WorldWideScience

Sample records for spin population ratio

  1. Spin voltage generation through optical excitation of complementary spin populations

    Science.gov (United States)

    Bottegoni, Federico; Celebrano, Michele; Bollani, Monica; Biagioni, Paolo; Isella, Giovanni; Ciccacci, Franco; Finazzi, Marco

    2014-08-01

    By exploiting the spin degree of freedom of carriers inside electronic devices, spintronics has a huge potential for quantum computation and dissipationless interconnects. Pure spin currents in spintronic devices should be driven by a spin voltage generator, able to drive the spin distribution out of equilibrium without inducing charge currents. Ideally, such a generator should operate at room temperature, be highly integrable with existing semiconductor technology, and not interfere with other spintronic building blocks that make use of ferromagnetic materials. Here we demonstrate a device that matches these requirements by realizing the spintronic equivalent of a photovoltaic generator. Whereas a photovoltaic generator spatially separates photoexcited electrons and holes, our device exploits circularly polarized light to produce two spatially well-defined electron populations with opposite in-plane spin projections. This is achieved by modulating the phase and amplitude of the light wavefronts entering a semiconductor (germanium) with a patterned metal overlayer (platinum). The resulting light diffraction pattern features a spatially modulated chirality inside the semiconductor, which locally excites spin-polarized electrons thanks to electric dipole selection rules.

  2. Superconducting spin-triplet-MRAM with infinite magnetoresistance ratio

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Daniel; Ullrich, Aladin; Obermeier, Guenter; Mueller, Claus; Krug von Nidda, Hans-Albrecht; Horn, Siegfried; Tidecks, Reinhard [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); Morari, Roman [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev (Moldova, Republic of); Solid State Physics Department, Kazan Federal University, 420008 Kazan (Russian Federation); Zdravkov, Vladimir I. [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev (Moldova, Republic of); Institute of Applied Physics and Interdisciplinary Nanoscience Center, Universitaet Hamburg, Jungiusstrasse 9A, D-20355 Hamburg (Germany); Sidorenko, Anatoli S. [D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev (Moldova, Republic of); Tagirov, Lenar R. [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); Solid State Physics Department, Kazan Federal University, 420008 Kazan (Russian Federation)

    2016-07-01

    We fabricated a nanolayered hybrid superconductor-ferromagnet spin-valve structure, i.e. the superconducting transition temperature of this structure depends on its magnetic history. The observed spin-valve effect is based on the generation of the long range odd in frequency triplet component, arising from a non-collinear relative orientation of the constituent ferromagnetic layers. We investigated the effect both as a function of the sweep amplitude of the magnetic field, determining the magnetic history, and the applied transport current. Moreover, we demonstrate the possibility of switching the system from the normal o the superconducting state by applying field pulses, yielding an infinite magnetoresistance ratio.

  3. Nuclear spin cooling by electric dipole spin resonance and coherent population trapping

    Science.gov (United States)

    Li, Ai-Xian; Duan, Su-Qing; Zhang, Wei

    2017-09-01

    Nuclear spin fluctuation suppression is a key issue in preserving electron coherence for quantum information/computation. We propose an efficient way of nuclear spin cooling in semiconductor quantum dots (QDs) by the coherent population trapping (CPT) and the electric dipole spin resonance (EDSR) induced by optical fields and ac electric fields. The EDSR can enhance the spin flip-flop rate and may bring out bistability under certain conditions. By tuning the optical fields, we can avoid the EDSR induced bistability and obtain highly polarized nuclear spin state, which results in long electron coherence time. With the help of CPT and EDSR, an enhancement of 1500 times of the electron coherence time can been obtained after a 500 ns preparation time.

  4. Distinguishing spin-aligned and isotropic black hole populations with gravitational waves.

    Science.gov (United States)

    Farr, Will M; Stevenson, Simon; Miller, M Coleman; Mandel, Ilya; Farr, Ben; Vecchio, Alberto

    2017-08-23

    The direct detection of gravitational waves from merging binary black holes opens up a window into the environments in which binary black holes form. One signature of such environments is the angular distribution of the black hole spins. Binary systems that formed through dynamical interactions between already-compact objects are expected to have isotropic spin orientations (that is, the spins of the black holes are randomly oriented with respect to the orbit of the binary system), whereas those that formed from pairs of stars born together are more likely to have spins that are preferentially aligned with the orbit. The best-measured combination of spin parameters for each of the four likely binary black hole detections GW150914, LVT151012, GW151226 and GW170104 is the 'effective' spin. Here we report that, if the magnitudes of the black hole spins are allowed to extend to high values, the effective spins for these systems indicate a 0.015 odds ratio against an aligned angular distribution compared to an isotropic one. When considering the effect of ten additional detections, this odds ratio decreases to 2.9 × 10 -7 against alignment. The existing preference for either an isotropic spin distribution or low spin magnitudes for the observed systems will be confirmed (or overturned) confidently in the near future.

  5. Noise in tunneling spin current across coupled quantum spin chains

    Science.gov (United States)

    Aftergood, Joshua; Takei, So

    2018-01-01

    We theoretically study the spin current and its dc noise generated between two spin-1 /2 spin chains weakly coupled at a single site in the presence of an over-population of spin excitations and a temperature elevation in one subsystem relative to the other, and we compare the corresponding transport quantities across two weakly coupled magnetic insulators hosting magnons. In the spin chain scenario, we find that applying a temperature bias exclusively leads to a vanishing spin current and a concomitant divergence in the spin Fano factor, defined as the spin current noise-to-signal ratio. This divergence is shown to have an exact analogy to the physics of electron scattering between fractional quantum Hall edge states and not to arise in the magnon scenario. We also reveal a suppression in the spin current noise that exclusively arises in the spin chain scenario due to the fermion nature of the spin-1/2 operators. We discuss how the spin Fano factor may be extracted experimentally via the inverse spin Hall effect used extensively in spintronics.

  6. Spin squeezing and light entanglement in Coherent Population Trapping

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Cviklinski, Jean; Giacobino, Elisabeth

    2006-01-01

    We show that strong squeezing and entanglement can be generated at the output of a cavity containing atoms interacting with two fields in a coherent population trapping situation, on account of a nonlinear Faraday effect experienced by the fields close to a dark-state resonance in a cavity....... Moreover, the cavity provides a feedback mechanism allowing to reduce the quantum fluctuations of the ground state spin, resulting in strong steady state spin squeezing....

  7. Constructing binary black hole initial data with high mass ratios and spins

    Science.gov (United States)

    Ossokine, Serguei; Foucart, Francois; Pfeiffer, Harald; Szilagyi, Bela; Simulating Extreme Spacetimes Collaboration

    2015-04-01

    Binary black hole systems have now been successfully modelled in full numerical relativity by many groups. In order to explore high-mass-ratio (larger than 1:10), high-spin systems (above 0.9 of the maximal BH spin), we revisit the initial-data problem for binary black holes. The initial-data solver in the Spectral Einstein Code (SpEC) was not able to solve for such initial data reliably and robustly. I will present recent improvements to this solver, among them adaptive mesh refinement and control of motion of the center of mass of the binary, and will discuss the much larger region of parameter space this code can now address.

  8. Population annealing: Theory and application in spin glasses

    OpenAIRE

    Wang, Wenlong; Machta, Jonathan; Katzgraber, Helmut G.

    2015-01-01

    Population annealing is an efficient sequential Monte Carlo algorithm for simulating equilibrium states of systems with rough free energy landscapes. The theory of population annealing is presented, and systematic and statistical errors are discussed. The behavior of the algorithm is studied in the context of large-scale simulations of the three-dimensional Ising spin glass and the performance of the algorithm is compared to parallel tempering. It is found that the two algorithms are similar ...

  9. Design, manufacture and spin test of high contact ratio helicopter transmission utilizing Self-Aligning Bearingless Planetary (SABP)

    Science.gov (United States)

    Folenta, Dezi; Lebo, William

    1988-01-01

    A 450 hp high ratio Self-Aligning Bearingless Planetary (SABP) for a helicopter application was designed, manufactured, and spin tested under NASA contract NAS3-24539. The objective of the program was to conduct research and development work on a high contact ratio helical gear SABP to reduce weight and noise and to improve efficiency. The results accomplished include the design, manufacturing, and no-load spin testing of two prototype helicopter transmissions, rated at 450 hp with an input speed of 35,000 rpm and an output speed of 350 rpm. The weight power density ratio of these gear units is 0.33 lb hp. The measured airborne noise at 35,000 rpm input speed and light load is 94 dB at 5 ft. The high speed, high contact ratio SABP transmission appears to be significantly lighter and quieter than comtemporary helicopter transmissions. The concept of the SABP is applicable not only to high ratio helicopter type transmissions but also to other rotorcraft and aircraft propulsion systems.

  10. Electron-Spin Filters Would Offer Spin Polarization Greater than 1

    Science.gov (United States)

    Ting, David Z.

    2009-01-01

    A proposal has been made to develop devices that would generate spin-polarized electron currents characterized by polarization ratios having magnitudes in excess of 1. Heretofore, such devices (denoted, variously, as spin injectors, spin polarizers, and spin filters) have typically offered polarization ratios having magnitudes in the approximate range of 0.01 to 0.1. The proposed devices could be useful as efficient sources of spin-polarized electron currents for research on spintronics and development of practical spintronic devices.

  11. The Improved Estimation of Ratio of Two Population Proportions

    Science.gov (United States)

    Solanki, Ramkrishna S.; Singh, Housila P.

    2016-01-01

    In this article, first we obtained the correct mean square error expression of Gupta and Shabbir's linear weighted estimator of the ratio of two population proportions. Later we suggested the general class of ratio estimators of two population proportions. The usual ratio estimator, Wynn-type estimator, Singh, Singh, and Kaur difference-type…

  12. Staff/population ratios in South African public sector mental health ...

    African Journals Online (AJOL)

    To document existing staff/population ratios per 100 000 population in South African public sector mental health services. Design. Cross-sectional survey. ... The staff/population ratios per 100 000 population for selected personnel categories (with the interprovincial ranges in brackets) were as follows: total nursing staff 15.6 ...

  13. Statistical methods of spin assignment in compound nuclear reactions

    International Nuclear Information System (INIS)

    Mach, H.; Johns, M.W.

    1984-01-01

    Spin assignment to nuclear levels can be obtained from standard in-beam gamma-ray spectroscopy techniques and in the case of compound nuclear reactions can be complemented by statistical methods. These are based on a correlation pattern between level spin and gamma-ray intensities feeding low-lying levels. Three types of intensity and level spin correlations are found suitable for spin assignment: shapes of the excitation functions, ratio of intensity at two beam energies or populated in two different reactions, and feeding distributions. Various empirical attempts are examined and the range of applicability of these methods as well as the limitations associated with them are given. 12 references

  14. Statistical methods of spin assignment in compound nuclear reactions

    International Nuclear Information System (INIS)

    Mach, H.; Johns, M.W.

    1985-01-01

    Spin assignment to nuclear levels can be obtained from standard in-beam gamma-ray spectroscopy techniques and in the case of compound nuclear reactions can be complemented by statistical methods. These are based on a correlation pattern between level spin and gamma-ray intensities feeding low-lying levels. Three types of intensity and level spin correlations are found suitable for spin assignment: shapes of the excitation functions, ratio of intensity at two beam energies or populated in two different reactions, and feeding distributions. Various empirical attempts are examined and the range of applicability of these methods as well as the limitations associated with them are given

  15. Sex, sex-ratios, and the dynamics of pelagic copepod populations

    DEFF Research Database (Denmark)

    Kiørboe, Thomas

    2006-01-01

    equal adult sex ratios in field populations. Winter population densities are orders of magnitude less than the critical population density required for population persistence, but populations survive winter seasons as resting eggs in the sediment. Population growth in these species is potentially high...... because they have on average a factor of 2 higher egg production rates than other pelagic copepods. Secondly, other copepods require only one mating to stay fertile, and populations of these species have strongly female-skewed adult sex-ratios in field populations. Resting eggs have not been described...

  16. Are elderly dependency ratios associated with general population suicide rates?

    Science.gov (United States)

    Shah, Ajit

    2011-05-01

    The elderly population size is increasing worldwide due to falling birth rates and increasing life expectancy. It has been hypothesized that as the elderly dependency ratio (the ratio of those over the age of 65 years to those under 65) increases, there will be fewer younger people available to care for older people and this, in turn, will increase the burden on younger carers with increased levels of psychiatric morbidity leading to an increase in general population suicide rates. A cross-national study examining the relationship between elderly dependency ratios and general population suicide rates was conducted using data from the World Health Organization and the United Nations websites. The main findings were of a significant and independent positive correlation between elderly dependency ratios and general population suicide rates in both genders. The contribution of cross-national differences in psychiatric morbidity in younger carers on general population suicide rates requires further study. The prevalence of psychiatric morbidity in younger carers of older people should be examined by: (i) cross-national studies using standardized measures of psychiatric morbidity that are education-free, culture-fair and language-fair; and (ii) within-country longitudinal studies with changing elderly dependency ratios over time.

  17. Meiotic sex ratio variation in natural populations of Ceratodon purpureus (Ditrichaceae).

    Science.gov (United States)

    Norrell, Tatum E; Jones, Kelly S; Payton, Adam C; McDaniel, Stuart F

    2014-09-01

    • Sex ratio variation is a common but often unexplained phenomenon in species across the tree of life. Here we evaluate the hypothesis that meiotic sex ratio variation can contribute to the biased sex ratios found in natural populations of the moss Ceratodon purpureus.• We obtained sporophytes from several populations of C. purpureus from eastern North America. From each sporophyte, we estimated the mean spore viability by germinating replicate samples on agar plates. We estimated the meiotic sex ratio of each sporophyte by inferring the sex of a random sample of germinated spores (mean = 77) using a PCR-RFLP test. We tested for among-sporophyte variation in viability using an ANOVA and for deviations from 1:1 sex ratio using a χ(2)-test and evaluated the relationship between these quantities using a linear regression.• We found among-sporophyte variation in spore viability and meiotic sex ratio, suggesting that genetic variants that contribute to variation in both of these traits segregate within populations of this species. However, we found no relationship between these quantities, suggesting that factors other than sex ratio distorters contribute to variation in spore viability within populations.• These results demonstrate that sex ratio distortion may partially explain the population sex ratio variation seen in C. purpureus, but more generally that genetic conflict over meiotic segregation may contribute to fitness variation in this species. Overall, this study lays the groundwork for future studies on the genetic basis of meiotic sex ratio variation. © 2014 Botanical Society of America, Inc.

  18. Determination of the Pt spin diffusion length by spin-pumping and spin Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Pearson, John E.; Hoffmann, Axel [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Vlaminck, Vincent [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Colegio de Ciencias e Ingenería, Universidad San Fransciso de Quito, Quito (Ecuador); Divan, Ralu [Center for Nanoscale Materials, Argonne National Laboratory, Illinois 60439 (United States); Bader, Samuel D. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, Illinois 60439 (United States)

    2013-12-09

    The spin diffusion length of Pt at room temperature and at 8 K is experimentally determined via spin pumping and spin Hall effect in permalloy/Pt bilayers. Voltages generated during excitation of ferromagnetic resonance from the inverse spin Hall effect and anisotropic magnetoresistance effect were investigated with a broadband approach. Varying the Pt layer thickness gives rise to an evolution of the voltage line shape due to the superposition of the above two effects. By studying the ratio of the two voltage components with the Pt layer thickness, the spin diffusion length of Pt can be directly extracted. We obtain a spin diffusion length of ∼1.2 nm at room temperature and ∼1.6 nm at 8 K.

  19. Density and spin linear response of atomic Fermi superfluids with population imbalance in the BCS–BEC crossover

    International Nuclear Information System (INIS)

    Guo, Hao; Li, Yang; He, Yan; Chien, Chih-Chun

    2014-01-01

    We present a theoretical study of the density and spin (representing the two components) linear response of Fermi superfluids with tunable attractive interactions and population imbalance. In both linear response theories, we find that the fluctuations of the order parameter must be treated on equal footing with the gauge transformations associated with the symmetries of the Hamiltonian so that important constraints including various sum rules can be satisfied. Both theories can be applied to the whole BCS–Bose–Einstein condensation crossover. The spin linear responses are qualitatively different with and without population imbalance because collective-mode effects from the fluctuations of the order parameter survive in the presence of population imbalance, even though the associated symmetry is not broken by the order parameter. Since a polarized superfluid becomes unstable at low temperatures in the weak and intermediate coupling regimes, we found that the density and spin susceptibilities diverge as the system approaches the unstable regime, but the emergence of phase separation preempts the divergence. (paper)

  20. High spin levels populated in multinucleon transfer reaction with 480 MeV 12C

    International Nuclear Information System (INIS)

    Kraus, L.; Boucenna, A.; Linck, I.

    1988-01-01

    Two- and three-nucleon stripping reactions induced by 480 MeV 12 C have been studied on 12 C, 16 O, 28 Si, 40 Ca and 54 Fe target nuclei. Discrete levels are fed with cross sections up to 1 mb/sr for d-transfer reactions and one order and two orders of magnitude less for 2p- and 3 He-transfer reactions, respectively. These reactions preferentially populate high spin states with stretched configurations. Several spin assignments were known from transfer reactions induced by lighter projectiles at incident energies well above the Coulomb barrier. In the case of two-nucleon transfer reactions, the energy of these states is well reproduced by crude shell model calculations. Such estimates are of use in proposing spins of newly observed states especially as the shapes of the measured angular distributions are independent of the final spin of the residual nucleus

  1. Carbon isotope ratios in field Population II giant stars

    International Nuclear Information System (INIS)

    Sneden, C.; Pilachowski, C.A.; Vandenberg, D.A.; Kitt Peak National Observatory, Tucson, AZ; Victoria Univ., Canada)

    1986-01-01

    Carbon isotope ratios have been derived from high-resolution spectra of the CH G-band in 15 very metal-poor Population II giant stars and two similar dwarf stars. Many of the giants possess very low C-12/C-13 ratios, some approaching the CN cycle equilibrium value. The metal-poor dwarfs do not have detectable CH-13 features; thus the low carbon isotope ratios in the giants probably are due to their internal evolutions. These results strongly support the idea that at least part of the anomalously low C/N values in Population II giants arises from very efficient mixing of their envelopes into the CN cycle burning layers. Detailed calculations of the expected CNO surface abundances in Population II giants in different evolutionary states have been performed. These computations demonstrate that the observed carbon isotope ratios cannot be produced during the first dredge-up mixing phases in low-mass, low metal abundance stars. Numerical experiments show that theoretical and observational results can be brought into agreement with artificially induced extra mixing. An agent to provoke this additional mixing has not been identified with certainty yet, although internal stellar rotation is a promising candidate. 63 references

  2. Chiral tunneling of topological states: towards the efficient generation of spin current using spin-momentum locking.

    Science.gov (United States)

    Habib, K M Masum; Sajjad, Redwan N; Ghosh, Avik W

    2015-05-01

    We show that the interplay between chiral tunneling and spin-momentum locking of helical surface states leads to spin amplification and filtering in a 3D topological insulator (TI). Our calculations show that the chiral tunneling across a TI pn junction allows normally incident electrons to transmit, while the rest are reflected with their spins flipped due to spin-momentum locking. The net result is that the spin current is enhanced while the dissipative charge current is simultaneously suppressed, leading to an extremely large, gate-tunable spin-to-charge current ratio (∼20) at the reflected end. At the transmitted end, the ratio stays close to 1 and the electrons are completely spin polarized.

  3. Spin polarized deuterium

    International Nuclear Information System (INIS)

    Glyde, H.R.; Hernadi, S.I.

    1986-01-01

    Several ground state properties of (electron) spin-polarized deuterium (D) such as the energy, single quasiparticle energies and lifetimes, Landau parameters and sound velocities are evaluated. The calculations begin with the Kolos-Wolneiwicz potential and use the Galitskii-FeynmanHartree-Fock (GFHF) approximation. The deuteron nucleas has spin I = 1, and spin states I/sub z/ = 1,0,-1. We explore D 1 , D 2 and D 3 in which, respectively, one spin state only is populated, two states are equally populated, and three states are equally populated. We find the GFHF describes D 1 well, but D 2 and D 3 less well. The Landau parameters, F/sub L/, are small compared to liquid 3 He and very small for doubly polarized D 1 (i.e. the F/sub L/ decrease with nuclear polarization)

  4. Relationships between nurse- and physician-to-population ratios and state health rankings.

    Science.gov (United States)

    Bigbee, Jeri L

    2008-01-01

    To evaluate the relationship between nurse-to-population ratios and population health, as indicated by state health ranking, and to compare the findings with physician-to-population ratios. Secondary analysis correlational design. The sample consisted of all 50 states in the United States. Data sources included the United Health Foundation's 2006 state health rankings, the 2004 National Sample Survey for Registered Nurses, and the U.S. Health Workforce Profile from the New York Center for Health Workforce Studies. Significant relationships between nurse-to-population ratio and overall state health ranking (rho=-.446, p tf?>=.001) and 11 of the 18 components of that ranking were found. Significant components included motor vehicle death rate, high school graduation rate, violent crime rate, infectious disease rate, percentage of children in poverty, percentage of uninsured residents, immunization rate, adequacy of prenatal care, number of poor mental health days, number of poor physical health days, and premature death rate, with higher nurse-to-population ratios associated with higher health rankings. Specialty (public health and school) nurse-to-population ratios were not as strongly related to state health ranking. Physician-to-population ratios were also significantly related to state health ranking, but were associated with different components than nurses. These findings suggest that greater nurses per capita may be uniquely associated with healthier communities; however, further multivariate research is needed.

  5. Angular dependence of spin-orbit spin-transfer torques

    KAUST Repository

    Lee, Ki-Seung

    2015-04-06

    In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.

  6. Angular dependence of spin-orbit spin-transfer torques

    KAUST Repository

    Lee, Ki-Seung; Go, Dongwook; Manchon, Aurelien; Haney, Paul M.; Stiles, M. D.; Lee, Hyun-Woo; Lee, Kyung-Jin

    2015-01-01

    In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.

  7. Supermassive black hole spin-flip during the inspiral

    International Nuclear Information System (INIS)

    Gergely, Laszlo A; Biermann, Peter L; Caramete, Laurentiu I

    2010-01-01

    During post-Newtonian evolution of a compact binary, a mass ratio ν different from 1 provides a second small parameter, which can lead to unexpected results. We present a statistics of supermassive black hole candidates, which enables us first to derive their mass distribution, and then to establish a logarithmically even probability in ν of the mass ratios at their encounter. In the mass ratio range ν in (1/30, 1/3) of supermassive black hole mergers representing 40% of all possible cases, the combined effect of spin-orbit precession and gravitational radiation leads to a spin-flip of the dominant spin during the inspiral phase of the merger. This provides a mechanism for explaining a large set of observations on X-shaped radio galaxies. In another 40% with mass ratios ν in (1/30, 1/1000) a spin-flip never occurs, while in the remaining 20% of mergers with mass ratios ν in (1/3, 1) it may occur during the plunge. We analyze the magnitude of the spin-flip angle occurring during the inspiral as a function of the mass ratio and original relative orientation of the spin and orbital angular momentum. We also derive a formula for the final spin at the end of the inspiral in this mass ratio range.

  8. Minimizing the dependency ratio in a population with below-replacement fertility through immigration

    Science.gov (United States)

    Simon, C.; Belyakov, A.O.; Feichtinger, G.

    2012-01-01

    Many industrialized countries face fertility rates below replacement level, combined with declining mortality especially in older ages. Consequently, the populations of these countries have started to age. One important indicator of age structures is the dependency ratio which is the ratio of the nonworking age population to the working age population. In this work we find the age-specific immigration profile that minimizes the dependency ratio in a stationary population with below-replacement fertility. It is assumed that the number of immigrants per age is limited. We consider two alternative policies. In the first one, we fix the total number of people who annually immigrate to a country. In the second one, we prescribe the size of the receiving country’s population. For both cases we provide numerical results for the optimal immigration profile, for the resulting age structure of the population, as well as for the dependency ratio. PMID:22781918

  9. Population sex ratios: another consideration in the reintroduction - reinforcement debate?

    Directory of Open Access Journals (Sweden)

    Sergio A Lambertucci

    Full Text Available Reintroduction or reinforcement (RorR of wild populations is a common conservation strategy. Many conservation projects involve the release of individuals of poorly studied species. This may lead to inefficient results or negative impacts on the conservation efforts. Here, we provide new insights into the conservation implications and potential consequences of a skew in the sex ratio of released birds and of the number of birds supplemented for the demography of a long-lived dimorphic bird species, the Andean condor (Vulturgryphus. We demonstrate that a RorR conservation program may be less effective in conserving a species if the sex ratios of the releases and the recipient populations are not considered. We also show that releases can reduce population declines but only if carried out over long periods (i.e., several decades. This can mean high costs for release programs and the added challenge of maintaining programs over time. If RorR programs are to be implemented, bearing in mind the importance of properly assessing their effectiveness, we urge conservation researchers and managers to consider the implications of sex ratio biases for wild populations, and particularly for dimorphic species with sexually despotic behaviour.

  10. Proposal for a dual-gate spin field effect transistor: A device with very small switching voltage and a large ON to OFF conductance ratio

    Science.gov (United States)

    Wan, J.; Cahay, M.; Bandyopadhyay, S.

    2008-06-01

    We propose a new dual gate spin field effect transistor (SpinFET) consisting of a quasi one-dimensional semiconductor channel sandwiched between two half-metallic contacts. The gate voltage aligns and de-aligns the incident electron energy with Ramsauer resonance levels in the channel, thereby modulating the source-to-drain conductance. The device can be switched from ON to OFF with a few mV change in the gate voltage, resulting in exceedingly low dynamic power dissipation during switching. The conductance ON/OFF ratio stays fairly large ( ∼60) up to a temperature of 10 K. This conductance ratio is comparable to that achievable with carbon nanotube transistors.

  11. Influence of External Magnetic Fields on Tunneling of Spin-1 Bose Condensate

    International Nuclear Information System (INIS)

    Yu Zhaoxian; Jiao Zhiyong; Sun Jinzuo

    2005-01-01

    In this letter, we have studied the influence of the external magnetic fields on tunneling of the spin-1 Bose condensate. We find that the population transfer between spin-0 and spin-±1 exhibits the step structure under the external cosinusoidal magnetic field and a combination of static and cosinusoidal one, respectively. Compared with the longitudinal component of the external magnetic field, the smaller the transverse component of the magnetic field is, the larger the time scale of exhibiting the step structure does. The tunneling current may exhibit periodically oscillation behavior when the ratio of the transverse component of the magnetic field is smaller than that of the longitudinal component, otherwise it exhibits a damply oscillating behavior. This means that the dynamical spin localization can be adjusted by the external magnetic fields.

  12. Socioeconomic status influences sex ratios in a Chinese rural population.

    Science.gov (United States)

    Luo, Liqun; Ding, Rui; Gao, Xiali; Sun, Jingjing; Zhao, Wei

    2017-01-01

    According to the logic of the Trivers-Willard hypothesis, in a human population, if socioeconomic status is transmitted across generations to some extent, and if sons of high-status parents tend to have higher reproductive success than daughters, while daughters of low-status parents tend to have higher reproductive success than sons, then we should expect that offspring sex ratio is positively associated with socioeconomic status. This study examines whether the assumptions and prediction of this hypothesis apply to a rural population in northern China. Results show that (1) current family socioeconomic status is positively related to family head's father's socioeconomic status in around 1950, (2) low-status family heads have more grandchildren through their daughters than their sons, whereas high- or middle-status family heads have more grandchildren through sons, and (3) as family heads' status increases, they tend to produce a higher offspring sex ratio. Therefore, the assumptions and prediction of the hypothesis are met in the study population. These results are discussed in reference to past studies on sex ratio manipulation among humans.

  13. Nonlinear spin current generation in noncentrosymmetric spin-orbit coupled systems

    Science.gov (United States)

    Hamamoto, Keita; Ezawa, Motohiko; Kim, Kun Woo; Morimoto, Takahiro; Nagaosa, Naoto

    2017-06-01

    Spin current plays a central role in spintronics. In particular, finding more efficient ways to generate spin current has been an important issue and has been studied actively. For example, representative methods of spin-current generation include spin-polarized current injections from ferromagnetic metals, the spin Hall effect, and the spin battery. Here, we theoretically propose a mechanism of spin-current generation based on nonlinear phenomena. By using Boltzmann transport theory, we show that a simple application of the electric field E induces spin current proportional to E2 in noncentrosymmetric spin-orbit coupled systems. We demonstrate that the nonlinear spin current of the proposed mechanism is supported in the surface state of three-dimensional topological insulators and two-dimensional semiconductors with the Rashba and/or Dresselhaus interaction. In the latter case, the angular dependence of the nonlinear spin current can be manipulated by the direction of the electric field and by the ratio of the Rashba and Dresselhaus interactions. We find that the magnitude of the spin current largely exceeds those in the previous methods for a reasonable magnitude of the electric field. Furthermore, we show that application of ac electric fields (e.g., terahertz light) leads to the rectifying effect of the spin current, where dc spin current is generated. These findings will pave a route to manipulate the spin current in noncentrosymmetric crystals.

  14. Cooperative spin decoherence and population transfer

    International Nuclear Information System (INIS)

    Genes, C.; Berman, P. R.

    2006-01-01

    An ensemble of multilevel atoms is a good candidate for a quantum information storage device. The information is encrypted in the collective ground state atomic coherence, which, in the absence of external excitation, is decoupled from the vacuum and therefore decoherence free. However, in the process of manipulation of atoms with light pulses (writing, reading), one inadvertently introduces a coupling to the environment, i.e., a source of decoherence. The dissipation process is often treated as an independent process for each atom in the ensemble, an approach which fails at large atomic optical depths where cooperative effects must be taken into account. In this paper, the cooperative behavior of spin decoherence and population transfer for a system of two, driven multilevel atoms is studied. Not surprisingly, an enhancement in the decoherence rate is found, when the atoms are separated by a distance that is small compared to an optical wavelength; however, it is found that this rate increases even further for somewhat larger separations for atoms aligned along the direction of the driving field's propagation vector. A treatment of the cooperative modification of optical pumping rates and an effect of polarization swapping between atoms is also discussed, lending additional insight into the origin of the collective decay

  15. Estimation of Finite Population Ratio When Other Auxiliary Variables are Available in the Study

    Directory of Open Access Journals (Sweden)

    Jehad Al-Jararha

    2014-12-01

    Full Text Available The estimation of the population total $t_y,$ by using one or moreauxiliary variables, and the population ratio $\\theta_{xy}=t_y/t_x,$$t_x$ is the population total for the auxiliary variable $X$, for afinite population are heavily discussed in the literature. In thispaper, the idea of estimation the finite population ratio$\\theta_{xy}$ is extended to use the availability of auxiliaryvariable $Z$ in the study, such auxiliary variable  is not used inthe definition of the population ratio. This idea may be  supported by the fact that the variable $Z$  is highly correlated with the interest variable $Y$ than the correlation between the variables $X$ and $Y.$ The availability of such auxiliary variable can be used to improve the precision of the estimation of the population ratio.  To our knowledge, this idea is not discussed in the literature.  The bias, variance and the mean squares error  are given for our approach. Simulation from real data set,  the empirical relative bias and  the empirical relative mean squares error are computed for our approach and different estimators proposed in the literature  for estimating the population ratio $\\theta_{xy}.$ Analytically and the simulation results show that, by suitable choices, our approach gives negligible bias and has less mean squares error.  

  16. New materials research for high spin polarized current

    International Nuclear Information System (INIS)

    Tezuka, Nobuki

    2012-01-01

    The author reports here a thorough investigation of structural and magnetic properties of Co 2 FeAl 0.5 Si 0.5 Heusler alloy films, and the tunnel magnetoresistance effect for junctions with Co 2 FeAl 0.5 Si 0.5 electrodes, spin injection into GaAs semiconductor from Co 2 FeAl 0.5 Si 0.5 , and spin filtering phenomena for junctions with CoFe 2 O 4 ferrite barrier. It was observed that tunnel magnetoresistance ratio up to 832%(386%) at 9 K (room temperature), which corresponds to the tunnel spin polarization of 0.90 (0.81) for the junctions using Co 2 FeAl 0.5 Si 0.5 Heusler electrodes by optimizing the fabrication condition. It was also found that the tunnel magnetoresistance ratio are almost the same between the junctions with Co 2 FeAl 0.5 Si 0.5 Heusler electrodes on Cr buffered (1 0 0) and (1 1 0) MgO substrates, which indicates that tunnel spin polarization of Co 2 FeAl 0.5 Si 0.5 for these two direction are almost the same. The next part of this paper is a spin filtering effect using a Co ferrite. The spin filtering effect was observed through a thin Co-ferrite barrier. The inverse type tunnel magnetoresistance ratio of −124% measured at 10 K was obtained. The inverse type magnetoresistance suggests the negative spin polarization of Co-ferrite barrier. The magnetoresistance ratio of −124% corresponds to the spin polarization of −0.77 by the Co-ferrite barrier. The last part is devoted to the spin injection from Co 2 FeAl 0.5 Si 0.5 into GaAs. The spin injection signal was clearly obtained by three terminal Hanle measurement. The spin relaxation time was estimated to be 380 ps measured at 5 K.

  17. RATIO ESTIMATORS FOR THE CO-EFFICIENT OF VARIATION IN A FINITE POPULATION

    Directory of Open Access Journals (Sweden)

    Archana V

    2011-04-01

    Full Text Available The Co-efficient of variation (C.V is a relative measure of dispersion and is free from unit of measurement. Hence it is widely used by the scientists in the disciplines of agriculture, biology, economics and environmental science. Although a lot of work has been reported in the past for the estimation of population C.V in infinite population models, they are not directly applicable for the finite populations. In this paper we have proposed six new estimators of the population C.V in finite population using ratio and product type estimators. The bias and mean square error of these estimators are derived for the simple random sampling design. The performance of the estimators is compared using a real life dataset. The ratio estimator using the information on the population C.V of the auxiliary variable emerges as the best estimator

  18. Errors and corrections in the separation of spin-flip and non-spin-flip thermal neutron scattering using the polarization analysis technique

    International Nuclear Information System (INIS)

    Williams, W.G.

    1975-01-01

    The use of the polarization analysis technique to separate spin-flip from non-spin-flip thermal neutron scattering is especially important in determining magnetic scattering cross-sections. In order to identify a spin-flip ratio in the scattering with a particular scattering process, it is necessary to correct the experimentally observed 'flipping-ratio' to allow for the efficiencies of the vital instrument components (polarizers and spin-flippers), as well as multiple scattering effects in the sample. Analytical expressions for these corections are presented and their magnitudes in typical cases estimated. The errors in measurement depend strongly on the uncertainties in the calibration of the efficiencies of the polarizers and the spin-flipper. The final section is devoted to a discussion of polarization analysis instruments

  19. Anisotropic spin transport affected by competition between spin orbit interaction and Zeeman effect in an InGaAs based wire

    International Nuclear Information System (INIS)

    Nitta, Junsaku; Moulis, Sylvain; Kohda, Makoto

    2011-01-01

    Spin transport affected by competition between Zeeman effect and spin-orbit interaction (SOI) is investigated in order to check a proposed method to deduce the Rashba SOI α and Dresselhaus SOI β ratio. The experimentally obtained ratio α/β of the present sample is about 4 from angle dependence of magnetoconductance under in-plane magnetic field. The proposed method to detect the ratio by transport measurement is promising although further improvement of sample fabrication and measurement is required.

  20. Sex ratio and time to pregnancy: analysis of four large European population surveys

    DEFF Research Database (Denmark)

    Joffe, Mike; Bennett, James; Best, Nicky

    2007-01-01

    To test whether the secondary sex ratio (proportion of male births) is associated with time to pregnancy, a marker of fertility. Design Analysis of four large population surveys. Setting Denmark and the United Kingdom. Participants 49 506 pregnancies.......To test whether the secondary sex ratio (proportion of male births) is associated with time to pregnancy, a marker of fertility. Design Analysis of four large population surveys. Setting Denmark and the United Kingdom. Participants 49 506 pregnancies....

  1. Spin-filtering junctions with double ferroelectric barriers

    International Nuclear Information System (INIS)

    Yan, Ju; Ding-Yu, Xing

    2009-01-01

    An FS/FE/NS/FE/FS double tunnel junction is suggested to have the ability to inject, modulate and detect the spin-polarized current electrically in a single device, where FS is the ferromagnetic semiconductor electrode, NS is the nonmagnetic semiconductor, and FE the ferroelectric barrier. The spin polarization of the current injected into the NS region can be switched between a highly spin-polarized state and a spin unpolarized state. The high spin polarization may be detected by measuring the tunneling magnetoresistance ratio of the double tunnel junction

  2. A NEW MODIFIED RATIO ESTIMATOR FOR ESTIMATION OF POPULATION MEAN WHEN MEDIAN OF THE AUXILIARY VARIABLE IS KNOWN

    Directory of Open Access Journals (Sweden)

    Jambulingam Subramani

    2013-10-01

    Full Text Available The present paper deals with a modified ratio estimator for estimation of population mean of the study variable when the population median of the auxiliary variable is known. The bias and mean squared error of the proposed estimator are derived and are compared with that of existing modified ratio estimators for certain known populations. Further we have also derived the conditions for which the proposed estimator performs better than the existing modified ratio estimators. From the numerical study it is also observed that the proposed modified ratio estimator performs better than the existing modified ratio estimators for certain known populations.

  3. NMR studies of selective population inversion and spin clustering

    International Nuclear Information System (INIS)

    Baum, J.S.

    1986-02-01

    This work describes the development and application of selective excitation techniques in Nuclear Magnetic Resonance. Composite pulses and multiple-quantum methods are used to accomplish various goals, such as broadband and narrowband excitation in liquids, and collective excitation of groups of spins in solids. These methods are applied to a variety of problems, including non-invasive spatial localization, spin cluster size characterization in disordered solids and solid state NMR imaging

  4. Proton form factor ratio, μpGEP/GMP from double spin asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Habarakada Liyanage, Anusha Pushpakumari [Hampton Univ., Hampton, VA (United States)

    2013-08-01

    The form factors are fundamental properties of the nucleon representing the effect of its structure on its response to electromagnetic probes such as electrons. They are functions of the four-momentum transfer squared Q2 between the electron and the proton. This thesis reports the results of a new measurement of the ratio of the electric and magnetic form factors of the proton up to Q2 = 5.66 (GeV/c)2 using the double spin asymmetry with a polarized beam and target. Experiment E07-003 (SANE, Spin Asymmetries of the Nucleon Experiment) was carried out in Hall C at Jefferson Lab in 2009 to study the proton spin structure functions with a dynamically polarized ammonia target and longitudinally polarized electron beam. By detecting elastically scattered protons in the High-Momentum Spectrometer (HMS) in coincidence with the electrons in the Big Electron Telescope Array (BETA), elastic measurements were carried out in parallel. The elastic double spin asymmetry allows one to extract the proton electric to magnetic form factor ratio GpE/GpM at high-momentum transfer, Q2= 5.66 (GeV/c)2. In addition to the coincidence data, inclusively scattered electrons from the polarized ammonia target were detected by HMS, which allows to measure the beam-target asymmetry in the elastic region with the target spin nearly perpendicular to the momentum transfer, and to extract GpE/GpM at low Q2= 2.06 (GeV/c)2. This alternative measurement of GpE/GpM has verified and confirmed the dramatic discrepancy at high Q2 between the Rosenbluth and the recoil-polarization-transfer iv method with a different measurement technique and systematic uncertainties uncorrelated to those of the recoil-polarization measurements. The measurement of the form factor ratio at Q2 = 2

  5. Spin-flip and spin orbit interactions in heavy ion systems

    International Nuclear Information System (INIS)

    Bybell, D.P.

    1983-01-01

    The role of spin orbit forces in heavy ion reactions is not completely understood. Experimental data is scarce for these systems but the data that does exist indicates a stronger spin orbit force than predicted by the folding models. The spin-flip probability of non-spin zero projectiles is one technique used for these measurements and is often taken as a direct indicator of a spin orbit interaction. This work measures the projectile spin-flip probability for three inelastic reactions; 13 C + 24 Mg, E/sub cm/ = 22.7 MeV; 13 C + 12 C, E/sub cm/ = 17.3 MeV; and 6 Li + 12 C, E/sub cm/ = 15.2 MeV, all leading to the first J/sup π/ = 2 + state of the target. The technique of particle-γ angular correlations was used for measuring the final state density matrix elements, of which the absolute value M = 1 magnetic substate population is equivalent to the spin-flip probability. The method was explored in detail and found to be sensitive to spin-flip probabilities smaller than 1%. The technique was also found to be a good indicator of the reaction mechanism involved. Nonzero and occasionally large spin-flip probabilities were observed in all systems, much larger than the folding model predictions. Information was obtained on the non-spin-flip density matrix elements. In the 13 C + 24 Mg reaction, these were found to agree with calculations when the finite size of the particle detector is included

  6. Restrictions on modeling spin injection by resistor networks

    OpenAIRE

    Rashba, Emmanuel

    2008-01-01

    Because of the technical difficulties of solving spin transport equations in inhomogeneous systems, different resistor networks are widely applied for modeling spin transport. By comparing an analytical solution for spin injection across a ferromagnet - paramagnet junction with a resistor model approach, its essential limitations stemming from inhomogeneous spin populations are clarified.

  7. Abnormal sex ratios in human populations: causes and consequences.

    Science.gov (United States)

    Hesketh, Therese; Xing, Zhu Wei

    2006-09-05

    In the absence of manipulation, both the sex ratio at birth and the population sex ratio are remarkably constant in human populations. Small alterations do occur naturally; for example, a small excess of male births has been reported to occur during and after war. The tradition of son preference, however, has distorted these natural sex ratios in large parts of Asia and North Africa. This son preference is manifest in sex-selective abortion and in discrimination in care practices for girls, both of which lead to higher female mortality. Differential gender mortality has been a documented problem for decades and led to reports in the early 1990s of 100 million "missing women" across the developing world. Since that time, improved health care and conditions for women have resulted in reductions in female mortality, but these advances have now been offset by a huge increase in the use of sex-selective abortion, which became available in the mid-1980s. Largely as a result of this practice, there are now an estimated 80 million missing females in India and China alone. The large cohorts of "surplus" males now reaching adulthood are predominantly of low socioeconomic class, and concerns have been expressed that their lack of marriageability, and consequent marginalization in society, may lead to antisocial behavior and violence, threatening societal stability and security. Measures to reduce sex selection must include strict enforcement of existing legislation, the ensuring of equal rights for women, and public awareness campaigns about the dangers of gender imbalance.

  8. Study of high-spin states in 181,182Os

    International Nuclear Information System (INIS)

    Kutsarova, T.; Fallon, P.; Howe, D.; Mokhtar, A.R.; Sharpey-Schafer, J.F.; Walker, P.; Chowdhury, P.; Fabricius, B.; Sletten, G.; Frauendorf, S.

    1995-01-01

    High-spin states in the nuclei 181,182 Os have been populated in the 150 Nd( 36 S,xn) reactions and studied with the ESSA30 array. The nucleus 181 Os has also been studied at the NBI tandem accelerator using the 167 Er( 18 O,4n) reaction. The previously known bands in both nuclei have been extended to higher spins and two new side bands have been found in 181 Os. In the latter nucleus the ground state has been established to have I π =(1)/(2) - . The extraction of the ratios of reduced transition probabilities B(M1)/B(E2) from branching and E2/M1 mixing ratios permitted configuration assignments for most of the bands in both nuclei. The analysis has been carried out within the semiclassical vector model for M1 radiation. The positive-parity yrare sequences in 182 Os and the band based on the I π = K π =(23)/(2) - state in 181 Os have been interpreted as t-bands arising from a rotation about a tilted axis. The alignment behaviour and the crossing frequencies are for most of the bands consistent with predictions of the cranked shell model. ((orig.))

  9. Spin-Swapping Transport and Torques in Ultrathin Magnetic Bilayers

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2016-07-12

    Planar spin transport in disordered ultrathin magnetic bilayers comprising a ferromagnet and a normal metal (typically used for spin pumping, spin Seebeck and spin-orbit torque experiments) is investigated theoretically. Using a tight-binding model that puts the extrinsic spin Hall effect and spin swapping on equal footing, we show that the nature of spin-orbit coupled transport dramatically depends on the ratio between the layer thickness d and the mean free path λ. While the spin Hall effect dominates in the diffusive limit (d≫λ), spin swapping dominates in the Knudsen regime (d≲λ). A remarkable consequence is that spin swapping induces a substantial fieldlike torque in the Knudsen regime.

  10. Spin-Swapping Transport and Torques in Ultrathin Magnetic Bilayers

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed; Manchon, Aurelien

    2016-01-01

    Planar spin transport in disordered ultrathin magnetic bilayers comprising a ferromagnet and a normal metal (typically used for spin pumping, spin Seebeck and spin-orbit torque experiments) is investigated theoretically. Using a tight-binding model that puts the extrinsic spin Hall effect and spin swapping on equal footing, we show that the nature of spin-orbit coupled transport dramatically depends on the ratio between the layer thickness d and the mean free path λ. While the spin Hall effect dominates in the diffusive limit (d≫λ), spin swapping dominates in the Knudsen regime (d≲λ). A remarkable consequence is that spin swapping induces a substantial fieldlike torque in the Knudsen regime.

  11. Sub-national mapping of population pyramids and dependency ratios in Africa and Asia

    Science.gov (United States)

    Pezzulo, Carla; Hornby, Graeme M.; Sorichetta, Alessandro; Gaughan, Andrea E.; Linard, Catherine; Bird, Tomas J.; Kerr, David; Lloyd, Christopher T.; Tatem, Andrew J.

    2017-07-01

    The age group composition of populations varies substantially across continents and within countries, and is linked to levels of development, health status and poverty. The subnational variability in the shape of the population pyramid as well as the respective dependency ratio are reflective of the different levels of development of a country and are drivers for a country's economic prospects and health burdens. Whether measured as the ratio between those of working age and those young and old who are dependent upon them, or through separate young and old-age metrics, dependency ratios are often highly heterogeneous between and within countries. Assessments of subnational dependency ratio and age structure patterns have been undertaken for specific countries and across high income regions, but to a lesser extent across the low income regions. In the framework of the WorldPop Project, through the assembly of over 100 million records across 6,389 subnational administrative units, subnational dependency ratio and high resolution gridded age/sex group datasets were produced for 87 countries in Africa and Asia.

  12. Spin and radiation in intense laser fields

    International Nuclear Information System (INIS)

    Walser, M.W.; Urbach, D.J.; Hatsagortsyan, K.Z.; Hu, S.X.; Keitel, C.H.

    2002-01-01

    The spin dynamics and its reaction on the particle motion are investigated for free and bound electrons in intense linearly polarized laser fields. Employing both classical and quantum treatments we analytically evaluate the spin oscillation of free electrons in intense laser fields and indicate the effect of spin-orbit coupling on the motion of the electron. In Mott scattering an estimation for the spin oscillation is derived. In intense laser ion dynamics spin signatures are studied in detail with emphasis on high-order harmonic generation in the tunneling regime. First- and second-order calculations in the ratio of electron velocity and the speed of light show spin signatures in the radiation spectrum and spin-orbit effects in the electron polarization

  13. Precessional Instability in Binary Black Holes with Aligned Spins.

    Science.gov (United States)

    Gerosa, Davide; Kesden, Michael; O'Shaughnessy, Richard; Klein, Antoine; Berti, Emanuele; Sperhake, Ulrich; Trifirò, Daniele

    2015-10-02

    Binary black holes on quasicircular orbits with spins aligned with their orbital angular momentum have been test beds for analytic and numerical relativity for decades, not least because symmetry ensures that such configurations are equilibrium solutions to the spin-precession equations. In this work, we show that these solutions can be unstable when the spin of the higher-mass black hole is aligned with the orbital angular momentum and the spin of the lower-mass black hole is antialigned. Spins in these configurations are unstable to precession to large misalignment when the binary separation r is between the values r(ud±)=(√(χ(1))±√(qχ(2)))(4)(1-q)(-2)M, where M is the total mass, q≡m(2)/m(1) is the mass ratio, and χ(1) (χ(2)) is the dimensionless spin of the more (less) massive black hole. This instability exists for a wide range of spin magnitudes and mass ratios and can occur in the strong-field regime near the merger. We describe the origin and nature of the instability using recently developed analytical techniques to characterize fully generic spin precession. This instability provides a channel to circumvent astrophysical spin alignment at large binary separations, allowing significant spin precession prior to merger affecting both gravitational-wave and electromagnetic signatures of stellar-mass and supermassive binary black holes.

  14. Cross relaxation in nitroxide spin labels

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    Cross relaxation, and mI-dependence of the intrinsic electron spin-lattice relaxation rate We, are incorporated explicitly into the rate equations for the electron-spin population differences that govern the saturation behaviour of 14N- and 15N-nitroxide spin labels. Both prove important in spin......-label EPR and ELDOR, particularly for saturation recovery studies. Neither for saturation recovery, nor for CW-saturation EPR and CW-ELDOR, can cross relaxation be described simply by increasing the value of We, the intrinsic spin-lattice relaxation rate. Independence of the saturation recovery rates from...... the hyperfine line pumped or observed follows directly from solution of the rate equations including cross relaxation, even when the intrinsic spin-lattice relaxation rate We is mI-dependent....

  15. Tunneling-Magnetoresistance Ratio Comparison of MgO-Based Perpendicular-Magnetic-Tunneling-Junction Spin Valve Between Top and Bottom Co2Fe6B2 Free Layer Structure.

    Science.gov (United States)

    Lee, Du-Yeong; Lee, Seung-Eun; Shim, Tae-Hun; Park, Jea-Gun

    2016-12-01

    For the perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a nanoscale-thick bottom Co2Fe6B2 free layer ex situ annealed at 400 °C, which has been used as a common p-MTJ structure, the Pt atoms of the Pt buffer layer diffused into the MgO tunneling barrier. This transformed the MgO tunneling barrier from a body-centered cubic (b.c.c) crystallized layer into a mixture of b.c.c, face-centered cubic, and amorphous layers and rapidly decreased the tunneling-magnetoresistance (TMR) ratio. The p-MTJ spin valve with a nanoscale-thick top Co2Fe6B2 free layer could prevent the Pt atoms diffusing into the MgO tunneling barrier during ex situ annealing at 400 °C because of non-necessity of a Pt buffer layer, demonstrating the TMR ratio of ~143 %.

  16. Population and phase dynamics of F=1 spinor condensates in an external magnetic field

    International Nuclear Information System (INIS)

    Romano, D.R.; Passos, E.J.V. de

    2004-01-01

    We show that the classical dynamics underlying the mean-field description of homogeneous mixtures of spinor F=1 Bose-Einstein condensates in an external magnetic field is integrable as a consequence of number conservation and axial symmetry in spin space. The population dynamics depends only on the quadratic term of the Zeeman energy and on the strength of the spin-dependent term of the atom-atom interaction. We determine the equilibrium populations as function of the ratio of these two quantities and the miscibility of the hyperfine components in the ground state spinors are thoroughly discussed. Outside the equilibrium, the populations are always a periodic function of time where the periodic motion can be a libration or a rotation. Our studies also indicate the absence of metastability

  17. Application of fast spin-echo T2-weighted imaging for examination of the neurocranium. Comparison with the conventional T2-weighted spin-echo sequence

    International Nuclear Information System (INIS)

    Siewert, C.; Hosten, N.; Felix, R.

    1994-01-01

    T 2 -weighted spin-echo imaging is the standard screening procedure in MR imaging of the neutrocranium. We evaluated fast spin-echo T 2 -weighted imaging (TT 2 ) of the neurocranium in comparison to conventional spin-echo T 2 -weighted imaging (T 2 ). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher than TT 2 than in T 2 (with the exception of grey-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT 2 , Parkinson patients have to be examined by conventional T 2 . If these limitations are taken into account, fast spin-echo T 2 -weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T 2 -weighting achieved in a short acquisition time. (orig.) [de

  18. Spin-excited oscillations in two-component fermion condensates

    International Nuclear Information System (INIS)

    Maruyama, Tomoyuki; Bertsch, George F.

    2006-01-01

    We investigate collective spin excitations in two-component fermion condensates with special consideration of unequal populations of the two components. The frequencies of monopole and dipole modes are calculated using Thomas-Fermi theory and the scaling approximation. As the fermion-fermion coupling is varied, the system shows various phases of the spin configuration. We demonstrate that spin oscillations have more sensitivity to the spin phase structures than the density oscillations

  19. Length dependence of rectification in organic co-oligomer spin rectifiers

    International Nuclear Information System (INIS)

    Hu Gui-Chao; Zhang Zhao; Li Ying; Ren Jun-Feng; Wang Chuan-Kui

    2016-01-01

    The rectification ratio of organic magnetic co-oligomer diodes is investigated theoretically by changing the molecular length. The results reveal two distinct length dependences of the rectification ratio: for a short molecular diode, the charge-current rectification changes little with the increase of molecular length, while the spin-current rectification is weakened sharply by the length; for a long molecular diode, both the charge-current and spin-current rectification ratios increase quickly with the length. The two kinds of dependence switch at a specific length accompanied with an inversion of the rectifying direction. The molecular ortibals and spin-resolved transmission analysis indicate that the dominant mechanism of rectification suffers a change at this specific length, that is, from asymmetric shift of molecular eigenlevels to asymmetric spatial localization of wave functions upon the reversal of bias. This work demonstrates a feasible way to control the rectification in organic co-oligomer spin diodes by adjusting the molecular length. (paper)

  20. Ratio of spin transfer parameters dt/rt in d(p vector, n vector)pp quasi-elastic scattering

    International Nuclear Information System (INIS)

    Abegg, R.; Green, W.; Greeniaus, L.G.; Miller, C.A.; Bardyopadhyay, D.; Birchall, J.; Davis, C.A.; Davison, N.E.; Page, S.A.; Ramsay, W.D.; van Oers, W.T.H.; Lapointe, C.; Moss, G.A.; Tkachuk, R.R.

    1988-05-01

    The ratio of spin transfer parameters d t /r t for the quasi-elastic process d(p,n)pp has been measured at four energies between 200 and 500 MeV at a neutron scattering angle of 9 degrees. From this, the following values of D t /R t for free np scattering have been deduced: -0.0190 ± 0.0072 (T p = 223 MeV); -0.2328 ± 0.0057 (324 MeV); -0.3731 ± 0.0068 (425 MeV); -0.4892 ± 0.0107 (492 MeV). These values have a noticeable effect on present day phase shift solutions. The magnitude of the ε 1 mixing parameter is reduced and other phase shifts are smoother around 300 MeV. (Author) (17 refs., 2 tabs., 3 figs.)

  1. Conductance and spin polarization for a quantum wire with the competition of Rashba and Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Fu Xi; Chen Zeshun; Zhong Feng; Zhou Guanghui

    2010-01-01

    We investigate theoretically the spin transport of a quantum wire (QW) with weak Rashba and Dresselhaus spin-orbit coupling (SOC) nonadiabatically connected to two normal leads. Using scattering matrix method and Landauer-Buettiker formula within effective free-electron approximation, we have calculated spin-dependent conductances G ↑ and G ↓ , total conductance G and spin polarization P z for a hard-wall potential confined QW. It is demonstrated that, the SOCs induce the splitting of G ↑ and G ↓ and form spin polarization P z . Moreover, the conductances present quantized plateaus, the plateaus and P z show oscillation structures near the subband edges. Furthermore, with the increase of QW width a strong spin polarization (P z ∼1) gradually becomes weak, which can be used to realize a spin filter. When the two SOCs coexist, the total conductance presents an isotropy transport due to the Rashba and Dresselhaus Hamiltonians being fixed, and the alteration of two SOCs strength ratio changes the sign of spin polarization. This may provide a way of realizing the expression of unit information by tuning gate voltage.

  2. Spin-wave thermal population as temperature probe in magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Le Goff, A., E-mail: adrien.le-goff@u-psud.fr; Devolder, T. [Institut d' Electronique Fondamentale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); Nikitin, V. [SAMSUNG Electronics Corporation, 601 McCarthy Blvd Milpitas, California 95035 (United States)

    2016-07-14

    We study whether a direct measurement of the absolute temperature of a Magnetic Tunnel Junction (MTJ) can be performed using the high frequency electrical noise that it delivers under a finite voltage bias. Our method includes quasi-static hysteresis loop measurements of the MTJ, together with the field-dependence of its spin wave noise spectra. We rely on an analytical modeling of the spectra by assuming independent fluctuations of the different sub-systems of the tunnel junction that are described as macrospin fluctuators. We illustrate our method on perpendicularly magnetized MgO-based MTJs patterned in 50 × 100 nm{sup 2} nanopillars. We apply hard axis (in-plane) fields to let the magnetic thermal fluctuations yield finite conductance fluctuations of the MTJ. Instead of the free layer fluctuations that are observed to be affected by both spin-torque and temperature, we use the magnetization fluctuations of the sole reference layers. Their much stronger anisotropy and their much heavier damping render them essentially immune to spin-torque. We illustrate our method by determining current-induced heating of the perpendicularly magnetized tunnel junction at voltages similar to those used in spin-torque memory applications. The absolute temperature can be deduced with a precision of ±60 K, and we can exclude any substantial heating at the spin-torque switching voltage.

