iron garnet by pumping the Suhl subsidiary absorption with microwaves. The dynamical behavior of the magnetization is observed under high resolution by varying the dc field and microwave pump power. Varied behavior is found: (1) onset of the Suhl instability by excitation of a single spin wave mode; (2) when two or more modes are excited, interactions lead to auto-oscillations displaying period-doubling to chaos; (3) quasiperiodicity, locking, and chaos occur when three or more modes are excited; (4) abrupt transition to wide band power spectra (i.e., turbulence), with hysteresis; (5) irregular relaxation oscillations and aperiodic spiking behavior. A theoretical model is developed using the plane wave approximation obtaining the lowest order nonlinear interaction terms between the excited modes. Extension of this analysis to the true spherical spin-modes is discussed. Bifurcation behavior is examined, and dynamical behavior is numerically computed and compared to the experimental data. A theory is developed regarding the nature of the experimentally observed relaxation oscillations and spiking behavior based on the interaction of ''weak'' and ''strong'' modes, and this is demonstrated in the numerical simulations for two modes. Quasiperiodicity is shown to occur in the numerical study when at least 3 modes are excited with appropriate parameter values. A possible mechanism for generating microwave subharmonics at half of the pumping frequency is discussed. 57 refs., 25 figs., 5 tabs

  19. Spin injection, accumulation, and precession in a mesoscopic nonmagnetic metal island

    NARCIS (Netherlands)

    Zaffalon, M; van Wees, BJ

    We experimentally study spin accumulation in an aluminum island with all dimensions smaller than the spin-relaxation length, so that the spin imbalance throughout the island is uniform. Electrical injection and detection of the spin accumulation are carried out in a four-terminal geometry by means

  20. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden; Bjerrum Møller, Hans

    1975-01-01

    with increasing temperatures implies that the two-ion coupling is effectively isotropic above ∼ 150 K. We present arguments for concluding that, among the mechanisms which may introduce anisotropic two-ion couplings in the rare-earth metals, the modification of the indirect exchange interaction by the spin......The energies of spin waves propagating in the c direction of Tb have been studied by inelastic neutron scattering, as a function of a magnetic field applied along the easy and hard directions in the basal plane, and as a function of temperature. From a general spin Hamiltonian, consistent...... with the symmetry, we deduce the dispersion relation for the spin waves in a basal-plane ferromagnet. This phenomenological spin-wave theory accounts for the observed behavior of the magnon energies in Tb. The two q⃗-dependent Bogoliubov components of the magnon energies are derived from the experimental results...