WorldWideScience

Sample records for spin coherence transfer

  1. Spin coherence transfer in chemical transformations monitoredNMR

    Energy Technology Data Exchange (ETDEWEB)

    Anwar, Sabieh M.; Hilty, Christian; Chu, Chester; Bouchard,Louis-S.; Pierce, Kimberly L.; Pines, Alexander

    2006-07-31

    We demonstrate the use of micro-scale nuclear magneticresonance (NMR) for studying the transfer of spin coherence innon-equilibrium chemical processes, using spatially separated NMRencoding and detection coils. As an example, we provide the map ofchemical shift correlations for the amino acid alanine as it transitionsfrom the zwitterionic to the anionic form. Our method is unique in thesense that it allows us to track the chemical migration of encodednuclear spins during the course of chemical transformations.

  2. Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer

    International Nuclear Information System (INIS)

    Khaneja, Navin; Brockett, Roger; Glaser, Steffen J.

    2002-01-01

    Radio-frequency pulses are used in nuclear-magnetic-resonance spectroscopy to produce unitary transfer of states. Pulse sequences that accomplish a desired transfer should be as short as possible in order to minimize the effects of relaxation, and to optimize the sensitivity of the experiments. Many coherence-transfer experiments in NMR, involving a network of coupled spins, use temporary spin decoupling to produce desired effective Hamiltonians. In this paper, we demonstrate that significant time can be saved in producing an effective Hamiltonian if spin decoupling is avoided. We provide time-optimal pulse sequences for producing an important class of effective Hamiltonians in three-spin networks. These effective Hamiltonians are useful for coherence-transfer experiments in three-spin systems and implementation of indirect swap and Λ 2 (U) gates in the context of NMR quantum computing. It is shown that computing these time-optimal pulses can be reduced to geometric problems that involve computing sub-Riemannian geodesics. Using these geometric ideas, explicit expressions for the minimum time required for producing these effective Hamiltonians, transfer of coherence, and implementation of indirect swap gates, in a three-spin network are derived (Theorems 1 and 2). It is demonstrated that geometric control techniques provide a systematic way of finding time-optimal pulse sequences for transferring coherence and synthesizing unitary transformations in quantum networks, with considerable time savings (e.g., 42.3% for constructing indirect swap gates)

  3. Coherence transfer and electron T1-, T2-relaxation in nitroxide spin labels

    DEFF Research Database (Denmark)

    Marsh, Derek

    2017-01-01

    -hyperfine anisotropies of isolated nitroxide spin labels. Results compatible with earlier treatments by Redfield theory are obtained without specifically evaluating matrix elements. Extension to single-transition operators for isolated nitroxides predicts electron coherence transfer by pseudosecular electron...

  4. Frequency and wavenumber selective excitation of spin waves through coherent energy transfer from elastic waves

    OpenAIRE

    Hashimoto, Yusuke; Bossini, Davide; Johansen, Tom H.; Saitoh, Eiji; Kirilyuk, Andrei; Rasing, Theo

    2017-01-01

    Using spin-wave tomography (SWaT), we have investigated the excitation and the propagation dynamics of optically-excited magnetoelastic waves, i.e. hybridized modes of spin waves and elastic waves, in a garnet film. By using time-resolved SWaT, we reveal the excitation dynamics of magnetoelastic waves through coherent-energy transfer between optically-excited pure-elastic waves and spin waves via magnetoelastic coupling. This process realizes frequency and wavenumber selective excitation of s...

  5. Geometry of spin coherent states

    Science.gov (United States)

    Chryssomalakos, C.; Guzmán-González, E.; Serrano-Ensástiga, E.

    2018-04-01

    Spin states of maximal projection along some direction in space are called (spin) coherent, and are, in many respects, the ‘most classical’ available. For any spin s, the spin coherent states form a 2-sphere in the projective Hilbert space \

  6. Spin Coherence in Semiconductor Nanostructures

    National Research Council Canada - National Science Library

    Flatte, Michael E

    2006-01-01

    ... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...

  7. Nanosecond-timescale spin transfer using individual electrons in a quadruple-quantum-dot device

    Energy Technology Data Exchange (ETDEWEB)

    Baart, T. A.; Jovanovic, N.; Vandersypen, L. M. K. [QuTech and Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Reichl, C.; Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)

    2016-07-25

    The ability to coherently transport electron-spin states between different sites of gate-defined semiconductor quantum dots is an essential ingredient for a quantum-dot-based quantum computer. Previous shuttles using electrostatic gating were too slow to move an electron within the spin dephasing time across an array. Here, we report a nanosecond-timescale spin transfer of individual electrons across a quadruple-quantum-dot device. Utilizing enhanced relaxation rates at a so-called hot spot, we can upper bound the shuttle time to at most 150 ns. While actual shuttle times are likely shorter, 150 ns is already fast enough to preserve spin coherence in, e.g., silicon based quantum dots. This work therefore realizes an important prerequisite for coherent spin transfer in quantum dot arrays.

  8. Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory

    International Nuclear Information System (INIS)

    Gündoğan, M; Mazzera, M; Ledingham, P M; Cristiani, M; De Riedmatten, H

    2013-01-01

    We report on the coherent and multi-temporal mode storage of light using the full atomic frequency comb memory scheme. The scheme involves the transfer of optical atomic excitations in Pr 3+ :Y 2 SiO 5 to spin waves in hyperfine levels using strong single-frequency transfer pulses. Using this scheme, a total of five temporal modes are stored and recalled on-demand from the memory. The coherence of the storage and retrieval is characterized using a time-bin interference measurement resulting in visibilities higher than 80%, independent of the storage time. This coherent and multimode spin-wave memory is promising as a quantum memory for light. (paper)

  9. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    Science.gov (United States)

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  10. Magnetization rotation or generation of incoherent spin waves? Suggestions for a spin-transfer effect experiment

    International Nuclear Information System (INIS)

    Bazaliy, Y. B.; Jones, B. A.

    2002-01-01

    ''Spin-transfer'' torque is created when electric current is passed through metallic ferromagnets and may have interesting applications in spintronics. So far it was experimentally studied in ''collinear'' geometries, where it is difficult to predict whether magnetization will coherently rotate or spin-waves will be generated. Here we propose an easy modification of existing experiment in which the spin-polarization of incoming current will no longer be collinear with magnetization and recalculate the switching behavior of the device. We expect that a better agreement with the magnetization rotation theory will be achieved. That can be an important step in reconciling alternative points of view on the effect of spin-transfer torque

  11. Nuclear spin cooling by electric dipole spin resonance and coherent population trapping

    Science.gov (United States)

    Li, Ai-Xian; Duan, Su-Qing; Zhang, Wei

    2017-09-01

    Nuclear spin fluctuation suppression is a key issue in preserving electron coherence for quantum information/computation. We propose an efficient way of nuclear spin cooling in semiconductor quantum dots (QDs) by the coherent population trapping (CPT) and the electric dipole spin resonance (EDSR) induced by optical fields and ac electric fields. The EDSR can enhance the spin flip-flop rate and may bring out bistability under certain conditions. By tuning the optical fields, we can avoid the EDSR induced bistability and obtain highly polarized nuclear spin state, which results in long electron coherence time. With the help of CPT and EDSR, an enhancement of 1500 times of the electron coherence time can been obtained after a 500 ns preparation time.

  12. Exploiting level anti-crossings for efficient and selective transfer of hyperpolarization in coupled nuclear spin systems

    NARCIS (Netherlands)

    Pravdivtsev, A.N.; Yurkovskaya, A.V.; Kaptein, R.; Miesel, K.; Vieth, H.-M.; Ivanov, K.L.

    2013-01-01

    Spin hyperpolarization can be coherently transferred to other nuclei in field-cycling NMR experiments. At low magnetic fields spin polarization is redistributed in a strongly coupled network of spins. Polarization transfer is most efficient at fields where level anti-crossings (LACs) occur for the

  13. Long coherence times for edge spins

    Science.gov (United States)

    Kemp, Jack; Yao, Norman Y.; Laumann, Christopher R.; Fendley, Paul

    2017-06-01

    We show that in certain one-dimensional spin chains with open boundary conditions, the edge spins retain memory of their initial state for very long times, even at infinite temperature. The long coherence times do not require disorder, only an ordered phase. In the integrable Ising and XYZ chains, the presence of a strong zero mode means the coherence time is infinite. When Ising is perturbed by interactions breaking the integrability, the coherence time remains exponentially long in the perturbing couplings. We show that this is a consequence of an edge ‘almost’ strong zero mode that almost commutes with the Hamiltonian. We compute this operator explicitly, allowing us to estimate accurately the plateau value of edge spin autocorrelator.

  14. Excitation of coherent propagating spin waves by pure spin currents.

    Science.gov (United States)

    Demidov, Vladislav E; Urazhdin, Sergei; Liu, Ronghua; Divinskiy, Boris; Telegin, Andrey; Demokritov, Sergej O

    2016-01-28

    Utilization of pure spin currents not accompanied by the flow of electrical charge provides unprecedented opportunities for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. It was recently shown that pure spin currents can be used to excite coherent magnetization dynamics in magnetic nanostructures. However, because of the intrinsic nonlinear self-localization effects, magnetic auto-oscillations in the demonstrated devices were spatially confined, preventing their applications as sources of propagating spin waves in magnonic circuits using these waves as signal carriers. Here, we experimentally demonstrate efficient excitation and directional propagation of coherent spin waves generated by pure spin current. We show that this can be achieved by using the nonlocal spin injection mechanism, which enables flexible design of magnetic nanosystems and allows one to efficiently control their dynamic characteristics.

  15. Coherent spin-rotational dynamics of oxygen superrotors

    Science.gov (United States)

    Milner, Alexander A.; Korobenko, Aleksey; Milner, Valery

    2014-09-01

    We use state- and time-resolved coherent Raman spectroscopy to study the rotational dynamics of oxygen molecules in ultra-high rotational states. While it is possible to reach rotational quantum numbers up to N≈ 50 by increasing the gas temperature to 1500 K, low population levels and gas densities result in correspondingly weak optical response. By spinning {{O}2} molecules with an optical centrifuge, we efficiently excite extreme rotational states with N≤slant 109 in high-density room temperature ensembles. Fast molecular rotation results in the enhanced robustness of the created rotational wave packets against collisions, enabling us to observe the effects of weak spin-rotation coupling in the coherent rotational dynamics of oxygen. The decay rate of spin-rotational coherence due to collisions is measured as a function of the molecular angular momentum and its dependence on the collisional adiabaticity parameter is discussed. We find that at high values of N, the rotational decoherence of oxygen is much faster than that of the previously studied non-magnetic nitrogen molecules, pointing at the effects of spin relaxation in paramagnetic gases.

  16. Role of phase breaking processes on resonant spin transfer torque nano-oscillators

    Science.gov (United States)

    Sharma, Abhishek; Tulapurkar, Ashwin A.; Muralidharan, Bhaskaran

    2018-05-01

    Spin transfer torque nano-oscillators (STNOs) based on magnetoresistance and spin transfer torque effects find potential applications in miniaturized wireless communication devices. Using the non-coherent non-equilibrium Green's function spin transport formalism self-consistently coupled with the stochastic Landau-Lifshitz-Gilbert-Slonczewski's equation and the Poisson's equation, we elucidate the role of elastic phase breaking on the proposed STNO design featuring double barrier resonant tunneling. Demonstrating the immunity of our proposed design, we predict that despite the presence of elastic dephasing, the resonant tunneling magnetic tunnel junction structures facilitate oscillator designs featuring a large enhancement in microwave power up to 8μW delivered to a 50Ω load.

  17. Coherence Evolution and Transfer Supplemented by Sender's Initial-State Restoring

    Science.gov (United States)

    Fel'dman, E. B.; Zenchuk, A. I.

    2017-12-01

    The evolution of quantum coherences comes with a set of conservation laws provided that the Hamiltonian governing this evolution conserves the spin-excitation number. At that, coherences do not intertwist during the evolution. Using the transmission line and the receiver in the initial ground state we can transfer the coherences to the receiver without interaction between them, although the matrix elements contributing to each particular coherence intertwist in the receiver's state. Therefore we propose a tool based on the unitary transformation at the receiver side to untwist these elements and thus restore (at least partially) the structure of the sender's initial density matrix. A communication line with two-qubit sender and receiver is considered as an example of implementation of this technique.

  18. Infinite coherence time of edge spins in finite-length chains

    Science.gov (United States)

    Maceira, Ivo A.; Mila, Frédéric

    2018-02-01

    Motivated by the recent observation that exponentially long coherence times can be achieved for edge spins in models with strong zero modes, we study the impact of level crossings in finite-length spin chains on the dynamics of the edge spins. Focusing on the X Y spin-1 /2 chain with a transverse or longitudinal magnetic field, two models relevant to understanding recent experimental results on cobalt adatoms, we show that the edge spins can remain coherent for an infinite time even for a finite-length chain if the magnetic field is tuned to a value at which there is a level crossing. Furthermore, we show that the edge spins remain coherent for any initial state for the integrable case of a transverse field because all states have level crossings at the same value of the field, while the coherence time is increasingly large for lower temperatures in the case of a longitudinal field, which is nonintegrable.

  19. Coherent Dynamics of a Hybrid Quantum Spin-Mechanical Oscillator System

    Science.gov (United States)

    Lee, Kenneth William, III

    A fully functional quantum computer must contain at least two important components: a quantum memory for storing and manipulating quantum information and a quantum data bus to securely transfer information between quantum memories. Typically, a quantum memory is composed of a matter system, such as an atom or an electron spin, due to their prolonged quantum coherence. Alternatively, a quantum data bus is typically composed of some propagating degree of freedom, such as a photon, which can retain quantum information over long distances. Therefore, a quantum computer will likely be a hybrid quantum device, consisting of two or more disparate quantum systems. However, there must be a reliable and controllable quantum interface between the memory and bus in order to faithfully interconvert quantum information. The current engineering challenge for quantum computers is scaling the device to large numbers of controllable quantum systems, which will ultimately depend on the choice of the quantum elements and interfaces utilized in the device. In this thesis, we present and characterize a hybrid quantum device comprised of single nitrogen-vacancy (NV) centers embedded in a high quality factor diamond mechanical oscillator. The electron spin of the NV center is a leading candidate for the realization of a quantum memory due to its exceptional quantum coherence times. On the other hand, mechanical oscillators are highly sensitive to a wide variety of external forces, and have the potential to serve as a long-range quantum bus between quantum systems of disparate energy scales. These two elements are interfaced through crystal strain generated by vibrations of the mechanical oscillator. Importantly, a strain interface allows for a scalable architecture, and furthermore, opens the door to integration into a larger quantum network through coupling to an optical interface. There are a few important engineering challenges associated with this device. First, there have been no

  20. Signatures of Förster and Dexter transfer processes in coupled nanostructures for linear and two-dimensional coherent optical spectroscopy

    Science.gov (United States)

    Specht, Judith F.; Richter, Marten

    2015-03-01

    In this manuscript, we study the impact of the two Coulomb induced resonance energy transfer processes, Förster and Dexter coupling, on the spectral signatures obtained by double quantum coherence spectroscopy. We show that the specific coupling characteristics allow us to identify the underlying excitation transfer mechanism by means of specific signatures in coherent spectroscopy. Therefore, we control the microscopic calculated coupling strength of spin preserving and spin flipping Förster transfer processes by varying the mutual orientation of the two quantum emitters. The calculated spectra reveal the optical selection rules altered by Förster and Dexter coupling between two semiconductor quantum dots. We show that Dexter coupling between bright and dark two-exciton states occurs.

  1. Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed; Manchon, Aurelien; Waintal, Xavier

    2014-01-01

    Current-driven spin torques in metallic spin valves composed of antiferromagnets are theoretically studied using the nonequilibrium Green's function method implemented on a tight-binding model. We focus our attention on G-type and L-type antiferromagnets in both clean and disordered regimes. In such structures, spin torques can either rotate the magnetic order parameter coherently (coherent torque) or compete with the internal antiferromagnetic exchange (exchange torque). We show that, depending on the symmetry of the spin valve, the coherent and exchange torques can either be in the plane, ∝n×(q×n) or out of the plane ∝n×q, where q and n are the directions of the order parameter of the polarizer and the free antiferromagnetic layers, respectively. Although disorder conserves the symmetry of the torques, it strongly reduces the torque magnitude, pointing out the need for momentum conservation to ensure strong spin torque in antiferromagnetic spin valves.

  2. Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2014-05-28

    Current-driven spin torques in metallic spin valves composed of antiferromagnets are theoretically studied using the nonequilibrium Green\\'s function method implemented on a tight-binding model. We focus our attention on G-type and L-type antiferromagnets in both clean and disordered regimes. In such structures, spin torques can either rotate the magnetic order parameter coherently (coherent torque) or compete with the internal antiferromagnetic exchange (exchange torque). We show that, depending on the symmetry of the spin valve, the coherent and exchange torques can either be in the plane, ∝n×(q×n) or out of the plane ∝n×q, where q and n are the directions of the order parameter of the polarizer and the free antiferromagnetic layers, respectively. Although disorder conserves the symmetry of the torques, it strongly reduces the torque magnitude, pointing out the need for momentum conservation to ensure strong spin torque in antiferromagnetic spin valves.

  3. Tunnel splitting in biaxial spin models investigated with spin-coherent-state path integrals

    International Nuclear Information System (INIS)

    Chen Zhide; Liang, J.-Q.; Pu, F.-C.

    2003-01-01

    Tunnel splitting in biaxial spin models is investigated with a full evaluation of the fluctuation functional integrals of the Euclidean kernel in the framework of spin-coherent-state path integrals which leads to a magnitude of tunnel splitting quantitatively comparable with the numerical results in terms of diagonalization of the Hamilton operator. An additional factor resulted from a global time transformation converting the position-dependent mass to a constant one seems to be equivalent to the semiclassical correction of the Lagrangian proposed by Enz and Schilling. A long standing question whether the spin-coherent-state representation of path integrals can result in an accurate tunnel splitting is therefore resolved

  4. Cold atoms near superconductors: atomic spin coherence beyond the Johnson noise limit

    International Nuclear Information System (INIS)

    Kasch, B; Hattermann, H; Cano, D; Judd, T E; Zimmermann, C; Kleiner, R; Koelle, D; Fortagh, J; Scheel, S

    2010-01-01

    We report on the measurement of atomic spin coherence near the surface of a superconducting niobium wire. As compared to normal conducting metal surfaces, the atomic spin coherence is maintained for time periods beyond the Johnson noise limit. The result provides experimental evidence that magnetic near-field noise near the superconductor is strongly suppressed. Such long atomic spin coherence times near superconductors open the way towards the development of coherently coupled cold atom/solid state hybrid quantum systems with potential applications in quantum information processing and precision force sensing.

  5. Localized excitons in quantum wells show spin relaxation without coherence loss

    DEFF Research Database (Denmark)

    Zimmermann, R.; Langbein, W.; Runge, E.

    2001-01-01

    The coherence in the secondary emission from quantum well excitons is studied using the speckle method. Analysing the different polarization channels allows to conclude that (i) no coherence loss occurs in the cross-polarized emission, favouring spin beating instead of spin dephasing, and that (i...

  6. Spin coherence in a Mn{sub 3} single-molecule magnet

    Energy Technology Data Exchange (ETDEWEB)

    Abeywardana, Chathuranga [Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States); Mowson, Andrew M.; Christou, George [Department of Chemistry, University of Florida, Gainesville, Florida 32611 (United States); Takahashi, Susumu, E-mail: susumu.takahashi@usc.edu [Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States); Department of Physics, University of Southern California, Los Angeles, California 90089 (United States)

    2016-01-25

    Spin coherence in single crystals of the spin S = 6 single-molecule magnet (SMM) [Mn{sub 3}O(O{sub 2}CEt){sub 3}(mpko){sub 3}]{sup +} (abbreviated Mn{sub 3}) has been investigated using 230 GHz electron paramagnetic resonance spectroscopy. Coherence in Mn{sub 3} was uncovered by significantly suppressing dipolar contribution to the decoherence with complete spin polarization of Mn{sub 3} SMMs. The temperature dependence of spin decoherence time (T{sub 2}) revealed that the dipolar decoherence is the dominant source of decoherence in Mn{sub 3} and T{sub 2} can be extended up to 267 ns by quenching the dipolar decoherence.

  7. Shot noise of spin current and spin transfer torque

    Science.gov (United States)

    Yu, Yunjin; Zhan, Hongxin; Wan, Langhui; Wang, Bin; Wei, Yadong; Sun, Qingfeng; Wang, Jian

    2013-04-01

    We report the theoretical investigation of the shot noise of the spin current (Sσ) and the spin transfer torque (Sτ) for non-collinear spin polarized transport in a spin-valve device which consists of a normal scattering region connected by two ferromagnetic electrodes (MNM system). Our theory was developed using the non-equilibrium Green’s function method, and general nonlinear Sσ - V and Sτ - V relations were derived as a function of the angle θ between the magnetizations of two leads. We have applied our theory to a quantum dot system with a resonant level coupled with two ferromagnetic electrodes. It was found that, for the MNM system, the auto-correlation of the spin current is enough to characterize the fluctuation of the spin current. For a system with three ferromagnetic layers, however, both auto-correlation and cross-correlation of the spin current are needed to characterize the noise of the spin current. For a quantum dot with a resonant level, the derivative of spin torque with respect to bias voltage is proportional to sinθ when the system is far away from resonance. When the system is near resonance, the spin transfer torque becomes a non-sinusoidal function of θ. The derivative of the noise of the spin transfer torque with respect to the bias voltage Nτ behaves differently when the system is near or far away from resonance. Specifically, the differential shot noise of the spin transfer torque Nτ is a concave function of θ near resonance while it becomes a convex function of θ far away from resonance. For certain bias voltages, the period Nτ(θ) becomes π instead of 2π. For small θ, it was found that the differential shot noise of the spin transfer torque is very sensitive to the bias voltage and the other system parameters.

  8. Shot noise of spin current and spin transfer torque

    International Nuclear Information System (INIS)

    Yu Yunjin; Zhan Hongxin; Wan Langhui; Wang Bin; Wei Yadong; Sun Qingfeng; Wang Jian

    2013-01-01

    We report the theoretical investigation of the shot noise of the spin current (S σ ) and the spin transfer torque (S τ ) for non-collinear spin polarized transport in a spin-valve device which consists of a normal scattering region connected by two ferromagnetic electrodes (MNM system). Our theory was developed using the non-equilibrium Green’s function method, and general nonlinear S σ − V and S τ − V relations were derived as a function of the angle θ between the magnetizations of two leads. We have applied our theory to a quantum dot system with a resonant level coupled with two ferromagnetic electrodes. It was found that, for the MNM system, the auto-correlation of the spin current is enough to characterize the fluctuation of the spin current. For a system with three ferromagnetic layers, however, both auto-correlation and cross-correlation of the spin current are needed to characterize the noise of the spin current. For a quantum dot with a resonant level, the derivative of spin torque with respect to bias voltage is proportional to sinθ when the system is far away from resonance. When the system is near resonance, the spin transfer torque becomes a non-sinusoidal function of θ. The derivative of the noise of the spin transfer torque with respect to the bias voltage N τ behaves differently when the system is near or far away from resonance. Specifically, the differential shot noise of the spin transfer torque N τ is a concave function of θ near resonance while it becomes a convex function of θ far away from resonance. For certain bias voltages, the period N τ (θ) becomes π instead of 2π. For small θ, it was found that the differential shot noise of the spin transfer torque is very sensitive to the bias voltage and the other system parameters. (paper)

  9. Probing quantum coherence in single-atom electron spin resonance

    Science.gov (United States)

    Willke, Philip; Paul, William; Natterer, Fabian D.; Yang, Kai; Bae, Yujeong; Choi, Taeyoung; Fernández-Rossier, Joaquin; Heinrich, Andreas J.; Lutz, Christoper P.

    2018-01-01

    Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins. PMID:29464211

  10. Angular dependence of spin-orbit spin-transfer torques

    KAUST Repository

    Lee, Ki-Seung

    2015-04-06

    In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.

  11. Angular dependence of spin-orbit spin-transfer torques

    KAUST Repository

    Lee, Ki-Seung; Go, Dongwook; Manchon, Aurelien; Haney, Paul M.; Stiles, M. D.; Lee, Hyun-Woo; Lee, Kyung-Jin

    2015-01-01

    In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.

  12. Quasiparticle spin resonance and coherence in superconducting aluminium.

    Science.gov (United States)

    Quay, C H L; Weideneder, M; Chiffaudel, Y; Strunk, C; Aprili, M

    2015-10-26

    Conventional superconductors were long thought to be spin inert; however, there is now increasing interest in both (the manipulation of) the internal spin structure of the ground-state condensate, as well as recently observed long-lived, spin-polarized excitations (quasiparticles). We demonstrate spin resonance in the quasiparticle population of a mesoscopic superconductor (aluminium) using novel on-chip microwave detection techniques. The spin decoherence time obtained (∼100 ps), and its dependence on the sample thickness are consistent with Elliott-Yafet spin-orbit scattering as the main decoherence mechanism. The striking divergence between the spin coherence time and the previously measured spin imbalance relaxation time (∼10 ns) suggests that the latter is limited instead by inelastic processes. This work stakes out new ground for the nascent field of spin-based electronics with superconductors or superconducting spintronics.

  13. Theory of coherent resonance energy transfer

    International Nuclear Information System (INIS)

    Jang, Seogjoo; Cheng, Y.-C.; Reichman, David R.; Eaves, Joel D.

    2008-01-01

    A theory of coherent resonance energy transfer is developed combining the polaron transformation and a time-local quantum master equation formulation, which is valid for arbitrary spectral densities including common modes. The theory contains inhomogeneous terms accounting for nonequilibrium initial preparation effects and elucidates how quantum coherence and nonequilibrium effects manifest themselves in the coherent energy transfer dynamics beyond the weak resonance coupling limit of the Foerster and Dexter (FD) theory. Numerical tests show that quantum coherence can cause significant changes in steady state donor/acceptor populations from those predicted by the FD theory and illustrate delicate cooperation of nonequilibrium and quantum coherence effects on the transient population dynamics.

  14. Calculation of the coherent transport properties of a symmetric spin nanocontact

    International Nuclear Information System (INIS)

    Bourahla, B.; Khater, A.; Tigrine, R.

    2009-01-01

    A theoretical study is presented for the coherent transport properties of a magnetic nanocontact. In particular, we study a symmetric nanocontact between two identical waveguides composed of semi-infinite spin ordered ferromagnetic chains. The coherent transmission and reflection scattering cross sections via the nanocontact, for spin waves incident from the bulk waveguide, are calculated with the use of the matching method. The inter-atomic magnetic exchange on the nanocontact is allowed to vary to investigate the consequences of magnetic softening and hardening for the calculated spectra. Transmission spectra underline the filtering properties of the nanocontact. The localized spin density of states in the nanocontact domain is also calculated, and analyzed. The results yield an understanding of the relationship between coherent conductance and the structural configuration of the nanocontact.

  15. Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin

    Science.gov (United States)

    He, Yu; He, Yu-Ming; Wei, Yu-Jia; Jiang, Xiao; Chen, Kai; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven

    2017-08-01

    Quantum state transfer from flying photons to stationary matter qubits is an important element in the realization of quantum networks. Self-assembled semiconductor quantum dots provide a promising solid-state platform hosting both single photon and spin, with an inherent light-matter interface. Here, we develop a method to coherently and actively control the single-photon frequency bins in superposition using electro-optic modulators, and measure the spin-photon entanglement with a fidelity of 0.796 ±0.020 . Further, by Greenberger-Horne-Zeilinger-type state projection on the frequency, path, and polarization degrees of freedom of a single photon, we demonstrate quantum state transfer from a single photon to a single electron spin confined in an InGaAs quantum dot, separated by 5 m. The quantum state mapping from the photon's polarization to the electron's spin is demonstrated along three different axes on the Bloch sphere, with an average fidelity of 78.5%.

  16. Spin current and spin transfer torque in ferromagnet/superconductor spin valves

    Science.gov (United States)

    Moen, Evan; Valls, Oriol T.

    2018-05-01

    Using fully self-consistent methods, we study spin transport in fabricable spin valve systems consisting of two magnetic layers, a superconducting layer, and a spacer normal layer between the ferromagnets. Our methods ensure that the proper relations between spin current gradients and spin transfer torques are satisfied. We present results as a function of geometrical parameters, interfacial barrier values, misalignment angle between the ferromagnets, and bias voltage. Our main results are for the spin current and spin accumulation as functions of position within the spin valve structure. We see precession of the spin current about the exchange fields within the ferromagnets, and penetration of the spin current into the superconductor for biases greater than the critical bias, defined in the text. The spin accumulation exhibits oscillating behavior in the normal metal, with a strong dependence on the physical parameters both as to the structure and formation of the peaks. We also study the bias dependence of the spatially averaged spin transfer torque and spin accumulation. We examine the critical-bias effect of these quantities, and their dependence on the physical parameters. Our results are predictive of the outcome of future experiments, as they take into account imperfect interfaces and a realistic geometry.

  17. Quantum renormalization group approach to quantum coherence and multipartite entanglement in an XXZ spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Beijing Computational Science Research Center, Beijing 100193 (China); Xu, Jing-Bo, E-mail: xujb@zju.edu.cn [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China)

    2017-01-30

    We investigate the performances of quantum coherence and multipartite entanglement close to the quantum critical point of a one-dimensional anisotropic spin-1/2 XXZ spin chain by employing the real-space quantum renormalization group approach. It is shown that the quantum criticality of XXZ spin chain can be revealed by the singular behaviors of the first derivatives of renormalized quantum coherence and multipartite entanglement in the thermodynamics limit. Moreover, we find the renormalized quantum coherence and multipartite entanglement obey certain universal exponential-type scaling laws in the vicinity of the quantum critical point of XXZ spin chain. - Highlights: • The QPT of XXZ chain is studied by renormalization group. • The renormalized coherence and multiparticle entanglement is investigated. • Scaling laws of renormalized coherence and multiparticle entanglement are revealed.

  18. Pulsed EPR study of spin coherence time of P donors in isotopically controlled Si

    International Nuclear Information System (INIS)

    Abe, Eisuke; Isoya, Junichi; Itoh, Kohei M.

    2006-01-01

    We investigate spin coherence time of electrons bound to phosphorus donors in silicon single crystals. The samples are isotopically controlled so that they may possess various concentrations (from 4.7% to 99.2%) of 29 Si, which is the only non-zero-spin stable isotope of silicon. The orientation dependence of electron-spin coherence times are presented, and electron spin echo envelope modulation is analyzed in time-frequency space

  19. Sequence memory based on coherent spin-interaction neural networks.

    Science.gov (United States)

    Xia, Min; Wong, W K; Wang, Zhijie

    2014-12-01

    Sequence information processing, for instance, the sequence memory, plays an important role on many functions of brain. In the workings of the human brain, the steady-state period is alterable. However, in the existing sequence memory models using heteroassociations, the steady-state period cannot be changed in the sequence recall. In this work, a novel neural network model for sequence memory with controllable steady-state period based on coherent spininteraction is proposed. In the proposed model, neurons fire collectively in a phase-coherent manner, which lets a neuron group respond differently to different patterns and also lets different neuron groups respond differently to one pattern. The simulation results demonstrating the performance of the sequence memory are presented. By introducing a new coherent spin-interaction sequence memory model, the steady-state period can be controlled by dimension parameters and the overlap between the input pattern and the stored patterns. The sequence storage capacity is enlarged by coherent spin interaction compared with the existing sequence memory models. Furthermore, the sequence storage capacity has an exponential relationship to the dimension of the neural network.

  20. Entanglement distribution schemes employing coherent photon-to-spin conversion in semiconductor quantum dot circuits

    Science.gov (United States)

    Gaudreau, Louis; Bogan, Alex; Korkusinski, Marek; Studenikin, Sergei; Austing, D. Guy; Sachrajda, Andrew S.

    2017-09-01

    Long distance entanglement distribution is an important problem for quantum information technologies to solve. Current optical schemes are known to have fundamental limitations. A coherent photon-to-spin interface built with quantum dots (QDs) in a direct bandgap semiconductor can provide a solution for efficient entanglement distribution. QD circuits offer integrated spin processing for full Bell state measurement (BSM) analysis and spin quantum memory. Crucially the photo-generated spins can be heralded by non-destructive charge detection techniques. We review current schemes to transfer a polarization-encoded state or a time-bin-encoded state of a photon to the state of a spin in a QD. The spin may be that of an electron or that of a hole. We describe adaptations of the original schemes to employ heavy holes which have a number of attractive properties including a g-factor that is tunable to zero for QDs in an appropriately oriented external magnetic field. We also introduce simple throughput scaling models to demonstrate the potential performance advantage of full BSM capability in a QD scheme, even when the quantum memory is imperfect, over optical schemes relying on linear optical elements and ensemble quantum memories.

  1. Spin Transfer Torque in Graphene

    Science.gov (United States)

    Lin, Chia-Ching; Chen, Zhihong

    2014-03-01

    Graphene is an idea channel material for spin transport due to its long spin diffusion length. To develop graphene based spin logic, it is important to demonstrate spin transfer torque in graphene. Here, we report the experimental measurement of spin transfer torque in graphene nonlocal spin valve devices. Assisted by a small external in-plane magnetic field, the magnetization reversal of the receiving magnet is induced by pure spin diffusion currents from the injector magnet. The magnetization switching is reversible between parallel and antiparallel configurations by controlling the polarity of the applied charged currents. Current induced heating and Oersted field from the nonlocal charge flow have also been excluded in this study. Next, we further enhance the spin angular momentum absorption at the interface of the receiving magnet and graphene channel by removing the tunneling barrier in the receiving magnet. The device with a tunneling barrier only at the injector magnet shows a comparable nonlocal spin valve signal but lower electrical noise. Moreover, in the same preset condition, the critical charge current density for spin torque in the single tunneling barrier device shows a substantial reduction if compared to the double tunneling barrier device.

  2. Selective coupling of individual electron and nuclear spins with integrated all-spin coherence protection

    Science.gov (United States)

    Terletska, Hanna; Dobrovitski, Viatcheslav

    2015-03-01

    The electron spin of the NV center in diamond is a promising platform for spin sensing. Applying the dynamical decoupling, the NV electron spin can be used to detect the individual weakly coupled carbon-13 nuclear spins in diamond and employ them for small-scale quantum information processing. However, the nuclear spins within this approach remain unprotected from decoherence, which ultimately limits the detection and restricts the fidelity of the quantum operation. Here we investigate possible schemes for combining the resonant decoupling on the NV spin with the decoherence protection of the nuclear spins. Considering several schemes based on pulse and continuous-wave decoupling, we study how the joint electron-nuclear spin dynamics is affected. We identify regimes where the all-spin coherence protection improves the detection and manipulation. We also discuss potential applications of the all-spin decoupling for detecting spins outside diamond, with the purpose of implementing the nanoscale NMR. This work was supported by the US Department of Energy Basic Energy Sciences (Contract No. DE-AC02-07CH11358).

  3. Coherent manipulation of dipolar coupled spins in an anisotropic environment

    Science.gov (United States)

    Baibekov, E. I.; Gafurov, M. R.; Zverev, D. G.; Kurkin, I. N.; Malkin, B. Z.; Barbara, B.

    2014-11-01

    We study coherent dynamics in a system of dipolar coupled spin qubits diluted in a solid and subjected to a driving microwave field. In the case of rare earth ions, an anisotropic crystal background results in anisotropic g tensor and thus modifies the dipolar coupling. We develop a microscopic theory of spin relaxation in a transient regime for the frequently encountered case of axially symmetric crystal field. The calculated decoherence rate is nonlinear in the Rabi frequency. We show that the direction of a static magnetic field that corresponds to the highest spin g factor is preferable in order to obtain a higher number of coherent qubit operations. The results of calculations are in excellent agreement with our experimental data on Rabi oscillations recorded for a series of CaW O4 crystals with different concentrations of N d3 + ions.

  4. Coherent spin transport through a 350 micron thick silicon wafer.

    Science.gov (United States)

    Huang, Biqin; Monsma, Douwe J; Appelbaum, Ian

    2007-10-26

    We use all-electrical methods to inject, transport, and detect spin-polarized electrons vertically through a 350-micron-thick undoped single-crystal silicon wafer. Spin precession measurements in a perpendicular magnetic field at different accelerating electric fields reveal high spin coherence with at least 13pi precession angles. The magnetic-field spacing of precession extrema are used to determine the injector-to-detector electron transit time. These transit time values are associated with output magnetocurrent changes (from in-plane spin-valve measurements), which are proportional to final spin polarization. Fitting the results to a simple exponential spin-decay model yields a conduction electron spin lifetime (T1) lower bound in silicon of over 500 ns at 60 K.

  5. Coherent Operations and Screening in Multielectron Spin Qubits

    DEFF Research Database (Denmark)

    Higginbotham, Andrew Patrick; Kuemmeth, Ferdinand; Hanson, M.P.

    2014-01-01

    Multielectron spin qubits are demonstrated, and performance examined by comparing coherent exchange oscillations in coupled single-electron and multielectron quantum dots, measured in the same device. Fast (>1 GHz) exchange oscillations with a quality factor Q ∼ 15 are found for the multielectron...

  6. Negativity of Two-Qubit System Through Spin Coherent States

    International Nuclear Information System (INIS)

    Berrada, K.; El Baz, M.; Hassouni, Y.; Eleuch, H.

    2009-12-01

    Using the negativity, we express and analyze the entanglement of two-qubit nonorthogonal pure states through the spin coherent states. We formulate this measure in terms of the amplitudes of coherent states and we give the conditions for the minimal and the maximal entanglement. We generalize this formalism to the case of a class of mixed states and show that the negativity is also a function of probabilities. (author)

  7. Spin transfer torque with spin diffusion in magnetic tunnel junctions

    KAUST Repository

    Manchon, Aurelien; Matsumoto, R.; Jaffres, H.; Grollier, J.

    2012-01-01

    in the metallic layers. We show that spin diffusion mixes the transverse spin current components and dramatically modifies the bias dependence of the effective spin transfer torque. This leads to a significant linear bias dependence of the out-of-plane torque

  8. Electron Spin Coherence Times in Si/SiGe Quantum Dots

    Science.gov (United States)

    Jock, R. M.; He, Jianhua; Tyryshkin, A. M.; Lyon, S. A.; Lee, C.-H.; Huang, S.-H.; Liu, C. W.

    2014-03-01

    Single electron spin states in silicon have shown a great deal of promise as qubits due to their long spin relaxation (T1) and coherence (T2) times. Recent results exhibit a T2 of 250 us for electrons confined in Si/SiGe quantum dots at 350 mK. These experiments used conventional X-band (10 GHz) pulsed Electron Spin Resonance on a large area (3.5 mm x 20 mm), dual-gated, undoped Si/SiGe heterostructure quantum dots. These dots are induced in a natural Si quantum well by e-beam defined gates having a lithographic radius of 150 nm and pitch of 700 nm. The relatively large size of these dots led to closely spaced energy levels and long T2's could only be measured at sub-Kelvin temperatures. At 2K confined electrons displayed a 3 us T2, which is comparable to that of 2D electrons at that temperature. Decreasing the quantum dot size increases the electron confinement and reduces the effects of valley-splitting and spin-orbit coupling on the electron spin coherence times. We will report results on dots with 80 nm lithographic radii and a 375 nm pitch. This device displays an extended electron coherence time of 30 us at 2K, suggesting tighter confinement of electrons. Further measurements at lower temperatures are in progress. This work was supported in part by NSF through the Materials World Network program (DMR-1107606) and the Princeton MRSEC (DMR-0819860), and in part by the U.S. Army Research Office (W911NF-13-1-0179).

  9. Possible evidence for spin-transfer torque induced by spin-triplet supercurrent

    KAUST Repository

    Li, Lailai

    2017-10-04

    Cooper pairs in superconductors are normally spin singlet. Nevertheless, recent studies suggest that spin-triplet Cooper pairs can be created at carefully engineered superconductor-ferromagnet interfaces. If Cooper pairs are spin-polarized they would transport not only charge but also a net spin component, but without dissipation, and therefore minimize the heating effects associated with spintronic devices. Although it is now established that triplet supercurrents exist, their most interesting property - spin - is only inferred indirectly from transport measurements. In conventional spintronics, it is well known that spin currents generate spin-transfer torques that alter magnetization dynamics and switch magnetic moments. The observation of similar effects due to spin-triplet supercurrents would not only confirm the net spin of triplet pairs but also pave the way for applications of superconducting spintronics. Here, we present a possible evidence for spin-transfer torques induced by triplet supercurrents in superconductor/ferromagnet/superconductor (S/F/S) Josephson junctions. Below the superconducting transition temperature T_c, the ferromagnetic resonance (FMR) field at X-band (~ 9.0 GHz) shifts rapidly to a lower field with decreasing temperature due to the spin-transfer torques induced by triplet supercurrents. In contrast, this phenomenon is absent in ferromagnet/superconductor (F/S) bilayers and superconductor/insulator/ferromagnet/superconductor (S/I/F/S) multilayers where no supercurrents pass through the ferromagnetic layer. These experimental observations are discussed with theoretical predictions for ferromagnetic Josephson junctions with precessing magnetization.

  10. Spin squeezing and light entanglement in Coherent Population Trapping

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Cviklinski, Jean; Giacobino, Elisabeth

    2006-01-01

    We show that strong squeezing and entanglement can be generated at the output of a cavity containing atoms interacting with two fields in a coherent population trapping situation, on account of a nonlinear Faraday effect experienced by the fields close to a dark-state resonance in a cavity....... Moreover, the cavity provides a feedback mechanism allowing to reduce the quantum fluctuations of the ground state spin, resulting in strong steady state spin squeezing....

  11. Pairing versus phase coherence of doped holes in distinct quantum spin backgrounds

    Science.gov (United States)

    Zhu, Zheng; Sheng, D. N.; Weng, Zheng-Yu

    2018-03-01

    We examine the pairing structure of holes injected into two distinct spin backgrounds: a short-range antiferromagnetic phase versus a symmetry protected topological phase. Based on density matrix renormalization group (DMRG) simulation, we find that although there is a strong binding between two holes in both phases, phase fluctuations can significantly influence the pair-pair correlation depending on the spin-spin correlation in the background. Here the phase fluctuation is identified as an intrinsic string operator nonlocally controlled by the spins. We show that while the pairing amplitude is generally large, the coherent Cooper pairing can be substantially weakened by the phase fluctuation in the symmetry-protected topological phase, in contrast to the short-range antiferromagnetic phase. It provides an example of a non-BCS mechanism for pairing, in which the paring phase coherence is determined by the underlying spin state self-consistently, bearing an interesting resemblance to the pseudogap physics in the cuprate.

  12. Spin transfer torque with spin diffusion in magnetic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2012-08-09

    Spin transport in magnetic tunnel junctions in the presence of spin diffusion is considered theoretically. Combining ballistic tunneling across the barrier and diffusive transport in the electrodes, we solve the spin dynamics equation in the metallic layers. We show that spin diffusion mixes the transverse spin current components and dramatically modifies the bias dependence of the effective spin transfer torque. This leads to a significant linear bias dependence of the out-of-plane torque, as well as a nonconventional thickness dependence of both spin torque components.

  13. Photoinduced Coherent Spin Fluctuation in Primary Dynamics of Insulator to Metal Transition in Perovskite Cobalt Oxide

    Directory of Open Access Journals (Sweden)

    Arima T.

    2013-03-01

    Full Text Available Coherent spin fluctuation was detected in the photoinduced Mott insulator-metal transition in perovskite cobalt oxide by using 3 optical-cycle infrared pulse. Such coherent spin fluctuation is driven by the perovskite distortion changing orbital gap.

  14. Coherent manipulation of spin correlations in the Hubbard model

    Science.gov (United States)

    Wurz, N.; Chan, C. F.; Gall, M.; Drewes, J. H.; Cocchi, E.; Miller, L. A.; Pertot, D.; Brennecke, F.; Köhl, M.

    2018-05-01

    We coherently manipulate spin correlations in a two-component atomic Fermi gas loaded into an optical lattice using spatially and time-resolved Ramsey spectroscopy combined with high-resolution in situ imaging. This technique allows us not only to imprint spin patterns but also to probe the static magnetic structure factor at an arbitrary wave vector, in particular, the staggered structure factor. From a measurement along the diagonal of the first Brillouin zone of the optical lattice, we determine the magnetic correlation length and the individual spatial spin correlators. At half filling, the staggered magnetic structure factor serves as a sensitive thermometer, which we employ to study the equilibration in the spin and density sector during a slow quench of the lattice depth.

  15. Slow Light Using Electromagnetically Induced Transparency from Spin Coherence in [110] Strained Quantum Wells

    Science.gov (United States)

    Chang, Shu-Wei; Chang-Hasnain, Connie J.; Wang, Hailin

    2005-03-01

    The electromagnetically induced transparency from spin coherence has been proposed in [001] quantum wells recently. [1] The spin coherence is a potential candidate to demonstrate semiconductor-based slow light at room temperature. However, the spin coherence time is not long enough to demonstrate a significant slowdown factor in [001] quantum wells. Further, the required transition of light-hole excitons lies in the absorption of heavy-hole continuum states. The extra dephasing and absorption from these continuum states are drawbacks for slow light. Here, we propose to use [110] strained quantum wells instead of [001] quantum wells. The long spin relaxation time in [110] quantum wells at room temperature, and thus more robust spin coherence, [2] as well as the strain-induced separation [3, 4] of the light-hole exciton transition from the heavy-hole continuum absorption can help to slow down light in quantum wells. [1] T. Li, H. Wang, N. H. Kwong, and R. Binder, Opt. Express 11, 3298 (2003). [2] Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, and H. Ohno, Phys. Rev. Lett. 83, 4196 (1999). [3] C. Y. P. Chao and S. L. Chuang, Phys. Rev. B 46, 4110 (1992). [4] C. Jagannath, E. S. Koteles, J. Lee, Y. J. Chen, B. S. Elman, and J. Y. Chi, Phys. Rev. B 34, 7027 (1986).

  16. Probing Nuclear Spin Effects on Electronic Spin Coherence via EPR Measurements of Vanadium(IV) Complexes.

    Science.gov (United States)

    Graham, Michael J; Krzyaniak, Matthew D; Wasielewski, Michael R; Freedman, Danna E

    2017-07-17

    Quantum information processing (QIP) has the potential to transform numerous fields from cryptography, to finance, to the simulation of quantum systems. A promising implementation of QIP employs unpaired electronic spins as qubits, the fundamental units of information. Though molecular electronic spins offer many advantages, including chemical tunability and facile addressability, the development of design principles for the synthesis of complexes that exhibit long qubit superposition lifetimes (also known as coherence times, or T 2 ) remains a challenge. As nuclear spins in the local qubit environment are a primary cause of shortened superposition lifetimes, we recently conducted a study which employed a modular spin-free ligand scaffold to place a spin-laden propyl moiety at a series of fixed distances from an S = 1 / 2 vanadium(IV) ion in a series of vanadyl complexes. We found that, within a radius of 4.0(4)-6.6(6) Å from the metal center, nuclei did not contribute to decoherence. To assess the generality of this important design principle and test its efficacy in a different coordination geometry, we synthesized and investigated three vanadium tris(dithiolene) complexes with the same ligand set employed in our previous study: K 2 [V(C 5 H 6 S 4 ) 3 ] (1), K 2 [V(C 7 H 6 S 6 ) 3 ] (2), and K 2 [V(C 9 H 6 S 8 ) 3 ] (3). We specifically interrogated solutions of these complexes in DMF-d 7 /toluene-d 8 with pulsed electron paramagnetic resonance spectroscopy and electron nuclear double resonance spectroscopy and found that the distance dependence present in the previously synthesized vanadyl complexes holds true in this series. We further examined the coherence properties of the series in a different solvent, MeCN-d 3 /toluene-d 8 , and found that an additional property, the charge density of the complex, also affects decoherence across the series. These results highlight a previously unknown design principle for augmenting T 2 and open new pathways for the

  17. Spin Orbit Interaction Engineering for beyond Spin Transfer Torque memory

    Science.gov (United States)

    Wang, Kang L.

    Spin transfer torque memory uses electron current to transfer the spin torque of electrons to switch a magnetic free layer. This talk will address an alternative approach to energy efficient non-volatile spintronics through engineering of spin orbit interaction (SOC) and the use of spin orbit torque (SOT) by the use of electric field to improve further the energy efficiency of switching. I will first discuss the engineering of interface SOC, which results in the electric field control of magnetic moment or magneto-electric (ME) effect. Magnetic memory bits based on this ME effect, referred to as magnetoelectric RAM (MeRAM), is shown to have orders of magnitude lower energy dissipation compared with spin transfer torque memory (STTRAM). Likewise, interests in spin Hall as a result of SOC have led to many advances. Recent demonstrations of magnetization switching induced by in-plane current in heavy metal/ferromagnetic heterostructures have been shown to arise from the large SOC. The large SOC is also shown to give rise to the large SOT. Due to the presence of an intrinsic extraordinarily strong SOC and spin-momentum lock, topological insulators (TIs) are expected to be promising candidates for exploring spin-orbit torque (SOT)-related physics. In particular, we will show the magnetization switching in a chromium-doped magnetic TI bilayer heterostructure by charge current. A giant SOT of more than three orders of magnitude larger than those reported in heavy metals is also obtained. This large SOT is shown to come from the spin-momentum locked surface states of TI, which may further lead to innovative low power applications. I will also describe other related physics of SOC at the interface of anti-ferromagnetism/ferromagnetic structure and show the control exchange bias by electric field for high speed memory switching. The work was in part supported by ERFC-SHINES, NSF, ARO, TANMS, and FAME.

  18. Estimating side-chain order in methyl-protonated, perdeuterated proteins via multiple-quantum relaxation violated coherence transfer NMR spectroscopy

    International Nuclear Information System (INIS)

    Sun Hechao; Godoy-Ruiz, Raquel; Tugarinov, Vitali

    2012-01-01

    Relaxation violated coherence transfer NMR spectroscopy (Tugarinov et al. in J Am Chem Soc 129:1743–1750, 2007) is an established experimental tool for quantitative estimation of the amplitudes of side-chain motions in methyl-protonated, highly deuterated proteins. Relaxation violated coherence transfer experiments monitor the build-up of methyl proton multiple-quantum coherences that can be created in magnetically equivalent spin-systems as long as their transverse magnetization components relax with substantially different rates. The rate of this build-up is a reporter of the methyl-bearing side-chain mobility. Although the build-up of multiple-quantum 1 H coherences is monitored in these experiments, the decay of the methyl signal during relaxation delays occurs when methyl proton magnetization is in a single-quantum state. We describe a relaxation violated coherence transfer approach where the relaxation of multiple-quantum 1 H– 13 C methyl coherences during the relaxation delay period is quantified. The NMR experiment and the associated fitting procedure that models the time-dependence of the signal build-up, are applicable to the characterization of side-chain order in [ 13 CH 3 ]-methyl-labeled, highly deuterated protein systems up to ∼100 kDa in molecular weight. The feasibility of extracting reliable measures of side-chain order is experimentally verified on methyl-protonated, perdeuterated samples of an 8.5-kDa ubiquitin at 10°C and an 82-kDa Malate Synthase G at 37°C.

  19. Proton polarimeters for spin transfer experiments

    International Nuclear Information System (INIS)

    McNaughton, M.W.

    1985-01-01

    The design and use of proton polarimeters for spin transfer (Wolfenstein parameter) measurements is discussed. Polarimeters are compared with polarized targets for spin dependent experiments. 32 refs., 4 figs

  20. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%

    Science.gov (United States)

    Yoneda, Jun; Takeda, Kenta; Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Allison, Giles; Honda, Takumu; Kodera, Tetsuo; Oda, Shunri; Hoshi, Yusuke; Usami, Noritaka; Itoh, Kohei M.; Tarucha, Seigo

    2018-02-01

    The isolation of qubits from noise sources, such as surrounding nuclear spins and spin-electric susceptibility1-4, has enabled extensions of quantum coherence times in recent pivotal advances towards the concrete implementation of spin-based quantum computation. In fact, the possibility of achieving enhanced quantum coherence has been substantially doubted for nanostructures due to the characteristic high degree of background charge fluctuations5-7. Still, a sizeable spin-electric coupling will be needed in realistic multiple-qubit systems to address single-spin and spin-spin manipulations8-10. Here, we realize a single-electron spin qubit with an isotopically enriched phase coherence time (20 μs)11,12 and fast electrical control speed (up to 30 MHz) mediated by extrinsic spin-electric coupling. Using rapid spin rotations, we reveal that the free-evolution dephasing is caused by charge noise—rather than conventional magnetic noise—as highlighted by a 1/f spectrum extended over seven decades of frequency. The qubit exhibits superior performance with single-qubit gate fidelities exceeding 99.9% on average, offering a promising route to large-scale spin-qubit systems with fault-tolerant controllability.

  1. Spin-transfer phenomena in layered magnetic structures: Physical phenomena and materials aspects

    International Nuclear Information System (INIS)

    Gruenberg, P.; Buergler, D.E.; Dassow, H.; Rata, A.D.; Schneider, C.M.

    2007-01-01

    During the past 20 years, layered structures consisting of ferromagnetic layers and spacers of various material classes with a thickness of only a few nanometers have revealed a variety of exciting and potentially very useful phenomena not present in bulk material. Representing distinct manifestations of spin-transfer processes, these phenomena may be categorized into interlayer exchange coupling (IEC), giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), and the more recently discovered spin-transfer torque effect leading to current-induced magnetization switching (CIMS) and current-driven magnetization dynamics. These phenomena clearly confer novel material properties on magnetic layered structures with respect to the (magneto-)transport and the magnetostatic as well as magnetodynamic behavior. Here, we will first concentrate on the less well understood aspects of IEC across insulating and semiconducting interlayers and relate the observations to TMR in the corresponding structures. In this context, we will also discuss more recent advances in TMR due to the use of electrodes made from Heusler alloys and the realization of coherent tunneling in epitaxial magnetic tunneling junctions. Finally, we will review our results on CIMS in epitaxial magnetic nanostructures showing that normal and inverse CIMS can occur simultaneously in a single nanopillar device. In all cases discussed, material issues play a major role in the detailed understanding of the spin-transfer effects, in particular in those systems that yield the largest effects and are thus of utmost interest for applications

  2. Coherently Enhanced Wireless Power Transfer

    OpenAIRE

    Krasnok, Alex; Baranov, Denis G.; Generalov, Andrey; Li, Sergey; Alu, Andrea

    2017-01-01

    Extraction of electromagnetic energy by an antenna from impinging external radiation is at the basis of wireless communications and power transfer (WPT). The maximum of transferred energy is ensured when the antenna is conjugately matched, i.e., when it is resonant and it has an equal coupling with free space and its load, which is not easily implemented in near-field WPT. Here, we introduce the concept of coherently enhanced wireless power transfer. We show that a principle similar to the on...

  3. Dynamics of domain wall driven by spin-transfer torque

    International Nuclear Information System (INIS)

    Chureemart, P.; Evans, R. F. L.; Chantrell, R. W.

    2011-01-01

    Spin-torque switching of magnetic devices offers new technological possibilities for data storage and integrated circuits. We have investigated domain-wall motion in a ferromagnetic thin film driven by a spin-polarized current using an atomistic spin model with a modified Landau-Lifshitz-Gilbert equation including the effect of the spin-transfer torque. The presence of the spin-transfer torque is shown to create an out-of-plane domain wall, in contrast to the external-field-driven case where an in-plane wall is found. We have investigated the effect of the spin torque on domain-wall displacement, domain-wall velocity, and domain-wall width, as well as the equilibration time in the presence of the spin-transfer torque. We have shown that the minimum spin-current density, regarded as the critical value for domain-wall motion, decreases with increasing temperature.

  4. Multichannel modeling and two-photon coherent transfer paths in NaK

    Science.gov (United States)

    Schulze, T. A.; Temelkov, I. I.; Gempel, M. W.; Hartmann, T.; Knöckel, H.; Ospelkaus, S.; Tiemann, E.

    2013-08-01

    We explore possible pathways for the creation of ultracold polar NaK molecules in their absolute electronic and rovibrational ground state starting from ultracold Feshbach molecules. In particular, we present a multichannel analysis of the electronic ground and K(4p)+Na(3s) excited-state manifold of NaK, analyze the spin character of both the Feshbach molecular state and the electronically excited intermediate states and discuss possible coherent two-photon transfer paths from Feshbach molecules to rovibronic ground-state molecules. The theoretical study is complemented by the demonstration of stimulated Raman adiabatic passage from the X1Σ+(v=0) state to the a3Σ+ manifold on a molecular beam experiment.

  5. Quantum communication and state transfer in spin chains

    International Nuclear Information System (INIS)

    Van der Jeugt, Joris

    2011-01-01

    We investigate the time evolution of a single spin excitation state in certain linear spin chains, as a model for quantum communication. We consider first the simplest possible spin chain, where the spin chain data (the nearest neighbour interaction strengths and the magnetic field strengths) are constant throughout the chain. The time evolution of a single spin state is determined, and this time evolution is illustrated by means of an animation. Some years ago it was discovered that when the spin chain data are of a special form so-called perfect state transfer takes place. These special spin chain data can be linked to the Jacobi matrix entries of Krawtchouk polynomials or dual Hahn polynomials. We discuss here the case related to Krawtchouk polynomials, and illustrate the possibility of perfect state transfer by an animation showing the time evolution of the spin chain from an initial single spin state. Very recently, these ideas were extended to discrete orthogonal polynomials of q-hypergeometric type. Here, a remarkable result is a new analytic model where perfect state transfer is achieved: this is when the spin chain data are related to the Jacobi matrix of q-Krawtchouk polynomials. This case is discussed here, and again illustrated by means of an animation.

  6. Polarization transfer from polarized nuclear spin to μ- spin in muonic atom

    International Nuclear Information System (INIS)

    Kuno, Yoshitaka; Nagamine, Kanetada; Yamazaki, Toshimitsu.