  3. Test of a two-dimensional neutron spin analyzer

    International Nuclear Information System (INIS)

    Falus, Peter; Vorobiev, Alexei; Krist, Thomas

    2006-01-01

    The aim of this measurement was to test the new large-area spin polarization analyzer for the EVA-SERGIS beamline at Institute Laue Langevin (ILL). The spin analyzer, which was built in Berlin selects one of the two spin states of a neutron beam of wavelength 5.5 A impinging on a horizontal sample and reflected or scattered from the sample. The spin is analyzed for all neutrons scattered into a detector with an area of 190 mmx190 mm positioned 2.7 m behind the sample, thus covering an angular interval of 4 o x4 o . The tests were done at the HMI V14 beamline followed by tests at the EVA beamline at ILL. The transmission for the two spin components, the flipping ratio and small angle scattering were recorded while scanning the incoming beam on the analyzer. It was clearly visible, that due to the stacked construction the intensity is blocked at regular intervals. Careful inspection shows that the transmission of the good spin component is more than 0.72 for 60% of the detector area and the corrected flipping ratio is more than 47 for 60% of the detector area. Although some small-angle scattering is visible, it is notable that this analyzer design has small scattering intensities

  4. Test of a two-dimensional neutron spin analyzer

    Science.gov (United States)

    Falus, Péter; Vorobiev, Alexei; Krist, Thomas

    2006-11-01

    The aim of this measurement was to test the new large-area spin polarization analyzer for the EVA-SERGIS beamline at Institute Laue Langevin (ILL). The spin analyzer, which was built in Berlin selects one of the two spin states of a neutron beam of wavelength 5.5 Å impinging on a horizontal sample and reflected or scattered from the sample. The spin is analyzed for all neutrons scattered into a detector with an area of 190 mm×190 mm positioned 2.7 m behind the sample, thus covering an angular interval of 4°×4°. The tests were done at the HMI V14 beamline followed by tests at the EVA beamline at ILL. The transmission for the two spin components, the flipping ratio and small angle scattering were recorded while scanning the incoming beam on the analyzer. It was clearly visible, that due to the stacked construction the intensity is blocked at regular intervals. Careful inspection shows that the transmission of the good spin component is more than 0.72 for 60% of the detector area and the corrected flipping ratio is more than 47 for 60% of the detector area. Although some small-angle scattering is visible, it is notable that this analyzer design has small scattering intensities.

  5. Social deprivation, population dependency ratio and an extended hospital episode - Insights from acute medicine.

    Science.gov (United States)

    Cournane, Seán; Dalton, Ann; Byrne, Declan; Conway, Richard; O'Riordan, Deirdre; Coveney, Seamus; Silke, Bernard

    2015-11-01

    Patients from deprived backgrounds have a higher in-patient mortality following an emergency medical admission; this study aimed to investigate the extent to which Deprivation status and the population Dependency Ratio influenced extended hospital episodes. All Emergency Medical admissions (75,018 episodes of 41,728 patients) over 12 years (2002-2013) categorized by quintile of Deprivation Index and Population Dependency Rates (proportion of non-working/working) were evaluated against length of stay (LOS). Patients with an Extended LOS (ELOS), >30 days, were investigated, by Deprivation status, Illness Severity and Co-morbidity status. Univariate and multi-variable risk estimates (Odds Rates or Incidence Rate Ratios) were calculated, using truncated Poisson regression. Hospital episodes with ELOS had a frequency of 11.5%; their median LOS (IQR) was 55.0 (38.8, 97.6) days utilizing 57.6% of all bed days by all 75,018 emergency medical admissions. The Deprivation Index independently predicted the rate of such ELOS admissions; these increased approximately five-fold (rate/1000 population) over the Deprivation Quintiles with model adjusted predicted admission rates of for Q1 0.93 (95% CI: 0.86, 0.99), Q22.63 (95% CI: 2.55, 2.71), Q3 3.84 (95% CI: 3.77, 3.91), Q4 3.42 (95% CI: 3.37, 3.48) and Q5 4.38 (95% CI: 4.22, 4.54). Similarly the Population Dependency Ratio Quintiles (dependent to working structure of the population by small area units) independently predicted extended LOS admissions. The admission of patients with an ELOS is strongly influenced by the Deprivation status and the population Dependency Ratio of the catchment area. These factors interact, with both high deprivation and Dependency cohorts having a major influence on the numbers of emergency medical admission patients with an extended hospital episode. Copyright © 2015 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  6. Nonlinear stability of spin-flip excitations

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1975-01-01

    A rather complete discussion of the nonlinear electrodynamic behavior of a negative-temperature spin system is presented. The method presented here is based on a coupled set of master equations, one describing the time evolution of the photon (i.e., the spin-flip excitation) distribution function and the other describing the time evolution of the particle distribution function. It is found that the initially unstable (i.e., growing) spin-flip excitations grow to such a large amplitude that their nonlinear reaction on the particle distribution function becomes important. It is then shown that the initially totally inverted two-level spin system evolves rapidly (through this nonlinear photon-particle coupling) towards a quasilinear steady state where the populations of the spin-up and the spin-down states are equal to each other. Explicit expressions for the time taken to reach this quasilinear steady state and the energy in the spin-flip excitations at this state are also presented

  7. Application of fast spin-echo T[sub 2]-weighted imaging for examination of the neurocranium. Comparison with the conventional T[sub 2]-weighted spin-echo sequence. Die Anwendung der T[sub 2]-gewichteten Turbo-Spin-Echo-Sequenz zur Untersuchung des Neurokraniums. Vergleich mit der konventionellen T[sub 2]-gewichteten Spin-Echo-Sequenz

    Energy Technology Data Exchange (ETDEWEB)

    Siewert, C. (Strahlenklinik und Poliklinik, Universitaets-Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany)); Hosten, N. (Strahlenklinik und Poliklinik, Universitaets-Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany)); Felix, R. (Strahlenklinik und Poliklinik, Universitaets-Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany))

    1994-07-01

    T[sub 2]-weighted spin-echo imaging is the standard screening procedure in MR imaging of the neutrocranium. We evaluated fast spin-echo T[sub 2]-weighted imaging (TT[sub 2]) of the neurocranium in comparison to conventional spin-echo T[sub 2]-weighted imaging (T[sub 2]). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher than TT[sub 2] than in T[sub 2] (with the exception of grey-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT[sub 2], Parkinson patients have to be examined by conventional T[sub 2]. If these limitations are taken into account, fast spin-echo T[sub 2]-weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T[sub 2]-weighting achieved in a short acquisition time. (orig.)

  8. Study of neutrons resonances as a function of spin for the nuclei I = 1/2 (silver, thulium, platinum) between 1 and 800 eV; Etude des resonnances de neutrons en foncton de leur spin pour les noyaux I = 1/2 (argent, thulium et platine) entre 1 et 800 eV

    Energy Technology Data Exchange (ETDEWEB)

    De Barros, S M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-04-01

    The assignment of spins has been made for 120 levels of 239 detected. From these data we have deduced that: - The ratio of average spacing of each state of spin obeys the law of 2 J + 1. - The values of the strength function of {sup 195}Pt and {sup 169}Tm are in agreement with the model of Chase et Al and has the same values for the two states of spin. - The fluctuations of total radiation widths of resonances are observed in the case of {sup 195}Pt for the two spin-states. - The neutron widths are governed by the distributions of Porter and Thomas with one degree of freedom; the observed spacings are consistent with the Wigner distribution for two populations. (author) [French] L'attribution de spin a ete faite pour 120 niveaux sur 239 detectes. On en deduit: - Le rapport des espacements moyens pour chaque etat de spin qui obeit a la loi en (2j + 1). - Les valeurs des fonctions densites de {sup 195}Pt et {sup 169}Tm sont en accord avec le modele du noyau deforme de Chase et al. et ont la meme valeur pour les deux etats de spin. - Des fluctuations, dans les largeurs radiatives totales des resonances sont observees dans le cas de {sup 195}Pt pour les deux etats de spin. - Les largeurs de diffusion suivent les distributions de Porter et Thomas a un degre de liberte; les espacements celles de Wigner a deux populations. (auteur)

  9. Large spin-valve effect in a lateral spin-valve device based on ferromagnetic semiconductor GaMnAs

    Science.gov (United States)

    Asahara, Hirokatsu; Kanaki, Toshiki; Ohya, Shinobu; Tanaka, Masaaki

    2018-03-01

    We investigate the spin-dependent transport properties of a lateral spin-valve device based on the ferromagnetic semiconductor GaMnAs. This device is composed of a GaMnAs channel layer grown on GaAs with a narrow trench across the channel. Its current-voltage characteristics show tunneling behavior. Large magnetoresistance (MR) ratios of more than ˜10% are obtained. These values are much larger than those (˜0.1%) reported for lateral-type spin metal-oxide-semiconductor field-effect transistors. The magnetic field direction dependence of the MR curve differs from that of the anisotropic magnetoresistance of GaMnAs, which confirms that the MR signal originates from the spin-valve effect between the GaMnAs electrodes.

  10. Enhanced magnetoresistance in graphene spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan)

    2017-05-01

    Graphene has been explored as a promising candidate for spintronics due to its atomically flat structure and novel properties. Here we fabricate two spin valve junctions, one from directly grown graphene on Ni electrode (DG) and other from transferred graphene (TG). The magnetoresistance (MR) ratio for DG device is found to be higher than TG device i.e. ~0.73% and 0.14%, respectively. Also the spin polarization of Ni electrode is determined to be 6.03% at room temperature in case of DG device, however it reduces to 2.1% for TG device. From this analysis, we infer how environmental exposure of the sample degrades the spin properties of the magnetic junctions. Moreover, the transport measurements reveal linear behavior for current-voltage (I-V) characteristics, indicating ohmic behavior of the junctions. Our findings unveil the efficiency of direct growth of graphene for spin filtering mechanism in spin valve devices.

  11. High spin studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1992-01-01

    The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and complete spectroscopy (i.e. the overlap of state of the art low-and high-spin studies in the same nucleus)

  12. [The use of the T2-weighted turbo-spin-echo sequence in studying the neurocranium. A comparison with the conventional T2-weighted spin-echo sequence].

    Science.gov (United States)

    Siewert, C; Hosten, N; Felix, R

    1994-07-01

    T2-weighted spin-echo imaging is the standard screening procedure in MR imaging of the neurocranium. We evaluated fast spin-echo T2-weighted imaging (TT2) of the neurocranium in comparison to conventional spin-echo T2-weighted imaging (T2). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher in TT2 than in T2 (with the exception of gray-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT2, Parkinson patients have to be examined by conventional T2. If these limitations are taken into account, fast spin-echo T2-weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T2-weighting achieved in a short acquisition time.

  13. Quasiparticle spin resonance and coherence in superconducting aluminium.

    Science.gov (United States)

    Quay, C H L; Weideneder, M; Chiffaudel, Y; Strunk, C; Aprili, M

    2015-10-26

    Conventional superconductors were long thought to be spin inert; however, there is now increasing interest in both (the manipulation of) the internal spin structure of the ground-state condensate, as well as recently observed long-lived, spin-polarized excitations (quasiparticles). We demonstrate spin resonance in the quasiparticle population of a mesoscopic superconductor (aluminium) using novel on-chip microwave detection techniques. The spin decoherence time obtained (∼100 ps), and its dependence on the sample thickness are consistent with Elliott-Yafet spin-orbit scattering as the main decoherence mechanism. The striking divergence between the spin coherence time and the previously measured spin imbalance relaxation time (∼10 ns) suggests that the latter is limited instead by inelastic processes. This work stakes out new ground for the nascent field of spin-based electronics with superconductors or superconducting spintronics.

  14. High performance current and spin diode of atomic carbon chain between transversely symmetric ribbon electrodes.

    Science.gov (United States)

    Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei

    2014-08-21

    We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 10(4). When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 10(6).

  15. Graphene spin valve: An angle sensor

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan)

    2017-06-15

    Graphene spin valves can be optimized for various spintronic applications by tuning the associated experimental parameters. In this work, we report the angle dependent magnetoresistance (MR) in graphene spin valve for different orientations of applied magnetic field (B). The switching points of spin valve signals show a clear shift towards higher B for each increasing angle of the applied field, thus sensing the response for respective orientation of the magnetic field. The angular variation of B shifts the switching points from ±95 G to ±925 G as the angle is varied from 0° to 90° at 300 K. The observed shifts in switching points become more pronounced (±165 G to ±1450 G) at 4.2 K for similar orientation. A monotonic increase in MR ratio is observed as the angle of magnetic field is varied in the vertical direction at 300 K and 4.2 K temperatures. This variation of B (from 0° to 90°) increases the magnitude of MR ratio from ∼0.08% to ∼0.14% at 300 K, while at 4.2 K it progresses to ∼0.39% from ∼0.14%. The sensitivity related to angular variation of such spin valve structure can be employed for angle sensing applications.

  16. Interlayer quality dependent graphene spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, 23640 Pakistan (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, 23640 Pakistan (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul, 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan); Murtaza, Ghulam [Centre for Advanced Studies in Physics, Government College University, Lahore 54000 (Pakistan); Ramay, Shahid Mahmood [Physics & Astronomy Department, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia)

    2017-01-15

    It is possible to utilize the new class of materials for emerging two-dimensional (2D) spintronic applications. Here, the role of defects in the graphene interlayer and its influence on the spin valve signal is reported. The emergence of D peak in Raman spectrum reveals defects in the graphene layer. The linear I-V curve for defective and non-defective graphene samples indicate the ohmic nature of NiFe and graphene contact. A non-uniform magnetoresistive effect with a bump is persistently observed for defective graphene device at various temperatures, while a smooth and symmetric signal is detected for non-defective graphene spin valve. Parallel and antiparallel alignments of magnetization of magnetic materials shows low and high resistance states, respectively. The magnetoresistance (MR) ratio for defective graphene NiFe/graphene/NiFe spin valve is measured to be ~0.16% at 300 K which progresses to ~0.39% for non-defective graphene device at the same temperature. Similarly at 4.2 K the MR ratios are reported to be ~0.41% and ~0.78% for defective and non-defective graphene devices, respectively. Our investigation provides an evidence for relatively better response of the spin valve signal with high quality graphene interlayer.

  17. Interlayer quality dependent graphene spin valve

    International Nuclear Information System (INIS)

    Iqbal, Muhammad Zahir; Hussain, Ghulam; Siddique, Salma; Iqbal, Muhammad Waqas; Murtaza, Ghulam; Ramay, Shahid Mahmood

    2017-01-01

    It is possible to utilize the new class of materials for emerging two-dimensional (2D) spintronic applications. Here, the role of defects in the graphene interlayer and its influence on the spin valve signal is reported. The emergence of D peak in Raman spectrum reveals defects in the graphene layer. The linear I-V curve for defective and non-defective graphene samples indicate the ohmic nature of NiFe and graphene contact. A non-uniform magnetoresistive effect with a bump is persistently observed for defective graphene device at various temperatures, while a smooth and symmetric signal is detected for non-defective graphene spin valve. Parallel and antiparallel alignments of magnetization of magnetic materials shows low and high resistance states, respectively. The magnetoresistance (MR) ratio for defective graphene NiFe/graphene/NiFe spin valve is measured to be ~0.16% at 300 K which progresses to ~0.39% for non-defective graphene device at the same temperature. Similarly at 4.2 K the MR ratios are reported to be ~0.41% and ~0.78% for defective and non-defective graphene devices, respectively. Our investigation provides an evidence for relatively better response of the spin valve signal with high quality graphene interlayer.

  18. Lifetime and spin measurements in 40Ar

    International Nuclear Information System (INIS)

    Southon, J.

    1976-01-01

    Lifetimes of levels in 40 Ar populated by the 40 Ar(p,p') reaction have been measured using the Doppler shift attenuation method with a p-γ coincidence technique. A solid argon target was used. The lifetimes determined were (in psec.): 1461 keV level, 1.95 +- 0.15; 2121 keV, >25; 2524 keV, 0.53 +- 0.06; 2893 keV, 4.4 [+2.6,-1.3]; 3208 keV, 0.27. A comprehensive set of branching ratios was also derived and the spins and parities of the 3208 and 4481 keV states were determined to be 2 + and 1 +- respectively. Some of these results suggest that 2 particle -2 hole and 4 particle - 4 hole components are strongly mixed in the low-lying positive parity states in a manner similar to the 2 particle and 4 particle - 2 hole mixing that occurs in 42 Ca. An additional lifetime measurement for the recently discovered high spin state at 3464 keV was carried out using direct electronic timing. The level was excited by the 37 Cl(α,p) reaction and was found to have a lifetime of 1.00 +- 0.03 nsec, which taken together with other evidence indicates that its spin and parity are 6 + . The E2 transition strengths of the 40 Ar 6 + - 4 + - 2 + - 0 + cascade can be simply interpreted in terms of a weak coupling model. (author)

  19. Quantum Point Contacts as Spin Injectors and Detectors for Studying Rasha Spin Precession in Semiconductor Quantum Wires

    Science.gov (United States)

    Debray, Philippe; Shorubalko, Ivan; Xu, Hongqi

    2007-03-01

    We have studied polarized spin transport in a device consisting of three quantum point contacts (QPCs) in series made on InGaAs/InP quantum-well (QW) structures. The QPCs were created by independent pairs of side gates, each pair for one QPC. By adjusting the bias voltages of the side gates, the widths of the QPCs are independently tuned to have transport in the fundamental mode. An external magnetic field of a few T causes spin splitting of the lowest one-dimensional (1D) subbands. The widths of the end QPCs are adjusted to position the Fermi level in the spin-split energy gap, while that of the central QPC is kept wide enough to populate both spin-split bands. Measurement of the conductance of the end QPCs at low temperatures (spinFET.

  20. High spin studies with radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, J D [Oak Ridge National Lab., TN (United States)

    1992-08-01

    The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and, complete spectroscopy (i.e. the overlap of state of the art low- and high-spin studies in the same nucleus). (author). 47 refs., 8 figs.

  1. Entangled spins and ghost-spins

    Directory of Open Access Journals (Sweden)

    Dileep P. Jatkar

    2017-09-01

    Full Text Available We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves, the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.

  2. Incomplete fusion reactions in 16O+159Tb system: Spin distribution measurements

    Directory of Open Access Journals (Sweden)

    Sharma Vijay R.

    2015-01-01

    Full Text Available In order to explore the reaction modes on the basis of their entry state spin population, an experiment has been done by employing particle-γ coincidence technique carried out at the Inter University Accelerator Centre, New Delhi. The preliminary analysis conclusively demonstrates, spin distribution for some reaction products populated via complete and/or incomplete fusion of 16O with 159Tb system found to be distinctly different. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states.

  3. Spinning like a blue straggler: the population of fast rotating blue straggler stars in ω Centauri

    Energy Technology Data Exchange (ETDEWEB)

    Mucciarelli, A.; Lovisi, L.; Ferraro, F. R.; Dalessandro, E.; Lanzoni, B. [Dipartimento di Fisica and Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Monaco, L. [European Southern Observatory, Casilla 19001, Santiago (Chile)

    2014-12-10

    By using high-resolution spectra acquired with FLAMES-GIRAFFE at the ESO/VLT, we measured the radial and rotational velocities for 110 blue straggler stars (BSSs) in ω Centauri, the globular cluster-like stellar system harboring the largest known BSS population. According to their radial velocities, 109 BSSs are members of the system. The rotational velocity distribution is very broad, with the bulk of BSSs spinning at less than ∼40 km s{sup –1} (in agreement with the majority of such stars observed in other globular clusters) and a long tail reaching ∼200 km s{sup –1}. About 40% of the sample has v{sub e} sin i > 40 km s{sup –1} and about 20% has v{sub e} sin i > 70 km s{sup –1}. Such a large fraction is very similar to the percentage of fast rotating BSSs observed in M4. Thus, ω Centauri is the second stellar cluster, beyond M4, with a surprisingly high population of fast spinning BSSs. We found a hint of radial behavior for a fraction of fast rotating BSSs, with a mild peak within one core radius, and a possible rise in the external regions (beyond four core radii). This may suggest that recent formation episodes of mass transfer BSSs occurred preferentially in the outskirts of ω Centauri, or that braking mechanisms able to slow down these stars are least efficient in the lowest density environments.

  4. Spin Current Noise of the Spin Seebeck Effect and Spin Pumping

    Science.gov (United States)

    Matsuo, M.; Ohnuma, Y.; Kato, T.; Maekawa, S.

    2018-01-01

    We theoretically investigate the fluctuation of a pure spin current induced by the spin Seebeck effect and spin pumping in a normal-metal-(NM-)ferromagnet(FM) bilayer system. Starting with a simple ferromagnet-insulator-(FI-)NM interface model with both spin-conserving and non-spin-conserving processes, we derive general expressions of the spin current and the spin-current noise at the interface within second-order perturbation of the FI-NM coupling strength, and estimate them for a yttrium-iron-garnet-platinum interface. We show that the spin-current noise can be used to determine the effective spin carried by a magnon modified by the non-spin-conserving process at the interface. In addition, we show that it provides information on the effective spin of a magnon, heating at the interface under spin pumping, and spin Hall angle of the NM.

  5. Common vole (Microtus arvalis) population sex ratio: biases and process variation

    Czech Academy of Sciences Publication Activity Database

    Bryja, Josef; Nesvadbová, Jiřina; Heroldová, Marta; Jánová, Eva; Losík, J.; Trebatická, L.; Tkadlec, Emil

    2005-01-01

    Roč. 83, č. 11 (2005), s. 1391-1399 ISSN 0008-4301 R&D Projects: GA ČR(CZ) GA524/01/1316; GA ČR(CZ) GP206/02/P068; GA ČR(CZ) GA206/04/2003 Institutional research plan: CEZ:AV0Z60930519 Keywords : common vole * population sex ratio Subject RIV: EH - Ecology, Behaviour Impact factor: 1.175, year: 2005

  6. Spin-dependent transport properties of a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor structure

    Energy Technology Data Exchange (ETDEWEB)

    Kanaki, Toshiki, E-mail: kanaki@cryst.t.u-tokyo.ac.jp; Asahara, Hirokatsu; Ohya, Shinobu, E-mail: ohya@cryst.t.u-tokyo.ac.jp; Tanaka, Masaaki, E-mail: masaaki@ee.t.u-tokyo.ac.jp [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-12-14

    We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I{sub DS} by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I{sub DS} by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale.

  7. Spin-dependent transport properties of a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor structure

    International Nuclear Information System (INIS)

    Kanaki, Toshiki; Asahara, Hirokatsu; Ohya, Shinobu; Tanaka, Masaaki

    2015-01-01

    We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I DS by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I DS by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale

  8. Experimental Research on the Impact of Thin-Wall Ratio and the Fillet Radius of Forming Roller on the Limiting Spinning Ratio of AMS 5504 Sheets

    Directory of Open Access Journals (Sweden)

    Kut S.

    2017-12-01

    Full Text Available Results of experimental investigations of metal spinning process of AMS 5504 sheets. cylindrical drawpieces with use of discs-shaped sheet with various diameter and thickness were shown in this work. Tests were performed on two roller metal spinning machine of a vertical axis Leifeld SFC 800 V500.

  9. Masculine sex ratios, population age structure and the potential spread of HIV in China

    Directory of Open Access Journals (Sweden)

    M. Giovanna Merli

    2010-01-01

    Full Text Available There is much speculation regarding the contribution of China's changing demography to the spread of HIV/AIDS. We employ a bio-behavioral macrosimulation model of the heterosexual spread of HIV/AIDS to evaluate the roles that China's unique demographic conditions -- (1 masculine sex ratios at birth and (2 a population age structure that reflects rapid fertility decline since the 1970's -- play in altering the market for sexual partners, thereby potentially fueling an increase in behaviors associated with greater risk of HIV infection. We first simulate the relative contributions of the sex ratio at birth and the population age structure to the oversupply of males in the market for sexual partners and show that the sex ratio at birth only aggravates the severe oversupply of males which is primarily a consequence of the population age structure. We then examine the potential consequences of this demographic distortion for the spread of HIV infection and show that, to the extent that males adapt to the dearth of suitable female partners by seeking unprotected sexual contacts with female sex workers, the impact of the oversupply of males in the sexual partnership market on the spread of HIV will be severe.

  10. Analytic Investigation Into Effect of Population Heterogeneity on Parameter Ratio Estimates

    International Nuclear Information System (INIS)

    Schinkel, Colleen; Carlone, Marco; Warkentin, Brad; Fallone, B. Gino

    2007-01-01

    Purpose: A homogeneous tumor control probability (TCP) model has previously been used to estimate the α/β ratio for prostate cancer from clinical dose-response data. For the ratio to be meaningful, it must be assumed that parameter ratios are not sensitive to the type of tumor control model used. We investigated the validity of this assumption by deriving analytic relationships between the α/β estimates from a homogeneous TCP model, ignoring interpatient heterogeneity, and those of the corresponding heterogeneous (population-averaged) model that incorporated heterogeneity. Methods and Materials: The homogeneous and heterogeneous TCP models can both be written in terms of the geometric parameters D 50 and γ 50 . We show that the functional forms of these models are similar. This similarity was used to develop an expression relating the homogeneous and heterogeneous estimates for the α/β ratio. The expression was verified numerically by generating pseudo-data from a TCP curve with known parameters and then using the homogeneous and heterogeneous TCP models to estimate the α/β ratio for the pseudo-data. Results: When the dominant form of interpatient heterogeneity is that of radiosensitivity, the homogeneous and heterogeneous α/β estimates differ. This indicates that the presence of this heterogeneity affects the value of the α/β ratio derived from analysis of TCP curves. Conclusions: The α/β ratio estimated from clinical dose-response data is model dependent-a heterogeneous TCP model that accounts for heterogeneity in radiosensitivity will produce a greater α/β estimate than that resulting from a homogeneous TCP model

  11. Simulating realistic implementations of spin field effect transistor

    Science.gov (United States)

    Gao, Yunfei; Lundstrom, Mark S.; Nikonov, Dmitri E.

    2011-04-01

    The spin field effect transistor (spinFET), consisting of two ferromagnetic source/drain contacts and a Si channel, is predicted to have outstanding device and circuit performance. We carry out a rigorous numerical simulation of the spinFET based on the nonequilibrium Green's function formalism self-consistently coupled with a Poisson solver to produce the device I-V characteristics. Good agreement with the recent experiments in terms of spin injection, spin transport, and the magnetoresistance ratio (MR) is obtained. We include factors crucial for realistic devices: tunneling through a dielectric barrier, and spin relaxation at the interface and in the channel. Using these simulations, we suggest ways of optimizing the device. We propose that by choosing the right contact material and inserting tunnel oxide barriers between the source/drain and channel to filter different spins, the MR can be restored to ˜2000%, which would be beneficial to the reconfigurable logic circuit application.

  12. Radiographic measurement of the cardiothoracic ratio in a feral population of long-tailed macaques (Macaca fascicularis)

    Energy Technology Data Exchange (ETDEWEB)

    Schillaci, Michael A. [Department of Social Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4 (Canada)], E-mail: schillaci@utsc.utoronto.ca; Lischka, Andrea R.; Karamitsos, Anisah A. [Department of Social Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4 (Canada); Engel, Gregory A. [Swedish/Cherry Hill Family Medicine Residency, 550 16th Avenue, Seattle, WA 98122 (United States); Washington National Primate Research Center, University of Washington, Seattle, WA 98195 (United States); Paul, Narinder [Division of Cardiothoracic Imaging, University Health Network, University of Toronto, Toronto, Ontario M5G 2N2 (Canada); Ramoul, Rima [Department of Social Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4 (Canada); Rompis, Aida; Putra, Arta; Wandia, I. Nengah [Fakultas Kedokteran Hewan, Udayana University, Denpasar, Bali 80361 (Indonesia); Jones-Engel, Lisa [Washington National Primate Research Center, University of Washington, Seattle, WA 98195 (United States)

    2010-05-15

    The cardiothoracic ratio is often used as a proxy measure of cardiovascular pathophysiology in humans but less frequently in nonhuman primates, for whom little published data are available to establish normal values. The present study is the first to examine relative cardiac size in a feral population of primates. This report presents estimates of the cardiothoracic ratio in long-tailed macaques (Macaca fascicularis) from Bali, Indonesia. The mean cardiothoracic ratio for the study sample was 0.55, above the commonly used threshold of 0.50 for identifying an enlarged heart in human medicine. Future research on wild populations of macaques is needed and should include multiple assessments of cardiac function including both radiography and echocardiography.

  13. Radiographic measurement of the cardiothoracic ratio in a feral population of long-tailed macaques (Macaca fascicularis)

    International Nuclear Information System (INIS)

    Schillaci, Michael A.; Lischka, Andrea R.; Karamitsos, Anisah A.; Engel, Gregory A.; Paul, Narinder; Ramoul, Rima; Rompis, Aida; Putra, Arta; Wandia, I. Nengah; Jones-Engel, Lisa

    2010-01-01

    The cardiothoracic ratio is often used as a proxy measure of cardiovascular pathophysiology in humans but less frequently in nonhuman primates, for whom little published data are available to establish normal values. The present study is the first to examine relative cardiac size in a feral population of primates. This report presents estimates of the cardiothoracic ratio in long-tailed macaques (Macaca fascicularis) from Bali, Indonesia. The mean cardiothoracic ratio for the study sample was 0.55, above the commonly used threshold of 0.50 for identifying an enlarged heart in human medicine. Future research on wild populations of macaques is needed and should include multiple assessments of cardiac function including both radiography and echocardiography.

  14. Population structure and the evolution of sexual size dimorphism and sex ratios in an insular population of Florida box turtles (Terrapene carolina bauri)

    Science.gov (United States)

    Dodd, C.K.

    1997-01-01

    Hypotheses in the chelonian literature suggest that in species with sexual size dimorphism, the smaller sex will mature at a smaller size and a younger age than the larger sex, sex ratios should be biased in favor of the earlier maturing sex, and deviations from a 1:1 sex ratio result from maturation of the smaller sex at a younger age. I tested these hypotheses using data collected from 1991 to 1995 on an insular (Egmont Key) population of Florida box turtles, Terrapene carolina bauri. Contrary to predictions, the earlier maturing sex (males) grew to larger sizes than the late maturing sex. Males were significantly larger than females in mean carapace length but not mean body mass. Sex ratios were not balanced, favoring the earlier maturing sex (1.6 males:1 female), but the sex-ratio imbalance did not result from faster maturation of the smaller sex. The imbalance in the sex ratio in Egmont Key's box turtles is not the result of sampling biases; it may result from nest placement. Size-class structure and sex ratios can provide valuable insights into the status and trends of populations of long-lived turtles.

  15. Causes and consequences of adult sex ratio imbalance in a historical U.S. population.

    Science.gov (United States)

    Schacht, Ryan; Smith, Ken R

    2017-09-19

    The responsiveness of individuals to partner availability has been well-documented across the literature. However, there is disagreement regarding the direction of the consequences of sex ratio imbalance. Specifically, does an excess of males or females promote male-male mating competition? In an attempt to clarify the role of the adult sex ratio (ASR) on behaviour, here we evaluate both competing and complimentary expectations derived from theory across the social and biological sciences. We use data drawn from a historical, nineteenth century population in North America and target several life-history traits thought to be affected by partner availability: age at first birth, relationship status, completed fertility and longevity. Furthermore, we assess the role of various contributors to a population's ASR. We find that both the contributors to and consequences of sex ratio imbalance vary over time. Our results largely support predictions of greater male pairbond commitment and lesser male mating effort, as well as elevated bargaining power of women in response to female scarcity. After reviewing our findings, and others from across the literature, we highlight the need to adjust predictions in response to ASR imbalance by the: (i) culturally mediated mating arena, (ii) variable role of demographic inputs across time and place, (iii) constraints to behavioural outcomes across populations, and (iv) ability and accuracy of individuals to assess partner availability.This article is part of the themed issue 'Adult sex ratios and reproductive strategies: a critical re-examination of sex differences in human and animal societies'. © 2017 The Author(s).

  16. Geometrical spin symmetry and spin

    International Nuclear Information System (INIS)

    Pestov, I. B.

    2011-01-01

    Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.

  17. Spin-spin cross-relaxation of optically-excited rare-earth ions in crystals

    International Nuclear Information System (INIS)

    Otto, F.W.; D'Amato, F.X.; Hahn, E.L.; Lukas, M.

    1986-01-01

    A laser saturation grating experiment is applied for the measurement of electron hyperfine state spin orientation diffusion among Tm +2 impurity ion hyperfine ground states in SrF 2 . A strong laser pulse at λ 1 produces a spatial grating of excited spin states followed by a probe at λ 2 . The probe transmission intensity is to assess diffusion of non-equilibrium spin population into regions not excited by the pulse at λ 1 . In a second experiment, a field sweep laser hole burning method enables measurement of Pr +3 optical ion hyperfine coupling of optical ground states to the reservoir of F nuclear moments in LaF 3 by level crossing. A related procedure with external RF resonance sweep excitation maps out the nuclear Zeeman-electric quadrupole coupled spectrum of Pr +3 over a wide range by monitoring laser beam transmission absorption

  18. Tunneling effect of the spin-2 Bose condensate driven by external magnetic fields

    OpenAIRE

    Yu, Zhao-xian; Jiao, Zhi-yong

    2003-01-01

    In this paper, we have studied tunneling effect of the spin-2 Bose condensate driven by external magnetic field. We find that the population transfers among spin-0 and spin-$\\pm1$, spin-0 and spin-$\\pm2$ exhibit the step structure under the external cosinusoidal magnetic field respectively, but there do not exist step structure among spin-$\\pm1$ and spin-$\\pm2$. The tunneling current among spin-$\\pm1$ and spin-$\\pm2$ may exhibit periodically oscillation behavior, but among spin-0 and spin-$\\p...

  19. Evaluation of Jefferies' level population ratios, and generalization of Seaton's cascade matrix, by a Markov-chain method

    International Nuclear Information System (INIS)

    Kastner, S.O.

    1980-01-01

    Closed expressions are obtained for the conditional probabilities qsub(i)sub(j)sub(,)sub(k) required in evaluating particular ratios of atomic level populations, using a Markov-chain representation of the system of levels. The total transition probability between two arbitrary levels is also evaluated and its relation to population ratios is clarified. It is shown that Seaton's cascade matrix is a subset of the total transition probability matrix. (orig.)

  20. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Luping [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zhan, Qingfeng, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Li, Run-Wei, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Tan, Xiaohua [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China)

    2016-03-15

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  1. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    International Nuclear Information System (INIS)

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Li, Run-Wei; Tan, Xiaohua

    2016-01-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  2. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Science.gov (United States)

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Tan, Xiaohua; Li, Run-Wei

    2016-03-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  3. First observation of high spin states and isomeric decay in 210Fr

    International Nuclear Information System (INIS)

    Kanjilal, D.; Saha, S.; Bhattacharya, S.; Goswami, A.; Kshetri, R.; Raut, R.; Muralithar, S.; Singh, R. P.; Mukherjee, G.; Mukherjee, B.

    2011-01-01

    The first observation of the prompt and the delayed γ transitions involving the high spin states in 210 Fr is reported. The decay of the high spin states and the isomeric levels of 210 Fr, identified for the first time from the known sequence of low-lying transitions found earlier in the α decay of 214 Ac, were studied. High spin states of the doubly-odd 210 Fr, which were produced by the fusion evaporation reaction 197 Au ( 16 O, xn) 213-x Fr, were populated and the subsequent emitted γ rays were detected through the high-sensitivity germanium clover detector array INGA. The level scheme up to yrast levels of 5.3 MeV excitation energy and ∼20(ℎ/2π) angular momentum could be established for the first time through γγ, γγΔT coincidence, and DCO ratio measurements. A new low-lying isomeric transition at E γ = 203(2) keV was observed. The half-life was measured to be T 1/2 = 41(2) ns. The measured half-life was compared with the corresponding single-particle estimate, based on the level scheme obtained from the experiment.

  4. SOLVING THE PUZZLE OF SUBHALO SPINS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Lin, Weipeng [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Shanghai 200030 (China); Pearce, Frazer R.; Lux, Hanni; Onions, Julian [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Muldrew, Stuart I., E-mail: wangyang@shao.ac.cn, E-mail: linwp@shao.ac.cn [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom)

    2015-03-10

    Investigating the spin parameter distribution of subhalos in two high-resolution isolated halo simulations, recent work by Onions et al. suggested that typical subhalo spins are consistently lower than the spin distribution found for field halos. To further examine this puzzle, we have analyzed simulations of a cosmological volume with sufficient resolution to resolve a significant subhalo population. We confirm the result of Onions et al. and show that the typical spin of a subhalo decreases with decreasing mass and increasing proximity to the host halo center. We interpret this as the growing influence of tidal stripping in removing the outer layers, and hence the higher angular momentum particles, of the subhalos as they move within the host potential. Investigating the redshift dependence of this effect, we find that the typical subhalo spin is smaller with decreasing redshift. This indicates a temporal evolution, as expected in the tidal stripping scenario.

  5. Enhanced breaking of heavy quark spin symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Feng-Kun, E-mail: fkguo@hiskp.uni-bonn.de [Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Meißner, Ulf-G., E-mail: meissner@hiskp.uni-bonn.de [Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Shen, Cheng-Ping, E-mail: shencp@ihep.ac.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China)

    2014-11-10

    Heavy quark spin symmetry is useful to make predictions on ratios of decay or production rates of systems involving heavy quarks. The breaking of spin symmetry is generally of the order of O(Λ{sub QCD}/m{sub Q}), with Λ{sub QCD} the scale of QCD and m{sub Q} the heavy quark mass. In this paper, we will show that a small S- and D-wave mixing in the wave function of the heavy quarkonium could induce a large breaking in the ratios of partial decay widths. As an example, we consider the decays of the ϒ(10860) into the χ{sub bJ}ω(J=0,1,2), which were recently measured by the Belle Collaboration. These decays exhibit a huge breaking of the spin symmetry relation were the ϒ(10860) a pure 5S bottomonium state. We propose that this could be a consequence of a mixing of the S-wave and D-wave components in the ϒ(10860). Prediction on the ratio Γ(ϒ(10860)→χ{sub b0}ω)/Γ(ϒ(10860)→χ{sub b2}ω) is presented assuming that the decay of the D-wave component is dominated by the coupled-channel effects.

  6. Spin Hall magnetoresistance at high temperatures

    International Nuclear Information System (INIS)

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji

    2015-01-01

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y 3 Fe 5 O 12 (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface

  7. Tunneling effect of the spin-2 Bose condensate driven by external magnetic fields

    International Nuclear Information System (INIS)

    Yu Zhaoxian; Jiao Zhiyong

    2004-01-01

    In this Letter, we have studied tunneling effect of the spin-2 Bose condensate driven by external magnetic field. We find that the population transfers among spin-0 and spin-±1, spin-0 and spin-±2 exhibit the step structure under the external cosinusoidal magnetic field, respectively, but there do not exist step structure among spin-±1 and spin-±2. The tunneling current among spin-±1 and spin-±2 may exhibit periodically oscillation behavior, but among spin-0 and spin-±1, spin-0 and spin-±2, the tunneling currents exhibit irregular oscillation behavior

  8. Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction

    KAUST Repository

    Ortiz Pauyac, Christian

    2016-06-19

    In the present thesis we introduce the reader to the field of spintronics and explore new phenomena, such as spin transfer torques, spin filtering, and three types of spin-orbit torques, Rashba, spin Hall, and spin swapping, which have emerged very recently and are promising candidates for a new generation of memory devices in computer technology. A general overview of these phenomena is presented in Chap. 1. In Chap. 2 we study spin transfer torques in tunnel junctions in the presence of spin filtering. In Chap. 3 we discuss the Rashba torque in ferromagnetic films, and in Chap. 4 we study spin Hall effect and spin swapping in ferromagnetic films, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives are summarized in Chap. 5.

  9. Duality-mediated critical amplitude ratios for the (2 + 1)-dimensional S = 1XY model

    Science.gov (United States)

    Nishiyama, Yoshihiro

    2017-09-01

    The phase transition for the (2 + 1)-dimensional spin-S = 1XY model was investigated numerically. Because of the boson-vortex duality, the spin stiffness ρs in the ordered phase and the vortex-condensate stiffness ρv in the disordered phase should have a close relationship. We employed the exact diagonalization method, which yields the excitation gap directly. As a result, we estimate the amplitude ratios ρs,v/Δ (Δ: Mott insulator gap) by means of the scaling analyses for the finite-size cluster with N ≤ 22 spins. The ratio ρs/ρv admits a quantitative measure of deviation from selfduality.

  10. Breeding sex ratio and population size of loggerhead turtles from Southwestern Florida.

    Directory of Open Access Journals (Sweden)

    Jacob A Lasala

    Full Text Available Species that display temperature-dependent sex determination are at risk as a result of increasing global temperatures. For marine turtles, high incubation temperatures can skew sex ratios towards females. There are concerns that temperature increases may result in highly female-biased offspring sex ratios, which would drive a future sex ratio skew. Studying the sex ratios of adults in the ocean is logistically very difficult because individuals are widely distributed and males are inaccessible because they remain in the ocean. Breeding sex ratios (BSR are sought as a functional alternative to study adult sex ratios. One way to examine BSR is to determine the number of males that contribute to nests. Our goal was to evaluate the BSR for loggerhead turtles (Caretta caretta nesting along the eastern Gulf of Mexico in Florida, from 2013-2015, encompassing three nesting seasons. We genotyped 64 nesting females (approximately 28% of all turtles nesting at that time and up to 20 hatchlings from their nests (n = 989 using 7 polymorphic microsatellite markers. We identified multiple paternal contributions in 70% of the nests analyzed and 126 individual males. The breeding sex ratio was approximately 1 female for every 2.5 males. We did not find repeat males in any of our nests. The sex ratio and lack of repeating males was surprising because of female-biased primary sex ratios. We hypothesize that females mate offshore of their nesting beaches as well as en route. We recommend further comparisons of subsequent nesting events and of other beaches as it is imperative to establish baseline breeding sex ratios to understand how growing populations behave before extreme environmental effects are evident.

  11. Relationship between width and length ratios of upper anterior teeth in young Chilean population.

    Directory of Open Access Journals (Sweden)

    Jorge Troncoso-Pazos

    2017-08-01

    Full Text Available Introduction: Knowledge about the size and proportion of upper anterior teeth allows dental rehabilitation taking into consideration the local parameters of a population. The aim of this research is to determine the width, length and the relationship between width and length of central incisor, lateral incisor and canine teeth in both sexes in young Chilean population. Methodology: A cross-sectional study was performed. Study subjects included 187 dentistry students from two Chilean cities (mean age 21.35±2.7 years, 52.9% men. The teeth width and height were measured and the width/height ratio was calculated. Differences in measurements according to sex was analyzed (p<0.05; STATA v.10.0. Results: The width and height of the teeth were statistically and proportionally larger in men (p<0.05. The width/height ratio of lateral and canine incisors was significantly higher in women (p<0.05. Conclusion: In a sample of young Chileans, upper anterior teeth were longer and wider in men. However, the width/height ratio of teeth was found to be significantly higher in women.

  12. High spin states in the f-p shell

    International Nuclear Information System (INIS)

    Delaunay, J.

    1975-01-01

    The high spin states (HSS) in Fe, Co, Ni (Z=26,27,28) isotopes exhibit features characteristics of soft or transition nuclei, 56 Fe being as well deformed prolate nucleus and the Ni isotopes often throught of as spherical. The methodology used to identify these HSS is the so called DCO (directional correlation of oriented nuclei) or ratio method which, by combining the angular distribution data plus one point of a triple γ-γ correlation in an asymmetric geometry, gives result that is found equivalent to a complete angular correlation to assign spin and mixing ratios. Some results collected with this methodology are presented [fr

  13. Study of superdeformation at zero spin with Skyrme-Hartree-Fock method

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, S; Tajima, N; Onishi, N [Tokyo Univ. (Japan)

    1998-03-01

    Superdeformed (SD) bands have been studied extensively both experimentally and theoretically in the last decade. Since the first observation in {sup 152}Dy in 1986, SD bands have been found in four mass regions, i.e., A {approx} 80, 130, 150 and 190. While these SD bands have been observed only at high spins so far, they may also be present at zero spin like fission isomers in actinide nuclei: The familiar generic argument on the strong shell effect at axis ratio 2:1 does not assume rotations. If non-fissile SD isomers exist at zero spin, they may be utilized to develop new experimental methods to study exotic states, in a similar manner as short-lived high-spin isomers are planned to be utilized as projectiles of fusion reactions in order to populate very high-spin near-yrast states. They will also be useful to test theoretical models whether the models can describe correctly the large deformations of rare-earth nuclei without further complications due to rotations. In this report, we employ the Skyrme-Hartree-Fock method to study the SD states at zero spin. First, we compare various Skyrme force parameter sets to test whether they can reproduce the extrapolated excitation energy of the SD band head of {sup 194}Hg. Second, we systematically search large-deformation solutions with the SkM{sup *} force. The feature of our calculations is that the single-particle wavefunctions are expressed in a three-dimensional-Cartesian-mesh representation. This representation enables one to obtain solutions of various shapes (including SD) without preparing a basis specific to each shape. Solving the mean-field equations in this representation requires, however, a large amount of computation which can be accomplished only with present supercomputers. (author)

  14. Measuring the spin of black holes in binary systems using gravitational waves.

    Science.gov (United States)

    Vitale, Salvatore; Lynch, Ryan; Veitch, John; Raymond, Vivien; Sturani, Riccardo

    2014-06-27

    Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground-based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions and the opportunity of measuring spins directly through GW observations. In this Letter, we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientations, and signal-to-noise ratios, as detected by an advanced LIGO-Virgo network. We find that for moderate or high signal-to-noise ratio the spin magnitudes can be estimated with errors of a few percent (5%-30%) for neutron star-black hole (black hole-black hole) systems. Spins' tilt angle can be estimated with errors of 0.04 rad in the best cases, but typical values will be above 0.1 rad. Errors will be larger for signals barely above the threshold for detection. The difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum and that a sudden change of behavior occurs when a system is observed from angles such that the plane of the orbit can be seen both from above and below during the time the signal is in band. This study suggests that direct measurement of black hole spin by means of GWs can be as precise as what can be obtained from x-ray binaries.

  15. Cause-Specific Mortality According to Urine Albumin Creatinine Ratio in the General Population

    DEFF Research Database (Denmark)

    Skaaby, Tea; Husemoen, Lise Lotte Nystrup; Ahluwalia, Tarun Veer Singh

    2014-01-01

    BACKGROUND: Urine albumin creatinine ratio, UACR, is positively associated with all-cause mortality, cardiovascular disease and diabetes in observational studies. Whether a high UACR is also associated with other causes of death is unclear. We investigated the association between UACR and cause......-specific mortality. METHODS: We included a total of 9,125 individuals from two population-based studies, Monica10 and Inter99, conducted in 1993-94 and 1999-2001, respectively. Urine albumin creatinine ratio was measured from spot urine samples by standard methods. Information on causes of death was obtained from...

  16. Heat Transport in Gapped Spin-Chain Systems

    International Nuclear Information System (INIS)

    Shimshoni, E.

    2006-01-01

    Full Text: We study the contribution of magnetic excitations to the heat transport in gapped spin-chain systems. These systems are characterized by a substantially enhanced heat conductivity, which can be traced back to the existence of weakly violated conservation laws. We focus particularly on the behavior of clean two-leg spin ladder compounds, where one-dimensional exotic spin excitations are coupled to three-dimensional phonons. We show that the contributions of the two types of heat carriers can not be easily disentangled. Depending on the ratios of spin gaps and the Debye energy, the heat conductivity can be either exponentially increasing or exponentially decreasing as a function of temperature (T). In addition, the magnetic contribution to the total heat conductivity may be either positive or negative. We discuss its T-dependence in various possible regimes, and note that in most regimes it is dominated by spin-phonon drag: the two types of heat carriers have almost the

  17. Flexible semi-transparent organic spin valve based on bathocuproine

    International Nuclear Information System (INIS)

    Sun, Xiangnan; Bedoya-Pinto, Amilcar; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E.

    2014-01-01

    Organic semiconductors are attractive materials for advanced spintronic applications due to their long spin lifetimes and, simultaneously, their mechanical flexibility. With the aim of combining these advantages in a single device, we report on the fabrication and properties of a mechanically flexible bathocuproine-based spin valve. This organic spin device shows great stability on both electrical and magneto-transport properties upon mechanical bending at different radius (up to r = 5 mm), while featuring long-lasting endurance (on bending over 50 times). The room-temperature magnetoresistance ratio reaches up to 3.5%, and is notably preserved under air atmosphere. The observation of spin transport at room-temperature, combined with the outstanding mechanical properties and air stability, highlights the potential of bathocuproine-based spin devices towards applications.

  18. Spin-polarized spin excitation spectroscopy

    International Nuclear Information System (INIS)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2010-01-01

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  19. An enhancement of spin polarization by multiphoton pumping in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-08-15

    Highlights: {yields} Multiphoton pumping and spin generation in semiconductors. {yields} Optical selection rules for inter-band transitions. {yields} Calculations of spin polarization using band-energy model and the second order perturbation theory. {yields} Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  20. An enhancement of spin polarization by multiphoton pumping in semiconductors

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    Highlights: → Multiphoton pumping and spin generation in semiconductors. → Optical selection rules for inter-band transitions. → Calculations of spin polarization using band-energy model and the second order perturbation theory. → Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  1. Accuracy of binary black hole waveform models for aligned-spin binaries

    Science.gov (United States)

    Kumar, Prayush; Chu, Tony; Fong, Heather; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Scheel, Mark A.; Szilagyi, Bela

    2016-05-01

    Coalescing binary black holes are among the primary science targets for second generation ground-based gravitational wave detectors. Reliable gravitational waveform models are central to detection of such systems and subsequent parameter estimation. This paper performs a comprehensive analysis of the accuracy of recent waveform models for binary black holes with aligned spins, utilizing a new set of 84 high-accuracy numerical relativity simulations. Our analysis covers comparable mass binaries (mass-ratio 1 ≤q ≤3 ), and samples independently both black hole spins up to a dimensionless spin magnitude of 0.9 for equal-mass binaries and 0.85 for unequal mass binaries. Furthermore, we focus on the high-mass regime (total mass ≳50 M⊙ ). The two most recent waveform models considered (PhenomD and SEOBNRv2) both perform very well for signal detection, losing less than 0.5% of the recoverable signal-to-noise ratio ρ , except that SEOBNRv2's efficiency drops slightly for both black hole spins aligned at large magnitude. For parameter estimation, modeling inaccuracies of the SEOBNRv2 model are found to be smaller than systematic uncertainties for moderately strong GW events up to roughly ρ ≲15 . PhenomD's modeling errors are found to be smaller than SEOBNRv2's, and are generally irrelevant for ρ ≲20 . Both models' accuracy deteriorates with increased mass ratio, and when at least one black hole spin is large and aligned. The SEOBNRv2 model shows a pronounced disagreement with the numerical relativity simulation in the merger phase, for unequal masses and simultaneously both black hole spins very large and aligned. Two older waveform models (PhenomC and SEOBNRv1) are found to be distinctly less accurate than the more recent PhenomD and SEOBNRv2 models. Finally, we quantify the bias expected from all four waveform models during parameter estimation for several recovered binary parameters: chirp mass, mass ratio, and effective spin.

  2. Transmission ratio distortion in Arabidopsis lyrata: effects of population divergence and the S-locus

    DEFF Research Database (Denmark)

    Leppälä, J.; Bechsgaard, Jesper Smærup; Schierup, Mikkel Heide

    2008-01-01

    We investigated transmission ratio distortion within an Icelandic population of Arabidopsis lyrata using 16 molecular markers unlinked to the S-locus. Transmission ratio distortion was found more often than expected by chance at the gametic level, but not at the genotypic or zygotic level. The ga...

  3. Observation of interface dependent spin polarized photocurrents in InAs/GaSb superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan, E-mail: liyuan12@semi.ac.cn; Liu, Yu; Zhu, Laipan; Qin, Xudong; Wu, Qing; Huang, Wei; Chen, Yonghai, E-mail: yhchen@semi.ac.cn [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing (China); Niu, Zhichuan; Xiang, Wei; Hao, Hongyue [The State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing (China)

    2015-05-11

    In this letter, we investigated the spin polarized photocurrents excited by mid-infrared radiation and near-infrared radiation, respectively, in InAs/GaSb type II superlattices with different kinds of interfaces. By periodically varying the polarization state of the radiation, we analyzed Rashba-type and Dresselhaus-type spin polarized photocurrents, which present different features depending on the interface types and excitation conditions. Under mid-infrared excitation, the ratio of Rashba-type and Dresselhaus-type spin polarized photocurrents of the superlattice with InSb-like interface is obviously larger than that of the superlattice with GaAs-like interface, the ratio of the superlattice with alternate interface is in the middle. Whereas under near-infrared excitation, the ratios of the three superlattices are nearly the same. Further researches reveal the synactic effects of interface dependent strain and asymmetric interface potential on the spin splitting. Besides, the polarized Raman spectroscopies of these structures were also analyzed.

  4. Observation of interface dependent spin polarized photocurrents in InAs/GaSb superlattice

    International Nuclear Information System (INIS)

    Li, Yuan; Liu, Yu; Zhu, Laipan; Qin, Xudong; Wu, Qing; Huang, Wei; Chen, Yonghai; Niu, Zhichuan; Xiang, Wei; Hao, Hongyue

    2015-01-01

    In this letter, we investigated the spin polarized photocurrents excited by mid-infrared radiation and near-infrared radiation, respectively, in InAs/GaSb type II superlattices with different kinds of interfaces. By periodically varying the polarization state of the radiation, we analyzed Rashba-type and Dresselhaus-type spin polarized photocurrents, which present different features depending on the interface types and excitation conditions. Under mid-infrared excitation, the ratio of Rashba-type and Dresselhaus-type spin polarized photocurrents of the superlattice with InSb-like interface is obviously larger than that of the superlattice with GaAs-like interface, the ratio of the superlattice with alternate interface is in the middle. Whereas under near-infrared excitation, the ratios of the three superlattices are nearly the same. Further researches reveal the synactic effects of interface dependent strain and asymmetric interface potential on the spin splitting. Besides, the polarized Raman spectroscopies of these structures were also analyzed

  5. Quasilinear theory of a spin-flip laser

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1973-09-01

    A discussion of the nonlinear electrodynamic behavior of a gas of spin 1/2 particles in a uniform external magnetic field is presented. In particular, the quasilinear time evolution of a spin-flip laser system is examined in detail both from the point of view of the thermodynamics of negative temperature systems and the quantum kinetic methods of nonequilibrium statistical mechanics. It is shown that the quasilinear steady state of a spin-flip laser system is that state at which the populations of the spin-up and the spin-down states are equal to each other, and this quasilinear steady state is the state of minimum entropy production. The maximum output power of the spin-flip laser predicted by the theory presented in this paper is shown to be in reasonably good agreement with experimental results. The method used here is based on the general principles of nonrelativistic quantum theory and takes account of the Doppler broadening, collisional broadening, and Compton recoil effects. 30 refs., 1 fig

  6. Theory of spin-dependent tunnelling in magnetic junctions

    International Nuclear Information System (INIS)

    Mathon, J.

    2002-01-01

    Rigorous theory of the tunnelling magnetoresistance (TMR) based on the real-space Kubo formula and fully realistic tight-binding bands fitted to an ab initio band structure is described. It is first applied to calculate the TMR of two Co electrodes separated by a vacuum gap. The calculated TMR ratio reaches ∼65% in the tunnelling regime but can be as high as 280% in the metallic regime when the vacuum gap is of the order of the Co interatomic distance (abrupt domain wall). It is also shown that the spin polarization P of the tunnelling current is negative in the metallic regime but becomes positive P∼35% in the tunnelling regime. Calculation of the TMR of an epitaxial Fe/MgO/Fe(001) junction is also described. The calculated optimistic TMR ratio is in excess of 1000% for an MgO barrier of ∼20 atomic planes and the spin polarization of the tunnelling current is positive for all MgO thicknesses. It is also found that spin-dependent tunnelling in an Fe/MgO/Fe(001) junction is not entirely determined by states at the Γ point (k parallel = 0) even for MgO thicknesses as large as ∼20 atomic planes. Finally, it is demonstrated that the TMR ratio calculated from the Kubo formula remains non-zero when one of the Co electrodes is covered with a copper layer. It is shown that non-zero TMR is due to quantum well states in the Cu layer which do not participate in transport. Since these only occur in the down-spin channel, their loss from transport creates a spin asymmetry of electrons tunnelling from a Cu interlayer, i.e. non-zero TMR. Numerical modelling is used to show that diffuse scattering from a random distribution of impurities in the barrier may cause quantum well states to evolve into propagating states, in which case the spin asymmetry of the non-magnetic layer is lost and with it the TMR. (author)

  7. Population discrimination by strontium-calcium concentration ratios of sagittal otoliths taken from the Japanese flounder, Paralichthys olivaceus

    International Nuclear Information System (INIS)

    Kakuta, I.; Chiba, D.; Ishii, K.; Yamazaki, H.; Iwasaki, S.; Matsuyama, S.

    1999-01-01

    For the purpose of obtaining basic data to understand the population dynamics of the Japanese flounder, Paralichthys olivaceus, inhabiting the Sanriku coastal waters, the concentration ratios of Ca and Sr in otoliths of juvenile fishes being cultivated for releasing to the regions, and those of adult fishes captured in both the Sanriku area (Aomori, Iwate and Miyagi) and Shizuoka prefecture coastal regions (as a comparison) were analysed using a particle induced X-ray emission (PIXE) technique. The Sr/Ca ratios of otoliths taken from juvenile Japanese flounders had significant differences between Sanriku and Shizuoka sea-farming groups. The differences in otolith Sr/Ca ratios between Sanriku and Shizuoka sea-farming stations would thus differentiate flounder populations. No significant difference in otolith Sr/Ca ratios was observed among the Sanriku group. However, the values for Aomori group formed by small fishes in the Sanriku group seemed to be lower in proportion to their body size. Therefore, genetic characteristics of the juvenile Japanese flounder being reared at the sea-farming stations in Iwate and Miyagi prefectures are possibly different from those at an Aomori station. On the other hand, statistically significant differences in the otolith Sr/Ca ratios among Aomori, Iwate Miyagi and Shizuoka groups were found in the adult Japanese flounder. That is, higher values for the otolith Sr/Ca ratios were found in the groups inhabiting in the northern regions. The differences in otolith Sr/Ca ratios among these groups probably indicate that there are differences in the fish populations among these sample sites. (author)

  8. Spin current and spin transfer torque in ferromagnet/superconductor spin valves

    Science.gov (United States)

    Moen, Evan; Valls, Oriol T.

