WorldWideScience

Sample records for spider mite-induced volatile

  1. Genetic variation in jasmonic acid- and spider mite-induced plant volatile emission of cucumber accessions and attraction of the predator Phytoseiulus persimilis.

    Science.gov (United States)

    Kappers, Iris F; Verstappen, Francel W A; Luckerhoff, Ludo L P; Bouwmeester, Harro J; Dicke, Marcel

    2010-05-01

    Cucumber plants (Cucumis sativus L.) respond to spider-mite (Tetranychus urticae) damage with the release of specific volatiles that are exploited by predatory mites, the natural enemies of the spider mites, to locate their prey. The production of volatiles also can be induced by exposing plants to the plant hormone jasmonic acid. We analyzed volatile emissions from 15 cucumber accessions upon herbivory by spider mites and upon exposure to jasmonic acid using gas chromatography-mass spectrometry. Upon induction, cucumber plants emitted over 24 different compounds, and the blend of induced volatiles consisted predominantly of terpenoids. The total amount of volatiles was higher in plants treated with jasmonic acid than in those infested with spider mites, with (E)-4,8-dimethyl-1,3,7-nonatriene, (E,E)-alpha-farnesene, and (E)-beta-ocimene as the most abundant compounds in all accessions in both treatments. Significant variation among the accessions was found for the 24 major volatile compounds. The accessions differed strongly in total amount of volatiles emitted, and displayed very different odor profiles. Principal component analysis performed on the relative quantities of particular compounds within the blend revealed clusters of highly correlated volatiles, which is suggestive of common metabolic pathways. A number of cucumber accessions also were tested for their attractiveness to Phytoseiulus persimilis, a specialist predator of spider mites. Differences in the attraction of predatory mites by the various accessions correlated to differences in the individual chemical profiles of these accessions. The presence of genetic variation in induced plant volatile emission in cucumber shows that it is possible to breed for cucumber varieties that are more attractive to predatory mites and other biological control agents.

  2. Comparison of cultivars of ornamental crop Gerbera jamesonii on production of spider mite-induced volatiles, and their attractiveness to the predator Phytoseiulus persimilis.

    Science.gov (United States)

    Krips, O E; Willems, P E; Gols, R; Posthumus, M A; Gort, G; Dicke, M

    2001-07-01

    We investigated whether volatiles produced by spider mite-damaged plants of four gerbera cultivars differ in attractiveness to Phytoseiulus persimilis, a specialist predator of spider mites, and how the mite-induced odor blends differ in chemical composition. The gerbera cultivars differed in resistance, as expressed in terms of spider mite intrinsic rate of population increase (rm). In order of increasing resistance these were Sirtaki, Rondena, Fame, and Bianca. To correct for differences in damage inflicted on the cultivars, we developed a method to compare the attractiveness of the blends, based on the assumption that a larger amount of spider mite damage leads to higher attraction of P persimilis. Spider mite-induced volatiles of cultivars Rondena and Bianca were preferred over those of cultivar Sirtaki. Spider mite-induced volatiles of cultivars Sirtaki and Fame did not differ in attractiveness to P. persimilis. Sirtaki plants had a lower relative production of terpenes than the other three cultivars. This was attributed to a low production of cis-alpha-bergamotene, trans-alpha-bergamotene, trans-beta-bergamotene, and (E)-beta-farnesene. The emission of (E)-beta-ocimene and linalool was lower in Sirtaki and Fame leaves than in Bianca and Rondena. The importance of these chemical differences in the differential attraction of predatory mites is discussed.

  3. The response of Phytoseiulus persimilis to spider mite-induced volatiles from gerbera: influence of starvation and experience

    NARCIS (Netherlands)

    Krips, O.E.; Willems, P.E.I.; Gols, R.; Posthumus, M.A.; Dicke, M.

    1999-01-01

    When leaves of the ornamental crop Gerbera jamesonii are damaged by the spider mite Tetranychus urticae, they produce many volatile compounds in large quantities. Undamaged gerbera leaves produce only a few volatiles in very small quantities. In the headspace of spider mite-damaged gerbera leaves

  4. Induction of direct and indirect plant responses by jasmonic acid, low spider mite densities, or a combination of jasmonic acid treatment and spider mite infestation.

    Science.gov (United States)

    Gols, Rieta; Roosjen, Mara; Dijkman, Herman; Dicke, Marcel

    2003-12-01

    Jasmonic acid (JA) and the octadecanoid pathway are involved in both induced direct and induced indirect plant responses. In this study, the herbivorous mite, Tetranychus urticae, and its predator, Phytoseiulus persimilis, were given a choice between Lima bean plants induced by JA or spider mites and uninduced control plants. Infestation densities resulting in the induction of predator attractants were much lower than thus far assumed, i.e., predatory mites were significantly attracted to plants that were infested for 2 days with only one or four spider mites per plant. Phytoseiulus persimilis showed a density-dependent response to volatiles from plants that were infested with different numbers of spider mites. Similarly, treating plants with increasing concentrations of JA also led to increased attraction of P. persimilis. Moreover, the duration of spider mite infestation was positively correlated with the proportion of predators that were attracted to mite-infested plants. A pretreatment of the plants with JA followed by a spider mite infestation enhanced the attraction of P. persimilis to plant volatiles compared to attraction to volatiles from plants that were only infested with spider mites and did not receive a pretreatment with JA. The herbivore, T. urticae preferred leaf tissue that previously had been infested with conspecifics to uninfested leaf tissue. In the case of choice tests with JA-induced and control leaf tissue, spider mites slightly preferred control leaf tissue. When spider mites were given a choice between leaf discs induced by JA and leaf discs damaged by spider mite feeding, they preferred the latter. The presence of herbivore induced chemicals and/or spider mite products enhanced settlement of the mites, whereas treatment with JA seemed to impede settlement.

  5. Volatile compounds from leaves of the African spider plant (Gynandropsis gynandra) with bioactivity against spider mite (Tetranychus urticae)

    DEFF Research Database (Denmark)

    Nyalala, Samuel Odeyo; Petersen, Mikael Agerlin; Grout, Brian William Wilson

    2013-01-01

    Previous studies have demonstrated that Gynandropsis gynandra emits acetonitrile as a foliar volatile from intact plants and isolated leaves, and that this compound is an effective spider mite repellent. This study has used gas chromatography–mass spectrometry to investigate volatile compounds...... emitted from homogenised G. gynandra leaves to evaluate their tissue acetonitrile content and to look for other compounds that might be exploited for the management of spider mites. Acetonitrile was absent from the homogenised tissues of five lines of G. gynandra, studied over two seasons. Thirteen...... volatile compounds were emitted by G. gynandra at significantly higher levels than mite-susceptible pot roses, including isothiocyanates, aldehydes, esters, alcohols and terpenes. Six representative compounds were selected to assess bioactivity. Spider mite populations were completely inactive after a 2¿h...

  6. Jasmonic Acid Is a Key Regulator of Spider Mite-Induced Volatile Terpenoid and Methyl Salicylate Emission in Tomato1[w

    Science.gov (United States)

    Ament, Kai; Kant, Merijn R.; Sabelis, Maurice W.; Haring, Michel A.; Schuurink, Robert C.

    2004-01-01

    The tomato (Lycopersicon esculentum) mutant def-1, which is deficient in induced jasmonic acid (JA) accumulation upon wounding or herbivory, was used to study the role of JA in the direct and indirect defense responses to phytophagous mites (Tetranychus urticae). In contrast to earlier reports, spider mites laid as many eggs and caused as much damage on def-1 as on wild-type plants, even though def-1 lacked induction of proteinase inhibitor activity. However, the hatching-rate of eggs on def-1 was significantly higher, suggesting that JA-dependent direct defenses enhanced egg mortality or increased the time needed for embryonic development. As to gene expression, def-1 had lower levels of JA-related transcripts but higher levels of salicylic acid (SA) related transcripts after 1 d of spider mite infestation. Furthermore, the indirect defense response was absent in def-1, since the five typical spider mite-induced tomato-volatiles (methyl salicylate [MeSA], 4,8,12-trimethyltrideca-1,3,7,11-tetraene [TMTT], linalool, trans-nerolidol, and trans-β-ocimene) were not induced and the predatory mite Phytoseiulus persimilis did not discriminate between infested and uninfested def-1 tomatoes as it did with wild-type tomatoes. Similarly, the expression of the MeSA biosynthetic gene salicylic acid methyltransferase (SAMT) was induced by spider mites in wild type but not in def-1. Exogenous application of JA to def-1 induced the accumulation of SAMT and putative geranylgeranyl diphosphate synthase transcripts and restored MeSA- and TMTT-emission upon herbivory. JA is therefore necessary to induce the enzymatic conversion of SA into MeSA. We conclude that JA is essential for establishing the spider mite-induced indirect defense response in tomato. PMID:15310835

  7. Differential Timing of Spider Mite-Induced Direct and Indirect Defenses in Tomato Plants1[w

    Science.gov (United States)

    Kant, Merijn R.; Ament, Kai; Sabelis, Maurice W.; Haring, Michel A.; Schuurink, Robert C.

    2004-01-01

    Through a combined metabolomics and transcriptomics approach we analyzed the events that took place during the first 5 d of infesting intact tomato (Lycopersicon esculentum) plants with spider mites (Tetranychus urticae). Although the spider mites had caused little visible damage to the leaves after 1 d, they had already induced direct defense responses. For example, proteinase inhibitor activity had doubled and the transcription of genes involved in jasmonate-, salicylate-, and ethylene-regulated defenses had been activated. On day four, proteinase inhibitor activity and particularly transcript levels of salicylate-regulated genes were still maintained. In addition, genes involved in phospholipid metabolism were up-regulated on day one and those in the secondary metabolism on day four. Although transcriptional up-regulation of the enzymes involved in the biosynthesis of monoterpenes and diterpenes already occurred on day one, a significant increase in the emission of volatile terpenoids was delayed until day four. This increase in volatile production coincided with the increased olfactory preference of predatory mites (Phytoseiulus persimilis) for infested plants. Our results indicate that tomato activates its indirect defenses (volatile production) to complement the direct defense response against spider mites. PMID:15122016

  8. Whiteflies interfere with indirect plant defense against spider mites in Lima bean

    Science.gov (United States)

    Zhang, Peng-Jun; Zheng, Si-Jun; van Loon, Joop J. A.; Boland, Wilhelm; David, Anja; Mumm, Roland; Dicke, Marcel

    2009-01-01

    Plants under herbivore attack are able to initiate indirect defense by synthesizing and releasing complex blends of volatiles that attract natural enemies of the herbivore. However, little is known about how plants respond to infestation by multiple herbivores, particularly if these belong to different feeding guilds. Here, we report the interference by a phloem-feeding insect, the whitefly Bemisia tabaci, with indirect plant defenses induced by spider mites (Tetranychus urticae) in Lima bean (Phaseolus lunatus) plants. Additional whitefly infestation of spider-mite infested plants resulted in a reduced attraction of predatory mites (Phytoseiulus persimilis) compared to attraction to plants infested by spider mites only. This interference is shown to result from the reduction in (E)-β-ocimene emission from plants infested by both spider mites and whiteflies. When using exogenous salicylic acid (SA) application to mimic B. tabaci infestation, we observed similar results in behavioral and chemical analyses. Phytohormone and gene-expression analyses revealed that B. tabaci infestation, as well as SA application, inhibited spider mite-induced jasmonic acid (JA) production and reduced the expression of two JA-regulated genes, one of which encodes for the P. lunatus enzyme β-ocimene synthase that catalyzes the synthesis of (E)-β-ocimene. Remarkably, B. tabaci infestation concurrently inhibited SA production induced by spider mites. We therefore conclude that in dual-infested Lima bean plants the suppression of the JA signaling pathway by whitefly feeding is not due to enhanced SA levels. PMID:19965373

  9. Predatory Mite Attraction to Herbivore-induced Plant Odors is not a Consequence of Attraction to Individual Herbivore-induced Plant Volatiles

    Science.gov (United States)

    De Bruijn, Paulien J. A.; Sabelis, Maurice W.

    2008-01-01

    Predatory mites locate herbivorous mites, their prey, by the aid of herbivore-induced plant volatiles (HIPV). These HIPV differ with plant and/or herbivore species, and it is not well understood how predators cope with this variation. We hypothesized that predators are attracted to specific compounds in HIPV, and that they can identify these compounds in odor mixtures not previously experienced. To test this, we assessed the olfactory response of Phytoseiulus persimilis, a predatory mite that preys on the highly polyphagous herbivore Tetranychus urticae. The responses of the predatory mite to a dilution series of each of 30 structurally different compounds were tested. They mites responded to most of these compounds, but usually in an aversive way. Individual HIPV were no more attractive (or less repellent) than out-group compounds, i.e., volatiles not induced in plants fed upon by spider-mites. Only three samples were significantly attractive to the mites: octan-1-ol, not involved in indirect defense, and cis-3-hexen-1-ol and methyl salicylate, which are both induced by herbivory, but not specific for the herbivore that infests the plant. Attraction to individual compounds was low compared to the full HIPV blend from Lima bean. These results indicate that individual HIPV have no a priori meaning to the mites. Hence, there is no reason why they could profit from an ability to identify individual compounds in odor mixtures. Subsequent experiments confirmed that naive predatory mites do not prefer tomato HIPV, which included the attractive compound methyl salicylate, over the odor of an uninfested bean. However, upon associating each of these odors with food over a period of 15 min, both are preferred. The memory to this association wanes within 24 hr. We conclude that P. persimilis possesses a limited ability to identify individual spider mite-induced plant volatiles in odor mixtures. We suggest that predatory mites instead learn to respond to prey

  10. Vitamin A deficiency modifies response of predatory mite Amblyseius potentillae to volatile kairomone of two-spotted spider mite, Tetranychus urticae.

    NARCIS (Netherlands)

    Dicke, M.; Sabelis, M.W.; Groeneveld, A.

    1986-01-01

    volatile kairomone of the two-spotted spider mite,Tetranychus urticae, elicits a searching response of the phytoseiid predatorAmblyseius potentillae, only when the predator is reared on a carotenoid-free diet. However, after addition of crystalline betta-carotene or vitamin A acetate to the

  11. The effect of genetically enriched (E)-β-ocimene and the role of floral scent in the attraction of the predatory mite Phytoseiulus persimilis to spider mite-induced volatile blends of torenia.

    Science.gov (United States)

    Shimoda, Takeshi; Nishihara, Masahiro; Ozawa, Rika; Takabayashi, Junji; Arimura, Gen-ichiro

    2012-03-01

    Plants under herbivore attack emit mixtures of volatiles (herbivore-induced plant volatiles, HIPVs) that can attract predators of the herbivores. Although the composition of HIPVs should be critical for the attraction, most studies of transgenic plant-emitted volatiles have simply addressed the effect of trans-volatiles without embedding in other endogenous plant volatiles. We investigated the abilities of transgenic wishbone flower plants (Torenia hybrida and Torenia fournieri) infested with spider mites, emitting a trans-volatile ((E)-β-ocimene) in the presence or absence of endogenous volatiles (natural HIPVs and/or floral volatiles), to attract predatory mites (Phytoseiulus persimilis). In both olfactory- and glasshouse-based assays, P. persimilis females were attracted to natural HIPVs from infested wildtype (wt) plants of T. hybrida but not to those of T. fournieri. The trans-volatile enhanced the ability to attract P. persimilis only when added to an active HIPV blend from the infested transgenic T. hybrida plants, in comparison with the attraction by infested wt plants. Intriguingly, floral volatiles abolished the enhanced attractive ability of T. hybrida transformants, although floral volatiles themselves did not elicit any attraction or avoidance behavior. Predator responses to trans-volatiles were found to depend on various background volatiles (e.g. natural HIPVs and floral volatiles) endogenously emitted by the transgenic plants. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  12. Behavioural responses of two-spotted spider mites induced by predator-borne and prey-borne cues.

    Science.gov (United States)

    Gyuris, Enikő; Szép, Erna; Kontschán, Jenő; Hettyey, Attila; Tóth, Zoltán

    2017-11-01

    Applying predatory mites as biological control agents is a well established method against spider mites which are major pests worldwide. Although antipredator responses can influence the outcome of predator-prey interactions, we have limited information about what cues spider mites use to adjust their behavioural antipredator responses. We experimentally exposed two-spotted spider mites (Tetranychus urticae) to different predator-borne cues (using a specialist predator, Phytoseiulus persimilis, or a generalist predator, Amblyseius swirskii), conspecific prey-borne cues, or both, and measured locomotion and egg-laying activity. The reactions to predator species compared to each other manifested in reversed tendencies: spider mites increased their locomotion activity in the presence of P. persimilis, whereas they decreased it when exposed to A. swirskii. The strongest response was triggered by the presence of a killed conspecific: focal spider mites decreased their locomotion activity compared to the control group. Oviposition activity was not affected by either treatment. Our results point out that spider mites may change their behaviour in response to predators, and also to the presence of killed conspecifics, but these effects were not enhanced when both types of cues were present. The effect of social contacts among prey conspecifics on predator-induced behavioural defences is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Prey preference of the phytoseiid mite Typhlodromus pyri. 1. Response to volatile kairomones.

    NARCIS (Netherlands)

    Dicke, M.

    1988-01-01

    Using a Y-tube olfactometer, a study has been made of the response of females of the predatory miteTyphlodromus pyri Scheuten (Acarina: Phytoseiidae) to volatile kairomones of three prey species: the European red spider mite (Panonychus ulmi (Koch)), the two-spotted spider mite (Tetranychus urticae

  14. Attraction of Phytoseiulus persimilis (Acari: Phytoseiidae) towards volatiles from various Tetranychus urticae-infested plant species.

    Science.gov (United States)

    van den Boom, C E M; van Beek, T A; Dicke, M

    2002-12-01

    Plants infested with the spider mite Tetranychus urticae Koch, may indirectly defend themselves by releasing volatiles that attract the predatory mite Phytoseiulus persimilis Athias-Henriot. Several plants from different plant families that varied in the level of spider mite acceptance were tested in an olfactometer. The predatory mites were significantly attracted to the spider mite-infested leaves of all test plant species. No differences in attractiveness of the infested plant leaves were found for predatory mites reared on spider mites on the different test plants or on lima bean. Thus, experience with the spider mite-induced plant volatiles did not affect the predatory mites. Jasmonic acid was applied to ginkgo leaves to induce a mimic of a spider mite-induced volatile blend, because the spider mites did not survive when incubated on ginkgo. The volatile blend induced in ginkgo by jasmonic acid was slightly attractive to predatory mites. Plants with a high degree of direct defence were thought to invest less in indirect defence than plants with a low degree of direct defence. However, plants that had a strong direct defence such as ginkgo and sweet pepper, did emit induced volatiles that attracted the predatory mite. This indicates that a combination of direct and indirect defence is to some extent compatible in plant species.

  15. Learned predation risk management by spider mites

    Directory of Open Access Journals (Sweden)

    Thomas eHackl

    2014-09-01

    Full Text Available Predation is a prime selective force shaping prey behavior. Investment in anti-predator behavior is traded-off against time and energy for other fitness-enhancing activities such as foraging or reproduction. To optimize this benefit/cost trade-off, prey should be able to innately and/or by experience modulate their behavior to the level of predation risk. Here, we assessed learned predation risk management in the herbivorous two-spotted spider mite Tetranychus urticae. We exposed spider mites coming from benign (naïve or high immediate predation risk (experienced environments to latent and/or no risk and assessed their site choice, activity and oviposition. Benign environments were characterized by the absence of any predator cues, high immediate risk environments by killed spider mites, physical presence of the predatory mite Phytoseiulus persimilis and associated chemosensory traces left on the surface, and latent risk environments by only predator traces. In the no-choice experiment both naïve and experienced spider mites laid their first egg later on leaves with than without predator traces. Irrespective of predator traces presence/absence, experienced mites laid their first egg earlier than naïve ones did. Naïve spider mites were more active, indicating higher restlessness, and laid fewer eggs on leaves with predator traces, whereas experienced mites were less active and laid similar numbers of eggs on leaves with and without predator traces. In the choice experiment both naïve and experienced spider mites preferentially resided and oviposited on leaves without predator traces but experienced mites were less active than naïve ones. Overall, our study suggests that spider mites experienced with high predation risk behave bolder under latent risk than naïve spider mites. Since predator traces alone do not indicate immediate risk, we argue that the attenuated anti-predator response of experienced spider mites represents adaptive learned

  16. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, Terhi; Nerg, Anne-Marja; Holopainen, Jarmo K

    2004-09-01

    We evaluated the similarities between ozone-induced and mite-induced emission of volatile organic compounds (VOCs) from lima beans, and tested the response of the natural enemies of herbivores to these emissions using trophic system of two-spotted spider mites and predatory mites. The acute ozone-exposure and spider mite-infestation induced the emission of two homoterpenes, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and (Z)-3-hexenyl acetate. Only plants with spider mite-infestation emitted the monoterpene (E)-{beta}-ocimene. Predatory mites were equally attracted to ozone-exposed and unexposed plants, but discriminated between spider mite-infested and uninfested plants, when both were exposed to ozone. The similarities between ozone and herbivore-induced VOCs suggest that plant defence against phytotoxic ozone and the production of VOCs for attraction of the natural enemies of herbivores may have adaptive coevolution. However, the expected elevated ozone concentrations in future may not disturb tritrophic signalling, unless herbivore-induced VOCs are lost in the process of aerosol formation.

  17. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling

    International Nuclear Information System (INIS)

    Vuorinen, Terhi; Nerg, Anne-Marja; Holopainen, Jarmo K.

    2004-01-01

    We evaluated the similarities between ozone-induced and mite-induced emission of volatile organic compounds (VOCs) from lima beans, and tested the response of the natural enemies of herbivores to these emissions using trophic system of two-spotted spider mites and predatory mites. The acute ozone-exposure and spider mite-infestation induced the emission of two homoterpenes, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and (Z)-3-hexenyl acetate. Only plants with spider mite-infestation emitted the monoterpene (E)-β-ocimene. Predatory mites were equally attracted to ozone-exposed and unexposed plants, but discriminated between spider mite-infested and uninfested plants, when both were exposed to ozone. The similarities between ozone and herbivore-induced VOCs suggest that plant defence against phytotoxic ozone and the production of VOCs for attraction of the natural enemies of herbivores may have adaptive coevolution. However, the expected elevated ozone concentrations in future may not disturb tritrophic signalling, unless herbivore-induced VOCs are lost in the process of aerosol formation

  18. Prey and Non-prey Arthropods Sharing a Host Plant: Effects on Induced Volatile Emission and Predator Attraction

    Science.gov (United States)

    Hordijk, Cornelis A.; Posthumus, Maarten A.; Dicke, Marcel

    2008-01-01

    It is well established that plants infested with a single herbivore species can attract specific natural enemies through the emission of herbivore-induced volatiles. However, it is less clear what happens when plants are simultaneously attacked by more than one species. We analyzed volatile emissions of lima bean and cucumber plants upon multi-species herbivory by spider mites (Tetranychus urticae) and caterpillars (Spodoptera exigua) in comparison to single-species herbivory. Upon herbivory by single or multiple species, lima bean and cucumber plants emitted volatile blends that comprised mostly the same compounds. To detect additive, synergistic, or antagonistic effects, we compared the multi-species herbivory volatile blend with the sum of the volatile blends induced by each of the herbivore species feeding alone. In lima bean, the majority of compounds were more strongly induced by multi-species herbivory than expected based on the sum of volatile emissions by each of the herbivores separately, potentially caused by synergistic effects. In contrast, in cucumber, two compounds were suppressed by multi-species herbivory, suggesting the potential for antagonistic effects. We also studied the behavioral responses of the predatory mite Phytoseiulus persimilis, a specialized natural enemy of spider mites. Olfactometer experiments showed that P. persimilis preferred volatiles induced by multi-species herbivory to volatiles induced by S. exigua alone or by prey mites alone. We conclude that both lima bean and cucumber plants effectively attract predatory mites upon multi-species herbivory, but the underlying mechanisms appear different between these species. PMID:18185960

  19. Phytoseiulus persimilis response to herbivore-induced plant volatiles as a function of mite-days.

    Science.gov (United States)

    Nachappa, Punya; Margolies, David C; Nechols, James R; Loughin, Thomas

    2006-01-01

    The predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae), uses plant volatiles (i.e., airborne chemicals) triggered by feeding of their herbivorous prey, Tetranychus urticae (Acari: Tetranychidae), to help locate prey patches. The olfactory response of P. persimilis to prey-infested plants varies in direct relation to the population growth pattern of T. urticae on the plant; P. persimilis responds to plants until the spider mite population feeding on a plant collapses, after which infested plants do not attract predators. It has been suggested that this represents an early enemy-free period for T. urticae before the next generation of females is produced. We hypothesize that the mechanism behind the diminished response of predators is due to extensive leaf damage caused by T. urticae feeding, which reduces the production of volatiles irrespective of the collapse of T. urticae population on the plant. To test this hypothesis we investigated how the response of P. persimilis to prey-infested plants is affected by: 1) initial density of T. urticae, 2) duration of infestation, and 3) corresponding leaf damage due to T. urticae feeding. Specifically, we assessed the response of P. persimilis to plants infested with two T. urticae densities (20 or 40 per plant) after 2, 4, 6, 8, 10, 12 or 14 days. We also measured leaf damage on these plants. We found that predator response to T. urticae-infested plants can be quantified as a function of mite-days, which is a cumulative measure of the standing adult female mite population sampled and summed over time. That is, response to volatiles increased with increasing numbers of T. urticae per plant or with the length of time plant was infested by T. urticae, at least as long at the leaves were green. Predatory mites were significantly attracted to plants that were infested for 2 days with only 20 spider mites. This suggests that the enemy-free period might only provide a limited window of opportunity for T. urticae

  20. Evaluation of airborne methyl salicylate for improved conservation biological control of two-spotted spider mites and hop aphid in Oregon hop yards

    Science.gov (United States)

    The use of synthetic herbivore-induced plant volatiles (HIPV) to attract natural enemies has received interest as a tool to enhance conservation biological control (CBC). Methyl salicylate (MeSA) is a HIPV that is attractive to several key predators of two-spotted spider mite, Tetranychus urticae K...

  1. Beyond Predation: The Zoophytophagous Predator Macrolophus pygmaeus Induces Tomato Resistance against Spider Mites.

    Directory of Open Access Journals (Sweden)

    Maria L Pappas

    Full Text Available Many predatory insects that prey on herbivores also feed on the plant, but it is unknown whether plants affect the performance of herbivores by responding to this phytophagy with defence induction. We investigate whether the prior presence of the omnivorous predator Macrolophus pygmaeus (Rambur on tomato plants affects plant resistance against two different herbivore species. Besides plant-mediated effects of M. pygmaeus on herbivore performance, we examined whether a plant defence trait that is known to be inducible by herbivory, proteinase inhibitors (PI, may also be activated in response to the interactions of this predator with the tomato plant. We show that exposing tomato plants to the omnivorous predator M. pygmaeus reduced performance of a subsequently infesting herbivore, the two-spotted spider mite Tetranychus urticae Koch, but not of the greenhouse whitefly Trialeurodes vaporariorum (Westwood. The spider-mite infested tomato plants experience a lower herbivore load, i.e., number of eggs deposited and individuals present, when previously exposed to the zoophytophagous predator. This effect is not restricted to the exposed leaf and persists on exposed plants for at least two weeks after the removal of the predators. The decreased performance of spider mites as a result of prior exposure of the plant to M. pygmaeus is accompanied by a locally and systemically increased accumulation of transcripts and activity of proteinase inhibitors that are known to be involved in plant defence. Our results demonstrate that zoophytophagous predators can induce plant defence responses and reduce herbivore performance. Hence, the suppression of populations of certain herbivores via consumption may be strengthened by the induction of plant defences by zoophytophagous predators.

  2. Spectral response of spider mite infested cotton: Mite density and miticide rate study

    Science.gov (United States)

    Two-spotted spider mites are important pests in many agricultural systems. Spider mites (Acari: Tetranychidae) have been found to cause economic damage in corn, cotton, and sorghum. Adult glass vial bioassays indicate that Temprano™ (abamectin) is the most toxic technical miticide for adult two-spot...

  3. Morphology of the olfactory system in the predatory mite Phytoseiulus persimilis

    NARCIS (Netherlands)

    van Wijk, M.; Wadman, W.J.; Sabelis, M.W.

    2006-01-01

    The predatory mite Phytoseiulus persimilis locates its prey, the two-spotted spider mite, by means of herbivore-induced plant volatiles. The olfactory response to this quantitatively and qualitatively variable source of information is particularly well documented. The mites perform this task with a

  4. Evaluation of predatory mites and Acramite for control of twospotted spider mites in strawberries in north central Florida.

    Science.gov (United States)

    Rhodes, Elena M; Liburd, Oscar E

    2006-08-01

    Greenhouse and field experiments were conducted from 2003 to 2005 to determine the effectiveness of two predatory mite species, Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus (McGregor), and a reduced-risk miticide, Acramite 50 WP (bifenazate), for control of twospotted spider mite, Tetranychus urticae Koch, in strawberries (Fragaria x ananassa Duchesne). In greenhouse tests, three treatments consisting of releases of P. persimilis, N. californicus, and an untreated control were evaluated. Both species of predatory mites significantly reduced twospotted spider mite numbers below those found in the control during the first 3 wk of evaluation. However, during week 4, twospotted spider mite numbers on the plants treated with P. persimilis increased and did not differ significantly from the control. Field studies used releases of P. persimilis and N. californicus, applications of Acramite, and untreated control plots. Both N. californicus and P. persimilis significantly reduced populations of twospotted spider mite below numbers recorded in the control plots. During the 2003-2004 field season P. persimilis took longer than N. californicus to bring the twospotted spider mite population under control (< 10 mites per leaflet). Acramite was effective in reducing twospotted spider mite populations below 10 mites per leaflet during the 2003-2004 field season but not during the 2004-2005 field season, possibly because of a late application. These findings indicate that N. californicus releases and properly timed Acramite applications are promising options for twospotted spider mite control in strawberries for growers in north Florida and other areas of the southeast.

  5. Tomato whole genome transcriptional response to Tetranychus urticae identifies divergence of spider mite-induced responses between tomato and Arabidopsis

    NARCIS (Netherlands)

    Martel, C.; Zhurov, V.; Navarro, M.; Martinez, M.; Cazaux, M.; Auger, P.; Migeon, A.; Santamaria, M.E.; Wybouw, N.; Diaz, I.; Van Leeuwen, T.; Navajas, M.; Grbic, M.; Grbic, V.

    2015-01-01

    The two-spotted spider mite Tetranychus urticae is one of the most significant mite pests in agriculture, feeding on more than 1,100 plant hosts, including model plants Arabidopsis thaliana and tomato, Solanum lycopersicum. Here, we describe timecourse tomato transcriptional responses to spider mite

  6. Herbivory induces systemic production of plant volatiles that attract predators of the herbivore: extraction of endogenous elicitor.

    NARCIS (Netherlands)

    Dicke, M.; Baarlen, van P.; Wessels, R.; Dijkman, H.

    1993-01-01

    It was previously shown that in response to infestation by spider mites (Tetranychus urticae), lima bean plants produce a volatile herbivoreinduced synomone that attracts phytoseiid mites (Phytoseiulus persimilis) that are predators of the spider mites. The production of predator-attracting

  7. Evaluation of dry-adapted strains of the predatory mite Neoseiulus californicus for spider mite control on cucumber, strawberry and pepper.

    Science.gov (United States)

    Palevsky, E; Walzer, A; Gal, S; Schausberger, P

    2008-06-01

    The goal of this study was to evaluate spider mite control efficacy of two dry-adapted strains of Neoseiulus californicus. Performance of these strains were compared to a commercial strain of Phytoseiulus persimilis on whole cucumber, pepper and strawberry plants infested with Tetranychus urticae at 50 +/- 5% RH. Under these dry conditions predators' performance was very different on each host plant. On cucumber, spider mite suppression was not attained by any of the three predators, plants 'burnt out' within 4 weeks of spider mite infestation. On strawberry, all predators satisfactorily suppressed spider mites yet they differed in short term efficacy and persistence. Phytoseiulus persimilis suppressed the spider mites more rapidly than did the BOKU and SI N. californicus strains. Both N. californicus strains persisted longer than did P. persimilis. The BOKU strain was superior to SI in population density reached, efficacy in spider mite suppression and persistence. On pepper, in the first 2 weeks of the experiment the BOKU strain was similar to P. persimilis and more efficacious in spider mite suppression than strain SI. Four weeks into the experiment the efficacy of P. persimilis dropped dramatically and was inferior to the SI and BOKU strains. Overall, mean predator density was highest on plants harbouring the BOKU strain, lowest on plants with P. persimilis and intermediate on plants with the SI strain. Implications for biocontrol of spider mites using phytoseiid species under dry conditions are discussed.

  8. Spider mite control and resistance management: does a genome help?

    NARCIS (Netherlands)

    Van Leeuwen, T.; Dermauw, W.; Grbic, M.; Tirry, L.; Feyereisen, R.

    2012-01-01

    The complete genome of the two-spotted spider mite, Tetranychus urticae, has been reported. This is the first sequenced genome of a highly polyphagous and resistant agricultural pest. The question as to what the genome offers the community working on spider mite control is addressed.

  9. Gamma irradiation as a quarantine treatment for spider mites (Acarina: tetranychidae) in horticultural products

    International Nuclear Information System (INIS)

    Ignatowicz, S.; Banasik-Solgala, K.

    1999-01-01

    The carmine spider mite, Tetranychus cinnabarinus (Boisd.), and the two-spotted spider mite, Tetranychus urticae Koch, are closely related species of tetranychid mites (Acarina, Tetranychidae) that respond to gamma irradiation in a similar way. Eggs of both species exposed to gamma radiation early in embryonic development were considerably more susceptible to irradiation than older eggs. The tolerance of eggs to gamma radiation increased in 3-4-day-old eggs, when eye-spots were formed. Nymphs were more resistant to gamma radiation than eggs and larvae. Deteriorative effects of irradiation treatment were reflected in the immatures by their mortality in subsequent developmental stages. A positive relationship between dosage and the percent egg mortality or the mortality of subsequent stages was usually found when the immature stages were irradiated. The sex ratio of adults developed from irradiated eggs, larvae, and nymphs was affected by the irradiation treatment; the ratio was usually skewed towards males. Irradiation of females resulted in increased mortality, lowered fecundity, reduced egg viability, and sex ratio distortion in their progeny. Two-day-old females of the carmine spider mite and the two-spotted spider mite irradiated with 200 or 300 Gy lived as long as the controls. Mortality occurred after 3 weeks. The number of eggs laid by irradiated females of spider mites was considerably lower than in the control, and it decreased as the absorbed dose increased. The higher the dose of gamma radiation applied to adults of the spider mites (the parental generation, P), the higher the mortality of the F1 mites during their embryonic development. Viability of eggs laid by irradiated females of spider mites mated with irradiated males was significantly reduced. Young females treated with a dose of 0.2 kGy produced 40-50% nonviable eggs, while control mites produced only 6.0-6.6% nonviable eggs. A dose of 0.3 kGy caused high mortality of eggs; 88% and 97% nonviable

  10. Spatiotemporal heterogeneity of tomato induced defense responses affects spider mite performance and behavior.

    Science.gov (United States)

    Schimmel, Bernardus C J; Ataide, Livia M S; Kant, Merijn R

    2017-10-03

    When feeding from tomato (Solanum lycopersicum), the generalist spider mite Tetranychus urticae induces jasmonate (JA)- and salicylate (SA)-regulated defense responses that hamper its performance. The related T. evansi, a Solanaceae-specialist, suppresses these defenses, thereby upholding a high performance. On a shared leaf, T. urticae can be facilitated by T. evansi, likely via suppression of defenses by the latter. Yet, when infesting the same plant, T. evansi outcompetes T. urticae. Recently, we found that T. evansi intensifies suppression of defenses locally, i.e., at its feeding site, after T. urticae mites were introduced onto adjacent leaf tissue. This hyper-suppression is paralleled by an increased oviposition rate of T. evansi, probably promoting its competitive population growth. Here we present additional data that not only provide insight into the spatiotemporal dynamics of defense induction and suppression by mites, but that also suggest T. evansi to manipulate more than JA and SA defenses alone.

  11. Can Plant Defence Mechanisms Provide New Approaches for the Sustainable Control of the Two-Spotted Spider Mite Tetranychus urticae?

    Directory of Open Access Journals (Sweden)

    Blas Agut

    2018-02-01

    Full Text Available Tetranychus urticae (T. urticae Koch is a cosmopolitan, polyphagous mite which causes economic losses in both agricultural and ornamental plants. Some traits of T. urticae hamper its management, including a short life cycle, arrhenotokous parthenogenesis, its haplodiploid sex determination system, and its extraordinary ability to adapt to different hosts and environmental conditions. Currently, the use of chemical and biological control are the major control methods used against this mite. In recent years, some studies have focused on plant defence mechanisms against herbivores. Various families of plant compounds (such as flavonoids, glucosinolates, or acyl sugars have been shown to behave as acaricides. Plants can be induced upon appropriate stimuli to increase their resistance against spider mites. This knowledge, together with the understanding of mechanisms by which T. urticae detoxifies and adapts to pesticides, may complement the control of this pest. Herein, we describe plant volatile compounds (VOCs with repellent activity, and new findings about defence priming against spider mites, which interfere with the T. urticae performance. The use of VOCs and defence priming can be integrated into current management practices and reduce the damage caused by T. urticae in the field by implementing new, more sustainable crop management tools.

  12. Evaluation of airborne methyl salicylate for improved conservation biological control of two-spotted spider mite and hop aphid in Oregon hop yards.

    Science.gov (United States)

    Woods, J L; James, D G; Lee, J C; Gent, D H

    2011-12-01

    The use of synthetic herbivore-induced plant volatiles (HIPV) to attract natural enemies has received interest as a tool to enhance conservation biological control (CBC). Methyl salicylate (MeSA) is a HIPV that is attractive to several key predators of two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), and hop aphid, Phorodon humuli (Schrank) (Homoptera: Aphididae). A 2-year study was conducted to evaluate the recommended commercial use of MeSA in hop yards in Oregon. Slow-release MeSA dispensers were stapled to supporting poles in 0.5 ha plots and these plots were compared to a paired non-treated plot on each of three farms in 2008 and 2009. Across both years, there was a trend for reduced (range 40-91%) mean seasonal numbers of T. urticae in five of the six MeSA-baited plots. Stethorus spp., key spider mite predators, tended to be more numerous in MeSA-baited plots compared to control plots on a given farm. Mean seasonal densities of hop aphid and other natural enemies (e.g., Orius spp. and Anystis spp.) were similar between MeSA-treated and control plots. Variability among farms in suppression of two-spotted spider mites and attraction of Stethorus spp. suggests that the use of MeSA to enhance CBC of spider mites in commercial hop yards may be influenced by site-specific factors related to the agroecology of individual farms or seasonal effects that require further investigation. The current study also suggests that CBC of hop aphid with MeSA in this environment may be unsatisfactory.

  13. Below-ground plant parts emit herbivore-induced volatiles: olfactory responses of a predatory mite to tulip bulbs infested by rust mites

    NARCIS (Netherlands)

    Aratchige, N.S.; Lesna, I.; Sabelis, M.W.

    2004-01-01

    Although odour-mediated interactions among plants, spider mites and predatory mites have been extensively studied above-ground, belowground studies are in their infancy. In this paper, we investigate whether feeding by rust mites (Aceria tulipae) cause tulip bulbs to produce odours that attract

  14. Population survey of phytoseiid mites and spider mites on peach leaves and wild plants in Japanese peach orchard.

    Science.gov (United States)

    Wari, David; Yamashita, Jun; Kataoka, Yoko; Kohara, Yoko; Hinomoto, Norihide; Kishimoto, Hidenari; Toyoshima, Shingo; Sonoda, Shoji

    2014-07-01

    A population survey of phytoseiid mites and spider mites was conducted on peach leaves and wild plants in Japanese peach orchards having different pesticide practices. The phytoseiid mite species composition on peach leaves and wild plants, as estimated using quantitative sequencing, changed during the survey period. Moreover, it varied among study sites. The phytoseiid mite species compositions were similar between peach leaves and some wild plants, such as Veronica persica, Paederia foetida, Persicaria longiseta, and Oxalis corniculata with larger quantities of phytoseiid mites, especially after mid-summer. A PCR-based method to detect the ribosomal ITS sequences of Tetranychus kanzawai and Panonychus mori from phytoseiid mites was developed. Results showed that Euseius sojaensis (specialized pollen feeder/generalist predator) uses both spider mites as prey in the field.

  15. Active optical sensor assessment of spider mite damage on greenhouse beans and cotton.

    Science.gov (United States)

    Martin, Daniel E; Latheef, Mohamed A

    2018-02-01

    The two-spotted spider mite, Tetranychus urticae Koch, is an important pest of cotton in mid-southern USA and causes yield reduction and deprivation in fiber fitness. Cotton and pinto beans grown in the greenhouse were infested with spider mites at the three-leaf and trifoliate stages, respectively. Spider mite damage on cotton and bean canopies expressed as normalized difference vegetation index indicative of changes in plant health was measured for 27 consecutive days. Plant health decreased incrementally for cotton until day 21 when complete destruction occurred. Thereafter, regrowth reversed decline in plant health. On spider mite treated beans, plant vigor plateaued until day 11 when plant health declined incrementally. Results indicate that pinto beans were better suited as a host plant than cotton for rearing T. urticae in the laboratory.

  16. Higher glandular trichome density in tomato leaflets and repellence to spider mites

    International Nuclear Information System (INIS)

    Maluf, Wilson Roberto; Inoue, Irene Fumi; Ferreira, Raphael de Paula Duarte; Gomes, Luiz Antonio Augusto; Castro, Evaristo Mauro de; Cardoso, Maria das Gracas

    2007-01-01

    The objective of this work was to evaluate the feasibility of selection for higher glandular trichome densities, as an indirect criterion of selection for increasing repellence to spider mites Tetranychus urticae, in tomato populations derived from an interspecific cross between Lycopersicon esculentum x L. hirsutum var. glabratum PI 134417. Trichome densities were evaluated in 19 genotypes, including 12 from advanced backcross populations, derived from the original cross L. esculentum x L. hirsutum var. glabratum PI 134417. Counts were made both on the adaxial and abaxial leaf surfaces, and trichomes were classified into glandular types IV and VI, other glandular types (types I+VII), and nonglandular types. Mite repellence was measured by distances walked by mites onto the tomato leaf surface after 20, 40 and 60 min. Spider mite repellence biotests indicated that higher densities of glandular trichomes (especially type VI) decreased the distances walked by the mites onto the tomato leaf surface. Selection of plants with higher densities of glandular trichomes can be an efficient criterion to obtain tomato genotypes with higher resistance (repellence) to spider mites. (author)

  17. Interactions between natural enemies: Effect of a predatory mite on transmission of the fungus Neozygites floridana in two-spotted spider mite populations.

    Science.gov (United States)

    Trandem, Nina; Berdinesen, Ronny; Pell, Judith K; Klingen, Ingeborg

    2016-02-01

    Introducing the predatory mite Phytoseiulus persimilis into two-spotted spider mite, Tetranychus urticae, populations significantly increased the proportion of T. urticae infected with the spider mite pathogen Neozygites floridana in one of two experiments. By the final sampling occasion, the number of T. urticae in the treatment with both the predator and the pathogen had declined to zero in both experiments, while in the fungus-only treatment T. urticae populations still persisted (20-40 T. urticae/subsample). Releasing P. persimilis into crops in which N. floridana is naturally present has the potential to improve spider mite control more than through predation alone. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Differences among plant species in acceptance by the spider mite Tetranychus urticae Koch

    NARCIS (Netherlands)

    Boom, van den C.E.M.; Beek, van T.A.; Dicke, M.

    2003-01-01

    The spider mite Tetranychus urticae Koch has a broad range of host plants. However, the spider mite does not accept all plants to the same degree because of differences in nutritive and toxic constituents. Other factors, such as the induction of secondary metabolites, the morphology of a leaf

  19. Active optical sensor assessment of spider mite damage on greenhouse beans and cotton

    Science.gov (United States)

    The two-spotted spider mite, Tetranychus urticae Koch is an important pest of cotton in mid-southern United States and causes yield reduction, and deprivation in fiber fitness. A greenhouse colony of the spider mite was used to infest cotton and pinto beans at the three-leaf and trifoliate stages, r...

  20. Tetranychus urticae mites do not mount an induced immune response against bacteria.

    Science.gov (United States)

    Santos-Matos, Gonçalo; Wybouw, Nicky; Martins, Nelson E; Zélé, Flore; Riga, Maria; Leitão, Alexandre B; Vontas, John; Grbić, Miodrag; Van Leeuwen, Thomas; Magalhães, Sara; Sucena, Élio

    2017-06-14

    The genome of the spider mite Tetranychus urticae , a herbivore, is missing important elements of the canonical Drosophila immune pathways necessary to fight bacterial infections. However, it is not known whether spider mites can mount an immune response and survive bacterial infection. In other chelicerates, bacterial infection elicits a response mediated by immune effectors leading to the survival of infected organisms. In T. urticae , infection by either Escherichia coli or Bacillus megaterium did not elicit a response as assessed through genome-wide transcriptomic analysis. In line with this, spider mites died within days even upon injection with low doses of bacteria that are non-pathogenic to Drosophila Moreover, bacterial populations grew exponentially inside the infected spider mites. By contrast, Sancassania berlesei , a litter-dwelling mite, controlled bacterial proliferation and resisted infections with both Gram-negative and Gram-positive bacteria lethal to T. urticae This differential mortality between mite species was absent when mites were infected with heat-killed bacteria. Also, we found that spider mites harbour in their gut 1000-fold less bacteria than S. berlesei We show that T. urticae has lost the capacity to mount an induced immune response against bacteria, in contrast to other mites and chelicerates but similarly to the phloem feeding aphid Acyrthosiphon pisum Hence, our results reinforce the putative evolutionary link between ecological conditions regarding exposure to bacteria and the architecture of the immune response. © 2017 The Authors.

  1. Intercropping With Fruit Trees Increases Population Abundance and Alters Species Composition of Spider Mites on Cotton.

    Science.gov (United States)

    Li, Haiqiang; Pan, Hongsheng; Wang, Dongmei; Liu, Bing; Liu, Jian; Zhang, Jianping; Lu, Yanhui

    2018-05-05

    With the recent increase in planting of fruit trees in southern Xinjiang, the intercropping of fruit trees and cotton has been widely adopted. From 2014 to 2016, a large-scale study was conducted in Aksu, an important agricultural area in southern Xinjiang, to compare the abundance and species composition of spider mites in cotton fields under jujube-cotton, apple-cotton, and cotton monocrop systems. The abundance of spider mites in cotton fields under both intercropping systems was generally higher than in the cotton monocrop. The species composition of spider mites also differed greatly between cotton intercropped with apple or jujube compared to the cotton monocrop. The relative proportion of Tetranychus truncates Ehara (Acari: Tetranychidae) in the species complex generally increased while that of another spider mite, Tetranychus dunhuangensis Wang (Acari: Tetranychidae), decreased under fruit tree-cotton systems. More attention should be paid to the monitoring and management of spider mites, especially T. truncates in this important region of China.

  2. Response of predatory mites to a herbivore-induced plant volatile: genetic variation for context-dependent behaviour.

    Science.gov (United States)

    Sznajder, Beata; Sabelis, Maurice W; Egas, Martijn

    2010-07-01

    Plants infested with herbivores release specific volatile compounds that are known to recruit natural enemies. The response of natural enemies to these volatiles may be either learned or genetically determined. We asked whether there is genetic variation in the response of the predatory mite Phytoseiulus persimilis to methyl salicylate (MeSa). MeSa is a volatile compound consistently produced by plants being attacked by the two-spotted spider mite, the prey of P. persimilis. We predicted that predators express genetically determined responses during long-distance migration where previously learned associations may have less value. Additionally, we asked whether these responses depend on odors from uninfested plants as a background to MeSa. To infer a genetic basis, we analyzed the variation in response to MeSa among iso-female lines of P. persimilis by using choice-tests that involved either (1) MeSa presented as a single compound or (2) MeSa with background-odor from uninfested lima bean plants. These tests were conducted for starved and satiated predators, i.e., two physiological states, one that approximates migration and another that mimics local patch exploration. We found variation among iso-female lines in the responses to MeSa, thus showing genetic variation for this behavior. The variation was more pronounced in the starved predators, thus indicating that P. persimilis relies on innate preferences when migrating. Background volatiles of uninfested plants changed the predators' responses to MeSa in a manner that depended on physiological state and iso-female line. Thus, it is possible to select for context-dependent behavioral responses of natural enemies to plant volatiles.

  3. Protocols for the delivery of small molecules to the two-spotted spider mite, Tetranychus urticae.

    Directory of Open Access Journals (Sweden)

    Takeshi Suzuki

    Full Text Available The two-spotted spider mite, Tetranychus urticae, is a chelicerate herbivore with an extremely wide host range and an extraordinary ability to develop pesticide resistance. Due to its responsiveness to natural and synthetic xenobiotics, the spider mite is becoming a prime pest herbivore model for studies of the evolution of host range, plant-herbivore interactions and mechanisms of xenobiotic resistance. The spider mite genome has been sequenced and its transcriptional responses to developmental and various biotic and abiotic cues have been documented. However, to identify biological and evolutionary roles of T. urticae genes and proteins, it is necessary to develop methods for the efficient manipulation of mite gene function or protein activity. Here, we describe protocols developed for the delivery of small molecules into spider mites. Starting with mite maintenance and the preparation of the experimental mite populations of developmentally synchronized larvae and adults, we describe 3 methods for delivery of small molecules including artificial diet, leaf coating, and soaking. The presented results define critical steps in these methods and demonstrate that they can successfully deliver tracer dyes into mites. Described protocols provide guidelines for high-throughput setups for delivery of experimental compounds that could be used in reverse genetics platforms to modulate gene expression or protein activity, or for screens focused on discovery of new molecules for mite control. In addition, described protocols could be adapted for other Tetranychidae and related species of economic importance such as Varroa, dust and poultry mites.

  4. Environmental Engineering Approaches toward Sustainable Management of Spider Mites.

    Science.gov (United States)

    Suzuki, Takeshi

    2012-10-26

    Integrated pest management (IPM), which combines physical, biological, and chemical control measures to complementary effect, is one of the most important approaches to environmentally friendly sustainable agriculture. To expand IPM, we need to develop new pest control measures, reinforce existing measures, and investigate interactions between measures. Continued progress in the development of environmental control technologies and consequent price drops have facilitated their integration into plant production and pest control. Here I describe environmental control technologies for the IPM of spider mites through: (1) the disturbance of photoperiod-dependent diapause by artificial light, which may lead to death in seasonal environments; (2) the use of ultraviolet radiation to kill or repel mites; and (3) the use of water vapor control for the long-term cold storage of commercially available natural enemies. Such environmental control technologies have great potential for the efficient control of spider mites through direct physical effects and indirect effects via natural enemies.

  5. Innate responses of the predatory mite Phytoseiulus persimilis to a herbivore-induced plant volatile

    NARCIS (Netherlands)

    Sznajder, B.; Sabelis, M.W.; Egas, M.

    2011-01-01

    The responses of the predatory mite P. persimilis to herbivore-induced plant volatiles are at least partly genetically determined. Thus, there is potential for the evolution of this behaviour by natural selection. We tested whether distinct predator genotypes with contrasting responses to a specific

  6. Genetic diversity analysis of various red spider mite- resistant ...

    African Journals Online (AJOL)

    User

    2011-05-02

    May 2, 2011 ... 3Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Ya'an, 625014, P. R. ... Random amplified polymorphic DNA (RAPD) is a DNA ..... spider mite-resistant, bumper, high-quality and disease-.

  7. An analysis of radiation-induced damage in the spider mite. Relationship between mortality of haploid and diploid eggs in two successive generations

    International Nuclear Information System (INIS)

    Leenhouts, H.P.; Chadwick, K.H.

    1976-01-01

    Unfertilized females of the spider mite (Tetranychus urticae) produce only haploid eggs which develop into a haploid male. Fertilized females produce both haploid eggs (unfertilized), which develop into males, and diploid eggs (fertilized), which develop into females. Radiobiological experiments performed by A.M. Feldmann (Association Euratom-ITAL) made data available on the radiation-induced mortality of haploid and diploid eggs in the F 1 and F 2 generation following irradiation of either males or females with X rays or fast neutrons. The data have been analysed using the molecular theory of cell survival where it is assumed that DNA double strand breaks, induced randomly in the cell, are the critical radiation-induced lesions, which lead to cell death. Theoretical relationships are derived for the dose dependence of hatchability in haploid and diploid eggs in the first and second generations expressed as a function of the radiation damage in the parental genome. These theoretical relationships can be used to derive the inter-relationship between the different hatchabilities, and the results from the spider mite have been analysed using these considerations. It is concluded that the radiation-induced genetic damage arises from one type of initial lesion. The eventual radiobiological implications of this analysis are discussed, expecially with respect to the transmittance of radiation-induced genetic damage after low-level radiation. (author)

  8. The sejugal furrow in camel spiders and acariform mites

    Directory of Open Access Journals (Sweden)

    Dunlop, Jason A.

    2012-07-01

    Full Text Available Camel spiders (Arachnida: Solifugae are one of the arachnid groups characterised by a prosomal dorsal shield composed of three distinct elements: the pro-, meso- and metapeltidium. These are associated respectively with prosomal appendages one to four, five, and six. What is less well known, although noted in the historical literature, is that the coxae of the 4th and 5th prosomal segments (i.e. walking legs 2 and 3 of camel spiders are also separated ventrally by a distinct membranous region, which is absent between the coxae of the other legs. We suggest that this essentially ventral division of the prosoma specifically between coxae 2 and 3 is homologous with the so-called sejugal furrow (the sejugal interval sensu van der Hammen. This division constitutes a fundamental part of the body plan in acariform mites (Arachnida: Acariformes. If homologous, this sejugal furrow could represent a further potential synapomorphy for (Solifugae + Acariformes; a relationship with increasing morphological and molecular support. Alternatively, outgroup comparison with sea spiders (Pycnogonida and certain early Palaeozoic fossils could imply that the sejugal furrow defines an older tagma, derived from a more basal grade of organisation. In this scenario the (still divided prosoma of acariform mites and camel spiders would be plesiomorphic. This interpretation challenges the textbook arachnid character of a peltidium (or ‘carapace’ covering an undivided prosoma.

  9. Testing for non-target effects of spinosad on twospotted spider mites and their predator Phytoseiulus persimilis under greenhouse conditions.

    Science.gov (United States)

    Holt, Kiffnie M; Opit, George P; Nechols, James R; Margolies, David C

    2006-01-01

    The compatibility of the selective insecticide spinosad (Conserve SC), at rates recommended for thrips control in greenhouses, with release of the predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) to control spider mites, was investigated in a crop of ivy geranium Pelargonium peltatum, cultivar 'Amethyst 96.' Plants were inoculated with twospotted spider mites, Tetranychus urticae Koch (Acari: Tetranychidae), 2 weeks before treatments were applied. There were three treatment variables, each at two levels: predators (released or not), spray application (water or Conserve SC at 2 ml/3.79 l), and timing of spray (1 day before or after predators were released). Twospotted spider mite populations then were sampled twice each week over a three-week period. The application or timing of spinosad had no effect on the ability of the predator to reduce the population of spider mites. Spider mite populations in the no-predator treatment continued to expand over the course of the experiment, while those in the predator-release treatment declined. We conclude that P. persimilis can be used in conjunction with spinosad on ivy geraniums without causing obvious detrimental effects to this predator or leading to a reduction in biological control.

  10. Neonicotinoid Insecticides Alter Induced Defenses and Increase Susceptibility to Spider Mites in Distantly Related Crop Plants

    Science.gov (United States)

    Szczepaniec, Adrianna; Raupp, Michael J.; Parker, Roy D.; Kerns, David; Eubanks, Micky D.

    2013-01-01

    Background Chemical suppression of arthropod herbivores is the most common approach to plant protection. Insecticides, however, can cause unintended, adverse consequences for non-target organisms. Previous studies focused on the effects of pesticides on target and non-target pests, predatory arthropods, and concomitant ecological disruptions. Little research, however, has focused on the direct effects of insecticides on plants. Here we demonstrate that applications of neonicotinoid insecticides, one of the most important insecticide classes worldwide, suppress expression of important plant defense genes, alter levels of phytohormones involved in plant defense, and decrease plant resistance to unsusceptible herbivores, spider mites Tetranychus urticae (Acari: Tetranychidae), in multiple, distantly related crop plants. Methodology/Principal Findings Using cotton (Gossypium hirsutum), corn (Zea mays) and tomato (Solanum lycopersicum) plants, we show that transcription of phenylalanine amonia lyase, coenzyme A ligase, trypsin protease inhibitor and chitinase are suppressed and concentrations of the phytohormone OPDA and salicylic acid were altered by neonicotinoid insecticides. Consequently, the population growth of spider mites increased from 30% to over 100% on neonicotinoid-treated plants in the greenhouse and by nearly 200% in the field experiment. Conclusions/Significance Our findings are important because applications of neonicotinoid insecticides have been associated with outbreaks of spider mites in several unrelated plant species. More importantly, this is the first study to document insecticide-mediated disruption of plant defenses and link it to increased population growth of a non-target herbivore. This study adds to growing evidence that bioactive agrochemicals can have unanticipated ecological effects and suggests that the direct effects of insecticides on plant defenses should be considered when the ecological costs of insecticides are evaluated. PMID

  11. Effects of powdery mildew fungicide programs on twospotted spider mite (Acari: Tetranychidae), hop aphid (Hemiptera: Aphididae), and their natural enemies in hop yards.

    Science.gov (United States)

    Gent, D H; James, D G; Wright, L C; Brooks, D J; Barbour, J D; Dreves, A J; Fisher, G C; Walton, V M

    2009-02-01

    Twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), and hop aphid, Phorodon humuli (Schrank) (Hemiptera: Aphididae), are the most important arthropod pests of hop (Humulus lupulus L.) in the Northern Hemisphere. A potential barrier for greater adoption of conservation biological control strategies for spider mites and hop aphid is the extensive use of fungicides for management of hop powdery mildew, Podosphaera macularis (Wallr.:Fr.) U. Braun & S. Takamatsu. Field studies conducted in experimental plots in Oregon and Washington in 2005 and 2006 quantified the effects of powdery mildew fungicide programs (i.e., sulfur, paraffinic oil, and synthetic fungicides) on arthropod pests and natural enemies on hop. Fungicide treatment significantly affected spider mite populations in all four studies. Multiple applications of sulfur fungicides applied before burr development resulted in 1.4-3.3-fold greater spider mite populations during summer. Near the cessation of the sulfur applications, or after a lag of 20-30 d, spider mite populations increased significantly faster on sulfur treated plants compared with water-treated plants in three of four experiments. The effect of paraffinic oil on spider mites was varied, leading to exacerbation of spider mites in Oregon and Washington in 2005, suppression of mites in Oregon in 2006, and no significant effect compared with water in Washington in 2006. Significant relative treatment effects for cone damage due to spider mite feeding were detected in Oregon in 2005 in plots treated with sulfur and paraffinic oil compared with water and synthetic fungicides. Mean populations of hop aphids were similar among treatments in Oregon, although sulfur treatment suppressed hop aphid populations in Washington in 2005 and 2006. Populations of individual predacious insect species and cumulative abundance of macropredators were not consistently suppressed or stimulated by treatments in all trials. However, predatory mite

  12. ``Sleeping with the enemy''—predator-induced diapause in a mite

    Science.gov (United States)

    Kroon, Annemarie; Veenendaal, René L.; Bruin, Jan; Egas, Martijn; Sabelis, Maurice W.

    2008-12-01

    Diapause in arthropods is a physiological state of dormancy that is generally thought to promote survival during harsh seasons and dispersal, but it may also serve to avoid predation in space and time. Here, we show that predation-related odours induce diapause in female adult spider mites. We argue that this response allows them to move into an area where they are free of enemies, yet forced to survive without food. Spider mites are specialised leaf feeders, but—in late summer—they experience severe predation on leaves. Hence, they face a dilemma: to stay on the leaf and risk being eaten or to move away from the leaf and risk death from starvation and thirst. Female two-spotted spider mites solve this dilemma by dramatically changing their physiology when exposed to predation-associated cues. This allows them to disperse away from leaves and to survive in winter refuges in the bark of trees or in the soil. We conclude that the mere presence of predation-associated cues causes some herbivorous mites to seek refuge, thereby retarding the growth rate of the population as a whole: a trait-mediated indirect effect that may have consequences for the stability of predator prey systems and for ecosystem structure.

  13. Suspension of Egg Hatching Caused by High Humidity and Submergence in Spider Mites.

    Science.gov (United States)

    Ubara, Masashi; Osakabe, Masahiro

    2015-08-01

    We tested the effects of high humidity and submergence on egg hatching of spider mites. In both the high humidity and submergence treatments, many Tetranychus and Panonychus eggs did not hatch until after the hatching peak of the lower humidity or unsubmerged controls. However, after humidity decreased or water was drained, many eggs hatched within 1-3 h. This was observed regardless of when high humidity or submergence treatments were implemented: either immediately after oviposition or immediately before hatching was due. Normal eyespot formation was observed in most eggs in the high humidity and submergence treatments, which indicates that spider mite embryos develop even when eggs are underwater. Therefore, delays in hatching are not caused by delayed embryonic development. A delay in hatching was always observed in Panonychus citri (McGregor) but was more variable in Tetranychus urticae Koch and Tetranychus kanzawai Kishida. The high humidity and submergence treatments affected but did not suppress larval development in these species. In contrast, many Oligonychus eggs died following the high humidity treatments. In Tetranychus and Panonychus spider mites, suspension of egg hatching may mitigate the adverse effects of rainfall. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato

    NARCIS (Netherlands)

    Ament, K.; Kant, M.R.; Sabelis, M.W.; Haring, M.A.; Schuurink, R.C.

    2004-01-01

    The tomato (Lycopersicon esculentum) mutant def-1, which is deficient in induced jasmonic acid (JA) accumulation upon wounding or herbivory, was used to study the role of JA in the direct and indirect defense responses to phytophagous mites (Tetranychus urticae). In contrast to earlier reports,

  15. Mites and spiders act as biological control agent to sand flies

    Directory of Open Access Journals (Sweden)

    Diwakar Singh Dinesh

    2014-02-01

    Full Text Available Objective: To find out natural biological control agents of sand flies vector of kala azar in Bihar, India. Methods: Sand flies collected from the field using CDC light trap installing overnight to the collection site scrutitinized for Phlebotomus argentipes, the established vector of visceral leishmaniasis. Blood fed adult females were confined in the insectary for its development of life cycle. During developmental stages 2nd to 4th instars larvae were examined closely by using compound microscope for mite infestation. Adult spider residing along with sand flies collected in trap were kept in cage along with sand flies and their activities were watched closely and recorded by video and picture. Results: Mites were found predating 2nd to 4th instars larvae only under the laboratory conditions and lowering down the population of sand flies up to basal level within 15 d after infestation. One specific spider was found eating blood fed female sand flies kept inside the cage (n=50 attacking on lower part of thoracic region to kill the sand fly and ate desired soft part. Conclusions: Both predators, mites and spiders are acting as biological control agents to larvae and adults of sand flies respectively resulting variable density of vectors due to variable association with these predators and also cause lowering the transmission of the disease as hidden natural controlling agent of sand flies. The extensive study will be of immense help in controlling sand flies without use of environmental pollutant i.e. chemical insecticide.

  16. Below-ground plant parts emit herbivore-induced volatiles: olfactory responses of a predatory mite to tulip bulbs infested by rust mites.

    Science.gov (United States)

    Aratchige, N S; Lesna, I; Sabelis, M W

    2004-01-01

    Although odour-mediated interactions among plants, spider mites and predatory mites have been extensively studied above-ground, belowground studies are in their infancy. In this paper, we investigate whether feeding by rust mites (Aceria tulipae) cause tulip bulbs to produce odours that attract predatory mites (Neoseiulus cucumeris). Since our aim was to demonstrate such odours and not their relevance under soil conditions, the experiments were carried out using a classic Y-tube olfactometer in which the predators moved on a Y-shaped wire in open air. We found that food-deprived female predators can discriminate between odours from infested bulbs and odours from uninfested bulbs or artificially wounded bulbs. No significant difference in attractiveness to predators was found between clean bulbs and bulbs either wounded 30 min or 3 h before the experiment. These results indicate that it may not be simply the wounding of the bulbs, but rather the feeding by rust mites, which causes the bulb to release odours that attract N. cucumeris. Since bulbs are belowground plant structures, the olfactometer results demonstrate the potential for odour-mediated interactions in the soil. However, their importance in the actual soil medium remains to be demonstrated.

  17. Effect of aqueous plant extracts on tea red spider mite, Oligonychus ...

    African Journals Online (AJOL)

    Four aqueous plant extracts (APEs) of Acorus calamus (L), Xanthium strumarium (L), Polygonum hydropiper (L) and Clerodendron infortunatum (Gaertn) were evaluated under both laboratory and field conditions at 2.5, 5.0 and 10.0% (w/v) concentrations against tea red spider mite, Oligonychus coffeae (Nietner). Also, the ...

  18. Morphology of the olfactory system in the predatory mite Phytoseiulus persimilis.

    Science.gov (United States)

    van Wijk, Michiel; Wadman, Wytse J; Sabelis, Maurice W

    2006-01-01

    The predatory mite Phytoseiulus persimilis locates its prey, the two-spotted spider mite, by means of herbivore-induced plant volatiles. The olfactory response to this quantitatively and qualitatively variable source of information is particularly well documented. The mites perform this task with a peripheral olfactory system that consists of just five putative olfactory sensilla that reside in a dorsal field at the tip of their first pair of legs. The receptor cells innervate a glomerular olfactory lobe just ventral of the first pedal ganglion. We have made a 3D reconstruction of the caudal half of the olfactory lobe in adult females. The glomerular organization as well as the glomerular innervation appears conserved across different individuals. The adult females have, by approximation, a 1:1 ratio of olfactory receptor cells to olfactory glomeruli.

  19. Alternative phenotypes of male mating behaviour in the two-spotted spider mite

    NARCIS (Netherlands)

    Sato, Y.; Sabelis, M.W.; Egas, M.; Faraji, F.

    2013-01-01

    Severe intraspecific competition for mates selects for aggressive individuals but may also lead to the evolution of alternative phenotypes that do not act aggressively, yet manage to acquire matings. The two-spotted spider mite, Tetranychus urticae, shows male mate-guarding behaviour and male-male

  20. From repulsion to attraction: species- and spatial context-dependent threat sensitive response of the spider mite Tetranychus urticae to predatory mite cues

    Science.gov (United States)

    Fernández Ferrari, M. Celeste; Schausberger, Peter

    2013-06-01

    Prey perceiving predation risk commonly change their behavior to avoid predation. However, antipredator strategies are costly. Therefore, according to the threat-sensitive predator avoidance hypothesis, prey should match the intensity of their antipredator behaviors to the degree of threat, which may depend on the predator species and the spatial context. We assessed threat sensitivity of the two-spotted spider mite, Tetranychus urticae, to the cues of three predatory mites, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni, posing different degrees of risk in two spatial contexts. We first conducted a no-choice test measuring oviposition and activity of T. urticae exposed to chemical traces of predators or traces plus predator eggs. Then, we tested the site preference of T. urticae in choice tests, using artificial cages and leaves. In the no-choice test, T. urticae deposited their first egg later in the presence of cues of P. persimilis than of the other two predators and cue absence, indicating interspecific threat-sensitivity. T. urticae laid also fewer eggs in the presence of cues of P. persimilis and A. andersoni than of N. californicus and cue absence. In the artificial cage test, the spider mites preferred the site with predator traces, whereas in the leaf test, they preferentially resided on leaves without traces. We argue that in a nonplant environment, chemical predator traces do not indicate a risk for T. urticae, and instead, these traces function as indirect habitat cues. The spider mites were attracted to these cues because they associated them with the existence of a nearby host plant.

  1. Induction of indirect defence against spider-mites in uninfested lima bean leaves.

    NARCIS (Netherlands)

    Takabayashi, J.; Dicke, M.; Posthumus, M.A.

    1991-01-01

    Headspace analyses of uninfested Lima bean (Phaseolus lunatus) leaves show an absence of or only trace amounts of the terpenoids (E)--ocimene and (E)-4,8-dimethyl-1,3,7-nonatriene. Upon infestation by two-spotted spider-mites (Tetranychus urticae), Lima bean leaves produce (E)--ocimene and

  2. Geography has a greater effect than Wolbachia infection on population genetic structure in the spider mite, Tetranychus pueraricola.

    Science.gov (United States)

    Chen, Y-T; Zhang, Y-K; Du, W-X; Jin, P-Y; Hong, X-Y

    2016-10-01

    Wolbachia is an intracellular symbiotic bacterium that infects various spider mite species and is associated with alterations in host reproduction, which indicates the potential role in mite evolution. However, studies of Wolbachia infections in the spider mite Tetranychus pueraricola, a major agricultural pest, are limited. Here, we used multilocus sequence typing to determine Wolbachia infection status and examined the relationship between Wolbachia infection status and mitochondrial diversity in T. pueraricola from 12 populations in China. The prevalence of Wolbachia ranged from 2.8 to 50%, and three strains (wTpue1, wTpue2, and wTpue3) were identified. We also found double infections (wTpue1 + wTpue3) within the same individuals. Furthermore, the wTpue1 strain caused weak cytoplasmic incompatibility (CI) (egg hatchability ~55%), whereas another widespread strain, wTpue3, did not induce CI. There was no reduction in mitochondrial DNA (mtDNA) or nuclear DNA diversity among infected individuals, and mtDNA haplotypes did not correspond to specific Wolbachia strains. Phylogenetic analysis and analysis of molecular variance revealed that the distribution of mtDNA and nuclear DNA haplotypes were significantly associated with geography. These findings indicate that Wolbachia infection in T. pueraricola is complex, but T. pueraricola genetic differentiation likely resulted from substantial geographic isolation.

  3. Dehydration Stress Contributes to the Enhancement of Plant Defense Response and Mite Performance on Barley

    Directory of Open Access Journals (Sweden)

    M. E. Santamaria

    2018-04-01

    Full Text Available Under natural conditions, plants suffer different stresses simultaneously or in a sequential way. At present, the combined effect of biotic and abiotic stressors is one of the most important threats to crop production. Understanding how plants deal with the panoply of potential stresses affecting them is crucial to develop biotechnological tools to protect plants. As well as for drought stress, the economic importance of the spider mite on agriculture is expected to increase due to climate change. Barley is a host of the polyphagous spider mite Tetranychus urticae and drought produces important yield losses. To obtain insights on the combined effect of drought and mite stresses on the defensive response of this cereal, we have analyzed the transcriptomic responses of barley plants subjected to dehydration (water-deficit treatment, spider mite attack, or to the combined dehydration-spider mite stress. The expression patterns of mite-induced responsive genes included many jasmonic acid responsive genes and were quickly induced. In contrast, genes related to dehydration tolerance were later up-regulated. Besides, a higher up-regulation of mite-induced defenses was showed by the combined dehydration and mite treatment than by the individual mite stress. On the other hand, the performance of the mite in dehydration stressed and well-watered plants was tested. Despite the stronger defensive response in plants that suffer dehydration and mite stresses, the spider mite demonstrates a better performance under dehydration condition than in well-watered plants. These results highlight the complexity of the regulatory events leading to the response to a combination of stresses and emphasize the difficulties to predict their consequences on crop production.

  4. Dehydration Stress Contributes to the Enhancement of Plant Defense Response and Mite Performance on Barley

    Science.gov (United States)

    Santamaria, M. E.; Diaz, Isabel; Martinez, Manuel

    2018-01-01

    Under natural conditions, plants suffer different stresses simultaneously or in a sequential way. At present, the combined effect of biotic and abiotic stressors is one of the most important threats to crop production. Understanding how plants deal with the panoply of potential stresses affecting them is crucial to develop biotechnological tools to protect plants. As well as for drought stress, the economic importance of the spider mite on agriculture is expected to increase due to climate change. Barley is a host of the polyphagous spider mite Tetranychus urticae and drought produces important yield losses. To obtain insights on the combined effect of drought and mite stresses on the defensive response of this cereal, we have analyzed the transcriptomic responses of barley plants subjected to dehydration (water-deficit) treatment, spider mite attack, or to the combined dehydration-spider mite stress. The expression patterns of mite-induced responsive genes included many jasmonic acid responsive genes and were quickly induced. In contrast, genes related to dehydration tolerance were later up-regulated. Besides, a higher up-regulation of mite-induced defenses was showed by the combined dehydration and mite treatment than by the individual mite stress. On the other hand, the performance of the mite in dehydration stressed and well-watered plants was tested. Despite the stronger defensive response in plants that suffer dehydration and mite stresses, the spider mite demonstrates a better performance under dehydration condition than in well-watered plants. These results highlight the complexity of the regulatory events leading to the response to a combination of stresses and emphasize the difficulties to predict their consequences on crop production. PMID:29681917

  5. Voluntary Falling in Spider Mites in Response to Different Ecological Conditions at Landing Points

    OpenAIRE

    Ohzora, Yousuke; Yano, Shuichi

    2011-01-01

    We examined voluntary-falling behaviour by adult females of the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) and one of its major predators Neoseiulus californicus McGregor (Acari: Phytoseiidae). Experiments were conducted using a setup in which mites could only move onto one of two landing points by falling. Significantly more T. urticae females fell onto available food leaves compared to non-food or heavily infested leaves, whereas significantly fewer females fell...