    1987-02-01

    A theoretical study of polarization transfer from an initially-polarized nuclear spin to a μ - spin in a muonic atom is given. The switching of the hyperfine interaction at excited muonic states as well as at the ground 1s state is taken into account. The upper state of hyperfine doublet at the muonic 1s state is considered to proceed down to the lower state. It is found that as the hyperfine interaction becomes effective at higher excited muonic orbitals, a less extent of polarization is transferred from the nuclear spin to the μ - spin. The theoretical values obtained are compared with the recent experiment of μ - repolarization in a polarized 209 Bi target. (author)

  7. Quadrupolar transfer pathways

    Science.gov (United States)

    Antonijevic, Sasa; Bodenhausen, Geoffrey

    2006-06-01

    A set of graphical conventions called quadrupolar transfer pathways is proposed to describe a wide range of experiments designed for the study of quadrupolar nuclei with spin quantum numbers I = 1, 3/2, 2, 5/2, etc. These pathways, which inter alea allow one to appreciate the distinction between quadrupolar and Zeeman echoes, represent a generalization of the well-known coherence transfer pathways. Quadrupolar transfer pathways not merely distinguish coherences with different orders -2 I ⩽ p ⩽ +2 I, but allow one to follow the fate of coherences associated with single transitions that have the same coherence orderp=mIr-mIs but can be distinguished by a satellite orderq=(mIr)2-(mIs)2.

  8. Self-consistent treatment of spin and magnetization dynamic effect in spin transfer switching

    International Nuclear Information System (INIS)

    Guo Jie; Tan, Seng Ghee; Jalil, Mansoor Bin Abdul; Koh, Dax Enshan; Han, Guchang; Meng, Hao

    2011-01-01

    The effect of itinerant spin moment (m) dynamic in spin transfer switching has been ignored in most previous theoretical studies of the magnetization (M) dynamics. Thus in this paper, we proposed a more refined micromagnetic model of spin transfer switching that takes into account in a self-consistent manner of the coupled m and M dynamics. The numerical results obtained from this model further shed insight on the switching profiles of m and M, both of which show particular sensitivity to parameters such as the anisotropy field, the spin torque field, and the initial deviation between m and M.

  9. Coherently Enhanced Wireless Power Transfer

    Science.gov (United States)

    Krasnok, Alex; Baranov, Denis G.; Generalov, Andrey; Li, Sergey; Alù, Andrea

    2018-04-01

    Extraction of electromagnetic energy by an antenna from impinging external radiation is at the basis of wireless communications and wireless power transfer (WPT). The maximum of transferred energy is ensured when the antenna is conjugately matched, i.e., when it is resonant and it has an equal coupling with free space and its load. This condition, however, can be easily affected by changes in the environment, preventing optimal operation of a WPT system. Here, we introduce the concept of coherently enhanced WPT that allows us to bypass this difficulty and achieve dynamic control of power transfer. The approach relies on coherent excitation of the waveguide connected to the antenna load with a backward propagating signal of specific amplitude and phase. This signal creates a suitable interference pattern at the load resulting in a modification of the local wave impedance, which in turn enables conjugate matching and a largely increased amount of extracted energy. We develop a simple theoretical model describing this concept, demonstrate it with full-wave numerical simulations for the canonical example of a dipole antenna, and verify experimentally in both near-field and far-field regimes.

  10. Collapse and revival of entanglement between qubits coupled to a spin coherent state

    Science.gov (United States)

    Bahari, Iskandar; Spiller, Timothy P.; Dooley, Shane; Hayes, Anthony; McCrossan, Francis

    We extend the study of the Jayne-Cummings (JC) model involving a pair of identical two-level atoms (or qubits) interacting with a single mode quantized field. We investigate the effects of replacing the radiation field mode with a composite spin, comprising N qubits, or spin-1/2 particles. This model is relevant for physical implementations in superconducting circuit QED, ion trap and molecular systems. For the case of the composite spin prepared in a spin coherent state, we demonstrate the similarities of this set-up to the qubits-field model in terms of the time evolution, attractor states and in particular the collapse and revival of the entanglement between the two qubits. We extend our analysis by taking into account an effect due to qubit imperfections. We consider a difference (or “mismatch”) in the dipole interaction strengths of the two qubits, for both the field mode and composite spin cases. To address decoherence due to this mismatch, we then average over this coupling strength difference with distributions of varying width. We demonstrate in both the field mode and the composite spin scenarios that increasing the width of the “error” distribution increases suppression of the coherent dynamics of the coupled system, including the collapse and revival of the entanglement between the qubits.

  11. Multidimensional Quantum Mechanical Modeling of Electron Transfer and Electronic Coherence in Plant Cryptochromes: The Role of Initial Bath Conditions.

    Science.gov (United States)

    Mendive-Tapia, David; Mangaud, Etienne; Firmino, Thiago; de la Lande, Aurélien; Desouter-Lecomte, Michèle; Meyer, Hans-Dieter; Gatti, Fabien

    2018-01-11

    A multidimensional quantum mechanical protocol is used to describe the photoinduced electron transfer and electronic coherence in plant cryptochromes without any semiempirical, e.g., experimentally obtained, parameters. Starting from a two-level spin-boson Hamiltonian we look at the effect that the initial photoinduced nuclear bath distribution has on an intermediate step of this biological electron transfer cascade for two idealized cases. The first assumes a slow equilibration of the nuclear bath with respect to the previous electron transfer step that leads to an ultrafast decay with little temperature dependence; while the second assumes a prior fast bath equilibration on the donor potential energy surface leading to a much slower decay, which contrarily displays a high temperature dependence and a better agreement with previous theoretical and experimental results. Beyond Marcus and semiclassical pictures these results unravel the strong impact that the presence or not of equilibrium initial conditions has on the electronic population and coherence dynamics at the quantum dynamics level in this and conceivably in other biological electron transfer cascades.

  12. Locking of electron spin coherence above 20 ms in natural silicon carbide

    Science.gov (United States)

    Simin, D.; Kraus, H.; Sperlich, A.; Ohshima, T.; Astakhov, G. V.; Dyakonov, V.

    2017-04-01

    We demonstrate that silicon carbide (SiC) with a natural isotope abundance can preserve a coherent spin superposition in silicon vacancies over an unexpectedly long time exceeding 20 ms. The spin-locked subspace with a drastically reduced decoherence rate is attained through the suppression of heteronuclear spin crosstalking by applying a moderate magnetic field in combination with dynamic decoupling from the nuclear spin baths. Furthermore, we identify several phonon-assisted mechanisms of spin-lattice relaxation and find that it can be extremely long at cryogenic temperatures, equal to or even longer than 10 s. Our approach may be extended to other polyatomic compounds and opens a path towards improved qubit memory for wafer-scale quantum technologies.

  13. Robustness of spin-coupling distributions for perfect quantum state transfer

    International Nuclear Information System (INIS)

    Zwick, Analia; Alvarez, Gonzalo A.; Stolze, Joachim; Osenda, Omar

    2011-01-01

    The transmission of quantum information between different parts of a quantum computer is of fundamental importance. Spin chains have been proposed as quantum channels for transferring information. Different configurations for the spin couplings were proposed in order to optimize the transfer. As imperfections in the creation of these specific spin-coupling distributions can never be completely avoided, it is important to find out which systems are optimally suited for information transfer by assessing their robustness against imperfections or disturbances. We analyze different spin coupling distributions of spin chain channels designed for perfect quantum state transfer. In particular, we study the transfer of an initial state from one end of the chain to the other end. We quantify the robustness of different coupling distributions against perturbations and we relate it to the properties of the energy eigenstates and eigenvalues. We find that the localization properties of the systems play an important role for robust quantum state transfer.

  14. Quantum entropy and uncertainty for two-mode squeezed, coherent and intelligent spin states

    Science.gov (United States)

    Aragone, C.; Mundarain, D.

    1993-01-01

    We compute the quantum entropy for monomode and two-mode systems set in squeezed states. Thereafter, the quantum entropy is also calculated for angular momentum algebra when the system is either in a coherent or in an intelligent spin state. These values are compared with the corresponding values of the respective uncertainties. In general, quantum entropies and uncertainties have the same minimum and maximum points. However, for coherent and intelligent spin states, it is found that some minima for the quantum entropy turn out to be uncertainty maxima. We feel that the quantum entropy we use provides the right answer, since it is given in an essentially unique way.

  15. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian

    2014-12-08

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green\\'s function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  16. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian; Kalitsov, Alan; Manchon, Aurelien; Chshiev, Mairbek

    2014-01-01

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green's function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  17. Giant magneto-spin-Seebeck effect and magnon transfer torques in insulating spin valves

    Science.gov (United States)

    Cheng, Yihong; Chen, Kai; Zhang, Shufeng

    2018-01-01

    We theoretically study magnon transport in an insulating spin valve (ISV) made of an antiferromagnetic insulator sandwiched between two ferromagnetic insulator (FI) layers. In the conventional metal-based spin valve, the electron spins propagate between two metallic ferromagnetic layers, giving rise to giant magnetoresistance and spin transfer torque. Here, the incoherent magnons in the ISV serve as angular momentum carriers and are responsible for the angular momentum transport between two FI layers across the antiferromagnetic spacer. We predict two transport phenomena in the presence of the temperature gradient: a giant magneto-spin-Seebeck effect in which the output voltage signal is controlled by the relative orientation of the two FI layers and magnon transfer torque that can be used for switching the magnetization of the FI layers with a temperature gradient of the order of 0.1 Kelvin per nanometer.

  18. Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque

    Science.gov (United States)

    Abert, Claas; Bruckner, Florian; Vogler, Christoph; Suess, Dieter

    2018-05-01

    While the spin-diffusion model is considered one of the most complete and accurate tools for the description of spin transport and spin torque, its solution in the context of dynamical micromagnetic simulations is numerically expensive. We propose a procedure to retrieve the free parameters of a simple macro-spin like spin-torque model through the spin-diffusion model. In case of spin-transfer torque the simplified model complies with the model of Slonczewski. A similar model can be established for the description of spin-orbit torque. In both cases the spin-diffusion model enables the retrieval of free model parameters from the geometry and the material parameters of the system. Since these parameters usually have to be determined phenomenologically through experiments, the proposed method combines the strength of the diffusion model to resolve material parameters and geometry with the high performance of simple torque models.

  19. Resonant Spin-Transfer-Torque Nano-Oscillators

    Science.gov (United States)

    Sharma, Abhishek; Tulapurkar, Ashwin A.; Muralidharan, Bhaskaran

    2017-12-01

    Spin-transfer-torque nano-oscillators are potential candidates for replacing the traditional inductor-based voltage-controlled oscillators in modern communication devices. Typical oscillator designs are based on trilayer magnetic tunnel junctions, which have the disadvantages of low power outputs and poor conversion efficiencies. We theoretically propose using resonant spin filtering in pentalayer magnetic tunnel junctions as a possible route to alleviate these issues and present viable device designs geared toward a high microwave output power and an efficient conversion of the dc input power. We attribute these robust qualities to the resulting nontrivial spin-current profiles and the ultrahigh tunnel magnetoresistance, both of which arise from resonant spin filtering. The device designs are based on the nonequilibrium Green's-function spin-transport formalism self-consistently coupled with the stochastic Landau-Lifshitz-Gilbert-Slonczewski equation and Poisson's equation. We demonstrate that the proposed structures facilitate oscillator designs featuring a large enhancement in microwave power of around 1150% and an efficiency enhancement of over 1100% compared to typical trilayer designs. We rationalize the optimum operating regions via an analysis of the dynamic and static device resistances. We also demonstrate the robustness of our structures against device design fluctuations and elastic dephasing. This work sets the stage for pentalyer spin-transfer-torque nano-oscillator device designs that ameliorate major issues associated with typical trilayer designs.

  20. Coherence properties of holes subject to a fluctuating spin chirality

    International Nuclear Information System (INIS)

    Wheatley, J.M.; Hong, T.M.

    1991-01-01

    The coherence properties of holes coupled to short-ranged chiral spin fluctuations with a characteristic chiral spin fluctuation time τ ch =ω ch -1 are investigated in two dimensions. At temperatures kT much-lt 4π 2 left-angle φ 2 right-angle -1 ℎω ch hole quasiparticles exist and propagate with a renormalized mass m * /m=1+left-angle φ 2 right-angle ℎ/16πma 0 2 ω ch . $langle phi sup 2 rangle--- is the amplitude of the local fictitious flux fluctuation and a 0 is a lattice cutoff. At temperatures kT much-gt 4π 2 left-angle φ 2 right-angle -1 ℎω ch an effective-mass approximation is invalid and we find that the hole diffuses according to a logarithmic diffusion law in the quasistatic chiral field. The unusual diffusion law is a consequence of the long-ranged nature of the gauge field. The result shows that the holes do not form a coherent quantum fluid in the quasistatic regime

  1. Control of electron spin decoherence in nuclear spin baths

    Science.gov (United States)

    Liu, Ren-Bao

    2011-03-01

    Nuclear spin baths are a main mechanism of decoherence of spin qubits in solid-state systems, such as quantum dots and nitrogen-vacancy (NV) centers of diamond. The decoherence results from entanglement between the electron and nuclear spins, established by quantum evolution of the bath conditioned on the electron spin state. When the electron spin is flipped, the conditional bath evolution is manipulated. Such manipulation of bath through control of the electron spin not only leads to preservation of the center spin coherence but also demonstrates quantum nature of the bath. In an NV center system, the electron spin effectively interacts with hundreds of 13 C nuclear spins. Under repeated flip control (dynamical decoupling), the electron spin coherence can be preserved for a long time (> 1 ms) . Thereforesomecharacteristicoscillations , duetocouplingtoabonded 13 C nuclear spin pair (a dimer), are imprinted on the electron spin coherence profile, which are very sensitive to the position and orientation of the dimer. With such finger-print oscillations, a dimer can be uniquely identified. Thus, we propose magnetometry with single-nucleus sensitivity and atomic resolution, using NV center spin coherence to identify single molecules. Through the center spin coherence, we could also explore the many-body physics in an interacting spin bath. The information of elementary excitations and many-body correlations can be extracted from the center spin coherence under many-pulse dynamical decoupling control. Another application of the preserved spin coherence is identifying quantumness of a spin bath through the back-action of the electron spin to the bath. We show that the multiple transition of an NV center in a nuclear spin bath can have longer coherence time than the single transition does, when the classical noises due to inhomogeneous broadening is removed by spin echo. This counter-intuitive result unambiguously demonstrates the quantumness of the nuclear spin bath

  2. Generalized Spin Coherent States: Construction and Some Physical Properties

    International Nuclear Information System (INIS)

    Berrada, K.; El Baz, M.; Hassouni, Y.

    2009-12-01

    A generalized deformation of the su(2) algebra and a scheme for constructing associated spin coherent states is developed. The problem of resolving the unity operator in terms of these states is addressed and solved for some particular cases. The construction is carried using a deformation of Holstein-Primakoff realization of the su(2) algebra. The physical properties of these states is studied through the calculation of Mandel's parameter. (author)

  3. Image transfer with spatial coherence for aberration corrected transmission electron microscopes

    International Nuclear Information System (INIS)

    Hosokawa, Fumio; Sawada, Hidetaka; Shinkawa, Takao; Sannomiya, Takumi

    2016-01-01

    The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calculated using the newly derived formula with several residual aberrations. Depending on the symmetry and origin of an aberration, the calculated transfer function shows characteristic symmetries. The aberrations that originate from the field’s components, having uniformity along the z direction, namely, the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that originate from the field’s derivatives with respect to z, such as coma, star, and three lobe, show non-rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope. - Highlights: • The formula of partial coherence for aberration corrected TEM is derived. • Transfer functions are calculated with several residual aberrations. • The calculated transfer function shows the characteristic damping. • The odd-symmetric wave aberrations can cause the attenuation of image via coherence. • The examples of aberration corrected TEM image simulations are shown.

  4. Image transfer with spatial coherence for aberration corrected transmission electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Fumio, E-mail: hosokawa@bio-net.co.jp [BioNet Ltd., 2-3-28 Nishikityo, Tachikwa, Tokyo (Japan); Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8503 (Japan); Sawada, Hidetaka [JEOL (UK) Ltd., JEOL House, Silver Court, Watchmead, Welwyn Garden City, Herts AL7 1LT (United Kingdom); Shinkawa, Takao [BioNet Ltd., 2-3-28 Nishikityo, Tachikwa, Tokyo (Japan); Sannomiya, Takumi [Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8503 (Japan)

    2016-08-15

    The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calculated using the newly derived formula with several residual aberrations. Depending on the symmetry and origin of an aberration, the calculated transfer function shows characteristic symmetries. The aberrations that originate from the field’s components, having uniformity along the z direction, namely, the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that originate from the field’s derivatives with respect to z, such as coma, star, and three lobe, show non-rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope. - Highlights: • The formula of partial coherence for aberration corrected TEM is derived. • Transfer functions are calculated with several residual aberrations. • The calculated transfer function shows the characteristic damping. • The odd-symmetric wave aberrations can cause the attenuation of image via coherence. • The examples of aberration corrected TEM image simulations are shown.

  5. Designing organic spin filters in the coherent tunneling regime.

    Science.gov (United States)

    Herrmann, Carmen; Solomon, Gemma C; Ratner, Mark A

    2011-06-14

    Spin filters, that is, systems which preferentially transport electrons of a certain spin orientation, are an important element for spintronic schemes and in chemical and biological instances of spin-selective electronic communication. We study the relation between molecular structure and spin filtering functionality employing a theoretical analysis of both model and stable organic radicals based on substituted benzene, which are bound to gold electrodes, with a combination of density functional theory and the Landauer-Imry-Büttiker approach. We compare the spatial distribution of the spin density and of the frontier central subsystem molecular orbitals, and local contributions to the transmission. Our results suggest that the delocalization of the singly occupied molecular orbital and of the spin density onto the benzene ring connected to the electrodes, is a good, although not the sole indicator of spin filtering functionality. The stable radicals under study do not effectively act as spin filters, while the model phenoxy-based radicals are effective due to their much larger spin delocalization. These conclusions may also be of interest for electron transfer experiments in electron donor-bridge-acceptor complexes.

  6. Mode locking of electron spin coherences in singly charged quantum dots.

    Science.gov (United States)

    Greilich, A; Yakovlev, D R; Shabaev, A; Efros, Al L; Yugova, I A; Oulton, R; Stavarache, V; Reuter, D; Wieck, A; Bayer, M

    2006-07-21

    The fast dephasing of electron spins in an ensemble of quantum dots is detrimental for applications in quantum information processing. We show here that dephasing can be overcome by using a periodic train of light pulses to synchronize the phases of the precessing spins, and we demonstrate this effect in an ensemble of singly charged (In,Ga)As/GaAs quantum dots. This mode locking leads to constructive interference of contributions to Faraday rotation and presents potential applications based on robust quantum coherence within an ensemble of dots.

  7. Single excitation transfer in the quantum regime. A spin-based solid-state approach

    Energy Technology Data Exchange (ETDEWEB)

    Zollitsch, Christoph Wilhelm

    2016-12-02

    Realisation of strong coupling between a superconducting microwave resonator and an ensemble of phosphorus donor spins, contained in an isotopically purified silicon host crystal. Investigation of the dynamical properties of the coupled system at mK temperatures and ultra-low microwave powers. The relaxation and coherence times of the coupled system were extracted by pulsed microwave spectroscopy, with the result that the hybrid system's coherence time is enhanced compared to the uncoupled spin system.

  8. Coherence and spin effects in quantum dots

    International Nuclear Information System (INIS)

    Katsumoto, S

    2007-01-01

    This review focuses on experiments on coherent transport through quantum dot systems. The most important quantity obtained in coherent transport is the phase shift through the dots, which gives complementary information to the scattering amplitude (i.e. the conductance). However, two-terminal devices have a particular difficulty, called 'phase rigidity', in obtaining the phase shift. There are two representative ways to avoid this problem: one is to adopt a multi-terminal configuration and another is to use resonance in the interferometer. This review mainly reviews the latter approaches. Such resonance in the whole interferometer often joins with local resonance inside the interferometer and appears as the Fano effect, which is a powerful tool for investigating the phase shift problem with the aid of theories. In addition to such resonances of single-electron states, electron spin causes a kind of many-body resonance, that is, the Kondo effect. Combination of these resonances is the Fano-Kondo effect. Experiments on the Fano-Kondo effect, which unveil the nature of the Kondo resonance, are also reviewed. (topical review)

  9. Joule heating and spin-transfer torque investigated on the atomic scale using a spin-polarized scanning tunneling microscope.

    Science.gov (United States)

    Krause, S; Herzog, G; Schlenhoff, A; Sonntag, A; Wiesendanger, R

    2011-10-28

    The influence of a high spin-polarized tunnel current onto the switching behavior of a superparamagnetic nanoisland on a nonmagnetic substrate is investigated by means of spin-polarized scanning tunneling microscopy. A detailed lifetime analysis allows for a quantification of the effective temperature rise of the nanoisland and the modification of the activation energy barrier for magnetization reversal, thereby using the nanoisland as a local thermometer and spin-transfer torque analyzer. Both the Joule heating and spin-transfer torque are found to scale linearly with the tunnel current. The results are compared to experiments performed on lithographically fabricated magneto-tunnel junctions, revealing a very high spin-transfer torque switching efficiency in our experiments.

  10. Cooperative spin decoherence and population transfer

    International Nuclear Information System (INIS)

    Genes, C.; Berman, P. R.

    2006-01-01

    An ensemble of multilevel atoms is a good candidate for a quantum information storage device. The information is encrypted in the collective ground state atomic coherence, which, in the absence of external excitation, is decoupled from the vacuum and therefore decoherence free. However, in the process of manipulation of atoms with light pulses (writing, reading), one inadvertently introduces a coupling to the environment, i.e., a source of decoherence. The dissipation process is often treated as an independent process for each atom in the ensemble, an approach which fails at large atomic optical depths where cooperative effects must be taken into account. In this paper, the cooperative behavior of spin decoherence and population transfer for a system of two, driven multilevel atoms is studied. Not surprisingly, an enhancement in the decoherence rate is found, when the atoms are separated by a distance that is small compared to an optical wavelength; however, it is found that this rate increases even further for somewhat larger separations for atoms aligned along the direction of the driving field's propagation vector. A treatment of the cooperative modification of optical pumping rates and an effect of polarization swapping between atoms is also discussed, lending additional insight into the origin of the collective decay

  11. Dynamics of magnetization in ferromagnet with spin-transfer torque

    Science.gov (United States)

    Li, Zai-Dong; He, Peng-Bin; Liu, Wu-Ming

    2014-11-01

    We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out

  12. Modeling spin selectivity in charge transfer across the DNA/Gold interface

    Energy Technology Data Exchange (ETDEWEB)

    Behnia, S., E-mail: s.behnia@sci.uut.ac.ir [Department of Physics, Urmia University of Technology, Urmia (Iran, Islamic Republic of); Fathizadeh, S. [Department of Physics, Urmia University of Technology, Urmia (Iran, Islamic Republic of); Akhshani, A. [Department of Physics, Urmia Branch, Islamic Azad University, Urmia (Iran, Islamic Republic of)

    2016-09-30

    Highlights: • DNA in spintronics is applied. Nearly pure spin current is observed in the system. • A combined spin-polaronic PBH model is proposed for spin transfer in DNA molecule. • Spin Hall effect in DNA due to spin–orbit coupling is verified. • The temperature dependence of Hall conductivity is appeared. • Regions of parameters were determined that polarization of spin current is maximum. - Abstract: Experimental results show that the photoelectrons emitted from the gold substrate due to laser radiation, passe through DNA nanowires with spin-polarized nature. This study proposes the use of chiral DNA molecule in spintronics and information processing. To investigate the spin transfer in DNA molecules, we established a theoretical model based on a combined spin-polaronic Peyrard–Bishop–Holstein model. Accordingly, a nearly pure spin current is appeared. The simultaneous effects of the incident radiation and external magnetic field create characteristic islands corresponding to the pure spin currents, which can be predicted and detected using the multifractal dimensions spectrum. We can verify the spin Hall effect on DNA oligomers through spin–orbit coupling. As such, we can proceed to our significant purpose, which is to create a nearly pure spin current for information transfer and determine the regions of parameter values from which the maximal polarization in spin current emerges.

  13. Multiple Quantum Coherences (MQ) NMR and Entanglement Dynamics in the Mixed-Three-Spin XXX Heisenberg Model with Single-Ion Anisotropy

    Science.gov (United States)

    Hamid, Arian Zad

    2016-12-01

    We analytically investigate Multiple Quantum (MQ) NMR dynamics in a mixed-three-spin (1/2,1,1/2) system with XXX Heisenberg model at the front of an external homogeneous magnetic field B. A single-ion anisotropy property ζ is considered for the spin-1. The intensities dependence of MQ NMR coherences on their orders (zeroth and second orders) for two pairs of spins (1,1/2) and (1/2,1/2) of the favorite tripartite system are obtained. It is also investigated dynamics of the pairwise quantum entanglement for the bipartite (sub)systems (1,1/2) and (1/2,1/2) permanently coupled by, respectively, coupling constants J}1 and J}2, by means of concurrence and fidelity. Then, some straightforward comparisons are done between these quantities and the intensities of MQ NMR coherences and ultimately some interesting results are reported. We also show that the time evolution of MQ coherences based on the reduced density matrix of the pair spins (1,1/2) is closely connected with the dynamics of the pairwise entanglement. Finally, we prove that one can introduce MQ coherence of the zeroth order corresponds to the pair spins (1,1/2) as an entanglement witness at some special time intervals.

  14. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent

    Science.gov (United States)

    Vandersypen, L. M. K.; Bluhm, H.; Clarke, J. S.; Dzurak, A. S.; Ishihara, R.; Morello, A.; Reilly, D. J.; Schreiber, L. R.; Veldhorst, M.

    2017-09-01

    Semiconductor spins are one of the few qubit realizations that remain a serious candidate for the implementation of large-scale quantum circuits. Excellent scalability is often argued for spin qubits defined by lithography and controlled via electrical signals, based on the success of conventional semiconductor integrated circuits. However, the wiring and interconnect requirements for quantum circuits are completely different from those for classical circuits, as individual direct current, pulsed and in some cases microwave control signals need to be routed from external sources to every qubit. This is further complicated by the requirement that these spin qubits currently operate at temperatures below 100 mK. Here, we review several strategies that are considered to address this crucial challenge in scaling quantum circuits based on electron spin qubits. Key assets of spin qubits include the potential to operate at 1 to 4 K, the high density of quantum dots or donors combined with possibilities to space them apart as needed, the extremely long-spin coherence times, and the rich options for integration with classical electronics based on the same technology.

  15. Identification and tunable optical coherent control of transition-metal spins in silicon carbide

    NARCIS (Netherlands)

    Bosma, Tom; Lof, Gerrit J. J.; Gilardoni, Carmem M.; Zwier, Olger V.; Hendriks, Freddie; Ellison, Alexandre; Magnusson, Björn; Gällström, Andreas; Ivanov, Ivan G.; Son, N. T.; Havenith, Remco W. A.; Wal, Caspar H. van der

    2018-01-01

    Color centers in wide-bandgap semiconductors are attractive systems for quantum technologies since they can combine long-coherent electronic spin and bright optical properties. Several suitable centers have been identified, most famously the nitrogen-vacancy defect in diamond. However, integration

  16. Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions

    Science.gov (United States)

    Clément, P.-Y.; Baraduc, C.; Ducruet, C.; Vila, L.; Chshiev, M.; Diény, B.

    2015-09-01

    Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pave the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated.

  17. Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Clément, P.-Y.; Baraduc, C.; Chshiev, M.; Diény, B.; Ducruet, C.; Vila, L.

    2015-01-01

    Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pave the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated

  18. A phenomenological model for collisional coherence transfer in an optically pumped atomic system

    Energy Technology Data Exchange (ETDEWEB)

    Khanbekyan, K; Bevilaqua, G; Mariotti, E; Moi, L [Universita degli Studi di Siena, Siena, 53100 (Italy); Khanbekyan, A; Papoyan, A, E-mail: karen.khanbekyan@gmail.com [Institute for Physical Research, National Academy of Sciences, Ashtarak 2 (Armenia)

    2011-03-14

    We consider a dual {Lambda}-system under double laser excitation to investigate the possibility of indirect coherence transfer between atomic ground states through an excited state. The atomic system is excited by a frequency modulated pump laser and probed by a low-power cw laser. All the decoherence mechanisms are discussed and taken into account. Adjustment of parameters of the two radiations aimed at maximization of coherence transfer is addressed. The study can help to understand the phenomena as collisional transfer of coherence and can find application in the experimental realization of atomic sensors.

  19. Heterostructures for Realizing Magnon-Induced Spin Transfer Torque

    Directory of Open Access Journals (Sweden)

    P. B. Jayathilaka

    2012-01-01

    Full Text Available This work reports efforts fabricating heterostructures of different materials relevant for the realization of magnon-induced spin transfer torques. We find the growth of high-quality magnetite on MgO substrates to be straightforward, while using transition metal buffer layers of Fe, Cr, Mo, and Nb can alter the structural and magnetic properties of the magnetite. Additionally, we successfully fabricated and characterized Py/Cr/Fe3O4 and Fe3O4/Cr/Fe3O4 spin valve structures. For both, we observe a relatively small giant magnetoresistance and confirm an inverse dependence on spacer layer thickness. Thus, we have shown certain materials combinations that may form the heterostructures that are the building blocks necessary to achieve magnon-induced spin transfer torque devices.

  20. Skyrmion formation and optical spin-Hall effect in an expanding coherent cloud of indirect excitons.

    Science.gov (United States)

    Vishnevsky, D V; Flayac, H; Nalitov, A V; Solnyshkov, D D; Gippius, N A; Malpuech, G

    2013-06-14

    We provide a theoretical description of the polarization pattern and phase singularities experimentally evidenced recently in a condensate of indirect excitons [H. High et al., Nature 483, 584 (2012)]. We show that the averaging of the electron and hole orbital motion leads to a comparable spin-orbit interaction for both types of carriers. We demonstrate that the interplay between a radial coherent flux of bright indirect excitons and the Dresselhaus spin-orbit interaction results in the formation of spin domains and of topological defects similar to Skyrmions. We reproduce qualitatively all the features of the experimental data and obtain a polarization pattern as in the optical spin-Hall effect despite the different symmetry of the spin-orbit interactions.

  1. Observation of prolonged coherence time of the collective spin wave of an atomic ensemble in a paraffin-coated 87Rb vapor cell

    International Nuclear Information System (INIS)

    Jiang Shuo; Luo Xiaoming; Chen Liqing; Ning Bo; Chen Shuai; Wang Jingyang; Zhong Zhiping; Pan Jianwei

    2009-01-01

    We report a prolonged coherence time of the collective spin wave of a thermal 87 Rb atomic ensemble in a paraffin-coated cell. The spin wave is prepared through a stimulated Raman process. The long coherence time is achieved by prolonging the lifetime of the spins with paraffin coating and minimize dephasing with optimal experimental configuration. The observation of the long-time-delayed-stimulated Stokes signal in the writing process suggests the prolonged lifetime of the prepared spins; a direct measurement of the decay of anti-Stokes signal in the reading process shows the coherence time is up to 300 μs after minimizing dephasing. This is 100 times longer than the reported coherence time in the similar experiments in thermal atomic ensembles based on the Duan-Lukin-Cirac-Zoller and its improved protocols. This prolonged coherence time sets the upper limit of the memory time in quantum repeaters based on such protocols, which is crucial for the realization of long-distance quantum communication. The previous reported fluorescence background in the writing process due to collision in a sample cell with buffer gas is also reduced in a cell without buffer gas.

  2. Spin transfer matrix formulation and snake resonances for polarized proton beams

    International Nuclear Information System (INIS)

    Tepikian, S.

    1986-01-01

    The polarization of a spin polarized proton beam in a circular accelerator is described by a spin transfer matrix. Using this method, they investigate three problems: (1) the crossing of multiple spin resonances, (2) resonance jumping and (3) an accelerator with Siberian snakes. When crossing two (or more) spin resonances, there are no analytic solutions available. However, they can obtain analytic expressions if the two spin resonances are well separated (nonoverlapping) or very close together (overlapping). Between these two extremes they resort to numerical solution of the spin equations. Resonance jumping can be studied using the tools developed for analyzing the cross of multiple spin resonances. These theoretical results compare favorably with experimental results obtained from the AGS at Brookhaven. For large accelerators, resonance jumping becomes impractical and other methods such as Siberian snakes must be used to keep the beam spin polarized. An accelerator with Siberian snakes and isolated spin resonances can be described with a spin transfer matrix. From this, they find a new type of spin depolarizing resonance, called snake resonances

  3. Long lived quantum memory with nuclear atomic spins

    International Nuclear Information System (INIS)

    Sinatra, A.; Reinaudi, G.; Dantan, A.; Giacobino, E.; Pinard, M.

    2005-01-01

    We propose store non-classical states of light into the macroscopic collective nuclear spin (10 18 atoms) of a 3 He vapor, using metastability exchange collisions. We show that these collisions currently used to transfer orientation from the metastable state 2 3 S 1 to the ground state state of 3 He, may conserve quantum correlations and give a possible experimental scheme to perfectly map a squeezed vacuum field state onto a nuclear spin state, which should allow for extremely long storage times (hours). In addition to the apparent interest for quantum information, the scheme offers the intriguing possibility to create a long-lived non classical state for spins. During a metastability exchange collision an atom in the ground state state and an atom in the metastable triplet state 2 3 S exchange their electronic spin variables. The ground state atom is then brought into the metastable state and vice-versa. A laser transition is accessible from the metastable state so that the metastable atoms are coupled with light. This, together with metastability exchange collisions, provides an effective coupling between ground state atoms and light. In our scheme, a coherent field and a squeezed vacuum field excite a Raman transition between Zeeman sublevels of the metastable state, after the system is prepared in the fully polarized state by preliminary optical pumping. According to the intensity of the coherent field, which acts as a control parameter, the squeezing of the field can be selectively transferred either to metastable or to ground state atoms. Once it is encoded in the purely nuclear spin of the ground state of 3 He, which is 20 eV apart from the nearest excited state and interacts very little with the environment, the quantum state can survive for times as long as several hours. By lighting up only the coherent field in the same configuration as for the 'writing' phase, the nuclear spin memory can be 'read' after a long delay, the squeezing being transferred

  4. Magnon Bose-Einstein condensation and spin superfluidity.

    Science.gov (United States)

    Bunkov, Yuriy M; Volovik, Grigory E

    2010-04-28

    Bose-Einstein condensation (BEC) is a quantum phenomenon of formation of a collective quantum state in which a macroscopic number of particles occupy the lowest energy state and thus is governed by a single wavefunction. Here we highlight the BEC in a magnetic subsystem--the BEC of magnons, elementary magnetic excitations. The magnon BEC is manifested as the spontaneously emerging state of the precessing spins, in which all spins precess with the same frequency and phase even in an inhomogeneous magnetic field. The coherent spin precession was observed first in superfluid (3)He-B and this domain was called the homogeneously precessing domain (HPD). The main feature of the HPD is the induction decay signal, which ranges over many orders of magnitude longer than is prescribed by the inhomogeneity of magnetic field. This means that spins precess not with a local Larmor frequency, but coherently with a common frequency and phase. This BEC can also be created and stabilized by continuous NMR pumping. In this case the NMR frequency plays the role of a magnon chemical potential, which determines the density of the magnon condensate. The interference between two condensates has also been demonstrated. It was shown that HPD exhibits all the properties of spin superfluidity. The main property is the existence of a spin supercurrent. This spin supercurrent flows separately from the mass current. Transfer of magnetization by the spin supercurrent by a distance of more than 1 cm has been observed. Also related phenomena have been observed: the spin current Josephson effect; the phase-slip processes at the critical current; and the spin current vortex--a topological defect which is the analog of a quantized vortex in superfluids and of an Abrikosov vortex in superconductors; and so on. It is important to mention that the spin supercurrent is a magnetic phenomenon, which is not directly related to the mass superfluidity of (3)He: it is the consequence of a specific

  5. Spin-directed momentum transfers in SIDIS baryon production

    International Nuclear Information System (INIS)

    Sivers, D.

    2016-01-01

    The measurement of transverse single-spin asymmetries for baryon production in the target fragmentation region of semi-inclusive deep-inelastic scattering (SIDIS), can produce important insight into those nonperturbative aspects of QCD directly associated with confinement and with the dynamical breaking of chiral symmetry. We discuss here, in terms of spin-directed momentum transfers, the powerful quantum field- theoretical constraints on the spin-orbit dynamics underlying these transverse spin observables. The A τ -odd spin-directed momentum shifts, originating either in the target nucleon (δk TN ) or in the QCD jets (δp TN ) produced in the deep inelastic scattering process, represent significant quantum entanglement effects connecting information from current fragmentation with observables in target fragmentation. (author)

  6. Single-pulse terahertz coherent control of spin resonance in the canted antiferromagnet YFeO3, mediated by dielectric anisotropy

    DEFF Research Database (Denmark)

    Jin, Zuanming; Mics, Zoltán; Ma, Guohong

    2013-01-01

    We report on the coherent control of terahertz (THz) spin waves in a canted antiferromagnet yttrium orthoferrite, YFeO3, associated with a quasiferromagnetic (quasi-FM) spin resonance at a frequency of 0.3 THz, using a single-incident THz pulse. The spin resonance is excited impulsively by the ma...... polarization of the THz oscillation at the spin resonance frequency, suggests a key role of magnon–phonon coupling in spin-wave energy dissipation....

  7. Quantum electron transfer processes induced by thermo-coherent ...

    Indian Academy of Sciences (India)

    WINTEC

    Thermo-coherent state; electron transfer; quantum rate. 1. Introduction. The study ... two surfaces,16 namely, one electron two-centered exchange problem,7–10 many ... temperature classical regime for the single and the two-mode cases have ...

  8. Double-quantum homonuclear correlations of spin I=5/2 nuclei.

    Science.gov (United States)

    Iuga, Dinu

    2011-02-01

    The challenges associated with acquiring double-quantum homonuclear Nuclear Magnetic Resonance correlation spectra of half-integer quadrupolar nuclei are described. In these experiments the radio-frequency irradiation amplitude is necessarily weak in order to selectively excite the central transition. In this limit only one out of the 25 double-quantum coherences possible for two coupled spin I=5/2 nuclei is excited. An investigation of all the 25 two spins double quantum transitions reveals interesting effects such as a compensation of the first-order quadrupolar interaction between the two single quantum transitions involved in the double quantum coherence. In this paper a full numerical study of a hypothetical two spin I=5/2 system is used to show what happens when the RF amplitude during recoupling is increased. In principle this is advantageous, since the required double quantum coherence should build up faster, but in practice it also induces adiabatic passage transfer of population and coherence which impedes any build up. Finally an optimized rotary resonance recoupling (oR(3)) sequence is introduced in order to decrease these transfers. This sequence consists of a spin locking irradiation whose amplitude is reduced four times during one rotor period, and allows higher RF powers to be used during recoupling. The sequence is used to measure (27)Al DQ dipolar correlation spectra of Y(3)Al(5)O(12) (YAG) and gamma alumina (γAl(2)O(3)). The results prove that aluminium vacancies in gamma alumina mainly occur in the tetrahedral sites. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Innovation, technology transfer and development: the spin-off companies

    Directory of Open Access Journals (Sweden)

    Teodoro Valente

    2014-05-01

    Full Text Available The article starts from the identification of the reasons why Italy is less prone to technology transfer than other countries, and indicates some key issues for the diffusion of technological innovations and the development of human capital. In particular, technology transfer is not a generic form of exploitation of outcome of the research, it involves specific actions that have impact on economic production, such as the patenting and the creation of new companies (spin-offs. The author discusses the various forms of spin-offs of university research, the evolution of the phenomenon in the structures of the uni- versities, the stages of development of a spin-off company and the current fund- ing arrangements and to be promoted.

  10. Coherent excitation-energy transfer and quantum entanglement in a dimer

    International Nuclear Information System (INIS)

    Liao Jieqiao; Sun, C. P.; Huang Jinfeng; Kuang Leman

    2010-01-01

    We study coherent energy transfer of a single excitation and quantum entanglement in a dimer, which consists of a donor and an acceptor modeled by two two-level systems. Between the donor and the acceptor, there exists a dipole-dipole interaction, which provides the physical mechanism for coherent energy transfer and entanglement generation. The donor and the acceptor couple to two independent heat baths with diagonal couplings that do not dissipate the energy of the noncoupling dimer. Special attention is paid to the effect on single-excitation energy transfer and entanglement generation of the energy detuning between the donor and the acceptor and the temperatures of the two heat baths. It is found that, the probability for single-excitation energy transfer largely depends on the energy detuning in the low temperature limit. Concretely, the positive and negative energy detunings can increase and decrease the probability at steady state, respectively. In the high temperature limit, however, the effect of the energy detuning on the probability is negligibly small. We also find that the probability is negligibly dependent on the bath temperature difference of the two heat baths. In addition, it is found that quantum entanglement can be generated in the process of coherent energy transfer. As the bath temperature increases, the generated steady-state entanglement decreases. For a given bath temperature, the steady-state entanglement decreases with the increase of the absolute value of the energy detuning.

  11. Assisted Writing in Spin Transfer Torque Magnetic Tunnel Junctions

    Science.gov (United States)

    Ganguly, Samiran; Ahmed, Zeeshan; Datta, Supriyo; Marinero, Ernesto E.

    2015-03-01

    Spin transfer torque driven MRAM devices are now in an advanced state of development, and the importance of reducing the current requirement for writing information is well recognized. Different approaches to assist the writing process have been proposed such as spin orbit torque, spin Hall effect, voltage controlled magnetic anisotropy and thermal excitation. In this work,we report on our comparative study using the Spin-Circuit Approach regarding the total energy, the switching speed and energy-delay products for different assisted writing approaches in STT-MTJ devices using PMA magnets.

  12. Spatial propagation of excitonic coherence enables ratcheted energy transfer

    OpenAIRE

    Hoyer, Stephan; Ishizaki, Akihito; Whaley, K. Birgitta

    2011-01-01

    Experimental evidence shows that a variety of photosynthetic systems can preserve quantum beats in the process of electronic energy transfer, even at room temperature. However, whether this quantum coherence arises in vivo and whether it has any biological function have remained unclear. Here we present a theoretical model that suggests that the creation and recreation of coherence under natural conditions is ubiquitous. Our model allows us to theoretically demonstrate a mechanism for a ratch...

  13. Coherence and relaxation in energy transfer processes in condensed phases

    International Nuclear Information System (INIS)

    Shelby, R.M.

    1978-03-01

    Investigations of electronic triplet and vibrational energy transfer dynamics and relaxation processes are presented. Emphasis is placed on understanding the role of coherence and interactions which tend to destroy the coherence. In the case of triplet excitons at low temperatures, the importance of coherence in energy migration can be established, and the average coherence parameters can be experimentally determined. In the case of vibrational excitations, both picosecond spectroscopic studies of vibrational relaxation and spontaneous Raman spectroscopy are used to characterize the dynamics and give increased insight into the nature of the mechanisms responsible for vibrational dephasing. The design and operation of the picosecond apparatus used in these experiments is also described

  14. Spin transfer in reactions between heavy ions

    International Nuclear Information System (INIS)

    Dong Pil Min.

    1980-06-01

    The model presented affords a better understanding of the manner in which the orbital angular moment can be converted into an intrinsic spin in the collision between two heavy ions. After referring to the vector fields and the collective energy of a spheroidal nucleus, the calculation of the exchange of nucleons is described and the dissipation function is constructed. The spin transfer and the reorientation of the spin during the reaction are then examined (effect of friction and vibration). The estimated calculations are compared with the results of the 63 Cu+ 197 Au and 86 Kr+ 209 Bi experiments. The sensitivity of the calculation to the parameters of the model is discussed (nuclear potential, vibrational inertial parameter) [fr

  15. Coherent Rabi Dynamics of a Superradiant Spin Ensemble in a Microwave Cavity

    Science.gov (United States)

    Rose, B. C.; Tyryshkin, A. M.; Riemann, H.; Abrosimov, N. V.; Becker, P.; Pohl, H.-J.; Thewalt, M. L. W.; Itoh, K. M.; Lyon, S. A.

    2017-07-01

    We achieve the strong-coupling regime between an ensemble of phosphorus donor spins in a highly enriched 28Si crystal and a 3D dielectric resonator. Spins are polarized beyond Boltzmann equilibrium using spin-selective optical excitation of the no-phonon bound exciton transition resulting in N =3.6 ×1 013 unpaired spins in the ensemble. We observe a normal mode splitting of the spin-ensemble-cavity polariton resonances of 2 g √{N }=580 kHz (where each spin is coupled with strength g ) in a cavity with a quality factor of 75 000 (γ ≪κ ≈60 kHz , where γ and κ are the spin dephasing and cavity loss rates, respectively). The spin ensemble has a long dephasing time (T2*=9 μ s ) providing a wide window for viewing the dynamics of the coupled spin-ensemble-cavity system. The free-induction decay shows up to a dozen collapses and revivals revealing a coherent exchange of excitations between the superradiant state of the spin ensemble and the cavity at the rate g √{N }. The ensemble is found to evolve as a single large pseudospin according to the Tavis-Cummings model due to minimal inhomogeneous broadening and uniform spin-cavity coupling. We demonstrate independent control of the total spin and the initial Z projection of the psuedospin using optical excitation and microwave manipulation, respectively. We vary the microwave excitation power to rotate the pseudospin on the Bloch sphere and observe a long delay in the onset of the superradiant emission as the pseudospin approaches full inversion. This delay is accompanied by an abrupt π -phase shift in the peusdospin microwave emission. The scaling of this delay with the initial angle and the sudden phase shift are explained by the Tavis-Cummings model.

  16. Thermal quantum coherence and correlation in the extended XY spin chain

    Science.gov (United States)

    Sha, Ya-Ting; Wang, Yue; Sun, Zheng-Hang; Hou, Xi-Wen

    2018-05-01

    Quantum coherence and correlation of thermal states in the extended XY spin chain are studied in terms of the recently proposed l1 norm, skew information, and Bures distance of geometry discord (BGD), respectively. The entanglement measured via concurrence is calculated for reference. A two-dimensional susceptibility is introduced to explore their capability in highlighting the critical lines associated with quantum phase transitions in the model. It is shown that the susceptibility of the skew information and BGD is a genuine indicator of quantum phase transitions, and characterizes the factorization. However, the l1 norm is trivial for the factorization. An explicit scaling law of BGD is captured at low temperature in the XY model. In contrast to the entanglement, quantum coherence reveals a kind of long-range nonclassical correlation. Moreover, the obvious relation among model parameters is extracted for the factorized line in the extended model. Those are instructive for the understanding of quantum coherence and correlation in the theory of quantum information, and quantum phase transitions and factorization in condensed-matter physics.

  17. The partial coherence modulation transfer function in testing lithography lens

    Science.gov (United States)

    Huang, Jiun-Woei

    2018-03-01

    Due to the lithography demanding high performance in projection of semiconductor mask to wafer, the lens has to be almost free in spherical and coma aberration, thus, in situ optical testing for diagnosis of lens performance has to be established to verify the performance and to provide the suggesting for further improvement of the lens, before the lens has been build and integrated with light source. The measurement of modulation transfer function of critical dimension (CD) is main performance parameter to evaluate the line width of semiconductor platform fabricating ability for the smallest line width of producing tiny integrated circuits. Although the modulation transfer function (MTF) has been popularly used to evaluation the optical system, but in lithography, the contrast of each line-pair is in one dimension or two dimensions, analytically, while the lens stand along in the test bench integrated with the light source coherent or near coherent for the small dimension near the optical diffraction limit, the MTF is not only contributed by the lens, also by illumination of platform. In the study, the partial coherence modulation transfer function (PCMTF) for testing a lithography lens is suggested by measuring MTF in the high spatial frequency of in situ lithography lens, blended with the illumination of partial and in coherent light source. PCMTF can be one of measurement to evaluate the imperfect lens of lithography lens for further improvement in lens performance.

  18. Out-of-plane spin-transfer torques: First-principles study

    Czech Academy of Sciences Publication Activity Database

    Carva, K.; Turek, Ilja

    2010-01-01

    Roč. 322, 9-12 (2010), s. 1085-1087 ISSN 0304-8853. [Joint European Magnetic Symposia /4./. Dublin, 14.09.2008-19.09.2008] Institutional research plan: CEZ:AV0Z20410507 Keywords : spin-transfer torque * spin-mixing conductance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.689, year: 2010

  19. Research Update: Spin transfer torques in permalloy on monolayer MoS2

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2016-03-01

    Full Text Available We observe current induced spin transfer torque resonance in permalloy (Py grown on monolayer MoS2. By passing rf current through the Py/MoS2 bilayer, field-like and damping-like torques are induced which excite the ferromagnetic resonance of Py. The signals are detected via a homodyne voltage from anisotropic magnetoresistance of Py. In comparison to other bilayer systems with strong spin-orbit torques, the monolayer MoS2 cannot provide bulk spin Hall effects and thus indicates the purely interfacial nature of the spin transfer torques. Therefore our results indicate the potential of two-dimensional transition-metal dichalcogenide for the use of interfacial spin-orbitronics applications.

  20. Electron spin and nuclear spin manipulation in semiconductor nanosystems

    International Nuclear Information System (INIS)

    Hirayama, Yoshiro; Yusa, Go; Sasaki, Satoshi

    2006-01-01

    Manipulations of electron spin and nuclear spin have been studied in AlGaAs/GaAs semiconductor nanosystems. Non-local manipulation of electron spins has been realized by using the correlation effect between localized and mobile electron spins in a quantum dot- quantum wire coupled system. Interaction between electron and nuclear spins was exploited to achieve a coherent control of nuclear spins in a semiconductor point contact device. Using this device, we have demonstrated a fully coherent manipulation of any two states among the four spin levels of Ga and As nuclei. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Spin-transfer torque generated by a topological insulator

    KAUST Repository

    Mellnik, A. R.

    2014-07-23

    Magnetic devices are a leading contender for the implementation of memory and logic technologies that are non-volatile, that can scale to high density and high speed, and that do not wear out. However, widespread application of magnetic memory and logic devices will require the development of efficient mechanisms for reorienting their magnetization using the least possible current and power. There has been considerable recent progress in this effort; in particular, it has been discovered that spin-orbit interactions in heavy-metal/ferromagnet bilayers can produce strong current-driven torques on the magnetic layer, via the spin Hall effect in the heavy metal or the Rashba-Edelstein effect in the ferromagnet. In the search for materials to provide even more efficient spin-orbit-induced torques, some proposals have suggested topological insulators, which possess a surface state in which the effects of spin-orbit coupling are maximal in the sense that an electron\\' s spin orientation is fixed relative to its propagation direction. Here we report experiments showing that charge current flowing in-plane in a thin film of the topological insulator bismuth selenide (Bi2Se3) at room temperature can indeed exert a strong spin-transfer torque on an adjacent ferromagnetic permalloy (Ni81Fe19) thin film, with a direction consistent with that expected from the topological surface state. We find that the strength of the torque per unit charge current density in Bi 2Se3 is greater than for any source of spin-transfer torque measured so far, even for non-ideal topological insulator films in which the surface states coexist with bulk conduction. Our data suggest that topological insulators could enable very efficient electrical manipulation of magnetic materials at room temperature, for memory and logic applications. © 2014 Macmillan Publishers Limited. All rights reserved.

  2. Spin transfer coefficient DΛLL to Λ hyperon in semi-inclusive DIS at HERMES

    International Nuclear Information System (INIS)

    Belostotski, S; Veretennikov, D; Naryshkin, Yu

    2011-01-01

    Three components of the spin transfer coefficient from the longitudinally polarized electron/positron beam to the Λ or Λ-bar hyperon have been measured in the HERMES experiment. Kinematical dependencies of the spin-transfer have been studied. Averaged over Λ kinematics, longitudinal component of the spin transfer DΛ LL (along the virtual photon direction) to the Λ hyperon is found to be DΛ LL = 0.19 ± 0.04 stat ± 0.02 syst .

  3. Current induced multi-mode propagating spin waves in a spin transfer torque nano-contact with strong perpendicular magnetic anisotropy

    Science.gov (United States)

    Mohseni, S. Morteza; Yazdi, H. F.; Hamdi, M.; Brächer, T.; Mohseni, S. Majid

    2018-03-01

    Current induced spin wave excitations in spin transfer torque nano-contacts are known as a promising way to generate exchange-dominated spin waves at the nano-scale. It has been shown that when these systems are magnetized in the film plane, broken spatial symmetry of the field around the nano-contact induced by the Oersted field opens the possibility for spin wave mode co-existence including a non-linear self-localized spin-wave bullet and a propagating mode. By means of micromagnetic simulations, here we show that in systems with strong perpendicular magnetic anisotropy (PMA) in the free layer, two propagating spin wave modes with different frequency and spatial distribution can be excited simultaneously. Our results indicate that in-plane magnetized spin transfer nano-contacts in PMA materials do not host a solitonic self-localized spin-wave bullet, which is different from previous studies for systems with in plane magnetic anisotropy. This feature renders them interesting for nano-scale magnonic waveguides and crystals since magnon transport can be configured by tuning the applied current.

  4. Quantum state transfer in spin chains with q-deformed interaction terms

    International Nuclear Information System (INIS)

    Jafarov, E I; Van der Jeugt, J

    2010-01-01

    We study the time evolution of a single spin excitation state in certain linear spin chains, as a model for quantum communication. Some years ago it was discovered that when the spin chain data (the nearest-neighbour interaction strengths and the magnetic field strengths) are related to the Jacobi matrix entries of Krawtchouk polynomials or dual Hahn polynomials the so-called perfect state transfer takes place. The extension of these ideas to other types of discrete orthogonal polynomials did not lead to new models with perfect state transfer, but did allow more insight in the general computation of the correlation function. In this paper, we extend the study to discrete orthogonal polynomials of q-hypergeometric type. A remarkable result is a new analytic model where perfect state transfer is achieved: this is when the spin chain data are related to the Jacobi matrix of q-Krawtchouk polynomials. The other cases studied here (affine q-Krawtchouk polynomials, quantum q-Krawtchouk polynomials, dual q-Krawtchouk polynomials, q-Hahn polynomials, dual q-Hahn polynomials and q-Racah polynomials) do not give rise to models with perfect state transfer. However, the computation of the correlation function itself is quite interesting, leading to advanced q-series manipulations.

  5. The academic spin-offs as technology transfer way

    International Nuclear Information System (INIS)

    Gomez Gras, J. M.; Mira Solves, I.; Verdu Jover, A. J.; Sancho Azuar, J.

    2007-01-01

    One of the technology transfer mechanisms used by universities that has risen more interest in the last decade is the formation of academic spin-off, firms specifically created for the commercial exploitation of technology derived from research results. In the current paper we review the typologies and the development process of this kind of firms, as well as we propose a model that groups the conditioning factors of spin-off activity in the internal university environment. (Author) 92 refs

  6. Long-lived nanosecond spin coherence in high-mobility 2DEGs confined in double and triple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, S.; Gusev, G. M.; Hernandez, F. G. G., E-mail: felixggh@if.usp.br [Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, CEP 05315-970 São Paulo, SP (Brazil); Bakarov, A. K. [Institute of Semiconductor Physics and Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-06-07

    We investigated the spin coherence of high-mobility two-dimensional electron gases confined in multilayer GaAs quantum wells. The dynamics of the spin polarization was optically studied using pump-probe techniques: time-resolved Kerr rotation and resonant spin amplification. For double and triple quantum wells doped beyond the metal-to-insulator transition, the spin-orbit interaction was tailored by the sample parameters of structural symmetry (Rashba constant), width, and electron density (Dresselhaus linear and cubic constants) which allow us to attain long dephasing times in the nanoseconds range. The determination of the scales, namely, transport scattering time, single-electron scattering time, electron-electron scattering time, and spin polarization decay time further supports the possibility of using n-doped multilayer systems for developing spintronic devices.

  7. A coherent modified Redfield theory for excitation energy transfer in molecular aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Hwang-Fu, Yu-Hsien; Chen, Wei; Cheng, Yuan-Chung, E-mail: yuanchung@ntu.edu.tw

    2015-02-02

    Highlights: • A CMRT method for coherent energy transfer in molecular aggregates was developed. • Applicability of the method was verified in two-site systems with various parameters. • CMRT accurately describes population dynamics in the FMO-complex. • The method is accurate in a large parameter space and computationally efficient. - Abstract: Excitation energy transfer (EET) is crucial in photosynthetic light harvesting, and quantum coherence has been recently proven to be a ubiquitous phenomenon in photosynthetic EET. In this work, we derive a coherent modified Redfield theory (CMRT) that generalizes the modified Redfield theory to treat coherence dynamics. We apply the CMRT method to simulate the EET in a dimer system and compare the results with those obtained from numerically exact path integral calculations. The comparison shows that CMRT provides excellent computational efficiency and accuracy within a large EET parameter space. Furthermore, we simulate the EET dynamics in the FMO complex at 77 K using CMRT. The results show pronounced non-Markovian effects and long-lasting coherences in the ultrafast EET, in excellent agreement with calculations using the hierarchy equation of motion approach. In summary, we have successfully developed a simple yet powerful framework for coherent EET dynamics in photosynthetic systems and organic materials.

  8. Spin-transfer mechanism for magnon-drag thermopower

    NARCIS (Netherlands)

    Lucassen, M.E.|info:eu-repo/dai/nl/314406913; Wong, C.H.; Duine, R.A.|info:eu-repo/dai/nl/304830127; Tserkovnyak, Y.

    2011-01-01

    We point out a relation between the dissipative spin-transfer-torque parameter β and the contribution of magnon drag to the thermoelectric power in conducting ferromagnets. Using this result, we estimate β in iron at low temperatures, where magnon drag is believed to be the dominant contribution to

  9. Quantum state transfer via a two-qubit Heisenberg XXZ spin model

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jia; Zhang Guofeng [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Chen Ziyu [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)], E-mail: chenzy@buaa.edu.cn

    2008-04-14

    Transfer of quantum states through a two-qubit Heisenberg XXZ spin model with a nonuniform magnetic field b is investigated by means of quantum theory. The influences of b, the spin exchange coupling J and the effective transfer time T=Jt on the fidelity have been studied for some different initial states. Results show that fidelity of the transferred state is determined not only by J, T and b but also by the initial state of this quantum system. Ideal information transfer can be realized for some kinds of initial states. We also found that the interactions of the z-component J{sub z} and uniform magnetic field B do not have any contribution to the fidelity. These results may be useful for quantum information processing.