    2018-05-01

    Using fully self-consistent methods, we study spin transport in fabricable spin valve systems consisting of two magnetic layers, a superconducting layer, and a spacer normal layer between the ferromagnets. Our methods ensure that the proper relations between spin current gradients and spin transfer torques are satisfied. We present results as a function of geometrical parameters, interfacial barrier values, misalignment angle between the ferromagnets, and bias voltage. Our main results are for the spin current and spin accumulation as functions of position within the spin valve structure. We see precession of the spin current about the exchange fields within the ferromagnets, and penetration of the spin current into the superconductor for biases greater than the critical bias, defined in the text. The spin accumulation exhibits oscillating behavior in the normal metal, with a strong dependence on the physical parameters both as to the structure and formation of the peaks. We also study the bias dependence of the spatially averaged spin transfer torque and spin accumulation. We examine the critical-bias effect of these quantities, and their dependence on the physical parameters. Our results are predictive of the outcome of future experiments, as they take into account imperfect interfaces and a realistic geometry.

  9. Spin-wave wavelength down-conversion at thickness steps

    Science.gov (United States)

    Stigloher, Johannes; Taniguchi, Takuya; Madami, Marco; Decker, Martin; Körner, Helmut S.; Moriyama, Takahiro; Gubbiotti, Gianluca; Ono, Teruo; Back, Christian H.

    2018-05-01

    We report a systematic experimental study on the refraction and reflection of magnetostatic spin-waves at a thickness step between two Permalloy films of different thickness. The transmitted spin-waves for the transition from a thick film to a thin film have a higher wave vector compared to the incoming waves. Consequently, such systems may find use as passive wavelength transformers in magnonic networks. We investigate the spin-wave transmission behavior by studying the influence of the external magnetic field, incident angle, and thickness ratio of the films using time-resolved scanning Kerr microscopy and micro-focused Brillouin light scattering.

  10. Spin-polarized fuel in ICF pellets

    International Nuclear Information System (INIS)

    Wakuta, Yoshihisa; Emoto, Nobuya; Nakao, Yasuyuki; Honda, Takuro; Honda, Yoshinori; Nakashima, Hideki.

    1990-01-01

    The use of parallel spin-polarized DT or D 3 He fuel increases the fusion cross-section by 50%. By implosion-burn simulation for inertially confined fusion (ICF) pellets of the spin-polarized fuels, we found that the input energy requirement could be reduced by nearly a fact of two. These pellets taken up here include large-high-aspect-ratio DT target proposed in ILE Osaka University and DT ignitor/D 3 He fuel pellet proposed by our group. We also found that the polarized state could survive during the implosion-burn phase. (author)

  11. Magnetoresistance through spin-polarized p states

    International Nuclear Information System (INIS)

    Papanikolaou, Nikos

    2003-01-01

    We present a theoretical study of the ballistic magnetoresistance in Ni contacts using first-principles, atomistic, electronic structure calculations. In particular we investigate the role of defects in the contact region with the aim of explaining the recently observed spectacular magnetoresistance ratio. Our results predict that the possible presence of spin-polarized oxygen in the contact region could explain conductance changes by an order of magnitude. Electronic transport essentially occurs through spin-polarized oxygen p states, and this mechanism gives a much higher magnetoresistance than that obtained assuming clean atomically sharp domain walls alone

  12. Muon spin relaxation in ferromagnets. Pt. 1

    International Nuclear Information System (INIS)

    Lovesey, S.W.; Karlsson, E.B.

    1991-04-01

    Expressions for the dipolar and hyperfine contributions to the relaxation rate of muons implanted in a ferromagnet are presented and analysed using the Heisenberg model of spin-waves including dipolar and Zeeman energies. Calculations for EuO indicate that relaxation is likely to be dominated by the hyperfine mechanism, even if the ratio of the hyperfine and dipolar coupling constants is small. The hyperfine mechanism is sensitive to the dipolar energy of the atomic spins, whereas the dipolar mechanisms depend essentially on the exchange energy. For both mechanisms there is an almost quadratic dependence on temperature, throughout much of the ordered magnetic phase, which reflects two-spin-wave difference events from the Raman-type relaxation processes. (author)

  13. Spin-wave utilization in a quantum computer

    Science.gov (United States)

    Khitun, A.; Ostroumov, R.; Wang, K. L.

    2001-12-01

    We propose a quantum computer scheme using spin waves for quantum-information exchange. We demonstrate that spin waves in the antiferromagnetic layer grown on silicon may be used to perform single-qubit unitary transformations together with two-qubit operations during the cycle of computation. The most attractive feature of the proposed scheme is the possibility of random access to any qubit and, consequently, the ability to recognize two qubit gates between any two distant qubits. Also, spin waves allow us to eliminate the use of a strong external magnetic field and microwave pulses. By estimate, the proposed scheme has as high as 104 ratio between quantum system coherence time and the time of a single computational step.

  14. Effects of interface electric field on the magnetoresistance in spin devices

    Energy Technology Data Exchange (ETDEWEB)

    Tanamoto, T., E-mail: tetsufumi.tanamoto@toshiba.co.jp; Ishikawa, M.; Inokuchi, T.; Sugiyama, H.; Saito, Y. [Advanced LSI Technology Laboratory Corporate Research and Development Center, Toshiba Corporation 1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki 212-8582 (Japan)

    2014-04-28

    An extension of the standard spin diffusion theory is presented by using a quantum diffusion theory via a density-gradient (DG) term that is suitable for describing interface quantum tunneling phenomena. The magnetoresistance (MR) ratio is greatly modified by the DG term through an interface electric field. We have also carried out spin injection and detection measurements using four-terminal Si devices. The local measurement shows that the MR ratio changes depending on the current direction. We show that the change of the MR ratio depending on the current direction comes from the DG term regarding the asymmetry of the two interface electronic structures.

  15. Analysis of the width ratio and wear rate of maxillary anterior teeth in the Korean population.

    Science.gov (United States)

    Oh, Yeon-Ah; Yang, Hong-So; Park, Sang-Won; Lim, Hyun-Pil; Yun, Kwi-Dug; Park, Chan

    2017-04-01

    The purpose of this study was to compare the width ratio of maxillary anterior teeth according to age in the Korean population and to evaluate the maxillary central incisor width-to-length (W/L) ratio, given differences in age and gender. Ninety-three Korean adults were divided into 3 groups (n = 31) by age. Group I was 20 - 39 years old, Group II was 40 - 59 years old, and Group III was over 60 years of age. After taking an impression and a cast model of the maxillary arch, the anterior teeth width ratio and central incisor W/L ratio were calculated from standard digital images of the cast models using a graph paper with a digital single lens reflex (DSLR) camera. The calculated ratios were compared among all groups and central incisor W/L ratio were analyzed according to age and gender. All comparative data were statistically analyzed with one-sample t-tests, one-way ANOVAs with Tukey tests, and independent t-tests. No significant differences in maxillary anterior teeth ratios were found among the age groups. The maxillary central incisor W/L ratios in Group III were the greatest and were significantly higher than those in the other groups. The central incisor W/L ratio of men was higher than that of women in Group II. Maxillary anterior teeth width ratios were similar in all age groups in the Korean population. The maxillary central incisor was observed as worn teeth in the group over 60 years of age, and a significant difference between genders was found in 40 to 50 year olds.

  16. Effective case/infection ratio of poliomyelitis in vaccinated populations.

    Science.gov (United States)

    Bencskó, G; Ferenci, T

    2016-07-01

    Recent polio outbreaks in Syria and Ukraine, and isolation of poliovirus from asymptomatic carriers in Israel have raised concerns that polio might endanger Europe. We devised a model to calculate the time needed to detect the first case should the disease be imported into Europe, taking the effect of vaccine coverage - both from inactivated and oral polio vaccines, also considering their differences - on the length of silent transmission into account by deriving an 'effective' case/infection ratio that is applicable for vaccinated populations. Using vaccine coverage data and the newly developed model, the relationship between this ratio and vaccine coverage is derived theoretically and is also numerically determined for European countries. This shows that unnoticed transmission is longer for countries with higher vaccine coverage and a higher proportion of IPV-vaccinated individuals among those vaccinated. Assuming borderline transmission (R = 1·1), the expected time to detect the first case is between 326 days and 512 days in different countries, with the number of infected individuals between 235 and 1439. Imperfect surveillance further increases these numbers, especially the number of infected until detection. While longer silent transmission does not increase the number of clinical diseases, it can make the application of traditional outbreak response methods more complicated, among others.

  17. High spin levels in 151Ho

    International Nuclear Information System (INIS)

    Gizon, J.; Gizon, A.; Andre, S.; Genevey, J.; Jastrzebski, J.; Kossakowski, R.; Moszinski, M.; Preibisz, Z.

    1981-02-01

    We report here on the first study of the level structure of 151 Ho. High spin levels in 151 Ho have been populated in the 141 Pr + 16 O and 144 Sm + 12 C reactions. The level structure has been established up to 6.6 MeV energy and the spins and particles determined up to 49/2 - . Most of the proposed level configurations can be explained by the coupling of hsub(11/2) protons to fsub(7/2) and/or hsub(9/2) neutrons. An isomer with 14 +- 3 ns half-life and a delayed gamma multiplicity equal to 17 +- 2 has been found. Its spin is larger than 57/2 h units

  18. Spin current evolution in the separated spin-up and spin-down quantum hydrodynamics

    International Nuclear Information System (INIS)

    Trukhanova, Mariya Iv.

    2015-01-01

    We have developed a method of quantum hydrodynamics (QHD) that describes particles with spin-up and with spin-down in separate. We have derived the equation of the spin current evolution as a part of the set of the quantum hydrodynamics equations that treat particles with different projection of spin on the preferable direction as two different species. We have studied orthogonal propagation of waves in the external magnetic field and determined the contribution of quantum corrections due to the Bohm potential and to magnetization energy of particles with different projections of spin in the spin-current wave dispersion. We have analyzed the limits of weak and strong magnetic fields. - Highlights: • We derive the spin current equation for particles with different projection of spin. • We predict the contribution of Bohm potential to the dynamics of spin current. • We derive the spin-current wave in the system of spin-polarized particles. • We study the propagation of spin-acoustic wave in magnetized dielectrics.

  19. Muonium spin exchange in spin-polarized media: Spin-flip and -nonflip collisions

    International Nuclear Information System (INIS)

    Senba, M.

    1994-01-01

    The transverse relaxation of the muon spin in muonium due to electron spin exchange with a polarized spin-1/2 medium is investigated. Stochastic calculations, which assume that spin exchange is a Poisson process, are carried out for the case where the electron spin polarization of the medium is on the same axis as the applied field. Two precession signals of muonium observed in intermediate fields (B>30 G) are shown to have different relaxation rates which depend on the polarization of the medium. Furthermore, the precession frequencies are shifted by an amount which depends on the spin-nonflip rate. From the two relaxation rates and the frequency shift in intermediate fields, one can determine (i) the encounter rate of muonium and the paramagnetic species, (ii) the polarization of the medium, and most importantly (iii) the quantum-mechanical phase shift (and its sign) associated with the potential energy difference between electron singlet and triplet encounters. Effects of spin-nonflip collisions on spin dynamics are discussed for non-Poisson as well as Poisson processes. In unpolarized media, the time evolution of the muon spin in muonium is not influenced by spin-nonflip collisions, if the collision process is Poissonian. This seemingly obvious statement is not true anymore in non-Poissonian processes, i.e., it is necessary to specify both spin-flip and spin-nonflip rates to fully characterize spin dynamics

  20. ORTHO-TO-PARA ABUNDANCE RATIO (OPR) OF AMMONIA IN 15 COMETS: OPRs OF AMMONIA VERSUS 14N/15N RATIOS IN CN

    International Nuclear Information System (INIS)

    Shinnaka, Yoshiharu; Kawakita, Hideyo; Kobayashi, Hitomi; Jehin, Emmanuel; Manfroid, Jean; Hutsemekers, Damien; Arpigny, Claude

    2011-01-01

    The ortho-to-para abundance ratio (OPR) of cometary molecules is considered to be one of the primordial characteristics of cometary ices. We present OPRs of ammonia (NH 3 ) in 15 comets based on optical high-dispersion spectroscopic observations of NH 2 , which is a photodissociation product of ammonia in the gaseous coma. The observations were mainly carried out with the VLT/UVES. The OPR of ammonia is estimated from the OPR of NH 2 based on the observations of the NH 2 (0, 9, 0) vibronic band. The absorption lines by the telluric atmosphere are corrected and the cometary C 2 emission lines blended with NH 2 lines are removed in our analysis. The ammonia OPRs show a cluster between 1.1 and 1.2 (this corresponds to a nuclear spin temperature of ∼30 K) for all comets in our sample except for 73P/Schwassmann-Wachmann 3 (73P/SW3). Comet 73P/SW3 (both B- and C-fragments) shows the OPR of ammonia consistent with nuclear spin statistical weight ratio (1.0) that indicates a high-temperature limit as nuclear spin temperature. We compared the ammonia OPRs with other properties ( 14 N/ 15 N ratios in CN, D/H ratios of water, and mixing ratios of volatiles). Comet 73P/SW3 is clearly different from the other comets in the plot of ammonia OPRs versus 14 N/ 15 N ratios in CN. The ammonia OPRs of 1.0 and lower 15 N-fractionation of CN in comet 73P/SW3 imply that icy materials in this comet formed under warmer conditions than other comets. Comets may be classified into two groups in the plot of ammonia OPRs against 14 N/ 15 N ratios in CN.

  1. Distinguishing 'Higgs' spin hypotheses using γγ and WW* decays

    International Nuclear Information System (INIS)

    Ellis, John; Fok, Ricky; Hwang, Dae Sung; Sanz, Veronica; You, Tevong

    2013-01-01

    The new particle X recently discovered by the ATLAS and CMS Collaborations in searches for the Higgs boson has been observed to decay into γγ, ZZ * and WW * , but its spin and parity, J P , remain a mystery, with J P = 0 + and 2 + being open possibilities. We use PYTHIA and Delphes to simulate an analysis of the angular distribution of gg → X → γγ decays in a full 2012 data set, including realistic background levels. We show that this angular distribution should provide strong discrimination between the possibilities of spin zero and spin two with graviton-like couplings: ∝3 σ if a conservative symmetric interpretation of the log-likelihood ratio (LLR) test statistic is used, and ∝6 σ if a less conservative asymmetric interpretation is used. The WW and ZZ couplings of the Standard Model Higgs boson and of a 2 + particle with graviton-like couplings are both expected to exhibit custodial symmetry. We simulate the present ATLAS and CMS search strategies for X → WW * using PYTHIA and Delphes, and show that their efficiencies in the case of a spin-2 particle with graviton-like couplings are a factor ≅ 1.9 smaller than in the spin-0 case. On the other hand, the ratio of X 2 + → WW * and ZZ * branching ratios is larger than that in the 0 + case by a factor ≅ 1.3. We find that the current ATLAS and CMS results for X → WW * and X → ZZ * decays are compatible with custodial symmetry under both the spin-0 and -2 hypotheses, and that the data expected to become available during 2012 are unlikely to discriminate significantly between these possibilities. (orig.)

  2. Spin-flip processes in low-energy Fe17+ + He collisions

    International Nuclear Information System (INIS)

    Bruch, R.; Altick, P.L.; Rauscher, E.; Wang, H.; Schneider, D.

    1993-01-01

    Spin-nonconserving electron transfer processes violating the ''Wigner rule'' have been studied for slow multiply charged ion-atom collisions. Experimentally a strong population of highly metastable sodium-like quartet states in low energy Fe 17+ + He single collision events has been observed. The possibility of double-electron capture plus spin-flip mechanisms has been discussed experimentally and theoretically, Our theoretical model using time dependent perturbation theory predicts that spin-flip processes are as likely as no spin flip under the conditions of our experiment

  3. Polarization of nuclear spins by a cold nanoscale resonator

    International Nuclear Information System (INIS)

    Butler, Mark C.; Weitekamp, Daniel P.

    2011-01-01

    eigenstates, spontaneous emission from eigenstate populations into the resonant mode can be interpreted as independent emission by individual spins, and the spins relax exponentially to thermal equilibrium if the development of resonator-induced correlations is suppressed. When the spin Hamiltonian includes a significant contribution from the homonuclear dipolar coupling, the energy eigenstates entail a correlation specific to the coupling network. Simulations of dipole-dipole coupled systems of up to five spins suggest that these systems contain weakly emitting eigenstates that can trap a fraction of the population for time periods >>100/R 0 , where R 0 is the rate constant for resonator-enhanced spontaneous emission by a single spin 1/2. Much of the polarization, however, relaxes with rates comparable to R 0 . A distribution of characteristic high-field chemical shifts tends to increase the relaxation rates of weakly emitting states, enabling transitions to states that can quickly relax to thermal equilibrium. The theoretical framework presented in this paper is illustrated with discussions of spin polarization in the contexts of force-detected nuclear-magnetic-resonance spectroscopy and magnetic-resonance force microscopy.

  4. Biradical and triradical organic magnetic molecules as spin filters and rectifiers

    International Nuclear Information System (INIS)

    Zhu, L.; Yao, K.L.; Liu, Z.L.

    2012-01-01

    Graphical abstract: (a) Negative differential resistance (NDR) characteristic and antiparallel spin-current (ASC) rectification; (b) spin-current (SC) rectification and charge-current (CC) rectification properties Display Omitted Highlights: ► Organic magnetic molecules at gold electrodes as spin/charge rectifier. ► Spin diode/rectification stems from length and asymmetry of molecular framework. ► Negative differential resistance, spin-filtering and switching evidenced. - Abstract: We have theoretically investigated the spin-polarized transport properties of molecular junctions consisting of biradical and triradical organic magnetic molecules sandwiched between two symmetric gold electrodes, respectively. It shows that these junctions function as a spin rectifier or a combination of spin and charge rectifiers with high spin rectification ratios exceeding 100, wherein the spin diode/rectification effect stems from the conjugated length and asymmetry of the molecular framework, which is the pre-requisite for electronic asymmetry of the adsorbed species. The negative differential resistance, spin-filtering and switching properties are also unveiled. In particular, it is revealed that the strong couplings between the electrodes and molecules are responsible for the negative differential resistance.

  5. Neutron spin quantum precession using multilayer spin splitters and a phase-spin echo interferometer

    International Nuclear Information System (INIS)

    Ebisawa, Toru; Tasaki, Seiji; Kawai, Takeshi; Hino, Masahiro; Akiyoshi, Tsunekazu; Achiwa, Norio; Otake, Yoshie; Funahashi, Haruhiko.

    1996-01-01

    Neutron spin quantum precession by multilayer spin splitter has been demonstrated using a new spin interferometer. The multilayer spin splitter consists of a magnetic multilayer mirror on top, followed by a gap layer and a non magnetic multilayer mirror which are evaporated on a silicon substrate. Using the multilayer spin splitter, a polarized neutron wave in a magnetic field perpendicular to the polarization is split into two spin eigenstates with a phase shift in the direction of the magnetic field. The spin quantum precession is equal to the phase shift, which depends on the effective thickness of the gap layer. The demonstration experiments verify the multilayer spin splitter as a neutron spin precession device as well as the coherent superposition principle of the two spin eigenstates. We have developed a new phase-spin echo interferometer using the multilayer spin splitters. We present successful performance tests of the multilayer spin splitter and the phase-spin echo interferometer. (author)

  6. Analysis of the golden proportion and width/height ratios of maxillary anterior teeth in Arab and Kurdish populations.

    Science.gov (United States)

    Al-Kaisy, Neda; Garib, Balkees Taha

    2017-11-15

    Dentists providing anterior restorations are guided by the principles of anatomic tooth dimension. Dental biometrics should consider ethnicity to produce a more comprehensive evaluation. The purpose of this clinical study was to analyze the anatomic crowns of maxillary central incisors (CI), lateral incisors (LI), and canines (C) with respect to the golden proportion (GP) and width/height (W/H) ratio in Kurdish and Arab populations. Maxillary gypsum casts were obtained from 100 participants (50 from a Kurdish and 50 from an Arab population). Standardized digital photographs of each cast were recorded. The apparent and actual anterior tooth dimensions were determined by ImageJ software for the calculation of the GP and W/H ratio. Data were statistically analyzed using ANOVA to investigate ethnic, sex, and arch side differences. The chi-square test was used to explore the GP, and the 1-sample t test was used to test the ideal W/H ratio (α=.05). The GP was found in both the Kurdish and Arab groups in the LI/CI mean (0.62, 0.63), but not in the C/LI mean (0.69, 0.73). No difference due to sex was detected in the LI/CI in either ethnic group, but Kurdish men had significantly larger C/LI than women (0.73, 0.66, P=.006) and larger right-side LI/CI than left (0.63, 0.60, P=.049). The W/H ratio was higher than the predicted ideal ratio of 80% (range, 88% to 90%). The LI W/H ratio in Arabs was significantly larger than in Kurds (90.3% versus 82.7%, respectively; P<.001). The GP was found to exist between the apparent widths of maxillary anterior teeth LI/CI for the both populations in both men and women but not for C/LI. No ideal ratio was detected for the W/H ratios. Specific population characteristics must be taken into consideration, especially when applying the proportions to Kurdish individuals. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. Spin injection, transport, and read/write operation in spin-based MOSFET

    International Nuclear Information System (INIS)

    Saito, Yoshiaki; Marukame, Takao; Inokuchi, Tomoaki; Ishikawa, Mizue; Sugiyama, Hideyuki; Tanamoto, Tetsufumi

    2011-01-01

    We proposed a novel spin-based MOSFET 'Spin-Transfer-torque-Switching MOSFET (STS-MOSFET)' that offers non-volatile memory and transistor functions with complementary metal-oxide-semiconductor (CMOS) compatibility, high endurance and fast write time using STS. The STS-MOSFETs with Heusler alloy (Co 2 Fe 1 Al 0.5 Si 0.5 ) were prepared and reconfigurability of a novel spintronics-based MOSFET, STS-MOSFET, was successfully realized for the transport properties owing to reduction of the contact resistance in ferromagnetic metal/thin insulator tunnel barrier/Si junctions. The device showed magnetocurrent (MC) and write characteristics with the endurance of over 10 5 cycles. It was also clarified that the read characteristic can be improved in terms of MC ratio, however, is deteriorated in terms of the mobility by choosing connection configurations of the source and the drain in the STS-MOSFETs.

  8. Investigating Supermassive Black Hole Spin at Different Redshift

    Science.gov (United States)

    Sinanan-Singh, Jasmine

    2018-01-01

    Supermassive black hole (SMBH) spin encodes vital information about the history of SMBH growth. High spins indicate a history of growth through large mass accretion events, which spin-up the black hole; Intermediate spins indicate a history of galactic mergers, which don't tend to systemcatically spin-up or spin-down black holes; low spins are attributed to successive, small accretion events with random orientations. Examining spin over different redshifts will help us understand the relative growth of SMBHs by mergers or accretion over cosmic time, an important part of understanding how SMBHs and their host galaxies co-evolved over time. To study spin, we compute the Fe K alpha emission line from the X-ray spectra of AGN sources in the Chandra-COSMOS Legacy Survey. We stack rest frame AGN spectra to improve the signal-to-noise ratio since the photon counts are low for individual spectra, and then average the spectra using an unwieghted mean. Our method is derived from Corral et al. (2008). We test our method on the two brightest sources in the COSMOS Survey and compute the rest frame average Fe K alpha emission line for different redshift bins. The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.

  9. Chiral symmetry breaking and the spin content of hadrons

    Science.gov (United States)

    Glozman, L. Ya.; Lang, C. B.; Limmer, M.

    2012-04-01

    From the parton distributions in the infinite momentum frame, one finds that only about 30% of the nucleon spin is carried by spins of the valence quarks, which gave rise to the term “spin crisis”. Similar results hold for the lowest mesons, as it follows from the lattice simulations. We define the spin content of a meson in the rest frame and use a complete and orthogonal q¯q chiral basis and a unitary transformation from the chiral basis to the 2LJ basis. Then, given a mixture of different allowed chiral representations in the meson wave function at a given resolution scale, one can obtain its spin content at this scale. To obtain the mixture of the chiral representations in the meson, we measure in dynamical lattice simulations a ratio of couplings of interpolators with different chiral structure. For the ρ meson, we obtain practically the 3S1 state with no trace of the spin crisis. Then a natural question arises: which definition does reflect the spin content of a hadron?

  10. Interface-induced spin Hall magnetoresistance enhancement in Pt-based tri-layer structure.

    Science.gov (United States)

    Huang, Shun-Yu; Li, Hong-Lin; Chong, Cheong-Wei; Chang, Yu-Ying; Lee, Min-Kai; Huang, Jung-Chun-Andrew

    2018-01-08

    In this study, we integrated bilayer structure of covered Pt on nickel zinc ferrite (NZFO) and CoFe/Pt/NZFO tri-layer structure by pulsed laser deposition system for a spin Hall magnetoresistance (SMR) study. In the bilayer structure, the angular-dependent magnetoresistance (MR) results indicate that Pt/NZFO has a well-defined SMR behavior. Moreover, the spin Hall angle and the spin diffusion length, which were 0.0648 and 1.31 nm, respectively, can be fitted by changing the Pt thickness in the longitudinal SMR function. Particularly, the MR ratio of the bilayer structure (Pt/NZFO) has the highest changing ratio (about 0.135%), compared to the prototype structure Pt/Y 3 Fe 5 O 12 (YIG) because the NZFO has higher magnetization. Meanwhile, the tri-layer samples (CoFe/Pt/NZFO) indicate that the MR behavior is related with CoFe thickness as revealed in angular-dependent MR measurement. Additionally, comparison between the tri-layer structure with Pt/NZFO and CoFe/Pt bilayer systems suggests that the SMR ratio can be enhanced by more than 70%, indicating that additional spin current should be injected into Pt layer.

  11. Spin drift and spin diffusion currents in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)], E-mail: m.miah@griffith.edu.au

    2008-09-15

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  12. Spin drift and spin diffusion currents in semiconductors

    Directory of Open Access Journals (Sweden)

    M Idrish Miah

    2008-01-01

    Full Text Available On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  13. Spin drift and spin diffusion currents in semiconductors

    International Nuclear Information System (INIS)

    Idrish Miah, M

    2008-01-01

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  14. High spin isomer beam line at RIKEN

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, T.; Ideguchi, E.; Wu, H.Y. [Institute of Physical and Chemical Research, Saitama (Japan)] [and others

    1996-12-31

    Nuclear high spin states have been the subject of extensive experimental and theoretical studies. For the production of high spin states, fusion reactions are usually used. The orbital angular momentum brought in the reaction is changed into the nuclear spin of the compound nucleus. However, the maximum induced angular momentum is limited in this mechanism by the maximum impact parameter of the fusion reaction and by the competition with fission reactions. It is, therefore, difficult to populate very high spin states, and as a result, large {gamma}-detector arrays have been developed in order to detect subtle signals from such very high spin states. The use of high spin isomers in the fusion reactions can break this limitation because the high spin isomers have their intrinsic angular momentum, which can bring the additional angular momentum without increasing the excitation energy. There are two methods to use the high spin isomers for secondary reactions: the use of the high spin isomers as a target and that as a beam. A high spin isomer target has already been developed and used for several experiments. But this method has an inevitable shortcoming that only {open_quotes}long-lived{close_quotes} isomers can be used for a target: {sup 178}Hf{sup m2} (16{sup +}) with a half-life of 31 years in the present case. By developing a high spin isomer beam, the authors can utilize various short-lived isomers with a short half-life around 1 {mu}s. The high spin isomer beam line of RIKEN Accelerator Facility is a unique apparatus in the world which provides a high spin isomer as a secondary beam. The combination of fusion-evaporation reaction and inverse kinematics are used to produce high spin isomer beams; in particular, the adoption of `inverse kinematics` is essential to use short-lived isomers as a beam.

  15. Spin Polarization Oscillations without Spin Precession: Spin-Orbit Entangled Resonances in Quasi-One-Dimensional Spin Transport

    Directory of Open Access Journals (Sweden)

    D. H. Berman

    2014-03-01

    Full Text Available Resonant behavior involving spin-orbit entangled states occurs for spin transport along a narrow channel defined in a two-dimensional electron gas, including an apparent rapid relaxation of the spin polarization for special values of the channel width and applied magnetic field (so-called ballistic spin resonance. A fully quantum-mechanical theory for transport using multiple subbands of the one-dimensional system provides the dependence of the spin density on the applied magnetic field and channel width and position along the channel. We show how the spatially nonoscillating part of the spin density vanishes when the Zeeman energy matches the subband energy splittings. The resonance phenomenon persists in the presence of disorder.

  16. Effect of spin rotation coupling on spin transport

    International Nuclear Information System (INIS)

    Chowdhury, Debashree; Basu, B.

    2013-01-01

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied

  17. Effect of spin rotation coupling on spin transport

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com

    2013-12-15

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k{sup →}⋅p{sup →} perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k{sup →}⋅p{sup →} framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied.

  18. Shapes and alignments at high spin in some rare-earth nuclei

    International Nuclear Information System (INIS)

    Deleplanque, M.A.; Diamond, R.M.; Stephens, F.S.; Macchiavelli, A.O.; Doessing, T.; Draper, J.E.; Dines, E.L.

    1985-01-01

    The structure of nuclei at high spins is dominated by an interplay between deformation and alignment effects. Cranking models predict various shapes but at the highest spins, there is a tendency towards large triaxial deformations and sometimes towards very large prolate deformations (superdeformations). Directly involved in the shape changes are aligned orbitals which come down to the Fermi level as the nucleus rotates more rapidly. At a certain frequency, they become populated and cause large alignments. The mechanism of these changes has been explored by looking at a series of rare earth quasirotational nuclei from Dy to W in the transition region around N = 90 neutrons. The continuum spectra, corrected for incomplete population (feeding) of the high spins, are directly proportional to dynamic effective moments of inertia which describe how much spin is generated at each rotational frequency

  19. High spin structures in 194Hg

    International Nuclear Information System (INIS)

    Fotiades, N.; Vlastou, R.; Serris, M.; Sharpey-Schafer, J.F.; Fallon, P.; Riley, M.A.; Clark, R.M.; Hauschild, K.; Wadsworth, R.

    1996-01-01

    High spin states in the isotope 194 Hg were populated using the 150 Nd( 48 Ca,4n) reaction at a beam energy of 213 MeV. The analysis of γ-γ coincidences has revealed two new structures at excitation energies above 6 MeV and at moderate spin. The two structures are a manifestation of the deviation of nucleus from the collective rotation which dominates its lower excitation behaviour. A comparison with similar structures in the neighbouring Hg isotopes is also attempted. (orig.)

  20. Implications of the Low Binary Black Hole Aligned Spins Observed by LIGO

    Energy Technology Data Exchange (ETDEWEB)

    Hotokezaka, Kenta [Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, NY 10010 (United States); Piran, Tsvi [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2017-06-20

    We explore the implications of the low-spin components along the orbital axis observed in an Advanced LIGO O1 run on binary black hole (BBH) merger scenarios in which the merging BBHs have evolved from field binaries. The coalescence time determines the initial orbital separation of BBHs. This, in turn, determines whether the stars are synchronized before collapse, and hence determines their projected spins. Short coalescence times imply synchronization and large spins. Among known stellar objects, Wolf–Rayet (WR) stars seem to be the only progenitors consistent with the low aligned spins observed in LIGO’s O1, provided that the orbital axis maintains its direction during the collapse. We calculate the spin distribution of BBH mergers in the local universe, and its redshift evolution for WR progenitors. Assuming that the BBH formation rate peaks around a redshift of ∼2–3, we show that BBH mergers in the local universe are dominated by low-spin events. The high-spin population starts to dominate at a redshift of ∼0.5–1.5. WR stars are also progenitors of long gamma-ray bursts that take place at a comparable rate to BBH mergers. We discuss the possible connection between the two phenomena. Additionally, we show that hypothetical Population III star progenitors are also possible. Although WR and Population III progenitors are consistent with the current data, both models predict a non-vanishing fraction of high positive values of the BBHs’ aligned spin. If those are not detected within the coming LIGO/Virgo runs, it will be unlikely that the observed BBHs formed via field binaries.

  1. Biradical and triradical organic magnetic molecules as spin filters and rectifiers

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L. [School of Physics, School of Optoelectronics Science and Engineering, Wuhan Pulsed Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Yao, K.L., E-mail: klyao@hust.edu.cn [School of Physics, School of Optoelectronics Science and Engineering, Wuhan Pulsed Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); International Center of Materials Physics, Chinese Academy of Science, Shengyang 110015 (China); Liu, Z.L. [School of Physics, School of Optoelectronics Science and Engineering, Wuhan Pulsed Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-03-13

    Graphical abstract: (a) Negative differential resistance (NDR) characteristic and antiparallel spin-current (ASC) rectification; (b) spin-current (SC) rectification and charge-current (CC) rectification properties Display Omitted Highlights: Black-Right-Pointing-Pointer Organic magnetic molecules at gold electrodes as spin/charge rectifier. Black-Right-Pointing-Pointer Spin diode/rectification stems from length and asymmetry of molecular framework. Black-Right-Pointing-Pointer Negative differential resistance, spin-filtering and switching evidenced. - Abstract: We have theoretically investigated the spin-polarized transport properties of molecular junctions consisting of biradical and triradical organic magnetic molecules sandwiched between two symmetric gold electrodes, respectively. It shows that these junctions function as a spin rectifier or a combination of spin and charge rectifiers with high spin rectification ratios exceeding 100, wherein the spin diode/rectification effect stems from the conjugated length and asymmetry of the molecular framework, which is the pre-requisite for electronic asymmetry of the adsorbed species. The negative differential resistance, spin-filtering and switching properties are also unveiled. In particular, it is revealed that the strong couplings between the electrodes and molecules are responsible for the negative differential resistance.

  2. Ladder Ising spin configurations. Pt. 1. Heat capacity

    International Nuclear Information System (INIS)

    Mejdani, R.; Lambros, A.

    1996-01-01

    We consider a ladder Ising spin model (with two coupled Ising spin chains), characterized by two couplings (interchain and intrachain couplings), to study in detail, in an analytical way, its thermal behaviour and particularly the variation of the specific heat versus temperature, the ratio of interaction constants, and the magnetic field. It is interesting that when the competition between interchain and intrachain interactions is strong the specific heat exhibits a double peak and when the competition is not so strong the specific heat has a single peak. Further, without entering into details, we give, in a numerical way, some similar results for more complicated ladder configurations (with more than two linear Ising chains). The spin-1/2 ladders or systems of spin chains may be realized in nature by vanadyl pyrophosphate ((VO) 2 P 2 O 7 ) or similar materials. All these intermediate systems are today important to gain further insight into the physics of one-dimensional spin chains and two-dimensional high-T c spin systems, both of which have shown interesting and unusual magnetic and superconducting properties. It is plausible that experimental and theoretical studies of ladders may lead to other interesting physical phenomena. (orig.)

  3. Probing Spin Crossover in a Solution by Paramagnetic NMR Spectroscopy.

    Science.gov (United States)

    Pavlov, Alexander A; Denisov, Gleb L; Kiskin, Mikhail A; Nelyubina, Yulia V; Novikov, Valentin V

    2017-12-18

    Spin transitions in spin-crossover compounds are now routinely studied in the solid state by magnetometry; however, only a few methods exist for studies in solution. The currently used Evans method, which relies on NMR spectroscopy to measure the magnetic susceptibility, requires the availability of a very pure sample of the paramagnetic compound and its exact concentration. To overcome these limitations, we propose an alternative NMR-based technique for evaluating spin-state populations by only using the chemical shifts of a spin-crossover compound; those can be routinely obtained for a solution that contains unknown impurities and paramagnetic admixtures or is contaminated otherwise.

  4. pH-Dependent spin state population and 19F NMR chemical shift via remote ligand protonation in an iron(ii) complex.

    Science.gov (United States)

    Gaudette, Alexandra I; Thorarinsdottir, Agnes E; Harris, T David

    2017-11-30

    An Fe II complex that features a pH-dependent spin state population, by virtue of a variable ligand protonation state, is described. This behavior leads to a highly pH-dependent 19 F NMR chemical shift with a sensitivity of 13.9(5) ppm per pH unit at 37 °C, thereby demonstrating the potential utility of the complex as a 19 F chemical shift-based pH sensor.

  5. Spin-flip induced magnetoresistance in positionally disordered organic solids.

    Science.gov (United States)

    Harmon, N J; Flatté, M E

    2012-05-04

    A model for magnetoresistance in positionally disordered organic materials is presented and solved using percolation theory. The model describes the effects of spin dynamics on hopping transport by considering changes in the effective density of hopping sites, a key quantity determining the properties of percolative transport. Faster spin-flip transitions open up "spin-blocked" pathways to become viable conduction channels and hence produce magnetoresistance. Features of this percolative magnetoresistance can be found analytically in several regimes, and agree with previous measurements, including the sensitive dependence of the magnetic-field dependence of the magnetoresistance on the ratio of the carrier hopping time to the hyperfine-induced carrier spin precession time. Studies of magnetoresistance in known systems with controllable positional disorder would provide an additional stringent test of this theory.

  6. High-spin states in 82Sr

    International Nuclear Information System (INIS)

    Baktash, C.; Halper, M.L.; Garcia Bermudez, G.J.

    1989-01-01

    As recent theoretical calculations that predicted the onset of superdeformation in the A ≅ 80 region, the 52 Cr( 34 S,2p2n) reaction at 130 MeV beam energy was employed to populate the high-spin states in 82 Sr. The detection system consisted of the ORNL Compton-Suppression Spectrometer System (18 Ge detectors), the Spin Spectrometer, and the 4 φ CsI Dwarf Ball of Washington University. Off-line analysis of the proton-gated data resulted in nearly 170 million Ge-Ge pairs, which were mostly due to the 2p2n channel. A decay scheme extending to spin I=27h has been established. No strong evidence for the presence of superdeformed states in 82 Sr was found in a preliminary analysis of the data. (Author) [es

  7. Spin Hall and spin swapping torques in diffusive ferromagnets

    KAUST Repository

    Pauyac, C. O.

    2017-12-08

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  8. Spin Hall and spin swapping torques in diffusive ferromagnets

    KAUST Repository

    Pauyac, C. O.; Chshiev, M.; Manchon, Aurelien; Nikolaev, S. A.

    2017-01-01

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  9. A qualitative study of spin polarization effect in defect tuned Co/graphene/Co nanostructures

    Science.gov (United States)

    Mandal, Sumit; Saha, Shyamal K.

    2014-10-01

    Theoretical reports predict that in contact with a ferromagnetic giant spin, spin polarization evolves in defective graphene since defects in graphene act as local spin moments. We have synthesized different Co/graphene/Co nano spin valve like structures tuning the degree of defect applying ultrasonic vibration and characterized them by Raman spectroscopy. Initially with increasing ID/IG ratio in Raman spectra, antiferromagnetic coupling between the Co nanosheets on either sides of graphene enhances leading to betterment in spin transport through graphene. But for highest ID/IG, a totally new phenomenon called antiferro quadrupolar ordering (AFQ) takes place which eventually reduces the spin polarization effect.

  10. Spin-orbit and spin-lattice coupling

    International Nuclear Information System (INIS)

    Bauer, Gerrit E.W.; Ziman, Timothy; Mori, Michiyasu

    2014-01-01

    We pursued theoretical research on the coupling of electron spins in the condensed matter to the lattice as mediated by the spin-orbit interaction with special focus on the spin and anomalous Hall effects. (author)

  11. Spin polarized semimagnetic exciton-polariton condensate in magnetic field.

    Science.gov (United States)

    Król, Mateusz; Mirek, Rafał; Lekenta, Katarzyna; Rousset, Jean-Guy; Stephan, Daniel; Nawrocki, Michał; Matuszewski, Michał; Szczytko, Jacek; Pacuski, Wojciech; Piętka, Barbara

    2018-04-27

    Owing to their integer spin, exciton-polaritons in microcavities can be used for observation of non-equilibrium Bose-Einstein condensation in solid state. However, spin-related phenomena of such condensates are difficult to explore due to the relatively small Zeeman effect of standard semiconductor microcavity systems and the strong tendency to sustain an equal population of two spin components, which precludes the observation of condensates with a well defined spin projection along the axis of the system. The enhancement of the Zeeman splitting can be achieved by introducing magnetic ions to the quantum wells, and consequently forming semimagnetic polaritons. In this system, increasing magnetic field can induce polariton condensation at constant excitation power. Here we evidence the spin polarization of a semimagnetic polaritons condensate exhibiting a circularly polarized emission over 95% even in a moderate magnetic field of about 3 T. Furthermore, we show that unlike nonmagnetic polaritons, an increase on excitation power results in an increase of the semimagnetic polaritons condensate spin polarization. These properties open new possibilities for testing theoretically predicted phenomena of spin polarized condensate.

  12. Formation of very short pulse by neutron spin flip chopper for J-PARC

    International Nuclear Information System (INIS)

    Ebisawa, T.; Soyama, K.; Yamazaki, D.; Tasaki, S.; Sakai, K.; Oku, T.; Maruyama, R.; Hino, M.

    2004-01-01

    We have developed neutron spin flip choppers with high S/N ratio and high intensity for pulsed sources using multi-stage spin flip choppers. It is not easy for us to obtain a very short neutron pulse less than 10 μs using a spin flip chopper, due to the time constant L/R in the normal LR circuit. We will discuss a method obtaining a very short neutron pulse applying the modified push-pull circuit proposed by Ito and Takahashi [4] to the double spin flip chopper with polarizing guides

  13. STOCHASTIC MODEL OF THE SPIN DISTRIBUTION OF DARK MATTER HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Juhan [Center for Advanced Computation, Korea Institute for Advanced Study, Heogiro 85, Seoul 130-722 (Korea, Republic of); Choi, Yun-Young [Department of Astronomy and Space Science, Kyung Hee University, Gyeonggi 446-701 (Korea, Republic of); Kim, Sungsoo S.; Lee, Jeong-Eun [School of Space Research, Kyung Hee University, Gyeonggi 446-701 (Korea, Republic of)

    2015-09-15

    We employ a stochastic approach to probing the origin of the log-normal distributions of halo spin in N-body simulations. After analyzing spin evolution in halo merging trees, it was found that a spin change can be characterized by a stochastic random walk of angular momentum. Also, spin distributions generated by random walks are fairly consistent with those directly obtained from N-body simulations. We derived a stochastic differential equation from a widely used spin definition and measured the probability distributions of the derived angular momentum change from a massive set of halo merging trees. The roles of major merging and accretion are also statistically analyzed in evolving spin distributions. Several factors (local environment, halo mass, merging mass ratio, and redshift) are found to influence the angular momentum change. The spin distributions generated in the mean-field or void regions tend to shift slightly to a higher spin value compared with simulated spin distributions, which seems to be caused by the correlated random walks. We verified the assumption of randomness in the angular momentum change observed in the N-body simulation and detected several degrees of correlation between walks, which may provide a clue for the discrepancies between the simulated and generated spin distributions in the voids. However, the generated spin distributions in the group and cluster regions successfully match the simulated spin distribution. We also demonstrated that the log-normality of the spin distribution is a natural consequence of the stochastic differential equation of the halo spin, which is well described by the Geometric Brownian Motion model.

  14. Spin rotation after a spin-independent scattering. Spin properties of an electron gas in a solid

    International Nuclear Information System (INIS)

    Zayets, V.

    2014-01-01

    It is shown that spin direction of an electron may not be conserved after a spin-independent scattering. The spin rotations occur due to a quantum-mechanical fact that when a quantum state is occupied by two electrons of opposite spins, the total spin of the state is zero and the spin direction of each electron cannot be determined. It is shown that it is possible to divide all conduction electrons into two group distinguished by their time-reversal symmetry. In the first group the electron spins are all directed in one direction. In the second group there are electrons of all spin directions. The number of electrons in each group is conserved after a spin-independent scattering. This makes it convenient to use these groups for the description of the magnetic properties of conduction electrons. The energy distribution of spins, the Pauli paramagnetism and the spin distribution in the ferromagnetic metals are described within the presented model. The effects of spin torque and spin-torque current are described. The origin of spin-transfer torque is explained within the presented model

  15. Spin injection and spin accumulation in all-metal mesoscopic spin valves

    NARCIS (Netherlands)

    Jedema, FJ; Nijboer, MS; Filip, AT; van Wees, BJ

    2003-01-01

    We study the electrical injection and detection of spin accumulation in lateral ferromagnetic-metal-nonmagnetic-metal-ferromagnetic-metal (F/N/F) spin valve devices with transparent interfaces. Different ferromagnetic metals, Permalloy (Py), cobalt (Co), and nickel (Ni), are used as electrical spin

  16. The susceptibilities in the spin-S Ising model

    International Nuclear Information System (INIS)

    Ainane, A.; Saber, M.

    1995-08-01

    The susceptibilities of the spin-S Ising model are evaluated using the effective field theory introduced by Tucker et al. for studying general spin-S Ising model. The susceptibilities are studied for all spin values from S = 1/2 to S = 5/2. (author). 12 refs, 4 figs

  17. Control of electron spin decoherence in nuclear spin baths

    Science.gov (United States)

    Liu, Ren-Bao

    2011-03-01

    Nuclear spin baths are a main mechanism of decoherence of spin qubits in solid-state systems, such as quantum dots and nitrogen-vacancy (NV) centers of diamond. The decoherence results from entanglement between the electron and nuclear spins, established by quantum evolution of the bath conditioned on the electron spin state. When the electron spin is flipped, the conditional bath evolution is manipulated. Such manipulation of bath through control of the electron spin not only leads to preservation of the center spin coherence but also demonstrates quantum nature of the bath. In an NV center system, the electron spin effectively interacts with hundreds of 13 C nuclear spins. Under repeated flip control (dynamical decoupling), the electron spin coherence can be preserved for a long time (> 1 ms) . Thereforesomecharacteristicoscillations , duetocouplingtoabonded 13 C nuclear spin pair (a dimer), are imprinted on the electron spin coherence profile, which are very sensitive to the position and orientation of the dimer. With such finger-print oscillations, a dimer can be uniquely identified. Thus, we propose magnetometry with single-nucleus sensitivity and atomic resolution, using NV center spin coherence to identify single molecules. Through the center spin coherence, we could also explore the many-body physics in an interacting spin bath. The information of elementary excitations and many-body correlations can be extracted from the center spin coherence under many-pulse dynamical decoupling control. Another application of the preserved spin coherence is identifying quantumness of a spin bath through the back-action of the electron spin to the bath. We show that the multiple transition of an NV center in a nuclear spin bath can have longer coherence time than the single transition does, when the classical noises due to inhomogeneous broadening is removed by spin echo. This counter-intuitive result unambiguously demonstrates the quantumness of the nuclear spin bath

  18. Spin-filtering and giant magnetoresistance effects in polyacetylene-based molecular devices

    Science.gov (United States)

    Chen, Tong; Yan, Shenlang; Xu, Liang; Liu, Desheng; Li, Quan; Wang, Lingling; Long, Mengqiu

    2017-07-01

    Using the non-equilibrium Green's function formalism in combination with density functional theory, we performed ab initio calculations of spin-dependent electron transport in molecular devices consisting of a polyacetylene (CnHn+1) chain vertically attached to a carbon chain sandwiched between two semi-infinite zigzag-edged graphene nanoribbon electrodes. Spin-charge transport in the device could be modulated to different magnetic configurations by an external magnetic field. The results showed that single spin conduction could be obtained. Specifically, the proposed CnHn+1 devices exhibited several interesting effects, including (dual) spin filtering, spin negative differential resistance, odd-even oscillation, and magnetoresistance (MR). Marked spin polarization with a filtering efficiency of up to 100% over a large bias range was found, and the highest MR ratio for the CnHn+1 junctions reached 4.6 × 104. In addition, the physical mechanisms for these phenomena were also revealed.

  19. Magnetocaloric effect in quantum spin-s chains

    Directory of Open Access Journals (Sweden)

    A. Honecker

    2009-01-01

    Full Text Available We compute the entropy of antiferromagnetic quantum spin-s chains in an external magnetic field using exact diagonalization and Quantum Monte Carlo simulations. The magnetocaloric effect, i. e., temperature variations during adiabatic field changes, can be derived from the isentropes. First, we focus on the example of the spin-s=1 chain and show that one can cool by closing the Haldane gap with a magnetic field. We then move to quantum spin-s chains and demonstrate linear scaling with s close to the saturation field. In passing, we propose a new method to compute many low-lying excited states using the Lanczos recursion.

  20. Graphene spin diode: Strain-modulated spin rectification

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yunhua; Wang, B., E-mail: stslyl@mail.sysu.edu.cn, E-mail: wangbiao@mail.sysu.edu.cn [Sino-French Institute of Nuclear Engineering and Technology, School of Physics and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275 (China); Liu, Yulan, E-mail: stslyl@mail.sysu.edu.cn, E-mail: wangbiao@mail.sysu.edu.cn [School of Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2014-08-04

    Strain effects on spin transport in a ferromagnetic/strained/normal graphene junction are explored theoretically. It is shown that the spin-resolved Fermi energy range can be controlled by the armchair direction strain because the strain-induced pseudomagnetic field suppresses the current. The spin rectification effect for the bias reversal occurs because of a combination of ferromagnetic exchange splitting and the broken spatial symmetry of the junction. In addition, the spin rectification performance can be tuned remarkably by manipulation of the strains. In view of this strain-modulated spin rectification effect, we propose that the graphene-based ferromagnetic/strained/normal junction can be used as a tunable spin diode.

  1. Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction

    KAUST Repository

    Ortiz Pauyac, Christian

    2016-01-01

    filtering. In Chap. 3 we discuss the Rashba torque in ferromagnetic films, and in Chap. 4 we study spin Hall effect and spin swapping in ferromagnetic films, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives

  2. Spin and orbital moments in actinide compounds

    DEFF Research Database (Denmark)

    Lebech, B.; Wulff, M.; Lander, G.H.

    1991-01-01

    The extended spatial distribution of both the transition-metal 3d electrons and the actinide 5f electrons results in a strong interaction between these electron states when the relevant elements are alloyed. A particular interesting feature of this hybridization, which is predicted by single...... experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe2, NpCo2, and PuFe2 and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced...

  3. Population and colony-level determinants of tertiary sex ratio in the declining barn swallow.

    Directory of Open Access Journals (Sweden)

    Nicola Saino

    Full Text Available Sex ratio of adults (tertiary sex ratio, TSR is a major feature of animal populations with consequences for their behaviour, genetic structure and viability. Spatial and temporal variation in TSR occurs within species but the mechanisms behind it are poorly understood. In this long-term study of a declining population of a socially monogamous, colonial, migratory bird, the barn swallow (Hirundo rustica, we first analyzed population-level variation in TSR ( =  proportion of males of yearlings at sexual maturation in relation to ecological conditions as gauged by annual survival rate of adults. TSR was male-biased both among yearlings and older individuals, but male bias of yearlings was more pronounced after years with larger decline in adult survival. Thus, male offspring were less susceptible to the adverse ecological conditions that cause increased mortality. Dispersal and settling site decisions can have major consequences on fitness via the effects of local TSR on mating and sperm competition. Breeding barn swallows are highly philopatric while natal dispersal is high and, together with mortality, is the main determinant of colony TSR. We thus also investigated the mechanisms of breeding colony choice by yearlings and found that TSR of new-settlers in a given colony and year was negatively predicted by TSR of returning, early arriving older individuals in that year, but not by overall TSR at the colony in the previous year. This suggests that in our male-biased population new-settler males respond to local TSR upon arrival to choose the sites with larger breeding opportunities. Hence, variation in ecological conditions as reflected by adult survival can shift the TSR of individuals recruiting into a local population, with potentially various demographic consequences. However, breeding site choice based on TSR tends to homogenize TSR at a population level likely by facilitating settling of dispersing males in colonies with less male

  4. 13C spin relaxation measurements in RNA: Sensitivity and resolution improvement using spin-state selective correlation experiments

    International Nuclear Information System (INIS)

    Boisbouvier, Jerome; Brutscher, Bernhard; Simorre, Jean-Pierre; Marion, Dominique

    1999-01-01

    A set of new NMR pulse sequences has been designed for the measurement of 13 C relaxation rate constants in RNA and DNA bases: the spin-lattice relaxation rate constant R(C z ), the spin-spin relaxation rate constant R(C + ), and the CSA-dipolar cross-correlated relaxation rate constant Γ C,CH xy . The use of spin-state selective correlation techniques provides increased sensitivity and spectral resolution. Sensitivity optimised C-C filters are included in the pulse schemes for the suppression of signals originating from undesired carbon isotopomers. The experiments are applied to a 15% 13 C-labelled 33-mer RNA-theophylline complex. The measured R(C + )/Γ C,CH xy ratios indicate that 13 C CSA tensors do not vary significantly for the same type of carbon (C 2 , C 6 , C 8 ), but that they differ from one type to another. In addition, conformational exchange effects in the RNA bases are detected as a change in the relaxation decay of the narrow 13 C doublet component when varying the spacing of a CPMG pulse train. This new approach allows the detection of small exchange effects with a higher precision compared to conventional techniques

  5. Disk Emission from Magnetohydrodynamic Simulations of Spinning Black Holes

    Science.gov (United States)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2016-01-01

    We present the results of a new series of global, three-dimensional, relativistic magnetohydrodynamic (MHD) simulations of thin accretion disks around spinning black holes. The disks have aspect ratios of H/R approx. 0.05 and spin parameters of a/M = 0, 0.5, 0.9, and 0.99. Using the ray-tracing code Pandurata, we generate broadband thermal spectra and polarization signatures from the MHD simulations. We find that the simulated spectra can be well fit with a simple, universal emissivity profile that better reproduces the behavior of the emission from the inner disk, compared to traditional analyses carried out using a Novikov-Thorne thin disk model. Finally, we show how spectropolarization observations can be used to convincingly break the spin-inclination degeneracy well known to the continuum-fitting method of measuring black hole spin.

  6. Drones, quasi-spin or iso-spin. A comparison of many-body techniques for general spin

    International Nuclear Information System (INIS)

    McKenzie, B.J.; Stedman, G.E.

    1976-01-01

    For an effective-spin system with 2S + 1 levels there are a number of possible mappings of spin onto pseudo-fermion operators. The relative merits of three of these methods are investigated by calculating to second order the dispersion relation for coupled spin-phonon modes in crystals containing S = 1 effective spin impurities. It is found that the drone formalism quickly becomes intractable at higher spin values, as does the related quasi-spin formalism developed in contrast with the iso-spin (or Abrinkosov projection) formalism. (author)

  7. Spin-current emission governed by nonlinear spin dynamics.

    Science.gov (United States)

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-10-16

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators.

  8. Spin Hall Effect in Doped Semiconductor Structures

    Science.gov (United States)

    Tse, Wang-Kong; Das Sarma, Sankar

    2006-03-01

    We present a microscopic theory of the extrinsic spin Hall effect based on the diagrammatic perturbation theory. Side-jump (SJ) and skew-scattering (SS) contributions are explicitly taken into account to calculate the spin Hall conductivity, and we show their effects scale as σxy^SJ/σxy^SS ˜(/τ)/ɛF, where τ being the transport relaxation time. Motivated by recent experimental work we apply our theory to n-doped and p-doped 3D and 2D GaAs structures, obtaining analytical formulas for the SJ and SS contributions. Moreover, the ratio of the spin Hall conductivity to longitudinal conductivity is found as σs/σc˜10-3-10-4, in reasonable agreement with the recent experimental results of Kato et al. [Science 306, 1910 (2004)] in n-doped 3D GaAs system.

  9. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    Science.gov (United States)

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-07-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.

  10. Spin nematics next to spin singlets

    Science.gov (United States)

    Yokoyama, Yuto; Hotta, Chisa

    2018-05-01

    We provide a route to generate nematic order in a spin-1/2 system. Unlike the well-known magnon-binding mechanism, our spin nematics requires neither the frustration effect nor spin polarization in a high field or in the vicinity of a ferromagnet, but instead appears next to the spin singlet phase. We start from a state consisting of a quantum spin-1/2 singlet dimer placed on each site of a triangular lattice, and show that interdimer ring exchange interactions efficiently dope the SU(2) triplets that itinerate and interact, easily driving a stable singlet state to either Bose-Einstein condensates or a triplet crystal, some hosting a spin nematic order. A variety of roles the ring exchange serves includes the generation of a bilinear-biquadratic interaction between nearby triplets, which is responsible for the emergent nematic order separated from the singlet phase by a first-order transition.

  11. The /sup 13/C-/sup 13/C spin-spin coupling constants and the conformational equilibrium of alkyl phenyl sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Krividin, L.B.; Kalabin, G.A.

    1985-08-10

    The authors measure the direct geminal and vicinal spinspin coupling constants between the C-13 nuclei of the phenyl group in the series of alkyl phenyl sulfides C/sub 6/H/sub 5/SR. It was shown that the variation in most of the discussed constants is determined by the ratio of the planar and orthogonal conformers. Linear relationships were obtained between the C-13-C-13 constants and the fractions of the planar conformer. The C-13-C-13 spin-spin coupling constants in the planar and orthogonal conformers of the compounds were calculated by means of empirical relationships.