  6. Evolutionary Aspects of Acaricide-Resistance Development in Spider Mites

    Directory of Open Access Journals (Sweden)

    Masahiro (Mh. Osakabe

    2009-01-01

    Full Text Available Although the development of acaricide resistance in spider mites is a long-standing issue in agricultural fields, recent problems with acaricide resistance may be characterized by the development of complex- and/or multiresistance to acaricides in distinct classes. Such complexity of resistance is not likely to be a single mechanism. Pesticide resistance involves the microevolution of arthropod pests, and population genetics underlies the evolution. In this review, we address the genetic mechanisms of acaricide resistance evolution. We discuss genetic diversity and linkage of resistance genes, relationships between mite habitat and dispersal, and the effect of dispersal on population genetic structure and the dynamics of resistance genes. Finally, we attempt to present a comprehensive view of acaricide resistance evolution and suggest risks under globalization as well as possible approaches to managing acaricide resistance evolution or emergence.

  7. Inoculate Release of Stethorus gilvifrons Mulsan (Coleoptera: Coccinellidae for Biological Control of Date Palm Spider Mite, Oligonychus afrasiaticusMcGregor (Prostigmata: Tetranychidae

    Directory of Open Access Journals (Sweden)

    M. Latifian

    2017-12-01

    Full Text Available Introduction: The spider mite, Oligonychus afrasiaticus feeds by sucking the sap from the immature fruits tissue. The natural color of fruits changes to pale yellow or gray by mite's feeding. Damaged fruit are cracked and its damage can dry out the fruits. Because of resistance to pesticides, resurgence of date palm spider mite causes to disrupt the natural balance of their population. Tiny black ladybird beetle, Stethorous gilvifrons is the most important and active lady beetle species in Khuzestan province and is very effective on biological control of the spider mite. Determination of the amount and release time of the lady beetles are the most important factors in the implementation of biological control programs of date palm spider mite. So, careful monitoring, time of the release and the ability of deployment of predatory ladybird are essential steps to success in the programs of biological control. Materials and Methods: This research was conducted in Shadegan region of Khuzestan province. The nested design was used to compare the efficiency of different inoculate release methods of the predator, S. gilvifrons. The main niches include three release times which were at the time of emergence, three days and one week after emergence of date palm spider mite in date palm plantation. Sub nesting including three different levels of predator release including minimum, moderate and maximum release with 0.5, 1 and 3 predator /m2 per day and were continued for two weeks. The two or three-days ladybirds were used to release. First, the infected clusters were covered by mesh fabric and ladybirds were released under them. After a week, mantles were opened up to the establishment of ladybird run on the normal condition of date palm plantations. This experiment was repeated three times, and each replication consists of a quarter- hectare plantation with dominant cultivar Sayer.Three date Palm trees from each release and control were randomly selected

  8. Functional responses and prey-stage preferences of a predatory gall midge and two predacious mites wtih twospotted spider mites, Tetranychus urticae as host

    Science.gov (United States)

    The twospotted spider mite, Tetranychus urticae (Acari: Tetranychidae), is an important pest of vegetables and other crops. This study was conducted to evaluate and compare the potential role of three commercially available predators, predatory gall midge, Feltiella acarisuga (Vallot) (Diptera: Ceci...

  9. Prey Preference of the Predatory Mite, Amblyseius swirskii between First Instar Western Flower Thrips Frankliniella occidentalis and Nymphs of the Twospotted Spider Mite Tetranychus urticae

    OpenAIRE

    Xu, Xuenong; Enkegaard, Annie

    2010-01-01

    The prey preference of polyphagous predators plays an important role in suppressing different species of pest insects. In this study the prey preference of the predatory mite, Amblyseius swirskii (Athias-Henriot) (Acari: Phytoseiidae) was examined between nymphs of the twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) and first instar larvae of the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), as well as between active and chrysa...

  10. Role of environmental exposure to spider mites in the sensitization and the clinical manifestation of asthma and rhinitis in children and adolescents living in rural and urban areas.

    Science.gov (United States)

    Kim, Y-K; Chang, Y-S; Lee, M-H; Hong, S-C; Bae, J-M; Jee, Y-K; Chun, B-R; Cho, S-H; Min, K-U; Kim, Y-Y

    2002-09-01

    Spider mites such as the citrus red mite and the two-spotted spider mite have been demonstrated to be important allergens for fruit cultivating farmers. To evaluate the role of environmental exposure to spider mites in the sensitization and the clinical manifestations of asthma and rhinitis in children and adolescents living in urban and rural areas. A total of 16,624 subjects (aged 7 to 18 years) living in urban (metropolitan and non-metropolitan) and rural areas (apple orchards and citrus orchards) in Korea were evaluated by questionnaire and skin prick test for 11 common aeroallergens, including citrus red mite (CRM) and two-spotted spider mite (TSM). The positive skin response rates to TSM were 4.2% of 1,563 metropolitan subjects, 3.8% of 5,568 non-metropolitan subjects and 6.5% of 1,464 subjects living nearby apple farms, and that to CRM 15.6% of 8,029 living nearby citrus farms. The prevalence of current wheeze and rhinitis as reported on a questionnaire was higher among those with a history of visiting fruit farms once or more per year than among those without it (10% vs. 7.1%, 32.8% vs. 26.7%, for wheezing and rhinitis, respectively). Among those with wheezing or rhinitis, the positive skin responses to TSM or CRM were also higher among those with a history of visiting fruit farms than among those without one (11.2% vs. 6.6%, 13.0% vs. 6.6%, respectively), although the positive skin responses to house dust mites were similar in the both groups. Spider mites are common sensitizing allergens in children and adolescents exposed to them, and environmental exposure to these mites may represent an important risk factor in the sensitization and the clinical manifestations of asthma and rhinitis in children and adolescents living in rural and urban areas.

  11. Alternative male mating behaviour in the two-spotted spider mite: dependence on age and density

    NARCIS (Netherlands)

    Sato, Y.; Sabelis, M.W.; Egas, M.

    2014-01-01

    Highlights • We investigated alternative male mating behaviour in the two-spotted spider mite. • We found no differences between genetic lines of fighting and sneaking behaviour. • The proportion of sneaker males changed with male density and with male age. • In competition with old males, young

  12. Role of cucurbitacin C in resistance to spider mite (Tetranychus urticae) in cucumber (Cucumber sativus L.)

    NARCIS (Netherlands)

    Balkema-Boomstra, A.G.; Zijlstra, S.; Verstappen, F.W.A.; Inggamer, H.; Mercke, P.

    2003-01-01

    Cucurbitacins are bitter triterpenoid compounds that are toxic to most organisms and occur widely in wild and cultivated Cucurbitaceae. The only cucurbitacin identified in Cucumis sativus is cucurbitacin C. The bitter taste of cucumber has been correlated with resistance to the spider mite

  13. The role of horizontally transferred genes in the xenobiotic adaptations of the spider mite Tetranychus urticae

    NARCIS (Netherlands)

    Wybouw, N.R.

    2015-01-01

    Plant feeding arthropods adapt in diverse ways to dietary plant toxins. The genetic basis of these adaptations is not well characterized, especially in non-insect lineages. Using the sequenced genome of the herbivorous spider mite Tetranychus urticae as a starting point, this work aimed at

  14. Induced plant-defenses suppress herbivore reproduction but also constrain predation of their offspring.

    Science.gov (United States)

    Ataide, Livia M S; Pappas, Maria L; Schimmel, Bernardus C J; Lopez-Orenes, Antonio; Alba, Juan M; Duarte, Marcus V A; Pallini, Angelo; Schuurink, Robert C; Kant, Merijn R

    2016-11-01

    Inducible anti-herbivore defenses in plants are predominantly regulated by jasmonic acid (JA). On tomato plants, most genotypes of the herbivorous generalist spider mite Tetranychus urticae induce JA defenses and perform poorly on it, whereas the Solanaceae specialist Tetranychus evansi, who suppresses JA defenses, performs well on it. We asked to which extent these spider mites and the predatory mite Phytoseiulus longipes preying on these spider mites eggs are affected by induced JA-defenses. By artificially inducing the JA-response of the tomato JA-biosynthesis mutant def-1 using exogenous JA and isoleucine (Ile), we first established the relationship between endogenous JA-Ile-levels and the reproductive performance of spider mites. For both mite species we observed that they produced more eggs when levels of JA-Ile were low. Subsequently, we allowed predatory mites to prey on spider mite-eggs derived from wild-type tomato plants, def-1 and JA-Ile-treated def-1 and observed that they preferred, and consumed more, eggs produced on tomato plants with weak JA defenses. However, predatory mite oviposition was similar across treatments. Our results show that induced JA-responses negatively affect spider mite performance, but positively affect the survival of their offspring by constraining egg-predation. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  15. Chlorophyll and its degradation products in the two-spotted spider mite, Tetranychus urticae: observations using epifluorescence and confocal laser scanning microscopy.

    Science.gov (United States)

    Occhipinti, Andrea; Maffei, Massimo E

    2013-10-01

    Chlorophyll and chlorophyll degradation products were observed in the two-spotted spider mite (Tetranychus urticae) using epifluorescence microscopy (EFM) and confocal laser scanning microscopy (CLSM). A clear red fluorescence (EFM) and a fluorescence induced by a laser wavelength of 650 nm (CLSM) were observed. In the lateral caeca, in the ventriculus and in the excretory organ, a bright light blue fluorescence was observed in close association with chlorophyll by using EFM. The same material can be localized with CLSM by using a laser with a wavelength of 488 nm. By comparison with synthetic guanine, this bright fluorescence is supposed to be guanine. The presence of guanine fluorescence in the mite pellets confirms this hypothesis. A possible mechanism for guanine formation is discussed.

  16. Genetic diversity within and among two-spotted spider mite resistant and susceptible common bean genotypes

    Directory of Open Access Journals (Sweden)

    Zeinab YOUSEFI

    2017-12-01

    Full Text Available Two-spotted spider mite (Tetranychus urticae C. L. Koch, 1836, is one of the most destructive herbivores of common bean. Very little is known about the diversity among resistant sources in this crop. The present study was conducted to characterize 22 resistant and susceptible common bean genotypes by 8 Simple Sequence Repeats (SSRs and 8 Random Amplified Polymorphic DNA (RAPD markers. These SSR and RAPD primers produced 100 % and 81.8 % polymorphic bands. Based on RAPD fingerprints and SSR profiles, pairwise genetic similarity ranged from 0.0 to 0.857 and from 0.125 to 1, respectively. The resistant and susceptible common bean accessions were grouped together in the dendrograms generated from RAPD and SSR clustering analyses. The results indicate that RAPD and SSR analysis could be successfully used for the estimation of genetic diversity among genotypes. SSR markers could group genotypes according to their resistibility and susceptibility to the spotted spider mite but RAPD could not. Therefore, the SSR markers can facilitate the development of resistant common bean cultivars through breeding programs against T. urticae.

  17. State-dependent and odour-mediated anemotactic responses of the predatory mite Phytoseiulus persimilis in a wind tunnel.

    Science.gov (United States)

    Van Tilborg, Merijn; Sabelis, Maurice W; Roessingh, Peter

    2004-01-01

    Anemotaxis in the predatory mite Phytoseiulus persimilis (both well-fed and starved), has previously been studied on a wire grid under slight turbulent airflow conditions yielding weak, yet distinct, gradients in wind speed and odour concentration (Sabelis and Van der Weel 1993). Such conditions might have critically influenced the outcome of the study. We repeated these experiments, under laminar airflow conditions on a flat surface in a wind tunnel, thereby avoiding variation in wind speed and odour concentration. Treatments for starved and well-fed mites were (1) still-air without herbivore-induced plant volatiles (HIPV) (well-fed mites only), (2) an HIPV-free air stream, and (3) an air stream with HIPV (originating from Lima bean plants infested by two-spotted spider mites, Tetranychus urticae). Well-fed mites oriented in random directions in still-air without HIPV. In an air stream, starved mites always oriented upwind, whether plant odours were present or not. Well-fed mites oriented downwind in an HIPV-free air stream, but in random directions in an air stream with HIPV. Only under the last treatment our results differed from those of Sabelis and Van der Weel (1993).

  18. The predatory mite Neoseiulus womersleyi (Acari: Phytoseiidae) follows extracts of trails left by the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae).

    Science.gov (United States)

    Shinmen, Tsubasa; Yano, Shuichi; Osakabe, Mh

    2010-10-01

    As it walks, the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) spins a trail of silk threads, that is followed by the predatory mite, Neoseiulus womersleyi Schicha (Acari: Phytoseiidae). Starved adult female N. womersleyi followed T. urticae trails laid down by five T. urticae females but did not follow a trail of one T. urticae female, suggesting that the amount of spun threads and their chemical components should correlate positively with the number of T. urticae individuals. To examine whether chemical components of T. urticae trails are responsible for the predatory mite's trail following, we collected separate T. urticae threads from the exuviae and eggs, and then washed the threads with methanol to separate chemical components from physical attributes of the threads. Female N. womersleyi did not follow T. urticae trails that had been washed with methanol but contained physical residues, but they did follow the direction to which the methanol extracts of the T. urticae trails was applied. These results suggest that the predatory mite follows chemical, not physical, attributes of T. urticae trails.

  19. Evaluation of selected acaricides against two-spotted spider mite (Acari: Tetranychidae) on greenhouse cotton using multispectral data

    Science.gov (United States)

    Two-spotted spider mite (TSSM), Tetranychus urticae (Koch), is an early season pest of cotton in the mid-southern United States and causes reduction in yield, fiber quality and impaired seed germination. Objectives of this study were to investigate the efficacy of abamectin and spiromesifen with two...

  20. Temperature-dependent, behavioural, and transcriptional variability of a tritrophic interaction consisting of bean, herbivorous mite, and predator.

    Science.gov (United States)

    Ozawa, Rika; Nishimura, Osamu; Yazawa, Shigenobu; Muroi, Atsushi; Takabayashi, Junji; Arimura, Gen-ichiro

    2012-11-01

    Different organisms compensate for, and adapt to, environmental changes in different ways. In this way, environmental changes affect animal-plant interactions. In this study, we assessed the effect of temperature on a tritrophic system of the lima bean, the herbivorous spider mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. In this system, the plant defends itself against T. urticae by emitting volatiles that attract P. persimilis. Over 20-40 °C, the emission of volatiles by infested plants and the subsequent attraction of P. persimilis peaked at 30 °C, but the number of eggs laid by T. urticae adults and the number of eggs consumed by P. persimilis peaked at 35 °C. This indicates that the spider mites and predatory mites performed best at a higher temperature than that at which most volatile attractants were produced. Our data from transcriptome pyrosequencing of the mites found that P. persimilis up-regulated gene families for heat shock proteins (HSPs) and ubiquitin-associated proteins, whereas T. urticae did not. RNA interference-mediated gene suppression in P. persimilis revealed differences in temperature responses. Predation on T. urticae eggs by P. persimilis that had been fed PpHsp70-1 dsRNA was low at 35 °C but not at 25 °C when PpHsp70-1 expression was very high. Overall, our molecular and behavioural approaches revealed that the mode and tolerance of lima bean, T. urticae and P. persimilis are distinctly affected by temperature variability, thereby making their tritrophic interactions temperature dependent. © 2012 Blackwell Publishing Ltd.

  1. Reproductive performance of seven strains of the tomato red spider mite Tetranychus evansi (Acari: Tetranychidae) at five temperatures

    DEFF Research Database (Denmark)

    Gotoh, T.; Sugimoto, N.; Pallini, A.

    2010-01-01

    The tomato red spider mite Tetranychus evansi Baker et Pritchard occurs on solanaceous plants, and causes serious damage to a variety of crops in Africa and Europe. In 2001 this species was also found in Japan, on nightshade (Solanum nigrum L.), and its invasion to solanaceous of agricultural imp...

  2. Innate responses of the predatory mite Phytoseiulus persimilis to a herbivore-induced plant volatile.

    Science.gov (United States)

    Sznajder, B; Sabelis, M W; Egas, M

    2011-06-01

    The responses of the predatory mite P. persimilis to herbivore-induced plant volatiles are at least partly genetically determined. Thus, there is potential for the evolution of this behaviour by natural selection. We tested whether distinct predator genotypes with contrasting responses to a specific herbivore-induced plant volatile, i.e. methyl salicylate (MeSa), could be found in a base population collected in the field (Sicily). To this end, we imposed purifying selection on individuals within iso-female lines of P. persimilis such that the lines were propagated only via the individual that showed either a preference or avoidance of MeSa. The responses of the lines were characterized as the mean proportion of individuals choosing MeSa when given a choice between MeSa and clean air. Significant variation in predator responses was detected among iso-female lines, thus confirming the presence of a genetic component for this behaviour. Nevertheless, we did not find a significant difference in the response to MeSa between the lines that were selected to avoid MeSa and the lines selected to prefer MeSa. Instead, in the course of selection the lines selected to avoid MeSa shifted their mean response towards a preference for MeSa. An inverse, albeit weaker, shift was detected for the lines selected to prefer MeSa. We discuss the factors that may have caused the apparent lack of a response to selection within iso-female line in this study and propose experimental approaches that address them.

  3. The predatory mite Phytoseiulus persimilis does not perceive odor mixtures as strictly elemental objects

    NARCIS (Netherlands)

    van Wijk, M.; de Bruijn, P.J.A.; Sabelis, M.W.

    2010-01-01

    Phytoseiulus persimilis is a predatory mite that in absence of vision relies on the detection of herbivore-induced plant odors to locate its prey, the two-spotted spider-mite Tetranychus urticae. This herbivorous prey is feeding on leaves of a wide variety of plant species in different families. The

  4. The role of methyl salicylate in prey searching behavior of the predatory mite phytoseiulus persimilis.

    Science.gov (United States)

    De Boer, Jetske G; Dicke, Marcel

    2004-02-01

    Many carnivorous arthropods use herbivore-induced plant volatiles to locate their prey. These plant volatiles are blends of up to hundreds of compounds. It is often unknown which compounds in such a complex volatile blend represent the signal to the foraging carnivore. We studied the role of methyl salicylate (MeSA) as part of the volatile blend in the foraging behavior of the predatory mite Phytoseiulus persimilis by using a Y-tube olfactometer. MeSA is one of the compounds released by lima bean, infested with Tetranychus urticae--a prey species of the predatory mite. MeSA attracted satiated predatory mites in a dose-dependent way with optimum attraction at a dose of 0.2 microg. Predatory mites did not discriminate between a prey-induced lima bean volatile blend (that contains MeSA) and a prey-induced volatile blend to which an extra amount of synthetic MeSA had been added. However, they preferred a MeSA-containing volatile blend (induced by T. urticae) to an otherwise similar but MeSA-free blend (induced by jasmonic acid). Adding synthetic MeSA to the MeSA-free blend significantly increased the mites' choice for this odor, suggesting an important role for MeSA. This study is a new step toward unraveling the role of herbivore-induced plant volatiles in the foraging behavior of predatory arthropods.

  5. Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite

    NARCIS (Netherlands)

    Boer, de J.G.; Posthumus, M.A.; Dicke, M.

    2004-01-01

    Carnivorous arthropods can use herbivore-induced plant volatiles to locate their herbivorous prey. In the field, carnivores are confronted with information from plants infested with herbivores that may differ in their suitability as prey. Discrimination by the predatory mite Phytoseiulus persimilis

  6. Growth analysis of cotton crops infested with spider mites. I. Light interception and radiation-use efficiency

    International Nuclear Information System (INIS)

    Sadras, V.O.; Wilson, L.J.

    1997-01-01

    Two-spotted spider mites (Tetranychus urticae Koch) are important pests of cotton (Gossypium hirsutum L.). The effects of mites on cotton photosynthesis have been investigated at the leaf and cytological level but not at the canopy level. Our objective was to quantify the effects of timing and intensity of infestation by mites on cotton radiation-use efficiency (RUE). Leaf area, light interception, RUE, canopy temperature, and leaf nitrogen concentration (LNC) were assessed during two growing seasons in crops artificially infested with mites between 59 and 127 d after sowing. Normal and okra-leaf cultivars were compared. A mite index (MI = natural log of the area under the curve of mite number vs thermal time) was used to quantify the cumulative effects of mites on RUE, LNC, and canopy temperature. Crop growth reduction due to mites was greater in early- than in late-infested crops Growth reduction was primarily due to reductions in RUE, but in the more severe treatments accelerated leaf senescence and, hence. reduced light interception also contributed to reductions in crop growth. At a given date, infested okra-leaf crops usually had greater RUE than their normal-leaf counterparts. Both plant types, however. responded similarly to a given level of mite infestation. The ability of the okra-leaf cultivar to maintain greater RUE levels can be attributed. therefore, to its relative inhospitality for the development of mite colonies rather than to an intrinsically greater capacity to maintain photosynthesis under mite damage. Canopy temperature, LNC, and RUE showed a similar, biphasic pattern of response to Ml. In the first phase, response variables were almost unaffected by mites. In the second phase, there was a marked decline in RUE and LNC and a marked increase in canopy temperature with increasing MI. These results suggest (i) some degree of compensatory photosynthesis at low to moderate levels of mite infestation, and (ii) reductions in RUE of mite

  7. Alternative phenotypes of male mating behaviour in the two-spotted spider mite.

    Science.gov (United States)

    Sato, Yukie; Sabelis, Maurice W; Egas, Martijn; Faraji, Farid

    2013-09-01

    Severe intraspecific competition for mates selects for aggressive individuals but may also lead to the evolution of alternative phenotypes that do not act aggressively, yet manage to acquire matings. The two-spotted spider mite, Tetranychus urticae, shows male mate-guarding behaviour and male-male combat for available females. This may provide opportunity for weaker males to avoid fighting by adopting alternative mating behaviour such as sneaker or satellite tactics as observed in other animals. We investigated male precopulatory behaviour in the two-spotted spider mite by means of video-techniques and found three types of male mating behaviour: territorial, sneaker and opportunistic. Territorial and sneaker males associate with female teleiochrysales and spend much time guarding them. Territorial males are easily disturbed by rival males and engage themselves in fights with them. However, sneaker males are not at all disturbed by rival males, never engage in fights and, strikingly, never face attack by territorial males. Opportunistic males wander around in search of females that are in the teleiochrysalis stage but very close to or at emergence. To quickly classify any given mate-guarding male as territorial or sneaker we developed a method based on the instantaneous response of males to disturbance by a live male mounted on top of a brush. We tested this method against the response of the same males to natural disturbance by two or three other males. Because this method proved to be successful, we used it to collect territorial and sneaker males, and subjected them to morphological analysis to assess whether the various behavioural phenotypes are associated with different morphological characters. However, we found no statistical differences between territorial and sneaker males, concerning the length of the first legs, the stylets, the pedipalps or the body.

  8. The residual and direct effects of reduced-risk and conventional miticides on twospotted spider mites, Tetranychus urticae (Acari: Tetranychidae) and predatory mites (Acari: Phytoseiidae)

    International Nuclear Information System (INIS)

    Liburd, O.E.; White, J.C.; Rhodes, E.M.; Browdy, A.A.

    2007-01-01

    The residual effects of several reduced-risk and conventional miticides were evaluated in strawberries (Fragaria × ananassa Duchesne) on the twospotted spider mite (TSSM), Tetranychus urticae Koch (Acari: Tetranychidae) and on 2 predatory mites, Neoseiulus californicus McGregor and Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). Experiments were conducted in the laboratory and greenhouse. The greenhouse experiments also tested the direct effects of the miticides on TSSM. The efficacy of conventional and reduced-risk miticides was evaluated on strawberry leaf discs and on whole plants for control of TSSM. Furthermore, the residual effects of these miticides were evaluated on whole strawberry plants against selective predatory mites. For TSSM, 5 treatments were evaluated: a conventional miticide; fenbutatin-oxide (Vendex[reg]) and 3 reduced-risk miticides; binfenazate (Acramite 50WP[reg]), activated garlic extract (Repel[reg]), sesame seed and castor oil (Wipeout[reg]), and a water-treated control. For predatory mites, the residual effects of only Acramite[reg] and Vendex[reg] were evaluated. Acramite[reg] was the most effective acaricide in reducing TSSM populations in both the laboratory and greenhouse experiments. Vendex[reg] and Wipeout[reg] were also effective in the laboratory, but did not cause significant reduction of TSSM in the greenhouse. Repel[reg] was the least effective of the 4 pesticides evaluated. Neither Acramite[reg] nor Vendex[reg] had a significant effect on either predatory mite species. However, there appeared to be more predatory mites on the Vendex[reg]-treated plants than on the Acramite[reg]-treated plants. There were significantly more predatory mites of both species on the cue plants, which were inoculated with TSSM versus the non-cue plants, which were not inoculated. (author) [es

  9. Low temperature–scanning electron microscopy to evaluate morphology and predation of Scolothrips sexmaculatus Pergande (Thysanoptera: Thripidae) against spider mites (Acari: Tetranychidae: Tetranychus species)

    Science.gov (United States)

    This paper evaluates the potential usefulness of low temperature-scanning electron microscopy (LT-SEM) to evaluate morphology and predation behavior of the six-spotted thrips (Scolothrips sexmaculatus Pergande) against the two-spotted spider mite (Tetranychus urticae (Koch)). Morphological features...

  10. First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny.

    Science.gov (United States)

    Jeyaprakash, Ayyamperumal; Hoy, Marjorie A

    2009-01-01

    Spiders, scorpions, mites and ticks (chelicerates) form one of the most diverse groups of arthropods on land, but their origin and times of diversification are not yet established. We estimated, for the first time, the molecular divergence times for these chelicerates using complete mitochondrial sequences from 25 taxa. All mitochondrial genes were evaluated individually or after concatenation. Sequences belonging to three missing genes (ND3, 6, and tRNA-Asp) from three taxa, as well as the faster-evolving ribosomal RNAs (12S and 16S), tRNAs, and the third base of each codon from 11 protein-coding genes (PCGs) (COI-III, CYTB, ATP8, 6, ND1-2, 4L, and 4-5), were identified and removed. The remaining concatenated sequences from 11 PCGs produced a completely resolved phylogenetic tree and confirmed that all chelicerates are monophyletic. Removing the third base from each codon was essential to resolve the phylogeny, which allowed deep divergence times to be calculated using three nodes calibrated with upper and lower priors. Our estimates indicate that the orders and classes of spiders, scorpions, mites, and ticks diversified in the late Paleozoic, much earlier than previously reported from fossil date estimates. The divergence time estimated for ticks suggests that their first land hosts could have been amphibians rather than reptiles. Using molecular data, we separated the spider-scorpion clades and estimated their divergence times at 397 +/- 23 million years ago. Algae, fungi, plants, and animals, including insects, were well established on land when these chelicerates diversified. Future analyses, involving mitochondrial sequences from additional chelicerate taxa and the inclusion of nuclear genes (or entire genomes) will provide a more complete picture of the evolution of the Chelicerata, the second most abundant group of animals on earth.

  11. Isolation and identification of volatile kairomone that affects acarine predator-prey interactions: involvement of host plant in its production.

    NARCIS (Netherlands)

    Dicke, M.; Beek, van T.A.; Posthumus, M.A.; Dom, Ben N.; Bokhoven, van H.; Groot, de Ae.

    1990-01-01

    A volatile kairomone emitted from lima bean plants (Phaseolus lunatus) infested with the spider miteTetranychus urticae, was collected on Tenax-TA and analyzed with GC-MS. Two components were identified as the methylene monoterpene (3E)-4,8-dimethyl-1,3,7-nonatriene and the methylene sesquiterpene

  12. Egg hatching response to a range of ultraviolet-B (UV-B) radiation doses for four predatory mites and the herbivorous spider mite Tetranychus urticae.

    Science.gov (United States)

    Koveos, Dimitrios S; Suzuki, Takeshi; Terzidou, Anastasia; Kokkari, Anastasia; Floros, George; Damos, Petros; Kouloussis, Nikos A

    2017-01-01

    Egg hatchability of four predatory mites-Phytoseiulus persimilis Athias-Henriot, Iphiseius [Amblyseius] degenerans Berlese, Amblyseius swirskii Athias-Henriot, and Euseius finlandicus Oudemans (Acari: Phytoseiidae)-and the spider mite Tetranychus urticae Koch (Acari: Tetranychidae) was determined under various UV-B doses either in constant darkness (DD) or with simultaneous irradiation using white light. Under UV-B irradiation and DD or simultaneous irradiation with white light, the predator's eggs hatched in significantly lower percentages than in the control non-exposed eggs, which indicates deleterious effects of UV-B on embryonic development. In addition, higher hatchability percentages were observed under UV-B irradiation and DD in eggs of the predatory mites than in eggs of T. urticae. This might be caused by a higher involvement of an antioxidant system, shield effects by pigments or a mere shorter duration of embryonic development in predatory mites than in T. urticae, thus avoiding accumulative effects of UV-B. Although no eggs of T. urticae hatched under UV-B irradiation and DD, variable hatchability percentages were observed under simultaneous irradiation with white light, which suggests the involvement of a photoreactivation system that reduces UV-B damages. Under the same doses with simultaneous irradiation with white light, eggs of T. urticae displayed higher photoreactivation and were more tolerant to UV-B than eggs of the predatory mites. Among predators variation regarding the tolerance to UV-B effects was observed, with eggs of P. persimilis and I. degenerans being more tolerant to UV-B radiation than eggs of A. swirskii and E. finlandicus.

  13. How does Phytoseiulus Persimilis find its prey when foraging within a bean plant?

    DEFF Research Database (Denmark)

    Zemek, R.; Nachman, Gøsta Støger; Ru°z¿ic¿kova´, S

    The role of herbivore-induced volatile substances in prey-finding by phytoseiid mites has been repeatedly documented using an olfactometer. The objective of the present paper is to test the hypothesis that movement by Phytoseiulus persimilis is affected by these volatiles even on plants. Two series...... was on the leaf surface since it was attracted to the spider mite patch, at least over a distance of 1 cm. These results thus demonstrate that herbivore-induced volatiles can be utilized by P. persimilis during search for prey also under conditions that mimic natural situations better than an olfactometer does....

  14. Sublethal effects of spirodiclofen, abamectin and pyridaben on life-history traits and life-table parameters of two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae).

    Science.gov (United States)

    Saber, Moosa; Ahmadi, Zeinab; Mahdavinia, Gholamreza

    2018-05-01

    Two-spotted spider mite, Tetranychus urticae Koch, is one of the economically most important pests on a wide range of crops in greenhouses and orchards worldwide. Control of T. urticae has been largely based on the use of acaricides. Sublethal effects of spirodiclofen, pyridaben and abamectin were studied on life-table parameters of T. urticae females treated with the acaricides. LC 25 values of spirodiclofen, abamectin and pyridaben (3.84, 0.04 and 136.96 µg a.i./ml, respectively) were used for sublethal studies. All acaricides showed significant effects on T. urticae biological parameters including developmental time, survival rate, and fecundity. The females treated with spirodiclofen, abamectin and pyridaben at LC 25 exhibited significantly reduced net reproductive rate (R 0 ), finite rate of increase (λ) and intrinsic rate of increase (r). The intrinsic rate of increase in spirodiclofen, abamectin and pyridaben treated groups and control were 0.0138, 0.0273, 0.039 and 0.2481 female offspring per female per day, respectively. The results indicated that sublethal concentrations of tested pesticides strongly affected the life characteristics of spider mite and consequently may influence mite population growth in future generations.

  15. A horizontally transferred cyanase gene in the spider mite Tetranychus urticae is involved in cyanate metabolism and is differentially expressed upon host plant chang

    NARCIS (Netherlands)

    Wybouw, N.; Balabanidou, V.; Ballhorn, D.J.; Dermauw, W.; Grbić, M.; Vontas, J.; Van Leeuwen, T.

    2012-01-01

    The genome of the phytophagous two-spotted spider mite Tetranychus urticae was recently sequenced, representing the first complete chelicerate genome, but also the first genome of a highly polyphagous agricultural pest. Genome analysis revealed the presence of an unexpected high number of cases of

  16. Neonicotinoid Insecticide Imidacloprid Causes Outbreaks of Spider Mites on Elm Trees in Urban Landscapes

    Science.gov (United States)

    Szczepaniec, Adrianna; Creary, Scott F.; Laskowski, Kate L.; Nyrop, Jan P.; Raupp, Michael J.

    2011-01-01

    Background Attempts to eradicate alien arthropods often require pesticide applications. An effort to remove an alien beetle from Central Park in New York City, USA, resulted in widespread treatments of trees with the neonicotinoid insecticide imidacloprid. Imidacloprid's systemic activity and mode of entry via roots or trunk injections reduce risk of environmental contamination and limit exposure of non-target organisms to pesticide residues. However, unexpected outbreaks of a formerly innocuous herbivore, Tetranychus schoenei (Acari: Tetranychidae), followed imidacloprid applications to elms in Central Park. This undesirable outcome necessitated an assessment of imidacloprid's impact on communities of arthropods, its effects on predators, and enhancement of the performance of T. schoenei. Methodology/Principal Findings By sampling arthropods in elm canopies over three years in two locations, we document changes in the structure of communities following applications of imidacloprid. Differences in community structure were mostly attributable to increases in the abundance of T. schoenei on elms treated with imidacloprid. In laboratory experiments, predators of T. schoenei were poisoned through ingestion of prey exposed to imidacloprid. Imidacloprid's proclivity to elevate fecundity of T. schoenei also contributed to their elevated densities on treated elms. Conclusions/Significance This is the first study to report the effects of pesticide applications on the arthropod communities in urban landscapes and demonstrate that imidacloprid increases spider mite fecundity through a plant-mediated mechanism. Laboratory experiments provide evidence that imidacloprid debilitates insect predators of spider mites suggesting that relaxation of top-down regulation combined with enhanced reproduction promoted a non-target herbivore to pest status. With global commerce accelerating the incidence of arthropod invasions, prophylactic applications of pesticides play a major role in

  17. CONFIRMATION OF PRESENCE OF A PREDATORY GALL MIDGE, Feltiella acarisuga, (Vallot, 1827 AND STAPHYLINID PREDATOR Oligota oviformis Casey, 1893 OF A TWO SPOTTED SPIDER MITE (Tetranychus urticae, Koch, 1836 IN SLOVENIA

    Directory of Open Access Journals (Sweden)

    Katarina KOS

    2018-04-01

    Full Text Available The two spotted spider mite, Tetranychus urticae C. L. Koch, 1836 is one of the most important pests of greenhouse crops worldwide. Due to its polyphagic range of hosts and rapid development it forms great populations and as such represents a suitable host/prey for lots of natural enemies usable in biological control. Most commonly used predators of Tetranychid mites are predatory mites (Phytoseiulus persimilis Athias-Henriot, 1957, Amblyseius swirskii Athias-Henriot, 1962 ,…, but among most voracious predators is the larva of a predatory gall midge, Feltiella acarisuga (Vallot, 1827 that was found also in greenhouses of the Biotechnical Faculty in Ljubljana on eggplant leaves in 2017. Besides the predatory gall midge also another predator, staphylinid Oligota oviformis Casey, 1893 beetles and larvae were found in great numbers. After positive identification of F. acarisuga found naturally in Slovenia, it can be added to the list of indigenous species of natural enemies and thus can be used in biological control programs in greenhouse crop protection against spider mites.

  18. Leaf-morphology-assisted selection for resistance to two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) in carnations (Dianthus caryophyllus L).

    Science.gov (United States)

    Seki, Kousuke

    2016-10-01

    The development of a cultivar resistant to the two-spotted spider mite has provided both ecological and economic benefits to the production of cut flowers. This study aimed to clarify the mechanism of resistance to mites using an inbred population of carnations. In the resistant and susceptible plants selected from an inbred population, a difference was recognised in the thickness of the abaxial palisade tissue by microscopic examination of the damaged leaf. Therefore, it was assumed that mites displayed feeding preferences within the internal leaf structure of the carnation leaf. The suitability of the host plant for mites was investigated using several cultivars selected using an index of the thickness from the abaxial leaf surface to the spongy tissue. The results suggested that the cultivar associated with a thicker abaxial tissue lowered the intrinsic rate of natural increase of the mites. The cultivars with a thicker abaxial tissue of over 120 µm showed slight damage in the field test. The ability of mites to feed on the spongy tissue during an early life stage from hatching to adult emergence was critical. It was possible to select a cultivar that is resistant to mites under a real cultivation environment by observing the internal structure of the leaf. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Vulnerability and behavioral response to ultraviolet radiation in the components of a foliar mite prey-predator system

    Science.gov (United States)

    Tachi, Fuyuki; Osakabe, Masahiro

    2012-12-01

    Ambient ultraviolet-B (UVB) radiation impacts plant-dwelling arthropods including herbivorous and predatory mites. However, the effects of UVB on prey-predator systems, such as that between the herbivorous spider mite and predatory phytoseiid mite, are poorly understood. A comparative study was conducted to determine the vulnerability and behavioral responses of these mites to ultraviolet (UV) radiation. First, we analyzed dose-response (cumulative irradiance-mortality) curves for the eggs of phytoseiid mites ( Neoseiulus californicus, Neoseiulus womersleyi, and Phytoseiulus persimilis) and the spider mite ( Tetranychus urticae) to UVB radiation from a UV lamp. This indicated that the phytoseiid mites were more vulnerable than the spider mite, although P. persimilis was slightly more tolerant than the other two phytoseiid mites. Second, we compared the avoidance behavior of adult female N. californicus and two spider mite species ( T. urticae, a lower leaf surface user; Panonychus citri, an upper leaf surface user) in response to solar UV and visible light. N. californicus actively avoided both types of radiation, whereas P. citri showed only minimal avoidance behavior. T. urticae actively avoided UV as well as N. californicus but exhibited a slow response to visible light as well as P. citri. Such variation in vulnerability and avoidance behavior accounts for differences in the species adaptations to solar UVB radiation. This may be the primary factor determining habitat use among these mites on host plant leaves, subsequently affecting accessibility by predators and also intraguild competition.

  20. Deciphering the Metabolic Changes Associated with Diapause Syndrome and Cold Acclimation in the Two-Spotted Spider Mite Tetranychus urticae

    Science.gov (United States)

    Khodayari, Samira; Moharramipour, Saeid; Larvor, Vanessa; Hidalgo, Kévin; Renault, David

    2013-01-01

    Diapause is a common feature in several arthropod species that are subject to unfavorable growing seasons. The range of environmental cues that trigger the onset and termination of diapause, in addition to associated hormonal, biochemical, and molecular changes, have been studied extensively in recent years; however, such information is only available for a few insect species. Diapause and cold hardening usually occur together in overwintering arthropods, and can be characterized by recording changes to the wealth of molecules present in the tissue, hemolymph, or whole body of organisms. Recent technological advances, such as high throughput screening and quantification of metabolites via chromatographic analyses, are able to identify such molecules. In the present work, we examined the survival ability of diapausing and non-diapausing females of the two-spotted spider mite, Tetranychus urticae, in the presence (0 or 5°C) or absence of cold acclimation. Furthermore, we examined the metabolic fingerprints of these specimens via gas chromatography-mass spectrophotometry (GC-MS). Partial Least Square Discriminant Analysis (PLS-DA) of metabolites revealed that major metabolic variations were related to diapause, indicating in a clear cut-off between diapausing and non-diapausing females, regardless of acclimation state. Signs of metabolic depression were evident in diapausing females, with most amino acids and TCA cycle intermediates being significantly reduced. Out of the 40 accurately quantified metabolites, seven metabolites remained elevated or were accumulated in diapausing mites, i.e. cadaverine, gluconolactone, glucose, inositol, maltose, mannitol and sorbitol. The capacity to accumulate winter polyols during cold-acclimation was restricted to diapausing females. We conclude that the induction of increased cold hardiness in this species is associated with the diapause syndrome, rather than being a direct effect of low temperature. Our results provide novel

  1. SIMULTANEOUS PRODUCTIVE GROWTH GROUPS (SPGG: INNOVATION ON PAPAYA MITE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Marycruz Abato-Zárate

    2011-11-01

    Full Text Available Grower’s previous experience and their ability to communicate technical information to other growers, allows greater adoption of technologies. Thus, appropriation of technologies of mite management and sampling was evaluated, based on the “Simultaneous Productive Growth Groups (SPGG” technology transfer model. A preliminary diagnosis was made, evaluating the technology transfer achieved by six leading growers showing up continuously to seven meetings carried out from March to July 2010, and also by 19 growers showing up on a more irregular basis. All growers were from the municipality of Cotaxtla and belonged to the Papaya-Product-System of Veracruz, Mexico. Participation, attitude and efficacy of training were evaluated with a survey. Forty-two percent of growers considered the papaya ring spot virus as the main problem and 48 % revealed spider mites as the second one; 96 % used pesticides on spider mites. Participation of the SPGG basic group was 71 %, who agreed on sampling, recording data in sampling forms and using selective acaricides. Seventy percent were able to recognize spider mites from predatory mites and 83 % recognized selective acaricides. Growers considered that sampling can help reduce control costs. The SPGG model allowed building collective knowledge and better decision making by the working group.

  2. Food stress causes sex-specific maternal effects in mites.

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2015-08-01

    Life history theory predicts that females should produce few large eggs under food stress and many small eggs when food is abundant. We tested this prediction in three female-biased size-dimorphic predatory mites feeding on herbivorous spider mite prey: Phytoseiulus persimilis, a specialized spider mite predator; Neoseiulus californicus, a generalist preferring spider mites; Amblyseius andersoni, a broad diet generalist. Irrespective of predator species and offspring sex, most females laid only one small egg under severe food stress. Irrespective of predator species, the number of female but not male eggs decreased with increasing maternal food stress. This sex-specific effect was probably due to the higher production costs of large female than small male eggs. The complexity of the response to the varying availability of spider mite prey correlated with the predators' degree of adaptation to this prey. Most A. andersoni females did not oviposit under severe food stress, whereas N. californicus and P. persimilis did oviposit. Under moderate food stress, only P. persimilis increased its investment per offspring, at the expense of egg number, and produced few large female eggs. When prey was abundant, P. persimilis decreased the female egg sizes at the expense of increased egg numbers, resulting in a sex-specific egg size/number trade-off. Maternal effects manifested only in N. californicus and P. persimilis. Small egg size correlated with the body size of daughters but not sons. Overall, our study provides a key example of sex-specific maternal effects, i.e. food stress during egg production more strongly affects the sex of the large than the small offspring. © 2015. Published by The Company of Biologists Ltd.

  3. Age-dependent male mating tactics in a spider mite-A life-history perspective.

    Science.gov (United States)

    Sato, Yukie; Rühr, Peter T; Schmitz, Helmut; Egas, Martijn; Blanke, Alexander

    2016-10-01

    Males often fight with rival males for access to females. However, some males display nonfighting tactics such as sneaking, satellite behavior, or female mimicking. When these mating tactics comprise a conditional strategy, they are often thought to be explained by resource holding potential (RHP), that is, nonfighting tactics are displayed by less competitive males who are more likely to lose a fight. The alternative mating tactics, however, can also be explained by life-history theory, which predicts that young males avoid fighting, regardless of their RHP, if it pays off to wait for future reproduction. Here, we test whether the sneaking tactic displayed by young males of the two-spotted spider mite can be explained by life-history theory. We tested whether young sneaker males survive longer than young fighter males after a bout of mild or strong competition with old fighter males. We also investigated whether old males have a more protective outer skin-a possible proxy for RHP-by measuring cuticle hardness and elasticity using nanoindentation. We found that young sneaker males survived longer than young fighter males after mild male competition. This difference was not found after strong male competition, which suggests that induction of sneaking tactic is affected by male density. Hardness and elasticity of the skin did not vary with male age. Given that earlier work could also not detect morphometric differences between fighter and sneaker males, we conclude that there is no apparent increase in RHP with age in the mite and age-dependent male mating tactics in the mite can be explained only by life-history theory. Because it is likely that fighting incurs a survival cost, age-dependent alternative mating tactics may be explained by life-history theory in many species when reproduction of old males is a significant factor in fitness.

  4. Behavioural evidence of male volatile pheromones in the sex-role reversed wolf spiders Allocosa brasiliensis and Allocosa alticeps

    Science.gov (United States)

    Aisenberg, Anita; Baruffaldi, Luciana; González, Macarena

    2010-01-01

    The use of chemical signals in a sexual context is widespread in the animal kingdom. Most studies in spiders report the use of female pheromones that attract potential sexual partners. Allocosa brasiliensis and Allocosa alticeps are two burrowing wolf spiders that show sex-role reversal. Females locate male burrows and initiate courtship before males perform any detectable visual or vibratory signal. So, females of these species would be detecting chemical or mechanical cues left by males. Our objective was to explore the potential for male pheromones to play a role in mate detection in A. brasiliensis and A. alticeps. We designed two experiments. In Experiment 1, we tested the occurrence of male contact pheromones by evaluating female courtship when exposed to empty burrows constructed by males or females (control). In Experiment 2, we tested the existence of male volatile pheromones by evaluating female behaviour when exposed to artificial burrows connected to tubes containing males, females or empty tubes (control). Our results suggest the occurrence of male volatile pheromones that trigger female courtship in both Allocosa species. The sex-role reversal postulated for these wolf spiders could be driving the consequent reversal in typical pheromone-emitter and detector roles expected for spiders.

  5. Variation in herbivory-induced volatiles among cucumber (Cucumis sativus L.) varieties has consequences for the attraction of carnivorous natural enemies

    NARCIS (Netherlands)

    Kappers, I.F.; Hoogerbrugge, H.; Bouwmeester, H.J.; Dicke, M.

    2011-01-01

    In response to herbivory by arthropods, plants emit herbivory-induced volatiles that attract carnivorous enemies of the inducing herbivores. Here, we compared the attractiveness of eight cucumber varieties (Cucumis sativus L.) to Phytoseiulus persimilis predatory mites after infestation of the

  6. Lima bean leaves exposed to herbivore-induced conspecific plant volatiles attract herbivores in addition to carnivores

    NARCIS (Netherlands)

    Horiuchi, J.I.; Arimura, G.I.; Ozawa, R.; Shimoda, T.; Dicke, M.; Takabayashi, J.; Nishioka, T.

    2003-01-01

    We tested the response of the herbivorous mite Tetranychus urticae to uninfested lima bean leaves exposed to herbivore-induced conspecific plant volatiles by using a Y-tube olfactometer. First, we confirmed that exposed uninfested leaves next to infested leaves were more attractive to carnivorous

  7. The predatory mite Phytoseiulus persimilis does not perceive odor mixtures as strictly elemental objects.

    Science.gov (United States)

    van Wijk, Michiel; de Bruijn, Paulien J A; Sabelis, Maurice W

    2010-11-01

    Phytoseiulus persimilis is a predatory mite that in absence of vision relies on the detection of herbivore-induced plant odors to locate its prey, the two-spotted spider-mite Tetranychus urticae. This herbivorous prey is feeding on leaves of a wide variety of plant species in different families. The predatory mites respond to numerous structurally different compounds. However, typical spider-mite induced plant compounds do not attract more predatory mites than plant compounds not associated with prey. Because the mites are sensitive to many compounds, components of odor mixtures may affect each other's perception. Although the response to pure compounds has been well documented, little is known how interactions among compounds affect the response to odor mixtures. We assessed the relation between the mites' responses elicited by simple mixtures of two compounds and by the single components of these mixtures. The preference for the mixture was compared to predictions under three conceptual models, each based on one of the following assumptions: (1) the responses elicited by each of the individual components can be added to each other; (2) they can be averaged; or (3) one response overshadows the other. The observed response differed significantly from the response predicted under the additive response, average response, and overshadowing response model in 52, 36, and 32% of the experimental tests, respectively. Moreover, the behavioral responses elicited by individual compounds and their binary mixtures were determined as a function of the odor concentration. The relative contribution of each component to the behavioral response elicited by the mixture varied with the odor concentration, even though the ratio of both compounds in the mixture was kept constant. Our experiments revealed that compounds that elicited no response had an effect on the response elicited by binary mixtures that they were part of. The results are not consistent with the hypothesis that P

  8. Effect of acaricidal components isolated from lettuce (Lactuca sativa) on carmine spider mite (Tetranychus cinnabarinus Boisd.).

    Science.gov (United States)

    Li, M; Zhang, Y; Ding, W; Luo, J; Li, S; Zhang, Q

    2018-06-01

    This study aimed to evaluate the acaricidal activity of lettuce (Lactuca sativa) extracts against carmine spider mites (Tetranychus cinnabarinus Boisd.) and isolate the acaricidal components. Acaricidal activities of lettuce extracts isolated from different parts (the leaf, root and seed) using various solvents (petroleum ether, acetone and methanol) were evaluated with slide-dip bioassay and relatively high median lethal concentration (LC50) values were detected. Acetone extracts of lettuce leaves harvested in July and September were fractionated and isolated with silica gel and thin-layer chromatography. Consequently, acetone extracts of lettuce leaves harvested in July exhibited higher acaricidal activity than those harvested in September, with an LC50 value of 0.268 mg ml-1 at 72 h post-treatment. A total of 27 fractions were obtained from the acetone extract of lettuce leaves harvested in July, and mite mortalities with the 11th and 12th fractions were higher than those with the other 25 fractions (LC50: 0.751 and 1.258 mg ml-1 at 48 h post-treatment, respectively). Subsequently, active acaricidal components of the 11th fraction were identified by infrared, nuclear magnetic resonance and liquid chromatography/mass spectrometry. Five components were isolated from the 11th fraction, with components 11-a and 11-b showing relatively high acaricidal activities (LC50: 0.288 and 0.114 mg ml-1 at 48 h post-treatment, respectively). Component 11-a was identified as β-sitosterol. In conclusion, acetone extracts of lettuce leaves harvested in July might be used as a novel phytogenic acaricide to control mites.

  9. Biological and ecological characterization of two mites (Tetranychus Urticae and Phytoseiulus Persimilis) occurring in some agro-ecosystems; Caratterizzazione biologica ed ecologica di due acari (Tetranichus Urticae e Phytoseiulus Persimilis) interagenti in alcuni ecosistemi agrari

    Energy Technology Data Exchange (ETDEWEB)

    Calvitti, M [ENEA, Centro Ricerche Casaccia, Roma (Italy). Dip. Innovazione

    1995-12-01

    This work is a brief review of the actual knowledge about biological and ecological characteristics of two species of mites: Tetranychus urticae Koch (Acarina Tetranychidae) (two-spotted spider mite) and the predaceous mite Phytoseiulus persimilis Athias Henriot (Acarina Phytoseiidae). Success obtained in biological control of spider mite, by mass release of P. persimilis, has increased the interest in biological and ecological study of these mites. Particularly, the following biological and ecological aspects of both P. persimilis and T. urticae are hereby discussed: reproductive biology; population dynamics (spider mites outbreaks) and natural regulation of the trophic interaction; feeding behaviour; biological control of two-spotted spider mite by P. persimilis. In this report experimental data obtained in laboratory have been integrated with bibliographic information concerning studies produced in natural conditions.

  10. Population density and phenology of Tetranychus urticae Koch (Acari: Tetranychidae) is linked to sulfur-induced outbreaks of this pest

    Science.gov (United States)

    The twospotted spider mite, Tetranychus urticae Koch, is a worldwide pest of numerous agronomic and horticultural plants. Sulfur fungicides are known to induce outbreaks of this pest on several crops, although mechanisms associated with sulfur-induced mite outbreaks are largely unknown. Studies were...

  11. Higher glandular trichome density in tomato leaflets and repellence to spider mites Alta densidade de tricomas glandulares em tomateiro e aumento da repelência a ácaros rajados

    Directory of Open Access Journals (Sweden)

    Wilson Roberto Maluf

    2007-09-01

    Full Text Available The objective of this work was to evaluate the feasibility of selection for higher glandular trichome densities, as an indirect criterion of selection for increasing repellence to spider mites Tetranychus urticae, in tomato populations derived from an interspecific cross between Lycopersicon esculentum x L. hirsutum var. glabratum PI 134417. Trichome densities were evaluated in 19 genotypes, including 12 from advanced backcross populations, derived from the original cross L. esculentum x L. hirsutum var. glabratum PI 134417. Counts were made both on the adaxial and abaxial leaf surfaces, and trichomes were classified into glandular types IV and VI, other glandular types (types I+VII, and nonglandular types. Mite repellence was measured by distances walked by mites onto the tomato leaf surface after 20, 40 and 60 min. Spider mite repellence biotests indicated that higher densities of glandular trichomes (especially type VI decreased the distances walked by the mites onto the tomato leaf surface. Selection of plants with higher densities of glandular trichomes can be an efficient criterion to obtain tomato genotypes with higher resistance (repellence to spider mites.O objetivo deste trabalho foi avaliar a eficiência da seleção para maior densidade de tricomas glandulares na resistência (repelência ao ácaro Tetranychus urticae, em populações de tomate derivadas do cruzamento interespecífico Lycopersicon esculentum x L. hirsutum var. glabratum PI 134417. Foram avaliados 19 genótipos quanto à densidade de tricomas, que incluíram 12 derivados de populações avançadas de retrocruzamentos, obtidos a partir do cruzamento original L. esculentum x L. hirsutum var. glabratum PI 134417. Nas faces abaxial e adaxial dos folíolos, realizaram-se as contagens e os tricomas foram classificados em glandulares tipo IV e VI, outros glandulares (tipo I e VII e não glandulares. A repelência aos ácaros foi medida pela distância média, percorrida pelo

  12. Analysis of insecticide resistance-related genes of the Carmine spider mite Tetranychus cinnabarinus based on a de novo assembled transcriptome.

    Science.gov (United States)

    Xu, Zhifeng; Zhu, Wenyi; Liu, Yanchao; Liu, Xing; Chen, Qiushuang; Peng, Miao; Wang, Xiangzun; Shen, Guangmao; He, Lin

    2014-01-01

    The carmine spider mite (CSM), Tetranychus cinnabarinus, is an important pest mite in agriculture, because it can develop insecticide resistance easily. To gain valuable gene information and molecular basis for the future insecticide resistance study of CSM, the first transcriptome analysis of CSM was conducted. A total of 45,016 contigs and 25,519 unigenes were generated from the de novo transcriptome assembly, and 15,167 unigenes were annotated via BLAST querying against current databases, including nr, SwissProt, the Clusters of Orthologous Groups (COGs), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). Aligning the transcript to Tetranychus urticae genome, the 19255 (75.45%) of the transcripts had significant (e-value insecticide resistance in arthropod were generated from CSM transcriptome, including 53 P450-, 22 GSTs-, 23 CarEs-, 1 AChE-, 7 GluCls-, 9 nAChRs-, 8 GABA receptor-, 1 sodium channel-, 6 ATPase- and 12 Cyt b genes. We developed significant molecular resources for T. cinnabarinus putatively involved in insecticide resistance. The transcriptome assembly analysis will significantly facilitate our study on the mechanism of adapting environmental stress (including insecticide) in CSM at the molecular level, and will be very important for developing new control strategies against this pest mite.

  13. Health effects of predatory beneficial mites and wasps in greenhouses

    DEFF Research Database (Denmark)

    Bælum, Jesper; Enkegaard, Annie; Doekes, Gert

    A three-year study of 579 greenhouse workers in 31 firms investigated the effect of four different beneficial arthropods. It was shown that the thrips mite Amblyseeius cucumeris and the spider mite predator Phytoseiulus persimilis may cause allergy measured by blood tests as well as eye and nose...... symptoms. No effect was seen by the predator wasp Aphidius colemani nor the predator mite Hypoaspis miles and no effect on lung diseases were seen....

  14. Population density and phenology of Tetranychus urticae (Acari: Tetranychidae) in hop is linked to the timing of sulfur applications.

    Science.gov (United States)

    Woods, J L; Dreves, A J; Fisher, G C; James, D G; Wright, L C; Gent, D H

    2012-06-01

    The twospotted spider mite, Tetranychus urticae Koch, is a worldwide pest of numerous agronomic and horticultural plants. Sulfur fungicides are known to induce outbreaks of this pest on several crops, although mechanisms associated with sulfur-induced mite outbreaks are largely unknown. Studies were conducted during 2007-2009 in Oregon and Washington hop yards to evaluate the effect of timing of sulfur applications on T. urticae and key predators. In both regions, applications of sulfur made relatively late in the growing season (mid-June to mid-July) were associated with the greatest exacerbation of spider mite outbreaks, particularly in the upper canopy of the crop. The severity of mite outbreaks was closely associated with sulfur applications made during a relatively narrow time period coincident with the early exponential phase of spider mite increase and rapid host growth. A nonlinear model relating mean cumulative mite days during the time of sulfur sprays to the percent increase in total cumulative mite days (standardized to a nontreated plot) explained 58% of the variability observed in increased spider mite severity related to sulfur spray timing. Spatial patterns of spider mites in the Oregon plots indicated similar dispersal of motile stages of spider mites among leaves treated with sulfur versus nontreated leaves; however, in two of three years, eggs were less aggregated on leaves of sulfur-treated plants, pointing to enhanced dispersal. Apart from one experiment in Washington, relatively few predatory mites were observed during the course of these studies, and sulfur-induced mite outbreaks generally occurred irrespective of predatory mite abundance. Collectively, these studies indicate sulfur induces mite outbreaks through direct or indirect effects on T. urticae, mostly independent of predatory mite abundance or toxicity to these predators. Avoidance of exacerbation of spider mite outbreaks by sulfur sprays was achieved by carefully timing

  15. Effects of Nitrogen Fertilization on Potato Leafhopper (Hemiptera: Cicadellidae) and Maple Spider Mite (Acari: Tetranychidae) on Nursery-Grown Maples.

    Science.gov (United States)

    Prado, Julia; Quesada, Carlos; Gosney, Michael; Mickelbart, Michael V; Sadof, Clifford

    2015-06-01

    Although leaf nitrogen (N) has been shown to increase the suitability of hosts to herbivorous arthropods, the responses of these pests to N fertilization on susceptible and resistant host plants are not well characterized. This study determined how different rates of N fertilization affected injury caused by the potato leafhopper (Empoasca fabae Harris) and the abundance of maple spider mite (Oligonychus aceris (Shimer)) on 'Red Sunset' red maple (Acer rubrum) and 'Autumn Blaze' Freeman maple (Acer×freemanii) during two years in Indiana. N fertilization increased leaf N concentration in both maple cultivars, albeit to a lesser extent during the second year of the study. Overall, Red Sunset maples were more susceptible to E. fabae injury than Autumn Blaze, whereas Autumn Blaze maples supported higher populations of O. aceris. Differences in populations of O. aceris were attributed to differences between communities of stigmaeid and phytoseiid mites on each cultivar. Injury caused by E. fabae increased with N fertilization in a dose-dependent manner in both cultivars. Although N fertilization increased the abundance of O. aceris on both maple cultivars, there was no difference between the 20 and 40 g rates. We suggest the capacity of N fertilization to increase O. aceris on maples could be limited at higher trophic levels by the community of predatory mites. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Múltiple natural enemies do not improve two spotted spider mite and flower western thrips control in strawberry tunnels

    Directory of Open Access Journals (Sweden)

    Gemma Albendín

    2015-03-01

    Full Text Available Biological control techniques are commonly used in many horticultural crops in Spain, however the application of these techniques to Spanish strawberries are relatively recent. In this study the effectiveness of augmentative biological control techniques to control the two main strawberry (Fragaria xananassa Duchesne pest: the two-spotted spider mite (TSSM, Tetranychus urticae Koch (Acari: Tetranychidae, and the western flower thrips (WFT, Frankliniella occidentalis (Pergande (Thysanoptera: Thripidae, through releases of the predatory mites Phytoseiulus persimilis Athias-Henriot, Neoseiulus californicus (McGregor, Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae, and Orius laevigatus (Fieber (Heteroptera: Anthocoridae were tested. Two-year results on the performance of treatments using combinations of these biocontrol agents are presented. In both years, all treatments resulted in the reduction of TSSM numbers; but no treatment was better than the release of P. persimilis alone (P < 0.05. TSSM suppression varied among crop phases being greater early in the season. None of the treatments reduced significantly WFT numbers (P < 0.05, and the established economic injury level (EIL was surpassed from March to late April in both years. However, EIL was surpassed less times when treatment included O. laevigatus (2009: 20.7%; 2010: 22.7% of samples. No effect of A. swirskii was observed when this mite was released. Results corroborate that biological control techniques for TSSM and WFT are feasible for high-plastic tunnel strawberries. Under the conditions in our study no additive effects were observed, and there was not advantage in the release of multiple natural enemies.

  17. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research.

    Science.gov (United States)

    Van Leeuwen, Thomas; Tirry, Luc; Yamamoto, Atsushi; Nauen, Ralf; Dermauw, Wannes

    2015-06-01

    Acaricides are one of the cornerstones of an efficient control program for phytophagous mites. An analysis of the global acaricide market reveals that spider mites such as Tetranychus urticae, Panonychus citri and Panonychus ulmi are by far the most economically important species, representing more than 80% of the market. Other relevant mite groups are false spider mites (mainly Brevipalpus), rust and gall mites and tarsonemid mites. Acaricides are most frequently used in vegetables and fruits (74% of the market), including grape vines and citrus. However, their use is increasing in major crops where spider mites are becoming more important, such as soybean, cotton and corn. As revealed by a detailed case study of the Japanese market, major shifts in acaricide use are partially driven by resistance development and the commercial availability of compounds with novel mode of action. The importance of the latter cannot be underestimated, although some compounds are successfully used for more than 30 years. A review of recent developments in mode of action research is presented, as such knowledge is important for devising resistance management programs. This includes spirocyclic keto-enols as inhibitors of acetyl-CoA carboxylase, the carbazate bifenazate as a mitochondrial complex III inhibitor, a novel class of complex II inhibitors, and the mite growth inhibitors hexythiazox, clofentezine and etoxazole that interact with chitin synthase I. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Plant architecture and prey distribution influence foraging behavior of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae).

    Science.gov (United States)

    Gontijo, Lessando M; Nechols, James R; Margolies, David C; Cloyd, Raymond A

    2012-01-01

    The arrangement, number, and size of plant parts may influence predator foraging behavior, either directly, by altering the rate or pattern of predator movement, or, indirectly, by affecting the distribution and abundance of prey. We report on the effects of both plant architecture and prey distribution on foraging by the predatory mite, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae), on cucumber (Cucumis sativus L.). Plants differed in leaf number (2- or 6-leafed), and there were associated differences in leaf size, plant height, and relative proportions of plant parts; but all had the same total surface area. The prey, the twospotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae), were distributed either on the basal leaf or on all leaves. The effect of plant architecture on predator foraging behavior varied depending on prey distribution. The dimensions of individual plant parts affected time allocated to moving and feeding, but they did not appear to influence the frequency with which predators moved among different plant parts. Overall, P. persimilis moved less, and fed upon prey longer, on 6-leafed plants with prey on all leaves than on plants representing other treatment combinations. Our findings suggest that both plant architecture and pattern of prey distribution should be considered, along with other factors such as herbivore-induced plant volatiles, in augmentative biological control programs.

  19. Information use by the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae), a specialised natural enemy of herbivorous spider mites

    NARCIS (Netherlands)

    Boer, de J.G.; Dicke, M.

    2005-01-01

    Plants can respond to infestation by herbivores with the emission of specific herbivore-induced plant volatiles. Many carnivorous arthropods that feed on herbivorous prey use these volatiles to locate their prey. Despite the growing amount of research papers on the interactions in tritrophic

  20. Nutrient Deprivation Induces Property Variations in Spider Gluey Silk

    Science.gov (United States)

    Blamires, Sean J.; Sahni, Vasav; Dhinojwala, Ali; Blackledge, Todd A.; Tso, I-Min

    2014-01-01

    Understanding the mechanisms facilitating property variability in biological adhesives may promote biomimetic innovations. Spider gluey silks such as the spiral threads in orb webs and the gumfoot threads in cobwebs, both of which comprise of an axial thread coated by glue, are biological adhesives that have variable physical and chemical properties. Studies show that the physical and chemical properties of orb web gluey threads change when spiders are deprived of food. It is, however, unknown whether gumfoot threads undergo similar property variations when under nutritional stress. Here we tested whether protein deprivation induces similar variations in spiral and gumfoot thread morphology and stickiness. We manipulated protein intake for the orb web spider Nephila clavipes and the cobweb spider Latrodectus hesperus and measured the diameter, glue droplet volume, number of droplets per mm, axial thread width, thread stickiness and adhesive energy of their gluey silks. We found that the gluey silks of both species were stickier when the spiders were deprived of protein than when the spiders were fed protein. In N. clavipes a concomitant increase in glue droplet volume was found. Load-extension curves showed that protein deprivation induced glue property variations independent of the axial thread extensions in both species. We predicted that changes in salt composition of the glues were primarily responsible for the changes in stickiness of the silks, although changes in axial thread properties might also contribute. We, additionally, showed that N. clavipes' glue changes color under protein deprivation, probably as a consequence of changes to its biochemical composition. PMID:24523902

  1. Joint Effect of Solar UVB and Heat Stress on the Seasonal Change of Egg Hatching Success in the Herbivorous False Spider Mite (Acari: Tenuipalpidae).

    Science.gov (United States)

    Sudo, M; Osakabe, M

    2015-12-01

    Seasonal population dynamics of an herbivorous mite has been documented in terms of the relationship between thermoresponses and temporal biological factors such as resource availability or predation risk. Although recent studies emphasize the deleterious effects of solar ultraviolet-B (UVB; 280-320 nm wavelengths) radiation on plant-dwelling mites, how UVB affects mite population remains largely unknown. On a wild shrub Viburnum erosum var. punctatum in Kyoto, an herbivorous false spider mite, Brevipalpus obovatus Donnadieu, occurs only in autumn. Females of this species lay one-third of their eggs on upper leaf surfaces. Oviposition on upper surfaces is beneficial for avoiding predation by phytoseiids, but exposes eggs to solar UVB and heat stress. To test the hypothesis that the seasonal occurrence of this mite is determined by interactions between solar UVB radiation and temperature, we examined variation in egg hatching success under near-ambient and UV-attenuated sunlight conditions from spring to autumn. The UV-attenuation significantly improved hatching success. However, most eggs died under heat stress regardless of UV treatments in July and August. We established a deterministic heat stress-cumulative UVB dose-egg hatching success response model, which we applied to meteorological data. The model analyses illustrated lower and higher survivability peaks in late May and October, respectively, which partly corresponded to data for annual field occurrence, indicating the importance of solar UVB radiation and heat stress as determinants of the seasonal occurrence of this mite. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Brown spider dermonecrotic toxin directly induces nephrotoxicity

    International Nuclear Information System (INIS)

    Chaim, Olga Meiri; Sade, Youssef Bacila; Bertoni da Silveira, Rafael; Toma, Leny; Kalapothakis, Evanguedes; Chavez-Olortegui, Carlos; Mangili, Oldemir Carlos; Gremski, Waldemiro; Dietrich, Carl Peter von; Nader, Helena B.; Sanches Veiga, Silvio

    2006-01-01

    Brown spider (Loxosceles genus) venom can induce dermonecrotic lesions at the bite site and systemic manifestations including fever, vomiting, convulsions, disseminated intravascular coagulation, hemolytic anemia and acute renal failure. The venom is composed of a mixture of proteins with several molecules biochemically and biologically well characterized. The mechanism by which the venom induces renal damage is unknown. By using mice exposed to Loxosceles intermedia recombinant dermonecrotic toxin (LiRecDT), we showed direct induction of renal injuries. Microscopic analysis of renal biopsies from dermonecrotic toxin-treated mice showed histological alterations including glomerular edema and tubular necrosis. Hyalinization of tubules with deposition of proteinaceous material in the tubule lumen, tubule epithelial cell vacuoles, tubular edema and epithelial cell lysis was also observed. Leukocytic infiltration was neither observed in the glomerulus nor the tubules. Renal vessels showed no sign of inflammatory response. Additionally, biochemical analyses showed such toxin-induced changes in renal function as urine alkalinization, hematuria and azotemia with elevation of blood urea nitrogen levels. Immunofluorescence with dermonecrotic toxin antibodies and confocal microscopy analysis showed deposition and direct binding of this toxin to renal intrinsic structures. By immunoblotting with a hyperimmune dermonecrotic toxin antiserum on renal lysates from toxin-treated mice, we detected a positive signal at the region of 33-35 kDa, which strengthens the idea that renal failure is directly induced by dermonecrotic toxin. Immunofluorescence reaction with dermonecrotic toxin antibodies revealed deposition and binding of this toxin directly in MDCK epithelial cells in culture. Similarly, dermonecrotic toxin treatment caused morphological alterations of MDCK cells including cytoplasmic vacuoles, blebs, evoked impaired spreading and detached cells from each other and from

  3. Mite Pests in Plant Crops – Current Issues, Inovative Approaches and Possibilities for Controlling Them (1

    Directory of Open Access Journals (Sweden)

    Radmila Petanović

    2010-01-01

    Full Text Available In the middle of the last century, mites moved into the focus of attention as pests relevantto agriculture, forestry and landscape horticulture, presumably in direct reactionto the “green revolution” that involved plant cultivation in large-plot monocropping systems,improved methods of cultivation, selection of high-yielding cultivars and intensifieduse of pesticides and mineral fertilizers. Agroecosystems in which phytophagous miteshave become harmful organisms are primarily orchards, vineyards, greenhouses, urbangreeneries, plant nurseries and stored plant products, as well as annual field crops to asomewhat lesser degree. Phytophagous mite species belong to a variety of spider mites(Tetranychidae, false spider mites (Tenuipalpidae, gall and rust mites (Eriophyoidae, tarsonemidmites (Tarsonemidae and acarid mites (Acaridae. Most of these harmful speciesare widespread, some of them having more economic impact than others and being moredetrimental as depending on various specificities of each outdoor agroecosystem in anyparticular climatic region.The first segment of this overview focuses on the most significant mite pests ofagroecosystemsand urban horticultural areas in European countries, our own region andin Serbia today, primarily on species that have caused problems in recent years regardingplant production, and it also discusses various molecular methods available for investigatingdifferent aspects of the biology of phytophagous mites. Also, acaricides are discussedas a method of controlling mite pests in the light of the current situation and trends on pesticidemarkets in Serbia and the European Union member-countries

  4. Does methyl salicylate, a component of herbivore-induced plant odour, promote sporulation of the mite-pathogenic fungus Neozygites tanajoae?

    NARCIS (Netherlands)

    Hountondji, F.C.C.; Hanna, R.; Sabelis, M.W.

    2006-01-01

    Abstract : Blends of volatile chemicals emanating from cassava leaves infested by the cassava green mite were found to promote conidiation of Neozygites tanajoae, an entomopathogenic fungus specific to this mite. Methyl salicylate (MeSA) is one compound frequently present in blends of

  5. PCR-based identification of the pathogenic bacterium, Acaricomes phytoseiuli, in the biological control agent Phytoseiulus persimilis (Acari: Phytoseiidae)

    NARCIS (Netherlands)

    Gols, R.; Schütte, C.; Stouthamer, R.; Dicke, M.

    2007-01-01

    The predatory mite, Phytoseiulus persimilis is an important biological control agent of herbivorous spider mites. This species is also intensively used in the study of tritrophic effects of plant volatiles in interactions involving plants, herbivores, and their natural enemies. Recently, a novel

  6. A Gene Family Coding for Salivary Proteins (SHOT) of the Polyphagous Spider Mite Tetranychus urticae Exhibits Fast Host-Dependent Transcriptional Plasticity.