  10. Quantum state transfer via a two-qubit Heisenberg XXZ spin model

    International Nuclear Information System (INIS)

    Liu Jia; Zhang Guofeng; Chen Ziyu

    2008-01-01

    Transfer of quantum states through a two-qubit Heisenberg XXZ spin model with a nonuniform magnetic field b is investigated by means of quantum theory. The influences of b, the spin exchange coupling J and the effective transfer time T=Jt on the fidelity have been studied for some different initial states. Results show that fidelity of the transferred state is determined not only by J, T and b but also by the initial state of this quantum system. Ideal information transfer can be realized for some kinds of initial states. We also found that the interactions of the z-component J z and uniform magnetic field B do not have any contribution to the fidelity. These results may be useful for quantum information processing

  11. Role of coherence and delocalization in photo-induced electron transfer at organic interfaces

    Science.gov (United States)

    Abramavicius, V.; Pranculis, V.; Melianas, A.; Inganäs, O.; Gulbinas, V.; Abramavicius, D.

    2016-09-01

    Photo-induced charge transfer at molecular heterojunctions has gained particular interest due to the development of organic solar cells (OSC) based on blends of electron donating and accepting materials. While charge transfer between donor and acceptor molecules can be described by Marcus theory, additional carrier delocalization and coherent propagation might play the dominant role. Here, we describe ultrafast charge separation at the interface of a conjugated polymer and an aggregate of the fullerene derivative PCBM using the stochastic Schrödinger equation (SSE) and reveal the complex time evolution of electron transfer, mediated by electronic coherence and delocalization. By fitting the model to ultrafast charge separation experiments, we estimate the extent of electron delocalization and establish the transition from coherent electron propagation to incoherent hopping. Our results indicate that even a relatively weak coupling between PCBM molecules is sufficient to facilitate electron delocalization and efficient charge separation at organic interfaces.

  12. Spin-transfer torque induced dynamics of magnetic vortices in nanopillars

    International Nuclear Information System (INIS)

    Sluka, Volker

    2011-01-01

    The subject of this work are lithographically defined cylindrical nanopillars containing a stack of two Iron disks separated by a nonmagnetic spacer. The dimensions of the ferromagnetic disks are chosen such that at low magnetic fields, the so-called magnetic vortex is stabilized. In zero field, the magnetization of these objects is basically parallel to the disk plane and circulates the disk center. In doing so, the build-up of large in-plane stray fields is avoided. At the center of this distribution however, exchange forces turn the magnetization out of the disk plane, resulting in the formation of what is referred to as the vortex core. Magnetic vortices have attracted much attention in recent years. This interest is in large parts due to the highly interesting dynamic properties of these structures. In this work the static and dynamic properties of magnetic vortices and their behavior under the influence of spin-transfer torque are investigated. This is achieved by measuring the static and time dependent magnetoresistance under the influence of external magnetic fields. The samples allow the formation of a large variety of states. First, the focus is set on configurations, where one disk is in a vortex state while the other one is homogeneously magnetized. It is shown that spin-transfer torque excites the vortex gyrotropic mode in this configuration. The dependence of the mode frequency on the magnetic field is analyzed. The measurements show that as the vortex center of gyration shifts through the disk under the action of the magnetic field, the effective potential in which it is moving undergoes a change in shape. This shape change is reflected in a V-shaped field dependence of the gyration frequency. Analytical calculations are performed to investigate the effect of the asymmetry of the spin-transfer torque efficiency function on the vortex dynamics. It is shown that by means of asymmetry, spin-transfer torque can transfer energy to a gyrating vortex even

  13. Controlled quantum-state transfer in a spin chain

    International Nuclear Information System (INIS)

    Gong, Jiangbin; Brumer, Paul

    2007-01-01

    Control of the transfer of quantum information encoded in quantum wave packets moving along a spin chain is demonstrated. Specifically, based on a relationship with control in a paradigm of quantum chaos, it is shown that wave packets with slow dispersion can automatically emerge from a class of initial superposition states involving only a few spins, and that arbitrary unspecified traveling wave packets can be nondestructively stopped and later relaunched with perfection. The results establish an interesting application of quantum chaos studies in quantum information science

  14. Robust spin transfer torque in antiferromagnetic tunnel junctions

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2017-04-18

    We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque enabling electrical manipulation of the Néel antiferromagnetic order parameter is out of plane, ∼n×p, while the torque competing with the antiferromagnetic exchange is in plane, ∼n×(p×n). Here, p and n are the Néel order parameter direction of the reference and free layers, respectively. Their bias dependence shows behavior similar to that in ferromagnetic tunnel junctions, the in-plane torque being mostly linear in bias, while the out-of-plane torque is quadratic. Most importantly, we find that the spin transfer torque in antiferromagnetic tunnel junctions is much more robust against disorder than that in antiferromagnetic metallic spin valves due to the tunneling nature of spin transport.

  15. High spin levels populated in multinucleon transfer reaction with 480 MeV 12C

    International Nuclear Information System (INIS)

    Kraus, L.; Boucenna, A.; Linck, I.

    1988-01-01

    Two- and three-nucleon stripping reactions induced by 480 MeV 12 C have been studied on 12 C, 16 O, 28 Si, 40 Ca and 54 Fe target nuclei. Discrete levels are fed with cross sections up to 1 mb/sr for d-transfer reactions and one order and two orders of magnitude less for 2p- and 3 He-transfer reactions, respectively. These reactions preferentially populate high spin states with stretched configurations. Several spin assignments were known from transfer reactions induced by lighter projectiles at incident energies well above the Coulomb barrier. In the case of two-nucleon transfer reactions, the energy of these states is well reproduced by crude shell model calculations. Such estimates are of use in proposing spins of newly observed states especially as the shapes of the measured angular distributions are independent of the final spin of the residual nucleus

  16. Super-Poissonian Shot Noise of Squeezed-Magnon Mediated Spin Transport.

    Science.gov (United States)

    Kamra, Akashdeep; Belzig, Wolfgang

    2016-04-08

    The magnetization of a ferromagnet (F) driven out of equilibrium injects pure spin current into an adjacent conductor (N). Such F|N bilayers have become basic building blocks in a wide variety of spin-based devices. We evaluate the shot noise of the spin current traversing the F|N interface when F is subjected to a coherent microwave drive. We find that the noise spectrum is frequency independent up to the drive frequency, and increases linearly with frequency thereafter. The low frequency noise indicates super-Poissonian spin transfer, which results from quasiparticles with effective spin ℏ^{*}=ℏ(1+δ). For typical ferromagnetic thin films, δ∼1 is related to the dipolar interaction-mediated squeezing of F eigenmodes.

  17. Dichromatic light halting using double spin coherence gratings

    International Nuclear Information System (INIS)

    Ham, Byoung S; Hahn, Joonseong

    2011-01-01

    Light control by another light has drawn much attention in nonlinear quantum optics. Achieving all-optical control of the refractive index has been a key issue in all-optical information processing. Ultraslow light has been a good candidate for this purpose, where a giant phase shift can be achieved. The recent presentation of stationary light utilizing ultraslow light is an advanced example of such research. The stationary light functions as cavity quantum electrodynamics, where no high-Q-factor mirror pair is needed. In this paper, we report on two-color halted light pulses inside a solid medium, where the trapping time is comparable with that of ultraslow light but is much longer than quantum mapping storage time. The observed two-color halted light is achieved by means of double Raman optical field-excited spin coherence gratings, where slow light enhanced backward nondegenerate four-wave mixing processes play a major role.

  18. Dichromatic light halting using double spin coherence gratings

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Byoung S; Hahn, Joonseong, E-mail: bham@inha.ac.kr [Center for Photon Information Processing, School of Electrical Engineering, Inha University, 253 Yoghyun-dong, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2011-08-15

    Light control by another light has drawn much attention in nonlinear quantum optics. Achieving all-optical control of the refractive index has been a key issue in all-optical information processing. Ultraslow light has been a good candidate for this purpose, where a giant phase shift can be achieved. The recent presentation of stationary light utilizing ultraslow light is an advanced example of such research. The stationary light functions as cavity quantum electrodynamics, where no high-Q-factor mirror pair is needed. In this paper, we report on two-color halted light pulses inside a solid medium, where the trapping time is comparable with that of ultraslow light but is much longer than quantum mapping storage time. The observed two-color halted light is achieved by means of double Raman optical field-excited spin coherence gratings, where slow light enhanced backward nondegenerate four-wave mixing processes play a major role.

  19. Spin-transfer torque generated by a topological insulator

    KAUST Repository

    Mellnik, A. R.; Lee, Joonsue; Richardella, Anthony R.; Grab, J. L.; Mintun, P. J.; Fischer, Mark H.; Vaezi, Abolhassan; Manchon, Aurelien; Kim, Eunah; Samarth, Nitin S.; Ralph, Daniel C.

    2014-01-01

    permalloy (Ni81Fe19) thin film, with a direction consistent with that expected from the topological surface state. We find that the strength of the torque per unit charge current density in Bi 2Se3 is greater than for any source of spin-transfer torque

  20. Manipulating Quantum Coherence in Solid State Systems

    CERN Document Server

    Flatté, Michael E; The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems"

    2007-01-01

    The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems", in Cluj-Napoca, Romania, August 29-September 9, 2005, presented a fundamental introduction to solid-state approaches to achieving quantum computation. This proceedings volume describes the properties of quantum coherence in semiconductor spin-based systems and the behavior of quantum coherence in superconducting systems. Semiconductor spin-based approaches to quantum computation have made tremendous advances in the past several years. Coherent populations of spins can be oriented, manipulated and detected experimentally. Rapid progress has been made towards performing the same tasks on individual spins (nuclear, ionic, or electronic) with all-electrical means. Superconducting approaches to quantum computation have demonstrated single qubits based on charge eigenstates as well as flux eigenstates. These topics have been presented in a pedagogical fashion by leading researchers in the fields of semiconductor-spin-based qu...

  1. Partially coherent imaging and spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, Roman

    2003-03-01

    A description of spatially partially coherent imaging based on the propagation of second order spatial coherence wavelets and marginal power spectra (Wigner distribution functions) is presented. In this dynamics, the spatial coherence wavelets will be affected by the system through its elementary transfer function. The consistency of the model with the both extreme cases of full coherent and incoherent imaging was proved. In the last case we obtained the classical concept of optical transfer function as a simple integral of the elementary transfer function. Furthermore, the elementary incoherent response function was introduced as the Fourier transform of the elementary transfer function. It describes the propagation of spatial coherence wavelets form each object point to each image point through a specific point on the pupil planes. The point spread function of the system was obtained by a simple integral of the elementary incoherent response function. (author)

  2. Nuclear magnetic relaxation by the dipolar EMOR mechanism: Multi-spin systems

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2017-08-01

    In aqueous systems with immobilized macromolecules, including biological tissues, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have previously developed a rigorous EMOR relaxation theory for dipole-coupled two-spin and three-spin systems. Here, we extend the stochastic Liouville theory to four-spin systems and use these exact results as a guide for constructing an approximate multi-spin theory, valid for spin systems of arbitrary size. This so-called generalized stochastic Redfield equation (GSRE) theory includes the effects of longitudinal-transverse cross-mode relaxation, which gives rise to an inverted step in the relaxation dispersion profile, and coherent spin mode transfer among solid-like spins, which may be regarded as generalized spin diffusion. The GSRE theory is compared to an existing theory, based on the extended Solomon equations, which does not incorporate these phenomena. Relaxation dispersion profiles are computed from the GSRE theory for systems of up to 16 protons, taken from protein crystal structures. These profiles span the range from the motional narrowing limit, where the coherent mode transfer plays a major role, to the ultra-slow motion limit, where the zero-field rate is closely related to the strong-collision limit of the dipolar relaxation rate. Although a quantitative analysis of experimental data is beyond the scope of this work, it is clear from the magnitude of the predicted relaxation rate and the shape of the relaxation dispersion profile that the dipolar EMOR mechanism is the principal cause of water-1H low-field longitudinal relaxation in aqueous systems of immobilized macromolecules, including soft biological tissues. The relaxation theory developed here therefore provides a basis for molecular-level interpretation of endogenous soft

  3. Thermal spin pumping mediated by magnons in the semiclassical regime

    International Nuclear Information System (INIS)

    Nakata, Kouki

    2012-01-01

    We microscopically analyze thermal spin pumping mediated by magnons, at the interface between a ferromagnetic insulator and a non-magnetic metal, in the semiclassical regime. The generation of a spin current is discussed by calculating the thermal spin transfer torque, which breaks the spin conservation law for conduction electrons and operates the coherent magnon state. Inhomogeneous thermal fluctuations between conduction electrons and magnons induce a net spin current, which is pumped into the adjacent non-magnetic metal. The pumped spin current is proportional to the temperature difference. When the effective temperature of magnons is lower than that of conduction electrons, localized spins lose spin angular momentum by emitting magnons and conduction electrons flip from down to up by absorbing all the emitted momentum, and vice versa. Magnons at the zero mode cannot contribute to thermal spin pumping because they are eliminated by the spin-flip condition. Consequently thermal spin pumping does not cost any kind of applied magnetic fields

  4. Spin gymnastics with selective radiofrequency pulses

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, R.; Kupce, E. [Cambridge Univ. (United Kingdom)

    1994-12-31

    Although high resolution NMR spectra are normally excited with short intense radiofrequency pulses, there is an entire family of new experiments that can be performed with frequency-selective or ``soft`` pulses. Time-consuming two-dimensional spectroscopy may be reduced to a much shorter one-dimensional version with much finer digitization in the frequency domain. A large number of soft pulses can be combined to form a ``polychromatic pulse`` that has uniform excitation over the entire range of proton shifts except for a rejection notch at the water frequency. Polychromatic pulses can also be used to create antiphase magnetization in preparation for a coherence transfer or double-quantum experiment. An excitation profile can be designed in the form of a ``template`` that exactly matches the spectrum of a given chemical compound but has zero excitation elsewhere. This is achieved by using the information in the experimental free induction decay to construct a suitable array of soft pulses that has the required excitation pattern. In this manner, interpenetrating spectra can be separated into the spectra of the pure components, for example those of a and b glucose. Selective Hartmann-Hahn coherence transfer experiments employ similar soft pulse techniques. If several such transfers are concatenated, the method may be used as a test to see whether a group of protons is linked in an unbroken chain by scalar spin-spin interactions. (authors). 24 refs., 18 figs.

  5. Atomic interference phenomena in solids with a long-lived spin coherence

    International Nuclear Information System (INIS)

    Kuznetsova, Elena; Kocharovskaya, Olga; Hemmer, Philip; Scully, Marlan O.

    2002-01-01

    We generalize the theory of electromagnetically induced transparency (EIT) and slow group velocity for the case of the homogeneous and inhomogeneous line broadening in both one- and two-photon transitions which unavoidably takes place in solid materials with a long-lived spin coherence. We identify regimes of EIT where the linewidth can be essentially reduced due to inhomogeneous broadening and, moreover, can be proportional to the amplitude of the driving field rather than the intensity. We suggest also a class of solid materials, namely, rare-earth ion doped semiconductors or dielectrics with electricdipole allowed transitions, that is very promising for realization and applications of EIT

  6. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond

    Science.gov (United States)

    Epstein, R. J.; Mendoza, F. M.; Kato, Y. K.; Awschalom, D. D.

    2005-11-01

    Experiments on single nitrogen-vacancy (N-V) centres in diamond, which include electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby13C nuclear spin, show the potential of this spin system for solid-state quantum information processing. Moreover, N-V centre ensembles can have spin-coherence times exceeding 50 μs at room temperature. We have developed an angle-resolved magneto-photoluminescence microscope apparatus to investigate the anisotropic electron-spin interactions of single N-V centres at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic-field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin-level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighbouring `dark' nitrogen spins, otherwise undetected by photoluminescence. These results demonstrate the capability of our spectroscopic technique for measuring small numbers of dark spins by means of a single bright spin under ambient conditions.

  7. Spin pumping through a topological insulator probed by x-ray detected ferromagnetic resonance

    Science.gov (United States)

    Figueroa, A. I.; Baker, A. A.; Collins-McIntyre, L. J.; Hesjedal, T.; van der Laan, G.

    2016-02-01

    In the field of spintronics, the generation of a pure spin current (without macroscopic charge flow) through spin pumping of a ferromagnetic (FM) layer opens up the perspective of a new generation of dissipation-less devices. Microwave driven ferromagnetic resonance (FMR) can generate a pure spin current that enters adjacent layers, allowing for both magnetization reversal (through spin-transfer torque) and to probe spin coherence in non-magnetic materials. However, standard FMR is unable to probe multilayer dynamics directly, since the measurement averages over the contributions from the whole system. The synchrotron radiation-based technique of x-ray detected FMR (XFMR) offers an elegant solution to this drawback, giving access to element-, site-, and layer-specific dynamical measurements in heterostructures. In this work, we show how XFMR has provided unique information to understand spin pumping and spin transfer torque effects through a topological insulator (TI) layer in a pseudo-spin valve heterostructure. We demonstrate that TIs function as efficient spin sinks, while also allowing a limited dynamic coupling between ferromagnetic layers. These results shed new light on the spin dynamics of this novel class of materials, and suggest future directions for the development of room temperature TI-based spintronics.

  8. Coherent Structures and Spectral Energy Transfer in Turbulent Plasma: A Space-Filter Approach

    Science.gov (United States)

    Camporeale, E.; Sorriso-Valvo, L.; Califano, F.; Retinò, A.

    2018-03-01

    Plasma turbulence at scales of the order of the ion inertial length is mediated by several mechanisms, including linear wave damping, magnetic reconnection, the formation and dissipation of thin current sheets, and stochastic heating. It is now understood that the presence of localized coherent structures enhances the dissipation channels and the kinetic features of the plasma. However, no formal way of quantifying the relationship between scale-to-scale energy transfer and the presence of spatial structures has been presented so far. In the Letter we quantify such a relationship analyzing the results of a two-dimensional high-resolution Hall magnetohydrodynamic simulation. In particular, we employ the technique of space filtering to derive a spectral energy flux term which defines, in any point of the computational domain, the signed flux of spectral energy across a given wave number. The characterization of coherent structures is performed by means of a traditional two-dimensional wavelet transformation. By studying the correlation between the spectral energy flux and the wavelet amplitude, we demonstrate the strong relationship between scale-to-scale transfer and coherent structures. Furthermore, by conditioning one quantity with respect to the other, we are able for the first time to quantify the inhomogeneity of the turbulence cascade induced by topological structures in the magnetic field. Taking into account the low space-filling factor of coherent structures (i.e., they cover a small portion of space), it emerges that 80% of the spectral energy transfer (both in the direct and inverse cascade directions) is localized in about 50% of space, and 50% of the energy transfer is localized in only 25% of space.

  9. Spin Interactions and Spin Dynamics in Electronic Nanostructures

    Science.gov (United States)

    2006-08-31

    041302(R) (2005). 30. “Room-temperature spin coherence in ZnO ,” S. Ghosh, V. Sih, W. H. Lau, D. D. Awschalom, S.-Y. Bae, S. Wang, S. Vaidya. and G...Yazdani, Journal of Superconductivity: Incorporating Novel Magnetism 18, 23 (2005). 32. “Room-temperature spin coherence in ZnO ,” S. Ghosh, V. Sih, W...C. Ralph, invited lecture presented by at 2005 Electrochemistry Gordon Research Conference, February 20-25, 2005, Ventura, CA 94. “Tools for Studying

  10. Spin transfer in an open ferromagnetic layer: from negative damping to effective temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wegrowe, J-E; Ciornei, M C; Drouhin, H-J [Laboratoire des Solides Irradies, Ecole Polytechnique, CNRS-UMR 7642 and CEA/DSM/DRECAM, 91128 Palaiseau Cedex (France)

    2007-04-23

    Spin transfer is a typical spintronics effect that allows a ferromagnetic layer to be switched by spin injection. All experimental results concerning spin transfer (quasi-static hysteresis loops or AC resonance measurements) are described on the basis of the Landau-Lifshitz-Gilbert equation of the magnetization, in which additional current dependent terms are added, like current dependent effective fields and current dependent damping factors, that can be positive or negative. The origin of these terms can be investigated further by performing stochastic experiments, like one-shot relaxation experiments under spin injection in the activation regime of the magnetization. In this regime, the Neel-Brown activation law is observed which leads to the introduction of a current dependent effective temperature. In order to define these counterintuitive parameters (effective temperature and negative damping), a detailed thermokinetic analysis of the different sub-systems involved is performed. This report presents a thermokinetic description of the different forms of energy exchanged between the electric and the ferromagnetic sub-systems at a normal/ferromagnetic junction. The derivation of the Fokker-Planck equation in the framework of the thermokinetic theory allows the transport parameters to be defined from the entropy variation and refined with the Onsager reciprocity relations and symmetry properties of the magnetic system. The contribution of the spin polarized current is introduced as an external source term in the conservation laws of the ferromagnetic layer. Due to the relaxation time separation, this contribution can be reduced to an effective damping. The flux of energy transferred between the ferromagnet and the spin polarized current can be positive or negative, depending on the spin accumulation configuration. The effective temperature is deduced in the activation (stationary) regime, provided that the relaxation time that couples the magnetization to the

  11. Impact of Disorder on Spin Dependent Transport Phenomena

    KAUST Repository

    Saidaoui, Hamed

    2016-07-03

    The impact of the spin degree of freedom on the transport properties of electrons traveling through magnetic materials has been known since the pioneer work of Mott [1]. Since then it has been demonstrated that the spin angular momentum plays a key role in the scattering process of electrons in magnetic multilayers. This role has been emphasized by the discovery of the Giant Magnetoresistance in 1988 by Fert and Grunberg [2, 3]. Among the numerous applications and effects that emerged in mesoscopic devices two mechanisms have attracted our attention during the course of this thesis: the spin transfer torque and the spin Hall effects. The former consists in the transfer of the spin angular momentum from itinerant carriers to local magnetic moments [4]. This mechanism results in the current-driven magnetization switching and excitations, which has potential application in terms of magnetic data storage and non-volatile memories. The latter, spin Hall effect, is considered as well to be one of the most fascinating mechanisms in condensed matter physics due to its ability of generating non-equilibrium spin currents without the need for any magnetic materials. In fact the spin Hall effect relies only on the presence of the spin-orbit interaction in order to create an imbalance between the majority and minority spins. The objective of this thesis is to investigate the impact of disorder on spin dependent transport phenomena. To do so, we identified three classes of systems on which such disorder may have a dramatic influence: (i) antiferromagnetic materials, (ii) impurity-driven spin-orbit coupled systems and (iii) two dimensional semiconducting electron gases with Rashba spin-orbit coupling. Antiferromagnetic materials - We showed that in antiferromagnetic spin-valves, spin transfer torque is highly sensitive to disorder, which prevents its experimental observation. To solve this issue, we proposed to use either a tunnel barrier as a spacer or a local spin torque using

  12. Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors

    Science.gov (United States)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2017-06-01

    We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1 /√{t } . Based on the numerical results, we devise a simple formula describing the effect quantitatively.

  13. Current-induced spin transfer torque in ferromagnet-marginal Fermi liquid double tunnel junctions

    International Nuclear Information System (INIS)

    Mu Haifeng; Zheng Qingrong; Jin Biao; Su Gang

    2005-01-01

    Current-induced spin transfer torque through a marginal Fermi liquid (MFL) which is connected to two noncollinearly aligned ferromagnets via tunnel junctions is discussed in terms of the nonequilibrium Green function method. It is found that in the absence of the spin-flip scattering, the magnitude of the torque increases with the polarization and the coupling constant λ of the MFL, whose maximum increases with λ linearly, showing that the interactions between electrons tend to enhance the spin torque. When the spin-flip scattering is included, an additional spin torque is induced. It is found that the spin-flip scattering enhances the spin torque and gives rise to a nonlinear angular shift

  14. Controlled ultrafast transfer and stability degree of generalized coherent states of a kicked two-level ion

    Science.gov (United States)

    Chen, Hao; Kong, Chao; Hai, Wenhua

    2018-06-01

    We investigate quantum dynamics of a two-level ion trapped in the Lamb-Dicke regime of a δ -kicked optical lattice, based on the exact generalized coherent states rotated by a π / 2 pulse of Ramsey type experiment. The spatiotemporal evolutions of the spin-motion entangled states in different parameter regions are illustrated, and the parameter regions of different degrees of quantum stability described by the quantum fidelity are found. Time evolutions of the probability for the ion being in different pseudospin states reveal that the ultrafast entanglement generation and population transfers of the system can be analytically controlled by managing the laser pulses. The probability in an initially disentangled state shows periodic collapses (entanglement) and revivals (de-entanglement). Reduction of the stability degree results in enlarging the period of de-entanglement, while the instability and potential chaos will cause the sustained entanglement. The results could be justified experimentally in the existing setups and may be useful in engineering quantum dynamics for quantum information processing.

  15. Transfer of d-level quantum states through spin chains by random swapping

    International Nuclear Information System (INIS)

    Bayat, A.; Karimipour, V.

    2007-01-01

    We generalize an already proposed protocol for quantum state transfer to spin chains of arbitrary spin. An arbitrary unknown d-level state is transferred through a chain with rather good fidelity by the natural dynamics of the chain. We compare the performance of this protocol for various values of d. A by-product of our study is a much simpler method for picking up the state at the destination as compared with the one proposed previously. We also discuss entanglement distribution through such chains and show that the quality of entanglement transition increases with the number of levels d

  16. Analytical study of synchronization in spin-transfer-driven magnetization dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Roberto [Politecnico di Torino - sede di Verres, via Luigi Barone 8, I-11029 Verres (Italy); Bertotti, Giorgio; Bortolotti, Paolo [Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, I-10135 Torino (Italy); Serpico, Claudio [Dipartimento di Ingegneria Elettrica, Universita di Napoli ' Federico II' , via Claudio 21, I-80125 Napoli (Italy); D' Aquino, Massimiliano [Dipartimento per le Tecnologie, Universita di Napoli ' Parthenope' , via Medina 40, I-80133 Napoli (Italy); Mayergoyz, Isaak D, E-mail: p.bortolotti@inrim.i [Electrical and Computer Engineering Department and UMIACS, University of Maryland, College Park MD 20742 (United States)

    2010-01-01

    An analytical study of the synchronization effects in spin-transfer-driven nanomagnets subjected to either microwave magnetic fields or microwave electrical currents is discussed. Appropriate stability diagrams are constructed and the conditions under which the current-induced magnetization precession is synchronized by the microwave external excitation are derived and discussed. Analytical predictions are given for the existence of phase-locking effects in current-induced magnetization precessions and for the occurrence of hysteresis in phase-locking as a function of the spin-polarized current.

  17. Statistical error of spin transfer to hyperon at RHIC energy

    International Nuclear Information System (INIS)

    Han Ran; Mao Yajun

    2009-01-01

    From the RHIC/PHENIX experiment data, it is found that the statistical error of spin transfer is few times larger than the statistical error of the single spin asymmetry. In order to verify the difference between σDLL and σAL, the linear least squares method was used to check it first, and then a simple Monte-Carlo simulation to test this factor again. The simulation is consistent with the calculation result which indicates that the few times difference is reasonable. (authors)

  18. Spin pumping through a topological insulator probed by x-ray detected ferromagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, A.I., E-mail: aifigueg@gmail.com [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Baker, A.A. [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Collins-McIntyre, L.J.; Hesjedal, T. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Laan, G. van der [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom)

    2016-02-15

    In the field of spintronics, the generation of a pure spin current (without macroscopic charge flow) through spin pumping of a ferromagnetic (FM) layer opens up the perspective of a new generation of dissipation-less devices. Microwave driven ferromagnetic resonance (FMR) can generate a pure spin current that enters adjacent layers, allowing for both magnetization reversal (through spin-transfer torque) and to probe spin coherence in non-magnetic materials. However, standard FMR is unable to probe multilayer dynamics directly, since the measurement averages over the contributions from the whole system. The synchrotron radiation-based technique of x-ray detected FMR (XFMR) offers an elegant solution to this drawback, giving access to element-, site-, and layer-specific dynamical measurements in heterostructures. In this work, we show how XFMR has provided unique information to understand spin pumping and spin transfer torque effects through a topological insulator (TI) layer in a pseudo-spin valve heterostructure. We demonstrate that TIs function as efficient spin sinks, while also allowing a limited dynamic coupling between ferromagnetic layers. These results shed new light on the spin dynamics of this novel class of materials, and suggest future directions for the development of room temperature TI-based spintronics. - Highlights: • X-ray detected ferromagnetic resonance is used to study the spin pumping phenomenon. • We show a powerful way to get information of spin transfer between magnetic layers. • We observe spin pumping through a topological insulators at room temperature. • Topological insulators function as efficient spin sinks.

  19. Spin pumping through a topological insulator probed by x-ray detected ferromagnetic resonance

    International Nuclear Information System (INIS)

    Figueroa, A.I.; Baker, A.A.; Collins-McIntyre, L.J.; Hesjedal, T.; Laan, G. van der

    2016-01-01

    In the field of spintronics, the generation of a pure spin current (without macroscopic charge flow) through spin pumping of a ferromagnetic (FM) layer opens up the perspective of a new generation of dissipation-less devices. Microwave driven ferromagnetic resonance (FMR) can generate a pure spin current that enters adjacent layers, allowing for both magnetization reversal (through spin-transfer torque) and to probe spin coherence in non-magnetic materials. However, standard FMR is unable to probe multilayer dynamics directly, since the measurement averages over the contributions from the whole system. The synchrotron radiation-based technique of x-ray detected FMR (XFMR) offers an elegant solution to this drawback, giving access to element-, site-, and layer-specific dynamical measurements in heterostructures. In this work, we show how XFMR has provided unique information to understand spin pumping and spin transfer torque effects through a topological insulator (TI) layer in a pseudo-spin valve heterostructure. We demonstrate that TIs function as efficient spin sinks, while also allowing a limited dynamic coupling between ferromagnetic layers. These results shed new light on the spin dynamics of this novel class of materials, and suggest future directions for the development of room temperature TI-based spintronics. - Highlights: • X-ray detected ferromagnetic resonance is used to study the spin pumping phenomenon. • We show a powerful way to get information of spin transfer between magnetic layers. • We observe spin pumping through a topological insulators at room temperature. • Topological insulators function as efficient spin sinks.

  20. Ultra-fast magnetization reversal in magnetic nano-pillars by spin-polarized current

    Energy Technology Data Exchange (ETDEWEB)

    Devolder, T. [Institut d' Electronique Fondamentale, UMR 8622 CNRS, Universite Paris Sud, Ba-circumflex timent 220, 91405 Orsay (France)]. E-mail: thibaut.devolder@ief.u-psud.fr; Tulapurkar, A. [NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568 (Japan); CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 (Japan); Yagami, K. [SSNC, Semiconductor Technology Development Group, SONY Corporation, Atsugi, Kanagawa 243-0014 (Japan); Crozat, P. [Institut d' Electronique Fondamentale, UMR 8622 CNRS, Universite Paris Sud, Ba-circumflex timent 220, 91405 Orsay (France); Chappert, C. [Institut d' Electronique Fondamentale, UMR 8622 CNRS, Universite Paris Sud, Ba-circumflex timent 220, 91405 Orsay (France); Fukushima, A. [NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568 (Japan); CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 (Japan); Suzuki, Y. [NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568 (Japan); CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi 332-0012 (Japan)

    2005-02-01

    We study the speed limitations of the magnetization switching resulting from spin transfer in pillar-shaped CoFe/Cu/CoFe spin valves. The quasi-static critical currents are Ic-=-2mA for the antiparallel (AP) to parallel (P) configuration and Ic+=+4.6mA for the P to AP transition. Current pulses of duration down to 100ps and amplitude of 4I{sub c} trigger switching at 300K. The switching is probabilistic for lower current pulses. The P to AP transition speed is not much temperature dependant from 50 to 300K. In contrast, the AP to P transition is thermally inhibited and is much faster at 150K than at 300K. This thermal inhibition highlights the importance of the macrospin coherency and of the thermally excited spin waves with finite wave vector parallel to the magnetization. Our results validate spin-transfer switching for fast memory applications.

  1. Ultra-fast magnetization reversal in magnetic nano-pillars by spin-polarized current

    International Nuclear Information System (INIS)

    Devolder, T.; Tulapurkar, A.; Yagami, K.; Crozat, P.; Chappert, C.; Fukushima, A.; Suzuki, Y.

    2005-01-01

    We study the speed limitations of the magnetization switching resulting from spin transfer in pillar-shaped CoFe/Cu/CoFe spin valves. The quasi-static critical currents are Ic-=-2mA for the antiparallel (AP) to parallel (P) configuration and Ic+=+4.6mA for the P to AP transition. Current pulses of duration down to 100ps and amplitude of 4I c trigger switching at 300K. The switching is probabilistic for lower current pulses. The P to AP transition speed is not much temperature dependant from 50 to 300K. In contrast, the AP to P transition is thermally inhibited and is much faster at 150K than at 300K. This thermal inhibition highlights the importance of the macrospin coherency and of the thermally excited spin waves with finite wave vector parallel to the magnetization. Our results validate spin-transfer switching for fast memory applications

  2. Measurement of spin-transfer observables in pp to $\\Lambda \\Lambda$ at 1.637 GeV/c

    CERN Document Server

    Bassalleck, B; Bradtke, C; Bröders, R; Bunker, B; Dennert, H; Dutz, H; Eilerts, S W; Eyrich, W; Fields, D; Fischer, H; Franklin, G; Franz, J; Gehring, R; Geyer, R; Görtz, S; Harmsen, J; Hauffe, J; Heinsius, F H; Hertzog, D W; Johansson, T; Jones, T; Khaustov, P; Kilian, K; Kingsberry, P; Kriegler, E; Lowe, J; Meier, A; Metzger, A E; Meyer, C A; Meyer, Werner T; Moosburger, M; Oelert, W; Paschke, K D; Plückthun, M; Pomp, S; Quinn, B; Radtke, E; Reicherz, G; Röhrich, K; Sachs, K; Schmitt, H; Schoch, B; Sefzick, T; Stinzing, F; Stotzer, R W; Tayloe, R; Wirth, S

    2002-01-01

    Spin-transfer observables for pp to Lambda Lambda have been measured using a transversely polarized frozen-spin target and a beam momentum of 1.637 GeV/c. Current models of the reaction near threshold are in good agreement with existing measurements performed with unpolarized particles in the initial state but produce conflicting predictions for the spin-transfer observables D/sub nn/ and K/sub nn/ (the normal-to-normal depolarization and polarization transfer), which are measurable only with polarized target or beam. Measurements of D/sub nn/ and K/sub nn/ presented here are found to be in disagreement with predictions from these models. (21 refs).

  3. Coherent radiation by quantum dots and magnetic nanoclusters

    International Nuclear Information System (INIS)

    Yukalov, V. I.; Yukalova, E. P.

    2014-01-01

    The assemblies of either quantum dots or magnetic nanoclusters are studied. It is shown that such assemblies can produce coherent radiation. A method is developed for solving the systems of nonlinear equations describing the dynamics of such assemblies. The method is shown to be general and applicable to systems of different physical nature. Despite mathematical similarities of dynamical equations, the physics of the processes for quantum dots and magnetic nanoclusters is rather different. In a quantum dot assembly, coherence develops due to the Dicke effect of dot interactions through the common radiation field. For a system of magnetic clusters, coherence in the spin motion appears due to the Purcell effect caused by the feedback action of a resonator. Self-organized coherent spin radiation cannot arise without a resonator. This principal difference is connected with the different physical nature of dipole forces between the objects. Effective dipole interactions between the radiating quantum dots, appearing due to photon exchange, collectivize the dot radiation. While the dipolar spin interactions exist from the beginning, yet before radiation, and on the contrary, they dephase spin motion, thus destroying the coherence of moving spins. In addition, quantum dot radiation exhibits turbulent photon filamentation that is absent for radiating spins

  4. Spin Injection in Indium Arsenide

    Directory of Open Access Journals (Sweden)

    Mark eJohnson

    2015-08-01

    Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.

  5. Optimization of excitation transfer in a spin chain

    International Nuclear Information System (INIS)

    Gurman, Vladimir I.; Guseva, Irina S.; Fesko, Oles V.

    2016-01-01

    A revised formulation of the problem of fastest transfer of the excitation in a spin chain is considered on the base of Shrödinger equation which Hamiltonian depends linearly on control. It is taken into account that the excitation of the first or last spin means that it has greatest amplitude equal to the chain invariant whereas its phase is undefined and can be considered as an additional control variable. The role of this additional control is analyzed via transformation of the original problem with unbounded linear control to the regular derived problem known from the theory of degenerate problems [1, 2], in the same way as in [2]. The overall procedure is demonstrated in computational experiments with the use of visual examples.

  6. Template-grown NiFe/Cu/NiFe nanowires for spin transfer devices

    DEFF Research Database (Denmark)

    Piraux, L.; Renard, K.; Guillemet, R.

    2007-01-01

    We have developed a new reliable method combining template synthesis and nanolithography-based contacting technique to elaborate current perpendicular-to-plane giant magnetoresistance spin valve nanowires, which are very promising for the exploration of electrical spin transfer phenomena....... The method allows the electrical connection of one single nanowire in a large assembly of wires embedded in anodic porous alumina supported on Si substrate with diameters and periodicities to be controllable to a large extent. Both magnetic excitations and switching phenomena driven by a spin...

  7. Tunable self-assembled spin chains of strongly interacting cold atoms for demonstration of reliable quantum state transfer

    DEFF Research Database (Denmark)

    Loft, N. J. S.; Marchukov, O. V.; Petrosyan, D.

    2016-01-01

    We have developed an efficient computational method to treat long, one-dimensional systems of strongly-interacting atoms forming self-assembled spin chains. Such systems can be used to realize many spin chain model Hamiltonians tunable by the external confining potential. As a concrete...... demonstration, we consider quantum state transfer in a Heisenberg spin chain and we show how to determine the confining potential in order to obtain nearly-perfect state transfer....

  8. Critical current density for spin transfer torque switching with composite free layer structure

    OpenAIRE

    You, Chun-Yeol

    2009-01-01

    Critical current density of composite free layer (CFL) in magnetic tunneling junction is investigated. CFL consists of two exchange coupled ferromagnetic layers, where the coupling is parallel or anti-parallel. Instability condition of the CFL under the spin transfer torque, which is related with critical current density, is obtained by analytic spin wave excitation model and confirmed by macro-spin Landau-Lifshitz-Gilbert equation. The critical current densities for the coupled two identical...

  9. Spin transfer torque generated magnetic droplet solitons (invited)

    International Nuclear Information System (INIS)

    Chung, S.; Mohseni, S. M.; Sani, S. R.; Iacocca, E.; Dumas, R. K.; Pogoryelov, Ye.; Anh Nguyen, T. N.; Muduli, P. K.; Eklund, A.; Hoefer, M.; Åkerman, J.

    2014-01-01

    We present recent experimental and numerical advancements in the understanding of spin transfer torque generated magnetic droplet solitons. The experimental work focuses on nano-contact spin torque oscillators (NC-STOs) based on orthogonal (pseudo) spin valves where the Co fixed layer has an easy-plane anisotropy, and the [Co/Ni] free layer has a strong perpendicular magnetic anisotropy. The NC-STO resistance and microwave signal generation are measured simultaneously as a function of drive current and applied perpendicular magnetic field. Both exhibit dramatic transitions at a certain current dependent critical field value, where the microwave frequency drops 10 GHz, modulation sidebands appear, and the resistance exhibits a jump, while the magnetoresistance changes sign. We interpret these observations as the nucleation of a magnetic droplet soliton with a large fraction of its magnetization processing with an angle greater than 90°, i.e., around a direction opposite that of the applied field. This interpretation is corroborated by numerical simulations. When the field is further increased, we find that the droplet eventually collapses under the pressure from the Zeeman energy

  10. Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction

    KAUST Repository

    Ortiz Pauyac, Christian

    2016-06-19

    In the present thesis we introduce the reader to the field of spintronics and explore new phenomena, such as spin transfer torques, spin filtering, and three types of spin-orbit torques, Rashba, spin Hall, and spin swapping, which have emerged very recently and are promising candidates for a new generation of memory devices in computer technology. A general overview of these phenomena is presented in Chap. 1. In Chap. 2 we study spin transfer torques in tunnel junctions in the presence of spin filtering. In Chap. 3 we discuss the Rashba torque in ferromagnetic films, and in Chap. 4 we study spin Hall effect and spin swapping in ferromagnetic films, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives are summarized in Chap. 5.

  11. Instantaneous coherent destruction of tunneling and fast quantum state preparation for strongly pulsed spin qubits in diamond

    DEFF Research Database (Denmark)

    Wubs, Martijn

    2010-01-01

    Qubits driven by resonant strong pulses are studied and a parameter regime is explored in which the dynamics can be solved in closed form. Instantaneous coherent destruction of tunneling can be seen for longer pulses, whereas shorter pulses allow a fast preparation of the qubit state. Results...... are compared with recent experiments of pulsed nitrogen-vacancy center spin qubits in diamond....

  12. Coupled-spin filtered MR imaging in a low field

    International Nuclear Information System (INIS)

    Baudouin, C.J.; Bryant, D.J.; Coutts, G.A.; Bydder, G.M.; Young, I.R.

    1990-01-01

    This paper investigates the use of an editing method of imaging using spin-echo sequences with differing radio-frequency (RF) pulses for lipid imaging in poor fields and to compare it with solvent-suppression methods. A technique of echo difference imaging (EDI) has been described in which two data sets are acquired: a normal spin-echo sequence (90-180) and a 90-90 spin-echo sequence. The intrinsic signal of uncoupled spins in the EDI method is one-half that of the conventional sequence, so that subtracting twice the EDI signal from the conventional signal should result in signal cancellation. With coupled spins, the application of the second 90 degrees pulse results in coherence transfer, and echo magnitude will not be one-half that of the 90-180 echo. This method of lipid imaging may be less vulnerable to field inhomogeneity than are solvent-suppression methods. Phantom and in vivo studies were performed at 0.15 T (TE = 44 msec and various TRs)

  13. A discrete phase-space calculus for quantum spins based on a reconstruction method using coherent states

    International Nuclear Information System (INIS)

    Weigert, S.

    1999-01-01

    To reconstruct a mixed or pure quantum state of a spin s is possible through coherent states: its density matrix is fixed by the probabilities to measure the value s along 4s(s+1) appropriately chosen directions in space. Thus, after inverting the experimental data, the statistical operator is parametrized entirely by expectation values. On this basis, a symbolic calculus for quantum spins is developed, the e xpectation-value representation . It resembles the Moyal representation for SU(2) but two important differences exist. On the one hand, the symbols take values on a discrete set of points in phase space only. On the other hand, no quasi-probabilities - that is, phase-space distributions with negative values - are encountered in this approach. (Author)

  14. Coherent Transport in a Linear Triple Quantum Dot Made from a Pure-Phase InAs Nanowire.

    Science.gov (United States)

    Wang, Ji-Yin; Huang, Shaoyun; Huang, Guang-Yao; Pan, Dong; Zhao, Jianhua; Xu, H Q

    2017-07-12

    A highly tunable linear triple quantum dot (TQD) device is realized in a single-crystalline pure-phase InAs nanowire using a local finger gate technique. The electrical measurements show that the charge stability diagram of the TQD can be represented by three kinds of current lines of different slopes and a simulation performed based on a capacitance matrix model confirms the experiment. We show that each current line observable in the charge stability diagram is associated with a case where a QD is on resonance with the Fermi level of the source and drain reservoirs. At a triple point where two current lines of different slopes move together but show anticrossing, two QDs are on resonance with the Fermi level of the reservoirs. We demonstrate that an energetically degenerated quadruple point at which all three QDs are on resonance with the Fermi level of the reservoirs can be built by moving two separated triple points together via sophistically tuning of energy levels in the three QDs. We also demonstrate the achievement of direct coherent electron transfer between the two remote QDs in the TQD, realizing a long-distance coherent quantum bus operation. Such a long-distance coherent coupling could be used to investigate coherent spin teleportation and superexchange effects and to construct a spin qubit with an improved long coherent time and with spin state detection solely by sensing the charge states.

  15. An application of vector coherent state theory to the SO95) proton-neutron quasi-spin algebra

    International Nuclear Information System (INIS)

    Berej, W.

    2002-01-01

    Vector coherent state theory (VCS), developed for computing Lie group and Lie algebra representations and coupling coefficients, has been used for many groups of interest an actual physics applications. It is shown that VCS construction of a rotor type can be performed for the SO(5) ∼ Sp(4) quasi-spin group where the relevant physical subgroup SU(2) x U(1) is generalized by the isospin operators and the number of particle operators [ru

  16. Spin Transfer in Polymer Degradation of Abnormal Linkage

    Science.gov (United States)

    Yu, Tianrong; Tian, Chuanjin; Liu, Xizhe; Wang, Jia; Gao, Yang; Wang, Zhigang

    2017-07-01

    The degradation of polymer materials plays an important role in production and life. In this work, the degradation mechanism of poly-α-methylstyrene (PAMS) tetramers with abnormal linkage was investigated by using density functional theory (DFT). Calculated results indicate that the head-to-head and the tail-to-tail reactions needed to overcome the energy barriers are about 0.15 eV and about 1.26 eV, respectively. The broken C-C bond at the unsaturated end of the chain leads to the dissociation of alpha-methylstyrene (AMS) monomers one by one. Furthermore, the analyses of bond characteristics are in good agreement with the results of energy barriers. In addition, the spin population analysis presents an interesting net spin transfer process in depolymerization reactions. We hope that the current theoretical results provide useful help to understand the degradation mechanism of polymers.

  17. Dependence of the Spin Transfer Torque Switching Current Density on the Exchange Stiffness Constant

    OpenAIRE

    You, Chun-Yeol

    2012-01-01

    We investigate the dependence of the switching current density on the exchange stiffness constant in the spin transfer torque magnetic tunneling junction structure with micromagnetic simulations. Since the widely accepted analytic expression of the switching current density is based on the macro-spin model, there is no dependence of the exchange stiffness constant. When the switching is occurred, however, the spin configuration forms C-, S-type, or complicated domain structures. Since the spi...

  18. All-optical control of long-lived nuclear spins in rare-earth doped nanoparticles.

    Science.gov (United States)

    Serrano, D; Karlsson, J; Fossati, A; Ferrier, A; Goldner, P

    2018-05-29

    Nanoscale systems that coherently couple to light and possess spins offer key capabilities for quantum technologies. However, an outstanding challenge is to preserve properties, and especially optical and spin coherence lifetimes, at the nanoscale. Here, we report optically controlled nuclear spins with long coherence lifetimes (T 2 ) in rare-earth-doped nanoparticles. We detect spins echoes and measure a spin coherence lifetime of 2.9 ± 0.3 ms at 5 K under an external magnetic field of 9 mT, a T 2 value comparable to those obtained in bulk rare-earth crystals. Moreover, we achieve spin T 2 extension using all-optical spin dynamical decoupling and observe high fidelity between excitation and echo phases. Rare-earth-doped nanoparticles are thus the only nano-material in which optically controlled spins with millisecond coherence lifetimes have been reported. These results open the way to providing quantum light-atom-spin interfaces with long storage time within hybrid architectures.

  19. Spin-transfer torques in antiferromagnetic textures: efficiency and quantification method

    Czech Academy of Sciences Publication Activity Database

    Yamane, Y.; Ieda, J.; Sinova, Jairo

    2016-01-01

    Roč. 94, č. 5 (2016), 1-8, č. článku 054409. ISSN 2469-9950 R&D Projects: GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : spin-transfer torques * antiferromagnets Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.836, year: 2016

  20. Charge Dynamics and Spin Blockade in a Hybrid Double Quantum Dot in Silicon

    Directory of Open Access Journals (Sweden)

    Matias Urdampilleta

    2015-08-01

    Full Text Available Electron spin qubits in silicon, whether in quantum dots or in donor atoms, have long been considered attractive qubits for the implementation of a quantum computer because of silicon’s “semiconductor vacuum” character and its compatibility with the microelectronics industry. While donor electron spins in silicon provide extremely long coherence times and access to the nuclear spin via the hyperfine interaction, quantum dots have the complementary advantages of fast electrical operations, tunability, and scalability. Here, we present an approach to a novel hybrid double quantum dot by coupling a donor to a lithographically patterned artificial atom. Using gate-based rf reflectometry, we probe the charge stability of this double quantum-dot system and the variation of quantum capacitance at the interdot charge transition. Using microwave spectroscopy, we find a tunnel coupling of 2.7 GHz and characterize the charge dynamics, which reveals a charge T_{2}^{*} of 200 ps and a relaxation time T_{1} of 100 ns. Additionally, we demonstrate a spin blockade at the inderdot transition, opening up the possibility to operate this coupled system as a singlet-triplet qubit or to transfer a coherent spin state between the quantum dot and the donor electron and nucleus.

  1. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy.

    Science.gov (United States)

    Xu, Xiaodong; Yao, Wang; Sun, Bo; Steel, Duncan G; Bracker, Allan S; Gammon, Daniel; Sham, L J

    2009-06-25

    A single electron or hole spin trapped inside a semiconductor quantum dot forms the foundation for many proposed quantum logic devices. In group III-V materials, the resonance and coherence between two ground states of the single spin are inevitably affected by the lattice nuclear spins through the hyperfine interaction, while the dynamics of the single spin also influence the nuclear environment. Recent efforts have been made to protect the coherence of spins in quantum dots by suppressing the nuclear spin fluctuations. However, coherent control of a single spin in a single dot with simultaneous suppression of the nuclear fluctuations has yet to be achieved. Here we report the suppression of nuclear field fluctuations in a singly charged quantum dot to well below the thermal value, as shown by an enhancement of the single electron spin dephasing time T(2)*, which we measure using coherent dark-state spectroscopy. The suppression of nuclear fluctuations is found to result from a hole-spin assisted dynamic nuclear spin polarization feedback process, where the stable value of the nuclear field is determined only by the laser frequencies at fixed laser powers. This nuclear field locking is further demonstrated in a three-laser measurement, indicating a possible enhancement of the electron spin T(2)* by a factor of several hundred. This is a simple and powerful method of enhancing the electron spin coherence time without use of 'spin echo'-type techniques. We expect that our results will enable the reproducible preparation of the nuclear spin environment for repetitive control and measurement of a single spin with minimal statistical broadening.

  2. Neutron spin quantum precession using multilayer spin splitters and a phase-spin echo interferometer

    International Nuclear Information System (INIS)

    Ebisawa, Toru; Tasaki, Seiji; Kawai, Takeshi; Hino, Masahiro; Akiyoshi, Tsunekazu; Achiwa, Norio; Otake, Yoshie; Funahashi, Haruhiko.

    1996-01-01

    Neutron spin quantum precession by multilayer spin splitter has been demonstrated using a new spin interferometer. The multilayer spin splitter consists of a magnetic multilayer mirror on top, followed by a gap layer and a non magnetic multilayer mirror which are evaporated on a silicon substrate. Using the multilayer spin splitter, a polarized neutron wave in a magnetic field perpendicular to the polarization is split into two spin eigenstates with a phase shift in the direction of the magnetic field. The spin quantum precession is equal to the phase shift, which depends on the effective thickness of the gap layer. The demonstration experiments verify the multilayer spin splitter as a neutron spin precession device as well as the coherent superposition principle of the two spin eigenstates. We have developed a new phase-spin echo interferometer using the multilayer spin splitters. We present successful performance tests of the multilayer spin splitter and the phase-spin echo interferometer. (author)

  3. Spin manipulation and spin-lattice interaction in magnetic colloidal quantum dots

    OpenAIRE

    Moro, F.; Turyanska, L.; Granwehr, J.; Patane, A.

    2014-01-01

    We report on the spin-lattice interaction and coherent manipulation of electron spins in Mn-doped colloidal PbS quantum dots (QDs) by electron spin resonance. We show that the phase memory time,TM, is limited by Mn-Mn dipolar interactions, hyperfine interactions of the protons (H1) on the QD capping ligands with Mn ions in their proximity (

  4. The size effect of the quantum coherence in the transverse-field XY chain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lu; Yang, Cui-hong; Wang, Jun-feng [Department of Physics, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Lei, Shu-guo, E-mail: sglei@njtech.edu.cn [College of Science, Nanjing Tech University, Nanjing, 211816 (China)

    2016-12-15

    Based on the Wigner–Yanase skew information, the size effect of the quantum coherence in the ground state of the finite transverse-field spin-1/2 XY chain is explored. It is found that the first-order derivatives of the single-spin coherence and the two-spin local coherence both have scaling behaviors in the vicinity of the critical point. A simplified version of coherence is also studied and the same characteristics with its counterpart are found.

  5. Nuclear spins in nanostructures

    International Nuclear Information System (INIS)

    Coish, W.A.; Baugh, J.

    2009-01-01

    We review recent theoretical and experimental advances toward understanding the effects of nuclear spins in confined nanostructures. These systems, which include quantum dots, defect centers, and molecular magnets, are particularly interesting for their importance in quantum information processing devices, which aim to coherently manipulate single electron spins with high precision. On one hand, interactions between confined electron spins and a nuclear-spin environment provide a decoherence source for the electron, and on the other, a strong effective magnetic field that can be used to execute local coherent rotations. A great deal of effort has been directed toward understanding the details of the relevant decoherence processes and to find new methods to manipulate the coupled electron-nuclear system. A sequence of spectacular new results have provided understanding of spin-bath decoherence, nuclear spin diffusion, and preparation of the nuclear state through dynamic polarization and more general manipulation of the nuclear-spin density matrix through ''state narrowing.'' These results demonstrate the richness of this physical system and promise many new mysteries for the future. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  6. Information transmission and control in a chaotically kicked spin chain

    International Nuclear Information System (INIS)

    Aubourg, Lucile; Viennot, David

    2016-01-01

    We study spin chains submitted to disturbed kick trains described by classical dynamical processes. The spin chains are coupled by Heisenberg and Ising-Z models. We consider chaotic processes by using the kick irregularity in the multipartite system (the spin chain). We show that both couplings transmit the chaos disorder differently along the spin chain but conserve the horizon of coherence (when the disorder into the kick bath is transmitted to the spin chain). An example of information transmission between the spins of the chain coupled by a Heisenberg interaction shows the interest of the horizon of coherence. The use of some chosen stationary kicks disturbed by a chaotic environment makes it possible to modify the information transmission between the spins and to perform a free control during the horizon of coherence. (paper)

  7. Chemical vapor deposition graphene transfer process to a polymeric substrate assisted by a spin coater

    International Nuclear Information System (INIS)

    Kessler, Felipe; Da Rocha, Caique O C; Medeiros, Gabriela S; Fechine, Guilhermino J M

    2016-01-01

    A new method to transfer chemical vapor deposition graphene to polymeric substrates is demonstrated here, it is called direct dry transfer assisted by a spin coater (DDT-SC). Compared to the conventional method DDT, the improvement of the contact between graphene-polymer due to a very thin polymeric film deposited by spin coater before the transfer process prevented air bubbles and/or moisture and avoided molecular expansion on the graphene-polymer interface. An acrylonitrile-butadiene-styrene copolymer, a high impact polystyrene, polybutadiene adipate-co-terephthalate, polylactide acid, and a styrene-butadiene-styrene copolymer are the polymers used for the transfers since they did not work very well by using the DDT process. Raman spectroscopy and optical microscopy were used to identify, to quantify, and to qualify graphene transferred to the polymer substrates. The quantity of graphene transferred was substantially increased for all polymers by using the DDT-SC method when compared with the DDT standard method. After the transfer, the intensity of the D band remained low, indicating low defect density and good quality of the transfer. The DDT-SC transfer process expands the number of graphene applications since the polymer substrate candidates are increased. (paper)

  8. Exact solutions in dynamics of alternation open spin chains s = 1/2 with XY-Hamiltonian and its application to the problems of many-quantum dynamics and quantum information theory

    International Nuclear Information System (INIS)

    Kuznetsova, E.I.; Fel'dman, Eh.B.

    2006-01-01

    Paper deals with a method of exact diagonalization of XY-Hamiltonian of s=1/2 alternated open chain of spins based on the Jordan-Wigner transform and analysis of dynamics of spinless fermions. One studied the many-quantum spin dynamics of alternated chains under high temperatures and calculated the intensities of many-quantum coherencies. One attacked the problem dealing with transfer of a quantum state from one end of the alternated chain to the opposite end. It is shown that perfect transfer of cubits may take place in alternated chains with larger number of spins in contrast to homogeneous chains [ru

  9. Electronic readout of a single nuclear spin using a molecular spin transistor

    Science.gov (United States)

    Vincent, R.; Klyastskaya, S.; Ruben, M.; Wernsdorfer, W.; Balestro, F.

    2012-02-01

    Quantum control of individual spins in condensed matter devices is an emerging field with a wide range of applications ranging from nanospintronics to quantum computing [1,2]. The electron, with its spin and orbital degrees of freedom, is conventionally used as carrier of the quantum information in the devices proposed so far. However, electrons exhibit a strong coupling to the environment leading to reduced relaxation and coherence times. Indeed quantum coherence and stable entanglement of electron spins are extremely difficult to achieve. We propose a new approach using the nuclear spin of an individual metal atom embedded in a single-molecule magnet (SMM). In order to perform the readout of the nuclear spin, the quantum tunneling of the magnetization (QTM) of the magnetic moment of the SMM in a transitor-like set-up is electronically detected. Long spin lifetimes of an individual nuclear spin were observed and the relaxation characteristics were studied. The manipulation of the nuclear spin state of individual atoms embedded in magnetic molecules opens a completely new world, where quantum logic may be integrated.[4pt] [1] L. Bogani, W. Wernsdorfer, Nature Mat. 7, 179 (2008).[0pt] [2] M. Urdampilleta, S. Klyatskaya, J.P. Cleuziou, M. Ruben, W. Wernsdorfer, Nature Mat. 10, 502 (2011).

  10. Spin squeezing and quantum correlations

    Indian Academy of Sciences (India)

    2 states. A coherent spin-s state. (CSS) θ φ can then be thought of as having no quantum correlations as the constituent. 2s elementary spins point in the same direction ˆn(θ φ) which is the mean spin direction. 2. State classification and squeezing. In order to discuss squeezing, we begin with the squeezing condition itself.