  12. Is otolith microchemistry (Sr: Ca and Ba:Ca ratios useful to identify Mugil curema populations in the southeastern Caribbean Sea?

    Directory of Open Access Journals (Sweden)

    E. Avigliano

    Full Text Available Abstract The aim of the present study was to evaluate the potential use of otolith microchemistry (Sr:Ca and Ba:Ca ratios to identify silver mullet, Mugil curema, populations in Southeastern Caribbean Sea. Fish samples were collected in 7 areas of Nueva Esparta State (Venezuela. The otolith Sr:Ca and Ba:Ca ratios and water Sr:Ca were determined (by ICP-OES and EDTA volumetric method. Otoliths Sr:Ca and Ba:Ca ratios and Sr:Ca partition coefficient of mullets in Cubagua island (south of the State were significantly different from ratios in La Guardia (north of the State. A discriminant analysis of otolith Sr:Ca and Ba:Ca ratios separated Cubagua Island from La Guardia values. These results suggest the existence of different mullet groups in the Southeastern Caribbean Sea. For this, the simultaneous use of Sr:Ca and Ba:Ca ratios could be a potential tool to identify populations in the study area.

  13. Is otolith microchemistry (Sr: Ca and Ba:Ca ratios) useful to identify Mugil curema populations in the southeastern Caribbean Sea?

    Science.gov (United States)

    Avigliano, E; Callicó-Fortunato, R; Buitrago, J; Volpedo, A V

    2015-11-01

    The aim of the present study was to evaluate the potential use of otolith microchemistry (Sr:Ca and Ba:Ca ratios) to identify silver mullet, Mugil curema, populations in Southeastern Caribbean Sea. Fish samples were collected in 7 areas of Nueva Esparta State (Venezuela). The otolith Sr:Ca and Ba:Ca ratios and water Sr:Ca were determined (by ICP-OES and EDTA volumetric method). Otoliths Sr:Ca and Ba:Ca ratios and Sr:Ca partition coefficient of mullets in Cubagua island (south of the State) were significantly different from ratios in La Guardia (north of the State). A discriminant analysis of otolith Sr:Ca and Ba:Ca ratios separated Cubagua Island from La Guardia values. These results suggest the existence of different mullet groups in the Southeastern Caribbean Sea. For this, the simultaneous use of Sr:Ca and Ba:Ca ratios could be a potential tool to identify populations in the study area.

  14. Optical and microwave control of germanium-vacancy center spins in diamond

    Science.gov (United States)

    Siyushev, Petr; Metsch, Mathias H.; Ijaz, Aroosa; Binder, Jan M.; Bhaskar, Mihir K.; Sukachev, Denis D.; Sipahigil, Alp; Evans, Ruffin E.; Nguyen, Christian T.; Lukin, Mikhail D.; Hemmer, Philip R.; Palyanov, Yuri N.; Kupriyanov, Igor N.; Borzdov, Yuri M.; Rogers, Lachlan J.; Jelezko, Fedor

    2017-08-01

    A solid-state system combining a stable spin degree of freedom with an efficient optical interface is highly desirable as an element for integrated quantum-optical and quantum-information systems. We demonstrate a bright color center in diamond with excellent optical properties and controllable electronic spin states. Specifically, we carry out detailed optical spectroscopy of a germanium-vacancy (GeV ) color center demonstrating optical spectral stability. Using an external magnetic field to lift the electronic spin degeneracy, we explore the spin degree of freedom as a controllable qubit. Spin polarization is achieved using optical pumping, and a spin relaxation time in excess of 20 μ s is demonstrated. We report resonant microwave control of spin transitions, and use this as a probe to measure the Autler-Townes effect in a microwave-optical double-resonance experiment. Superposition spin states were prepared using coherent population trapping, and a pure dephasing time of about 19 ns was observed at a temperature of 2.0 K.

  15. A qualitative study of spin polarization effect in defect tuned Co/graphene/Co nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sumit, E-mail: smtdone@gmail.com, E-mail: cnssks@iacs.res.in; Saha, Shyamal K., E-mail: smtdone@gmail.com, E-mail: cnssks@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2014-10-15

    Theoretical reports predict that in contact with a ferromagnetic giant spin, spin polarization evolves in defective graphene since defects in graphene act as local spin moments. We have synthesized different Co/graphene/Co nano spin valve like structures tuning the degree of defect applying ultrasonic vibration and characterized them by Raman spectroscopy. Initially with increasing I{sub D}/I{sub G} ratio in Raman spectra, antiferromagnetic coupling between the Co nanosheets on either sides of graphene enhances leading to betterment in spin transport through graphene. But for highest I{sub D}/I{sub G}, a totally new phenomenon called antiferro quadrupolar ordering (AFQ) takes place which eventually reduces the spin polarization effect.

  16. Studies on the decay of high-spin isomers in the W and Os isotopes

    International Nuclear Information System (INIS)

    Kraemer-Flecken, A.

    1988-01-01

    From the two experiments performed on the nucleus 180 Os the properties of the new high-spin isomer could be found. The excitation energy amounts to 5208 keV and the spin of the isomer amounts probably to I=19ℎ. The new measured half-life amounts to T 1/2 =41±10 ns. It is populated with an intensity of 1.6±0.4% relative to the (4 + → 2 +) transition in the Yrast band in an experiment with out use of the recoil-shadow technique. A preliminary decay scheme could be established from the sum spectra and exhibits similarities with the decay of the high-spin isomer in 182 Os. From the analysis of the experiment on the nucleus 178 W a new isomer with an excitation energy of 5271 keV and a half-life of T 1/2 =39±10 ns could be identified. The spin of the level has been determined to I=20±1. The half-life of the 3527 keV isomer has been determined to T 1/2 =28±4 ns. The spin of the isomer could be determined from the analysis of DCO ratios to I π =14 - . The configuration of the isomer could be fixed to ν6 + 5/2 - 5 512 7 x 7/2 5 514 7 +π8 - 7/2 + 5 404 7 x 9/2 5 514 7 because of the comparison with the 14 - isomer in 176 Hf and the comparison of the excitation energy for certain configurations with I π =14 - . (orig./HSI)

  17. Unravelling the spin-state of solvated [Fe(bpp)2]2+ spin-crossover complexes: structure-function relationship.

    Science.gov (United States)

    Giménez-López, Maria Del Carmen; Clemente-León, Miguel; Giménez-Saiz, Carlos

    2018-05-23

    This paper reports firstly the syntheses, crystal structures, and thermal and magnetic properties of spin crossover salts of formulae [Fe(bpp)2]3[Cr(CN)6]2·13H2O (1) and [Fe(bpp)2][N(CN)2]2·H2O (2) (bpp = 2,6-bis(pyrazol-3-yl)pyridine) exhibiting hydrogen-bonded networks of low-spin [Fe(bpp)2]2+ complexes and [Cr(CN)6]3- or [N(CN)2]- anions, with solvent molecules located in the voids. Desolvation of 1 is accompanied by a complete low-spin (LS) to a high-spin (HS) transformation that becomes reversible after rehydration by exposing the sample to the humidity of air. The influence of the lattice water on the magnetic properties of spin-crossover [Fe(bpp)2]X2 complex salts has been documented. In most cases, it stabilises the LS state over the HS one. In other cases, it is rather the contrary. The second part of this paper is devoted to unravelling the reasons why the lattice solvent stabilises one form over the other through magneto-structural correlations of [Fe(bpp)2]2+ salts bearing anions with different charge/size ratios (Xn-). The [Fe(bpp)2]2+ stacking explaining these two different behaviours is correlated here with the composition of the second coordination sphere of the Fe centers and the ability of these anions to form hydrogen bonds and/or π-π stacking interactions between them or the bpp ligand.

  18. Non magnetic neutron spin quantum precession using multilayer spin splitter and a phase-spin echo interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Ebisawa, T.; Tasaki, S.; Kawai, T.; Akiyoshi, T. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Achiwa, N.; Hino, M.; Otake, Y.; Funahashi, H.

    1996-08-01

    The authors have developed cold neutron optics and interferometry using multilayer mirrors. The advantages of the multilayer mirrors are their applicability to long wavelength neutrons and a great variety of the mirror performance. The idea of the present spin interferometry is based on nonmagnetic neutron spin quantum precession using multilayer spin splitters. The equation for polarized neutrons means that the polarized neutrons are equivalent to the coherent superposition of two parallel spin eigenstates. The structure and principle of a multilayer spin splitter are explained, and the nonmagnetic gap layer of the multilayer spin splitter gives rise to neutron spin quantum precession. The performance test of the multilayer spin splitter were made with a new spin interferometer, which is analogous optically to a spin echo system with vertical precession field. The spin interferometers were installed at Kyoto University research reactor and the JRR-3. The testing method and the results are reported. The performance tests on a new phase-spin echo interferometer are described, and its applications to the development of a high resolution spin echo system and a Jamin type cold neutron interferometer are proposed. (K.I.)

  19. Spin current through quantum-dot spin valves

    International Nuclear Information System (INIS)

    Wang, J; Xing, D Y

    2006-01-01

    We report a theoretical study of the influence of the Coulomb interaction on the equilibrium spin current in a quantum-dot spin valve, in which the quantum dot described by the Anderson impurity model is coupled to two ferromagnetic leads with noncollinear magnetizations. In the Kondo regime, electrons transmit through the quantum dot via higher-order virtual processes, in which the spin of either lead electrons or a localized electron on the quantum dot may reverse. It is found that the magnitude of the spin current decreases with increasing Coulomb interactions due to spin flip effects on the dot. However, the spatial direction of the spin current remains unchanged; it is determined only by the exchange coupling between two noncollinear magnetizations

  20. Compound nucleus effects in spin-spin cross sections

    International Nuclear Information System (INIS)

    Thompson, W.J.

    1976-01-01

    By comparison with recent data, it is shown that spin-spin cross sections for low-energy neutrons may be dominated by a simple compound-elastic level-density effect, independent of spin-spin terms in the nucleon-nucleus optical-model potential. (Auth.)

  1. Coupling a Surface Acoustic Wave to an Electron Spin in Diamond via a Dark State

    Directory of Open Access Journals (Sweden)

    D. Andrew Golter

    2016-12-01

    Full Text Available The emerging field of quantum acoustics explores interactions between acoustic waves and artificial atoms and their applications in quantum information processing. In this experimental study, we demonstrate the coupling between a surface acoustic wave (SAW and an electron spin in diamond by taking advantage of the strong strain coupling of the excited states of a nitrogen vacancy center while avoiding the short lifetime of these states. The SAW-spin coupling takes place through a Λ-type three-level system where two ground spin states couple to a common excited state through a phonon-assisted as well as a direct dipole optical transition. Both coherent population trapping and optically driven spin transitions have been realized. The coherent population trapping demonstrates the coupling between a SAW and an electron spin coherence through a dark state. The optically driven spin transitions, which resemble the sideband transitions in a trapped-ion system, can enable the quantum control of both spin and mechanical degrees of freedom and potentially a trapped-ion-like solid-state system for applications in quantum computing. These results establish an experimental platform for spin-based quantum acoustics, bridging the gap between spintronics and quantum acoustics.

  2. Spin and orbital magnetisation densities determined by Compton scattering of photons

    International Nuclear Information System (INIS)

    Collins, S.P.; Laundy, D.; Cooper, M.J.; Lovesey, S.W.; Uppsala Univ.

    1990-03-01

    Compton scattering of a circularly polarized photon beam is shown to provide direct information on orbital and spin magnetisation densities. Experiments are reported which demonstrate the feasibility of the method by correctly predicting the ratio of spin and orbital magnetisation components in iron and cobalt. A partially polarised beam of 45 keV photons from the Daresbury Synchrotron Radiation Source produces charge-magnetic interference scattering which is measured by a field-difference method. Theory shows that the interference cross section contains the Compton profile of polarised electrons modulated by a structure factor which is a weighted sum of spin and orbital magnetisations. In particular, the scattering geometry for which the structure factor vanishes yields a unique value for the ratio of the magnetisation densities. Compton scattering, being an incoherent process, provides data on total unit cell magnetisations which can be directly compared with bulk data. In this respect, Compton scattering complements magnetic neutron and photon Bragg diffraction. (author)

  3. Magnetic pseudo-fields in a rotating electron-nuclear spin system

    Science.gov (United States)

    Wood, A. A.; Lilette, E.; Fein, Y. Y.; Perunicic, V. S.; Hollenberg, L. C. L.; Scholten, R. E.; Martin, A. M.

    2017-11-01

    Analogous to the precession of a Foucault pendulum observed on the rotating Earth, a precessing spin observed in a rotating frame of reference appears frequency-shifted. This can be understood as arising from a magnetic pseudo-field in the rotating frame that nevertheless has physically significant consequences, such as the Barnett effect. To detect these pseudo-fields, a rotating-frame sensor is required. Here we use quantum sensors, nitrogen-vacancy (NV) centres, in a rapidly rotating diamond to detect pseudo-fields in the rotating frame. Whereas conventional magnetic fields induce precession at a rate proportional to the gyromagnetic ratio, rotation shifts the precession of all spins equally, and thus primarily affect 13C nuclear spins in the sample. We are thus able to explore these effects via quantum sensing in a rapidly rotating frame, and define a new approach to quantum control using rotationally induced nuclear spin-selective magnetic fields. This work provides an integral step towards realizing precision rotation sensing and quantum spin gyroscopes.

  4. Resurvey of order and chaos in spinning compact binaries

    International Nuclear Information System (INIS)

    Wu Xin; Xie Yi

    2008-01-01

    This paper is mainly devoted to applying the invariant, fast, Lyapunov indicator to clarify some doubt regarding the apparently conflicting results of chaos in spinning compact binaries at the second-order post-Newtonian approximation of general relativity from previous literatures. It is shown with a number of examples that no single physical parameter or initial condition can be described as responsible for causing chaos, but a complicated combination of all parameters and initial conditions is responsible. In other words, a universal rule for the dependence of chaos on each parameter or initial condition cannot be found in general. Chaos does not depend only on the mass ratio, and the maximal spins do not necessarily bring the strongest effect of chaos. Additionally, chaos does not always become drastic when the initial spin vectors are nearly perpendicular to the orbital plane, and the alignment of spins cannot trigger chaos by itself

  5. Optical spin generation/detection and spin transport lifetimes

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  6. Optical spin generation/detection and spin transport lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-02-25

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  7. Abnormal Elasticity of Single-Crystal Magnesiosiderite across the Spin Transition in Earth's Lower Mantle

    Science.gov (United States)

    Fu, Suyu; Yang, Jing; Lin, Jung-Fu

    2017-01-01

    Brillouin light scattering and impulsive stimulated light scattering have been used to determine the full elastic constants of magnesiosiderite [(Mg0.35Fe0.65)CO3 ] up to 70 GPa at room temperature in a diamond-anvil cell. Drastic softening in C11 , C33 , C12 , and C13 elastic moduli associated with the compressive stress component and stiffening in C44 and C14 moduli associated with the shear stress component are observed to occur within the spin transition between ˜42.4 and ˜46.5 GPa . Negative values of C12 and C13 are also observed within the spin transition region. The Born criteria constants for the crystal remain positive within the spin transition, indicating that the mixed-spin state remains mechanically stable. Significant auxeticity can be related to the electronic spin transition-induced elastic anomalies based on the analysis of Poisson's ratio. These elastic anomalies are explained using a thermoelastic model for the rhombohedral system. Finally, we conclude that mixed-spin state ferromagnesite, which is potentially a major deep-carbon carrier, is expected to exhibit abnormal elasticity, including a negative Poisson's ratio of -0.6 and drastically reduced VP by 10%, in Earth's midlower mantle.

  8. Estimating 24-h urinary sodium/potassium ratio from casual ('spot') urinary sodium/potassium ratio: the INTERSALT Study.

    Science.gov (United States)

    Iwahori, Toshiyuki; Miura, Katsuyuki; Ueshima, Hirotsugu; Chan, Queenie; Dyer, Alan R; Elliott, Paul; Stamler, Jeremiah

    2017-10-01

    Association between casual and 24-h urinary sodium-to-potassium (Na/K) ratio is well recognized, although it has not been validated in diverse demographic groups. Our aim was to assess utility across and within populations of casual urine to estimate 24-h urinary Na/K ratio using data from the INTERSALT Study. The INTERSALT Study collected cross-sectional standardized data on casual urinary sodium and potassium and also on timed 24-h urinary sodium and potassium for 10 065 individuals from 52 population samples in 32 countries (1985-87). Pearson correlation coefficients and agreement were computed for Na/K ratio of casual urine against 24-h urinary Na/K ratio both at population and individual levels. Pearson correlation coefficients relating means of 24-h urine and casual urine Na/K ratio were r = 0.96 and r = 0.69 in analyses across populations and individuals, respectively. Correlations of casual urine Na/creatinine and K/creatinine ratios with 24-h urinary Na and K excretion, respectively, were lower than correlation of casual and 24-h urinary Na/K ratio in analyses across populations and individuals. The bias estimate with the Bland-Altman method, defined as the difference between Na/K ratio of 24-h urine and casual urine, was approximately 0.4 across both populations and individuals. Spread around, the mean bias was higher for individuals than populations. With appropriate bias correction, casual urine Na/K ratio may be a useful, low-burden alternative method to 24-h urine for estimation of population urinary Na/K ratio. It may also be applicable for assessment of the urinary Na/K ratio of individuals, with use of repeated measurements to reduce measurement error and increase precision. © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association

  9. Alternating spin chain compound AgVOAsO4 probed by 75As NMR

    Science.gov (United States)

    Ahmed, N.; Khuntia, P.; Ranjith, K. M.; Rosner, H.; Baenitz, M.; Tsirlin, A. A.; Nath, R.

    2017-12-01

    75As NMR measurements were performed on a polycrystalline sample of spin-1/2 alternating spin chain Heisenberg antiferromagnet AgVOAsO4. The temperature-dependent NMR shift K (T ) , which is a direct measure of the intrinsic spin susceptibility, agrees very well with the spin-1/2 alternating-chain model, justifying the assignment of the spin lattice. From the analysis of K (T ) , magnetic exchange parameters were estimated as follows: the leading exchange J /kB≃38.4 K and the alternation ratio α =J'/J ≃0.69 . The transferred hyperfine coupling between the 75As nucleus and V4 + spins obtained by comparing the NMR shift with the bulk susceptibility amounts to Ahf≃3.3 TμB. The effect of interchain couplings on the low-temperature activated behavior of K (T ) and the spin-lattice relaxation rate 1 /T1 is identified.

  10. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  11. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Science.gov (United States)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-05-01

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  12. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    International Nuclear Information System (INIS)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-01-01

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems

  13. Interaction modifiers in artificial spin ices

    Science.gov (United States)

    Ã-stman, Erik; Stopfel, Henry; Chioar, Ioan-Augustin; Arnalds, Unnar B.; Stein, Aaron; Kapaklis, Vassilios; Hjörvarsson, Björgvin

    2018-04-01

    The modification of geometry and interactions in two-dimensional magnetic nanosystems has enabled a range of studies addressing the magnetic order1-6, collective low-energy dynamics7,8 and emergent magnetic properties5, 9,10 in, for example, artificial spin-ice structures. The common denominator of all these investigations is the use of Ising-like mesospins as building blocks, in the form of elongated magnetic islands. Here, we introduce a new approach: single interaction modifiers, using slave mesospins in the form of discs, within which the mesospin is free to rotate in the disc plane11. We show that by placing these on the vertices of square artificial spin-ice arrays and varying their diameter, it is possible to tailor the strength and the ratio of the interaction energies. We demonstrate the existence of degenerate ice-rule-obeying states in square artificial spin-ice structures, enabling the exploration of thermal dynamics in a spin-liquid manifold. Furthermore, we even observe the emergence of flux lattices on larger length scales, when the energy landscape of the vertices is reversed. The work highlights the potential of a design strategy for two-dimensional magnetic nano-architectures, through which mixed dimensionality of mesospins can be used to promote thermally emergent mesoscale magnetic states.

  14. When measured spin polarization is not spin polarization

    International Nuclear Information System (INIS)

    Dowben, P A; Wu Ning; Binek, Christian

    2011-01-01

    Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO 2 and Cr 2 O 3 illustrate some of the complications which hinders comparisons of spin polarization values. (viewpoint)

  15. Spin-dependent tunneling recombination in heterostructures with a magnetic layer

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, K. S., E-mail: denisokonstantin@gmail.com; Rozhansky, I. V.; Averkiev, N. S. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Lähderanta, E. [Lappeenranta University of Technology (Finland)

    2017-01-15

    We propose a mechanism for the generation of spin polarization in semiconductor heterostructures with a quantum well and a magnetic impurity layer spatially separated from it. The spin polarization of carriers in a quantum well originates from spin-dependent tunneling recombination at impurity states in the magnetic layer, which is accompanied by a fast linear increase in the degree of circular polarization of photoluminescence from the quantum well. Two situations are theoretically considered. In the first case, resonant tunneling to the spin-split sublevels of the impurity center occurs and spin polarization is caused by different populations of resonance levels in the quantum well for opposite spin projections. In the second, nonresonant case, the spin-split impurity level lies above the occupied states of electrons in the quantum well and plays the role of an intermediate state in the two-stage coherent spin-dependent recombination of an electron from the quantum well and a hole in the impurity layer. The developed theory allows us to explain both qualitatively and quantitatively the kinetics of photoexcited electrons in experiments with photoluminescence with time resolution in Mn-doped InGaAs heterostructures.

  16. Renormalized second post-Newtonian spin contributions to the accumulated orbital phase for LISA sources

    International Nuclear Information System (INIS)

    Gergely, Laszlo Arpad; Mikoczi, Balazs

    2009-01-01

    We give here a new third post-Newtonian (3PN) spin-spin contribution (in the PN parameter ε) to the accumulated orbital phase of a compact binary, arising from the spin-orbit precessional motion of the spins. In the equal mass case, this contribution vanishes, but Laser Interferometer Space Antenna (LISA) sources of merging supermassive binary black holes have typically a mass ratio of 1:10. For such nonequal masses, this 3PN correction is periodic in time, with a period approximately ε -1 times larger than the period of gravitational waves. We derive a renormalized and simpler expression of the spin-spin coefficient at 2PN, as an average over the time scale of this period of the combined 2PN and 3PN contribution. We also find that for LISA sources the quadrupole-monopole contribution to the phase dominates over the spin-spin contribution, while the self-spin contribution is negligible even for the dominant spin. Finally, we define a renormalized total spin coefficient σ to be employed in the search for gravitational waves emitted by LISA sources.

  17. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  18. Distinguishing 'Higgs' spin hypotheses using {gamma}{gamma} and WW{sup *} decays

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [King' s College London, Theoretical Particle Physics and Cosmology Group, Physics Department, London (United Kingdom); CERN, TH Division, Physics Department, Geneva (Switzerland); Fok, Ricky [York University, Department of Physics and Astronomy, Toronto, ON (Canada); Hwang, Dae Sung [Sejong University, Department of Physics, Seoul (Korea, Republic of); Sanz, Veronica [CERN, TH Division, Physics Department, Geneva (Switzerland); York University, Department of Physics and Astronomy, Toronto, ON (Canada); You, Tevong [King' s College London, Theoretical Particle Physics and Cosmology Group, Physics Department, London (United Kingdom)

    2013-07-15

    The new particle X recently discovered by the ATLAS and CMS Collaborations in searches for the Higgs boson has been observed to decay into {gamma}{gamma}, ZZ{sup *} and WW{sup *}, but its spin and parity, J{sup P}, remain a mystery, with J{sup P} = 0{sup +} and 2{sup +} being open possibilities. We use PYTHIA and Delphes to simulate an analysis of the angular distribution of gg {yields} X {yields} {gamma}{gamma} decays in a full 2012 data set, including realistic background levels. We show that this angular distribution should provide strong discrimination between the possibilities of spin zero and spin two with graviton-like couplings: {proportional_to}3 {sigma} if a conservative symmetric interpretation of the log-likelihood ratio (LLR) test statistic is used, and {proportional_to}6 {sigma} if a less conservative asymmetric interpretation is used. The WW and ZZ couplings of the Standard Model Higgs boson and of a 2{sup +} particle with graviton-like couplings are both expected to exhibit custodial symmetry. We simulate the present ATLAS and CMS search strategies for X {yields} WW{sup *} using PYTHIA and Delphes, and show that their efficiencies in the case of a spin-2 particle with graviton-like couplings are a factor {approx_equal} 1.9 smaller than in the spin-0 case. On the other hand, the ratio of X{sub 2{sup +}} {yields} WW{sup *} and ZZ{sup *} branching ratios is larger than that in the 0{sup +} case by a factor {approx_equal} 1.3. We find that the current ATLAS and CMS results for X {yields} WW{sup *} and X {yields} ZZ{sup *} decays are compatible with custodial symmetry under both the spin-0 and -2 hypotheses, and that the data expected to become available during 2012 are unlikely to discriminate significantly between these possibilities. (orig.)

  19. Studies of spin excitations with electromagnetic and hadronic probes

    International Nuclear Information System (INIS)

    Lindgren, R.A.; Petrovich, F.

    1982-01-01

    Excitation of unnatural parity states, predominantly of high spin, using electromagnetic and hadronic probes, is discussed. Spectroscopic strengths are deduced from studies of (e,e'), (p,p'), (π.π'), and (p,n) for states whose doorway is the stretched particle-hole configuration. These levels are excited primarily through the isovector electromagnetic-nucleon magnetization coupling, nucleon-nucleon tensor coupling, and pion-nucleon spin-orbit coupling. The extracted isovector spectroscopic strength is typically 38% of the extreme single particle-hole model and about 66% of that predicted by more realistic nuclear structure calculations. The observed isoscalar strength is only about one half of the isovector strength. The results obtained with the three different probes are quite consistent. The primary conclusion is that the missing strength for these high spin excitations is at least as large as for the low spin M1 and GT excitations. This implies the existence of other important quenching mechanisms since the Δ-N -1 mechanism involved in the discussion of the low spin excitation affects only the isovector transitions and contributes little to high spin excitations. A method for using (e,e') and π + /π - cross section ratios to separate and determine the absolute isoscalar and isovector spin densities for T 0 to T 0 transitions in N is not equal to Z nuclei is also discussed and some comments on extracting information from (e,e') and (p,p') studies at high q on low spin 1 + and 2 - levels are presented. 78 references

  20. Spin Relaxation and Manipulation in Spin-orbit Qubits

    Science.gov (United States)

    Borhani, Massoud; Hu, Xuedong

    2012-02-01

    We derive a generalized form of the Electric Dipole Spin Resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g-tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD). Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.

  1. Spin temperature concept verified by optical magnetometry of nuclear spins

    Science.gov (United States)

    Vladimirova, M.; Cronenberger, S.; Scalbert, D.; Ryzhov, I. I.; Zapasskii, V. S.; Kozlov, G. G.; Lemaître, A.; Kavokin, K. V.

    2018-01-01

    We develop a method of nonperturbative optical control over adiabatic remagnetization of the nuclear spin system and apply it to verify the spin temperature concept in GaAs microcavities. The nuclear spin system is shown to exactly follow the predictions of the spin temperature theory, despite the quadrupole interaction that was earlier reported to disrupt nuclear spin thermalization. These findings open a way for the deep cooling of nuclear spins in semiconductor structures, with the prospect of realizing nuclear spin-ordered states for high-fidelity spin-photon interfaces.

  2. A study of manufacturing tubes with nano/ultrafine grain structure by stagger spinning

    International Nuclear Information System (INIS)

    Xia, Qinxiang; Xiao, Gangfeng; Long, Hui; Cheng, Xiuquan; Yang, Baojian

    2014-01-01

    Highlights: • Proposing a method of manufacturing tubes with nano/ultrafine crystal. • Obtaining the refined ferritic grains with an size of 500 nm after stagger spinning. • Obtaining the equiaxial ferritic grains with an size of 600 nm after annealing. - Abstract: A new method of manufacturing tubes with nano/ultrafine grain structure by stagger spinning and recrystallization annealing is proposed in this study. Two methods of the stagger spinning process are developed, the corresponding macroforming quality, microstructural evolution and mechanical properties of the spun tubes made of ASTM 1020 steel are analysed. The results reveal that a good surface smoothness and an improved spin-formability of spun parts can be obtained by the process combining of 3-pass spinning followed by a 580 °C × 0.5 h static recrystallization and 2-pass spinning with a 580 °C × 1 h static recrystallization annealing under the severe thinning ratio of wall thickness reduction. The ferritic grains with an average initial size of 50 μm are refined to 500 nm after stagger spinning under the 87% thinning ratio of wall thickness reduction. The equiaxial ferritic grains with an average size of 600 nm are generated through re-nucleation and grain growth by subsequent recrystallization annealing at 580 °C for 1 h heat preservation. The tensile strength of spun tubes has been founded to be proportional to the reciprocal of layer spacing of pearlite (LSP), and the elongation is inversely proportional to the reciprocal of LSP. This study shows that the developed method of stagger power spinning has the potential to be used to manufacture bulk metal components with nano/ultrafine grain structure

  3. Laser-induced spin protection and switching in a specially designed magnetic dot: A theoretical investigation

    Science.gov (United States)

    Zhang, G. P.; Si, M. S.; George, T. F.

    2011-04-01

    Most laser-induced femtosecond magnetism investigations are done in magnetic thin films. Nanostructured magnetic dots, with their reduced dimensionality, present new opportunities for spin manipulation. Here we predict that if a magnetic dot has a dipole-forbidden transition between the lowest occupied molecular orbital (LUMO) and the highest unoccupied molecular orbital (HOMO), but a dipole-allowed transition between LUMO+1 and HOMO, electromagnetically induced transparency can be used to prevent ultrafast laser-induced spin momentum reduction, or spin protection. This is realized through a strong dump pulse to funnel the population into LUMO+1. If the time delay between the pump and dump pulses is longer than 60 fs, a population inversion starts and spin switching is achieved. These predictions are detectable experimentally.

  4. Spin-Mechatronics

    Science.gov (United States)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  5. Electron spin and nuclear spin manipulation in semiconductor nanosystems

    International Nuclear Information System (INIS)

    Hirayama, Yoshiro; Yusa, Go; Sasaki, Satoshi

    2006-01-01

    Manipulations of electron spin and nuclear spin have been studied in AlGaAs/GaAs semiconductor nanosystems. Non-local manipulation of electron spins has been realized by using the correlation effect between localized and mobile electron spins in a quantum dot- quantum wire coupled system. Interaction between electron and nuclear spins was exploited to achieve a coherent control of nuclear spins in a semiconductor point contact device. Using this device, we have demonstrated a fully coherent manipulation of any two states among the four spin levels of Ga and As nuclei. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Bulk electron spin polarization generated by the spin Hall current

    OpenAIRE

    Korenev, V. L.

    2005-01-01

    It is shown that the spin Hall current generates a non-equilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known equilibrium polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  7. Bulk electron spin polarization generated by the spin Hall current

    Science.gov (United States)

    Korenev, V. L.

    2006-07-01

    It is shown that the spin Hall current generates a nonequilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known “equilibrium” polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  8. Anisotropy and Suppression of Spin-Orbit Interaction in a GaAs Double Quantum Dot

    Science.gov (United States)

    Hofmann, A.; Maisi, V. F.; Krähenmann, T.; Reichl, C.; Wegscheider, W.; Ensslin, K.; Ihn, T.

    2017-10-01

    The spin-flip tunneling rates are measured in GaAs-based double quantum dots by time-resolved charge detection. Such processes occur in the Pauli spin blockade regime with two electrons occupying the double quantum dot. Ways are presented for tuning the spin-flip tunneling rate, which on the one hand gives access to measuring the Rashba and Dresselhaus spin-orbit coefficients. On the other hand, they make it possible to turn on and off the effect of spin-orbit interaction with a high on/off ratio. The tuning is accomplished by choosing the alignment of the tunneling direction with respect to the crystallographic axes, as well as by choosing the orientation of the external magnetic field with respect to the spin-orbit magnetic field. Spin lifetimes of 10 s are achieved at a tunneling rate close to 1 kHz.

  9. Anisotropy and Suppression of Spin-Orbit Interaction in a GaAs Double Quantum Dot.

    Science.gov (United States)

    Hofmann, A; Maisi, V F; Krähenmann, T; Reichl, C; Wegscheider, W; Ensslin, K; Ihn, T

    2017-10-27

    The spin-flip tunneling rates are measured in GaAs-based double quantum dots by time-resolved charge detection. Such processes occur in the Pauli spin blockade regime with two electrons occupying the double quantum dot. Ways are presented for tuning the spin-flip tunneling rate, which on the one hand gives access to measuring the Rashba and Dresselhaus spin-orbit coefficients. On the other hand, they make it possible to turn on and off the effect of spin-orbit interaction with a high on/off ratio. The tuning is accomplished by choosing the alignment of the tunneling direction with respect to the crystallographic axes, as well as by choosing the orientation of the external magnetic field with respect to the spin-orbit magnetic field. Spin lifetimes of 10 s are achieved at a tunneling rate close to 1 kHz.

  10. Black hole fusion in the extreme mass ratio limit

    Science.gov (United States)

    Emparan, Roberto; Martínez, Marina; Zilhão, Miguel

    2018-02-01

    We present a simple, general, and accurate construction of the event horizons for the fusion of two neutral, rotating black holes with arbitrary orientation and values of their spins, in the extreme mass ratio limit where one black hole is much larger than the other. We compute several parameters that characterize the fusion and investigate their dependence on the black hole spin and orientation axis. We also exhibit and study the appearance of transient toroidal topology of the horizon. An earlier conjecture about universal critical exponents before and after an axisymmetric pinch is proven.

  11. Spin-Charge Separation in Finite Length Metallic Carbon Nanotubes

    KAUST Repository

    Zhang, Yongyou

    2017-10-17

    Using time-dependent density functional theory, we study the optical excitations in finite length carbon nanotubes. Evidence of spin-charge separation is given in the spacetime domain. We demonstrate that the charge density wave is due to collective excitations of electron singlets, while the accompanying spin density wave is due to those of electron triplets. The Tomonaga–Luttinger liquid parameter and density–density interaction are extrapolated from the first-principles excitation energies. We show that the density–density interaction increases with the length of the nanotube. The singlet and triplet excitation energies, on the other hand, decrease for increasing length of the nanotube. Their ratio is used to establish a first-principles approach for deriving the Tomonaga–Luttinger parameter (in excellent agreement with experimental data). Time evolution analysis of the charge and spin line densities evidences that the charge and spin density waves are elementary excitations of metallic carbon nanotubes. Their dynamics show no dependence on each other.

  12. Determinant representations of spin-operator matrix elements in the XX spin chain and their applications

    Science.gov (United States)

    Wu, Ning

    2018-01-01

    For the one-dimensional spin-1/2 XX model with either periodic or open boundary conditions, it is shown by using a fermionic approach that the matrix element of the spin operator Sj- (Sj-Sj'+ ) between two eigenstates with numbers of excitations n and n +1 (n and n ) can be expressed as the determinant of an appropriate (n +1 )×(n +1 ) matrix whose entries involve the coefficients of the canonical transformations diagonalizing the model. In the special case of a homogeneous periodic XX chain, the matrix element of Sj- reduces to a variant of the Cauchy determinant that can be evaluated analytically to yield a factorized expression. The obtained compact representations of these matrix elements are then applied to two physical scenarios: (i) Nonlinear optical response of molecular aggregates, for which the determinant representation of the transition dipole matrix elements between eigenstates provides a convenient way to calculate the third-order nonlinear responses for aggregates from small to large sizes compared with the optical wavelength; and (ii) real-time dynamics of an interacting Dicke model consisting of a single bosonic mode coupled to a one-dimensional XX spin bath. In this setup, full quantum calculation up to N ≤16 spins for vanishing intrabath coupling shows that the decay of the reduced bosonic occupation number approaches a finite plateau value (in the long-time limit) that depends on the ratio between the number of excitations and the total number of spins. Our results can find useful applications in various "system-bath" systems, with the system part inhomogeneously coupled to an interacting XX chain.

  13. Continuous wave protocol for simultaneous polarization and optical detection of P1-center electron spin resonance

    Science.gov (United States)

    Kamp, E. J.; Carvajal, B.; Samarth, N.

    2018-01-01

    The ready optical detection and manipulation of bright nitrogen vacancy center spins in diamond plays a key role in contemporary quantum information science and quantum metrology. Other optically dark defects such as substitutional nitrogen atoms (`P1 centers') could also become potentially useful in this context if they could be as easily optically detected and manipulated. We develop a relatively straightforward continuous wave protocol that takes advantage of the dipolar coupling between nitrogen vacancy and P1 centers in type 1b diamond to detect and polarize the dark P1 spins. By combining mutual spin flip transitions with radio frequency driving, we demonstrate the simultaneous optical polarization and detection of the electron spin resonance of the P1 center. This technique should be applicable to detecting and manipulating a broad range of dark spin populations that couple to the nitrogen vacancy center via dipolar fields, allowing for quantum metrology using these spin populations.

  14. High spin states of 141Pm

    Science.gov (United States)

    Bhattacharyya, Sarmishtha; Chanda, Somen; Bhattacharjee, Tumpa; Basu, Swapan Kumar; Bhowmik, R. K.; Muralithar, S.; Singh, R. P.; Ghugre, S. S.

    2004-01-01

    The high spin states in the N=80 odd- A141Pm nucleus have been investigated by in-beam γ-spectroscopic techniques following the reaction 133Cs( 12C, 4n) 141Pm at E=65 MeV using a modest γ detector array, consisting of seven Compton-suppressed high purity germanium detectors and a multiplicity ball of 14 bismuth germanate elements. Thirty new γ rays have been assigned to 141Pm on the basis of γ-ray singles and γγ-coincidence data. The level scheme of 141Pm has been extended upto an excitation energy of 5.2 MeV and spin {35}/{2}ℏ and 16 new levels have been proposed. Spin-parity assignments for most of the newly proposed levels have been made on the basis of the deduced directional correlation orientation ratios for strong transitions. The meanlives of a few excited states have been determined from the pulsed beam- γγ coincidence data using the generalised centroid-shift method. The level structure is discussed in the light of known systematics of neighbouring N=80 isotonic nuclei.

  15. Classical and quantum 'EPR'-spin correlations in the triplet state

    International Nuclear Information System (INIS)

    Barut, A.O.; Bozic, M.

    1987-01-01

    Quantum correlations and joint probabilities in the triplet state as well as the correlations of components of two correlated classical spin vectors, are evaluated. Correlations in the states with |S tot z |=1 are different from correlations in the state with S tot z =0 which may serve to distinguish different states of the triplet. As in the singlet case, we can reproduce quantum correlations by correlated classical spin vectors which also provide a precision of the notion of ''parallel spins''. Triplet state correlations could in principle be measured, for example, in the decay reaction J/ψ → e + e - for which there is a sufficiently large branching ratio. (author). 12 refs

  16. Coherent spin-rotational dynamics of oxygen superrotors

    Science.gov (United States)

    Milner, Alexander A.; Korobenko, Aleksey; Milner, Valery

    2014-09-01

    We use state- and time-resolved coherent Raman spectroscopy to study the rotational dynamics of oxygen molecules in ultra-high rotational states. While it is possible to reach rotational quantum numbers up to N≈ 50 by increasing the gas temperature to 1500 K, low population levels and gas densities result in correspondingly weak optical response. By spinning {{O}2} molecules with an optical centrifuge, we efficiently excite extreme rotational states with N≤slant 109 in high-density room temperature ensembles. Fast molecular rotation results in the enhanced robustness of the created rotational wave packets against collisions, enabling us to observe the effects of weak spin-rotation coupling in the coherent rotational dynamics of oxygen. The decay rate of spin-rotational coherence due to collisions is measured as a function of the molecular angular momentum and its dependence on the collisional adiabaticity parameter is discussed. We find that at high values of N, the rotational decoherence of oxygen is much faster than that of the previously studied non-magnetic nitrogen molecules, pointing at the effects of spin relaxation in paramagnetic gases.

  17. High-spin states of 39K and 42Ca, ch. 4

    International Nuclear Information System (INIS)

    Eggenhuisen, H.H.; Elstrom, L.P.; Engelbertink, G.A.P.; Aarts, H.J.M.

    1978-01-01

    High-spin states of 39 K and 42 Ca have been investigated with the 28 Si( 16 O, αpγ) 39 K and 28 Si( 16 O, 2pγ) 42 Ca reactions at a beam energy of 45 MeV. Gamma-gamma coincidence, γ-ray angular distribution and linear polarization measurements were performed with a Ge(Li)-NaI(Tl) Compton suppression spectrometer and a three-crystal Ge(Li) Compton polarimeter. High-spin states of 39 K at Esub(x)=7.14, 7.78 and 8.03 and of 42 Ca at Esub(x)=7.75 MeV are established. Unambiguous spin-parity assignments of Jsup(π)=11/2 - , 13/2 - , 15/2 + , 15/2 - , 17/2 + and 19/2 - to the 39 K levels at Esub(x)=5.35, 5.72, 6.48, 7.14, 7.78 and 8.03 MeV and of 6 - , 7 - , 8 - , 9 - and (8,10) to the 42 Ca levels at Esub(x)=5.49, 6.15, 6.41, 6.55 and 7.37 MeV, respectively, have been obtained. Further spin-parity restrictions, lifetime limits, excitation energies, branching ratios and multipole mixing ratios are reported. Discrepancies with previous Jsup(π) assignments are discussed in detail. (Auth.)

  18. Characteristics of spondylotic myelopathy on 3D driven-equilibrium fast spin echo and 2D fast spin echo magnetic resonance imaging: a retrospective cross-sectional study.

    Science.gov (United States)

    Abdulhadi, Mike A; Perno, Joseph R; Melhem, Elias R; Nucifora, Paolo G P

    2014-01-01

    In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures. However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as 2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for quantitative signal measurements in the spinal cord.

  19. Muon spin relaxation measurements of spin-correlation decay in spin-glass AgMn

    Energy Technology Data Exchange (ETDEWEB)

    Heffner, R.H.; Cooke, D.W.; Leon, M.; Schillaci, M.E. (Los Alamos National Lab., NM (USA)); MacLaughlin, D.E.; Gupta, L.C. (California Univ., Riverside (USA))

    1984-01-01

    The field (H) dependence of the muon longitudinal spin-lattice relaxation rate well below the spin glass temperature in AgMn is found to obey an algebraic form given by (H)sup(..gamma..-1), with ..gamma.. = 0.54 +- 0.05. This suggests that Mn spin correlations decay with time as tsup(-..gamma..), in agreement with mean field theories of spin-glass dynamics which yield ..gamma..

  20. Magneto-resistive and spin valve heads fundamentals and applications

    CERN Document Server

    Mallinson, John C

    2002-01-01

    This book is aims to be a comprehensive source on the physics and engineering of magneto-resistive heads. Most of the material is presented in a nonmathematical manner to make it more digestible for researchers, students, developers, and engineers.In addition to revising and updating material available in the first edition, Mallinson has added nine new chapters dealing with various aspects concerning spin valves, the electron spin tunneling effect, the electrostatic discharge effects, read amplifiers, and signal-to-noise ratios, making this a completely up-to-date reference.Th

  1. ON THE INFERENCE OF THE COSMIC-RAY IONIZATION RATE ζ FROM THE HCO{sup +}-to-DCO{sup +} ABUNDANCE RATIO: THE EFFECT OF NUCLEAR SPIN

    Energy Technology Data Exchange (ETDEWEB)

    Shingledecker, Christopher N.; Le Gal, Romane; Hincelin, Ugo; Herbst, Eric [Department of Chemistry, University of Virginia, Charlottesville, VA 22904 (United States); Bergner, Jennifer B. [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 (United States); Öberg, Karin I., E-mail: shingledecker@virginia.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-10-20

    The chemistry of dense interstellar regions was analyzed using a time-dependent gas–grain astrochemical simulation and a new chemical network that incorporates deuterated chemistry, taking into account nuclear spin states for the hydrogen chemistry and its deuterated isotopologues. With this new network, the utility of the [HCO{sup +}]/[DCO{sup +}] abundance ratio as a probe of the cosmic-ray ionization rate has been re-examined, with special attention paid to the effect of the initial value of the ortho-to-para ratio (OPR) of molecular hydrogen. After discussing the use of the probe for cold cores, we compare our results with previous theoretical and observational results for a molecular cloud close to the supernova remnant W51C, which is thought to have an enhanced cosmic-ray ionization rate ζ caused by the nearby γ -ray source. In addition, we attempt to use our approach to estimate the cosmic-ray ionization rate for L1174, a dense core with an embedded star. Beyond the previously known sensitivity of [HCO{sup +}]/[DCO{sup +}] to ζ , we demonstrate its additional dependence on the initial OPR and, secondarily, on the age of the source, its temperature, and its density. We conclude that the usefulness of the [HCO{sup +}]/[DCO{sup +}] abundance ratio in constraining the cosmic-ray ionization rate in dense regions increases with the age of the source and the ionization rate as the ratio becomes far less sensitive to the initial value of the OPR.

  2. Sex ratios

    OpenAIRE

    West, Stuart A; Reece, S E; Sheldon, Ben C

    2002-01-01

    Sex ratio theory attempts to explain variation at all levels (species, population, individual, brood) in the proportion of offspring that are male (the sex ratio). In many cases this work has been extremely successful, providing qualitative and even quantitative explanations of sex ratio variation. However, this is not always the situation, and one of the greatest remaining problems is explaining broad taxonomic patterns. Specifically, why do different organisms show so ...

  3. Pressure and Temperature Spin Crossover Sensors with Optical Detection

    Science.gov (United States)

    Linares, Jorge; Codjovi, Epiphane; Garcia, Yann

    2012-01-01

    Iron(II) spin crossover molecular materials are made of coordination centres switchable between two states by temperature, pressure or a visible light irradiation. The relevant macroscopic parameter which monitors the magnetic state of a given solid is the high-spin (HS) fraction denoted nHS, i.e., the relative population of HS molecules. Each spin crossover material is distinguished by a transition temperature T1/2 where 50% of active molecules have switched to the low-spin (LS) state. In strongly interacting systems, the thermal spin switching occurs abruptly at T1/2. Applying pressure induces a shift from HS to LS states, which is the direct consequence of the lower volume for the LS molecule. Each material has thus a well defined pressure value P1/2. In both cases the spin state change is easily detectable by optical means thanks to a thermo/piezochromic effect that is often encountered in these materials. In this contribution, we discuss potential use of spin crossover molecular materials as temperature and pressure sensors with optical detection. The ones presenting smooth transitions behaviour, which have not been seriously considered for any application, are spotlighted as potential sensors which should stimulate a large interest on this well investigated class of materials. PMID:22666041

  4. Spin manipulation and relaxation in spin-orbit qubits

    Science.gov (United States)

    Borhani, Massoud; Hu, Xuedong

    2012-03-01

    We derive a generalized form of the electric dipole spin resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD), where coherent Rabi oscillations between the singlet and triplet states are induced by jittering the inter-dot distance at the resonance frequency. Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.

  5. Spin transfer torque with spin diffusion in magnetic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2012-08-09

    Spin transport in magnetic tunnel junctions in the presence of spin diffusion is considered theoretically. Combining ballistic tunneling across the barrier and diffusive transport in the electrodes, we solve the spin dynamics equation in the metallic layers. We show that spin diffusion mixes the transverse spin current components and dramatically modifies the bias dependence of the effective spin transfer torque. This leads to a significant linear bias dependence of the out-of-plane torque, as well as a nonconventional thickness dependence of both spin torque components.

  6. Isomeric cross-section ratios of some (n,2n) reactions at 14. 7 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Garg, K C; Khurana, C S [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1979-08-01

    Isomeric cross-section ratios of (n,2n) reactions at 14.7 MeV leading to the millisecond isomeric levels have been calculated theoretically using the statistical theory of nuclear reactions and the spin distribution form due to Bethe and Bloch. The theoretical ratios have been compared with the experimentally measured values in order to evaluate the spin cut-off parameter sigma. This parameter has been used to calculate the effective moment of inertia of the nucleus to draw useful conclusions from the results of present calculations.

  7. Self-oscillation in spin torque oscillator stabilized by field-like torque

    International Nuclear Information System (INIS)

    Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi; Imamura, Hiroshi

    2014-01-01

    The effect of the field-like torque on the self-oscillation of the magnetization in spin torque oscillator with a perpendicularly magnetized free layer was studied theoretically. A stable self-oscillation at zero field is excited for negative β while the magnetization dynamics stops for β = 0 or β > 0, where β is the ratio between the spin torque and the field-like torque. The reason why only the negative β induces the self-oscillation was explained from the view point of the energy balance between the spin torque and the damping. The oscillation power and frequency for various β were also studied by numerical simulation

  8. Accelerating proton spin diffusion in perdeuterated proteins at 100 kHz MAS

    Energy Technology Data Exchange (ETDEWEB)

    Wittmann, Johannes J.; Agarwal, Vipin; Hellwagner, Johannes; Lends, Alons; Cadalbert, Riccardo; Meier, Beat H., E-mail: beme@ethz.ch; Ernst, Matthias, E-mail: maer@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland)

    2016-12-15

    Fast magic-angle spinning (>60 kHz) has many advantages but makes spin-diffusion-type proton–proton long-range polarization transfer inefficient and highly dependent on chemical-shift offset. Using 100%-HN-[{sup 2}H,{sup 13}C,{sup 15}N]-ubiquitin as a model substance, we quantify the influence of the chemical-shift difference on the spin diffusion between proton spins and compare two experiments which lead to an improved chemical-shift compensation of the transfer: rotating-frame spin diffusion and a new experiment, reverse amplitude-modulated MIRROR. Both approaches enable broadband spin diffusion, but the application of the first variant is limited due to fast spin relaxation in the rotating frame. The reverse MIRROR experiment, in contrast, is a promising candidate for the determination of structurally relevant distance restraints. The applied tailored rf-irradiation schemes allow full control over the range of recoupled chemical shifts and efficiently drive spin diffusion. Here, the relevant relaxation time is the larger longitudinal relaxation time, which leads to a higher signal-to-noise ratio in the spectra.

  9. Muon spin relaxation measurements of spin-correlation decay in spin-glass AgMn

    International Nuclear Information System (INIS)

    Heffner, R.H.; Cooke, D.W.; Leon, M.; Schillaci, M.E.; MacLaughlin, D.E.; Gupta, L.C.

    1984-01-01

    The field (H) dependence of the muon longitudinal spin-lattice relaxation rate well below the spin glass temperature in AgMn is found to obey an algebraic form given by (H)sup(γ-1), with γ = 0.54 +- 0.05. This suggests that Mn spin correlations decay with time as tsup(-γ), in agreement with mean field theories of spin-glass dynamics which yield γ < approx. 0.5. Near the glass temperature the agreement between the data and theory is not as good. (Auth.)

  10. Spin-orbit mediated control of spin qubits

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A.S; Flensberg, Karsten

    2006-01-01

    We propose to use the spin-orbit interaction as a means to control electron spins in quantum dots, enabling both single-qubit and two-qubit operations. Very fast single-qubit operations may be achieved by temporarily displacing the electrons. For two-qubit operations the coupling mechanism is bas...... on a combination of the spin-orbit coupling and the mutual long-ranged Coulomb interaction. Compared to existing schemes using the exchange coupling, the spin-orbit induced coupling is less sensitive to random electrical fluctuations in the electrodes defining the quantum dots....

  11. Spinning particle approach to higher spin field theory

    International Nuclear Information System (INIS)

    Corradini, Olindo

    2011-01-01

    We shortly review on the connection between higher-spin gauge field theories and supersymmetric spinning particle models. In such approach the higher spin equations of motion are linked to the first-class constraint algebra associated with the quantization of particle models. Here we consider a class of spinning particle models characterized by local O(N)-extended supersymmetry since these models are known to provide an alternative approach to the geometric formulation of higher spin field theory. We describe the canonical quantization of the models in curved target space and discuss the obstructions that appear in presence of an arbitrarily curved background. We then point out the special role that conformally flat spaces appear to have in such models and present a derivation of the higher-spin curvatures for maximally symmetric spaces.

  12. Shot noise of spin current and spin transfer torque

    Science.gov (United States)

    Yu, Yunjin; Zhan, Hongxin; Wan, Langhui; Wang, Bin; Wei, Yadong; Sun, Qingfeng; Wang, Jian

    2013-04-01

    We report the theoretical investigation of the shot noise of the spin current (Sσ) and the spin transfer torque (Sτ) for non-collinear spin polarized transport in a spin-valve device which consists of a normal scattering region connected by two ferromagnetic electrodes (MNM system). Our theory was developed using the non-equilibrium Green’s function method, and general nonlinear Sσ - V and Sτ - V relations were derived as a function of the angle θ between the magnetizations of two leads. We have applied our theory to a quantum dot system with a resonant level coupled with two ferromagnetic electrodes. It was found that, for the MNM system, the auto-correlation of the spin current is enough to characterize the fluctuation of the spin current. For a system with three ferromagnetic layers, however, both auto-correlation and cross-correlation of the spin current are needed to characterize the noise of the spin current. For a quantum dot with a resonant level, the derivative of spin torque with respect to bias voltage is proportional to sinθ when the system is far away from resonance. When the system is near resonance, the spin transfer torque becomes a non-sinusoidal function of θ. The derivative of the noise of the spin transfer torque with respect to the bias voltage Nτ behaves differently when the system is near or far away from resonance. Specifically, the differential shot noise of the spin transfer torque Nτ is a concave function of θ near resonance while it becomes a convex function of θ far away from resonance. For certain bias voltages, the period Nτ(θ) becomes π instead of 2π. For small θ, it was found that the differential shot noise of the spin transfer torque is very sensitive to the bias voltage and the other system parameters.

  13. Spin Flipping and Polarization Lifetimes of a 270 MeV Deuteron Beam

    International Nuclear Information System (INIS)

    Morozov, V.S.; Crawford, M.Q.; Etienne, Z.B.; Kandes, M.C.; Krisch, A.D.; Leonova, M.A.; Sivers, D.W.; Wong, V.K.; Yonehara, K.; Anferov, V.A.; Meyer, H.O.; Schwandt, P.; Stephenson, E.J.; Przewoski, B. von

    2003-01-01

    We recently studied the spin flipping of a 270 MeV vertically polarized deuteron beam stored in the IUCF Cooler Ring. We swept an rf solenoid's frequency through an rf-induced spin resonance and observed the effect on the beam's vector and tensor polarizations. After optimizing the resonance crossing rate and setting the solenoid's voltage to its maximum value, we obtained a spin-flip efficiency of about 94 ± 1% for the vector polarization; we also observed a partial spin-flip of the tensor polarization. We then used the rf-induced resonance to measure the vector and tensor polarizations' lifetimes at different distances from the resonance; the polarization lifetime ratio τvector/τtensor was about 1.9 ± 0.4

  14. Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures

    Science.gov (United States)

    Savero Torres, W.; Sierra, J. F.; Benítez, L. A.; Bonell, F.; Costache, M. V.; Valenzuela, S. O.

    2017-12-01

    Spin Hall effects have surged as promising phenomena for spin logics operations without ferromagnets. However, the magnitude of the detected electric signals at room temperature in metallic systems has been so far underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the signal in monolayer graphene/Pt devices when compared to their fully metallic counterparts. The enhancement stems in part from efficient spin injection and the large spin resistance of graphene but we also observe 100% spin absorption in Pt and find an unusually large effective spin Hall angle of up to 0.15. The large spin-to-charge conversion allows us to characterise spin precession in graphene under the presence of a magnetic field. Furthermore, by developing an analytical model based on the 1D diffusive spin-transport, we demonstrate that the effective spin-relaxation time in graphene can be accurately determined using the (inverse) spin Hall effect as a means of detection. This is a necessary step to gather full understanding of the consequences of spin absorption in spin Hall devices, which is known to suppress effective spin lifetimes in both metallic and graphene systems.

  15. Shear viscosity and spin-diffusion coefficient of a two-dimensional Fermi gas

    DEFF Research Database (Denmark)

    Bruun, Georg

    2012-01-01

    Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components. It is demonstr......Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components....... It is demonstrated that the minimum value of the viscosity decreases with the mass ratio, since Fermi blocking becomes less efficient. We furthermore analyze recent experimental results for the quadrupole mode of a two-dimensional gas in terms of viscous damping, obtaining a qualitative agreement using no fitting...

  16. Muon spin-relaxation measurements of spin-correlation decay in spin-glass AgMn

    International Nuclear Information System (INIS)

    Heffner, R.H.; Cooke, D.W.; Leon, M.; Schillaci, M.E.; MacLaughlin, D.E.; Gupta, L.C.

    1983-01-01

    The field (H) dependence of the muon longitudinal spin-lattice relaxation rate well below the spin-glass temperature in AgMn is found to obey an algebraic form given by (H)/sup nu-1/, with nu = 0.54 +- 0.05. This suggests that Mn spin correlations decay with time as t - /sup nu/, in agreement with mean field theories of spin-glass dynamics which yield nu less than or equal to 0.5. Near the glass temperature the agreement between the data and theory is not as good

  17. On the semi-classical limit of scalar products of the XXZ spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yunfeng; Brunekreef, Joren [Institut für Theoretische Physik, ETH Zürich,Wolfgang Pauli Strasse 27, CH-8093 Zürich (Switzerland)

    2017-03-03

    We study the scalar products between Bethe states in the XXZ spin chain with anisotropy |Δ|>1 in the semi-classical limit where the length of the spin chain and the number of magnons tend to infinity with their ratio kept finite and fixed. Our method is a natural yet non-trivial generalization of similar methods developed for the XXX spin chain. The final result can be written in a compact form as a contour integral in terms of Faddeev’s quantum dilogarithm function, which in the isotropic limit reduces to the classical dilogarithm function.