    Science.gov (United States)

    Jonckheere, Wim; Dermauw, Wannes; Khalighi, Mousaalreza; Pavlidi, Nena; Reubens, Wim; Baggerman, Geert; Tirry, Luc; Menschaert, Gerben; Kant, Merijn R; Vanholme, Bartel; Van Leeuwen, Thomas

    2018-01-01

    The salivary protein repertoire released by the herbivorous pest Tetranychus urticae is assumed to hold keys to its success on diverse crops. We report on a spider mite-specific protein family that is expanded in T. urticae. The encoding genes have an expression pattern restricted to the anterior podocephalic glands, while peptide fragments were found in the T. urticae secretome, supporting the salivary nature of these proteins. As peptide fragments were identified in a host-dependent manner, we designated this family as the SHOT (secreted host-responsive protein of Tetranychidae) family. The proteins were divided in three groups based on sequence similarity. Unlike TuSHOT3 genes, TuSHOT1 and TuSHOT2 genes were highly expressed when feeding on a subset of family Fabaceae, while expression was depleted on other hosts. TuSHOT1 and TuSHOT2 expression was induced within 24 h after certain host transfers, pointing toward transcriptional plasticity rather than selection as the cause. Transfer from an 'inducer' to a 'noninducer' plant was associated with slow yet strong downregulation of TuSHOT1 and TuSHOT2, occurring over generations rather than hours. This asymmetric on and off regulation points toward host-specific effects of SHOT proteins, which is further supported by the diversity of SHOT genes identified in Tetranychidae with a distinct host repertoire.

  7. Sex-specific developmental plasticity of generalist and specialist predatory mites (Acari: Phytoseiidae) in response to food stress.

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2011-03-01

    We studied developmental plasticity under food stress in three female-biased size dimorphic predatory mite species, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni. All three species prey on two-spotted spider mites but differ in the degree of adaptation to this prey. Phytoseiulus persimilis is a specialized spider mite predator, N. californicus is a generalist with a preference for spider mites, and A. andersoni is a broad generalist. Immature predators were offered prey patches of varying density and their survival chances, dispersal tendencies, age and size at maturity measured. Amblyseius andersoni dispersed earlier from and had lower survival chances in low density prey patches than N. californicus and P. persimilis. Age at maturity was not affected by prey density in the generalist A. andersoni, whereas both the specialist P. persimilis and the generalist N. californicus accelerated development at low prey densities. Species-specific plasticity in age at maturity reflects opposite survival strategies when confronted with limited prey: to prematurely leave and search for other food (A. andersoni) or to stay and accelerate development (P. persimilis, N. californicus). In all species, size at maturity was more plastic in females than males, indicating that males incur higher fitness costs from deviations from optimal body size.

  8. Trophic Interactions between Generalist Predators and the Two Spotted Spide Mite, Tetranychus urticae in, Strawberry

    DEFF Research Database (Denmark)

    Jacobsen, Stine Kramer

    The two spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is a major cause of pest damage worldwide. Its host range includes among many the strawberry crop, a high value crop in Denmark as well as in many other temperate and subtropical regions. Chemical control of T. urticae...... occurrence and diversity of predatory insects and predatory mites in Danish strawberry fields and surrounding vegetation is lacking, as is the knowledge of the potential of generalist insect predators to control T. urticae. The overall objective of this PhD thesis was to investigate the trophic interactions...... between natural enemies, in particular generalist predators and the two spotted spider mite, T. urticae, in strawberry. This was done by investigating interactions of T. urticae and its natural enemies as influenced by cropping practice and the surrounding vegetation (Manuscript I) as well as more...

  9. Biological control of fruit-tree red spider mite

    NARCIS (Netherlands)

    Rabbinge, R.

    1976-01-01

    During the last decade, integrated pest control systems have been developed for several crops. One of the main fields of research in integrated control has been the control of orchard pests. Experience with modified spraying programmes in apple orchards, the increasing resistance of spider

  10. Effects of Euseius stipulatus on establishment and efficacy in spider mite suppression of Neoseiulus californicus and Phytoseiulus persimilis in clementine.

    Science.gov (United States)

    Abad-Moyano, Raquel; Urbaneja, Alberto; Hoffmann, Daniela; Schausberger, Peter

    2010-04-01

    The two-spotted spider mite, Tetranychus urticae, is one of the most problematic phytophagous pests in Spanish clementine orchards. The most abundant predatory mites in this ecosystem are Euseius stipulatus, Phytoseiulus persimilis and Neoseiulus californicus. Euseius stipulatus is dominant but poorly adapted to utilize T. urticae as prey. It mainly persists on pollen and citrus red mite, Panonychus citri. A recent study suggested that the more efficacious T. urticae predators P. persimilis and N. californicus are negatively affected by lethal and non-lethal intraguild interactions with E. stipulatus. Here, we investigated the potential of N. californicus and P. persimilis to colonize and thrive on young clementine trees infested by T. urticae in presence and absence of E. stipulatus. Presence of E. stipulatus interfered with establishment and abundance of P. persimilis and negatively affected the efficacy of N. californicus in T. urticae suppression. In contrast, the abundance of E. stipulatus was not affected by introduction of a second predator. Trait-mediated effects of E. stipulatus changing P. persimilis and N. californicus behavior and/or life history were the most likely explanations for these outcomes. We conclude that superiority of E. stipulatus in intraguild interactions may indeed contribute to the currently observed predator species composition and abundance, rendering natural control of T. urticae in Spanish clementine orchards unsatisfactory. Nonetheless, stronger reduction of T. urticae and/or plant damage in the predator combination treatments as compared to E. stipulatus alone indicates the possibility to improve T. urticae control via repeated releases of N. californicus and/or P. persimilis.

  11. Analysis of insecticide resistance-related genes of the Carmine spider mite Tetranychus cinnabarinus based on a de novo assembled transcriptome.

    Directory of Open Access Journals (Sweden)

    Zhifeng Xu

    Full Text Available The carmine spider mite (CSM, Tetranychus cinnabarinus, is an important pest mite in agriculture, because it can develop insecticide resistance easily. To gain valuable gene information and molecular basis for the future insecticide resistance study of CSM, the first transcriptome analysis of CSM was conducted. A total of 45,016 contigs and 25,519 unigenes were generated from the de novo transcriptome assembly, and 15,167 unigenes were annotated via BLAST querying against current databases, including nr, SwissProt, the Clusters of Orthologous Groups (COGs, Kyoto Encyclopedia of Genes and Genomes (KEGG and Gene Ontology (GO. Aligning the transcript to Tetranychus urticae genome, the 19255 (75.45% of the transcripts had significant (e-value <10-5 matches to T. urticae DNA genome, 19111 sequences matched to T. urticae proteome with an average protein length coverage of 42.55%. Core Eukaryotic Genes Mapping Approach (CEGMA analysis identified 435 core eukaryotic genes (CEGs in the CSM dataset corresponding to 95% coverage. Ten gene categories that relate to insecticide resistance in arthropod were generated from CSM transcriptome, including 53 P450-, 22 GSTs-, 23 CarEs-, 1 AChE-, 7 GluCls-, 9 nAChRs-, 8 GABA receptor-, 1 sodium channel-, 6 ATPase- and 12 Cyt b genes. We developed significant molecular resources for T. cinnabarinus putatively involved in insecticide resistance. The transcriptome assembly analysis will significantly facilitate our study on the mechanism of adapting environmental stress (including insecticide in CSM at the molecular level, and will be very important for developing new control strategies against this pest mite.

  12. Can volatile organic metabolites be used to simultaneously assess microbial and mite contamination level in cereal grains and coffee beans?

    Science.gov (United States)

    Salvador, Angelo C; Baptista, Inês; Barros, António S; Gomes, Newton C M; Cunha, Angela; Almeida, Adelaide; Rocha, Silvia M

    2013-01-01

    A novel approach based on headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-ToFMS) was developed for the simultaneous screening of microbial and mite contamination level in cereals and coffee beans. The proposed approach emerges as a powerful tool for the rapid assessment of the microbial contamination level (ca. 70 min versus ca. 72 to 120 h for bacteria and fungi, respectively, using conventional plate counts), and mite contamination (ca. 70 min versus ca. 24 h). A full-factorial design was performed for optimization of the SPME experimental parameters. The methodology was applied to three types of rice (rough, brown, and white rice), oat, wheat, and green and roasted coffee beans. Simultaneously, microbiological analysis of the samples (total aerobic microorganisms, moulds, and yeasts) was performed by conventional plate counts. A set of 54 volatile markers was selected among all the compounds detected by GC×GC-ToFMS. Principal Component Analysis (PCA) was applied in order to establish a relationship between potential volatile markers and the level of microbial contamination. Methylbenzene, 3-octanone, 2-nonanone, 2-methyl-3-pentanol, 1-octen-3-ol, and 2-hexanone were associated to samples with higher microbial contamination level, especially in rough rice. Moreover, oat exhibited a high GC peak area of 2-hydroxy-6-methylbenzaldehyde, a sexual and alarm pheromone for adult mites, which in the other matrices appeared as a trace component. The number of mites detected in oat grains was correlated to the GC peak area of the pheromone. The HS-SPME/GC×GC-ToFMS methodology can be regarded as the basis for the development of a rapid and versatile method that can be applied in industry to the simultaneous assessment the level of microbiological contamination and for detection of mites in cereals grains and coffee beans.

  13. Smells familiar: group-joining decisions of predatory mites are mediated by olfactory cues of social familiarity.

    Science.gov (United States)

    Muleta, Muluken G; Schausberger, Peter

    2013-09-01

    Group-living animals frequently have to trade off the costs and benefits of leaving an established group and joining another group. Owing to their high fitness relevance, group-joining decisions are commonly nonrandom and may be based on traits of both individual members and the group such as life stage, body size, social status and group density or size, respectively. Many group-living animals are able to recognize and to associate preferentially with familiar individuals, i.e. those encountered before. Hence, after dispersing from established groups, animals commonly have to decide whether to join a new familiar or unfamiliar group. Using binary choice situations we assessed the effects of social familiarity on group-joining behaviour of the plant-inhabiting predatory mite Phytoseiulus persimilis . Group living in P. persimilis is brought about by the patchy distribution of its spider mite prey and mutual conspecific attraction. In the first experiment, gravid predator females given a choice between spider mite patches occupied by unfamiliar and familiar groups of females strongly preferred to join familiar groups and to deposit their eggs in these patches. Preference for socially familiar groups was robust across biases of spider mite prey densities between choice options. The second experiment revealed that the predatory mite females can smell social familiarity from a distance. Females subjected to odour choice situations in artificial cages were more strongly attracted to the odour of familiar than unfamiliar groups. We argue that P. persimilis females preferentially join socially familiar groups because a familiar social environment relaxes competition and optimizes foraging and reproduction.

  14. Smells familiar: group-joining decisions of predatory mites are mediated by olfactory cues of social familiarity☆

    Science.gov (United States)

    Muleta, Muluken G.; Schausberger, Peter

    2013-01-01

    Group-living animals frequently have to trade off the costs and benefits of leaving an established group and joining another group. Owing to their high fitness relevance, group-joining decisions are commonly nonrandom and may be based on traits of both individual members and the group such as life stage, body size, social status and group density or size, respectively. Many group-living animals are able to recognize and to associate preferentially with familiar individuals, i.e. those encountered before. Hence, after dispersing from established groups, animals commonly have to decide whether to join a new familiar or unfamiliar group. Using binary choice situations we assessed the effects of social familiarity on group-joining behaviour of the plant-inhabiting predatory mite Phytoseiulus persimilis. Group living in P. persimilis is brought about by the patchy distribution of its spider mite prey and mutual conspecific attraction. In the first experiment, gravid predator females given a choice between spider mite patches occupied by unfamiliar and familiar groups of females strongly preferred to join familiar groups and to deposit their eggs in these patches. Preference for socially familiar groups was robust across biases of spider mite prey densities between choice options. The second experiment revealed that the predatory mite females can smell social familiarity from a distance. Females subjected to odour choice situations in artificial cages were more strongly attracted to the odour of familiar than unfamiliar groups. We argue that P. persimilis females preferentially join socially familiar groups because a familiar social environment relaxes competition and optimizes foraging and reproduction. PMID:24027341

  15. The effect of synthetic pesticides and sulfur used in conventional and organically grown strawberry and soybean on Neozygites floridana, a natural enemy of spider mites.

    Science.gov (United States)

    Castro, Thiago; Roggia, Samuel; Wekesa, Vitalis W; de Andrade Moral, Rafael; Gb Demétrio, Clarice; Delalibera, Italo; Klingen, Ingeborg

    2016-09-01

    The beneficial fungus Neozygites floridana kills the two-spotted spider mite Tetranychus urticae, which is a serious polyphagous plant pest worldwide. Outbreaks of spider mites in strawberry and soybean have been associated with pesticide applications. Pesticides may affect N. floridana and consequently the natural control of T. urticae. N. floridana is a fungus difficult to grow in artificial media, and for this reason, very few studies have been conducted with this fungus, especially regarding the impact of pesticides. The aim of this study was to conduct a laboratory experiment to evaluate the effect of pesticides used in strawberry and soybean crops on N. floridana. Among the pesticides used in strawberry, the fungicides sulfur and cyprodinil + fludioxonil completely inhibited both the sporulation and conidial germination of N. floridana. The fungicide fluazinam affected N. floridana drastically. The application of the fungicide tebuconazole and the insecticides fenpropathrin and abamectin resulted in a less pronounced negative effect on N. floridana. Except for epoxiconazole and cyproconazole, all tested fungicides used in soybean resulted in a complete inhibition of N. floridana. Among the three insecticides used in soybean, lambda-cyhalothrin and deltamethrin resulted in a significant inhibition of N. floridana. The insecticides/ acaricides abamectin and lambda-cyhalothrin at half concentrations and fenpropathrin and permethrin and the fungicide tebuconazole at the recommended concentrations resulted in the lowest impact on N. floridana. The fungicides with the active ingredients sulfur, cyprodinil + fludioxonil, azoxystrobin, azoxystrobin + cyproconazole, trifloxystrobin + tebuconazole and pyraclostrobin + epoxiconazole negatively affected N. floridana. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. Parasitism of Trombidium brevimanum larvae on agrobiont linyphiid spiders from Germany.

    Science.gov (United States)

    Tomić, Vladimir; Mąkol, Joanna; Stamenković, Srdjan; Büchs, Wolfgang; Prescher, Sabine; Sivčev, Ivan; Graora, Draga; Sivčev, Lazar; Gotlin-Čuljak, Tatjana; Dudić, Boris

    2015-08-01

    An experiment on three differently-managed agricultural fields in Ahlum, Germany, which aimed at establishing the impact of different management systems on the biodiversity of predators and decomposers, yielded a significant number of spiders parasitized by larvae of Trombidium brevimanum (Actinotrichida, Parasitengona, Trombidiidae). Spider data from the whole sampling period (September 2010-July 2012), indicated that ectoparasitic larvae were recorded only on spiders in pitfall traps in the period of June-July 2011. In this period, only eight species of Linyphiidae--out of 42 species assigned to nine spider families recorded from the study area--were parasitized by mites; considerable levels of parasitism were recorded on Erigone atra, E. dentipalpis, and Oedothorax apicatus. The highest prevalence of parasitism was recorded on the organic field for E. atra (29%), while on the integrated and conventional fields significantly fewer parasitized spiders were observed. The preferred attachment sites on the spider host were regions with softer cuticle, especially regions on the carapace and on the abdomen, adjacent to the pedicel.

  17. Toxicity of bifenazate and its principal active metabolite, diazene, to Tetranychus urticae and Panonychus citri and their relative toxicity to the predaceous mites, Phytoseiulus persimilis and Neoseiulus californicus.

    Science.gov (United States)

    Ochiai, Noriaki; Mizuno, Masayuki; Mimori, Norihiko; Miyake, Toshihiko; Dekeyser, Mark; Canlas, Liza Jara; Takeda, Makio

    2007-01-01

    Bifenazate is a novel carbazate acaricide discovered by Uniroyal Chemical (now Chemtura Corporation) for the control of phytophagous mites infesting agricultural and ornamental crops. Its acaricidal activity and that of its principal active metabolite, diazene, were characterized. Bifenazate and diazene had high toxicity and specificity both orally and topically to all life stages of Tetranychus urticae and Panonychus citri. Acute poisoning was observed with no temperature dependency. No cross-resistance was found to mites resistant to several other classes of acaricides, such as tebufenpyrad, etoxazole, fenbutatin oxide and dicofol. Bifenazate remained effective for a long time with only about a 10% loss of efficacy on T. urticae after 1 month of application in the field. All stages of development of the predatory mites, Phytoseiulus persimilis and Neoseiulus californicus, survived treatment by both bifenazate and diazene. When adult females of the two predatory mite species were treated with either bifenazate or diazene, they showed a normal level of fecundity and predatory activity in the laboratory, effectively suppressing spider mite population growth. Even when the predators were fed spider mite eggs that had been treated previously with bifenazate, they survived. These findings indicate that bifenazate is a very useful acaricide giving high efficacy, long-lasting activity and excellent selectivity for spider mites. It is, therefore, concluded that bifenazate is an ideal compound for controlling these pest mites.

  18. The predatory mite Phytoseiulus persimilis adjusts patch-leaving to own and progeny prey needs.

    Science.gov (United States)

    Vanas, V; Enigl, M; Walzer, A; Schausberger, P

    2006-01-01

    Integration of optimal foraging and optimal oviposition theories suggests that predator females should adjust patch leaving to own and progeny prey needs to maximize current and future reproductive success. We tested this hypothesis in the predatory mite Phytoseiulus persimilis and its patchily distributed prey, the two-spotted spider mite Tetranychus urticae. In three separate experiments we assessed (1) the minimum number of prey needed to complete juvenile development, (2) the minimum number of prey needed to produce an egg, and (3) the ratio between eggs laid and spider mites left when a gravid P. persimilis female leaves a patch. Experiments (1) and (2) were the pre-requirements to assess the fitness costs associated with staying or leaving a prey patch. Immature P. persimilis needed at least 7 and on average 14+/-3.6 (SD) T. urticae eggs to reach adulthood. Gravid females needed at least 5 and on average 8.5+/-3.1 (SD) T. urticae eggs to produce an egg. Most females left the initial patch before spider mite extinction, leaving prey for progeny to develop to adulthood. Females placed in a low density patch left 5.6+/-6.1 (SD) eggs per egg laid, whereas those placed in a high density patch left 15.8+/-13.7 (SD) eggs per egg laid. The three experiments in concert suggest that gravid P. persimilis females are able to balance the trade off between optimal foraging and optimal oviposition and adjust patch-leaving to own and progeny prey needs.

  19. Categorizing experience-based foraging plasticity in mites: age dependency, primacy effects and memory persistence.

    Science.gov (United States)

    Schausberger, Peter; Davaasambuu, Undarmaa; Saussure, Stéphanie; Christiansen, Inga C

    2018-04-01

    Behavioural plasticity can be categorized into activational (also termed contextual) and developmental plasticity. Activational plasticity allows immediate contextual behavioural changes, whereas developmental plasticity is characterized by time-lagged changes based on memory of previous experiences (learning). Behavioural plasticity tends to decline with age but whether this holds true for both plasticity categories and the effects of first-in-life experiences is poorly understood. We tackled this issue by assessing the foraging plasticity of plant-inhabiting predatory mites, Amblyseius swirskii , on thrips and spider mites following age-dependent prey experience, i.e. after hatching or after reaching maturity. Juvenile and young adult predator females were alternately presented thrips and spider mites, for establishing 1st and 2nd prey-in-life experiences, and tested, as gravid females, for their foraging plasticity when offered both prey species. Prey experience by juvenile predators resulted in clear learning effects, which were evident in likelier and earlier attacks on familiar prey, and higher proportional inclusion of familiar prey in total diet. First prey-in-life experience by juvenile but not adult predators resulted in primacy effects regarding attack latency. Prey experience by adult predators resulted mainly in prey-unspecific physiological changes, with easy-to-grasp spider mites providing higher net energy gains than difficult-to-grasp thrips. Prey experience by juvenile, but not adult, predators was adaptive, which was evident in a negative correlation between attack latencies and egg production. Overall, our study provides key evidence that similar experiences by juvenile and adult predators, including first-in-life experiences, may be associated with different types of behavioural plasticity, i.e. developmental and activational plasticity.

  20. Categorizing experience-based foraging plasticity in mites: age dependency, primacy effects and memory persistence

    Science.gov (United States)

    Davaasambuu, Undarmaa; Saussure, Stéphanie; Christiansen, Inga C.

    2018-01-01

    Behavioural plasticity can be categorized into activational (also termed contextual) and developmental plasticity. Activational plasticity allows immediate contextual behavioural changes, whereas developmental plasticity is characterized by time-lagged changes based on memory of previous experiences (learning). Behavioural plasticity tends to decline with age but whether this holds true for both plasticity categories and the effects of first-in-life experiences is poorly understood. We tackled this issue by assessing the foraging plasticity of plant-inhabiting predatory mites, Amblyseius swirskii, on thrips and spider mites following age-dependent prey experience, i.e. after hatching or after reaching maturity. Juvenile and young adult predator females were alternately presented thrips and spider mites, for establishing 1st and 2nd prey-in-life experiences, and tested, as gravid females, for their foraging plasticity when offered both prey species. Prey experience by juvenile predators resulted in clear learning effects, which were evident in likelier and earlier attacks on familiar prey, and higher proportional inclusion of familiar prey in total diet. First prey-in-life experience by juvenile but not adult predators resulted in primacy effects regarding attack latency. Prey experience by adult predators resulted mainly in prey-unspecific physiological changes, with easy-to-grasp spider mites providing higher net energy gains than difficult-to-grasp thrips. Prey experience by juvenile, but not adult, predators was adaptive, which was evident in a negative correlation between attack latencies and egg production. Overall, our study provides key evidence that similar experiences by juvenile and adult predators, including first-in-life experiences, may be associated with different types of behavioural plasticity, i.e. developmental and activational plasticity. PMID:29765663

  1. Variation in nesting behavior of eight species of spider mites, Stigmaeopsis having sociality

    Science.gov (United States)

    Saito, Yutaka; Zhang, Yan-Xuan; Mori, Kotaro; Ito, Katsura; Sato, Yukie; Chittenden, Anthony R.; Lin, Jian-Zhen; Chae, Younghae; Sakagami, Takane; Sahara, Ken

    2016-10-01

    Nesting behavior is considered to be an important element of social living in animals. The spider mites belonging to the genus Stigmaeopsis spend their lives within nests produced from silk threads. Several of these species show cooperative sociality, while the others are subsocial. In order to identify the origins of this social behavior, comparisons of nest sizes, nesting behaviors (making nests continuously or separately), and their associated traits (fecal deposition patterns) were made for eight cogeneric Stigmaeopsis species showing various levels of social development. All of these species inhabit bamboo plants (Poaceae). We initially addressed the proximate factor of nest size variation. The variation in nest size of the eight species corresponded well with the variation in dorsal seta sc1 length, suggesting that nest size variation among species may have a genetic basis. The time spent within a nest (nest duration) increased with nest size on the respective host plants. Nest arrangement patterns varied among species showing different sized nests: Large nest builders continuously extended their nests, while middle and small nest-building species built new separate nests, which resulted in different social interaction times among species, and is thought to be closely related to social development. Fecal deposition behaviors also varied among Stigmaeopsis species, suggesting diversity in anti-predatory adaptations. Finally, we discuss how the variation in sociality observed within this genus is likely the result of nest size variation that initially evolved as anti-predator strategies.

  2. Comparison of single and combination treatments of Phytoseiulus persimilis, Neoseiulus californicus, and Acramite (bifenazate) for control of twospotted spider mites in strawberries.

    Science.gov (United States)

    Rhodes, Elena M; Liburd, Oscar E; Kelts, Crystal; Rondon, Silvia I; Francis, Roger R

    2006-01-01

    Greenhouse and field experiments were conducted from 2003 to 2005 to determine the effectiveness of combining releases of two predatory mite species, Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus (McGregor), and a reduced-risk miticide, Acramite (bifenazate), for control of twospotted spider mite (TSSM) (Tetranychus urticae Koch) in strawberries. In the greenhouse experiment, a combination treatment of P. persimilis and N. californicus was compared with single treatments of each species, Acramite application, and untreated control. All treatments significantly reduced TSSM numbers compared with the control. Field studies employed two approaches: one investigating the same five treatments as the greenhouse experiment and a second, comparing combination treatments of P. persimilis/N. californicus, Acramite/N. californicus, and Acramite/P. persimilis to single treatments of each and to control plots. Among the combination treatments, the P. persimilis/N. californicus treatment significantly reduced TSSM numbers compared with the control, but was not as effective as N. californicus alone during the 2003-2004 field season. Also, combination treatments of Acramite/N. californicus, and Acramite/P. persimilis significantly reduced TSSM populations compared with the control. These findings indicate that all three combination treatments are promising options for TSSM control in strawberries for growers in northern Florida and other strawberry producing areas of the world.

  3. Does methyl salicylate, a component of herbivore-induced plant odour, promote sporulation of the mite-pathogenic fungus Neozygites tanajoae?

    Science.gov (United States)

    Hountondji, Fabien C C; Hanna, Rachid; Sabelis, Maurice W

    2006-01-01

    Blends of volatile chemicals emanating from cassava leaves infested by the cassava green mite were found to promote conidiation of Neozygites tanajoae, an entomopathogenic fungus specific to this mite. Methyl salicylate (MeSA) is one compound frequently present in blends of herbivore-induced plant volatiles (HIPV) as well as that of mite-infested cassava. Here, we investigated the effect of methyl salicylate in its pure form on the production of pre-infective spores (conidia), and the germination of these spores into infective spores (capilliconidia), by a Brazilian isolate and a Beninese isolate of N. tanajoae. Mummified mites previously infected by the fungal isolates were screened under optimal abiotic conditions for sporulation inside tightly closed boxes with or without methyl salicylate diffusing from a capillary tube. Production of conidia was consistently higher (37%) when the Beninese isolate was exposed to MeSA than when not exposed to it (305.5 +/- 52.62 and 223.2 +/- 38.13 conidia per mummy with and without MeSA, respectively). MeSA, however, did not promote conidia production by the Brazilian isolate (387.4 +/- 44.74 and 415.8 +/- 57.95 conidia per mummy with and without MeSA, respectively). Germination of the conidia into capilliconidia was not affected by MeSA for either isolate (0.2%, 252.6 +/- 31.80 vs. 253.0 +/- 36.65 for the Beninese isolate and 4.2%, 268.5 +/- 37.90 vs. 280.2 +/- 29.43 for the Brazilian isolate). The effects of MeSA on the production of conidia were similar to those obtained under exposure to the complete blends of HIPV for the case of the Beninese isolate, but dissimilar (no promoting effect of MeSA) for the case of the Brazilian isolate. This shows that MeSA, being one compound out of many HIPV, can be a factor promoting sporulation of N. tanajoae, but it may not be the only factor as its effect varies with the fungal isolate under study.

  4. Spatial distribution of phytophagous mites (Aca ri: Tetranychidae) on strawberry plants

    International Nuclear Information System (INIS)

    Fadini, Marcos A.M.; Venzon, Madelaine; Oliveira, Hamilton G.; Pallini, Angelo; Vilela, Evaldo F.

    2007-01-01

    Many phytophagous mites can attack strawberry plants, Fragaria x ananassa, among them the southern red mite, Oligonychus ilicis McGregor, and the two-spotted spider mite, Tetranychus urticae Koch. They are found together feeding on the same plant on the upper and underside of the leaves, respectively. Here we studied the choice for feeding sites of O. ilicis and T. urticae on strawberry plants. The first hypothesis tested whether the feeding site choice would be related to the fitness of the species. The second hypothesis dealt whether the feeding site would be determined by the presence of a heterospecific mite. We evaluated the preference, biology and reproductive success of O. ilicis and T. urticae on the under and upper side surface of strawberry leaves infested or not by the heterospecific. O. ilicis preferred to stay on the upper side surface while T. urticae preferred the underside. The preference for the leaf surface correlated with the reproductive success of the species (measured by the intrinsic growth rate). The choice pattern of feeding sites did not alter when the choice test was applied using sites previously infested by heterospecific. Although O. ilicis and T. urticae, apparently, do not interact directly for feeding sites, there is a chance that the first species induces defenses in strawberry plant enabling to reduce the fitness of the second species. The possibility of those species stay together on strawberry plant increases the damage capacity to the culture. (author)

  5. A burst of ABC genes in the genome of the polyphagous spider mite Tetranychus urticae.

    Science.gov (United States)

    Dermauw, Wannes; Osborne, Edward John; Clark, Richard M; Grbić, Miodrag; Tirry, Luc; Van Leeuwen, Thomas

    2013-05-10

    The ABC (ATP-binding cassette) gene superfamily is widespread across all living species. The majority of ABC genes encode ABC transporters, which are membrane-spanning proteins capable of transferring substrates across biological membranes by hydrolyzing ATP. Although ABC transporters have often been associated with resistance to drugs and toxic compounds, within the Arthropoda ABC gene families have only been characterized in detail in several insects and a crustacean. In this study, we report a genome-wide survey and expression analysis of the ABC gene superfamily in the spider mite, Tetranychus urticae, a chelicerate ~ 450 million years diverged from other Arthropod lineages. T. urticae is a major agricultural pest, and is among of the most polyphagous arthropod herbivores known. The species resists a staggering array of toxic plant secondary metabolites, and has developed resistance to all major classes of pesticides in use for its control. We identified 103 ABC genes in the T. urticae genome, the highest number discovered in a metazoan species to date. Within the T. urticae ABC gene set, all members of the eight currently described subfamilies (A to H) were detected. A phylogenetic analysis revealed that the high number of ABC genes in T. urticae is due primarily to lineage-specific expansions of ABC genes within the ABCC, ABCG and ABCH subfamilies. In particular, the ABCC subfamily harbors the highest number of T. urticae ABC genes (39). In a comparative genomic analysis, we found clear orthologous relationships between a subset of T. urticae ABC proteins and ABC proteins in both vertebrates and invertebrates known to be involved in fundamental cellular processes. These included members of the ABCB-half transporters, and the ABCD, ABCE and ABCF families. Furthermore, one-to-one orthologues could be distinguished between T. urticae proteins and human ABCC10, ABCG5 and ABCG8, the Drosophila melanogaster sulfonylurea receptor and ecdysone-regulated transporter E

  6. Gamma irradiation as a quarantine treatment against mite (Tetranychidae) on cut flowers

    International Nuclear Information System (INIS)

    Zainon Othman; Mohd Ridzuan Ismail; Hamidah Sulaiman; Mohd Shamsudin Osman

    2000-01-01

    Cut flower, an important export commodity of Malaysia in international trade, is often subjected to infestation by various pests such as mites, scales and thrips. The use of low ionising radiation has been suggested as an alternative to methyl bromide fumigation, the current pest disinfestation treatment for cut flower but which is being phased out due to environmental concerns. The criterion for efficacy of radiation as a quarantine treatment will be the inability of treated mites to reproduce at a new location rather than causing immediate mortality. Irradiating red spider mite Tetranychus piercie at a dose of 300 and 400 Gy produced sterile female adults from irradiated protonymph and deutonymph respectively. A lower dose of 200 Gy induced sterility in female adults developed from the less immature stages of irradiated egg and larva. Deteriorating effects caused by irradiation treatment were reflected in immatures by their reduced emergence rate/mortality in subsequent developmental stages. A dose of 240 Gy prevented reproduction in female adult of T piercie by inducing sterility while a much higher dose of 5 kGy is required to produce instant mortality. Based on the results obtained gamma irradiation of dose range 300-400 Gy may be applied as a quarantine treatment against Tetranychus piercie. However, this dose range is only suitable for chrysanthemum (in 4% sucrose solution) but not roses, carnations and orchids which showed phytotoxic symptoms at dose range of 100-300 Gy

  7. Comparação econômica entre controle biológico e químico para o manejo de ácaro-vermelho em macieira Economic comparison of biological and chemical control in the management of red spider mites in apple orchard

    Directory of Open Access Journals (Sweden)

    Lino Bittencourt Monteiro

    2006-12-01

    Full Text Available O ácaro-vermelho da macieira, Panonychus ulmi (Acari: Tetranychidae, é uma importante praga na cultura da macieira em Fraiburgo - SC, e o controle biológico aplicado foi implantado em meados dos anos 90. O objetivo deste trabalho foi demonstrar os benefícios econômicos da utilização do controle biológico no manejo do ácaro-vermelho. A avaliação foi realizada em dois pomares comerciais de macieiras. Em um deles, foi implantado o controle biológico aplicado de ácaros, baseado na liberação do ácaro predador Neoseiulus californicus (Acari: Phytoseiidae, seleção de inseticidas e manejo de ervas invasoras, e o outro pomar seguiu o manejo convencional de artrópodes, baseado na aplicação de produtos químicos para o controle de insetos, ácaros fitófagos e ervas invasoras. A análise econômica mostrou que os custos com mão-de-obra e máquinas foram semelhantes em ambos os pomares, entretanto os custos com acaricidas foram significativamente inferiores no pomar onde o manejo foi o controle biológico, demonstrando que, apesar da necessidade de investimentos em instalações para a criação do ácaro predador e custos de manutenção das mesmas, a estratégia biológica foi economicamente viável.Red spider mite, Panonychus ulmi (Acari: Tetranychidae is a significant pest in apple tree in Fraiburgo, Santa Catarina (SC and applied biological control was implemented in the mid-nineties. The objective of this study was to demonstrate the economic benefits of biological control in the management of red spider mite. The assessment was carried out in two commercial orchards, one of which was subjected to biological control of spider mite by releasing the predator Neoseiulus californicus, insecticide selection and weed management, and the other to conventional arthropod management, based on the application of chemicals to control insects, phytofagous mites and weed. Economic analysis showed that the costs for labor and machines were

  8. Intraguild interactions between the predatory mites Neoseiulus californicus and Phytoseiulus persimilis.

    Science.gov (United States)

    Cakmak, Ibrahim; Janssen, Arne; Sabelis, Maurice W

    2006-01-01

    Species at the same trophic level may interact through competition for food, but can also interact through intraguild predation. Intraguild predation is widespread at the second and third trophic level and the effects may cascade down to the plant level. The effects of intraguild predation can be modified by antipredator behaviour in the intraguild prey. We studied intraguild predation and antipredator behaviour in two species of predatory mite, Neoseiulus californicus and Phytoseiulus persimilis, which are both used for control of the two-spotted spider mite in greenhouse and outdoor crops. Using a Y-tube olfactometer, we assessed in particular whether each of the two predators avoids odours emanating from prey patches occupied by the heterospecific predator. Furthermore, we measured the occurrence and rate of intraguild predation of different developmental stages of P. persimilis and N. californicus on bean leaves in absence or in presence of the shared prey. Neither of the two predator species avoided prey patches with the heterospecific competitor, both when inexperienced with the other predator and when experienced with prey patches occupied by the heterospecific predator. Intraguild experiments showed that N. californicus is a potential intraguild predator of P. persimilis. However, P. persimilis did not suffer much from intraguild predation as long as the shared prey was present. This is probably because N. californicus prefers to feed on two-spotted spider mites rather than on its intraguild prey.

  9. Methyl salicylate production in tomato affects biotic interactions.

    Science.gov (United States)

    Ament, Kai; Krasikov, Vladimir; Allmann, Silke; Rep, Martijn; Takken, Frank L W; Schuurink, Robert C

    2010-04-01

    The role of methyl salicylate (MeSA) production was studied in indirect and direct defence responses of tomato (Solanum lycopersicum) to the spider mite Tetranychus urticae and the root-invading fungus Fusarium oxysporum f. sp. lycopersici, respectively. To this end, we silenced the tomato gene encoding salicylic acid methyl transferase (SAMT). Silencing of SAMT led to a major reduction in SAMT expression and MeSA emission upon herbivory by spider mites, without affecting the induced emission of other volatiles (terpenoids). The predatory mite Phytoseiulus persimilis, which preys on T. urticae, could not discriminate between infested and non-infested SAMT-silenced lines, as it could for wild-type tomato plants. Moreover, when given the choice between infested SAMT-silenced and infested wild-type plants, they preferred the latter. These findings are supportive of a major role for MeSA in this indirect defence response of tomato. SAMT-silenced tomato plants were less susceptible to a virulent strain of F. oxysporum f. sp. lycopersici, indicating that the direct defense responses in the roots are also affected in these plants. Our studies show that the conversion of SA to MeSA can affect both direct and indirect plant defence responses.

  10. Experience with methyl salicylate affects behavioural responses of a predatory mite to blends of herbivore-induced plant volatiles

    NARCIS (Netherlands)

    Boer, de J.G.; Dicke, M.

    2004-01-01

    Many natural enemies of herbivorous arthropods use herbivore-induced plant volatiles to locate their prey. These foraging cues consist of mixtures of compounds that show a considerable variation within and among plantherbivore combinations, a situation that favours a flexible approach in the

  11. Enhancement of the reproductive potential of Mallada boninensis Okamoto (Neuroptera: Chrysopidae, a predator of red spider mite infesting tea: An evaluation of artificial diets

    Directory of Open Access Journals (Sweden)

    Vasanthakumar Duraikkannu

    2012-01-01

    Full Text Available Green lacewing Mallada boninensis is an important predator of various soft-bodied arthropods, including red spider mites in tea. Efforts were made to develop mass rearing technology for this predator in a cost effective manner. Three combinations of artificial diets (Protinex (AD1, egg yolk (AD2 and royal jelly (AD3 based were evaluated in comparison with standard diet (Protinex + Honey. All the tested diets influenced the egg-laying capacity of M. boninensis. The egg yolk-based diet resulted in more egg production than the other two diets. Survival of all life stages of M. boninensis was also observed on each diet and no significant difference was noticed. Results revealed that the egg yolk-based diet is the best of the three diet combinations tested in view of high fecundity and survival rate of M. boninensis.

  12. Patterns of reproductive isolation in a haplodiploid - strong post-mating, prezygotic barriers among three forms of a social spider mite.

    Science.gov (United States)

    Sato, Yukie; Sakamoto, Hironori; Gotoh, Tetsuo; Saito, Yutaka; Chao, Jung-Tai; Egas, Martijn; Mochizuki, Atsushi

    2018-03-22

    In speciation research, much attention is paid to the evolution of reproductive barriers, preventing diverging groups from hybridizing back into one gene pool. The prevalent view is that reproductive barriers evolve gradually as a by-product of genetic changes accumulated by natural selection and genetic drift in groups that are segregated spatially and/or temporally. Reproductive barriers, however, can also be reinforced by natural selection against maladaptive hybridization. These mutually compatible theories are both empirically supported by studies, analysing relationships between intensity of reproductive isolation and genetic distance in sympatric taxa and allopatric taxa. Here, we present the - to our knowledge - first comparative study in a haplodiploid organism, the social spider mite Stigmaeopsis miscanthi, by measuring premating and post-mating, pre- and post-zygotic components of reproductive isolation, using three recently diverged forms of the mite that partly overlap in home range. We carried out cross-experiments and measured genetic distances (mitochondrial DNA and nuclear DNA) among parapatric and allopatric populations of the three forms. Our results show that the three forms are reproductively isolated, despite the absence of premating barriers, and that the post-mating, prezygotic component contributes most to reproductive isolation. As expected, the strength of post-mating reproductive barriers positively correlated with genetic distance. We did not find a clear pattern of prezygotic barriers evolving faster in parapatry than in allopatry, although one form did show a trend in line with the ecological and behavioural relationships between the forms. Our study advocates the versatility of haplodiploid animals for investigating the evolution of reproductive barriers. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  13. Tetracycline Reduces Kidney Damage Induced by Loxosceles Spider Venom

    Directory of Open Access Journals (Sweden)

    Cinthya Kimori Okamoto

    2017-03-01

    Full Text Available Envenomation by Loxosceles spider can result in two clinical manifestations: cutaneous and systemic loxoscelism, the latter of which includes renal failure. Although incidence of renal failure is low, it is the main cause of death, occurring mainly in children. The sphingomyelinase D (SMase D is the main component in Loxosceles spider venom responsible for local and systemic manifestations. This study aimed to investigate the toxicity of L. intermedia venom and SMase D on kidney cells, using both In vitro and in vivo models, and the possible involvement of endogenous metalloproteinases (MMP. Results demonstrated that venom and SMase D are able to cause death of human kidney cells by apoptosis, concomitant with activation and secretion of extracellular matrix metalloproteases, MMP-2 and MMP-9. Furthermore, cell death and MMP synthesis and secretion can be prevented by tetracycline. In a mouse model of systemic loxoscelism, Loxosceles venom-induced kidney failure was observed, which was abrogated by administration of tetracycline. These results indicate that MMPs may play an important role in Loxosceles venom-induced kidney injury and that tetracycline administration may be useful in the treatment of human systemic loxoscelism.

  14. The responses of cucumber plants subjected to different salinity or fertilizer concentrations and reproductive success of Tetranychus urticae mites on these plants.

    Science.gov (United States)

    Khodayari, Samira; Abedini, Fatemeh; Renault, David

    2018-05-01

    The plant stress hypothesis posits that a herbivore's reproductive success increases when it feeds on stressed plants, while the plant vigor hypothesis predicts that a herbivore preferentially feeds on more vigorous plants. We examined these opposing hypotheses by growing spider mites (Tetranychus urticae) on the leaves of stressed and healthy (vigorous) cucumber plants. Host plants were grown under controlled conditions at low, moderate, and high concentrations of NaCl (to induce salinity stress), at low, moderate, and high fertilizer concentrations (to support growth), and without these additions (control). The effects of these treatments were evaluated by measuring fresh and dry plant biomass, carotenoid and chlorophyll content, antioxidant enzyme activity, and concentrations of PO 4 3- , K + , and Na + in plant tissues. The addition of low concentrations of fertilizer increased dry mass, protein, and carotenoid content relative to controls, suggesting a beneficial effect on plants. The highest NaCl treatment (2560 mg L -1 ) resulted in increased Na + and protein content relative to control plants, as well as reduced PO 4 3- , K + , and chlorophyll levels and reduced catalase and ascorbate peroxidase enzyme activity levels. Analysis of life table data of T. urticae mites raised on leaves from the aforementioned plant groups showed the intrinsic rate of increase (r) for mites was 0.167 day -1 in control specimens, 0.125 day -1 for mites reared on plants treated with a moderate concentration of fertilizer (10 mL L -1 ), and was highest (0.241 day -1 ) on plants grown under moderate salinity conditions (1920 mg L -1 NaCl). Reproductive success of T. urticae did not differ on plants watered with a moderate concentration of NaCl or a high concentration of fertilizer. The moderately-stressed plants formed a favorable environment for the development and reproduction of spider mites, supporting the plant stress hypothesis.

  15. Control of Varroa Mite (Varroa destructor on Honeybees by Aromatic Oils and Plant Materials

    Directory of Open Access Journals (Sweden)

    I.K. Nazer

    2003-01-01

    Full Text Available The effect of several volatile plant oils, plant materials and fluvalinate (Apistan® strips on the control of the mite Varroa destructor on honeybee (Apis mellifera L. colonies was studied. The volatile oils were: clove, lavender, peppermint, sage, and thyme. The plant materials were: cumin fruits, eucalyptus leaves, and worm wood flowers. For each tested material, three treatment periods were carried out. Each period lasted for 24 days followed by eight days no-treatment. Within each treatment period, an average of three to six treatments were applied. Dead mites were counted one hour before and after each treatment. An increase in dead mites was recorded for the three treatment periods. It indicated that worm wood flowers, peppermint oil and clove oil treatments gave the best results in the control of Varroa mites but not significantly different than the control. The overall increase in the dead mites was 3.92, 3.62 and 3.34 fold, respectively.

  16. Social familiarity governs prey patch-exploitation, -leaving and inter-patch distribution of the group-living predatory mite Phytoseiulus persimilis.

    Science.gov (United States)

    Zach, Gernot J; Peneder, Stefan; Strodl, Markus A; Schausberger, Peter

    2012-01-01

    In group-living animals, social interactions and their effects on other life activities such as foraging are commonly determined by discrimination among group members. Accordingly, many group-living species evolved sophisticated social recognition abilities such as the ability to recognize familiar individuals, i.e. individuals encountered before. Social familiarity may affect within-group interactions and between-group movements. In environments with patchily distributed prey, group-living predators must repeatedly decide whether to stay with the group in a given prey patch or to leave and search for new prey patches and groups. Based on the assumption that in group-living animals social familiarity allows to optimize the performance in other tasks, as for example predicted by limited attention theory, we assessed the influence of social familiarity on prey patch exploitation, patch-leaving, and inter-patch distribution of the group-living, plant-inhabiting predatory mite Phytoseiulus persimilis. P. persimilis is highly specialized on herbivorous spider mite prey such as the two-spotted spider mite Tetranychus urticae, which is patchily distributed on its host plants. We conducted two experiments with (1) groups of juvenile P. persimilis under limited food on interconnected detached leaflets, and (2) groups of adult P. persimilis females under limited food on whole plants. Familiar individuals of both juvenile and adult predator groups were more exploratory and dispersed earlier from a given spider mite patch, occupied more leaves and depleted prey more quickly than individuals of unfamiliar groups. Moreover, familiar juvenile predators had higher survival chances than unfamiliar juveniles. We argue that patch-exploitation and -leaving, and inter-patch dispersion were more favorably coordinated in groups of familiar than unfamiliar predators, alleviating intraspecific competition and improving prey utilization and suppression.

  17. Social familiarity governs prey patch-exploitation, -leaving and inter-patch distribution of the group-living predatory mite Phytoseiulus persimilis.

    Directory of Open Access Journals (Sweden)

    Gernot J Zach

    Full Text Available In group-living animals, social interactions and their effects on other life activities such as foraging are commonly determined by discrimination among group members. Accordingly, many group-living species evolved sophisticated social recognition abilities such as the ability to recognize familiar individuals, i.e. individuals encountered before. Social familiarity may affect within-group interactions and between-group movements. In environments with patchily distributed prey, group-living predators must repeatedly decide whether to stay with the group in a given prey patch or to leave and search for new prey patches and groups.Based on the assumption that in group-living animals social familiarity allows to optimize the performance in other tasks, as for example predicted by limited attention theory, we assessed the influence of social familiarity on prey patch exploitation, patch-leaving, and inter-patch distribution of the group-living, plant-inhabiting predatory mite Phytoseiulus persimilis. P. persimilis is highly specialized on herbivorous spider mite prey such as the two-spotted spider mite Tetranychus urticae, which is patchily distributed on its host plants. We conducted two experiments with (1 groups of juvenile P. persimilis under limited food on interconnected detached leaflets, and (2 groups of adult P. persimilis females under limited food on whole plants. Familiar individuals of both juvenile and adult predator groups were more exploratory and dispersed earlier from a given spider mite patch, occupied more leaves and depleted prey more quickly than individuals of unfamiliar groups. Moreover, familiar juvenile predators had higher survival chances than unfamiliar juveniles.We argue that patch-exploitation and -leaving, and inter-patch dispersion were more favorably coordinated in groups of familiar than unfamiliar predators, alleviating intraspecific competition and improving prey utilization and suppression.

  18. Complex Odor from Plants under Attack: Herbivore's Enemies React to the Whole, Not Its Parts

    Science.gov (United States)

    van Wijk, Michiel; de Bruijn, Paulien J. A.; Sabelis, Maurice W.

    2011-01-01

    Background Insect herbivory induces plant odors that attract herbivores' natural enemies. Assuming this attraction emerges from individual compounds, genetic control over odor emission of crops may provide a rationale for manipulating the distribution of predators used for pest control. However, studies on odor perception in vertebrates and invertebrates suggest that olfactory information processing of mixtures results in odor percepts that are a synthetic whole and not a set of components that could function as recognizable individual attractants. Here, we ask if predators respond to herbivore-induced attractants in odor mixtures or to odor mixture as a whole. Methodology/Principal Findings We studied a system consisting of Lima bean, the herbivorous mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. We found that four herbivore-induced bean volatiles are not attractive in pure form while a fifth, methyl salicylate (MeSA), is. Several reduced mixtures deficient in one component compared to the full spider-mite induced blend were not attractive despite the presence of MeSA indicating that the predators cannot detect this component in these odor mixtures. A mixture of all five HIPV is most attractive, when offered together with the non-induced odor of Lima bean. Odors that elicit no response in their pure form were essential components of the attractive mixture. Conclusions/Significance We conclude that the predatory mites perceive odors as a synthetic whole and that the hypothesis that predatory mites recognize attractive HIPV in odor mixtures is unsupported. PMID:21765908

  19. Complex odor from plants under attack: herbivore's enemies react to the whole, not its parts.

    Directory of Open Access Journals (Sweden)

    Michiel van Wijk

    Full Text Available Insect herbivory induces plant odors that attract herbivores' natural enemies. Assuming this attraction emerges from individual compounds, genetic control over odor emission of crops may provide a rationale for manipulating the distribution of predators used for pest control. However, studies on odor perception in vertebrates and invertebrates suggest that olfactory information processing of mixtures results in odor percepts that are a synthetic whole and not a set of components that could function as recognizable individual attractants. Here, we ask if predators respond to herbivore-induced attractants in odor mixtures or to odor mixture as a whole.We studied a system consisting of Lima bean, the herbivorous mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. We found that four herbivore-induced bean volatiles are not attractive in pure form while a fifth, methyl salicylate (MeSA, is. Several reduced mixtures deficient in one component compared to the full spider-mite induced blend were not attractive despite the presence of MeSA indicating that the predators cannot detect this component in these odor mixtures. A mixture of all five HIPV is most attractive, when offered together with the non-induced odor of Lima bean. Odors that elicit no response in their pure form were essential components of the attractive mixture.We conclude that the predatory mites perceive odors as a synthetic whole and that the hypothesis that predatory mites recognize attractive HIPV in odor mixtures is unsupported.

  20. How do Neoseiulus californicus (Acari: Phytoseiidae) females penetrate densely webbed spider mite nests?

    Science.gov (United States)

    Montserrat, M; de la Peña, F; Hormaza, J I; González-Fernández, J J

    2008-02-01

    The persea mite Oligonychus perseae is a pest of avocado trees that builds extremely dense webbed nests that protect them against natural enemies, including phytoseiid mites. Nests have one or two marginal entrances that are small and flattened. The predatory mite Neoseiulus californicus co-occurs with O. perseae in the avocado orchards of the south-east of Spain. Penetration inside nests through the entrances by this predator is thought to be hindered by its size and its globular-shaped body. However, in the field it has repeatedly been found inside nests that were clearly ripped. Perhaps penetration of the nests has been facilitated by nest wall ripping caused by some other species or by unfavourable abiotic factors. However, to assess whether N. californicus is also able to enter the nest of O. perseae by itself, we carried out laboratory experiments and made a short film. They show how this predator manages to overcome the webbed wall, and that it can penetrate and forage inside nests of O. perseae.

  1. Pheromonal Communication in the European House Dust Mite, Dermatophagoides pteronyssinus

    Directory of Open Access Journals (Sweden)

    Johannes L.M. Steidle

    2014-08-01

    Full Text Available Despite the sanitary importance of the European house dust mite Dermatophagoides pteronyssinus (Trouessart, 1897, the pheromonal communication in this species has not been sufficiently studied. Headspace analysis using solid phase micro extraction (SPME revealed that nerol, neryl formate, pentadecane, (6Z,9Z-6,9-heptadecadiene, and (Z-8-heptadecene are released by both sexes whereas neryl propionate was released by males only. Tritonymphs did not produce any detectable volatiles. In olfactometer experiments, pentadecane and neryl propionate were attractive to both sexes as well as to tritonymphs. (Z-8-heptadecene was only attractive to male mites. Therefore it is discussed that pentadecane and neryl propionate are aggregation pheromones and (Z-8-heptadecene is a sexual pheromone of the European house dust mite D. pteronyssinus. To study the potential use of pheromones in dust mite control, long-range olfactometer experiments were conducted showing that mites can be attracted to neryl propionate over distances of at least 50 cm. This indicates that mite pheromones might be useable to monitor the presence or absence of mites in the context of control strategies.

  2. Effect of aqueous plant extracts on tea red spider mite, Oligonychus ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-02-04

    Feb 4, 2009 ... integrated mite management. Key words: Tea ... Scientific name. Family. Parts used .... C.V.%. 8.64. Mean of five observations (30 eggs/observation). 100 numbers of ..... This work is part of a Tea Research Association in-house project ... innovation in tea science and sustainable development in tea. Industry ...

  3. Herbivore-induced blueberry volatiles and intra-plant signaling.

    Science.gov (United States)

    Rodriguez-Saona, Cesar R

    2011-12-18

    Herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. These HIPVs are mainly regulated by the defensive plant hormone jasmonic acid (JA) and its volatile derivative methyl jasmonate (MeJA). Over the past 3 decades researchers have documented that HIPVs can repel or attract herbivores, attract the natural enemies of herbivores, and in some cases they can induce or prime plant defenses prior to herbivore attack. In a recent paper, I reported that feeding by gypsy moth caterpillars, exogenous MeJA application, and mechanical damage induce the emissions of volatiles from blueberry plants, albeit differently. In addition, blueberry branches respond to HIPVs emitted from neighboring branches of the same plant by increasing the levels of JA and resistance to herbivores (i.e., direct plant defenses), and by priming volatile emissions (i.e., indirect plant defenses). Similar findings have been reported recently for sagebrush, poplar, and lima beans. Here, I describe a push-pull method for collecting blueberry volatiles induced by herbivore (gypsy moth) feeding, exogenous MeJA application, and mechanical damage. The volatile collection unit consists of a 4 L volatile collection chamber, a 2-piece guillotine, an air delivery system that purifies incoming air, and a vacuum system connected to a trap filled with Super-Q adsorbent to collect volatiles. Volatiles collected in Super-Q traps are eluted with dichloromethane and then separated and quantified using Gas Chromatography (GC). This volatile collection method was used in my study to investigate the volatile response of undamaged branches to exposure to volatiles from herbivore-damaged branches within blueberry plants. These methods are described here. Briefly, undamaged blueberry branches are exposed to HIPVs from neighboring branches within the same plant. Using the same techniques described above, volatiles emitted from branches after exposure to HIPVs are collected and

  4. Interactions in a tritrophic acarine predator-prey metapopulation system III

    DEFF Research Database (Denmark)

    Nachman, Gösta; Zemek, R.

    2002-01-01

    Spider mites are serious pests on many economically important plant species, because they may reduce plant productivity and, at high mite densities, overexploit and even kill the host plants. We have conducted a series of greenhouse experiments to quantify the effects of two-spotted spider mites...... (Tetranychus urticae) on host plants (Phaseolusvulgaris). The average amount of chlorophyll per cm2 leaf area was used as a measure of plant condition. It was shown that chlorophyll concentration decreases with plant age and intensity of spider mite feeding. Damage caused by spider mites was assessed visually...... caused by spider mites (D). D takes values between 0 (no injury) and 1 (all leaves dead). A highly significant positive relationship between the instantaneous spider mite density and D was found, even though D is expected to reflect the cumulated density of mites (mite-days). A model of plant growth...

  5. Clathrin Heavy Chain Is Important for Viability, Oviposition, Embryogenesis and, Possibly, Systemic RNAi Response in the Predatory Mite Metaseiulus occidentalis

    Science.gov (United States)

    Wu, Ke; Hoy, Marjorie A.

    2014-01-01

    Clathrin heavy chain has been shown to be important for viability, embryogenesis, and RNA interference (RNAi) in arthropods such as Drosophila melanogaster. However, the functional roles of clathrin heavy chain in chelicerate arthropods, such as the predatory mite Metaseiulus occidentalis, remain unknown. We previously showed that dsRNA ingestion, followed by feeding on spider mites, induced systemic and robust RNAi in M. occidentalis females. In the current study, we performed a loss-of-function analysis of the clathrin heavy chain gene in M. occidentalis using RNAi. We showed that ingestion of clathrin heavy chain dsRNA by M. occidentalis females resulted in gene knockdown and reduced longevity. In addition, clathrin heavy chain dsRNA treatment almost completely abolished oviposition by M. occidentalis females and the few eggs produced did not hatch. Finally, we demonstrated that clathrin heavy chain gene knockdown in M. occidentalis females significantly reduced a subsequent RNAi response induced by ingestion of cathepsin L dsRNA. The last finding suggests that clathrin heavy chain may be involved in systemic RNAi responses mediated by orally delivered dsRNAs in M. occidentalis. PMID:25329675

  6. Spider-Ant Associations: An Updated Review of Myrmecomorphy, Myrmecophily, and Myrmecophagy in Spiders

    Directory of Open Access Journals (Sweden)

    Paula E. Cushing

    2012-01-01

    Full Text Available This paper provides a summary of the extensive theoretical and empirical work that has been carried out in recent years testing the adaptational significance of various spider-ant associations. Hundreds of species of spiders have evolved close relationships with ants and can be classified as myrmecomorphs, myrmecophiles, or myrmecophages. Myrmecomorphs are Batesian mimics. Their close morphological and behavioral resemblance to ants confers strong survival advantages against visually hunting predators. Some species of spiders have become integrated into the ant society as myrmecophiles or symbionts. These spider myrmecophiles gain protection against their own predators, live in an environment with a stable climate, and are typically surrounded by abundant food resources. The adaptations by which this integration is made possible are poorly known, although it is hypothesized that most spider myrmecophiles are chemical mimics and some are even phoretic on their hosts. The third type of spider-ant association discussed is myrmecophagy—or predatory specialization on ants. A table of known spider myrmecophages is provided as is information on their biology and hunting strategies. Myrmecophagy provides these predators with an essentially unlimited food supply and may even confer other protections to the spiders.

  7. Population dynamics of interacting predatory mites, Phytoseiulus persimilis and Neoseiulus californicus, held on detached bean leaves.

    Science.gov (United States)

    Walzer, A; Blümel, S; Schausberger, P

    2001-01-01

    The success of combined release of the predatory mites Phytoseiulus persimilis and Neoseiulus californicus in suppression of spider mites may be related to the effects of the interactions between the two predators on their population dynamics. We studied population growth and persistence of the specialist P persimilis and the generalist N. californicus reared singly versus reared in combination after simultaneous and successive predator introductions on detached bean leaf arenas with abundant prey, Tetranychus urticae. and with diminishing prey. When reared singly with abundant prey, either predator population persisted at high densities to the end of the experiment. In every predator combination system with abundant prey and various initial predator:predator ratios N. californicus displaced P persimilis. When held singly with diminishing prey, the population of P. persimilis grew initially faster than the population of N. californicus but both species reached similar population peaks. Irrespective whether reared singly or in combination. N. californicus persisted three to five times longer after prey depletion than did P. persimilis. Regarding the crucial interactions in the predator combination systems, we conclude that intraguild predation was a stronger force than food competition and finally resulted in the displacement of P. persimilis. Previous studies showed that intraguild predation between the specialist P. persimilis and the generalist N. californicus is strongly asymmetric favoring the generalist. We discuss the implications of potential interactions between P. persimilis and N. californicus to biological control of spider mites.

  8. Attending to detail by communal spider-eating spiders.

    Science.gov (United States)

    Jackson, Robert R; Nelson, Ximena J

    2012-07-01

    Communal predators may often need to make especially intricate foraging decisions, as a predator's success may depend on the actions of its neighbours. Here,we consider the decisions made by Portia africana, a jumping spider (Salticidae) that preys on other spiders, including Oecobius amboseli (Oecobiidae), a small prey spider that lives under small sheets of silk (nests) on the walls of buildings. P. africana juveniles settle near oecobiid nests and then ambush oecobiids as they leave or enter the nest. Two or more P. africana juveniles sometimes settle at the same nest and, when an oecobiid is captured, the P. africana juveniles may share the meal. We investigated the joining decisions made by naïve P. africana juveniles. Experiments were based on using lures (dead spiders positioned in lifelike posture) arranged in a series of 17 different scenes defined by the presence/absence of a nest, the lure types present and the configuration of the lures and the nest. Our findings imply that P. africana juveniles make remarkably precise predatory decisions, with the variables that matter including whether a nest is present, the identity of spiders inside and outside a nest and how spiders are positioned relative to each other and the nest.

  9. Allergens of mites

    Directory of Open Access Journals (Sweden)

    Emilia Siwak

    2014-04-01

    Full Text Available Mite allergens belong to the group of inhalant allergens and represent antigenic substances which are particutlarly important in the pathogenesis of respiratory system diseases and skin diseases. The most common diseases associated with chronic exposure to these aeroallergens include: allergic rhinitis, bronchial asthma and atopic dermatitis. Mite allergens are simple proteins or glycoproteins with different molecular structures and various biochemical functions. The sensitizing capacity of these proteins is connected from their physicochemical properties. Individual allergens perform, among others, the functions of structural proteins, act as enzymes, transport lipids, bind metal ions, and are capable of glycosylation. In addition, mite allergenic proteases degrade proteins of the skin epithelium-resulting in a weakening of its natural protective barrier-and induce the immune response. The proteases also induce the release of pro-inflammatory cytokines: interleukin-4 (IL-4, interleukin 6 (IL-6, interleukin 8 (IL-8, eotaxin, and granulocyte-macrophage colony-stimulating factor-GM-CSF. The article presents the tertiary structure of major and mid-range mite allergens and their classification. Based on literature reports concerning the chemical structure of allergenic proteins, it was emphasized that the structural differences between homologous proteins with allergenic pozoproperties relate to the distribution of amino acid residues on the surface of the molecule. IgE binding affinity and the similarities and differences in the amino acid sequence of the allergens were also the basis for determining cross-reactivity of allergenic proteins. The paper shows an example of this phenomenon, describing the existence of common allergens for various mite species.

  10. A novel neurotoxin from venom of the spider, Brachypelma albopilosum.

    Directory of Open Access Journals (Sweden)

    Yunhua Zhong

    Full Text Available Spiders have evolved highly selective toxins for insects. There are many insecticidal neurotoxins in spider venoms. Although a large amount of work has been done to focus on neurotoxicity of spider components, little information, which is related with effects of spider toxins on tumor cell proliferation and cytotoxicity, is available for Brachypelma albopilosum venom. In this work, a novel spider neurotoxin (brachyin was identified and characterized from venoms of the spider, Brachypelma albopilosum. Brachyin is composed of 41 amino acid residues with the sequence of CLGENVPCDKDRPNCCSRYECLEPTGYGWWYASYYCYKKRS. There are six cysteines in this sequence, which form three disulfided bridges. The serine residue at the C-terminus is amidated. Brachyin showed strong lethal effects on American cockroaches (Periplaneta americana and Tenebrio molitor (common mealbeetle. This neurotoxin also showed significant analgesic effects in mice models including abdominal writhing induced by acetic acid and formalin-induced paw licking tests. It was interesting that brachyin exerted marked inhibition on tumor cell proliferation.

  11. Effects of azadirachtin on Tetranychus urticae (Acari: Tetranychidae) and its compatibility with predatory mites (Acari: Phytoseiidae) on strawberry.

    Science.gov (United States)

    Bernardi, Daniel; Botton, Marcos; da Cunha, Uemerson Silva; Bernardi, Oderlei; Malausa, Thibaut; Garcia, Mauro Silveira; Nava, Dori Edson

    2013-01-01

    The spider mite, Tetranychus urticae, is the major strawberry pest in Brazil. The main strategies for its control comprise synthetic acaricides and predatory mites. The recent register of a commercial formula of azadirachtin (Azamax(®) 12 g L(-1) ) can be viable for control of T. urticae. In this work, the effects of azadirachtin on T. urticae and its compatibility with predatory mites Neoseiulus californicus and Phytoseiulus macropilis in the strawberry crop were evaluated. Azadirachtin was efficient against T. urticae, with a mortality rate similar to that of abamectin. In addition, the azadirachtin showed lower biological persistence (7 days) than abamectin (21 days). Azadirachtin did not cause significant mortality of adult predatory mites (N. californicus and P. macropilis), but it did reduce fecundity by 50%. However, egg viability of the azadirachtin treatments was similar to that of the control (>80% viability). The use of azadirachtin and predatory mites is a valuable tool for controlling T. urticae in strawberry crop. Azadirachtin provided effective control of T. urticae and is compatible with the predatory mites N. californicus and P. macropilis. It is an excellent tool to be incorporated into integrated pest management for strawberry crop in Brazil. Copyright © 2012 Society of Chemical Industry.

  12. Second-order nonlinear optical microscopy of spider silk

    Science.gov (United States)

    Zhao, Yue; Hien, Khuat Thi Thu; Mizutani, Goro; Rutt, Harvey N.

    2017-06-01

    Asymmetric β-sheet protein structures in spider silk should induce nonlinear optical interaction such as second harmonic generation (SHG) which is experimentally observed for a radial line and dragline spider silk using an imaging femtosecond laser SHG microscope. By comparing different spider silks, we found that the SHG signal correlates with the existence of the protein β-sheets. Measurements of the polarization dependence of SHG from the dragline indicated that the β-sheet has a nonlinear response depending on the direction of the incident electric field. We propose a model of what orientation the β-sheet takes in spider silk.

  13. A rapid and non-destructive method to assess leaf injury caused by the cassava green mite, Mononychellus tanajoa (Bondar) (Acarina: Tetranychidae)

    DEFF Research Database (Denmark)

    Tomkiewicz, Jonna; Skovgård, Henrik; Nachman, Gösta

    1993-01-01

    . The difference in photosynthetically active area that arises between uninjured and injured plants over a period of time provides a measure of spider mite injury that can be related to growth and yield. The method integrates the injury inflicted over a period of time, allows successive observations of the same...

  14. Spider Movement, UV Reflectance and Size, but Not Spider Crypsis, Affect the Response of Honeybees to Australian Crab Spiders

    Science.gov (United States)

    Llandres, Ana L.; Rodríguez-Gironés, Miguel A.

    2011-01-01

    According to the crypsis hypothesis, the ability of female crab spiders to change body colour and match the colour of flowers has been selected because flower visitors are less likely to detect spiders that match the colour of the flowers used as hunting platform. However, recent findings suggest that spider crypsis plays a minor role in predator detection and some studies even showed that pollinators can become attracted to flowers harbouring Australian crab spider when the UV contrast between spider and flower increases. Here we studied the response of Apis mellifera honeybees to the presence of white or yellow Thomisus spectabilis Australian crab spiders sitting on Bidens alba inflorescences and also the response of honeybees to crab spiders that we made easily detectable painting blue their forelimbs or abdomen. To account for the visual systems of crab spider's prey, we measured the reflectance properties of the spiders and inflorescences used for the experiments. We found that honeybees did not respond to the degree of matching between spiders and inflorescences (either chromatic or achromatic contrast): they responded similarly to white and yellow spiders, to control and painted spiders. However spider UV reflection, spider size and spider movement determined honeybee behaviour: the probability that honeybees landed on spider-harbouring inflorescences was greatest when the spiders were large and had high UV reflectance or when spiders were small and reflected little UV, and honeybees were more likely to reject inflorescences if spiders moved as the bee approached the inflorescence. Our study suggests that only the large, but not the small Australian crab spiders deceive their preys by reflecting UV light, and highlights the importance of other cues that elicited an anti-predator response in honeybees. PMID:21359183

  15. Spider movement, UV reflectance and size, but not spider crypsis, affect the response of honeybees to Australian crab spiders.

    Science.gov (United States)

    Llandres, Ana L; Rodríguez-Gironés, Miguel A

    2011-02-16

    According to the crypsis hypothesis, the ability of female crab spiders to change body colour and match the colour of flowers has been selected because flower visitors are less likely to detect spiders that match the colour of the flowers used as hunting platform. However, recent findings suggest that spider crypsis plays a minor role in predator detection and some studies even showed that pollinators can become attracted to flowers harbouring Australian crab spider when the UV contrast between spider and flower increases. Here we studied the response of Apis mellifera honeybees to the presence of white or yellow Thomisus spectabilis Australian crab spiders sitting on Bidens alba inflorescences and also the response of honeybees to crab spiders that we made easily detectable painting blue their forelimbs or abdomen. To account for the visual systems of crab spider's prey, we measured the reflectance properties of the spiders and inflorescences used for the experiments. We found that honeybees did not respond to the degree of matching between spiders and inflorescences (either chromatic or achromatic contrast): they responded similarly to white and yellow spiders, to control and painted spiders. However spider UV reflection, spider size and spider movement determined honeybee behaviour: the probability that honeybees landed on spider-harbouring inflorescences was greatest when the spiders were large and had high UV reflectance or when spiders were small and reflected little UV, and honeybees were more likely to reject inflorescences if spiders moved as the bee approached the inflorescence. Our study suggests that only the large, but not the small Australian crab spiders deceive their preys by reflecting UV light, and highlights the importance of other cues that elicited an anti-predator response in honeybees.

  16. Attentional bias to moving spiders in spider fearful individuals.

    Science.gov (United States)

    Vrijsen, Janna N; Fleurkens, Pascal; Nieuwboer, Wieteke; Rinck, Mike

    2009-05-01

    We investigated if an attentional bias for spiders in spider fearful individuals (SFs) can also be found for moving spiders, rather than static images. In Study 1, 28 SFs and 33 non-anxious controls (NACs) participated in a modified version of the dot probe paradigm: they had to react to a probe that appeared either in the next, previous, or side position of a spider's or a wheel's path. 24 SFs and 29 NACs participated in Study 2, in which a fourth, highly predictable, probe position was added. We expected that moving spiders would capture the attention of SFs. In addition, we tested whether SFs try to predict the movement of the spider to make it less threatening. As expected, SFs showed an attentional bias towards moving spiders. However, both groups reacted fastest to unpredictable movements, indicating that SFs and NACs alike anticipate unpredictable spider movements.

  17. On Volatility Induced Stationarity for Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Albin, J.M.P.; Astrup Jensen, Bjarne; Muszta, Anders

    2006-01-01

    This article deals with stochastic differential equations with volatility induced stationarity. We study of theoretical properties of such equations, as well as numerical aspects, together with a detailed study of three examples.......This article deals with stochastic differential equations with volatility induced stationarity. We study of theoretical properties of such equations, as well as numerical aspects, together with a detailed study of three examples....

  18. A Modular Cage System Design for Continuous Medium to Large Scale In Vivo Rearing of Predatory Mites (Acari: Phytoseiidae

    Directory of Open Access Journals (Sweden)

    Juan Alfredo Morales-Ramos

    2014-01-01

    Full Text Available A new stackable modular system was developed for continuous in vivo production of phytoseiid mites. The system consists of cage units that are filled with lima beans,  Phaseolus lunatus, or red beans, P. vulgaris, leaves infested with high levels of the two-spotted spider mites, Tetranychus urticae. The cage units connect with each other through a connection cup, which also serves for monitoring and collection. Predatory mites migrate upwards to new cage units as prey is depleted. The system was evaluated for production of Phytoseiulus persimilis. During a 6-month experimental period, 20,894.9±10,482.5 (mean ± standard deviation predators were produced per week. The production consisted of 4.1±4.6% nymphs and 95.9±4.6% adults. A mean of 554.5±59.8 predatory mites were collected per harvested cage and the mean interval length between harvests was 6.57±6.76 days. The potential for commercial and experimental applications is discussed.

  19. Metabolite profiling reveals a specific response in tomato to predaceous Chrysoperla carnea larvae and herbivore(s-predator interactions with the generalist pests Tetranychus urticae and Myzus persicae

    Directory of Open Access Journals (Sweden)

    Audrey Errard

    2016-08-01

    Full Text Available The spider mite Tetranychus urticae Koch and the aphid Myzus persicae (Sulzer both infest a number of economically significant crops, including tomato (Solanum lycopersicum. Although used for decades to control pests, the impact of green lacewing larvae Chrysoperla carnea (Stephens on plant biochemistry was not investigated. Here we used profiling methods and targeted analyses to explore the impact of the predator and herbivore(s-predator interactions on tomato biochemistry. Each pest and pest-predator combination induced a characteristic metabolite signature in the leaf and the fruit thus, the plant exhibited a systemic response. The treatments had a stronger impact on non-volatile metabolites including abscisic acid and amino acids in the leaves in comparison with the fruits. In contrast, the various biotic factors had a greater impact on the carotenoids in the fruits. We identified volatiles such as myrcene and α-terpinene which were induced by pest-predator interactions but not by single species, and we demonstrated the involvement of the phytohormone abscisic acid in tritrophic interactions for the first time. More importantly, C. carnea larvae alone impacted the plant metabolome, but the predator did not appear to elicit particular defense pathways on its own. Since the presence of both C. carnea larvae and pest individuals elicited volatiles which were shown to contribute to plant defense, C. carnea larvae could therefore contribute to the reduction of pest infestation, not only by its preying activity, but also by priming responses to generalist herbivores such as T. urticae and M. persicae. On the other hand, the use of C. carnea larvae alone did not impact carotenoids thus, was not prejudicial to the fruit quality. The present piece of research highlights the specific impact of predator and tritrophic interactions with green lacewing larvae, spider mites and aphids on different components of the tomato primary and secondary metabolism

  20. Interactions in a tritrophic acarine predator-prey metapopulation system V: Within-plant dynamics of Phytoseiulus persimilis and Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae)

    DEFF Research Database (Denmark)

    Nachman, Gösta; Zemek, Rostislav

    2003-01-01

    Biological control, Bottom-up factor, Phytoseiulus persimilis, Plant condition, Predacious mites, Simulation model, Tetranychus urticae, Top-down factor, Two-spotted spider mites......Biological control, Bottom-up factor, Phytoseiulus persimilis, Plant condition, Predacious mites, Simulation model, Tetranychus urticae, Top-down factor, Two-spotted spider mites...