  11. Spin-dependent transport and current-induced spin transfer torque in a disordered zigzag silicene nanoribbon

    International Nuclear Information System (INIS)

    Zhou, Benliang; Zhou, Benhu; Liu, Guang; Guo, Dan; Zhou, Guanghui

    2016-01-01

    We study theoretically the spin-dependent transport and the current-induced spin transfer torque (STT) for a zigzag silicene nanoribbon (ZSiNR) with Anderson-type disorders between two ferromagnetic electrodes. By using the nonequilibrium Green's function method, it is predicted that the transport property and STT through the junction depend sensitively on the disorder, especially around the Dirac point. As a result, the conductance decreases and increases for two electrode in parallel and antiparallel configurations, respectively. Due to the disorder, the magnetoresistance (MR) decreases accordingly even within the energy regime for the perfect plateau without disorders. In addition, the conductance versus the relative angle of the magnetization shows a cosine-like behavior. The STT per unit of the bias voltage versus the angle of the magnetization exhibits a sine-like behavior, and versus the Fermi energy is antisymmetrical to the Dirac point and exhibits sharp peaks. Furthermore, the peaks of the STT are suppressed much as the disorder strength increases, especially around the Dirac point. The results obtained here may provide a valuable suggestion to experimentally design spin valve devices based on ZSiNR.

  12. Spin-dependent transport and current-induced spin transfer torque in a disordered zigzag silicene nanoribbon

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Benliang [Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation (Ministry of Education), Synergetic Innovation Center for Quantum Effects and Applications of Hunan, Hunan Normal University, Changsha 410081 (China); Zhou, Benhu [Department of Physics, Shaoyang University, Shaoyang 422001 (China); Liu, Guang; Guo, Dan [Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation (Ministry of Education), Synergetic Innovation Center for Quantum Effects and Applications of Hunan, Hunan Normal University, Changsha 410081 (China); Zhou, Guanghui, E-mail: ghzhou@hunnu.edu.cn [Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation (Ministry of Education), Synergetic Innovation Center for Quantum Effects and Applications of Hunan, Hunan Normal University, Changsha 410081 (China)

    2016-11-01

    We study theoretically the spin-dependent transport and the current-induced spin transfer torque (STT) for a zigzag silicene nanoribbon (ZSiNR) with Anderson-type disorders between two ferromagnetic electrodes. By using the nonequilibrium Green's function method, it is predicted that the transport property and STT through the junction depend sensitively on the disorder, especially around the Dirac point. As a result, the conductance decreases and increases for two electrode in parallel and antiparallel configurations, respectively. Due to the disorder, the magnetoresistance (MR) decreases accordingly even within the energy regime for the perfect plateau without disorders. In addition, the conductance versus the relative angle of the magnetization shows a cosine-like behavior. The STT per unit of the bias voltage versus the angle of the magnetization exhibits a sine-like behavior, and versus the Fermi energy is antisymmetrical to the Dirac point and exhibits sharp peaks. Furthermore, the peaks of the STT are suppressed much as the disorder strength increases, especially around the Dirac point. The results obtained here may provide a valuable suggestion to experimentally design spin valve devices based on ZSiNR.

  13. Circuit Simulation of All-Spin Logic

    KAUST Repository

    Alawein, Meshal

    2016-05-01

    With the aggressive scaling of complementary metal-oxide semiconductor (CMOS) nearing an inevitable physical limit and its well-known power crisis, the quest for an alternative/augmenting technology that surpasses the current semiconductor electronics is needed for further technological progress. Spintronic devices emerge as prime candidates for Beyond CMOS era by utilizing the electron spin as an extra degree of freedom to decrease the power consumption and overcome the velocity limit connected with the charge. By using the nonvolatility nature of magnetization along with its direction to represent a bit of information and then manipulating it by spin-polarized currents, routes are opened for combined memory and logic. This would not have been possible without the recent discoveries in the physics of nanomagnetism such as spin-transfer torque (STT) whereby a spin-polarized current can excite magnetization dynamics through the transfer of spin angular momentum. STT have expanded the available means of switching the magnetization of magnetic layers beyond old classical techniques, promising to fulfill the need for a new generation of dense, fast, and nonvolatile logic and storage devices. All-spin logic (ASL) is among the most promising spintronic logic switches due to its low power consumption, logic-in-memory structure, and operation on pure spin currents. The device is based on a lateral nonlocal spin valve and STT switching. It utilizes two nanomagnets (whereby information is stored) that communicate with pure spin currents through a spin-coherent nonmagnetic channel. By using the well-known spin physics and the recently proposed four-component spin circuit formalism, ASL can be thoroughly studied and simulated. Previous attempts to model ASL in the linear and diffusive regime either neglect the dynamic characteristics of transport or do not provide a scalable and robust platform for full micromagnetic simulations and inclusion of other effects like spin Hall

  14. Coherent transmutation of electrons into fractionalized anyons.

    Science.gov (United States)

    Barkeshli, Maissam; Berg, Erez; Kivelson, Steven

    2014-11-07

    Electrons have three quantized properties-charge, spin, and Fermi statistics-that are directly responsible for a vast array of phenomena. Here we show how these properties can be coherently and dynamically stripped from the electron as it enters a certain exotic state of matter known as a quantum spin liquid (QSL). In a QSL, electron spins collectively form a highly entangled quantum state that gives rise to the fractionalization of spin, charge, and statistics. We show that certain QSLs host distinct, topologically robust boundary types, some of which allow the electron to coherently enter the QSL as a fractionalized quasi-particle, leaving its spin, charge, or statistics behind. We use these ideas to propose a number of universal, conclusive experimental signatures that would establish fractionalization in QSLs. Copyright © 2014, American Association for the Advancement of Science.

  15. Coherent and correlated spin transport in nanoscale superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Morten, Jan Petter

    2008-03-15

    Motivated by the desire for better understanding of nano electronic systems, we theoretically study the conductance and noise characteristics of current flow between superconductors, ferromagnets, and normal-metals. Such nano structures can reveal information about superconductor proximity effects, spin-relaxation processes, and spintronic effects with potential applications for different areas of mesoscopic physics. We employ the quasiclassical theory of superconductivity in the Keldysh formalism, and calculate the nonequilibrium transport of spin and charge using various approaches like the circuit theory of quantum transport and full counting statistics. For two of the studied structures, we have been able to compare our theory to experimental data and obtain good agreement. Transport and relaxation of spin polarized current in superconductors is governed by energy-dependent transport coefficients and spin-flip rates which are determined by quantum interference effects. We calculate the resulting temperature-dependent spin flow in ferromagnet-superconductor devices. Experimental data for spin accumulation and spin relaxation in a superconducting nano wire is in agreement with the theory, and allows for a spin-flip spectroscopy that determines the dominant mechanism for spin-flip relaxation in the studied samples. A ferromagnet precessing under resonance conditions can give rise to pure spin current injection into superconductors. We find that the absorbed spin current is measurable as a temperature dependent Gilbert damping, which we calculate and compare to experimental data. Crossed Andreev reflection denotes superconducting pairing of electrons flowing from different normal-metal or ferromagnet terminals into a superconductor. We calculate the nonlocal currents resulting from this process in competition with direct electron transport between the normal-metal terminals. We take dephasing into account, and study the nonlocal current when the types of contact in

  16. Spin coherence in phosphorescent triplet states

    International Nuclear Information System (INIS)

    Hof, C.A. van 't

    1977-01-01

    The electron spin echo is studied on the dephasing mechanism in the photo-excited triplet state of quinoline in a durene host. First, a comparative investigation of the merits of the different spin echo techniques is presented. It turns out that the rotary echo generally yields a longer phase memory time than the two-pulse echo, whereas in the Carr-Purcell experiment, the dephasing can even be largely suppressed. Secondly, it is shown that the dephasing mechanism is determined by the nuclear spins of the guest molecules as well as those in the host material. A theoretical basis for interpreting the effect of vibronic relaxation on the decay rate of the rotary echo, as observed in parabenzoquinone, is given. Similar experiments in aniline reveal also that in this molecule, two close-lying triplet states exist, which is attributed to an inversion vibration analogous to the well-known example in ammonia

  17. Diagonalization of replicated transfer matrices for disordered Ising spin systems

    International Nuclear Information System (INIS)

    Nikoletopoulos, T; Coolen, A C C

    2004-01-01

    We present an alternative procedure for solving the eigenvalue problem of replicated transfer matrices describing disordered spin systems with (random) 1D nearest neighbour bonds and/or random fields, possibly in combination with (random) long range bonds. Our method is based on transforming the original eigenvalue problem for a 2 n x 2 n matrix (where n → 0) into an eigenvalue problem for integral operators. We first develop our formalism for the Ising chain with random bonds and fields, where we recover known results. We then apply our methods to models of spins which interact simultaneously via a one-dimensional ring and via more complex long-range connectivity structures, e.g., (1 + ∞)-dimensional neural networks and 'small-world' magnets. Numerical simulations confirm our predictions satisfactorily

  18. Analysis of thermally induced magnetization dynamics in spin-transfer nano-oscillators

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino, M., E-mail: daquino@uniparthenope.it [Department of Technology, University of Naples ' Parthenope' , 80143 Naples (Italy); Serpico, C. [Department of Engineering, University of Naples Federico II, 80125 Naples (Italy); Bertotti, G. [Istituto Nazionale di Ricerca Metrologica 10135 Torino (Italy); Bonin, R. [Politecnico di Torino - Sede di Verres, 11029 Verres (Aosta) (Italy); Mayergoyz, I.D. [ECE Department and UMIACS, University of Maryland, College Park, MD 20742 (United States)

    2012-05-01

    The thermally induced magnetization dynamics in the presence of spin-polarized currents injected into a spin-valve-like structure used as microwave spin-transfer nano-oscillator (STNO) is considered. Magnetization dynamics is described by the stochastic Landau-Lifshitz-Slonczewski (LLS) equation. First, it is shown that, in the presence of thermal fluctuations, the spectrum of the output signal of the STNO exhibits multiple peaks at low and high frequencies. This circumstance is associated with the occurrence of thermally induced transitions between stationary states and magnetization self-oscillations. Then, a theoretical approach based on the separation of time-scales is developed to obtain a stochastic dynamics only in the slow state variable, namely the energy. The stationary distribution of the energy and the aforementioned transition rates are analytically computed and compared with the results of direct integration of the LLS dynamics, showing very good agreement.

  19. Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles

    Science.gov (United States)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2015-11-01

    Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.

  20. A T-shaped double quantum dot system as a Fano interferometer: Interplay of coherence and correlation upon spin currents

    Science.gov (United States)

    Fernandes, I. L.; Cabrera, G. G.

    2018-05-01

    Based on Keldysh non-equilibrium Green function method, we have investigated spin current production in a hybrid T-shaped device, consisting of a central quantum dot connected to the leads and a side dot which only couples to the central dot. The topology of this structure allows for quantum interference of the different paths that go across the device, yielding Fano resonances in the spin dependent transport properties. Correlation effects are taken into account at the central dot and handled within a mean field approximation. Its interplay with the Fano effect is analyzed in the strong coupling regime. Non-vanishing spin currents are only obtained when the leads are ferromagnetic, the current being strongly dependent on the relative orientation of the lead polarizations. We calculate the conductance (spin and charge) by numerically differentiating the current, and a rich structure is obtained as a manifestation of quantum coherence and correlation effects. Increase of the Coulomb interaction produces localization of states at the side dot, largely suppressing Fano resonances. The interaction is also responsible for the negative values of the spin conductance in some regions of the voltage near resonances, effect which is the spin analog of the Esaki tunnel diode. We also analyze control of the currents via gate voltages applied to the dots, possibility which is interesting for practical operations.

  1. Electrical Manipulation of Donor Spin Qubits in Silicon and Germanium

    Science.gov (United States)

    Sigillito, Anthony James

    Many proposals for quantum information devices rely on electronic or nuclear spins in semiconductors because of their long coherence times and compatibility with industrial fabrication processes. One of the most notable qubits is the electron spin bound to phosphorus donors in silicon, which offers coherence times exceeding seconds at low temperatures. These donors are naturally isolated from their environments to the extent that silicon has been coined a "semiconductor vacuum". While this makes for ultra-coherent qubits, it is difficult to couple two remote donors so quantum information proposals rely on high density arrays of qubits. Here, single qubit addressability becomes an issue. Ideally one would address individual qubits using electric fields which can be easily confined. Typically these schemes rely on tuning a donor spin qubit onto and off of resonance with a magnetic driving field. In this thesis, we measure the electrical tunability of phosphorus donors in silicon and use the extracted parameters to estimate the effects of electric-field noise on qubit coherence times. Our measurements show that donor ionization may set in before electron spins can be sufficiently tuned. We therefore explore two alternative options for qubit addressability. First, we demonstrate that nuclear spin qubits can be directly driven using electric fields instead of magnetic fields and show that this approach offers several advantages over magnetically driven spin resonance. In particular, spin transitions can occur at half the spin resonance frequency and double quantum transitions (magnetic-dipole forbidden) can occur. In a second approach to realizing tunable qubits in semiconductors, we explore the option of replacing silicon with germanium. We first measure the coherence and relaxation times for shallow donor spin qubits in natural and isotopically enriched germanium. We find that in isotopically enriched material, coherence times can exceed 1 ms and are limited by a

  2. Spin-orbit qubit in a semiconductor nanowire.

    Science.gov (United States)

    Nadj-Perge, S; Frolov, S M; Bakkers, E P A M; Kouwenhoven, L P

    2010-12-23

    Motion of electrons can influence their spins through a fundamental effect called spin-orbit interaction. This interaction provides a way to control spins electrically and thus lies at the foundation of spintronics. Even at the level of single electrons, the spin-orbit interaction has proven promising for coherent spin rotations. Here we implement a spin-orbit quantum bit (qubit) in an indium arsenide nanowire, where the spin-orbit interaction is so strong that spin and motion can no longer be separated. In this regime, we realize fast qubit rotations and universal single-qubit control using only electric fields; the qubits are hosted in single-electron quantum dots that are individually addressable. We enhance coherence by dynamically decoupling the qubits from the environment. Nanowires offer various advantages for quantum computing: they can serve as one-dimensional templates for scalable qubit registers, and it is possible to vary the material even during wire growth. Such flexibility can be used to design wires with suppressed decoherence and to push semiconductor qubit fidelities towards error correction levels. Furthermore, electrical dots can be integrated with optical dots in p-n junction nanowires. The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, which can serve as a flying qubit for long-distance quantum communication.

  3. Non-Abelian hydrodynamics and the flow of spin in spin-orbit coupled substances

    International Nuclear Information System (INIS)

    Leurs, B.W.A.; Nazario, Z.; Santiago, D.I.; Zaanen, J.

    2008-01-01

    Motivated by the heavy ion collision experiments there is much activity in studying the hydrodynamical properties of non-Abelian (quark-gluon) plasmas. A major question is how to deal with color currents. Although not widely appreciated, quite similar issues arise in condensed matter physics in the context of the transport of spins in the presence of spin-orbit coupling. The key insight is that the Pauli Hamiltonian governing the leading relativistic corrections in condensed matter systems can be rewritten in a language of SU(2) covariant derivatives where the role of the non-Abelian gauge fields is taken by the physical electromagnetic fields: the Pauli system can be viewed as Yang-Mills quantum-mechanics in a 'fixed frame', and it can be viewed as an 'analogous system' for non-Abelian transport in the same spirit as Volovik's identification of the He superfluids as analogies for quantum fields in curved space time. We take a similar perspective as Jackiw and coworkers in their recent study of non-Abelian hydrodynamics, twisting the interpretation into the 'fixed frame' context, to find out what this means for spin transport in condensed matter systems. We present an extension of Jackiw's scheme: non-Abelian hydrodynamical currents can be factored in a 'non-coherent' classical part, and a coherent part requiring macroscopic non-Abelian quantum entanglement. Hereby it becomes particularly manifest that non-Abelian fluid flow is a much richer affair than familiar hydrodynamics, and this permits us to classify the various spin transport phenomena in condensed matter physics in an unifying framework. The 'particle based hydrodynamics' of Jackiw et al. is recognized as the high temperature spin transport associated with semiconductor spintronics. In this context the absence of faithful hydrodynamics is well known, but in our formulation it is directly associated with the fact that the covariant conservation of non-Abelian currents turns into a disastrous non

  4. Coherent or hopping like energy transfer in the chlorosome ?

    Science.gov (United States)

    Nalbach, Peter

    2014-08-01

    Chlorosomes, as part of the light-harvesting system of green bacteria, are the largest and most efficient antennae systems in nature. We have studied energy transfer dynamics in the chlorosome in a simplified toy model employing a master equation. Dephasing and relaxation due to environmental fluctuations are included by Lindblad dephasing and Redfield thermalization rates. We find at room temperature three separate time scales, i.e. 25 fs, 250 fs and 2.5 ps and determine the according energy pathways through the hierarchical structure in the chlorosome. Quantum coherence lives up to 150 fs at which time the energy is spread over roughly 12 pigments in our model.

  5. Time evolution of multiple quantum coherences in NMR

    International Nuclear Information System (INIS)

    Sanchez, Claudia M.; Pastawski, Horacio M.; Levstein, Patricia R.

    2007-01-01

    In multiple quantum NMR, individual spins become correlated with one another over time through their dipolar couplings. In this way, the usual Zeeman selection rule can be overcome and forbidden transitions can be excited. Experimentally, these multiple quantum coherences (MQC) are formed by the application of appropriate sequences of radio frequency pulses that force the spins to act collectively. 1 H spin coherences of even order up to 16 were excited in a polycrystalline sample of ferrocene (C 5 H 5 ) 2 Fe and up to 32 in adamantane (C 10 H 16 ) and their evolutions studied in different conditions: (a) under the natural dipolar Hamiltonian, H ZZ (free evolution) and with H ZZ canceled out by (b) time reversion or (c) with the MREV8 sequence. The results show that when canceling H ZZ the coherences decay with characteristic times (τ c ∼200 μs), which are more than one order of magnitude longer than those under free evolution (τ c ∼10 μs). In addition, it is observed that with both MREV8 and time reversion sequences, the higher the order of the coherence (larger number of correlated spins) the faster the speed of degradation, as it happens during the evolution with H ZZ . In both systems, it is observed that the sequence of time reversion of the dipolar Hamiltonian preserves coherences for longer times than MREV8

  6. Orbital angular momentum transfer and spin desalignment mechanisms in the deep inelastic collisions Ar+Bi and Ni+Pb using the sequential fission method

    International Nuclear Information System (INIS)

    Steckmeyer, J.C.

    1984-10-01

    Angular momentum transfer and spin dealignment mechanisms have been studied in the deep inelastic collisions Ar+Bi and Ni+Pb using the sequential fission method. This experimental technique consists to measure the angular distribution of the fission fragments of a heavy nucleus in coincidence with the reaction partner, and leads to a complete determination of the heavy nucleus spin distribution. High spin values are transferred to the heavy nucleus in the interaction and indicate that the dinuclear system has reached the rigid rotation limit. A theoretical model, taking into account the excitation of surface vibrations of the nuclei and the nucleon transfer between the two partners, is able to reproduce the high spin values measured in our experiments. The spin fluctuations are important, with values of the order of 15 to 20 h units. These fluctuations increase with the charge transfer from the projectile to the target and the total kinetic energy loss. The spin dealignment mechanisms act mainly in a plane approximately perpendicular to the heavy recoil direction in the laboratory system. These results are well described by a dynamical transport model based on the stochastic exchange of individual nucleons between the two nuclei during the interaction. The origin of the dealignment mechanisms in the spin transfer processes is then related to the statistical nature of the nucleon exchange. However other mechanisms can contribute to the spin dealignment as the surface vibrations, the nuclear deformations as well their relative orientations [fr

  7. New classes of nonlinear vector coherent states of generalized spin-orbit Hamiltonians

    International Nuclear Information System (INIS)

    Geloun, Joseph Ben; Norbert Hounkonnou, Mahouton

    2009-01-01

    This paper deals with an extension of our previous work (Ben Geloun and Hounkonnou 2007 J. Phys. A: Math. Theor. 40 F817) by considering an alternative construction of canonical and deformed vector coherent states (VCSs) of the Gazeau-Klauder type associated with generalized spin-orbit Hamiltonians. We define an annihilation operator which takes into account the finite-dimensional space of states induced by the k-photon transition processes of the two-level atom interacting with the single-mode radiation field. The class of nonlinear VCSs (NVCSs) corresponding to the action of the annihilation operator is deduced and expressed in terms of generalized displacement operators. Various NVCSs including their 'dual' counterparts are also discussed. Also, by using the Hilbert space structure, a new family of NVCSs parametrized by unit vectors of the S 3 sphere has been identified without making use of the annihilation operator.

  8. Spin manipulation and relaxation in spin-orbit qubits

    Science.gov (United States)

    Borhani, Massoud; Hu, Xuedong

    2012-03-01

    We derive a generalized form of the electric dipole spin resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD), where coherent Rabi oscillations between the singlet and triplet states are induced by jittering the inter-dot distance at the resonance frequency. Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.

  9. Overload control of artificial gravity facility using spinning tether system for high eccentricity transfer orbits

    Science.gov (United States)

    Gou, Xing-wang; Li, Ai-jun; Tian, Hao-chang; Wang, Chang-qing; Lu, Hong-shi

    2018-06-01

    As the major part of space life supporting systems, artificial gravity requires further study before it becomes mature. Spinning tether system is a good alternative solution to provide artificial gravity for the whole spacecraft other than additional devices, and its longer tether length could significantly reduce spinning velocity and thus enhance comfortability. An approximated overload-based feedback method is proposed to provide estimated spinning velocity signals for controller, so that gravity level could be accurately controlled without complicated GPS modules. System behavior in high eccentricity transfer orbits is also studied to give a complete knowledge of the spinning stabilities. The application range of the proposed method is studied in various orbit cases and spinning velocities, indicating that it is accurate and reliable for most of the mission phases especially for the final constant gravity level phase. In order to provide stable gravity level for transfer orbit missions, a sliding mode controller based on estimated angular signals is designed for closed-loop control. Numerical results indicate that the combination of overload-based feedback and sliding mode controller could satisfy most of the long-term artificial gravity missions. It is capable of forming flexible gravity environment in relatively good accuracy even in the lowest possible orbital radiuses and high eccentricity orbits of crewed space missions. The proposed scheme provides an effective tether solution for the artificial gravity construction in interstellar travel.

  10. Exact solutions in the dynamics of alternating open chains of spins s = 1/2 with the XY Hamiltonian and their application to problems of multiple-quantum dynamics and quantum information theory

    International Nuclear Information System (INIS)

    Kuznetsova, E. I.; Fel'dman, E. B.

    2006-01-01

    A method for exactly diagonalizing the XY Hamiltonian of an alternating open chain of spins s = 1/2 has been proposed on the basis of the Jordan-Wigner transformation and analysis of the dynamics of spinless fermions. The multiple-quantum spin dynamics of alternating open chains at high temperatures has been analyzed and the intensities of multiple-quantum coherences have been calculated. The problem of the transfer of a quantum state from one end of the alternating chain to the other is studied. It has been shown that the ideal transfer of qubits is possible in alternating chains with a larger number of spins than that in homogeneous chains

  11. Coherence in Magnetic Quantum Tunneling

    Science.gov (United States)

    Fernandez, Julio F.

    2001-03-01

    Crystals of single molecule magnets such as Mn_12 and Fe8 behave at low temperatures as a collection of independent spins. Magnetic anisotropy barriers slow down spin-flip processes. Their rate Γ becomes temperature independent at sufficiently low temperature. Quantum tunneling (QT) accounts for this behavior. Currently, spin QT in Mn_12 and Fe8 is assumed to proceed as an incoherent sum of small probability increments that occur whenever a bias field h(t) (arising from hyperfine interactions with nuclear spins) that varies with time t becomes sufficiently small, as in Landau-Zener transitions. Within a two-state model, we study the behavior of a suitably defined coherence time τ_φ and compare it with the correlation time τh for h(t). It turns out that τ_φ >τ_h, when τ_hδ h < hbar, where δ h is the rms deviation of h. We show what effect such coherence has on Γ. Its dependence on a static longitudinal applied field Hz is drastically affected. There is however no effect if the field is swept through resonance.

  12. Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer

    Science.gov (United States)

    Duan, Hong-Guang; Prokhorenko, Valentyn I.; Cogdell, Richard J.; Ashraf, Khuram; Stevens, Amy L.; Thorwart, Michael; Miller, R. J. Dwayne

    2017-08-01

    During the first steps of photosynthesis, the energy of impinging solar photons is transformed into electronic excitation energy of the light-harvesting biomolecular complexes. The subsequent energy transfer to the reaction center is commonly rationalized in terms of excitons moving on a grid of biomolecular chromophores on typical timescales Olson protein, in which interference oscillatory signals up to 1.5 ps were reported and interpreted as direct evidence of exceptionally long-lived electronic quantum coherence. Here, we show that the optical 2D photon echo spectra of this complex at ambient temperature in aqueous solution do not provide evidence of any long-lived electronic quantum coherence, but confirm the orthodox view of rapidly decaying electronic quantum coherence on a timescale of 60 fs. Our results can be considered as generic and give no hint that electronic quantum coherence plays any biofunctional role in real photoactive biomolecular complexes. Because in this structurally well-defined protein the distances between bacteriochlorophylls are comparable to those of other light-harvesting complexes, we anticipate that this finding is general and directly applies to even larger photoactive biomolecular complexes.

  13. Controlling a nuclear spin in a nanodiamond

    Science.gov (United States)

    Knowles, Helena S.; Kara, Dhiren M.; Atatüre, Mete

    2017-09-01

    The sensing capability of a single optically bright electronic spin in diamond can be enhanced by making use of proximal dark nuclei as ancillary spins. Such systems, so far realized only in bulk diamond, can provide orders of magnitude higher sensitivity and spectral resolution in the case of magnetic sensing, as well as improved readout fidelity and state storage time in quantum information schemes. Nanodiamonds offer opportunities for scanning and embedded nanoscale probes, yet electronic-nuclear spin complexes have so far remained inaccessible. Here, we demonstrate coherent control of a 13C nuclear spin located 4 Å from a nitrogen-vacancy center in a nanodiamond and show coherent exchange between the two components of this hybrid spin system. We extract a free precession time T2* of 26 μ s for the nuclear spin, which exceeds the bare-electron free-precession time in nanodiamond by two orders of magnitude.

  14. Population transfer HMQC for half-integer quadrupolar nuclei

    International Nuclear Information System (INIS)

    Wang, Qiang; Xu, Jun; Feng, Ningdong; Deng, Feng; Li, Yixuan; Trébosc, Julien; Lafon, Olivier; Hu, Bingwen; Chen, Qun; Amoureux, Jean-Paul

    2015-01-01

    This work presents a detailed analysis of a recently proposed nuclear magnetic resonance method [Wang et al., Chem. Commun. 49(59), 6653-6655 (2013)] for accelerating heteronuclear coherence transfers involving half-integer spin quadrupolar nuclei by manipulating their satellite transitions. This method, called Population Transfer Heteronuclear Multiple Quantum Correlation (PT-HMQC), is investigated in details by combining theoretical analyses, numerical simulations, and experimental investigations. We find that compared to instant inversion or instant saturation, continuous saturation is the most practical strategy to accelerate coherence transfers on half-integer quadrupolar nuclei. We further demonstrate that this strategy is efficient to enhance the sensitivity of J-mediated heteronuclear correlation experiments between two half-integer quadrupolar isotopes (e.g., 27 Al- 17 O). In this case, the build-up is strongly affected by relaxation for small T 2 ′ and J coupling values, and shortening the mixing time makes a huge signal enhancement. Moreover, this concept of population transfer can also be applied to dipolar-mediated HMQC experiments. Indeed, on the AlPO 4 -14 sample, one still observes experimentally a 2-fold shortening of the optimum mixing time albeit with no significant signal gain in the 31 P-( 27 Al) experiments

  15. Spin Injection, Manipulation, and Detection, in InAs Nanodevices

    Science.gov (United States)

    Jones, G. M.; Jonker, B. T.; Bennett, B. R.; Meyer, J. R.; Twigg, M. E.; Reinecke, T. L.; Park, D.; Pereverzev, S. V.; Badescu, C. S.; Li, C. H.; Hanbicki, A. T.; van'terve, O.; Vurgaftman, I.

    2008-03-01

    In this talk the authors will discuss their progress using InAs heterostructures to produce spin-polarized injection and detection, as well as manipulation of coherent spin-polarized electrons for a spin-based FET (SpinFET). High-quality n-type InAs heterostructures demonstrate many favorable characteristics necessary to the study of spin dynamics, including 2DEG's with small effective mass (m* = 0.023) and large g-factor (g = -15). Previously, high-mobility InAs heterostructures have been demonstrated in which electrons pass ballistically over hundreds of nanometers up to room temperature. Our devices seek to exploit the strong Spin-Orbit effect present in InAs to manipulate coherent spin-polarized electrons during transport, by producing perpendicular electric field using isolated top-gates fabricated over the electron transport region.

  16. Spin-dependent quantum transport in nanoscaled geometries

    Science.gov (United States)

    Heremans, Jean J.

    2011-10-01

    We discuss experiments where the spin degree of freedom leads to quantum interference phenomena in the solid-state. Under spin-orbit interactions (SOI), spin rotation modifies weak-localization to weak anti-localization (WAL). WAL's sensitivity to spin- and phase coherence leads to its use in determining the spin coherence lengths Ls in materials, of importance moreover in spintronics. Using WAL we measure the dependence of Ls on the wire width w in narrow nanolithographic ballistic InSb wires, ballistic InAs wires, and diffusive Bi wires with surface states with Rashba-like SOI. In all three systems we find that Ls increases with decreasing w. While theory predicts the increase for diffusive wires with linear (Rashba) SOI, we experimentally conclude that the increase in Ls under dimensional confinement may be more universal, with consequences for various applications. Further, in mesoscopic ring geometries on an InAs/AlGaSb 2D electron system (2DES) we observe both Aharonov-Bohm oscillations due to spatial quantum interference, and Altshuler-Aronov-Spivak oscillations due to time-reversed paths. A transport formalism describing quantum coherent networks including ballistic transport and SOI allows a comparison of spin- and phase coherence lengths extracted for such spatial- and temporal-loop quantum interference phenomena. We further applied WAL to study the magnetic interactions between a 2DES at the surface of InAs and local magnetic moments on the surface from rare earth (RE) ions (Gd3+, Ho3+, and Sm3+). The magnetic spin-flip rate carries information about magnetic interactions. Results indicate that the heavy RE ions increase the SOI scattering rate and the spin-flip rate, the latter indicating magnetic interactions. Moreover Ho3+ on InAs yields a spin-flip rate with an unusual power 1/2 temperature dependence, possibly characteristic of a Kondo system. We acknowledge funding from DOE (DE-FG02-08ER46532).

  17. Non magnetic neutron spin quantum precession using multilayer spin splitter and a phase-spin echo interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Ebisawa, T.; Tasaki, S.; Kawai, T.; Akiyoshi, T. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Achiwa, N.; Hino, M.; Otake, Y.; Funahashi, H.

    1996-08-01

    The authors have developed cold neutron optics and interferometry using multilayer mirrors. The advantages of the multilayer mirrors are their applicability to long wavelength neutrons and a great variety of the mirror performance. The idea of the present spin interferometry is based on nonmagnetic neutron spin quantum precession using multilayer spin splitters. The equation for polarized neutrons means that the polarized neutrons are equivalent to the coherent superposition of two parallel spin eigenstates. The structure and principle of a multilayer spin splitter are explained, and the nonmagnetic gap layer of the multilayer spin splitter gives rise to neutron spin quantum precession. The performance test of the multilayer spin splitter were made with a new spin interferometer, which is analogous optically to a spin echo system with vertical precession field. The spin interferometers were installed at Kyoto University research reactor and the JRR-3. The testing method and the results are reported. The performance tests on a new phase-spin echo interferometer are described, and its applications to the development of a high resolution spin echo system and a Jamin type cold neutron interferometer are proposed. (K.I.)

  18. Coherent population transfer in multilevel systems with magnetic sublevels. II. Algebraic analysis

    International Nuclear Information System (INIS)

    Martin, J.; Shore, B.W.; Bergmann, K.

    1995-01-01

    We extend previous theoretical work on coherent population transfer by stimulated Raman adiabatic passage for states involving nonzero angular momentum. The pump and Stokes fields are either copropagating or counterpropagating with the corresponding linearly polarized electric-field vectors lying in a common plane with the magnetic-field direction. Zeeman splitting lifts the magnetic sublevel degeneracy. We present an algebraic analysis of dressed-state properties to explain the behavior noted in numerical studies. In particular, we discuss conditions which are likely to lead to a failure of complete population transfer. The applied strategy, based on simple methods of linear algebra, will also be successful for other types of discrete multilevel systems, provided the rotating-wave and adiabatic approximation are valid

  19. Coherent population transfer in multilevel systems with magnetic sublevels. II. Algebraic analysis

    Science.gov (United States)

    Martin, J.; Shore, B. W.; Bergmann, K.

    1995-07-01

    We extend previous theoretical work on coherent population transfer by stimulated Raman adiabatic passage for states involving nonzero angular momentum. The pump and Stokes fields are either copropagating or counterpropagating with the corresponding linearly polarized electric-field vectors lying in a common plane with the magnetic-field direction. Zeeman splitting lifts the magnetic sublevel degeneracy. We present an algebraic analysis of dressed-state properties to explain the behavior noted in numerical studies. In particular, we discuss conditions which are likely to lead to a failure of complete population transfer. The applied strategy, based on simple methods of linear algebra, will also be successful for other types of discrete multilevel systems, provided the rotating-wave and adiabatic approximation are valid.

  20. Possible evidence for spin-transfer torque induced by spin-triplet supercurrent

    KAUST Repository

    Li, Lailai; Zhao, Yuelei; Zhang, Xixiang; Sun, Young

    2017-01-01

    Cooper pairs in superconductors are normally spin singlet. Nevertheless, recent studies suggest that spin-triplet Cooper pairs can be created at carefully engineered superconductor-ferromagnet interfaces. If Cooper pairs are spin

  1. Investigating spin-transfer torques induced by thermal gradients in magnetic tunnel junctions by using micro-cavity ferromagnetic resonance

    Science.gov (United States)

    Cansever, H.; Narkowicz, R.; Lenz, K.; Fowley, C.; Ramasubramanian, L.; Yildirim, O.; Niesen, A.; Huebner, T.; Reiss, G.; Lindner, J.; Fassbender, J.; Deac, A. M.

    2018-06-01

    Similar to electrical currents flowing through magnetic multilayers, thermal gradients applied across the barrier of a magnetic tunnel junction may induce pure spin-currents and generate ‘thermal’ spin-transfer torques large enough to induce magnetization dynamics in the free layer. In this study, we describe a novel experimental approach to observe spin-transfer torques induced by thermal gradients in magnetic multilayers by studying their ferromagnetic resonance response in microwave cavities. Utilizing this approach allows for measuring the magnetization dynamics on micron/nano-sized samples in open-circuit conditions, i.e. without the need of electrical contacts. We performed first experiments on magnetic tunnel junctions patterned into 6  ×  9 µm2 ellipses from Co2FeAl/MgO/CoFeB stacks. We conducted microresonator ferromagnetic resonance (FMR) under focused laser illumination to induce thermal gradients in the layer stack and compared them to measurements in which the sample was globally heated from the backside of the substrate. Moreover, we carried out broadband FMR measurements under global heating conditions on the same extended films the microstructures were later on prepared from. The results clearly demonstrate the effect of thermal spin-torque on the FMR response and thus show that the microresonator approach is well suited to investigate thermal spin-transfer-driven processes for small temperatures gradients, far below the gradients required for magnetic switching.

  2. Ultracoherent operation of spin qubits with superexchange coupling

    Science.gov (United States)

    Rančić, Marko J.; Burkard, Guido

    2017-11-01

    With the use of nuclear-spin-free materials such as silicon and germanium, spin-based quantum bits (qubits) have evolved to become among the most coherent systems for quantum information processing. The new frontier for spin qubits has therefore shifted to the ubiquitous charge noise and spin-orbit interaction, which are limiting the coherence times and gate fidelities of solid-state qubits. In this paper we investigate superexchange, as a means of indirect exchange interaction between two single electron spin qubits, each embedded in a single semiconductor quantum dot (QD), mediated by an intermediate, empty QD. Our results suggest the existence of "supersweet spots", in which the qubit operations implemented by superexchange interaction are simultaneously first-order-insensitive to charge noise and to errors due to spin-orbit interaction. The proposed spin-qubit architecture is scalable and within the manufacturing capabilities of semiconductor industry.

  3. Long-Distance Entanglement of Spin Qubits via Ferromagnet

    Directory of Open Access Journals (Sweden)

    Luka Trifunovic

    2013-12-01

    Full Text Available We propose a mechanism of coherent coupling between distant spin qubits interacting dipolarly with a ferromagnet. We derive an effective two-spin interaction Hamiltonian and find a regime where the dynamics is coherent. Finally, we present a sequence for the implementation of the entangling controlled-not gate and estimate the corresponding operation time to be a few tens of nanoseconds. A particularly promising application of our proposal is to atomistic spin qubits such as silicon-based qubits and nitrogen-vacancy centers in diamond to which existing coupling schemes do not apply.

  4. Quantum dynamics of spin qubits in optically active quantum dots

    International Nuclear Information System (INIS)

    Bechtold, Alexander

    2017-01-01

    The control of solid-state qubits for quantum information processing requires a detailed understanding of the mechanisms responsible for decoherence. During the past decade a considerable progress has been achieved for describing the qubit dynamics in relatively strong external magnetic fields. However, until now it has been impossible to experimentally test many theoretical predictions at very low magnetic fields and uncover mechanisms associated with reduced coherence times of spin qubits in solids. In particular, the role of the quadrupolar coupling of nuclear spins in this process is to date poorly understood. In the framework of this thesis, a spin memory device is utilized to optically prepare individual electron spin qubits in a single InGaAs quantum dot. After storages over timescales extending into the microsecond range the qubit��s state is read out to monitor the impact of the environment on it the spin dynamics. By performing such pump-probe experiments, the dominant electron spin decoherence mechanisms are identified in a wide range of external magnetic fields (0-5 T) and lattice temperatures of ∝10 K. The results presented in this thesis show that, without application of external magnetic fields the initially orientated electron spin rapidly loses its polarization due to precession around the fluctuating Overhauser field with a dispersion of 10.5 mT. The inhomogeneous dephasing time associated with these hyperfine mediated dynamics is of the order of T * 2 =2 ns. Over longer timescales, an unexpected stage of central spin relaxation is observed, namely the appearance of a second feature in the relaxation curve around T Q =750 ns. By comparison with theoretical simulations, this additional decoherence channel is shown to arise from coherent dynamics in the nuclear spin bath itself. Such coherent dynamics are induced by a quadrupolar coupling of the nuclear spins to the strain induced electric field gradients in the quantum dot. These processes

  5. Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiong-Peng [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Shao, Bin, E-mail: sbin610@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Hu, Shuai; Zou, Jian [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wu, Lian-Ao [Department of Theoretical Physics and History of Science, The Basque Country University (EHU/UPV), PO Box 644, 48080 Bilbao (Spain); Ikerbasque, Basque Foundation for Science, 48011 Bilbao (Spain)

    2016-12-15

    Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that the scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.

  6. Coherent states in quaternionic quantum mechanics

    Science.gov (United States)

    Adler, Stephen L.; Millard, Andrew C.

    1997-05-01

    We develop Perelomov's coherent states formalism to include the case of a quaternionic Hilbert space. We find that, because of the closure requirement, an attempted quaternionic generalization of the special nilpotent or Weyl group reduces to the normal complex case. For the case of the compact group SU(2), however, coherent states can be formulated using the quaternionic half-integer spin matrices of Finkelstein, Jauch, and Speiser, giving a nontrivial quaternionic analog of coherent states.

  7. Efficient one-out-of-two quantum oblivious transfer based on four-coherent-state postselection protocol

    International Nuclear Information System (INIS)

    Chen, I-C; Hwang Tzonelih; Li C-M

    2008-01-01

    On the basis of the modified four-coherent-state post-selection quantum key distribution protocol (Namiki and Hirano 2006 Preprint quant-ph/0608144v1), two 1-out-of-2 quantum oblivious transfer (QOT 2 1 ) protocols are proposed. The first proposed protocol (called the receiver-based QOT 2 1 protocol) requires the coherent states to be prepared by the receiver, whereas the second protocol (called the sender-based QOT 2 1 protocol) allows the coherent states to be generated by the sender. The main advantages of the proposed protocols are that (i) no quantum bit commitment schemes and the assumption of quantum memory are needed; (ii) less communication cost between participants is required, i.e. the receiver-based QOT 2 1 protocol requires only one quantum communication and one classical communication and the sender-based QOT 2 1 protocol requires only one quantum communication between participants during protocol execution; and (iii) the utilization of quantum states is very efficient, wherein the receiver-based and the sender-based QOT 2 1 protocols use only two coherent pulses and one coherent pulse respectively for sending the sender's two messages

  8. Magnon condensation and spin superfluidity

    Science.gov (United States)

    Bunkov, Yury M.; Safonov, Vladimir L.

    2018-04-01

    We consider the Bose-Einstein condensation (BEC) of quasi-equilibrium magnons which leads to spin superfluidity, the coherent quantum transfer of magnetization in magnetic material. The critical conditions for excited magnon density in ferro- and antiferromagnets, bulk and thin films, are estimated and discussed. It was demonstrated that only the highly populated region of the spectrum is responsible for the emergence of any BEC. This finding substantially simplifies the BEC theoretical analysis and is surely to be used for simulations. It is shown that the conditions of magnon BEC in the perpendicular magnetized YIG thin film is fulfillied at small angle, when signals are treated as excited spin waves. We also predict that the magnon BEC should occur in the antiferromagnetic hematite at room temperature at much lower excited magnon density compared to that of ferromagnetic YIG. Bogoliubov's theory of Bose-Einstein condensate is generalized to the case of multi-particle interactions. The six-magnon repulsive interaction may be responsible for the BEC stability in ferro- and antiferromagnets where the four-magnon interaction is attractive.

  9. Possible charge analogues of spin transfer torques in bulk superconductors

    Science.gov (United States)

    Garate, Ion

    2014-03-01

    Spin transfer torques (STT) occur when electric currents travel through inhomogeneously magnetized systems and are important for the motion of magnetic textures such as domain walls. Since superconductors are easy-plane ferromagnets in particle-hole (charge) space, it is natural to ask whether any charge duals of STT phenomena exist therein. We find that the superconducting analogue of the adiabatic STT vanishes in a bulk superconductor with a momentum-independent order parameter, while the superconducting counterpart of the nonadiabatic STT does not vanish. This nonvanishing superconducting torque is induced by heat (rather than charge) currents and acts on the charge (rather than spin) degree of freedom. It can become significant in the vicinity of the superconducting transition temperature, where it generates a net quasiparticle charge and alters the dispersion and linewidth of low-frequency collective modes. This work has been financially supported by Canada's NSERC.

  10. Perfect transfer of arbitrary states in quantum spin networks

    International Nuclear Information System (INIS)

    Christandl, Matthias; Kay, Alastair; Datta, Nilanjana; Dorlas, Tony C.; Ekert, Artur; Landahl, Andrew J.

    2005-01-01

    We propose a class of qubit networks that admit perfect state transfer of any two-dimensional quantum state in a fixed period of time. We further show that such networks can distribute arbitrary entangled states between two distant parties, and can, by using such systems in parallel, transmit the higher-dimensional systems states across the network. Unlike many other schemes for quantum computation and communication, these networks do not require qubit couplings to be switched on and off. When restricted to N-qubit spin networks of identical qubit couplings, we show that 2 log 3 N is the maximal perfect communication distance for hypercube geometries. Moreover, if one allows fixed but different couplings between the qubits then perfect state transfer can be achieved over arbitrarily long distances in a linear chain. This paper expands and extends the work done by Christandl et al., Phys. Rev. Lett. 92, 187902 (2004)

  11. Spin interferometry and phase relations in three level systems

    International Nuclear Information System (INIS)

    Mehring, M.; Stoll, M.E.; Wolff, E.K.

    1978-01-01

    The sign of the wavefunctions of deuterium, a spin-1 nucleus, under a 2π rotation (spinor character) has been studied with using a single crystal of 98% deuterated hexamethyl-benzene (HMB, C 6 (CD 3 ) 6 ). In a large magnetic fields, the three energy levels of the Zeeman hamiltonian have equal spacing, whereas unequivalent transition frequencies may occur if a suitable quadrupolar interaction is included. Three types of experiment are discussed. Simultaneous irradiation of both transitions with a field strength ω 1 in the x direction verified spin-locking, quadrature, or phase variation; consecutive irradiation at both transition with π-pulses showed coherence transfer from transition 1-2 to the forbidden transition 1-3; double quantum spinor behavior was demonstrated by applying rf field of strength ω 1 = γH 1 at the 'double quantum transition' frequency ω 0

  12. Giant Spin Hall Effect and Switching Induced by Spin-Transfer Torque in a W /Co40Fe40B20/MgO Structure with Perpendicular Magnetic Anisotropy

    Science.gov (United States)

    Hao, Qiang; Xiao, Gang

    2015-03-01

    We obtain robust perpendicular magnetic anisotropy in a β -W /Co40Fe40B20/MgO structure without the need of any insertion layer between W and Co40Fe40B20 . This is achieved within a broad range of W thicknesses (3.0-9.0 nm), using a simple fabrication technique. We determine the spin Hall angle (0.40) and spin-diffusion length for the bulk β form of tungsten with a large spin-orbit coupling. As a result of the giant spin Hall effect in β -W and careful magnetic annealing, we significantly reduce the critical current density for the spin-transfer-torque-induced magnetic switching in Co40Fe40B20 . The elemental β -W is a superior candidate for magnetic memory and spin-logic applications.

  13. Phase-coherent transport and spin-orbit-coupling in III/V-semiconductor nanowires

    International Nuclear Information System (INIS)

    Estevez Hernandez, Sergio

    2009-01-01

    Semiconductor nanowires fabricated by a bottom-up approach are not only interesting for the realization of future nanoscaled devices but also appear to be very attractive model systems to tackle fundamental questions concerning the transport in strongly confined systems. In order to avoid the problem connected with carrier depletion, narrowband gap semiconductors, i.e., InAs or InN, or core-shell Nanowires, i.e., GaAs/AlGaAs, are preferred. The underlying reason is that in InAs or InN the Fermi-level pinning in the conduction band results in a carrier accumulation at the surface. In fact, the tubular topology of the surface electron gas opens up the possibility to observe unconventional quantum transport phenomena. When the phase-coherence length in the nanowire is comparable to its dimensions the conductance fluctuates if a magnetic field is applied or if the electron concentration is changed by means of a gate electrode. These so-called universal conductance fluctuations being in the order of e 2 /h originate from the fact that in small disordered samples, electron interference effects are not averaged out. In this work are analyzed universal conductance fluctuations to study the quantum transport properties in InN, InAs and GaAs/AlGaAs nanowires. With the use of a magnetic field and a back-gate electrode the universal conductance fluctuations and localizations effects were analyzed. Since InN and InAs are narrow band gap semiconductors, one naturally expects spin-orbit coupling effects. Because this phenomena is of importance for spin electronic applications. However, owing to the cylindrical symmetry of the InN and InAs nanowires, the latter effect was observable and actually be used to determine the strength of spin-orbit coupling. In order to clearly separate the weak antilocalization effect from the conductance fluctuations, the averaging of the magnetoconductance at different gate voltages was essential. The low-temperature quantum transport properties of

  14. Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout

    Science.gov (United States)

    Sukachev, D. D.; Sipahigil, A.; Nguyen, C. T.; Bhaskar, M. K.; Evans, R. E.; Jelezko, F.; Lukin, M. D.

    2017-12-01

    The negatively charged silicon-vacancy (SiV- ) color center in diamond has recently emerged as a promising system for quantum photonics. Its symmetry-protected optical transitions enable the creation of indistinguishable emitter arrays and deterministic coupling to nanophotonic devices. Despite this, the longest coherence time associated with its electronic spin achieved to date (˜250 ns ) has been limited by coupling to acoustic phonons. We demonstrate coherent control and suppression of phonon-induced dephasing of the SiV- electronic spin coherence by 5 orders of magnitude by operating at temperatures below 500 mK. By aligning the magnetic field along the SiV- symmetry axis, we demonstrate spin-conserving optical transitions and single-shot readout of the SiV- spin with 89% fidelity. Coherent control of the SiV- spin with microwave fields is used to demonstrate a spin coherence time T2 of 13 ms and a spin relaxation time T1 exceeding 1 s at 100 mK. These results establish the SiV- as a promising solid-state candidate for the realization of quantum networks.

  15. Electronic transport through EuO spin-filter tunnel junctions

    KAUST Repository

    Jutong, Nuttachai

    2012-11-12

    Epitaxial spin-filter tunnel junctions based on the ferromagnetic semiconductor europium monoxide (EuO) are investigated by means of density functional theory. In particular, we focus on the spin transport properties of Cu(100)/EuO(100)/Cu(100) junctions. The dependence of the transmission coefficient and the current-voltage curves on the interface spacing and EuO thickness is explained in terms of the EuO density of states and the complex band structure. Furthermore, we also discuss the relation between the spin transport properties and the Cu-EuO interface geometry. The level alignment of the junction is sensitively affected by the interface spacing, since this determines the charge transfer between EuO and the Cu electrodes. Our calculations indicate that EuO epitaxially grown on Cu can act as a perfect spin filter, with a spin polarization of the current close to 100%, and with both the Eu-5d conduction-band and the Eu-4f valence-band states contributing to the coherent transport. For epitaxial EuO on Cu, a symmetry filtering is observed, with the Δ1 states dominating the transmission. This leads to a transport gap larger than the fundamental EuO band gap. Importantly, the high spin polarization of the current is preserved up to large bias voltages.

  16. Isotopic spin effect in three-pion Bose-Einstein correlations

    International Nuclear Information System (INIS)

    Suzuki, N.

    1998-01-01

    Bose-Einstein (BE) correlations of identical particles in multiple production processes are extensively studied last years because they give an information on the space-time region of interaction. The basic effect is analogous to Hanbury-Brown - Twiss (HBT) interferometry in optics and suggests statistical production of the particles (mainly π mesons). The possible presence of coherent pionic component (for example, in the case of disoriented chiral condensate formation) modifies the HBT effect. On the other hand, the pions (contrary to photons) are subject to isotopic spin (and electric charge) conservation and so they can not be emitted independently. While the corresponding change of the statistical part is not essential for large multiplicities, the coherent part changes substantially when isotopic spin conservation is taken into account. BE correlations of the pions in the presence of both statistical and coherent components are reconsidered taking into account isotopic spin conservation in the coherent part. That will result in appearance of additional contribution to pionic correlation function. (author)

  17. Long-range spin wave mediated control of defect qubits in nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Andrich, Paolo; de las Casas, Charles F.; Liu, Xiaoying; Bretscher, Hope L.; Berman, Jonson R.; Heremans, F. Joseph; Nealey, Paul F.; Awschalom, David D.

    2017-07-17

    Hybrid architectures that combine nitrogen-vacancy (NV) centers in diamond with other materials and physical systems have been proposed to enhance the NV center’s capabilities in many quantum sensing and information applications. In particular, spin waves (SWs) in ferromagnetic materials are a promising candidate to implement these platforms due to their strong magnetic fields, which could be used to efficiently interact with the NV centers. Here we develop an yttrium iron garnet-nanodiamond hybrid architecture constructed with the help of directed assembly and transfer printing techniques. Operating at ambient conditions, we demonstrate that surface confined SWs excited in the ferromagnet (FM) can strongly amplify the interactions between a microwave source and the NV centers by enhancing the local microwave magnetic field by several orders of magnitude. Crucially, we show the existence of a regime in which coherent interactions between SWs and NV centers dominate over incoherent mechanisms associated with the broadband magnetic field noise generated by the FM. These accomplishments enable the SW mediated coherent control of spin qubits over distances larger than 200 um, and allow low power operations for future spintronic technologies.

  18. Spin flip statistics and spin wave interference patterns in Ising ferromagnetic films: A Monte Carlo study.

    Science.gov (United States)

    Acharyya, Muktish

    2017-07-01

    The spin wave interference is studied in two dimensional Ising ferromagnet driven by two coherent spherical magnetic field waves by Monte Carlo simulation. The spin waves are found to propagate and interfere according to the classic rule of interference pattern generated by two point sources. The interference pattern of spin wave is observed in one boundary of the lattice. The interference pattern is detected and studied by spin flip statistics at high and low temperatures. The destructive interference is manifested as the large number of spin flips and vice versa.

  19. Multiscale modeling of current-induced switching in magnetic tunnel junctions using ab initio spin-transfer torques

    Science.gov (United States)

    Ellis, Matthew O. A.; Stamenova, Maria; Sanvito, Stefano

    2017-12-01

    There exists a significant challenge in developing efficient magnetic tunnel junctions with low write currents for nonvolatile memory devices. With the aim of analyzing potential materials for efficient current-operated magnetic junctions, we have developed a multi-scale methodology combining ab initio calculations of spin-transfer torque with large-scale time-dependent simulations using atomistic spin dynamics. In this work we introduce our multiscale approach, including a discussion on a number of possible schemes for mapping the ab initio spin torques into the spin dynamics. We demonstrate this methodology on a prototype Co/MgO/Co/Cu tunnel junction showing that the spin torques are primarily acting at the interface between the Co free layer and MgO. Using spin dynamics we then calculate the reversal switching times for the free layer and the critical voltages and currents required for such switching. Our work provides an efficient, accurate, and versatile framework for designing novel current-operated magnetic devices, where all the materials details are taken into account.

  20. Spin transfer driven resonant expulsion of a magnetic vortex core for efficient rf detector

    Directory of Open Access Journals (Sweden)

    S. Menshawy

    2017-05-01

    Full Text Available Spin transfer magnetization dynamics have led to considerable advances in Spintronics, including opportunities for new nanoscale radiofrequency devices. Among the new functionalities is the radiofrequency (rf detection using the spin diode rectification effect in spin torque nano-oscillators (STNOs. In this study, we focus on a new phenomenon, the resonant expulsion of a magnetic vortex in STNOs. This effect is observed when the excitation vortex radius, due to spin torques associated to rf currents, becomes larger than the actual radius of the STNO. This vortex expulsion is leading to a sharp variation of the voltage at the resonant frequency. Here we show that the detected frequency can be tuned by different parameters; furthermore, a simultaneous detection of different rf signals can be achieved by real time measurements with several STNOs having different diameters. This result constitutes a first proof-of-principle towards the development of a new kind of nanoscale rf threshold detector.

  1. Non-classical Correlations and Quantum Coherence in Mixed Environments

    Science.gov (United States)

    Hu, Zheng-Da; Wei, Mei-Song; Wang, Jicheng; Zhang, Yixin; He, Qi-Liang

    2018-05-01

    We investigate non-classical correlations (entanglement and quantum discord) and quantum coherence for an open two-qubit system each independently coupled to a bosonic environment and a spin environment, respectively. The modulating effects of spin environment and bosonic environment are respectively explored. A relation among the quantum coherence, quantum discord and classical correlation is found during the sudden transition phenomenon. We also compare the case of mixed environments with that of the same environments, showing that the dynamics is dramatically changed.

  2. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission

    Directory of Open Access Journals (Sweden)

    A. Gover

    2006-06-01

    Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.

  3. Multiple quantum spin dynamics of entanglement

    International Nuclear Information System (INIS)

    Doronin, Serge I.

    2003-01-01

    The dynamics of entanglement is investigated on the basis of exactly solvable models of multiple quantum (MQ) NMR spin dynamics. It is shown that the time evolution of MQ coherences of systems of coupled nuclear spins in solids is directly connected with dynamics of the quantum entanglement. We studied analytically the dynamics of entangled states for two- and three-spin systems coupled by the dipole-dipole interaction. In this case the dynamics of the quantum entanglement is uniquely determined by the time evolution of MQ coherences of the second order. The real part of the density matrix describing MQ dynamics in solids is responsible for MQ coherences of the zeroth order while its imaginary part is responsible for the second order. Thus, one can conclude that the dynamics of the entanglement is connected with transitions from the real part of the density matrix to the imaginary one, and vice versa. A pure state which generalizes the Greenberger-Horne-Zeilinger (GHZ) and W states is found. Different measures of the entanglement of this state are analyzed for tripartite systems

  4. Analysis of synchronized regimes for injection-locked spin-transfer nano-oscillators

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino, M., E-mail: daquino@uniparthenope.it [Department of Technology, University of Napoli ' Parthenope' , 80143 Napoli (Italy); Serpico, C. [Department of Engineering, University of Napoli Federico II, 80125 Napoli (Italy); Bonin, R. [Politecnico di Torino - Sede di Verres, 11029 Verres (Aosta) (Italy); Bertotti, G. [Istituto Nazionale di Ricerca Metrologica, 10135 Torino (Italy); Mayergoyz, I.D. [ECE Dept. and UMIACS, University of Maryland, College Park, MD 20742 (United States)

    2012-05-01

    The large-angle magnetization dynamics of an injection-locked spin-transfer nano-oscillator (STNO) is studied. The magnetic system is subject to the action of time-varying spin-polarized currents and external magnetic fields. The uniform mode theory is developed and describes the hysteretic synchronization mechanism in terms of bifurcations of equilibria and limit cycles of appropriate dynamical systems. Analytical predictions of control parameters for the synchronization between the magnetization self-oscillation and the external microwave excitations (current, field) are provided. The effect of temperature on the locking band and the hysteretic character of the oscillation response is analyzed. An analytical approach is developed to determine the thermally induced sidebands in the power spectral density of phase-locked oscillations as a function of control parameters. The analytical predictions are in good agreement with the results of numerical simulations.

  5. High spin-filter efficiency and Seebeck effect through spin-crossover iron–benzene complex

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Qiang; Zhou, Liping, E-mail: zhoulp@suda.edu.cn; Cheng, Jue-Fei; Wen, Zhongqian; Han, Qin; Wang, Xue-Feng [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China)

    2016-04-21

    Electronic structures and coherent quantum transport properties are explored for spin-crossover molecule iron-benzene Fe(Bz){sub 2} using density functional theory combined with non-equilibrium Green’s function. High- and low-spin states are investigated for two different lead-molecule junctions. It is found that the asymmetrical T-shaped contact junction in the high-spin state behaves as an efficient spin filter while it has a smaller conductivity than that in the low-spin state. Large spin Seebeck effect is also observed in asymmetrical T-shaped junction. Spin-polarized properties are absent in the symmetrical H-shaped junction. These findings strongly suggest that both the electronic and contact configurations play significant roles in molecular devices and metal-benzene complexes are promising materials for spintronics and thermo-spintronics.