  18. On the semi-classical limit of scalar products of the XXZ spin chain

    International Nuclear Information System (INIS)

    Jiang, Yunfeng; Brunekreef, Joren

    2017-01-01

    We study the scalar products between Bethe states in the XXZ spin chain with anisotropy |Δ|>1 in the semi-classical limit where the length of the spin chain and the number of magnons tend to infinity with their ratio kept finite and fixed. Our method is a natural yet non-trivial generalization of similar methods developed for the XXX spin chain. The final result can be written in a compact form as a contour integral in terms of Faddeev’s quantum dilogarithm function, which in the isotropic limit reduces to the classical dilogarithm function.

  19. Spin-chirality decoupling in Heisenberg spin glasses and related systems

    OpenAIRE

    Kawamura, Hikaru

    2006-01-01

    Recent studies on the spin and the chirality orderings of the three-dimensional Heisenberg spin glass and related systems are reviewed with particular emphasis on the possible spin-chirality decoupling phenomena. Chirality scenario of real spin-glass transition and its experimental consequence on the ordering of Heisenberg-like spin glasses are discussed.

  20. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  1. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2017-01-01

    Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.

  2. Nuclear spin noise in the central spin model

    Science.gov (United States)

    Fröhling, Nina; Anders, Frithjof B.; Glazov, Mikhail

    2018-05-01

    We study theoretically the fluctuations of the nuclear spins in quantum dots employing the central spin model which accounts for the hyperfine interaction of the nuclei with the electron spin. These fluctuations are calculated both with an analytical approach using homogeneous hyperfine couplings (box model) and with a numerical simulation using a distribution of hyperfine coupling constants. The approaches are in good agreement. The box model serves as a benchmark with low computational cost that explains the basic features of the nuclear spin noise well. We also demonstrate that the nuclear spin noise spectra comprise a two-peak structure centered at the nuclear Zeeman frequency in high magnetic fields with the shape of the spectrum controlled by the distribution of the hyperfine constants. This allows for direct access to this distribution function through nuclear spin noise spectroscopy.

  3. Entanglement entropy in random quantum spin-S chains

    International Nuclear Information System (INIS)

    Saguia, A.; Boechat, B.; Continentino, M. A.; Sarandy, M. S.

    2007-01-01

    We discuss the scaling of entanglement entropy in the random singlet phase (RSP) of disordered quantum magnetic chains of general spin S. Through an analysis of the general structure of the RSP, we show that the entanglement entropy scales logarithmically with the size of a block, and we provide a closed expression for this scaling. This result is applicable for arbitrary quantum spin chains in the RSP, being dependent only on the magnitude S of the spin. Remarkably, the logarithmic scaling holds for the disordered chain even if the pure chain with no disorder does not exhibit conformal invariance, as is the case for Heisenberg integer-spin chains. Our conclusions are supported by explicit evaluations of the entanglement entropy for random spin-1 and spin-3/2 chains using an asymptotically exact real-space renormalization group approach

  4. Competing Spin Liquids and Hidden Spin-Nematic Order in Spin Ice with Frustrated Transverse Exchange

    Directory of Open Access Journals (Sweden)

    Mathieu Taillefumier

    2017-12-01

    Full Text Available Frustration in magnetic interactions can give rise to disordered ground states with subtle and beautiful properties. The spin ices Ho_{2}Ti_{2}O_{7} and Dy_{2}Ti_{2}O_{7} exemplify this phenomenon, displaying a classical spin-liquid state, with fractionalized magnetic-monopole excitations. Recently, there has been great interest in closely related “quantum spin-ice” materials, following the realization that anisotropic exchange interactions could convert spin ice into a massively entangled, quantum spin liquid, where magnetic monopoles become the charges of an emergent quantum electrodynamics. Here we show that even the simplest model of a quantum spin ice, the XXZ model on the pyrochlore lattice, can realize a still-richer scenario. Using a combination of classical Monte Carlo simulation, semiclassical molecular-dynamics simulation, and analytic field theory, we explore the properties of this model for frustrated transverse exchange. We find not one, but three competing forms of spin liquid, as well as a phase with hidden, spin-nematic order. We explore the experimental signatures of each of these different states, making explicit predictions for inelastic neutron scattering. These results show an intriguing similarity to experiments on a range of pyrochlore oxides.

  5. Large positive spin polarization and giant inverse tunneling magnetoresistance in Fe/PbTiO3/Fe multiferroic tunnel junction

    International Nuclear Information System (INIS)

    Dai, Jian-Qing; Zhang, Hu; Song, Yu-Min

    2014-01-01

    We perform first-principles electronic structure and spin-dependent transport calculations of a multiferroic tunnel junction (MFTJ) with an epitaxial Fe/PbTiO 3 /Fe heterostructure. We predict a large positive spin-polarization (SP) and an intriguing giant inverse tunneling magnetoresistance (TMR) ratio in this tunnel junction. We demonstrate that the tunneling properties are determined by ferroelectric (FE) polarization screening and electronic reconstruction at the interface with lower electrostatic potential. The intricate complex band structure of PbTiO 3 , in particular the lowest decay rates concerning Pb 6p z and Ti 3d z2 states near the Γ ¯ point, gives rise to the large positive SP of the tunneling current in the parallel magnetic configuration. However, the giant inverse TMR ratio is attributed to the minority-spin electrons of the interfacial Ti 3d xz +3d yz orbitals which have considerably weight in the extended area around the Γ ¯ point at the Fermi energy and causes remarkable contributions to the conductance in the antiparallel magnetic configuration. - Highlights: • We study spin-dependent tunneling in Fe/PbTiO 3 /Fe multiferroic tunnel junction. • We find a large positive spin polarization in the parallel magnetic configuration. • An intriguing giant inverse TMR ratio (about −2000%) is predicted. • Complex band structure of PbTiO 3 causes the large positive spin polarization. • Negative TMR is due to minority-spin electrons of interfacial Ti d xz +d yz orbitals

  6. New high spin states and isomers in the {sup 208}Pb and {sup 207}Pb nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Broda, R.; Wrzesinski, J.; Pawlat, T. [and others

    1996-12-31

    The two most prominent examples of the heavy doubly closed shell (DCS) nuclei, {sup 208}Pb and {sup 132}Sn, are not accessible by conventional heavy-ion fusion processes populating high-spin states. This experimental difficulty obscured for a long time the investigation of yrast high-spin states in both DCS and neighboring nuclei and consequently restricted the study of the shell model in its most attractive regions. Recent technical development of multidetector gamma arrays opened new ways to exploit more complex nuclear processes which populate the nuclei of interest with suitable yields for gamma spectroscopy and involve population of moderately high spin states. This new possibility extended the range of accessible spin values and is a promising way to reach new yrast states. Some of these states are expected to be of high configurational purity and can be a source of important shell model parameters which possibly can be used later to check the validity of the spherical shell model description at yet higher spin and higher excitation energy. The nuclei in the closest vicinity of {sup 132}Sn are produced in spontaneous fission and states with spin values up to I=14 can be reached in fission gamma spectroscopy studies with the presently achieved sensitivity of gamma arrays. New results on yrast states in the {sup 134}Te and {sup 135}I nuclei populated in fission of the {sup 248}Cm presented at this conference illustrate such application of the resolving power offered by modern gamma techniques.

  7. Separating inverse spin Hall voltage and spin rectification voltage by inverting spin injection direction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenxu, E-mail: xwzhang@uestc.edu.cn; Peng, Bin; Han, Fangbin; Wang, Qiuru; Zhang, Wanli [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Soh, Wee Tee; Ong, Chong Kim [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore)

    2016-03-07

    We develop a method for universally resolving the important issue of separating the inverse spin Hall effect (ISHE) from the spin rectification effect (SRE) signal. This method is based on the consideration that the two effects depend on the spin injection direction: The ISHE is an odd function of the spin injection direction while the SRE is independent on it. Thus, the inversion of the spin injection direction changes the ISHE voltage signal, while the SRE voltage remains. It applies generally to analyzing the different voltage contributions without fitting them to special line shapes. This fast and simple method can be used in a wide frequency range and has the flexibility of sample preparation.

  8. Finger Length Ratio (2D:4D) in Central India and an Attempt to Verify Fraternal Birth Order Effect: A Population Based Cross-Sectional Study.

    Science.gov (United States)

    Maitra, Arjun; Maitra, Chaitali; Jha, Dilip Kumar; Biswas, Rakesh

    2016-12-01

    A normal physiology of a human being is not mere a series of functions occurring with specific intensities and timing. There are lot of factors that may change the normal physiological activity within normal limits. Finger length ratio is one of the markers of intrauterine androgen exposure and it is debated and contradicted by many authors. Digit ratio varies among the ethnicities. Many Indian studies show that there is considerable difference in finger length ratio in different population. Data regarding Central India was not found on extensive search. To find out the finger length ratio and explore the birth order effect on finger length ratio among the first two successive born in the said population. We conducted a survey on 1500 volunteer persons (800 male and 700 female) over two years of time. We measured the length of the index finger (2D) and ring finger (4D) of both the hands and asked about their birth order history to find out the digit ratio for Central India population and any existing correlation of the same with birth order. T Test and Analysis of Variance (ANOVA) were used for the measure of significance and difference among the groups. The peffect among the eldest, second born with elder brother and second born with elder sister groups, no significant (p>0.05) variation for finger length ratio of right and left hands observed in both male and female population. Our study reports that the finger length ratio (2D:4D) for Central India population did not show significant association between finger length ratio and fraternal birth order among the first two successive born.

  9. The superradiant instability regime of the spinning Kerr black hole

    Science.gov (United States)

    Hod, Shahar

    2016-07-01

    Spinning Kerr black holes are known to be superradiantly unstable to massive scalar perturbations. We here prove that the instability regime of the composed Kerr-black-hole-massive-scalar-field system is bounded from above by the dimensionless inequality Mμ r+ is the dimensionless ratio between the horizon radii of the black hole. It is further shown that this analytically derived upper bound on the superradiant instability regime of the spinning Kerr black hole agrees with recent numerical computations of the instability resonance spectrum.

  10. Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors

    Science.gov (United States)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2017-06-01

    We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1 /√{t } . Based on the numerical results, we devise a simple formula describing the effect quantitatively.

  11. FY1995 study of high density near-contact magnetic recording using spin valve head; 1995 nendo spin valve head ni yoru chokomitsudo near contact jiki kiroku no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Development of high performance spin valves formed by amorphous magnetic layer and head-medium interface with nano-thickness molecular film for realizing an ultra-high density of 20 Gbit/in{sup 2} using contact recording. The giant magnetoresistance effect was investigated for spin valves using very thin amorphous magnetic layer. In amorphous-CoFeB/Cu/ Co spin valves, the maximum MR ratio of 6% was achieved at the thickness of the amorphous layer of 2 nm. The spin valves with the amorphous layer exhibit very good thermal stability. Design guideline for molecularly thin lubricant was established using newly derived lubrication equation considering lubricant porosity. Novel method for accurately measuring surface force due to molecularly thin lubricant was developed by using Michelson interferometry to detect cantilever displacement, which enabled two-dimensional transient force measurement. (NEDO)

  12. All-electric control of donor nuclear spin qubits in silicon

    Science.gov (United States)

    Sigillito, Anthony J.; Tyryshkin, Alexei M.; Schenkel, Thomas; Houck, Andrew A.; Lyon, Stephen A.

    2017-10-01

    The electronic and nuclear spin degrees of freedom of donor impurities in silicon form ultra-coherent two-level systems that are potentially useful for applications in quantum information and are intrinsically compatible with industrial semiconductor processing. However, because of their smaller gyromagnetic ratios, nuclear spins are more difficult to manipulate than electron spins and are often considered too slow for quantum information processing. Moreover, although alternating current magnetic fields are the most natural choice to drive spin transitions and implement quantum gates, they are difficult to confine spatially to the level of a single donor, thus requiring alternative approaches. In recent years, schemes for all-electrical control of donor spin qubits have been proposed but no experimental demonstrations have been reported yet. Here, we demonstrate a scalable all-electric method for controlling neutral 31P and 75As donor nuclear spins in silicon. Using coplanar photonic bandgap resonators, we drive Rabi oscillations on nuclear spins exclusively using electric fields by employing the donor-bound electron as a quantum transducer, much in the spirit of recent works with single-molecule magnets. The electric field confinement leads to major advantages such as low power requirements, higher qubit densities and faster gate times. Additionally, this approach makes it possible to drive nuclear spin qubits either at their resonance frequency or at its first subharmonic, thus reducing device bandwidth requirements. Double quantum transitions can be driven as well, providing easy access to the full computational manifold of our system and making it convenient to implement nuclear spin-based qudits using 75As donors.

  13. Chaotic spin exchange: is the spin non-flip rate observable?

    International Nuclear Information System (INIS)

    Senba, Masayoshi

    1994-01-01

    If spin exchange is of the Poisson nature, that is, if the time distribution of collisions obeys an exponential distribution function and the collision process is random, the muon spin depolarization is determined only by the spin flip rate regardless of the spin non-flip rate. In this work, spin exchange is discussed in the case of chaotic spin exchange, where the distribution of collision time sequences, generated by a deterministic equation, is exponential but not random (deterministic chaos). Even though this process has the same time distribution as a Poisson process, the muon polarization is affected by the spin non-flip rate. Having an exponential time distribution function is not a sufficient condition for the non-observation of the spin non-flip rate and it is essential that the process is also random. (orig.)

  14. Diffusive Spin Dynamics in Ferromagnetic Thin Films with a Rashba Interaction

    KAUST Repository

    Wang, Xuhui

    2012-03-13

    In a ferromagnetic metal layer, the coupled charge and spin diffusion equations are obtained in the presence of both Rashba spin-orbit interaction and magnetism. The misalignment between the magnetization and the nonequilibrium spin density induced by the Rashba field gives rise to Rashba spin torque acting on the ferromagnetic order parameter. In a general form, we find that the Rashba torque consists of both in-plane and out-of-plane components, i.e., T=T Sy×m+T Sm×(y×m). Numerical simulations on a two-dimensional nanowire consider the impact of diffusion on the Rashba torque and reveal a large enhancement to the ratio T/T S for thin wires. Our theory provides an explanation for the mechanism driving the magnetization switching in a single ferromagnet as observed in the recent experiments. © 2012 American Physical Society.

  15. Diffusive Spin Dynamics in Ferromagnetic Thin Films with a Rashba Interaction

    KAUST Repository

    Wang, Xuhui; Manchon, Aurelien

    2012-01-01

    In a ferromagnetic metal layer, the coupled charge and spin diffusion equations are obtained in the presence of both Rashba spin-orbit interaction and magnetism. The misalignment between the magnetization and the nonequilibrium spin density induced by the Rashba field gives rise to Rashba spin torque acting on the ferromagnetic order parameter. In a general form, we find that the Rashba torque consists of both in-plane and out-of-plane components, i.e., T=T Sy×m+T Sm×(y×m). Numerical simulations on a two-dimensional nanowire consider the impact of diffusion on the Rashba torque and reveal a large enhancement to the ratio T/T S for thin wires. Our theory provides an explanation for the mechanism driving the magnetization switching in a single ferromagnet as observed in the recent experiments. © 2012 American Physical Society.

  16. The highest spin discrete levels in 131,132Ce

    International Nuclear Information System (INIS)

    Paul, E S; Choy, P T W; Andreoiu, C; Boston, A J; Evans, A O; Fox, C; Gros, S; Nolan, P J; Rainovski, G; Sampson, J A; Scraggs, H C; Walker, A; Appelbe, D E; Joss, D T; Simpson, J; Gizon, J; Astier, A; Buforn, N; Prevost, A; Redon, N; Stezowski, O; Nyako, B M; Sohler, D; Timar, J; Zolnai, L; Bazzacco, D; Lunardi, S; Petrache, C M; Bednarczyk, P; Curien, D; Kintz, N; Ragnarsson, I

    2006-01-01

    The three superdeformed (SD) bands in 132 Ce and the two SD bands in 131 Ce have been extended to higher spin following experiments with the EUROBALL IV spectrometer. The two SD bands in 131 Ce have been linked together. However, despite the relatively high population intensity of the bands (up to 5% of the respective channel), it has not been possible to unambiguously link any of the five SD bands into the low-spin, normally deformed structures of 131,132 Ce

  17. Shape and spin of asteroid 967 Helionape

    Science.gov (United States)

    Apostolovska, G.; Kostov, A.; Donchev, Z.; Bebekovska, E. Vchkova; Kuzmanovska, O.

    2018-04-01

    Knowledge of the spin and shape parameters of the asteroids is very important for understanding of the conditions during the creation of our planetary system and formation of asteroid populations. The main belt asteroid and Flora family member 967 Helionape was observed during five apparitions. The observations were made at the Bulgarian National Astronomical Observatory (BNAO) Rozhen, since March 2006 to March 2016. Lihtcurve inversion method (Kaasalainen et al. (2001)), applied on 12 relative lightcurves obtained at various geometric conditions of the asteroid, reveals the spin vector, the sense of rotation and the preliminary shape model of the asteroid. Our aim is to contribute in increasing the set of asteroids with known spin and shape parameters. This could be done with dense lightcurves, obtained during small number of apparitions, in combination with sparse data produced by photometric asteroid surveys such as the Gaia satellite (Hanush (2011)).

  18. Vibration dependence of the tensor spin-spin and scalar spin-spin hyperfine interactions by precision measurement of hyperfine structures of 127I2 near 532 nm

    International Nuclear Information System (INIS)

    Hong Fenglei; Zhang Yun; Ishikawa, Jun; Onae, Atsushi; Matsumoto, Hirokazu

    2002-01-01

    Hyperfine structures of the R(87)33-0, R(145)37-0, and P(132)36-0 transitions of molecular iodine near 532 nm are measured by observing the heterodyne beat-note signal of two I 2 -stabilized lasers, whose frequencies are bridged by an optical frequency comb generator. The measured hyperfine splittings are fit to a four-term Hamiltonian, which includes the electric quadrupole, spin-rotation, tensor spin-spin, and scalar spin-spin interactions, with an accuracy of ∼720 Hz. High-accurate hyperfine constants are obtained from this fit. Vibration dependences of the tensor spin-spin and scalar spin-spin hyperfine constants are determined for molecular iodine, for the first time to our knowledge. The observed hyperfine transitions are good optical frequency references in the 532-nm region

  19. Shot noise of spin current and spin transfer torque

    International Nuclear Information System (INIS)

    Yu Yunjin; Zhan Hongxin; Wan Langhui; Wang Bin; Wei Yadong; Sun Qingfeng; Wang Jian

    2013-01-01

    We report the theoretical investigation of the shot noise of the spin current (S σ ) and the spin transfer torque (S τ ) for non-collinear spin polarized transport in a spin-valve device which consists of a normal scattering region connected by two ferromagnetic electrodes (MNM system). Our theory was developed using the non-equilibrium Green’s function method, and general nonlinear S σ − V and S τ − V relations were derived as a function of the angle θ between the magnetizations of two leads. We have applied our theory to a quantum dot system with a resonant level coupled with two ferromagnetic electrodes. It was found that, for the MNM system, the auto-correlation of the spin current is enough to characterize the fluctuation of the spin current. For a system with three ferromagnetic layers, however, both auto-correlation and cross-correlation of the spin current are needed to characterize the noise of the spin current. For a quantum dot with a resonant level, the derivative of spin torque with respect to bias voltage is proportional to sinθ when the system is far away from resonance. When the system is near resonance, the spin transfer torque becomes a non-sinusoidal function of θ. The derivative of the noise of the spin transfer torque with respect to the bias voltage N τ behaves differently when the system is near or far away from resonance. Specifically, the differential shot noise of the spin transfer torque N τ is a concave function of θ near resonance while it becomes a convex function of θ far away from resonance. For certain bias voltages, the period N τ (θ) becomes π instead of 2π. For small θ, it was found that the differential shot noise of the spin transfer torque is very sensitive to the bias voltage and the other system parameters. (paper)

  20. Chemical potential of quasi-equilibrium magnon gas driven by pure spin current.

    Science.gov (United States)

    Demidov, V E; Urazhdin, S; Divinskiy, B; Bessonov, V D; Rinkevich, A B; Ustinov, V V; Demokritov, S O

    2017-11-17

    Pure spin currents provide the possibility to control the magnetization state of conducting and insulating magnetic materials. They allow one to increase or reduce the density of magnons, and achieve coherent dynamic states of magnetization reminiscent of the Bose-Einstein condensation. However, until now there was no direct evidence that the state of the magnon gas subjected to spin current can be treated thermodynamically. Here, we show experimentally that the spin current generated by the spin-Hall effect drives the magnon gas into a quasi-equilibrium state that can be described by the Bose-Einstein statistics. The magnon population function is characterized either by an increased effective chemical potential or by a reduced effective temperature, depending on the spin current polarization. In the former case, the chemical potential can closely approach, at large driving currents, the lowest-energy magnon state, indicating the possibility of spin current-driven Bose-Einstein condensation.

  1. A facile approach to spinning multifunctional conductive elastomer fibres with nanocarbon fillers

    International Nuclear Information System (INIS)

    Seyedin, Shayan; Razal, Joselito M; Innis, Peter C; Wallace, Gordon G

    2016-01-01

    Electrically conductive elastomeric fibres prepared using a wet-spinning process are promising materials for intelligent textiles, in particular as a strain sensing component of the fabric. However, these fibres, when reinforced with conducting fillers, typically result in a compromise between mechanical and electrical properties and, ultimately, in the strain sensing functionality. Here we investigate the wet-spinning of polyurethane (PU) fibres with a range of conducting fillers such as carbon black (CB), single-walled carbon nanotubes (SWCNTs), and chemically converted graphene. We show that the electrical and mechanical properties of the composite fibres were strongly dependent on the aspect ratio of the filler and the interaction between the filler and the elastomer. The high aspect ratio SWCNT filler resulted in fibres with the highest electrical properties and reinforcement, while the fibres produced from the low aspect ratio CB had the highest stretchability. Furthermore, PU/SWCNT fibres presented the largest sensing range (up to 60% applied strain) and the most consistent and stable cyclic sensing behaviour. This work provides an understanding of the important factors that influence the production of conductive elastomer fibres by wet-spinning, which can be woven or knitted into textiles for the development of wearable strain sensors. (paper)

  2. Masculine sex ratios, population age structure and the potential spread of HIV in China

    OpenAIRE

    M. Giovanna Merli; Sara Hertog

    2010-01-01

    There is much speculation regarding the contribution of China's changing demography to the spread of HIV/AIDS. We employ a bio-behavioral macrosimulation model of the heterosexual spread of HIV/AIDS to evaluate the roles that China's unique demographic conditions -- (1) masculine sex ratios at birth and (2) a population age structure that reflects rapid fertility decline since the 1970's -- play in altering the market for sexual partners, thereby potentially fueling an increase...

  3. Role of spin polarization in FM/Al/FM trilayer film at low temperature

    Science.gov (United States)

    Lu, Ning; Webb, Richard

    2014-03-01

    Measurements of electronic transport in diffusive FM/normal metal/FM trilayer film are performed at temperature ranging from 2K to 300K to determine the behavior of the spin polarized current in normal metal under the influence of quantum phase coherence and spin-orbital interaction. Ten samples of Hall bar with length of 200 micron and width of 20 micron are fabricated through e-beam lithography followed by e-gun evaporation of Ni0.8Fe0.2, aluminum and Ni0.8Fe0.2 with different thickness (5nm to 45nm) in vacuum. At low temperature of 4.2K, coherent backscattering, Rashba spin-orbital interaction and spin flip scattering of conduction electrons contribute to magnetoresistance at low field. Quantitative analysis of magnetoresistance shows transition between weak localization and weak anti-localization for samples with different thickness ratio, which indicates the spin polarization actually affects the phase coherence length and spin-orbital scattering length. However, at temperature between 50K and 300K, only the spin polarization dominates the magnetoresistance.

  4. SU (N ) spin-wave theory: Application to spin-orbital Mott insulators

    Science.gov (United States)

    Dong, Zhao-Yang; Wang, Wei; Li, Jian-Xin

    2018-05-01

    We present the application of the SU (N ) spin-wave theory to spin-orbital Mott insulators whose ground states exhibit magnetic orders. When taking both spin and orbital degrees of freedom into account rather than projecting Hilbert space onto the Kramers doublet, which is the lowest spin-orbital locked energy levels, the SU (N ) spin-wave theory should take the place of the SU (2 ) one due to the inevitable spin-orbital multipole exchange interactions. To implement the application, we introduce an efficient general local mean-field method, which involves all local fluctuations, and develop the SU (N ) linear spin-wave theory. Our approach is tested firstly by calculating the multipolar spin-wave spectra of the SU (4 ) antiferromagnetic model. Then, we apply it to spin-orbital Mott insulators. It is revealed that the Hund's coupling would influence the effectiveness of the isospin-1 /2 picture when the spin-orbital coupling is not large enough. We further carry out the SU (N ) spin-wave calculations of two materials, α -RuCl3 and Sr2IrO4 , and find that the magnonic and spin-orbital excitations are consistent with experiments.

  5. Spin-inversion in nanoscale graphene sheets with a Rashba spin-orbit barrier

    Directory of Open Access Journals (Sweden)

    Somaieh Ahmadi

    2012-03-01

    Full Text Available Spin-inversion properties of an electron in nanoscale graphene sheets with a Rashba spin-orbit barrier is studied using transfer matrix method. It is found that for proper values of Rashba spin-orbit strength, perfect spin-inversion can occur in a wide range of electron incident angle near the normal incident. In this case, the graphene sheet with Rashba spin-orbit barrier can be considered as an electron spin-inverter. The efficiency of spin-inverter can increase up to a very high value by increasing the length of Rashba spin-orbit barrier. The effect of intrinsic spin-orbit interaction on electron spin inversion is then studied. It is shown that the efficiency of spin-inverter decreases slightly in the presence of intrinsic spin-orbit interaction. The present study can be used to design graphene-based spintronic devices.

  6. Spin-pump-induced spin transport in a thermally evaporated pentacene film

    Energy Technology Data Exchange (ETDEWEB)

    Tani, Yasuo; Shikoh, Eiji, E-mail: shikoh@elec.eng.osaka-cu.ac.jp [Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Teki, Yoshio [Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan)

    2015-12-14

    We report the spin-pump-induced spin transport properties of a pentacene film prepared by thermal evaporation. In a palladium(Pd)/pentacene/Ni{sub 80}Fe{sub 20} tri-layer sample, a pure spin-current is generated in the pentacene layer by the spin-pumping of Ni{sub 80}Fe{sub 20}, which is independent of the conductance mismatch problem in spin injection. The spin current is absorbed into the Pd layer, converted into a charge current with the inverse spin-Hall effect in Pd, and detected as an electromotive force. This is clear evidence for the pure spin current at room temperature in pentacene films prepared by thermal evaporation.

  7. Evaluation of an air spinning process to produce tailored biosynthetic nanofibre scaffolds

    International Nuclear Information System (INIS)

    Sabbatier, Gad

    2014-01-01

    We optimised the working parameters of an innovative air spinning device to produce nanofibrous polymer scaffolds for tissue engineering applications. Scanning electron microscopy was performed on the fibre scaffolds which were then used to identify various scaffold morphologies based on the ratio of surface occupied by the polymer fibres on that covered by the entire polymer scaffold assembly. Scaffolds were then produced with the spinning experimental parameters, resulting in 90% of fibres in the overall polymer construct, and were subsequently used to perform a multiple linear regression analysis to highlight the relationship between nanofibre diameter and the air spinning parameters. Polymer solution concentration was deemed as the most significant parameter to control fibre diameter during the spinning process, despite interactions between experimental parameters. Based on these findings, viscosity measurements were performed to clarify the effect of the polymer solution property on scaffold morphology. - Highlights: • An air spinning device for nanofibre scaffold production was optimised. • Relationships between fibre diameter and spinning parameters were established. • Polymer solution concentration was the most significant parameter. • Interactions between experimental parameters also influence the spinning process. • Nanofibres were formed due to polymer chain entanglements

  8. Spin-Triplet Pairing Induced by Spin-Singlet Interactions in Noncentrosymmetric Superconductors

    Science.gov (United States)

    Matsuzaki, Tomoaki; Shimahara, Hiroshi

    2017-02-01

    In noncentrosymmetric superconductors, we examine the effect of the difference between the intraband and interband interactions, which becomes more important when the band splitting increases. We define the difference ΔVμ between their coupling constants, i.e., that between the intraband and interband hopping energies of intraband Cooper pairs. Here, the subscript μ of ΔVμ indicates that the interactions scatter the spin-singlet and spin-triplet pairs when μ = 0 and μ = 1,2,3, respectively. It is shown that the strong antisymmetric spin-orbit interaction reverses the target spin parity of the interaction: it converts the spin-singlet and spin-triplet interactions represented by ΔV0 and ΔVμ>0 into effective spin-triplet and spin-singlet pairing interactions, respectively. Hence, for example, triplet pairing can be induced solely by the singlet interaction ΔV0. We name the pairing symmetry of the system after that of the intraband Cooper pair wave function, but with an odd-parity phase factor excluded. The pairing symmetry must then be even, even for the triplet component, and the following results are obtained. When ΔVμ is small, the spin-triplet p-wave interactions induce spin-triplet s-wave and spin-triplet d-wave pairings in the regions where the repulsive singlet s-wave interaction is weak and strong, respectively. When ΔV0 is large, a repulsive interband spin-singlet interaction can stabilize spin-triplet pairing. When the Rashba interaction is adopted for the spin-orbit interaction, the spin-triplet pairing interactions mediated by transverse magnetic fluctuations do not contribute to triplet pairing.

  9. Dynamical spin accumulation in large-spin magnetic molecules

    Science.gov (United States)

    Płomińska, Anna; Weymann, Ireneusz; Misiorny, Maciej

    2018-01-01

    The frequency-dependent transport through a nanodevice containing a large-spin magnetic molecule is studied theoretically in the Kondo regime. Specifically, the effect of magnetic anisotropy on dynamical spin accumulation is of primary interest. Such accumulation arises due to finite components of frequency-dependent conductance that are off diagonal in spin. Here, employing the Kubo formalism and the numerical renormalization group method, we demonstrate that the dynamical transport properties strongly depend on the relative orientation of spin moments in electrodes of the device, as well as on intrinsic parameters of the molecule. In particular, the effect of dynamical spin accumulation is found to be greatly affected by the type of magnetic anisotropy exhibited by the molecule, and it develops for frequencies corresponding to the Kondo temperature. For the parallel magnetic configuration of the device, the presence of dynamical spin accumulation is conditioned by the interplay of ferromagnetic-lead-induced exchange field and the Kondo correlations.

  10. Hardy's argument and successive spin-s measurements

    International Nuclear Information System (INIS)

    Ahanj, Ali

    2010-01-01

    We consider a hidden-variable theoretic description of successive measurements of noncommuting spin observables on an input spin-s state. In this scenario, the hidden-variable theory leads to a Hardy-type argument that quantum predictions violate it. We show that the maximum probability of success of Hardy's argument in quantum theory is ((1/2)) 4s , which is more than in the spatial case.

  11. Dietary Sodium to Potassium Ratio and Risk of Stroke in a Multiethnic Urban Population: The Northern Manhattan Study.

    Science.gov (United States)

    Willey, Joshua; Gardener, Hannah; Cespedes, Sandino; Cheung, Ying K; Sacco, Ralph L; Elkind, Mitchell S V

    2017-11-01

    There is growing evidence that increased dietary sodium (Na) intake increases the risk of vascular diseases, including stroke, at least in part via an increase in blood pressure. Higher dietary potassium (K), seen with increased intake of fruits and vegetables, is associated with lower blood pressure. The goal of this study was to determine the association of a dietary Na:K with risk of stroke in a multiethnic urban population. Stroke-free participants from the Northern Manhattan Study, a population-based cohort study of stroke incidence, were followed-up for incident stroke. Baseline food frequency questionnaires were analyzed for Na and K intake. We estimated the hazard ratios and 95% confidence intervals for the association of Na:K with incident total stroke using multivariable Cox proportional hazards models. Among 2570 participants with dietary data (mean age, 69±10 years; 64% women; 21% white; 55% Hispanic; 24% black), the mean Na:K ratio was 1.22±0.43. Over a mean follow-up of 12 years, there were 274 strokes. In adjusted models, a higher Na:K ratio was associated with increased risk for stroke (hazard ratio, 1.6; 95% confidence interval, 1.2-2.1) and specifically ischemic stroke (hazard ratio, 1.6; 95% confidence interval, 1.2-2.1). Na:K intake is an independent predictor of stroke risk. Further studies are required to understand the joint effect of Na and K intake on risk of cardiovascular disease. © 2017 American Heart Association, Inc.

  12. Large spin current injection in nano-pillar-based lateral spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Tatsuya [Department of Physics, Kyushu University, 744 Motooka, Fukuoka, 819-0395 (Japan); Ohnishi, Kohei; Kimura, Takashi, E-mail: t-kimu@phys.kyushu-u.ac.jp [Department of Physics, Kyushu University, 744 Motooka, Fukuoka, 819-0395 (Japan); Research Center for Quantum Nano-Spin Sciences, Kyushu University, 744 Motooka, Fukuoka, 819-0395 (Japan)

    2016-08-26

    We have investigated the influence of the injection of a large pure spin current on a magnetization process of a non-locally located ferromagnetic dot in nano-pillar-based lateral spin valves. Here, we prepared two kinds of the nano-pillar-type lateral spin valve based on Py nanodots and CoFeAl nanodots fabricated on a Cu film. In the Py/Cu lateral spin valve, although any significant change of the magnetization process of the Py nanodot has not been observed at room temperature. The magnetization reversal process is found to be modified by injecting a large pure spin current at 77 K. Switching the magnetization by the nonlocal spin injection has also been demonstrated at 77 K. In the CoFeAl/Cu lateral spin valve, a room temperature spin valve signal was strongly enhanced from the Py/Cu lateral spin valve because of the highly spin-polarized CoFeAl electrodes. The room temperature nonlocal switching has been demonstrated in the CoFeAl/Cu lateral spin valve.

  13. Spin Hall effects

    Science.gov (United States)

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical

  14. Spin-orbit induced electronic spin separation in semiconductor nanostructures.

    Science.gov (United States)

    Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku

    2012-01-01

    The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin-orbit interaction in an InGaAs-based heterostructure. Using a Stern-Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 10(8) T m(-1) resulting in a highly polarized spin current.

  15. Mean-Field Studies of a Mixed Spin-3/2 and Spin-2 and a Mixed Spin-3/2 and Spin-5/2 Ising System with Different Anisotropies

    International Nuclear Information System (INIS)

    Wei Guozhu; Miao Hailing

    2009-01-01

    The magnetic properties of a mixed spin-3/2 and spin-2 and a mixed spin-3/2 and spin-5/2 Ising ferromagnetic system with different anisotropies are studied by means of mean-field theory (MFT). The dependence of the phase diagram on single-ion anisotropy strengths is studied too. In the mixed spin-3/2 and spin-2 Ising model, besides the second-order phase transition, the first order-disorder phase transition and the tricritical line are found. In the mixed spin-3/2 and spin-5/2 Ising model, there is no first-order transition and tricritical line. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Variation in growth form in relation to spectral light quality (red/far-red ratio) in Plantago lanceolata L in sun and shade populations

    NARCIS (Netherlands)

    Van Hinsberg, A.; Van Tienderen, P.H.

    1997-01-01

    Plants from a sun and shade population were grown in two environments differing in the ratio of red to far-red light (R/FR ratio). A low R/FR ratio, simulating vegetation shade, promoted the formation of long, upright-growing leaves and allocation towards shoot growth, whereas a high R/FR ratio had

  17. Comparative Aspects of Spin-Dependent Interaction Potentials for Spin-1/2 and Spin-1 Matter Fields

    Directory of Open Access Journals (Sweden)

    P. C. Malta

    2016-01-01

    Full Text Available This paper sets out to establish a comparative study between classes of spin- and velocity-dependent potentials for spin-1/2 and spin-1 matter currents/sources in the nonrelativistic regime. Both (neutral massive scalar and vector particles are considered to mediate the interactions between (pseudo-scalar sources or (pseudo-vector currents. Though our discussion is more general, we contemplate specific cases in which our results may describe the electromagnetic interaction with a massive (Proca-type photon exchanged between two spin-1/2 or two spin-1 carriers. We highlight the similarities and peculiarities of the potentials for the two different types of charged matter and also focus our attention on the comparison between the particular aspects of two different field representations for spin-1 matter particles. We believe that our results may contribute to a further discussion of the relation between charge, spin, and extensibility of elementary particles.

  18. Cause-specific mortality according to urine albumin creatinine ratio in the general population.

    Science.gov (United States)

    Skaaby, Tea; Husemoen, Lise Lotte Nystrup; Ahluwalia, Tarunveer Singh; Rossing, Peter; Jørgensen, Torben; Thuesen, Betina Heinsbæk; Pisinger, Charlotta; Rasmussen, Knud; Linneberg, Allan

    2014-01-01

    Urine albumin creatinine ratio, UACR, is positively associated with all-cause mortality, cardiovascular disease and diabetes in observational studies. Whether a high UACR is also associated with other causes of death is unclear. We investigated the association between UACR and cause-specific mortality. We included a total of 9,125 individuals from two population-based studies, Monica10 and Inter99, conducted in 1993-94 and 1999-2001, respectively. Urine albumin creatinine ratio was measured from spot urine samples by standard methods. Information on causes of death was obtained from The Danish Register of Causes of Death until 31 December 2010. There were a total of 920 deaths, and the median follow-up was 11.3 years. Multivariable Cox regression analyses with age as underlying time axis showed statistically significant positive associations between UACR status and risk of all-cause mortality, endocrine nutritional and metabolic diseases, mental and behavioural disorders, diseases of the circulatory system, and diseases of the respiratory system with hazard ratios 1.56, 6.98, 2.34, 2.03, and 1.91, for the fourth UACR compared with the first, respectively. Using UACR as a continuous variable, we also found a statistically significant positive association with risk of death caused by diseases of the digestive system with a hazard ratio of 1.02 per 10 mg/g higher UACR. We found statistically significant positive associations between baseline UACR and death from all-cause mortality, endocrine nutritional and metabolic diseases, and diseases of the circulatory system and possibly mental and behavioural disorders, and diseases of the respiratory and digestive system.

  19. Heat and spin interconversion

    International Nuclear Information System (INIS)

    Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji

    2017-01-01

    Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)

  20. Rotational Invariance of the 2d Spin - Spin Correlation Function

    Science.gov (United States)

    Pinson, Haru

    2012-09-01

    At the critical temperature in the 2d Ising model on the square lattice, we establish the rotational invariance of the spin-spin correlation function using the asymptotics of the spin-spin correlation function along special directions (McCoy and Wu in the two dimensional Ising model. Harvard University Press, Cambridge, 1973) and the finite difference Hirota equation for which the spin-spin correlation function is shown to satisfy (Perk in Phys Lett A 79:3-5, 1980; Perk in Proceedings of III international symposium on selected topics in statistical mechanics, Dubna, August 22-26, 1984, JINR, vol II, pp 138-151, 1985).

  1. Spin-independent transparency of pure spin current at normal/ferromagnetic metal interface

    Science.gov (United States)

    Hao, Runrun; Zhong, Hai; Kang, Yun; Tian, Yufei; Yan, Shishen; Liu, Guolei; Han, Guangbing; Yu, Shuyun; Mei, Liangmo; Kang, Shishou

    2018-03-01

    The spin transparency at the normal/ferromagnetic metal (NM/FM) interface was studied in Pt/YIG/Cu/FM multilayers. The spin current generated by the spin Hall effect (SHE) in Pt flows into Cu/FM due to magnetic insulator YIG blocking charge current and transmitting spin current via the magnon current. Therefore, the nonlocal voltage induced by an inverse spin Hall effect (ISHE) in FM can be detected. With the magnetization of FM parallel or antiparallel to the spin polarization of pure spin currents ({{\\boldsymbol{σ }}}sc}), the spin-independent nonlocal voltage is induced. This indicates that the spin transparency at the Cu/FM interface is spin-independent, which demonstrates that the influence of spin-dependent electrochemical potential due to spin accumulation on the interfacial spin transparency is negligible. Furthermore, a larger spin Hall angle of Fe20Ni80 (Py) than that of Ni is obtained from the nonlocal voltage measurements. Project supported by the National Basic Research Program of China (Grant No. 2015CB921502), the National Natural Science Foundation of China (Grant Nos. 11474184 and 11627805), the 111 Project, China (Grant No. B13029), and the Fundamental Research Funds of Shandong University, China.

  2. Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble

    International Nuclear Information System (INIS)

    Herzog, B. E.; Cadeddu, D.; Xue, F.; Peddibhotla, P.; Poggio, M.

    2014-01-01

    As the number of spins in an ensemble is reduced, the statistical fluctuations in its polarization eventually exceed the mean thermal polarization. This transition has now been surpassed in a number of recent nuclear magnetic resonance experiments, which achieve nanometer-scale detection volumes. Here, we measure nanometer-scale ensembles of nuclear spins in a KPF 6 sample using magnetic resonance force microscopy. In particular, we investigate the transition between regimes dominated by thermal and statistical nuclear polarization. The ratio between the two types of polarization provides a measure of the number of spins in the detected ensemble.

  3. Semi-classical calculation of the spin-isospin response functions

    International Nuclear Information System (INIS)

    Chanfray, G.

    1987-03-01

    We present a semi-classical calculation of the nuclear response functions beyond the Thomas-Fermi approximation. We apply our formalism to the spin-isospin responses and show that the surface peaked h/2π corrections considerably decrease the ratio longitudinal/transverse as obtained through hadronic probes

  4. Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle

    Science.gov (United States)

    Antón, M. A.; Carreño, F.; Melle, Sonia; Calderón, Oscar G.; Cabrera-Granado, E.; Singh, Mahi R.

    2013-05-01

    The preparation of quantum states with a defined spin is analyzed in a hybrid system consisting of a p-doped semiconductor quantum dot (QD) coupled to a metallic nanoparticle. The quantum dot is described as a four-level atom-like system using the density matrix formalism. The lower levels are Zeeman-split hole spin states and the upper levels correspond to positively charged excitons containing a spin-up, spin-down hole pair and a spin electron. A metallic nanoparticle with spheroidal geometry is placed in close proximity to the quantum dot, and its effects are considered in the quasistatic approximation. A linearly polarized laser field drives two of the optical transitions of the QD and produces localized surface plasmons in the nanoparticle which act back upon the QD. The frequencies of these localized plasmons are very different along the two principal axes of the nanoparticle, thus producing an anisotropic modification of the spontaneous emission rates of the allowed optical transitions which is accompanied by local-field corrections. This effect translates into a preferential acceleration of some of the optical pathways and therefore into a fast initialization of the QD by excitation with a short optical pulse. The population transfer between the lower levels of the QD and the fidelity is analyzed as a function of the nanoparticle's aspect ratio, the external magnetic field, and the Rabi frequency of the driving field. It is also shown that the main effect of the local-field corrections is a lengthening of the time elapsed to reach the steady-state. The hole spin is predicted to be successfully cooled from 5 to 0.04 K at a magnetic field of 4.6 T applied in the Voigt geometry.

  5. Spin-lattice relaxation of individual solid-state spins

    Science.gov (United States)

    Norambuena, A.; Muñoz, E.; Dinani, H. T.; Jarmola, A.; Maletinsky, P.; Budker, D.; Maze, J. R.

    2018-03-01

    Understanding the effect of vibrations on the relaxation process of individual spins is crucial for implementing nanosystems for quantum information and quantum metrology applications. In this work, we present a theoretical microscopic model to describe the spin-lattice relaxation of individual electronic spins associated to negatively charged nitrogen-vacancy centers in diamond, although our results can be extended to other spin-boson systems. Starting from a general spin-lattice interaction Hamiltonian, we provide a detailed description and solution of the quantum master equation of an electronic spin-one system coupled to a phononic bath in thermal equilibrium. Special attention is given to the dynamics of one-phonon processes below 1 K where our results agree with recent experimental findings and analytically describe the temperature and magnetic-field scaling. At higher temperatures, linear and second-order terms in the interaction Hamiltonian are considered and the temperature scaling is discussed for acoustic and quasilocalized phonons when appropriate. Our results, in addition to confirming a T5 temperature dependence of the longitudinal relaxation rate at higher temperatures, in agreement with experimental observations, provide a theoretical background for modeling the spin-lattice relaxation at a wide range of temperatures where different temperature scalings might be expected.

  6. Muon spin rotation and other microscopic probes of spin-glass dynamics

    International Nuclear Information System (INIS)

    MacLaughlin, D.E.

    1980-01-01

    A number of different microscopic probe techniques have been employed to investigate the onset of the spin-glass state in dilute magnetic alloys. Among these are Moessbauer-effect spectroscopy, neutron scattering, ESR of the impurity spins, host NMR and, most recently, muon spin rotation and depolarization. Spin probes yield information on the microscopic static and dynamic behavior of the impurity spins, and give insight into both the spin freezing process and the nature of low-lying excitations in the ordered state. Microscopic probe experiments in spin glasses are surveyed, and the unique advantages of muon studies are emphasized

  7. Quantifying Spin Hall Angles from Spin Pumping : Experiments and Theory

    NARCIS (Netherlands)

    Mosendz, O.; Pearson, J.E.; Fradin, F.Y.; Bauer, G.E.W.; Bader, S.D.; Hoffmann, A.

    2010-01-01

    Spin Hall effects intermix spin and charge currents even in nonmagnetic materials and, therefore, ultimately may allow the use of spin transport without the need for ferromagnets. We show how spin Hall effects can be quantified by integrating Ni80Fe20|normal metal (N) bilayers into a coplanar

  8. Collective motion with anticipation: flocking, spinning, and swarming.

    Science.gov (United States)

    Morin, Alexandre; Caussin, Jean-Baptiste; Eloy, Christophe; Bartolo, Denis

    2015-01-01

    We investigate the collective dynamics of self-propelled particles able to probe and anticipate the orientation of their neighbors. We show that a simple anticipation strategy hinders the emergence of homogeneous flocking patterns. Yet anticipation promotes two other forms of self-organization: collective spinning and swarming. In the spinning phase, all particles follow synchronous circular orbits, while in the swarming phase, the population condensates into a single compact swarm that cruises coherently without requiring any cohesive interactions. We quantitatively characterize and rationalize these phases of polar active matter and discuss potential applications to the design of swarming robots.

  9. Spin-orbit-coupled transport and spin torque in a ferromagnetic heterostructure

    KAUST Repository

    Wang, Xuhui; Ortiz Pauyac, Christian; Manchon, Aurelien

    2014-01-01

    Ferromagnetic heterostructures provide an ideal platform to explore the nature of spin-orbit torques arising from the interplay mediated by itinerant electrons between a Rashba-type spin-orbit coupling and a ferromagnetic exchange interaction. For such a prototypic system, we develop a set of coupled diffusion equations to describe the diffusive spin dynamics and spin-orbit torques. We characterize the spin torque and its two prominent—out-of-plane and in-plane—components for a wide range of relative strength between the Rashba coupling and ferromagnetic exchange. The symmetry and angular dependence of the spin torque emerging from our simple Rashba model is in an agreement with experiments. The spin diffusion equation can be generalized to incorporate dynamic effects such as spin pumping and magnetic damping.

  10. Spin-orbit-coupled transport and spin torque in a ferromagnetic heterostructure

    KAUST Repository

    Wang, Xuhui

    2014-02-07

    Ferromagnetic heterostructures provide an ideal platform to explore the nature of spin-orbit torques arising from the interplay mediated by itinerant electrons between a Rashba-type spin-orbit coupling and a ferromagnetic exchange interaction. For such a prototypic system, we develop a set of coupled diffusion equations to describe the diffusive spin dynamics and spin-orbit torques. We characterize the spin torque and its two prominent—out-of-plane and in-plane—components for a wide range of relative strength between the Rashba coupling and ferromagnetic exchange. The symmetry and angular dependence of the spin torque emerging from our simple Rashba model is in an agreement with experiments. The spin diffusion equation can be generalized to incorporate dynamic effects such as spin pumping and magnetic damping.

  11. Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque

    Science.gov (United States)

    Abert, Claas; Bruckner, Florian; Vogler, Christoph; Suess, Dieter

    2018-05-01

    While the spin-diffusion model is considered one of the most complete and accurate tools for the description of spin transport and spin torque, its solution in the context of dynamical micromagnetic simulations is numerically expensive. We propose a procedure to retrieve the free parameters of a simple macro-spin like spin-torque model through the spin-diffusion model. In case of spin-transfer torque the simplified model complies with the model of Slonczewski. A similar model can be established for the description of spin-orbit torque. In both cases the spin-diffusion model enables the retrieval of free model parameters from the geometry and the material parameters of the system. Since these parameters usually have to be determined phenomenologically through experiments, the proposed method combines the strength of the diffusion model to resolve material parameters and geometry with the high performance of simple torque models.

  12. Spin Drag and Spin-Charge Separation in Cold Fermi Gases

    International Nuclear Information System (INIS)

    Polini, Marco; Vignale, Giovanni

    2007-01-01

    Low-energy spin and charge excitations of one-dimensional interacting fermions are completely decoupled and propagate with different velocities. These modes, however, can decay due to several possible mechanisms. In this Letter we expose a new facet of spin-charge separation: not only the speeds but also the damping rates of spin and charge excitations are different. While the propagation of long-wavelength charge excitations is essentially ballistic, spin propagation is intrinsically damped and diffusive. We suggest that cold Fermi gases trapped inside a tight atomic waveguide offer the opportunity to measure the spin-drag relaxation rate that controls the broadening of a spin packet

  13. Spin distribution of evaporation residues formed in complete and incomplete fusion in 16O+154Sm system

    Science.gov (United States)

    Singh, D.; Linda, Sneha B.; Giri, Pankaj K.; Mahato, Amritraj; Tripathi, R.; Kumar, Harish; Afzal Ansari, M.; Sathik, N. P. M.; Ali, Rahbar; Kumar, Rakesh; Muralithar, S.; Singh, R. P.

    2017-11-01

    Spin distributions for several evaporation residues populated in the 16O+154Sm system have been measured at projectile energy ≈ 6.2 MeV/A by using the charged particle-γ-coincidence technique. The measured spin distributions of the evaporation residues populated through incomplete fusion associated with 'fast' α and 2α-emission channels are found to be entirely different from fusion-evaporation channels. It is observed that the mean input angular momentum for the evaporation residues formed in incomplete fusion channel is relatively higher than that observed for evaporation residues in complete fusion channels. The feeding intensity profile of evaporation residues populated through complete fusion and incomplete fusion have also been studied. The incomplete fusion channels are found to have narrow range feeding only for high spin states, while complete fusion channels are strongly fed over a broad spin range and widely populated. Comparison of present results with earlier data suggests that the mean input angular momentum values are relatively smaller for spherical target than that of deformed target using the same projectile and incident energy highlighting the role of target deformation in incomplete fusion dynamics.

  14. Spin distribution of evaporation residues formed in complete and incomplete fusion in 16O+154Sm system

    Directory of Open Access Journals (Sweden)

    D. Singh

    2017-11-01

    Full Text Available Spin distributions for several evaporation residues populated in the 16O+154Sm system have been measured at projectile energy ≈ 6.2 MeV/A by using the charged particle–γ-coincidence technique. The measured spin distributions of the evaporation residues populated through incomplete fusion associated with ‘fast’ α and 2α-emission channels are found to be entirely different from fusion–evaporation channels. It is observed that the mean input angular momentum for the evaporation residues formed in incomplete fusion channel is relatively higher than that observed for evaporation residues in complete fusion channels. The feeding intensity profile of evaporation residues populated through complete fusion and incomplete fusion have also been studied. The incomplete fusion channels are found to have narrow range feeding only for high spin states, while complete fusion channels are strongly fed over a broad spin range and widely populated. Comparison of present results with earlier data suggests that the mean input angular momentum values are relatively smaller for spherical target than that of deformed target using the same projectile and incident energy highlighting the role of target deformation in incomplete fusion dynamics.

  15. Spin-polarized quantum transport properties through flexible phosphorene

    Science.gov (United States)

    Chen, Mingyan; Yu, Zhizhou; Xie, Yiqun; Wang, Yin

    2016-10-01

    We report a first-principles study on the tunnel magnetoresistance (TMR) and spin-injection efficiency (SIE) through phosphorene with nickel electrodes under the mechanical tension and bending on the phosphorene region. Both the TMR and SIE are largely improved under these mechanical deformations. For the uniaxial tension (ɛy) varying from 0% to 15% applied along the armchair transport (y-)direction of the phosphorene, the TMR ratio is enhanced with a maximum of 107% at ɛy = 10%, while the SIE increases monotonously from 8% up to 43% with the increasing of the strain. Under the out-of-plane bending, the TMR overall increases from 7% to 50% within the bending ratio of 0%-3.9%, and meanwhile the SIE is largely improved to around 70%, as compared to that (30%) of the flat phosphorene. Such behaviors of the TMR and SIE are mainly affected by the transmission of spin-up electrons in the parallel configuration, which is highly dependent on the applied mechanical tension and bending. Our results indicate that the phosphorene based tunnel junctions have promising applications in flexible electronics.

  16. Spinning Them Off: Entrepreneuring Practices in Corporate Spin-Offs

    Directory of Open Access Journals (Sweden)

    Katja Maria Hydle

    2016-01-01

    Full Text Available This paper focuses on the practices between parent and child firms in corporate spinoffs. We uncover the enacted aspects of knowledge, called knowing, through theories from seven cases of incumbent-backed spin-offs and find that the management of the parent firms are highly involved in the spin-offs. The practices associated with spinning off are solving problems, involving multidisciplinary expertise and entrepreneuring management at the parent firm. We contribute to the spin-off literature by discussing the knowledge required for successfully spinning off child firms and to practice theory by empirically uncovering the practical understanding involved in the origin and perpetuation of an organization.

  17. Tuning spin transport across two-dimensional organometallic junctions

    Science.gov (United States)

    Liu, Shuanglong; Wang, Yun-Peng; Li, Xiangguo; Fry, James N.; Cheng, Hai-Ping

    2018-01-01

    We study via first-principles modeling and simulation two-dimensional spintronic junctions made of metal-organic frameworks consisting of two Mn-phthalocyanine ferromagnetic metal leads and semiconducting Ni-phthalocyanine channels of various lengths. These systems exhibit a large tunneling magnetoresistance ratio; the transmission functions of such junctions can be tuned using gate voltage by three orders of magnitude. We find that the origin of this drastic change lies in the orbital alignment and hybridization between the leads and the center electronic states. With physical insight into the observed on-off phenomenon, we predict a gate-controlled spin current switch based on two-dimensional crystallines and offer general guidelines for designing spin junctions using 2D materials.

  18. Spin and tunneling dynamics in an asymmetrical double quantum dot with spin-orbit coupling: Selective spin transport device

    Science.gov (United States)

    Singh, Madhav K.; Jha, Pradeep K.; Bhattacherjee, Aranya B.

    2017-09-01

    In this article, we study the spin and tunneling dynamics as a function of magnetic field in a one-dimensional GaAs double quantum dot with both the Dresselhaus and Rashba spin-orbit coupling. In particular, we consider different spatial widths for the spin-up and spin-down electronic states. We find that the spin dynamics is a superposition of slow as well as fast Rabi oscillations. It is found that the Rashba interaction strength as well as the external magnetic field strongly modifies the slow Rabi oscillations which is particularly useful for implementing solid state selective spin transport device.

  19. Enhanced Spin-Orbit Torque via Modulation of Spin Current Absorption

    KAUST Repository

    Qiu, Xuepeng

    2016-11-18

    The magnitude of spin-orbit torque (SOT), exerted to a ferromagnet (FM) from an adjacent heavy metal (HM), strongly depends on the amount of spin current absorbed in the FM. We exploit the large spin absorption at the Ru interface to manipulate the SOTs in HM/FM/Ru multilayers. While the FM thickness is smaller than its spin dephasing length of 1.2 nm, the top Ru layer largely boosts the absorption of spin currents into the FM layer and substantially enhances the strength of SOT acting on the FM. Spin-pumping experiments induced by ferromagnetic resonance support our conclusions that the observed increase in the SOT efficiency can be attributed to an enhancement of the spin-current absorption. A theoretical model that considers both reflected and transmitted mixing conductances at the two interfaces of FM is developed to explain the results.

  20. Excitation of coherent propagating spin waves by pure spin currents.

    Science.gov (United States)

    Demidov, Vladislav E; Urazhdin, Sergei; Liu, Ronghua; Divinskiy, Boris; Telegin, Andrey; Demokritov, Sergej O

    2016-01-28

    Utilization of pure spin currents not accompanied by the flow of electrical charge provides unprecedented opportunities for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. It was recently shown that pure spin currents can be used to excite coherent magnetization dynamics in magnetic nanostructures. However, because of the intrinsic nonlinear self-localization effects, magnetic auto-oscillations in the demonstrated devices were spatially confined, preventing their applications as sources of propagating spin waves in magnonic circuits using these waves as signal carriers. Here, we experimentally demonstrate efficient excitation and directional propagation of coherent spin waves generated by pure spin current. We show that this can be achieved by using the nonlocal spin injection mechanism, which enables flexible design of magnetic nanosystems and allows one to efficiently control their dynamic characteristics.