  1. Single versus multiple enemies and the impact on biological control of spider mites in cassava fields in West-Africa

    NARCIS (Netherlands)

    Onzo, A.; Sabelis, M.W.; Hanna, R.

    2014-01-01

    To determine whether to use single or multiple predator species for biological pest control requires manipulative field experiments. We performed such tests in Benin (West Africa) in cassava fields infested by the cassava green mite Mononychellus tanajoa, and the cotton red mite Oligonychus

  2. Human apolipoprotein E genotypes differentially modify house dust mite-induced airway disease in mice

    DEFF Research Database (Denmark)

    Yao, Xianglan; Dai, Cuilian; Fredriksson, Karin

    2012-01-01

    Apolipoprotein E (apoE) is an endogenous negative regulator of airway hyperreactivity (AHR) and mucous cell metaplasia in experimental models of house dust mite (HDM)-induced airway disease. The gene encoding human apoE is polymorphic, with three common alleles (e2, e3, and e4) reflecting single ...

  3. ADAM10 mediates the house dust mite-induced release of chemokine ligand CCL20 by airway epithelium

    NARCIS (Netherlands)

    Post, S.; Rozeveld, D.; Jonker, M. R.; Bischoff, R.; van Oosterhout, A. J.; Heijink, I. H.

    2015-01-01

    Background: House dust mite (HDM) acts on the airway epithelium to induce airway inflammation in asthma. We previously showed that the ability of HDM to induce allergic sensitization in mice is related to airway epithelial CCL20 secretion. Objective: As a disintegrin and metalloprotease (ADAM)s have

  4. Noctuidae-induced plant volatiles: current situation and prospects

    Directory of Open Access Journals (Sweden)

    Vanusa Rodrigues Horas

    2014-01-01

    Full Text Available Noctuids are phytophagous lepidopterans with some species causing significant damage to agriculture. The host plants, in turn, have developed defense mechanisms to cope with them, for instance chemical defenses. In this study we review the literature on plant volatiles induced by noctuids, and discuss the methodologies used to induce the production of volatiles that are usually employed in plant defense mechanisms. Future prospects involving this line of research in pest control are also discussed.

  5. Tri-trophic level impact of host plant linamarin and lotaustralin on Tetranychus urticae and its predator Phytoseiulus persimilis.

    Science.gov (United States)

    Rojas, M Guadalupe; Morales-Ramos, Juan Alfredo

    2010-12-01

    The impact of linamarin and lotaustralin content in the leaves of lima beans, Phaseolus lunatus L., on the second and third trophic levels was studied in the two-spotted spider mite, Tetranychus urticae (Koch), and its predator Phytoseiulus persimilis Athias-Henriot. The content of linamarin was higher in terminal trifoliate leaves (435.5 ppm) than in primary leaves (142.1 ppm) of Henderson bush lima beans. However, linamarin concentrations were reversed at the second trophic level showing higher concentrations in spider mites feeding on primary leaves (429.8 ppm) than those feeding on terminal trifoliate leaves (298.2 ppm). Concentrations of linamarin in the predatory mites were 18.4 and 71.9 ppm when feeding on spider mites grown on primary and terminal leaves, respectively. The concentration of lotaustralin in primary lima bean leaves was 103.12 ppm, and in spider mites feeding on these leaves was 175.0 ppm. Lotaustralin was absent in lima bean terminal trifoliate leaves and in mites feeding on these leaves. Fecundity of spider mites feeding on lima bean leaves (primary or trifoliate) was not significantly different from mites feeding on red bean, Phaseolus vulgaris L., primary leaves. However, the progeny sex ratio (in females per male) of spider mites feeding on lima bean leaves was significantly lower than progeny of spider mites feeding on red bean leaves (control). Fecundity and progeny sex ratio of P. persimilis were both significantly affected by the concentration of linamarin present in the prey. Changes in concentration of linamarin in living tissue across the three trophic levels are discussed.

  6. Interactions in a tritrophic acarine predator-prey metapopulation system V: within-plant dynamics of Phytoseiulus persimilis and Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae).

    Science.gov (United States)

    Nachman, Gösta; Zemek, Rostislav

    2003-01-01

    To investigate the relative contributions of bottom-up (plant condition) and top-down (predatory mites) factors on the dynamics of the two-spotted spider mite (Tetranychus urticae), a series of experiments were conducted in which spider mites and predatory mites were released on bean plants. Plants inoculated with 2, 4, 8, 16, and 32 adult female T. urticae were either left untreated or were inoculated with 3 or 5 adult female predators (Phytoseiulus persimilis) one week after the introduction of spider mites. Plant area, densities of T. urticae and P. persimilis, and plant injury were assessed by weekly sampling. Data were analysed by a combination of statistical methods and a tri-trophic mechanistic simulation model partly parameterised from the current experiments and partly from previous data. The results showed a clear effect of predators on the density of spider mites and on the plant injury they cause. Plant injury increased with the initial number of spider mites and decreased with the initial number of predators. Extinction of T. urticae, followed by extinction of P. persimilis, was the most likely outcome for most initial combinations of prey and predators. Eggs constituted a relatively smaller part of the prey population as plant injury increased and of the predator population as prey density decreased. We did not find statistical evidence of P. persimilis having preference for feeding on T. urticae eggs. The simulation model demonstrated that bottom-up and top-down factors interact synergistically to reduce the density of spider mites. This may have important implications for biological control of spider mites by means of predatory mites.

  7. Spider Trait Assembly Patterns and Resilience under Fire-Induced Vegetation Change in South Brazilian Grasslands

    Science.gov (United States)

    Podgaiski, Luciana R.; Joner, Fernando; Lavorel, Sandra; Moretti, Marco; Ibanez, Sebastien; Mendonça, Milton de S.; Pillar, Valério D.

    2013-01-01

    Disturbances induce changes on habitat proprieties that may filter organism's functional traits thereby shaping the structure and interactions of many trophic levels. We tested if communities of predators with foraging traits dependent on habitat structure respond to environmental change through cascades affecting the functional traits of plants. We monitored the response of spider and plant communities to fire in South Brazilian Grasslands using pairs of burned and unburned plots. Spiders were determined to the family level and described in feeding behavioral and morphological traits measured on each individual. Life form and morphological traits were recorded for plant species. One month after fire the abundance of vegetation hunters and the mean size of the chelicera increased due to the presence of suitable feeding sites in the regrowing vegetation, but irregular web builders decreased due to the absence of microhabitats and dense foliage into which they build their webs. Six months after fire rosette-form plants with broader leaves increased, creating a favourable habitat for orb web builders which became more abundant, while graminoids and tall plants were reduced, resulting in a decrease of proper shelters and microclimate in soil surface to ground hunters which became less abundant. Hence, fire triggered changes in vegetation structure that lead both to trait-convergence and trait-divergence assembly patterns of spiders along gradients of plant biomass and functional diversity. Spider individuals occurring in more functionally diverse plant communities were more diverse in their traits probably because increased possibility of resource exploitation, following the habitat heterogeneity hypothesis. Finally, as an indication of resilience, after twelve months spider communities did not differ from those of unburned plots. Our findings show that functional traits provide a mechanistic understanding of the response of communities to environmental change

  8. Optically probing torsional superelasticity in spider silks

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Bhupesh; Thakur, Ashish; Panda, Biswajit; Singh, Kamal P. [Department of Physical Sciences, IISER Mohali, Sector 81, Manauli, Mohali 140306 (India)

    2013-11-11

    We investigate torsion mechanics of various spider silks using a sensitive optical technique. We find that spider silks are torsionally superelastic in that they can reversibly withstand great torsion strains of over 10{sup 2−3} rotations per cm before failure. Among various silks from a spider, we find the failure twist-strain is greatest in the sticky capture silk followed by dragline and egg-case silk. Our in situ laser-diffraction measurements reveal that torsional strains on the silks induce a nano-scale transverse compression in its diameter that is linear and reversible. These unique torsional properties of the silks could find applications in silk-based materials and devices.

  9. Optically probing torsional superelasticity in spider silks

    International Nuclear Information System (INIS)

    Kumar, Bhupesh; Thakur, Ashish; Panda, Biswajit; Singh, Kamal P.

    2013-01-01

    We investigate torsion mechanics of various spider silks using a sensitive optical technique. We find that spider silks are torsionally superelastic in that they can reversibly withstand great torsion strains of over 10 2−3 rotations per cm before failure. Among various silks from a spider, we find the failure twist-strain is greatest in the sticky capture silk followed by dragline and egg-case silk. Our in situ laser-diffraction measurements reveal that torsional strains on the silks induce a nano-scale transverse compression in its diameter that is linear and reversible. These unique torsional properties of the silks could find applications in silk-based materials and devices

  10. Multiscale mechanisms of nutritionally induced property variation in spider silks

    Science.gov (United States)

    Nobbs, Madeleine; Martens, Penny J.; Tso, I-Min; Chuang, Wei-Tsung; Chang, Chung-Kai; Sheu, Hwo-Shuenn

    2018-01-01

    Variability in spider major ampullate (MA) silk properties at different scales has proven difficult to determine and remains an obstacle to the development of synthetic fibers mimicking MA silk performance. A multitude of techniques may be used to measure multiscale aspects of silk properties. Here we fed five species of Araneoid spider solutions that either contained protein or were protein deprived and performed silk tensile tests, small and wide-angle X-ray scattering (SAXS/WAXS), amino acid composition analyses, and silk gene expression analyses, to resolve persistent questions about how nutrient deprivation induces variations in MA silk mechanical properties across scales. Our analyses found that the properties of each spider’s silk varied differently in response to variations in their protein intake. We found changes in the crystalline and non-crystalline nanostructures to play specific roles in inducing the property variations we found. Across treatment MaSp expression patterns differed in each of the five species. We found that in most species MaSp expression and amino acid composition variations did not conform with our predictions based on a traditional MaSp expression model. In general, changes to the silk’s alanine and proline compositions influenced the alignment of the proteins within the silk’s amorphous region, which influenced silk extensibility and toughness. Variations in structural alignment in the crystalline and non-crystalline regions influenced ultimate strength independent of genetic expression. Our study provides the deepest insights thus far into the mechanisms of how MA silk properties vary from gene expression to nanostructure formations to fiber mechanics. Such knowledge is imperative for promoting the production of synthetic silk fibers. PMID:29390013

  11. Ocorrência do ácaro vermelho europeu Panonychus ulmi (Koch (Tetranychidae associado à cultura da videira no Rio Grande do Sul, Brasil European red spider mite Panonychus ulmi (Koch (Tetranychidae occurrence of vineyards in Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Noeli Juarez Ferla

    2008-09-01

    Full Text Available Neste artigo é descrita ocorrência e o dano causado pelo ácaro vermelho europeu Panonychus ulmi (Koch associado à cultura da videira. As coletas foram realizadas na safra 2005-2006 em Vitis vinifera L. da cultivar Merlot, nos municípios de Bento Gonçalves e Candiota, no Estado do Rio Grande do Sul, Brasil. As folhas infestadas apresentaram bronzeamento, com manchas avermelhadas na face adaxial, resultando na queda prematura das mesmas. Esse é o primeiro registro do ácaro vermelho europeu danificando a cultura da videira no Rio Grande do Sul.The occurrence and the damage caused for the European red spider mite Panonychus ulmi (Koch associated to the culture of the grapevine are described. The collections had been carried through in 2005-2006 seasons in Vitis vinifera L. of cultivating Merlot in Bento Gonçalves and Candiota counties, in the state of Rio Grande do Sul, Brazil. The infested leaves had presented bronzing, with spots redly in the adaxial face resulting in the premature fall. This is the first register of the European red mite damaging the culture of the grapevine in Rio Grande do Sul.

  12. Variation in Protein Intake Induces Variation in Spider Silk Expression

    Science.gov (United States)

    Blamires, Sean J.; Wu, Chun-Lin; Tso, I-Min

    2012-01-01

    Background It is energetically expensive to synthesize certain amino acids. The proteins (spidroins) of spider major ampullate (MA) silk, MaSp1 and MaSp2, differ in amino acid composition. Glutamine and proline are prevalent in MaSp2 and are expensive to synthesize. Since most orb web spiders express high proline silk they might preferentially attain the amino acids needed for silk from food and shift toward expressing more MaSp1 in their MA silk when starved. Methodology/Principal Findings We fed three spiders; Argiope aetherea, Cyrtophora moluccensis and Leucauge blanda, high protein, low protein or no protein solutions. A. aetherea and L. blanda MA silks are high in proline, while C. moluccesnsis MA silks are low in proline. After 10 days of feeding we determined the amino acid compositions and mechanical properties of each species' MA silk and compared them between species and treatments with pre-treatment samples, accounting for ancestry. We found that the proline and glutamine of A. aetherea and L. blanda silks were affected by protein intake; significantly decreasing under the low and no protein intake treatments. Glutmaine composition in C. moluccensis silk was likewise affected by protein intake. However, the composition of proline in their MA silk was not significantly affected by protein intake. Conclusions Our results suggest that protein limitation induces a shift toward different silk proteins with lower glutamine and/or proline content. Contradictions to the MaSp model lie in the findings that C. moluccensis MA silks did not experience a significant reduction in proline and A. aetherea did not experience a significant reduction in serine on low/no protein. The mechanical properties of the silks could not be explained by a MaSp1 expressional shift. Factors other than MaSp expression, such as the expression of spidroin-like orthologues, may impact on silk amino acid composition and spinning and glandular processes may impact mechanics. PMID:22363691

  13. A Usages of Herb Extracts by Stream Integrated with Micro-organism to Control Insect Pests and Phytophagus Mites by Biological Control

    Energy Technology Data Exchange (ETDEWEB)

    Uraisakul, Kanok [Rajamangala University of Technology Suvarnabhumi Phranakhonsiayathaya, Hantra Campus, Phranakhonsiayathaya (Thailand); Piadang, Nattaya [Office of Atoms for Peace, Bangkok (Thailand)

    2006-09-15

    A usages of herb extracts by stream integrated rith micro-organism to control insect pests and phytophagus mites by biological control was compared with insecticide to investigate the responses of chili tree and kieffer lime tree. Moreover, herb extracts were tested in controlling insect pests. Herb extracts were selected from many effective kinds such as: Azadirachta indica, Hyptis suaveolens, Citronella grass, Eucalyptus, Stemona, Galangal, Zingiber, cassumunar Roxb. Chronmolaena oderatum, Derris elyptica, Ginger, Annona seed, Malueraca sp., Andrographis paniculata, Veronia aquarrosa, Garlic, Thevetia peruviana, and Tobacco. The experiment was set at Herb Laboratory Ayutthaya Campus, Rajamangala University of Technology, Suvarnabhumi during August 2004 to June 2006. From testing herb extracts at 100 ppm. On Chili germination, the result was that the Chromolaena extracts made highest germination of 69.50%, Citronella grass at 500 ppm., made highest germination of chili seed at 86.00% within 12 days. Garlic extracts could kill 75.90% of aphids in 24 hrs., maximized in this experiments. Malueraca extracts at 500 ppm. Could kill 92.65% of chili aphids similar to the activity of insecticides action in 24 hrs. However at 5,000 ppm. It found that chemical treatment gave difference results from herbal treatments. Annona extracts could kill 64.58% of chili aphids better that others treatments. There are 18 treatment of time at 6 hrs. , 15 hrs., and 24 hrs., respectively. The results found that at 6 hrs., Kelthane could kill 93.75% of red spider mite. At 15 hrs. Stemona could kill 95.50% of red spider mite. At 24 hrs. Stemona or Chromolaena could kill 100% of red spider mite equally, Chrolaena could kill more than 83% of chili thrips at 24 hrs. Annona extracts could harvest the maximum of fruit fresh weight and numbers of fruits. After cutting leaves for producing new leaves, spraying herbal extracts was not different in statistic; however, Eucalyptus extracts, Neem plus

  14. A Usages of Herb Extracts by Stream Integrated with Micro-organism to Control Insect Pests and Phytophagus Mites by Biological Control

    International Nuclear Information System (INIS)

    Uraisakul, Kanok; Piadang, Nattaya

    2006-09-01

    A usages of herb extracts by stream integrated rith micro-organism to control insect pests and phytophagus mites by biological control was compared with insecticide to investigate the responses of chili tree and kieffer lime tree. Moreover, herb extracts were tested in controlling insect pests. Herb extracts were selected from many effective kinds such as: Azadirachta indica, Hyptis suaveolens, Citronella grass, Eucalyptus, Stemona, Galangal, Zingiber, cassumunar Roxb. Chronmolaena oderatum, Derris elyptica, Ginger, Annona seed, Malueraca sp., Andrographis paniculata, Veronia aquarrosa, Garlic, Thevetia peruviana, and Tobacco. The experiment was set at Herb Laboratory Ayutthaya Campus, Rajamangala University of Technology, Suvarnabhumi during August 2004 to June 2006. From testing herb extracts at 100 ppm. On Chili germination, the result was that the Chromolaena extracts made highest germination of 69.50%, Citronella grass at 500 ppm., made highest germination of chili seed at 86.00% within 12 days. Garlic extracts could kill 75.90% of aphids in 24 hrs., maximized in this experiments. Malueraca extracts at 500 ppm. Could kill 92.65% of chili aphids similar to the activity of insecticides action in 24 hrs. However at 5,000 ppm. It found that chemical treatment gave difference results from herbal treatments. Annona extracts could kill 64.58% of chili aphids better that others treatments. There are 18 treatment of time at 6 hrs. , 15 hrs., and 24 hrs., respectively. The results found that at 6 hrs., Kelthane could kill 93.75% of red spider mite. At 15 hrs. Stemona could kill 95.50% of red spider mite. At 24 hrs. Stemona or Chromolaena could kill 100% of red spider mite equally, Chrolaena could kill more than 83% of chili thrips at 24 hrs. Annona extracts could harvest the maximum of fruit fresh weight and numbers of fruits. After cutting leaves for producing new leaves, spraying herbal extracts was not different in statistic; however, Eucalyptus extracts, Neem plus

  15. Spiders in dermatology.

    Science.gov (United States)

    Kang, Jun K; Bhate, Chinmoy; Schwartz, Robert A

    2014-09-01

    Spider bites represent an unusual and potentially over-represented clinical diagnosis. Despite a common fear of spiders, known as arachnophobia, current knowledge suggests that only a small number of families within the order Araneae are medically relevant. Moreover, most cutaneous spider reactions, including both evenomations and physical trauma, produce mild, local symptoms which may be managed with supportive care alone. The differential diagnosis for spider bites may be broad, especially if the offending arachnid is not seen or found. We describe a series of spiders relevant to the dermatologist in the United States.

  16. Spider foraging strategy affects trophic cascades under natural and drought conditions.

    Science.gov (United States)

    Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong

    2015-07-23

    Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests.

  17. Mating-induced sexual inhibition in the jumping spider Servaea incana (Araneae: Salticidae: A fast-acting and long-lasting effect.

    Directory of Open Access Journals (Sweden)

    Vivian Mendez

    Full Text Available Mating-induced sexual inhibition has been studied extensively as an important facet of many insect mating systems but remains little understood in spiders. Once mated, females of many spider species become unreceptive and aggressive toward males, but the speed of onset and persistence of this effect are not known. Addressing this gap, the present study considers (1 mating tendency of virgins, latency to remating, and lifetime mating frequency and (2 how quickly sexual inhibition is expressed after the first mating in female Servaea incana jumping spiders. Encounters between males and females took place in two contexts that simulated locations where mating occurs in nature: in the light away from nests ('in the open' and in low light within the shelter of silken retreats ('at a retreat'. Virgin females exhibited high receptivity levels in both contexts but sexual inhibition was induced immediately after their first copulation. The most common tendency was for just one mating in a lifetime, and few females mated more than twice. Context also had an effect on female mating tendency, as virgin females in the open rejected more males before accepting their first mate than did virgin females in retreats. Considering only those females that did remate, females in the open tended to reject fewer males before remating. Given low levels of female remating, virgin females appear to be at a premium for male reproductive fitness in S. incana jumping spiders and this is a likely explanation for protandry found in nature.

  18. [Effects of azadirachtin on rice plant volatiles induced by Nilaparvata lugens].

    Science.gov (United States)

    Lu, Hai-Yan; Liu, Fang; Zhu, Shu-De; Zhang, Qing

    2010-01-01

    With the method of solid phase microextraction (SPME), a total of twenty-five volatiles were collected from rice plants induced by Nilaparvata lugens, and after applying azadirachtin fourteen of them were qualitatively identified by gas chromatography coupled by mass spectrometry (GC-MS), mainly of nine kinds of sesquiterpenes. Comparing with healthy rice plants, the plants attacked by N. lugens had more kinds of volatiles, including limonene, linalool, methyl salicylate, unknown 6, unknown 7, zingiberene, nerolidol, and hexadecane. Applying azadirachtin did not result in the production of new kind volatiles, but affected the relative concentrations of the volatiles induced by N. lugens. The proportions of limonene, linalool, methyl salicylate, unknown 6, zingiberene, and hexadecane changed obviously with the concentration of applied azadirachtin, while those of methyl salicylate, unknown 6, unknown 7, zingiberene, and nerolidol changed significantly with the days after azadirachtin application. Azadirachtin concentration, rice variety, and N. lugens density had significant interactions on the relative concentrations of all test N. lugens-induced volatiles.

  19. Specialised use of working memory by Portia africana, a spider-eating salticid.

    Science.gov (United States)

    Cross, Fiona R; Jackson, Robert R

    2014-03-01

    Using expectancy-violation methods, we investigated the role of working memory in the predatory strategy of Portia africana, a salticid spider from Kenya that preys by preference on other spiders. One of this predator's tactics is to launch opportunistic leaping attacks on to other spiders in their webs. Focussing on this particular tactic, our experiments began with a test spider on a ramp facing a lure (dead prey spider mounted on a cork disc) that could be reached by leaping. After the test spider faced the lure for 30 s, we blocked the test spider's view of the lure by lowering an opaque shutter before the spider leapt. When the shutter was raised 90 s later, either the same lure came into view again (control) or a different lure came into view (experimental: different prey type in same orientation or same prey type in different orientation). We recorded attack frequency (number of test spiders that leapt at the lure) and attack latency (time elapsing between shutter being raised and spiders initiating a leap). Attack latencies in control trials were not significantly different from attack latencies in experimental trials, regardless of whether it was prey type or prey orientation that changed in the experimental trials. However, compared with test spiders in the no-change control trials, significantly fewer test spiders leapt when prey type changed. There was no significant effect on attack frequency when prey orientation changed. These findings suggest that this predator represents prey type independently of prey orientation.

  20. Molecular phylogeny of moth-specialized spider sub-family Cyrtarachninae, which includes bolas spiders.

    Science.gov (United States)

    Tanikawa, Akio; Shinkai, Akira; Miyashita, Tadashi

    2014-11-01

    The evolutionary process of the unique web architectures of spiders of the sub-family Cyrtarachninae, which includes the triangular web weaver, bolas spider, and webless spider, is thought to be derived from reduction of orbicular 'spanning-thread webs' resembling ordinal orb webs. A molecular phylogenetic analysis was conducted to explore this hypothesis using orbicular web spiders Cyrtarachne, Paraplectana, Poecilopachys, triangular web spider Pasilobus, bolas spiders Ordgarius and Mastophora, and webless spider Celaenia. The phylogeny inferred from partial sequences of mt-COI, nuclear 18S-rRNA and 28S-rRNA showed that the common ancestor of these spiders diverged into two clades: a spanning-thread web clade and a bolas or webless clade. This finding suggests that the triangular web evolved by reduction of an orbicular spanning web, but that bolas spiders evolved in the early stage, which does not support the gradual web reduction hypothesis.

  1. Application of 3 kinds of practical electromagnetic spiders in electromagnetic spider web

    Directory of Open Access Journals (Sweden)

    Jiang Min

    2016-01-01

    Full Text Available Electromagnetic spider web the launch circuit has introduced a lot, but in the center position of the utility of the spider generally have 3 kinds of circuits respectively, the use of single-chip microcomputer circuit of the low energy consumption spider by multi-channel transmission, single circuit receiver circuit. Direct use of the 3 channels of the spider and the use of PLC circuit spider, depending on the actual situation were placed.

  2. Application of 3 kinds of practical electromagnetic spiders in electromagnetic spider web

    OpenAIRE

    Jiang Min

    2016-01-01

    Electromagnetic spider web the launch circuit has introduced a lot, but in the center position of the utility of the spider generally have 3 kinds of circuits respectively, the use of single-chip microcomputer circuit of the low energy consumption spider by multi-channel transmission, single circuit receiver circuit. Direct use of the 3 channels of the spider and the use of PLC circuit spider, depending on the actual situation were placed.

  3. Spider Vein Removal

    Science.gov (United States)

    Spider veins: How are they removed? I have spider veins on my legs. What options are available ... M.D. Several options are available to remove spider veins — thin red lines or weblike networks of ...

  4. A minute fossil phoretic mite recovered by phase-contrast X-ray computed tomography.

    Science.gov (United States)

    Dunlop, Jason A; Wirth, Stefan; Penney, David; McNeil, Andrew; Bradley, Robert S; Withers, Philip J; Preziosi, Richard F

    2012-06-23

    High-resolution phase-contrast X-ray computed tomography (CT) reveals the phoretic deutonymph of a fossil astigmatid mite (Acariformes: Astigmata) attached to a spider's carapace (Araneae: Dysderidae) in Eocene (44-49 Myr ago) Baltic amber. Details of appendages and a sucker plate were resolved, and the resulting three-dimensional model demonstrates the potential of tomography to recover morphological characters of systematic significance from even the tiniest amber inclusions without the need for a synchrotron. Astigmatids have an extremely sparse palaeontological record. We confirm one of the few convincing fossils, potentially the oldest record of Histiostomatidae. At 176 µm long, we believe this to be the smallest arthropod in amber to be CT-scanned as a complete body fossil, extending the boundaries for what can be recovered using this technique. We also demonstrate a minimum age for the evolution of phoretic behaviour among their deutonymphs, an ecological trait used by extant species to disperse into favourable environments. The occurrence of the fossil on a spider is noteworthy, as modern histiostomatids tend to favour other arthropods as carriers.

  5. A minute fossil phoretic mite recovered by phase-contrast X-ray computed tomography

    Science.gov (United States)

    Dunlop, Jason A.; Wirth, Stefan; Penney, David; McNeil, Andrew; Bradley, Robert S.; Withers, Philip J.; Preziosi, Richard F.

    2012-01-01

    High-resolution phase-contrast X-ray computed tomography (CT) reveals the phoretic deutonymph of a fossil astigmatid mite (Acariformes: Astigmata) attached to a spider's carapace (Araneae: Dysderidae) in Eocene (44–49 Myr ago) Baltic amber. Details of appendages and a sucker plate were resolved, and the resulting three-dimensional model demonstrates the potential of tomography to recover morphological characters of systematic significance from even the tiniest amber inclusions without the need for a synchrotron. Astigmatids have an extremely sparse palaeontological record. We confirm one of the few convincing fossils, potentially the oldest record of Histiostomatidae. At 176 µm long, we believe this to be the smallest arthropod in amber to be CT-scanned as a complete body fossil, extending the boundaries for what can be recovered using this technique. We also demonstrate a minimum age for the evolution of phoretic behaviour among their deutonymphs, an ecological trait used by extant species to disperse into favourable environments. The occurrence of the fossil on a spider is noteworthy, as modern histiostomatids tend to favour other arthropods as carriers. PMID:22072283

  6. Spider Bites: First Aid

    Science.gov (United States)

    ... care immediately if: You were bitten by a black widow or brown recluse spider You are unsure whether the bite ... in the South. Signs and symptoms of a black widow spider bite may include: At ... fever and nausea Brown recluse spider The brown recluse spider has a ...

  7. Spiders in caves.

    Science.gov (United States)

    Mammola, Stefano; Isaia, Marco

    2017-04-26

    World experts of different disciplines, from molecular biology to macro-ecology, recognize the value of cave ecosystems as ideal ecological and evolutionary laboratories. Among other subterranean taxa, spiders stand out as intriguing model organisms for their ecological role of top predators, their unique adaptations to the hypogean medium and their sensitivity to anthropogenic disturbance. As the description of the first eyeless spider ( Stalita taenaria ), an array of papers on subterranean spider biology, ecology and evolution has been published, but a comprehensive review on these topics is still lacking. We provide a general overview of the spider families recorded in hypogean habitats worldwide, we review the different adaptations of hypogean spiders to subterranean life, and we summarize the information gathered so far about their origin, population structure, ecology and conservation status. Finally, we point out the limits of the knowledge we currently have regarding hypogean spiders, aiming to stimulate future research. © 2017 The Author(s).

  8. Spider phylogenomics: untangling the Spider Tree of Life

    Directory of Open Access Journals (Sweden)

    Nicole L. Garrison

    2016-02-01

    Full Text Available Spiders (Order Araneae are massively abundant generalist arthropod predators that are found in nearly every ecosystem on the planet and have persisted for over 380 million years. Spiders have long served as evolutionary models for studying complex mating and web spinning behaviors, key innovation and adaptive radiation hypotheses, and have been inspiration for important theories like sexual selection by female choice. Unfortunately, past major attempts to reconstruct spider phylogeny typically employing the “usual suspect” genes have been unable to produce a well-supported phylogenetic framework for the entire order. To further resolve spider evolutionary relationships we have assembled a transcriptome-based data set comprising 70 ingroup spider taxa. Using maximum likelihood and shortcut coalescence-based approaches, we analyze eight data sets, the largest of which contains 3,398 gene regions and 696,652 amino acid sites forming the largest phylogenomic analysis of spider relationships produced to date. Contrary to long held beliefs that the orb web is the crowning achievement of spider evolution, ancestral state reconstructions of web type support a phylogenetically ancient origin of the orb web, and diversification analyses show that the mostly ground-dwelling, web-less RTA clade diversified faster than orb weavers. Consistent with molecular dating estimates we report herein, this may reflect a major increase in biomass of non-flying insects during the Cretaceous Terrestrial Revolution 125–90 million years ago favoring diversification of spiders that feed on cursorial rather than flying prey. Our results also have major implications for our understanding of spider systematics. Phylogenomic analyses corroborate several well-accepted high level groupings: Opisthothele, Mygalomorphae, Atypoidina, Avicularoidea, Theraphosoidina, Araneomorphae, Entelegynae, Araneoidea, the RTA clade, Dionycha and the Lycosoidea. Alternatively, our results

  9. Spider phylogenomics: untangling the Spider Tree of Life

    Science.gov (United States)

    Garrison, Nicole L.; Rodriguez, Juanita; Agnarsson, Ingi; Coddington, Jonathan A.; Griswold, Charles E.; Hamilton, Christopher A.; Hedin, Marshal; Kocot, Kevin M.; Ledford, Joel M.

    2016-01-01

    Spiders (Order Araneae) are massively abundant generalist arthropod predators that are found in nearly every ecosystem on the planet and have persisted for over 380 million years. Spiders have long served as evolutionary models for studying complex mating and web spinning behaviors, key innovation and adaptive radiation hypotheses, and have been inspiration for important theories like sexual selection by female choice. Unfortunately, past major attempts to reconstruct spider phylogeny typically employing the “usual suspect” genes have been unable to produce a well-supported phylogenetic framework for the entire order. To further resolve spider evolutionary relationships we have assembled a transcriptome-based data set comprising 70 ingroup spider taxa. Using maximum likelihood and shortcut coalescence-based approaches, we analyze eight data sets, the largest of which contains 3,398 gene regions and 696,652 amino acid sites forming the largest phylogenomic analysis of spider relationships produced to date. Contrary to long held beliefs that the orb web is the crowning achievement of spider evolution, ancestral state reconstructions of web type support a phylogenetically ancient origin of the orb web, and diversification analyses show that the mostly ground-dwelling, web-less RTA clade diversified faster than orb weavers. Consistent with molecular dating estimates we report herein, this may reflect a major increase in biomass of non-flying insects during the Cretaceous Terrestrial Revolution 125–90 million years ago favoring diversification of spiders that feed on cursorial rather than flying prey. Our results also have major implications for our understanding of spider systematics. Phylogenomic analyses corroborate several well-accepted high level groupings: Opisthothele, Mygalomorphae, Atypoidina, Avicularoidea, Theraphosoidina, Araneomorphae, Entelegynae, Araneoidea, the RTA clade, Dionycha and the Lycosoidea. Alternatively, our results challenge the

  10. Respiration in spiders (Araneae).

    Science.gov (United States)

    Schmitz, Anke

    2016-05-01

    Spiders (Araneae) are unique regarding their respiratory system: they are the only animal group that breathe simultaneously with lungs and tracheae. Looking at the physiology of respiration the existence of tracheae plays an important role in spiders with a well-developed tracheal system. Other factors as sex, life time, type of prey capture and the high ability to gain energy anaerobically influence the resting and the active metabolic rate intensely. Most spiders have metabolic rates that are much lower than expected from body mass; but especially those with two pairs of lungs. Males normally have higher resting rates than females; spiders that are less evolved and possess a cribellum have lower metabolic rates than higher evolved species. Freely hunting spiders show a higher energy turnover than spiders hunting with a web. Spiders that live longer than 1 year will have lower metabolic rates than those species that die after 1 year in which development and reproduction must be completed. Lower temperatures and starvation, which most spiders can cope with, will decrease the metabolic rate as well.

  11. Tarantula spider

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002855.htm Tarantula spider bite To use the sharing features on this ... This article describes the effects of a tarantula spider bite. The class of insects to which the ...

  12. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales

    NARCIS (Netherlands)

    Aartsma, Y.S.Y.; Bianchi, F.J.J.A.; Werf, van der W.; Poelman, E.H.; Dicke, M.

    2017-01-01

    Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger

  13. Almost a spider: a 305-million-year-old fossil arachnid and spider origins.

    Science.gov (United States)

    Garwood, Russell J; Dunlop, Jason A; Selden, Paul A; Spencer, Alan R T; Atwood, Robert C; Vo, Nghia T; Drakopoulos, Michael

    2016-03-30

    Spiders are an important animal group, with a long history. Details of their origins remain limited, with little knowledge of their stem group, and no insights into the sequence of character acquisition during spider evolution. We describe a new fossil arachnid, Idmonarachne brasierigen. et sp. nov. from the Late Carboniferous (Stephanian,ca 305-299 Ma) of Montceau-les-Mines, France. It is three-dimensionally preserved within a siderite concretion, allowing both laboratory- and synchrotron-based phase-contrast computed tomography reconstruction. The latter is a first for siderite-hosted fossils and has allowed us to investigate fine anatomical details. Although distinctly spider-like in habitus, this remarkable fossil lacks a key diagnostic character of Araneae: spinnerets on the underside of the opisthosoma. It also lacks a flagelliform telson found in the recently recognized, spider-related, Devonian-Permian Uraraneida. Cladistic analysis resolves our new fossil as sister group to the spiders: the spider stem-group comprises the uraraneids and I. brasieri While we are unable to demonstrate the presence of spigots in this fossil, the recovered phylogeny suggests the earliest character to evolve on the spider stem-group is the secretion of silk. This would have been followed by the loss of a flagelliform telson, and then the ability to spin silk using spinnerets. This last innovation defines the true spiders, significantly post-dates the origins of silk, and may be a key to the group's success. The Montceau-les-Mines locality has previously yielded a mesothele spider (with spinnerets). Evidently, Late Palaeozoic spiders lived alongside Palaeozoic arachnid grades which approached the spider condition, but did not express the full suite of crown-group autapomorphies. © 2016 The Authors.

  14. Verified spider bites in Oregon (USA) with the intent to assess hobo spider venom toxicity.

    Science.gov (United States)

    McKeown, Nathanael; Vetter, Richard S; Hendrickson, Robert G

    2014-06-01

    This study compiled 33 verified spider bites from the state of Oregon (USA). The initial goal was to amass a series of bites by the hobo spider to assess whether it possesses toxic venom, a supposition which is currently in a contested state. None of the 33 bites from several spider species developed significant medical symptoms nor did dermonecrosis occur. The most common biters were the yellow sac spider, Cheiracanthium mildei (N = 10) and orb-weavers of the genus Araneus (N = 6). There were 10 bites from three genera of funnel web spiders of the family Agelenidae including one hobo spider bite and one from the congeneric giant house spider which is readily confused as a hobo spider. The hobo spider bite resulted in pain, redness, twitching in the calf muscle and resolved in 12 h. Also generated from this study were possibly the first records of bites from spiders of the genera Callobius (Amaurobiidae) and Antrodiaetus (Antrodiaetidae), both with minor manifestations. Published by Elsevier Ltd.

  15. Funnel-web spider bite

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002844.htm Funnel-web spider bite To use the sharing features on ... the effects of a bite from the funnel-web spider. Male funnel-web spiders are more poisonous ...

  16. Effects of electron beam irradiation on cut flowers and mites

    International Nuclear Information System (INIS)

    Dohino, Toshiyuki; Tanabe, Kazuo

    1994-01-01

    Two spotted spider mite, Tetranychus urticae KOCH were irradiated with electron beams (2.5MeV) to develop an alternative quarantine treatment for imported cut flowers. The tolerance of eggs increased with age (1-5-day-old). Immature stages (larva-teleiochrysalis) irradiated at 0.4-0.8kGy increased tolerance with their development. Mated mature females irradiated at 0.4kGy or higher did not produce viable eggs, although temporary recovery was observed at 0.2kGy. Adult males were sterilized at 0.4kGy because non-irradiated virgin females mated with yielded female progeny malformed and sterilized. Various effects of electron beam irradiation were observed when nine species of cut flowers were irradiated in 5MeV Dynamitron accelerator. Chrysanthemum and rose were most sensitive among cut flowers. (author)

  17. Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding

    NARCIS (Netherlands)

    Ros, V.I.D.; Breeuwer, J.A.J.

    2007-01-01

    The past 15 years have witnessed a number of molecular studies that aimed to resolve issues of species delineation and phylogeny of mites in the family Tetranychidae. The central part of the mitochondrial COI region has frequently been used for investigating intra- and interspecific variation. All

  18. Threat-sensitive anti-intraguild predation behaviour: maternal strategies to reduce offspring predation risk in mites.

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2011-01-01

    Predation is a major selective force for the evolution of behavioural characteristics of prey. Predation among consumers competing for food is termed intraguild predation (IGP). From the perspective of individual prey, IGP differs from classical predation in the likelihood of occurrence because IG prey is usually more rarely encountered and less profitable because it is more difficult to handle than classical prey. It is not known whether IGP is a sufficiently strong force to evolve interspecific threat sensitivity in antipredation behaviours, as is known from classical predation, and if so whether such behaviours are innate or learned. We examined interspecific threat sensitivity in antipredation in a guild of predatory mite species differing in adaptation to the shared spider mite prey (i.e. Phytoseiulus persimilis, Neoseiulus californicus and Amblyseius andersoni). We first ranked the players in this guild according to the IGP risk posed to each other: A. andersoni was the strongest IG predator; P. persimilis was the weakest. Then, we assessed the influence of relative IGP risk and experience on maternal strategies to reduce offspring IGP risk: A. andersoni was insensitive to IGP risk. Threat sensitivity in oviposition site selection was induced by experience in P. persimilis but occurred independently of experience in N. californicus. Irrespective of experience, P. persimilis laid fewer eggs in choice situations with the high- rather than low-risk IG predator. Our study suggests that, similar to classical predation, IGP may select for sophisticated innate and learned interspecific threat-sensitive antipredation responses. We argue that such responses may promote the coexistence of IG predators and prey.

  19. Spider Bites (For Parents)

    Science.gov (United States)

    ... Videos for Educators Search English Español First Aid: Spider Bites KidsHealth / For Parents / First Aid: Spider Bites ... rare. Signs and Symptoms Of a brown recluse spider bite: red blister in the center with surrounding ...

  20. Flee or fight: ontogenetic changes in the behavior of cobweb spiders in encounters with spider-hunting wasps.

    Science.gov (United States)

    Uma, Divya B; Weiss, Martha R

    2012-12-01

    An animal's body size plays a predominant role in shaping its interspecific interactions, and, in encounters between two predators, often determines which shall be predator and which shall be prey. Spiders are top predators of insects, yet can fall prey to mud-dauber wasps that provision their larval nests with paralyzed spiders. Here we examined predator-prey interactions between Chalybion californicum (Saussure) (Sphecidae), a mud-dauber wasp, and Parasteatoda tepidariorum C. L. Koch (Theridiidae), a cobweb spider. We examined whether a spider's size influences its response to an attacking wasp, and report a size-dependent change in spider behavior: small-sized spiders fled, whereas medium- and large-sized spiders fought in response to wasp attacks. From the wasps' perspective, we examined whether spider size influences a wasp's hunting behavior and capture success. We found that wasps commonly approached small spiders, but were much less likely to approach medium and large spiders. However, wasp capture success did not vary with spider size. We also report a strategy used by Chalybion wasps toward cobweb spiders that is consistent with an interpretation of aggressive mimicry.

  1. Inactivation of dust mites, dust mite allergen, and mold from carpet.

    Science.gov (United States)

    Ong, Kee-Hean; Lewis, Roger D; Dixit, Anupma; MacDonald, Maureen; Yang, Mingan; Qian, Zhengmin

    2014-01-01

    Carpet is known to be a reservoir for biological contaminants, such as dust mites, dust mite allergen, and mold, if it is not kept clean. The accumulation of these contaminants in carpet might trigger allergies or asthma symptoms in both children and adults. The purpose of this study is to compare methods for removal of dust mites, dust mite allergens, and mold from carpet. Carpets were artificially worn to simulate 1 to 2 years of wear in a four-person household. The worn carpets were inoculated together with a common indoor mold (Cladosporium species) and house dust mites and incubated for 6 weeks to allow time for dust mite growth on the carpet. The carpets were randomly assigned to one of the four treatment groups. Available treatment regimens for controlling carpet contaminants were evaluated through a literature review and experimentation. Four moderately low-hazard, nondestructive methods were selected as treatments: vacuuming, steam-vapor, Neem oil (a natural tree extract), and benzalkonium chloride (a quaternary ammonium compound). Steam vapor treatment demonstrated the greatest dust mite population reduction (p 0.05) for both physical and chemical methods. The steam-vapor treatment effectively killed dust mites and denatured dust mite allergen in the laboratory environment.

  2. SPIDER SILK

    Directory of Open Access Journals (Sweden)

    PORAV Viorica

    2014-05-01

    Full Text Available The strengthness and toughness of spider fiber and its multifunctional nature is only surpassed in some cases by synthetic high performance fibers. In the world of natural fibers, spider silk has been long time recognized as a wonder fiber for its unique combination of high strength and rupture elongation. Scientists in civil military engineering reveal that the power of biological material (spider silk lies in the geometric configuration of structural protein, and the small cluster of week hydrogen bonds that works together to resist force and dissipate energy. Each spider and each type of silk has a set of mechanical properties optimized for their biological function. Most silks, in particular deagline silk, have exceptional mechanical properties. They exhibit a unique combination of high tensile strength and extensibility (ductility. This enables a silk fiber to absorb a lot of energy before breaking (toughness, the area under a stress- strain curve. A frequent mistake made in the mainstream media is to confuse strength and toughness when comparing silk to other materials. As shown below in detail, weight for weight, silk is stronger than steel, but not as strong as Kevlar. Silk is,however, tougher than both.This paper inform about overview on the today trend in the world of spider silk.

  3. Plant-herbivore interaction: dissection of the cellular pattern of Tetranychus urticae feeding on the host plant

    Directory of Open Access Journals (Sweden)

    Nicolas Bensoussan

    2016-07-01

    Full Text Available The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae, is one of the most polyphagous herbivores feeding on cell contents of over 1,100 plant species including more than 150 crops. It is being established as a model for chelicerate herbivores with tools that enable tracking of reciprocal responses in plant-spider mite interactions. However, despite their important pest status and a growing understanding of the molecular basis of interactions with plant hosts, knowledge of the way mites interface with the plant while feeding and the plant damage directly inflicted by mites is lacking. Here, utilizing histology and microscopy methods, we uncovered several key features of T. urticae feeding. By following the stylet path within the plant tissue, we determined that the stylet penetrates the leaf either in between epidermal pavement cells or through a stomatal opening, without damaging the epidermal cellular layer. Our recordings of mite feeding established that duration of the feeding event ranges from several minutes to more than half an hour, during which time mites consume a single mesophyll cell in a pattern that is common to both bean and Arabidopsis plant hosts. In addition, this study determined that leaf chlorotic spots, a common symptom of mite herbivory, do not form as an immediate consequence of mite feeding. Our results establish a cellular context for the plant-spider mite interaction that will support our understanding of the molecular mechanisms and cell signaling associated with spider mite feeding.

  4. Bat Predation by Spiders

    Science.gov (United States)

    Nyffeler, Martin; Knörnschild, Mirjam

    2013-01-01

    In this paper more than 50 incidences of bats being captured by spiders are reviewed. Bat-catching spiders have been reported from virtually every continent with the exception of Antarctica (∼90% of the incidences occurring in the warmer areas of the globe between latitude 30° N and 30° S). Most reports refer to the Neotropics (42% of observed incidences), Asia (28.8%), and Australia-Papua New Guinea (13.5%). Bat-catching spiders belong to the mygalomorph family Theraphosidae and the araneomorph families Nephilidae, Araneidae, and Sparassidae. In addition to this, an attack attempt by a large araneomorph hunting spider of the family Pisauridae on an immature bat was witnessed. Eighty-eight percent of the reported incidences of bat catches were attributable to web-building spiders and 12% to hunting spiders. Large tropical orb-weavers of the genera Nephila and Eriophora in particular have been observed catching bats in their huge, strong orb-webs (of up to 1.5 m diameter). The majority of identifiable captured bats were small aerial insectivorous bats, belonging to the families Vespertilionidae (64%) and Emballonuridae (22%) and usually being among the most common bat species in their respective geographic area. While in some instances bats entangled in spider webs may have died of exhaustion, starvation, dehydration, and/or hyperthermia (i.e., non-predation death), there were numerous other instances where spiders were seen actively attacking, killing, and eating the captured bats (i.e., predation). This evidence suggests that spider predation on flying vertebrates is more widespread than previously assumed. PMID:23516436

  5. Bat predation by spiders.

    Science.gov (United States)

    Nyffeler, Martin; Knörnschild, Mirjam

    2013-01-01

    In this paper more than 50 incidences of bats being captured by spiders are reviewed. Bat-catching spiders have been reported from virtually every continent with the exception of Antarctica (≈ 90% of the incidences occurring in the warmer areas of the globe between latitude 30° N and 30° S). Most reports refer to the Neotropics (42% of observed incidences), Asia (28.8%), and Australia-Papua New Guinea (13.5%). Bat-catching spiders belong to the mygalomorph family Theraphosidae and the araneomorph families Nephilidae, Araneidae, and Sparassidae. In addition to this, an attack attempt by a large araneomorph hunting spider of the family Pisauridae on an immature bat was witnessed. Eighty-eight percent of the reported incidences of bat catches were attributable to web-building spiders and 12% to hunting spiders. Large tropical orb-weavers of the genera Nephila and Eriophora in particular have been observed catching bats in their huge, strong orb-webs (of up to 1.5 m diameter). The majority of identifiable captured bats were small aerial insectivorous bats, belonging to the families Vespertilionidae (64%) and Emballonuridae (22%) and usually being among the most common bat species in their respective geographic area. While in some instances bats entangled in spider webs may have died of exhaustion, starvation, dehydration, and/or hyperthermia (i.e., non-predation death), there were numerous other instances where spiders were seen actively attacking, killing, and eating the captured bats (i.e., predation). This evidence suggests that spider predation on flying vertebrates is more widespread than previously assumed.

  6. An Indirect Defence Trait Mediated through Egg-Induced Maize Volatiles from Neighbouring Plants.

    Directory of Open Access Journals (Sweden)

    Daniel M Mutyambai

    Full Text Available Attack of plants by herbivorous arthropods may result in considerable changes to the plant's chemical phenotype with respect to emission of herbivore-induced plant volatiles (HIPVs. These HIPVs have been shown to act as repellents to the attacking insects as well as attractants for the insects antagonistic to these herbivores. Plants can also respond to HIPV signals from other plants that warn them of impending attack. Recent investigations have shown that certain maize varieties are able to emit volatiles following stemborer egg deposition. These volatiles attract the herbivore's parasitoids and directly deter further oviposition. However, it was not known whether these oviposition-induced maize (Zea mays, L. volatiles can mediate chemical phenotypic changes in neighbouring unattacked maize plants. Therefore, this study sought to investigate the effect of oviposition-induced maize volatiles on intact neighbouring maize plants in 'Nyamula', a landrace known to respond to oviposition, and a standard commercial hybrid, HB515, that did not. Headspace volatile samples were collected from maize plants exposed to Chilo partellus (Swinhoe (Lepidoptera: Crambidae egg deposition and unoviposited neighbouring plants as well as from control plants kept away from the volatile emitting ones. Behavioural bioassays were carried out in a four-arm olfactometer using egg (Trichogramma bournieri Pintureau & Babault (Hymenoptera: Trichogrammatidae and larval (Cotesia sesamiae Cameron (Hymenoptera: Braconidae parasitoids. Coupled Gas Chromatography-Mass Spectrometry (GC-MS was used for volatile analysis. For the 'Nyamula' landrace, GC-MS analysis revealed HIPV production not only in the oviposited plants but also in neighbouring plants not exposed to insect eggs. Higher amounts of EAG-active biogenic volatiles such as (E-4,8-dimethyl-1,3,7-nonatriene were emitted from these plants compared to control plants. Subsequent behavioural assays with female T. bournieri and

  7. Air-conditioner filters enriching dust mites allergen.

    Science.gov (United States)

    Zhan, Xiaodong; Li, Chaopin; Xu, Haifeng; Xu, Pengfei; Zhu, Haibin; Diao, Jidong; Li, Na; Zhao, Beibei

    2015-01-01

    We detected the concentration of dust mites allergen (Der f1 & Der p1) in the air of different places before and after the starting of air-conditioners in Wuhu City, Anhui, China, and to discuss the relation between the dust mites allergen in air-conditioner filters and the asthma attack. The dust samples were collected from the air-conditioner filters in dining rooms, shopping malls, hotels and households respectively. Concentrations of dust mites major group allergen 1 (Der f 1, Der p1) were detected with enzyme linked immunosorbent assay (ELISA), and the dust mite immune activities were determined by dot-ELISA. The concentration of Der f1 in dining rooms, shopping malls, hotels and households was 1.52 μg/g, 1.24 μg/g, 1.31 μg/g and 1.46 μg/g respectively, and the concentration of Der p1 in above-mentioned places was 1.23 μg/g, 1.12 μg/g, 1.16 μg/g and 1.18 μg/g respectively. The concentration of Der f1 & Der p1 in air was higher after the air-conditioners starting one hours later, and the difference was significant (Pair-conditioner filters can enrich dust mites major group allergen, and the allergens can induce asthma. The air-conditioner filters shall be cleaned or replaced regularly to prevent or reduce accumulation of the dust mites and its allergens.

  8. Did You Say Spiders?

    Science.gov (United States)

    Campbell, Alene

    This spider unit focuses on students' development of cooperative learning and inquiry-based skills. Students read "The Very Busy Spider" by Eric Carle, and then work in cooperative groups using the Internet to research and synthesize important information about spiders. Technology is used for vocabulary instruction and to create a…

  9. Differential effects of plant species on a mite pest (Tetranychus utricae) and its predator (Phytoseiulus persimilis): implications for biological control.

    Science.gov (United States)

    Skirvin, D J; de Courcy Williams, M

    1999-06-01

    The influence of plant species on the population dynamics of the spider mite pest, Tetranychus urticae, and its predator, Phytoseiulus persimilis, was examined as a prerequisite to effective biological control on ornamental nursery stock. Experiments have been done to investigate how the development, fecundity and movement of T. urticae, and the movement of P. persimilis were affected by plant species. A novel experimental method, which incorporates plant structure, was used to investigate the functional response of P. persimilis. Development times for T. urticae were consistent with published data and did not differ with plant species in a biologically meaningful way. Plant species was shown to have a major influence on fecundity (P < 0.001) and movement of the pest mite (P < 0.01), but no influence on the movement of the predator. The movement of both pest and predator was shown to be related to the density of the adult pest mites on the plant (P < 0.001). Plant structure affected the functional response, particularly in relation to the ability of the predator to locate prey at low densities. The impact of these findings on the effective use of biological control on ornamental nursery stock is discussed.

  10. The preliminary assessment and isolation of entomopathogenic fungi to be used in biological control with twospotted spider mite [Tetranychus urticae (acari, tetranychidae)] from East Anatolia

    Science.gov (United States)

    Örtücü, Serkan; Algur, Ömer Faruk

    2017-04-01

    This study was conducted to isolation entomopathogenic fungi for possible use in biocontrol of two-spotted spider mite Tetranychus urticae Koch. and to determine their pathogenicity. For this purpose, plant leaves infected with T. urticae were collected from Erzurum, Kars and Ardahan. At laboratory, the internal and external mycoflora of T.urticae individuals on plant leaves were determined. As a result of isolation, twenty-five different fungi species belonging to the genera Acremonium, Alternaria, Aspergillus, Beauveria, Cladosporium, Gliocladium, Humicola, Penicillium, Trichoderma, Isaria, Ulocladium and Verticillium were obtained. Pathogenicity of this forty-five isolate belonging to twenty-five species were evaluated. As a test organism, T. urticae was used and suspensions (1 × 108conidia ml-1) were prepared in Tween 80. 2ml suspension of a single dose was sprayed onto down side of bean leaf discs using hand sprayer. Mortality was recorded daily for 7 days. A total of twelve isolates belonging to three species were determined to be pathogen against T.urticae. According to scale used: AT020 Isaria farinosa and AT025 Cladosporium cladosporioides were determined as least pathogen, AT037 and AT101 Beauveria bassiana, and AT019 and AT026 C. cladosporioides, and AT035 and AT036 I. farinosa as moderate pathogen, AT007, AT021, AT034 and AT076 B. bassiana as highly pathogen. The other thirty-three isolates found that not pathogenic against T.urticae.

  11. Can ant-eating Zodarion spiders (Araneae: Zodariidae) develop on a diet optimal for euryphagous arthropod predators?

    DEFF Research Database (Denmark)

    Pekar, Stano; Toft, Søren

    2009-01-01

    . Such adaptations may then entail trade-offs in handling and utilization of alternative prey. To investigate behavioural as well as nutritional adaptations and the occurrence of the corresponding trade-offs in two ant-eating spiders of the genus Zodarion [Zodarion atlanticum Pekár & Cardoso and Zodarion germanicum...... (C. L. Koch)], spiders are reared on two diets: ants (i.e. their preferred prey) and fruit flies (i.e. an alternative prey that is nutritionally optimal for euryphagous spiders). Food consumption is observed and several fitness-related life-history parameters are measured. Although spiders readily...... accept ants, more than one-third of 35 spiders refuse to consume fruit flies and starve. Furthermore, severe hunger does not induce these individuals to accept fruit flies. Starving spiders die before moulting to the second stadium. Spiders that eat fruit flies increase only little and slowly in weight...

  12. Ant mimicry lessens predation on a North American jumping spider by larger salticid spiders.

    Science.gov (United States)

    Durkee, Caitlin A; Weiss, Martha R; Uma, Divya B

    2011-10-01

    Ant-like appearance (myrmecomorphy) has evolved >70 times in insects and spiders, accounting for >2,000 species of myrmecomorphic arthropods. Most myrmecomorphic spiders are considered to be Batesian mimics; that is, a palatable spider avoids predation through resemblance to an unpalatable ant-although this presumption has been tested in relatively few cases. Here we explicitly examined the extent to which Peckhamia picata (Salticidae), a North American ant-mimicking jumping spider, is protected from four species of jumping spider predators, relative to nonmimetic salticids and model ants. In addition, we conducted focused behavioral observations on one salticid predator, Thiodina puerpera, to determine the point at which the predators' behaviors toward model, mimic, and nonmimic diverge. We also examined the behaviors of Peckhamia in the presence of Thiodina. We found that mimetic jumping spiders were consumed less than a third as often as nonmimetic jumping spiders, suggesting that Peckhamia does indeed gain protection as a result of its resemblance to ants, and so can be considered a Batesian mimic. Furthermore, our focal predator did not consume any ant-mimicking spiders, and seemed to categorize Peckhamia with its model ant early in the hunting sequence. Such early determination of prey versus nonprey may be the result of speed-accuracy trade-offs in predator decision-making.

  13. The genome of Tetranychus urticae reveals herbivorous pest adaptations

    NARCIS (Netherlands)

    Grbić, M.; Van Leeuwen, T.; Clark, R.M.; Rombauts, S.; Grbić, V.; Osborne, E.J.; Dermauw, W.; Phuong, C.T.N.; Ortego, F.; Hernández-Crespo, P.; Diaz, I.; Martinez, M.; Navajas, M.; Sucena, E.; Magalhães, S.; Nagy, L.; Pace, R.M.; Djuranović, S.; Smagghe, G.; Iga, M.; Christiaens, O.; Veenstra, J.A.; Ewer, J.; Villalobos, R.M.; Hutter, J.L.; Hudson, S.D.; Velez, M.; Yi, S.V.; Zeng, J.; Pires-dasilva, A.; Roch, F.; Cazaux, M.; Navarro, M.; Zhurov, V.; Acevedo, G.; Bjelica, A.; Fawcett, J.A.; Bonnet, E.; Martens, C.; Baele, G.; Wissler, L.; Sanchez-Rodriguez, A.; Tirry, L.; Blais, C.; Demeestere, K.; Henz, S.R.; Gregory, T.R.; Mathieu, J.; Verdon, L.; Farinelli, L.; Schmutz, J.; Lindquist, E.; Feyereisen, R.; Van de Peer, Y.

    2011-01-01

    The spider mite Tetranychus urticae is a cosmopolitan agricultural pest with an extensive host plant range and an extreme record of pesticide resistance. Here we present the completely sequenced and annotated spider mite genome, representing the first complete chelicerate genome. At 90 megabases T.

  14. Environmental and hormonal factors controlling reversible colour change in crab spiders.

    Science.gov (United States)

    Llandres, Ana L; Figon, Florent; Christidès, Jean-Philippe; Mandon, Nicole; Casas, Jérôme

    2013-10-15

    Habitat heterogeneity that occurs within an individual's lifetime may favour the evolution of reversible plasticity. Colour reversibility has many different functions in animals, such as thermoregulation, crypsis through background matching and social interactions. However, the mechanisms underlying reversible colour changes are yet to be thoroughly investigated. This study aims to determine the environmental and hormonal factors underlying morphological colour changes in Thomisus onustus crab spiders and the biochemical metabolites produced during these changes. We quantified the dynamics of colour changes over time: spiders were kept in yellow and white containers under natural light conditions and their colour was measured over 15 days using a spectrophotometer. We also characterised the chemical metabolites of spiders changing to a yellow colour using HPLC. Hormonal control of colour change was investigated by injecting 20-hydroxyecdysone (20E) into spiders. We found that background colouration was a major environmental factor responsible for colour change in crab spiders: individuals presented with white and yellow backgrounds changed to white and yellow colours, respectively. An ommochrome precursor, 3-OH-kynurenine, was the main pigment responsible for yellow colour. Spiders injected with 20E displayed a similar rate of change towards yellow colouration as spiders kept in yellow containers and exposed to natural sunlight. This study demonstrates novel hormonal manipulations that are capable of inducing reversible colour change.

  15. Black widow spider

    Science.gov (United States)

    ... medlineplus.gov/ency/article/002858.htm Black widow spider To use the sharing features on this page, please enable JavaScript. The black widow spider (Latrodectus) has a shiny black body with a ...

  16. Neural correlation of successful cognitive behaviour therapy for spider phobia: a magnetoencephalography study.

    Science.gov (United States)

    Wright, Barry; Alderson-Day, Ben; Prendergast, Garreth; Kennedy, Juliette; Bennett, Sophie; Docherty, Mary; Whitton, Clare; Manea, Laura; Gouws, Andre; Tomlinson, Heather; Green, Gary

    2013-12-30

    Cognitive behavioural therapy (CBT) can be an effective treatment for spider phobia, but the underlying neural correlates of therapeutic change are yet to be specified. The present study used magnetoencephalography (MEG) to study responses within the first half second, to phobogenic stimuli in a group of individuals with spider phobia prior to treatment (n=12) and then in nine of them following successful CBT (where they could touch and manage live large common house spiders) at least 9 months later. We also compared responses to a group of age-matched healthy control participants (n=11). Participants viewed static photographs of real spiders, other fear-inducing images (e.g. snakes, sharks) and neutral stimuli (e.g. kittens). Beamforming methods were used to localise sources of significant power changes in response to stimuli. Prior to treatment, participants with spider phobia showed a significant maximum response in the right frontal pole when viewing images of real spiders specifically. No significant frontal response was observed for either control participants or participants with spider phobia post-treatment. In addition, participants' subjective ratings of spider stimuli significantly predicted peak responses in right frontal regions. The implications for understanding brain-based effects of cognitive therapies are discussed. © 2013 Published by Elsevier Ireland Ltd.

  17. Chemical and cultural control of Tropilaelaps mercedesae mites in honeybee (Apis mellifera colonies in Northern Thailand.

    Directory of Open Access Journals (Sweden)

    Jeffery S Pettis

    Full Text Available At least two parasitic mites have moved from Asian species of honeybees to infest Apis mellifera. Of these two, Varroa destructor is more widespread globally while Tropilaelaps mercedesae has remained largely in Asia. Tropilaelaps mites are most problematic when A. mellifera is managed outside its native range in contact with Asian species of Apis. In areas where this occurs, beekeepers of A. mellifera treat aggressively for Tropilaelaps and Varroa is either outcompeted or is controlled as a result of the aggressive treatment regime used against Tropilaelaps. Many mite control products used worldwide may in fact control both mites but environmental conditions differ globally and thus a control product that works well in one area may be less or ineffective in other areas. This is especially true of volatile compounds. In the current research we tested several commercial products known to control Varroa and powdered sulfur for efficacy against Tropilaelaps. Additionally, we tested the cultural control method of making a hive division to reduce Tropilaelaps growth in both the parent and offspring colony. Making a split or nucleus colony significantly reduced mite population in both the parent and nucleus colony when compared to un-manipulated control colonies. The formic acid product, Mite-Away Quick Strips®, was the only commercial product that significantly reduced mite population 8 weeks after initiation of treatment without side effects. Sulfur also reduced mite populations but both sulfur and Hopguard® significantly impacted colony growth by reducing adult bee populations. Apivar® (amitraz strips had no effect on mite or adult bee populations under the conditions tested.

  18. Life cycle and reproduction of house-dust mites: environmental factors influencing mite populations.

    Science.gov (United States)

    Hart, B J

    1998-01-01

    An understanding of the life cycle of house-dust mites, as well as environmental factors influencing mite populations, can be exploited in mite control. The most important limiting factor for house-dust-mite populations is air humidity. House-dust mites osmoregulate through the cuticle and therefore require a high ambient air humidity to prevent excessive water loss. In addition, the supracoxal glands actively take up ambient water vapour, and the protonynph stage of the life cycle is resistant to desiccation. Larger house-dust-mite populations are found when the absolute indoor air humidity is above 7 g/kg (45% relative humidity at 20 degrees C). Consequently, ventilation by air-conditioning systems is being developed as a means of control. A number of other aspects of the domestic environment are also being manipulated in an integrated approach to render the habitat less suitable for mites. The potential exists for developing models for house-dust mite populations, environmental characteristics, and the effects of various approaches to control.

  19. What you fear will appear: detection of schematic spiders in spider fear.

    Science.gov (United States)

    Peira, Nathalie; Golkar, Armita; Larsson, Maria; Wiens, Stefan

    2010-01-01

    Various experimental tasks suggest that fear guides attention. However, because these tasks often lack ecological validity, it is unclear to what extent results from these tasks can be generalized to real-life situations. In change detection tasks, a brief interruption of the visual input (i.e., a blank interval or a scene cut) often results in undetected changes in the scene. This setup resembles real-life viewing behavior and is used here to increase ecological validity of the attentional task without compromising control over the stimuli presented. Spider-fearful and nonfearful women detected schematic spiders and flowers that were added to one of two identical background pictures that alternated with a brief blank in between them (i.e., flicker paradigm). Results showed that spider-fearful women detected spiders (but not flowers) faster than did nonfearful women. Because spiders and flowers had similar low-level features, these findings suggest that fear guides attention on the basis of object features rather than simple low-level features.

  20. Brown Recluse Spider

    Science.gov (United States)

    ... to a group of spiders commonly known as violin spiders or fiddlebacks. The characteristic fiddle-shaped pattern ... 4-19.1mm) • Color: Golden brown • A dark violin/fiddle shape (see top photo) is located on ...

  1. Ricoseius loxocheles (Acari: Phytoseiidae) is not a predator of false spider mite on coffee crops: What does it eat?

    Science.gov (United States)

    Vacacela Ajila, Henry E; Ferreira, João A M; Colares, Felipe; Oliveira, Cleber M; Bernardo, Ana Maria G; Venzon, Madelaine; Pallini, Angelo

    2018-01-01

    Ricoseius loxocheles (De Leon) (Acari: Phytoseiidae) is often found in coffee crops and is known to feed on coffee leaf rust, Hemileia vastatrix Berkeley and Broome (Uredinales). As the occurrence of coffee leaf rust is limited primarily to the rainy season, the mite may use other food sources to survive during the periods of low pathogen prevalence. It is well known that phytoseiid mites can survive on a variety of food sources, such as herbivorous mites, fungi and pollen. We evaluated the ability of R. loxocheles to survive and reproduce on a diet of Brevipalpus phoenicis Geijskes (Acari: Tenuipalpidae), cattail pollen (Typha spp.), clover rust (Puccinia oxalidis), bee pollen (Santa Bárbara ® dehydrated pollen, Santa Bárbara, MG, Brazil) and coffee leaf rust. Ricoseius loxocheles did not survive or reproduce on any B. phoenicis stages tested (egg, larva, adult). The survival and oviposition of R. loxocheles were directly affected by the presence of coffee rust urediniospores, but not by the presence of the prey. Survival and oviposition of the phytoseiid were similar when fed cattail pollen, clover rust and coffee leaf rust but was lower when fed bee pollen. Our results show that R. loxocheles is not a predator of B. phoenicis but it is able to utilize other resources besides coffee leaf rust.

  2. Ultra-high Thermal Conductivity of Spider Silk: Protein Function Study with Controlled Structure Change and Comparison

    Science.gov (United States)

    2016-01-23

    induced increase in energy transport capacity of silkworm silks , Biopolymers , (10 2014): 0. doi: 10.1002/bip.22496 Shen Xu, Zaoli Xu, James Starrett...SECURITY CLASSIFICATION OF: In the past three years, we have conducted extensive research to study the structure of spider silks and investigate how the...manually spun spider silks demonstrates that the alignment of the antiparallel beta-sheet crystals in spider silks plays one of the most important

  3. Phenotypic plasticity in anti-intraguild predator strategies: mite larvae adjust their behaviours according to vulnerability and predation risk.

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2013-05-01

    Interspecific threat-sensitivity allows prey to maximize the net benefit of antipredator strategies by adjusting the type and intensity of their response to the level of predation risk. This is well documented for classical prey-predator interactions but less so for intraguild predation (IGP). We examined threat-sensitivity in antipredator behaviour of larvae in a predatory mite guild sharing spider mites as prey. The guild consisted of the highly vulnerable intraguild (IG) prey and weak IG predator Phytoseiulus persimilis, the moderately vulnerable IG prey and moderate IG predator Neoseiulus californicus and the little vulnerable IG prey and strong IG predator Amblyseius andersoni. We videotaped the behaviour of the IG prey larvae of the three species in presence of either a low- or a high-risk IG predator female or predator absence and analysed time, distance, path shape and interaction parameters of predators and prey. The least vulnerable IG prey A. andersoni was insensitive to differing IGP risks but the moderately vulnerable IG prey N. californicus and the highly vulnerable IG prey P. persimilis responded in a threat-sensitive manner. Predator presence triggered threat-sensitive behavioural changes in one out of ten measured traits in N. californicus larvae but in four traits in P. persimilis larvae. Low-risk IG predator presence induced a typical escape response in P. persimilis larvae, whereas they reduced their activity in the high-risk IG predator presence. We argue that interspecific threat-sensitivity may promote co-existence of IG predators and IG prey and should be common in predator guilds with long co-evolutionary history.

  4. Irradiation as a phytosanitary treatment for mites of the specie Tyrophagus putrescentiae (Acari: Acaridae)

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Valter, E-mail: varthur@cena.usp.b [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Radiobiologia e Ambiente; Mineiro, Jeferson L.C. [Instituto Biologico de Sao Paulo/APTA, Sao Paulo, SP (Brazil). Lab. de Entomologia Economico

    2009-07-01

    In great populations mites of the specie Tyrophagus putrescentiae can cause damages in stored products. The work had as objective to evaluate the effects of the gamma radiation of the Cobalt-60 to control the mites of the specie T. putrescentiae. The mites were irradiated with doses of 0 (control), 300, 400, 500, 600, 700, 800 Gy, in a source of Cobalt-60 type Gammacell-220, with a dose rate of 0.718 kGy/hour. Each treatment consisted of four repetitions containing 10 mites each, in a total of approximately 40 mites for treatment. The evaluations were daily, being counted the number of mites died, put eggs and emerged larvae. Based on the obtained results it was concluded that the dose sterilizing for the mites of this specie was of 300 Gy. Already the dose of 600 Gy induced the total mortality of the mites after 11 days of the irradiation process. (author)

  5. THE EXECUTION OF PLANNED DETOURS BY SPIDER-EATING PREDATORS

    Science.gov (United States)

    Cross, Fiona R.; Jackson, Robert R.

    2016-01-01

    Many spiders from the salticid subfamily Spartaeinae specialize at preying on other spiders and they adopt complex strategies when targeting these dangerous prey. We tested 15 of these spider-eating spartaeine species for the capacity to plan detours ahead of time. Each trial began with the test subject on top of a tower from which it could view two boxes: one containing prey and the other not containing prey. The distance between the tower and the boxes was too far to reach by leaping and the tower sat on a platform surrounded by water. As the species studied are known to avoid water, the only way they could reach the prey without getting wet was by taking one of two circuitous walkways from the platform: one leading to the prey (‘correct’) and one not leading to the prey (‘incorrect’). After leaving the tower, the test subject could not see the prey and sometimes it had to walk past the incorrect walkway before reaching the correct walkway. Yet all 15 species chose the correct walkway significantly more often than the incorrect walkway. We propose that these findings exemplify genuine cognition based on representation. PMID:26781057

  6. Time-dependent distinct roles of Toll-like receptor 4 in a house dust mite-induced asthma mouse model.

    Science.gov (United States)

    Ishii, T; Niikura, Y; Kurata, K; Muroi, M; Tanamoto, K; Nagase, T; Sakaguchi, M; Yamashita, N

    2018-03-01

    House dust mites (HDMs) are a common source of allergens that trigger both allergen-specific and innate immune responses in humans. Here, we examined the effect of allergen concentration and the involvement of Toll-like receptor 4 (TLR4) in the process of sensitization to house dust mite allergens in an HDM extract-induced asthma mouse model. Intranasal administration of HDM extract induced an immunoglobulin E response and eosinophilic inflammation in a dose-dependent manner from 2.5 to 30 μg/dose. In TLR4-knockout mice, the infiltration of eosinophils and neutrophils into the lung was decreased compared with that in wild-type mice in the early phase of inflammation (total of three doses). However, in the late phase of inflammation (total of seven doses), eosinophil infiltration was significantly greater in TLR4-knockout mice than in wild-type mice. This suggests that the roles of TLR4 signaling are different between the early phase and the later phase of HDM allergen-induced inflammation. Thus, innate immune response through TLR4 regulated the response to HDM allergens, and the regulation was altered during the phase of inflammation. © 2018 The Foundation for the Scandinavian Journal of Immunology.