  6. The nuclear spin response to intermediate energy protons and deuterons at low momentum transfer

    International Nuclear Information System (INIS)

    Baker, F.T.; Djalali, C.; Glashausser, C.; Lenske, H.; Love, W.G.; Tomasi-Gustafsson, E.; Wambach, J.

    1997-01-01

    Measurements of polarization transfer in the inelastic scattering of intermediate energy protons and deuterons have yielded a wealth of data on the spin response of nuclei. This work complements the well-known studies of Gamow-Teller strength in charge-exchange reactions. The emphasis here is on a consistent determination of the S=1, T=0 response, practical only with deuterons, and on the proper separation of S=0 and S=1 strength in proton spectra for appropriate comparison with sum rules. We concentrate on two nuclei, 40 Ca and 12 C, at momentum transfers below about 1 fm -1 and on excitations up to about 50 MeV. The continuum second random phase approximation provides the primary theoretical tool for calculating and interpreting the response in terms of properties of the nucleon-nucleon force inside the nuclear medium. The reaction mechanism is described by the DWIA, applied here to continuum proton scattering almost as rigorously as it is usually applied to low energy excitations. A new DWIA formalism for the description of spin observables in deuteron scattering is used. Comparison of the proton and deuteron data with each other and with RPA/DWIA calculations yields interesting insights into the current state of understanding of collectivity and the nuclear spin response. (orig.)

  7. Two perspectives on a decohering spin

    International Nuclear Information System (INIS)

    Albrecht, A.

    1992-01-01

    I study the quantum mechanics of a spin interacting with an environment. Although the evolution of the whole system is unitary, the spin evolution is not. The system is chosen so that the spin exhibits loss of quantum coherence, or ''wavefunction collapse,'' of the sort usually associated with a quantum measurement. The system is analyzed from the point of view of the spin density matrix (or ''Schmidt path''), and also using the consistent histories (or decoherence functional) approach

  8. Angular dependence of spin transfer torque on magnetic tunnel junctions with synthetic ferrimagnetic free layer

    International Nuclear Information System (INIS)

    Ichimura, M; Hamada, T; Imamura, H; Takahashi, S; Maekawa, S

    2010-01-01

    Based on a spin-polarized free-electron model, spin and charge transports are analyzed in magnetic tunnel junctions with synthetic ferrimagnetic layers in the ballistic regime, and the spin transfer torque is derived. We characterize the synthetic ferrimagnetic free layer by extending an arbitrary direction of magnetizations of the two free layers forming the synthetic ferrimagnetic free layer. The synthetic ferrimagnetic configuration exerts the approximately optimum torque for small magnetization angle of the first layer relative to that of the pinned layer. For approximately anti-parallel magnetization of the first layer to that of the pinned layer, the parallel magnetization of two magnetic layers is favorable for magnetization reversal rather than the synthetic ferrimagnetic configuration.

  9. Simulations of defect spin qubits in piezoelectric semiconductors

    Science.gov (United States)

    Seo, Hosung

    In recent years, remarkable advances have been reported in the development of defect spin qubits in semiconductors for solid-state quantum information science and quantum metrology. Promising spin qubits include the nitrogen-vacancy center in diamond, dopants in silicon, and the silicon vacancy and divacancy spins in silicon carbide. In this talk, I will highlight some of our recent efforts devoted to defect spin qubits in piezoelectric wide-gap semiconductors for potential applications in mechanical hybrid quantum systems. In particular, I will describe our recent combined theoretical and experimental study on remarkably robust quantum coherence found in the divancancy qubits in silicon carbide. We used a quantum bath model combined with a cluster expansion method to identify the microscopic mechanisms behind the unusually long coherence times of the divacancy spins in SiC. Our study indicates that developing spin qubits in complex crystals with multiple types of atom is a promising route to realize strongly coherent hybrid quantum systems. I will also discuss progress and challenges in computational design of new spin defects for use as qubits in piezoelectric crystals such as AlN and SiC, including a new defect design concept using large metal ion - vacancy complexes. Our first principles calculations include DFT computations using recently developed self-consistent hybrid density functional theory and large-scale many-body GW theory. This work was supported by the National Science Foundation (NSF) through the University of Chicago MRSEC under Award Number DMR-1420709.

  10. Application of stochastic Liouville–von Neumann equation to electronic energy transfer in FMO complex

    International Nuclear Information System (INIS)

    Imai, Hajime; Ohtsuki, Yukiyoshi; Kono, Hirohiko

    2015-01-01

    Highlights: • Stochastic Liouville–von Neumann equation is applied to energy transfer dynamics. • Noise generation methods for dealing with exciton in FMO complexes are proposed. • Structured spectral densities could better support coherent population dynamics. - Abstract: A stochastic Liouville–von Neumann approach to solving a spin-boson model is applied to electronic energy transfer in Fenna–Matthews–Olson (FMO) complexes as a case study of the dynamics in biological systems. We modify a noise generation method to treat an experimentally obtained highly structured spectral density. By considering the population dynamics in a two-site system with a model structured spectral density, we numerically observe two kinds of coherent motions associated with inter-site coupling and system–bath coupling, the latter of which is mainly attributed to the peak structure of the spectral density

  11. Role of motive forces for the spin torque transfer for nano-structures

    Science.gov (United States)

    Barnes, Stewart

    2009-03-01

    Despite an announced imminent commercial realization of spin transfer random access memory (SPRAM) the current theory evolved from that of Slonczewski [1,2] does not conserve energy. Barnes and Maekawa [3] have shown, in order correct this defect, forces which originate from the spin rather than the charge of an electron must be accounted for, this leading to the concept of spin-motive-forces (smf) which must appear in Faraday's law and which significantly modifies the theory for spin-valves and domain wall devices [4]. A multi-channel theory in which these smf's redirect the spin currents will be described. In nano-structures it is now well known that the Kondo effect is reflected by conductance peaks. In essence, the spin degrees of freedom are used to enhance conduction. In a system with nano-magnets and a Coulomb blockade [5] the similar spin channels can be the only means of effective conduction. This results in a smf which lasts for minutes and an enormous magneto-resistance [5]. This implies the possibility of ``single electron memory'' in which the magnetic state is switched by a single electron. [4pt] [1] J. C. Slonczewski, Current-Driven Excitation of Magnetic Multilayers J. Magn. Magn. Mater. 159, L1 (1996). [0pt] [2] Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin, Nonlocal magnetization dynamics in ferromagnetic heterostructures, Rev. Mod. Phys. 77, 1375 (2005). [0pt] [3] S. E. Barnes and S. Maekawa, Generalization of Faraday's Law to Include Nonconservative Spin Forces Phys. Rev. Lett. 98, 246601 (2007); S. E. Barnes and S. Maekawa, Currents induced by domain wall motion in thin ferromagnetic wires. arXiv:cond-mat/ 0410021v1 (2004). [0pt] [4] S. E., Barnes, Spin motive forces, measurement, and spin-valves. J. Magn. Magn. Mat. 310, 2035-2037 (2007); S. E. Barnes, J. Ieda. J and S. Maekawa, Magnetic memory and current amplification devices using moving domain walls. Appl. Phys. Lett. 89, 122507 (2006). [0pt] [5] Pham-Nam Hai, Byung-Ho Yu

  12. High-data-transfer-rate read heads composed of spin-torque oscillators

    International Nuclear Information System (INIS)

    Mizushima, K; Kudo, K; Nagasawa, T; Sato, R

    2011-01-01

    The signal-to-noise ratios (SNRs) of the high-data-transfer-rate read heads beyond 3 Gbits/s composed of spin-torque oscillators (STOs) are calculated under the thermal magnetization fluctuations by using the recent nonlinear theories. The STO head senses the media field as a modulation in the oscillation frequency, enabling high signal transfer rates beyond the limit of ferromagnetic relaxation. The output (digital) signal is obtained by FM (frequency modulation) detection, which is commonly used in communication technologies. As the problem of rapid phase diffusion in STOs caused by the thermal fluctuations is overcome by employing a delay detection method, the sufficiently large SNRs are obtained even in nonlinear STOs less than 30 x 30 nm 2 in size.

  13. Coherent states in quaternionic quantum mechanics

    International Nuclear Information System (INIS)

    Adler, S.L.; Millard, A.C.

    1997-01-01

    We develop Perelomov close-quote s coherent states formalism to include the case of a quaternionic Hilbert space. We find that, because of the closure requirement, an attempted quaternionic generalization of the special nilpotent or Weyl group reduces to the normal complex case. For the case of the compact group SU(2), however, coherent states can be formulated using the quaternionic half-integer spin matrices of Finkelstein, Jauch, and Speiser, giving a nontrivial quaternionic analog of coherent states. copyright 1997 American Institute of Physics

  14. Spin Coherence in Silicon-based Quantum Structures and Devices

    Science.gov (United States)

    2017-08-31

    Using electron spin resonance (ESR) to measure the den- sity of shallow traps, we find that the two sets of devices are nearly identical , indicating...experiments which cannot utilize a clock transition or a field-cancelling decoherence-free subspace. Our approach was to lock the microwave source driving...the electron spins to a strong nuclear spin signal. In our initial experiments we locked to the proton signal in a water cell. However, the noise in

  15. Polarization phenomena on coherent particle backscattering by random media

    International Nuclear Information System (INIS)

    Gorodnichev, E.E.; Dudarev, S.L.; Rogozkin, D.B.

    1990-01-01

    An exact solution is found for the problem of coherent enhanced backscattering of spin 1/2 particles by random media with small-radius scatterers. The polarization features in the angular spectrum are analyzed for particles reflected by three- and two-dimensional disordered systems and by medium with Anderson disorder (periodic system of random scatterers). The analysis is carried out in the case of magnetic and spin-orbit interaction with the scattering centers. The effects predicted have not any analogues on coherent backscattering of light and scalar waves

  16. Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy.

    Science.gov (United States)

    Ishara Silva, K; Jagannathan, Bharat; Golbeck, John H; Lakshmi, K V

    2016-05-01

    Site-directed spin labeling electron paramagnetic resonance (SDSL EPR) spectroscopy is a powerful tool to determine solvent accessibility, side-chain dynamics, and inter-spin distances at specific sites in biological macromolecules. This information provides important insights into the structure and dynamics of both natural and designed proteins and protein complexes. Here, we discuss the application of SDSL EPR spectroscopy in probing the charge-transfer cofactors in photosynthetic reaction centers (RC) such as photosystem I (PSI) and the bacterial reaction center (bRC). Photosynthetic RCs are large multi-subunit proteins (molecular weight≥300 kDa) that perform light-driven charge transfer reactions in photosynthesis. These reactions are carried out by cofactors that are paramagnetic in one of their oxidation states. This renders the RCs unsuitable for conventional nuclear magnetic resonance spectroscopy investigations. However, the presence of native paramagnetic centers and the ability to covalently attach site-directed spin labels in RCs makes them ideally suited for the application of SDSL EPR spectroscopy. The paramagnetic centers serve as probes of conformational changes, dynamics of subunit assembly, and the relative motion of cofactors and peptide subunits. In this review, we describe novel applications of SDSL EPR spectroscopy for elucidating the effects of local structure and dynamics on the electron-transfer cofactors of photosynthetic RCs. Because SDSL EPR Spectroscopy is uniquely suited to provide dynamic information on protein motion, it is a particularly useful method in the engineering and analysis of designed electron transfer proteins and protein networks. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2016. Published by Elsevier B.V.

  17. Quantum Control and Entanglement of Spins in Silicon Carbide

    Science.gov (United States)

    Klimov, Paul

    Over the past several decades silicon carbide (SiC) has matured into a versatile material platform for high-power electronics and optoelectronic and micromechanical devices. Recent advances have also established SiC as a promising host for quantum technologies based on the spin of intrinsic defects, with the potential of leveraging existing device fabrication protocols alongside solid-state quantum control. Among these defects are the divacancies and related color centers, which have ground-state electron-spin triplets with coherence times as long as one millisecond and built-in optical interfaces operating near the telecommunication wavelengths. This rapidly developing field has prompted research into the SiC material host to understand how defect-bound electron spins interact with their surrounding nuclear spin bath. Although nuclear spins are a major source of decoherence in color-center spin systems, they are also a valuable resource since they can have coherence times that are orders of magnitude longer than electron spins. In this talk I will discuss our recent efforts to interface defect-bound electron spins in SiC with the nuclear spins of naturally occurring 29Si and 13C isotopic defects. I will discuss how the hyperfine interaction can be used to strongly initialize them, to coherently control them, to read them out, and to produce genuine electron-nuclear ensemble entanglement, all at ambient conditions. These demonstrations motivate further research into spins in SiC for prospective quantum technologies. In collaboration with A. Falk, D. Christle, K. Miao, H. Seo, V. Ivady, A. Gali, G. Galli, and D. D. Awschalom. This research was supported by the AFOSR, the NSF DMR-1306300, and the NSF Materials Research Science and Engineering Center.

  18. State diagram of a perpendicular magnetic tunnel junction driven by spin transfer torque: A power dissipation approach

    Energy Technology Data Exchange (ETDEWEB)

    Lavanant, M. [Institut Jean Lamour, UMR CNRS 7198 – Université de Lorraine, Nancy (France); Department of Physics, New York University, New York, NY 10003 (United States); Petit-Watelot, S. [Institut Jean Lamour, UMR CNRS 7198 – Université de Lorraine, Nancy (France); Kent, A.D. [Department of Physics, New York University, New York, NY 10003 (United States); Mangin, S., E-mail: stephane.mangin@univ-lorraine.fr [Institut Jean Lamour, UMR CNRS 7198 – Université de Lorraine, Nancy (France)

    2017-04-15

    The state diagram of a magnetic tunnel junction with perpendicularly magnetized electrodes in the presence of spin-transfer torques is computed in a macrospin approximation using a power dissipation model. Starting from the macrospin's energy we determine the stability of energy extremum in terms of power received and dissipated, allowing the consideration of non-conservative torques associated with spin transfer and damping. The results are shown to be in agreement with those obtained by direct integration of the Landau-Lifshitz-Gilbert-Slonczewski equation. However, the power dissipation model approach is faster and shows the reason certain magnetic states are stable, such as states that are energy maxima but are stabilized by spin transfer torque. Breaking the axial system, such as by a tilted applied field or tilted anisotropy, is shown to dramatically affect the state diagrams. Finally, the influence of a higher order uniaxial anisotropy that can stabilize a canted magnetization state is considered and the results are compared to experimental data. - Highlights: • Methods to compute state Diagram (Voltage Versus Field) for perpendicular Magnetic Tunnel Junctions. • Comparison between the conventional LLG model and a model based on Power dissipation to study magnetization reversal in magnetic tunnel junction.

  19. Role of spin polarization in FM/Al/FM trilayer film at low temperature

    Science.gov (United States)

    Lu, Ning; Webb, Richard

    2014-03-01

    Measurements of electronic transport in diffusive FM/normal metal/FM trilayer film are performed at temperature ranging from 2K to 300K to determine the behavior of the spin polarized current in normal metal under the influence of quantum phase coherence and spin-orbital interaction. Ten samples of Hall bar with length of 200 micron and width of 20 micron are fabricated through e-beam lithography followed by e-gun evaporation of Ni0.8Fe0.2, aluminum and Ni0.8Fe0.2 with different thickness (5nm to 45nm) in vacuum. At low temperature of 4.2K, coherent backscattering, Rashba spin-orbital interaction and spin flip scattering of conduction electrons contribute to magnetoresistance at low field. Quantitative analysis of magnetoresistance shows transition between weak localization and weak anti-localization for samples with different thickness ratio, which indicates the spin polarization actually affects the phase coherence length and spin-orbital scattering length. However, at temperature between 50K and 300K, only the spin polarization dominates the magnetoresistance.

  20. Electromagnetically induced absorption due to transfer of coherence and to transfer of population

    International Nuclear Information System (INIS)

    Goren, C.; Rosenbluh, M.; Wilson-Gordon, A.D.; Friedmann, H.

    2003-01-01

    The absorption spectrum of a weak probe, interacting with a driven degenerate two-level atomic system, whose ground and excited hyperfine states are F g,e , can exhibit narrow peaks at line center. When the pump and probe polarizations are different, F e =F g +1 and F g >0, the electromagnetically induced absorption (EIA) peak has been shown to be due to the transfer of coherence (TOC) between the excited and ground states via spontaneous decay. We give a detailed explanation of why the TOC that leads to EIA (EIA-TOC) can only take place when ground-state population trapping does not occur, that is, when F e =F g +1. We also explain why EIA-TOC is observed in open systems. We show that EIA can also occur when the pump and probe polarizations are identical and F e =F g +1. This EIA is analogous to an effect that occurs in simple two-level systems when the collisional transfer of population (TOP) from the ground state to a reservoir is greater than that from the excited state. For a degenerate two-level system, the reservoir consists of the Zeeman sublevels of the ground hyperfine state, and of other nearby hyperfine states that do not interact with the pump. We will also discuss the four-wave mixing spectrum under the conditions where EIA-TOC and EIA-TOP occur

  1. Quantum coherence in photo-ionisation with tailored XUV pulses

    Science.gov (United States)

    Carlström, Stefanos; Mauritsson, Johan; Schafer, Kenneth J.; L'Huillier, Anne; Gisselbrecht, Mathieu

    2018-01-01

    Ionisation with ultrashort pulses in the extreme ultraviolet (XUV) regime can be used to prepare an ion in a superposition of spin-orbit substates. In this work, we study the coherence properties of such a superposition, created by ionising xenon atoms using two phase-locked XUV pulses at different frequencies. In general, if the duration of the driving pulse exceeds the quantum beat period, dephasing will occur. If however, the frequency difference of the two pulses matches the spin-orbit splitting, the coherence can be efficiently increased and dephasing does not occur.

  2. Energy and Information Transfer Via Coherent Exciton Wave Packets

    Science.gov (United States)

    Zang, Xiaoning

    associated excitations were dubbed twisted excitons. Twisted exciton packets can be manipulated as they travel down molecular chains, and this has applications in quantum information science as well. In each setting considered, exciton dynamics were initially studied using a simple tight-binding formalism. This misses the actual many-body interactions and multiple energy levels associated real systems. To remedy this, I adapted an existing time-domain Density Functional Theory code and applied it to study the dynamics of exciton wave packets on quasi-one-dimensional systems. This required the use of high-performance computing and the construction of a number of key auxiliary codes. Establishing the requisite methodology constituted a substantial part of the entire thesis. Surprisingly, this effort uncovered a computational issue associated with Rabi oscillations that had been incorrectly characterized in the literature. My research elucidated the actual problem and a solution was found. This new methodology was an integral part of the overall computational analysis. The thesis then takes up the a detailed consideration of the prospect for creating systems that support a strong measure of transport coherence. While physical implementations include molecular assemblies, solid-state superlattices, and even optical lattices, I decided to focus on assemblies of nanometer-sized silicon quantum dots. First principles computational analysis was used to quantify reorganization within individual dots and excitonic coupling between dots. Quantum dot functionalizations were identified that make it plausible to maintain a measure of excitonic coherence even at room temperatures. Attention was then turned to the use of covalently bonded bridge material to join quantum dots in a way that facilitates efficient exciton transfer. Both carbon and silicon structures were considered by considering the way in which subunits might be best brought together. This resulted in a set of design criteria

  3. Superconducting to spin-glass state transformation in β-pyrochlore KxOs2O6

    Science.gov (United States)

    Lee, C. C.; Lee, W. L.; Lin, J.-Y.; Tsuei, C. C.; Lin, J. G.; Chou, F. C.

    2011-03-01

    β-pyrochore KOs2O6, which shows superconductivity below ~9.7 K, has been converted into KxOs2O6 (x≲(2)/(3)-(1)/(2)) electrochemically to show spin-glass-like behavior below ~6.1 K. A room-temperature sample surface potential versus charge transfer scan indicates that there are at least two two-phase regions for x between 1 and 0.5. A rattling model of superconductivity for the title compound has been examined using electrochemical potassium de-intercalation. The significant reduction of superconducting volume fraction due to minor potassium reduction suggests the importance of defect and phase coherence in the rattling model. Magnetic susceptibility, resistivity, and specific heat measurement results have been compared between the superconducting and spin-glass-like samples.

  4. Magnetization transfer and spin lock MR imaging of patellar cartilage degeneration at 0.1 T

    International Nuclear Information System (INIS)

    Koskinen, S.K.; Ylae-Outinen, H.; Komu, M.E.S.; Aho, H.J.

    1997-01-01

    Purpose: To investigate magnetization transfer (MT) parameters and rotating frame relaxation time T1ρ in patellar cartilage at different levels of degeneration. Material and Methods: Thirty cadaveric patellae were examined at 0.1 T using the time-dependent saturation-transfer MT technique and the spin lock (SL) technique. In an SL experiment, nuclear spins are locked with a radiofrequency (RF) field, and the locked nuclear magnetization relaxes along the magnetic component of the locking RF field. The specimens were divided into three groups according to the level of cartilage degeneration. MT parameters and T1ρ were measured. Results: The MT effect was greater in degenerated cartilage than in normal cartilage. T1ρ was longer in advanced cartilage degeneration than in intermediate cartilage degeneration. Conculsion: The results suggest that more studies are needed to fully establish the value of SL imaging in cartilage degeneration. (orig.)

  5. Electrical control of single hole spins in nanowire quantum dots.

    Science.gov (United States)

    Pribiag, V S; Nadj-Perge, S; Frolov, S M; van den Berg, J W G; van Weperen, I; Plissard, S R; Bakkers, E P A M; Kouwenhoven, L P

    2013-03-01

    The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.

  6. Storing quantum information in spins and high-sensitivity ESR

    Science.gov (United States)

    Morton, John J. L.; Bertet, Patrice

    2018-02-01

    Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per √{ Hz } , with prospects to scale down to even fewer spins.

  7. Storing quantum information in spins and high-sensitivity ESR.

    Science.gov (United States)

    Morton, John J L; Bertet, Patrice

    2018-02-01

    Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per Hz, with prospects to scale down to even fewer spins. Copyright © 2017. Published by Elsevier Inc.

  8. Spin pumping and inverse spin Hall effects in heavy metal/antiferromagnet/Permalloy trilayers

    Science.gov (United States)

    Saglam, Hilal; Zhang, Wei; Jungfleisch, M. Benjamin; Jiang, Wanjun; Pearson, John E.; Hoffmann, Axel

    Recent work shows efficient spin transfer via spin waves in insulating antiferromagnets (AFMs), suggesting that AFMs can play a more active role in the manipulation of ferromagnets. We use spin pumping and inverse spin Hall effect experiments on heavy metal (Pt and W)/AFMs/Py (Ni80Fe20) trilayer structures, to examine the possible spin transfer phenomenon in metallic AFMs, i . e . , FeMn and PdMn. Previous work has studied electronic effects of the spin transport in these materials, yielding short spin diffusion length on the order of 1 nm. However, the work did not examine whether besides diffusive spin transport by the conduction electrons, there are additional spin transport contributions from spin wave excitations. We clearly observe spin transport from the Py spin reservoir to the heavy metal layer through the sandwiched AFMs with thicknesses well above the previously measured spin diffusion lengths, indicating that spin transport by spin waves may lead to non-negligible contributions This work was supported by US DOE, OS, Materials Sciences and Engineering Division. Lithographic patterning was carried out at the CNM, which is supported by DOE, OS under Contract No. DE-AC02-06CH11357.

  9. The electron-spin--nuclear-spin interaction studied by polarized neutron scattering.

    Science.gov (United States)

    Stuhrmann, Heinrich B

    2007-11-01

    Dynamic nuclear spin polarization (DNP) is mediated by the dipolar interaction of paramagnetic centres with nuclear spins. This process is most likely to occur near paramagnetic centres at an angle close to 45 degrees with respect to the direction of the external magnetic field. The resulting distribution of polarized nuclear spins leads to an anisotropy of the polarized neutron scattering pattern, even with randomly oriented radical molecules. The corresponding cross section of polarized coherent neutron scattering in terms of a multipole expansion is derived for radical molecules in solution. An application using data of time-resolved polarized neutron scattering from an organic chromium(V) molecule is tested.

  10. Observation of coherent population transfer in a four-level tripod system with a rare-earth-metal-ion-doped crystal

    International Nuclear Information System (INIS)

    Goto, Hayato; Ichimura, Kouichi

    2007-01-01

    Coherent population transfer in a laser-driven four-level system in a tripod configuration is experimentally investigated with a rare-earth-metal-ion-doped crystal (Pr 3+ :Y 2 SiO 5 ). The population transfers observed here indicate that a main process inducing them is not optical pumping, which is an incoherent process inducing population transfer. Moreover, numerical simulation, which well reproduces the experimental results, also shows that the process inducing the observed population transfers is similar to stimulated Raman adiabatic passage (STIRAP) in the sense that this process possesses characteristic features of STIRAP

  11. Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation

    International Nuclear Information System (INIS)

    Macia, Ferran; Kent, Andrew D; Hoppensteadt, Frank C

    2011-01-01

    Magnetization dynamics in nanomagnets has attracted broad interest since it was predicted that a dc current flowing through a thin magnetic layer can create spin-wave excitations. These excitations are due to spin momentum transfer, a transfer of spin angular momentum between conduction electrons and the background magnetization, that enables new types of information processing. Here we show how arrays of spin-torque nano-oscillators can create propagating spin-wave interference patterns of use for memory and computation. Memristic transponders distributed on the thin film respond to threshold tunnel magnetoresistance values, thereby allowing spin-wave detection and creating new excitation patterns. We show how groups of transponders create resonant (reverberating) spin-wave interference patterns that may be used for polychronous wave computation and information storage.

  12. Spin dynamics and zero-field splitting constants of the triplet exciplex generated by photoinduced electron transfer reaction between erythrosin B and duroquinone

    OpenAIRE

    Tachikawa, Takashi; Kobori, Yasuhiro; Akiyama, Kimio; Katsuki, Akio; Steiner, Ulrich; Tero-Kubota, Shozo

    2002-01-01

    The spin dynamics of the duroquinone anion radical generated by photoinduced electron transfer reactions from triplet erythrosin B to duroquinone has been studied by using transient absorption and pulsed FT-EPR spectroscopy. Triplet exciplex formation as the reaction intermediate is verified by the observation of spin orbit coupling induced electron spin polarization. The kinetic parameters for exciplex formation and the intrinsic enhancement factors of electron spin polarization are determin...

  13. Spin-polarized current and shot noise in the presence of spin flip in a quantum dot via nonequilibrium Green's functions

    DEFF Research Database (Denmark)

    De Souza, Fabricio; Jauho, Antti-Pekka; Egues, J.C.

    2008-01-01

    Using nonequilibrium Green's functions we calculate the spin-polarized current and shot noise in a ferromagnet-quantum-dot-ferromagnet system. Both parallel (P) and antiparallel (AP) magnetic configurations are considered. Coulomb interaction and coherent spin flip (similar to a transverse magnetic...... field) are taken into account within the dot. We find that the interplay between Coulomb interaction and spin accumulation in the dot can result in a bias-dependent current polarization p. In particular, p can be suppressed in the P alignment and enhanced in the AP case depending on the bias voltage....... The coherent spin flip can also result in a switch of the current polarization from the emitter to the collector lead. Interestingly, for a particular set of parameters it is possible to have a polarized current in the collector and an unpolarized current in the emitter lead. We also found a suppression...

  14. Spin-resolved electron waiting times in a quantum-dot spin valve

    Science.gov (United States)

    Tang, Gaomin; Xu, Fuming; Mi, Shuo; Wang, Jian

    2018-04-01

    We study the electronic waiting-time distributions (WTDs) in a noninteracting quantum-dot spin valve by varying spin polarization and the noncollinear angle between the magnetizations of the leads using the scattering matrix approach. Since the quantum-dot spin valve involves two channels (spin up and down) in both the incoming and outgoing channels, we study three different kinds of WTDs, which are two-channel WTD, spin-resolved single-channel WTD, and cross-channel WTD. We analyze the behaviors of WTDs in short times, correlated with the current behaviors for different spin polarizations and noncollinear angles. Cross-channel WTD reflects the correlation between two spin channels and can be used to characterize the spin-transfer torque process. We study the influence of the earlier detection on the subsequent detection from the perspective of cross-channel WTD, and define the influence degree quantity as the cumulative absolute difference between cross-channel WTDs and first-passage time distributions to quantitatively characterize the spin-flip process. We observe that influence degree versus spin-transfer torque for different noncollinear angles as well as different polarizations collapse into a single curve showing universal behaviors. This demonstrates that cross-channel WTDs can be a pathway to characterize spin correlation in spintronics system.

  15. Antiproton-nucleus inelastic scattering and the spin-isospin dependence of the N anti N interaction

    International Nuclear Information System (INIS)

    Dover, C.B.

    1985-01-01

    A general overview of the utility of antinucleon (anti N)-nucleus inelastic scattering studies is presented, emphasizing both the sensitivity of the cross sections to various components of the N anti N transition amplitudes and the prospects for the exploration of some novel aspects of nuclear structure. We start with an examination of the relation between NN and N anti N potentials, focusing on the coherences predicted for the central, spin-orbit and tensor components, and how these may be revealed by measurements of two-body spin observables. We next discuss the role of the nucleus as a spin and isospin filter, and show how, by a judicious choice of final state quantum numbers (natural or unnatural parity states, isospin transfer ΔT=0 or 1) and momentum transfer q, one can isolate different components of the N anti N transition amplitude. Various models for the N anti N interaction which give reasonable fits to the available two-body data are shown to lead to strikingly different predictions for certain spin-flip nuclear transitions. We suggest several possible directions for future anti N-nucleus inelastic scattering experiments at LEAR, for instance the study of spin observables which would be accessible with polarized anti N beams, charge exchange reactions, and higher resolution studies of the (anti p, anti p') reaction. We compare the antinucleon and the nucleon as a probe of nuclear modes of excitation. 34 refs

  16. High-efficiency control of spin-wave propagation in ultra-thin yttrium iron garnet by the spin-orbit torque

    Energy Technology Data Exchange (ETDEWEB)

    Evelt, M.; Demidov, V. E., E-mail: demidov@uni-muenster.de [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, 48149 Muenster (Germany); Bessonov, V. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Yekaterinburg 620041 (Russian Federation); Demokritov, S. O. [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, 48149 Muenster (Germany); M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Yekaterinburg 620041 (Russian Federation); Prieto, J. L. [Instituto de Sistemas Optoelectrónicos y Microtecnologa (UPM), Ciudad Universitaria, Madrid 28040 (Spain); Muñoz, M. [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), PTM, E-28760 Tres Cantos, Madrid (Spain); Ben Youssef, J. [Laboratoire de Magnétisme de Bretagne CNRS, Université de Bretagne Occidentale, 29285 Brest (France); Naletov, V. V. [Service de Physique de l' État Condensé, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette (France); Institute of Physics, Kazan Federal University, Kazan 420008 (Russian Federation); Loubens, G. de [Service de Physique de l' État Condensé, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette (France); Klein, O. [INAC-SPINTEC, CEA/CNRS and Univ. Grenoble Alpes, 38000 Grenoble (France); Collet, M.; Garcia-Hernandez, K.; Bortolotti, P.; Cros, V.; Anane, A. [Unité Mixte de Physique CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, 91767 Palaiseau (France)

    2016-04-25

    We study experimentally with submicrometer spatial resolution the propagation of spin waves in microscopic waveguides based on the nanometer-thick yttrium iron garnet and Pt layers. We demonstrate that by using the spin-orbit torque, the propagation length of the spin waves in such systems can be increased by nearly a factor of 10, which corresponds to the increase in the spin-wave intensity at the output of a 10 μm long transmission line by three orders of magnitude. We also show that, in the regime, where the magnetic damping is completely compensated by the spin-orbit torque, the spin-wave amplification is suppressed by the nonlinear scattering of the coherent spin waves from current-induced excitations.

  17. High-efficiency control of spin-wave propagation in ultra-thin yttrium iron garnet by the spin-orbit torque

    International Nuclear Information System (INIS)

    Evelt, M.; Demidov, V. E.; Bessonov, V.; Demokritov, S. O.; Prieto, J. L.; Muñoz, M.; Ben Youssef, J.; Naletov, V. V.; Loubens, G. de; Klein, O.; Collet, M.; Garcia-Hernandez, K.; Bortolotti, P.; Cros, V.; Anane, A.

    2016-01-01

    We study experimentally with submicrometer spatial resolution the propagation of spin waves in microscopic waveguides based on the nanometer-thick yttrium iron garnet and Pt layers. We demonstrate that by using the spin-orbit torque, the propagation length of the spin waves in such systems can be increased by nearly a factor of 10, which corresponds to the increase in the spin-wave intensity at the output of a 10 μm long transmission line by three orders of magnitude. We also show that, in the regime, where the magnetic damping is completely compensated by the spin-orbit torque, the spin-wave amplification is suppressed by the nonlinear scattering of the coherent spin waves from current-induced excitations.

  18. Spin motive forces, 'measurements', and spin-valves

    International Nuclear Information System (INIS)

    Barnes, S.E.

    2007-01-01

    Discussed is the spin motive force (smf) produced by a spin valve, this reflecting its dynamics. Relaxation implies an implicit measurement of the magnetization of the free layer of a valve. It is shown this has implications for the angular dependence of the torque transfer. Some discussion of recent experiments is included

  19. Quantum Coherence and Random Fields at Mesoscopic Scales

    International Nuclear Information System (INIS)

    Rosenbaum, Thomas F.

    2016-01-01

    We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.

  20. Quantum Coherence and Random Fields at Mesoscopic Scales

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, Thomas F. [Univ. of Chicago, IL (United States)

    2016-03-01

    We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.

  1. From coherent motion to localization: II. Dynamics of the spin-boson model with sub-Ohmic spectral density at zero temperature

    International Nuclear Information System (INIS)

    Wang Haobin; Thoss, Michael

    2010-01-01

    Graphical abstract: □□□ - Abstract: The dynamics of the spin-boson model at zero temperature is studied for a bath characterized by a sub-Ohmic spectral density. Using the numerically exact multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method, the population dynamics of the two-level subsystem has been investigated in a broad range of parameter space. The results show the transition of the dynamics from weakly damped coherent motion to localization upon increase of the system-bath coupling strength. Comparison of the exact ML-MCTDH simulations with the non-interacting blip approximation (NIBA) shows that the latter performs rather poorly in the weak coupling regime with small Kondo parameters. However, NIBA improves significantly upon increase in the coupling strength and is quantitatively correct in the strong coupling, nonadiabatic limit. The transition from coherent motion to localization as a function of the different parameters of the model is analyzed in some detail.

  2. Spin manipulation and spin-lattice interaction in magnetic colloidal quantum dots

    Science.gov (United States)

    Moro, Fabrizio; Turyanska, Lyudmila; Granwehr, Josef; Patanè, Amalia

    2014-11-01

    We report on the spin-lattice interaction and coherent manipulation of electron spins in Mn-doped colloidal PbS quantum dots (QDs) by electron spin resonance. We show that the phase memory time,TM , is limited by Mn-Mn dipolar interactions, hyperfine interactions of the protons (1H) on the QD capping ligands with Mn ions in their proximity (limit and at low temperature, we achieve a long phase memory time constant TM˜0.9 μ s , thus enabling the observation of Rabi oscillations. Our findings suggest routes to the rational design of magnetic colloidal QDs with phase memory times exceeding the current limits of relevance for the implementation of QDs as qubits in quantum information processing.

  3. Spin squeezing as an indicator of quantum chaos in the Dicke model.

    Science.gov (United States)

    Song, Lijun; Yan, Dong; Ma, Jian; Wang, Xiaoguang

    2009-04-01

    We study spin squeezing, an intrinsic quantum property, in the Dicke model without the rotating-wave approximation. We show that the spin squeezing can reveal the underlying chaotic and regular structures in phase space given by a Poincaré section, namely, it acts as an indicator of quantum chaos. Spin squeezing vanishes after a very short time for an initial coherent state centered in a chaotic region, whereas it persists over a longer time for the coherent state centered in a regular region of the phase space. We also study the distribution of the mean spin directions when quantum dynamics takes place. Finally, we discuss relations among spin squeezing, bosonic quadrature squeezing, and two-qubit entanglement in the dynamical processes.

  4. Study of nuclear isovector spin responses from polarization transfer in (p,n) reactions at intermediate energies

    International Nuclear Information System (INIS)

    Wakasa, Tomotsugu

    1997-01-01

    We have measured a complete set of polarization transfer observables has been measured for quasi-free (p vector, n vector) reactions on 2 H, 6 Li, 12 C, 40 Ca, and 208 Pb at a bombarding energy of 346MeV and a laboratory scattering angle of 22deg (q=1.7 fm -1 ). The polarization transfer observables for all five targets are remarkably similar. These polarization observables yield separated spin-longitudinal (σ·q) and spin-transverse (σxq) nuclear responses. These results are compared to the spin-transverse responses measured in deep-inelastic electron scattering as well as to nuclear responses based on the random phase approximation. Such a comparison reveals an enhancement in the (p vector, n vector) spin-transverse channel, which masks the effect of pionic correlations in the response ratio. Second, the double differential cross sections at θ lab between 0deg and 12.3deg and the polarization transfer D NN at 0deg for the 90 Zr(p,n) reaction are measured at a bombarding energy of 295MeV. The Gamow-Teller(GT) strength B(GT) in the continuum deduced from the L=0 cross section is compared both with the perturbative calculation by Bertsch and Hamamoto and with the second-order random phase approximation calculation by Drozdz et al. The sum of B(GT) values up to 50MeV excitation becomes S β- =28.0±1.6 after subtracting the contribution of the isovector spin-monopole strength. This S β- value of 28.0±1.6 corresponds to about (93±5)% of the minimum value of the sum-rule 3(N-Z)=30. Last, first measurements of D NN (0deg) for (p vector, n vector) reactions at 295MeV yield large negative values up to 50MeV excitation for the 6 Li, 11 B, 12 C, 13 C(p vector, n vector) reactions. DWIA calculations using the Franey and Love (FL) 270MeV interaction reproduce differential cross sections and D NN (0deg) values, while the FL 325MeV interaction yield D NN (0deg) values less negative than the experimental values. (J.P.N.)

  5. Coherent and semi-coherent neutron transfer reactions

    International Nuclear Information System (INIS)

    Hagelstein, P.L.

    1992-01-01

    Neutron transfer reactions are proposed to account for anomalies reported in Pons-Fleischmann experiments. The prototypical reaction involves the transfer of a neutron (mediated by low frequency electric or magnetic fields) from a donor nucleus to virtual continuum states, followed by the capture of the virtual neutron by an acceptor nucleus. In this work we summarize basic principles, recent results and the ultimate goals of the theoretical effort

  6. Coherent and semi-coherent neutron transfer reactions

    International Nuclear Information System (INIS)

    Hagelstein, P.L.

    1993-01-01

    Neutron transfer reactions are proposed to account for anomalies reported in Pons-Fleischmann experiments. The prototypical reaction involves the transfer of a neutron (mediated by low frequency electric or magnetic fields) from a donor nucleus to virtual continuum states, followed by the capture of the virtual neutron by an acceptor nucleus. In this work we summarize basic principles, recent results and the ultimate goals of the theoretical effort. (author)

  7. Suppression of tunneling by interference in half-integer--spin particles

    OpenAIRE

    Loss, Daniel; DiVincenzo, David P.; Grinstein, G.

    1992-01-01

    Within a wide class of ferromagnetic and antiferromagnetic systems, quantum tunneling of magnetization direction is spin-parity dependent: it vanishes for magnetic particles with half-integer spin, but is allowed for integer spin. A coherent-state path integral calculation shows that this topological effect results from interference between tunneling paths.

  8. The coherent state on SUq(2) homogeneous space

    International Nuclear Information System (INIS)

    Aizawa, N; Chakrabarti, R

    2009-01-01

    The generalized coherent states for quantum groups introduced by Jurco and StovIcek are studied for the simplest example SU q (2) in full detail. It is shown that the normalized SU q (2) coherent states enjoy the property of completeness, and allow a resolution of the unity. This feature is expected to play a key role in the application of these coherent states in physical models. The homogeneous space of SU q (2), i.e. the q-sphere of Podles, is reproduced in complex coordinates by using the coherent states. Differential calculus in the complex form on the homogeneous space is developed. The high spin limit of the SU q (2) coherent states is also discussed.

  9. Coupling a Surface Acoustic Wave to an Electron Spin in Diamond via a Dark State

    Directory of Open Access Journals (Sweden)

    D. Andrew Golter

    2016-12-01

    Full Text Available The emerging field of quantum acoustics explores interactions between acoustic waves and artificial atoms and their applications in quantum information processing. In this experimental study, we demonstrate the coupling between a surface acoustic wave (SAW and an electron spin in diamond by taking advantage of the strong strain coupling of the excited states of a nitrogen vacancy center while avoiding the short lifetime of these states. The SAW-spin coupling takes place through a Λ-type three-level system where two ground spin states couple to a common excited state through a phonon-assisted as well as a direct dipole optical transition. Both coherent population trapping and optically driven spin transitions have been realized. The coherent population trapping demonstrates the coupling between a SAW and an electron spin coherence through a dark state. The optically driven spin transitions, which resemble the sideband transitions in a trapped-ion system, can enable the quantum control of both spin and mechanical degrees of freedom and potentially a trapped-ion-like solid-state system for applications in quantum computing. These results establish an experimental platform for spin-based quantum acoustics, bridging the gap between spintronics and quantum acoustics.

  10. SPICE modelling of magnetic tunnel junctions written by spin-transfer torque

    Energy Technology Data Exchange (ETDEWEB)

    Guo, W; Prenat, G; De Mestier, N; Baraduc, C; Dieny, B [SPINTEC, UMR(8191), INAC, CEA/CNRS/UJF, 17 Av. des Martyrs, 38054 Grenoble Cedex 9 (France); Javerliac, V; El Baraji, M, E-mail: guillaume.prenat@cea.f [CROCUS Technology, 5 Place Robert Schuman, 38025 Grenoble (France)

    2010-06-02

    Spintronics aims at extending the possibility of conventional electronics by using not only the charge of the electron but also its spin. The resulting spintronic devices, combining the front-end complementary metal oxide semiconductor technology of electronics with a magnetic back-end technology, employ magnetic tunnel junctions (MTJs) as core elements. With the intent of simulating a circuit without fabricating it first, a reliable MTJ electrical model which is applicable to the standard SPICE (Simulation Program with Integrated Circuit Emphasis) simulator is required. Since such a model was lacking so far, we present a MTJ SPICE model whose magnetic state is written by using the spin-transfer torque effect. This model has been developed in the C language and validated on the Cadence Virtuoso Platform with a Spectre simulator. Its operation is similar to that of the standard BSIM (Berkeley Short-channel IGFET Model) SPICE model of the MOS transistor and fully compatible with the SPICE electrical simulator. The simulation results obtained using this model have been found in good accord with those theoretical macrospin calculations and results.

  11. Communication: electron transfer mediated decay enabled by spin-orbit interaction in small krypton/xenon clusters.

    Science.gov (United States)

    Zobel, J Patrick; Kryzhevoi, Nikolai V; Pernpointner, Markus

    2014-04-28

    In this work we study the influence of relativistic effects, in particular spin-orbit coupling, on electronic decay processes in KrXe2 clusters of various geometries. For the first time it is shown that inclusion of spin-orbit coupling has decisive influence on the accessibility of a specific decay pathway in these clusters. The radiationless relaxation process is initiated by a Kr 4s ionization followed by an electron transfer from xenon to krypton and a final second ionization of the system. We demonstrate the existence of competing electronic decay pathways depending in a subtle way on the geometry and level of theory. For our calculations a fully relativistic framework was employed where omission of spin-orbit coupling leads to closing of two decay pathways. These findings stress the relevance of an adequate relativistic description for clusters with heavy elements and their fragmentation dynamics.

  12. Action Potential Modulation of Neural Spin Networks Suggests Possible Role of Spin

    CERN Document Server

    Hu, H P

    2004-01-01

    In this paper we show that nuclear spin networks in neural membranes are modulated by action potentials through J-coupling, dipolar coupling and chemical shielding tensors and perturbed by microscopically strong and fluctuating internal magnetic fields produced largely by paramagnetic oxygen. We suggest that these spin networks could be involved in brain functions since said modulation inputs information carried by the neural spike trains into them, said perturbation activates various dynamics within them and the combination of the two likely produce stochastic resonance thus synchronizing said dynamics to the neural firings. Although quantum coherence is desirable and may indeed exist, it is not required for these spin networks to serve as the subatomic components for the conventional neural networks.

  13. Estimation of the heat transfer coefficient in melt spinning process

    International Nuclear Information System (INIS)

    Tkatch, V I; Maksimov, V V; Grishin, A M

    2009-01-01

    Effect of the quenching wheel velocity in the range 20.7-26.5 m/s on the cooling rate as well as on the structure and microtopology of the contact surfaces of the glass-forming FeNiPB melt-spun ribbons has been experimentally studied. Both the values of the cooling rate and heat transfer coefficient at the wheel-ribbon interface estimated from the temperature vs. time curves recorded during melt spinning runs are in the ranges (1.6-5.2)x10 6 K/s and (2.8-5.2)x10 5 Wm -2 K -1 , respectively, for ribbon thicknesses of 31.4-22.0 μm. It was found that the density of the air pockets at the underside surface of ribbons decreases while its average depth remains essentially unchanged with the wheel velocity. Using the surface quality parameters the values of the heat transfer coefficient in the areas of direct ribbon-wheel contact were evaluated to be ranging from 5.75 to 6.65x10 5 Wm -2 K -1 .

  14. Spin-locking of half-integer quadrupolar nuclei in nuclear magnetic resonance of solids: second-order quadrupolar and resonance offset effects.

    Science.gov (United States)

    Ashbrook, Sharon E; Wimperis, Stephen

    2009-11-21

    Spin-locking of spin I=3/2 and I=5/2 nuclei in the presence of small resonance offset and second-order quadrupolar interactions has been investigated using both exact and approximate theoretical and experimental nuclear magnetic resonance (NMR) approaches. In the presence of second-order quadrupolar interactions, we show that the initial rapid dephasing that arises from the noncommutation of the state prepared by the first pulse and the spin-locking Hamiltonian gives rise to tensor components of the spin density matrix that are antisymmetric with respect to inversion, in addition to those symmetric with respect to inversion that are found when only a first-order quadrupolar interaction is considered. We also find that spin-locking of multiple-quantum coherence in a static solid is much more sensitive to resonance offset than that of single-quantum coherence and show that good spin-locking of multiple-quantum coherence can still be achieved if the resonance offset matches the second-order shift of the multiple-quantum coherence in the appropriate reference frame. Under magic angle spinning (MAS) conditions, and in the "adiabatic" limit, we demonstrate that rotor-driven interconversion of central-transition single- and three-quantum coherences for a spin I=3/2 nucleus can be best achieved by performing the spin-locking on resonance with the three-quantum coherence in the three-quantum frame. Finally, in the "sudden" MAS limit, we show that spin I=3/2 spin-locking behavior is generally similar to that found in static solids, except when the central-transition nutation rate matches a multiple of the MAS rate and a variety of rotary resonance phenomena are observed depending on the internal spin interactions present. This investigation should aid in the application of spin-locking techniques to multiple-quantum NMR of quadrupolar nuclei and of cross-polarization and homonuclear dipolar recoupling experiments to quadrupolar nuclei such as (7)Li, (11)B, (17)O, (23)Na, and

  15. Fabrication of Spin-Transfer Nano-Oscillator by Colloidal Lithography

    Directory of Open Access Journals (Sweden)

    Bin Fang

    2015-01-01

    Full Text Available We fabricate nanoscale spin-transfer oscillators (STOs by utilizing colloidal nanoparticles as a lithographic mask. By this approach, high quality STO devices can be fabricated, and as an example the fabricated STO devices using MgO magnetic tunnel junction as the basic cell exhibit current-induced microwave emission with a large frequency tunability of 0.22 GHz/mA. Compared to the conventional approaches that involve a step of defining nanoscale elements by means of electron beam lithography, which is not readily available for many groups, our strategy for STO fabrication does not require the sophisticated equipment (~ million dollars per unit and expensive lithography resist, while being cost-effective and easy to use in laboratory level. This will accelerate efforts to implement STO into on-chip integrated high-radio frequency applications.

  16. Phase-coherent transport and spin-orbit-coupling in III/V-semiconductor nanowires; Phasenkohaerenter Transport und Spin-Bahn-Wechselwirkung in III/V-Halbleiternanodraehten

    Energy Technology Data Exchange (ETDEWEB)

    Estevez Hernandez, Sergio

    2009-10-16

    Semiconductor nanowires fabricated by a bottom-up approach are not only interesting for the realization of future nanoscaled devices but also appear to be very attractive model systems to tackle fundamental questions concerning the transport in strongly confined systems. In order to avoid the problem connected with carrier depletion, narrowband gap semiconductors, i.e., InAs or InN, or core-shell Nanowires, i.e., GaAs/AlGaAs, are preferred. The underlying reason is that in InAs or InN the Fermi-level pinning in the conduction band results in a carrier accumulation at the surface. In fact, the tubular topology of the surface electron gas opens up the possibility to observe unconventional quantum transport phenomena. When the phase-coherence length in the nanowire is comparable to its dimensions the conductance fluctuates if a magnetic field is applied or if the electron concentration is changed by means of a gate electrode. These so-called universal conductance fluctuations being in the order of e{sup 2}/h originate from the fact that in small disordered samples, electron interference effects are not averaged out. In this work are analyzed universal conductance fluctuations to study the quantum transport properties in InN, InAs and GaAs/AlGaAs nanowires. With the use of a magnetic field and a back-gate electrode the universal conductance fluctuations and localizations effects were analyzed. Since InN and InAs are narrow band gap semiconductors, one naturally expects spin-orbit coupling effects. Because this phenomena is of importance for spin electronic applications. However, owing to the cylindrical symmetry of the InN and InAs nanowires, the latter effect was observable and actually be used to determine the strength of spin-orbit coupling. In order to clearly separate the weak antilocalization effect from the conductance fluctuations, the averaging of the magnetoconductance at different gate voltages was essential. The low-temperature quantum transport properties

  17. Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling

    Science.gov (United States)

    Wang, Chen; Ren, Jie; Cao, Jianshu

    2015-07-01

    Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices.

  18. Spin rotation after a spin-independent scattering. Spin properties of an electron gas in a solid

    International Nuclear Information System (INIS)

    Zayets, V.

    2014-01-01

    It is shown that spin direction of an electron may not be conserved after a spin-independent scattering. The spin rotations occur due to a quantum-mechanical fact that when a quantum state is occupied by two electrons of opposite spins, the total spin of the state is zero and the spin direction of each electron cannot be determined. It is shown that it is possible to divide all conduction electrons into two group distinguished by their time-reversal symmetry. In the first group the electron spins are all directed in one direction. In the second group there are electrons of all spin directions. The number of electrons in each group is conserved after a spin-independent scattering. This makes it convenient to use these groups for the description of the magnetic properties of conduction electrons. The energy distribution of spins, the Pauli paramagnetism and the spin distribution in the ferromagnetic metals are described within the presented model. The effects of spin torque and spin-torque current are described. The origin of spin-transfer torque is explained within the presented model

  19. Pairwise NMR experiments for the determination of protein backbone dihedral angle Φ based on cross-correlated spin relaxation

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Shimada, Ichio

    2007-01-01

    Novel cross-correlated spin relaxation (CCR) experiments are described, which measure pairwise CCR rates for obtaining peptide dihedral angles Φ. The experiments utilize intra-HNCA type coherence transfer to refocus 2-bond J NCα coupling evolution and generate the N (i)-C α (i) or C'(i-1)-C α (i) multiple quantum coherences which are required for measuring the desired CCR rates. The contribution from other coherences is also discussed and an appropriate setting of the evolution delays is presented. These CCR experiments were applied to 15 N- and 13 C-labeled human ubiquitin. The relevant CCR rates showed a high degree of correlation with the Φ angles observed in the X-ray structure. By utilizing these CCR experiments in combination with those previously established for obtaining dihedral angle Ψ, we can determine high resolution structures of peptides that bind weakly to large target molecules

  20. Back-Hopping in Spin-Transfer-Torque Devices: Possible Origin and Countermeasures

    Science.gov (United States)

    Abert, Claas; Sepehri-Amin, Hossein; Bruckner, Florian; Vogler, Christoph; Hayashi, Masamitsu; Suess, Dieter

    2018-05-01

    The effect of undesirable high-frequency free-layer switching in magnetic multilayer systems, referred to as back-hopping, is investigated by means of the spin-diffusion model. A possible origin of the back-hopping effect is found to be the destabilization of the pinned layer, which leads to the perpetual switching of both layers. While the presented mechanism is not claimed to be the only possible reason for back-hopping, we show that it is a fundamental effect that will occur in any spin-transfer-torque device when exceeding a critical current. The influence of different material parameters on the critical switching currents for the free and pinned layer is obtained by micromagnetic simulations. The spin-diffusion model enables an accurate description of the torque on both layers, depending on various material parameters. It is found that the choice of a free-layer material with low polarization β and saturation magnetization Ms and a pinned-layer material with high β and Ms leads to a low free-layer critical current and a high pinned-layer critical current and hence reduces the likelihood of back-hopping. While back-hopping has been observed in various types of devices, there are only a few experiments that exhibit this effect in perpendicularly magnetized systems. However, our simulations suggest that the described effect will also gain importance in perpendicular systems due to the loss of pinned-layer anisotropy for decreasing device sizes.

  1. Out-and-back {sup 13}C-{sup 13}C scalar transfers in protein resonance assignment by proton-detected solid-state NMR under ultra-fast MAS

    Energy Technology Data Exchange (ETDEWEB)

    Barbet-Massin, Emeline; Pell, Andrew J. [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France); Jaudzems, Kristaps [Latvian Institute of Organic Synthesis (Latvia); Franks, W. Trent; Retel, Joren S. [Leibniz-Institut fuer Molekulare Pharmakologie (Germany); Kotelovica, Svetlana; Akopjana, Inara; Tars, Kaspars [Biomedical Research and Study Center (Latvia); Emsley, Lyndon [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France); Oschkinat, Hartmut [Leibniz-Institut fuer Molekulare Pharmakologie (Germany); Lesage, Anne; Pintacuda, Guido, E-mail: guido.pintacuda@ens-lyon.fr [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France)

    2013-08-15

    We present here {sup 1}H-detected triple-resonance H/N/C experiments that incorporate CO-CA and CA-CB out-and-back scalar-transfer blocks optimized for robust resonance assignment in biosolids under ultra-fast magic-angle spinning (MAS). The first experiment, (H)(CO)CA(CO)NH, yields {sup 1}H-detected inter-residue correlations, in which we record the chemical shifts of the CA spins in the first indirect dimension while during the scalar-transfer delays the coherences are present only on the longer-lived CO spins. The second experiment, (H)(CA)CB(CA)NH, correlates the side-chain CB chemical shifts with the NH of the same residue. These high sensitivity experiments are demonstrated on both fully-protonated and 100 %-H{sup N} back-protonated perdeuterated microcrystalline samples of Acinetobacter phage 205 (AP205) capsids at 60 kHz MAS.

  2. The relationship between coherent structures and heat transfer processes in the initial region of a round jet

    Energy Technology Data Exchange (ETDEWEB)

    Drobniak, S.; Elsner, J.W. [Tech. Univ. of Czestochowa (Poland). Inst. of Thermal Machinary; El-Kassem, E.S.A. [Cairo University, Faculty of Engineering, Giza (Egypt)

    1998-03-19

    This paper describes an experimental study of the relationship between coherent vortical structures and the intensity of heat transport in the initial region of a round, free jet. Simultaneous measurements of velocity and temperature were taken with a four-wire combined probe in a jet that was acoustically stimulated with a frequency corresponding to the jet-column mode. The obtained results suggest that the mutual phase relations between oscillatory and random components of velocity and temperature lead to substantial intensification of the radial heat transport. Due to the same reason the longitudinal heat flux does not reveal a significant change in the presence of coherent structures and, as a result, a much wider spread of the temperature field in comparison with velocity may be observed as a characteristic feature of this flow. It was also observed that heat transfer processes are realized in substantial part by random turbulence generated due to the action of coherent motion. (orig.) With 13 figs., 27 refs.

  3. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae.

    Science.gov (United States)

    Jiang, L; Hodges, J S; Maze, J R; Maurer, P; Taylor, J M; Cory, D G; Hemmer, P R; Walsworth, R L; Yacoby, A; Zibrov, A S; Lukin, M D

    2009-10-09

    Robust measurement of single quantum bits plays a key role in the realization of quantum computation and communication as well as in quantum metrology and sensing. We have implemented a method for the improved readout of single electronic spin qubits in solid-state systems. The method makes use of quantum logic operations on a system consisting of a single electronic spin and several proximal nuclear spin ancillae in order to repetitively readout the state of the electronic spin. Using coherent manipulation of a single nitrogen vacancy center in room-temperature diamond, full quantum control of an electronic-nuclear system consisting of up to three spins was achieved. We took advantage of a single nuclear-spin memory in order to obtain a 10-fold enhancement in the signal amplitude of the electronic spin readout. We also present a two-level, concatenated procedure to improve the readout by use of a pair of nuclear spin ancillae, an important step toward the realization of robust quantum information processors using electronic- and nuclear-spin qubits. Our technique can be used to improve the sensitivity and speed of spin-based nanoscale diamond magnetometers.

  4. Strong spin-photon coupling in silicon

    Science.gov (United States)

    Samkharadze, N.; Zheng, G.; Kalhor, N.; Brousse, D.; Sammak, A.; Mendes, U. C.; Blais, A.; Scappucci, G.; Vandersypen, L. M. K.

    2018-03-01

    Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot–based spin qubit registers.

  5. Coherent states for FLRW space-times in loop quantum gravity

    International Nuclear Information System (INIS)

    Magliaro, Elena; Perini, Claudio; Marciano, Antonino

    2011-01-01

    We construct a class of coherent spin-network states that capture properties of curved space-times of the Friedmann-Lamaitre-Robertson-Walker type on which they are peaked. The data coded by a coherent state are associated to a cellular decomposition of a spatial (t=const) section with a dual graph given by the complete five-vertex graph, though the construction can be easily generalized to other graphs. The labels of coherent states are complex SL(2,C) variables, one for each link of the graph, and are computed through a smearing process starting from a continuum extrinsic and intrinsic geometry of the canonical surface. The construction covers both Euclidean and Lorentzian signatures; in the Euclidean case and in the limit of flat space we reproduce the simplicial 4-simplex semiclassical states used in spin foams.