  1. Electrical detection of spin current and spin relaxation in nonmagnetic semiconductors

    International Nuclear Information System (INIS)

    Miah, M Idrish

    2008-01-01

    We report an electrical method for the detection of spin current and spin relaxation in nonmagnetic semiconductors. Optically polarized spins are dragged by an electric field in GaAs. We use the anomalous Hall effect for the detection of spin current and spin relaxation. It is found that the effect depends on the electric field and doping density as well as on temperature, but not on the excitation power. A calculation for the effect is performed using the measured spin polarization by a pump-probe experiment. The results are also discussed in comparison with a quantitative evaluation of the spin lifetimes of the photogenerated electrons under drift in GaAs

  2. Electrical detection of spin current and spin relaxation in nonmagnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2008-09-21

    We report an electrical method for the detection of spin current and spin relaxation in nonmagnetic semiconductors. Optically polarized spins are dragged by an electric field in GaAs. We use the anomalous Hall effect for the detection of spin current and spin relaxation. It is found that the effect depends on the electric field and doping density as well as on temperature, but not on the excitation power. A calculation for the effect is performed using the measured spin polarization by a pump-probe experiment. The results are also discussed in comparison with a quantitative evaluation of the spin lifetimes of the photogenerated electrons under drift in GaAs.

  3. Spin Transport in Nondegenerate Si with a Spin MOSFET Structure at Room Temperature

    Science.gov (United States)

    Sasaki, Tomoyuki; Ando, Yuichiro; Kameno, Makoto; Tahara, Takayuki; Koike, Hayato; Oikawa, Tohru; Suzuki, Toshio; Shiraishi, Masashi

    2014-09-01

    Spin transport in nondegenerate semiconductors is expected to pave the way to the creation of spin transistors, spin logic devices, and reconfigurable logic circuits, because room-temperature (RT) spin transport in Si has already been achieved. However, RT spin transport has been limited to degenerate Si, which makes it difficult to produce spin-based signals because a gate electric field cannot be used to manipulate such signals. Here, we report the experimental demonstration of spin transport in nondegenerate Si with a spin metal-oxide-semiconductor field-effect transistor (MOSFET) structure. We successfully observe the modulation of the Hanle-type spin-precession signals, which is a characteristic spin dynamics in nondegenerate semiconductors. We obtain long spin transport of more than 20 μm and spin rotation greater than 4π at RT. We also observe gate-induced modulation of spin-transport signals at RT. The modulation of the spin diffusion length as a function of a gate voltage is successfully observed, which we attribute to the Elliott-Yafet spin relaxation mechanism. These achievements are expected to lead to the creation of practical Si-based spin MOSFETs.

  4. Current-induced spin polarization in a spin-polarized two-dimensional electron gas with spin-orbit coupling

    International Nuclear Information System (INIS)

    Wang, C.M.; Pang, M.Q.; Liu, S.Y.; Lei, X.L.

    2010-01-01

    The current-induced spin polarization (CISP) is investigated in a combined Rashba-Dresselhaus spin-orbit-coupled two-dimensional electron gas, subjected to a homogeneous out-of-plane magnetization. It is found that, in addition to the usual collision-related in-plane parts of CISP, there are two impurity-density-free contributions, arising from intrinsic and disorder-mediated mechanisms. The intrinsic parts of spin polarization are related to the Berry curvature, analogous with the anomalous and spin Hall effects. For short-range collision, the disorder-mediated spin polarizations completely cancel the intrinsic ones and the total in-plane components of CISP equal those for systems without magnetization. However, for remote disorders, this cancellation does not occur and the total in-plane components of CISP strongly depend on the spin-orbit interaction coefficients and magnetization for both pure Rashba and combined Rashba-Dresselhaus models.

  5. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond

    Science.gov (United States)

    Epstein, R. J.; Mendoza, F. M.; Kato, Y. K.; Awschalom, D. D.

    2005-11-01

    Experiments on single nitrogen-vacancy (N-V) centres in diamond, which include electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby13C nuclear spin, show the potential of this spin system for solid-state quantum information processing. Moreover, N-V centre ensembles can have spin-coherence times exceeding 50 μs at room temperature. We have developed an angle-resolved magneto-photoluminescence microscope apparatus to investigate the anisotropic electron-spin interactions of single N-V centres at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic-field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin-level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighbouring `dark' nitrogen spins, otherwise undetected by photoluminescence. These results demonstrate the capability of our spectroscopic technique for measuring small numbers of dark spins by means of a single bright spin under ambient conditions.

  6. Zero-Magnetic-Field Spin Splitting of Polaron's Ground State Energy Induced by Rashba Spin-Orbit Interaction

    International Nuclear Information System (INIS)

    Liu Jia; Xiao Jingling

    2006-01-01

    We study theoretically the ground state energy of a polaron near the interface of a polar-polar semiconductor by considering the Rashba spin-orbit (SO) coupling with the Lee-Low-Pines intermediate coupling method. Our numerical results show that the Rashba SO interaction originating from the inversion asymmetry in the heterostructure splits the ground state energy of the polaron. The electron areal density and vector dependence of the ratio of the SO interaction to the total ground state energy or other energy composition are obvious. One can see that even without any external magnetic field, the ground state energy can be split by the Rashba SO interaction, and this split is not a single but a complex one. Since the presents of the phonons, whose energy gives negative contribution to the polaron's, the spin-splitting states of the polaron are more stable than electron's.

  7. Spin Transport in Ferromagnetic and Antiferromagnetic Textures

    KAUST Repository

    Akosa, Collins A.

    2016-12-07

    In this dissertation, we provide an accurate description of spin transport in magnetic textures and in particular, we investigate in detail, the nature of spin torque and magnetic damping in such systems. Indeed, as will be further discussed in this thesis, the current-driven velocity of magnetic textures is related to the ratio between the so-called non-adiabatic torque and magnetic damping. Uncovering the physics underlying these phenomena can lead to the optimal design of magnetic systems with improved efficiency. We identified three interesting classes of systems which have attracted enormous research interest (i) Magnetic textures in systems with broken inversion symmetry: We investigate the nature of magnetic damping in non-centrosymmetric ferromagnets. Based on phenomenological and microscopic derivations, we show that the magnetic damping becomes chiral, i.e. depends on the chirality of the magnetic texture. (ii) Ferromagnetic domain walls, skyrmions and vortices: We address the physics of spin transport in sharp disordered magnetic domain walls and vortex cores. We demonstrate that upon spin-independent scattering, the non-adiabatic torque can be significantly enhanced. Such an enhancement is large for vortex cores compared to transverse domain walls. We also show that the topological spin currents owing in these structures dramatically enhances the non-adiabaticity, an effect unique to non-trivial topological textures (iii) Antiferromagnetic skyrmions: We extend this study to antiferromagnetic skyrmions and show that such an enhanced topological torque also exist in these systems. Even more interestingly, while such a non-adiabatic torque inuences the undesirable transverse velocity of ferromagnetic skyrmions, in antiferromagnetic skyrmions, the topological non-adiabatic torque directly determines the longitudinal velocity. As a consequence, scaling down the antiferromagnetic skyrmion results in a much more efficient spin torque.

  8. Spin-resolved electron waiting times in a quantum-dot spin valve

    Science.gov (United States)

    Tang, Gaomin; Xu, Fuming; Mi, Shuo; Wang, Jian

    2018-04-01

    We study the electronic waiting-time distributions (WTDs) in a noninteracting quantum-dot spin valve by varying spin polarization and the noncollinear angle between the magnetizations of the leads using the scattering matrix approach. Since the quantum-dot spin valve involves two channels (spin up and down) in both the incoming and outgoing channels, we study three different kinds of WTDs, which are two-channel WTD, spin-resolved single-channel WTD, and cross-channel WTD. We analyze the behaviors of WTDs in short times, correlated with the current behaviors for different spin polarizations and noncollinear angles. Cross-channel WTD reflects the correlation between two spin channels and can be used to characterize the spin-transfer torque process. We study the influence of the earlier detection on the subsequent detection from the perspective of cross-channel WTD, and define the influence degree quantity as the cumulative absolute difference between cross-channel WTDs and first-passage time distributions to quantitatively characterize the spin-flip process. We observe that influence degree versus spin-transfer torque for different noncollinear angles as well as different polarizations collapse into a single curve showing universal behaviors. This demonstrates that cross-channel WTDs can be a pathway to characterize spin correlation in spintronics system.

  9. Spin Filters as High-Performance Spin Polarimeters

    International Nuclear Information System (INIS)

    Rougemaille, N.; Lampel, G.; Peretti, J.; Drouhin, H.-J.; Lassailly, Y.; Filipe, A.; Wirth, T.; Schuhl, A.

    2003-01-01

    A spin-dependent transport experiment in which hot electrons pass through a ferromagnetic metal / semiconductor Schottky diode has been performed. A spin-polarized free-electron beam, emitted in vacuum from a GaAs photocathode, is injected into the thin metal layer with an energy between 5 and 1000 eV above to the Fermi level. The transmitted current collected in the semiconductor substrate increases with injection energy because of secondary - electron multiplication. The spin-dependent part of the transmitted current is first constant up to about 100 eV and then increases by 4 orders of magnitude. As an immediate application, the solid-state hybrid structure studied here leads to a very efficient and compact device for spin polarization detection

  10. Spin transport in spin filtering magnetic tunneling junctions.

    Science.gov (United States)

    Li, Yun; Lee, Eok Kyun

    2007-11-01

    Taking into account spin-orbit coupling and s-d interaction, we investigate spin transport properties of the magnetic tunneling junctions with spin filtering barrier using Landauer-Büttiker formalism implemented with the recursive algorithm to calculate the real-space Green function. We predict completely different bias dependence of negative tunnel magnetoresistance (TMR) between the systems composed of nonmagnetic electrode (NM)/ferromagnetic barrier (FB)/ferromagnet (FM) and NM/FB/FM/NM spin filtering tunnel junctions (SFTJs). Analyses of the results provide us possible ways of designing the systems which modulate the TMR in the negative magnetoresistance regime.

  11. Spin Seebeck effect in nanometer-thick YIG micro-fabricated strips

    Directory of Open Access Journals (Sweden)

    Martin Collet

    2017-05-01

    Full Text Available We have investigated the spin Seebeck effect (SSE generated by current induced-heating in ultra-thin yttrium iron garnet film (20 nm covered by an 8 nm thick Pt layer. By passing current in the Pt layer, an out-of-plane temperature gradient is established that, in turn, generates an out-of-equilibrium magnons population. The resulting pure spin current is detected using the inverse spin Hall effect (ISHE measured in the Pt electrode. A lock-in detection scheme is used to separate the SSE signal from other magneto-galvanic effect. Indeed, the SSE signal is obtained as the second harmonic voltage response, while spin Hall magnetoresistance (SMR is measured as the first harmonic response to the ac excitation current. Interestingly, the amplitude of the SSE in such thin YIG film is comparable to what has been reported for much thicker films.

  12. Spin relaxation through Kondo scattering in Cu/Py lateral spin valves

    Science.gov (United States)

    Batley, J. T.; Rosaond, M. C.; Ali, M.; Linfield, E. H.; Burnell, G.; Hickey, B. J.

    Within non-magnetic metals it is reasonable to expect the Elliot-Yafet mechanism to govern spin-relaxation and thus the temperature dependence of the spin diffusion length might be inversely proportional to resistivity. However, in lateral spin valves, measurements have found that at low temperatures the spin diffusion length unexpectedly decreases. We have fabricated lateral spin valves from Cu with different concentrations of magnetic impurities. Through temperature dependent charge and spin transport measurements we present clear evidence linking the presence of the Kondo effect within Cu to the suppression of the spin diffusion length below 30 K. We have calculated the spin-relaxation rate and isolated the contribution from magnetic impurities. At very low temperatures electron-electron interactions play a more prominent role in the Kondo effect. Well below the Kondo temperature a strong-coupling regime exists, where the moments become screened and the magnetic dephasing rate is reduced. We also investigate the effect of this low temperature regime (>1 K) on a pure spin current. This work shows the dominant role of Kondo scattering, even in low concentrations of order 1 ppm, within pure spin transport.

  13. Spin polarization of tunneling current in barriers with spin-orbit coupling

    International Nuclear Information System (INIS)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-01-01

    We present a general method for evaluating the maximum transmitted spin polarization and optimal spin axis for an arbitrary spin-orbit coupling (SOC) barrier system, in which the spins lie in the azimuthal plane and finite spin polarization is achieved by wavevector filtering of electrons. Besides momentum filtering, another prerequisite for finite spin polarization is asymmetric occupation or transmission probabilities of the eigenstates of the SOC Hamiltonian. This is achieved most efficiently by resonant tunneling through multiple SOC barriers. We apply our analysis to common SOC mechanisms in semiconductors: pure bulk Dresselhaus SOC, heterostructures with mixed Dresselhaus and Rashba SOC and strain-induced SOC. In particular, we find that the interplay between Dresselhaus and Rashba SOC effects can yield several advantageous features for spin filter and spin injector functions, such as increased robustness to wavevector spread of electrons

  14. Spin polarization of tunneling current in barriers with spin-orbit coupling.

    Science.gov (United States)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-03-19

    We present a general method for evaluating the maximum transmitted spin polarization and optimal spin axis for an arbitrary spin-orbit coupling (SOC) barrier system, in which the spins lie in the azimuthal plane and finite spin polarization is achieved by wavevector filtering of electrons. Besides momentum filtering, another prerequisite for finite spin polarization is asymmetric occupation or transmission probabilities of the eigenstates of the SOC Hamiltonian. This is achieved most efficiently by resonant tunneling through multiple SOC barriers. We apply our analysis to common SOC mechanisms in semiconductors: pure bulk Dresselhaus SOC, heterostructures with mixed Dresselhaus and Rashba SOC and strain-induced SOC. In particular, we find that the interplay between Dresselhaus and Rashba SOC effects can yield several advantageous features for spin filter and spin injector functions, such as increased robustness to wavevector spread of electrons.

  15. Spin pumping and inverse spin Hall effects in heavy metal/antiferromagnet/Permalloy trilayers

    Science.gov (United States)

    Saglam, Hilal; Zhang, Wei; Jungfleisch, M. Benjamin; Jiang, Wanjun; Pearson, John E.; Hoffmann, Axel

    Recent work shows efficient spin transfer via spin waves in insulating antiferromagnets (AFMs), suggesting that AFMs can play a more active role in the manipulation of ferromagnets. We use spin pumping and inverse spin Hall effect experiments on heavy metal (Pt and W)/AFMs/Py (Ni80Fe20) trilayer structures, to examine the possible spin transfer phenomenon in metallic AFMs, i . e . , FeMn and PdMn. Previous work has studied electronic effects of the spin transport in these materials, yielding short spin diffusion length on the order of 1 nm. However, the work did not examine whether besides diffusive spin transport by the conduction electrons, there are additional spin transport contributions from spin wave excitations. We clearly observe spin transport from the Py spin reservoir to the heavy metal layer through the sandwiched AFMs with thicknesses well above the previously measured spin diffusion lengths, indicating that spin transport by spin waves may lead to non-negligible contributions This work was supported by US DOE, OS, Materials Sciences and Engineering Division. Lithographic patterning was carried out at the CNM, which is supported by DOE, OS under Contract No. DE-AC02-06CH11357.

  16. Spin-state studies with XES and RIXS: From static to ultrafast

    International Nuclear Information System (INIS)

    Vankó, György; Bordage, Amélie; Glatzel, Pieter; Gallo, Erik; Rovezzi, Mauro; Gawelda, Wojciech; Galler, Andreas; Bressler, Christian; Doumy, Gilles; March, Anne Marie; Kanter, Elliot P.; Young, Linda; Southworth, Stephen H.; Canton, Sophie E.; Uhlig, Jens; Smolentsev, Grigory; Sundström, Villy; Haldrup, Kristoffer; Brandt van Driel, Tim; Nielsen, Martin M.

    2013-01-01

    Highlights: ► We study light-induced spin-state transition of Fe(II) complexes in solution. ► Laser-pump-X-ray-probe spectroscopy is extended to MHz repetition rates. ► XES and RIXS compare well with the static spectra at thermal spin transition. ► The typical assumptions used in XES line shape analysis are validated. -- Abstract: We report on extending hard X-ray emission spectroscopy (XES) along with resonant inelastic X-ray scattering (RIXS) to study ultrafast phenomena in a pump-probe scheme at MHz repetition rates. The investigated systems include low-spin (LS) Fe II complex compounds, where optical pulses induce a spin-state transition to their (sub)nanosecond-lived high-spin (HS) state. Time-resolved XES clearly reflects the spin-state variations with very high signal-to-noise ratio, in agreement with HS–LS difference spectra measured at thermal spin crossover, and reference HS–LS systems in static experiments, next to multiplet calculations. The 1s2p RIXS, measured at the Fe 1s pre-edge region, shows variations after laser excitation, which are consistent with the formation of the HS state. Our results demonstrate that X-ray spectroscopy experiments with overall rather weak signals, such as RIXS, can now be reliably exploited to study chemical and physical transformations on ultrafast time scales

  17. Motional spin relaxation in photoexcited triplet states

    International Nuclear Information System (INIS)

    Harryvan, D.; Faassen, E. van

    1997-01-01

    Transient EPR experiments were performed on photoexcited spin triplet states of the luminescent dye EOSIN-Y in diluted (order of 1 nMol) frozen propane-1-ol solutions at various temperatures. Photoexcitation was achieved by irradiation with intense, short laser pulses. The details of the spin relaxation, in particular the dependence on time, magnetic field and microwave field strength are all reproduced by a model which computes the total magnetization in a population of photoexcited triplet states undergoing random reorientational motion. Using this model, we estimated the motional correlation times to be around a microsecond. This timescale is two orders of magnitude slower than the phase memory time of the triplets. (author)

  18. Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide

    DEFF Research Database (Denmark)

    Javadi, Alisa; Ding, Dapeng; Appel, Martin Hayhurst

    2018-01-01

    Access to the electron spin is at the heart of many protocols for integrated and distributed quantum-information processing [1-4]. For instance, interfacing the spin-state of an electron and a photon can be utilized to perform quantum gates between photons [2,5] or to entangle remote spin states [6......-9]. Ultimately, a quantum network of entangled spins constitutes a new paradigm in quantum optics [1]. Towards this goal, an integrated spin-photon interface would be a major leap forward. Here we demonstrate an efficient and optically programmable interface between the spin of an electron in a quantum dot...... and photons in a nanophotonic waveguide. The spin can be deterministically prepared with a fidelity of 96\\%. Subsequently the system is used to implement a "single-spin photonic switch", where the spin state of the electron directs the flow of photons through the waveguide. The spin-photon interface may...

  19. Cause-specific mortality according to urine albumin creatinine ratio in the general population.

    Directory of Open Access Journals (Sweden)

    Tea Skaaby

    Full Text Available Urine albumin creatinine ratio, UACR, is positively associated with all-cause mortality, cardiovascular disease and diabetes in observational studies. Whether a high UACR is also associated with other causes of death is unclear. We investigated the association between UACR and cause-specific mortality.We included a total of 9,125 individuals from two population-based studies, Monica10 and Inter99, conducted in 1993-94 and 1999-2001, respectively. Urine albumin creatinine ratio was measured from spot urine samples by standard methods. Information on causes of death was obtained from The Danish Register of Causes of Death until 31 December 2010. There were a total of 920 deaths, and the median follow-up was 11.3 years.Multivariable Cox regression analyses with age as underlying time axis showed statistically significant positive associations between UACR status and risk of all-cause mortality, endocrine nutritional and metabolic diseases, mental and behavioural disorders, diseases of the circulatory system, and diseases of the respiratory system with hazard ratios 1.56, 6.98, 2.34, 2.03, and 1.91, for the fourth UACR compared with the first, respectively. Using UACR as a continuous variable, we also found a statistically significant positive association with risk of death caused by diseases of the digestive system with a hazard ratio of 1.02 per 10 mg/g higher UACR.We found statistically significant positive associations between baseline UACR and death from all-cause mortality, endocrine nutritional and metabolic diseases, and diseases of the circulatory system and possibly mental and behavioural disorders, and diseases of the respiratory and digestive system.

  20. Spin symposium

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-01-15

    The recent 8th International Symposium on High Energy Spin Physics at the University of Minnesota in Minneapolis, Minnesota, opened with a bang when L. Pondrom (Wisconsin), donning a hard hat borrowed from construction workers, ventured that 'spin, the notorious inessential complication of hadronic physics, is finally telling us what real QCD (quantum chromodynamics, the field theory of quarks and gluons) looks like.' He was referring to an animated discussion on the meaning of the recent spin oriented (polarized) scattering results from the European Muon Collaboration (EMC) at CERN and reported at the Symposium by R. Garnet (Liverpool) and P. Schuler (Yale) which show that the proton spin is not simply a reflection of the spins of its constituent quarks.

  1. Optically tunable spin-exchange energy at donor:acceptor interfaces in organic solar cells

    International Nuclear Information System (INIS)

    Li, Mingxing; Wang, Hongfeng; He, Lei; Zang, Huidong; Xu, Hengxing; Hu, Bin

    2014-01-01

    Spin-exchange energy is a critical parameter in controlling spin-dependent optic, electronic, and magnetic properties in organic materials. This article reports optically tunable spin-exchange energy by studying the line-shape characteristics in magnetic field effect of photocurrent developed from intermolecular charge-transfer states based on donor:acceptor (P3HT:PCBM) system. Specifically, we divide magnetic field effect of photocurrent into hyperfine (at low field   10 mT) regimes. We observe that increasing photoexcitation intensity can lead to a significant line-shape narrowing in magnetic field effect of photocurrent occurring at the spin-exchange regime. We analyze that the line-shape characteristics is essentially determined by the changing rate of magnetic field-dependent singlet/triplet ratio when a magnetic field perturbs the singlet-triplet transition through spin mixing. Based on our analysis, the line-shape narrowing results indicate that the spin-exchange energy at D:A interfaces can be optically changed by changing photoexcitation intensity through the interactions between intermolecular charge-transfer states. Therefore, our experimental results demonstrate an optical approach to change the spin-exchange energy through the interactions between intermolecular charge-transfer states at donor:acceptor interface in organic materials.

  2. Inverse spin Hall effect by spin injection

    Science.gov (United States)

    Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.

    2007-09-01

    Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.

  3. The magnetism and spin-dependent electronic transport properties of boron nitride atomic chains

    International Nuclear Information System (INIS)

    An, Yipeng; Zhang, Mengjun; Wang, Tianxing; Jiao, Zhaoyong; Wu, Dapeng; Fu, Zhaoming; Wang, Kun

    2016-01-01

    Very recently, boron nitride atomic chains were successively prepared and observed in experiments [O. Cretu et al., ACS Nano 8, 11950 (2015)]. Herein, using a first-principles technique, we study the magnetism and spin-dependent electronic transport properties of three types of BN atomic chains whose magnetic moment is 1 μ B for B n N n−1 , 2 μ B for B n N n , and 3 μ B for B n N n+1 type atomic chains, respectively. The spin-dependent electronic transport results demonstrate that the short B n N n+1 chain presents an obvious spin-filtering effect with high spin polarization ratio (>90%) under low bias voltages. Yet, this spin-filtering effect does not occur for long B n N n+1 chains under high bias voltages and other types of BN atomic chains (B n N n−1 and B n N n ). The proposed short B n N n+1 chain is predicted to be an effective low-bias spin filters. Moreover, the length-conductance relationships of these BN atomic chains were also studied.

  4. The kinematic differences between off-spin and leg-spin bowling in cricket.

    Science.gov (United States)

    Beach, Aaron J; Ferdinands, René E D; Sinclair, Peter J

    2016-09-01

    Spin bowling is generally coached using a standard technical framework, but this practice has not been based upon a comparative biomechanical analysis of leg-spin and off-spin bowling. This study analysed the three-dimensional (3D) kinematics of 23 off-spin and 20 leg-spin bowlers using a Cortex motion analysis system to identify how aspects of the respective techniques differed. A multivariate ANOVA found that certain data tended to validate some of the stated differences in the coaching literature. Off-spin bowlers had a significantly shorter stride length (p = 0.006) and spin rate (p = 0.001), but a greater release height than leg-spinners (p = 0.007). In addition, a number of other kinematic differences were identified that were not previously documented in coaching literature. These included a larger rear knee flexion (p = 0.007), faster approach speed (p < 0.001), and flexing elbow action during the arm acceleration compared with an extension action used by most of the off-spin bowlers. Off-spin and leg-spin bowlers also deviated from the standard coaching model for the shoulder alignment, front knee angle at release, and forearm mechanics. This study suggests that off-spin and leg-spin are distinct bowling techniques, supporting the development of two different coaching models in spin bowling.

  5. The order parameters of a spin-1 Ising film in a transverse field

    International Nuclear Information System (INIS)

    Saber, A.; Ainane, A.; Dujardin, F.; Saber, M.; Stebe, B.

    1998-08-01

    Using the effective field theory with a probability distribution technique that accounts for the self-spin correlation functions, the layer longitudinal magnetizations and quadrupolar moments of a spin-1 Ising film and their averages are examined. These quantities as functions of the temperature, the ratio of the surface exchange interactions to the bulk ones, the strength of the transverse field and the film thickness are calculated numerically and some interesting results are obtained. (author)

  6. Neoclassical theory of elementary charges with spin of 1/2

    Energy Technology Data Exchange (ETDEWEB)

    Babin, Anatoli; Figotin, Alexander [Department of Mathematics University of California at Irvine, Irvine, California 92697-3875 (United States)

    2014-08-15

    We advance here our neoclassical theory of elementary charges by integrating into it the concept of spin of 1/2. The developed spinorial version of our theory has many important features identical to those of the Dirac theory such as the gyromagnetic ratio, expressions for currents including the spin current, and antimatter states. In our theory, the concepts of charge and anticharge relate naturally to their “spin” in its rest frame in two opposite directions. An important difference with the Dirac theory is that both the charge and anticharge energies are positive whereas their frequencies have opposite signs.

  7. Field-controlled spin current in frustrated spin chains

    Directory of Open Access Journals (Sweden)

    A.K. Kolezhuk

    2009-01-01

    Full Text Available We study states with spontaneous spin current, emerging in frustrated antiferromagnetic spin-S chains subject to a strong external magnetic field. As a numerical tool, we use a non-Abelian symmetry realization of the density matrix renormalization group. The field dependence of the order parameter and the critical exponents are presented for zigzag chains with S=1/2, 1, 3/2, and 2.

  8. Nuclear spin content and constraints on exotic spin-dependent couplings

    International Nuclear Information System (INIS)

    Kimball, D F Jackson

    2015-01-01

    There are numerous recent and ongoing experiments employing a variety of atomic species to search for couplings of atomic spins to exotic fields. In order to meaningfully compare these experimental results, the coupling of the exotic field to the atomic spin must be interpreted in terms of the coupling to electron, proton, and neutron spins. Traditionally, constraints from atomic experiments on exotic couplings to neutron and proton spins have been derived using the single-particle Schmidt model for nuclear spin. In this model, particular atomic species are sensitive to either neutron or proton spin couplings, but not both. More recently, semi-empirical models employing nuclear magnetic moment data have been used to derive new constraints for non-valence nucleons. However, comparison of such semi-empirical models to detailed large-scale nuclear shell model calculations and analysis of known physical effects in nuclei show that existing semi-empirical models cannot reliably be used to predict the spin polarization of non-valence nucleons. The results of our re-analysis of nuclear spin content are applied to searches for exotic long-range monopole–dipole and dipole–dipole couplings of nuclei leading to significant revisions of some published constraints. (paper)

  9. Spin injection into Pt-polymers with large spin-orbit coupling

    Science.gov (United States)

    Sun, Dali; McLaughlin, Ryan; Siegel, Gene; Tiwari, Ashutosh; Vardeny, Z. Valy

    2014-03-01

    Organic spintronics has entered a new era of devices that integrate organic light-emitting diodes (OLED) in organic spin valve (OSV) geometry (dubbed bipolar organic spin valve, or spin-OLED), for actively manipulating the device electroluminescence via the spin alignment of two ferromagnetic electrodes (Science 337, 204-209, 2012; Appl. Phys. Lett. 103, 042411, 2013). Organic semiconductors that contain heavy metal elements have been widely used as phosphorescent dopants in white-OLEDs. However such active materials are detrimental for OSV operation due to their large spin-orbit coupling (SOC) that may limit the spin diffusion length and thus spin-OLED based on organics with large SOC is a challenge. We report the successful fabrication of OSVs based on pi-conjugated polymers which contain intrachain Platinum atoms (dubbed Pt-polymers). Spin injection into the Pt-polymers is investigated by the giant magnetoresistance (GMR) effect as a function of bias voltage, temperature and polymer layer thickness. From the GMR bias voltage dependence we infer that the ``impendence mismatch'' between ferromagnetic electrodes and Pt-polymer may be suppressed due to the large SOC. Research sponsored by the NSF (Grant No. DMR-1104495) and NSF-MRSEC (DMR 1121252) at the University of Utah.

  10. RECOILING SUPERMASSIVE BLACK HOLES IN SPIN-FLIP RADIO GALAXIES

    International Nuclear Information System (INIS)

    Liu, F. K.; Wang Dong; Chen Xian

    2012-01-01

    Numerical relativity simulations predict that coalescence of supermassive black hole (SMBH) binaries leads not only to a spin flip but also to a recoiling of the merger remnant SMBHs. In the literature, X-shaped radio sources are popularly suggested to be candidates for SMBH mergers with spin flip of jet-ejecting SMBHs. Here we investigate the spectral and spatial observational signatures of the recoiling SMBHs in radio sources undergoing black hole spin flip. Our results show that SMBHs in most spin-flip radio sources have mass ratio q ∼> 0.3 with a minimum possible value q min ≅ 0.05. For major mergers, the remnant SMBHs can get a kick velocity as high as 2100 km s –1 in the direction within an angle ∼< 40° relative to the spin axes of remnant SMBHs, implying that recoiling quasars are biased to be with high Doppler-shifted broad emission lines while recoiling radio galaxies are biased to large apparent spatial off-center displacements. We also calculate the distribution functions of line-of-sight velocity and apparent spatial off-center displacements for spin-flip radio sources with different apparent jet reorientation angles. Our results show that the larger the apparent jet reorientation angle is, the larger the Doppler-shifting recoiling velocity and apparent spatial off-center displacement will be. We investigate the effects of recoiling velocity on the dust torus in spin-flip radio sources and suggest that recoiling of SMBHs would lead to 'dust-poor' active galactic nuclei. Finally, we collect a sample of 19 X-shaped radio objects and for each object give the probability of detecting the predicted signatures of recoiling SMBH.

  11. Spin-polarized light-emitting diodes based on organic bipolar spin valves

    Science.gov (United States)

    Vardeny, Zeev Valentine; Nguyen, Tho Duc; Ehrenfreund, Eitan Avraham

    2017-10-25

    Spin-polarized organic light-emitting diodes are provided. Such spin-polarized organic light-emitting diodes incorporate ferromagnetic electrodes and show considerable spin-valve magneto-electroluminescence and magneto-conductivity responses, with voltage and temperature dependencies that originate from the bipolar spin-polarized space charge limited current.

  12. SPIN–SPIN COUPLING IN THE SOLAR SYSTEM

    International Nuclear Information System (INIS)

    Batygin, Konstantin; Morbidelli, Alessandro

    2015-01-01

    The richness of dynamical behavior exhibited by the rotational states of various solar system objects has driven significant advances in the theoretical understanding of their evolutionary histories. An important factor that determines whether a given object is prone to exhibiting non-trivial rotational evolution is the extent to which such an object can maintain a permanent aspheroidal shape, meaning that exotic behavior is far more common among the small body populations of the solar system. Gravitationally bound binary objects constitute a substantial fraction of asteroidal and TNO populations, comprising systems of triaxial satellites that orbit permanently deformed central bodies. In this work, we explore the rotational evolution of such systems with specific emphasis on quadrupole–quadrupole interactions, and show that for closely orbiting, highly deformed objects, both prograde and retrograde spin–spin resonances naturally arise. Subsequently, we derive capture probabilities for leading order commensurabilities and apply our results to the illustrative examples of (87) Sylvia and (216) Kleopatra asteroid systems. Cumulatively, our results suggest that spin–spin coupling may be consequential for highly elongated, tightly orbiting binary objects

  13. SPIN–SPIN COUPLING IN THE SOLAR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Morbidelli, Alessandro, E-mail: kbatygin@gps.caltech.edu [Departement Lagrange, Observatoire de la Côte d’Azur, F-06304 Nice (France)

    2015-09-10

    The richness of dynamical behavior exhibited by the rotational states of various solar system objects has driven significant advances in the theoretical understanding of their evolutionary histories. An important factor that determines whether a given object is prone to exhibiting non-trivial rotational evolution is the extent to which such an object can maintain a permanent aspheroidal shape, meaning that exotic behavior is far more common among the small body populations of the solar system. Gravitationally bound binary objects constitute a substantial fraction of asteroidal and TNO populations, comprising systems of triaxial satellites that orbit permanently deformed central bodies. In this work, we explore the rotational evolution of such systems with specific emphasis on quadrupole–quadrupole interactions, and show that for closely orbiting, highly deformed objects, both prograde and retrograde spin–spin resonances naturally arise. Subsequently, we derive capture probabilities for leading order commensurabilities and apply our results to the illustrative examples of (87) Sylvia and (216) Kleopatra asteroid systems. Cumulatively, our results suggest that spin–spin coupling may be consequential for highly elongated, tightly orbiting binary objects.

  14. Coulomb Correlations Intertwined with Spin and Orbital Excitations in LaCoO_{3}.

    Science.gov (United States)

    Tomiyasu, K; Okamoto, J; Huang, H Y; Chen, Z Y; Sinaga, E P; Wu, W B; Chu, Y Y; Singh, A; Wang, R-P; de Groot, F M F; Chainani, A; Ishihara, S; Chen, C T; Huang, D J

    2017-11-10

    We carried out temperature-dependent (20-550 K) measurements of resonant inelastic x-ray scattering on LaCoO_{3} to investigate the evolution of its electronic structure across the spin-state crossover. In combination with charge-transfer multiplet calculations, we accurately quantified the renomalized crystal-field excitation energies and spin-state populations. We show that the screening of the effective on-site Coulomb interaction of 3d electrons is orbital selective and coupled to the spin-state crossover in LaCoO_{3}. The results establish that the gradual spin-state crossover is associated with a relative change of Coulomb energy versus bandwidth, leading to a Mott-type insulator-to-metal transition.

  15. QED approach to the nuclear spin-spin coupling tensor

    International Nuclear Information System (INIS)

    Romero, Rodolfo H.; Aucar, Gustavo A.

    2002-01-01

    A quantum electrodynamical approach for the calculation of the nuclear spin-spin coupling tensor of nuclear-magnetic-resonance spectroscopy is given. Quantization of radiation fields within the molecule is considered and expressions for the magnetic field in the neighborhood of a nucleus are calculated. Using a generalization of time-dependent response theory, an effective spin-spin interaction is obtained from the coupling of nuclear magnetic moments to a virtual quantized magnetic field. The energy-dependent operators obtained reduce to usual classical-field expressions at suitable limits

  16. Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Xiaohui [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China); Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421002 (China); Yi, Xunong [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Zhou, Xinxing; Liu, Yachao; Shu, Weixing; Wen, Shuangchun [Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China); Luo, Hailu, E-mail: hailuluo@hnu.edu.cn [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China)

    2014-10-13

    We report the realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect. By breaking the rotational symmetry of a cylindrical vector beam, the intrinsic vortex phases that the two spin components of the vector beam carries, which is similar to the geometric Pancharatnam-Berry phase, are no longer continuous in the azimuthal direction, and leads to observation of spin accumulation at the opposite edge of the beam. Due to the inherent nature of the phase and independency of light-matter interaction, the observed photonic spin Hall effect is intrinsic. Modulating the topological charge of the vector beam, the spin-dependent splitting can be enhanced and the direction of spin accumulation is switchable. Our findings may provide a possible route for generation and manipulation of spin-polarized photons, and enables spin-based photonics applications.

  17. Magnetic proximity control of spin currents and giant spin accumulation in graphene

    Science.gov (United States)

    Singh, Simranjeet

    Two dimensional (2D) materials provide a unique platform to explore the full potential of magnetic proximity driven phenomena. We will present the experimental study showing the strong modulation of spin currents in graphene layers by controlling the direction of the exchange field due to the ferromagnetic-insulator (FMI) magnetization in graphene/FMI heterostructures. Owing to clean interfaces, a strong magnetic exchange coupling leads to the experimental observation of complete spin modulation at low externally applied magnetic fields in short graphene channels. We also discover that the graphene spin current can be fully dephased by randomly fluctuating exchange fields. This is manifested as an unusually strong temperature dependence of the non-local spin signals in graphene, which is due to spin relaxation by thermally-induced transverse fluctuations of the FMI magnetization. Additionally, it has been a challenge to grow a smooth, robust and pin-hole free tunnel barriers on graphene, which can withstand large current densities for efficient electrical spin injection. We have experimentally demonstrated giant spin accumulation in graphene lateral spin valves employing SrO tunnel barriers. Nonlocal spin signals, as large as 2 mV, are observed in graphene lateral spin valves at room temperature. This high spin accumulations observed using SrO tunnel barriers puts graphene on the roadmap for exploring the possibility of achieving a non-local magnetization switching due to the spin torque from electrically injected spins. Financial support from ONR (No. N00014-14-1-0350), NSF (No. DMR-1310661), and C-SPIN, one of the six SRC STARnet Centers, sponsored by MARCO and DARPA.

  18. Possible evidence for spin-transfer torque induced by spin-triplet supercurrent

    KAUST Repository

    Li, Lailai

    2017-10-04

    Cooper pairs in superconductors are normally spin singlet. Nevertheless, recent studies suggest that spin-triplet Cooper pairs can be created at carefully engineered superconductor-ferromagnet interfaces. If Cooper pairs are spin-polarized they would transport not only charge but also a net spin component, but without dissipation, and therefore minimize the heating effects associated with spintronic devices. Although it is now established that triplet supercurrents exist, their most interesting property - spin - is only inferred indirectly from transport measurements. In conventional spintronics, it is well known that spin currents generate spin-transfer torques that alter magnetization dynamics and switch magnetic moments. The observation of similar effects due to spin-triplet supercurrents would not only confirm the net spin of triplet pairs but also pave the way for applications of superconducting spintronics. Here, we present a possible evidence for spin-transfer torques induced by triplet supercurrents in superconductor/ferromagnet/superconductor (S/F/S) Josephson junctions. Below the superconducting transition temperature T_c, the ferromagnetic resonance (FMR) field at X-band (~ 9.0 GHz) shifts rapidly to a lower field with decreasing temperature due to the spin-transfer torques induced by triplet supercurrents. In contrast, this phenomenon is absent in ferromagnet/superconductor (F/S) bilayers and superconductor/insulator/ferromagnet/superconductor (S/I/F/S) multilayers where no supercurrents pass through the ferromagnetic layer. These experimental observations are discussed with theoretical predictions for ferromagnetic Josephson junctions with precessing magnetization.

  19. Spin Currents and Spin Orbit Torques in Ferromagnets and Antiferromagnets

    Science.gov (United States)

    Hung, Yu-Ming

    This thesis focuses on the interactions of spin currents and materials with magnetic order, e.g., ferromagnetic and antiferromagnetic thin films. The spin current is generated in two ways. First by spin-polarized conduction-electrons associated with the spin Hall effect in heavy metals (HMs) and, second, by exciting spin-waves in ferrimagnetic insulators using a microwave frequency magnetic field. A conduction-electron spin current can be generated by spin-orbit coupling in a heavy non-magnetic metal and transfer its spin angular momentum to a ferromagnet, providing a means of reversing the magnetization of perpendicularly magnetized ultrathin films with currents that flow in the plane of the layers. The torques on the magnetization are known as spin-orbit torques (SOT). In the first part of my thesis project I investigated and contrasted the quasistatic (slowly swept current) and pulsed current-induced switching characteristics of micrometer scale Hall crosses consisting of very thin (magnetized CoFeB layers on beta-Ta. While complete magnetization reversal occurs at a threshold current density in the quasistatic case, pulses with short duration (≤10 ns) and larger amplitude (≃10 times the quasistatic threshold current) lead to only partial magnetization reversal and domain formation. The partial reversal is associated with the limited time for reversed domain expansion during the pulse. The second part of my thesis project studies and considers applications of SOT-driven domain wall (DW) motion in a perpendicularly magnetized ultrathin ferromagnet sandwiched between a heavy metal and an oxide. My experiment results demonstrate that the DW motion can be explained by a combination of the spin Hall effect, which generates a SOT, and Dzyaloshinskii-Moriya interaction, which stabilizes chiral Neel-type DW. Based on SOT-driven DW motion and magnetic coupling between electrically isolated ferromagnetic elements, I proposed a new type of spin logic devices. I then

  20. Inverse spin Hall effect induced by spin pumping into semiconducting ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung-Chuan [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Huang, Leng-Wei [Graduate Institute of Applied Physics, National Chengchi University, Taipei 11605, Taiwan (China); Hung, Dung-Shing, E-mail: dshung@mail.mcu.edu.tw [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Information and Telecommunications Engineering, Ming Chuan University, Taipei 111, Taiwan (China); Chiang, Tung-Han [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Huang, J. C. A., E-mail: jcahuang@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Liang, Jun-Zhi [Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Physics, Fu Jen Catholic University, Taipei 242, Taiwan (China); Lee, Shang-Fan, E-mail: leesf@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Graduate Institute of Applied Physics, National Chengchi University, Taipei 11605, Taiwan (China)

    2014-02-03

    The inverse spin Hall effect (ISHE) of n-type semiconductor ZnO thin films with weak spin-orbit coupling has been observed by utilizing the spin pumping method. In the ferromagnetic resonance condition, the spin pumping driven by the dynamical exchange interaction of a permalloy film injects a pure spin current into the adjacent ZnO layer. This spin current gives rise to a DC voltage through the ISHE in the ZnO layer, and the DC voltage is proportional to the microwave excitation power. The effect is sizeable even when the spin backflow is considered.

  1. Inverse spin Hall effect induced by spin pumping into semiconducting ZnO

    International Nuclear Information System (INIS)

    Lee, Jung-Chuan; Huang, Leng-Wei; Hung, Dung-Shing; Chiang, Tung-Han; Huang, J. C. A.; Liang, Jun-Zhi; Lee, Shang-Fan

    2014-01-01

    The inverse spin Hall effect (ISHE) of n-type semiconductor ZnO thin films with weak spin-orbit coupling has been observed by utilizing the spin pumping method. In the ferromagnetic resonance condition, the spin pumping driven by the dynamical exchange interaction of a permalloy film injects a pure spin current into the adjacent ZnO layer. This spin current gives rise to a DC voltage through the ISHE in the ZnO layer, and the DC voltage is proportional to the microwave excitation power. The effect is sizeable even when the spin backflow is considered

  2. Topological-Sector Fluctuations and Curie-Law Crossover in Spin Ice

    Directory of Open Access Journals (Sweden)

    L. D. C. Jaubert

    2013-02-01

    Full Text Available At low temperatures, a spin ice enters a Coulomb phase—a state with algebraic correlations and topologically constrained spin configurations. We show how analytical and numerical approaches for model spin-ice systems reveal a crossover between two Curie laws. One of these laws characterizes the high-temperature paramagnetic regime, while the other, which we call the “spin-liquid Curie law,” characterizes the low-temperature Coulomb-phase regime, which provides implicit evidence that the topological sector fluctuates. We compare our theory with experiment for Ho_{2}Ti_{2}O_{7}, where this process leads to a nonstandard temperature evolution of the bulk susceptibility and the wave-vector-dependent magnetic susceptibility, as measured by neutron scattering. Theory and experiment agree for bulk quantities and at large scattering wave vectors, but differences at small wave vectors indicate that the classical spin-ice states are not equally populated at low temperatures. More generally, the crossover appears to be a generic property of the emergent gauge field for a classical spin liquid, and it sheds light on the experimental difficulty of measuring a precise Curie-Weiss temperature in frustrated materials. The susceptibility at finite wave vectors is shown to be a local probe of fluctuations among topological sectors on varying length scales.

  3. Quantum revivals and magnetization tunneling in effective spin systems

    International Nuclear Information System (INIS)

    Krizanac, M; Altwein, D; Vedmedenko, E Y; Wiesendanger, R

    2016-01-01

    Quantum mechanical objects or nano-objects have been proposed as bits for information storage. While time-averaged properties of magnetic, quantum-mechanical particles have been extensively studied experimentally and theoretically, experimental investigations of the real time evolution of magnetization in the quantum regime were not possible until recent developments in pump–probe techniques. Here we investigate the quantum dynamics of effective spin systems by means of analytical and numerical treatments. Particular attention is paid to the quantum revival time and its relation to the magnetization tunneling. The quantum revival time has been initially defined as the recurrence time of a total wave-function. Here we show that the quantum revivals of wave-functions and expectation values in spin systems may be quite different which gives rise to a more sophisticated definition of the quantum revival within the realm of experimental research. Particularly, the revival times for integer spins coincide which is not the case for half-integer spins. Furthermore, the quantum revival is found to be shortest for integer ratios between the on-site anisotropy and an external magnetic field paving the way to novel methods of anisotropy measurements. We show that the quantum tunneling of magnetization at avoided level crossing is coherent to the quantum revival time of expectation values, leading to a connection between these two fundamental properties of quantum mechanical spins. (paper)

  4. Induction-detection electron spin resonance with spin sensitivity of a few tens of spins

    Energy Technology Data Exchange (ETDEWEB)

    Artzi, Yaron; Twig, Ygal; Blank, Aharon [Schulich Faculty of Chemistry Technion—Israel Institute of Technology, Haifa 32000 (Israel)

    2015-02-23

    Electron spin resonance (ESR) is a spectroscopic method that addresses electrons in paramagnetic materials directly through their spin properties. ESR has many applications, ranging from semiconductor characterization to structural biology and even quantum computing. Although it is very powerful and informative, ESR traditionally suffers from low sensitivity, requiring many millions of spins to get a measureable signal with commercial systems using the Faraday induction-detection principle. In view of this disadvantage, significant efforts were made recently to develop alternative detection schemes based, for example, on force, optical, or electrical detection of spins, all of which can reach single electron spin sensitivity. This sensitivity, however, comes at the price of limited applicability and usefulness with regard to real scientific and technological issues facing modern ESR which are currently dealt with conventional induction-detection ESR on a daily basis. Here, we present the most sensitive experimental induction-detection ESR setup and results ever recorded that can detect the signal from just a few tens of spins. They were achieved thanks to the development of an ultra-miniature micrometer-sized microwave resonator that was operated at ∼34 GHz at cryogenic temperatures in conjunction with a unique cryogenically cooled low noise amplifier. The test sample used was isotopically enriched phosphorus-doped silicon, which is of significant relevance to spin-based quantum computing. The sensitivity was experimentally verified with the aid of a unique high-resolution ESR imaging approach. These results represent a paradigm shift with respect to the capabilities and possible applications of induction-detection-based ESR spectroscopy and imaging.

  5. Pseudo-spin band in the odd-odd nucleus sup 1 sup 7 sup 2 Lu

    CERN Document Server

    Venkova, T; Gast, W; Podsvirova, E O; Jäger, H M; Mihailescu, L; Bazzacco, D; Menegazzo, R; Lunardi, S; Alvarez, C R; Ur, C; Martínez, T; Angelis, G D; Axiotis, M; Napoli, D; Urban, W; Rzaca-Urban, T; Frauendorf, S

    2003-01-01

    High-spin states in the odd-odd nucleus sup 1 sup 7 sup 2 Lu have been populated in a sup 1 sup 7 sup 0 Er( sup 7 Li,5n) reaction and the emitted gamma-radiation was detected with the GASP array. Two sequences of a new identical band have been observed with the transition energies in the favoured and unfavoured sequences being identical within approx 3 keV at low spins and approx 1 keV at high spins over the whole observed spin range. An interpretation as a pseudo-spin singlet band of pi 1/2 sup - [541] x nu 1/2 sup - [420] configuration is proposed. It represents the best example of a pseudo-spin singlet band in normal deformed nuclei known until now.

  6. Nuclear spin-lattice relaxation in nitroxide spin-label EPR.

    Science.gov (United States)

    Marsh, Derek

    2016-11-01

    Nuclear relaxation is a sensitive monitor of rotational dynamics in spin-label EPR. It also contributes competing saturation transfer pathways in T 1 -exchange spectroscopy, and the determination of paramagnetic relaxation enhancement in site-directed spin labelling. A survey shows that the definition of nitrogen nuclear relaxation rate W n commonly used in the CW-EPR literature for 14 N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14 N spin-lattice relaxation rate, b=W n /(2W e ), preserves the expressions used for CW-EPR, whilst rendering them consistent with expressions for saturation recovery rates in pulsed EPR. Furthermore, values routinely quoted for nuclear relaxation times that are deduced from EPR spectral diffusion rates in 14 N-nitroxyl spin labels do not accord with conventional analysis of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14 N-relaxation: T 1 n =1/W n . Results are compared and contrasted with those for the two-level 15 N-nitroxide system. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Spin injection and detection in lateral spin valves with hybrid interfaces

    Science.gov (United States)

    Wang, Le; Liu, Wenyu; Ying, Hao; Chen, Luchen; Lu, Zhanjie; Han, Shuo; Chen, Shanshan; Zhao, Bing; Xu, Xiaoguang; Jiang, Yong

    2018-06-01

    Spin injection and detection in lateral spin valves with hybrid interfaces comprising a Co/Ag transparent contact and a Co/MgO/Ag junction (III) are investigated at room temperature in comparison with pure Co/Ag transparent contacts (I) and Co/MgO/Ag junctions (II). The measured spin-accumulation signals of a type III device are five times higher than those for type I. The extracted spin diffusion length in Ag is 180 nm for all three types of devices. The enhancement of the spin signal of the hybrid structure is mainly attributed to the increase of the interfacial spin polarization from the Co/MgO/Ag junction.

  8. Large spin accumulation due to spin-charge coupling across a break-junction

    Science.gov (United States)

    Chen, Shuhan; Zou, Han; Chui, Siu-Tat; Ji, Yi

    2013-03-01

    We investigate large spin signals in break-junction nonlocal spin valves (NLSV). The break-junction is a nanometer-sized vacuum tunneling gap between the spin detector and the nonmagnetic channel, formed by electro-static discharge. The spin signals can be either inverted or non-inverted and the magnitudes are much larger than those of standard NLSV. Spin signals with high percentage values (10% - 0%) have been observed. When the frequency of the a.c. modulation is varied, the absolute magnitudes of signals remain the same although the percentage values change. These observations affirm the nonlocal nature of the measurements and rule out local magnetoresistive effects. Owing to the spin-charge coupling across the break-junction, the spin accumulation in a ferromagnet splits into two terms. One term decays on the charge screening length (0.1 nm) and the other decays on the spin diffusion length (10 nm nm). The magnitude of the former is proportional to the resistance of the junction. Therefore a highly resistive break-junction leads to a large spin accumulation and thereby a large spin signal. The signs of the spin signal are determined by the relationship between spin-dependent conductivities, diffusion constants, and density of states of the ferromagnet. This work was supported by US DOE grant No. DE-FG02-07ER46374.

  9. Spin dynamics under local gauge fields in chiral spin-orbit coupling systems

    International Nuclear Information System (INIS)

    Tan, S.G.; Jalil, M.B.A.; Fujita, T.; Liu, X.J.

    2011-01-01

    Research highlights: → We derive a modified LLG equation in magnetic systems with spin-orbit coupling (SOC). → Our results are applied to magnetic multilayers, and DMS and magnetic Rashba systems. → SOC mediated magnetization switching is predicted in rare earth metals (large SOC). → The magnetization trajectory and frequency can be modulated by applied voltage. → This facilitates potential application as tunable microwave oscillators. - Abstract: We present a theoretical description of local spin dynamics in magnetic systems with a chiral spin texture and finite spin-orbit coupling (SOC). Spin precession about the relativistic effective magnetic field in a SOC system gives rise to a non-Abelian SU(2) gauge field reminiscent of the Yang-Mills field. In addition, the adiabatic relaxation of electron spin along the local spin yields an U(1) x U(1) topological gauge (Berry) field. We derive the corresponding equation of motion i.e. modified Landau-Lifshitz-Gilbert (LLG) equation, for the local spin under the influence of these effects. Focusing on the SU(2) gauge, we obtain the spin torque magnitude, and the amplitude and frequency of spin oscillations in this system. Our theoretical estimates indicate significant spin torque and oscillations in systems with large spin-orbit coupling, which may be utilized in technological applications such as current-induced magnetization-switching and tunable microwave oscillators.

  10. Prima facie evidence against spin-two Higgs impostors

    Science.gov (United States)

    Ellis, John; Sanz, Verónica; You, Tevong

    2013-10-01

    The new particle X recently discovered by the ATLAS and CMS Collaborations is widely expected to have spin zero, but this remains to be determined. The leading alternative is that X has spin two, presumably with graviton-like couplings. We show that measurements of the X particle to pairs of vector bosons constrain such scenarios. In particular, a graviton-like Higgs impostor in scenarios with a warped extra dimension of AdS type is prima facie excluded, principally because they predict too small a ratio between the X couplings to WW and ZZ, compared with that to photons. The data also disfavour universal couplings to pairs of photons and gluons, which would be predicted in a large class of graviton-like models.

  11. Prima Facie Evidence against Spin-Two Higgs Impostors

    CERN Document Server

    Ellis, John; You, Tevong

    2013-01-01

    The new particle X recently discovered by the ATLAS and CMS Collaborations is widely expected to have spin zero, but this remains to be determined. The leading alternative is that X has spin two, presumably with graviton-like couplings. We show that measurements of the X particle to pairs of vector bosons constrain such scenarios. In particular, a graviton-like Higgs impostor in scenarios with a warped extra dimension of AdS type is prima facie excluded, principally because they predict too small a ratio between the X couplings to WW and ZZ, compared with that to photons. The data also disfavour universal couplings to pairs of photons and gluons, which would be predicted in a large class of graviton-like models.

  12. Prima facie evidence against spin-two Higgs impostors

    International Nuclear Information System (INIS)

    Ellis, John; Sanz, Verónica; You, Tevong

    2013-01-01

    The new particle X recently discovered by the ATLAS and CMS Collaborations is widely expected to have spin zero, but this remains to be determined. The leading alternative is that X has spin two, presumably with graviton-like couplings. We show that measurements of the X particle to pairs of vector bosons constrain such scenarios. In particular, a graviton-like Higgs impostor in scenarios with a warped extra dimension of AdS type is prima facie excluded, principally because they predict too small a ratio between the X couplings to WW and ZZ, compared with that to photons. The data also disfavour universal couplings to pairs of photons and gluons, which would be predicted in a large class of graviton-like models

  13. Prima facie evidence against spin-two Higgs impostors

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [Theoretical Particle Physics and Cosmology Group, Physics Department, King' s College London, London WC2R 2LS (United Kingdom); TH Division, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Sanz, Verónica, E-mail: vsanz@yorku.ca [TH Division, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Department of Physics and Astronomy, York University, Toronto, ON, M3J 1P3 (Canada); You, Tevong [Theoretical Particle Physics and Cosmology Group, Physics Department, King' s College London, London WC2R 2LS (United Kingdom)

    2013-10-07

    The new particle X recently discovered by the ATLAS and CMS Collaborations is widely expected to have spin zero, but this remains to be determined. The leading alternative is that X has spin two, presumably with graviton-like couplings. We show that measurements of the X particle to pairs of vector bosons constrain such scenarios. In particular, a graviton-like Higgs impostor in scenarios with a warped extra dimension of AdS type is prima facie excluded, principally because they predict too small a ratio between the X couplings to WW and ZZ, compared with that to photons. The data also disfavour universal couplings to pairs of photons and gluons, which would be predicted in a large class of graviton-like models.

  14. Spin correlations and spin-wave excitations in Dirac-Weyl semimetals

    Science.gov (United States)

    Araki, Yasufumi; Nomura, Kentaro

    We study correlations among magnetic dopants in three-dimensional Dirac and Weyl semimetals. Effective field theory for localized magnetic moments is derived by integrating out the itinerant electron degrees of freedom. We find that spin correlation in the spatial direction parallel to local magnetization is more rigid than that in the perpendicular direction, reflecting spin-momentum locking nature of the Dirac Hamiltonian. Such an anisotropy becomes stronger for Fermi level close to the Dirac points, due to Van Vleck paramagnetism triggered by spin-orbit coupling. One can expect topologically nontrivial spin textures under this anisotropy, such as a hedgehog around a single point, or a radial vortex around an axis, as well as a uniform ferromagnetic order. We further investigate the characteristics of spin waves in the ferromagnetic state. Spin-wave dispersion also shows a spatial anisotropy, which is less dispersed in the direction transverse to the magnetization than that in the longitudinal direction. The spin-wave dispersion anisotropy can be traced back to the rigidity and flexibility of spin correlations discussed above. This work was supported by Grant-in-Aid for Scientific Research (Grants No.15H05854, No.26107505, and No.26400308) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

  15. Spin-spin cross relaxation and spin-Hamiltonian spectroscopy by optical pumping of Pr/sup 3+/:LaF3

    International Nuclear Information System (INIS)

    Lukac, M.; Otto, F.W.; Hahn, E.L.