  7. Involvement of a volatile metabolite during phosphoramide mustard-induced ovotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Madden, Jill A. [Department of Animal Science, Iowa State University, Ames, IA 50011 (United States); Hoyer, Patricia B. [Department of Physiology, University of Arizona, Tucson, AZ 85724 (United States); Devine, Patrick J. [INRS—Institut Armand-Frappier Research Centre, University of Quebec, Laval, QC H7V 1B7 (Canada); Keating, Aileen F., E-mail: akeating@iastate.edu [Department of Animal Science, Iowa State University, Ames, IA 50011 (United States); Department of Physiology, University of Arizona, Tucson, AZ 85724 (United States)

    2014-05-15

    The finite ovarian follicle reserve can be negatively impacted by exposure to chemicals including the anti-neoplastic agent, cyclophosphamide (CPA). CPA requires bioactivation to phosphoramide mustard (PM) to elicit its therapeutic effects however; in addition to being the tumor-targeting metabolite, PM is also ovotoxic. In addition, PM can break down to a cytotoxic, volatile metabolite, chloroethylaziridine (CEZ). The aim of this study was initially to characterize PM-induced ovotoxicity in growing follicles. Using PND4 Fisher 344 rats, ovaries were cultured for 4 days before being exposed once to PM (10 or 30 μM). Following eight additional days in culture, relative to control (1% DMSO), PM had no impact on primordial, small primary or large primary follicle number, but both PM concentrations induced secondary follicle depletion (P < 0.05). Interestingly, a reduction in follicle number in the control-treated ovaries was observed. Thus, the involvement of a volatile, cytotoxic PM metabolite (VC) in PM-induced ovotoxicity was explored in cultured rat ovaries, with control ovaries physically separated from PM-treated ovaries during culture. Direct PM (60 μM) exposure destroyed all stage follicles after 4 days (P < 0.05). VC from nearby wells depleted primordial follicles after 4 days (P < 0.05), temporarily reduced secondary follicle number after 2 days, and did not impact other stage follicles at any other time point. VC was determined to spontaneously liberate from PM, which could contribute to degradation of PM during storage. Taken together, this study demonstrates that PM and VC are ovotoxicants, with different follicular targets, and that the VC may be a major player during PM-induced ovotoxicity observed in cancer survivors. - Highlights: • PM depletes all stage ovarian follicles in a temporal pattern. • A volatile ovotoxic compound is liberated from PM. • The volatile metabolite depletes primordial follicles.

  8. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales.

    Science.gov (United States)

    Aartsma, Yavanna; Bianchi, Felix J J A; van der Werf, Wopke; Poelman, Erik H; Dicke, Marcel

    2017-12-01

    Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger spatial scales. The spatial matrix of volatiles ('volatile mosaic') within which parasitoids locate their hosts is dynamic and heterogeneous. It is shaped by the spatial pattern of HIPV-emitting plants, the concentration, chemical composition and breakdown of the emitted HIPV blends, and by environmental factors such as wind, turbulence and vegetation that affect transport and mixing of odour plumes. The volatile mosaic may be exploited differentially by different parasitoid species, in relation to species traits such as sensory ability to perceive volatiles and the physical ability to move towards the source. Understanding how HIPVs influence parasitoids at larger spatial scales is crucial for our understanding of tritrophic interactions and sustainable pest management in agriculture. However, there is a large gap in our knowledge on how volatiles influence the process of host location by parasitoids at the landscape scale. Future studies should bridge the gap between the chemical and behavioural ecology of tritrophic interactions and landscape ecology. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. Nature Study Tips. Spiders.

    Science.gov (United States)

    Mulaik, Stanley B.

    1990-01-01

    Different types of spiders, their ranges and habits are discussed. Activities associated with the study of spiders are suggested. Four references are listed which may be of interest to beginners. (CW)

  10. Intra- and trans-generational costs of reduced female body size caused by food limitation early in life in mites.

    Directory of Open Access Journals (Sweden)

    Andreas Walzer

    Full Text Available Food limitation early in life may be compensated for by developmental plasticity resulting in accelerated development enhancing survival at the expense of small adult body size. However and especially for females in non-matching maternal and offspring environments, being smaller than the standard may incur considerable intra- and trans-generational costs.Here, we evaluated the costs of small female body size induced by food limitation early in life in the sexually size-dimorphic predatory mite Phytoseiulus persimilis. Females are larger than males. These predators are adapted to exploit ephemeral spider mite prey patches. The intra- and trans-generational effects of small maternal body size manifested in lower maternal survival probabilities, decreased attractiveness for males, and a reduced number and size of eggs compared to standard-sized females. The trans-generational effects of small maternal body size were sex-specific with small mothers producing small daughters but standard-sized sons.Small female body size apparently intensified the well-known costs of sexual activity because mortality of small but not standard-sized females mainly occurred shortly after mating. The disadvantages of small females in mating and egg production may be generally explained by size-associated morphological and physiological constraints. Additionally, size-assortative mate preferences of standard-sized mates may have rendered small females disproportionally unattractive mating partners. We argue that the sex-specific trans-generational effects were due to sexual size dimorphism - females are the larger sex and thus more strongly affected by maternal stress than the smaller males - and to sexually selected lower plasticity of male body size.

  11. Intra- and trans-generational costs of reduced female body size caused by food limitation early in life in mites.

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2013-01-01

    Food limitation early in life may be compensated for by developmental plasticity resulting in accelerated development enhancing survival at the expense of small adult body size. However and especially for females in non-matching maternal and offspring environments, being smaller than the standard may incur considerable intra- and trans-generational costs. Here, we evaluated the costs of small female body size induced by food limitation early in life in the sexually size-dimorphic predatory mite Phytoseiulus persimilis. Females are larger than males. These predators are adapted to exploit ephemeral spider mite prey patches. The intra- and trans-generational effects of small maternal body size manifested in lower maternal survival probabilities, decreased attractiveness for males, and a reduced number and size of eggs compared to standard-sized females. The trans-generational effects of small maternal body size were sex-specific with small mothers producing small daughters but standard-sized sons. Small female body size apparently intensified the well-known costs of sexual activity because mortality of small but not standard-sized females mainly occurred shortly after mating. The disadvantages of small females in mating and egg production may be generally explained by size-associated morphological and physiological constraints. Additionally, size-assortative mate preferences of standard-sized mates may have rendered small females disproportionally unattractive mating partners. We argue that the sex-specific trans-generational effects were due to sexual size dimorphism - females are the larger sex and thus more strongly affected by maternal stress than the smaller males - and to sexually selected lower plasticity of male body size.

  12. Gamma irradiation as a quarantine treatment of apples infested with diapausing eggs of the European red spider mite, Panonychus ulmi (Koch) (Acarina: Tetranychidae)

    International Nuclear Information System (INIS)

    Ignatowicz, S.

    1997-01-01

    Viable eggs of the European red mite, Panonychus ulmi (Koch), on apples have been the concern of several importing countries and exports require preshipment, phytosanitary treatment to reduce or eliminate live eggs. Because fumigation is often detrimental to the commodity appearance and shelf-life, resulting in a loss of commercial value, there is a need for alternatives for chemical pest control as a quarantine treatment, and irradiation could be a new strategy method. The data obtained indicate that a dose of gamma radiation equal to or higher than 0.15 kGy seems to be adequate to prevent post-diapause hatching of wintering eggs of the European red mite. Thus, this dose is suggested for quarantine treatment of apples infested with wintering eggs of the European red mite. (author)

  13. Analysis of basophil activation by flow cytometry in pediatric house dust mite allergy.

    Science.gov (United States)

    González-Muñoz, Miguel; Villota, Julian; Moneo, Ignacio

    2008-06-01

    Detection of allergen-induced basophil activation by flow cytometry has been shown to be a useful tool for allergy diagnosis. The aim of this study was to assess the potential of this technique for the diagnosis of pediatric house dust mite allergy. Quantification of total and specific IgE and basophil activation test were performed to evaluate mite allergic (n = 24), atopic (n = 23), and non-allergic children (n = 9). Allergen-induced basophil activation was detected as a CD63-upregulation. Receiver operating characteristics (ROC) curve analysis was performed to calculate the optimal cut-off value of activated basophils discriminating mite allergic and non-allergic children. ROC curve analysis yielded a threshold value of 18% activated basophils when mite-sensitized and atopic children were studied [area under the curve (AUC) = 0.99, 95% confidence interval (CI) = 0.97-1.01, p 43 kU/l) values for Dermatophagoides pteronyssinus allergen. They also showed positive prick (wheal diameter >1.0 cm) and basophil activation (>87%) tests and high specific IgE (>100 kU/l) with shrimp allergen. Shrimp sensitization was demonstrated by high levels of Pen a 1-specific IgE (>100 kU/l). Cross-reactivity between mite and shrimp was confirmed by fluorescence enzyme immunoassay (FEIA-CAP) inhibition study in these two cases. This study demonstrated that the analysis of allergen-induced CD63 upregulation by flow cytometry is a reliable tool for diagnosis of mite allergy in pediatric patients, with sensitivity similar to routine diagnostic tests and a higher specificity. Furthermore, this method can provide additional information in case of disagreement between in vivo and in vitro test results.

  14. The evolution of sociality in spiders

    DEFF Research Database (Denmark)

    Lubin, Yael; Bilde, T.

    2007-01-01

    . Anelosimus (Theridiidae) C. Sociality in Spiders: An Evolutionary Dead End? V. Evolution and Maintenance of Sociality in Spiders: Relevant Models A. Kin Selection 1. Kin Recognition 2. Inbreeding and Kin Selection B. Multilevel Selection (Group Selection) C. Ecological Benefits D. Ecological Constraints E......I. Introducing Social Spiders II. Social and Subsocial Species: A Survey of Behavioral Traits III. Inbred Sociality in Spiders A. Cooperation Versus Competition: A Balancing Act B. Do Social Spiders Have Division of Labor? C. Colony Foundation: Propagule Dispersal Versus Fission D. Female......-Biased Colony Sex Ratios: Primary and Operational Sex Ratios E. Mating System: Inbreeding and Its Population-Genetic Consequences F. "Boom and Bust" Colony Dynamics IV. Phylogenetic Relationships Among Social Spider Species A. Common Features of Social Evolution B. Case Studies 1. Stegodyphus (Eresidae) 2...

  15. Selection of entomopathogenic fungi against the red spider mite Tetranychus kanzawai (Kishida (Tetranychidae: Acarina

    Directory of Open Access Journals (Sweden)

    Yayan Sanjaya

    2013-12-01

    Full Text Available The pathogenicity of three entomopathogenic fungal species to Tetranychus kanzawai was investigated. Seven isolates of Metarhizium anisopliae, six isolates of Beauveria bassiana, and an isolate of Paecilomyces lilacinus from the Philippines and Indonesia were evaluated. The following studies were undertaken: (1 screening of M. anisoplae, B. bassiana and P. lilicanus pathogenic to T. kanzawai, and (2 bioefficacy studies of the selected entomopathogenic fungi under greenhouse conditions. Conidia of each isolate were mass-produced on potato dextrose agar (PDA at 26+-1 oC and a 12-hour photophase for a maximum of 21 days. Preliminary screening for the most pathogenic isolate within the same species was determined using suspension with 104 to 108 conidia ml-1. At 4 days after treatment (DAT, the pathogenicity within M. anisopliae isolates in decreasing order was Ma5>Ma6>Ma4>Ma2>Ma1>Ma3>Ma7 while for B. bassiana, was Bb6>Bb5>Bb4>Bb3>Bb1>Bb2. The top three most pathogenic isolates within the two species were subjected to further studies to determine the most virulent isolate against T. kanzawai. At 5 DAT, the LC50 values of M. anisopliae isolates ranged from 5.0 x102 to 1.4x103 while for B. bassiana ranged from 1.2 x 103 to 2.4x 103 conidia ml-1. Based on LC50, the virulence of the fungal isolates within the species in decreasing order was Ma6>Ma5>Ma4 and Bb6>Bb5>Bb4. However, the LC50 values are not significantly different from each other. Green house trials showed that the epizootic of entomopathogenic fungus can regulate the population of mites. The fungal isolates used in the study, although not originally isolated from mites were virulent to T. kanzawai, indicating their wide host range.

  16. Non-webbuilding spiders: prey specialists or generalists?

    Science.gov (United States)

    Nentwig, Wolfgang

    1986-07-01

    Feeding experiments were performed with seven species of non-webbuilding spiders and a variety of prey taxa. Some species were generally polyphagous whereas other spiders restricted their prey to a few groups. At one end of the spectrum of prey specialization the thomisid Misumena vatia is limited to a few taxa of possible prey (Table 1). The literature of prey records of non-webbuilding spiders is reviewed (Table 2) with special emphasis on oligophagous or monophagous spiders. Monophagous spiders are generally rare and have specialized on only a few prey taxa: social insects (ants, bees, termites) and spiders.

  17. Effect Of Agrotechnical Measures And Varieties On Seasonal Dynamics Of Tetranychus Urticae Koch (Acari, Trombidiformes, Tetranychidae On High Tunnel-Cultivated Garden Strawberries

    Directory of Open Access Journals (Sweden)

    Salmane Ineta

    2015-04-01

    Full Text Available The aim of the present study was to determine the seasonal pattern of two-spotted spider mite Tetranychus urticae on strawberries cultivated in polythene-covered high tunnels in temperate climatic conditions. Various cultivars were used and the effect of modification of plant covering indices on abundance and incidence of these mites was also tested. The number of two-spotted spider mites was relatively low at the beginning of the vegetation season and started to increase when average air temperature rose above 20 to 25 °C. In the experiment two types of tunnels differing in additional plant cover were used. The maximum mite abundance did not significantly vary between varieties in tunnel 1 conditions, but it was significantly lower for variety 'Sonata' in tunnel 2 conditions. Mite numbers significantly declined after strawberry foliage mowing and removal of polythene cover. Mite development was prolonged in tunnel 1, where additional cover of plants was used and higher early season air temperature was recorded in comparison to tunnel 2. It was concluded that increase in early season temperature can increase two-spotted spider mite abundance and have a more negative effect on strawberry plants in respect of foliage damage by mites.

  18. Nocturnal herbivore-induced plant volatiles attract the generalist predatory earwig Doru luteipes Scudder

    Science.gov (United States)

    Naranjo-Guevara, Natalia; Peñaflor, Maria Fernanda G. V.; Cabezas-Guerrero, Milton F.; Bento, José Maurício S.

    2017-10-01

    Numerous studies have demonstrated that entomophagous arthropods use herbivore-induced plant volatile (HIPV) blends to search for their prey or host. However, no study has yet focused on the response of nocturnal predators to volatile blends emitted by prey damaged plants. We investigated the olfactory behavioral responses of the night-active generalist predatory earwig Doru luteipes Scudder (Dermaptera: Forficulidae) to diurnal and nocturnal volatile blends emitted by maize plants ( Zea mays) attacked by either a stem borer ( Diatraea saccharalis) or a leaf-chewing caterpillar ( Spodoptera frugiperda), both suitable lepidopteran prey. Additionally, we examined whether the earwig preferred odors emitted from short- or long-term damaged maize. We first determined the earwig diel foraging rhythm and confirmed that D. luteipes is a nocturnal predator. Olfactometer assays showed that during the day, although the earwigs were walking actively, they did not discriminate the volatiles of undamaged maize plants from those of herbivore damaged maize plants. In contrast, at night, earwigs preferred volatiles emitted by maize plants attacked by D. saccharalis or S. frugiperda over undamaged plants and short- over long-term damaged maize. Our GC-MS analysis revealed that short-term damaged nocturnal plant volatile blends were comprised mainly of fatty acid derivatives (i.e., green leaf volatiles), while the long-term damaged plant volatile blend contained mostly terpenoids. We also observed distinct volatile blend composition emitted by maize damaged by the different caterpillars. Our results showed that D. luteipes innately uses nocturnal herbivore-induced plant volatiles to search for prey. Moreover, the attraction of the earwig to short-term damaged plants is likely mediated by fatty acid derivatives.

  19. Remembering the object you fear: brain potentials during recognition of spiders in spider-fearful individuals.

    Science.gov (United States)

    Michalowski, Jaroslaw M; Weymar, Mathias; Hamm, Alfons O

    2014-01-01

    In the present study we investigated long-term memory for unpleasant, neutral and spider pictures in 15 spider-fearful and 15 non-fearful control individuals using behavioral and electrophysiological measures. During the initial (incidental) encoding, pictures were passively viewed in three separate blocks and were subsequently rated for valence and arousal. A recognition memory task was performed one week later in which old and new unpleasant, neutral and spider pictures were presented. Replicating previous results, we found enhanced memory performance and higher confidence ratings for unpleasant when compared to neutral materials in both animal fearful individuals and controls. When compared to controls high animal fearful individuals also showed a tendency towards better memory accuracy and significantly higher confidence during recognition of spider pictures, suggesting that memory of objects prompting specific fear is also facilitated in fearful individuals. In line, spider-fearful but not control participants responded with larger ERP positivity for correctly recognized old when compared to correctly rejected new spider pictures, thus showing the same effects in the neural signature of emotional memory for feared objects that were already discovered for other emotional materials. The increased fear memory for phobic materials observed in the present study in spider-fearful individuals might result in an enhanced fear response and reinforce negative beliefs aggravating anxiety symptomatology and hindering recovery.

  20. Science Education Resources on the Web--Spiders.

    Science.gov (United States)

    Thirunarayanan, M. O.

    1997-01-01

    Lists Web sites containing information on spiders and offers brief descriptions of the information available at those sites. The 11 sites provide information on taxonomy of spiders, anatomy, different ways spiders use silk, Internet mailing lists, folk literature and art, bibliographies, night collection, and spiders commonly found in the state of…

  1. Volatile constituents of Trichothecium roseum.

    Science.gov (United States)

    Vanhaelen, M; Vanhaelen-Fastre, R; Geeraerts, J

    1978-06-01

    In the course of investigation of Trichothecium roseum (Fungi Imperfecti) for its attractancy against Tyrophagus putrescentiae (cheese mite), the twenty following volatile compounds produced at a very low concentration by the microfungus were identified by gc, gc/ms, gc/c.i.ms and tlc: 3-methyl-1-butanol, 3-octanone, 1-octen-3-one, 3-octanol, octa-1,5-dien-3 one, 1-octen-3-ol, 6-methyl-5-hepten-2-ol, octa-1,5-dien-3 ol, furfural, linalool, linalyl acetate, terpineol (alpha and beta) citronellyl acetate, nerol, citronellol, phenylacetaldehyde, benzyl alcohol geranyl acetate, 1-phenyl ethanol and nerolidol. Octa-1,5-dien-3-ol and octa-1,5-dien-3-one have not been previously isolated from fungi; octa-1,5-dien-3-ol is the most potent attractant amount the volatile compounds detected by gc.

  2. Aquatic subsidies transport anthropogenic nitrogen to riparian spiders

    Energy Technology Data Exchange (ETDEWEB)

    Akamatsu, Fumikazu, E-mail: f-akamt55@pwri.go.jp [Department of Environmental Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Toda, Hideshige [Department of Environmental Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2011-05-15

    Stable nitrogen isotopic composition ({delta}{sup 15}N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in {delta}{sup 15}N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider {delta}{sup 15}N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider's guild designation and body size. - Highlights: > {delta}{sup 15}N of aquatic insects increases downstream with anthropogenic nitrogen inputs. > {delta}{sup 15}N of riparian spiders increases with a high dietary proportion of aquatic insects and smaller spider body size. > The aquatic subsidies transport anthropogenic nitrogen to smaller riparian spiders downstream. - Smaller spiders assimilate anthropogenic nitrogen through the predation on aquatic subsides.

  3. Aquatic subsidies transport anthropogenic nitrogen to riparian spiders

    International Nuclear Information System (INIS)

    Akamatsu, Fumikazu; Toda, Hideshige

    2011-01-01

    Stable nitrogen isotopic composition (δ 15 N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in δ 15 N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider δ 15 N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider's guild designation and body size. - Highlights: → δ 15 N of aquatic insects increases downstream with anthropogenic nitrogen inputs. → δ 15 N of riparian spiders increases with a high dietary proportion of aquatic insects and smaller spider body size. → The aquatic subsidies transport anthropogenic nitrogen to smaller riparian spiders downstream. - Smaller spiders assimilate anthropogenic nitrogen through the predation on aquatic subsides.

  4. Radiation effect onto biodiversity of spiders

    International Nuclear Information System (INIS)

    Mehrabova, M.A.; Naghiyev, J.A; Huseynov, N.I; Topchiyeva, Sh.A.; Hasanov, N.H.

    2010-01-01

    At present time spiders are one of the considerably diverse groups of living organisms in fauna of Azerbayjan Republic. They play an important in environmental chain, being the main group of wild arthropodas in most biocoenoses. Therefore, it's not surprised that recently an increased interest has being observed to the study of spiders as indicators of environmental conditions. Spiders have been collected in polluted areas, their identification and sampling of soil, water and plants has been conducted. The degree of radionuclides' impact on the number and distribution of spiders and their venom in the observed zones of Azerbaijan has been revealed and preliminarily predicted. The number of the collected spiders equals to 292 which has been determined later at an electronic identifier Spinnen Mitteleuropas. The radionuclides in spiders have been determined at Canberra facility. Different natural radioactive elements were revealed in the investigated samples.

  5. Trophic complexity and the adaptive value of damage-induced plant volatiles.

    Directory of Open Access Journals (Sweden)

    Ian Kaplan

    Full Text Available Indirect plant defenses are those facilitating the action of carnivores in ridding plants of their herbivorous consumers, as opposed to directly poisoning or repelling them. Of the numerous and diverse indirect defensive strategies employed by plants, inducible volatile production has garnered the most fascination among plant-insect ecologists. These volatile chemicals are emitted in response to feeding by herbivorous arthropods and serve to guide predators and parasitic wasps to their prey. Implicit in virtually all discussions of plant volatile-carnivore interactions is the premise that plants "call for help" to bodyguards that serve to boost plant fitness by limiting herbivore damage. This, by necessity, assumes a three-trophic level food chain where carnivores benefit plants, a theoretical framework that is conceptually tractable and convenient, but poorly depicts the complexity of food-web dynamics occurring in real communities. Recent work suggests that hyperparasitoids, top consumers acting from the fourth trophic level, exploit the same plant volatile cues used by third trophic level carnivores. Further, hyperparasitoids shift their foraging preferences, specifically cueing in to the odor profile of a plant being damaged by a parasitized herbivore that contains their host compared with damage from an unparasitized herbivore. If this outcome is broadly representative of plant-insect food webs at large, it suggests that damage-induced volatiles may not always be beneficial to plants with major implications for the evolution of anti-herbivore defense and manipulating plant traits to improve biological control in agricultural crops.

  6. Energetics, scaling and sexual size dimorphism of spiders.

    Science.gov (United States)

    Grossi, B; Canals, M

    2015-03-01

    The extreme sexual size dimorphism in spiders has motivated studies for many years. In many species the male can be very small relative to the female. There are several hypotheses trying to explain this fact, most of them emphasizing the role of energy in determining spider size. The aim of this paper is to review the role of energy in sexual size dimorphism of spiders, even for those spiders that do not necessarily live in high foliage, using physical and allometric principles. Here we propose that the cost of transport or equivalently energy expenditure and the speed are traits under selection pressure in male spiders, favoring those of smaller size to reduce travel costs. The morphology of the spiders responds to these selective forces depending upon the lifestyle of the spiders. Climbing and bridging spiders must overcome the force of gravity. If bridging allows faster dispersal, small males would have a selective advantage by enjoying more mating opportunities. In wandering spiders with low population density and as a consequence few male-male interactions, high speed and low energy expenditure or cost of transport should be favored by natural selection. Pendulum mechanics show the advantages of long legs in spiders and their relationship with high speed, even in climbing and bridging spiders. Thus small size, compensated by long legs should be the expected morphology for a fast and mobile male spider.

  7. Effectiveness of electron irradiation as a quarantine treatment of cut flowers

    International Nuclear Information System (INIS)

    Hayashi, T.; Todoriki, S.; Nakakita, H.; Dohino, T.; Tanabe, K.

    1999-01-01

    The effects of electron beams on spider mite (Tetranychus urticae) and flour beetle (Tribolium freemani) were slightly smaller than those of gamma-rays. 'Soft-electrons' (low-energy electrons) at an energy of 170 keV inactivated eggs, larvae, pupae, and adults of the flour beetle. Electron beams at doses up to 400 Gy killed or sterilized all the pests for cut flowers tested; spider mite (Tetranychus urticae), mealybug (Pseudococcus comstocki), leaf miner (Liriomyza trifolii), thrips (Thrips palmi, Thrips tabaci), cutworm (Spodoptera litura), and aphid (Myzus persicae). Carnation, alstromeria, gladiolus, tulip, statice, stock, dendrobium, prairie gentian, oncidium, campanula, gloriosa, fern, gypsophila, freesia, lobelia, triteleia, and gerbera were resistant to radiation, while chrysanthemum, rose, lily, calla, antherium, sweet pea, and iris were sensitive. Radiation-induced deterioration of chrysanthemum could be prevented by post-irradiation treatment with commercial preservative solutions or sugar solutions. (author)

  8. Spiders do have melanin after all.

    Science.gov (United States)

    Hsiung, Bor-Kai; Blackledge, Todd A; Shawkey, Matthew D

    2015-11-01

    Melanin pigments are broadly distributed in nature - from bacteria to fungi to plants and animals. However, many previous attempts to identify melanins in spiders were unsuccessful, suggesting that these otherwise ubiquitous pigments were lost during spider evolution. Yet, spiders exhibit many dark colours similar to those produced by melanins in other organisms, and the low solubility of melanins makes isolation and characterization difficult. Therefore, whether melanins are truly absent or have simply not yet been detected is an open question. Raman spectroscopy provides a reliable way to detect melanins in situ, without the need for isolation. In this study, we document the presence of eumelanin in diverse species of spiders using confocal Raman microspectroscopy. Comparisons of spectra with theoretically calculated data falsify the previous hypothesis that dark colours are produced solely by ommochromes in spiders. Our data indicate that melanins are present in spiders and further supporting that they are present in most living organisms. © 2015. Published by The Company of Biologists Ltd.

  9. Phobic spider fear is associated with enhanced attentional capture by spider pictures: a rapid serial presentation event-related potential study.

    Science.gov (United States)

    Van Strien, Jan W; Franken, Ingmar H A; Huijding, Jorg

    2009-03-04

    The early posterior negativity (EPN) reflects early selective visual processing of emotionally significant information. This study explored the association between fear of spiders and the EPN for spider pictures. Fifty women completed a Spider Phobia Questionnaire and watched the random rapid serial presentation of 600 neutral, 600 negatively valenced emotional, and 600 spider pictures (three pictures per second). The EPN was scored as the mean activity in the 225-300-ms time window at lateral occipital electrodes. Participants with higher scores on the phobia questionnaire showed larger (i.e. more negative) EPN amplitudes in response to spider pictures. The results suggest that the attentional capture of spider-related stimuli is an automatic response, which is modulated by the extent of spider fear.

  10. Scavenging by spiders (Araneae) and its relationship to pest management of the brown recluse spider.

    Science.gov (United States)

    Vetter, Richard S

    2011-06-01

    Experiments reported in Sandidge (2003; Nature 426: 30) indicated that the brown recluse spider, Loxosceles reclusa Gertsch & Mulaik, preferred to scavenge dead prey over live prey and that the spiders were not detrimentally affected when fed insecticide-killed crickets. Extrapolations made in subsequent media coverage disseminating the results of this research made counter-intuitive statements that pesticide treatment in houses would increase brown recluse populations in homes. This information was presented as if the scavenging behavior was specialized in the brown recluse; however, it was more likely that this behavior has not been well studied in other species. To provide a comparison, the current laboratory study examined the likelihood of non-Loxosceles spiders to scavenge dead prey. Of 100 non-Loxosceles spiders that were tested (from 11 families, 24 genera, and at least 29 species from a variety of spider hunting guilds), 99 scavenged dead crickets when offered in petri dishes. Some of the spiders were webspinners in which real-world scavenging of dead prey is virtually impossible, yet they scavenge when given the opportunity. Therefore, scavenging is a flexible opportunistic predatory behavior that is spread across a variety of taxa and is not a unique behavior in brown recluses. These findings are discussed in relation to pest management practices.

  11. Social makes smart: rearing conditions affect learning and social behaviour in jumping spiders.

    Science.gov (United States)

    Liedtke, J; Schneider, J M

    2017-11-01

    There is a long-standing debate as to whether social or physical environmental aspects drive the evolution and development of cognitive abilities. Surprisingly few studies make use of developmental plasticity to compare the effects of these two domains during development on behaviour later in life. Here, we present rearing effects on the development of learning abilities and social behaviour in the jumping spider Marpissa muscosa. These spiders are ideally suited for this purpose because they possess the ability to learn and can be reared in groups but also in isolation without added stress. This is a critical but rarely met requirement for experimentally varying the social environment to test its impact on cognition. We split broods of spiders and reared them either in a physically or in a socially enriched environment. A third group kept under completely deprived conditions served as a 'no-enrichment' control. We tested the spiders' learning abilities by using a modified T-maze. Social behaviour was investigated by confronting spiders with their own mirror image. Results show that spiders reared in groups outperform their conspecifics from the control, i.e. 'no-enrichment', group in both tasks. Physical enrichment did not lead to such an increased performance. We therefore tentatively suggest that growing up in contact with conspecifics induces the development of cognitive abilities in this species.

  12. Antigenic relationship between the house dust mite Dermatophagoides farinae and the predacious mite Phytoseiulus persimilis.

    Science.gov (United States)

    Homma, R; Ando, T; Miyahara, A; Kimura, H; Ito, G; Uesato, N; Ino, Y; Iwaki, M

    1994-12-01

    We have examined the antigenic relationship between the house dust mite Dermatophagoides farinae and the predacious mite Phytoseiulus persimilis. Immunoblotting analysis demonstrated that there was a very weak antigenic cross-reactivity between these different suborder of mites but that this cross-reactivity was not attributed to D. farinaes major allergen's, Der fI and Der fII. These results suggest that P. persimilis might scarcely provoke allergic symptoms in patients sensitized to house dust mites.

  13. Comparing chemical and biological control strategies for twospotted spider mites (Acari: Tetranychidae) in commercial greenhouse production of bedding plants.

    Science.gov (United States)

    Opit, George P; Perret, Jamis; Holt, Kiffnie; Nechols, James R; Margolies, David C; Williams, Kimberly A

    2009-02-01

    Efficacy, costs, and impact on crop salability of various biological and chemical control strategies for Tetranychus urticae Koch (Acari: Tetranychidae) were evaluated on mixed plantings of impatiens, Impatiens wallerana Hook.f (Ericales: Balsaminaceae), and ivy geranium, Pelargonium peltatum (1.) L'Hér. Ex Aiton (Geraniales: Geraniaceae), cultivars in commercial greenhouses. Chemical control consisting of the miticide bifenazate (Floramite) was compared with two biological control strategies using the predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). Treatments were 1) a single, early application of bifenazate; 2) a single, early release of predatory mites at a 1:4 predator:pest ratio based on leaf samples to estimate pest density; 3) a weekly release of predatory mites at numbers based on the area covered by the crop; and 4) an untreated control. T. urticae populations were monitored for 3 wk after the earliest treatment. When plants were ready for market, their salability was estimated. Bifenazate and density-based P. persimilis treatments effectively reduced T. urticae numbers starting 1 wk after plants had been treated, whereas the scheduled, area-based P. persimilis treatment had little or no effect. The percentage of flats that could be sold at the highest market wholesale price ranged from 15 to 33%, 44 to 86%, 84 to 95%, and 92 to 100%, in the control, weekly area-based P. persimilis, bifenazate, and single density-based P. persimilis treatments, respectively. We have shown that in commercial greenhouse production of herbaceous ornamental bedding plants, estimating pest density to determine the appropriate number of predators to release is as effective and offers nearly the same economic benefit as prophylactic use of pesticides.

  14. Genotypic variability and relationships between mite infestation levels, mite damage, grooming intensity, and removal of Varroa destructor mites in selected strains of worker honey bees (Apis mellifera L.).

    Science.gov (United States)

    Guzman-Novoa, Ernesto; Emsen, Berna; Unger, Peter; Espinosa-Montaño, Laura G; Petukhova, Tatiana

    2012-07-01

    The objective of this study was to demonstrate genotypic variability and analyze the relationships between the infestation levels of the parasitic mite Varroa destructor in honey bee (Apis mellifera) colonies, the rate of damage of fallen mites, and the intensity with which bees of different genotypes groom themselves to remove mites from their bodies. Sets of paired genotypes that are presumably susceptible and resistant to the varroa mite were compared at the colony level for number of mites falling on sticky papers and for proportion of damaged mites. They were also compared at the individual level for intensity of grooming and mite removal success. Bees from the "resistant" colonies had lower mite population rates (up to 15 fold) and higher percentages of damaged mites (up to 9 fold) than bees from the "susceptible" genotypes. At the individual level, bees from the "resistant" genotypes performed significantly more instances of intense grooming (up to 4 fold), and a significantly higher number of mites were dislodged from the bees' bodies by intense grooming than by light grooming (up to 7 fold) in all genotypes. The odds of mite removal were high and significant for all "resistant" genotypes when compared with the "susceptible" genotypes. The results of this study strongly suggest that grooming behavior and the intensity with which bees perform it, is an important component in the resistance of some honey bee genotypes to the growth of varroa mite populations. The implications of these results are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Spider and burnable poison rod combinations

    International Nuclear Information System (INIS)

    Edwards, G.T.; Schluderberg, D.C.

    1980-01-01

    An improved design of burnable poison rods and associated spiders used in fuel assemblies of pressurized water power reactor cores, is described. The rods are joined to the spider arms in a manner which is proof against the reactor core environment and yet allows the removal of the rods from the spider simply, swiftly and delicately. (U.K.)

  16. New Types of Behavioral Manipulation of Host Spiders by a Parasitoid Wasp

    Directory of Open Access Journals (Sweden)

    William G. Eberhard

    2010-01-01

    Full Text Available The larva of the parasitic wasp Zatypota sp. nr. solanoi induces its host spiders Anelosimus spp. to modify its web in ways not seen in normal webs of this species or in any other species, providing apparent protection and support for the wasp's cocoon by covering the entire web with a protective sheet and adding a central platform and opening a space below in the enclosed tangle, where the larva suspends its cocoon. These modifications differ qualitatively from those induced by a congeneric wasp. Parasitized spiders appeared to adjust modified web construction behavior to local conditions, implying that larval manipulations may occur at higher rather than lower levels of behavioral control (e.g., eliciting overall design decisions, rather than particular motor patterns.

  17. Intra- and Trans-Generational Costs of Reduced Female Body Size Caused by Food Limitation Early in Life in Mites

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2013-01-01

    Background Food limitation early in life may be compensated for by developmental plasticity resulting in accelerated development enhancing survival at the expense of small adult body size. However and especially for females in non-matching maternal and offspring environments, being smaller than the standard may incur considerable intra- and trans-generational costs. Methodology/Principal Findings Here, we evaluated the costs of small female body size induced by food limitation early in life in the sexually size-dimorphic predatory mite Phytoseiulus persimilis. Females are larger than males. These predators are adapted to exploit ephemeral spider mite prey patches. The intra- and trans-generational effects of small maternal body size manifested in lower maternal survival probabilities, decreased attractiveness for males, and a reduced number and size of eggs compared to standard-sized females. The trans-generational effects of small maternal body size were sex-specific with small mothers producing small daughters but standard-sized sons. Conclusions/Significance Small female body size apparently intensified the well-known costs of sexual activity because mortality of small but not standard-sized females mainly occurred shortly after mating. The disadvantages of small females in mating and egg production may be generally explained by size-associated morphological and physiological constraints. Additionally, size-assortative mate preferences of standard-sized mates may have rendered small females disproportionally unattractive mating partners. We argue that the sex-specific trans-generational effects were due to sexual size dimorphism – females are the larger sex and thus more strongly affected by maternal stress than the smaller males – and to sexually selected lower plasticity of male body size. PMID:24265745

  18. Role of Predatory Mites in Persistent Nonoccupational Allergic Rhinitis

    Directory of Open Access Journals (Sweden)

    Paloma Poza Guedes

    2016-01-01

    Full Text Available Mites can sensitize and induce atopic disease in predisposed individuals and are an important deteriorating factor in patients with allergic rhinitis, asthma, and atopic dermatitis. Although Pyroglyphidae mites have been extensively studied, very scarce reports are available on Cheyletidae spp. especially regarding human respiratory pathology. The main objective of the present study is to investigate the clinical role of this predator mite (Cheyletus eruditus as a respiratory antigen in a selected sensitized human population. Fifty-two adult patients were recruited from the outpatient allergy clinic to assess their eligibility for the study. The thirty-seven subjects with persistent allergic rhinitis (PAR who fulfilled the ARIA criteria had a positive IgE response confirmed by skin prick test (SPT to C. eruditus. Only those individuals (37/47 with a positive SPT to C. eruditus showed a positive nasal provocation test (NPT, while 10 patients with nonallergic mild-to-moderate persistent rhinitis, control group, had a negative NPT with C. eruditus. The present paper describes a new role for the predator mite Cheyletus eruditus as a respiratory allergen in a selected subset of patients in a subtropical environment afflicted with persistent nonoccupational allergic rhinitis.

  19. Are temperate canopy spiders tree-species specific?

    Science.gov (United States)

    Mupepele, Anne-Christine; Müller, Tobias; Dittrich, Marcus; Floren, Andreas

    2014-01-01

    Arboreal spiders in deciduous and coniferous trees were investigated on their distribution and diversity. Insecticidal knock-down was used to comprehensively sample spiders from 175 trees from 2001 to 2003 in the Białowieża forest and three remote forests in Poland. We identified 140 species from 9273 adult spiders. Spider communities were distinguished between deciduous and coniferous trees. The richest fauna was collected from Quercus where beta diversity was also highest. A tree-species-specific pattern was clearly observed for Alnus, Carpinus, Picea and Pinus trees and also for those tree species that were fogged in only four or three replicates, namely Betula and Populus. This hitherto unrecognised association was mainly due to the community composition of common species identified in a Dufrene-Legendre indicator species analysis. It was not caused by spatial or temporal autocorrelation. Explaining tree-species specificity for generalist predators like spiders is difficult and has to involve physical and ecological tree parameters like linkage with the abundance of prey species. However, neither did we find a consistent correlation of prey group abundances with spiders nor could differences in spider guild composition explain the observed pattern. Our results hint towards the importance of deterministic mechanisms structuring communities of generalist canopy spiders although the casual relationship is not yet understood.

  20. Inside Honeybee Hives: Impact of Natural Propolis on the Ectoparasitic Mite Varroa destructor and Viruses.

    Science.gov (United States)

    Drescher, Nora; Klein, Alexandra-Maria; Neumann, Peter; Yañez, Orlando; Leonhardt, Sara D

    2017-02-06

    Social immunity is a key factor for honeybee health, including behavioral defense strategies such as the collective use of antimicrobial plant resins (propolis). While laboratory data repeatedly show significant propolis effects, field data are scarce, especially at the colony level. Here, we investigated whether propolis, as naturally deposited in the nests, can protect honeybees against ectoparasitic mites Varroa destructor and associated viruses, which are currently considered the most serious biological threat to European honeybee subspecies, Apis mellifera , globally. Propolis intake of 10 field colonies was manipulated by either reducing or adding freshly collected propolis. Mite infestations, titers of deformed wing virus (DWV) and sacbrood virus (SBV), resin intake, as well as colony strength were recorded monthly from July to September 2013. We additionally examined the effect of raw propolis volatiles on mite survival in laboratory assays. Our results showed no significant effects of adding or removing propolis on mite survival and infestation levels. However, in relation to V. destructor , DWV titers increased significantly less in colonies with added propolis than in propolis-removed colonies, whereas SBV titers were similar. Colonies with added propolis were also significantly stronger than propolis-removed colonies. These findings indicate that propolis may interfere with the dynamics of V. destructor -transmitted viruses, thereby further emphasizing the importance of propolis for honeybee health.

  1. Inside Honeybee Hives: Impact of Natural Propolis on the Ectoparasitic Mite Varroa destructor and Viruses

    Science.gov (United States)

    Drescher, Nora; Klein, Alexandra-Maria; Neumann, Peter; Yañez, Orlando; Leonhardt, Sara D.

    2017-01-01

    Social immunity is a key factor for honeybee health, including behavioral defense strategies such as the collective use of antimicrobial plant resins (propolis). While laboratory data repeatedly show significant propolis effects, field data are scarce, especially at the colony level. Here, we investigated whether propolis, as naturally deposited in the nests, can protect honeybees against ectoparasitic mites Varroa destructor and associated viruses, which are currently considered the most serious biological threat to European honeybee subspecies, Apis mellifera, globally. Propolis intake of 10 field colonies was manipulated by either reducing or adding freshly collected propolis. Mite infestations, titers of deformed wing virus (DWV) and sacbrood virus (SBV), resin intake, as well as colony strength were recorded monthly from July to September 2013. We additionally examined the effect of raw propolis volatiles on mite survival in laboratory assays. Our results showed no significant effects of adding or removing propolis on mite survival and infestation levels. However, in relation to V. destructor, DWV titers increased significantly less in colonies with added propolis than in propolis-removed colonies, whereas SBV titers were similar. Colonies with added propolis were also significantly stronger than propolis-removed colonies. These findings indicate that propolis may interfere with the dynamics of V. destructor-transmitted viruses, thereby further emphasizing the importance of propolis for honeybee health. PMID:28178181

  2. Fish predation by semi-aquatic spiders: a global pattern.

    Directory of Open Access Journals (Sweden)

    Martin Nyffeler

    Full Text Available More than 80 incidences of fish predation by semi-aquatic spiders--observed at the fringes of shallow freshwater streams, rivers, lakes, ponds, swamps, and fens--are reviewed. We provide evidence that fish predation by semi-aquatic spiders is geographically widespread, occurring on all continents except Antarctica. Fish predation by spiders appears to be more common in warmer areas between 40° S and 40° N. The fish captured by spiders, usually ranging from 2-6 cm in length, are among the most common fish taxa occurring in their respective geographic area (e.g., mosquitofish [Gambusia spp.] in the southeastern USA, fish of the order Characiformes in the Neotropics, killifish [Aphyosemion spp.] in Central and West Africa, as well as Australian native fish of the genera Galaxias, Melanotaenia, and Pseudomugil. Naturally occurring fish predation has been witnessed in more than a dozen spider species from the superfamily Lycosoidea (families Pisauridae, Trechaleidae, and Lycosidae, in two species of the superfamily Ctenoidea (family Ctenidae, and in one species of the superfamily Corinnoidea (family Liocranidae. The majority of reports on fish predation by spiders referred to pisaurid spiders of the genera Dolomedes and Nilus (>75% of observed incidences. There is laboratory evidence that spiders from several more families (e.g., the water spider Argyroneta aquatica [Cybaeidae], the intertidal spider Desis marina [Desidae], and the 'swimming' huntsman spider Heteropoda natans [Sparassidae] predate fish as well. Our finding of such a large diversity of spider families being engaged in fish predation is novel. Semi-aquatic spiders captured fish whose body length exceeded the spiders' body length (the captured fish being, on average, 2.2 times as long as the spiders. Evidence suggests that fish prey might be an occasional prey item of substantial nutritional importance.

  3. Fish predation by semi-aquatic spiders: a global pattern.

    Science.gov (United States)

    Nyffeler, Martin; Pusey, Bradley J

    2014-01-01

    More than 80 incidences of fish predation by semi-aquatic spiders--observed at the fringes of shallow freshwater streams, rivers, lakes, ponds, swamps, and fens--are reviewed. We provide evidence that fish predation by semi-aquatic spiders is geographically widespread, occurring on all continents except Antarctica. Fish predation by spiders appears to be more common in warmer areas between 40° S and 40° N. The fish captured by spiders, usually ranging from 2-6 cm in length, are among the most common fish taxa occurring in their respective geographic area (e.g., mosquitofish [Gambusia spp.] in the southeastern USA, fish of the order Characiformes in the Neotropics, killifish [Aphyosemion spp.] in Central and West Africa, as well as Australian native fish of the genera Galaxias, Melanotaenia, and Pseudomugil). Naturally occurring fish predation has been witnessed in more than a dozen spider species from the superfamily Lycosoidea (families Pisauridae, Trechaleidae, and Lycosidae), in two species of the superfamily Ctenoidea (family Ctenidae), and in one species of the superfamily Corinnoidea (family Liocranidae). The majority of reports on fish predation by spiders referred to pisaurid spiders of the genera Dolomedes and Nilus (>75% of observed incidences). There is laboratory evidence that spiders from several more families (e.g., the water spider Argyroneta aquatica [Cybaeidae], the intertidal spider Desis marina [Desidae], and the 'swimming' huntsman spider Heteropoda natans [Sparassidae]) predate fish as well. Our finding of such a large diversity of spider families being engaged in fish predation is novel. Semi-aquatic spiders captured fish whose body length exceeded the spiders' body length (the captured fish being, on average, 2.2 times as long as the spiders). Evidence suggests that fish prey might be an occasional prey item of substantial nutritional importance.

  4. Disease prevalence and transmission of Microsporidium phytoseiuli infecting the predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae).

    Science.gov (United States)

    Bjørnson, S; Keddie, B A

    2001-02-01

    Isolated colonies of the predatory mite, Phytoseiulus persimilis, were used to gain information regarding prevalence and transmission of Microsporidium phytoseiuli. Two colonies of P. persimilis were reared on spider mite (Tetranychus urticae)-infested bean plants in isolated cages. Disease prevalence of predators from Colony 1 remained relatively low (between 0 and 15%) over 57 weeks of observation whereas disease prevalence of predators from Colony 2 increased over 3 months (from 12 to 100%). Disease prevalence among predators from Colony 1 had increased to 100% 2 months after weekly sampling had ceased for this colony and periodic sampling confirmed that disease prevalence among individuals of both colonies remained at 100%. Microsporidian spores were not detected in randomly chosen samples of T. urticae prey mites that were removed and examined biweekly during this period. Although numerous microsporidian spores were observed in smear preparations of fecal pellets examined by light microscopy, spores were not observed on leaf surfaces or predator feces when examined by SEM. The latter appeared as intact aggregates composed of numerous dumbbell-shaped crystals and it is unlikely that spores are liberated from intact fecal pellets onto leaf surfaces. Vertical transmission of M. phytoseiuli was 100%; horizontal transmission was low (14.3%) and occurred only when immature P. persimilis were permitted to develop in contact with infected immature and adult predators. The mean number of eggs produced per mated pair was highest when uninfected females were mated with uninfected males (63.2 eggs per mated pair). Although mean egg production decreased when one or both parents were infected, not all differences were significant. Male predatory mites did not contribute to infection of their progeny. Results suggest that routine examination of P. persimilis for microsporidian spores is essential for the management of M. phytoseiuli within P. persimilis colonies. Low disease

  5. Elevated carbon dioxide reduces emission of herbivore-induced volatiles in Zea mays.

    Science.gov (United States)

    Block, Anna; Vaughan, Martha M; Christensen, Shawn A; Alborn, Hans T; Tumlinson, James H

    2017-09-01

    Terpene volatiles produced by sweet corn (Zea mays) upon infestation with pests such as beet armyworm (Spodoptera exigua) function as part of an indirect defence mechanism by attracting parasitoid wasps; yet little is known about the impact of climate change on this form of plant defence. To investigate how a central component of climate change affects indirect defence, we measured herbivore-induced volatile emissions in plants grown under elevated carbon dioxide (CO 2 ). We found that S. exigua infested or elicitor-treated Z. mays grown at elevated CO 2 had decreased emission of its major sesquiterpene, (E)-β-caryophyllene and two homoterpenes, (3E)-4,8-dimethyl-1,3,7-nonatriene and (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene. In contrast, inside the leaves, elicitor-induced (E)-β-caryophyllene hyper-accumulated at elevated CO 2 , while levels of homoterpenes were unaffected. Furthermore, gene expression analysis revealed that the induction of terpene synthase genes following treatment was lower in plants grown at elevated CO 2 . Our data indicate that elevated CO 2 leads both to a repression of volatile synthesis at the transcriptional level and to limitation of volatile release through effects of CO 2 on stomatal conductance. These findings suggest that elevated CO 2 may alter the ability of Z. mays to utilize volatile terpenes to mediate indirect defenses. © 2017 John Wiley & Sons Ltd.

  6. Evidence for competition between carnivorous plants and spiders.

    Science.gov (United States)

    Jennings, David E; Krupa, James J; Raffel, Thomas R; Rohr, Jason R

    2010-10-07

    Several studies have demonstrated that competition between disparate taxa can be important in determining community structure, yet surprisingly, to our knowledge, no quantitative studies have been conducted on competition between carnivorous plants and animals. To examine potential competition between these taxa, we studied dietary and microhabitat overlap between pink sundews (Drosera capillaris) and wolf spiders (Lycosidae) in the field, and conducted a laboratory experiment examining the effects of wolf spiders on sundew fitness. In the field, we found that sundews and spiders had a high dietary overlap with each other and with the available arthropod prey. Associations between sundews and spiders depended on spatial scale: both sundews and spiders were found more frequently in quadrats with more abundant prey, but within quadrats, spiders constructed larger webs and located them further away from sundews as the total sundew trapping area increased, presumably to reduce competition. Spiders also constructed larger webs when fewer prey were available. In the laboratory, our experiment revealed that spiders can significantly reduce sundew fitness. Our findings suggest that members of the plant and animal kingdoms can and do compete.

  7. Genus-specificity of araneophagy of linyphiid spiders and spiders of other families (Arachnida, Araneae)

    NARCIS (Netherlands)

    Heuts, B.; Brunt, T.

    2009-01-01

    We found genus specificity of predation by spiders on other spiders in captivity which surpass them in body size (araneophagy). Adult specimens of three species of the linyphiid genus Walckenaeria which were successively tested for araneophagy (in the laboratory) in the order of first species

  8. Approach and avoidance in fear of spiders

    NARCIS (Netherlands)

    Rinck, M.; Becker, E.S.

    2007-01-01

    We examined attitudes towards spiders by employing an Approach-Avoidance Task, in which participants respond to pictures by pulling a joystick towards themselves or by pushing it away from themselves. For spider fearfuls, this stimulus–response assignment is either compatible (push spiders away) or

  9. Learning to avoid spiders: fear predicts performance, not competence.

    Science.gov (United States)

    Luo, Xijia; Becker, Eni S; Rinck, Mike

    2018-01-05

    We used an immersive virtual environment to examine avoidance learning in spider-fearful participants. In 3 experiments, participants were asked to repeatedly lift one of 3 virtual boxes, under which either a toy car or a spider appeared and then approached the participant. Participants were not told that the probability of encountering a spider differed across boxes. When the difference was large (Exps. 1 and 2), spider-fearfuls learned to avoid spiders by lifting the few-spiders-box more often and the many-spiders-box less often than non-fearful controls did. However, they hardly managed to do so when the probability differences were small (Exp. 3), and they did not escape from threat more quickly (Exp. 2). In contrast to the observed performance differences, spider-fearfuls and non-fearfuls showed equal competence, that is comparable post-experimental knowledge about the probability to encounter spiders under the 3 boxes. The limitations and implications of the present study are discussed.

  10. Attention and amygdala activity: an fMRI study with spider pictures in spider phobia.

    Science.gov (United States)

    Alpers, Georg W; Gerdes, Antje B M; Lagarie, Bernadette; Tabbert, Katharina; Vaitl, Dieter; Stark, Rudolf

    2009-06-01

    Facilitated detection of threatening visual cues is thought to be adaptive. In theory, detection of threat cues should activate the amygdala independently from allocation of attention. However, previous studies using emotional facial expressions as well as phobic cues yielded contradictory results. We used fMRI to examine whether the allocation of attention to components of superimposed spider and bird displays modulates amygdala activation. Nineteen spider-phobic women were instructed to identify either a moving or a stationary animal in briefly presented double-exposure displays. Amygdala activation followed a dose-response relationship: Compared to congruent neutral displays (two birds), amygdala activation was most pronounced in response to congruent phobic displays (two spiders) and less but still significant in response to mixed displays (spider and bird) when attention was focused on the phobic component. When attention was focused on the neutral component, mixed displays did not result in significant amygdala activation. This was confirmed in a significant parametric graduation of the amygdala activation in the order of congruent phobic displays, mixed displays with attention focus on the spider, mixed displays with focus on the bird and congruent neutral displays. These results challenge the notion that amygdala activation in response to briefly presented phobic cues is independent from attention.

  11. A novel disease affecting the predatory mite Phytoseiulus persimilis (Acari, Phytoseiidae): 1. Symptoms in adult females.

    Science.gov (United States)

    Schütte, Conny; Kleijn, Prisca W; Dicke, Marcel

    2006-01-01

    Adult female Phytoseiulus persimilis Athias-Henriot (Acari, Phytoseiidae) of one of our laboratory populations showed a lower degree of attraction to herbivore-induced plant volatiles than other laboratory populations. We hypothesized earlier that this consistent change in foraging behavior is a symptom of a disease, as it is a contagious phenomenon. Here we describe more symptoms by comparing mated females of this population (non-responding (NR) population) with mated females of other populations that are strongly attracted to herbivore-induced plant volatiles (responding populations). The most apparent characteristic of the NR population was the presence of numerous dorso-ventrally flattened females (76% of all females). These females had a normal size after mating but shrank during adulthood. Independent of their age, shrunken females did not reproduce and died a few days after shrinking. In addition to these profound differences in short term performance, females from the NR-population showed behavioral changes, including a lower degree of attraction to herbivore-induced plant volatiles, a higher tendency to leave a prey-patch and a lower predation rate. Moreover, about half of the live females of the NR-population carried birefringent dumbbell-shaped crystals in the legs whereas live females of a responding population carried crystals only in the lumen of the Malpighian tubules and the rectum. The symptom 'crystals in the legs' was correlated with low reproduction. Energy dispersive X-ray diffraction of these crystals revealed that they contain calcium and phosphorus along with carbon and oxygen. Crystals with comparable elemental compositions and the same characteristic concentric layering are well known in insects, where they are thought to play a major role in detoxification of calcium and heavy metals, and in storage of phosphorus. The fraction of predators carrying a white spot in the distal part of the opisthosoma, due to accumulation of excretory

  12. Balancing in- and out-breeding by the predatory mite Phytoseiulus persimilis.

    Science.gov (United States)

    Atalay, Demet; Schausberger, Peter

    2018-02-01

    In- and out-breeding depressions are commonly observed phenomena in sexually reproducing organisms with a patchy distribution pattern, and spatial segmentation and/or isolation of groups. At the genetic level, inbreeding depression is due to increased homozygosity, whereas outbreeding depression is due to inferior genetic compatibility of mates. Optimal outbreeding theory suggests that intermediate levels of mate relatedness should provide for the highest fitness gains. Here, we assessed the fitness consequences of genetic relatedness between mates in plant-inhabiting predatory mites Phytoseiulus persimilis, which are obligatory sexually reproducing but haplo-diploid. Both females and males arise from fertilized eggs but males lose the paternal chromosome set during embryogenesis, dubbed pseudo-arrhenotoky. Phytoseiulus persimilis are highly efficacious in reducing crop-damaging spider mite populations and widely used in biological control. Using iso-female lines of two populations, from Sicily and Greece, we assessed the fecundity of females, and sex ratio of their offspring, that mated with either a sibling, a male from the same population or a male from the other population. Additionally, we recorded mating latency and duration. Females mating with a male from the same population produced more eggs, with a lower female bias, over a longer time than females mating with a sibling or with a male from the other population. Mating latency was unaffected by mate relatedness; mating duration was disproportionally long in sibling couples, likely indicating female reluctance to mate and sub-optimal spermatophore transfer. Our study provides a rare example of in- and out-breeding depression in a haplo-diploid arthropod, supporting the optimal outbreeding theory.

  13. A massive incorporation of microbial genes into the genome of Tetranychus urticae, a polyphagous arthropod herbivore.

    Science.gov (United States)

    Wybouw, N; Van Leeuwen, T; Dermauw, W

    2018-06-01

    A number of horizontal gene transfers (HGTs) have been identified in the spider mite Tetranychus urticae, a chelicerate herbivore. However, the genome of this mite species has at present not been thoroughly mined for the presence of HGT genes. Here, we performed a systematic screen for HGT genes in the T. urticae genome using the h-index metric. Our results not only validated previously identified HGT genes but also uncovered 25 novel HGT genes. In addition to HGT genes with a predicted biochemical function in carbohydrate, lipid and folate metabolism, we also identified the horizontal transfer of a ketopantoate hydroxymethyltransferase and a pantoate β-alanine ligase gene. In plants and bacteria, both genes are essential for vitamin B5 biosynthesis and their presence in the mite genome strongly suggests that spider mites, similar to Bemisia tabaci and nematodes, can synthesize their own vitamin B5. We further show that HGT genes were physically embedded within the mite genome and were expressed in different life stages. By screening chelicerate genomes and transcriptomes, we were able to estimate the evolutionary histories of these HGTs during chelicerate evolution. Our study suggests that HGT has made a significant and underestimated impact on the metabolic repertoire of plant-feeding spider mites. © 2018 The Royal Entomological Society.

  14. Uncovering the structure-function relationship in spider silk

    Science.gov (United States)

    Yarger, Jeffery L.; Cherry, Brian R.; van der Vaart, Arjan

    2018-03-01

    All spiders produce protein-based biopolymer fibres that we call silk. The most studied of these silks is spider dragline silk, which is very tough and relatively abundant compared with other types of spider silks. Considerable research has been devoted to understanding the relationship between the molecular structure and mechanical properties of spider dragline silks. In this Review, we overview experimental and computational studies that have provided a wealth of detail at the molecular level on the highly conserved repetitive core and terminal regions of spider dragline silk. We also discuss the role of the nanocrystalline β-sheets and amorphous regions in determining the properties of spider silk fibres, endowing them with strength and elasticity. Additionally, we outline imaging techniques and modelling studies that elucidate the importance of the hierarchical structure of silk fibres at the molecular level. These insights into structure-function relationships can guide the reverse engineering of spider silk to enable the production of superior synthetic fibres.

  15. Birds exploit herbivore-induced plant volatiles to locate herbivorous prey

    NARCIS (Netherlands)

    Amo, L.; Jansen, J.J.; Dam, van N.M.; Dicke, M.; Visser, M.E.

    2013-01-01

    Arthropod herbivory induces plant volatiles that can be used by natural enemies of the herbivores to find their prey. This has been studied mainly for arthropods that prey upon or parasitise herbivorous arthropods but rarely for insectivorous birds, one of the main groups of predators of herbivorous

  16. Animal coloration: sexy spider scales.

    Science.gov (United States)

    Taylor, Lisa A; McGraw, Kevin J

    2007-08-07

    Many male jumping spiders display vibrant colors that are used in visual communication. A recent microscopic study on a jumping spider from Singapore shows that three-layered 'scale sandwiches' of chitin and air are responsible for producing their brilliant iridescent body coloration.

  17. Volatile communication in plant-aphid interactions.

    Science.gov (United States)

    de Vos, Martin; Jander, Georg

    2010-08-01

    Volatile communication plays an important role in mediating the interactions between plants, aphids, and other organisms in the environment. In response to aphid infestation, many plants initiate indirect defenses through the release of volatiles that attract ladybugs, parasitoid wasps, and other aphid-consuming predators. Aphid-induced volatile release in the model plant Arabidopsis thaliana requires the jasmonate signaling pathway. Volatile release is also induced by infection with aphid-transmitted viruses. Consistent with mathematical models of optimal transmission, viruses that are acquired rapidly by aphids induce volatile release to attract migratory aphids, but discourage long-term aphid feeding. Although the ecology of these interactions is well-studied, further research is needed to identify the molecular basis of aphid-induced and virus-induced changes in plant volatile release. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Time-dependent motor properties of multipedal molecular spiders.

    Science.gov (United States)

    Samii, Laleh; Blab, Gerhard A; Bromley, Elizabeth H C; Linke, Heiner; Curmi, Paul M G; Zuckermann, Martin J; Forde, Nancy R

    2011-09-01

    Molecular spiders are synthetic biomolecular walkers that use the asymmetry resulting from cleavage of their tracks to bias the direction of their stepping motion. Using Monte Carlo simulations that implement the Gillespie algorithm, we investigate the dependence of the biased motion of molecular spiders, along with binding time and processivity, on tunable experimental parameters, such as number of legs, span between the legs, and unbinding rate of a leg from a substrate site. We find that an increase in the number of legs increases the spiders' processivity and binding time but not their mean velocity. However, we can increase the mean velocity of spiders with simultaneous tuning of the span and the unbinding rate of a spider leg from a substrate site. To study the efficiency of molecular spiders, we introduce a time-dependent expression for the thermodynamic efficiency of a molecular motor, allowing us to account for the behavior of spider populations as a function of time. Based on this definition, we find that spiders exhibit transient motor function over time scales of many hours and have a maximum efficiency on the order of 1%, weak compared to other types of molecular motors.

  19. Protective effect of the DNA vaccine encoding the major house dust mite allergens on allergic inflammation in the murine model of house dust mite allergy

    Directory of Open Access Journals (Sweden)

    Lee Jaechun

    2006-02-01

    Full Text Available Abstract Background Vaccination with naked DNA encoding antigen induces cellular and humoral immunity characterized by the activation of specific Th1 cells. Objective To evaluate the effects of vaccination with mixed naked DNA plasmids encoding Der p 1, Der p 2, Der p 3, Der f 1, Der f 2, and Der f 3, the major house dust mite allergens on the allergic inflammation to the whole house dust mites (HDM crude extract. Methods Three hundred micrograms of these gene mixtures were injected into muscle of BALB/c mice. Control mice were injected with the pcDNA 3.1 blank vector. After 3 weeks, the mice were actively sensitized and inhaled with the whole house dust mite extract intranasally. Results The vaccinated mice showed a significantly decreased synthesis of total and HDM-specific IgE compared with controls. Analysis of the cytokine profile of lymphocytes after challenge with HDM crude extract revealed that mRNA expression of interferon-γ was higher in the vaccinated mice than in the controls. Reduced infiltration of inflammatory cells and the prominent infiltration of CD8+ T cells were observed in histology of lung tissue from the vaccinated mice. Conclusion Vaccination with DNA encoding the major house dust mite allergens provides a promising approach for treating allergic responses to whole house dust mite allergens.

  20. Paradoxical effects of rapamycin on experimental house dust mite-induced asthma.

    Directory of Open Access Journals (Sweden)

    Karin Fredriksson

    Full Text Available The mammalian target of rapamycin (mTOR modulates immune responses and cellular proliferation. The objective of this study was to assess whether inhibition of mTOR with rapamycin modifies disease severity in two experimental murine models of house dust mite (HDM-induced asthma. In an induction model, rapamycin was administered to BALB/c mice coincident with nasal HDM challenges for 3 weeks. In a treatment model, nasal HDM challenges were performed for 6 weeks and rapamycin treatment was administered during weeks 4 through 6. In the induction model, rapamycin significantly attenuated airway inflammation, airway hyperreactivity (AHR and goblet cell hyperplasia. In contrast, treatment of established HDM-induced asthma with rapamycin exacerbated AHR and airway inflammation, whereas goblet cell hyperplasia was not modified. Phosphorylation of the S6 ribosomal protein, which is downstream of mTORC1, was increased after 3 weeks, but not 6 weeks of HDM-challenge. Rapamycin reduced S6 phosphorylation in HDM-challenged mice in both the induction and treatment models. Thus, the paradoxical effects of rapamycin on asthma severity paralleled the activation of mTOR signaling. Lastly, mediastinal lymph node re-stimulation experiments showed that treatment of rapamycin-naive T cells with ex vivo rapamycin decreased antigen-specific Th2 cytokine production, whereas prior exposure to in vivo rapamycin rendered T cells refractory to the suppressive effects of ex vivo rapamycin. We conclude that rapamycin had paradoxical effects on the pathogenesis of experimental HDM-induced asthma. Thus, consistent with the context-dependent effects of rapamycin on inflammation, the timing of mTOR inhibition may be an important determinant of efficacy and toxicity in HDM-induced asthma.

  1. Susceptibility of geographically isolated populations of the Tomato red spider mite (Tetranychus evansi Baker & Pritchard to commonly used acaricides on tomato crops in Kenya

    Directory of Open Access Journals (Sweden)

    F. J. Toroitich

    2014-04-01

    Full Text Available Farmers in Kenya continue to raise concerns of difficulty in managing Tetranychus evansi, the most widespread pest species of tomato applying the most commonly used acaricides. This invasive pest species is not only found in Kenya, but in Eastern and Southern Africa, as well as parts of Europe and Asia. In the current study, populations of T. evansi were collected from farms in the four major tomato-growing areas of Kenya (Loitoktok, Kibwezi, Athi-River and Subukia and their susceptibility compared to a laboratory culture (ICIPE that had been maintained for three years without exposure to acaricides. Susceptibility of T. evansi eggs and adults (contact and residual to Brigade (bifenthrin, Dimethoate (dimethoate, Karate (lambdacyhalothrin, Kelthane (dicofol, Omite (propargite and Polytrin (profenofos+ cypermethrin was tested in the laboratory using respective manufacturer’s recommended concentrations. Dimethoate resulted in variable ovicidal mortality while Kelthane, Brigade, Karate, Omite and Polytrin had high mortality across all populations. Similarly, adult contact and residual mortality was lower than that of the other chemicals when exposed to Dimethoate regardless of the location. Furthermore, it also had no residual effect on the mites from ICIPE and Kibwezi. On the other hand, Kelthane was most lethal against the mites from all locations followed by Brigade and Polytrin in that order. Omite caused significantly lower mortality on mites from Subukia while Karate produced variable effects on mites from Kibwezi, Loitoktok and Subukia. The implications of these findings are further discussed.

  2. Cognitive bias in spider-phobic children: Comparison of a pictorial and a linguistic spider Stroop.

    NARCIS (Netherlands)

    Kindt, M.; Brosschot, J.F.

    1999-01-01

    Examined the relation between spider fear in children and cognitive processing bias toward threatening information. It was investigated whether spider fear in children is related to a cognitive bias for threatening pictures and words. Pictorial and linguistic Stroop stimuli were administered to 28

  3. Radiation-induced volatile hydrocarbon production in platelets

    International Nuclear Information System (INIS)

    Radha, E.; Vaishnav, Y.N.; Kumar, K.S.; Weiss, J.F.

    1989-01-01

    Generation of volatile hydrocarbons (ethane, pentane) as a measure of lipid peroxidation was followed in preparations from platelet-rich plasma irradiated in vitro. The hydrocarbons in the headspace of sealed vials containing irradiated and nonirradiated washed platelets, platelet-rich plasma, or platelet-poor plasma increased with time. The major hydrocarbon, pentane, increased linearly and significantly with increasing log radiation dose, suggesting that reactive oxygen species induced by ionizing radiation result in lipid peroxidation. Measurements of lipid peroxidation products may give an indication of suboptimal quality of stored and/or irradiated platelets

  4. Characterization of spatial distribution of Tetranychus urticae in peppermint in California and implication for improving sampling plan.

    Science.gov (United States)

    Rijal, Jhalendra P; Wilson, Rob; Godfrey, Larry D

    2016-02-01

    Twospotted spider mite, Tetranychus urticae Koch, is an important pest of peppermint in California, USA. Spider mite feeding on peppermint leaves causes physiological changes in the plant, which coupling with the favorable environmental condition can lead to increased mite infestations. Significant yield loss can occur in absence of pest monitoring and timely management. Understating the within-field spatial distribution of T. urticae is critical for the development of reliable sampling plan. The study reported here aims to characterize the spatial distribution of mite infestation in four commercial peppermint fields in northern California using spatial techniques, variogram and Spatial Analysis by Distance IndicEs (SADIE). Variogram analysis revealed that there was a strong evidence for spatially dependent (aggregated) mite population in 13 of 17 sampling dates and the physical distance of the aggregation reached maximum to 7 m in peppermint fields. Using SADIE, 11 of 17 sampling dates showed aggregated distribution pattern of mite infestation. Combining results from variogram and SADIE analysis, the spatial aggregation of T. urticae was evident in all four fields for all 17 sampling dates evaluated. Comparing spatial association using SADIE, ca. 62% of the total sampling pairs showed a positive association of mite spatial distribution patterns between two consecutive sampling dates, which indicates a strong spatial and temporal stability of mite infestation in peppermint fields. These results are discussed in relation to behavior of spider mite distribution within field, and its implications for improving sampling guidelines that are essential for effective pest monitoring and management.

  5. Mother-Offspring Relations: Prey Quality and Maternal Size Affect Egg Size of an Acariphagous Lady Beetle in Culture

    Directory of Open Access Journals (Sweden)

    Eric W. Riddick

    2012-01-01

    Full Text Available We investigated mother-offspring relations in a lady beetle Stethorus punctillum Weise that utilizes spider mites as prey. Our objectives were to determine if (1 prey quality affects egg size, (2 maternal size correlates with egg size, and (3 egg size affects hatching success. We fed predators spider mites Tetranychus urticae Koch from lima bean Phaseolus lunatus L. foliage in the laboratory. Mothers of unknown body size offered high rather than low quality spider mites since birth produced larger eggs. Mothers of known body size offered only high quality spider mites, produced eggs of variable size, but mean egg size correlated positively with hind femur length. Mothers laid their eggs singly, rather than in batches, and eggs were large relative to femur size. Egg size did not affect hatch success; mean hatch rate exceeded 95% regardless of egg size. In conclusion, the quality of prey consumed by S. punctillum mothers while in the larval stage can affect their size as adults and, consequently, the size of their eggs. The behavior of laying eggs singly, the positive relationship between maternal size and mean egg size, and the high rate of egg hatch suggest that S. punctillum mothers invest heavily in offspring.

  6. Maternal house dust mite exposure during pregnancy enhances severity of house dust mite-induced asthma in murine offspring.

    Science.gov (United States)

    Richgels, Phoebe K; Yamani, Amnah; Chougnet, Claire A; Lewkowich, Ian P

    2017-11-01

    Atopic status of the mother and maternal exposure to environmental factors are associated with increased asthma risk. Moreover, animal models demonstrate that exposure to allergens in strongly sensitized mothers influences offspring asthma development, suggesting that in utero exposures can influence offspring asthma. However, it is unclear whether maternal exposure to common human allergens such as house dust mite (HDM), in the absence of additional adjuvants, influences offspring asthma development. We sought to determine whether maternal HDM exposure influences asthma development in offspring. Pregnant female mice were exposed to PBS or HDM during pregnancy. Using offspring of PBS- or HDM-exposed mothers, the magnitude of HDM or Aspergillus fumigatus (AF) extract-induced airway hyperresponsiveness (AHR), airway inflammation, immunoglobulin production, T H 2-associated cytokine synthesis, and pulmonary dendritic cell activity was assessed. Compared with offspring of PBS-exposed mothers, offspring of HDM-exposed mothers demonstrate increased AHR, airway inflammation, T H 2 cytokine production, and immunoglobulin levels and a modest decrease in the phagocytic capacity of pulmonary macrophage populations following HDM exposure. Increased sensitivity to AF-induced airway disease was not observed. Offspring of HDM-exposed B-cell-deficient mothers also demonstrated increased HDM-induced AHR, suggesting that transfer of maternal immunoglobulins is not required. Our data demonstrate that maternal exposure to HDM during pregnancy increases asthma sensitivity in offspring in an HDM-specific manner, suggesting that vertical transmission of maternal immune responses may be involved. These findings have important implications for regulation of asthma risk, and suggest that exposure to HDM in the developed world may have underappreciated influences on the overall prevalence of allergic asthma. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by

  7. Origin and higher-level diversification of acariform mites - evidence from nuclear ribosomal genes, extensive taxon sampling, and secondary structure alignment.

    Science.gov (United States)

    Pepato, A R; Klimov, P B

    2015-09-02

    Acariformes is the most species-rich and morphologically diverse radiation of chelicerate arthropods, known from the oldest terrestrial ecosystems. It is also a key lineage in understanding the evolution of this group, with the most vexing question whether mites, or Acari (Parasitiformes and Acariformes) is monophyletic. Previous molecular studies recovered Acari either as monophyletic or non-monophyletic, albeit with a limited taxon sampling. Similarly, relationships between basal acariform groups (include little-known, deep-soil 'endeostigmatan' mites) and major lineages of Acariformes (Sarcoptiformes, Prostigmata) are virtually unknown. We infer phylogeny of chelicerate arthropods, using a large and representative dataset, comprising all main in- and outgroups (228 taxa). Basal diversity of Acariformes is particularly well sampled. With this dataset, we conduct a series of phylogenetically explicit tests of chelicerate and acariform relationships and present a phylogenetic framework for internal relationships of acariform mites. Our molecular data strongly support a diphyletic Acari, with Acariformes as the sister group to Solifugae (PP =1.0; BP = 100), the so called Poecilophysidea. Among Acariformes, some representatives of the basal group Endeostigmata (mainly deep-soil mites) were recovered as sister-groups to the remaining Acariformes (i. e., Trombidiformes + and most of Sarcoptiformes). Desmonomatan oribatid mites (soil and litter mites) were recovered as the monophyletic sister group of Astigmata (e. g., stored product mites, house dust mites, mange mites, feather and fur mites). Trombidiformes (Sphaerolichida + Prostigmata) is strongly supported (PP =1.0; BP = 98-100). Labidostommatina was inferred as the basal lineage of Prostigmata. Eleutherengona (e. g., spider mites) and Parasitengona (e. g., chiggers, fresh water mites) were recovered as monophyletic. By contrast, Eupodina (e. g., snout mites and relatives) was not. Marine mites (Halacaridae) were

  8. Recent advances in the understanding of brown spider venoms: From the biology of spiders to the molecular mechanisms of toxins.