  6. Spin and Optical Characterization of Defects in Group IV Semiconductors for Quantum Memory Applications

    Science.gov (United States)

    Rose, Brendon Charles

    This thesis is focused on the characterization of highly coherent defects in both silicon and diamond, particularly in the context of quantum memory applications. The results are organized into three parts based on the spin system: phosphorus donor electron spins in silicon, negatively charged nitrogen vacancy color centers in diamond (NV-), and neutrally charged silicon vacancy color centers in diamond (SiV0). The first part on phosphorus donor electron spins presents the first realization of strong coupling with spins in silicon. To achieve this, the silicon crystal was made highly pure and highly isotopically enriched so that the ensemble dephasing time, T2*, was long (10 micros). Additionally, the use of a 3D resonator aided in realizing uniform coupling, allowing for high fidelity spin ensemble manipulation. These two properties have eluded past implementations of strongly coupled spin ensembles and have been the limiting factor in storing and retrieving quantum information. Second, we characterize the spin properties of the NV- color center in diamond in a large magnetic field. We observe that the electron spin echo envelope modulation originating from the central 14N nuclear spin is much stronger at large fields and that the optically induced spin polarization exhibits a strong orientation dependence that cannot be explained by the existing model for the NV- optical cycle, we develop a modification of the existing model that reproduces the data in a large magnetic field. In the third part we perform characterization and stabilization of a new color center in diamond, SiV0, and find that it has attractive, highly sought-after properties for use as a quantum memory in a quantum repeater scheme. We demonstrate a new approach to the rational design of new color centers by engineering the Fermi level of the host material. The spin properties were characterized in electron spin resonance, revealing long spin relaxation and spin coherence times at cryogenic

  7. Materials and Physics Challenges for Spin Transfer Torque Magnetic Random Access Memories

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, O.

    2014-10-05

    Magnetic random access memories utilizing the spin transfer torque effect for writing information are a strong contender for non-volatile memories scalable to the 20 nm node, and perhaps beyond. I will here examine how these devices behave as the device size is scaled down from 70 nm size to 20 nm. As device sizes go below ~50 nm, the size becomes comparable to intrinsic magnetic length scales and the device behavior does not simply scale with size. This has implications for the device design and puts additional constraints on the materials in the device.

  8. Coherent deeply virtual Compton scattering off 3He and neutron generalized parton distributions

    Directory of Open Access Journals (Sweden)

    Rinaldi Matteo

    2014-06-01

    Full Text Available It has been recently proposed to study coherent deeply virtual Compton scattering (DVCS off 3He nuclei to access neutron generalized parton distributions (GPDs. In particular, it has been shown that, in Impulse Approximation (IA and at low momentum transfer, the sum of the quark helicity conserving GPDs of 3He, H and E, is dominated by the neutron contribution. This peculiar result makes the 3He target very promising to access the neutron information. We present here the IA calculation of the spin dependent GPD H See Formula in PDF of 3He. Also for this quantity the neutron contribution is found to be the dominant one, at low momentum transfer. The known forward limit of the IA calculation of H See Formula in PDF , yielding the polarized parton distributions of 3He, is correctly recovered. The extraction of the neutron information could be anyway non trivial, so that a procedure, able to take into account the nuclear effects encoded in the IA analysis, is proposed. These calculations, essential for the evaluation of the coherent DVCS cross section asymmetries, which depend on the GPDs H,E and H See Formula in PDF , represent a crucial step for planning possible experiments at Jefferson Lab.

  9. Wireless power transfer exploring spin rectification and inverse spin Hall effects

    Science.gov (United States)

    Seeger, R. L.; Garcia, W. J. S.; Dugato, D. A.; da Silva, R. B.; Harres, A.

    2018-04-01

    Devices based on spin rectification effects are of great interest for broadband communication applications, since they allow the rectification of radio frequency signals by simple ferromagnetic materials. The phenomenon is enhanced at ferromagnetic resonance condition, which may be attained when an external magnetic field is applied. The necessity of such field, however, hinders technological applications. Exploring spin rectification and spin Hall effects in exchange-biased samples, we were able to rectify radio frequency signals without an external applied magnetic field. Direct voltages of the order of μV were obtained when Ta/NiFe/FeMn/Ta thin films were exposed to microwaves in a shorted microstrip line for a relatively broad frequency range. Connecting the films to a resistive load, we estimated the fraction of the incident radio frequency power converted into usable dc power.

  10. arXiv Quantum coherence of cosmological perturbations

    CERN Document Server

    Giovannini, Massimo

    2017-10-26

    In this paper, the degrees of quantum coherence of cosmological perturbations of different spins are computed in the large-scale limit and compared with the standard results holding for a single mode of the electromagnetic field in an optical cavity. The degree of second-order coherence of curvature inhomogeneities (and, more generally, of the scalar modes of the geometry) reproduces faithfully the optical limit. For the vector and tensor fluctuations, the numerical values of the normalized degrees of second-order coherence in the zero time-delay limit are always larger than unity (which is the Poisson benchmark value) but differ from the corresponding expressions obtainable in the framework of the single-mode approximation. General lessons are drawn on the quantum coherence of large-scale cosmological fluctuations.

  11. Quantum computation with nuclear spins in quantum dots

    International Nuclear Information System (INIS)

    Christ, H.

    2008-01-01

    The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin

  12. Quantum computation with nuclear spins in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Christ, H.

    2008-01-24

    The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin

  13. Quantum Spin Lenses in Atomic Arrays

    Directory of Open Access Journals (Sweden)

    A. W. Glaetzle

    2017-09-01

    Full Text Available We propose and discuss quantum spin lenses, where quantum states of delocalized spin excitations in an atomic medium are focused in space in a coherent quantum process down to (essentially single atoms. These can be employed to create controlled interactions in a quantum light-matter interface, where photonic qubits stored in an atomic ensemble are mapped to a quantum register represented by single atoms. We propose Hamiltonians for quantum spin lenses as inhomogeneous spin models on lattices, which can be realized with Rydberg atoms in 1D, 2D, and 3D, and with strings of trapped ions. We discuss both linear and nonlinear quantum spin lenses: in a nonlinear lens, repulsive spin-spin interactions lead to focusing dynamics conditional to the number of spin excitations. This allows the mapping of quantum superpositions of delocalized spin excitations to superpositions of spatial spin patterns, which can be addressed by light fields and manipulated. Finally, we propose multifocal quantum spin lenses as a way to generate and distribute entanglement between distant atoms in an atomic lattice array.

  14. Spin-Orbit Coupled Bose-Einstein Condensates

    Science.gov (United States)

    2016-11-03

    21. "Many-body physics of spin-orbit-coupled quantum gases ," Invited talk at the March Meeting 2014 in Denver, Colorado (March, 2014) 22... properties of the fundamentally new class of coherent states of quantum matter that had been predicted by the PI and subsequently experimentally...Report Title This ARO research proposal entitled "SPIN-ORBIT COUPLED BOSE-EINSTEIN CONDENSATES" (SOBECs) explored properties of the fundamentally new

  15. Controlling the orientation of spin-correlated radical pairs by covalent linkage to nanoporous anodic aluminum oxide membranes.

    Science.gov (United States)

    Chen, Hsiao-Fan; Gardner, Daniel M; Carmieli, Raanan; Wasielewski, Michael R

    2013-10-07

    Ordered multi-spin assemblies are required for developing solid-state molecule-based spintronics. A linear donor-chromophore-acceptor (D-C-A) molecule was covalently attached inside the 150 nm diam. nanopores of an anodic aluminum oxide (AAO) membrane. Photoexcitation of D-C-A in a 343 mT magnetic field results in sub-nanosecond, two-step electron transfer to yield the spin-correlated radical ion pair (SCRP) (1)(D(+)˙-C-A(-)˙), which then undergoes radical pair intersystem crossing (RP-ISC) to yield (3)(D(+)˙-C-A(-)˙). RP-ISC results in S-T0 mixing to selectively populate the coherent superposition states |S'> and |T'>. Microwave-induced transitions between these states and the unpopulated |T(+1)> and |T(-1)> states result in spin-polarized time-resolved EPR (TREPR) spectra. The dependence of the electron spin polarization (ESP) phase of the TREPR spectra on the orientation of the AAO membrane pores relative to the externally applied magnetic field is used to determine the overall orientation of the SCRPs within the pores at room temperature.

  16. Rabi oscillation and electron-spin-echo envelope modulation of the photoexcited triplet spin system in silicon

    Science.gov (United States)

    Akhtar, Waseem; Sekiguchi, Takeharu; Itahashi, Tatsumasa; Filidou, Vasileia; Morton, John J. L.; Vlasenko, Leonid; Itoh, Kohei M.

    2012-09-01

    We report on a pulsed electron paramagnetic resonance (EPR) study of the photoexcited triplet state (S=1) of oxygen-vacancy centers in silicon. Rabi oscillations between the triplet sublevels are observed using coherent manipulation with a resonant microwave pulse. The Hahn echo and stimulated echo decay profiles are superimposed with strong modulations known as electron-spin-echo envelope modulation (ESEEM). The ESEEM spectra reveal a weak but anisotropic hyperfine coupling between the triplet electron spin and a 29Si nuclear spin (I=1/2) residing at a nearby lattice site, that cannot be resolved in conventional field-swept EPR spectra.

  17. Inverse engineering for fast transport and spin control of spin-orbit-coupled Bose-Einstein condensates in moving harmonic traps

    Science.gov (United States)

    Chen, Xi; Jiang, Ruan-Lei; Li, Jing; Ban, Yue; Sherman, E. Ya.

    2018-01-01

    We investigate fast transport and spin manipulation of tunable spin-orbit-coupled Bose-Einstein condensates in a moving harmonic trap. Motivated by the concept of shortcuts to adiabaticity, we design inversely the time-dependent trap position and spin-orbit-coupling strength. By choosing appropriate boundary conditions we obtain fast transport and spin flip simultaneously. The nonadiabatic transport and relevant spin dynamics are illustrated with numerical examples and compared with the adiabatic transport with constant spin-orbit-coupling strength and velocity. Moreover, the influence of nonlinearity induced by interatomic interaction is discussed in terms of the Gross-Pitaevskii approach, showing the robustness of the proposed protocols. With the state-of-the-art experiments, such an inverse engineering technique paves the way for coherent control of spin-orbit-coupled Bose-Einstein condensates in harmonic traps.

  18. A coherent Ising machine for 2000-node optimization problems

    Science.gov (United States)

    Inagaki, Takahiro; Haribara, Yoshitaka; Igarashi, Koji; Sonobe, Tomohiro; Tamate, Shuhei; Honjo, Toshimori; Marandi, Alireza; McMahon, Peter L.; Umeki, Takeshi; Enbutsu, Koji; Tadanaga, Osamu; Takenouchi, Hirokazu; Aihara, Kazuyuki; Kawarabayashi, Ken-ichi; Inoue, Kyo; Utsunomiya, Shoko; Takesue, Hiroki

    2016-11-01

    The analysis and optimization of complex systems can be reduced to mathematical problems collectively known as combinatorial optimization. Many such problems can be mapped onto ground-state search problems of the Ising model, and various artificial spin systems are now emerging as promising approaches. However, physical Ising machines have suffered from limited numbers of spin-spin couplings because of implementations based on localized spins, resulting in severe scalability problems. We report a 2000-spin network with all-to-all spin-spin couplings. Using a measurement and feedback scheme, we coupled time-multiplexed degenerate optical parametric oscillators to implement maximum cut problems on arbitrary graph topologies with up to 2000 nodes. Our coherent Ising machine outperformed simulated annealing in terms of accuracy and computation time for a 2000-node complete graph.

  19. Spin-relaxation without coherence loss: Fine-structure splitting of localized excitons

    DEFF Research Database (Denmark)

    Langbein, Wolfgang; Zimmermann, R.; Runge, E.

    2000-01-01

    We investigate the polarization dynamics of the secondary emission from a disordered quantum well after resonant excitation. Using the speckle analysis technique we determine the coherence degree of the emission, and find that the polarization-relaxed emission has a coherence degree comparable to...

  20. Spin-flip scattering effect on the current-induced spin torque in ferromagnet-insulator-ferromagnet tunnel junctions

    International Nuclear Information System (INIS)

    Zhu Zhengang; Su Gang; Jin Biao; Zheng Qingrong

    2003-01-01

    We have investigated the current-induced spin transfer torque of a ferromagnet-insulator-ferromagnet tunnel junction by taking the spin-flip scatterings into account. It is found that the spin-flip scattering can induce an additional spin torque, enhancing the maximum of the spin torque and giving rise to an angular shift compared to the case when the spin-flip scatterings are neglected. The effects of the molecular fields of the left and right ferromagnets on the spin torque are also studied. It is found that τ Rx /I e (τ Rx is the spin-transfer torque acting on the right ferromagnet and I e is the tunneling electrical current) does vary with the molecular fields. At two certain angles, τ Rx /I e is independent of the molecular field of the right ferromagnet, resulting in two crossing points in the curve of τ Rx /I e versus the relevant orientation for different molecular fields

  1. Nanoparticles of [Fe(NH2-trz)3]Br2.3H2O (NH2-trz=2-amino-1,2,4-triazole) prepared by the reverse micelle technique: influence of particle and coherent domain sizes on spin-crossover properties.

    Science.gov (United States)

    Forestier, Thibaut; Kaiba, Abdellah; Pechev, Stanislav; Denux, Dominique; Guionneau, Philippe; Etrillard, Céline; Daro, Nathalie; Freysz, Eric; Létard, Jean-François

    2009-06-15

    This paper describes the synthesis of iron(II) spin-crossover nanoparticles prepared by the reverse micelle technique by using the non-ionic surfactant Lauropal (Ifralan D0205) from the polyoxyethylenic family. By changing the surfactant/water ratio, the size of the particles of [Fe(NH2-trz)3]Br2.3H2O (with NH2trz=4-amino-1,2,4-triazole) can be controlled. On the macroscopic scale this complex exhibits cooperative thermal spin crossovers at 305 and 320 K. We find that when the size is reduced down to 50 nm, the spin transition becomes gradual and no hysteresis can be detected. For our data it seems that the critical size, for which the existence of a thermal hysteresis can be detected, is around 50 nm. Interestingly, the change of the particle size induces almost no change in the temperature of the thermal spin transition. A systematic determination of coherent domain size carried out on the nanoparticles by powder X-ray diffraction indicates that at approximately 30 nm individual particles consist of one coherent domain.

  2. Spin-inversion in nanoscale graphene sheets with a Rashba spin-orbit barrier

    Directory of Open Access Journals (Sweden)

    Somaieh Ahmadi

    2012-03-01

    Full Text Available Spin-inversion properties of an electron in nanoscale graphene sheets with a Rashba spin-orbit barrier is studied using transfer matrix method. It is found that for proper values of Rashba spin-orbit strength, perfect spin-inversion can occur in a wide range of electron incident angle near the normal incident. In this case, the graphene sheet with Rashba spin-orbit barrier can be considered as an electron spin-inverter. The efficiency of spin-inverter can increase up to a very high value by increasing the length of Rashba spin-orbit barrier. The effect of intrinsic spin-orbit interaction on electron spin inversion is then studied. It is shown that the efficiency of spin-inverter decreases slightly in the presence of intrinsic spin-orbit interaction. The present study can be used to design graphene-based spintronic devices.

  3. Efficient Quantum Information Transfer Through a Uniform Channel

    Directory of Open Access Journals (Sweden)

    Paola Verrucchi

    2011-06-01

    Full Text Available Effective quantum-state and entanglement transfer can be obtained by inducing a coherent dynamics in quantum wires with homogeneous intrawire interactions. This goal is accomplished by optimally tuning the coupling between the wire endpoints and the two qubits there attached. A general procedure to determine such value is devised, and scaling laws between the optimal coupling and the length of the wire are found. The procedure is implemented in the case of a wire consisting of a spin-1/2 XY chain: results for the time dependence of the quantities which characterize quantum-state and entanglement transfer are found of extremely good quality also for very long wires. The present approach does not require engineered intrawire interactions nor a specific initial pulse shaping, and can be applied to a vast class of quantum channels.

  4. Transient nutation electron spin resonance spectroscopy on spin-correlated radical pairs: A theoretical analysis on hyperfine-induced nuclear modulations

    Science.gov (United States)

    Weber, Stefan; Kothe, Gerd; Norris, James R.

    1997-04-01

    The influence of anisotropic hyperfine interaction on transient nutation electron paramagnetic resonance (EPR) of light-induced spin-correlated radical pairs is studied theoretically using the density operator formalism. Analytical expressions for the time evolution of the transient EPR signal during selective microwave excitation of single transitions are derived for a model system comprised of a weakly coupled radical pair and one hyperfine-coupled nucleus with I=1/2. Zero-quantum electron coherence and single-quantum nuclear coherence are created as a result of the sudden light-induced generation of the radical pair state from a singlet-state precursor. Depending on the relative sizes of the nuclear Zeeman frequency and the secular and pseudo-secular parts of the hyperfine coupling, transitions between levels with different nuclear spin orientations are predicted to modulate the time-dependent EPR signal. These modulations are in addition to the well-known transient nutations and electron zero-quantum precessions. Our calculations provide insight into the mechanism of recent experimental observations of coherent nuclear modulations in the time-resolved EPR signals of doublets and radical pairs. Two distinct mechanisms of the modulations are presented for various microwave magnetic field strengths. The first modulation scheme arises from electron and nuclear coherences initiated by the laser excitation pulse and is "read out" by the weak microwave magnetic field. While the relative modulation depth of these oscillations with respect to the signal intensity is independent of the Rabi frequency, ω1, the frequencies of this coherence phenomenon are modulated by the effective microwave amplitude and determined by the nuclear Zeeman interaction and hyperfine coupling constants as well as the electron-electron spin exchange and dipolar interactions between the two radical pair halves. In a second mechanism the modulations are both created and detected by the microwave

  5. Spin and energy transfer between magnetic ions and free carriers in diluted-magnetic semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, D.R. [Experimental Physics 2, University of Dortmund, 44227 Dortmund (Germany); Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Kneip, M.; Bayer, M. [Experimental Physics 2, University of Dortmund, 44227 Dortmund (Germany); Maksimov, A.A.; Tartakovskii, I.I. [Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka (Russian Federation); Keller, D.; Ossau, W.; Molenkamp, L.W. [Physikalisches Institut der Universitaet Wuerzburg, 97074 Wuerzburg (Germany); Scherbakov, A.V.; Akimov, A.V. [Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Waag, A. [Abteilung Halbleiterphysik, Universitaet Ulm, 89081 Ulm (Germany)

    2004-03-01

    In this paper we give a brief overview of our studies on dynamical processes in diluted-magnetic-semiconductor heterostructures based on (Zn,Mn)Se and (Cd,Mn)Te. Presence of free carriers is an important factor which determines the energy- and spin transfer in a coupled systems of magnetic ions, lattice (the phonon system) and carriers. We report also new data on dynamical response of magnetic ions interacting with photogenerated electron-hole plasma. (Zn,Mn)Se/(Zn,Be)Se structures with relatively high Mn content of 11% provide spin-lattice relaxation time of about 20 ns, which is considerably shorter then the characteristic times of nonequilibrium phonons ranging to 1 {mu}s. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Spin-flip tunneling in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, Lars; Braakman, Floris; Meunier, Tristan; Calado, Victor; Vandersypen, Lieven [Kavli Institute of NanoScience, Delft (Netherlands); Wegscheider, Werner [Institute for Experimental and Applied Physics, University of Regensburg (Germany)

    2010-07-01

    Electron spins in a gate-defined double quantum dot formed in a GaAs/(Al,Ga)As 2DEG are promising candidates for quantum information processing as coherent single spin rotation and spin swap has been demonstrated recently. In this system we investigate the two-electron spin dynamics in the presence of microwaves (5.20 GHz) applied to one side gate. During microwave excitation we observe characteristic photon assisted tunneling (PAT) peaks at the (1,1) to (0,2) charge transition. Some of the PAT peaks are attributed to photon tunneling events between the singlet S(0,2) and the singlet S(1,1) states, a spin-conserving transition. Surprisingly, other PAT peaks stand out by their different external magnetic field dependence. They correspond to tunneling involving a spin-flip, from the (0,2) singlet to a (1,1) triplet. The full spectrum of the observed PAT lines is captured by simulations. This process offers novel possibilities for 2-electron spin manipulation and read-out.

  7. Direct observation of coherent energy transfer in nonlinear micromechanical oscillators.

    Science.gov (United States)

    Chen, Changyao; Zanette, Damián H; Czaplewski, David A; Shaw, Steven; López, Daniel

    2017-05-26

    Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.

  8. Field control of anisotropic spin transport and spin helix dynamics in a modulation-doped GaAs quantum well

    Science.gov (United States)

    Anghel, S.; Passmann, F.; Singh, A.; Ruppert, C.; Poshakinskiy, A. V.; Tarasenko, S. A.; Moore, J. N.; Yusa, G.; Mano, T.; Noda, T.; Li, X.; Bristow, A. D.; Betz, M.

    2018-03-01

    Electron spin transport and dynamics are investigated in a single, high-mobility, modulation-doped, GaAs quantum well using ultrafast two-color Kerr-rotation microspectroscopy, supported by qualitative kinetic theory simulations of spin diffusion and transport. Evolution of the spins is governed by the Dresselhaus bulk and Rashba structural inversion asymmetries, which manifest as an effective magnetic field that can be extracted directly from the experimental coherent spin precession. A spin-precession length λSOI is defined as one complete precession in the effective magnetic field. It is observed that application of (i) an out-of-plane electric field changes the spin decay time and λSOI through the Rashba component of the spin-orbit coupling, (ii) an in-plane magnetic field allows for extraction of the Dresselhaus and Rashba parameters, and (iii) an in-plane electric field markedly modifies both the λSOI and diffusion coefficient.

  9. Scalable coherent interface

    International Nuclear Information System (INIS)

    Alnaes, K.; Kristiansen, E.H.; Gustavson, D.B.; James, D.V.

    1990-01-01

    The Scalable Coherent Interface (IEEE P1596) is establishing an interface standard for very high performance multiprocessors, supporting a cache-coherent-memory model scalable to systems with up to 64K nodes. This Scalable Coherent Interface (SCI) will supply a peak bandwidth per node of 1 GigaByte/second. The SCI standard should facilitate assembly of processor, memory, I/O and bus bridge cards from multiple vendors into massively parallel systems with throughput far above what is possible today. The SCI standard encompasses two levels of interface, a physical level and a logical level. The physical level specifies electrical, mechanical and thermal characteristics of connectors and cards that meet the standard. The logical level describes the address space, data transfer protocols, cache coherence mechanisms, synchronization primitives and error recovery. In this paper we address logical level issues such as packet formats, packet transmission, transaction handshake, flow control, and cache coherence. 11 refs., 10 figs

  10. Collision-induced coherence

    International Nuclear Information System (INIS)

    Bloembergen, N.

    1985-01-01

    Collision-induced coherence is based on the elimination of phase correlations between coherent Feynman-type pathways which happen to interfere destructively in the absence of damping for certain nonlinear processes. One consequence is the appearance of the extra resonances in four-wave light mixing experiments, for which the intensity increases with increasing buffer gas pressure. These resonances may occur between a pair of initially unpopulated excited states, or between a pair of initially equally populated ground states. The pair of levels may be Zeeman substrates which became degenerate in zero magnetic field. The resulting collision-enhanced Hanle resonances can lead to very sharp variations in the four-wave light mixing signal as the external magnetic field passes through zero. The theoretical description in terms of a coherence grating between Zeeman substrates is equivalent to a description in terms of a spin polarization grating obtained by collision-enhanced transverse optical pumping. The axis of quantization in the former case is taken perpendicular to the direction of the light beams; in the latter case is taken parallel to this direction

  11. Fast nanoscale addressability of nitrogen-vacancy spins via coupling to a dynamic ferromagnetic vortex

    Science.gov (United States)

    Wolf, M. S.; Badea, R.; Berezovsky, J.

    2016-01-01

    The core of a ferromagnetic vortex domain creates a strong, localized magnetic field, which can be manipulated on nanosecond timescales, providing a platform for addressing and controlling individual nitrogen-vacancy centre spins in diamond at room temperature, with nanometre-scale resolution. Here, we show that the ferromagnetic vortex can be driven into proximity with a nitrogen-vacancy defect using small applied magnetic fields, inducing significant nitrogen-vacancy spin splitting. We also find that the magnetic field gradient produced by the vortex is sufficient to address spins separated by nanometre-length scales. By applying a microwave-frequency magnetic field, we drive both the vortex and the nitrogen-vacancy spins, resulting in enhanced coherent rotation of the spin state. Finally, we demonstrate that by driving the vortex on fast timescales, sequential addressing and coherent manipulation of spins is possible on ∼100 ns timescales. PMID:27296550

  12. Spin Transport in Mesoscopic Superconducting-Ferromagnetic Hybrid Conductor

    Directory of Open Access Journals (Sweden)

    Zein W. A.

    2008-01-01

    Full Text Available The spin polarization and the corresponding tunneling magnetoresistance (TMR for a hybrid ferromagnetic / superconductor junction are calculated. The results show that these parameters are strongly depends on the exchange field energy and the bias voltage. The dependence of the polarization on the angle of precession is due to the spin flip through tunneling process. Our results could be interpreted as due to spin imbalance of carriers resulting in suppression of gap energy of the superconductor. The present investigation is valuable for manufacturing magnetic recording devices and nonvolatile memories which imply a very high spin coherent transport for such junction.

  13. Spin Transport in Mesoscopic Superconducting-Ferromagnetic Hybrid Conductor

    Directory of Open Access Journals (Sweden)

    Zein W. A.

    2008-01-01

    Full Text Available The spin polarization and the corresponding tunneling magnetoresistance (TMR for a hybrid ferromagnetic/superconductor junction are calculated. The results show that these parameters are strongly depends on the exchange field energy and the bias voltage. The dependence of the polarization on the angle of precession is due to the spin flip through tunneling process. Our results could be interpreted as due to spin imbalance of carriers resulting in suppression of gap energy of the superconductor. The present investigation is valuable for manufacturing magnetic recording devices and nonvolatile memories which imply a very high spin coherent transport for such junction.

  14. Towards a coherent picture of excitonic coherence in the Fenna–Matthews–Olson complex

    International Nuclear Information System (INIS)

    Fidler, Andrew F; Caram, Justin R; Hayes, Dugan; Engel, Gregory S

    2012-01-01

    Observations of long-lived coherence between excited states in several photosynthetic antenna complexes has motivated interest in developing a more detailed understanding of the role of the protein matrix in guiding the underlying dynamics of the system. These experiments suggest that classical rate laws may not provide an adequate description of the energy transfer process and that quantum effects must be taken into account to describe the near unity transfer efficiency in these systems. Recently, it has been shown that coherences between different pairs of excitons dephase at different rates. These details should provide some insight about the underlying electronic structure of the complex and its coupling to the protein bath. Here we show that a simple model can account for the different dephasing rates as well as the most current available experimental evidence of excitonic coherences in the Fenna–Matthews–Olson complex. The differences in dephasing rates can be understood as arising largely from differences in the delocalization and shared character between the underlying electronic states. We also suggest that the anomalously low dephasing rate of the exciton 1–2 coherence is enhanced by non-secular effects. (paper)

  15. Hole spin coherence in a Ge/Si heterostructure nanowire

    DEFF Research Database (Denmark)

    Higginbotham, Andrew P; Larsen, Thorvald Wadum; Yao, Jun

    2014-01-01

    Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si nanowire double quantum dot using a fast pulsed-gate method and dispersive readout. An inhomogeneous dephasing time T2(*)≈ 0.18 μs exceeds corresponding measurements in III-V semiconductors by more than an order of magnit......Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si nanowire double quantum dot using a fast pulsed-gate method and dispersive readout. An inhomogeneous dephasing time T2(*)≈ 0.18 μs exceeds corresponding measurements in III-V semiconductors by more than an order...

  16. Protocol for generating multiphoton entangled states from quantum dots in the presence of nuclear spin fluctuations

    DEFF Research Database (Denmark)

    Denning, Emil Vosmar; Iles-Smith, Jake; McCutcheon, Dara P. S.

    2017-01-01

    Multiphoton entangled states are a crucial resource for many applications inquantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confinedelectron spin, but dephasing caused by the host nuclear spin...... environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning...... that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present schemeallows for the generation of very low error probability polarisation encoded three-photon GHZ states and larger entangled states, without the need for spin echo...

  17. A switchable spin-wave signal splitter for magnonic networks

    Science.gov (United States)

    Heussner, F.; Serga, A. A.; Brächer, T.; Hillebrands, B.; Pirro, P.

    2017-09-01

    The influence of an inhomogeneous magnetization distribution on the propagation of caustic-like spin-wave beams in unpatterned magnetic films has been investigated by utilizing micromagnetic simulations. Our study reveals a locally controllable and reconfigurable tractability of the beam directions. This feature is used to design a device combining split and switch functionalities for spin-wave signals on the micrometer scale. A coherent transmission of spin-wave signals through the device is verified. This attests the applicability in magnonic networks where the information is encoded in the phase of the spin waves.

  18. Proof of an entropy conjecture for Bloch coherent spin states and its generalizations

    DEFF Research Database (Denmark)

    H. Lieb, Elliott; Solovej, Jan Philip

    2014-01-01

    Wehrl used Glauber coherent states to define a map from quantum density matrices to classical phase space densities and conjectured that for Glauber coherent states the mininimum classical entropy would occur for density matrices equal to projectors onto coherent states. This was proved by Lieb...

  19. Creating and manipulating nonequilibrium spins in nanoscale superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Michael J.; Kolenda, Stefan; Beckmann, Detlef [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany); Huebler, Florian [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany); Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Suergers, Christoph; Fischer, Gerda [Physikalisches Institut, Karlsruher Institut fuer Technologie (Germany); Loehneysen, Hilbert von [Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Physikalisches Institut, Karlsruher Institut fuer Technologie (Germany)

    2015-07-01

    We report on nonlocal transport in superconductor hybrid structures, with ferromagnetic as well as normal-metal tunnel junctions attached to the superconductor. In the presence of a strong Zeeman splitting of the density of states, we find signatures of spin transport over distances of several μm, exceeding other length scales such as the coherence length, the normal-state spin-diffusion length, and the charge-imbalance length. Using a combination of ferromagnetic and normal-metal contacts, we demonstrate spin injection from a normal metal, and show a complete separation of charge and spin imbalance. An exchange splitting induced by the ferromagnetic insulator europium sulfide enables spin transport at very small applied magnetic fields, and therefore paves the way to manipulating spin currents by local exchange fields.

  20. Spin tunnelling in mesoscopic systems

    Indian Academy of Sciences (India)

    coherent-state path integrals, and ... 0 33 K, and ¾. 0 22 K. The -factor of the net spin is very close to ...... Quantum Theory, S. N. Bose Centre, Calcutta, in January 2000. I am grateful ... [19] G Herzberg and H C Longuet-Higgins, Discuss. Faraday ...

  1. Electrical activation and spin coherence of ultra low doseantimony implants in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, T.; Tyryshkin, A.M.; de Sousa, R.; Whaley, K.B.; Bokor,J.; Liddle, J.A.; Persaud, A.; Shangkuan, J.; Chakarov, I.; Lyon, S.A.

    2005-07-13

    We implanted ultra low doses (0.2 to 2 x 10{sup 11} cm{sup -2}) of Sb ions into isotopically enriched {sup 28}Si, and probed electrical activation and electron spin relaxation after rapid thermal annealing. Strong segregation of dopants towards both Si{sub 3}N{sub 4} and SiO{sub 2} interfaces limits electrical activation. Pulsed Electron Spin Resonance shows that spin echo decay is sensitive to the dopant profiles, and the interface quality. A spin decoherence time, T{sub 2}, of 1.5 ms is found for profiles peaking 25 nm below a Si/SiO{sub 2} interface, increasing to 2.1 ms when the surface is passivated with hydrogen. These measurements provide benchmark data for the development of devices in which quantum information is encoded in donor electron spins.

  2. Manipulation of incoherent and coherent spin ensembles in diluted magnetic semiconductors via ferromagnetic fringe fields; Manipulation inkohaerenter und kohaerenter Spinensembles in verduennt-magnetischen Halbleitern mittels ferromagnetischer Streufelder

    Energy Technology Data Exchange (ETDEWEB)

    Halm, Simon

    2009-05-19

    In this thesis it is demonstrated that fringe fields of nanostructured ferromagnets provide the opportunity to manipulate both incoherent and coherent spin ensembles in a dilute magnetic semiconductor (DMS). Fringe fields of Fe/Tb ferromagnets with a remanent out-of-plane magnetization induce a local magnetization in a (Zn,Cd,Mn)Se DMS. Due to the sp-d exchange interaction, optically generated electron-hole pairs align their spin along the DMS magnetization. One obtains a local, remanent spin polarization which was probed by spatially resolved, polarization sensitive photoluminescence spectroscopy. Fringe fields from in-plane magnetized Co ferromagnets allow to locally modify the precession frequency of the Manganese magnetic moments of the DMS in an external magnetic field. This was probed by time-resolved Kerr rotation technique. The inhomogeneity of the fringe field leads to a shortening of the ensemble decoherence time and to the effect of a time-dependent ensemble precession frequency. (orig.)

  3. Spin resonance with trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Ch; Balzer, Ch; Hannemann, T; Mintert, F; Neuhauser, W; Reiss, D; Toschek, P E [Institut fuer Laser-Physik, Universitaet Hamburg, Jungiusstrasse 9, 20355 Hamburg (Germany)

    2003-03-14

    A modified ion trap is described where experiments (in particular related to quantum information processing) that usually require optical radiation can be carried out using microwave or radio frequency electromagnetic fields. Instead of applying the usual methods for coherent manipulation of trapped ions, a string of ions in such a modified trap can be treated like a molecule in nuclear magnetic resonance experiments taking advantage of spin-spin coupling. The collection of trapped ions can be viewed as an N-qubit molecule with adjustable spin-spin coupling constants. Given N identically prepared quantum mechanical two-level systems (qubits), the optimal strategy to estimate their quantum state requires collective measurements. Using the ground state hyperfine levels of electrodynamically trapped {sup 171}Yb{sup +}, we have implemented an adaptive algorithm for state estimation involving sequential measurements on arbitrary qubit states.

  4. Spin resonance with trapped ions

    International Nuclear Information System (INIS)

    Wunderlich, Ch; Balzer, Ch; Hannemann, T; Mintert, F; Neuhauser, W; Reiss, D; Toschek, P E

    2003-01-01

    A modified ion trap is described where experiments (in particular related to quantum information processing) that usually require optical radiation can be carried out using microwave or radio frequency electromagnetic fields. Instead of applying the usual methods for coherent manipulation of trapped ions, a string of ions in such a modified trap can be treated like a molecule in nuclear magnetic resonance experiments taking advantage of spin-spin coupling. The collection of trapped ions can be viewed as an N-qubit molecule with adjustable spin-spin coupling constants. Given N identically prepared quantum mechanical two-level systems (qubits), the optimal strategy to estimate their quantum state requires collective measurements. Using the ground state hyperfine levels of electrodynamically trapped 171 Yb + , we have implemented an adaptive algorithm for state estimation involving sequential measurements on arbitrary qubit states

  5. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  6. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Science.gov (United States)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-05-01

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  7. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    International Nuclear Information System (INIS)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-01-01

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems

  8. Plane wave analysis of coherent holographic image reconstruction by phase transfer (CHIRPT).

    Science.gov (United States)

    Field, Jeffrey J; Winters, David G; Bartels, Randy A

    2015-11-01

    Fluorescent imaging plays a critical role in a myriad of scientific endeavors, particularly in the biological sciences. Three-dimensional imaging of fluorescent intensity often requires serial data acquisition, that is, voxel-by-voxel collection of fluorescent light emitted throughout the specimen with a nonimaging single-element detector. While nonimaging fluorescence detection offers some measure of scattering robustness, the rate at which dynamic specimens can be imaged is severely limited. Other fluorescent imaging techniques utilize imaging detection to enhance collection rates. A notable example is light-sheet fluorescence microscopy, also known as selective-plane illumination microscopy, which illuminates a large region within the specimen and collects emitted fluorescent light at an angle either perpendicular or oblique to the illumination light sheet. Unfortunately, scattering of the emitted fluorescent light can cause blurring of the collected images in highly turbid biological media. We recently introduced an imaging technique called coherent holographic image reconstruction by phase transfer (CHIRPT) that combines light-sheet-like illumination with nonimaging fluorescent light detection. By combining the speed of light-sheet illumination with the scattering robustness of nonimaging detection, CHIRPT is poised to have a dramatic impact on biological imaging, particularly for in vivo preparations. Here we present the mathematical formalism for CHIRPT imaging under spatially coherent illumination and present experimental data that verifies the theoretical model.

  9. The NEOTωIST mission (Near-Earth Object Transfer of angular momentum spin test)

    Science.gov (United States)

    Drube, Line; Harris, Alan W.; Engel, Kilian; Falke, Albert; Johann, Ulrich; Eggl, Siegfried; Cano, Juan L.; Ávila, Javier Martín; Schwartz, Stephen R.; Michel, Patrick

    2016-10-01

    We present a concept for a kinetic impactor demonstration mission, which intends to change the spin rate of a previously-visited asteroid, in this case 25143 Itokawa. The mission would determine the efficiency of momentum transfer during an impact, and help mature the technology required for a kinetic impactor mission, both of which are important precursors for a future space mission to deflect an asteroid by collisional means in an emergency situation. Most demonstration mission concepts to date are based on changing an asteroid's heliocentric orbit and require a reconnaissance spacecraft to measure the very small orbital perturbation due to the impact. Our concept is a low-cost alternative, requiring only a single launch. Taking Itokawa as an example, an estimate of the order of magnitude of the change in the spin period, δP, with such a mission results in δP of 4 min (0.5%), which could be detectable by Earth-based observatories. Our preliminary study found that a mission concept in which an impactor produces a change in an asteroid's spin rate could provide valuable information for the assessment of the viability of the kinetic-impactor asteroid deflection concept. Furthermore, the data gained from the mission would be of great benefit for our understanding of the collisional evolution of asteroids and the physics behind crater and ejecta-cloud development.

  10. Nonequilibrium spin transport through a diluted magnetic semiconductor quantum dot system with noncollinear magnetization

    International Nuclear Information System (INIS)

    Ma, Minjie; Jalil, Mansoor Bin Abdul; Tan, Seng Gee

    2013-01-01

    The spin-dependent transport through a diluted magnetic semiconductor quantum dot (QD) which is coupled via magnetic tunnel junctions to two ferromagnetic leads is studied theoretically. A noncollinear system is considered, where the QD is magnetized at an arbitrary angle with respect to the leads’ magnetization. The tunneling current is calculated in the coherent regime via the Keldysh nonequilibrium Green’s function (NEGF) formalism, incorporating the electron–electron interaction in the QD. We provide the first analytical solution for the Green’s function of the noncollinear DMS quantum dot system, solved via the equation of motion method under Hartree–Fock approximation. The transport characteristics (charge and spin currents, and tunnel magnetoresistance (TMR)) are evaluated for different voltage regimes. The interplay between spin-dependent tunneling and single-charge effects results in three distinct voltage regimes in the spin and charge current characteristics. The voltage range in which the QD is singly occupied corresponds to the maximum spin current and greatest sensitivity of the spin current to the QD magnetization orientation. The QD device also shows transport features suitable for sensor applications, i.e., a large charge current coupled with a high TMR ratio. - Highlights: ► The spin polarized transport through a diluted magnetic quantum dot is studied. ► The model is based on the Green’s function and the equation of motion method.► The charge and spin currents and tunnel magnetoresistance (TMR) are investigated. ► The system is suitable for current-induced spin-transfer torque application. ► A large tunneling current and a high TMR are possible for sensor application.

  11. Wireless current sensing by near field induction from a spin transfer torque nano-oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Ramaswamy, B. [Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742 (United States); Algarin, J. M.; Waks, E., E-mail: edowaks@umd.edu [Institute for Research in Electronics and Applied Physics (IREAP), University of Maryland, College Park, Maryland 20742 (United States); Weinberg, I. N. [Weinberg Medical Physics LLC, Bethesda, Maryland 20817 (United States); Chen, Y.-J.; Krivorotov, I. N. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Katine, J. A. [HGST Research Center, San Jose, California 95135 (United States); Shapiro, B. [Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742 (United States); Institute for Systems Research (ISR), University of Maryland, College Park, Maryland 20742 (United States)

    2016-06-13

    We demonstrate that spin transfer torque nano-oscillators (STNO) can act as wireless sensors for local current. The STNO acts as a transducer that converts weak direct currents into microwave field oscillations that we detect using an inductive coil. We detect direct currents in the range of 300–700 μA and report them wirelessly to a receiving induction coil at distances exceeding 6.5 mm. This current sensor could find application in chemical and biological sensing and industrial inspection.

  12. Spin transfers for baryon production in polarized pp collisions at RHIC-BNL

    International Nuclear Information System (INIS)

    Ma BoQiang; Schmidt, Ivan; Soffer, Jacques; Yang Jianjun

    2002-01-01

    We consider the inclusive production of longitudinally polarized baryons in p→p collisions at RHIC-BNL, with one longitudinally polarized proton. We study the spin transfer between the initial proton and the produced baryon as a function of its rapidity and we elucidate its sensitivity to the quark helicity distributions of the proton and to the polarized fragmentation functions of the quark into the baryon. We make predictions using an SU(6) quark spectator model and a perturbative QCD (pQCD) based model. We discuss these different predictions, and what can be learned from them, in view of the forthcoming experiments at RHIC-BNL

  13. Gate-controlled switching between persistent and inverse persistent spin helix states

    International Nuclear Information System (INIS)

    Yoshizumi, K.; Sasaki, A.; Kohda, M.; Nitta, J.

    2016-01-01

    We demonstrate gate-controlled switching between persistent spin helix (PSH) state and inverse PSH state, which are detected by quantum interference effect on magneto-conductance. These special symmetric spin states showing weak localization effect give rise to a long spin coherence when the strength of Rashba spin-orbit interaction (SOI) is close to that of Dresselhaus SOI. Furthermore, in the middle of two persistent spin helix states, where the Rashba SOI can be negligible, the bulk Dresselhaus SOI parameter in a modulation doped InGaAs/InAlAs quantum well is determined.

  14. Gate-controlled switching between persistent and inverse persistent spin helix states

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizumi, K.; Sasaki, A.; Kohda, M.; Nitta, J. [Department of Materials Science, Tohoku University, Sendai 980-8579 (Japan)

    2016-03-28

    We demonstrate gate-controlled switching between persistent spin helix (PSH) state and inverse PSH state, which are detected by quantum interference effect on magneto-conductance. These special symmetric spin states showing weak localization effect give rise to a long spin coherence when the strength of Rashba spin-orbit interaction (SOI) is close to that of Dresselhaus SOI. Furthermore, in the middle of two persistent spin helix states, where the Rashba SOI can be negligible, the bulk Dresselhaus SOI parameter in a modulation doped InGaAs/InAlAs quantum well is determined.

  15. Half-metallic superconducting triplet spin multivalves

    Science.gov (United States)

    Alidoust, Mohammad; Halterman, Klaus

    2018-02-01

    We study spin switching effects in finite-size superconducting multivalve structures. We examine F1F2SF3 and F1F2SF3F4 hybrids where a singlet superconductor (S) layer is sandwiched among ferromagnet (F) layers with differing thicknesses and magnetization orientations. Our results reveal a considerable number of experimentally viable spin-valve configurations that lead to on-off switching of the superconducting state. For S widths on the order of the superconducting coherence length ξ0, noncollinear magnetization orientations in adjacent F layers with multiple spin axes leads to a rich variety of triplet spin-valve effects. Motivated by recent experiments, we focus on samples where the magnetizations in the F1 and F4 layers exist in a fully spin-polarized half-metallic phase, and calculate the superconducting transition temperature, spatially and energy resolved density of states, and the spin-singlet and spin-triplet superconducting correlations. Our findings demonstrate that superconductivity in these devices can be completely switched on or off over a wide range of magnetization misalignment angles due to the generation of equal-spin and opposite-spin triplet pairings.

  16. Spin Transfer in Inclusive Λ0 Production by Transversely Polarized Protons at 200GeV/c

    International Nuclear Information System (INIS)

    Grosnick, D.P.; Hill, D.A.; Laghai, M.; Lopiano, D.; Ohashi, Y.; Spinka, H.; Stanek, R.W.; Underwood, D.G.; Yokosawa, A.; Bystricky, J.; Lehar, F.; Lesquen, A. de; Rossum, L. van; Cossairt, J.D.; Read, A.L.; Iwatani, K.; Belikov, N.I.; Derevschikov, A.A.; Grachov, O.A.; Matulenko, Y.A.; Meschanin, A.P.; Nurushev, S.B.; Patalakha, D.I.; Rykov, V.L.; Solovyanov, V.L.; Vasiliev, A.N.; Akchurin, N.; Onel, Y.; Maki, T.; Enyo, H.; Funahashi, H.; Goto, Y.; Iijima, T.; Imai, K.; Itow, Y.; Makino, S.; Masaike, A.; Miyake, K.; Nagamine, T.; Saito, N.; Yamashita, S.; Takashima, R.; Takeutchi, F.; Kuroda, K.; Michalowicz, A.; Rappazzo, G.F.; Salvato, G.; Luehring, F.C.; Miller, D.H.; Tamura, N.; Yoshida, T.; Adams, D.L.; Bonner, B.E.; Corcoran, M.D.; Cranshaw, J.; Nessi-Tedaldi, F.; Nessi, M.; Nguyen, C.; Roberts, J.B.; Skeens, J.; White, J.L.; Bravar, A.

    1997-01-01

    Surprisingly large polarizations in hyperon production by unpolarized protons have been known for a long time. The spin dynamics of the production process can be further investigated with polarized beams. Recently, a negative asymmetry A N was found in inclusive Λ 0 production with a 200GeV/c transversely polarized proton beam. The depolarization D NN in p↑+p→Λ 0 +X has been measured with the same beam over a wide x F range and at moderate p T . D NN reaches positive values of about 30% at high x F and p T ∼1.0GeV/c . This result shows a sizable spin transfer from the incident polarized proton to the outgoing Λ 0 . copyright 1997 The American Physical Society

  17. Improved spin squeezing of an atomic ensemble through internal state control

    Science.gov (United States)

    Hemmer, Daniel; Montano, Enrique; Deutsch, Ivan; Jessen, Poul

    2016-05-01

    Squeezing of collective atomic spins is typically generated by quantum backaction from a QND measurement of the relevant spin component. In this scenario the degree of squeezing is determined by the measurement resolution relative to the quantum projection noise (QPN) of a spin coherent state (SCS). Greater squeezing can be achieved through optimization of the 3D geometry of probe and atom cloud, or by placing the atoms in an optical cavity. We explore here a complementary strategy that relies on quantum control of the large internal spin available in alkali atoms such as Cs. Using a combination of rf and uw magnetic fields, we coherently map the internal spins in our ensemble from the SCS (| f = 4, m = 4>) to a ``cat'' state which is an equal superposition of | f = 4, m = 4>and | f = 4, m = -4>. This increases QPN by a factor of 2 f = 8 relative to the SCS, and therefore the amount of backaction and spin-spin entanglement produced by our QND measurement. In a final step, squeezing generated in the cat state basis can be mapped back to the SCS basis, where it corresponds to increased squeezing of the physical spin. Our experiments suggest that up to 8dB of metrologically useful squeezing can be generated in this way, compared to ~ 3 dB in an otherwise identical experiment starting from a SCS.

  18. Magnons coherent transmission and its heat transport at ultrathin insulating ferromagnetic nanojunctions

    Directory of Open Access Journals (Sweden)

    Ghantous M. Abou

    2012-06-01

    Full Text Available A model calculation is presented for the magnons coherent transmission and corresponding heat transport at magnetic insulating nanojunctions. The system consists of a ferromagnetically ordered ultrathin insulating junction between two semi-infinite ferromagnetically ordered leads. Spin dynamics are analyzed using the equations of motion for the spin precession displacements, valid for the range of temperatures of interest. Coherent scattering cross-sections at the junction boundary are calculated using the phase field matching theory, for all the incidence angles on the boundary from the lead bands, for arbitrary angles of incidence, at variable temperatures, and for different nano thicknesses of the ultrathin junction. The model is general; it is applied in particular to the Fe/Gd/Fe system with a sandwiched ferromagnetic Gd junction. It yields also the thermal conductivity due to the magnons coherent transmission between the two leads when these are maintained at slightly different temperatures. The calculation is carried out for state of the art values of the exchange constants, and elucidates the relation between the coherent scattering transmission of magnons and their thermal conductivity, for different thicknesses.

  19. Electron spin resonance scanning tunneling microscope

    International Nuclear Information System (INIS)

    Guo Yang; Li Jianmei; Lu Xinghua

    2015-01-01

    It is highly expected that the future informatics will be based on the spins of individual electrons. The development of elementary information unit will eventually leads to novel single-molecule or single-atom devices based on electron spins; the quantum computer in the future can be constructed with single electron spins as the basic quantum bits. However, it is still a great challenge in detection and manipulation of a single electron spin, as well as its coherence and entanglement. As an ideal experimental tool for such tasks, the development of electron spin resonance scanning tunneling microscope (ESR-STM) has attracted great attention for decades. This paper briefly introduces the basic concept of ESR-STM. The development history of this instrument and recent progresses are reviewed. The underlying mechanism is explored and summarized. The challenges and possible solutions are discussed. Finally, the prospect of future direction and applications are presented. (authors)

  20. Spin-locking and cross-polarization under magic-angle spinning of uniformly labeled solids.

    Science.gov (United States)

    Hung, Ivan; Gan, Zhehong

    2015-07-01

    Spin-locking and cross-polarization under magic-angle spinning are investigated for uniformly (13)C and (15)N labeled solids. In particular, the interferences from chemical shift anisotropy, and (1)H heteronuclear and (13)C homonuclear dipolar couplings are identified. The physical origin of these interferences provides guidelines for selecting the best (13)C and (15)N polarization transfer rf fields. Optimal settings for both the zero- and double-quantum cross-polarization transfer mechanisms are recommended. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Isoscalar spin excitation in 40Ca

    International Nuclear Information System (INIS)

    Morlet, M.; Willis, A.; Van de Wiele, J.; Marty, N.; Johnson, B.N.; Bimbot, L.; Guillot, J.; Jourdan, F.; Langevin-Joliot, H.; Rosier, L.; Glashausser, C.; Beatty, D.; Edwards, G.W.R.; Green, A.; Djalali, C.; Youn, M.Y.

    1992-01-01

    A signature S d y of isoscalar spin-transfer strength has been tested in the inelastic scattering of 400 MeV deuterons from 12 C. It was then applied to the study of 40 Ca over an angular range from 3 deg to 7 deg (momentum transfer range from 0.26 to 0.8 fm -1 ) and an excitation energy range from 6.25 to 42 MeV. This is the first study of isoscalar spin strength in the continuum. Spin excitations were found in the 9 MeV region, and over a broad range in the continuum with a cluster of strength around 15 MeV. The results are compared with spin-flip probability measurements in proton scattering. In contrast to the total relative spin response, which is strongly enhanced at high excitation, the isoscalar relative spin response is roughly consistent with non interacting Fermi gas values. (authors) 39 refs., 13 figs., 1 tab

  2. Spin-orbit coupling and electric-dipole spin resonance in a nanowire double quantum dot.

    Science.gov (United States)

    Liu, Zhi-Hai; Li, Rui; Hu, Xuedong; You, J Q

    2018-02-02

    We study the electric-dipole transitions for a single electron in a double quantum dot located in a semiconductor nanowire. Enabled by spin-orbit coupling (SOC), electric-dipole spin resonance (EDSR) for such an electron can be generated via two mechanisms: the SOC-induced intradot pseudospin states mixing and the interdot spin-flipped tunneling. The EDSR frequency and strength are determined by these mechanisms together. For both mechanisms the electric-dipole transition rates are strongly dependent on the external magnetic field. Their competition can be revealed by increasing the magnetic field and/or the interdot distance for the double dot. To clarify whether the strong SOC significantly impact the electron state coherence, we also calculate relaxations from excited levels via phonon emission. We show that spin-flip relaxations can be effectively suppressed by the phonon bottleneck effect even at relatively low magnetic fields because of the very large g-factor of strong SOC materials such as InSb.

  3. Coherent Two-Dimensional Terahertz Magnetic Resonance Spectroscopy of Collective Spin Waves.

    Science.gov (United States)

    Lu, Jian; Li, Xian; Hwang, Harold Y; Ofori-Okai, Benjamin K; Kurihara, Takayuki; Suemoto, Tohru; Nelson, Keith A

    2017-05-19

    We report a demonstration of two-dimensional (2D) terahertz (THz) magnetic resonance spectroscopy using the magnetic fields of two time-delayed THz pulses. We apply the methodology to directly reveal the nonlinear responses of collective spin waves (magnons) in a canted antiferromagnetic crystal. The 2D THz spectra show all of the third-order nonlinear magnon signals including magnon spin echoes, and 2-quantum signals that reveal pairwise correlations between magnons at the Brillouin zone center. We also observe second-order nonlinear magnon signals showing resonance-enhanced second-harmonic and difference-frequency generation. Numerical simulations of the spin dynamics reproduce all of the spectral features in excellent agreement with the experimental 2D THz spectra.

  4. Direct, coherent and incoherent intermediate state tunneling and scanning tunnel microscopy (STM)

    International Nuclear Information System (INIS)

    Halbritter, J.

    1997-01-01

    Theory and experiment in tunneling are still qualitative in nature, which hold true also for the latest developments in direct-, resonant-, coherent- and incoherent-tunneling. Those tunnel processes have recently branched out of the field of ''solid state tunnel junctions'' into the fields of scanning tunnel microscopy (STM), single electron tunneling (SET) and semiconducting resonant tunnel structures (RTS). All these fields have promoted the understanding of tunneling in different ways reaching from the effect of coherence, of incoherence and of charging in tunneling, to spin flip or inelastic effects. STM allows not only the accurate measurements of the tunnel current and its voltage dependence but, more importantly, the easy quantification via the (quantum) tunnel channel conductance and the distance dependence. This new degree of freedom entering exponentially the tunnel current allows an unique identification of individual tunnel channels and their quantification. In STM measurements large tunnel currents are observed for large distances d > 1 nm explainable by intermediate state tunneling. Direct tunneling with its reduced tunnel time and reduced off-site Coulomb charging bridges distances below 1 nm, only. The effective charge transfer process with its larger off-site and on-site charging at intermediate states dominates tunnel transfer in STM, biology and chemistry over distances in the nm-range. Intermediates state tunneling becomes variable range hopping conduction for distances larger than d > 2 nm, for larger densities of intermediate states n 1 (ε) and for larger temperatures T or voltages U, still allowing high resolution imaging

  5. Analytic expression for the giant fieldlike spin torque in spin-filter magnetic tunnel junctions

    Science.gov (United States)

    Tang, Y.-H.; Huang, Z.-W.; Huang, B.-H.

    2017-08-01

    We propose analytic expressions for fieldlike, T⊥, and spin-transfer, T∥, spin torque components in the spin-filter-based magnetic tunnel junction (SFMTJ), by using the single-band tight-binding model with the nonequilibrium Keldysh formalism. In consideration of multireflection processes between noncollinear magnetization of the spin-filter (SF) barrier and the ferromagnetic (FM) electrode, the central spin-selective SF barrier plays an active role in the striking discovery T⊥≫T∥ , which can be further identified by the unusual barrier thickness dependence of giant T⊥. Our general expressions reveal the sinusoidal angular dependence of both spin torque components, even in the presence of the SF barrier.

  6. Spin torque on the surface of graphene in the presence of spin orbit splitting

    Directory of Open Access Journals (Sweden)

    Ji Chen

    2013-06-01

    Full Text Available We study theoretically the spin transfer torque of a ferromagnetic layer coupled to (deposited onto a graphene surface in the presence of the Rashba spin orbit coupling (RSOC. We show that the RSOC induces an effective magnetic field, which will result in the spin precession of conduction electrons. We derive correspondingly the generalized Landau-Lifshitz-Gilbert (LLG equation, which describes the precessional motion of local magnetization under the influence of the spin orbit effect. Our theoretical estimate indicates that the spin orbit spin torque may have significant effect on the magnetization dynamics of the ferromagnetic layer coupled to the graphene surface.

  7. Mapping the influence of molecular structure on rates of electron transfer using direct measurements of the electron spin-spin exchange interaction.

    Science.gov (United States)

    Lukas, Aaron S; Bushard, Patrick J; Weiss, Emily A; Wasielewski, Michael R

    2003-04-02

    The spin-spin exchange interaction, 2J, in a radical ion pair produced by a photoinduced electron transfer reaction can provide a direct measure of the electronic coupling matrix element, V, for the subsequent charge recombination reaction. We have developed a series of dyad and triad donor-acceptor molecules in which 2J is measured directly as a function of incremental changes in their structures. In the dyads the chromophoric electron donors 4-(N-pyrrolidinyl)- and 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, 5ANI and 6ANI, respectively, and a naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptor are linked to the meta positions of a phenyl spacer to yield 5ANI-Ph-NI and 6ANI-Ph-NI. In the triads the same structure is used, except that the piperidine in 6ANI is replaced by a piperazine in which a para-X-phenyl, where X = H, F, Cl, MeO, and Me(2)N, is attached to the N' nitrogen to form a para-X-aniline (XAn) donor to give XAn-6ANI-Ph-NI. Photoexcitation yields the respective 5ANI(+)-Ph-NI(-), 6ANI(+)-Ph-NI(-), and XAn(+)-6ANI-Ph-NI(-) singlet radical ion pair states, which undergo subsequent radical pair intersystem crossing followed by charge recombination to yield (3)NI. The radical ion pair distances within the dyads are about 11-12 A, whereas those in the triads are about approximately 16-19 A. The degree of delocalization of charge (and spin) density onto the aniline, and therefore the average distance between the radical ion pairs, is modulated by the para substituent. The (3)NI yields monitored spectroscopically exhibit resonances as a function of magnetic field, which directly yield 2J for the radical ion pairs. A plot of ln 2J versus r(DA), the distance between the centroids of the spin distributions of the two radicals that comprise the pair, yields a slope of -0.5 +/- 0.1. Since both 2J and k(CR), the rate of radical ion pair recombination, are directly proportional to V(2), the observed distance dependence of 2J shows directly that the recombination

  8. Acoustically assisted spin-transfer-torque switching of nanomagnets: An energy-efficient hybrid writing scheme for non-volatile memory

    International Nuclear Information System (INIS)

    Biswas, Ayan K.; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha

    2013-01-01

    We show that the energy dissipated to write bits in spin-transfer-torque random access memory can be reduced by an order of magnitude if a surface acoustic wave (SAW) is launched underneath the magneto-tunneling junctions (MTJs) storing the bits. The SAW-generated strain rotates the magnetization of every MTJs' soft magnet from the easy towards the hard axis, whereupon passage of a small spin-polarized current through a target MTJ selectively switches it to the desired state with > 99.99% probability at room temperature, thereby writing the bit. The other MTJs return to their original states at the completion of the SAW cycle

  9. Electron spin contrast of Purcell-enhanced nitrogen-vacancy ensembles in nanodiamonds

    Science.gov (United States)

    Bogdanov, S.; Shalaginov, M. Y.; Akimov, A.; Lagutchev, A. S.; Kapitanova, P.; Liu, J.; Woods, D.; Ferrera, M.; Belov, P.; Irudayaraj, J.; Boltasseva, A.; Shalaev, V. M.