    1989-01-01

    We report the observation of an anticrossing in solid-state laser spectroscopy produced by cross relaxation. Spin-spin cross relaxation between the /sup 141/Pr- and /sup 19/F-spin reservoirs in Pr/sup 3+/:LaF 3 and its influence on the /sup 141/Pr NMR spectrum is detected by means of optical pumping. The technique employed combines optical pumping and hole burning with either external magnetic field sweep or rf resonance saturation in order to produce slow transient changes in resonant laser transmission. At a certain value of the external Zeeman field, where the energy-level splittings of Pr and F spins match, a level repulsion and discontinuity of the Pr/sup 3+/ NMR lines is observed. This effect is interpreted as the ''anticrossing'' of the combined Pr-F spin-spin reservoir energy states. The Zeeman-quadrupole-Hamiltonian spectrum of the hyperfine optical ground states of Pr/sup 3+/:LaF 3 is mapped out over a wide range of Zeeman magnetic fields. A new scheme is proposed for dynamic polarization of nuclei by means of optical pumping, based on resonant cross relaxation between rare spins and spin reservoirs

  16. Bipolar spintronics: from spin injection to spin-controlled logic

    International Nuclear Information System (INIS)

    Zutic, Igor; Fabian, Jaroslav; Erwin, Steven C

    2007-01-01

    An impressive success of spintronic applications has been typically realized in metal-based structures which utilize magnetoresistive effects for substantial improvements in the performance of computer hard drives and magnetic random access memories. Correspondingly, the theoretical understanding of spin-polarized transport is usually limited to a metallic regime in a linear response, which, while providing a good description for data storage and magnetic memory devices, is not sufficient for signal processing and digital logic. In contrast, much less is known about possible applications of semiconductor-based spintronics and spin-polarized transport in related structures which could utilize strong intrinsic nonlinearities in current-voltage characteristics to implement spin-based logic. Here we discuss the challenges for realizing a particular class of structures in semiconductor spintronics: our proposal for bipolar spintronic devices in which carriers of both polarities (electrons and holes) contribute to spin-charge coupling. We formulate the theoretical framework for bipolar spin-polarized transport, and describe several novel effects in two- and three-terminal structures which arise from the interplay between nonequilibrium spin and equilibrium magnetization

  17. Inverse spin-valve effect in nanoscale Si-based spin-valve devices

    Science.gov (United States)

    Hiep, Duong Dinh; Tanaka, Masaaki; Hai, Pham Nam

    2017-12-01

    We investigated the spin-valve effect in nano-scale silicon (Si)-based spin-valve devices using a Fe/MgO/Ge spin injector/detector deposited on Si by molecular beam epitaxy. For a device with a 20 nm Si channel, we observed clear magnetoresistance up to 3% at low temperature when a magnetic field was applied in the film plane along the Si channel transport direction. A large spin-dependent output voltage of 20 mV was observed at a bias voltage of 0.9 V at 15 K, which is among the highest values in lateral spin-valve devices reported so far. Furthermore, we observed that the sign of the spin-valve effect is reversed at low temperatures, suggesting the possibility of a spin-blockade effect of defect states in the MgO/Ge tunneling barrier.

  18. Spin waves and spin instabilities in quantum plasmas

    OpenAIRE

    Andreev, P. A.; Kuz'menkov, L. S.

    2014-01-01

    We describe main ideas of method of many-particle quantum hydrodynamics allows to derive equations for description of quantum plasma evolution. We also present definitions of collective quantum variables suitable for quantum plasmas. We show that evolution of magnetic moments (spins) in quantum plasmas leads to several new branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered. Inst...

  19. Spin transfer torque with spin diffusion in magnetic tunnel junctions

    KAUST Repository

    Manchon, Aurelien; Matsumoto, R.; Jaffres, H.; Grollier, J.

    2012-01-01

    in the metallic layers. We show that spin diffusion mixes the transverse spin current components and dramatically modifies the bias dependence of the effective spin transfer torque. This leads to a significant linear bias dependence of the out-of-plane torque

  20. Changes of Microbial Population in the Rumen of Dairy Steers as Influenced by Plant Containing Tannins and Saponins and Roughage to Concentrate Ratio

    Directory of Open Access Journals (Sweden)

    N. Anantasook

    2013-11-01

    Full Text Available The objective of this study was to investigate microbial population in the rumen of dairy steers as influenced by supplementing with dietary condensed tannins and saponins and different roughage to concentrate ratios. Four, rumen fistulated dairy steers (Bos indicus were used in a 2×2 factorial arrangement in a 4×4 Latin square design. The main factors were two roughage to concentrate ratios (R:C, 60:40 and 40:60 and two supplementations of rain tree pod meal (RPM (0 and 60 g/kg of total DM intake. Chopped 30 g/kg urea treated rice straw was used as a roughage source. All animals received feed according to respective R:C ratios at 25 g/kg body weight. The RPM contained crude tannins and saponins at 84 and 143 g/kg of DM, respectively. It was found that ruminal pH decreased while ruminal temperature increased by a higher concentrate ratio (R:C 40:60 (p<0.05. In contrast, total bacterial, Ruminococus albus and viable proteolytic bacteria were not affected by dietary supplementation. Numbers of fungi, cellulolytic bacteria, Fibrobactor succinogenes and Ruminococus flavefaciens were higher while amylolytic bacteria was lower when steers were fed at 400 g/kg of concentrate. The population of Fibrobactor succinogenes, was found to be higher with RPM supplementation. In addition, the use of real-time PCR technique indicated that the population of protozoa and methanogens were decreased (p<0.05 with supplementation of RPM and with an increasing concentrate ratio. Supplementation of RPM and feeding different concentrate ratios resulted in changing the rumen microbes especially, when the animals were fed at 600 g/kg of concentrate and supplemented with RPM which significantly reduced the protozoa and methanogens population.

  1. Spin transport in nanowires

    OpenAIRE

    Pramanik, S.; bandyopadhyay, S.; Cahay, M.

    2003-01-01

    We study high-field spin transport of electrons in a quasi one-dimensional channel of a $GaAs$ gate controlled spin interferometer (SPINFET) using a semiclassical formalism (spin density matrix evolution coupled with Boltzmann transport equation). Spin dephasing (or depolarization) is predominantly caused by D'yakonov-Perel' relaxation associated with momentum dependent spin orbit coupling effects that arise due to bulk inversion asymmetry (Dresselhaus spin orbit coupling) and structural inve...

  2. Nuclear spin-lattice relaxation in nitroxide spin-label EPR

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    that the definition of nitrogen nuclear relaxation rate Wn commonly used in the CW-EPR literature for 14N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14N spin-lattice relaxation rate, b = Wn/(2We), preserves...... of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14N-relaxation: T1 n = 1/Wn. Results are compared and contrasted...

  3. Age at sexual maturity, sex ratio, fecundity, and longevity of isolated headwater populations of westslope cutthroat trout

    Science.gov (United States)

    Christopher C. Downs; Robert G. White; Bradley B. Shepard

    1997-01-01

    We sampled 19 isolated headwater populations of westslope cutthroat trout Oncorhynchus clarki lewisi in Montana to provide estimates of fecundity, longevity, sex ratio, and age at sexual maturity. Fecundity was estimated for 31 fish collected from two streams in the upper Missouri River drainage. Females smaller than 149 mm fork length (FL) were generally immature and...

  4. New directions in the theory of spin-polarized atomic hydrogen and deuterium

    International Nuclear Information System (INIS)

    Koelman, J.M.V.A.

    1988-01-01

    The three chapters of this thesis dealing with collisions between hydrogen (or deuterium) atoms in their ground state, each treat a different development in the theory of atomic hydrogen or deuterium gas. The decay due to interatomic collisions hindered till now all attempts to reach the low temperature, high-density regime where effects due to degeneracy are expected to show up. In ch. 2 a simple way out is presented for the case of Fermi gases: In spin-polarized Fermi systems at very low temperatures collisions are much effective than in Bose systems. For the Fermi gas, consisting of magnetically confined deuterium atoms, it appears that fast spin-exchange collisions automatically lead to a completely spin-polarized gas for which the spin-relaxation limited lifetime increases dramatically with decreasing temperature. As also the ratio of internal thermalization rate over decay rate increases with decreasing temperature, this gas can be cooled by forced evaporation down to very low temperatures. In ch. 3 it iis shown that the nuclear spin dynamics due to the hyperfine interaction during collisions, strongly limits the improvement in frequency stability attainable by H masers operating at low temperatures. In ch. 4 the phenomenon of spin waves is studied. It is shown that, despite the fact that interactions between two atoms are nuclear-spin independent, the outcome of a scattering event does not depend on the nuclear spins involved due to the particle indistinguishability effects at low collision energies. This effect gives rise to quantum phenomena on a macroscopic scale via the occurrence of spin waves. (author). 185 refs.; 34 figs

  5. Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement

    DEFF Research Database (Denmark)

    Fernholz, Thomas; Krauter, Hanna; Jensen, Kasper

    2008-01-01

    quantum limit for quantum memory experiments and applications in quantum metrology and is thus a complementary alternative to spin squeezing obtained via inter-atom entanglement. Squeezing of the collective spin is verified by quantum state tomography.......We demonstrate spin squeezing in a room temperature ensemble of 1012 Cesium atoms using their internal structure, where the necessary entanglement is created between nuclear and electronic spins of each individual atom. This state provides improvement in measurement sensitivity beyond the standard...

  6. Correlations between atomic structure and giant magnetoresistance ratio in Co2(Fe,Mn)Si spin valves

    International Nuclear Information System (INIS)

    Lari, L; Sizeland, J; Gilks, D; Uddin, G M; Nedelkoski, Z; Hasnip, P J; Lazarov, V K; Yoshida, K; Galindo, P L; Sato, J; Oogane, M; Ando, Y; Hirohata, A

    2014-01-01

    We show that the magnetoresistance of Co 2 Fe x Mn 1−x Si-based spin valves, over 70% at low temperature, is directly related to the structural ordering in the electrodes and at the electrodes/spacer (Co 2 Fe x Mn 1−x Si/Ag) interfaces. Aberration-corrected atomic resolution Z-contrast scanning transmission electron microscopy of device structures reveals that annealing at 350 °C and 500 °C creates partial B2/L2 1 and fully L2 1 ordering of electrodes, respectively. Interface structural studies show that the Ag/Co 2 Fe x Mn 1−x Si interface is more ordered compared to the Co 2 Fe x Mn 1−x Si/Ag interface. The release of interface strain is mediated by misfit dislocations that localize the strain around the dislocation cores, and the effect of this strain is assessed by first principles electronic structure calculations. This study suggests that by improving the atomic ordering and strain at the interfaces, further enhancement of the magnetoresistance of CFMS-based current-perpendicular-to-plane spin valves is possible. (fast track communication)

  7. Phase transitions and thermal entanglement of the distorted Ising-Heisenberg spin chain: topology of multiple-spin exchange interactions in spin ladders

    Science.gov (United States)

    Arian Zad, Hamid; Ananikian, Nerses

    2017-11-01

    We consider a symmetric spin-1/2 Ising-XXZ double sawtooth spin ladder obtained from distorting a spin chain, with the XXZ interaction between the interstitial Heisenberg dimers (which are connected to the spins based on the legs via an Ising-type interaction), the Ising coupling between nearest-neighbor spins of the legs and rungs spins, respectively, and additional cyclic four-spin exchange (ring exchange) in the square plaquette of each block. The presented analysis supplemented by results of the exact solution of the model with infinite periodic boundary implies a rich ground state phase diagram. As well as the quantum phase transitions, the characteristics of some of the thermodynamic parameters such as heat capacity, magnetization and magnetic susceptibility are investigated. We prove here that among the considered thermodynamic and thermal parameters, solely heat capacity is sensitive versus the changes of the cyclic four-spin exchange interaction. By using the heat capacity function, we obtain a singularity relation between the cyclic four-spin exchange interaction and the exchange coupling between pair spins on each rung of the spin ladder. All thermal and thermodynamic quantities under consideration should be investigated by regarding those points which satisfy the singularity relation. The thermal entanglement within the Heisenberg spin dimers is investigated by using the concurrence, which is calculated from a relevant reduced density operator in the thermodynamic limit.

  8. Evidence for power-law spin-correlation decay from muon spin relaxation in AgMn spin-glass

    International Nuclear Information System (INIS)

    MacLaughlin, D.E.; Gupta, L.C.; Cooke, D.W.; Heffner, R.H.; Leon, M.; Schillaci, M.E.

    1983-01-01

    Muon spin relaxation measurements have been carried out below the ''glass'' temperature T/sub g/ in AgMn spin-glasses. The muon spin-lattice relaxation rate varies with field H as H/sup -0.46plus-or-minus0.05/ for 0.30< or =T/T/sub g/< or =0.66. This suggests that impurity-spin correlations decay with time as t/sup -nu/, νapprox. =0.54 +- 0.05, in contrast to the more usual exponential decay. The present data therefore agree quantitatively with the prediction νapprox. =(1/2) of mean-field dynamic theories

  9. Spin contamination analogy, Kramers pairs symmetry and spin density representations at the 2-component unrestricted Hartree-Fock level of theory

    KAUST Repository

    Bučinský, Lukáš

    2015-05-11

    "Kramers pairs symmetry breaking" is evaluated at the 2-component (2c) Kramers unrestricted and/or general complex Hartree-Fock (GCHF) level of theory, and its analogy with "spin contamination" at the 1-component (1c) unrestricted Hartree-Fock (UHF) level of theory is emphasized. The GCHF "Kramers pairs symmetry breaking" evaluation is using the square of overlaps between the set of occupied spinorbitals with the projected set of Kramers pairs. In the same fashion, overlaps between α and β orbitals are used in the evaluation of "spin contamination" at the UHF level of theory. In this manner, UHF Š2 expectation value is made formally extended to the GCHF case. The directly evaluated GCHF expectation value of the Š2 operator is considered for completeness. It is found that the 2c GCHF Kramers pairs symmetry breaking has a very similar extent in comparison to the 1c UHF spin contamination. Thus higher excited states contributions to the 1c and 2c unrestricted wave functions of open shell systems have almost the same extent and physical consequences. Moreover, it is formally shown that a single determinant wave function in the restricted open shell Kramers case has the expectation value of K2 operator equal to the negative number of open shell electrons, while the eigenvalue of K2 for the series of simple systems (H, He, He*-triplet, Li and Li*-quartet) are found to be equal to minus the square of the number of open shell electrons. The concept of unpaired electron density is extended to the GCHF regime and compared to UHF and restricted open shell Hartree-Fock spin density. The "collinear" and "noncollinear" analogs of spin density at the GCHF level of theory are considered as well. Spin contamination and/or Kramers pairs symmetry breaking, spin populations and spin densities are considered for H2O+, Cl, HCl+, phenoxyl radical (C6H5O) as well as for Cu, Cu2+, Fe and the [OsCl5(1H-pyrazole)]- anion. The 1c and 2c unpaired electron density representation is found

  10. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian

    2014-12-08

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green\\'s function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  11. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian; Kalitsov, Alan; Manchon, Aurelien; Chshiev, Mairbek

    2014-01-01

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green's function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  12. Controlling spin-dependent tunneling by bandgap tuning in epitaxial rocksalt MgZnO films.

    Science.gov (United States)

    Li, D L; Ma, Q L; Wang, S G; Ward, R C C; Hesjedal, T; Zhang, X-G; Kohn, A; Amsellem, E; Yang, G; Liu, J L; Jiang, J; Wei, H X; Han, X F

    2014-12-02

    Widespread application of magnetic tunnel junctions (MTJs) for information storage has so far been limited by the complicated interplay between tunnel magnetoresistance (TMR) ratio and the product of resistance and junction area (RA). An intricate connection exists between TMR ratio, RA value and the bandgap and crystal structure of the barrier, a connection that must be unravelled to optimise device performance and enable further applications to be developed. Here, we demonstrate a novel method to tailor the bandgap of an ultrathin, epitaxial Zn-doped MgO tunnel barrier with rocksalt structure. This structure is attractive due to its good Δ1 spin filtering effect, and we show that MTJs based on tunable MgZnO barriers allow effective balancing of TMR ratio and RA value. In this way spin-dependent transport properties can be controlled, a key challenge for the development of spintronic devices.

  13. Time to Revisit Recommendations on Doctor to Population Ratio in India.

    Science.gov (United States)

    Deo, Madhav G

    2017-10-01

    A buzzword in Indian press and amongst the policy makers is that India is short of the WHO recommended doctor to population ratio of 1:1000. The recommendations were formulated to facilitate programs to achieve some of the health related UN-Millennium Development Goals (MDGs). Infections and malnutrition, which can be comfortably handled by a basic MBBS doctor, were the dominant health issues at the time of the formulation of the MDGs. However, all countries worldwide are going through health epidemiological transition and health impact of the non-communicable disorders (NCDs) can be no more ignored even by the low income nations. Very soon India will need large number of specialists and super-specialists to meet the challenge posed by the avalanche of NCDs, as an ordinary MBBS is not trained to handle the NCDs. One of the major flaws in the recommendations is that for the purposes of computation of the ratio, doctors of all hue, basic doctors, specialists and super-specialists are lumped together. It is time to define the requirements discipline wise and tailor medical education to produce specialists and super-specialists on a fast track. Expansion of specialization in medicine should be associated with simultaneous strengthening of primary health care, a challenged faced even by the most developed nations. To provide health services for routine minor health problems a cadre of Nurse Practitioners (NPs), a concept developed 50 years ago in the USA and now endorsed by many nations, could be adopted. © Journal of the Association of Physicians of India 2011.

  14. Slave equations for spin models

    International Nuclear Information System (INIS)

    Catterall, S.M.; Drummond, I.T.; Horgan, R.R.

    1992-01-01

    We apply an accelerated Langevin algorithm to the simulation of continuous spin models on the lattice. In conjunction with the evolution equation for the spins we use slave equations to compute estimators for the connected correlation functions of the model. In situations for which the symmetry of the model is sufficiently strongly broken by an external field these estimators work well and yield a signal-to-noise ratio for the Green function at large time separations more favourable than that resulting from the standard method. With the restoration of symmetry, however, the slave equation estimators exhibit an intrinsic instability associated with the growth of a power law tail in the probability distributions for the measured quantities. Once this tail has grown sufficiently strong it results in a divergence of the variance of the estimator which then ceases to be useful for measurement purposes. The instability of the slave equation method in circumstances of weak symmetry breaking precludes its use in determining the mass gap in non-linear sigma models. (orig.)

  15. Max Auwaerter symposium: spin mapping and spin manipulation on the atomic scale

    International Nuclear Information System (INIS)

    Wiesendanger, R.

    2008-01-01

    Full text: A fundamental understanding of magnetic and spin-dependent phenomena requires the determination of spin structures and spin excitations down to the atomic scale. The direct visualization of atomic-scale spin structures has first been accomplished for magnetic metals by combining the atomic resolution capability of Scanning Tunnelling Microscopy (STM) with spin sensitivity, based on vacuum tunnelling of spin-polarized electrons. The resulting technique, Spin-Polarized Scanning Tunnelling Microscopy (SP-STM), nowadays provides unprecedented insight into collinear and non-collinear spin structures at surfaces of magnetic nanostructures and has already led to the discovery of new types of magnetic order at the nanoscale. More recently, the development of subkelvin SP-STM has allowed studies of ground-state magnetic properties of individual magnetic adatoms on non-magnetic substrates as well as the magnetic interactions between them. Based on SP-STM experiments performed at temperatures of 300 mK, indirect magnetic exchange interactions at the sub-milli-electronvolt energy scale between individual paramagnetic adatoms as well as between adatoms and nearby magnetic nanostructures could directly be revealed in real space up to distances of several nanometers. In both cases we have observed an oscillatory behavior of the magnetic exchange coupling, alternating between ferromagnetic and antiferromagnetic, as a function of distance. Moreover, the detection of spin-dependent exchange and correlation forces has allowed a first direct real-space observation of spin structures at surfaces of antiferromagnetic insulators. This new type of scanning probe microscopy, called Magnetic Exchange Force Microscopy (MExFM), offers a powerful new tool to investigate different types of spin-spin interactions based on direct-, super-, or RKKY-type exchange down to the atomic level. By combining MExFM with high-precision measurements of damping forces, localized or confined spin

  16. Role of spin mixing conductance in spin pumping: Enhancement of spin pumping efficiency in Ta/Cu/Py structures

    Energy Technology Data Exchange (ETDEWEB)

    Deorani, Praveen; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 117576 Singapore (Singapore)

    2013-12-02

    From spin pumping measurements in Ta/Py devices for different thicknesses of Ta, we determine the spin Hall angle to be 0.021–0.033 and spin diffusion length to be 8 nm in Ta. We have also studied the effect of changing the properties of non-magnet/ferromagnet interface by adding a Cu interlayer. The experimental results show that the effective spin mixing conductance increases in the presence of Cu interlayer for Ta/Cu/Py devices whereas it decreases in Pt/Cu/Py devices. Our findings allow the tunability of the spin pumping efficiency by adding a thin interlayer at the non-magnet/ferromagnet interface.

  17. Novel spin effects in quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1993-02-01

    This report discusses a number of interesting hadronic spin effects which test fundamental features of perturbative and non-perturbative QCD. These include constraints on the shape and normalization of the polarized quark and gluon structure functions of the proton; the principle of hadron helicity retention in high x F inclusive reactions; predictions based on total hadron helicity conservation in high momentum transfer exclusive reactions; the dependence of nuclear structure functions and shadowing on virtual photon polarization; and general constraints on the magnetic moment of hadrons. I also will discuss the implications of several measurements which are in striking conflict with leading-twist perturbative QCD predictions, such as the extraordinarily large spin correlation A NN observed in large angle proton-proton scattering, the anomalously large ρπ branching ratio of the J/ψ, and the rapidly changing polarization dependence of both J/ψ and continuum lepton pair hadroproduction observed at large x F

  18. PREFACE: Spin Electronics

    Science.gov (United States)

    Dieny, B.; Sousa, R.; Prejbeanu, L.

    2007-04-01

    Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic

  19. Possible evidence for spin-transfer torque induced by spin-triplet supercurrent

    KAUST Repository

    Li, Lailai; Zhao, Yuelei; Zhang, Xixiang; Sun, Young

    2017-01-01

    Cooper pairs in superconductors are normally spin singlet. Nevertheless, recent studies suggest that spin-triplet Cooper pairs can be created at carefully engineered superconductor-ferromagnet interfaces. If Cooper pairs are spin

  20. Limits on Spin-Dependent WIMP-Nucleon Cross Section Obtained from the Complete LUX Exposure

    Science.gov (United States)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fallon, S. R.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2017-06-01

    We present experimental constraints on the spin-dependent WIMP-nucleon elastic cross sections from the total 129.5 kg yr exposure acquired by the Large Underground Xenon experiment (LUX), operating at the Sanford Underground Research Facility in Lead, South Dakota (USA). A profile likelihood ratio analysis allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σn=1.6 ×10-41 cm2 (σp=5 ×10-40 cm2 ) at 35 GeV c-2 , almost a sixfold improvement over the previous LUX spin-dependent results. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.

  1. Spin Coherence in Semiconductor Nanostructures

    National Research Council Canada - National Science Library

    Flatte, Michael E

    2006-01-01

    ... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...

  2. Spin-orbit torques from interfacial spin-orbit coupling for various interfaces

    Science.gov (United States)

    Kim, Kyoung-Whan; Lee, Kyung-Jin; Sinova, Jairo; Lee, Hyun-Woo; Stiles, M. D.

    2017-09-01

    We use a perturbative approach to study the effects of interfacial spin-orbit coupling in magnetic multilayers by treating the two-dimensional Rashba model in a fully three-dimensional description of electron transport near an interface. This formalism provides a compact analytic expression for current-induced spin-orbit torques in terms of unperturbed scattering coefficients, allowing computation of spin-orbit torques for various contexts, by simply substituting scattering coefficients into the formulas. It applies to calculations of spin-orbit torques for magnetic bilayers with bulk magnetism, those with interface magnetism, a normal-metal/ferromagnetic insulator junction, and a topological insulator/ferromagnet junction. It predicts a dampinglike component of spin-orbit torque that is distinct from any intrinsic contribution or those that arise from particular spin relaxation mechanisms. We discuss the effects of proximity-induced magnetism and insertion of an additional layer and provide formulas for in-plane current, which is induced by a perpendicular bias, anisotropic magnetoresistance, and spin memory loss in the same formalism.

  3. High frequency spin torque oscillators with composite free layer spin valve

    International Nuclear Information System (INIS)

    Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda

    2016-01-01

    We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.

  4. High frequency spin torque oscillators with composite free layer spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda

    2016-07-15

    We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.

  5. Influence of primary fragment excitation energy and spin distributions on fission observables

    Science.gov (United States)

    Litaize, Olivier; Thulliez, Loïc; Serot, Olivier; Chebboubi, Abdelaziz; Tamagno, Pierre

    2018-03-01

    Fission observables in the case of 252Cf(sf) are investigated by exploring several models involved in the excitation energy sharing and spin-parity assignment between primary fission fragments. In a first step the parameters used in the FIFRELIN Monte Carlo code "reference route" are presented: two parameters for the mass dependent temperature ratio law and two constant spin cut-off parameters for light and heavy fragment groups respectively. These parameters determine the initial fragment entry zone in excitation energy and spin-parity (E*, Jπ). They are chosen to reproduce the light and heavy average prompt neutron multiplicities. When these target observables are achieved all other fission observables can be predicted. We show here the influence of input parameters on the saw-tooth curve and we discuss the influence of a mass and energy-dependent spin cut-off model on gamma-rays related fission observables. The part of the model involving level densities, neutron transmission coefficients or photon strength functions remains unchanged.

  6. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  7. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    Energy Technology Data Exchange (ETDEWEB)

    Götz, Andreas W., E-mail: agoetz@sdsc.edu [San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Dr MC 0505, La Jolla, California 92093-0505 (United States); Autschbach, Jochen [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000 (United States); Visscher, Lucas, E-mail: visscher@chem.vu.nl [Amsterdam Center for Multiscale Modeling (ACMM), VU University Amsterdam, Theoretical Chemistry, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2014-03-14

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.

  8. F-spin study of rare-earth nuclei using F-spin multiplets and angular momentum projected intrinsic states

    International Nuclear Information System (INIS)

    Diallo, A.F.

    1993-01-01

    The proton-neutron Interacting-Boson Model contains both symmetric and mixed-symmetry proton-neutron boson configurations. These states of different proton-neutron symmetry can be classified in terms of an SU(2) symmetry, called F-spin. This dissertation deals with some new applications of F-spin. Even-even nuclei drawn from the proton and neutron shells 50 + scissor mode, and the gyromagnetic ratios of the ground-band members, for which formulas are derived. A no-free-parameter calculation is performed for the summed M1 strength and the centroid energy of ( 146-158 )Sm isotopes. The g factors of deformed and transitional nuclei in the rare-earth mass region are also computed. The data in all cases are found to be well reproduced, in general. A weak L dependence is predicted for the g factors, and there appears to be no need to include two-body terms in the T(M1) operator for determining the M1 strength

  9. Quantum spin correction scheme based on spin-correlation functional for Kohn-Sham spin density functional theory

    International Nuclear Information System (INIS)

    Yamanaka, Shusuke; Takeda, Ryo; Nakata, Kazuto; Takada, Toshikazu; Shoji, Mitsuo; Kitagawa, Yasutaka; Yamaguchi, Kizashi

    2007-01-01

    We present a simple quantum correction scheme for ab initio Kohn-Sham spin density functional theory (KS-SDFT). This scheme is based on a mapping from ab initio results to a Heisenberg model Hamiltonian. The effective exchange integral is estimated by using energies and spin correlation functionals calculated by ab initio KS-SDFT. The quantum-corrected spin-correlation functional is open to be designed to cover specific quantum spin fluctuations. In this article, we present a simple correction for dinuclear compounds having multiple bonds. The computational results are discussed in relation to multireference (MR) DFT, by which we treat the quantum many-body effects explicitly

  10. Charge and Spin Transport in Spin-orbit Coupled and Topological Systems

    KAUST Repository

    Ndiaye, Papa Birame

    2017-10-31

    In the search for low power operation of microelectronic devices, spin-based solutions have attracted undeniable increasing interest due to their intrinsic magnetic nonvolatility. The ability to electrically manipulate the magnetic order using spin-orbit interaction, associated with the recent emergence of topological spintronics with its promise of highly efficient charge-to-spin conversion in solid state, offer alluring opportunities in terms of system design. Although the related technology is still at its infancy, this thesis intends to contribute to this engaging field by investigating the nature of the charge and spin transport in spin-orbit coupled and topological systems using quantum transport methods. We identified three promising building blocks for next-generation technology, three classes of systems that possibly enhance the spin and charge transport efficiency: (i)- topological insulators, (ii)- spin-orbit coupled magnonic systems, (iii)- topological magnetic textures (skyrmions and 3Q magnetic state). Chapter 2 reviews the basics and essential concepts used throughout the thesis: the spin-orbit coupling, the mathematical notion of topology and its importance in condensed matter physics, then topological magnetism and a zest of magnonics. In Chapter 3, we study the spin-orbit torques at the magnetized interfaces of 3D topological insulators. We demonstrated that their peculiar form, compared to other spin-orbit torques, have important repercussions in terms of magnetization reversal, charge pumping and anisotropic damping. In Chapter 4, we showed that the interplay between magnon current jm and magnetization m in homogeneous ferromagnets with Dzyaloshinskii-Moriya (DM) interaction, produces a field-like torque as well as a damping-like torque. These DM torques mediated by spin wave can tilt the imeaveraged magnetization direction and are similar to Rashba torques for electronic systems. Moreover, the DM torque is more efficient when magnons are

  11. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  12. Nuclear spin polarized H and D by means of spin-exchange optical pumping

    Science.gov (United States)

    Stenger, Jörn; Grosshauser, Carsten; Kilian, Wolfgang; Nagengast, Wolfgang; Ranzenberger, Bernd; Rith, Klaus; Schmidt, Frank

    1998-01-01

    Optically pumped spin-exchange sources for polarized hydrogen and deuterium atoms have been demonstrated to yield high atomic flow and high electron spin polarization. For maximum nuclear polarization the source has to be operated in spin temperature equilibrium, which has already been demonstrated for hydrogen. In spin temperature equilibrium the nuclear spin polarization PI equals the electron spin polarization PS for hydrogen and is even larger than PS for deuterium. We discuss the general properties of spin temperature equilibrium for a sample of deuterium atoms. One result are the equations PI=4PS/(3+PS2) and Pzz=PSṡPI, where Pzz is the nuclear tensor polarization. Furthermore we demonstrate that the deuterium atoms from our source are in spin temperature equilibrium within the experimental accuracy.

  13. Spin-Dependent Transport through Chiral Molecules Studied by Spin-Dependent Electrochemistry

    Science.gov (United States)

    2016-01-01

    Conspectus Molecular spintronics (spin + electronics), which aims to exploit both the spin degree of freedom and the electron charge in molecular devices, has recently received massive attention. Our recent experiments on molecular spintronics employ chiral molecules which have the unexpected property of acting as spin filters, by way of an effect we call “chiral-induced spin selectivity” (CISS). In this Account, we discuss new types of spin-dependent electrochemistry measurements and their use to probe the spin-dependent charge transport properties of nonmagnetic chiral conductive polymers and biomolecules, such as oligopeptides, L/D cysteine, cytochrome c, bacteriorhodopsin (bR), and oligopeptide-CdSe nanoparticles (NPs) hybrid structures. Spin-dependent electrochemical measurements were carried out by employing ferromagnetic electrodes modified with chiral molecules used as the working electrode. Redox probes were used either in solution or when directly attached to the ferromagnetic electrodes. During the electrochemical measurements, the ferromagnetic electrode was magnetized either with its magnetic moment pointing “UP” or “DOWN” using a permanent magnet (H = 0.5 T), placed underneath the chemically modified ferromagnetic electrodes. The spin polarization of the current was found to be in the range of 5–30%, even in the case of small chiral molecules. Chiral films of the l- and d-cysteine tethered with a redox-active dye, toludin blue O, show spin polarizarion that depends on the chirality. Because the nickel electrodes are susceptible to corrosion, we explored the effect of coating them with a thin gold overlayer. The effect of the gold layer on the spin polarization of the electrons ejected from the electrode was investigated. In addition, the role of the structure of the protein on the spin selective transport was also studied as a function of bias voltage and the effect of protein denaturation was revealed. In addition to

  14. Preconception stress and the secondary sex ratio in a population-based preconception cohort.

    Science.gov (United States)

    Bae, Jisuk; Lynch, Courtney D; Kim, Sungduk; Sundaram, Rajeshwari; Sapra, Katherine J; Buck Louis, Germaine M

    2017-03-01

    To examine the association between preconception parental stress and the secondary sex ratio, defined as the ratio of males to females at birth. A population-based preconception cohort. Not applicable. A total of 235 couples who were enrolled before conception in Michigan and Texas between 2005 and 2009 and who had a singleton birth during the follow-up period. Couples were interviewed separately at baseline to obtain information on perceived stress (Cohen's Perceived Stress Scale) and lifetime history of physician-diagnosed anxiety and/or mood disorders. Female partners were also trained to collect basal saliva samples for the measurement of salivary stress markers, alpha-amylase and cortisol. None. Birth outcome data including infant sex were collected upon delivery. Modified Poisson regression models were used to estimate the relative risks (RRs) of a male birth for each stress marker. After adjusting for potential confounders, we observed a 76% increase in the risk of fathering a male infant (RR 1.76; 95% confidence interval 1.17-2.65) in men diagnosed with anxiety disorders compared with those who were not diagnosed. When lifetime history of physician-diagnosed anxiety disorders was modeled jointly for the couple, the association was slightly strengthened (RR 2.03; 95% confidence interval 1.46-2.84). This prospective cohort study suggests that paternal lifetime history of physician-diagnosed anxiety disorders may be associated with an increase in the secondary sex ratio, resulting in an excess of male births. Copyright © 2016 American Society for Reproductive Medicine. All rights reserved.

  15. Spin relaxation in quantum dots: Role of the phonon modulated spin-orbit interaction

    Science.gov (United States)

    Alcalde, A. M.; Romano, C. L.; Sanz, L.; Marques, G. E.

    2010-01-01

    We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. We analyze the behavior of the spin relaxation rates as a function of an external magnetic field and mean quantum dot radius. Effects of the spin admixture due to Dresselhaus contribution to spin-orbit interaction are also discussed.

  16. The single-ion anisotropy effects in the mixed-spin ternary-alloy

    Science.gov (United States)

    Albayrak, Erhan

    2018-04-01

    The effect of single-ion anisotropy on the thermal properties of the ternary-alloy in the form of ABpC1-p is investigated on the Bethe lattice (BL) in terms of exact recursion relations. The simulation on the BL consists of placing A atoms (spin-1/2) on the odd shells and randomly placing B (spin-3/2) or C (spin-5/2) atoms with concentrations p and 1 - p, respectively, on the even shells. The phase diagrams are calculated in possible planes spanned by the system parameters: temperature, single-ion anisotropy, concentration and ratio of the bilinear interaction parameters for z = 3 corresponding to the honeycomb lattice. It is found that the crystal field drives the system to the lowest possible state therefore reducing the temperatures of the critical lines in agreement with the literature.

  17. Exact solution of the mixed spin-1/2 and spin-S Ising-Heisenberg diamond chain

    Directory of Open Access Journals (Sweden)

    L. Čanová

    2009-01-01

    Full Text Available The geometric frustration in a class of the mixed spin-1/2 and spin-S Ising-Heisenberg diamond chains is investigated by combining three exact analytical techniques: Kambe projection method, decoration-iteration transformation and transfer-matrix method. The ground state, the magnetization process and the specific heat as a function of the external magnetic field are particularly examined for different strengths of the geometric frustration. It is shown that the increase of the Heisenberg spin value S raises the number of intermediate magnetization plateaux, which emerge in magnetization curves provided that the ground state is highly degenerate on behalf of a sufficiently strong geometric frustration. On the other hand, all intermediate magnetization plateaux merge into a linear magnetization versus magnetic field dependence in the limit of classical Heisenberg spin S → ∞. The enhanced magnetocaloric effect with cooling rate exceeding the one of paramagnetic salts is also detected when the disordered frustrated phase constitutes the ground state and the external magnetic field is small enough.

  18. Spin diffusion in bulk GaN measured with MnAs spin injector

    KAUST Repository

    Jahangir, Shafat; Dogan, Fatih; Kum, Hyun; Manchon, Aurelien; Bhattacharya, Pallab

    2012-01-01

    Spin injection and precession in bulk wurtzite n-GaN with different doping densities are demonstrated with a ferromagnetic MnAs contact using the three-terminal Hanle measurement technique. Theoretical analysis using minimum fitting parameters indicates that the spin accumulation is primarily in the n-GaN channel rather than at the ferromagnet (FM)/semiconductor (SC) interface states. Spin relaxation in GaN is interpreted in terms of the D’yakonov-Perel mechanism, yielding a maximum spin lifetime of 44 ps and a spin diffusion length of 175 nm at room temperature. Our results indicate that epitaxial ferromagnetic MnAs is a suitable high-temperature spin injector for GaN.

  19. Spin diffusion in bulk GaN measured with MnAs spin injector

    KAUST Repository

    Jahangir, Shafat

    2012-07-16

    Spin injection and precession in bulk wurtzite n-GaN with different doping densities are demonstrated with a ferromagnetic MnAs contact using the three-terminal Hanle measurement technique. Theoretical analysis using minimum fitting parameters indicates that the spin accumulation is primarily in the n-GaN channel rather than at the ferromagnet (FM)/semiconductor (SC) interface states. Spin relaxation in GaN is interpreted in terms of the D’yakonov-Perel mechanism, yielding a maximum spin lifetime of 44 ps and a spin diffusion length of 175 nm at room temperature. Our results indicate that epitaxial ferromagnetic MnAs is a suitable high-temperature spin injector for GaN.

  20. Preparation and study of poly vinyl alcohol/hyperbranched polylysine fluorescence fibers via wet spinning

    Science.gov (United States)

    Lu, Hongwei; Zou, Liming; Xu, Yongjing; Sun, Hong; Li, Yan Vivian

    2018-02-01

    A simple method of using wet spinning was found effective in the preparation of photoluminescent poly vinyl alcohol (PVA)/hyperbranched polylysine (HBPL) fibers. The photoluminescence of the PVA/HBPL fibers was significantly uniform and the unique uniformity was obtained by controlling the mass ratio of PVA to HBPL in aqueous solutions used in the wet spinning process. The high solubility of HBPL in water make it feasible to well control in the mass ratio of PVA to HBPL, which facilitated the formation of a unique PVA/HBPL mixture, resulting in the fabrication of homogeneous PVA composite fluorescence fibers. The composite fibers exhibit good mechanical, and thermal properties that make the PVA/HBPL fluorescent fibers a great material potentially used in fluorescence applications including optics, imaging and detection.

  1. Spin doctoring

    OpenAIRE

    Vozková, Markéta

    2011-01-01

    1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...

  2. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission

    Directory of Open Access Journals (Sweden)

    A. Gover

    2006-06-01

    Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.

  3. Spin helical states and spin transport of the line defect in silicene lattice

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mou; Chen, Dong-Hai; Wang, Rui-Qiang [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Bai, Yan-Kui, E-mail: ykbai@semi.ac.cn [College of Physical Science and Information Engineering and Hebei Advance Thin Films Laboratory, Hebei Normal University, Shijiazhuang, Hebei 050024 (China)

    2015-02-06

    We investigated the electronic structure of a silicene-like lattice with a line defect under the consideration of spin–orbit coupling. In the bulk energy gap, there are defect related bands corresponding to spin helical states localized beside the defect line: spin-up electrons flow forward on one side near the line defect and move backward on the other side, and vice versa for spin-down electrons. When the system is subjected to random distribution of spin-flipping scatterers, electrons suffer much less spin-flipped scattering when they transport along the line defect than in the bulk. An electric gate above the line defect can tune the spin-flipped transmission, which makes the line defect as a spin-controllable waveguide. - Highlights: • Band structure of silicene with a line defect. • Spin helical states around the line defect and their probability distribution features. • Spin transport along the line defect and that in the bulk silicene.

  4. Spin Hall effect-driven spin torque in magnetic textures

    KAUST Repository

    Manchon, Aurelien; Lee, K.-J.

    2011-01-01

    Current-induced spin torque and magnetization dynamics in the presence of spin Hall effect in magnetic textures is studied theoretically. The local deviation of the charge current gives rise to a current-induced spin torque of the form (1 - ΒM) × [(u 0 + αH u 0 M) ∇] M, where u0 is the direction of the injected current, H is the Hall angle and is the non-adiabaticity parameter due to spin relaxation. Since αH and ×can have a comparable order of magnitude, we show that this torque can significantly modify the current-induced dynamics of both transverse and vortex walls. © 2011 American Institute of Physics.

  5. Spin Hall effect-driven spin torque in magnetic textures

    KAUST Repository

    Manchon, Aurelien

    2011-07-13

    Current-induced spin torque and magnetization dynamics in the presence of spin Hall effect in magnetic textures is studied theoretically. The local deviation of the charge current gives rise to a current-induced spin torque of the form (1 - ΒM) × [(u 0 + αH u 0 M) ∇] M, where u0 is the direction of the injected current, H is the Hall angle and is the non-adiabaticity parameter due to spin relaxation. Since αH and ×can have a comparable order of magnitude, we show that this torque can significantly modify the current-induced dynamics of both transverse and vortex walls. © 2011 American Institute of Physics.

  6. Spin Hall effect and Berry phase of spinning particles

    International Nuclear Information System (INIS)

    Berard, Alain; Mohrbach, Herve

    2006-01-01

    We consider the adiabatic evolution of the Dirac equation in order to compute its Berry curvature in momentum space. It is found that the position operator acquires an anomalous contribution due to the non-Abelian Berry gauge connection making the quantum mechanical algebra noncommutative. A generalization to any known spinning particles is possible by using the Bargmann-Wigner equation of motions. The noncommutativity of the coordinates is responsible for the topological spin transport of spinning particles similarly to the spin Hall effect in spintronic physics or the Magnus effect in optics. As an application we predict new dynamics for nonrelativistic particles in an electric field and for photons in a gravitational field

  7. Spin-polarized spin-orbit-split quantum-well states in a metal film

    Energy Technology Data Exchange (ETDEWEB)

    Varykhalov, Andrei; Sanchez-Barriga, Jaime; Gudat, Wolfgang; Eberhardt, Wolfgang; Rader, Oliver [BESSY Berlin (Germany); Shikin, Alexander M. [St. Petersburg State University (Russian Federation)

    2008-07-01

    Elements with high atomic number Z lead to a large spin-orbit coupling. Such materials can be used to create spin-polarized electronic states without the presence of a ferromagnet or an external magnetic field if the solid exhibits an inversion asymmetry. We create large spin-orbit splittings using a tungsten crystal as substrate and break the structural inversion symmetry through deposition of a gold quantum film. Using spin- and angle-resolved photoelectron spectroscopy, it is demonstrated that quantum-well states forming in the gold film are spin-orbit split and spin polarized up to a thickness of at least 10 atomic layers. This is a considerable progress as compared to the current literature which reports spin-orbit split states at metal surfaces which are either pure or covered by at most a monoatomic layer of adsorbates.

  8. A Beautiful Spin

    International Nuclear Information System (INIS)

    Ji Xiangdong

    2003-01-01

    Spin is a beautiful concept that plays an ever important role in modern physics. In this talk, I start with a discussion of the origin of spin, and then turn to three themes in which spin has been crucial in subatomic physics: a lab to explore physics beyond the standard model, a tool to measure physical observables that are hard to obtain otherwise, a probe to unravel nonperturbative QCD. I conclude with some remarks on a world without spin

  9. Production ratio of pseudoscalar to vector mesons

    International Nuclear Information System (INIS)

    Chliapnikov, P.V.; Uvarov, V.A.

    1990-01-01

    The P/V ratio of directly produced pseudoscalar (P) to vector (V) mesons is analysed using the data on the K S 0 and K * (892) total inclusive cross sections in pp, π + p and K ± p reactions. The indication for a change of P/V from a value of about 1 at low energies, where the fragmentation processes dominate, to a value of 1/3, suggested by spin-statistics, at high energies is discussed. (orig.)

  10. Spin motive forces, 'measurements', and spin-valves

    International Nuclear Information System (INIS)

    Barnes, S.E.

    2007-01-01

    Discussed is the spin motive force (smf) produced by a spin valve, this reflecting its dynamics. Relaxation implies an implicit measurement of the magnetization of the free layer of a valve. It is shown this has implications for the angular dependence of the torque transfer. Some discussion of recent experiments is included

  11. Spin Orbit Interaction Engineering for beyond Spin Transfer Torque memory

    Science.gov (United States)

    Wang, Kang L.

    Spin transfer torque memory uses electron current to transfer the spin torque of electrons to switch a magnetic free layer. This talk will address an alternative approach to energy efficient non-volatile spintronics through engineering of spin orbit interaction (SOC) and the use of spin orbit torque (SOT) by the use of electric field to improve further the energy efficiency of switching. I will first discuss the engineering of interface SOC, which results in the electric field control of magnetic moment or magneto-electric (ME) effect. Magnetic memory bits based on this ME effect, referred to as magnetoelectric RAM (MeRAM), is shown to have orders of magnitude lower energy dissipation compared with spin transfer torque memory (STTRAM). Likewise, interests in spin Hall as a result of SOC have led to many advances. Recent demonstrations of magnetization switching induced by in-plane current in heavy metal/ferromagnetic heterostructures have been shown to arise from the large SOC. The large SOC is also shown to give rise to the large SOT. Due to the presence of an intrinsic extraordinarily strong SOC and spin-momentum lock, topological insulators (TIs) are expected to be promising candidates for exploring spin-orbit torque (SOT)-related physics. In particular, we will show the magnetization switching in a chromium-doped magnetic TI bilayer heterostructure by charge current. A giant SOT of more than three orders of magnitude larger than those reported in heavy metals is also obtained. This large SOT is shown to come from the spin-momentum locked surface states of TI, which may further lead to innovative low power applications. I will also describe other related physics of SOC at the interface of anti-ferromagnetism/ferromagnetic structure and show the control exchange bias by electric field for high speed memory switching. The work was in part supported by ERFC-SHINES, NSF, ARO, TANMS, and FAME.

  12. EFFECTS OF SPIN ON HIGH-ENERGY RADIATION FROM ACCRETING BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    O’ Riordan, Michael; Pe’er, Asaf [Physics Department, University College Cork, Cork (Ireland); McKinney, Jonathan C., E-mail: michael_oriordan@umail.ucc.ie [Department of Physics and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States)

    2016-11-01

    Observations of jets in X-ray binaries show a correlation between radio power and black hole spin. This correlation, if confirmed, points toward the idea that relativistic jets may be powered by the rotational energy of black holes. In order to examine this further, we perform general relativistic radiative transport calculations on magnetically arrested accretion flows, which are known to produce powerful jets via the Blandford–Znajek (BZ) mechanism. We find that the X-ray and γ -ray emission strongly depend on spin and inclination angle. Surprisingly, the high-energy power does not show the same dependence on spin as the BZ jet power, but instead can be understood as a redshift effect. In particular, photons observed perpendicular to the spin axis suffer little net redshift until originating from close to the horizon. Such observers see deeper into the hot, dense, highly magnetized inner disk region. This effect is largest for rapidly rotating black holes due to a combination of frame dragging and decreasing horizon radius. While the X-ray emission is dominated by the near horizon region, the near-infrared (NIR) radiation originates at larger radii. Therefore, the ratio of X-ray to NIR power is an observational signature of black hole spin.

  13. Induced spin-accumulation and spin-polarization in a quantum-dot ring by using magnetic quantum dots and Rashba spin-orbit effect

    International Nuclear Information System (INIS)

    Eslami, L.; Faizabadi, E.

    2014-01-01

    The effect of magnetic contacts on spin-dependent electron transport and spin-accumulation in a quantum ring, which is threaded by a magnetic flux, is studied. The quantum ring is made up of four quantum dots, where two of them possess magnetic structure and other ones are subjected to the Rashba spin-orbit coupling. The magnetic quantum dots, referred to as magnetic quantum contacts, are connected to two external leads. Two different configurations of magnetic moments of the quantum contacts are considered; the parallel and the anti-parallel ones. When the magnetic moments are parallel, the degeneracy between the transmission coefficients of spin-up and spin-down electrons is lifted and the system can be adjusted to operate as a spin-filter. In addition, the accumulation of spin-up and spin-down electrons in non-magnetic quantum dots are different in the case of parallel magnetic moments. When the intra-dot Coulomb interaction is taken into account, we find that the electron interactions participate in separation between the accumulations of electrons with different spin directions in non-magnetic quantum dots. Furthermore, the spin-accumulation in non-magnetic quantum dots can be tuned in the both parallel and anti-parallel magnetic moments by adjusting the Rashba spin-orbit strength and the magnetic flux. Thus, the quantum ring with magnetic quantum contacts could be utilized to create tunable local magnetic moments which can be used in designing optimized nanodevices.

  14. Operator spin foam models

    International Nuclear Information System (INIS)

    Bahr, Benjamin; Hellmann, Frank; Kaminski, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy

    2011-01-01

    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as our main tool. A set of moves we define in the set of the operator spin foams (among other operations) allows us to split the faces and the edges of the foams. We assign to each operator spin foam a contracted operator, by using the contractions at the vertices and suitably adjusted face amplitudes. The emergence of the face amplitudes is the consequence of assuming the invariance of the contracted operator with respect to the moves. Next, we define spin foam models and consider the class of models assumed to be symmetric with respect to the moves we have introduced, and assuming their partition functions (state sums) are defined by the contracted operators. Briefly speaking, those operator spin foam models are invariant with respect to the cellular decomposition, and are sensitive only to the topology and colouring of the foam. Imposing an extra symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with assumed invariance with respect to the edge splitting move, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on a spin(4) BF spin foam model is exactly the way we tend to view 4D quantum gravity, starting with the BC model and continuing with the Engle-Pereira-Rovelli-Livine (EPRL) or Freidel-Krasnov (FK) models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. Among our natural spin foam models there are the BF spin foam model, the BC model, and a model corresponding to the EPRL intertwiners. Our operator spin foam framework can also be used for more general spin

  15. Montecarlo calculation of the isomeric cross sections ratio for the reaction 237Np(n,2n)236Np

    International Nuclear Information System (INIS)

    Cleri, F.

    1988-01-01

    A Montecarlo calculation of the isomeric cross section ratio for the (n,2n) reaction on 237 Np has been carried out based on the Hauser-Feshbach formulation. A standard energy-dependent optical model potential was used, with zero deformation parameters and no spin-orbit coupling. Investigation was made about the role of the energy cut-off value, of the higher multipole (E2) transition, of the gamma-ray versus second neutron emission, of the value of the spin cutt-off parameter. The results give the correct qualitative energy dependence of the branching ratio, with the assumption that the 1 - level is the ground state. The spin cut-off value obtained indicates a less pronounced deviation of the nuclear moment of inertia from the rigid-body value, with respect to older evaluations for high-mass nuclei. (author)

  16. Variable-flip-angle spin-echo imaging (VFSE)

    International Nuclear Information System (INIS)

    Kasai, Toshifumi; Sugimura, Kazuro; Kawamitsu, Hideaki; Yasui, Kiyoshi; Ishida, Tetsuya; Tsukamoto, Tetsuji.

    1990-01-01

    T 2 weighted imaging provides images with high object contrast for pathologic conditions in which the water content of tissues is increased. The authors predicted theoretical analysis of the effects of changing flip angle, and analyzed the effects in MR imaging of both phantoms and humans. Variable flip angle spin echo MR imaging (VFSE) with a 1,000/80 (repetition time msec/echo time msec) can obtain T 2 weighted image when flip angle is smaller than 80 degrees. VFSE with 40 to 60 degrees flip angle have higher contrast than other flip angle images. Signal to noise ratio (S/N) of VFSE are 55% at a 30 degree, 76% at a 45 degree, 92% at a 60 degree respectively as compared with conventional spin echo image (2000/80, flip angle 90 degree). VFSE is applicable to obtain T 2 weighted image reduced imaging time. (author)

  17. Nonequilibrium Spin Dynamics in a Trapped Fermi Gas with Effective Spin-Orbit Interactions

    International Nuclear Information System (INIS)

    Stanescu, Tudor D.; Zhang Chuanwei; Galitski, Victor

    2007-01-01

    We consider a trapped atomic system in the presence of spatially varying laser fields. The laser-atom interaction generates a pseudospin degree of freedom (referred to simply as spin) and leads to an effective spin-orbit coupling for the fermions in the trap. Reflections of the fermions from the trap boundaries provide a physical mechanism for effective momentum relaxation and nontrivial spin dynamics due to the emergent spin-orbit coupling. We explicitly consider evolution of an initially spin-polarized Fermi gas in a two-dimensional harmonic trap and derive nonequilibrium behavior of the spin polarization. It shows periodic echoes with a frequency equal to the harmonic trapping frequency. Perturbations, such as an asymmetry of the trap, lead to the suppression of the spin echo amplitudes. We discuss a possible experimental setup to observe spin dynamics and provide numerical estimates of relevant parameters

  18. Spin-wave propagation and spin-polarized electron transport in single-crystal iron films

    Science.gov (United States)

    Gladii, O.; Halley, D.; Henry, Y.; Bailleul, M.

    2017-11-01

    The techniques of propagating spin-wave spectroscopy and current-induced spin-wave Doppler shift are applied to a 20-nm-thick Fe/MgO(001) film. The magnetic parameters extracted from the position of the spin-wave resonance peaks are very close to those tabulated for bulk iron. From the zero-current propagating wave forms, a group velocity of 4 km/s and an attenuation length of about 6 μ m are extracted for 1.6-μ m -wavelength spin wave at 18 GHz. From the measured current-induced spin-wave Doppler shift, we extract a surprisingly high degree of spin polarization of the current of 83 % , which constitutes the main finding of this work. This set of results makes single-crystalline iron a promising candidate for building devices utilizing high-frequency spin waves and spin-polarized currents.

  19. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors

    KAUST Repository

    Zhu, Zhiyong

    2011-10-14

    Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.

  20. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2011-01-01

    Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.

  1. Predicting superdeformed rotational band-head spin in A ∼ 190 mass region using variable moment of inertia model

    International Nuclear Information System (INIS)

    Uma, V.S.; Goel, Alpana; Yadav, Archana; Jain, A.K.

    2016-01-01

    The band-head spin (I 0 ) of superdeformed (SD) rotational bands in A ∼ 190 mass region is predicted using the variable moment of inertia (VMI) model for 66 SD rotational bands. The superdeformed rotational bands exhibited considerably good rotational property and rigid behaviour. The transition energies were dependent on the prescribed band-head spins. The ratio of transition energies over spin Eγ/ 2 I (RTEOS) vs. angular momentum (I) have confirmed the rigid behaviour, provided the band-head spin value is assigned correctly. There is a good agreement between the calculated and the observed transition energies. This method gives a very comprehensive interpretation for spin assignment of SD rotational bands which could help in designing future experiments for SD bands. (author)

  2. Selective coupling of individual electron and nuclear spins with integrated all-spin coherence protection

    Science.gov (United States)

    Terletska, Hanna; Dobrovitski, Viatcheslav

    2015-03-01

    The electron spin of the NV center in diamond is a promising platform for spin sensing. Applying the dynamical decoupling, the NV electron spin can be used to detect the individual weakly coupled carbon-13 nuclear spins in diamond and employ them for small-scale quantum information processing. However, the nuclear spins within this approach remain unprotected from decoherence, which ultimately limits the detection and restricts the fidelity of the quantum operation. Here we investigate possible schemes for combining the resonant decoupling on the NV spin with the decoherence protection of the nuclear spins. Considering several schemes based on pulse and continuous-wave decoupling, we study how the joint electron-nuclear spin dynamics is affected. We identify regimes where the all-spin coherence protection improves the detection and manipulation. We also discuss potential applications of the all-spin decoupling for detecting spins outside diamond, with the purpose of implementing the nanoscale NMR. This work was supported by the US Department of Energy Basic Energy Sciences (Contract No. DE-AC02-07CH11358).

  3. Spin texture and magnetoroton excitations at nu=1/3.

    Science.gov (United States)

    Groshaus, Javier G; Dujovne, Irene; Gallais, Yann; Hirjibehedin, Cyrus F; Pinczuk, Aron; Tan, Yan-Wen; Stormer, Horst; Dennis, Brian S; Pfeiffer, Loren N; West, Ken W

    2008-02-01

    Neutral spin texture (ST) excitations at nu=1/3 are directly observed for the first time by resonant inelastic light scattering. They are determined to involve two simultaneous spin flips. At low magnetic fields, the ST energy is below that of the magnetoroton minimum. With increasing in-plane magnetic field these mode energies cross at a critical ratio of the Zeeman and Coulomb energies of eta(c)=0.020+/-0.001. Surprisingly, the intensity of the ST mode grows with temperature in the range in which the magnetoroton modes collapse. The temperature dependence is interpreted in terms of a competition between coexisting phases supporting different excitations. We consider the role of the ST excitations in activated transport at nu=1/3.