    Science.gov (United States)

    Gremski, Luiza Helena; Trevisan-Silva, Dilza; Ferrer, Valéria Pereira; Matsubara, Fernando Hitomi; Meissner, Gabriel Otto; Wille, Ana Carolina Martins; Vuitika, Larissa; Dias-Lopes, Camila; Ullah, Anwar; de Moraes, Fábio Rogério; Chávez-Olórtegui, Carlos; Barbaro, Katia Cristina; Murakami, Mario Tyago; Arni, Raghuvir Krishnaswamy; Senff-Ribeiro, Andrea; Chaim, Olga Meiri; Veiga, Silvio Sanches

    2014-06-01

    The Loxosceles genus spiders (the brown spiders) are encountered in all the continents, and the clinical manifestations following spider bites include skin necrosis with gravitational lesion spreading and occasional systemic manifestations, such as intravascular hemolysis, thrombocytopenia and acute renal failure. Brown spider venoms are complex mixtures of toxins especially enriched in three molecular families: the phospholipases D, astacin-like metalloproteases and Inhibitor Cystine Knot (ICK) peptides. Other toxins with low level of expression also present in the venom include the serine proteases, serine protease inhibitors, hyaluronidases, allergen factors and translationally controlled tumor protein (TCTP). The mechanisms by which the Loxosceles venoms act and exert their noxious effects are not fully understood. Except for the brown spider venom phospholipase D, which causes dermonecrosis, hemolysis, thrombocytopenia and renal failure, the pathological activities of the other venom toxins remain unclear. The objective of the present review is to provide insights into the brown spider venoms and loxoscelism based on recent results. These insights include the biology of brown spiders, the clinical features of loxoscelism and the diagnosis and therapy of brown spider bites. Regarding the brown spider venom, this review includes a description of the novel toxins revealed by molecular biology and proteomics techniques, the data regarding three-dimensional toxin structures, and the mechanism of action of these molecules. Finally, the biotechnological applications of the venom components, especially for those toxins reported as recombinant molecules, and the challenges for future study are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Ontogenetic shifts in intraguild predation on thrips by phytoseiid mites: the relevance of body size and diet specialization.

    Science.gov (United States)

    Walzer, A; Paulus, H F; Schausberger, P

    2004-12-01

    In greenhouse agroecosystems, a guild of spider mite predators may consist of the oligophagous predatory mite Phytoseiulus persimilis Athias-Henriot, the polyphagous predatory mite Neoseiulus californicus McGregor (both Acari: Phytoseiidae) and the primarily herbivorous but facultatively predatory western flower thrips Frankliniella occidentalis Pergande (Thysanoptera: Thripidae). Diet-specialization and the predator body size relative to prey are crucial factors in predation on F. occidentalis by P. persimilis and N. californicus. Here, it was tested whether the relevance of these factors changes during predator ontogeny. First, the predator (protonymphs and adult females of P. persimilis and N. californicus): prey (F. occidentalis first instars) body size ratios were measured. Second, the aggressiveness of P. persimilis and N. californicus towards F. occidentalis was assessed. Third, survival, development and oviposition of P. persimilis and N. californicus with F. occidentalis prey was determined. The body size ranking was P. persimilis females > N. californicus females > P. persimilis protonymphs > N. californicus protonymphs. Neoseiulus californicus females were the most aggressive predators, followed by highly aggressive N. californicus protonymphs and moderately aggressive P. persimilis protonymphs. Phytoseiulus persimilis females did not attack thrips. Frankliniella occidentalis larvae are an alternative prey for juvenile N. californicus and P. persimilis, enabling them to reach adulthood. Females of N. californicus but not P. persimilis sustained egg production with thrips prey. Within the guild studied here, N. californicus females are the most harmful predators for F. occidentalis larvae, followed by N. californicus and P. persimilis juveniles. Phytoseiulus persimilis females are harmless to F. occidentalis.

  10. Intra-seasonal Strategies Based on Energy Budgets in a Dynamic Predator-Prey Game

    NARCIS (Netherlands)

    Staňková, K.; Abate, A.; Sabelis, M.W.; Křivan, V.; Zaccour, G.

    2013-01-01

    We propose a game-theoretical model to describe intra-seasonal predator-prey interactions between predatory mites (Acari: Phytoseiidae) and prey mites (also called fruit-tree red spider mites) (Acari: Tetranychidae) that feed on leaves of apple trees. Its parameters have been instantiated based on

  11. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage

    Directory of Open Access Journals (Sweden)

    Ülo eNiinemets

    2013-07-01

    Full Text Available Plants have to cope with a plethora of biotic stresses such as herbivory and pathogen attacks throughout their life cycle. The biotic stresses typically trigger rapid emissions of volatile products of lipoxygenase pathway (LOX products, various C6 aldehydes, alcohols and derivatives, also called green leaf volatiles associated with oxidative burst. Further a variety of defense pathways is activated, leading to induction of synthesis and emission of a complex blend of volatiles, often including methyl salicylate, indole, mono-, homo- and sesquiterpenes. The airborne volatiles are involved in systemic responses leading to elicitation of emissions from non-damaged plant parts. For several abiotic stresses, it has been demonstrated that volatile emissions are quantitatively related to the stress dose. The biotic impacts under natural conditions vary in severity from mild to severe, but it is unclear whether volatile emissions also scale with the severity of biotic stresses in a dose-dependent manner. Furthermore, biotic impacts are typically recurrent, but it is poorly understood how direct stress-triggered and systemic emission responses are silenced during periods intervening sequential stress events. Here we review the information on induced emissions elicited in response to biotic attacks, and argue that biotic stress severity vs. emission rate relationships should follow principally the same dose-response relationships as previously demonstrated for several abiotic stresses. Analysis of several case studies investigating the elicitation of emissions in response to chewing herbivores, aphids, rust fungi, powdery mildew and Botrytis, suggests that induced emissions do respond to stress severity in dose-dependent manner. Bi-phasic emission kinetics of several induced volatiles have been demonstrated in these experiments, suggesting that next to immediate stress-triggered emissions, biotic stress elicited emissions typically have a secondary

  12. Suppression of Plant Defenses by Herbivorous Mites Is Not Associated with Adaptation to Host Plants

    Directory of Open Access Journals (Sweden)

    Jéssica T. Paulo

    2018-06-01

    Full Text Available Some herbivores suppress plant defenses, which may be viewed as a result of the coevolutionary arms race between plants and herbivores. However, this ability is usually studied in a one-herbivore-one-plant system, which hampers comparative studies that could corroborate this hypothesis. Here, we extend this paradigm and ask whether the herbivorous spider-mite Tetranychus evansi, which suppresses the jasmonic-acid pathway in tomato plants, is also able to suppress defenses in other host plants at different phylogenetic distances from tomatoes. We test this using different plants from the Solanales order, namely tomato, jimsonweed, tobacco, and morning glory (three Solanaceae and one Convolvulaceae, and bean plants (Fabales. First, we compare the performance of T. evansi to that of the other two most-commonly found species of the same genus, T. urticae and T. ludeni, on several plants. We found that the performance of T. evansi is higher than that of the other species only on tomato plants. We then showed, by measuring trypsin inhibitor activity and life history traits of conspecific mites on either clean or pre-infested plants, that T. evansi can suppress plant defenses on all plants except tobacco. This study suggests that the suppression of plant defenses may occur on host plants other than those to which herbivores are adapted.

  13. The influence of household pets on the composition and quantity of allergenic mite fauna within Irish homes: a preliminary investigation.

    Science.gov (United States)

    Clarke, D; Dix, E; Liddy, S; Gormally, M; Byrne, M

    2016-03-01

    Allergenic mites are responsible for inducing hypersensitive reactions in genetically predisposed people worldwide. Mites in dust from 30 Irish homes with pets (dogs, n = 23; cats, n = 7) were compared with those in 30 homes without pets. House dust mites constituted 78% of all mites recorded, with Dermatophagoides pteronyssinus (Acariformes: Pyroglyphidae) representing 57-72% of mites in furniture and mattresses in both home types compared with only 22% of mites in pet beds. Although storage mites accounted for just 13% of all mites recorded, they represented 46% of mites recorded in pet beds. Median levels of the dust mite allergen Der p 1 (µg/g) in dust samples from mattresses in homes without pets were significantly greater than in mattresses from homes with pets, reflecting the greater densities of D. pteronyssinus found in the former home category. Mite species richness was greater in homes with pets (17 species) than in homes without pets (13 species). This suggests that although the presence of pets can result in a wider variety of epidemiologically important mite species within households, increased competition among mite species may result in a more balanced mite fauna in the home, inhibiting the dominance of any one species and hence lowering allergen-associated risks. © 2015 The Royal Entomological Society.

  14. Constitutive and herbivore-induced volatiles in pear, alder and hawthorn trees

    NARCIS (Netherlands)

    Scutareanu, P.; Bruin, de J.; Posthumus, M.A.; Drukker, B.

    2003-01-01

    Qualitative and quantitative differences among pear cultivars were found in constitutive and Cacopsylla-induced volatiles, depending on experimental treatment of the trees (i.e., uninfested and partly or completely infested by psyllids). Blend differences were also found between pear cultivars and

  15. Maternal care and subsocial behaviour in spiders.

    Science.gov (United States)

    Yip, Eric C; Rayor, Linda S

    2014-05-01

    While most spiders are solitary and opportunistically cannibalistic, a variety of social organisations has evolved in a minority of spider species. One form of social organisation is subsociality, in which siblings remain together with their parent for some period of time but disperse prior to independent reproduction. We review the literature on subsocial and maternal behaviour in spiders to highlight areas in which subsocial spiders have informed our understanding of social evolution and to identify promising areas of future research. We show that subsocial behaviour has evolved independently at least 18 times in spiders, across a wide phylogenetic distribution. Subsocial behaviour is diverse in terms of the form of care provided by the mother, the duration of care and sibling association, the degree of interaction and cooperation among siblings, and the use of vibratory and chemical communication. Subsocial spiders are useful model organisms to study various topics in ecology, such as kin recognition and the evolution of cheating and its impact on societies. Further, why social behaviour evolved in some lineages and not others is currently a topic of debate in behavioural ecology, and we argue that spiders offer an opportunity to untangle the ecological causes of parental care, which forms the basis of many other animal societies. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  16. Checklist of spider fauna of FR Peshawar, FATA, Pakistan

    Directory of Open Access Journals (Sweden)

    F. Perveen

    2012-03-01

    Full Text Available The spiders are known as poisonous arthropods, but they also act as the predator or biological pests control agent. Their 23 species belonging to 15 genera and 09 families were reported during 2009-2010 from FR Peshawar, FATA, Pakistan. The reported families Clubionidae, Scytodidae and Sprassidae covered each 4%, Araneidae, Gnaphosidae, Pholicidae and Salticidae each 9%, Thomisidae 13% and Lycosidae 43% biodiversity of spiders of FATA. However, the largest spider collected was huntsman, Isopoda tuhodnigra (Barrion with total body length 15.80+-0.83 mm. Moreover, the smallest spider was wolf spider, Pardosa birmanica (Simon with total body length 4.20+-1.30 mm. Further, the crab spiders, Thomisus pugilis (Stoliczka, T. spectabilis (Doleschall and Diaea evanida (Thorell were the most colorful species belonging to family Thomisidae. A detail study is required for further exploration of spider fauna of FATA.

  17. Inbreeding avoidance in spiders: evidence for rescue effect in fecundity of female spiders with outbreeding opportunity

    DEFF Research Database (Denmark)

    Bilde, T.; Maklakov, A.A.; Schilling, Nadia

    2007-01-01

    avoidance can be because of low risk of inbreeding, variation in tolerance to inbreeding or high costs of outbreeding. We examined the relationship between inbreeding depression and inbreeding avoidance adaptations under two levels of inbreeding in the spider Oedothorax apicatus, asking whether preference...... for unrelated sperm via pre- and/or post-copulatory mechanisms could restore female fitness when inbreeding depression increases. Using inbred isofemale lines we provided female spiders with one or two male spiders of different relatedness in five combinations: one male sib; one male nonsib; two male sibs; two...

  18. Understanding Spider-Man: Your Everyday Superhero

    OpenAIRE

    Falk, Nicklas; Blomsterberg, Sofie Amalie; Suciu, Alice Sabrina; Pedersen, Mads Peter; Lucas, Vilhelm

    2014-01-01

    This project focuses on the understanding of Spider-Man, and the morals and ethics that lie behind the choices he makes. Through the Dimensions Philosophy & Science/Text & Sign, this understanding is concluded by looking at ethical theories and comic book analysis. Based on the Ultimate Spider-Man comic book series, the aim is to clarify who Spider-Man is and what causes him to act in certain ways; before and after his realization of power. Some theories used to investigate these area...

  19. House dust mite control measures for asthma

    DEFF Research Database (Denmark)

    Gøtzsche, Peter C.; Johansen, Helle Krogh

    2008-01-01

    BACKGROUND: The major allergen in house dust comes from mites. Chemical, physical and combined methods of reducing mite allergen levels are intended to reduce asthma symptoms in people who are sensitive to house dust mites. OBJECTIVES: To assess the effects of reducing exposure to house dust mite...... antigens in the homes of people with mite-sensitive asthma. SEARCH STRATEGY: PubMed and The Cochrane Library (last searches Nov 2007), reference lists. SELECTION CRITERIA: Randomised trials of mite control measures vs placebo or no treatment in people with asthma known to be sensitive to house dust mites......), the standardised mean difference was 0.00 (95% confidence interval (CI) -0.10 to 0.10). There were no statistically significant differences either in number of patients improved (relative risk 1.01, 95% CI 0.80 to 1.27), asthma symptom scores (standardised mean difference -0.04, 95% CI -0.15 to 0...

  20. Fitness Cost of Litomosoides sigmodontis Filarial Infection in Mite Vectors; Implications of Infected Haematophagous Arthropod Excretory Products in Host-Vector Interactions

    Directory of Open Access Journals (Sweden)

    Adélaïde Nieguitsila

    2013-01-01

    Full Text Available Filariae are a leading cause of infections which are responsible for serious dermatological, ocular, and vascular lesions. Infective third stage larvae (L3 are transmitted through the bite of a haematophagous vector. Litomosoides sigmodontis is a well-established model of filariasis in the mouse, with the vector being the mite Ornithonyssus bacoti. The aim of the study was to analyse the filarial infection in mites to determine the consequences of filarial infection in the blood-feeding and the reproduction of mites as well as in the regulation of vector-induced inflammation in the mouse skin. Firstly, L3 are unevenly distributed throughout the host population and the majority of the population harbours a moderate infection (1 to 6 L3. Filarial infection does not significantly affect the probing delay for blood feeding. The number of released protonymphs is lower in infected mites but is not correlated with the L3 burden. Finally, induced excreted proteins from infected mites but not from uninfected mites stimulate TNF-α and the neutrophil-chemoattractant KC production by antigen-presenting cells (APCs. Altogether, these results describe the modification of the mite behavior under filarial infection and suggest that the immunomodulatory capacity of the mite may be modified by the presence of the parasite, hindering its defensive ability towards the vertebrate host.

  1. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata.

    Science.gov (United States)

    Zhu, Junwei; Park, Kye-Chung

    2005-08-01

    Induced volatiles provide a signal to foraging predatory insects about the location of their prey. In Iowa, early in the growing season of soybean, Glycine max, many predacious seven-spotted lady beetles, Coccinella septempunctata, were observed on plants with heavy infestations of soybean aphid, Aphis glycines. We studied whether the attraction of this beetle is caused by the release of specific volatile compounds of soybean plants infested by aphids. Volatile compounds emitted by soybean plants infested by aphids were compared with those of undamaged, uninfested, and artificially damaged plants. Gas chromatography-mass spectrometry analyses revealed consistent differences in the profiles of volatile compounds between aphid-infested soybean plants and undamaged ones. Significantly more methyl salicylate was released from infested plants at both the V1 and V2 plant growth stages. However, release patterns of two other induced plant volatiles, (D)-limonene and (E,E)-alpha-farnesene, differed between the two plant growth stages. Gas chromatographic-electroantennographic detection of volatile extracts from infested soybean plants showed that methyl salicylate elicited significant electrophysiological responses in C. septempunctata. In field tests, traps baited with methyl salicylate were highly attractive to adult C. septempunctata, whereas 2-phenylethanol was most attractive to the lacewing Chrysoperla carnea and syrphid flies. Another common lady beetle, the multicolored Asian lady beetle, Harmonia axyridis, showed no preference for the compounds. These results indicate that C. septempunctata may use methyl salicylate as the olfactory cue for prey location. We also tested the attractiveness of some selected soybean volatiles to alate soybean aphids in the field, and results showed that traps baited with benzaldehyde caught significantly higher numbers of aphids.

  2. Anti-mite measurements in mite-sensitive adult asthma. A controlled trial.

    Science.gov (United States)

    Burr, M L; St Leger, A S; Neale, E

    1976-02-14

    A cross-over controlled trial has been conducted among 32 adult patients with mite-sensitive asthma. The bedclothes and pillows of each subject were laundered and vacuum-cleaned and a plastic cover applied to the mattress for six weeks in an attempt to reduce exposure to mites. No improvement in daily peak-flow reading or drug usage was found in comparison with a control period.

  3. Spider silk as a template for obtaining magnesium oxide and magnesium hydroxide fibers

    Directory of Open Access Journals (Sweden)

    Dmitrović Svetlana

    2018-01-01

    Full Text Available Spider silk fibers, collected from Pholcus Phalangioides spider were used as a template for obtaining magnesium oxide (MgO, periclase as well as magnesium hydroxide (Mg(OH2, brucite fibers. Magnesium oxide fibers were obtained in a simple manner by heat induced decomposition of magnesium salt (MgCl2 in the presence of the spider silk fibers, while magnesium hydroxide fibers were synthesized by hydration of MgO fibers at 50, 70 and 90 C, for 48 and 96 h. According to Scanning electron microscopy (SEM, dimensions of spider silk fibers determined the dimension of synthesized MgO fibers, while for Mg(OH2 fibers, the average diameter was increased with prolonging the hydration period. The surface of Mg(OH2 fibers was noticed to be covered with brucite in a form of plates. X-Ray diffraction (XRD analysis showed that MgO fibers were single-phased (the pure magnesium oxide fibers were obtained, while Mg(OH2 fibers were two- or single-phased brucite depending on incubation period, and/or incubation temperature. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 45012

  4. Ventilation in homes infested by house-dust mites.

    Science.gov (United States)

    Sundell, J; Wickman, M; Pershagen, G; Nordvall, S L

    1995-02-01

    Thirty single-family homes with either high (> or = 2000 ng/g) or low (< or = 1000 ng/g) house-dust mite (HDM) allergen levels in mattress dust were examined for ventilation, thermal climate, and air quality (formaldehyde and total volatile organic compounds (TVOC). Elevated concentrations of HDM allergen in mattress and floor dust were associated with the difference in absolute humidity between indoor and outdoor air, as well as with low air-change rates of the home, particularly the bedroom. No correlation was found between concentration of TVOC or formaldehyde in bedroom air and HDM allergen concentration. In regions with a cold winter climate, the air-change rate of the home and the infiltration of outdoor air into the bedroom appear to be important for the infestation of HDM.

  5. Allergic asthma induced in rhesus monkeys by house dust mite (Dermatophagoides farinae).

    Science.gov (United States)

    Schelegle, E S; Gershwin, L J; Miller, L A; Fanucchi, M V; Van Winkle, L S; Gerriets, J P; Walby, W F; Omlor, A M; Buckpitt, A R; Tarkington, B K; Wong, V J; Joad, J P; Pinkerton, K B; Wu, R; Evans, M J; Hyde, D M; Plopper, C G

    2001-01-01

    To establish whether allergic asthma could be induced experimentally in a nonhuman primate using a common human allergen, three female rhesus monkeys (Macaca mulatta) were sensitized with house dust mite (Dermatophagoides farinae) allergen (HDMA) by subcutaneous injection, followed by four intranasal sensitizations, and exposure to allergen aerosol 3 hours per day, 3 days per week for up to 13 weeks. Before aerosol challenge, all three monkeys skin-tested positive for HDMA. During aerosol challenge with HDMA, sensitized monkeys exhibited cough and rapid shallow breathing and increased airway resistance, which was reversed by albuterol aerosol treatment. Compared to nonsensitized monkeys, there was a fourfold reduction in the dose of histamine aerosol necessary to produce a 150% increase in airway resistance in sensitized monkeys. After aerosol challenge, serum levels of histamine were elevated in sensitized monkeys. Sensitized monkeys exhibited increased levels of HDMA-specific IgE in serum, numbers of eosinophils and exfoliated cells within lavage, and elevated CD25 expression on circulating CD4(+) lymphocytes. Intrapulmonary bronchi of sensitized monkeys had focal mucus cell hyperplasia, interstitial infiltrates of eosinophils, and thickening of the basement membrane zone. We conclude that a model of allergic asthma can be induced in rhesus monkeys using a protocol consisting of subcutaneous injection, intranasal instillation, and aerosol challenge with HDMA.

  6. Integration of multiple cues allows threat-sensitive anti-intraguild predator responses in predatory mites

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2013-01-01

    Intraguild (IG) prey is commonly confronted with multiple IG predator species. However, the IG predation (IGP) risk for prey is not only dependent on the predator species, but also on inherent (intraspecific) characteristics of a given IG predator such as its life-stage, sex or gravidity and the associated prey needs. Thus, IG prey should have evolved the ability to integrate multiple IG predator cues, which should allow both inter- and intraspecific threat-sensitive anti-predator responses. Using a guild of plant-inhabiting predatory mites sharing spider mites as prey, we evaluated the effects of single and combined cues (eggs and/or chemical traces left by a predator female on the substrate) of the low risk IG predator Neoseiulus californicus and the high risk IG predator Amblyseius andersoni on time, distance and path shape parameters of the larval IG prey Phytoseiulus persimilis. IG prey discriminated between traces of the low and high risk IG predator, with and without additional presence of their eggs, indicating interspecific threat-sensitivity. The behavioural changes were manifest in distance moved, activity and path shape of IG prey. The cue combination of traces and eggs of the IG predators conveyed other information than each cue alone, allowing intraspecific threat-sensitive responses by IG prey apparent in changed velocities and distances moved. We argue that graded responses to single and combined IG predator cues are adaptive due to minimization of acceptance errors in IG prey decision making. PMID:23750040

  7. Infection of corn ears by Fusarium spp. induces the emission of volatile sesquiterpenes.

    Science.gov (United States)

    Becker, Eva-Maria; Herrfurth, Cornelia; Irmisch, Sandra; Köllner, Tobias G; Feussner, Ivo; Karlovsky, Petr; Splivallo, Richard

    2014-06-04

    Infection of corn (Zea mays L.) ears with fungal pathogens of the Fusarium genus might result in yield losses and in the accumulation of mycotoxins. The aim of this study was to investigate whether volatile profiles could be used to identify Fusarium-infected corn ears. The volatiles released by corn ears infected by Fusarium graminearum, Fusarium verticillioides, and Fusarium subglutinans were studied. Volatile emission was recorded at 24 days postinoculation (dpi) and in a time series (from 4 to 24 dpi). Twenty-two volatiles were differentially emitted from Fusarium-infected versus healthy corn ears. These included C6-C8 compounds and sesquiterpenoids. All volatiles indicative of Fusarium infection were detectable as early as 4-8 dpi and continued to be produced to the final sampling time (early milk maturity stage). The induced emission of β-macrocarpene and β-bisabolene correlated with an increased transcript accumulation of corn terpene synthase 6/11 (tps6/11). Additionally, the modification of volatile profiles after Fusarium infection was accompanied by the induction of plant defense compounds such as zealexins and oxylipins. Together, these results reveal a broad metabolic response of the plant to pathogen attack. Volatile biomarkers of Fusarium infection are promising indicators for the early detection of fungal infection before disease symptoms become visible.

  8. Prey interception drives web invasion and spider size determines successful web takeover in nocturnal orb-web spiders.

    Science.gov (United States)

    Gan, Wenjin; Liu, Shengjie; Yang, Xiaodong; Li, Daiqin; Lei, Chaoliang

    2015-09-24

    A striking feature of web-building spiders is the use of silk to make webs, mainly for prey capture. However, building a web is energetically expensive and increases the risk of predation. To reduce such costs and still have access to abundant prey, some web-building spiders have evolved web invasion behaviour. In general, no consistent patterns of web invasion have emerged and the factors determining web invasion remain largely unexplored. Here we report web invasion among conspecifics in seven nocturnal species of orb-web spiders, and examined the factors determining the probability of webs that could be invaded and taken over by conspecifics. About 36% of webs were invaded by conspecifics, and 25% of invaded webs were taken over by the invaders. A web that was built higher and intercepted more prey was more likely to be invaded. Once a web was invaded, the smaller the size of the resident spider, the more likely its web would be taken over by the invader. This study suggests that web invasion, as a possible way of reducing costs, may be widespread in nocturnal orb-web spiders. © 2015. Published by The Company of Biologists Ltd.

  9. Prey interception drives web invasion and spider size determines successful web takeover in nocturnal orb-web spiders

    Directory of Open Access Journals (Sweden)

    Wenjin Gan

    2015-10-01

    Full Text Available A striking feature of web-building spiders is the use of silk to make webs, mainly for prey capture. However, building a web is energetically expensive and increases the risk of predation. To reduce such costs and still have access to abundant prey, some web-building spiders have evolved web invasion behaviour. In general, no consistent patterns of web invasion have emerged and the factors determining web invasion remain largely unexplored. Here we report web invasion among conspecifics in seven nocturnal species of orb-web spiders, and examined the factors determining the probability of webs that could be invaded and taken over by conspecifics. About 36% of webs were invaded by conspecifics, and 25% of invaded webs were taken over by the invaders. A web that was built higher and intercepted more prey was more likely to be invaded. Once a web was invaded, the smaller the size of the resident spider, the more likely its web would be taken over by the invader. This study suggests that web invasion, as a possible way of reducing costs, may be widespread in nocturnal orb-web spiders.

  10. First report of clinical presentation of a bite by a running spider, Philodromus sp. (Araneae: Philodromidae), with recommendations for spider bite management.

    Science.gov (United States)

    Coetzee, Maureen; Dippenaar, Ansie; Frean, John; Hunt, Richard H

    2017-06-30

    This article describes the clinical progression of symptoms over a period of 5 days of a bite inflicted by a Philodromus sp. spider. Commonly known as 'running spiders', these are not considered to be harmful to humans. This report, however, is the first description of an actual bite by a member of this group of spiders showing cytotoxic envenomation. Management of the bites should be as recommended for other cytotoxic spider bites.

  11. Foliar nectar enhances plant-mite mutualisms: the effect of leaf sugar on the control of powdery mildew by domatia-inhabiting mites.

    Science.gov (United States)

    Weber, Marjorie G; Porturas, Laura D; Taylor, Scott A

    2016-09-01

    Mite domatia are small structures on the underside of plant leaves that provide homes for predacious or fungivorous mites. In turn, mites inhabiting domatia defend the plant by consuming leaf herbivores and pathogens, which can result in a domatia-mediated, plant-mite defence mutualism. Several recent studies have suggested that plants receive enhanced benefits when they provide a foliar food source, such as sugars secreted from extrafloral nectaries, to mite mutualists alongside mite domatia. However, the effect of foliar sugar on reducing leaf pathogen load via domatia-inhabiting mites has not been directly investigated. To fill this gap, the links between foliar sugar addition, domatia-inhabiting mite abundance, and pathogen load were experimentally evaluated in wild grape. Furthermore, because the proposed combined benefits of providing food and housing have been hypothesized to select for the evolutionary correlation of extrafloral nectaries and domatia across plant lineages, a literature survey aimed at determining the overlap of mite domatia and extrafloral nectaries across plant groups was also conducted. It was found that leaves with artificial addition of foliar sugar had 58-80 % more mites than leaves without foliar sugar addition, and that higher mite abundances translated to reduced powdery mildew (Erysiphe necator) loads on leaves. It was found that mite domatia and extrafloral nectaries occur non-randomly in the same clades across Eudicots. Genera with both traits are reported to highlight candidate lineages for future studies. Together, the results demonstrate that foliar sugar can indeed enhance the efficacy of domatia-mediated plant-mite mutualisms, and suggest that this synergism has the potential to influence the co-distribution of foliar nectar and mite domatia across plants. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Biomechanics of Spider Silks

    Science.gov (United States)

    2006-03-02

    water and deformation conditions. Such fibres [Nexia ’ biosteel ’ silk ] were spun from recombinant silk ’cloned’ from Spidroin II and indeed show 67...SUBTITLE 5. FUNDING NUMBERS Biomechanics of Spider Silks F49620-03-1-0111 6. AUTHOR(S) Fritz Vollrath 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...Perform Pro, WHSIDIOR, Oct 94 COVER SHEET FINAL (3rd Year) Report to AFOSR on: BIOMECHANICS OF SPIDER SILKS Fritz Vollrath, Oxford University, England

  13. Sex-specific kleptoparasitic foraging in ant-eating spiders

    DEFF Research Database (Denmark)

    Martisová, Martina; Bilde, T.; Pekar, Stano

    2009-01-01

    . To investigate this hypothesis, we studied the effect of sex and life history stage on the frequency of kleptoparasitism in ant-eating spiders of the genus Zodarion in the field. These spiders use a special capture technique involving a quick attack on an ant that is left unguarded by spiders for several minutes......, providing ample opportunities for kleptoparasitism. We found that adult females consistently hunted actively, while adult males ceased active prey capture and instead engaged in kleptoparasitism. Juvenile spiders were active hunters irrespective of sex. Consistent with an ontogenetic shift in foraging...

  14. Specific predictive power of automatic spider-related affective associations for controllable and uncontrollable fear responses toward spiders

    NARCIS (Netherlands)

    Huijdlng, J; de Jong, PJ; Huijding, J.

    This study examined the predictive power of automatically activated spider-related affective associations for automatic and controllable fear responses. The Extrinsic Affective Simon Task (EAST; De Houwer, 2003) was used to indirectly assess automatic spider fear-related associations. The EAST and

  15. VIPR III VADR SPIDER Structural Design and Analysis

    Science.gov (United States)

    Li, Wesley; Chen, Tony

    2016-01-01

    In support of the National Aeronautics and Space Administration (NASA) Vehicle Integrated Propulsion Research (VIPR) Phase III team to evaluate the volcanic ash environment effects on the Pratt & Whitney F117-PW-100 turbofan engine, NASA Armstrong Flight Research Center has successfully performed structural design and analysis on the Volcanic Ash Distribution Rig (VADR) and the Structural Particulate Integration Device for Engine Research (SPIDER) for the ash ingestion test. Static and dynamic load analyses were performed to ensure no structural failure would occur during the test. Modal analysis was conducted, and the results were used to develop engine power setting avoidance zones. These engine power setting avoidance zones were defined to minimize the dwell time when the natural frequencies of the VADR/SPIDER system coincided with the excitation frequencies of the engine which was operating at various revolutions per minute. Vortex-induced vibration due to engine suction air flow during the ingestion test was also evaluated, but was not a concern.

  16. Mites as selective fungal carriers in stored grain habitats.

    Science.gov (United States)

    Hubert, Jan; Stejskal, Václav; Kubátová, Alena; Munzbergová, Zuzana; Vánová, Marie; Zd'árková, Eva

    2003-01-01

    Mites are well documented as vectors of micromycetes in stored products. Since their vectoring capacity is low due to their small size, they can be serious vectors only where there is selective transfer of a high load of specific fungal species. Therefore the aim of our work was to find out whether the transfer of fungi is selective. Four kinds of stored seeds (wheat, poppy, lettuce, mustard) infested by storage mites were subjected to mycological analysis. We compared the spectrum of micromycete species isolated from different species of mites (Acarus siro, Lepidoglyphus destructor, Tyrophagus putrescentiae, Caloglyphus rhizoglyphoides and Cheyletus malaccensis) and various kinds of stored seeds. Fungi were separately isolated from (a) the surface of mites, (b) the mites' digestive tract (= faeces), and (c) stored seeds and were then cultivated and determined. The fungal transport via mites is selective. This conclusion is supported by (i) lower numbers of isolated fungal species from mites than from seeds; (ii) lower Shannon-Weaver diversity index in the fungal communities isolated from mites than from seeds; (iii) significant effect of mites/seeds as environmental variables on fungal presence in a redundancy analysis (RDA); (iv) differences in composition of isolated fungi between mite species shown by RDA. The results of our work support the hypothesis that mite-fungal interactions are dependent on mite species. The fungi attractive to mites seem to be dispersed more than others. The selectivity of fungal transport via mites enhances their pest importance.

  17. Disentangling the phylogenetic and ecological components of spider phenotypic variation.

    Science.gov (United States)

    Gonçalves-Souza, Thiago; Diniz-Filho, José Alexandre Felizola; Romero, Gustavo Quevedo

    2014-01-01

    An understanding of how the degree of phylogenetic relatedness influences the ecological similarity among species is crucial to inferring the mechanisms governing the assembly of communities. We evaluated the relative importance of spider phylogenetic relationships and ecological niche (plant morphological variables) to the variation in spider body size and shape by comparing spiders at different scales: (i) between bromeliads and dicot plants (i.e., habitat scale) and (ii) among bromeliads with distinct architectural features (i.e., microhabitat scale). We partitioned the interspecific variation in body size and shape into phylogenetic (that express trait values as expected by phylogenetic relationships among species) and ecological components (that express trait values independent of phylogenetic relationships). At the habitat scale, bromeliad spiders were larger and flatter than spiders associated with the surrounding dicots. At this scale, plant morphology sorted out close related spiders. Our results showed that spider flatness is phylogenetically clustered at the habitat scale, whereas it is phylogenetically overdispersed at the microhabitat scale, although phylogenic signal is present in both scales. Taken together, these results suggest that whereas at the habitat scale selective colonization affect spider body size and shape, at fine scales both selective colonization and adaptive evolution determine spider body shape. By partitioning the phylogenetic and ecological components of phenotypic variation, we were able to disentangle the evolutionary history of distinct spider traits and show that plant architecture plays a role in the evolution of spider body size and shape. We also discussed the relevance in considering multiple scales when studying phylogenetic community structure.

  18. Integration of multiple intraguild predator cues for oviposition decisions by a predatory mite

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2012-01-01

    In mutual intraguild predation (IGP), the role of individual guild members is strongly context dependent and, during ontogeny, can shift from an intraguild (IG) prey to a food competitor or to an IG predator. Consequently, recognition of an offspring's predator is more complex for IG than classic prey females. Thus, IG prey females should be able to modulate their oviposition decisions by integrating multiple IG predator cues and by experience. Using a guild of plant-inhabiting predatory mites sharing the spider mite Tetranychus urticae as prey and passing through ontogenetic role shifts in mutual IGP, we assessed the effects of single and combined direct cues of the IG predator Amblyseius andersoni (eggs and traces left by a female on the substrate) on prey patch selection and oviposition behaviour of naïve and IG predator-experienced IG prey females of Phytoseiulus persimilis. The IG prey females preferentially resided in patches without predator cues when the alternative patch contained traces of predator females or the cue combination. Preferential egg placement in patches without predator cues was only apparent in the choice situation with the cue combination. Experience increased the responsiveness of females exposed to the IG predator cue combination, indicated by immediate selection of the prey patch without predator cues and almost perfect oviposition avoidance in patches with the cue combination. We argue that the evolution of the ability of IG prey females to evaluate offspring's IGP risk accurately is driven by the irreversibility of oviposition and the functionally complex relationships between predator guild members. PMID:23264692

  19. Oral mite anaphylaxis caused by mite-contaminated okonomiyaki/ pancake-mix in Japan: 8 case reports and a review of 28 reported cases.

    Science.gov (United States)

    Takahashi, Kentaro; Taniguchi, Masami; Fukutomi, Yuma; Sekiya, Kiyoshi; Watai, Kentaro; Mitsui, Chihiro; Tanimoto, Hidenori; Oshikata, Chiyako; Tsuburai, Takahiro; Tsurikisawa, Naomi; Minoguchi, Kenji; Nakajima, Hiroshi; Akiyama, Kazuo

    2014-03-01

    Anaphylaxis after the ingestion of foods contaminated with mites has recently been recognized. Case series and case reports thus far have shown that mite-contaminated wheat flour is the major cause of oral mite anaphylaxis. However, we have found 8 cases of oral mite anaphylaxis which were caused by mite-contaminated okonomiyaki-mix, a savory Japanese style pancake mix, in our hospital. In addition to our 8 cases, the databases of MEDLINE and ICHUSHI were systematically searched for patients with oral mite anaphylaxis in Japan. Thirty-six patients including our 8 cases with oral mite anaphylaxis were identified. Thirty-four out of 36 cases (94%) ingested okonomiyaki or takoyaki, prepared at home using okonomiyaki-mix or takoyaki-mix which was previously opened and stored for months at ambient temperature. Microscopic examination of culprit mixes of 16 cases including our 1 case revealed contamination of mites such as Dermatophagoides farina (Der f) (5 cases), Tyrophagus putrescentiae (Tyr p) (4 cases), and Dermatophagoides pteronyssinus (Der p) (3 cases). The specific IgE to each mite is generally upregulated in these patients. Especially, the titers of specific IgE to Der p and Der f were more than class 2 in all cases. Mite-contaminated flavored flour is the major cause of oral mite anaphylaxis in Japan.

  20. [Transcatheter embolization for huge pulmonary arteriovenous fistula using metallic "spider" and spring embolus--application of hand-made metallic "spider" using partial monorail technique].

    Science.gov (United States)

    Hirota, S; Sako, M; Fujita, Y; Hasegawa, Y; Sugimoto, K; Suzuki, Y; Kono, M

    1992-07-25

    We performed transcatheter embolization in two cases with huge pulmonary arteriovenous fistula (AVF) using a metallic "spider" and spring embolus. Conventional spring embolus or detachable balloon could not be used in these cases. Metallic spider was indicated for pulmonary AVF with a feeding artery diameter of more than 16 mm to prevent embolus passing through the AVF. In the first case, we used large handmade metallic spiders of 25 mm in diameter followed by embolization by numerous spring coils. At that time, a partial monorail technique was newly devised to carry the large metallic spider into the feeding artery, otherwise the spider could not pass into a 9F catheter. After embolization, symptoms and PaO2 in arterial blood improved remarkably in both cases. In the second case, a spring coil migrated into the normal pulmonary artery, but no infarction resulted. In conclusion, the metallic spider was very useful for embolization of hugee pulmonary AVF to avoid the embolus passing through and to tangle spring coils together with it. If commercially available "spiders" are too small, ones can be made easily.

  1. Tangled in a sparse spider web

    DEFF Research Database (Denmark)

    Dimitrov, Dimitar Stefanov; Lopardo, Lara; Giribet, Gonzalo

    2012-01-01

    In order to study the tempo and the mode of spider orb web evolution and diversification, we conducted a phylogenetic analysis using six genetic markers along with a comprehensive taxon sample. The present analyses are the first to recover the monophyly of orb-weaving spiders based solely on DNA ...

  2. Bee Venom Phospholipase A2 Alleviate House Dust Mite-Induced Atopic Dermatitis-Like Skin Lesions by the CD206 Mannose Receptor

    OpenAIRE

    Dasom Shin; Won Choi; Hyunsu Bae

    2018-01-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by highly pruritic, erythematous, and eczematous skin plaques. We previously reported that phospholipase A2 (PLA2) derived from bee venom alleviates AD-like skin lesions induced by 2,4-dinitrochlorobenzene (DNCB) and house dust mite extract (Dermatophagoides farinae extract, DFE) in a murine model. However, the underlying mechanisms of PLA2 action in actopic dermatitis remain unclear. In this study, we showed that PLA...

  3. Sclerotherapy of Varicose Veins and Spider Veins

    Science.gov (United States)

    ... Index A-Z Sclerotherapy of Varicose Veins and Spider Veins Sclerotherapy uses injections from a very fine, ... Sclerotherapy? What is Sclerotherapy of Varicose Veins and Spider Veins? Sclerotherapy is a minimally invasive treatment used ...

  4. Assassin bug uses aggressive mimicry to lure spider prey.

    Science.gov (United States)

    Wignall, Anne E; Taylor, Phillip W

    2011-05-07

    Assassin bugs (Stenolemus bituberus) hunt web-building spiders by invading the web and plucking the silk to generate vibrations that lure the resident spider into striking range. To test whether vibrations generated by bugs aggressively mimic the vibrations generated by insect prey, we compared the responses of spiders to bugs with how they responded to prey, courting male spiders and leaves falling into the web. We also analysed the associated vibrations. Similar spider orientation and approach behaviours were observed in response to vibrations from bugs and prey, whereas different behaviours were observed in response to vibrations from male spiders and leaves. Peak frequency and duration of vibrations generated by bugs were similar to those generated by prey and courting males. Further, vibrations from bugs had a temporal structure and amplitude that were similar to vibrations generated by leg and body movements of prey and distinctly different to vibrations from courting males or leaves, or prey beating their wings. To be an effective predator, bugs do not need to mimic the full range of prey vibrations. Instead bugs are general mimics of a subset of prey vibrations that fall within the range of vibrations classified by spiders as 'prey'.

  5. SPIDER: CMB Polarimetry from the Edge of Space

    Energy Technology Data Exchange (ETDEWEB)

    Gualtieri, R.; et al.

    2017-11-28

    SPIDER is a balloon-borne instrument designed to map the polarization of the millimeter-wave sky at large angular scales. SPIDER targets the B-mode signature of primordial gravitational waves in the cosmic microwave background (CMB), with a focus on mapping a large sky area with high fidelity at multiple frequencies. SPIDER's first longduration balloon (LDB) flight in January 2015 deployed a total of 2400 antenna-coupled Transition Edge Sensors (TESs) at 90 GHz and 150 GHz. In this work we review the design and in-flight performance of the SPIDER instrument, with a particular focus on the measured performance of the detectors and instrument in a space-like loading and radiation environment. SPIDER's second flight in December 2018 will incorporate payload upgrades and new receivers to map the sky at 285 GHz, providing valuable information for cleaning polarized dust emission from CMB maps.

  6. Transcriptome Analysis of the Carmine Spider Mite, Tetranychus cinnabarinus (Boisduval, 1867 (Acari: Tetranychidae, and Its Response to β-Sitosterol

    Directory of Open Access Journals (Sweden)

    Chunya Bu

    2015-01-01

    Full Text Available Tetranychus cinnabarinus (Acari: Tetranychidae is a worldwide polyphagous agricultural pest that has the title of resistance champion among arthropods. We reported previously the identification of the acaricidal compound β-sitosterol from Mentha piperita and Inula japonica. However, the acaricidal mechanism of β-sitosterol is unclear. Due to the limited genetic research carried out, we de novo assembled the transcriptome of T. cinnabarinus using Illumina sequencing and conducted a differential expression analysis of control and β-sitosterol-treated mites. In total, we obtained >5.4 G high-quality bases for each sample with unprecedented sequencing depth and assembled them into 22,941 unigenes. We identified 617 xenobiotic metabolism-related genes involved in detoxification, binding, and transporting of xenobiotics. A highly expanded xenobiotic metabolic system was found in mites. T. cinnabarinus detoxification genes—including carboxyl/cholinesterase and ABC transporter class C—were upregulated after β-sitosterol treatment. Defense-related proteins, such as Toll-like receptor, legumain, and serine proteases, were also activated. Furthermore, other important genes—such as the chloride channel protein, cytochrome b, carboxypeptidase, peritrophic membrane chitin binding protein, and calphostin—may also play important roles in mites’ response to β-sitosterol. Our results demonstrate that high-throughput-omics tool facilitates identification of xenobiotic metabolism-related genes and illustration of the acaricidal mechanisms of β-sitosterol.

  7. Control of poultry red mites

    DEFF Research Database (Denmark)

    Kilpinen, Ole; Steenberg, Tove

    2008-01-01

    The poultry red mite (PRM), Dermanyssus gallinae, is the most important ectoparasite in European egg production. The mites hide in cracks and crevices in the near vicinity of the resting places of the birds, coming out to feed mainly during the night. Under favourable conditions the population can...... grow rapidly, leading to serious problems. Large mite populations may cause anaemia or even death to the poultry, but also in lower numbers mites may be a nuisance to the birds causing decreased egg production and egg quality. Furthermore, they may have the potential of acting as reservoir......-pathogenic fungi and desiccant dust. The dust is diatomaceous earth (of natural origin), synthetic silica products or combinations of the two. The progress of the work with desiccant dusts will be reported. So far, 7 different products have been tested in the laboratory with regard to their efficacy, speed...

  8. Miniaturized test system for soil respiration induced by volatile pollutants

    International Nuclear Information System (INIS)

    Kaufmann, Karin; Chapman, Stephen J.; Campbell, Colin D.; Harms, Hauke; Hoehener, Patrick

    2006-01-01

    A miniaturized method based on 96-well microtitre plates was developed and used to study respiration in pristine and contaminated soils following addition of volatile substrates. Small soil samples were exposed to fuel components, which were volatilized from spatially separate reservoirs of 2,2,4,4,6,8,8-heptamethylnonane (HMN) as an organic carrier. Respiration was determined as CO 2 production by means of a pH-indicator and bicarbonate-containing agar, or as 14 CO 2 evolution from 14 C-labelled substrates. Substrate concentrations inducing maximum microbial activity or inhibition were determined and CO 2 production profiles examined by multivariate analysis. When high concentrations of fuel components were applied, distinction of hydrocarbon exposed soils from unexposed soil was achieved within 6 h of incubation. With low concentrations, adequate distinction was achieved after 24 h, probably as a result of community adaptation. Nutrient limitation was identified with the 14 C method for toluene, and the optimal N and P amendment determined. Further potential applications of this rapid and inexpensive method are outlined. - A new method to study soil respiration is used when volatile organic contaminants are added

  9. Cuticular antifungals in spiders: density- and condition dependence.

    Directory of Open Access Journals (Sweden)

    Daniel González-Tokman

    Full Text Available Animals living in groups face a high risk of disease contagion. In many arthropod species, cuticular antimicrobials constitute the first protective barrier that prevents infections. Here we report that group-living spiders produce cuticular chemicals which inhibit fungal growth. Given that cuticular antifungals may be costly to produce, we explored whether they can be modulated according to the risk of contagion (i.e. under high densities. For this purpose, we quantified cuticular antifungal activity in the subsocial crab spider Diaea ergandros in both natural nests and experimentally manipulated nests of varying density. We quantified the body-condition of spiders to test whether antifungal activity is condition dependent, as well as the effect of spider density on body-condition. We predicted cuticular antifungal activity to increase and body-condition to decrease with high spider densities, and that antifungal activity would be inversely related to body-condition. Contrary to our predictions, antifungal activity was neither density- nor condition-dependent. However, body-condition decreased with density in natural nests, but increased in experimental nests. We suggest that pathogen pressure is so important in nature that it maintains high levels of cuticular antifungal activity in spiders, impacting negatively on individual energetic condition. Future studies should identify the chemical structure of the isolated antifungal compounds in order to understand the physiological basis of a trade-off between disease prevention and energetic condition caused by group living, and its consequences in the evolution of sociality in spiders.

  10. Cuticular antifungals in spiders: density- and condition dependence.

    Science.gov (United States)

    González-Tokman, Daniel; Ruch, Jasmin; Pulpitel, Tamara; Ponton, Fleur

    2014-01-01

    Animals living in groups face a high risk of disease contagion. In many arthropod species, cuticular antimicrobials constitute the first protective barrier that prevents infections. Here we report that group-living spiders produce cuticular chemicals which inhibit fungal growth. Given that cuticular antifungals may be costly to produce, we explored whether they can be modulated according to the risk of contagion (i.e. under high densities). For this purpose, we quantified cuticular antifungal activity in the subsocial crab spider Diaea ergandros in both natural nests and experimentally manipulated nests of varying density. We quantified the body-condition of spiders to test whether antifungal activity is condition dependent, as well as the effect of spider density on body-condition. We predicted cuticular antifungal activity to increase and body-condition to decrease with high spider densities, and that antifungal activity would be inversely related to body-condition. Contrary to our predictions, antifungal activity was neither density- nor condition-dependent. However, body-condition decreased with density in natural nests, but increased in experimental nests. We suggest that pathogen pressure is so important in nature that it maintains high levels of cuticular antifungal activity in spiders, impacting negatively on individual energetic condition. Future studies should identify the chemical structure of the isolated antifungal compounds in order to understand the physiological basis of a trade-off between disease prevention and energetic condition caused by group living, and its consequences in the evolution of sociality in spiders.

  11. [Investigation of Acaroid mites breeding in stored dry fruits].

    Science.gov (United States)

    Tao, Ning; Zhan, Xiao-dong; Sun, En-tao; Li, Chao-pin

    2015-12-01

    To study the species and density of Acaroid mites breeding in stored dry fruits. The samples from the dried fruit stores and warehouses were collected, and the mites breeding in them were separated, then the slides with mites were prepared and observed by a light microscope for species identification and counting. The indexes such as the breeding density, species richness index, diversity index and evenness index were calculated. Totally 12 species of Acaroid mites belonging to 6 families and 10 genera were obtained from the total 49 samples. The dominant mite species were Carpoglyphus lactis, Tyrophagus putrescentiae, Acarus siro, and Caloglyphus berlesei. The breeding densities of mites in longans, filberts and plum candies were 79.78, 48.91, 35.73 mites/g, respectively, which were higher than those in other dry fruits. The seasonal variation experiment of mites found that the average breeding density of acaroid mites was higher in July and October, the richness index and diversity index reached the highest value in July, and the evenness index was higher in January and April. The observation of the growth and decline of Acaroid mites under the artificial condition found the number of Caloglyphus berlesei declined sharply and Tyrophagus putrescentiae first increased and then decreased. The pollution of Acaroid mites is serious in the stored dried fruits, for which the positive prevention and control measures to the mite breeding should be taken to reduce the harm.

  12. Prey and non-prey arthropods sharing a host plant : Effects on induced volatile emission and predator attraction

    NARCIS (Netherlands)

    de Boer, Jetske G.; Hordijk, Cornelis A.; Posthumus, Maarten A.; Dicke, Marcel

    It is well established that plants infested with a single herbivore species can attract specific natural enemies through the emission of herbivore-induced volatiles. However, it is less clear what happens when plants are simultaneously attacked by more than one species. We analyzed volatile

  13. The NRL MITE Air Vehicle

    National Research Council Canada - National Science Library

    Kellogg, James; Bovais, Christopher; Dahlburg, Jill; Foch, Richard; Gardner, John; Gordon, Diana; Hartley, Ralph; Kamgar-Parsi, Behrooz; McFarlane, Hugh; Pipitone, Frank; Ramamurti, Ravi; Sciambi, Adam; Spears, William; Srull, Donald; Sullivan, Carol

    2001-01-01

    .... The NRL Micro Tactical Expendable "MITE" air vehicle is a result of this research. The operational MITE is a hand-launched, dual-propeller, fixed-wing air vehicle, with a 9-inch chord and a wingspan of 8 to 18 inches, depending on payload weight...

  14. Clinical evaluation of a double-blind dust mite avoidance trial with mite-allergic rhinitic patients

    NARCIS (Netherlands)

    Kniest, F.M.; Young, E.; Praag, van M.C.G.; Vos, H.; Kort, H.S.M.; Koers, W.J.; Maat-Bleeker, de F.; Bronswijk, van J.E.M.H.

    1991-01-01

    Inheritance and allergen exposure are key factors in the development and the course of atopic allergy, expressed as conjunctivitis, rhinitis, asthma or dermatitis. This study concerns the clinical significance of mite and mite-allergen avoidance measures based on intensive cleaning with acaricide

  15. Brain systems underlying encounter expectancy bias in spider phobia.

    Science.gov (United States)

    Aue, Tatjana; Hoeppli, Marie-Eve; Piguet, Camille; Hofstetter, Christoph; Rieger, Sebastian W; Vuilleumier, Patrik

    2015-06-01

    Spider-phobic individuals are characterized by exaggerated expectancies to be faced with spiders (so-called encounter expectancy bias). Whereas phobic responses have been linked to brain systems mediating fear, little is known about how the recruitment of these systems relates to exaggerated expectancies of threat. We used fMRI to examine spider-phobic and control participants while they imagined visiting different locations in a forest after having received background information about the likelihood of encountering different animals (spiders, snakes, and birds) at these locations. Critically, imagined encounter expectancies modulated brain responses differently in phobics as compared with controls. Phobics displayed stronger negative modulation of activity in the lateral prefrontal cortex, precuneus, and visual cortex by encounter expectancies for spiders, relative to snakes or birds (within-participants analysis); these effects were not seen in controls. Between-participants correlation analyses within the phobic group further corroborated the hypothesis that these phobia-specific modulations may underlie irrationality in encounter expectancies (deviations of encounter expectancies from objective background information) in spider phobia; the greater the negative modulation a phobic participant displayed in the lateral prefrontal cortex, precuneus, and visual cortex, the stronger was her bias in encounter expectancies for spiders. Interestingly, irrationality in expectancies reflected in frontal areas relied on right rather than left hemispheric deactivations. Our data accord with the idea that expectancy biases in spider phobia may reflect deficiencies in cognitive control and contextual integration that are mediated by right frontal and parietal areas.

  16. Structure to function: Spider silk and human collagen

    Science.gov (United States)

    Rabotyagova, Olena S.

    Nature has the ability to assemble a variety of simple molecules into complex functional structures with diverse properties. Collagens, silks and muscles fibers are some examples of fibrous proteins with self-assembling properties. One of the great challenges facing Science is to mimic these designs in Nature to find a way to construct molecules that are capable of organizing into functional supra-structures by self-assembly. In order to do so, a construction kit consisting of molecular building blocks along with a complete understanding on how to form functional materials is required. In this current research, the focus is on spider silk and collagen as fibrous protein-based biopolymers that can shed light on how to generate nanostructures through the complex process of self-assembly. Spider silk in fiber form offers a unique combination of high elasticity, toughness, and mechanical strength, along with biological compatibility and biodegrability. Spider silk is an example of a natural block copolymer, in which hydrophobic and hydrophilic blocks are linked together generating polymers that organize into functional materials with extraordinary properties. Since silks resemble synthetic block copolymer systems, we adopted the principles of block copolymer design from the synthetic polymer literature to build block copolymers based on spider silk sequences. Moreover, we consider spider silk to be an important model with which to study the relationships between structure and properties in our system. Thus, the first part of this work was dedicated to a novel family of spider silk block copolymers, where we generated a new family of functional spider silk-like block copolymers through recombinant DNA technology. To provide fundamental insight into relationships between peptide primary sequence, block composition, and block length and observed morphological and structural features, we used these bioengineered spider silk block copolymers to study secondary structure

  17. Herbivore-induced volatiles in the perennial shrub, Vaccinium corymbosum, and their role in inter-branch signaling.

    Science.gov (United States)

    Rodriguez-Saona, Cesar R; Rodriguez-Saona, Luis E; Frost, Christopher J

    2009-02-01

    Herbivore feeding activates plant defenses at the site of damage as well as systemically. Systemic defenses can be induced internally by signals transported via phloem or xylem, or externally transmitted by volatiles emitted from the damaged tissues. We investigated the role of herbivore-induced plant volatiles (HIPVs) in activating a defense response between branches in blueberry plants. Blueberries are perennial shrubs that grow by initiating adventitious shoots from a basal crown, which produce new lateral branches. This type of growth constrains vascular connections between shoots and branches within plants. While we found that leaves within a branch were highly connected, vascular connectivity was limited between branches within shoots and absent between branches from different shoots. Larval feeding by gypsy moth, exogenous methyl jasmonate, and mechanical damage differentially induced volatile emissions in blueberry plants, and there was a positive correlation between amount of insect damage and volatile emission rates. Herbivore damage did not affect systemic defense induction when we isolated systemic branches from external exposure to HIPVs. Thus, internal signals were not capable of triggering systemic defenses among branches. However, exposure of branches to HIPVs from an adjacent branch decreased larval consumption by 70% compared to those exposed to volatiles from undamaged branches. This reduction in leaf consumption did not result in decreased volatile emissions, indicating that leaves became more responsive to herbivory (or "primed") after being exposed to HIPVs. Chemical profiles of leaves damaged by gypsy moth caterpillars, exposed to HIPVs, or non-damaged controls revealed that HIPV-exposed leaves had greater chemical similarities to damaged leaves than to control leaves. Insect-damaged leaves and young HIPV-exposed leaves had higher amounts of endogenous cis-jasmonic acid compared to undamaged and non-exposed leaves, respectively. Our results

  18. Toxicological and safety evaluation of Nigella sativa lipid and volatile fractions in streptozotocin induced diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Muhammad Tauseef Sultan

    2014-09-01

    Full Text Available Objective: To evaluate the toxicological aspects of Nigella sativa (N. sativa lipid and volatile fractions in streptozotocin induced diabetes mellitus. Methods: National Institute of Health (NIH, Islamabad provided us thirty Sprague Dawley rats that were further divided into three groups, i.e. control, N. sativa lipid fraction (4% and N. sativa volatile fraction (0.3%, respectively. The serological and haematological indices were evaluated at 4-week intervals during 56 d study. Results: The results indicated that the diabetes mellitus imparted negative effects on various serological and haematological attributes. However, supplementation of the N. sativa lipid fraction and N. sativa volatile fraction ameliorated the adverse consequences of diabetes mellitus. The diabetes induced renal toxicity and imbalanced serum chemistry were slightly modulated by experimental diets. However, the impact of essential oil was more significant as compared to the fixed oil. Conclusions: In a nutshell, experimental diets containing N. sativa lipid fraction and N. sativa volatile fraction are effective without having any toxicological effects, and experimental diets reduced toxicological and adverse consequences of diabetes mellitus.

  19. The aerodynamic signature of running spiders.

    Directory of Open Access Journals (Sweden)

    Jérôme Casas

    Full Text Available Many predators display two foraging modes, an ambush strategy and a cruising mode. These foraging strategies have been classically studied in energetic, biomechanical and ecological terms, without considering the role of signals produced by predators and perceived by prey. Wolf spiders are a typical example; they hunt in leaf litter either using an ambush strategy or by moving at high speed, taking over unwary prey. Air flow upstream of running spiders is a source of information for escaping prey, such as crickets and cockroaches. However, air displacement by running arthropods has not been previously examined. Here we show, using digital particle image velocimetry, that running spiders are highly conspicuous aerodynamically, due to substantial air displacement detectable up to several centimetres in front of them. This study explains the bimodal distribution of spider's foraging modes in terms of sensory ecology and is consistent with the escape distances and speeds of cricket prey. These findings may be relevant to the large and diverse array of arthropod prey-predator interactions in leaf litter.

  20. Biotechnological Trends in Spider and Scorpion Antivenom Development

    DEFF Research Database (Denmark)

    Laustsen, Andreas Hougaard; Solà, Mireia; Jappe, Emma Christine

    2016-01-01

    in using bioactive toxins from spiders and scorpions for drug discovery purposes and for solving crystal structures of membrane-embedded receptors. Additionally, the identification and isolation of a myriad of spider and scorpion toxins has allowed research within next generation antivenoms to progress...... at an increasingly faster pace. In this review, the current knowledge of spider and scorpion venoms is presented, followed by a discussion of all published biotechnological efforts within development of spider and scorpion antitoxins based on small molecules, antibodies and fragments thereof, and next generation...... immunization strategies. The increasing number of discovery and development efforts within this field may point towards an upcoming transition from serum-based antivenoms towards therapeutic solutions based on modern biotechnology....

  1. Effects of Beauveria bassiana on predation and behavior of the predatory mite Phytoseiulus persimilis.

    Science.gov (United States)

    Wu, Shengyong; Xing, Zhenlong; Sun, Weinan; Xu, Xuenong; Meng, Ruixia; Lei, Zhongren

    2018-03-01

    Determination of intraguild interactions between entomopathogens and predators is important when attempting to use a combination of these two natural enemy groups for biological control of their shared arthropod pest species. This study assessed the effects of Beauveria bassiana on the predation and associated behavior of the predatory mite, Phytoseiulus persimilis, against Tetranychus urticae. The functional response tests showed that P. persimilis exhibited a Holling type II response on the spider mite, Tetranychus urticae, when treated with either a B. bassiana or Tween-80 suspension. There were no significant differences between the treatments in the number of T. urticae consumed. The laboratory choice test indicated that P. persimilis displayed a significant avoidance response to B. bassiana on bean leaves immediately following spray application. They also spent significantly longer time in self-grooming behavior on leaf disks sprayed with fungal conidia than on discs treated with Tween-80. There were no significant differences in the predation rates on T. urticae eggs between the different treatments. The potted plant investigations indicated that P. persimilis showed significant aversion behavior to the initial fungal spray, but gradually dispersed over the entire bean plants. Observations using scanning electron microscopy revealed that fungal conidia were attached to the body of P. persimilis after mounting the leaf disk treated with B. bassiana, which would account for its varied behavioral responses. Our study suggests that fungal spray did not affect the predation capability of P. persimilis and poses a negligible risk to their behavior. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. An analysis of potential resistance of the phytophagous mite, Tetranychus urticae Koch (Acari: Tetranychidae to four botanical pesticides

    Directory of Open Access Journals (Sweden)

    Attia, S.

    2015-01-01

    Full Text Available Description of the subject. Synthetic acaricides have been widely used to manage Tetranychus urticae. Due to the excessive use of biocide and the associated problems of pesticide resistance and environmental pollution, there is an increasing demand for sustainable, environmentally-friendly control methods. Among the current alternative strategies aimed at decreasing the pest populations, the pesticides based on plant extracts are currently one of the most promising methods. Essential oils with acaricidal properties have been categorized as green pesticides because they are biodegradable and predominantly non-toxic to vertebrates. Objectives. With an aim to reduce the use of synthetic pesticides, they represent a promising approach for eco-chemical control of mites. Method. The aim of the present work was to analyze the risk of resistance emergence of T. urticae to repeated treatments with four plant extracts: Deverra scoparia Coss. & Durieu (Araliales: Apiaceae, Hertia cheirifolia (L. Kuntze (Asterales: Ateraceae, Santolina africana Jord. & Fourr. (Asterales: Asteraceae essential oils and garlic distillate Allium sativum L. (Asparagales: Alliaceae after 20 generations. Results. Repeated treatments with S. africana essential oil during 20 generations did not provoke an emergence of resistance while a low development of resistance was observed with H. cheirifolia, A. sativum and D. scoparia extracts. Conclusions. The efficacy of these extracts against the two spotted spider mite and their low development of resistance make them a promising use for pest management.

  3. Selenium hyperaccumulation offers protection from cell disruptor herbivores

    Directory of Open Access Journals (Sweden)

    Quinn Colin F

    2010-08-01

    Full Text Available Abstract Background Hyperaccumulation, the rare capacity of certain plant species to accumulate toxic trace elements to levels several orders of magnitude higher than other species growing on the same site, is thought to be an elemental defense mechanism against herbivores and pathogens. Previous research has shown that selenium (Se hyperaccumulation protects plants from a variety of herbivores and pathogens. Selenium hyperaccumulating plants sequester Se in discrete locations in the leaf periphery, making them potentially more susceptible to some herbivore feeding modes than others. In this study we investigate the protective function of Se in the Se hyperaccumulators Stanleya pinnata and Astragalus bisulcatus against two cell disrupting herbivores, the western flower thrips (Frankliniella occidentalis and the two-spotted spider mite (Tetranychus urticae. Results Astragalus bisulcatus and S. pinnata with high Se concentrations (greater than 650 mg Se kg-1 were less subject to thrips herbivory than plants with low Se levels (less than 150 mg Se kg-1. Furthermore, in plants containing elevated Se levels, leaves with higher concentrations of Se suffered less herbivory than leaves with less Se. Spider mites also preferred to feed on low-Se A. bisulcatus and S. pinnata plants rather than high-Se plants. Spider mite populations on A. bisulcatus decreased after plants were given a higher concentration of Se. Interestingly, spider mites could colonize A. bisulcatus plants containing up to 200 mg Se kg-1 dry weight, concentrations which are toxic to many other herbivores. Selenium distribution and speciation studies using micro-focused X-ray fluorescence (μXRF mapping and Se K-edge X-ray absorption spectroscopy revealed that the spider mites accumulated primarily methylselenocysteine, the relatively non-toxic form of Se that is also the predominant form of Se in hyperaccumulators. Conclusions This is the first reported study investigating the

  4. Differential performance and parasitism of caterpillars on maize inbred lines with distinctly different herbivore-induced volatile emissions.

    Directory of Open Access Journals (Sweden)

    Thomas Degen

    Full Text Available Plant volatiles induced by insect feeding are known to attract natural enemies of the herbivores. Six maize inbred lines that showed distinctly different patterns of volatile emission in laboratory assays were planted in randomized plots in the Central Mexican Highlands to test their ability to recruit parasitic wasps under field conditions. The plants were artificially infested with neonate larvae of the fall armyworm Spodoptera frugiperda, and two of its main endoparasitoids, Campoletis sonorensis and Cotesia marginiventris, were released in the plots. Volatiles were collected from equally treated reference plants in the neighbourhood of the experimental field. The cumulative amount of 36 quantified volatile compounds determined for each line was in good accordance with findings from the laboratory; there was an almost 15-fold difference in total emission between the two extreme lines. We found significant differences among the lines with respect to the numbers of armyworms recovered from the plants, their average weight gain and parasitism rates. Average weight of the caterpillars was negatively correlated with the average total amount of volatiles released by the six inbred lines. However, neither total volatile emission nor any specific single compound within the blend could explain the differential parasitism rates among the lines, with the possible exception of (E-2-hexenal for Campoletis sonorensis and methyl salicylate for Cotesia marginiventris. Herbivore-induced plant volatiles and/or correlates thereof contribute to reducing insect damage of maize plants through direct plant defence and enhanced attraction of parasitoids, alleged indirect defence. The potential to exploit these volatiles for pest control deserves to be further evaluated.

  5. Biased interpretation and memory in children with varying levels of spider fear.

    Science.gov (United States)

    Klein, Anke M; Titulaer, Geraldine; Simons, Carlijn; Allart, Esther; de Gier, Erwin; Bögels, Susan M; Becker, Eni S; Rinck, Mike

    2014-01-01

    This study investigated multiple cognitive biases in children simultaneously, to investigate whether spider-fearful children display an interpretation bias, a recall bias, and source monitoring errors, and whether these biases are specific for spider-related materials. Furthermore, the independent ability of these biases to predict spider fear was investigated. A total of 121 children filled out the Spider Anxiety and Disgust Screening for Children (SADS-C), and they performed an interpretation task, a memory task, and a Behavioural Assessment Test (BAT). As expected, a specific interpretation bias was found: Spider-fearful children showed more negative interpretations of ambiguous spider-related scenarios, but not of other scenarios. We also found specific source monitoring errors: Spider-fearful children made more fear-related source monitoring errors for the spider-related scenarios, but not for the other scenarios. Only limited support was found for a recall bias. Finally, interpretation bias, recall bias, and source monitoring errors predicted unique variance components of spider fear.

  6. Competitive interactions between a native spider (Frontinella communis, Araneae: Linyphiidae) and an invasive spider (Linyphia triangularis, Araneae: Linyphiidae)

    Science.gov (United States)

    Bednarski, Julie V.; Ginsberg, Howard S.; Jakob, Elizabeth M.

    2010-01-01

    There are numerous reports of spiders that have become established outside of their native ranges, but few studies examine their impact on native spiders. We examined the effect of the European hammock spider Linyphia triangularis (Araneae, Linyphiidae) on the native bowl-and-doily spider Frontinella communis (Araneae, Linyphiidae) in Acadia National Park, Maine, USA. First, we added L. triangularis to established plots of F. communis. Significantly more F. communis abandoned their webs when L. triangularis were added compared to control plots. Second, we tested whether F. communis were deterred from building webs in areas where L. triangularis was established. Significantly fewer F. communis built webs on plots with L. triangularis than on control plots. In both experiments, L. triangularis sometimes took over webs of F. communis or incorporated F. communis webs into their own webs, but F. communisnever took over or incorporated L. triangularis webs. Competition between L. triangularis and F. communis for both webs and web sites may contribute to the decline of F. communis.

  7. Wheat curl mite and dry bulb mite: untangling a taxonomic conundrum through a multidisciplinary approach

    Science.gov (United States)

    The taxonomy of two economically important eriophyoid species, Aceria tosichella (wheat curl mite, WCM) and A. tulipae (dry bulb mite, DBM), was confounded in the world literature until the late 20th century due to their morphological similarity and ambiguous data from plant-transfer and virus-trans...

  8. The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum

    NARCIS (Netherlands)

    Snoeren, T.A.L.; Mumm, R.; Poelman, E.H.; Yang, Y.; Pichersky, E.; Dicke, M.

    2010-01-01

    The indirect defense mechanisms of plants comprise the production of herbivore-induced plant volatiles that can attract natural enemies of plant attackers. One of the often emitted compounds after herbivory is methyl salicylate (MeSA). Here, we studied the importance of this caterpillar-induced

  9. Clinical benefits of treatment with SQ house dust mite sublingual tablet in house dust mite allergic rhinitis.

    Science.gov (United States)

    Demoly, P; Kleine-Tebbe, J; Rehm, D

    2017-10-01

    Treatment with SQ (standardised quality) house dust mite sublingual tablet for 1 year resulted in a decreased probability of having an allergic rhinitis (AR) exacerbation day (from 11% [placebo] to 5% [SQ house dust mite sublingual tablet]) and an increased probability of having a mild AR day (from 16% [placebo] to 34% [SQ house dust mite sublingual tablet]). © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  10. Peculiar torsion dynamical response of spider dragline silk

    Science.gov (United States)

    Liu, Dabiao; Yu, Longteng; He, Yuming; Peng, Kai; Liu, Jie; Guan, Juan; Dunstan, D. J.

    2017-07-01

    The torsional properties of spider dragline silks from Nephila edulis and Nephila pilipes spiders are investigated by using a torsion pendulum technique. A permanent torsional deformation is observed after even small torsional strain. This behaviour is quite different from that of the other materials tested here, i.e., carbon fiber, thin metallic wires, Kevlar fiber, and human hair. The spider dragline thus displays a strong energy dissipation upon the initial excitation (around 75% for small strains and more for a larger strain), which correspondingly reduces the amplitude of subsequent oscillations around the new equilibrium position. The variation of torsional stiffness in relaxation dynamics of spider draglines for different excitations is also determined. The experimental result is interpreted in the light of the hierarchical structure of dragline silk.

  11. A supplementary description of Brevipalpus californicus (Acari: Trombidiformes: Tenuipalpidae

    Directory of Open Access Journals (Sweden)

    Mohammad Raissi Ardali

    2015-10-01

    Full Text Available The false spider mite Brevipalpus californicus from the family Tenuipalpidae was collected from Caucasian alnus, White willow, Persian raspberry and a wild Chrysanthemum bush in Mazandaran province. This species is reported as a new record to the false spider mites-fauna of Iran here. Reviewing literatures revealed that it was briefly described in the original paper without any measures. So, a completed description is presented based on the Iranian specimens and different body segments are drawn for B. californicus. In addition, the above plants are new host records for B. californicus.

  12. Plastic material investment in load-bearing silk attachments in spiders.

    Science.gov (United States)

    Wolff, Jonas O; Jones, Braxton; Herberstein, Marie E

    2018-05-17

    The nature and size of attachments is a fundamental element of animal constructions. Presumably, these adhesive structures are plastically deployed to balance material investment and attachment strength. Here we studied plasticity in dragline anchorages of the golden orb web spider, Nephila plumipes. Specifically, we predict that spiders adjust the size and structure of dragline anchorages with load, i.e. spider mass. Mass was manipulated by attaching lead pieces to the spider's abdomen resulting in a 50 percent increase in mass. Loaded spiders spun larger but structurally similar thread anchorages than unloaded spiders. Thus, the spinning program that determines the overall anchor structure is highly stereotypic, and flexibility is introduced through varying the anchor size by increasing material investment. Our study showcases substrate attachments as suitable models to investigate the interplay between innate and changeable elements in the economy of building behaviours. Copyright © 2018 Elsevier GmbH. All rights reserved.

  13. Hygienic Activity Toward Varroa Mites in Capped Brood is not Dependent on Mite Reproductive Status

    Science.gov (United States)

    - The varroa resistance of bees selectively bred for high levels of varroa sensitive hygiene (VSH) is characterized by a reduction of (1) the mite infestation rate (Harris 2007 J. Apic. Res. / Bee World 46: 134-139) and (2) the percentage of fertile mites (Harris and Harbo 1999 J. Econ. Entomol. 92:...