    2017-07-01

    Nitrogen-vacancy centers in diamond allow for coherent spin-state manipulation at room temperature, which could bring dramatic advances to nanoscale sensing and quantum information technology. We introduce a method for the optical measurement of the spin contrast in dense nitrogen-vacancy (NV) ensembles. This method brings insight into the interplay between the spin contrast and fluorescence lifetime. We show that for improving the spin readout sensitivity in NV ensembles, one should aim at modifying the far-field radiation pattern rather than enhancing the emission rate.

  10. Coherent lattice vibrations in superconductors

    International Nuclear Information System (INIS)

    Kadin, Alan M.

    2008-01-01

    A recent analysis has shown that the pair wavefunction within the BCS theory may be represented in real-space as a spherical electronic orbital (on the scale of the coherence length ξ 0 ) coupled to a standing-wave lattice vibration with wavevector 2k F and a near-resonant phonon frequency. The present paper extends this picture to a coherent pattern of phonon standing-waves on the macroscopic scale, with electrons forming Bloch waves and an energy gap much like those in the classic band theory of crystals. These parallel planes form a diffractive waveguide permitting electron waves to traveling parallel to the planes, corresponding to lossless supercurrent. A similar picture may be extended to unconventional superconductors such as the cuprates, with an array of standing spin waves rather than phonons. Such coherent lattice vibrations should be universal indicators of the superconducting state, and should be observable below T c using X-ray and neutron diffraction techniques. Further implications of this picture are discussed

  11. Non-dispersive method for measuring longitudinal neutron coherence length using high frequency cold neutron pulser

    International Nuclear Information System (INIS)

    Kawai, T.; Tasaki, S.; Ebisawa, T.; Hino, M.; Yamazaki, D.; Achiwa, N.

    1999-01-01

    Complete text of publication follows. A non-dispersive method is proposed for measuring the longitudinal coherence length of a neutron using a high frequency cold neutron pulser (hf-CNP) placed between two multilayer spin splitters (MSS) which composes the cold neutron spin interferometer. Two spin eigenstates of a neutron polarized x-y plane are split non-dispersively and longitudinally in time by the hf-CNP which could reflect two components alternatively in time. The reduction of the visibility of interference fringes after being superposed by the second MSS is measured as a function of the frequency of the pulser by TOF method. From the zero visibility point obtained by extrapolation one could obtain the longitudinal coherence length of the neutron. (author)

  12. Detection of single electron spin resonance in a double quantum dota)

    Science.gov (United States)

    Koppens, F. H. L.; Buizert, C.; Vink, I. T.; Nowack, K. C.; Meunier, T.; Kouwenhoven, L. P.; Vandersypen, L. M. K.

    2007-04-01

    Spin-dependent transport measurements through a double quantum dot are a valuable tool for detecting both the coherent evolution of the spin state of a single electron, as well as the hybridization of two-electron spin states. In this article, we discuss a model that describes the transport cycle in this regime, including the effects of an oscillating magnetic field (causing electron spin resonance) and the effective nuclear fields on the spin states in the two dots. We numerically calculate the current flow due to the induced spin flips via electron spin resonance, and we study the detector efficiency for a range of parameters. The experimental data are compared with the model and we find a reasonable agreement.

  13. A new approach to radiative transfer theory using Jones's vectors. I

    International Nuclear Information System (INIS)

    Fymat, A.L.; Vasudevan, R.

    1975-01-01

    Radiative transfer of partially polarized radiation in an anisotropically scattering, inhomogeneous atmosphere containing arbitrary polydispersion of particles is described using Jones's amplitude vectors and matrices. This novel approach exploits the close analogy between the quantum mechanical states of spin 1/2 systems and the polarization states of electromagnetic radiation described by Jones's vector, and draws on the methodology of such spin 1/2 systems. The complete equivalence between the transport equation for Jones's vectors and the classical radiative transfer equation for Stokes's intensity vectors is demonstrated in two independent ways after deriving the transport equations for the polarization coherency matrices and for the quaternions corresponding to the Jones's vectors. A compact operator formulation of the theory is provided, and used to derive the necessary equations for both a local and a global description of the transport of Jones's vectors. Lastly, the integro-differential equations for the amplitude reflection and transmission matrices are derived, and related to the usual corresponding equations. The present formulation is the most succinct and the most convenient one for both theoretical and experimental studies. It yields a simpler analysis than the classical formulation since it reduces by a factor of two the dimensionality of transfer problems. It preserves information on phases, and thus can be used directly across the entire electromagnetic spectrum without any further conversion into intensities. (Auth.)

  14. Collective effects in spin polarized plasmas

    International Nuclear Information System (INIS)

    Coppi, B.; Cowley, S.; Detragiache, P.; Kulsrud, R.; Pegoraro, F.

    1984-10-01

    A fusing plasma with coherently polarized spin nuclei can be subject to instabilities due to the anisotropy of the reaction product distributions in velocity space, which is a result of their polarization. The characteristics of these instabilities depend strongly on the plasma spatial inhomogeneities and a significant rate of spin depolarization can be produced by them if adequate fluctuation amplitudes are reached. The results of the relevant analysis are, in addition, of interest for plasma heating processes with frequencies in the range of the cyclotron frequencies of the considered nuclei

  15. Spin separation driven by quantum interference in ballistic rings

    International Nuclear Information System (INIS)

    Bellucci, S; Onorato, P

    2008-01-01

    We propose an all-electrical nanoscopic structure where a pure spin current is induced in the transverse probes attached to a quantum-coherent ballistic quasi-one-dimensional ring when conventional unpolarized charge current is injected through its longitudinal leads. The study is essentially based on the spin-orbit coupling (SOC) arising from the laterally confining electric field (β-SOC). This sets the basic difference with other works employing mesoscopic rings with the conventional Rashba SO term (α-SOC). The β-SOC ring generates oscillations of the predicted spin Hall current due to spin-sensitive quantum-interference effects caused by the difference in phase acquired by opposite spins states traveling clockwise and counterclockwise. We focus on single-channel transport and solve analytically the spin polarization of the current. We relate the presence of a polarized spin current with the peaks in the longitudinal conductance.

  16. RHIC spin flipper AC dipole controller

    Energy Technology Data Exchange (ETDEWEB)

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  17. The classical and quantum dynamics of molecular spins on graphene

    Science.gov (United States)

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2016-02-01

    Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.

  18. Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems.

    Science.gov (United States)

    Bai, Lihui; Harder, M; Chen, Y P; Fan, X; Xiao, J Q; Hu, C-M

    2015-06-05

    We use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling.

  19. Dynamically Decoupled 13C Spins in Hyperpolarized Nanodiamond

    Science.gov (United States)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David; Reilly, David

    The spin-spin relaxation time, T2, which determines how long a quantum state remains coherent, is an important factor for many applications ranging from MRI to quantum computing. A common technique used in quantum information technology to extend the T2, involves averaging out certain noise spectra via dynamical decoupling sequences. Depending on the nature of the noise in the system, specific sequences, such as CPMG, UDD or KDD, can be tailored to optimize T2. Here we combine hyperpolarization techniques and dynamical decoupling sequences to extend the T2 of 13C nuclear spins in nanodiamond by three orders of magnitude.

  20. Charge-exchange breakup of the deuteron with the production of two protons and spin structure of the amplitude of the nucleon charge transfer reaction

    International Nuclear Information System (INIS)

    Glagolev, V.V.; Lyuboshits, V.L.; Lyuboshits, V.V.; Piskunov, N.M.

    1999-01-01

    In the framework of the impulse approximation, the relation between the effective cross section of the charge-exchange breakup of a fast deuteron d + a → (pp) + b and the effective cross section of the charge transfer process n + a → p + b is discussed. In doing so, the effects of the proton identity (Fermi-statistics) and of the Coulomb and strong interactions of protons in the final state are taken into account. The distribution over relative momenta of the protons, produced in the charge-exchange process d + p → (pp) + n in the forward direction, is investigated. At the transfer momenta being close to zero the effective cross section of the charge-exchange breakup of a fast deuteron, colliding with the proton target, is determined only by the spin-flip part of the amplitude of the charge transfer reaction n + p → p + n at the zero angle. It is shown that the study of the process d + p → (pp) + n in a beam of the polarized (aligned) deuterons allows one, in principle, to separate two spin-dependent terms in the amplitude of the charge transfer reaction n + p → p + n, one of which does not conserve and the other one conserves the projection of the nucleon spin onto the direction of momentum at the transition of the neutron into the proton

  1. Interfacial spin-orbit splitting and current-driven spin torque in anisotropic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2011-05-17

    Spin transport in magnetic tunnel junctions comprising a single magnetic layer in the presence of interfacial spin-orbit interaction (SOI) is investigated theoretically. Due to the presence of interfacial SOI, a current-driven spin torque can be generated at the second order in SOI, even in the absence of an external spin polarizer. This torque possesses two components, one in plane and one perpendicular to the plane of rotation, that can induce either current-driven magnetization switching from an in-plane to out-of-plane configuration or magnetization precessions, similar to spin transfer torque in spin valves. Consequently, it appears that it is possible to control the magnetization steady state and dynamics by either varying the bias voltage or electrically modifying the SOI at the interface.

  2. Thulium doped crystals for quantum information storage

    Energy Technology Data Exchange (ETDEWEB)

    Lauro, R., E-mail: romain.lauro@lac.u-psud.f [Laboratoire Aime Cotton, CNRS-UPR 3321, Univ Paris Sud, Batiment 505, 91405 Orsay cedex (France); Ruggiero, J.; Louchet, A.; Alexander, A.; Chaneliere, T.; Lorgere, I.; Bretenaker, F.; Goldfarb, F.; Le Gouet, J.-L. [Laboratoire Aime Cotton, CNRS-UPR 3321, Univ Paris Sud, Batiment 505, 91405 Orsay cedex (France)

    2009-12-15

    Optically driving nuclear spin waves in a Tm:YAG crystal, we experimentally demonstrate the feasibility of a three-level {Lambda} system in this material, which is a foundation step in the prospect of quantum memory investigations. Varying the spin state splitting with an external magnetic field, we show that the nuclear spin coherence lifetime remains close to 350mus over a wide range of variation of this splitting. Finally, we demonstrate fast coherent population transfer between the spin states.

  3. An endohedral fullerene-based nuclear spin quantum computer

    International Nuclear Information System (INIS)

    Ju Chenyong; Suter, Dieter; Du Jiangfeng

    2011-01-01

    We propose a new scalable quantum computer architecture based on endohedral fullerene molecules. Qubits are encoded in the nuclear spins of the endohedral atoms, which posses even longer coherence times than the electron spins which are used as the qubits in previous proposals. To address the individual qubits, we use the hyperfine interaction, which distinguishes two modes (active and passive) of the nuclear spin. Two-qubit quantum gates are effectively implemented by employing the electronic dipolar interaction between adjacent molecules. The electron spins also assist in the qubit initialization and readout. Our architecture should be significantly easier to implement than earlier proposals for spin-based quantum computers, such as the concept of Kane [B.E. Kane, Nature 393 (1998) 133]. - Research highlights: → We propose an endohedral fullerene-based scalable quantum computer architecture. → Qubits are encoded on nuclear spins, while electron spins serve as auxiliaries. → Nuclear spins are individually addressed using the hyperfine interaction. → Two-qubit gates are implemented through the medium of electron spins.

  4. Magnetic resonance findings in amyotrophic lateral sclerosis using a spin echo magnetization transfer sequence: preliminary report

    Directory of Open Access Journals (Sweden)

    ROCHA ANTÔNIO JOSÉ DA

    1999-01-01

    Full Text Available We present the magnetic resonance (MR findings of five patients with amyotrophic lateral sclerosis (ALS using a spin-echo sequence with an additional magnetization transfer (MT pulse on T1-weighted images (T1 SE/MT. These findings were absent in the control group and consisted of hyperintensity of the corticospinal tract. Moreover we discuss the principles and the use of this fast but simple MR technique in the diagnosis of ALS

  5. Spin transport anisotropy in (110)GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Odilon, D.D.C. Jr.; Rudolph, Joerg; Hey, Rudolf; Santos, Paulo V. [Paul-Drude-Institut fuer Festkoerperelektronik, Berlin (Germany); Iikawa, Fernando [Universidade Estadual de Campinas, IFGW, Campinas SP (Brazil)

    2007-07-01

    Mobile piezoelectric potentials are used to coherently transport electron spins in GaAs(110) quantum wells (QW) over distances exceeding 60{mu}m. We demonstrate that the dynamics of mobile spins under external magnetic fields depends on the direction of motion in the QW plane. The weak piezoelectric fields impart a non-vanishing average velocity to the carriers, allowing for the direct observation of the carrier momentum dependence of the spin polarization dynamics. While transport along [001] direction presents high in-plane spin relaxation rates, transport along [ anti 110] shows a much weaker external field dependence due to the non-vanishing internal magnetic field. We show that the anisotropy is an intrinsic property of the underling GaAs matrix, associated with the bulk inversion asymmetry contribution to the LS-coupling.

  6. Modeling and simulation of spin-polarized transport at the kinetic and diffusive level

    International Nuclear Information System (INIS)

    Possanner, S.

    2012-01-01

    The aim of this thesis is to contribute to the understanding of spin-induced phenomena in electron motion. These phenomena arise when electrons move through a (partially) magnetic environment, in such a way that its magnetic moment (spin) may interact with the surroundings. The pure quantum nature of the spin requires transport models that deal with effects like quantum coherence, entanglement (correlation) and quantum dissipation. On the meso- and macroscopic level it is not yet clear under which circumstances these quantum effects may transpire. The purpose of this work is, on the one hand, to derive novel spin transport models from basic principles and, on the other hand, to develop numerical algorithms that allow for a solution of these new and other existing model equations. The thesis consists of four parts. The first part comprises an overview of fundamental spin-related concepts in electronic transport such as the giant-magneto-resistance (GMR) effect, the spin-transfer torque in metallic magnetic multilayers and the matrix-character of transport equations that take spin-coherent electron states into account. In particular, we consider the diffusive Zhang-Levy-Fert (ZLF) model, an exchange-torque model that consists of the Landau-Lifshitz equation and a heuristic matrix spin-diffusion equation. A finite difference scheme based on Strang operator splitting is developed that enables a numerical, self-consistent solution of this non-linear system within multilayer structures. Finally, the model is tested by comparison of numerical results to recent experimental data. In part two we propose a matrix-Boltzmann equation that allows for the description of spin-coherent electron transport on a kinetic level. The novelty here is a linear collision operator in which the transition rates from momentum k to momentum k' are modeled by a 2x2 Hermitian matrix; hence the mean-free paths of spin-up and spin-down electrons are represented by the eigenvalues of this

  7. A novel macro-model for spin-transfer-torque based magnetic-tunnel-junction elements

    Science.gov (United States)

    Lee, Seungyeon; Lee, Hyunjoo; Kim, Sojeong; Lee, Seungjun; Shin, Hyungsoon

    2010-04-01

    Spin-transfer-torque (STT) switching in magnetic-tunnel-junction (MTJ) has important merits over the conventional field induced magnetic switching (FIMS) MRAM in avoiding half-select problem, and improving scalability and selectivity. Design of MRAM circuitry using STT-based MTJ elements requires an accurate circuit model which exactly emulates the characteristics of an MTJ in a circuit simulator such as HSPICE. This work presents a novel macro-model that fully emulates the important characteristics of STT-based MTJ. The macro-model is realized as a three terminal sub-circuit that reproduces asymmetric resistance versus current (R-I) characteristics and temperature dependence of R-I hysteresis of STT-based MTJ element.

  8. Evaluation of jaw and neck muscle activities while chewing using EMG-EMG transfer function and EMG-EMG coherence function analyses in healthy subjects.

    Science.gov (United States)

    Ishii, Tomohiro; Narita, Noriyuki; Endo, Hiroshi

    2016-06-01

    This study aims to quantitatively clarify the physiological features in rhythmically coordinated jaw and neck muscle EMG activities while chewing gum using EMG-EMG transfer function and EMG-EMG coherence function analyses in 20 healthy subjects. The chewing side masseter muscle EMG signal was used as the reference signal, while the other jaw (non-chewing side masseter muscle, bilateral anterior temporal muscles, and bilateral anterior digastric muscles) and neck muscle (bilateral sternocleidomastoid muscles) EMG signals were used as the examined signals in EMG-EMG transfer function and EMG-EMG coherence function analyses. Chewing-related jaw and neck muscle activities were aggregated in the first peak of the power spectrum in rhythmic chewing. The gain in the peak frequency represented the power relationships between jaw and neck muscle activities during rhythmic chewing. The phase in the peak frequency represented the temporal relationships between the jaw and neck muscle activities, while the non-chewing side neck muscle presented a broad range of distributions across jaw closing and opening phases. Coherence in the peak frequency represented the synergistic features in bilateral jaw closing muscles and chewing side neck muscle activities. The coherence and phase in non-chewing side neck muscle activities exhibited a significant negative correlation. From above, the bilateral coordination between the jaw and neck muscle activities is estimated while chewing when the non-chewing side neck muscle is synchronously activated with the jaw closing muscles, while the unilateral coordination is estimated when the non-chewing side neck muscle is irregularly activated in the jaw opening phase. Thus, the occurrence of bilateral or unilateral coordinated features in the jaw and neck muscle activities may correspond to the phase characteristics in the non-chewing side neck muscle activities during rhythmical chewing. Considering these novel findings in healthy subjects, EMG

  9. Coupling spin qubits via superconductors

    DEFF Research Database (Denmark)

    Leijnse, Martin; Flensberg, Karsten

    2013-01-01

    We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed...... Andreev reflection. This induces a gate-controlled singlet-triplet splitting which, with an appropriate superconductor geometry, remains large for dot separations within the superconducting coherence length. Furthermore, we show that when two double-dot singlet-triplet qubits are tunnel coupled...... to a superconductor with finite charging energy, crossed Andreev reflection enables a strong two-qubit coupling over distances much larger than the coherence length....

  10. Electron spin relaxation enhancement measurements of interspin distances in human, porcine, and Rhodobacter electron transfer flavoprotein ubiquinone oxidoreductase (ETF QO)

    Science.gov (United States)

    Fielding, Alistair J.; Usselman, Robert J.; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.

    2008-02-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S] 2+,1+ cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S] + cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S] + between 8 and 18 K and for semiquinone between 25 and 65 K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S] + were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S] + and obtain point-dipole interspin distances of 18.6 ± 1 Å for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.

  11. Electron spin relaxation enhancement measurements of interspin distances in human, porcine, and Rhodobacter electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO).

    Science.gov (United States)

    Fielding, Alistair J; Usselman, Robert J; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E; Eaton, Gareth R; Eaton, Sandra S

    2008-02-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S](2+,1+) cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S](+) cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S](+) between 8 and 18K and for semiquinone between 25 and 65K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S](+) were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S](+) and obtain point-dipole interspin distances of 18.6+/-1A for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.

  12. Nanoscale Measurements of Magnetism & Spin Coherence in Semiconductors

    Science.gov (United States)

    2015-12-17

    SECURITY CLASSIFICATION OF: Under this grant, we have developed state of the art scanning tunneling microscope (STM) instrumentation that is able to...Under this grant, we have developed state of the art scanning tunneling microscope (STM) instrumentation that is able to characterize spin information...L. Urban, A. Gyneis, S. C. J. Kingsley, H. Jones,, A. Yazdani. Design and performance of an ultra-high vacuum scanning tunneling microscope

  13. Mechanisms of relaxation and spin decoherence in nanomagnets

    Science.gov (United States)

    van Tol, Johan

    Relaxation in spin systems is of great interest with respect to various possible applications like quantum information processing and storage, spintronics, and dynamic nuclear polarization (DNP). The implementation of high frequencies and fields is crucial in the study of systems with large zero-field splitting or large interactions, as for example molecular magnets and low dimensional magnetic materials. Here we will focus on the implementation of pulsed Electron Paramagnetic Resonance (ERP) at multiple frequencies of 10, 95, 120, 240, and 336 GHz, and the relaxation and decoherence processes as a function of magnetic field and temperature. Firstly, at higher frequencies the direct single-phonon spin-lattice relaxation (SLR) is considerably enhanced, and will more often than not be the dominant relaxation mechanism at low temperatures, and can be much faster than at lower fields and frequencies. In principle the measurement of the SLR rates as a function of the frequency provides a means to map the phonon density of states. Secondly, the high electron spin polarization at high fields has a strong influence on the spin fluctuations in relatively concentrated spin systems, and the contribution of the electron-electron dipolar interactions to the coherence rate can be partially quenched at low temperatures. This not only allows the study of relatively concentrated spin systems by pulsed EPR (as for example magnetic nanoparticles and molecular magnets), it enables the separation of the contribution of the fluctuations of the electron spin system from other decoherence mechanisms. Besides choice of temperature and field, several strategies in sample design, pulse sequences, or clock transitions can be employed to extend the coherence time in nanomagnets. A review will be given of the decoherence mechanisms with an attempt at a quantitative comparison of experimental rates with theory.

  14. Multiple-Quantum Transitions and Charge-Induced Decoherence of Donor Nuclear Spins in Silicon

    Science.gov (United States)

    Franke, David P.; Pflüger, Moritz P. D.; Itoh, Kohei M.; Brandt, Martin S.

    2017-06-01

    We study single- and multiquantum transitions of the nuclear spins of an ensemble of ionized arsenic donors in silicon and find quadrupolar effects on the coherence times, which we link to fluctuating electrical field gradients present after the application of light and bias voltage pulses. To determine the coherence times of superpositions of all orders in the 4-dimensional Hilbert space, we use a phase-cycling technique and find that, when electrical effects were allowed to decay, these times scale as expected for a fieldlike decoherence mechanism such as the interaction with surrounding Si 29 nuclear spins.

  15. Resonant coherent quantum tunneling of the magnetization of spin-½ systems : Spin-parity effects

    NARCIS (Netherlands)

    García-Pablos, D.; García, N.; Raedt, H. De

    1997-01-01

    We perform quantum dynamical calculations to study the reversal of the magnetization for systems of a few spin-½ particles with a general biaxial anisotropy in the presence of an external magnetic field at T=0 and with no dissipation. Collective quantum tunneling of the magnetization is demonstrated

  16. Spin tunnelling in mesoscopic systems

    Science.gov (United States)

    Garg, Anupam

    2001-02-01

    We study spin tunnelling in molecular magnets as an instance of a mesoscopic phenomenon, with special emphasis on the molecule Fe8. We show that the tunnel splitting between various pairs of Zeeman levels in this molecule oscillates as a function of applied magnetic field, vanishing completely at special points in the space of magnetic fields, known as diabolical points. This phenomena is explained in terms of two approaches, one based on spin-coherent-state path integrals, and the other on a generalization of the phase integral (or WKB) method to difference equations. Explicit formulas for the diabolical points are obtained for a model Hamiltonian.

  17. Optimal control of population and coherence in three-level Λ systems

    Science.gov (United States)

    Kumar, Praveen; Malinovskaya, Svetlana A.; Malinovsky, Vladimir S.

    2011-08-01

    Optimal control theory (OCT) implementations for an efficient population transfer and creation of maximum coherence in a three-level system are considered. We demonstrate that the half-stimulated Raman adiabatic passage scheme for creation of the maximum Raman coherence is the optimal solution according to the OCT. We also present a comparative study of several implementations of OCT applied to the complete population transfer and creation of the maximum coherence. Performance of the conjugate gradient method, the Zhu-Rabitz method and the Krotov method has been analysed.

  18. Optimal control of population and coherence in three-level Λ systems

    International Nuclear Information System (INIS)

    Kumar, Praveen; Malinovskaya, Svetlana A; Malinovsky, Vladimir S

    2011-01-01

    Optimal control theory (OCT) implementations for an efficient population transfer and creation of maximum coherence in a three-level system are considered. We demonstrate that the half-stimulated Raman adiabatic passage scheme for creation of the maximum Raman coherence is the optimal solution according to the OCT. We also present a comparative study of several implementations of OCT applied to the complete population transfer and creation of the maximum coherence. Performance of the conjugate gradient method, the Zhu-Rabitz method and the Krotov method has been analysed.

  19. Spin-wave utilization in a quantum computer

    Science.gov (United States)

    Khitun, A.; Ostroumov, R.; Wang, K. L.

    2001-12-01

    We propose a quantum computer scheme using spin waves for quantum-information exchange. We demonstrate that spin waves in the antiferromagnetic layer grown on silicon may be used to perform single-qubit unitary transformations together with two-qubit operations during the cycle of computation. The most attractive feature of the proposed scheme is the possibility of random access to any qubit and, consequently, the ability to recognize two qubit gates between any two distant qubits. Also, spin waves allow us to eliminate the use of a strong external magnetic field and microwave pulses. By estimate, the proposed scheme has as high as 104 ratio between quantum system coherence time and the time of a single computational step.

  20. Quantum spin transport in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Christoph

    2012-05-15

    In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.

  1. Quantum spin transport in semiconductor nanostructures

    International Nuclear Information System (INIS)

    Schindler, Christoph

    2012-01-01

    In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.

  2. Measurement of the Longitudinal Spin Transfer to Lambda and Anti-Lambda Hyperons in Polarised Muon DIS

    CERN Document Server

    Alekseev, M.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Austregesilo, A.; Badelek, B.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.P.; Chapiro, A.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Crespo, M.L.; Dalla Torre, S.; Dafni, T.; Das, S.; Dasgupta, S.S.; Denisov, O.Yu.; Dhara, L.; Diaz, V.; Dinkelbach, A.M.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.Jr.; Fischer, H.; Franco, C.; Friedrich, J.M.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gazda, R.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Grabmuller, S.; Grajek, O.A.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Haas, F.; von Harrach, D.; Hasegawa, T.; Heckmann, J.; Heinsius, F.H.; Hermann, M.; Hermann, R.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Hoppner, Ch.; d'Hose, N.; Ilgner, C.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iven, B.; Iwata, T.; Jahn, R.; Jasinski, P.; Jegou, G.; Joosten, R.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, K.; Konopka, R.; Konorov, I.; Konstantinov, V.F.; Korzenev, A.; Kotzinian, A.M.; Kouznetsov, O.; Kowalik, K.; Kramer, M.; Kral, A.; Kroumchtein, Z.V.; Kuhn, R.; Kunne, F.; Kurek, K.; Le Goff, J.M.; Lednev, A.A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Mann, A.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Massmann, F.; Matsuda, T.; Maximov, A.N.; Meyer, W.; Michigami, T.; Mikhailov, Yu.V.; Moinester, M.A.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nassalski, J.; Negrini, S.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pawlukiewicz-Kaminska, B.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.V.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pontecorvo, G.; Pretz, J.; Quintans, C.; Rajotte, J.F.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Reggiani, D.; Richter, A.; Robinet, F.; Rocco, E.; Rondio, E.; Ryabchikov, D.I.; Samoylenko, V.D.; Sandacz, A.; Santos, H.; Sapozhnikov, M.G.; Sarkar, S.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schmitt, L.; Schroder, W.; Shevchenko, O.Yu.; Siebert, H.W.; Silva, L.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sosio, S.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Sulej, R.; Takekawa, S.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Venugopal, G.; Virius, M.; Vlassov, N.V.; Vossen, A.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zemlyanichkina, E.; Ziembicki, M.; Zhao, J.; Zhuravlev, N.; Zvyagin, A.

    2009-01-01

    The longitudinal polarisation transfer from muons to lambda and anti-lambda hyperons, D_LL, has been studied in deep inelastic scattering off an unpolarised isoscalar target at the COMPASS experiment at CERN. The spin transfers to lambda and anti-lambda produced in the current fragmentation region exhibit different behaviours as a function of x and xF . The measured x and xF dependences of D^lambda_LL are compatible with zero, while D^anti-lambda_LL tends to increase with xF, reaching values of 0.4 - 0.5. The resulting average values are D^lambda_LL = -0.012 +- 0.047 +- 0.024 and D^anti-lambda_LL = 0.249 +- 0.056 +- 0.049. These results are discussed in the frame of recent model calculations.

  3. Dependences of the Tunnel Magnetoresistance and Spin Transfer Torque on the Sizes and Concentration of Nanoparticles in Magnetic Tunnel Junctions

    Science.gov (United States)

    Esmaeili, A. M.; Useinov, A. N.; Useinov, N. Kh.

    2018-01-01

    Dependences of the tunnel magnetoresistance and in-plane component of the spin transfer torque on the applied voltage in a magnetic tunnel junction have been calculated in the approximation of ballistic transport of conduction electrons through an insulating layer with embedded magnetic or nonmagnetic nanoparticles. A single-barrier magnetic tunnel junction with a nanoparticle embedded in an insulator forms a double-barrier magnetic tunnel junction. It has been shown that the in-plane component of the spin transfer torque in the double-barrier magnetic tunnel junction can be higher than that in the single-barrier one at the same thickness of the insulating layer. The calculations show that nanoparticles embedded in the tunnel junction increase the probability of tunneling of electrons, create resonance conditions, and ensure the quantization of the conductance in contrast to the tunnel junction without nanoparticles. The calculated dependences of the tunnel magnetoresistance correspond to experimental data demonstrating peak anomalies and suppression of the maximum magnetoresistances at low voltages.

  4. A spin exchange model for singlet fission

    Science.gov (United States)

    Yago, Tomoaki; Wakasa, Masanobu

    2018-03-01

    Singlet fission has been analyzed with the Dexter model in which electron exchange occurs between chromophores, conserving the spin for each electron. In the present study, we propose a spin exchange model for singlet fission. In the spin exchange model, spins are exchanged by the exchange interaction between two electrons. Our analysis with simple spin functions demonstrates that singlet fission is possible by spin exchange. A necessary condition for spin exchange is a variation in exchange interactions. We also adapt the spin exchange model to triplet fusion and triplet energy transfer, which often occur after singlet fission in organic solids.

  5. Hybrid Circuit Quantum Electrodynamics: Coupling a Single Silicon Spin Qubit to a Photon

    Science.gov (United States)

    2015-01-01

    776 (2008). 14. M. Pioro-Ladriere, Y. Tokura, T. Obata, T. Kubo , S. Tarucha, Micromagnets for coherent control of spin-charge qubit in lateral...slanting Zeeman field. Phys. Rev. Lett. 96, 047202 (2006). 16. Y. Kubo et al., Strong coupling of a spin ensemble to a superconducting resonator. Phys

  6. Exact solution of the mixed spin-1/2 and spin-S Ising-Heisenberg diamond chain

    Directory of Open Access Journals (Sweden)

    L. Čanová

    2009-01-01

    Full Text Available The geometric frustration in a class of the mixed spin-1/2 and spin-S Ising-Heisenberg diamond chains is investigated by combining three exact analytical techniques: Kambe projection method, decoration-iteration transformation and transfer-matrix method. The ground state, the magnetization process and the specific heat as a function of the external magnetic field are particularly examined for different strengths of the geometric frustration. It is shown that the increase of the Heisenberg spin value S raises the number of intermediate magnetization plateaux, which emerge in magnetization curves provided that the ground state is highly degenerate on behalf of a sufficiently strong geometric frustration. On the other hand, all intermediate magnetization plateaux merge into a linear magnetization versus magnetic field dependence in the limit of classical Heisenberg spin S → ∞. The enhanced magnetocaloric effect with cooling rate exceeding the one of paramagnetic salts is also detected when the disordered frustrated phase constitutes the ground state and the external magnetic field is small enough.

  7. Quantum control and coherence of interacting spins in diamond

    NARCIS (Netherlands)

    De Lange, G.

    2012-01-01

    The field of quantum science and technology has generated many ideas for new revolutionary devices that exploit the quantum mechanical properties of small-scale systems. Isolated solid state spins play a large role in quantum technologies. They can be used as basic building blocks for a quantum

  8. Spin Current Switching and Spin-Filtering Effects in Mn-Doped Boron Nitride Nanoribbons

    Directory of Open Access Journals (Sweden)

    G. A. Nemnes

    2012-01-01

    Full Text Available The spin transport properties are investigated by means of the first principle approach for boron nitride nanoribbons with one or two substitutional Mn impurities, connected to graphene electrodes. The spin current polarization is evaluated using the nonequilibrium Green’s function formalism for each structure and bias. The structure with one Mn impurity reveals a transfer characteristics suitable for a spin current switch. In the case of two Mn impurities, the system behaves as an efficient spin-filter device, independent on the ferromagnetic or antiferromagnetic configurations of the magnetic impurities. The experimental availability of the building blocks as well as the magnitudes of the obtained spin current polarizations indicates a strong potential of the analyzed structures for future spintronic devices.

  9. Heat transfer in the spin-boson model: a comparative study in the incoherent tunneling regime.

    Science.gov (United States)

    Segal, Dvira

    2014-07-01

    We study the transfer of heat in the nonequilibrium spin-boson model with an Ohmic dissipation. In the nonadiabatic limit we derive a formula for the thermal conductance based on a rate equation formalism at the level of the noninteracting blip approximation, valid for temperatures T>T(K), with T(K) as the Kondo temperature. We evaluate this expression analytically assuming either weak or strong couplings, and demonstrate that our results agree with exact relations. Far-from-equilibrium situations are further examined, showing a close correspondence to the linear response limit.

  10. Nuclear spin-lattice relaxation in nitroxide spin-label EPR.

    Science.gov (United States)

    Marsh, Derek

    2016-11-01

    Nuclear relaxation is a sensitive monitor of rotational dynamics in spin-label EPR. It also contributes competing saturation transfer pathways in T 1 -exchange spectroscopy, and the determination of paramagnetic relaxation enhancement in site-directed spin labelling. A survey shows that the definition of nitrogen nuclear relaxation rate W n commonly used in the CW-EPR literature for 14 N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14 N spin-lattice relaxation rate, b=W n /(2W e ), preserves the expressions used for CW-EPR, whilst rendering them consistent with expressions for saturation recovery rates in pulsed EPR. Furthermore, values routinely quoted for nuclear relaxation times that are deduced from EPR spectral diffusion rates in 14 N-nitroxyl spin labels do not accord with conventional analysis of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14 N-relaxation: T 1 n =1/W n . Results are compared and contrasted with those for the two-level 15 N-nitroxide system. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics

    Science.gov (United States)

    Wang, Chen; Ren, Jie; Cao, Jianshu

    2017-02-01

    To study the full counting statistics of quantum heat transfer in a driven nonequilibrium spin-boson model, we develop a generalized nonequilibrium polaron-transformed Redfield equation with an auxiliary counting field. This enables us to study the impact of qubit-bath coupling ranging from weak to strong regimes. Without external modulations, we observe maximal values of both steady-state heat flux and noise power in moderate coupling regimes, below which we find that these two transport quantities are enhanced by the finite-qubit-energy bias. With external modulations, the geometric-phase-induced heat flux shows a monotonic decrease upon increasing the qubit-bath coupling at zero qubit energy bias (without bias). While under the finite-qubit-energy bias (with bias), the geometric-phase-induced heat flux exhibits an interesting reversal behavior in the strong coupling regime. Our results unify the seemingly contradictory results in weak and strong qubit-bath coupling regimes and provide detailed dissections for the quantum fluctuation of nonequilibrium heat transfer.

  12. Nonequilibrium ensembles. 3. Spin 1/2 paramagnets

    International Nuclear Information System (INIS)

    Sobouti, Y.; Khajeh-Pour, M.R.H.

    1990-07-01

    The thermodynamic state of a paramagnetic substance in which the spin vectors precess coherently is investigated. The state is a time dependent one. The corresponding density matrix and the thermodynamics emerging from it is worked out. A laboratory preparation of such a system is discussed. (author). 3 refs

  13. Knitting distributed cluster-state ladders with spin chains

    Energy Technology Data Exchange (ETDEWEB)

    Ronke, R.; D' Amico, I. [Department of Physics, University of York, York YO10 5DD, United Kingdom. (United Kingdom); Spiller, T. P. [School of Physics and Astronomy, E C Stoner Building, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2011-09-15

    Recently there has been much study on the application of spin chains to quantum state transfer and communication. Here we discuss the utilization of spin chains (set up for perfect quantum state transfer) for the knitting of distributed cluster-state structures, between spin qubits repeatedly injected and extracted at the ends of the chain. The cluster states emerge from the natural evolution of the system across different excitation number sectors. We discuss the decohering effects of errors in the injection and extraction process as well as the effects of fabrication and random errors.

  14. Knitting distributed cluster-state ladders with spin chains

    International Nuclear Information System (INIS)

    Ronke, R.; D'Amico, I.; Spiller, T. P.

    2011-01-01

    Recently there has been much study on the application of spin chains to quantum state transfer and communication. Here we discuss the utilization of spin chains (set up for perfect quantum state transfer) for the knitting of distributed cluster-state structures, between spin qubits repeatedly injected and extracted at the ends of the chain. The cluster states emerge from the natural evolution of the system across different excitation number sectors. We discuss the decohering effects of errors in the injection and extraction process as well as the effects of fabrication and random errors.

  15. Minimal model of spin-transfer torque and spin pumping caused by the spin Hall Effect

    Czech Academy of Sciences Publication Activity Database

    Chen, W.; Sigrist, M.; Sinova, Jairo; Manske, D.

    2016-01-01

    Roč. 115, č. 21 (2016), 1-5, č. článku 217203. ISSN 0031-9007 Institutional support: RVO:68378271 Keywords : spintronics * spin Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 8.462, year: 2016

  16. PREFACE: Spin Electronics

    Science.gov (United States)

    Dieny, B.; Sousa, R.; Prejbeanu, L.

    2007-04-01

    Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic

  17. Observation of the Spin Peltier Effect for Magnetic Insulators

    NARCIS (Netherlands)

    Flipse, J.; Dejene, F.K.; Wagenaar, D.; Bauer, G.E.W.; Ben Youssef, J.; Van Wees, B.J.

    2014-01-01

    We report the observation of the spin Peltier effect (SPE) in the ferrimagnetic insulator yttrium iron garnet (YIG), i.e., a heat current generated by a spin current flowing through a platinum (Pt)|YIG interface. The effect can be explained by the spin transfer torque that transforms the spin

  18. Probing Proton Spin Structure: A Measurement of g2 at Four-momentum Transfer of 2 to 6 GeV2

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, James [Univ. of Virginia, Charlottesville, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2011-12-01

    The Spin Asymmetries of the Nucleon Experiment investigated the spin structure of the proton via inclusive electron scattering at the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory in Newport News, VA. A double-polarization measurement of polarized asymmetries was performed using the University of Virginia solid polarized ammonia target with target polarization aligned longitudinal and near transverse to the electron beam, allowing the extraction of the spin asymmetries A1 and A2, and spin structure functions g1 and g2. Polarized electrons of energies of 4.7 and 5.9 GeV were scattered to be viewed by a novel, non-magnetic array of detectors observing a four-momentum transfer range of 2 to 6 GeV2. This document addresses the extraction of the spin asymmetries and spin structure functions, with a focus on spin structure function g2, which we have measured as a function of x and W in four Q2 bins.

  19. Quantum Coherence, Time-Translation Symmetry, and Thermodynamics

    Directory of Open Access Journals (Sweden)

    Matteo Lostaglio

    2015-04-01

    Full Text Available The first law of thermodynamics imposes not just a constraint on the energy content of systems in extreme quantum regimes but also symmetry constraints related to the thermodynamic processing of quantum coherence. We show that this thermodynamic symmetry decomposes any quantum state into mode operators that quantify the coherence present in the state. We then establish general upper and lower bounds for the evolution of quantum coherence under arbitrary thermal operations, valid for any temperature. We identify primitive coherence manipulations and show that the transfer of coherence between energy levels manifests irreversibility not captured by free energy. Moreover, the recently developed thermomajorization relations on block-diagonal quantum states are observed to be special cases of this symmetry analysis.

  20. The origins of macroscopic quantum coherence in high temperature superconductivity

    International Nuclear Information System (INIS)

    Turner, Philip; Nottale, Laurent

    2015-01-01

    Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new

  1. Non-equilibrium coherence dynamics in one-dimensional Bose gases

    DEFF Research Database (Denmark)

    Hofferberth, S.; Lesanovsky, Igor; Fischer, B.

    2007-01-01

    Low-dimensional systems provide beautiful examples of many-body quantum physics. For one-dimensional (1D) systems, the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regimes. However......, the coherence factor is observed to approach a non-zero equilibrium value, as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase-locking two lasers by injection. The non-equilibrium dynamics of superfluids has an important role in a wide...... range of physical systems, such as superconductors, quantum Hall systems, superfluid helium and spin systems. Our experiments studying coherence dynamics show that 1D Bose gases are ideally suited for investigating this class of phenomena....

  2. Stochasticity induced by coherent wavepackets

    International Nuclear Information System (INIS)

    Fuchs, V.; Krapchev, V.; Ram, A.; Bers, A.

    1983-02-01

    We consider the momentum transfer and diffusion of electrons periodically interacting with a coherent longitudinal wavepacket. Such a problem arises, for example, in lower-hybrid current drive. We establish the stochastic threshold, the stochastic region δv/sub stoch/ in velocity space, the associated momentum transfer j, and the diffusion coefficient D. We concentrate principally on the weak-field regime, tau/sub autocorrelation/ < tau/sub bounce/

  3. Vector spin modeling for magnetic tunnel junctions with voltage dependent effects

    International Nuclear Information System (INIS)

    Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A.

    2014-01-01

    Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects

  4. Observation of the spin Nernst effect

    Science.gov (United States)

    Meyer, S.; Chen, Y.-T.; Wimmer, S.; Althammer, M.; Wimmer, T.; Schlitz, R.; Geprägs, S.; Huebl, H.; Ködderitzsch, D.; Ebert, H.; Bauer, G. E. W.; Gross, R.; Goennenwein, S. T. B.

    2017-10-01

    The observation of the spin Hall effect triggered intense research on pure spin current transport. With the spin Hall effect, the spin Seebeck effect and the spin Peltier effect already observed, our picture of pure spin current transport is almost complete. The only missing piece is the spin Nernst (-Ettingshausen) effect, which so far has been discussed only on theoretical grounds. Here, we report the observation of the spin Nernst effect. By applying a longitudinal temperature gradient, we generate a pure transverse spin current in a Pt thin film. For readout, we exploit the magnetization-orientation-dependent spin transfer to an adjacent yttrium iron garnet layer, converting the spin Nernst current in Pt into a controlled change of the longitudinal and transverse thermopower voltage. Our experiments show that the spin Nernst and the spin Hall effect in Pt are of comparable magnitude, but differ in sign, as corroborated by first-principles calculations.

  5. Coherence and stiffness of spin waves in diluted ferromagnets

    Czech Academy of Sciences Publication Activity Database

    Turek, Ilja; Kudrnovský, Josef; Drchal, Václav

    2016-01-01

    Roč. 94, č. 17 (2016), č. článku 174447. ISSN 2469-9950 R&D Projects: GA ČR GA15-13436S Institutional support: RVO:68081723 ; RVO:68378271 Keywords : spin wave s * diluted ferromagnets * disordered systems Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016

  6. NV Diamond Micro-Magnetometer Baseline Studies

    Science.gov (United States)

    2009-08-12

    to define circular masks of diameters ranging from 100-250nm on the surface. An anisotropic etch was used to transfer the pattern into the crystal...between NV and nearby 13C. (b) Pulse sequence for transfer of electron spin coherence to nuclear spin and repetitive readout. (c) Cumulative Rabi

  7. Effects of Confinement on Conventional Spin Problems

    DEFF Research Database (Denmark)

    Marchukov, Oleksandr

    2015-01-01

    In recent years quantum simulations in cold-atom set-ups has attracted a lot of interest both from experimental and theoretical research groups around the world. Unprecedented level of control over physical systems allowed one to investigate rather peculiar models, such as artificial gauge fields...... to the quantum signa- tures of chaos are discussed. The second part of the dissertation is concerned with quantum state transfer in one-dimensional spin chains. The properties required to achieve conditional state transfer, i.e. “allowing” or “blocking” of state transfer depending on the parameters of the spin...... chain, are discussed....

  8. Controlled enhancement of spin-current emission by three-magnon splitting.

    Science.gov (United States)

    Kurebayashi, Hidekazu; Dzyapko, Oleksandr; Demidov, Vladislav E; Fang, Dong; Ferguson, A J; Demokritov, Sergej O

    2011-07-03

    Spin currents--the flow of angular momentum without the simultaneous transfer of electrical charge--play an enabling role in the field of spintronics. Unlike the charge current, the spin current is not a conservative quantity within the conduction carrier system. This is due to the presence of the spin-orbit interaction that couples the spin of the carriers to angular momentum in the lattice. This spin-lattice coupling acts also as the source of damping in magnetic materials, where the precessing magnetic moment experiences a torque towards its equilibrium orientation; the excess angular momentum in the magnetic subsystem flows into the lattice. Here we show that this flow can be reversed by the three-magnon splitting process and experimentally achieve the enhancement of the spin current emitted by the interacting spin waves. This mechanism triggers angular momentum transfer from the lattice to the magnetic subsystem and modifies the spin-current emission. The finding illustrates the importance of magnon-magnon interactions for developing spin-current based electronics.

  9. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.

    Science.gov (United States)

    Hatef, Ali; Sadeghi, Seyed M; Fortin-Deschênes, Simon; Boulais, Etienne; Meunier, Michel

    2013-03-11

    It is well-known that optical properties of semiconductor quantum dots can be controlled using optical cavities or near fields of localized surface plasmon resonances (LSPRs) of metallic nanoparticles. In this paper we study the optics, energy transfer pathways, and exciton states of quantum dots when they are influenced by the near fields associated with plasmonic meta-resonances. Such resonances are formed via coherent coupling of excitons and LSPRs when the quantum dots are close to metallic nanorods and driven by a laser beam. Our results suggest an unprecedented sensitivity to the refractive index of the environment, causing significant spectral changes in the Förster resonance energy transfer from the quantum dots to the nanorods and in exciton transition energies. We demonstrate that when a quantum dot-metallic nanorod system is close to its plasmonic meta-resonance, we can adjust the refractive index to: (i) control the frequency range where the energy transfer from the quantum dot to the metallic nanorod is inhibited, (ii) manipulate the exciton transition energy shift of the quantum dot, and (iii) disengage the quantum dot from the metallic nanoparticle and laser field. Our results show that near meta-resonances the spectral forms of energy transfer and exciton energy shifts are strongly correlated to each other.

  10. Landau-Zener-Stückelberg Interferometry of a Single Electronic Spin in a Noisy Environment

    Directory of Open Access Journals (Sweden)

    Pu Huang

    2011-08-01

    Full Text Available We demonstrate quantum coherent control of single electronic spins in a nitron-vacancy center in diamond by exploiting and implementing the general concept of Landau-Zener-Stückelberg interferometry at room temperature. The interferometry manipulates an effective two-level system of electronic spins which are coupled to the nearby ^{14}N nuclear spin in the nitron-vacancy center as well as the nuclear spin bath in the diamond. With a microwave field to control the energy gap between the two levels and an AC field as the time-dependent driving field in Landau-Zener-Stückelberg interferometry, the interference pattern can be generated and controlled by controlling a number of parameters in the fields, corresponding to coherent control of the state of the electronic spins. In particular, the interference pattern is observed oscillating as a function of the frequency of the microwave field. Decays in the visibility of the interference pattern are also observed and well explained by numerical simulation which takes into account the thermal fluctuations arising from the nuclear bath. Therefore, our work also demonstrates that Landau-Zener-Stückelberg interferometry can be used for probing decoherence processes of electronic spins.

  11. Measurement of the spin temperature of optically cooled nuclei and GaAs hyperfine constants in GaAs/AlGaAs quantum dots

    Science.gov (United States)

    Chekhovich, E. A.; Ulhaq, A.; Zallo, E.; Ding, F.; Schmidt, O. G.; Skolnick, M. S.

    2017-10-01

    Deep cooling of electron and nuclear spins is equivalent to achieving polarization degrees close to 100% and is a key requirement in solid-state quantum information technologies. While polarization of individual nuclear spins in diamond and SiC (ref. ) reaches 99% and beyond, it has been limited to 50-65% for the nuclei in quantum dots. Theoretical models have attributed this limit to formation of coherent `dark' nuclear spin states but experimental verification is lacking, especially due to the poor accuracy of polarization degree measurements. Here we measure the nuclear polarization in GaAs/AlGaAs quantum dots with high accuracy using a new approach enabled by manipulation of the nuclear spin states with radiofrequency pulses. Polarizations up to 80% are observed--the highest reported so far for optical cooling in quantum dots. This value is still not limited by nuclear coherence effects. Instead we find that optically cooled nuclei are well described within a classical spin temperature framework. Our findings unlock a route for further progress towards quantum dot electron spin qubits where deep cooling of the mesoscopic nuclear spin ensemble is used to achieve long qubit coherence. Moreover, GaAs hyperfine material constants are measured here experimentally for the first time.

  12. Polarization of nuclear spins by a cold nanoscale resonator

    International Nuclear Information System (INIS)

    Butler, Mark C.; Weitekamp, Daniel P.

    2011-01-01

    A cold nanoscale resonator coupled to a system of nuclear spins can induce spin relaxation. In the low-temperature limit where spin-lattice interactions are ''frozen out,'' spontaneous emission by nuclear spins into a resonant mechanical mode can become the dominant mechanism for cooling the spins to thermal equilibrium with their environment. We provide a theoretical framework for the study of resonator-induced cooling of nuclear spins in this low-temperature regime. Relaxation equations are derived from first principles, in the limit where energy donated by the spins to the resonator is quickly dissipated into the cold bath that damps it. A physical interpretation of the processes contributing to spin polarization is given. For a system of spins that have identical couplings to the resonator, the interaction Hamiltonian conserves spin angular momentum, and the resonator cannot relax the spins to thermal equilibrium unless this symmetry is broken by the spin Hamiltonian. The mechanism by which such a spin system becomes ''trapped'' away from thermal equilibrium can be visualized using a semiclassical model, which shows how an indirect spin-spin interaction arises from the coupling of multiple spins to one resonator. The internal spin Hamiltonian can affect the polarization process in two ways: (1) By modifying the structure of the spin-spin correlations in the energy eigenstates, and (2) by splitting the degeneracy within a manifold of energy eigenstates, so that zero-frequency off-diagonal terms in the density matrix are converted to oscillating coherences. Shifting the frequencies of these coherences sufficiently far from zero suppresses the development of resonator-induced correlations within the manifold during polarization from a totally disordered state. Modification of the spin-spin correlations by means of either mechanism affects the strength of the fluctuating spin dipole that drives the resonator. In the case where product states can be chosen as energy

  13. Room-temperature coupling between electrical current and nuclear spins in OLEDs

    Science.gov (United States)

    Malissa, H.; Kavand, M.; Waters, D. P.; van Schooten, K. J.; Burn, P. L.; Vardeny, Z. V.; Saam, B.; Lupton, J. M.; Boehme, C.

    2014-09-01

    The effects of external magnetic fields on the electrical conductivity of organic semiconductors have been attributed to hyperfine coupling of the spins of the charge carriers and hydrogen nuclei. We studied this coupling directly by implementation of pulsed electrically detected nuclear magnetic resonance spectroscopy in organic light-emitting diodes (OLEDs). The data revealed a fingerprint of the isotope (protium or deuterium) involved in the coherent spin precession observed in spin-echo envelope modulation. Furthermore, resonant control of the electric current by nuclear spin orientation was achieved with radiofrequency pulses in a double-resonance scheme, implying current control on energy scales one-millionth the magnitude of the thermal energy.

  14. Coherent Control of Ground State NaK Molecules

    Science.gov (United States)

    Yan, Zoe; Park, Jee Woo; Loh, Huanqian; Will, Sebastian; Zwierlein, Martin

    2016-05-01

    Ultracold dipolar molecules exhibit anisotropic, tunable, long-range interactions, making them attractive for the study of novel states of matter and quantum information processing. We demonstrate the creation and control of 23 Na40 K molecules in their rovibronic and hyperfine ground state. By applying microwaves, we drive coherent Rabi oscillations of spin-polarized molecules between the rotational ground state (J=0) and J=1. The control afforded by microwave manipulation allows us to pursue engineered dipolar interactions via microwave dressing. By driving a two-photon transition, we are also able to observe Ramsey fringes between different J=0 hyperfine states, with coherence times as long as 0.5s. The realization of long coherence times between different molecular states is crucial for applications in quantum information processing. NSF, AFOSR- MURI, Alfred P. Sloan Foundation, DARPA-OLE

  15. Two-neutron transfer reactions with heavy-deformed nuclei

    International Nuclear Information System (INIS)

    Price, C.; Landowne, S.; Esbensen, H.

    1988-01-01

    In a recent communication we pointed out that one can combine the macroscopic model for two-particle transfer reactions on deformed nuclei with the sudden limit approximation for rotational excitation, and thereby obtain a practical method for calculating transfer reactions leading to high-spin states. As an example, we presented results for the reaction 162 Dy( 58 Ni, 60 Ni) 160 Dy populating the ground-state rotational band up to the spin I = 14 + state. We have also tested the validity of the sudden limit for the inelastic excitation of high spin states and we have noted how the macroscopic model may be modified to allow for more microscopic nuclear structure effects in an application to diabolic pair-transfer processes. This paper describes our subsequent work in which we investigated the systematic features of pair-transfer reactions within the macroscopic model by using heavier projectiles to generate higher spins and by decomposing the cross sections according to the multipolarity of the transfer interaction. Particular attention is paid to characteristic structures in the angular distributions for the lower spin states and how they depend on the angular momentum carried by the transferred particles. 11 refs., 3 figs

  16. Coherence method of identifying signal noise model

    International Nuclear Information System (INIS)

    Vavrin, J.

    1981-01-01

    The noise analysis method is discussed in identifying perturbance models and their parameters by a stochastic analysis of the noise model of variables measured on a reactor. The analysis of correlations is made in the frequency region using coherence analysis methods. In identifying an actual specific perturbance, its model should be determined and recognized in a compound model of the perturbance system using the results of observation. The determination of the optimum estimate of the perturbance system model is based on estimates of related spectral densities which are determined from the spectral density matrix of the measured variables. Partial and multiple coherence, partial transfers, the power spectral densities of the input and output variables of the noise model are determined from the related spectral densities. The possibilities of applying the coherence identification methods were tested on a simple case of a simulated stochastic system. Good agreement was found of the initial analytic frequency filters and the transfers identified. (B.S.)

  17. A fully programmable 100-spin coherent Ising machine with all-to-all connections

    Science.gov (United States)

    McMahon, Peter; Marandi, Alireza; Haribara, Yoshitaka; Hamerly, Ryan; Langrock, Carsten; Tamate, Shuhei; Inagaki, Takahiro; Takesue, Hiroki; Utsunomiya, Shoko; Aihara, Kazuyuki; Byer, Robert; Fejer, Martin; Mabuchi, Hideo; Yamamoto, Yoshihisa

    We present a scalable optical processor with electronic feedback, based on networks of optical parametric oscillators. The design of our machine is inspired by adiabatic quantum computers, although it is not an AQC itself. Our prototype machine is able to find exact solutions of, or sample good approximate solutions to, a variety of hard instances of Ising problems with up to 100 spins and 10,000 spin-spin connections. This research was funded by the Impulsing Paradigm Change through Disruptive Technologies (ImPACT) Program of the Council of Science, Technology and Innovation (Cabinet Office, Government of Japan).

  18. Potential and limitations of 2D sup 1 H- sup 1 H spin-exchange CRAMPS experiments to characterize structures of organic solids

    CERN Document Server

    Brus, J; Petrickova, H

    2002-01-01

    A brief overview of our recent results concerning the application of 2D CRAMPS experiments to investigate a wide range of materials is presented. The abilities of the 2D sup 1 H- sup 1 H spin-exchange technique to characterize the structure of organic solids as well as the limitations resulting from segmental mobility and from undesired coherence transfer are discussed. Basic principles of sup 1 H NMR line-narrowing and procedures for analysis of the spin-exchange process are introduced. We focused to the qualitative and quantitative analysis of complex spin-exchange process leading to the determination of domain sizes and morphology in heterogeneous multicomponent systems as well as the characterization of clustering of surface hydroxyl groups in polysiloxane networks. Particular attention is devoted to the determination of the sup 1 H- sup 1 H interatomic distances in the presence of local molecular motion. Finally we discuss limitations of the sup 1 sup 3 C- sup 1 sup 3 C correlation mediated by sup 1 H- s...

  19. Topical review: spins and mechanics in diamond

    Science.gov (United States)

    Lee, Donghun; Lee, Kenneth W.; Cady, Jeffrey V.; Ovartchaiyapong, Preeti; Bleszynski Jayich, Ania C.

    2017-03-01

    There has been rapidly growing interest in hybrid quantum devices involving a solid-state spin and a macroscopic mechanical oscillator. Such hybrid devices create exciting opportunities to mediate interactions between disparate quantum bits (qubits) and to explore the quantum regime of macroscopic mechanical objects. In particular, a system consisting of the nitrogen-vacancy defect center (NV center) in diamond coupled to a high-quality-factor mechanical oscillator is an appealing candidate for such a hybrid quantum device, as it utilizes the highly coherent and versatile spin properties of the defect center. In this paper, we will review recent experimental progress on diamond-based hybrid quantum devices in which the spin and orbital dynamics of single defects are driven by the motion of a mechanical oscillator. In addition, we discuss prospective applications for this device, including long-range, phonon-mediated spin-spin interactions, and phonon cooling in the quantum regime. We conclude the review by evaluating the experimental limitations of current devices and identifying alternative device architectures that may reach the strong coupling regime.