  4. Quantum spin liquids in the absence of spin-rotation symmetry: Application to herbertsmithite

    Science.gov (United States)

    Dodds, Tyler; Bhattacharjee, Subhro; Kim, Yong Baek

    2013-12-01

    It has been suggested that the nearest-neighbor antiferromagnetic Heisenberg model on the Kagome lattice may be a good starting point for understanding the spin-liquid behavior discovered in herbertsmithite. In this work, we investigate possible quantum spin liquid phases in the presence of spin-rotation symmetry-breaking perturbations such as Dzyaloshinskii-Moriya and Ising interactions, as well as second-neighbor antiferromagnetic Heisenberg interactions. Experiments suggest that such perturbations are likely to be present in herbertsmithite. We use the projective symmetry group analysis within the framework of the slave-fermion construction of quantum spin liquid phases and systematically classify possible spin liquid phases in the presence of perturbations mentioned above. The dynamical spin-structure factor for relevant spin liquid phases is computed and the effect of those perturbations are studied. Our calculations reveal dispersive features in the spin structure factor embedded in a generally diffuse background due to the existence of fractionalized spin-1/2 excitations called spinons. For two of the previously proposed Z2 states, the dispersive features are almost absent, and diffuse scattering dominates over a large energy window throughout the Brillouin zone. This resembles the structure factor observed in recent inelastic neutron-scattering experiments on singlet crystals of herbertsmithite. Furthermore, one of the Z2 states with the spin structure factor with mostly diffuse scattering is gapped, and it may be adiabatically connected to the gapped spin liquid state observed in recent density-matrix renormalization group calculations for the nearest-neighbor antiferromagnetic Heisenberg model. The perturbations mentioned above are found to enhance the diffuse nature of the spin structure factor and reduce the momentum dependencies of the spin gap. We also calculate the electron spin resonance (ESR) absorption spectra that further characterize the role of

  5. Spin interferometry in anisotropic spin-orbit fields

    Science.gov (United States)

    Saarikoski, Henri; Reynoso, Andres A.; Baltanás, José Pablo; Frustaglia, Diego; Nitta, Junsaku

    2018-03-01

    Electron spins in a two-dimensional electron gas can be manipulated by spin-orbit (SO) fields originating from either Rashba or Dresselhaus interactions with independent isotropic characteristics. Together, though, they produce anisotropic SO fields with consequences on quantum transport through spin interference. Here we study the transport properties of modeled mesoscopic rings subject to Rashba and Dresselhaus [001] SO couplings in the presence of an additional in-plane Zeeman field acting as a probe. By means of one- and two-dimensional quantum transport simulations we show that this setting presents anisotropies in the quantum resistance as a function of the Zeeman field direction. Moreover, the anisotropic resistance can be tuned by the Rashba strength up to the point to invert its response to the Zeeman field. We also find that a topological transition in the field texture that is associated with a geometric phase switching is imprinted in the anisotropy pattern. We conclude that resistance anisotropy measurements can reveal signatures of SO textures and geometric phases in spin carriers.

  6. Study of high-spin analog resonances near the N=50 neutron shell

    International Nuclear Information System (INIS)

    Gales, S.; El Hage, Y.; Schapira, J.P.; Fortier, S.; Laurent, H.; Maison, J.M.

    1979-01-01

    The 96 Zr( 3 He,d) 97 Nb and the 92 Mo( 3 He,d) 93 Tc reactions, investigated at, respectively 39.0 and 28.5 MeV incident energies, were used to selectively populate high-spin analog resonances in the 97 Nb and 93 Tc nuclei. Angular distributions were measured for the dsub(3/2), gsub(7/2) and hsub(11/2) analog states of the low-lying levels in 97 Zr. A DWBA analysis of the data for these unbound levels (using Gamov functions as form factors) was carried out and spectroscopic strengths extracted. The 96 Zr( 3 He,dp) and 92 Mo( 3 He,dp) reactions were performed, respectively, at 37.5 and 30 MeV incident energies. The angular distributions of the emitted protons were measured in coincidence using method II of Litherland and Ferguson with 0 0 detection of deuteron groups. Spins, population parameters and proton branching ratios to the ground state and excited states of the targets were determined from the analysis of the angular correlation data. The position of the neutron threshold as compared with the excitation energies of the analog states in 97 Nb and 93 Tc is found to be an important parameter in the extraction of the structure informations on core-excited components in the parent levels wave functions. Neutron particle-hole multiplets are observed for the first time in 96 Zr through the decay of the gsub(7 /2) and hsub(11/2) analog resonances. The limitation of the present method due to the neutron threshold or to the energy resolution in the proton channel is discussed and compared with the results of inelastic resonant scattering through isobaric analog resonances

  7. Spin relaxation through lateral spin transport in heavily doped n -type silicon

    Science.gov (United States)

    Ishikawa, M.; Oka, T.; Fujita, Y.; Sugiyama, H.; Saito, Y.; Hamaya, K.

    2017-03-01

    We experimentally study temperature-dependent spin relaxation including lateral spin diffusion in heavily doped n -type silicon (n+-Si ) layers by measuring nonlocal magnetoresistance in small-sized CoFe/MgO/Si lateral spin-valve (LSV) devices. Even at room temperature, we observe large spin signals, 50-fold the magnitude of those in previous works on n+-Si . By measuring spin signals in LSVs with various center-to-center distances between contacts, we reliably evaluate the temperature-dependent spin diffusion length (λSi) and spin lifetime (τSi). We find that the temperature dependence of τSi is affected by that of the diffusion constant in the n+-Si layers, meaning that it is important to understand the temperature dependence of the channel mobility. A possible origin of the temperature dependence of τSi is discussed in terms of the recent theories by Dery and co-workers.

  8. Imaging of the brain using the fast-spin-echo and gradient-spin-echo techniques

    International Nuclear Information System (INIS)

    Umek, W.; Ba-Ssalamah, A.; Prokesch, R.; Mallek, R.; Heimberger, K.; Hittmair, K.

    1998-01-01

    The aim of our study was to compare gradient-spin-echo (GRASE) to fast-spin-echo (FSE) sequences for fast T2-weighted MR imaging of the brain. Thirty-one patients with high-signal-intensity lesions on T2-weighted images were examined on a 1.5-T MR system. The FSE and GRASE sequences with identical sequence parameters were obtained and compared side by side. Image assessment criteria included lesion conspicuity, contrast between different types of normal tissue, and image artifacts. In addition, signal-to-noise, contrast-to-noise, and contrast ratios and were determined. The FSE technique demonstrated more lesions than GRASE and with generally better conspicuity. Smaller lesions in particular were better demonstrated on FSE because of lower image noise and slightly weaker image artifacts. Gray-white differentiation was better on FSE. Ferritin and hemosiderin depositions appeared darker on GRASE, which resulted in better contrast. Fatty tissue was less bright on GRASE. With current standard hardware equipment, the FSE technique seems preferable to GRASE for fast T2-weighted routine MR imaging of the brain. For the assessment of hemosiderin or ferritin depositions, GRASE might be considered. (orig.)

  9. Spin conversion induced by spin-orbit interaction in positronium collisions

    International Nuclear Information System (INIS)

    Saito, H; Nakayama, T; Hyodo, T

    2009-01-01

    The positronium spin conversion reaction induced by spin-orbit interaction is investigated. We obtain the reaction rates during positronium-Xe and positronium-Kr collisions by using the Zeeman mixing of positronium states. At thermal energies corresponding to room temperature, the reaction rate for spin conversion due to spin-orbit interaction is found to be almost twice that for the positronium pick-off reaction. We also study the energy dependence of the reaction rate. The mean energy of positronium is controlled by changing the gas temperature and using positronium in thermal equilibrium. We found that the reaction rate increases with the collision energy.

  10. Proton T2 relaxation effect of superparamagnetic iron oxide. Comparison between fast spin echo and conventional spin echo sequence

    International Nuclear Information System (INIS)

    Tanimoto, Akihiro; Satoh, Yoshinori; Higuchi, Nobuya; Izutsu, Mutsumu; Yuasa, Yuji; Hiramatsu, Kyoichi

    1995-01-01

    Superparamagnetic iron oxide (SPIO) particles have been known to show a great T 2 relaxation effect in the liver, which contributes to significant liver signal decrease and detection of hepatic neoplasms. Recently, fast spin echo (FSE) sequence with less scanning time than conventional spin echo (SE) sequence has been rapidly introduced in clinical MR imaging. To investigate whether SPIO would show decreased T 2 relaxation effect on FSE, we obtained T 2 relaxivity (R2) of SPIO in vitro and liver signal decrease caused by SPIO in vivo. SPIO showed 20% less R2 on Carr-Purcell-Meiboom-Gill (CPMG) sequence than on SE. Relative liver signal-to-noise ratio (SNR) decrease caused by SPIO was significantly smaller (p 2 relaxation effect on FSE than on SE. However, further studies will be required to assess the diagnostic capability of SPIO on FSE, in the detection of hepatic neoplasms. (author)

  11. Validation and Diagnostic Efficiency of the Mini-SPIN in Spanish-Speaking Adolescents.

    Directory of Open Access Journals (Sweden)

    LuisJoaquín Garcia-Lopez

    Full Text Available Social Anxiety Disorder (SAD is one of the most common mental disorders in adolescence. Many validated psychometric tools are available to diagnose individuals with SAD efficaciously. However, there is a demand for shortened self-report instruments that identify adolescents at risk of developing SAD. We validate the Mini-SPIN and its diagnostic efficiency in overcoming this problem in Spanish-speaking adolescents in Spain.The psychometric properties of the 3-item Mini-SPIN scale for adolescents were assessed in a community (study 1 and clinical sample (study 2.Study 1 consisted of 573 adolescents, and found the Mini-SPIN to have appropriate internal consistency and high construct validity. Study 2 consisted of 354 adolescents (147 participants diagnosed with SAD and 207 healthy controls. Data revealed that the Mini-SPIN has good internal consistency, high construct validity and adequate diagnostic efficiency.Our findings suggest that the Mini-SPIN has good psychometric properties on clinical and healthy control adolescents and general population, which indicates that it can be used as a screening tool in Spanish-speaking adolescents. Cut-off scores are provided.

  12. Validation and Diagnostic Efficiency of the Mini-SPIN in Spanish-Speaking Adolescents.

    Science.gov (United States)

    Garcia-Lopez, LuisJoaquín; Moore, Harry T A

    2015-01-01

    Social Anxiety Disorder (SAD) is one of the most common mental disorders in adolescence. Many validated psychometric tools are available to diagnose individuals with SAD efficaciously. However, there is a demand for shortened self-report instruments that identify adolescents at risk of developing SAD. We validate the Mini-SPIN and its diagnostic efficiency in overcoming this problem in Spanish-speaking adolescents in Spain. The psychometric properties of the 3-item Mini-SPIN scale for adolescents were assessed in a community (study 1) and clinical sample (study 2). Study 1 consisted of 573 adolescents, and found the Mini-SPIN to have appropriate internal consistency and high construct validity. Study 2 consisted of 354 adolescents (147 participants diagnosed with SAD and 207 healthy controls). Data revealed that the Mini-SPIN has good internal consistency, high construct validity and adequate diagnostic efficiency. Our findings suggest that the Mini-SPIN has good psychometric properties on clinical and healthy control adolescents and general population, which indicates that it can be used as a screening tool in Spanish-speaking adolescents. Cut-off scores are provided.

  13. Electric dipole spin resonance in a quantum spin dimer system driven by magnetoelectric coupling

    Science.gov (United States)

    Kimura, Shojiro; Matsumoto, Masashige; Akaki, Mitsuru; Hagiwara, Masayuki; Kindo, Koichi; Tanaka, Hidekazu

    2018-04-01

    In this Rapid Communication, we propose a mechanism for electric dipole active spin resonance caused by spin-dependent electric polarization in a quantum spin gapped system. This proposal was successfully confirmed by high-frequency electron spin resonance (ESR) measurements of the quantum spin dimer system KCuCl3. ESR measurements by an illuminating linearly polarized electromagnetic wave reveal that the optical transition between the singlet and triplet states in KCuCl3 is driven by an ac electric field. The selection rule of the observed transition agrees with the calculation by taking into account spin-dependent electric polarization. We suggest that spin-dependent electric polarization is effective in achieving fast control of quantum spins by an ac electric field.

  14. Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures.

    Science.gov (United States)

    Myoung, Nojoon; Seo, Kyungchul; Lee, Seung Joo; Ihm, G

    2013-08-27

    Vertical graphene heterostructures have been introduced as an alternative architecture for electronic devices by using quantum tunneling. Here, we present that the current on/off ratio of vertical graphene field-effect transistors is enhanced by using an armchair graphene nanoribbon as an electrode. Moreover, we report spin-dependent tunneling current of the graphene/MoS2 heterostructures. When an atomically thin MoS2 layer sandwiched between graphene electrodes becomes magnetic, Dirac fermions with different spins feel different heights of the tunnel barrier, leading to spin-dependent tunneling. Our finding will develop the present graphene heterostructures for electronic devices by improving the device performance and by adding the possibility of spintronics based on graphene.

  15. Continuous Faraday measurement of spin precession without light shifts

    Science.gov (United States)

    Jasperse, M.; Kewming, M. Â. J.; Fischer, S. Â. N.; Pakkiam, P.; Anderson, R. Â. P.; Turner, L. Â. D.

    2017-12-01

    We describe a dispersive Faraday optical probe of atomic spin which performs a weak measurement of spin projection of a quantum gas continuously for more than one second. To date, focusing bright far-off-resonance probes onto quantum gases has proved invasive due to strong scalar and vector light shifts exerting dipole and Stern-Gerlach forces. We show that tuning the probe near the magic-zero wavelength at 790 nm between the fine-structure doublet of 87Rb cancels the scalar light shift, and careful control of polarization eliminates the vector light shift. Faraday rotations due to each fine-structure line reinforce at this wavelength, enhancing the signal-to-noise ratio for a fixed rate of probe-induced decoherence. Using this minimally invasive spin probe, we perform microscale atomic magnetometry at high temporal resolution. Spectrogram analysis of the Larmor precession signal of a single spinor Bose-Einstein condensate measures a time-varying magnetic field strength with 1 μ G accuracy every 5 ms; or, equivalently, makes more than 200 successive measurements each at 10 pT /√{Hz } sensitivity.

  16. Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins

    Science.gov (United States)

    Norris, Leigh Morgan

    Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater than or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In

  17. Highly Efficient Optical Pumping of Spin Defects in Silicon Carbide for Stimulated Microwave Emission

    Science.gov (United States)

    Fischer, M.; Sperlich, A.; Kraus, H.; Ohshima, T.; Astakhov, G. V.; Dyakonov, V.

    2018-05-01

    We investigate the pump efficiency of silicon-vacancy-related spins in silicon carbide. For a crystal inserted into a microwave cavity with a resonance frequency of 9.4 GHz, the spin population inversion factor of 75 with the saturation optical pump power of about 350 mW is achieved at room temperature. At cryogenic temperature, the pump efficiency drastically increases, owing to an exceptionally long spin-lattice relaxation time exceeding one minute. Based on the experimental results, we find realistic conditions under which a silicon carbide maser can operate in continuous-wave mode and serve as a quantum microwave amplifier.

  18. Spin-Caloritronic Batteries

    DEFF Research Database (Denmark)

    Yu, Xiao-Qin; Zhu, Zhen-Gang; Su, Gang

    2017-01-01

    The thermoelectric performance of a topological energy converter is analyzed. The H-shaped device is based on a combination of transverse topological effects involving the spin: the inverse spin Hall effect and the spin Nernst effect. The device can convert a temperature drop in one arm into an e...

  19. Efficient Spin Injection into Semiconductor

    International Nuclear Information System (INIS)

    Nahid, M.A.I.

    2010-06-01

    Spintronic research has made tremendous progress nowadays for making future devices obtain extra advantages of low power, and faster and higher scalability compared to present electronic devices. A spintronic device is based on the transport of an electron's spin instead of charge. Efficient spin injection is one of the very important requirements for future spintronic devices. However, the effective spin injection is an exceedingly difficult task. In this paper, the importance of spin injection, basics of spin current and the essential requirements of spin injection are illustrated. The experimental technique of electrical spin injection into semiconductor is also discussed based on the experimental experience. The electrical spin injection can easily be implemented for spin injection into any semiconductor. (author)

  20. Quantum group spin nets: Refinement limit and relation to spin foams

    Science.gov (United States)

    Dittrich, Bianca; Martin-Benito, Mercedes; Steinhaus, Sebastian

    2014-07-01

    So far spin foam models are hardly understood beyond a few of their basic building blocks. To make progress on this question, we define analogue spin foam models, so-called "spin nets," for quantum groups SU(2)k and examine their effective continuum dynamics via tensor network renormalization. In the refinement limit of this coarse-graining procedure, we find a vast nontrivial fixed-point structure beyond the degenerate and the BF phase. In comparison to previous work, we use fixed-point intertwiners, inspired by Reisenberger's construction principle [M. P. Reisenberger, J. Math. Phys. (N.Y.) 40, 2046 (1999)] and the recent work [B. Dittrich and W. Kaminski, arXiv:1311.1798], as the initial parametrization. In this new parametrization fine-tuning is not required in order to flow to these new fixed points. Encouragingly, each fixed point has an associated extended phase, which allows for the study of phase transitions in the future. Finally we also present an interpretation of spin nets in terms of melonic spin foams. The coarse-graining flow of spin nets can thus be interpreted as describing the effective coupling between two spin foam vertices or space time atoms.

  1. Observation of the anisotropic spin-glass transition and transverse spin ordering in pseudo-brookite through muon spin relaxation

    NARCIS (Netherlands)

    Boekema, C.; Brabers, V.A.M.; Lichti, R.L.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Schillaci, M.E.; MacLaughlin, D.E.; Dodds, S.A.

    1986-01-01

    Zero-field longitudinal muon-spin-relaxation (µSR) experiments have been performed on single crystals of pseudo-brookite (Fe2-xTil+x O 5; x=0.25), an anisotropic spin-glass system. The spinglass temperature (Tg) is determined to be 44.0±0.5K. Above Tg, a distinct exponential muon-spin-relaxation

  2. Gravitational waves from a spinning particle scattered by a relativistic star: Axial mode case

    International Nuclear Information System (INIS)

    Tominaga, Kazuhiro; Saijo, Motoyuki; Maeda, Kei-ichi

    2001-01-01

    We use a perturbation method to study gravitational waves from a spinning test particle scattered by a relativistic star. The present analysis is restricted to axial modes. By calculating the energy spectrum, the wave forms, and the total energy and angular momentum of gravitational waves, we analyze the dependence of the emitted gravitational waves on particle spin. For a normal neutron star, the energy spectrum has one broad peak whose characteristic frequency corresponds to the angular velocity at the turning point (a periastron). Since the turning point is determined by the orbital parameter, there exists a dependence of the gravitational wave on particle spin. We find that the total energy of l=2 gravitational waves gets larger as the spin increases in the antiparallel direction to the orbital angular momentum. For an ultracompact star, in addition to such an orbital contribution, we find the quasinormal modes excited by a scattered particle, whose excitation rate to gravitational waves depends on the particle spin. We also discuss the ratio of the total angular momentum to the total energy of gravitational waves and explain its spin dependence

  3. The non-linear coupled spin 2-spin 3 Cotton equation in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Linander, Hampus; Nilsson, Bengt E.W. [Department of Physics, Theoretical PhysicsChalmers University of Technology, S-412 96 Göteborg (Sweden)

    2016-07-05

    In the context of three-dimensional conformal higher spin theory we derive, in the frame field formulation, the full non-linear spin 3 Cotton equation coupled to spin 2. This is done by solving the corresponding Chern-Simons gauge theory system of equations, that is, using F=0 to eliminate all auxiliary fields and thus expressing the Cotton equation in terms of just the spin 3 frame field and spin 2 covariant derivatives and tensors (Schouten). In this derivation we neglect the spin 4 and higher spin sectors and approximate the star product commutator by a Poisson bracket. The resulting spin 3 Cotton equation is complicated but can be related to linearized versions in the metric formulation obtained previously by other authors. The expected symmetry (spin 3 “translation”, “Lorentz” and “dilatation”) properties are verified for Cotton and other relevant tensors but some perhaps unexpected features emerge in the process, in particular in relation to the non-linear equations. We discuss the structure of this non-linear spin 3 Cotton equation but its explicit form is only presented here, in an exact but not completely refined version, in appended files obtained by computer algebra methods. Both the frame field and metric formulations are provided.

  4. Thermal spin filtering effect and giant magnetoresistance of half-metallic graphene nanoribbon co-doped with non-metallic Nitrogen and Boron

    Science.gov (United States)

    Huang, Hai; Zheng, Anmin; Gao, Guoying; Yao, Kailun

    2018-03-01

    Ab initio calculations based on density functional theory and non-equilibrium Green's function are performed to investigate the thermal spin transport properties of single-hydrogen-saturated zigzag graphene nanoribbon co-doped with non-metallic Nitrogen and Boron in parallel and anti-parallel spin configurations. The results show that the doped graphene nanoribbon is a full half-metal. The two-probe system based on the doped graphene nanoribbon exhibits various excellent spin transport properties, including the spin-filtering effect, the spin Seebeck effect, the single-spin negative differential thermal resistance effect and the sign-reversible giant magnetoresistance feature. Excellently, the spin-filtering efficiency can reach nearly 100% in the parallel configuration and the magnetoresistance ratio can be up to -1.5 × 1010% by modulating the electrode temperature and temperature gradient. Our findings indicate that the metal-free doped graphene nanoribbon would be a promising candidate for spin caloritronic applications.

  5. Dynamics of the two-spin spin-boson model with a common bath

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Tianrui [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore); Centre for Optical and Electromagnetic Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058 (China); Yan, Yiying; Chen, Lipeng; Zhao, Yang, E-mail: YZhao@ntu.edu.sg [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore)

    2016-04-14

    Dynamics of the two-spin spin-boson model in the presence of Ohmic and sub-Ohmic baths is investigated by employing a multitude of the Davydov D{sub 1} trial states, also known as the multi-D{sub 1} Ansatz. Its accuracy in dynamics simulations of the two-spin SBM is improved significantly over the single D{sub 1} Ansatz, especially in the weak to moderately strong coupling regime. Validity of the multi-D{sub 1} Ansatz for various coupling strengths is also systematically examined by making use of the deviation vector which quantifies how faithfully the trial state obeys the Schrödinger equation. The time evolution of population difference and entanglement has been studied for various initial conditions and coupling strengths. Careful comparisons are carried out between our approach and three other methods, i.e., the time-dependent numerical renormalization group (TD-NRG) approach, the Bloch-Redfield theory, and a method based on a variational master equation. For strong coupling, the multi-D{sub 1} trial state yields consistent results as the TD-NRG approach in the Ohmic regime while the two disagree in the sub-Ohmic regime, where the multi-D{sub 1} trial state is shown to be more accurate. For weak coupling, the multi-D{sub 1} trial state agrees with the two master-equation methods in the presence of both Ohmic and sub-Ohmic baths, but shows considerable differences with the TD-NRG approach in the presence of a sub-Ohmic bath, calling into question the validity of the TD-NRG results at long times in the literature.

  6. Spin at Lausanne

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    From 25 September to 1 October, some 150 spin enthusiasts gathered in Lausanne for the 1980 International Symposium on High Energy Physics with Polarized Beams and Polarized Targets. The programme was densely packed, covering physics interests with spin as well as the accelerator and target techniques which make spin physics possible

  7. Amplified Sensitivity of Nitrogen-Vacancy Spins in Nanodiamonds Using All-Optical Charge Readout.

    Science.gov (United States)

    Hopper, David A; Grote, Richard R; Parks, Samuel M; Bassett, Lee C

    2018-04-23

    Nanodiamonds containing nitrogen-vacancy (NV) centers offer a versatile platform for sensing applications spanning from nanomagnetism to in vivo monitoring of cellular processes. In many cases, however, weak optical signals and poor contrast demand long acquisition times that prevent the measurement of environmental dynamics. Here, we demonstrate the ability to perform fast, high-contrast optical measurements of charge distributions in ensembles of NV centers in nanodiamonds and use the technique to improve the spin-readout signal-to-noise ratio through spin-to-charge conversion. A study of 38 nanodiamonds with sizes ranging between 20 and 70 nm, each hosting a small ensemble of NV centers, uncovers complex, multiple time scale dynamics due to radiative and nonradiative ionization and recombination processes. Nonetheless, the NV-containing nanodiamonds universally exhibit charge-dependent photoluminescence contrasts and the potential for enhanced spin readout using spin-to-charge conversion. We use the technique to speed up a T 1 relaxometry measurement by a factor of 5.

  8. THE EFFECT OF TRANSIENT ACCRETION ON THE SPIN-UP OF MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Sudip; Chakrabarty, Deepto, E-mail: sudip@tifr.res.in [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400005 (India)

    2017-01-20

    A millisecond pulsar is a neutron star that has been substantially spun up by accretion from a binary companion. A previously unrecognized factor governing the spin evolution of such pulsars is the crucial effect of nonsteady or transient accretion. We numerically compute the evolution of accreting neutron stars through a series of outburst and quiescent phases, considering the drastic variation of the accretion rate and the standard disk–magnetosphere interaction. We find that, for the same long-term average accretion rate, X-ray transients can spin up pulsars to rates several times higher than can persistent accretors, even when the spin-down due to electromagnetic radiation during quiescence is included. We also compute an analytical expression for the equilibrium spin frequency in transients, by taking spin equilibrium to mean that no net angular momentum is transferred to the neutron star in each outburst cycle. We find that the equilibrium spin rate for transients, which depends on the peak accretion rate during outbursts, can be much higher than that for persistent sources. This explains our numerical finding. This finding implies that any meaningful study of neutron star spin and magnetic field distributions requires the inclusion of the transient accretion effect, since most accreting neutron star sources are transients. Our finding also implies the existence of a submillisecond pulsar population, which is not observed. This may point to the need for a competing spin-down mechanism for the fastest-rotating accreting pulsars, such as gravitational radiation.

  9. Serum levels of perfluorinated compounds and sperm Y:X chromosome ratio in two European populations and in Inuit from Greenland

    DEFF Research Database (Denmark)

    Kvist, Linus; Giwercman, Yvonne Lundberg; Jönsson, Bo A G

    2012-01-01

    and PFOS were measured in 607 men from Greenland, Poland and Ukraine using liquid chromatography-tandem mass spectrometry. Data was analyzed by linear and nonlinear regression. We observed no associations between PFOA and Y:X ratio (p=0.845 in a linear model, p=0.296 in a nonlinear model). A positive......This study investigated whether perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS), which exhibit reproductive toxicity in experimental animals, affect sperm sex chromosome ratio. The Y:X ratio was determined by fluorescence in situ hybridization. Serum concentrations of PFOA...... nonlinear association between PFOS and Y:X ratio was observed (p=0.016), with no association in a linear model (p=0.118). Analyzing the populations separately, a negative trend between categorized PFOS exposure and Y:X ratio was observed for the Inuit (B=-0.002, p=0.044). In conclusion, there was a negative...

  10. Spin precession and spin waves in a chiral electron gas: Beyond Larmor's theorem

    Science.gov (United States)

    Karimi, Shahrzad; Baboux, Florent; Perez, Florent; Ullrich, Carsten A.; Karczewski, Grzegorz; Wojtowicz, Tomasz

    2017-07-01

    Larmor's theorem holds for magnetic systems that are invariant under spin rotation. In the presence of spin-orbit coupling this invariance is lost and Larmor's theorem is broken: for systems of interacting electrons, this gives rise to a subtle interplay between the spin-orbit coupling acting on individual single-particle states and Coulomb many-body effects. We consider a quasi-two-dimensional, partially spin-polarized electron gas in a semiconductor quantum well in the presence of Rashba and Dresselhaus spin-orbit coupling. Using a linear-response approach based on time-dependent density-functional theory, we calculate the dispersions of spin-flip waves. We obtain analytic results for small wave vectors and up to second order in the Rashba and Dresselhaus coupling strengths α and β . Comparison with experimental data from inelastic light scattering allows us to extract α and β as well as the spin-wave stiffness very accurately. We find significant deviations from the local density approximation for spin-dependent electron systems.

  11. Spin-polarization and spin-dependent logic gates in a double quantum ring based on Rashba spin-orbit effect: Non-equilibrium Green's function approach

    International Nuclear Information System (INIS)

    Eslami, Leila; Esmaeilzadeh, Mahdi

    2014-01-01

    Spin-dependent electron transport in an open double quantum ring, when each ring is made up of four quantum dots and threaded by a magnetic flux, is studied. Two independent and tunable gate voltages are applied to induce Rashba spin-orbit effect in the quantum rings. Using non-equilibrium Green's function formalism, we study the effects of electron-electron interaction on spin-dependent electron transport and show that although the electron-electron interaction induces an energy gap, it has no considerable effect when the bias voltage is sufficiently high. We also show that the double quantum ring can operate as a spin-filter for both spin up and spin down electrons. The spin-polarization of transmitted electrons can be tuned from −1 (pure spin-down current) to +1 (pure spin-up current) by changing the magnetic flux and/or the gates voltage. Also, the double quantum ring can act as AND and NOR gates when the system parameters such as Rashba coefficient are properly adjusted

  12. Inverse spin Hall effect from pulsed spin current in organic semiconductors with tunable spin-orbit coupling.

    Science.gov (United States)

    Sun, Dali; van Schooten, Kipp J; Kavand, Marzieh; Malissa, Hans; Zhang, Chuang; Groesbeck, Matthew; Boehme, Christoph; Valy Vardeny, Z

    2016-08-01

    Exploration of spin currents in organic semiconductors (OSECs) induced by resonant microwave absorption in ferromagnetic substrates is appealing for potential spintronics applications. Owing to the inherently weak spin-orbit coupling (SOC) of OSECs, their inverse spin Hall effect (ISHE) response is very subtle; limited by the microwave power applicable under continuous-wave (cw) excitation. Here we introduce a novel approach for generating significant ISHE signals in OSECs using pulsed ferromagnetic resonance, where the ISHE is two to three orders of magnitude larger compared to cw excitation. This strong ISHE enables us to investigate a variety of OSECs ranging from π-conjugated polymers with strong SOC that contain intrachain platinum atoms, to weak SOC polymers, to C60 films, where the SOC is predominantly caused by the curvature of the molecule's surface. The pulsed-ISHE technique offers a robust route for efficient injection and detection schemes of spin currents at room temperature, and paves the way for spin orbitronics in plastic materials.

  13. High spin-filter efficiency and Seebeck effect through spin-crossover iron–benzene complex

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Qiang; Zhou, Liping, E-mail: zhoulp@suda.edu.cn; Cheng, Jue-Fei; Wen, Zhongqian; Han, Qin; Wang, Xue-Feng [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China)

    2016-04-21

    Electronic structures and coherent quantum transport properties are explored for spin-crossover molecule iron-benzene Fe(Bz){sub 2} using density functional theory combined with non-equilibrium Green’s function. High- and low-spin states are investigated for two different lead-molecule junctions. It is found that the asymmetrical T-shaped contact junction in the high-spin state behaves as an efficient spin filter while it has a smaller conductivity than that in the low-spin state. Large spin Seebeck effect is also observed in asymmetrical T-shaped junction. Spin-polarized properties are absent in the symmetrical H-shaped junction. These findings strongly suggest that both the electronic and contact configurations play significant roles in molecular devices and metal-benzene complexes are promising materials for spintronics and thermo-spintronics.

  14. Radiation reaction for spinning bodies in effective field theory. I. Spin-orbit effects

    Science.gov (United States)

    Maia, Natália T.; Galley, Chad R.; Leibovich, Adam K.; Porto, Rafael A.

    2017-10-01

    We compute the leading post-Newtonian (PN) contributions at linear order in the spin to the radiation-reaction acceleration and spin evolution for binary systems, which enter at fourth PN order. The calculation is carried out, from first principles, using the effective field theory framework for spinning compact objects, in both the Newton-Wigner and covariant spin supplementary conditions. A nontrivial consistency check is performed on our results by showing that the energy loss induced by the resulting radiation-reaction force is equivalent to the total emitted power in the far zone, up to so-called "Schott terms." We also find that, at this order, the radiation reaction has no net effect on the evolution of the spins. The spin-spin contributions to radiation reaction are reported in a companion paper.

  15. Thermal spin current generation and spin transport in Pt/magnetic-insulator/Py heterostructures

    Science.gov (United States)

    Chen, Ching-Tzu; Safranski, Christopher; Krivorotov, Ilya; Sun, Jonathan

    Magnetic insulators can transmit spin current via magnon propagation while blocking charge current. Furthermore, under Joule heating, magnon flow as a result of the spin Seeback effect can generate additional spin current. Incorporating magnetic insulators in a spin-orbit torque magnetoresistive memory device can potentially yield high switching efficiencies. Here we report the DC magneto-transport studies of these two effects in Pt/magnetic-insulator/Py heterostructures, using ferrimagnetic CoFexOy (CFO) and antiferromagnet NiO as the model magnetic insulators. We observe the presence and absence of the inverse spin-Hall signals from the thermal spin current in Pt/CFO/Py and Pt/NiO/Py structures. These results are consistent with our spin-torque FMR linewidths in comparison. We will also report investigations into the magnetic field-angle dependence of these observations.

  16. Photon-gated spin transistor

    OpenAIRE

    Li, Fan; Song, Cheng; Cui, Bin; Peng, Jingjing; Gu, Youdi; Wang, Guangyue; Pan, Feng

    2017-01-01

    Spin-polarized field-effect transistor (spin-FET), where a dielectric layer is generally employed for the electrical gating as the traditional FET, stands out as a seminal spintronic device under the miniaturization trend of electronics. It would be fundamentally transformative if optical gating was used for spin-FET. We report a new type of spin-polarized field-effect transistor (spin-FET) with optical gating, which is fabricated by partial exposure of the (La,Sr)MnO3 channel to light-emitti...

  17. Semiclassical treatment of transport and spin relaxation in spin-orbit coupled systems

    Energy Technology Data Exchange (ETDEWEB)

    Lueffe, Matthias Clemens

    2012-02-10

    The coupling of orbital motion and spin, as derived from the relativistic Dirac equation, plays an important role not only in the atomic spectra but as well in solid state physics. Spin-orbit interactions are fundamental for the young research field of semiconductor spintronics, which is inspired by the idea to use the electron's spin instead of its charge for fast and power saving information processing in the future. However, on the route towards a functional spin transistor there is still some groundwork to be done, e.g., concerning the detailed understanding of spin relaxation in semiconductors. The first part of the present thesis can be placed in this context. We have investigated the processes contributing to the relaxation of a particularly long-lived spin-density wave, which can exist in semiconductor heterostructures with Dresselhaus and Rashba spin-orbit coupling of precisely the same magnitude. We have used a semiclassical spindiffusion equation to study the influence of the Coulomb interaction on the lifetime of this persistent spin helix. We have thus established that, in the presence of perturbations that violate the special symmetry of the problem, electron-electron scattering can have an impact on the relaxation of the spin helix. The resulting temperature-dependent lifetime reproduces the experimentally observed one in a satisfactory manner. It turns out that cubic Dresselhaus spin-orbit coupling is the most important symmetry-breaking element. The Coulomb interaction affects the dynamics of the persistent spin helix also via an Hartree-Fock exchange field. As a consequence, the individual spins precess about the vector of the surrounding local spin density, thus causing a nonlinear dynamics. We have shown that, for an experimentally accessible degree of initial spin polarization, characteristic non-linear effects such as a dramatic increase of lifetime and the appearance of higher harmonics can be expected. Another fascinating solid

  18. Bulk magnon spin current theory for the longitudinal spin Seebeck effect

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, S.M., E-mail: rezende@df.ufpe.br [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco (Brazil); Rodríguez-Suárez, R.L. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco (Brazil); Facultad de Física, Pontificia Universidad Católica de Chile, Casilla, 306 Santiago (Chile); Cunha, R.O.; López Ortiz, J.C.; Azevedo, A. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco (Brazil)

    2016-02-15

    The longitudinal spin Seebeck effect (LSSE) consists in the generation of a spin current parallel to a temperature gradient applied across the thickness of a bilayer made of a ferromagnetic insulator (FMI), such as yttrium iron garnet (YIG), and a metallic layer (ML) with strong spin orbit coupling, such as platinum. The LSSE is usually detected by a DC voltage generated along the ML due to the conversion of the spin current into a charge current perpendicular to the static magnetic field by means of the inverse spin Hall effect. Here we present a model for the LSSE that relies on the bulk magnon spin current created by the temperature gradient across the thickness of the FMI. We show that the spin current pumped into the metallic layer by the magnon accumulation in the FMI provides continuity of the spin current at the FMI/ML interface and is essential for the existence of the LSSE. The results of the theory are in good agreement with experimental LSSE data in YIG/Pt bilayers on the variation of the DC voltage with the sample temperature, with the FMI layer thickness and with the intensity of high magnetic fields. - Highlights: • We present a theory for the longitudinal spin Seebeck effect based on bulk magnons. • The model explains quantitatively the measured voltage in YIG/Pt created by the LSSE. • The model explains quantitatively the temperature dependence of LSSE measured in YIG/Pt. • The model agrees qualitatively with the measured dependence of LSSE with YIG thickness. • The model agrees qualitatively with the measured dependence of LSSE on magnetic field.

  19. Coupled spin and charge collective excitations in a spin polarized electron gas

    International Nuclear Information System (INIS)

    Marinescu, D.C.; Quinn, J.J.; Yi, K.S.

    1997-01-01

    The charge and longitudinal spin responses induced in a spin polarized quantum well by a weak electromagnetic field are investigated within the framework of the linear response theory. The authors evaluate the excitation frequencies for the intra- and inter-subband transitions of the collective charge and longitudinal spin density oscillations including many-body corrections beyond the random phase approximation through the spin dependent local field factors, G σ ± (q,ω). An equation-of-motion method was used to obtain these corrections in the limit of long wavelengths, and the results are given in terms of the equilibrium pair correlation function. The finite degree of spin polarization is shown to introduce coupling between the charge and spin density modes, in contrast with the result for an unpolarized system

  20. Spin Transport in Semiconductor heterostructures

    International Nuclear Information System (INIS)

    Marinescu, Domnita Catalina

    2011-01-01

    The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

  1. Recoil velocity at second post-Newtonian order for spinning black hole binaries

    International Nuclear Information System (INIS)

    Racine, Etienne; Buonanno, Alessandra; Kidder, Larry

    2009-01-01

    We compute the flux of linear momentum carried by gravitational waves emitted from spinning binary black holes at second post-Newtonian (2PN) order for generic orbits. In particular we provide explicit expressions of three new types of terms, namely, next-to-leading order spin-orbit terms at 1.5 post-Newtonian (1.5PN) order, spin-orbit tail terms at 2PN order, and spin-spin terms at 2PN order. Restricting ourselves to quasicircular orbits, we integrate the linear-momentum flux over time to obtain the recoil velocity as function of orbital frequency. We find that in the so-called superkick configuration the higher-order spin corrections can increase the recoil velocity up to a factor ∼3 with respect to the leading-order PN prediction. Whereas the recoil velocity computed in PN theory within the adiabatic approximation can accurately describe the early inspiral phase, we find that its fast increase during the late inspiral and plunge, and the arbitrariness in determining until when it should be trusted, makes the PN predictions for the total recoil not very accurate and robust. Nevertheless, the linear-momentum flux at higher PN orders can be employed to build more reliable resummed expressions aimed at capturing the nonperturbative effects until merger. Furthermore, we provide expressions valid for generic orbits, and accurate at 2PN order, for the energy and angular momentum carried by gravitational waves emitted from spinning binary black holes. Specializing to quasicircular orbits we compute the spin-spin terms at 2PN order in the expression for the evolution of the orbital frequency and found agreement with Mikoczi, Vasuth, and Gergely. We also verified that in the limit of extreme mass ratio our expressions for the energy and angular momentum fluxes match the ones of Tagoshi, Shibata, Tanaka, and Sasaki obtained in the context of black hole perturbation theory.

  2. ac spin-Hall effect

    International Nuclear Information System (INIS)

    Entin-Wohlman, O.

    2005-01-01

    Full Text:The spin-Hall effect is described. The Rashba and Dresselhaus spin-orbit interactions are both shown to yield the low temperature spin-Hall effect for strongly localized electrons coupled to phonons. A frequency-dependent electric field E(ω) generates a spin-polarization current, normal to E, due to interference of hopping paths. At zero temperature the corresponding spin-Hall conductivity is real and is proportional to ω 2 . At non-zero temperatures the coupling to the phonons yields an imaginary term proportional to ω. The interference also yields persistent spin currents at thermal equilibrium, at E = 0. The contributions from the Dresselhaus and Rashba interactions to the interference oppose each other

  3. Spin energy levels in axial symmetry: spin 4

    Energy Technology Data Exchange (ETDEWEB)

    de Biasi, R S; Portella, P D [Instituto Militar de Engenharia, Rio de Janeiro (Brazil). Secao de Engenharia e Ciencia dos Materiais

    1979-01-01

    The spin energy levels in axial symmetry are presented, in graphical and tabular form, for a spin 4. The levels are calculated for five different angles between the applied field and the symmetry axis 0/sup 0/, 30/sup 0/, 45/sup 0/, 60 and 90/sup 0/.

  4. Spin physics in semiconductors

    CERN Document Server

    2017-01-01

    This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.

  5. Studies on the clinical application of MR perfusion image using arterial spin labeling method

    International Nuclear Information System (INIS)

    Miyasaka, Kenji

    1999-01-01

    A new technique for imaging brain perfusion, arterial spin labeling method was applied in clinic. Brain perfusion was imaged by FAIR and EPISTAR both of which using arterial spin labeling (ASL) method. Suitable parameters for small contamination were examined using a imaging phantom. Then normal volunteers were examined for imaging timing. Suitable time between labeling pulse and imaging pulse for brain capillary and parenchyma was 1.0 sec. For clinical application study, total 48 patients with brain diseases were examined by FAIR and/or EPISTAR. A lesion/white matter signal intensity ratio was calculated in all clinical cases. Average of signal intensity ratio in infarction, tumor and arteriovenous malformation (AVM) were 0.8, 2.2 and 18.6 at FAIR, and 0.6, 2.2 and 12.8 at EPISTAR, respectively. Low perfusion diseases such as cerebral infarction have low signal intensity ratio and high perfusion diseases such as AVM have high signal intensity ratio in both FAIR and EPISTAR. Brain lesions were imaged similarly in FAIR and EPISTAR, and no remarkable difference was found between FAIR and EPISTAR. As a result of diagnostic trial by signal intensity ratio in operated tumor, hemorrhagic cases could be diagnosed by accuracies of 75% in FAIR and 100% in EPISTAR, respectively. (author)

  6. Spin systems

    CERN Document Server

    Caspers, W J

    1989-01-01

    This book is about spin systems as models for magnetic materials, especially antiferromagnetic lattices. Spin-systems are well-defined models, for which, in special cases, exact properties may be derived. These special cases are for the greater part, one- dimensional and restricted in their applicability, but they may give insight into general properties that also exist in higher dimension. This work pays special attention to qualitative differences between spin lattices of different dimensions. It also replaces the traditional picture of an (ordered) antiferromagnetic state of a Heisenberg sy

  7. High-spin structure of 121Xe: triaxiality, band termination and signature inversion

    International Nuclear Information System (INIS)

    Timar, J.; Paul, E.S.; Beausang, C.W.; Joyce, M.J.; Sharpey-Schafer, J.F.

    1995-01-01

    High-spin states of the odd-neutron 121 Xe nucleus have been studied with Eurogam using the 96 Zr( 30 Si, 5n) 121 Xe fusion-evaporation reaction. The level scheme has been extended up to a tentative spin of 67/2h at an excitation energy of ∼ 14 MeV. Several new rotational bands have been observed and the previously known bands extended. Two of them lose their regular character at high spins, which may be interpreted as transition from collective behaviour to a regime of noncollective oblate states. The deduced high-spin structure is compared to Woods-Saxon TRS cranking and CSM calculations. Configurations of the bands have been suggested. The νh 1 1/2 band is interpreted as having a triaxial shape. Signature inversion and an unexpectedly large staggering of the B(M1)/B(E2) ratios has been found for one of the bands. Enhanced E1 transitions have been observed between the νd 5/2 and the νh 1 1/2 bands. (orig.)

  8. Spin injection into GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Endres, Bernhard

    2013-11-01

    In this work spin injection into GaAs from Fe and (Ga,Mn)As was investigated. For the realization of any spintronic device the detailed knowledge about the spin lifetime, the spatial distribution of spin-polarized carriers and the influence of electric fields is essential. In the present work all these aspects have been analyzed by optical measurements of the polar magneto-optic Kerr effect (pMOKE) at the cleaved edge of the samples. Besides the attempt to observe spin pumping and thermal spin injection into n-GaAs the spin solar cell effect is demonstrated, a novel mechanism for the optical generation of spins in semiconductors with potential for future spintronic applications. Also important for spin-based devices as transistors is the presented realization of electrical spin injection into a two-dimensional electron gas.

  9. Spin inelastic electron tunneling spectroscopy on local spin adsorbed on surface.

    Science.gov (United States)

    Fransson, J

    2009-06-01

    The recent experimental conductance measurements taken on magnetic impurities on metallic surfaces, using scanning tunneling microscopy technique and suggesting occurrence of inelastic scattering processes, are theoretically addressed. We argue that the observed conductance signatures are caused by transitions between the spin states that have opened due to, for example, exchange coupling between the local spins and the tunneling electrons, and are directly interpretable in terms of inelastic transitions energies. Feasible measurements using spin-polarized scanning tunneling microscopy that would enable new information about the excitation spectrum of the local spins are discussed.

  10. Magnon condensation and spin superfluidity

    Science.gov (United States)

    Bunkov, Yury M.; Safonov, Vladimir L.

    2018-04-01

    We consider the Bose-Einstein condensation (BEC) of quasi-equilibrium magnons which leads to spin superfluidity, the coherent quantum transfer of magnetization in magnetic material. The critical conditions for excited magnon density in ferro- and antiferromagnets, bulk and thin films, are estimated and discussed. It was demonstrated that only the highly populated region of the spectrum is responsible for the emergence of any BEC. This finding substantially simplifies the BEC theoretical analysis and is surely to be used for simulations. It is shown that the conditions of magnon BEC in the perpendicular magnetized YIG thin film is fulfillied at small angle, when signals are treated as excited spin waves. We also predict that the magnon BEC should occur in the antiferromagnetic hematite at room temperature at much lower excited magnon density compared to that of ferromagnetic YIG. Bogoliubov's theory of Bose-Einstein condensate is generalized to the case of multi-particle interactions. The six-magnon repulsive interaction may be responsible for the BEC stability in ferro- and antiferromagnets where the four-magnon interaction is attractive.

  11. Role of entropy and structural parameters in the spin-state transition of LaCoO3

    Science.gov (United States)

    Chakrabarti, Bismayan; Birol, Turan; Haule, Kristjan

    2017-11-01

    The spin-state transition in LaCoO3 has eluded description for decades despite concerted theoretical and experimental effort. In this study, we approach this problem using fully charge self-consistent density functional theory + embedded dynamical mean field theory (DFT+DMFT). We show from first principles that LaCoO3 cannot be described by a single, pure spin state at any temperature. Instead, we observe a gradual change in the population of higher-spin multiplets with increasing temperature, with the high-spin multiplets being excited at the onset of the spin-state transition followed by the intermediate-spin multiplets being excited at the metal-insulator-transition temperature. We explicitly elucidate the critical role of lattice expansion and oxygen octahedral rotations in the spin-state transition. We also reproduce, from first principles, that the spin-state transition and the metal-insulator transition in LaCoO3 occur at different temperature scales. In addition, our results shed light on the importance of electronic entropy in driving the spin-state transition, which has so far been ignored in all first-principles studies of this material.

  12. Electrical detection of spin-momentum locking in Bi2Se3(Conference Presentation)

    Science.gov (United States)

    Jonker, Berend T.; Li, Connie H.; van't Erve, Olaf M.; Liu, Y.; Li, Y. Y.; Li, Lian

    2016-10-01

    Topological insulators (TIs) exhibit topologically protected metallic surface states populated by massless Dirac fermions with spin-momentum locking - the carrier spin lies in-plane, locked at right angle to the carrier momentum. An unpolarized charge current should thus create a net spin polarization. Here we show direct electrical detection of this bias current induced spin polarization as a voltage measured on a ferromagnetic (FM) metal tunnel barrier surface contact [1]. The voltage measured at this contact is proportional to the projection of the TI spin polarization onto this axis, and similar data are obtained for two different FM contact structures, Fe/Al2O3 and Co/MgO/graphene. From measurements of the carrier type and sign of the spin voltage for n-Bi2Se3 and p-Sb2Te3, we show that transport measurements can be used to determine the chirality of the spin texture [2]. The chirality inverts as one crosses the Dirac point, so that the carrier spin-momentum locking follows a left-hand rule (clockwise chirality) when the Fermi level is above the Dirac point, and right-hand rule below (counter-clockwise chirality). These results demonstrate simple and direct electrical access to the TI Dirac surface state spin system, provide clear evidence for the spin-momentum locking and bias current-induced spin polarization, and enable utilization of these remarkable properties for future technological applications. [1] C. H. Li, O. M. J. van `t Erve, J. T. Robinson, Y. Liu, L. Li , and B. T. Jonker, Nature Nanotech. 9, 218 (2014). [2] C. H. Li, O. M. J. van `t Erve, Y. Y. Li, L. Li and B. T. Jonker, under review.

  13. Innermost stable circular orbit of spinning particle in charged spinning black hole background

    Science.gov (United States)

    Zhang, Yu-Peng; Wei, Shao-Wen; Guo, Wen-Di; Sui, Tao-Tao; Liu, Yu-Xiao

    2018-04-01

    In this paper we investigate the innermost stable circular orbit (ISCO) (spin-aligned or anti-aligned orbit) for a classical spinning test particle with the pole-dipole approximation in the background of Kerr-Newman black hole in the equatorial plane. It is shown that the orbit of the spinning particle is related to the spin of the test particle. The motion of the spinning test particle will be superluminal if its spin is too large. We give an additional condition by considering the superluminal constraint for the ISCO in the black hole backgrounds. We obtain numerically the relations between the ISCO and the properties of the black holes and the test particle. It is found that the radius of the ISCO for a spinning test particle is smaller than that of a nonspinning test particle in the black hole backgrounds.

  14. Exploring molecular and spin interactions of Tellurium adatom in reduced graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Alegaonkar, Ashwini [Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune, 411 007, MS (India); Alegaonkar, Prashant [Department of Applied Physics, Defence Institute of Advance Technology, Girinagar, Pune, 411 025, MS (India); Pardeshi, Satish, E-mail: skpar@chem.unipune.ac.in [Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune, 411 007, MS (India)

    2017-07-01

    The transport of spin information fundamentally requires favourable molecular architecture and tunable spin moments to make the medium pertinent for spintronic. We report on achieving coherent molecular-spin parameters for rGO due to Tellurium (Te) adatom. Initially, GO prepared using graphite, was modified into rGO by in situ incorporation of 1 (w/w)% of Te. Both the systems were subjected to ESCA, FTIR, Raman dispersion, ESR spectroscopy, and electron microscopy. Analysis revealed that, Te substantially reacted with epoxides, carbonyl, and carboxylate groups that improved C-to-O ratio by twice. However, the spin splitting character, between Te and C, seems to be quenched. Moreover, Te altered the dynamical force constant between C-C and C=C that generated the mechanical stress within rGO network. The layer conjugation, nature of folding, symmetry, and electronic states of the edges were also affected by precipitation and entrapment of Te. The calculated dynamic molecular Raman and ESR spin parameters indicated that, Te acted as a bridging element for long range spin transport. This is particularly due to, the p-orbital moments of Te contributing, vectorially, to spin relaxation process operative at broken inversion symmetry sites. Our study suggests that, facile addition of Te in rGO is useful to achieve favourable spintronic properties. - Highlights: • Spin interactions and molecular dynamics modification due to Tellurium adatom in rGO. • Molecular level manipulation of Tellurium adatom for favourable spintronic properties. • Bychocov-Rashaba coupling are the operative channels in rGO. • Extrinsic coupling component get added vectorially by Tellurium. • Te-rGO is a viable medium for molecular spintronics.

  15. Electronic readout of a single nuclear spin using a molecular spin transistor

    Science.gov (United States)

    Vincent, R.; Klyastskaya, S.; Ruben, M.; Wernsdorfer, W.; Balestro, F.

    2012-02-01

    Quantum control of individual spins in condensed matter devices is an emerging field with a wide range of applications ranging from nanospintronics to quantum computing [1,2]. The electron, with its spin and orbital degrees of freedom, is conventionally used as carrier of the quantum information in the devices proposed so far. However, electrons exhibit a strong coupling to the environment leading to reduced relaxation and coherence times. Indeed quantum coherence and stable entanglement of electron spins are extremely difficult to achieve. We propose a new approach using the nuclear spin of an individual metal atom embedded in a single-molecule magnet (SMM). In order to perform the readout of the nuclear spin, the quantum tunneling of the magnetization (QTM) of the magnetic moment of the SMM in a transitor-like set-up is electronically detected. Long spin lifetimes of an individual nuclear spin were observed and the relaxation characteristics were studied. The manipulation of the nuclear spin state of individual atoms embedded in magnetic molecules opens a completely new world, where quantum logic may be integrated.[4pt] [1] L. Bogani, W. Wernsdorfer, Nature Mat. 7, 179 (2008).[0pt] [2] M. Urdampilleta, S. Klyatskaya, J.P. Cleuziou, M. Ruben, W. Wernsdorfer, Nature Mat. 10, 502 (2011).

  16. In-beam studies of high-spin states of actinide nuclei

    International Nuclear Information System (INIS)

    Stoyer, M.A.; California Univ., Berkeley, CA

    1990-01-01

    High-spin states in the actinides have been studied using Coulomb- excitation, inelastic excitation reactions, and one-neutron transfer reactions. Experimental data are presented for states in 232 U, 233 U, 234 U, 235 U, 238 Pu and 239 Pu from a variety of reactions. Energy levels, moments-of-inertia, aligned angular momentum, Routhians, gamma-ray intensities, and cross-sections are presented for most cases. Additional spectroscopic information (magnetic moments, M 1 /E 2 mixing ratios, and g-factors) is presented for 233 U. One- and two-neutron transfer reaction mechanisms and the possibility of band crossings (backbending) are discussed. A discussion of odd-A band fitting and Cranking calculations is presented to aid in the interpretation of rotational energy levels and alignment. In addition, several theoretical calculations of rotational populations for inelastic excitation and neutron transfer are compared to the data. Intratheory comparisons between the Sudden Approximation, Semi-Classical, and Alder-Winther-DeBoer methods are made. In connection with the theory development, the possible signature for the nuclear SQUID effect is discussed. 98 refs., 61 figs., 21 tabs

  17. Flying spin-qubit gates implemented through Dresselhaus and Rashba spin-orbit couplings

    International Nuclear Information System (INIS)

    Gong, S.J.; Yang, Z.Q.

    2007-01-01

    A theoretical scheme is proposed to implement flying spin-qubit gates based on two semiconductor wires with Dresselhaus and Rashba spin-orbit couplings (SOCs), respectively. It is found that under the manipulation of the Dresselhaus/Rashba SOC, spin rotates around x/y axis in the three-dimensional spin space. By combining the two kinds of manipulations, i.e. connecting the two kinds of semiconductor wires in series, we obtain a universal set of losses flying single-qubit gates including Hadamard, phase, and π/8 gates. A ballistic switching effect of electronic flow is also found in the investigation. Our results may be useful in future spin or nanoscale electronics

  18. Emergent spin electromagnetism induced by magnetization textures in the presence of spin-orbit interaction (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Tatara, Gen, E-mail: gen.tatara@riken.jp [RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198 Japan (Japan); Nakabayashi, Noriyuki [RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198 Japan (Japan); Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 Japan (Japan)

    2014-05-07

    Emergent electromagnetic field which couples to electron's spin in ferromagnetic metals is theoretically studied. Rashba spin-orbit interaction induces spin electromagnetic field which is in the linear order in gradient of magnetization texture. The Rashba-induced effective electric and magnetic fields satisfy in the absence of spin relaxation the Maxwell's equations as in the charge-based electromagnetism. When spin relaxation is taken into account besides spin dynamics, a monopole current emerges generating spin motive force via the Faraday's induction law. The monopole is expected to play an important role in spin-charge conversion and in the integration of spintronics into electronics.

  19. Large current modulation and tunneling magnetoresistance change by a side-gate electric field in a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor.

    Science.gov (United States)

    Kanaki, Toshiki; Yamasaki, Hiroki; Koyama, Tomohiro; Chiba, Daichi; Ohya, Shinobu; Tanaka, Masaaki

    2018-05-08

    A vertical spin metal-oxide-semiconductor field-effect transistor (spin MOSFET) is a promising low-power device for the post scaling era. Here, using a ferromagnetic-semiconductor GaMnAs-based vertical spin MOSFET with a GaAs channel layer, we demonstrate a large drain-source current I DS modulation by a gate-source voltage V GS with a modulation ratio up to 130%, which is the largest value that has ever been reported for vertical spin field-effect transistors thus far. We find that the electric field effect on indirect tunneling via defect states in the GaAs channel layer is responsible for the large I DS modulation. This device shows a tunneling magnetoresistance (TMR) ratio up to ~7%, which is larger than that of the planar-type spin MOSFETs, indicating that I DS can be controlled by the magnetization configuration. Furthermore, we find that the TMR ratio can be modulated by V GS . This result mainly originates from the electric field modulation of the magnetic anisotropy of the GaMnAs ferromagnetic electrodes as well as the potential modulation of the nonmagnetic semiconductor GaAs channel layer. Our findings provide important progress towards high-performance vertical spin MOSFETs.

  20. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae.

    Science.gov (United States)

    Jiang, L; Hodges, J S; Maze, J R; Maurer, P; Taylor, J M; Cory, D G; Hemmer, P R; Walsworth, R L; Yacoby, A; Zibrov, A S; Lukin, M D

    2009-10-09

    Robust measurement of single quantum bits plays a key role in the realization of quantum computation and communication as well as in quantum metrology and sensing. We have implemented a method for the improved readout of single electronic spin qubits in solid-state systems. The method makes use of quantum logic operations on a system consisting of a single electronic spin and several proximal nuclear spin ancillae in order to repetitively readout the state of the electronic spin. Using coherent manipulation of a single nitrogen vacancy center in room-temperature diamond, full quantum control of an electronic-nuclear system consisting of up to three spins was achieved. We took advantage of a single nuclear-spin memory in order to obtain a 10-fold enhancement in the signal amplitude of the electronic spin readout. We also present a two-level, concatenated procedure to improve the readout by use of a pair of nuclear spin ancillae, an important step toward the realization of robust quantum information processors using electronic- and nuclear-spin qubits. Our technique can be used to improve the sensitivity and speed of spin-based nanoscale diamond magnetometers.