  14. Influence of spider silk on refugia preferences of the recluse spiders Loxosceles reclusa and Loxosceles laeta (Araneae: Sicariidae).

    Science.gov (United States)

    Vetter, Richard S; Rust, Michael K

    2010-06-01

    In a previous experimental study, recluse spiders Loxosceles reclusa Gertsch and Mulaik and Loxosceles laeta (Nicolet) (Araneae: Sicariidae) preferred small cardboard refugia covered with conspecific silk compared with never-occupied refugia. Herein, we investigated some factors that might be responsible for this preference using similar cardboard refugia. When the two Loxosceles species were given choices between refugia previously occupied by their own and by the congeneric species, neither showed a species-specific preference; however, each chose refugia coated with conspecific silk rather than those previously inhabited by a distantly related cribellate spider, Metaltella simoni (Keyserling). When L. laeta spiders were offered refugia that were freshly removed from silk donors compared with heated, aged refugia from the same silk donor, older refugia were preferred. Solvent extracts of L. laeta silk were chosen approximately as often as control refugia when a range of solvents (methylene chloride:methanol, water, and hexane) were used. However, when acetone was used on similar silk, there was a statistical preference for the control, indicating that there might be a mildly repellent aspect to acetone-washed silk. Considering the inability to show attraction to chemical aspects of fresh silk, it seems that physical attributes may be more important for selection and that there might be repellency to silk of a recently vacated spider. These findings are discussed in regard to pest management strategies to control recluse spiders.

  15. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling.

    Science.gov (United States)

    Pineda, Ana; Soler, Roxina; Weldegergis, Berhane T; Shimwela, Mpoki M; VAN Loon, Joop J A; Dicke, Marcel

    2013-02-01

    Beneficial soil-borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col-0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant-mediated interaction between the non-pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore-induced plant volatiles. The volatile blend from rhizobacteria-treated aphid-infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid-infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore-induced volatiles and parasitoid response to aphid-infested plants is lost in an Arabidopsis mutant (aos/dde2-2) that is impaired in jasmonic acid production. By modifying the blend of herbivore-induced plant volatiles that depend on the jasmonic acid-signalling pathway, root-colonizing microbes interfere with the attraction of parasitoids of leaf herbivores. © 2012 Blackwell Publishing Ltd.

  16. Photoluminescent properties of spider silk coated with Eu-doped nanoceria

    Energy Technology Data Exchange (ETDEWEB)

    Dmitrović, Svetlana, E-mail: svetlana8@vin.bg.ac.rs [University of Belgrade, Vinča Institute of Nuclear Sciences (Serbia); Nikolić, Marko G.; Jelenković, Branislav [University of Belgrade, Institute of Physics (Serbia); Prekajski, Marija [University of Belgrade, Vinča Institute of Nuclear Sciences (Serbia); Rabasović, Mihailo [University of Belgrade, Institute of Physics (Serbia); Zarubica, Aleksandra [University of Niš, Department of Chemistry, Faculty of Science and Mathematics (Serbia); Branković, Goran [University of Belgrade, Institute for Multidisciplinary Research, Department of Material Science (Serbia); Matović, Branko [University of Belgrade, Vinča Institute of Nuclear Sciences (Serbia)

    2017-02-15

    Spider dragline silk was coated with pure as well as Eu-doped ceria nanopowders at the room temperature. The treatment was done by immersion of the spider silk mesh into aqueous solutions of cerium nitrate (Ce(NO{sub 3}){sub 3}) and ammonium hydroxide (NH{sub 4}OH). Depending on the relationship between Ce{sup 3+} ion and ammonium hydroxide concentration, coated fibers exhibited a different thickness. Obtained materials were studied by means of FESEM. It was found that ceria nanoparticles of average size of 3 nm were coated along spider thread. X-ray diffraction (XRD) and selected-area electron diffraction (SAED) confirmed crystal nature of nanoparticle coating of spider silk. By using Williamson-Hall plots, crystallite size and strain were estimated. EDS measurement confirmed the presence of Eu in spider-Eu-doped ceria composite, and according to FTIR analysis, the interaction between CeO2 and spider silk was proposed. The morphology of obtained composite was observed by TEM. The photoluminescence emission spectra of spider silk coated with Eu-doped ceria were measured with two different excitations of 385 and 466 nm. The two-photon excited auto-fluorescence of spider silk coated with Eu-doped ceria was detected using a nonlinear laser scanning microscope. Obtained composite has a potential as a fluorescent labeling material in diverse applications.

  17. High School Students' Attitudes Towards Spiders: A cross-cultural comparison

    Science.gov (United States)

    Prokop, Pavol; Tolarovičová, Andrea; Camerik, Anne M.; Peterková, Viera

    2010-08-01

    Spiders are traditionally considered to be among the least popular of animals. Current evidence suggests that a negative attitude towards spiders could be influenced by both cultural and evolutionary pressures. Some researchers suggest that science education activities could positively influence students' perceptions of spiders. Their evidence is, however, ambivalent. Using a five-point score Likert-type questionnaire in which the items were developed in a similar way to four of Kellert's categories of attitude (scientistic, negativistic, naturalistic, and ecologistic) towards invertebrates, we compared the level of knowledge of and attitudes towards spiders of high school students from two countries, Slovakia (n = 354) and South Africa (n = 382). The students represented different cultures and followed dissimilar science education curricula. Only among the Slovakian students there was a statistically significant but low correlation between knowledge and attitude (r = 0.30). The South African students scored higher in the categories of scientistic, naturalistic, and ecologistic attitudes. Comparison of attitude towards spiders of indigenous Africans from coeducational Catholic schools revealed that South African students have greater fear of spiders than Slovakian students, supporting the biological preparedness hypothesis. This hypothesis predicts a greater fear of spiders in South Africa than in Europe since several South African spiders possess venoms that are dangerous to humans. The results of this study are discussed from science education, cultural, and evolutionary perspectives.

  18. Photoluminescent properties of spider silk coated with Eu-doped nanoceria

    International Nuclear Information System (INIS)

    Dmitrović, Svetlana; Nikolić, Marko G.; Jelenković, Branislav; Prekajski, Marija; Rabasović, Mihailo; Zarubica, Aleksandra; Branković, Goran; Matović, Branko

    2017-01-01

    Spider dragline silk was coated with pure as well as Eu-doped ceria nanopowders at the room temperature. The treatment was done by immersion of the spider silk mesh into aqueous solutions of cerium nitrate (Ce(NO_3)_3) and ammonium hydroxide (NH_4OH). Depending on the relationship between Ce"3"+ ion and ammonium hydroxide concentration, coated fibers exhibited a different thickness. Obtained materials were studied by means of FESEM. It was found that ceria nanoparticles of average size of 3 nm were coated along spider thread. X-ray diffraction (XRD) and selected-area electron diffraction (SAED) confirmed crystal nature of nanoparticle coating of spider silk. By using Williamson-Hall plots, crystallite size and strain were estimated. EDS measurement confirmed the presence of Eu in spider-Eu-doped ceria composite, and according to FTIR analysis, the interaction between CeO2 and spider silk was proposed. The morphology of obtained composite was observed by TEM. The photoluminescence emission spectra of spider silk coated with Eu-doped ceria were measured with two different excitations of 385 and 466 nm. The two-photon excited auto-fluorescence of spider silk coated with Eu-doped ceria was detected using a nonlinear laser scanning microscope. Obtained composite has a potential as a fluorescent labeling material in diverse applications.

  19. Mechanisms and patient compliance of dust-mite avoidance regimens in dwellings of mite-allergic rhinitic patients

    NARCIS (Netherlands)

    Kniest, F.M.; Wolfs, B.G.; Vos, H.; Ducheine, B.O.I.; Schayk-Bakker, M.J.; de Lange, P.J.P.; Vos, E.M.P.; Bronswijk, van J.E.M.H.

    1992-01-01

    We report on the mechanisms, the environmental changes and patient compliance with regard to conventional and new dust and mite avoidance measures to prevent allergic symptoms caused by mite allergens, taking into account both allergen contamination and the developmental success of pyroglyphid

  20. Science 101: Why Don't Spiders Stick to Their Own Webs?

    Science.gov (United States)

    Robertson, Bill

    2011-01-01

    This article explains why spiders don't stick to their webs. Spiders don't get stuck in their own webs (and they aren't immune to their own glue) because they use a combination of sticky and nonsticky threads (different glands for producing those), and the glue is in droplets that the spider can avoid but the prey can't. The spider's nervous…

  1. Salticid predation as one potential driving force of ant mimicry in jumping spiders

    Science.gov (United States)

    Huang, Jin-Nan; Cheng, Ren-Chung; Li, Daiqin; Tso, I-Min

    2011-01-01

    Many spiders possess myrmecomorphy, and species of the jumping spider genus Myrmarachne exhibit nearly perfect ant mimicry. Most salticids are diurnal predators with unusually high visual acuity that prey on various arthropods, including conspecifics. In this study, we tested whether predation pressure from large jumping spiders is one possible driving force of perfect ant mimicry in jumping spiders. The results showed that small non-ant-mimicking jumping spiders were readily treated as prey by large ones (no matter whether heterospecific or conspecific) and suffered high attack and mortality rates. The size difference between small and large jumping spiders significantly affected the outcomes of predatory interactions between them: the smaller the juvenile jumping spiders, the higher the predation risk from large ones. The attack and mortality rates of ant-mimicking jumping spiders were significantly lower than those of non-ant-mimicking jumping spiders, indicating that a resemblance to ants could provide protection against salticid predation. However, results of multivariate behavioural analyses showed that the responses of large jumping spiders to ants and ant-mimicking salticids differed significantly. Results of this study indicate that predation pressure from large jumping spiders might be one selection force driving the evolution of nearly perfect myrmecomorphy in spiders and other arthropods. PMID:20961898

  2. Research on Artificial Spider Web Model for Farmland Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2018-01-01

    Full Text Available Through systematic analysis of the structural characteristics and invulnerability of spider web, this paper explores the possibility of combining the advantages of spider web such as network robustness and invulnerability with farmland wireless sensor network. A universally applicable definition and mathematical model of artificial spider web structure are established. The comparison between artificial spider web and traditional networks is discussed in detail. The simulation result shows that the networking structure of artificial spider web is better than that of traditional networks in terms of improving the overall reliability and invulnerability of communication system. A comprehensive study on the advantage characteristics of spider web has important theoretical and practical significance for promoting the invulnerability research of farmland wireless sensor network.

  3. The effects of prey patchiness, predator aggregation, and mutual interference on the functional response of Phytoseiulus persimilis feeding on Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae)

    DEFF Research Database (Denmark)

    Nachman, Gösta

    2006-01-01

    The spatial distributions of two-spotted spider mites Tetranychus urticae and their natural enemy, the phytoseiid predator Phytoseiulus persimilis, were studied on six full-grown cucumber plants. Both mite species were very patchily distributed and P. persimilis tended to aggregate on leaves...

  4. Influence of long-term exposure to simulated acid rain on development, reproduction and acaricide susceptibility of the carmine spider mite, Tetranychus cinnabarinus

    Science.gov (United States)

    Wang, Jin-Jun; Zhang, Jian-Ping; He, Lin; Zhao, Zhi-Mo

    2006-01-01

    Development, reproduction and acaricide susceptibility of Tetranychus cinnabarinus (Boisduvals) (Acari: Tetranychidae) were investigated after long-term (about 40 generations) exposure to various levels of acid rain; pH 2.5, 3.0, 4.0, and 5.6. Deionized water (pH 6.8) served as a control. The mites were reared on eggplant leaves at 28°C, 80%RH and a photoperiod of 14:10 (L:D) in the laboratory. The results showed that the duration of the immature stage was significantly affected by acid rain exposure. The shortest duration (8.90 days) was recorded for populations exposed to pH 5.6 acid rain, while the longest duration (9.37 days) occurred after exposure to pH 2.5 acid rain. Compared with the control population, adult longevity was shortened with an increase in acidity. Similarly, the oviposition duration was also shortened by an increase in acidity. Statistically, female fecundity did not differ significantly between pH 5.6, pH 4.0 and control populations, but did differ significantly between the control population and those exposed to pH 2.5 and pH 3.0 acid rain. This suggested that the mite suffered reproductive defects after long-term exposure to acid rain with higher acidity (pH 2.5 and 3.0). The intrinsic rate of increase among different populations was not significantly affected, but the net reproductive rate of populations exposed to pH 2.5 and 3.0 acid rain was significantly less than pH4.0, 5.6, and control populations. Bioassay results showed that after long-term exposure to acid rain, susceptibility of the mites to two acaricides, dichlorvos and fenpropathrin, did not change significantly. PMID:19537978

  5. Large-bodied Demodex mite infestation in 4 dogs.

    Science.gov (United States)

    Hillier, Andrew; Desch, Clifford E

    2002-03-01

    Large-bodied Demodex mites were detected in 4 dogs. The mites were readily detected in material obtained via deep skin scrapings and were most commonly found on the trunk. The mites were distinguishable from D. canis, because adult males were approximately 100% longer and adult females were approximately 50% longer than adult male and female D. canis mites, respectively. The large-bodied mites were found in the hair follicles, sebaceous ducts, and sebaceous glands in histologic sections of skin from 2 dogs. All dogs had adult-onset generalized demodicosis. Two dogs had coexistent iatrogenic hypercortisolism, 1 dog had hypothyroidism, and 1 dog did not have coexistent disease. Infestations responded to miticidal therapy, control of the coexistent disease, or both.

  6. Silk Spinning in Silkworms and Spiders.

    Science.gov (United States)

    Andersson, Marlene; Johansson, Jan; Rising, Anna

    2016-08-09

    Spiders and silkworms spin silks that outcompete the toughness of all natural and manmade fibers. Herein, we compare and contrast the spinning of silk in silkworms and spiders, with the aim of identifying features that are important for fiber formation. Although spiders and silkworms are very distantly related, some features of spinning silk seem to be universal. Both spiders and silkworms produce large silk proteins that are highly repetitive and extremely soluble at high pH, likely due to the globular terminal domains that flank an intermediate repetitive region. The silk proteins are produced and stored at a very high concentration in glands, and then transported along a narrowing tube in which they change conformation in response primarily to a pH gradient generated by carbonic anhydrase and proton pumps, as well as to ions and shear forces. The silk proteins thereby convert from random coil and alpha helical soluble conformations to beta sheet fibers. We suggest that factors that need to be optimized for successful production of artificial silk proteins capable of forming tough fibers include protein solubility, pH sensitivity, and preservation of natively folded proteins throughout the purification and initial spinning processes.

  7. PARASITIC MITES IN BACKYARD TURKEYS

    Directory of Open Access Journals (Sweden)

    Marco Antonio Camacho-Escobar

    2010-02-01

    Full Text Available To describe the parasitic mites in backyard turkeys, was did this work. The mites were obtain by hand for 30 backyard turkeys in Oaxaca’s Coast region, Mexico; the mites were mount in adhesive paper and wash with the 200X lent in a computer optical microscopy, the parasites size were determinate in the pictures obtained by the microscopy software, the images were sized using a specialist software for it, which relate the number of pixels in the picture with the size of the observation field. Were indentified the species Dermanyssus gallinae, Megninia ginglymura and Ornithonyssus sylviarum, the last two described for first time in backyard turkeys in Mexico. Â

  8. Spiders of Kerala Agricultural University Campus, Thrissur, Kerala, India

    Directory of Open Access Journals (Sweden)

    C. K. Adarsh

    2015-12-01

    Full Text Available A total of 86 species of spiders belonging to 56 genera of 20 families have been recorded from the Kerala Agricultural University (KAU campus, Thrissur, Kerala, southern India.  This represents 5.1% of the total spiders’ species and 33.33% of the total families of spiders recorded in India.  The dominant spider family at KAU campus is Araneidae with 18 species of nine genera. Salticidae is represented by 14 species of 13 genera.  Out of 252 endemic spiders of India, 16 have been reported from KAU campus.  Guild structure analysis shows spiders belonging to seven types of feeding guilds present in KAU campus.  Orb-web builders are the dominant feeding guild accounting for 34%, followed by stalkers (22%, ground runners (20%, ambushers (8%, scattered line weavers (8%, foliage runners (7% and sheet-web builders (1%. 

  9. Pyroglyphid mites as a source of work-related allergens.

    Science.gov (United States)

    Macan, Jelena; Kanceljak-Macan, Božica; Milković-Kraus, Sanja

    2012-01-01

    Pyroglyphid mites are primarily associated with allergen exposure at home; hence the name house dust mites. However, we have found numerous studies reporting pyroglyhid mite levels in public and occupational settings. This review presents the findings of house dust mite allergens (family Pyroglyphidae, species Dermatophagoides) as potential work-related risk factors and proposes occupations at risk of house dust mite-related diseases. Pyroglyphid mites or their allergens are found in various workplaces, but clinically relevant exposures have been observed in hotels, cinemas, schools, day-care centres, libraries, public transportation (buses, trains, taxies, and airplanes), fishing-boats, submarines, poultry farms, and churches. Here we propose a classification of occupational risk as low (occasional exposure to mite allergen levels up to 2 μg g(-1)), moderate (exposure between 2 μg g(-1) and 10 μg g(-1)), and high (exposure >10 μg g(-1)). The classification of risk should include factors relevant for indoor mite population (climate, building characteristics, and cleaning schedule). To avoid development or aggravation of allergies associated with exposure to house dust mites at work, occupational physicians should assess exposure risk at work, propose proper protection, provide vocational guidance to persons at risk and conduct pre-employment and periodic examinations to diagnose new allergy cases. Protection at work should aim to control dust mite levels at work. Measures may include proper interior design and regular cleaning and building maintenance.

  10. Research on Artificial Spider Web Model for Farmland Wireless Sensor Network

    OpenAIRE

    Jun Wang; Song Gao; Shimin Zhao; Guang Hu; Xiaoli Zhang; Guowang Xie

    2018-01-01

    Through systematic analysis of the structural characteristics and invulnerability of spider web, this paper explores the possibility of combining the advantages of spider web such as network robustness and invulnerability with farmland wireless sensor network. A universally applicable definition and mathematical model of artificial spider web structure are established. The comparison between artificial spider web and traditional networks is discussed in detail. The simulation result shows tha...

  11. Spider diffraction: a comparison of curved and straight legs

    International Nuclear Information System (INIS)

    Richter, J.L.

    1984-01-01

    It has been known for some time that, if curved legs rather than the usual straight ones are used in the spider that supports the secondary optics in certain telescopes, the visible diffraction effect is reduced. Fraunhofer theory is used to calculate the diffraction effects due to the curved leg spider. Calculated and photographic diffraction patterns are compared for straight and curved leg spiders

  12. Haematophagus Mites in Poultry Farms of Iran

    Directory of Open Access Journals (Sweden)

    S Rahbari

    2009-12-01

    Full Text Available Background: Blood sucking mites are important avian ectoparasites which being found on bird species worldwide. Their presence are problematic for the producers either through potential direct effects on weight gain, egg produc­tion, sperm production in roosters or as nuisance pests on worker handle hens and eggs. The aim of this study was pointing out of the status of haematophagus mites.Methods: Eight caged layer and four breeder flocks were visited, monitoring for the presence of chicken mites per­formed by removing and examining debris from poultry house, infested nesting material collected into zip lock plas­tic bags and at least 20 birds were also randomly selected to examine the presence of chicken mites. Mites obtained from each population were mounted in Hoyer,s medium on microscope slides and identified. All eight caged layer and four breeder flocks were inspected, which were infested with chicken blood feeding mites.Results: Massive infestations of Dermanyssus gallinae were common with huge numbers of parasites on birds, cages and the conveyor belts for egg. Only one farm from Mazandaran Province was infested to Ornithonyssus bursa.Conclusion: Dermanyssus gallinae was the most prevalent blood feeder mite in the breeder and caged layer flocks in Iran, while O. bursa was reported as a first record, which found only in a breeder flock in Mazanderan Province. It seems that its presence is limited into the area which affected by both warm and humid environmental conditions.

  13. High School Students' Attitudes towards Spiders: A Cross-Cultural Comparison

    Science.gov (United States)

    Prokop, Pavol; Tolarovicova, Andrea; Camerik, Anne M.; Peterkova, Viera

    2010-01-01

    Spiders are traditionally considered to be among the least popular of animals. Current evidence suggests that a negative attitude towards spiders could be influenced by both cultural and evolutionary pressures. Some researchers suggest that science education activities could positively influence students' perceptions of spiders. Their evidence is,…

  14. Functional expression of spider neurotoxic peptide huwentoxin-I in E. coli.

    Directory of Open Access Journals (Sweden)

    Er Meng

    Full Text Available The coding sequence of huwentoxin-I, a neurotoxic peptide isolated from the venom of the Chinese spider Ornithoctonus huwena, was amplified by PCR using the cDNA library constructed from the spider venom glands. The cloned fragment was inserted into the expression vector pET-40b and transformed into the E. coli strain BL21 (DE3. The expression of a soluble fusion protein, disulfide interchange protein (DsbC-huwentoxin-I, was auto-induced in the periplasm of E. coli in the absence of IPTG. After partial purification using a Ni-NTA column, the expressed fusion protein was digested using enterokinase to release heteroexpressed huwentoxin-I and was further purified using RP-HPLC. The resulting peptide was subjected to gel electrophoresis and mass spectrometry analysis. The molecular weight of the heteroexpressed huwentoxin-I was 3750.69, which is identical to that of the natural form of the peptide isolated from spider venom. The physiological properties of the heteroexpressed huwentoxin-I were further analyzed using a whole-cell patch clamp assay. The heteroexpressed huwentoxin-I was able to block currents generated by human Na(v1.7 at an IC₅₀ of 640 nmole/L, similar to that of the natural huwentoxin-I, which is 630 nmole/L.

  15. Functional Expression of Spider Neurotoxic Peptide Huwentoxin-I in E. coli

    Science.gov (United States)

    Zhang, Hui; Liu, Yan-Bo; Peng, Kuan; Liang, Songping; Zhang, Dong-Yi

    2011-01-01

    The coding sequence of huwentoxin-I, a neurotoxic peptide isolated from the venom of the Chinese spider Ornithoctonus huwena, was amplified by PCR using the cDNA library constructed from the spider venom glands. The cloned fragment was inserted into the expression vector pET-40b and transformed into the E. coli strain BL21 (DE3). The expression of a soluble fusion protein, disulfide interchange protein (DsbC)-huwentoxin-I, was auto-induced in the periplasm of E. coli in the absence of IPTG. After partial purification using a Ni-NTA column, the expressed fusion protein was digested using enterokinase to release heteroexpressed huwentoxin-I and was further purified using RP-HPLC. The resulting peptide was subjected to gel electrophoresis and mass spectrometry analysis. The molecular weight of the heteroexpressed huwentoxin-I was 3750.69, which is identical to that of the natural form of the peptide isolated from spider venom. The physiological properties of the heteroexpressed huwentoxin-I were further analyzed using a whole-cell patch clamp assay. The heteroexpressed huwentoxin-I was able to block currents generated by human Nav1.7 at an IC50 of 640 nmole/L, similar to that of the natural huwentoxin-I, which is 630 nmole/L. PMID:21731778

  16. An Ecoinformatics Approach to Field-Scale Evaluation of Insecticide Effects in California Citrus: Are Citrus Thrips and Citrus Red Mite Induced Pests?

    Science.gov (United States)

    Livingston, George; Hack, Lindsey; Steinmann, Kimberly P; Grafton-Cardwell, Elizabeth E; Rosenheim, Jay A

    2018-05-28

    Experimental approaches to studying the consequences of pesticide use, including impacts on beneficial insects, are vital; however, they can be limited in scale and realism. We show that an ecoinformatics approach that leverages existing data on pesticides, pests, and beneficials across multiple fields can provide complementary insights. We do this using a multi-year dataset (2002-2013) on pesticide applications and density estimates of two pests, citrus thrips (Scirtothrips citri (Moulton [Thysanoptera: Thripidae])) and citrus red mites (Panonychus citri McGregor [Acari: Tetranychidae]), and a natural enemy (Euseius spp. predatory mites) collected from citrus groves in the San Joaquin Valley of California. Using correlative analyses, we investigated the long-term consequences of pesticide use on S. citri and P. citri population densities to evaluate the hypothesis that the pest status of these species is largely due to the disruption of natural biological control-i.e., these are induced pests. We also evaluated short-term pesticide efficacy (suppression of citrus thrips and citrus red mite populations immediately post-application) and asked if it was correlated with the suppression of Euseius predator populations. Although the short-term efficacy of different pesticides varied significantly, our dataset does not suggest that the use of citrus pesticides suppressed Euseius densities or worsened pest problems. We also find that there is no general trade-off between pesticide efficacy and pesticide risk to Eusieus, such that highly effective and minimally disruptive compounds were available to citrus growers during the studied time period.

  17. And along Came a Spider: An Attentional Bias for the Detection of Spiders in Young Children and Adults

    Science.gov (United States)

    LoBue, Vanessa

    2010-01-01

    Spiders are among the most common targets of fears and phobias in the world. In visual search tasks, adults detect their presence more rapidly than other kinds of stimuli. Reported here is an investigation of whether young children share this attentional bias for the detection of spiders. In a series of experiments, preschoolers and adults were…

  18. Carbamylated monomeric allergoids as a therapeutic option for sublingual immunotherapy of dust mite- and grass pollen-induced allergic rhinoconjunctivitis: a systematic review of published trials with a meta-analysis of treatment using Lais® tablets.

    Science.gov (United States)

    Mösges, R; Ritter, B; Kayoko, G; Allekotte, S

    2010-10-01

    Lais® allergoid tablets contain allergens that are modified by carbamylation. Due to their modified chemical structure, they are suitable for sublingual immunotherapy (SLIT) (13, 16, 17, 24). Based on their small molecule size of 12 to 40 kDa, they can be easily absorbed via the oral mucosa (1). In this review, we studied the efficacy of SLIT with carbamylated monomeric allergoid tablets in the treatment of grass pollen- and dust mite-induced allergic rhinoconjunctivitis on the basis of symptom and medication score improvements. Following a selective internet and databank search, six trials-some placebo-controlled-regarding the treatment of grass pollen- (n = 266) and dust mite-induced (n = 241) allergic rhinoconjunctivitis were used to draw conclusions regarding the clinical efficacy of allergoid tablets. The primary endpoints in these trials were decreases in the need for allergy medications and/or reductions in the occurrence of rhinoconjunctivitis symptoms. Data was recorded from patient diaries regarding their symptoms and medications used and conclusions were then drawn about the effectiveness and tolerabieity of Lais® tablets. The average improvement in symptom score in three trials of grass pollen allergy treatment was 34% in comparison to the placebo group. The treatment of dust mite-induced rhinoconjunctivitis produced an average symptom score improvement of 22% compared to the placebo or control groups. The intake of symptomatic rescue medication during allergoid tablet therapy declined. Treatment of grass pollen allergies and dust mite-induced rhinoconjunctivitis showed an average medication score improvement of 49% and 24%, respectively. Few side effects were documented in the trials and predominantly local effects were observed. Severe systemic side effects did not occur. On the basis of the trial results summarized in this review, we suggest that SLIT using Lais® sublingual tablets is an effective and well-tolerated form of treatment.

  19. OECD Guidelines for the Testing of Chemicals, Test No. 226: Predatory mite (Hypoaspis (Geolaelaps) aculeifer) reproduction test in soil

    DEFF Research Database (Denmark)

    Römbke, L. Becker, B. Dark, Th. Moser, N. Halsall, W. Powley, A. Ruf, C. Scholer, E. Smit, P. Wege, N. Zenz m.fl., J.; Krogh, Paul Henning

    2008-01-01

    This Test Guideline describes a method to assess the effects of chemical substances in soil on the reproductive output of the soil mite species Hypoaspis (Geolaelaps) aculeifer Canestrini (Acari: Laelapidae). It can be used for water soluble or insoluble substances, but not with volatile substances...... replicates for each test concentrations and six to eight control replicates, of 10 animals each, are recommended. At 20 oC, the test lasts 14 days after introducing the females, which usually allows the control offspring to reach the deutonymph stage. The number of surviving females (mortality ...% for a valid test) and the number of juveniles per test vessel (at least 50 for a valid test) are determined. The fecundity of the mites exposed to the test substance is compared to that of controls in order to determine the ECx (e.g. EC10, EC50) or the No Observed Effect Concentration (NOEC). Any observed...

  20. Influence of Varroa Mite (Varroa destructor Management Practices on Insecticide Sensitivity in the Honey Bee (Apis mellifera

    Directory of Open Access Journals (Sweden)

    Frank D. Rinkevich

    2017-01-01

    Full Text Available Since Varroa mites may cause devastating losses of honey bees through direct feeding, transmitting diseases, and increasing pathogen susceptibility, chemical and mechanical practices commonly are used to reduce mite infestation. While miticide applications are typically the most consistent and efficacious Varroa mite management method, miticide-induced insecticide synergism in honey bees, and the evolution of resistance in Varroa mites are reasonable concerns. We treated colonies with the miticide amitraz (Apivar®, used IPM practices, or left some colonies untreated, and then measured the effect of different levels of mite infestations on the sensitivity of bees to phenothrin, amitraz, and clothianidin. Sensitivity to all insecticides varied throughout the year among and within treatment groups. Clothianidin sensitivity decreased with increasing mite levels, but no such correlation was seen with phenothrin or amitraz. These results show that insecticide sensitivity is dynamic throughout the 5 months test. In-hive amitraz treatment according to the labeled use did not synergize sensitivity to the pesticides tested and this should alleviate concern over potential synergistic effects. Since IPM practices were largely ineffective at reducing Varroa mite infestation, reliance on chemical methods of Varroa mite management is likely to continue. However, miticides must be used judiciously so the long term effectiveness of these compounds can be maximized. These data demonstrate the complex and dynamic variables that contribute to honey bee colony health. The results underscore the importance of controlling for as many of these variables as possible in order to accurately determine the effects of each of these factors as they act alone or in concert with others.

  1. Early events in the evolution of spider silk genes.

    Directory of Open Access Journals (Sweden)

    James Starrett

    Full Text Available Silk spinning is essential to spider ecology and has had a key role in the expansive diversification of spiders. Silk is composed primarily of proteins called spidroins, which are encoded by a multi-gene family. Spidroins have been studied extensively in the derived clade, Orbiculariae (orb-weavers, from the suborder Araneomorphae ('true spiders'. Orbicularians produce a suite of different silks, and underlying this repertoire is a history of duplication and spidroin gene divergence. A second class of silk proteins, Egg Case Proteins (ECPs, is known only from the orbicularian species, Lactrodectus hesperus (Western black widow. In L. hesperus, ECPs bond with tubuliform spidroins to form egg case silk fibers. Because most of the phylogenetic diversity of spiders has not been sampled for their silk genes, there is limited understanding of spidroin gene family history and the prevalence of ECPs. Silk genes have not been reported from the suborder Mesothelae (segmented spiders, which diverged from all other spiders >380 million years ago, and sampling from Mygalomorphae (tarantulas, trapdoor spiders and basal araneomorph lineages is sparse. In comparison to orbicularians, mesotheles and mygalomorphs have a simpler silk biology and thus are hypothesized to have less diversity of silk genes. Here, we present cDNAs synthesized from the silk glands of six mygalomorph species, a mesothele, and a non-orbicularian araneomorph, and uncover a surprisingly rich silk gene diversity. In particular, we find ECP homologs in the mesothele, suggesting that ECPs were present in the common ancestor of extant spiders, and originally were not specialized to complex with tubuliform spidroins. Furthermore, gene-tree/species-tree reconciliation analysis reveals that numerous spidroin gene duplications occurred after the split between Mesothelae and Opisthothelae (Mygalomorphae plus Araneomorphae. We use the spidroin gene tree to reconstruct the evolution of amino acid

  2. Silk elasticity as a potential constraint on spider body size.

    Science.gov (United States)

    Rodríguez-Gironés, Miguel A; Corcobado, Guadalupe; Moya-Laraño, Jordi

    2010-10-07

    Silk is known for its strength and extensibility and has played a key role in the radiation of spiders. Individual spiders use different glands to produce silk types with unique sets of proteins. Most research has studied the properties of major ampullate and capture spiral silks and their ecological implications, while little is known about minor ampullate silk, the type used by those spider species studied to date for bridging displacements. A biomechanical model parameterised with available data shows that the minimum radius of silk filaments required for efficient bridging grows with the square root of the spider's body mass, faster than the radius of minor ampullate silk filaments actually produced by spiders. Because the morphology of spiders adapted to walking along or under silk threads is ill suited for moving on a solid surface, for these species there is a negative relationship between body mass and displacement ability. As it stands, the model suggests that spiders that use silk for their displacements are prevented from attaining a large body size if they must track their resources in space. In particular, silk elasticity would favour sexual size dimorphism because males that must use bridging lines to search for females cannot grow large. 2010 Elsevier Ltd. All rights reserved.

  3. The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum.

    Science.gov (United States)

    Snoeren, Tjeerd A L; Mumm, Roland; Poelman, Erik H; Yang, Yue; Pichersky, Eran; Dicke, Marcel

    2010-05-01

    The indirect defense mechanisms of plants comprise the production of herbivore-induced plant volatiles that can attract natural enemies of plant attackers. One of the often emitted compounds after herbivory is methyl salicylate (MeSA). Here, we studied the importance of this caterpillar-induced compound in the attraction of the parasitoid wasp Diadegma semiclausum by using a mutant Arabidopsis line. Pieris rapae infested AtBSMT1-KO mutant Arabidopsis plants, compromised in the biosynthesis of MeSA, were more attractive to parasitoids than infested wild-type plants. This suggests that the presence of MeSA has negative effects on parasitoid host-finding behavior when exposed to wild-type production of herbivore-induced Arabidopsis volatiles. Furthermore, in line with this, we recorded a positive correlation between MeSA dose and repellence of D. semiclausum when supplementing the headspace of caterpillar-infested AtBSMT1-KO plants with synthetic MeSA.

  4. Haematophagus Mites in Poultry Farms of Iran

    Directory of Open Access Journals (Sweden)

    S Rahbari

    2009-12-01

    Full Text Available Background: Blood sucking mites are important avian ectoparasites which being found on bird species worldwide. Their presence are problematic for the producers either through potential direct effects on weight gain, egg produc­tion, sperm production in roosters or as nuisance pests on worker handle hens and eggs. The aim of this study was pointing out of the status of haematophagus mites."nMethods: Eight caged layer and four breeder flocks were visited, monitoring for the presence of chicken mites per­formed by removing and examining debris from poultry house, infested nesting material collected into zip lock plas­tic bags and at least 20 birds were also randomly selected to examine the presence of chicken mites. Mites obtained from each population were mounted in Hoyer,s medium on microscope slides and identified. All eight caged layer and four breeder flocks were inspected, which were infested with chicken blood feeding mites."nResults: Massive infestations of Dermanyssus gallinae were common with huge numbers of parasites on birds, cages and the conveyor belts for egg. Only one farm from Mazandaran Province was infested to Ornithonyssus bursa."nConclusion: Dermanyssus gallinae was the most prevalent blood feeder mite in the breeder and caged layer flocks in Iran, while O. bursa was reported as a first record, which found only in a breeder flock in Mazanderan Province. It seems that its presence is limited into the area which affected by both warm and humid environmental conditions.  Keywords: Dermanyssus gallinae, Ornithonyssus bursa, Poultry, Iran

  5. House dust mite induces expression of intercellular adhesion molecule-1 in EoL-1 human eosinophilic leukemic cells.

    Science.gov (United States)

    Kwon, Byoung Chul; Sohn, Myung Hyun; Kim, Kyung Won; Kim, Eun Soo; Kim, Kyu-Earn; Shin, Myeong Heon

    2007-10-01

    The house dust mite (HDM) is considered to be the most common indoor allergen associated with bronchial asthma. In this study, we investigated whether crude extract of the HDM Dermatophagoides farinae could activate human eosinophilic leukemic cells (EoL-1) to induce upregulation of cell-surface adhesion molecules. When EoL-1 cells were incubated with D. farinae extract, expression of intercellular adhesion molecule-1 (ICAM-1) significantly increased on the cell surfaces compared to cells incubated with medium alone. In contrast, surface expression of CD11b and CD49d in EoL-1 cells was not affected by D. farinae extract. In addition, pretreatment of cells with NF-kappaB inhibitor (MG-132) or JNK inhibitor (SP600125) significantly inhibited ICAM-1 expression promoted by HDM extract. However, neither p38 MAP kinase inhibitor nor MEK inhibitor prevented HDM-induced ICAM-1 expression in EoL-1 cells. These results suggest that crude extract of D. farinae induces ICAM-1 expression in EoL-1 cells through signaling pathways involving both NF-kappaB and JNK.

  6. Synergism in the effect of prior jasmonic acid application on herbivore-induced volatile emission by Lima bean plants: transcription of a monoterpene synthase gene and volatile emission

    NARCIS (Netherlands)

    Menzel, T.R.; Weldegergis, B.T.; David, A.; Boland, W.; Gols, R.; Loon, van J.J.A.; Dicke, M.

    2014-01-01

    Jasmonic acid (JA) plays a central role in induced plant defence e.g. by regulating the biosynthesis of herbivore-induced plant volatiles that mediate the attraction of natural enemies of herbivores. Moreover, exogenous application of JA can be used to elicit plant defence responses similar to those

  7. Herbivory in spiders: the importance of pollen for orb-weavers.

    Science.gov (United States)

    Eggs, Benjamin; Sanders, Dirk

    2013-01-01

    Orb-weaving spiders (Araneidae) are commonly regarded as generalist insect predators but resources provided by plants such as pollen may be an important dietary supplementation. Their webs snare insect prey, but can also trap aerial plankton like pollen and fungal spores. When recycling their orb webs, the spiders may therefore also feed on adhering pollen grains or fungal spores via extraoral digestion. In this study we measured stable isotope ratios in the bodies of two araneid species (Aculepeira ceropegia and Araneus diadematus), their potential prey and pollen to determine the relative contribution of pollen to their diet. We found that about 25% of juvenile orb-weaving spiders' diet consisted of pollen, the other 75% of flying insects, mainly small dipterans and hymenopterans. The pollen grains in our study were too large to be taken up accidentally by the spiders and had first to be digested extraorally by enzymes in an active act of consumption. Therefore, pollen can be seen as a substantial component of the spiders' diet. This finding suggests that these spiders need to be classified as omnivores rather than pure carnivores.

  8. Molecular Evolution of Spider Vision: New Opportunities, Familiar Players.

    Science.gov (United States)

    Morehouse, Nathan I; Buschbeck, Elke K; Zurek, Daniel B; Steck, Mireille; Porter, Megan L

    2017-08-01

    Spiders are among the world's most species-rich animal lineages, and their visual systems are likewise highly diverse. These modular visual systems, composed of four pairs of image-forming "camera" eyes, have taken on a huge variety of forms, exhibiting variation in eye size, eye placement, image resolution, and field of view, as well as sensitivity to color, polarization, light levels, and motion cues. However, despite this conspicuous diversity, our understanding of the genetic underpinnings of these visual systems remains shallow. Here, we review the current literature, analyze publicly available transcriptomic data, and discuss hypotheses about the origins and development of spider eyes. Our efforts highlight that there are many new things to discover from spider eyes, and yet these opportunities are set against a backdrop of deep homology with other arthropod lineages. For example, many (but not all) of the genes that appear important for early eye development in spiders are familiar players known from the developmental networks of other model systems (e.g., Drosophila). Similarly, our analyses of opsins and related phototransduction genes suggest that spider photoreceptors employ many of the same genes and molecular mechanisms known from other arthropods, with a hypothesized ancestral spider set of four visual and four nonvisual opsins. This deep homology provides a number of useful footholds into new work on spider vision and the molecular basis of its extant variety. We therefore discuss what some of these first steps might be in the hopes of convincing others to join us in studying the vision of these fascinating creatures.

  9. Testing for reproductive interference in the population dynamics of two congeneric species of herbivorous mites

    Science.gov (United States)

    Sato, Y; Alba, J M; Sabelis, M W

    2014-01-01

    When phylogenetically close, two competing species may reproductively interfere, and thereby affect their population dynamics. We tested for reproductive interference (RI) between two congeneric haplo-diploid spider mites, Tetranychus evansi and Tetranychus urticae, by investigating their interspecific mating and their population dynamics when they competed on the same plants. They are both pests of tomato, but differ in the host plant defences that they suppress or induce. To reduce the effect of plant-mediated interaction, we used a mutant tomato plant lacking jasmonate-mediated anti-herbivore defences in the competition experiment. In addition, to manipulate the effect of RI, we introduced founder females already mated with conspecific males in mild RI treatments or founder, virgin females in strong RI treatments (in either case together with heterospecific and conspecific males). As females show first-male sperm precedence, RI should occur especially in the founder generation under strong RI treatments. We found that T. urticae outcompeted T. evansi in mild, but not in strong RI treatments. Thus, T. evansi interfered reproductively with T. urticae. This result was supported by crossing experiments showing frequent interspecific copulations, strong postmating reproductive isolation and a preference of T. evansi males to mate with T. urticae (instead of conspecific) females, whereas T. urticae males preferred conspecific females. We conclude that interspecific mating comes at a cost due to asymmetric mate preferences of males. Because RI by T. evansi can improve its competitiveness to T. urticae, we propose that RI partly explains why T. evansi became invasive in Europe where T. urticae is endemic. PMID:24865602

  10. Acute Generalized Exanthematous Pustulosis (AGEP Triggered by a Spider Bite

    Directory of Open Access Journals (Sweden)

    Michael Makris

    2009-01-01

    Discussion: A spider bite may represent a possible causative factor of AGEP. A spider's venom contains sphingomyelinase that stimulates the release of IL8 and GM-CSF, which are involved in AGEP pathogenesis. Whether or not the con-current use of antibiotics has an effect in AGEP appearance when combined with a spider's venom, cannot be excluded.

  11. Coagulopathy after spider bites in a six-year-old boy

    Directory of Open Access Journals (Sweden)

    Ansari SH.

    2008-06-01

    Full Text Available Background: Spider bites are common in most parts of the world. In some areas, where snake or scorpion bites are common, spider bites may not be considered a significant problem by the general public and those who have been bitten by spiders may not go to a hospital. However, significant problems are observed in the victims of certain species of spiders including: widow spider (of the genus Latrodectus, including the black widow and brown spiders (of the genus Loxosceles, such as the brown recluse. Case: We report a six-year-old boy, admitted to the hospital two weeks after suffering a spider bite. The patient presented with a severe nose bleed, ecchymosis and purpura, as well as anemia, indicating a clotting disorder. Laboratory results revealed abnormal values for prothrombin time (PT >50 sec, partial thromboplastin time (PTT >120 min and fibrinogen = 0 mg/dl, whereas factor VIII was normal according to a mixing study, with a normal platelet count of 350,000/µl. The patient was managed with fresh frozen plasma every 12 h, and was discharged one week after hospital admission. At present, the patient is well with more normal laboratory results one month after treatment: PT=13.4 sec, PTT= 34 sec, fibrinogen=105 mg/dl.         Conclusions: Although spider bites are uncommon in Iran, severe systemic reactions may occur in the pediatric population requiring admission to the pediatric intensive care unit. These systemic reactions may include hemolytic anemia coagulopathy and renal failure.

  12. House dust mites in the city of Lima, Peru.

    Science.gov (United States)

    Croce, M; Costa-Manso, E; Baggio, D; Croce, J

    2000-01-01

    Since mites are the most common house dust allergens, knowledge about the species most prevalent in a region is important for diagnostic and specific immunotherapy purposes. In order to establish the prevalence of house dust mites in different city districts, 100 house dust samples were collected from different parts of Lima. Lima is a city of tropical climate located along the coast of the Pacific Ocean. The relative air humidity is 80-90% and the various districts studied are located at altitudes ranging from 37-355 meters. The mite Blomia tropicalis was the organism most frequently detected, being present in 59% of the house dust samples. Dermatophagoides pteronyssinus occupied second place (15.9%), followed by Chortoglyphus arcuatus and Tyrophagus putrescentiae. These four mites, taken together, represented more than 90% of the mites detected. No specimen of the species Dermatophagoides farinae was detected. We conclude that B. tropicalis and D. pteronyssinus are the most common house dust mites in Lima. Considering the high prevalence of B. tropicalis in Lima and the fact that its cross-reactivity with antigens of the mites of the family Pyroglyphidae is minimal, we conclude that sensitization to this mite should be investigated separately in allergic patients living in Lima.

  13. Camel spider (Solifugae) use of prairie dog colonies

    Science.gov (United States)

    Solifugids (camel spiders) are widespread throughout arid regions of western North America and are thought to be important in structuring desert arthropod communities. Despite the ubiquity of camel spiders, little is known about their ecology. Black-tailed prairie dogs (Cynomys ludovicianus) are als...

  14. Nutrient regulation in a predator, the wolf spider Pardosa prativaga

    DEFF Research Database (Denmark)

    Jensen, Kim; Mayntz, David; Toft, Søren

    2011-01-01

    Nutrient balancing is well known in herbivores and omnivores, but has only recently been demonstrated in predators. To test how a predator might regulate nutrients when the prey varies in nutrient composition, we restricted juvenile Pardosa prativaga wolf spiders to diets of one of six fruit fly......, Drosophila melanogaster, prey types varying in lipid:protein composition during their second instar. We collected all fly remnants to estimate food and nutrient intake over each meal. The spiders adjusted their capture rate and nutrient extraction in response to prey mass and nutrient composition...... irrespective of energy intake. Intake was initially regulated to a constant lipid plus protein mass, but later spiders fed on prey with high proportions of protein increased consumption relative to spiders fed on other prey types. This pattern indicates that the spiders were prepared to overconsume vast...

  15. Total effects of contact and residual exposure of bifenthrin and λ-cyhalothrin on the predatory mite Galendromus occidentalis (Acari: Phytoseiidae).

    Science.gov (United States)

    Hamby, Kelly A; Alifano, Jesse A; Zalom, Frank G

    2013-10-01

    Pyrethroid insecticides are generally regarded as acutely toxic to predatory phytoseiid mites; however, persistence of hull split spray pyrethroid residues on almond trees and their effects on phytoseiids have not been quantified over time. Hull split, the separation of the almond hull along the suture, exposes the new crop nuts to infestation by Amyelois transitella (Walker) larvae, and is the preferred timing for insecticides applied for their control. Galendromus occidentalis (Nesbitt) is the most important phytoseiid biocontrol agent for web-spinning spider mites in California (USA) almond orchards, and the impact of bifenthrin and λ-cyhalothrin pyrethroid residue on their survival, fertility, and fecundity was determined. The total effects of direct contact with esfenvalerate, permethrin, bifenthrin and λ-cyhalothrin were also evaluated for comparison. The total effects (E) of direct contact treatments of the four pyrethroids ranged from 77.8 % for esfenvalerate to 98.8 % for bifenthrin. Both bifenthrin and λ-cyhalothrin twig residue would be considered harmful (IOBC class 4) following field application at hull split timing. Bifenthrin twig residue would be considered slightly harmful (IOBC class 2) for up to 3.5 months and harmless (IOBC class 1) after 6 months. λ-cyhalothrin residue would be considered moderately harmful (IOBC class 3) for up to 3.5 months following application and harmless (IOBC class 1) after 6 months. Bifenthrin and λ-cyhalothrin twig residue on treated trees significantly reduced G. occidentalis female survival for up to 6 months post-treatment, however total effects (E) classify these residues as harmless (IOBC class 1) after 6 months. Harmful effects of direct and residual exposure following application have implications for the use of these pyrethroids in an integrated mite management program for perennial crops.

  16. Arachnid aloft: directed aerial descent in neotropical canopy spiders.

    Science.gov (United States)

    Yanoviak, Stephen P; Munk, Yonatan; Dudley, Robert

    2015-09-06

    The behaviour of directed aerial descent has been described for numerous taxa of wingless hexapods as they fall from the tropical rainforest canopy, but is not known in other terrestrial arthropods. Here, we describe similar controlled aerial behaviours for large arboreal spiders in the genus Selenops (Selenopidae). We dropped 59 such spiders from either canopy platforms or tree crowns in Panama and Peru; the majority (93%) directed their aerial trajectories towards and then landed upon nearby tree trunks. Following initial dorsoventral righting when necessary, falling spiders oriented themselves and then translated head-first towards targets; directional changes were correlated with bilaterally asymmetric motions of the anterolaterally extended forelegs. Aerial performance (i.e. the glide index) decreased with increasing body mass and wing loading, but not with projected surface area of the spider. Along with the occurrence of directed aerial descent in ants, jumping bristletails, and other wingless hexapods, this discovery of targeted gliding in selenopid spiders further indicates strong selective pressures against uncontrolled falls into the understory for arboreal taxa. © 2015 The Author(s).

  17. Spider silk reinforced by graphene or carbon nanotubes

    Science.gov (United States)

    Lepore, Emiliano; Bosia, Federico; Bonaccorso, Francesco; Bruna, Matteo; Taioli, Simone; Garberoglio, Giovanni; Ferrari, Andrea C.; Pugno, Nicola Maria

    2017-09-01

    Spider silk has promising mechanical properties, since it conjugates high strength (~1.5 GPa) and toughness (~150 J g-1). Here, we report the production of silk incorporating graphene and carbon nanotubes by spider spinning, after feeding spiders with the corresponding aqueous dispersions. We observe an increment of the mechanical properties with respect to pristine silk, up to a fracture strength ~5.4 GPa and a toughness modulus ~1570 J g-1. This approach could be extended to other biological systems and lead to a new class of artificially modified biological, or ‘bionic’, materials.

  18. Cognitive reappraisal of snake and spider pictures: An event-related potentials study.

    Science.gov (United States)

    Langeslag, Sandra J E; van Strien, Jan W

    2018-05-30

    Fear of snakes and spiders are common animal phobias. Emotion regulation can change the response to emotional stimuli, including snakes and spiders. It is well known that emotion regulation modulates the late positive potential (LPP), which reflects sustained motivated attention. However, research concerning the effect of emotion regulation on the early posterior negativity (EPN), which reflects early selective attention, is scarce. The present research question was whether the EPN and LPP amplitudes are modulated by regulation of emotional responses to snake and spider stimuli. Emotion up- and down-regulation were expected to enhance and reduce the LPP amplitude, respectively, but emotion regulation was not expected to modulate the EPN amplitude. Female participants passively viewed snake, spider, and bird pictures, and up- and down-regulated their emotional responses to the snake and spider pictures using self-focused reappraisal, while their electroencephalogram was recorded. There were EPNs for snakes and spiders vs. birds, as well as for snakes vs. spiders. The LPP amplitude tended to be enhanced for snakes and spiders compared to birds. Most importantly, the LPP amplitude was larger in the up-regulate than in the down-regulate condition for both snakes and spiders, but there was no evidence that the EPN amplitude was modulated by emotion regulation. This suggests that emotion regulation modulated sustained motivated attention, but not early selective attention, to snakes and spiders. The findings are in line with the notion that the emotional modulation of the EPN is more automatic than the emotional modulation of the LPP. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Early Cretaceous greenhouse pumped higher taxa diversification in spiders.

    Science.gov (United States)

    Shao, Lili; Li, Shuqiang

    2018-05-24

    The Cretaceous experienced one of the most remarkable greenhouse periods in geological history. During this time, ecosystem reorganizations significantly impacted the diversification of many groups of organisms. The rise of angiosperms marked a major biome turnover. Notwithstanding, relatively little remains known about how the Cretaceous global ecosystem impacted the evolution of spiders, which constitute one of the most abundant groups of predators. Herein, we evaluate the transcriptomes of 91 taxa representing more than half of the spider families. We add 23 newly sequenced taxa to the existing database to obtain a robust phylogenomic assessment. Phylogenetic reconstructions using different datasets and methods obtain novel placements of some groups, especially in the Synspermiata and the group having a retrolateral tibial apophysis (RTA). Molecular analyses indicate an expansion of the RTA clade at the Early Cretaceous with a hunting predatory strategy shift. Fossil analyses show a 7-fold increase of diversification rate at the same period, but this likely owes to the first occurrences spider in amber deposits. Additional analyses of fossil abundance show an accumulation of spider lineages in the Early Cretaceous. We speculate that the establishment of a warm greenhouse climate pumped the diversification of spiders, in particular among webless forms tracking the abundance of insect prey. Our study offers a new pathway for future investigations of spider phylogeny and diversification. Copyright © 2018. Published by Elsevier Inc.

  20. Spider-web amphiphiles as artificial lipid clusters: design, synthesis, and accommodation of lipid components at the air-water interface.

    Science.gov (United States)

    Ariga, Katsuhiko; Urakawa, Toshihiro; Michiue, Atsuo; Kikuchi, Jun-ichi

    2004-08-03

    As a novel category of two-dimensional lipid clusters, dendrimers having an amphiphilic structure in every unit were synthesized and labeled "spider-web amphiphiles". Amphiphilic units based on a Lys-Lys-Glu tripeptide with hydrophobic tails at the C-terminal and a polar head at the N-terminal are dendrically connected through stepwise peptide coupling. This structural design allowed us to separately introduce the polar head and hydrophobic tails. Accordingly, we demonstrated the synthesis of the spider-web amphiphile series in three combinations: acetyl head/C16 chain, acetyl head/C18 chain, and ammonium head/C16 chain. All the spider-web amphiphiles were synthesized in satisfactory yields, and characterized by 1H NMR, MALDI-TOFMS, GPC, and elemental analyses. Surface pressure (pi)-molecular area (A) isotherms showed the formation of expanded monolayers except for the C18-chain amphiphile at 10 degrees C, for which the molecular area in the condensed phase is consistent with the cross-sectional area assigned for all the alkyl chains. In all the spider-web amphiphiles, the molecular areas at a given pressure in the expanded phase increased in proportion to the number of units, indicating that alkyl chains freely fill the inner space of the dendritic core. The mixing of octadecanoic acid with the spider-web amphiphiles at the air-water interface induced condensation of the molecular area. From the molecular area analysis, the inclusion of the octadecanoic acid bears a stoichiometric characteristic; i.e., the number of captured octadecanoic acids in the spider-web amphiphile roughly agrees with the number of branching points in the spider-web amphiphile.

  1. Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution.

    Science.gov (United States)

    Bond, Jason E; Garrison, Nicole L; Hamilton, Chris A; Godwin, Rebecca L; Hedin, Marshal; Agnarsson, Ingi

    2014-08-04

    Spiders represent an ancient predatory lineage known for their extraordinary biomaterials, including venoms and silks. These adaptations make spiders key arthropod predators in most terrestrial ecosystems. Despite ecological, biomedical, and biomaterial importance, relationships among major spider lineages remain unresolved or poorly supported. Current working hypotheses for a spider "backbone" phylogeny are largely based on morphological evidence, as most molecular markers currently employed are generally inadequate for resolving deeper-level relationships. We present here a phylogenomic analysis of spiders including taxa representing all major spider lineages. Our robust phylogenetic hypothesis recovers some fundamental and uncontroversial spider clades, but rejects the prevailing paradigm of a monophyletic Orbiculariae, the most diverse lineage, containing orb-weaving spiders. Based on our results, the orb web either evolved much earlier than previously hypothesized and is ancestral for a majority of spiders or else it has multiple independent origins, as hypothesized by precladistic authors. Cribellate deinopoid orb weavers that use mechanically adhesive silk are more closely related to a diverse clade of mostly webless spiders than to the araneoid orb-weaving spiders that use adhesive droplet silks. The fundamental shift in our understanding of spider phylogeny proposed here has broad implications for interpreting the evolution of spiders, their remarkable biomaterials, and a key extended phenotype--the spider web. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Widespread and evolutionary analysis of a MITE family Monkey King in Brassicaceae.

    Science.gov (United States)

    Dai, Shutao; Hou, Jinna; Long, Yan; Wang, Jing; Li, Cong; Xiao, Qinqin; Jiang, Xiaoxue; Zou, Xiaoxiao; Zou, Jun; Meng, Jinling

    2015-06-19

    Miniature inverted repeat transposable elements (MITEs) are important components of eukaryotic genomes, with hundreds of families and many copies, which may play important roles in gene regulation and genome evolution. However, few studies have investigated the molecular mechanisms involved. In our previous study, a Tourist-like MITE, Monkey King, was identified from the promoter region of a flowering time gene, BnFLC.A10, in Brassica napus. Based on this MITE, the characteristics and potential roles on gene regulation of the MITE family were analyzed in Brassicaceae. The characteristics of the Tourist-like MITE family Monkey King in Brassicaceae, including its distribution, copies and insertion sites in the genomes of major Brassicaceae species were analyzed in this study. Monkey King was actively amplified in Brassica after divergence from Arabidopsis, which was indicated by the prompt increase in copy number and by phylogenetic analysis. The genomic variations caused by Monkey King insertions, both intra- and inter-species in Brassica, were traced by PCR amplification. Genomic sequence analysis showed that most complete Monkey King elements are located in gene-rich regions, less than 3kb from genes, in both the B. rapa and A. thaliana genomes. Sixty-seven Brassica expressed sequence tags carrying Monkey King fragments were also identified from the NCBI database. Bisulfite sequencing identified specific DNA methylation of cytosine residues in the Monkey King sequence. A fragment containing putative TATA-box motifs in the MITE sequence could bind with nuclear protein(s) extracted from leaves of B. napus plants. A Monkey King-related microRNA, bna-miR6031, was identified in the microRNA database. In transgenic A. thaliana, when the Monkey King element was inserted upstream of 35S promoter, the promoter activity was weakened. Monkey King, a Brassicaceae Tourist-like MITE family, has amplified relatively recently and has induced intra- and inter-species genomic

  3. Invited review current progress and limitations of spider silk for biomedical applications.

    Science.gov (United States)

    Widhe, Mona; Johansson, Jan; Hedhammar, My; Rising, Anna

    2012-06-01

    Spider silk is a fascinating material combining remarkable mechanical properties with low density and biodegradability. Because of these properties and historical descriptions of medical applications, spider silk has been proposed to be the ideal biomaterial. However, overcoming the obstacles to produce spider silk in sufficient quantities and in a manner that meets regulatory demands has proven to be a difficult task. Also, there are relatively few studies of spider silk in biomedical applications available, and the methods and materials used vary a lot. Herein we summarize cell culture- and in vivo implantation studies of natural and synthetic spider silk, and also review the current status and future challenges in the quest for a large scale production of spider silk for medical applications. Copyright © 2011 Wiley Periodicals, Inc.

  4. Determination of PCDDs in spider webs: preliminary studies

    Science.gov (United States)

    Rybak, Justyna; Rutkowski, Radosław

    2018-01-01

    The application of spider webs for determination of polichlorinated dibenzo-para-dioxins (PCDDs) has been studied for the first time. The aim of the studies was to find out if spider webs are suitable for such examinations as it was proved in the previous research they are excellent indicators of air pollutants. Spiders are ubiquitous, thus collection of samples is easy and non-invasive. Studies were conducted within the city of Wrocław and surroundings, one of the biggest and at the same time heaviest polluted city in Poland. Five research sites have been chosen, where spider webs were collected after 60 days of continuous exposure time. Webs belonging to two genera Tegenaria sylvestris and Tegenaria ferruginea (family Agelenidae) have been chosen as they are large and very dense, thus they are very suitable for such examinations. Webs were found to retain dioxins probably mainly by external exposure. These promising results should be continued and expanded in the future research.

  5. The Allergen Der p3 from House Dust Mite Stimulates Store-Operated Ca2+ Channels and Mast Cell Migration through PAR4 Receptors.

    Science.gov (United States)

    Lin, Yu-Ping; Nelson, Charmaine; Kramer, Holger; Parekh, Anant B

    2018-04-19

    The house dust mite is the principal source of perennial aeroallergens in man. How these allergens activate innate and adaptive immunity is unclear, and therefore, there are no therapies targeting mite allergens. Here, we show that house dust mite extract activates store-operated Ca 2+ channels, a common signaling module in numerous cell types in the lung. Activation of channel pore-forming Orai1 subunits by mite extract requires gating by STIM1 proteins. Although mite extract stimulates both protease-activated receptor type 2 (PAR2) and PAR4 receptors, Ca 2+ influx is more tightly coupled to the PAR4 pathway. We identify a major role for the serine protease allergen Der p3 in stimulating Orai1 channels and show that a therapy involving sub-maximal inhibition of both Der p3 and Orai1 channels suppresses mast cell activation to house dust mite. Our results reveal Der p3 as an important aeroallergen that activates Ca 2+ channels and suggest a therapeutic strategy for treating mite-induced asthma. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Spider fauna of semiarid eastern Colorado agroecosystems: diversity, abundance, and effects of crop intensification.

    Science.gov (United States)

    Kerzicnik, Lauren M; Peairs, Frank B; Cushing, Paula E; Draney, Michael L; Merrill, Scott C

    2013-02-01

    Spiders are critical predators in agroecosystems. Crop management practices can influence predator density and diversity, which, in turn, can influence pest management strategies. Crop intensification is a sustainable agricultural technique that can enhance crop production although optimizing soil moisture. To date, there is no information on how crop intensification affects natural enemy populations, particularly spiders. This study had two objectives: to characterize the abundance and diversity of spiders in eastern Colorado agroecosystems, and to test the hypothesis that spider diversity and density would be higher in wheat (Triticum aestivum L.) in crop-intensified rotations compared with wheat in conventional rotations. We collected spiders through pitfall, vacuum, and lookdown sampling from 2002 to 2007 to test these objectives. Over 11,000 spiders in 19 families from 119 species were captured from all sampling techniques. Interestingly, the hunting spider guild represented 89% of the spider fauna captured from all sites with the families Gnaphosidae and Lycosidae representing 75% of these spiders. Compared with European agroecosystems, these agroecosystems had greater diversity, which can be beneficial for the biological control of pests. Overall, spider densities were low in these semiarid cropping systems, and crop intensification effects on spider densities were not evident at this scale.

  7. Global associations between birds and vane-dwelling feather mites.

    Science.gov (United States)

    Doña, Jorge; Proctor, Heather; Mironov, Sergey; Serrano, David; Jovani, Roger

    2016-11-01

    Understanding host-symbiont networks is a major question in evolutionary ecology. Birds host a great diversity of endo- and ectosymbiotic organisms, with feather mites (Arachnida: Acariformes: Analgoidea, Pterolichoidea) being among the most diverse of avian symbionts. A global approach to the ecology and evolution of bird-feather-mite associations has been hampered because of the absence of a centralized data repository. Here we present the most extensive data set of associations between feather mites and birds. Data include 12 036 records of 1887 feather mite species located on the flight feathers of 2234 bird species from 147 countries. Feather mites typically located inside quills, on the skin, or on downy body feathers are not included. Data were extracted from 493 published sources dating from 1882 to 2015. Data exploration shows that although most continents and bird families are represented, most bird species remain unexplored for feather mites. Nevertheless, this is the most comprehensive data set available for enabling global macroecological analyses of feather mites and their hosts, such as ecological network analyses. This metadata file outlines the structure of these data and provides primary references for all records used. © 2016 by the Ecological Society of America.

  8. Extended spider cognition.

    Science.gov (United States)

    Japyassú, Hilton F; Laland, Kevin N

    2017-05-01

    There is a tension between the conception of cognition as a central nervous system (CNS) process and a view of cognition as extending towards the body or the contiguous environment. The centralised conception requires large or complex nervous systems to cope with complex environments. Conversely, the extended conception involves the outsourcing of information processing to the body or environment, thus making fewer demands on the processing power of the CNS. The evolution of extended cognition should be particularly favoured among small, generalist predators such as spiders, and here, we review the literature to evaluate the fit of empirical data with these contrasting models of cognition. Spiders do not seem to be cognitively limited, displaying a large diversity of learning processes, from habituation to contextual learning, including a sense of numerosity. To tease apart the central from the extended cognition, we apply the mutual manipulability criterion, testing the existence of reciprocal causal links between the putative elements of the system. We conclude that the web threads and configurations are integral parts of the cognitive systems. The extension of cognition to the web helps to explain some puzzling features of spider behaviour and seems to promote evolvability within the group, enhancing innovation through cognitive connectivity to variable habitat features. Graded changes in relative brain size could also be explained by outsourcing information processing to environmental features. More generally, niche-constructed structures emerge as prime candidates for extending animal cognition, generating the selective pressures that help to shape the evolving cognitive system.

  9. Evolutionary genomics of miniature inverted-repeat transposable elements (MITEs) in Brassica.

    Science.gov (United States)

    Nouroz, Faisal; Noreen, Shumaila; Heslop-Harrison, J S

    2015-12-01

    Miniature inverted-repeat transposable elements (MITEs) are truncated derivatives of autonomous DNA transposons, and are dispersed abundantly in most eukaryotic genomes. We aimed to characterize various MITEs families in Brassica in terms of their presence, sequence characteristics and evolutionary activity. Dot plot analyses involving comparison of homoeologous bacterial artificial chromosome (BAC) sequences allowed identification of 15 novel families of mobile MITEs. Of which, 5 were Stowaway-like with TA Target Site Duplications (TSDs), 4 Tourist-like with TAA/TTA TSDs, 5 Mutator-like with 9-10 bp TSDs and 1 novel MITE (BoXMITE1) flanked by 3 bp TSDs. Our data suggested that there are about 30,000 MITE-related sequences in Brassica rapa and B. oleracea genomes. In situ hybridization showed one abundant family was dispersed in the A-genome, while another was located near 45S rDNA sites. PCR analysis using primers flanking sequences of MITE elements detected MITE insertion polymorphisms between and within the three Brassica (AA, BB, CC) genomes, with many insertions being specific to single genomes and others showing evidence of more recent evolutionary insertions. Our BAC sequence comparison strategy enables identification of evolutionarily active MITEs with no prior knowledge of MITE sequences. The details of MITE families reported in Brassica enable their identification, characterization and annotation. Insertion polymorphisms of MITEs and their transposition activity indicated important mechanism of genome evolution and diversification. MITE families derived from known Mariner, Harbinger and Mutator DNA transposons were discovered, as well as some novel structures. The identification of Brassica MITEs will have broad applications in Brassica genomics, breeding, hybridization and phylogeny through their use as DNA markers.

  10. A comparison of spider communities in Bt and non-Bt rice fields.

    Science.gov (United States)

    Lee, Sue Yeon; Kim, Seung Tae; Jung, Jong Kook; Lee, Joon-Ho

    2014-06-01

    To assess the potential adverse effects of a Bt rice line (Japonica rice cultivar, Nakdong) expressing a synthetic cry1Ac1 gene, C7-1-9-1-B, which was highly active against all larval stages of Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Crambidae), we investigated the community structure of spiders in Bt and non-Bt rice fields during the rice-growing season in 2007 and 2008 in Chungcheongnam-do, Korea. Spiders were surveyed with a sweep net and suction device. Suction sampling captured more spiders, measured in terms of species level and abundance, than sweeping. Araneidae and Thomisidae were captured more by sweeping, and certain species were captured only by sweeping. These findings show that both suction and sweep sampling methods should be used because these methods are most likely complementary. In total, 29 species in 23 genera and nine families were identified from the 4,937 spiders collected, and both Bt and non-Bt rice fields showed a typical Korean spider assemblage. The temporal patterns of spider species richness and spider abundance were very similar between Bt and non-Bt rice, although significant differences in species richness were observed on a few occasions. Overall, spider community structure, including diversity, the dominant species, and abundance did not differ between Bt and non-Bt rice. The results of the study indicated that the transgenic Cry1Ac rice lines tested in this study had no adverse effects on the spider community structure of the rice fields.

  11. Edge effect on weevils and spiders

    OpenAIRE

    Horváth, R.; Magura, T.; Péter, G.; Tóthmérész, B.

    2002-01-01

    The edge effect on weevils and spiders was tested along oak forest – meadow transects using sweep-net samples at the Síkfökút Project in Hungary. For spiders the species richness was significantly higher in the forest edge than either in the meadow or the forest interior. For weevils the species richness of the forest edge was higher than that of the meadow, but the difference was not statistically significant whereas the species richness of the forest...

  12. Cuticular bacteria appear detrimental to social spiders in mixed but not monoculture exposure

    Science.gov (United States)

    Keiser, Carl N.; Shearer, Taylor A.; DeMarco, Alexander E.; Brittingham, Hayley A.; Knutson, Karen A.; Kuo, Candice; Zhao, Katherine; Pruitt, Jonathan N.

    2016-01-01

    Abstract Much of an animal’s health status, life history, and behavior are dictated by interactions with its endogenous and exogenous bacterial communities. Unfortunately, interactions between hosts and members of their resident bacterial community are often ignored in animal behavior and behavioral ecology. Here, we aim to identify the nature of host–microbe interactions in a nonmodel organism, the African social spider Stegodyphus dumicola. We collected and identified bacteria from the cuticles of spiders in situ and then exposed spiders to bacterial monocultures cultures via topical application or injection. We also topically inoculated spiders with a concomitant “cocktail” of bacteria and measured the behavior of spiders daily for 24 days after inoculation. Lastly, we collected and identified bacteria from the cuticles of prey items in the capture webs of spiders, and then fed spiders domestic crickets which had been injected with these bacteria. We also injected 1 species of prey-borne bacteria into the hemolymph of spiders. Only Bacillus thuringiensis caused increased mortality when injected into the hemolymph of spiders, whereas no bacterial monocultures caused increased mortality when applied topically, relative to control solutions. However, a bacterial cocktail of cuticular bacteria caused weight loss and mortality when applied topically, yet did not detectibly alter spider behavior. Consuming prey injected with prey-borne bacteria was associated with an elongated lifespan in spiders. Thus, indirect evidence from multiple experiments suggests that the effects of these bacteria on spider survivorship appear contingent on their mode of colonization and whether they are applied in monoculture or within a mixed cocktail. We urge that follow-up studies should test these host–microbe interactions across different social contexts to determine the role that microbes play in colony performance. PMID:29491926

  13. Cleaner mites: sanitary mutualism in the miniature ecosystem of neotropical bee nests.

    Science.gov (United States)

    Biani, Natalia B; Mueller, Ulrich G; Wcislo, William T

    2009-06-01

    Cleaning symbioses represent classic models of mutualism, and some bee mites are thought to perform cleaning services for their hosts in exchange for suitable environments for reproduction and dispersal. These mutual benefits, however, have not been rigorously demonstrated. We tested the sanitary role of bee mites by correlating mite loads with fungal contamination in natural nests of Megalopta genalis and Megalopta ecuadoria and by experimentally manipulating mite loads in artificial cells with developing brood. Field observations revealed significant correlations between the presence of mites and the absence of fungi inside the brood cells, as well as between the absence of mites and increased bee mortality. Likewise, experimental brood cells with mites have fewer fungal colonies than do cells without mites. Field observations and experimental manipulations, therefore, provide clear evidence of the sanitary effect of mites in nests of Megalopta bees. This bee-mite association constitutes one of the few examples of terrestrial cleaning mutualisms.

  14. Subsocial behaviour and brood adoption in mixed-species colonies of two theridiid spiders

    DEFF Research Database (Denmark)

    Grinsted, Lena; Agnarsson, Ingi; Bilde, Trine

    2012-01-01

    Cooperation and group living often evolves through kin selection. However, associations between unrelated organisms, such as different species, can evolve if both parties benefit from the interaction. Group living is rare in spiders, but occurs in cooperative, permanently social spiders, as well...... as in territorial, colonial spiders. Mixed species spider colonies, involving closely related species, have rarely been documented. We examined social interactions in newly discovered mixed-species colonies of theridiid spiders on Bali, Indonesia. Our aim was to test the degree of intra- and interspecific tolerance...

  15. The time course of location-avoidance learning in fear of spiders.

    Science.gov (United States)

    Rinck, Mike; Koene, Marieke; Telli, Sibel; Moerman-van den Brink, Wiltine; Verhoeven, Barbara; Becker, Eni S

    2016-01-01

    Two experiments were designed to study the time course of avoidance learning in spider fearfuls (SFs) under controlled experimental conditions. To achieve this, we employed an immersive virtual environment (IVE): While walking freely through a virtual art museum to search for specific paintings, the participants were exposed to virtual spiders. Unbeknown to the participants, only two of four museum rooms contained spiders, allowing for avoidance learning. Indeed, the more SF the participants were, the faster they learned to avoid the rooms that contained spiders (Experiment. 1), and within the first six trials, high fearfuls already developed a preference for starting their search task in rooms without spiders (Experiment 2). These results illustrate the time course of avoidance learning in SFs, and they speak to the usefulness of IVEs in fundamental anxiety research.