  20. Highly efficient polymer solar cells with printed photoactive layer: rational process transfer from spin-coating

    KAUST Repository

    Zhao, Kui

    2016-09-05

    Scalable and continuous roll-to-roll manufacturing is at the heart of the promise of low-cost and high throughput manufacturing of solution-processed photovoltaics. Yet, to date the vast majority of champion organic solar cells reported in the literature rely on spin-coating of the photoactive bulk heterojunction (BHJ) layer, with the performance of printed solar cells lagging behind in most instances. Here, we investigate the performance gap between polymer solar cells prepared by spin-coating and blade-coating the BHJ layer for the important class of modern polymers exhibiting no long range crystalline order. We find that thickness parity does not always yield performance parity even when using identical formulations. Significant differences in the drying kinetics between the processes are found to be responsible for BHJ nanomorphology differences. We propose an approach which benchmarks the film drying kinetics and associated BHJ nanomorphology development against those of the champion laboratory devices prepared by spin-coating the BHJ layer by adjusting the process temperature. If the optimization requires the solution concentration to be changed, then it is crucial to maintain the additive-to-solute volume ratio. Emulating the drying kinetics of spin-coating is also shown to help achieve morphological and performance parities. We put this approach to the test and demonstrate printed PTB7:PC71BM polymer solar cells with efficiency of 9% and 6.5% PCEs on glass and flexible PET substrates, respectively. We further demonstrate performance parity for two other popular donor polymer systems exhibiting rigid backbones and absence of a long range crystalline order, achieving a PCE of 9.7%, the highest efficiency reported to date for a blade coated organic solar cell. The rational process transfer illustrated in this study should help the broader and successful adoption of scalable printing methods for these material systems.

  1. Increasing Spin Coherence in Nanodiamond via Dynamic Nuclear Polarization

    Science.gov (United States)

    Gaebel, Torsten; Rej, Ewa; Boele, Thomas; Waddington, David; Reilly, David

    Nanodiamonds are of interest for quantum information technology, as metrological sensors, and more recently as a probe of biological environments. Here we present results examining how intrinsic defects can be used for dynamic nuclear polarization that leads to a dramatic increase in both T1 and T2 for 13C spins in nanodiamond. Mechanisms to explain this enhancement are discussed.

  2. Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Butkus, Vytautas; Gelzinis, Andrius; Valkunas, Leonas [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania); Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Augulis, Ramūnas [Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Gall, Andrew; Robert, Bruno [Institut de Biologie et Technologies de Saclay, Bât 532, Commissariat à l’Energie Atomique Saclay, 91191 Gif sur Yvette (France); Büchel, Claudia [Institut für Molekulare Biowissenschaften, Universität Frankfurt, Max-von-Laue-Straße 9, Frankfurt (Germany); Zigmantas, Donatas [Department of Chemical Physics, Lund University, P.O. Box 124, 22100 Lund (Sweden); Abramavicius, Darius, E-mail: darius.abramavicius@ff.vu.lt [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania)

    2015-06-07

    Energy transfer processes and coherent phenomena in the fucoxanthin–chlorophyll protein complex, which is responsible for the light harvesting function in marine algae diatoms, were investigated at 77 K by using two-dimensional electronic spectroscopy. Experiments performed on femtosecond and picosecond timescales led to separation of spectral dynamics, witnessing evolutions of coherence and population states of the system in the spectral region of Q{sub y} transitions of chlorophylls a and c. Analysis of the coherence dynamics allowed us to identify chlorophyll (Chl) a and fucoxanthin intramolecular vibrations dominating over the first few picoseconds. Closer inspection of the spectral region of the Q{sub y} transition of Chl c revealed previously not identified, mutually non-interacting chlorophyll c states participating in femtosecond or picosecond energy transfer to the Chl a molecules. Consideration of separated coherent and incoherent dynamics allowed us to hypothesize the vibrations-assisted coherent energy transfer between Chl c and Chl a and the overall spatial arrangement of chlorophyll molecules.

  3. The separation of vibrational coherence from ground- and excited-electronic states in P3HT film

    KAUST Repository

    Song, Yin

    2015-06-07

    © 2015 AIP Publishing LLC. Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets (S (λ 1, T∼ 2, λ 3)) along the population time (T∼ 2) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps (S (λ 1, ν∼ 2, λ 3)). We found that the vibrational coherence from pure excited electronic states appears at positive frequency (+ ν∼ 2) in the rephasing beating map and at negative frequency (- ν∼ 2) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems.

  4. The separation of vibrational coherence from ground- and excited-electronic states in P3HT film

    International Nuclear Information System (INIS)

    Song, Yin; Hellmann, Christoph; Stingelin, Natalie; Scholes, Gregory D.

    2015-01-01

    Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets (S(λ 1 ,T ~ 2 ,λ 3 )) along the population time (T ~ 2 ) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps (S(λ 1 ,ν ~ 2 ,λ 3 )). We found that the vibrational coherence from pure excited electronic states appears at positive frequency (+ν ~ 2 ) in the rephasing beating map and at negative frequency (−ν ~ 2 ) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems

  5. Dynamic coherence in excitonic molecular complexes under various excitation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chenu, Aurélia; Malý, Pavel; Mančal, Tomáš, E-mail: mancal@karlov.mff.cuni.cz

    2014-08-17

    Highlights: • Dynamic coherence does not improve energy transfer efficiency in natural conditions. • Photo-induced quantum jumps are discussed in classical context. • Natural time scale of a light excitation event is identified. • Coherence in FMO complex averages out under excitation by neighboring antenna. • This result is valid even in absence of dissipation. - Abstract: We investigate the relevance of dynamic quantum coherence in the energy transfer efficiency of molecular aggregates. We derive the time evolution of the density matrix for an open quantum system excited by light or by a neighboring antenna. Unlike in the classical case, the quantum description does not allow for a formal decomposition of the dynamics into sudden jumps in an observable quantity – an expectation value. Rather, there is a natural finite time-scale associated with the excitation process. We propose a simple experiment to test the influence of this time scale on the yield of photosynthesis. We demonstrate, using typical parameters of the Fenna–Matthews–Olson (FMO) complex and a typical energy transfer rate from the chlorosome baseplate, that dynamic coherences are averaged out in the complex even when the FMO model is completely free of all dissipation and dephasing.

  6. Optical and microwave control of germanium-vacancy center spins in diamond

    Science.gov (United States)

    Siyushev, Petr; Metsch, Mathias H.; Ijaz, Aroosa; Binder, Jan M.; Bhaskar, Mihir K.; Sukachev, Denis D.; Sipahigil, Alp; Evans, Ruffin E.; Nguyen, Christian T.; Lukin, Mikhail D.; Hemmer, Philip R.; Palyanov, Yuri N.; Kupriyanov, Igor N.; Borzdov, Yuri M.; Rogers, Lachlan J.; Jelezko, Fedor

    2017-08-01

    A solid-state system combining a stable spin degree of freedom with an efficient optical interface is highly desirable as an element for integrated quantum-optical and quantum-information systems. We demonstrate a bright color center in diamond with excellent optical properties and controllable electronic spin states. Specifically, we carry out detailed optical spectroscopy of a germanium-vacancy (GeV ) color center demonstrating optical spectral stability. Using an external magnetic field to lift the electronic spin degeneracy, we explore the spin degree of freedom as a controllable qubit. Spin polarization is achieved using optical pumping, and a spin relaxation time in excess of 20 μ s is demonstrated. We report resonant microwave control of spin transitions, and use this as a probe to measure the Autler-Townes effect in a microwave-optical double-resonance experiment. Superposition spin states were prepared using coherent population trapping, and a pure dephasing time of about 19 ns was observed at a temperature of 2.0 K.

  7. Dresselhaus spin-orbit coupling induced spin-polarization and resonance-split in n-well semiconductor superlattices

    International Nuclear Information System (INIS)

    Ye Chengzhi; Xue Rui; Nie, Y.-H.; Liang, J.-Q.

    2009-01-01

    Using the transfer matrix method, we investigate the electron transmission over multiple-well semiconductor superlattices with Dresselhaus spin-orbit coupling in the potential-well regions. The superlattice structure enhances the effect of spin polarization in the transmission spectrum. The minibands of multiple-well superlattices for electrons with different spin can be completely separated at the low incident energy, leading to the 100% spin polarization in a broad energy windows, which may be an effective scheme for realizing spin filtering. Moreover, for the transmission over n-quantum-well, it is observed that the resonance peaks in the minibands split into n-folds or (n-1)-folds depending on the well-width and barrier-thickness, which is different from the case of tunneling through n-barrier structure

  8. Entangled states decoherence in coupled molecular spin clusters

    Science.gov (United States)

    Troiani, Filippo; Szallas, Attila; Bellini, Valerio; Affronte, Marco

    2010-03-01

    Localized electron spins in solid-state systems are widely investigated as potential building blocks of quantum devices and computers. While most efforts in the field have been focused on semiconductor low-dimensional structures, molecular antiferromagnets were recently recognized as alternative implementations of effective few-level spin systems. Heterometallic, Cr-based spin rings behave as effective spin-1/2 systems at low temperature and show long decoherence times [1]; besides, they can be chemically linked and magnetically coupled in a controllable fascion [2]. Here, we theoretically investigate the decoherence of the Bell states in such ring dimers, resulting from hyperfine interactions with nuclear spins. Based on a microscopic description of the molecules [3], we simulate the effect of inhomogeneous broadening, spectral diffusion and electron-nuclear entanglement on the electron-spin coherence, estimating the role of the different nuclei (and of possible chemical substitutions), as well as the effect of simple spin-echo sequences. References: [1] F. Troiani, et al., Phys. Rev. Lett. 94, 207208 (2005). [2] G. A. Timco, S: Carretta, F. Troiani et al., Nature Nanotech. 4, 173 (2009). [3] F. Troiani, V. Bellini, and M. Affronte, Phys. Rev. B 77, 054428 (2008).

  9. Engineering the Eigenstates of Coupled Spin-1/2 Atoms on a Surface.

    Science.gov (United States)

    Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D; Willke, Philip; Lado, Jose L; Ferrón, Alejandro; Choi, Taeyoung; Fernández-Rossier, Joaquín; Heinrich, Andreas J; Lutz, Christopher P

    2017-12-01

    Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1/2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1/2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1/2 atoms on surfaces.

  10. Influence of Coherent Tunneling and Incoherent Hopping on the Charge Transfer Mechanism in Linear Donor-Bridge-Acceptor Systems.

    Science.gov (United States)

    Li, Guangqi; Govind, Niranjan; Ratner, Mark A; Cramer, Christopher J; Gagliardi, Laura

    2015-12-17

    The mechanism of charge transfer has been observed to change from tunneling to hopping with increasing numbers of DNA base pairs in polynucleotides and with the length of molecular wires. The aim of this paper is to investigate this transition by examining the population dynamics using a tight-binding Hamiltonian with model parameters to describe a linear donor-bridge-acceptor (D-B-A) system. The model includes a primary vibration and an electron-vibration coupling at each site. A further coupling of the primary vibration with a secondary phonon bath allows the system to dissipate energy to the environment and reach a steady state. We apply the quantum master equation (QME) approach, based on second-order perturbation theory in a quantum dissipative system, to examine the dynamical processes involved in charge-transfer and follow the population transfer rate at the acceptor, ka, to shed light on the transition from tunneling to hopping. With a small tunneling parameter, V, the on-site population tends to localize and form polarons, and the hopping mechanism dominates the transfer process. With increasing V, the population tends to be delocalized and the tunneling mechanism dominates. The competition between incoherent hopping and coherent tunneling governs the mechanism of charge transfer. By varying V and the total number of sites, we also examine the onset of the transition from tunneling to hopping with increasing length.

  11. Quantum communication through an unmodulated spin chain

    International Nuclear Information System (INIS)

    Bose, Sougato

    2003-01-01

    We propose a scheme for using an unmodulated and unmeasured spin chain as a channel for short distance quantum communications. The state to be transmitted is placed on one spin of the chain and received later on a distant spin with some fidelity. We first obtain simple expressions for the fidelity of quantum state transfer and the amount of entanglement sharable between any two sites of an arbitrary Heisenberg ferromagnet using our scheme. We then apply this to the realizable case of an open ended chain with nearest neighbor interactions. The fidelity of quantum state transfer is obtained as an inverse discrete cosine transform and as a Bessel function series. We find that in a reasonable time, a qubit can be directly transmitted with better than classical fidelity across the full length of chains of up to 80 spins. Moreover, our channel allows distillable entanglement to be shared over arbitrary distances

  12. Coherence and correlations in a Mott insulator

    International Nuclear Information System (INIS)

    Gerbier, F.; Widera, A.; Foelling, S.; Mandel, O.; Gericke, T.; Bloch, I.

    2005-01-01

    The observation of the super fluid to Mott insulator transition has triggered an intense interest in studying ultracold quantum gases in optical lattices. Such a transition is commonly associated with the disappearance of the interference pattern observed when releasing a coherent (i.e. Bose condensed) ensemble from the lattice. In this talk, I will show that even in the insulating phase, the visibility of this interference pattern remains finite. Our results show that although long-range order is absent, short-range coherence still persists in a rather broad range, and that this can be identified as a characteristic feature of the system for large, but finite lattice depths. For even deeper lattices, the visibility is close to zero, and the interference pattern unobservable. I will explain that information is still present in such featureless images, and can be extracted by studying the density-density correlation function of the expanded cloud, as proposed theoretically. A sharp diffraction-like pattern observed in the correlations reveals the underlying lattice structure, and can be understood by generalizing the well-known Hanbury-Brown and Twiss effect to many bosonic sources '' emitting '' from each lattice site. This new detection method allows in principle the detection of spin ordering in a multi-component Mott insulator. As a first step in this direction, we have recently observed spin dynamics in a Mott insulator, where a spin-dependent collisional coupling induces strongly under damped Rabi oscillations between two-particle states with the same total magnetization. I will briefly report on these results. (author)

  13. Robust techniques for polarization and detection of nuclear spin ensembles

    Science.gov (United States)

    Scheuer, Jochen; Schwartz, Ilai; Müller, Samuel; Chen, Qiong; Dhand, Ish; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2017-11-01

    Highly sensitive nuclear spin detection is crucial in many scientific areas including nuclear magnetic resonance spectroscopy, magnetic resonance imaging (MRI), and quantum computing. The tiny thermal nuclear spin polarization represents a major obstacle towards this goal which may be overcome by dynamic nuclear spin polarization (DNP) methods. The latter often rely on the transfer of the thermally polarized electron spins to nearby nuclear spins, which is limited by the Boltzmann distribution of the former. Here we utilize microwave dressed states to transfer the high (>92 % ) nonequilibrium electron spin polarization of a single nitrogen-vacancy center (NV) induced by short laser pulses to the surrounding 13C carbon nuclear spins. The NV is repeatedly repolarized optically, thus providing an effectively infinite polarization reservoir. A saturation of the polarization of the nearby nuclear spins is achieved, which is confirmed by the decay of the polarization transfer signal and shows an excellent agreement with theoretical simulations. Hereby we introduce the polarization readout by polarization inversion method as a quantitative magnetization measure of the nuclear spin bath, which allows us to observe by ensemble averaging macroscopically hidden polarization dynamics like Landau-Zener-Stückelberg oscillations. Moreover, we show that using the integrated solid effect both for single- and double-quantum transitions nuclear spin polarization can be achieved even when the static magnetic field is not aligned along the NV's crystal axis. This opens a path for the application of our DNP technique to spins in and outside of nanodiamonds, enabling their application as MRI tracers. Furthermore, the methods reported here can be applied to other solid state systems where a central electron spin is coupled to a nuclear spin bath, e.g., phosphor donors in silicon and color centers in silicon carbide.

  14. Hyperfine interaction mediated electric-dipole spin resonance: the role of frequency modulation

    International Nuclear Information System (INIS)

    Li, Rui

    2016-01-01

    The electron spin in a semiconductor quantum dot can be coherently controlled by an external electric field, an effect called electric-dipole spin resonance (EDSR). Several mechanisms can give rise to the EDSR effect, among which there is a hyperfine mechanism, where the spin-electric coupling is mediated by the electron–nucleus hyperfine interaction. Here, we investigate the influence of frequency modulation (FM) on the spin-flip efficiency. Our results reveal that FM plays an important role in the hyperfine mechanism. Without FM, the electric field almost cannot flip the electron spin; the spin-flip probability is only about 20%. While under FM, the spin-flip probability can be improved to approximately 70%. In particular, we find that the modulation amplitude has a lower bound, which is related to the width of the fluctuated hyperfine field. (paper)

  15. Endohedral Metallofullerene as Molecular High Spin Qubit: Diverse Rabi Cycles in Gd2@C79N.

    Science.gov (United States)

    Hu, Ziqi; Dong, Bo-Wei; Liu, Zheng; Liu, Jun-Jie; Su, Jie; Yu, Changcheng; Xiong, Jin; Shi, Di-Er; Wang, Yuanyuan; Wang, Bing-Wu; Ardavan, Arzhang; Shi, Zujin; Jiang, Shang-Da; Gao, Song

    2018-01-24

    An anisotropic high-spin qubit with long coherence time could scale the quantum system up. It has been proposed that Grover's algorithm can be implemented in such systems. Dimetallic aza[80]fullerenes M 2 @C 79 N (M = Y or Gd) possess an unpaired electron located between two metal ions, offering an opportunity to manipulate spin(s) protected in the cage for quantum information processing. Herein, we report the crystallographic determination of Gd 2 @C 79 N for the first time. This molecular magnet with a collective high-spin ground state (S = 15/2) generated by strong magnetic coupling (J Gd-Rad = 350 ± 20 cm -1 ) has been unambiguously validated by magnetic susceptibility experiments. Gd 2 @C 79 N has quantum coherence and diverse Rabi cycles, allowing arbitrary superposition state manipulation between each adjacent level. The phase memory time reaches 5 μs at 5 K by dynamic decoupling. This molecule fulfills the requirements of Grover's searching algorithm proposed by Leuenberger and Loss.

  16. Two-Dimensional Resonance Raman Signatures of Vibronic Coherence Transfer in Chemical Reactions.

    Science.gov (United States)

    Guo, Zhenkun; Molesky, Brian P; Cheshire, Thomas P; Moran, Andrew M

    2017-11-02

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in condensed phase systems. 2DRR spectroscopy is motivated by knowledge of non-equilibrium effects that cannot be detected with traditional resonance Raman spectroscopy. For example, 2DRR spectra may reveal correlated distributions of reactant and product geometries in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this chapter, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide. We show that signatures of "vibronic coherence transfer" in the photodissociation process can be targeted with particular 2DRR pulse sequences. Key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopy techniques are also addressed. Overall, recent experimental developments and applications of the 2DRR method suggest that it will be a valuable tool for elucidating ultrafast chemical reaction mechanisms.

  17. Neutral Silicon-Vacancy Center in Diamond: Spin Polarization and Lifetimes

    Science.gov (United States)

    Green, B. L.; Mottishaw, S.; Breeze, B. G.; Edmonds, A. M.; D'Haenens-Johansson, U. F. S.; Doherty, M. W.; Williams, S. D.; Twitchen, D. J.; Newton, M. E.

    2017-09-01

    We demonstrate optical spin polarization of the neutrally charged silicon-vacancy defect in diamond (SiV0 ), an S =1 defect which emits with a zero-phonon line at 946 nm. The spin polarization is found to be most efficient under resonant excitation, but nonzero at below-resonant energies. We measure an ensemble spin coherence time T2>100 μ s at low-temperature, and a spin relaxation limit of T1>25 s . Optical spin-state initialization around 946 nm allows independent initialization of SiV0 and NV- within the same optically addressed volume, and SiV0 emits within the telecoms down-conversion band to 1550 nm: when combined with its high Debye-Waller factor, our initial results suggest that SiV0 is a promising candidate for a long-range quantum communication technology.

  18. Effect of Rashba and Dresselhaus Spin-Orbit Couplings on Electron Spin Polarization in a Hybrid Magnetic-Electric Barrier Nanostructure

    Science.gov (United States)

    Yang, Shi-Peng; Lu, Mao-Wang; Huang, Xin-Hong; Tang, Qiang; Zhou, Yong-Long

    2017-04-01

    A theoretical study has been carried out on the spin-dependent electron transport in a hybrid magnetic-electric barrier nanostructure with both Rashba and Dresselhaus spin-orbit couplings, which can be experimentally realized by depositing a ferromagnetic strip and a Schottky metal strip on top of a semiconductor heterostructure. The spin-orbit coupling-dependent transmission coefficient, conductance, and spin polarization are calculated by solving the Schrödinger equation exactly with the help of the transfer-matrix method. We find that both the magnitude and sign of the electron spin polarization vary strongly with the spin-orbit coupling strength. Thus, the degree of electron spin polarization can be manipulated by properly adjusting the spin-orbit coupling strength, and such a nanosystem can be employed as a controllable spin filter for spintronics applications.

  19. Electrical control of single hole spins in nanowire quantum dots

    NARCIS (Netherlands)

    Pribiag, V.S.; Nadj-Perge, S.; Frolov, S.M.; Berg, J.W.G.; Weperen, van I.; Plissard, S.R.; Bakkers, E.P.A.M.; Kouwenhoven, L.P.

    2013-01-01

    The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits)1. Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable

  20. Measuring absolute spin polarization in dissolution-DNP by Spin PolarimetrY Magnetic Resonance (SPY-MR).

    OpenAIRE

    Vuichoud , Basile; Milani , Jonas; Chappuis , Quentin; Bornet , Aurélien; Bodenhausen , Geoffrey; Jannin , Sami

    2015-01-01

    Dynamic nuclear polarization at 1.2 K and 6.7 T allows one to achieve spin temperatures on the order of a few millikelvin, so that the high-temperature approximation (Delta E < kT) is violated for the nuclear Zeeman interaction Delta E = gamma B(0)h/(2 pi) of most isotopes. Provided that, after rapid dissolution and transfer to an NMR or MRI system, the hyperpolarized molecules contain at least two nuclear spins I and S with a scalar coupling J(IS), the polarization of spin I (short for 'inve...

  1. High-fidelity state transfer over an unmodulated linear XY spin chain

    International Nuclear Information System (INIS)

    Bishop, C. Allen; Ou Yongcheng; Byrd, Mark S.; Wang Zhaoming

    2010-01-01

    We provide a class of initial encodings that can be sent with a high fidelity over an unmodulated, linear, XY spin chain. As an example, an average fidelity of 96% can be obtained using an 11-spin encoding to transmit a state over a chain containing 10 000 spins. An analysis of the magnetic-field dependence is given, and conditions for field optimization are provided.

  2. Theory of unidirectional spin heat conveyer

    Science.gov (United States)

    Adachi, Hiroto; Maekawa, Sadamichi

    2015-05-01

    We theoretically investigate the unidirectional spin heat conveyer effect recently reported in the literature that emerges from the Damon-Eshbach spin wave on the surface of a magnetic material. We develop a simple phenomenological theory for heat transfer dynamics in a coupled system of phonons and the Damon-Eshbach spin wave, and demonstrate that there arises a direction-selective heat flow as a result of the competition between an isotropic heat diffusion by phonons and a unidirectional heat drift by the spin wave. The phenomenological approach can account for the asymmetric local temperature distribution observed in the experiment.

  3. Unraveling the nature of coherent beatings in chlorosomes

    Energy Technology Data Exchange (ETDEWEB)

    Dostál, Jakub [Department of Chemical Physics, Lund University, P.O. Box 124, SE-22100 Lund (Sweden); Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague (Czech Republic); Mančal, Tomáš; Pšenčík, Jakub [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague (Czech Republic); Vácha, František [Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice (Czech Republic); Zigmantas, Donatas, E-mail: donatas.zigmantas@chemphys.lu.se [Department of Chemical Physics, Lund University, P.O. Box 124, SE-22100 Lund (Sweden)

    2014-03-21

    Coherent two-dimensional (2D) spectroscopy at 80 K was used to study chlorosomes isolated from green sulfur bacterium Chlorobaculum tepidum. Two distinct processes in the evolution of the 2D spectrum are observed. The first being exciton diffusion, seen in the change of the spectral shape occurring on a 100-fs timescale, and the second being vibrational coherences, realized through coherent beatings with frequencies of 91 and 145 cm{sup −1} that are dephased during the first 1.2 ps. The distribution of the oscillation amplitude in the 2D spectra is independent of the evolution of the 2D spectral shape. This implies that the diffusion energy transfer process does not transfer coherences within the chlorosome. Remarkably, the oscillatory pattern observed in the negative regions of the 2D spectrum (dominated by the excited state absorption) is a mirror image of the oscillations found in the positive part (originating from the stimulated emission and ground state bleach). This observation is surprising since it is expected that coherences in the electronic ground and excited states are generated with the same probability and the latter dephase faster in the presence of fast diffusion. Moreover, the relative amplitude of coherent beatings is rather high compared to non-oscillatory signal despite the reported low values of the Huang-Rhys factors. The origin of these effects is discussed in terms of the vibronic and Herzberg-Teller couplings.

  4. Manipulating the voltage dependence of tunneling spin torques

    KAUST Repository

    Manchon, Aurelien

    2012-01-01

    Voltage-driven spin transfer torques in magnetic tunnel junctions provide an outstanding tool to design advanced spin-based devices for memory and reprogrammable logic applications. The non-linear voltage dependence of the torque has a direct impact

  5. Efficient coherent driving of NV centers in a YIG-nanodiamond hybrid platform

    Science.gov (United States)

    Andrich, Paolo; de Las Casas, Charles F.; Liu, Xiaoying; Bretscher, Hope L.; Nealey, Paul F.; Awschalom, David D.; Heremans, F. Joseph

    The nitrogen-vacancy (NV) center in diamond is an ideal candidate for room temperature quantum computing and sensing applications. These schemes rely on magnetic dipolar interactions between the NV centers and other paramagnetic centers, imposing a stringent limit on the spin-to-spin separation. For instance, creating multi-qubit entanglement requires two NV centers to be within a few nanometers of each other, limiting the possibility for individual optical and microwave (MW) control. Moreover, to sense spins external to the diamond lattice the NV centers need to be within few nanometers from the surface, where their coherence properties are strongly reduced. In this work, we address these limitations using a hybrid YIG-nanodiamond platform where propagating spin-waves (SWs) are used to mediate the interaction between a MW source and a NV center ensemble, thereby relaxing the requirements imposed by dipolar interactions. In particular, we show that SWs can be used to amplify a MW signal detected by the NV centers by more than two orders of magnitude, allowing us to obtain ultra-low energy SW-driven coherent control of the NV centers. These results demonstrate the potentials of YIG-ND hybrid systems for the realization of enhanced quantum sensing and scalable computing devices. This work is supported by the ARO MURI program and the AFOSR.

  6. Entanglement transfer from electrons to photons in quantum dots: an open quantum system approach

    International Nuclear Information System (INIS)

    Budich, Jan C; Trauzettel, Bjoern

    2010-01-01

    We investigate entanglement transfer from a system of two spin-entangled electron-hole pairs, each placed in a separate single mode cavity, to the photons emitted due to cavity leakage. Dipole selection rules and a splitting between the light hole and the heavy hole subbands are the crucial ingredients establishing a one-to-one correspondence between electron spins and circular photon polarizations. To account for the measurement of the photons as well as dephasing effects, we choose a stochastic Schroedinger equation and a conditional master equation approach, respectively. The influence of interactions with the environment as well as asymmetries in the coherent couplings on the photon entanglement is analysed for two concrete measurement schemes. The first one is designed to violate the Clauser-Horne-Shimony-Holt (CHSH) inequality, while the second one employs the visibility of interference fringes to prove the entanglement of the photons. Because of the spatial separation of the entangled electronic system over two quantum dots, a successful verification of entangled photons emitted by this system would imply the detection of nonlocal spin entanglement of massive particles in a solid state structure.

  7. Spin-transfer torque magnetoresistive random-access memory technologies for normally off computing (invited)

    International Nuclear Information System (INIS)

    Ando, K.; Yuasa, S.; Fujita, S.; Ito, J.; Yoda, H.; Suzuki, Y.; Nakatani, Y.; Miyazaki, T.

    2014-01-01

    Most parts of present computer systems are made of volatile devices, and the power to supply them to avoid information loss causes huge energy losses. We can eliminate this meaningless energy loss by utilizing the non-volatile function of advanced spin-transfer torque magnetoresistive random-access memory (STT-MRAM) technology and create a new type of computer, i.e., normally off computers. Critical tasks to achieve normally off computers are implementations of STT-MRAM technologies in the main memory and low-level cache memories. STT-MRAM technology for applications to the main memory has been successfully developed by using perpendicular STT-MRAMs, and faster STT-MRAM technologies for applications to the cache memory are now being developed. The present status of STT-MRAMs and challenges that remain for normally off computers are discussed

  8. Spin-polarized transport through single-molecule magnet Mn6 complexes

    KAUST Repository

    Cremades, Eduard; Pemmaraju, C. D.; Sanvito, Stefano; Ruiz, Eliseo

    2013-01-01

    The coherent transport properties of a device, constructed by sandwiching a Mn6 single-molecule magnet between two gold surfaces, are studied theoretically by using the non-equilibrium Green's function approach combined with density functional theory. Two spin states of such Mn6 complexes are explored, namely the ferromagnetically coupled configuration of the six MnIII cations, leading to the S = 12 ground state, and the low S = 4 spin state. For voltages up to 1 volt the S = 12 ground state shows a current one order of magnitude larger than that of the S = 4 state. Furthermore this is almost completely spin-polarized, since the Mn6 frontier molecular orbitals for S = 12 belong to the same spin manifold. As such the high-anisotropy Mn6 molecule appears as a promising candidate for implementing, at the single molecular level, both spin-switches and low-temperature spin-valves. © 2013 The Royal Society of Chemistry.

  9. Spin-polarized transport through single-molecule magnet Mn6 complexes

    KAUST Repository

    Cremades, Eduard

    2013-01-01

    The coherent transport properties of a device, constructed by sandwiching a Mn6 single-molecule magnet between two gold surfaces, are studied theoretically by using the non-equilibrium Green\\'s function approach combined with density functional theory. Two spin states of such Mn6 complexes are explored, namely the ferromagnetically coupled configuration of the six MnIII cations, leading to the S = 12 ground state, and the low S = 4 spin state. For voltages up to 1 volt the S = 12 ground state shows a current one order of magnitude larger than that of the S = 4 state. Furthermore this is almost completely spin-polarized, since the Mn6 frontier molecular orbitals for S = 12 belong to the same spin manifold. As such the high-anisotropy Mn6 molecule appears as a promising candidate for implementing, at the single molecular level, both spin-switches and low-temperature spin-valves. © 2013 The Royal Society of Chemistry.

  10. Bifurcation analysis of magnetization dynamics driven by spin transfer

    International Nuclear Information System (INIS)

    Bertotti, G.; Magni, A.; Bonin, R.; Mayergoyz, I.D.; Serpico, C.

    2005-01-01

    Nonlinear magnetization dynamics under spin-polarized currents is discussed by the methods of the theory of nonlinear dynamical systems. The fixed points of the dynamics are calculated. It is shown that there may exist 2, 4, or 6 fixed points depending on the values of the external field and of the spin-polarized current. The stability of the fixed points is analyzed and the conditions for the occurrence of saddle-node and Hopf bifurcations are determined

  11. Bifurcation analysis of magnetization dynamics driven by spin transfer

    Energy Technology Data Exchange (ETDEWEB)

    Bertotti, G. [IEN Galileo Ferraris, Strada delle Cacce 91, 10135 Turin (Italy); Magni, A. [IEN Galileo Ferraris, Strada delle Cacce 91, 10135 Turin (Italy); Bonin, R. [Dipartimento di Fisica, Politecnico di Torino, Corso degli Abbruzzi, 10129 Turin (Italy)]. E-mail: bonin@ien.it; Mayergoyz, I.D. [Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742 (United States); Serpico, C. [Department of Electrical Engineering, University of Napoli Federico II, via Claudio 21, 80125 Naples (Italy)

    2005-04-15

    Nonlinear magnetization dynamics under spin-polarized currents is discussed by the methods of the theory of nonlinear dynamical systems. The fixed points of the dynamics are calculated. It is shown that there may exist 2, 4, or 6 fixed points depending on the values of the external field and of the spin-polarized current. The stability of the fixed points is analyzed and the conditions for the occurrence of saddle-node and Hopf bifurcations are determined.

  12. Dialogue Coherence: A Generation Framework

    NARCIS (Netherlands)

    Beun, R.J.; Eijk, R.M. van

    2007-01-01

    This paper presents a framework for the generation of coherent elementary conversational sequences at the speech act level. We will embrace the notion of a cooperative dialogue game in which two players produce speech acts to transfer relevant information with respect to their commitments.

  13. Hybrid quantum circuit with a superconducting qubit coupled to an electron spin ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Yuimaru; Grezes, Cecile; Vion, Denis; Esteve, Daniel; Bertet, Patrice [Quantronics Group, SPEC (CNRS URA 2464), CEA-Saclay, 91191 Gif-sur-Yvette (France); Diniz, Igor; Auffeves, Alexia [Institut Neel, CNRS, BP 166, 38042 Grenoble (France); Isoya, Jun-ichi [Research Center for Knowledge Communities, University of Tsukuba, 305-8550 Tsukuba (Japan); Jacques, Vincent; Dreau, Anais; Roch, Jean-Francois [LPQM (CNRS, UMR 8537), Ecole Normale Superieure de Cachan, 94235 Cachan (France)

    2013-07-01

    We report the experimental realization of a hybrid quantum circuit combining a superconducting qubit and an ensemble of electronic spins. The qubit, of the transmon type, is coherently coupled to the spin ensemble consisting of nitrogen-vacancy (NV) centers in a diamond crystal via a frequency-tunable superconducting resonator acting as a quantum bus. Using this circuit, we prepare arbitrary superpositions of the qubit states that we store into collective excitations of the spin ensemble and retrieve back into the qubit. We also report a new method for detecting the magnetic resonance of electronic spins at low temperature with a qubit using the hybrid quantum circuit, as well as our recent progress on spin echo experiments.

  14. Indistinguishability and interference in the coherent control of atomic and molecular processes

    International Nuclear Information System (INIS)

    Gong Jiangbin; Brumer, Paul

    2010-01-01

    The subtle and fundamental issue of indistinguishability and interference between independent pathways to the same target state is examined in the context of coherent control of atomic and molecular processes, with emphasis placed on possible 'which-way' information due to quantum entanglement established in the quantum dynamics. Because quantum interference between independent pathways to the same target state occurs only when the independent pathways are indistinguishable, it is first shown that creating useful coherence between nondegenerate states of a molecule for subsequent quantum interference manipulation cannot be achieved by collisions between atoms or molecules that are prepared in momentum and energy eigenstates. Coherence can, however, be transferred from light fields to atoms or molecules. Using a particular coherent control scenario, it is shown that this coherence transfer and the subsequent coherent phase control can be readily realized by the most classical states of light, i.e., coherent states of light. It is further demonstrated that quantum states of light may suppress the extent of phase-sensitive coherent control by leaking out some which-way information while 'incoherent interference control' scenarios proposed in the literature have automatically ensured the indistinguishability of multiple excitation pathways. The possibility of quantum coherence in photodissociation product states is also understood in terms of the disentanglement between photodissociation fragments. Results offer deeper insights into quantum coherence generation in atomic and molecular processes.

  15. Brillouin-Mandelstam spectroscopy of standing spin waves in a ferrite waveguide

    Science.gov (United States)

    Balinskiy, Michael; Kargar, Fariborz; Chiang, Howard; Balandin, Alexander A.; Khitun, Alexander G.

    2018-05-01

    This article reports results of experimental investigation of the spin wave interference over large distances in the Y3Fe2(FeO4)3 waveguide using Brillouin-Mandelstam spectroscopy. Two coherent spin waves are excited by the micro-antennas fabricated at the edges of the waveguide. The amplitudes of the input spin waves are adjusted to provide approximately the same intensity in the central region of the waveguide. The relative phase between the excited spin waves is controlled by the phase shifter. The change of the local intensity distribution in the standing spin wave is monitored using Brillouin-Mandelstam light scattering spectroscopy. Experimental data demonstrate the oscillation of the scattered light intensity depending on the relative phase of the interfering spin waves. The oscillations of the intensity, tunable via the relative phase shift, are observed as far as 7.5 mm away from the spin-wave generating antennas at room temperature. The obtained results are important for developing techniques for remote control of spin currents, with potential applications in spin-based memory and logic devices.

  16. Non-equilibrium coherence dynamics in one-dimensional Bose gases.

    Science.gov (United States)

    Hofferberth, S; Lesanovsky, I; Fischer, B; Schumm, T; Schmiedmayer, J

    2007-09-20

    Low-dimensional systems provide beautiful examples of many-body quantum physics. For one-dimensional (1D) systems, the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regimes. However, it remains a challenge to probe the dynamics by which this equilibrium state is reached. Here we present a direct experimental study of the coherence dynamics in both isolated and coupled degenerate 1D Bose gases. Dynamic splitting is used to create two 1D systems in a phase coherent state. The time evolution of the coherence is revealed through local phase shifts of the subsequently observed interference patterns. Completely isolated 1D Bose gases are observed to exhibit universal sub-exponential coherence decay, in excellent agreement with recent predictions. For two coupled 1D Bose gases, the coherence factor is observed to approach a non-zero equilibrium value, as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase-locking two lasers by injection. The non-equilibrium dynamics of superfluids has an important role in a wide range of physical systems, such as superconductors, quantum Hall systems, superfluid helium and spin systems. Our experiments studying coherence dynamics show that 1D Bose gases are ideally suited for investigating this class of phenomena.

  17. Solving the open XXZ spin chain with nondiagonal boundary terms at roots of unity

    International Nuclear Information System (INIS)

    Nepomechie, Rafael I.

    2002-01-01

    We consider the open XXZ quantum spin chain with nondiagonal boundary terms. For bulk anisotropy value η=((iπ)/(p+1)), p=1,2,..., we propose an exact (p+1)-order functional relation for the transfer matrix, which implies Bethe-ansatz-like equations for the corresponding eigenvalues. The key observation is that the fused spin-((p+1)/(2)) transfer matrix can be expressed in terms of a lower-spin transfer matrix, resulting in the truncation of the fusion hierarchy

  18. Spin effects in perturbative quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Lepage, G.P.

    1980-12-01

    The spin dependence of large momentum transfer exclusive and inclusive reactions can be used to test the gluon spin and other basic elements of QCD. In particular, exclusive processes including hadronic decays of heavy quark resonances have the potential of isolating QCD hard scattering subprocesses in situations where the helicities of all the interacting constituents are controlled. The predictions can be summarized in terms of QCD spin selection rules. The calculation of magnetic moment and other hadronic properties in QCD are mentioned

  19. Coherent pulse and environmental characteristics of the intramolecular proton-transfer lasers based on 3-hydroxyflavone and fisetin

    Science.gov (United States)

    Parthenopoulos, Dimitri A.; Kasha, Michael

    1988-04-01

    Coherent stimulated emission and laser beams of good quality are reported for 3-hydroxyfiavone (3-HF) and a polyhydroxyfiavone, risetin, acting as intramolecular proton-transfer lasers. The laser beam quality of these materials is comparable to that observed for rhodamine-6G. Studies of amplified spontaneous emission of 3-hydroxyflavone in highly polar solvents are also reported. The very large changes in dipole moment upon electronic excitation of 3-HF expected according to ZINDO semiempirical molecular orbital calculations fail to give rise to spectral shifts in the high dielectric constant solvents. The results are interpreted as a masking spectral effect caused by specific hydrogen bonding by the solvent.

  20. Utility of two types of MR cisternography for patency evaluation of aqueduct and third ventriculostomy site: Three dimentsional sagittal fast spin echo sequence and steady-state coherent fast gradient echo sequence

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Hyun; Kim, Eun Hee; Park, Jong Bin; Kim, Jae Hyoung; Choi, Byung Se; Jung, Cheol Kyu; Bae, Yun Jung; Lee, Kyung Mi [Dept. of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2015-07-15

    We aimed to evaluate the utility of two types of MR cisternography [fast spin echo sequence and steady-state coherent gradient echo (GRE) sequence] in addition to phase contrast-cine imaging (PC-cine), for assessing patency at the aqueduct and third ventriculostomy site. 43 patients (35 patients with suspected aqueductal stenosis and 8 patients with third ventriculostomy) were retrospectively analyzed. PC-cine, 3 dimensional sagittal fast spin echo sequence [driven-equilibrium imaging (DRIVE) or volumetric isotrophic T2-weighted acquisition (T2 VISTA)] and steady-state coherent fast GRE sequence (balanced turbo field echo; bTFE) imaging were performed in all patients. The patency of the aqueduct or third ventriculostomy site was scored. Some pitfalls of each sequence were also analyzed in individual cases. 93% of all cases showed consistent scores in PC-cine, DRIVE/T2 VISTA, and bTFE imaging. DRIVE/T2 VISTA imaging provided functional information of cerebrospinal fluid flow with flow-related artifacts, while bTFE imaging allowed direct visualization of the aqueduct or ventriculostomy site. However, evaluation of anatomical structures was difficult in three cases with strong flow-related artifacts on DRIVE/T2 VISTA and in 2 cases with susceptibility artifacts on bTFE. Both DRIVE/T2 VISTA and bTFE imaging have complementary roles in evaluating the patency of the aqueduct and 3rd ventriculostomy site.

  1. Utility of two types of MR cisternography for patency evaluation of aqueduct and third ventriculostomy site: Three dimentsional sagittal fast spin echo sequence and steady-state coherent fast gradient echo sequence

    International Nuclear Information System (INIS)

    Park, Jung Hyun; Kim, Eun Hee; Park, Jong Bin; Kim, Jae Hyoung; Choi, Byung Se; Jung, Cheol Kyu; Bae, Yun Jung; Lee, Kyung Mi

    2015-01-01

    We aimed to evaluate the utility of two types of MR cisternography [fast spin echo sequence and steady-state coherent gradient echo (GRE) sequence] in addition to phase contrast-cine imaging (PC-cine), for assessing patency at the aqueduct and third ventriculostomy site. 43 patients (35 patients with suspected aqueductal stenosis and 8 patients with third ventriculostomy) were retrospectively analyzed. PC-cine, 3 dimensional sagittal fast spin echo sequence [driven-equilibrium imaging (DRIVE) or volumetric isotrophic T2-weighted acquisition (T2 VISTA)] and steady-state coherent fast GRE sequence (balanced turbo field echo; bTFE) imaging were performed in all patients. The patency of the aqueduct or third ventriculostomy site was scored. Some pitfalls of each sequence were also analyzed in individual cases. 93% of all cases showed consistent scores in PC-cine, DRIVE/T2 VISTA, and bTFE imaging. DRIVE/T2 VISTA imaging provided functional information of cerebrospinal fluid flow with flow-related artifacts, while bTFE imaging allowed direct visualization of the aqueduct or ventriculostomy site. However, evaluation of anatomical structures was difficult in three cases with strong flow-related artifacts on DRIVE/T2 VISTA and in 2 cases with susceptibility artifacts on bTFE. Both DRIVE/T2 VISTA and bTFE imaging have complementary roles in evaluating the patency of the aqueduct and 3rd ventriculostomy site

  2. Collision dynamics of the coherent Jaynes-Cummings model

    International Nuclear Information System (INIS)

    Rabello, M.L.C.; Toledo Piza, A.F.R. de.

    1985-01-01

    The anatomy of the dynamics of quantum correlations of two interacting subsystems described by the Jaynes-Cummings Model is studied, making use of a natural states decomposition, following an old suggestion by Schroedinger. The amplitude modulation of the fast Rabi oscillations which occur for a strong, coherent initial field is obtained from the spin intrinsic depolarization resulting from corrections to the mean field approximation. (Author) [pt

  3. Collision dynamics of the coherent Jaynes-Cumminings model

    International Nuclear Information System (INIS)

    Rabello, M.L.C.; Toledo Piza, A.F.R. de

    1984-01-01

    The anatomy of the dynamics of quantum correlations of two interacting subsystems described by the Jaynes-Cummings Model is studied, making use of a natural states decomposition, following an old suggestion by Schroedinger. The amplitude modulation of the fast Rabi oscillations which occur for a strong, coherent initial field is obtained from the spin intrinsic depolarization resulting from corrections to the mean field approximation. (Author) [pt

  4. Semiclassical treatment of transport and spin relaxation in spin-orbit coupled systems

    Energy Technology Data Exchange (ETDEWEB)

    Lueffe, Matthias Clemens

    2012-02-10

    -state system in which effects of (pseudo)spin-orbit coupling come to light is monolayer graphene. The graphene Hamiltonian entirely consists of pseudospin-orbit coupling, yielding the peculiar Dirac-cone band structure. In the second part of this thesis, we have calculated corrections to the electrical conductivity of graphene in the Boltzmann regime, which are due to pseudospin coherences. We have found that several generally well-established formalisms for the derivation of kinetic equations yield different results for this problem. We cannot resolve this discrepancy, but we make propose an alternative ansatz for the nonequilibrium Green function, which would resolve some contradictions. The calculated corrections could possibly explain a part of the experimentally observed residual conductivity in graphene.

  5. Collective motion with anticipation: flocking, spinning, and swarming.

    Science.gov (United States)

    Morin, Alexandre; Caussin, Jean-Baptiste; Eloy, Christophe; Bartolo, Denis

    2015-01-01

    We investigate the collective dynamics of self-propelled particles able to probe and anticipate the orientation of their neighbors. We show that a simple anticipation strategy hinders the emergence of homogeneous flocking patterns. Yet anticipation promotes two other forms of self-organization: collective spinning and swarming. In the spinning phase, all particles follow synchronous circular orbits, while in the swarming phase, the population condensates into a single compact swarm that cruises coherently without requiring any cohesive interactions. We quantitatively characterize and rationalize these phases of polar active matter and discuss potential applications to the design of swarming robots.

  6. Particle spin tune in a partially excited snake

    International Nuclear Information System (INIS)

    Lee, S.Y.; Tepikian, S.; Courant, E.D.

    1985-01-01

    In this paper, we address the question on the effect of the particle spin when a snake is turned on adiabatically near a depolarization resonance while not accelerating. The spinor equation and its solution are reviewed briefly and the spin transfer matrix method in the presence of a snake are used to evaluate the spin tune and the precession axis

  7. Direct measurement of exciton valley coherence in monolayer WSe2

    KAUST Repository

    Hao, Kai

    2016-02-29

    In crystals, energy band extrema in momentum space can be identified by a valley index. The internal quantum degree of freedom associated with valley pseudospin indices can act as a useful information carrier, analogous to electronic charge or spin. Interest in valleytronics has been revived in recent years following the discovery of atomically thin materials such as graphene and transition metal dichalcogenides. However, the valley coherence time—a crucial quantity for valley pseudospin manipulation—is difficult to directly probe. In this work, we use two-dimensional coherent spectroscopy to resonantly generate and detect valley coherence of excitons (Coulomb-bound electron–hole pairs) in monolayer WSe2 (refs ,). The imposed valley coherence persists for approximately one hundred femtoseconds. We propose that the electron–hole exchange interaction provides an important decoherence mechanism in addition to exciton population recombination. This work provides critical insight into the requirements and strategies for optical manipulation of the valley pseudospin for future valleytronics applications.

  8. Quantum coherence and quantum phase transition in the XY model with staggered Dzyaloshinsky-Moriya interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Ning-Ju [Department of Applied Physics, Xi' an University of Technology, Xi' an 710054 (China); Xu, Yang-Yang; Wang, Jicheng; Zhang, Yixin [Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122 (China); Hu, Zheng-Da, E-mail: huyuanda1112@jiangnan.edu.cn [Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122 (China)

    2017-04-01

    We investigate the properties of geometric quantum coherence in the XY spin-1/2 chain with staggered Dzyaloshinsky-Moriya interaction via the quantum renormalization-group approach. It is shown that the geometric quantum coherence and its coherence susceptibility are effective to detect the quantum phase transition. In the thermodynamic limit, the geometric quantum coherence exhibits a sudden jump. The coherence susceptibilities versus the anisotropy parameter and the Dzyaloshinsky-Moriya interaction are infinite and vanishing, respectively, illustrating the distinct roles of the anisotropy parameter and the Dzyaloshinsky-Moriya interaction in quantum phase transition. Moreover, we also explore the finite-size scaling behaviors of the coherence susceptibilities. For a finite-size chain, the coherence susceptibility versus the phase-transition parameter is always maximal at the critical point, indicating the dramatic quantum fluctuation. Besides, we show that the correlation length can be revealed by the scaling exponent for the coherence susceptibility versus the Dzyaloshinsky-Moriya interaction.

  9. Superstring sigma models from spin chains: the SU(1,1 vertical bar 1) case

    International Nuclear Information System (INIS)

    Bellucci, S.; Casteill, P.-Y.; Morales, J.F.

    2005-01-01

    We derive the coherent state representation of the integrable spin chain Hamiltonian with non-compact supersymmetry group G=SU(1,1 vertical bar 1). By passing to the continuous limit, we find a spin chain sigma model describing a string moving on the supercoset G/H, H being the stabilizer group. The action is written in a manifestly G-invariant form in terms of the Cartan forms and the string coordinates in the supercoset. The spin chain sigma model is shown to agree with that following from the Green-Schwarz action describing two-charged string spinning on AdS 5 xS 5

  10. Coherence time of over a second in a telecom-compatible quantum memory storage material

    Science.gov (United States)

    Rančić, Miloš; Hedges, Morgan P.; Ahlefeldt, Rose L.; Sellars, Matthew J.

    2018-01-01

    Quantum memories for light will be essential elements in future long-range quantum communication networks. These memories operate by reversibly mapping the quantum state of light onto the quantum transitions of a material system. For networks, the quantum coherence times of these transitions must be long compared to the network transmission times, approximately 100 ms for a global communication network. Due to a lack of a suitable storage material, a quantum memory that operates in the 1,550 nm optical fibre communication band with a storage time greater than 1 μs has not been demonstrated. Here we describe the spin dynamics of 167Er3+: Y2SiO5 in a high magnetic field and demonstrate that this material has the characteristics for a practical quantum memory in the 1,550 nm communication band. We observe a hyperfine coherence time of 1.3 s. We also demonstrate efficient spin pumping of the entire ensemble into a single hyperfine state, a requirement for broadband spin-wave storage. With an absorption of 70 dB cm-1 at 1,538 nm and Λ transitions enabling spin-wave storage, this material is the first candidate identified for an efficient, broadband quantum memory at telecommunication wavelengths.

  11. Quantum Communication Through a Two-Dimensional Spin Network

    International Nuclear Information System (INIS)

    Wang Zhaoming; Gu Yongjian

    2012-01-01

    We investigate the state or entanglement transfer through a two-dimensional spin network. We show that for state transfer, better fidelity can be gained along the diagonal direction but for entanglement transfer, when the initial entanglement is created along the boundary, the concurrence is more inclined to propagate along the boundary. This behavior is produced by quantum mechanical interference and the communication quality depends on the precise size of the network. For some number of sites, the fidelity in a two-dimensional channel is higher than one-dimensional case. This is an important result for realizing quantum communication through high dimension spin chain networks.

  12. 'Al' concentration on spin-dependent resonant tunnelling in InAs/Ga

    Indian Academy of Sciences (India)

    The separation between spin-up and spin-down components, barrier transparency, polarization efficiency and tunnelling lifetime were calculated using the transfer matrix approach. The separation between spin-up and spin-down resonances and tunnelling lifetime were reportedfor the first time in the case of InAs/Ga 1 − y ...

  13. Quantum size effects on spin-transfer torque in a double barrier magnetic tunnel junction with a nonmagnetic-metal (semiconductor) spacer

    International Nuclear Information System (INIS)

    Daqiq, Reza; Ghobadi, Nader

    2016-01-01

    We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching. - Highlights: • The quantum size effects are studied in double barrier magnetic tunnel junctions. • Spin torque (ST) components oscillate for increasing of middle spacer thicknesses. • Due to the resonant tunneling in the quantum well, oscillations have appeared. • By replacement a metal spacer with a semiconductor (ZnO) ST has increased. • The ST components vs. bias show gradually decreasing unlike spin valves or MTJs.

  14. Quantum size effects on spin-transfer torque in a double barrier magnetic tunnel junction with a nonmagnetic-metal (semiconductor) spacer

    Energy Technology Data Exchange (ETDEWEB)

    Daqiq, Reza; Ghobadi, Nader

    2016-07-15

    We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching. - Highlights: • The quantum size effects are studied in double barrier magnetic tunnel junctions. • Spin torque (ST) components oscillate for increasing of middle spacer thicknesses. • Due to the resonant tunneling in the quantum well, oscillations have appeared. • By replacement a metal spacer with a semiconductor (ZnO) ST has increased. • The ST components vs. bias show gradually decreasing unlike spin valves or MTJs.

  15. The straintronic spin-neuron

    International Nuclear Information System (INIS)

    Biswas, Ayan K; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha

    2015-01-01

    In artificial neural networks, neurons are usually implemented with highly dissipative CMOS-based operational amplifiers. A more energy-efficient implementation is a ‘spin-neuron’ realized with a magneto-tunneling junction (MTJ) that is switched with a spin-polarized current (representing weighted sum of input currents) that either delivers a spin transfer torque or induces domain wall motion in the soft layer of the MTJ to mimic neuron firing. Here, we propose and analyze a different type of spin-neuron in which the soft layer of the MTJ is switched with mechanical strain generated by a voltage (representing weighted sum of input voltages) and term it straintronic spin-neuron. It dissipates orders of magnitude less energy in threshold operations than the traditional current-driven spin neuron at 0 K temperature and may even be faster. We have also studied the room-temperature firing behaviors of both types of spin neurons and find that thermal noise degrades the performance of both types, but the current-driven type is degraded much more than the straintronic type if both are optimized for maximum energy-efficiency. On the other hand, if both are designed to have the same level of thermal degradation, then the current-driven version will dissipate orders of magnitude more energy than the straintronic version. Thus, the straintronic spin-neuron is superior to current-driven spin neurons. (paper)

  16. Manipulating femtosecond spin-orbit torques with laser pulse sequences to control magnetic memory states and ringing

    Science.gov (United States)

    Lingos, P. C.; Wang, J.; Perakis, I. E.

    2015-05-01

    Femtosecond (fs) coherent control of collective order parameters is important for nonequilibrium phase dynamics in correlated materials. Here, we propose such control of ferromagnetic order based on using nonadiabatic optical manipulation of electron-hole (e -h ) photoexcitations to create fs carrier-spin pulses with controllable direction and time profile. These spin pulses are generated due to the time-reversal symmetry breaking arising from nonperturbative spin-orbit and magnetic exchange couplings of coherent photocarriers. By tuning the nonthermal populations of exchange-split, spin-orbit-coupled semiconductor band states, we can excite fs spin-orbit torques that control complex magnetization pathways between multiple magnetic memory states. We calculate the laser-induced fs magnetic anisotropy in the time domain by using density matrix equations of motion rather than the quasiequilibrium free energy. By comparing to pump-probe experiments, we identify a "sudden" out-of-plane magnetization canting displaying fs magnetic hysteresis, which agrees with switchings measured by the static Hall magnetoresistivity. This fs transverse spin-canting switches direction with magnetic state and laser frequency, which distinguishes it from the longitudinal nonlinear optical and demagnetization effects. We propose that sequences of clockwise or counterclockwise fs spin-orbit torques, photoexcited by shaping two-color laser-pulse sequences analogous to multidimensional nuclear magnetic resonance (NMR) spectroscopy, can be used to timely suppress or enhance magnetic ringing and switching rotation in magnetic memories.

  17. Gate-Driven Pure Spin Current in Graphene

    Science.gov (United States)

    Lin, Xiaoyang; Su, Li; Si, Zhizhong; Zhang, Youguang; Bournel, Arnaud; Zhang, Yue; Klein, Jacques-Olivier; Fert, Albert; Zhao, Weisheng

    2017-09-01

    The manipulation of spin current is a promising solution for low-power devices beyond CMOS. However, conventional methods, such as spin-transfer torque or spin-orbit torque for magnetic tunnel junctions, suffer from large power consumption due to frequent spin-charge conversions. An important challenge is, thus, to realize long-distance transport of pure spin current, together with efficient manipulation. Here, the mechanism of gate-driven pure spin current in graphene is presented. Such a mechanism relies on the electrical gating of carrier-density-dependent conductivity and spin-diffusion length in graphene. The gate-driven feature is adopted to realize the pure spin-current demultiplexing operation, which enables gate-controllable distribution of the pure spin current into graphene branches. Compared with the Elliott-Yafet spin-relaxation mechanism, the D'yakonov-Perel spin-relaxation mechanism results in more appreciable demultiplexing performance. The feature of the pure spin-current demultiplexing operation will allow a number of logic functions to be cascaded without spin-charge conversions and open a route for future ultra-low-power devices.

  18. High-fidelity adiabatic inversion of a {sup 31}P electron spin qubit in natural silicon

    Energy Technology Data Exchange (ETDEWEB)

    Laucht, Arne, E-mail: a.laucht@unsw.edu.au; Kalra, Rachpon; Muhonen, Juha T.; Dehollain, Juan P.; Mohiyaddin, Fahd A.; Hudson, Fay; Dzurak, Andrew S.; Morello, Andrea [Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, New South Wales 2052 (Australia); McCallum, Jeffrey C.; Jamieson, David N. [Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia)

    2014-03-03

    The main limitation to the high-fidelity quantum control of spins in semiconductors is the presence of strongly fluctuating fields arising from the nuclear spin bath of the host material. We demonstrate here a substantial improvement in single-qubit inversion fidelities for an electron spin qubit bound to a {sup 31}P atom in natural silicon, by applying adiabatic sweeps instead of narrow-band pulses. We achieve an inversion fidelity of 97%, and we observe signatures in the spin resonance spectra and the spin coherence time that are consistent with the presence of an additional exchange-coupled donor. This work highlights the effectiveness of simple adiabatic inversion techniques for spin control in fluctuating environments.

  19. Spin diffusion and torques in disordered antiferromagnets

    KAUST Repository

    Manchon, Aurelien

    2017-02-01

    We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.

  20. Spin diffusion and torques in disordered antiferromagnets

    KAUST Repository

    Manchon, Aurelien

    2017-01-01

    We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.