  16. Edge effect on weevils and spiders

    Directory of Open Access Journals (Sweden)

    R. Horváth

    2002-05-01

    Full Text Available The edge effect on weevils and spiders was tested along oak forest – meadow transects using sweep-net samples at the Síkfökút Project in Hungary. For spiders the species richness was significantly higher in the forest edge than either in the meadow or the forest interior. For weevils the species richness of the forest edge was higher than that of the meadow, but the difference was not statistically significant whereas the species richness of the forest interior was significantly lower than that of the forest edge and the meadow. The composition of the spider assemblage of the edge was more similar to the forest, while the composition of weevils in the edge was more similar to the meadow. Our results based on two invertebrate groups operating on different trophic levels suggest that there is a significant edge effect for the studied taxa resulting in higher species richness in the edge.

  17. Three Species of Ectoparasite Mites (Acari: Pterygosomatidae Infested Geckos in Indonesia

    Directory of Open Access Journals (Sweden)

    TARUNI SRI PRAWASTI

    2013-06-01

    Full Text Available Limited data is hitherto available on the diversity and dispersal of parasitic mites of geckos in Indonesia. Here, we collected three species of geckos, namely Cosymbotus platyurus, Hemidactylus frenatus, and H. garnotii throughout Indonesia to study the distribution and diversity of its parasitic mites. We conducted detail morphological analysis of the mites using whole mount polyvinyl lactophenol and scanning electron microscope preparation. Three species of ectoparasite mites from genus Geckobia were identified in a total of 221 individuals out of 448 geckos collected from 25 sites in Indonesia. Two species were G. glebosum and G. bataviensis, and the other one was designated as Geckobia sp 1. Based on our result, the three mites species were spread randomly and live sympatrically. The G. bataviensis mite showed the widest distribution, because it was found in almost all gecko collection sites, hence the most cosmopolitan mites. We also found that C. platyurus gecko had the lowest mite prevalence which might due to the fact that it has the least number of skin folds, an important site for mite protection. This result implies that further research on the relationship of anatomy of gecko skin with chelicera and claw structure of mites is necessary in the future.

  18. Endemic harvestmen and spiders of Austria (Arachnida: Opiliones, Araneae

    Directory of Open Access Journals (Sweden)

    Komposch, Christian

    2011-01-01

    Full Text Available A comprehensive overview of plant, fungus and animal species of Austria revealed a total of 748 endemic and subendemic species, including, 11 harvestman and 46 spider species. Altogether two endemic harvestmen (Nemastoma bidentatum relictum, Nemastoma schuelleri and 8 endemic spiders (Abacoproeces molestus, Collinsia (caliginosa nemenziana, Mughiphantes severus, Mughiphantes styriacus, Pelecopsis alpica, Scotophaeus nanus, Troglohyphantes novicordis, Troglohyphantes tauriscus, beside 9 subendemic harvestman and 38 subendemic spider species have been recorded from Austria. Hot-spots of endemism in the Eastern Alps are the north-eastern (Ennstaler Alps and southern Calcareous Alps (Karawanken, Karnische Alps and the Central Alps (Hohe Tauern, Gurktaler Alps, Ötztaler and Stubaier Alps. Most of the endemic arachnid species occur from the nival down to the montane zone. Important habitats are rocky areas, caves and woodlands. High absolute numbers and percentages of endemics can be found within the harvestman families Cladonychiidae, Ischyropsalididae and Nemastomatidae and in the spider genera Lepthyphantes s. l. and Troglohyphantes. The conservation status of these highly endangered taxa – 85 % of the spider species and 100 % of the harvestman taxa are endangered in Austria – is poor.

  19. SPIDER: A Framework for Understanding Driver Distraction.

    Science.gov (United States)

    Strayer, David L; Fisher, Donald L

    2016-02-01

    The objective was to identify key cognitive processes that are impaired when drivers divert attention from driving. Driver distraction is increasingly recognized as a significant source of injuries and fatalities on the roadway. A "SPIDER" model is developed that identifies key cognitive processes that are impaired when drivers divert attention from driving. SPIDER is an acronym standing for scanning, predicting, identifying, decision making, and executing a response. When drivers engage in secondary activities unrelated to the task of driving, SPIDER-related processes are impaired, situation awareness is degraded, and the ability to safely operate a motor vehicle may be compromised. The pattern of interference helps to illuminate the sources of driver distraction and may help guide the integration of new technology into the automobile. © 2015, Human Factors and Ergonomics Society.

  20. Information processing biases in spider phobia: application of the Stroop and "White Noise" Paradigm.

    Science.gov (United States)

    Olatunji, Bunmi O; Sawchuk, Craig N; Lee, Thomas C; Lohr, Jeffrey M; Tolin, David F

    2008-06-01

    The present study examines attentional and implicit memory biases in spider phobic and nonphobic participants. The results showed that spider phobics demonstrated increased interference for neutral, negative, and spider-relevant words on a computerized Stroop task. However, no group differences emerged when adjusting for differences in color-naming speed. Prior exposure to a dead spider did result in higher overall Stroop interference in spider phobics and this appeared to be mostly pronounced for spider-relevant words. Implicit memory bias for threat was examined with a noise judgment task. Participants first heard neutral and spider-relevant sentences and implicit memory for these sentences was evaluated by having participants rate the volume of noise accompanying the presentation of old sentences intermixed with new sentences. An implicit memory bias is indicated if participants rate noise accompanying old sentences as less loud than noise accompanying new sentences. No evidence was found for an implicit memory bias in spider phobics. These findings are discussed in relation to the role of information processing biases in spider phobia.

  1. Spider diversity in coffee agroecosystems: the influence of agricultural intensification and aggressive ants.

    Science.gov (United States)

    Marín, Linda; Perfecto, Ivette

    2013-04-01

    Spiders are a very diverse group of invertebrate predators found in agroecosystems and natural systems. However, spider distribution, abundance, and eventually their ecological function in ecosystems can be influenced by abiotic and biotic factors such as agricultural intensification and dominant ants. Here we explore the influence of both agricultural intensification and the dominant arboreal ant Azteca instabilis on the spider community in coffee agroecosystems in southern Mexico. To measure the influence of the arboreal ant Azteca instabilis (F. Smith) on the spider community inhabiting the coffee layer of coffee agroecosystems, spiders were collected from coffee plants that were and were not patrolled by the ant in sites differing in agricultural intensification. For 2008, generalized linear mixed models showed that spider diversity was affected positively by agricultural intensification but not by the ant. However, results suggested that some spider species were associated with A. instabilis. Therefore, in 2009 we concentrated our research on the effect of A. instabilis on spider diversity and composition. For 2009, generalized linear mixed models show that spider richness and abundance per plant were significantly higher in the presence of A. instabilis. In addition, analyses of visual counts of insects and sticky traps data show that more resources were present in plants patrolled by the ant. The positive effect of A. instabilis on spiders seems to be caused by at least two mechanisms: high abundance of insects and protection against predators.

  2. Ecological Factors Determining Abundance of Parasitic Mites on Aedes spp. Larvae

    Directory of Open Access Journals (Sweden)

    Nurhadi Eko Firmansyah

    2017-12-01

    Full Text Available Ability to infestation and abundance of parasitic mites in Aedes spp. larvae cannot be separated from the influence of various factors. Ecological factors have been suggested to play a role determine the presence of parasitic mites that under certain conditions become a key factor in determining the abundance of parasitic mites on Aedes spp. larvae. The aim of this study to determine the ecological factors affect the abundance of parasitic mites on Aedes spp. larvae in Bogor Regency. Capturing of Aedes spp. larvae was performed directly on the habitats found in indoor and outdoor. Capturing mites in the body of Aedes spp. larvae was performed using insect forceps. Ecological factors measured were dissolved oxygen (DO, pH, temperature, and total dissolved solid (TDS. The influence of ecological factors was analyzed using regression and correlation analysis. The result of mite identification has been obtained three species of mites that are Halacarus sp., Histiostoma sp., and Hydrozetes sp. The result indicated that total dissolved solid (TDS and temperature was the factors that determined the abundance of mites. The factors of pH, and dissolved oxygen (DO did not determine the abundance of parasitic mites of Aedes spp. larvae. The research result can be further developed as a new alternative to Dengue Hemorraghic Fever control and provide information on parasitic mites that infest Aedes spp. larvae. In addition, this results become an early step in controlling of Aedes spp. strategy platform by the parasitic mites.

  3. The acaricidal speed of kill of orally administered fluralaner against poultry red mites (Dermanyssus gallinae) on laying hens and its impact on mite reproduction.

    Science.gov (United States)

    Brauneis, Maria D; Zoller, Hartmut; Williams, Heike; Zschiesche, Eva; Heckeroth, Anja R

    2017-12-02

    Dermanyssus gallinae, the poultry red mite, is a growing threat to chickens in poultry farms. This nocturnal hematophagous ectoparasite has a rapid rate of proliferation with a negative impact on the birds' health, welfare and productivity resulting in severe economic consequences for poultry farmers. A study was performed with fluralaner, a novel systemic ectoparasiticide, to evaluate its effect on mite vitality and reproduction after oral administration to laying hens. Sixteen healthy hens were randomly allocated to two study groups (n = 8). One group was orally treated with fluralaner by gavage at a dose of 0.5 mg/kg bodyweight twice 7 days apart. The negative control group received no treatment. Hens in each group were repeatedly infested with approximately 200 unfed adult D. gallinae at 1, 5, 8, 12, 15, 19, 22 and 26 days after the initial administration. After infestation and feeding for 2.5 h, 25 engorged mites per hen were collected and incubated in tubes. Mites were assessed for vitality (dead/live) at 4, 8, 12, and 24 h after each infestation. Tubes containing eggs and/or living mites were incubated another 8 days for assessment of mite reproductive capacity. Fluralaner demonstrated a fast speed of kill in mites within 4 h post-infestation for 12 days after treatment initiation. An efficacy (mite mortality) of 98.7-100% was achieved. At 15 days after treatment initiation, 100% efficacy was achieved within 24 h post-infestation, and no mite oviposition occurred during this period. Nineteen days after treatment initiation, the mites' ability to generate nymphs was reduced by 90.8%, which decreased to < 24.1% at later infestations. Fluralaner administered orally to hens twice, 7 days apart, provides efficacy against experimental poultry red mite infestation for at least 2 weeks. The demonstrated rapid speed of kill results in substantial depletion of the mites' oviposition and suggests that fluralaner can be an effective tool in the control

  4. Chronic exposure to soil salinity in terrestrial species: Does plasticity and underlying physiology differ among specialized ground-dwelling spiders?

    Science.gov (United States)

    Renault, D; Puzin, C; Foucreau, N; Bouchereau, A; Pétillon, J

    2016-07-01

    In salt marshes, the alternation of low and high tides entails rapid shifts of submersion and aerial exposure for terrestrial communities. In these intertidal environments, terrestrial species have to deal with an osmotic loss in body water content and an increase in sodium chloride concentration when salt load increases. In salt marshes, spiders represent an abundant arthropod group, whose physiological ecology in response to variations of soil salinity must be further investigated. In this study, we compared the effect of salinity on the survival and physiology of three species of Lycosidae; two salt marsh species (Arctosa fulvolineata and Pardosa purbeckensis) and one forest species (P. saltans). Spiders were individually exposed at three salinity conditions (0‰, 35‰ and 70‰) and survival, changes in body water content, hemolymph ions (Na(+), Ca(2+), Mg(2+), K(+); ICP-MS technique) and metabolites (mainly amino acids, polyols, sugars; LC and GC techniques) were assessed. The survival of the forest species P. saltans was very quickly hampered at moderate and high salinities. In this spider, variations of hemolymph ions and metabolites revealed a quick loss of physiological homeostasis and a rapid salt-induced dehydration of the specimens. Conversely, high survival durations were measured in the two salt-marsh spiders, and more particularly in A. fulvolineata. In both P. purbeckensis and A. fulvolineata, the proportion of Na(+), Ca(2+), Mg(2+), K(+) remained constant at the three experimental conditions. Accumulation of hemolymph Na(+) and amino acids (mainly glutamine and proline) demonstrated stronger osmoregulatory capacities in these salt-marsh resident spiders. To conclude, even if phylogenetically close (belonging to the same, monophyletic, family), we found different physiological capacities to cope with salt load among the three tested spider species. Nevertheless, physiological responses to salinity were highly consistent with the realized

  5. Reconstitutable control rod spider assembly

    International Nuclear Information System (INIS)

    Shallenberger, J.M.; Ferian, S.J.

    1990-01-01

    A reconstitutable control rod/spider assembly includes a hollow connecting finger of the spider having a pair of opposing flat segments formed on the interior thereof and engaging a pair of opposing flat sectors formed on the exterior of a stem extending form the upper end of control rod. The stem also has an externally-threaded portion engaging a nut and a pilot aligning portion for the nut. The nut has a radially flexible and expandable thread-defining element captured in its bore. The segments and sectors allow the rod to be removed and reattached after turning through 180 0 to allow more even wear on the rod. (author)

  6. Differential water mite parasitism, phenoloxidase activity, and resistance to mites are unrelated across pairs of related damselfly species.

    Directory of Open Access Journals (Sweden)

    Julia J Mlynarek

    Full Text Available Related host species often demonstrate differences in prevalence and/or intensity of infection by particular parasite species, as well as different levels of resistance to those parasites. The mechanisms underlying this interspecific variation in parasitism and resistance expression are not well understood. Surprisingly, few researchers have assessed relations between actual levels of parasitism and resistance to parasites seen in nature across multiple host species. The main goal of this study was to determine whether interspecific variation in resistance against ectoparasitic larval water mites either was predictive of interspecific variation in parasitism for ten closely related species of damselflies (grouped into five "species pairs", or was predicted by interspecific variation in a commonly used measure of innate immunity (total Phenoloxidase or potential PO activity. Two of five species pairs had interspecific differences in proportions of individuals resisting larval Arrenurus water mites, only one of five species pairs had species differences in prevalence of larval Arrenurus water mites, and another two of five species pairs showed species differences in mean PO activity. Within the two species pairs where species differed in proportion of individuals resisting mites the species with the higher proportion did not have correspondingly higher PO activity levels. Furthermore, the proportion of individuals resisting mites mirrored prevalence of parasitism in only one species pair. There was no interspecific variation in median intensity of mite infestation within any species pair. We conclude that a species' relative ability to resist particular parasites does not explain interspecific variation in parasitism within species pairs and that neither resistance nor parasitism is reflected by interspecific variation in total PO or potential PO activity.

  7. Does the removal of mite-infested brood facilitate grooming?

    Science.gov (United States)

    The relationship between the removal of mite-infested brood and mite drop was compared using Russian (RHB, n = 9) and Italian (IHB, n = 9) honey bee colonies. A cloake board was used to isolate test brood frame on the top hive body and the metal sheet served as a varroa trap. Inoculum mites were col...

  8. Phylogenomics, Diversification Dynamics, and Comparative Transcriptomics across the Spider Tree of Life.

    Science.gov (United States)

    Fernández, Rosa; Kallal, Robert J; Dimitrov, Dimitar; Ballesteros, Jesús A; Arnedo, Miquel A; Giribet, Gonzalo; Hormiga, Gustavo

    2018-05-07

    Dating back to almost 400 mya, spiders are among the most diverse terrestrial predators [1]. However, despite considerable effort [1-9], their phylogenetic relationships and diversification dynamics remain poorly understood. Here, we use a synergistic approach to study spider evolution through phylogenomics, comparative transcriptomics, and lineage diversification analyses. Our analyses, based on ca. 2,500 genes from 159 spider species, reject a single origin of the orb web (the "ancient orb-web hypothesis") and suggest that orb webs evolved multiple times since the late Triassic-Jurassic. We find no significant association between the loss of foraging webs and increases in diversification rates, suggesting that other factors (e.g., habitat heterogeneity or biotic interactions) potentially played a key role in spider diversification. Finally, we report notable genomic differences in the main spider lineages: while araneoids (ecribellate orb-weavers and their allies) reveal an enrichment in genes related to behavior and sensory reception, the retrolateral tibial apophysis (RTA) clade-the most diverse araneomorph spider lineage-shows enrichment in genes related to immune responses and polyphenic determination. This study, one of the largest invertebrate phylogenomic analyses to date, highlights the usefulness of transcriptomic data not only to build a robust backbone for the Spider Tree of Life, but also to address the genetic basis of diversification in the spider evolutionary chronicle. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Spiders (Araneae) Found in Bananas and Other International Cargo Submitted to North American Arachnologists for Identification.

    Science.gov (United States)

    Vetter, Richard S; Crawford, Rodney L; Buckle, Donald J

    2014-11-01

    Spiders found in international cargo brought into North America are sometimes submitted to arachnologists for identification. Often, these spiders are presumed to be of medical importance because of size or a submitter's familiarity with a toxic spider genus from the continent of origin. Starting in 2006, requests were made for spiders found in international cargo brought into North America, in addition to the specimens from similar cargo shipments already in our museum collections. This was an ad hoc study that allowed us to focus on spiders of concern to the discoverer. We identified 135 spiders found in international cargo. A key for the most common species is provided. The most frequently submitted spiders were the pantropical huntsman spider, Heteropoda venatoria (L.) (Sparassidae), and the redfaced banana spider, Cupiennius chiapanensis Medina Soriano (Ctenidae). Spiders of medical importance were rare. The most common cargo from which spiders were submitted was bananas with most specimens coming from Central America, Ecuador, or Colombia. Lack of experience with nonnative fauna caused several experienced American arachnologists to misidentify harmless ctenid spiders (C. chiapanensis, spotlegged banana spider, Cupiennius getazi Simon) as highly toxic Phoneutria spiders. These misidentifications could have led to costly, unwarranted prophylactic eradication measures, unnecessary employee health education, heightened employee anxiety and spoilage when perishable goods are left unloaded due to safety concerns. © 2014 Entomological Society of America.

  10. Remote monitoring of vibrational information in spider webs

    Science.gov (United States)

    Mortimer, B.; Soler, A.; Siviour, C. R.; Vollrath, F.

    2018-06-01

    Spiders are fascinating model species to study information-acquisition strategies, with the web acting as an extension of the animal's body. Here, we compare the strategies of two orb-weaving spiders that acquire information through vibrations transmitted and filtered in the web. Whereas Araneus diadematus monitors web vibration directly on the web, Zygiella x-notata uses a signal thread to remotely monitor web vibration from a retreat, which gives added protection. We assess the implications of these two information-acquisition strategies on the quality of vibration information transfer, using laser Doppler vibrometry to measure vibrations of real webs and finite element analysis in computer models of webs. We observed that the signal thread imposed no biologically relevant time penalty for vibration propagation. However, loss of energy (attenuation) was a cost associated with remote monitoring via a signal thread. The findings have implications for the biological use of vibrations by spiders, including the mechanisms to locate and discriminate between vibration sources. We show that orb-weaver spiders are fascinating examples of organisms that modify their physical environment to shape their information-acquisition strategy.

  11. A Tank Bromeliad Favors Spider Presence in a Neotropical Inundated Forest.

    Directory of Open Access Journals (Sweden)

    Yann Hénaut

    Full Text Available Tank bromeliads are good models for understanding how climate change may affect biotic associations. We studied the relationships between spiders, the epiphytic tank bromeliad, Aechmea bracteata, and its associated ants in an inundated forest in Quintana Roo, Mexico, during a drought period while, exceptionally, this forest was dry and then during the flooding that followed. We compared spider abundance and diversity between 'Aechmea-areas' and 'control-areas' of the same surface area. We recorded six spider families: the Dipluridae, Ctenidae, Salticidae, Araneidae, Tetragnathidae and Linyphiidae among which the funnel-web tarantula, Ischnothele caudata, the only Dipluridae noted, was the most abundant. During the drought period, the spiders were more numerous in the Aechmea-areas than in the control-areas, but they were not obligatorily associated with the Aechmea. During the subsequent flooding, the spiders were concentrated in the A. bracteata patches, particularly those sheltering an ant colony. Also, a kind of specificity existed between certain spider taxa and ant species, but varied between the drought period and subsequent flooding. We conclude that climatic events modulate the relationship between A. bracteata patches and their associated fauna. Tank bromeliads, previously considered only for their ecological importance in supplying food and water during drought, may also be considered refuges for spiders during flooding. More generally, tank bromeliads have an important role in preserving non-specialized fauna in inundated forests.

  12. A Tank Bromeliad Favors Spider Presence in a Neotropical Inundated Forest.

    Science.gov (United States)

    Hénaut, Yann; Corbara, Bruno; Pélozuelo, Laurent; Azémar, Frédéric; Céréghino, Régis; Herault, Bruno; Dejean, Alain

    2014-01-01

    Tank bromeliads are good models for understanding how climate change may affect biotic associations. We studied the relationships between spiders, the epiphytic tank bromeliad, Aechmea bracteata, and its associated ants in an inundated forest in Quintana Roo, Mexico, during a drought period while, exceptionally, this forest was dry and then during the flooding that followed. We compared spider abundance and diversity between 'Aechmea-areas' and 'control-areas' of the same surface area. We recorded six spider families: the Dipluridae, Ctenidae, Salticidae, Araneidae, Tetragnathidae and Linyphiidae among which the funnel-web tarantula, Ischnothele caudata, the only Dipluridae noted, was the most abundant. During the drought period, the spiders were more numerous in the Aechmea-areas than in the control-areas, but they were not obligatorily associated with the Aechmea. During the subsequent flooding, the spiders were concentrated in the A. bracteata patches, particularly those sheltering an ant colony. Also, a kind of specificity existed between certain spider taxa and ant species, but varied between the drought period and subsequent flooding. We conclude that climatic events modulate the relationship between A. bracteata patches and their associated fauna. Tank bromeliads, previously considered only for their ecological importance in supplying food and water during drought, may also be considered refuges for spiders during flooding. More generally, tank bromeliads have an important role in preserving non-specialized fauna in inundated forests.

  13. A Tank Bromeliad Favors Spider Presence in a Neotropical Inundated Forest

    Science.gov (United States)

    Hénaut, Yann; Corbara, Bruno; Pélozuelo, Laurent; Azémar, Frédéric; Céréghino, Régis; Herault, Bruno; Dejean, Alain

    2014-01-01

    Tank bromeliads are good models for understanding how climate change may affect biotic associations. We studied the relationships between spiders, the epiphytic tank bromeliad, Aechmea bracteata, and its associated ants in an inundated forest in Quintana Roo, Mexico, during a drought period while, exceptionally, this forest was dry and then during the flooding that followed. We compared spider abundance and diversity between ‘Aechmea-areas’ and ‘control-areas’ of the same surface area. We recorded six spider families: the Dipluridae, Ctenidae, Salticidae, Araneidae, Tetragnathidae and Linyphiidae among which the funnel-web tarantula, Ischnothele caudata, the only Dipluridae noted, was the most abundant. During the drought period, the spiders were more numerous in the Aechmea-areas than in the control-areas, but they were not obligatorily associated with the Aechmea. During the subsequent flooding, the spiders were concentrated in the A. bracteata patches, particularly those sheltering an ant colony. Also, a kind of specificity existed between certain spider taxa and ant species, but varied between the drought period and subsequent flooding. We conclude that climatic events modulate the relationship between A. bracteata patches and their associated fauna. Tank bromeliads, previously considered only for their ecological importance in supplying food and water during drought, may also be considered refuges for spiders during flooding. More generally, tank bromeliads have an important role in preserving non-specialized fauna in inundated forests. PMID:25494055

  14. Primeiro registro de Oligonychus yothersi (McGregor (Acari: Tetranychidae em Eucalyptus grandis Hill ex Maiden no Brasil First record of Oligonychus yothersi (McGregor (Acari: Tetranychidae on Eucalyptus grandis Hill ex Maiden in Brazil

    Directory of Open Access Journals (Sweden)

    Fabrício Fagundes Pereira

    2005-08-01

    Full Text Available Relata-se a infestação de um ácaro-vermelho em mudas clonais de Eucalyptus grandis Hill ex Maiden, mantidas em casa de vegetação no município de Martinho Campos, Minas Gerais. O ácaro foi observado na parte superior das folhas que exibiam sinais de sucção de seiva e bronzeamento. Essas injúrias causaram desenvolvimento anormal e morte de plantas. O ácaro foi identificado como Oligonychus yothersi (McGregor (Acari: Tetranychidae, e isso representa o primeiro registro dessa espécie em mudas clonais de E. grandis no Brasil.An infestation of the red spider mite was reported in clone seedlings of Eucalyptus grandis Hill ex Maiden under greenhouse conditions, in the municipality of Martinho Campos, Minas Gerais State. The spider mite was found on the leaf upper faces with signs of sap suction and bronzing. Such injuries caused abnormal development and plant death. The spider mite was identified as Oligonychus yothersi (McGregor (Acari: Tetranychidae. This is the first record of O. yothersi on E. grandis seedlings in Brazil.

  15. Optimization of spray deposition and Tetranychus urticae control with air assisted and electrostatic sprayer

    Directory of Open Access Journals (Sweden)

    Denise Tourino Rezende de Cerqueira

    Full Text Available ABSTRACT: Improved spray deposition can be attained by electrostatically charging spray droplets, which increases the attraction of droplets to plants and decreases operator exposure to pesticide and losses to the environment. However, this technique alone is not sufficient to achieve desirable penetration of the spray solution into the crop canopy; thus, air assistance can be added to the electrostatic spraying to further improve spray deposition. This study was conducted to compare different spraying technologies on spray deposition and two-spotted spider mite control in cut chrysanthemum. Treatments included in the study were: conventional TJ 8003 double flat fan nozzles, conventional TXVK-3 hollow cone nozzles, semi-stationary motorized jet launched spray with electrostatic spray system (ESS and air assistance (AA, and semi-stationary motorized jet launched spray with AA only (no ESS. To evaluate the effect of these spraying technologies on the control of two-spotted spider mite, a control treatment was included that did not receive an acaricide application. The AA spraying technology, with or without ESS, optimized spray deposition and provided satisfactory two-spotted spider mite control up to 4 days after application.

  16. Domatia reduce larval cannibalism in predatory mites

    NARCIS (Netherlands)

    Ferreira, J.A.M.; Eshuis, B.; Janssen, A.; Sabelis, M.W.

    2008-01-01

    1. Acarodomatia are small structures on the underside of leaves of many plant species, which are mainly inhabited by carnivorous and fungivorous mites. 2. Domatia are thought to protect these mites against adverse environmental conditions and against predation. They are considered as an indirect

  17. Respiratory allergy caused by house dust mites

    DEFF Research Database (Denmark)

    Calderón, Moisés A; Linneberg, Allan; Kleine-Tebbe, Jörg

    2015-01-01

    consequences in patients with respiratory allergic diseases. We investigate the epidemiology of HDM allergy to explore the interaction between mites and human subjects at the population, individual, and molecular levels. Core and recent publications were identified by using "house dust mite" as a key search...

  18. Small Molecules from Spiders Used as Chemical Probes

    DEFF Research Database (Denmark)

    Olsen, Christian Adam; Kristensen, Anders S.; Strømgaard, Kristian

    2011-01-01

    Spiders are important species in ecological systems and as major predators of insects they are endowed with a plethora of low‐molecular‐weight natural products having intriguing biological activities. The isolation and biological characterization of these entities are well established, however......, only very recently have these compounds been used as templates for the design, synthesis, and biological evaluation of synthetic analogues. In contrast, the investigation of compounds responsible for chemical communication between spiders is far less developed, but recently new light has been shed onto...... the area of pheromones and allomones from spiders. Herein, we recapitulate these recent results, put them into perspective with previous findings, and provide an outlook for future studies of these chemotypes....

  19. Exploring of the first recorded spider (Arachenida: Aranae species of Sheringal, Khyber Pakhtunkhwa, Pakistan

    Directory of Open Access Journals (Sweden)

    Farzana Perveen

    2015-09-01

    Full Text Available The spiders (Arthropoada: Arachenida are one of the groups of grasping animals. Their carapaces are found on the dorsal side of the cephalothorax, which is an important characteristic of spiders. The present study was conducted to explore the first recorded spider species (nti=75 of Sheringal, Dir Upper (DU, Khyber Pakhtunkhwa (KP, Dir Upper, Khyber Pakhtunkhwa, Pakistan. The 10 genera with 10 species under 7 families were recorded from June 2013-July 2014. According to length of legs, the largest spider was the huntsman spider, Halconia insignis Thorell having length of the first leg was 1.9±0.20, however, the same of the last leg was 1.44±0.25 (n=9. In the same contest, the smallest spider was the ground spider, Gnaphosa eucalyptus Ghafoor and Beg having length of the first leg was 0.4±0.08, while the same of the last leg was 0.4±0.08 (n=3. According to length of cephalothorax and abdomen, the largest spider was the wolf spider, Hippasa partita Takidar having length of the cephalothorax was 1.1±0.01, however, the same of the abdomen was 0.7±0.1 (n=6. In the same contest, the smallest spider was the harvestmen, Hadrobunus grandis Sundevall having length of the cephalothorax was 0.1±0.04, while the same of the abdomen was 0.3±0.04 (n=12. During present research, 10 spider species of Sheringal with different sizes were explored. The present research will be useful to educate and create awareness about spiders in the people of Sheringal.

  20. Optical surface profiling of orb-web spider capture silks

    Energy Technology Data Exchange (ETDEWEB)

    Kane, D M; Joyce, A M; Staib, G R [Department of Physics, Macquarie University, Sydney, NSW 2109 (Australia); Herberstein, M E, E-mail: deb.kane@mq.edu.a [Department of Biological Sciences, Macquarie University, Sydney, NSW 2109 (Australia)

    2010-09-15

    Much spider silk research to date has focused on its mechanical properties. However, the webs of many orb-web spiders have evolved for over 136 million years to evade visual detection by insect prey. It is therefore a photonic device in addition to being a mechanical device. Herein we use optical surface profiling of capture silks from the webs of adult female St Andrews cross spiders (Argiope keyserlingi) to successfully measure the geometry of adhesive silk droplets and to show a bowing in the aqueous layer on the spider capture silk between adhesive droplets. Optical surface profiling shows geometric features of the capture silk that have not been previously measured and contributes to understanding the links between the physical form and biological function. The research also demonstrates non-standard use of an optical surface profiler to measure the maximum width of a transparent micro-sized droplet (microlens).

  1. Optical surface profiling of orb-web spider capture silks

    International Nuclear Information System (INIS)

    Kane, D M; Joyce, A M; Staib, G R; Herberstein, M E

    2010-01-01

    Much spider silk research to date has focused on its mechanical properties. However, the webs of many orb-web spiders have evolved for over 136 million years to evade visual detection by insect prey. It is therefore a photonic device in addition to being a mechanical device. Herein we use optical surface profiling of capture silks from the webs of adult female St Andrews cross spiders (Argiope keyserlingi) to successfully measure the geometry of adhesive silk droplets and to show a bowing in the aqueous layer on the spider capture silk between adhesive droplets. Optical surface profiling shows geometric features of the capture silk that have not been previously measured and contributes to understanding the links between the physical form and biological function. The research also demonstrates non-standard use of an optical surface profiler to measure the maximum width of a transparent micro-sized droplet (microlens).

  2. Spiders do not evoke greater early posterior negativity in the event-related potential as snakes.

    Science.gov (United States)

    He, Hongshen; Kubo, Kenta; Kawai, Nobuyuki

    2014-09-10

    It has been long believed that both snakes and spiders are archetypal fear stimuli for humans. Furthermore, snakes have been assumed as stronger threat cues for nonhuman primates. However, it is still unclear whether spiders hold a special status in human perception. The current study explored to what extent spider pictures draw early visual attention [as assessed with early posterior negativity (EPN)] when compared with insects similar to spiders. To measure the EPN, participants watched a random rapid serial presentation of pictures, which consisted of two conditions: spider condition (spider, wasp, bumblebee, beetle) and snake condition (snake, bird). EPN amplitudes revealed no significant difference between spider, wasp, bumblebee, and beetle pictures, whereas EPN amplitudes were significantly larger for snake pictures relative to bird pictures. In addition, EPN amplitudes were significantly larger for snake pictures relative to spider pictures. These results suggest that the early visual attentional capture of animate objects is stronger for snakes, whereas spiders do not appear to hold special early attentional value.

  3. Solubilization of spider silk proteins and its structural analysis using Fourier transform infrared spectroscopy

    Science.gov (United States)

    Osbin, K.; Jayan, Manuel; Bhadrakumari, S.; Predeep, P.

    2017-06-01

    This study investigates the presence of various amide bands present in different spider silk species, which provides extraordinary physical properties. Three different spider silks were collected from Western Ghats region. The collected spider silks samples belonging to the spider Heteropoda venatoria (species 1), Hersilia savignyi (species 2) and Pholcus phalangioides (species 3). Fourier transform infrared (FTIR) spectra reveals the protein peaks in the amide I, II, and III regions in all the three types of spider silk species.

  4. How informative are case studies of spider bites in the medical literature?

    Science.gov (United States)

    Stuber, Marielle; Nentwig, Wolfgang

    2016-05-01

    We analyzed the reliability and information content of 134 medical case studies on spider bites, published in 91 journal articles. Overall, we found that only 22% of these studies fulfilled the criteria for a verified spider bite. This means that the majority of such case studies cannot be attributed to a given spider species and usually not even to a spider. Their scientific value is negligible, moreover, such publications are even dangerous because they suggest incorrect conclusions. Secondly, we found that such case studies usually do not follow an obvious structure and many details on the development of symptoms, therapy and healing process are widely lacking. So even for verified spider bites, the comparability of case studies is limited. We discuss the obvious failure of a reviewing process for case studies and give recommendations how to increase the currently low information content of medical case studies on spider bites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Rapid visuomotor processing of phobic images in spider- and snake-fearful participants.

    Science.gov (United States)

    Haberkamp, Anke; Schmidt, Filipp; Schmidt, Thomas

    2013-10-01

    This study investigates enhanced visuomotor processing of phobic compared to fear-relevant and neutral stimuli. We used a response priming design to measure rapid, automatic motor activation by natural images (spiders, snakes, mushrooms, and flowers) in spider-fearful, snake-fearful, and control participants. We found strong priming effects in all tasks and conditions; however, results showed marked differences between groups. Most importantly, in the group of spider-fearful individuals, spider pictures had a strong and specific influence on even the fastest motor responses: Phobic primes entailed the largest priming effects, and phobic targets accelerated responses, both effects indicating speeded response activation by phobic images. In snake-fearful participants, this processing enhancement for phobic material was less pronounced and extended to both snake and spider images. We conclude that spider phobia leads to enhanced processing capacity for phobic images. We argue that this is enabled by long-term perceptual learning processes. © 2013.

  6. Who is afraid of a black Spider(-Man)?

    OpenAIRE

    Ora C. McWilliams

    2013-01-01

    An Internet post asking about Spider-Man's race in a film turned into an Internet campaign about an actor that led fans to interact with each other as well as with the actor, which in turn led to the attention of media producers, which resulted in a change in Spider-Man's race in a print comic book.

  7. Under the lash: Demodex mites in human diseases

    OpenAIRE

    Lacey, Noreen; Kavanagh, Kevin; Tseng, Scheffer C.G.

    2009-01-01

    Demodex mites, class Arachnida and subclass Acarina, are elongated mites with clear cephalothorax and abdomens, the former with four pairs of legs. There are more than 100 species of Demodex mite, many of which are obligatory commensals of the pilosebaceous unit of mammals including cats, dogs, sheep, cattle, pigs, goats, deer, bats, hamsters, rats and mice. Among them, Demodex canis, which is found ubiquitously in dogs, is the most documented and investigated. In excessive numbers D. canis c...

  8. Factors that influence the beta-diversity of spider communities in northwestern Argentinean Grasslands

    Directory of Open Access Journals (Sweden)

    Sandra M. Rodriguez-Artigas

    2016-04-01

    Full Text Available Beta-diversity, defined as spatial replacement in species composition, is crucial to the understanding of how local communities assemble. These changes can be driven by environmental or geographic factors (such as geographic distance, or a combination of the two. Spiders have been shown to be good indicators of environmental quality. Accordingly, spiders are used in this work as model taxa to establish whether there is a decrease in community similarity that corresponds to geographic distance in the grasslands of the Campos & Malezales ecoregion (Corrientes. Furthermore, the influence of climactic factors and local vegetation heterogeneity (environmental factors on assemblage composition was evaluated. Finally, this study evaluated whether the differential dispersal capacity of spider families is a factor that influences their community structure at a regional scale. Spiders were collected with a G-Vac from vegetation in six grassland sites in the Campos & Malezales ecoregion that were separated by a minimum of 13 km. With this data, the impact of alpha-diversity and different environmental variables on the beta-diversity of spider communities was analysed. Likewise, the importance of species replacement and nesting on beta-diversity and their contribution to the regional diversity of spider families with different dispersion capacities was evaluated. The regional and site-specific inventories obtained were complete. The similarity between spider communities declined as the geographic distance between sites increased. Environmental variables also influenced community composition; stochastic events and abiotic forces were the principal intervening factors in assembly structure. The differential dispersal capacity of spider groups also influenced community structure at a regional scale. The regional beta-diversity, as well as species replacement, was greater in high and intermediate vagility spiders; while nesting was greater in spiders with low

  9. Identification of a Plant Phytosterol with Toxicity against Arthropod Pests

    Directory of Open Access Journals (Sweden)

    J.R.M. Thacker

    1999-06-01

    Full Text Available A crude plant extract that was toxic to spider mites in a leaf dip bioassay was subjected to detailed chemical analysis using chromatographic and spectroscopic techniques, The analyses revealed that the major active chemical was probably fl-sitosterol-3-glucostdc, a known phytosterol. The literature indicates that this chemical has been identified in a number of plant species and that it has been tested for utility in a number of medical therapies. It has not so far been assayed for the control of arthropod posts, the data indicate that this compound may be of use in the control of pest species, especially spider mites.

  10. Structure–Activity Relationship Study of Spider Polyamine Toxins as Inhibitors of Ionotropic Glutamate Receptors

    DEFF Research Database (Denmark)

    Xiong, Xiaofeng; Poulsen, Mette H; Hussein, Rama A

    2014-01-01

    The spider polyamine toxins Joro spider toxin-3 (JSTX-3) and Nephila polyamine toxins-1 and -8 (NPTX-1 and NPTX-8) are isolated from the venom of the orb-weaver spider Nephila clavata (Joro spider). They share a high degree of structural resemblance, their aromatic head groups being the only...

  11. The management of house dust mite allergies

    NARCIS (Netherlands)

    Bronswijk, van J.E.M.H.; Schober, G.; Kniest, F.M.

    1990-01-01

    A safe and practical home sanitation procedure for the removal of house dust mites (Dermatophagoides pteronyssinus) and their allergens is described. The severity of mite infestation was assessed with the use of the Acarex test, which measures the concentration of guanine in house dust, and all

  12. Record breaking achievements by spiders and the scientists who study them.

    Science.gov (United States)

    Mammola, Stefano; Michalik, Peter; Hebets, Eileen A; Isaia, Marco

    2017-01-01

    Organismal biology has been steadily losing fashion in both formal education and scientific research. Simultaneous with this is an observable decrease in the connection between humans, their environment, and the organisms with which they share the planet. Nonetheless, we propose that organismal biology can facilitate scientific observation, discovery, research, and engagement, especially when the organisms of focus are ubiquitous and charismatic animals such as spiders. Despite being often feared, spiders are mysterious and intriguing, offering a useful foundation for the effective teaching and learning of scientific concepts and processes. In order to provide an entryway for teachers and students-as well as scientists themselves-into the biology of spiders, we compiled a list of 99 record breaking achievements by spiders (the "Spider World Records"). We chose a world-record style format, as this is known to be an effective way to intrigue readers of all ages. We highlighted, for example, the largest and smallest spiders, the largest prey eaten, the fastest runners, the highest fliers, the species with the longest sperm, the most venomous species, and many more. We hope that our compilation will inspire science educators to embrace the biology of spiders as a resource that engages students in science learning. By making these achievements accessible to non-arachnologists and arachnologists alike, we suggest that they could be used: (i) by educators to draw in students for science education, (ii) to highlight gaps in current organismal knowledge, and (iii) to suggest novel avenues for future research efforts. Our contribution is not meant to be comprehensive, but aims to raise public awareness on spiders, while also providing an initial database of their record breaking achievements.

  13. Radiation Safety System for SPIDER Neutral Beam Accelerator

    International Nuclear Information System (INIS)

    Sandri, S.; Poggi, C.; Coniglio, A.; D'Arienzo, M.

    2011-01-01

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports have been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.

  14. Nutrient intake determines post-maturity molting in the golden orb-web spider Nephila pilipes (Araneae: Araneidae).

    Science.gov (United States)

    Cheng, Ren-Chung; Zhang, Shichang; Chen, Yu-Chun; Lee, Chia-Yi; Chou, Yi-Ling; Ye, Hui-Ying; Piorkowski, Dakota; Liao, Chen-Pan; Tso, I-Min

    2017-06-15

    While molting occurs in the development of many animals, especially arthropods, post-maturity molting (PMM, organisms continue to molt after sexual maturity) has received little attention. The mechanism of molting has been studied intensively; however, the mechanism of PMM remains unknown although it is suggested to be crucial for the development of body size. In this study, we investigated factors that potentially induce PMM in the golden orb-web spider Nephila pilipes , which has the greatest degree of sexual dimorphism among terrestrial animals. We manipulated the mating history and the nutrient consumption of the females to examine whether they affect PMM. The results showed that female spiders under low nutrition were more likely to molt as adults, and mating had no significant influence on the occurrence of PMM. Moreover, spiders that underwent PMM lived longer than those that did not and their body sizes were significantly increased. Therefore, we concluded that nutritional condition rather than mating history affect PMM. © 2017. Published by The Company of Biologists Ltd.

  15. Allergic Responses Induced by a Fungal Biopesticide Metarhizium anisopliae and House Dust Mite Are Compared in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Marsha D. W. Ward

    2011-01-01

    Full Text Available Biopesticides can be effective in controlling their target pest. However, research regarding allergenicity and asthma development is limited. We compared the ability of fungal biopesticide Metarhizium anisopliae (MACA and house dust mite (HDM extracts to induce allergic responses in BALB/c mice. The extracts were administered by intratracheal aspiration at doubling doses (2.5–80 g protein 4X over a four-week period. Three days after the last exposure, serum and bronchoalveolar lavage fluid (BALF were collected. The extracts' relative allergenicity was evaluated based on response robustness (lowest significant dose response compared to control (0 g. MACA induced a more robust serum total IgE response than HDM. However, in the antigen-specific IgE assay, a similar dose of both MACA and HDM was required to achieve the same response level. Our data suggest a threshold dose of MACA for allergy induction and that M. anisopliae may be similar to HDM in allergy induction potential.

  16. Colonization of subterranean habitats by spiders in Central Europe

    Directory of Open Access Journals (Sweden)

    Vlastimil Růžička

    2013-05-01

    Full Text Available Using data from the Czech Republic, we studied the distribution of spiders in soils, crevice systems, scree and caves, i.e. subterranean habitats at depths spanning from 10 cm to 100 m. In total, we found 161 species. The number of species declines with increasing habitat depth, with a major drop in species richness at the depth of 10 meters. Thirteen species exhibit morphological adaptations to life in subterranean habitats. At depths greater than 10 meters, spider assemblages are almost exclusively composed of troglomorphic species. We propose a hypothesis of evolution of troglomorphisms at spiders during Quaternary climatic cycles.

  17. Distribution and importance of spiders inhabiting a Brazilian sugar cane plantation

    Directory of Open Access Journals (Sweden)

    Isabela Maria Piovesan Rinaldi

    2002-07-01

    Full Text Available The spider fauna (Araneae of a sugar eane plantation was surveyed monthly by hand colteetion and beating vegetation in sugar cane fields across Botucatu, State of São Paulo, Brazil. Composition and rchness (family and species where identifieation to species was possible microhabitat preferenees were reeorded, and diversity and evenness indices were calculated. A total of 1291 spiders belonging to 73 species and 20 families were collected. The most diverse families were Theridiidae, Salticidae, and Araneidae, and the most abundant ones were Theridiidae, Saltieidae, Anyphaenidae, and Araneidae, Seven species represented 58.6% of the total fauna, with Crysso pulcherrima (Mello-Leitão,1917 (Theridiidae composing 28.2%. About 65% of the spiders occupied the upper part of the plants (above 20 cm. Five spider species were present in the sugar cane throughout crop development. Evidence of spiders feeding on sugar cane pest species was observed.

  18. Biomimetic calcium phosphate coatings on recombinant spider silk fibres

    Energy Technology Data Exchange (ETDEWEB)

    Yang Liang; Habibovic, Pamela; Van Blitterswijk, Clemens A [Department of Tissue Regeneration, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Hedhammar, My; Johansson, Jan [Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, the Biomedical Centre, Box 575, 751 23 Uppsala (Sweden); Blom, Tobias; Leifer, Klaus [Department of Engineering Sciences, Uppsala University, Box 534, S-751 21 Uppsala (Sweden)

    2010-08-01

    Calcium phosphate ceramic coatings, applied on surfaces of metallic and polymeric biomaterials, can improve their performance in bone repair and regeneration. Spider silk is biocompatible, strong and elastic, and hence an attractive biomaterial for applications in connective tissue repair. Recently, artificial spider silk, with mechanical and structural characteristics similar to those of native spider silk, has been produced from recombinant minispidroins. In the present study, supersaturated simulated body fluid was used to deposit calcium phosphate coatings on recombinant spider silk fibres. The mineralization process was followed in time using scanning electron microscopy equipped with an energy dispersive x-ray (EDX) detector and Raman spectroscope. Focused ion beam technology was used to produce a cross section of a coated fibre, which was further analysed by EDX. Preliminary in vitro experiments using a culture of bone marrow-derived human mesenchymal stem cells (hMSCs) on coated fibres were also performed. This study showed that recombinant spider silk fibres were successfully coated with a homogeneous and thick crystalline calcium phosphate layer. In the course of the mineralization process from modified simulated body fluid, sodium chloride crystals were first deposited on the silk surface, followed by the deposition of a calcium phosphate layer. The coated silk fibres supported the attachment and growth of hMSCs.

  19. Spider Silk as Guiding Biomaterial for Human Model Neurons

    Directory of Open Access Journals (Sweden)

    Frank Roloff

    2014-01-01

    Full Text Available Over the last years, a number of therapeutic strategies have emerged to promote axonal regeneration. An attractive strategy is the implantation of biodegradable and nonimmunogenic artificial scaffolds into injured peripheral nerves. In previous studies, transplantation of decellularized veins filled with spider silk for bridging critical size nerve defects resulted in axonal regeneration and remyelination by invading endogenous Schwann cells. Detailed interaction of elongating neurons and the spider silk as guidance material is unknown. To visualize direct cellular interactions between spider silk and neurons in vitro, we developed an in vitro crossed silk fiber array. Here, we describe in detail for the first time that human (NT2 model neurons attach to silk scaffolds. Extending neurites can bridge gaps between single silk fibers and elongate afterwards on the neighboring fiber. Culturing human neurons on the silk arrays led to an increasing migration and adhesion of neuronal cell bodies to the spider silk fibers. Within three to four weeks, clustered somata and extending neurites formed ganglion-like cell structures. Microscopic imaging of human neurons on the crossed fiber arrays in vitro will allow for a more efficient development of methods to maximize cell adhesion and neurite growth on spider silk prior to transplantation studies.

  20. Biomimetic calcium phosphate coatings on recombinant spider silk fibres

    International Nuclear Information System (INIS)

    Yang Liang; Habibovic, Pamela; Van Blitterswijk, Clemens A; Hedhammar, My; Johansson, Jan; Blom, Tobias; Leifer, Klaus

    2010-01-01

    Calcium phosphate ceramic coatings, applied on surfaces of metallic and polymeric biomaterials, can improve their performance in bone repair and regeneration. Spider silk is biocompatible, strong and elastic, and hence an attractive biomaterial for applications in connective tissue repair. Recently, artificial spider silk, with mechanical and structural characteristics similar to those of native spider silk, has been produced from recombinant minispidroins. In the present study, supersaturated simulated body fluid was used to deposit calcium phosphate coatings on recombinant spider silk fibres. The mineralization process was followed in time using scanning electron microscopy equipped with an energy dispersive x-ray (EDX) detector and Raman spectroscope. Focused ion beam technology was used to produce a cross section of a coated fibre, which was further analysed by EDX. Preliminary in vitro experiments using a culture of bone marrow-derived human mesenchymal stem cells (hMSCs) on coated fibres were also performed. This study showed that recombinant spider silk fibres were successfully coated with a homogeneous and thick crystalline calcium phosphate layer. In the course of the mineralization process from modified simulated body fluid, sodium chloride crystals were first deposited on the silk surface, followed by the deposition of a calcium phosphate layer. The coated silk fibres supported the attachment and growth of hMSCs.

  1. SPIDER: Probing the dawn of time from above the clouds

    Science.gov (United States)

    Moncelsi, Lorenzo; Spider Collaboration

    2017-11-01

    SPIDER is a balloon-borne microwave polarimeter designed to measure cosmological B-modes on degree angular scales in the presence of Galactic foregrounds. With six independent telescopes housing a total of 2000 detectors in the 90 GHz and 150 GHz frequency bands, SPIDER is the most instantaneously-sensitive CMB polarimeter deployed on the sky to date. SPIDER was successfully launched from McMurdo Station, Antarctica in January 2015 and acquired science data for 16 days. We cover the in-flight performance and present highlights from the ongoing data-analysis. After a successful recovery, the SPIDER team is planning the next flight, featuring one foreground-optimized channel at 280GHz, which will allow us constrain the primordial tensor-mode amplitude at the level of r < 0.03 (99% CL), in the presence of foregrounds.

  2. Interpretative bias in spider phobia: Perception and information processing of ambiguous schematic stimuli.

    Science.gov (United States)

    Haberkamp, Anke; Schmidt, Filipp

    2015-09-01

    This study investigates the interpretative bias in spider phobia with respect to rapid visuomotor processing. We compared perception, evaluation, and visuomotor processing of ambiguous schematic stimuli between spider-fearful and control participants. Stimuli were produced by gradually morphing schematic flowers into spiders. Participants rated these stimuli related to their perceptual appearance and to their feelings of valence, disgust, and arousal. Also, they responded to the same stimuli within a response priming paradigm that measures rapid motor activation. Spider-fearful individuals showed an interpretative bias (i.e., ambiguous stimuli were perceived as more similar to spiders) and rated spider-like stimuli as more unpleasant, disgusting, and arousing. However, we observed no differences between spider-fearful and control participants in priming effects for ambiguous stimuli. For non-ambiguous stimuli, we observed a similar enhancement for phobic pictures as has been reported previously for natural images. We discuss our findings with respect to the visual representation of morphed stimuli and to perceptual learning processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Phoretic mites identified on andean hummingbirds (Trochilidae of Caldas, Colombia

    Directory of Open Access Journals (Sweden)

    Natalia López-Orozco

    Full Text Available Within the bird-plant-mite system, the relationship between hummingbirds, flowers, and mites remains poorly understood. In this study, we evaluated the degree of association between nasal mites and eight species of Andean hummingbirds in Colombia (Amazilia saucerrottei,A. tzacatl, Chalybura buffonii,Chlorostilbon mellisugus, Florisuga mellivora, Glaucis hirsutus, Phaethornis guy and P. striigularis. Over a five-month period (trapping effort 360 hours/month, a total of 178 birds were captured, from which 81 mite specimens were collected and identified as belonging to three genera (Proctolaelaps, Rhinoseius andTropicoseius spanning eleven species. This is the first report of its kind from Colombia on the identification of the mite speciesP. rabulatus, R. luteyni, R. rafinskii, T. berryi, T. colwelli, T. erro and T. uniformisand the first record of P. guy as phoretic host forProctolaelaps rabulatus. Morphological characteristics (length of the dorsal plate, width of the dorsal plate and setae z5 length alone failed to distinguish between mite species. The ecologic impact of this relationship on flowers with respect to nectar and pollen availability and the effect of mites on pollination by hummingbirds needs to be determined.

  4. Phoretic mites identified on Andean hummingbirds (Trochilidae) of Caldas, Colombia.

    Science.gov (United States)

    López-Orozco, Natalia; Cañón-Franco, William Alberto

    2013-01-01

    Within the bird-plant-mite system, the relationship between hummingbirds, flowers, and mites remains poorly understood. In this study, we evaluated the degree of association between nasal mites and eight species of Andean hummingbirds in Colombia (Amazilia saucerrottei, A. tzacatl, Chalybura buffonii, Chlorostilbon mellisugus, Florisuga mellivora, Glaucis hirsutus, Phaethornis guy and P. striigularis). Over a five-month period (trapping effort 360 hours/month), a total of 178 birds were captured, from which 81 mite specimens were collected and identified as belonging to three genera (Proctolaelaps, Rhinoseius and Tropicoseius) spanning eleven species. This is the first report of its kind from Colombia on the identification of the mite species P. rabulatus, R. luteyni, R. rafinskii, T. berryi, T. colwelli, T. erro and T. uniformis and the first record of P. guy as phoretic host for Proctolaelaps rabulatus. Morphological characteristics (length of the dorsal plate, width of the dorsal plate and setae z5 length) alone failed to distinguish between mite species. The ecologic impact of this relationship on flowers with respect to nectar and pollen availability and the effect of mites on pollination by hummingbirds needs to be determined.

  5. Who is afraid of a black Spider(-Man?

    Directory of Open Access Journals (Sweden)

    Ora C. McWilliams

    2013-06-01

    Full Text Available An Internet post asking about Spider-Man's race in a film turned into an Internet campaign about an actor that led fans to interact with each other as well as with the actor, which in turn led to the attention of media producers, which resulted in a change in Spider-Man's race in a print comic book.

  6. Characteristics of the first recorded spider (Arthropoda: Arachnida fauna from Sheringal, Khyber Pakhtunkhwa, Pakistan

    Directory of Open Access Journals (Sweden)

    Farzana Khan Perveen

    2015-12-01

    Full Text Available The spiders (order: Aranae are an important environmental indicator and play a significant role as predators in biological control of the most of the key insect pests. The present study was conducted to establish the characteristics of the first recorded spider fauna from Sheringal, Dir Upper (DU, Khyber Pakhtunkhwa (KP, Pakistan during June 2013-July 2014. Their 10 species belong to 7 families, and 10 genera (nt=123: total; ni=77: identified; nui=46: unidentified were recorded in the 6 quadrates, i.e., Daramdala, Doki, Guryaal, Samang, Shahoor and Sia-Sheringal of Sheringal. The largest family was Lycosidae (wolf spiders with respect to size and numbers of specimens collected (n=20, which contained Arctosa littorali Simon, 1897; Hippasa partita Takidar, 1970; Pardosa distincta Backwall, 1867, while the smallest family was Gnphosidae (ground spiders (n=3 with Gnaphosa eucalyptus Ghafoor and Beg, 2002; while other families Sparassidae (huntsman spiders (n=19 Halconia insignis Thorell, 1836, and Isopeda tuhogniga Barrion and Litsinger, 1995, Opilionidae (harvestmen spiders (n=12 Hadrobunus grandis Sundevall, 1833; Pholcidae (cellar spider (n=10 have Crossopriza lyoni Blackwall, 1867; Hersiliidae (two-tailed spiders (n=6 is having Harsilia savignyi Lucas, 1836; (n=5 with Araneus diadematus Clerck, 1757 were recorded. It was concluded that 50% of the spiders collected from the study area were venomous. A detail study is required for further exploration of spider fauna of Sheringal, KP, Pakistan with special reference to their taxonomical, physiological and ecological characteristics.

  7. Status of the CNESM diagnostic for SPIDER

    International Nuclear Information System (INIS)

    Muraro, A.; Croci, G.; Albani, G.; Cazzaniga, C.; Claps, G.; Cavenago, M.; Grosso, G.; Palma, M. Dalla; Fincato, M.; Murtas, F.; Pasqualotto, R.; Cippo, E. Perelli; Rebai, M.; Tollin, M.; Tardocchi, M.; Gorini, G.

    2015-01-01

    Highlights: • We have finished the design of the detector box of the CNESM diagnostic for SPIDER. • We have constructed the GEM detector of the CNESM detector for SPIDER. • We have tested the detector under fast neutron irradiation. - Abstract: The ITER neutral beam test facility under construction in Padova will host two experimental devices: SPIDER, a 100 kV negative H/D RF source, and MITICA, a full scale, 1 MeV deuterium beam injector. A detection system called close-contact neutron emission surface mapping (CNESM) is under development with the aim to resolve the horizontal beam intensity profile in MITICA and one of the eight beamlet groups in SPIDER, with a spatial resolution of 1.5 and 2.5 cm respectively. This is achieved by the evaluation of the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron–proton converter foil. The diagnostic will be placed right behind the SPIDER and MITICA beam dump, i.e. in an UHV environment, but the nGEM detectors need to operate at atmospheric pressure: in order to maintain the detector at atmospheric pressure, a vacuum sealed box, that will be mounted inside the vacuum, has been designed. The box design was driven by the need to minimize the neutron attenuation and the distance between the beam dump surface and the detector active area. This paper presents the status of the CNESM diagnostic describing the design of the detector, the design of the sealed box and reporting the results obtained with the first full-size prototype under fast neutron irradiation.

  8. Design of the interlock and protection system for the SPIDER experiment

    International Nuclear Information System (INIS)

    Pomaro, N.; Grando, L.; Luchetta, A.; Paolucci, F.; Sartori, F.

    2013-01-01

    Highlights: •A custom designed interlock and protection system for SPIDER experiment is described. •It includes two subsystems implementing slow and fast protection functions. •High reliability PLCs are adopted for slow protection. •Fiber-optic based, custom designed fast logic circuitry is proposed for fast protection. •Accelerators breakdown events are also managed by the fast subsystem. -- Abstract: Unprecedented levels of beam energy and power are required for ITER Neutral Beam Heating systems. SPIDER experiment is an experimental device aimed to test and optimize a full size beam source satisfying ITER requirements. SPIDER experiment operation involves high power, voltage, temperature, and gas pressure. All these critical conditions are present simultaneously, so that any failure if not properly detected and managed is likely to cause severe damage. The Interlock and Protection System is a high-reliability system devoted to the investment protection of SPIDER. Its main purpose is to manage abnormal events occurring in one or more plants in order to minimize adverse consequences. The Interlock System also manages the SPIDER Operating Modes, defining the set and status of the Plants used in the various possible experimental configurations. In addition, the Interlock and Protection System takes care of particular events occurring during normal SPIDER operation, i.e. electrical arcs between accelerator grids, named breakdowns. Their treatment is committed to the Interlock and Protection System, as they need to be managed timely and with absolute reliability like actual faults. To perform the required functions, the Interlock and Protection System is interfaced with most SPIDER plants and with the SPIDER Control and Data Acquisition System. The paper describes the rationale of the protection functions, their implementation in the design and the technical specifications of the system

  9. Effect of reagins and allergen extracts on radioallergosorbent assays for mite allergen

    International Nuclear Information System (INIS)

    Tovey, E.R.; Vandenberg, R.A.

    1978-01-01

    The reproducibility of the radioallergosorbent (RAST) inhibition and direct binding assays with mite allergen were investigated in the presence of heterogeneous extracts and non-mite sensitive atopic sera. Both contain components similar to potential contaminants which would occur in the assay of mite allergen and dust allergen extracts. The standardized inhibition and direct binding assays employed had a day to day (n = 4) coefficient of variation [(s.d. x 100)/mean] of 15% and 24% respectively. The inhibition assay for mite allergen was reproducible in the presence of protein concentrations of added plant, fungal, arthropod and animal extracts in excess of the protein concentrations that occur under the operational mite assay conditions. The mite inhibition assay was also reproducible in the presence of non-mite allergen extracts, with and without additional sera containing IgE specific for the non0mite allergens. The binding of a constant quantity of mite allergen to the activated solid phase in the direct binding assay was reproducible in the presence of added bovine serum albumin, and of a fungal or arthropod extract, representing the heterogeneous components of an allergen extract at the concentrations of total protein known to occur in the direct binding assay of mite extracts. (author)

  10. Bee Venom Phospholipase A2 Alleviate House Dust Mite-Induced Atopic Dermatitis-Like Skin Lesions by the CD206 Mannose Receptor.

    Science.gov (United States)

    Shin, Dasom; Choi, Won; Bae, Hyunsu

    2018-04-02

    Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by highly pruritic, erythematous, and eczematous skin plaques. We previously reported that phospholipase A2 (PLA2) derived from bee venom alleviates AD-like skin lesions induced by 2,4-dinitrochlorobenzene (DNCB) and house dust mite extract ( Dermatophagoides farinae extract, DFE) in a murine model. However, the underlying mechanisms of PLA2 action in actopic dermatitis remain unclear. In this study, we showed that PLA2 treatment inhibited epidermal thickness, serum immunoglobulin E (IgE) and cytokine levels, macrophage and mast cell infiltration in the ear of an AD model induced by DFE and DNCB. In contrast, these effects were abrogated in CD206 mannose receptor-deficient mice exposed to DFE and DNCB in the ear. These data suggest that bvPLA2 alleviates atopic skin inflammation via interaction with CD206.

  11. Deer herbivory reduces web-building spider abundance by simplifying forest vegetation structure

    Directory of Open Access Journals (Sweden)

    Elizabeth J. Roberson

    2016-09-01

    Full Text Available Indirect ecological effects are a common feature of ecological systems, arising when one species affects interactions among two or more other species. We examined how browsing by white-tailed deer (Odocoileus virginianus indirectly affected the abundance and composition of a web-building spider guild through their effects on the structure of the ground and shrub layers of northern hardwood forests. We examined paired plots consisting of deer-free and control plots in the Allegheny Plateau region Pennsylvania and Northern Highlands region of Wisconsin. We recorded the abundance of seven types of webs, each corresponding to a family of web-building spiders. We quantified vegetation structure and habitat suitability for the spiders by computing a web scaffold availability index (WSAI at 0.5 m and 1.0 m above the ground. At Northern Highlands sites, we recorded prey availability. Spider webs were twice as abundant in deer-free plots compared to control plots, while WSAI was 7–12 times greater in deerfree plots. Prey availability was lower in deer-free plots. With the exception of funnel web-builders, all spider web types were significantly more abundant in deer-free plots. Both deer exclusion and the geographic region of plots were significant predictors of spider community structure. In closed canopy forests with high browsing pressure, the low density of tree saplings and shrubs provides few locations for web-building spiders to anchor webs. Recruitment of these spiders may become coupled with forest disturbance events that increase tree and shrub recruitment. By modifying habitat structure, deer appear to indirectly modify arthropod food web interactions. As deer populations have increased in eastern North America over the past several decades, the effects of deer on web-building spiders may be widespread.

  12. Effects of attention manipulations on motivated attention to feared and nonfeared negative distracters in spider fear.

    Science.gov (United States)

    Norberg, Joakim; Wiens, Stefan

    2013-11-09

    When people view emotional and neutral pictures, the emotional pictures capture more attention than do neutral pictures. In support, studies with event-related potentials have shown that the early posterior negativity (EPN) and the late positive potential (LPP) to emotional versus neutral pictures are enhanced when pictures are attended. However, this motivated attention decreases when voluntary attention is directed away from the pictures. Most previous studies included only generally emotional pictures of either negative or positive valence. Because people with spider fear report intense fear of spiders, we examined whether directing attention away from emotional pictures at fixation decreases motivated attention less strongly for spiders than for generally negative distracters. We recorded event-related potentials from 128 channels to study whether manipulations of attention (i.e., spatial attention and perceptual load) decrease the EPN and the LPP to emotional distracters less strongly for spiders than for fear-irrelevant negative pictures in people with spider fear. Results confirmed that the EPN and the LPP to spiders (vs. neutral pictures) were particularly enhanced in participants with spider fear compared to participants without spider fear. When attention was directed away from the pictures, the EPN and the LPP to spiders (vs. neutral pictures) decreased similarly in fearful and nonfearful participants. Further, in fearful participants, the decrease in the EPN and the LPP was similar for spiders and for fear-irrelevant negative pictures. Our findings suggest that for people with spider fear, directing attention away from emotional pictures at fixation decreases motivated attention to these distracters similarly for spiders as for fear-irrelevant negative pictures. These findings imply that attention to spiders in spider fear does not exceed the level of attention expected from the spider pictures' high arousal and negative valence (i.e., their intrinsic

  13. Mites and fungi in heavily infested stores in the Czech Republic.

    Science.gov (United States)

    Hubert, J; Stejskal, V; Munzbergová, Z; Kubátová, A; Vánová, M; Zd'árková, E

    2004-12-01

    Toxigenic and allergen-producing fungi represent a serious hazard to human food and animal feed safety. Ninety-four fungal species were isolated from mite-infested samples of seeds taken from Czech seed stores. Fungi were isolated from the surface of four kinds of seeds (wheat, poppy, lettuce, and mustard) and from the gut and external surface of five species of mites (i.e., Acarus siro L., 1758, Caloglyphus rhizoglyphoides (Zachvatkin, 1973), Lepidoglyphus destructor (Schrank, 1781), Tyrophagus putrescentnae (Schrank, 1781) and Cheyletus malaccensis Oudemans 1903) separately. Multivariate analysis of fungi complex composition showed that the frequency of fungal was species significantly influenced by the kind of seed. Fungal frequencies differed between mites gut and exoskeleton surface and between the surfaces of mites and seeds. Three groups of fungal species were recognized: 1) mite surface-associated fungi: Penicillium brevicompactum, Alternaria alternata, and Aspergillus versicolor; 2) mite surface- and seed-associated fungi: Aspergillus niger, Penicillium crustosum, Penicillium aurantiogriseum, Penicillium chrysogenum, and Aspergillus flavus; and 3) seed-associated fungi: Cladosporium herbarum, Mucor dimorphosporus f. dimorphosporus, Botrytis cinerea, Penicillium griseofulvum, and Eurotium repens. Mite-carried species of microfungi are known to produce serious mycotoxins (e.g., aflatoxin B1, cyclopiazonic acid, sterigmatocystin, ochratoxin A, and nephrotoxic glycopeptides) as well as allergen producers (e.g., A. alternata and P. brevicompactum). Storage mites may play an important role in the spread of some medically hazardous micromycetes. In addition, these mite-fungi associations may heighten the risk of occurrence of mycotoxins in food and feed stuffs and cause mixed contamination by fungal and mite allergens.

  14. Dangerous mating systems: signal complexity, signal content and neural capacity in spiders.

    Science.gov (United States)

    Herberstein, M E; Wignall, A E; Hebets, E A; Schneider, J M

    2014-10-01

    Spiders are highly efficient predators in possession of exquisite sensory capacities for ambushing prey, combined with machinery for launching rapid and determined attacks. As a consequence, any sexually motivated approach carries a risk of ending up as prey rather than as a mate. Sexual selection has shaped courtship to effectively communicate the presence, identity, motivation and/or quality of potential mates, which help ameliorate these risks. Spiders communicate this information via several sensory channels, including mechanical (e.g. vibrational), visual and/or chemical, with examples of multimodal signalling beginning to emerge in the literature. The diverse environments that spiders inhabit have further shaped courtship content and form. While our understanding of spider neurobiology remains in its infancy, recent studies are highlighting the unique and considerable capacities of spiders to process and respond to complex sexual signals. As a result, the dangerous mating systems of spiders are providing important insights into how ecology shapes the evolution of communication systems, with future work offering the potential to link this complex communication with its neural processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Inactivation of complement by Loxosceles reclusa spider venom.

    Science.gov (United States)

    Gebel, H M; Finke, J H; Elgert, K D; Cambell, B J; Barrett, J T

    1979-07-01

    Zymosan depletion of serum complement in guinea pigs rendered them highly resistant to lesion by Loxosceles reclusa spider venom. Guinea pigs deficient in C4 of the complement system are as sensitive to the venom as normal guinea pigs. The injection of 35 micrograms of whole recluse venom intradermally into guinea pigs lowered their complement level by 35.7%. Brown recluse spider venom in concentrations as slight as 0.02 micrograms protein/ml can totally inactivate one CH50 of guinea pig complement in vitro. Bee, scorpion, and other spider venoms had no influence on the hemolytic titer of complement. Fractionation of recluse spider venom by Sephadex G-200 filtration separated the complement-inactivating property of the venom into three major regions which could be distinguished on the basis of heat stability as well as size. None was neutralized by antivenom. Polyacrylamide gel electrophoresis of venom resolved the complement inactivators into five fractions. Complement inactivated by whole venom or the Sephadex fractions could be restored to hemolytic activity by supplements of fresh serum but not by heat-inactivated serum, pure C3, pure C5, or C3 and C5 in combination.

  16. SPIDER OPTIMIZATION. II. OPTICAL, MAGNETIC, AND FOREGROUND EFFECTS

    International Nuclear Information System (INIS)

    O'Dea, D. T.; Clark, C. N.; Contaldi, C. R.; Ade, P. A. R.; Amiri, M.; Burger, B.; Davis, G.; Benton, S. J.; Bock, J. J.; Crill, B. P.; Dore, O.; Filippini, J. P.; Bond, J. R.; Farhang, M.; Bonetti, J. A.; Bryan, S.; Chiang, H. C.; Fraisse, A. A.; Fissel, L. M.; Gandilo, N. N.

    2011-01-01

    SPIDER is a balloon-borne instrument designed to map the polarization of the cosmic microwave background (CMB) with degree-scale resolution over a large fraction of the sky. SPIDER's main goal is to measure the amplitude of primordial gravitational waves through their imprint on the polarization of the CMB if the tensor-to-scalar ratio, r, is greater than 0.03. To achieve this goal, instrumental systematic errors must be controlled with unprecedented accuracy. Here, we build on previous work to use simulations of SPIDER observations to examine the impact of several systematic effects that have been characterized through testing and modeling of various instrument components. In particular, we investigate the impact of the non-ideal spectral response of the half-wave plates, coupling between focal-plane components and Earth's magnetic field, and beam mismatches and asymmetries. We also present a model of diffuse polarized foreground emission based on a three-dimensional model of the Galactic magnetic field and dust, and study the interaction of this foreground emission with our observation strategy and instrumental effects. We find that the expected level of foreground and systematic contamination is sufficiently low for SPIDER to achieve its science goals.

  17. The Spider Files

    Science.gov (United States)

    McDonald, James; Dominguez, Lynn

    2012-01-01

    As children develop misconceptions about animals they believe are dangerous, they also adopt attitudes that are difficult to change. Changing these attitudes is challenging for teachers. One animal that is easy to find but difficult for children to understand is a spider. As with most wild animals, they are difficult to teach about because…

  18. Age and reproductive status of adult Varroa mites affect grooming success of honey bees.

    Science.gov (United States)

    Kirrane, Maria J; de Guzman, Lilia I; Rinderer, Thomas E; Frake, Amanda M; Wagnitz, Jeremy; Whelan, Pádraig M

    2012-12-01

    This study evaluated for the first time the grooming response of honey bees to Varroa mites of different ages and reproductive statuses in the laboratory. Plastic cages containing a section of dark comb and about 200 bees were inoculated with groups of four classes of mites: gravid, phoretic foundresses, phoretic daughters and a combination of gravid and phoretic foundress mites. Each cage received 20 mites belonging to one of these classes. Our results showed that, 1 day after mite inoculation, phoretic daughter mites were the most prone to grooming by honey bees with an average mite drop of 49.8 ± 2.6 %. The lowest mite drop was recorded for bees inoculated with phoretic foundresses (30.3 ± 3.6 %) but was comparable to bees inoculated with gravid mites (31.8 ± 3.8 %) and the combination of gravid and phoretic foundress mites (34.2 ± 3.2 %). No differences among mite types were detected during the second and third days of observation. Regardless of mite type, the highest mite drop was recorded on the first day (35 ± 2.1 %) compared to the drop for any subsequent day (grooming behaviour may increase our insight into the importance of grooming in mite resistance.

  19. Structure-function-property-design interplay in biopolymers: spider silk.

    Science.gov (United States)

    Tokareva, Olena; Jacobsen, Matthew; Buehler, Markus; Wong, Joyce; Kaplan, David L

    2014-04-01

    Spider silks have been a focus of research for almost two decades due to their outstanding mechanical and biophysical properties. Recent advances in genetic engineering have led to the synthesis of recombinant spider silks, thus helping to unravel a fundamental understanding of structure-function-property relationships. The relationships between molecular composition, secondary structures and mechanical properties found in different types of spider silks are described, along with a discussion of artificial spinning of these proteins and their bioapplications, including the role of silks in biomineralization and fabrication of biomaterials with controlled properties. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Inhibition of the spider heartbeat by gravity and vibration

    Science.gov (United States)

    Finck, A.

    1984-01-01

    The rate and vigor of the spider heartbeat is controlled by an external pacemaker. A mechanical feature of the spider cardio-vascular system is the production of high serum pressure in the prosoma and the legs. This appears to be the source for leg extension. The lyriform organ on the patella of the leg is sensitive to vibratory and kinesthetic stimuli. This sensitivity depends upon the degree of leg extension. Thus the activity of the heart and the response characteristics of the sense receptor are related. The effect of a supra-threshold vibratory or gravitational stimulus is to produce an inhibition and a tachycardia of the spider heartbeat.