Lawps ion exchange column gravity drain of spherical resorcinol formaldehyde resin
Energy Technology Data Exchange (ETDEWEB)
Duignan, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Herman, D. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Restivo, M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2016-01-28
Experiments at several different scales were performed to understand the removal of spherical resorcinol formaldehyde (sRF) ion exchange resin using a gravity drain system with a valve located above the resin screen in the ion exchange column (IXC). This is being considered as part of the design for the Low Activity Waste Pretreatment System (LAWPS) to be constructed at the DOE Hanford Site.
An Engineering Evaluation of Spherical Resorcinol Formaldehyde Resin
Energy Technology Data Exchange (ETDEWEB)
Birdwell Jr, Joseph F [ORNL; Lee, Denise L [ORNL; Taylor, Paul Allen [ORNL; Collins, Robert T [ORNL; Hunt, Rodney Dale [ORNL
2010-09-01
A small column ion exchange (SCIX) system has been proposed for removal of cesium from caustic, supernatant, and dissolved salt solutions stored or generated from high-level tank wastes at the US Department of Energy (DOE) Hanford Site and Savannah River Sites. In both instances, deployment of SCIX systems, either in-tank or near-tank, is a means of expediting waste pretreatment and dispositioning with minimal or no new infrastructure requirements. Conceptually, the treatment approach can utilize a range of ion exchange media. Previously, both crystalline silicotitanate (CST), an inorganic, nonelutable sorbent, and resorcinol-formaldehyde (RF), an organic, elutable resin, have been considered for cesium removal from tank waste. More recently, Pacific Northwest National Laboratory (PNNL) evaluated use of SuperLig{reg_sign} 644, an elutable ion exchange medium, for the subject application. Results of testing indicate hydraulic limitations of the SuperLig{reg_sign} resin, specifically a high pressure drop through packed ion exchange columns. This limitation is likely the result of swelling and shrinkage of the irregularly shaped (granular) resin during repeated conversions between sodium and hydrogen forms as the resin is first loaded then eluted. It is anticipated that a similar flow limitation would exist in columns packed with conventional, granular RF resin. However, use of spherical RF resin is a likely means of mitigating processing limitations due to excessive pressure drop. Although size changes occur as the spherical resin is cycled through loading and elution operations, the geometry of the resin is expected to effectively mitigate the close packing that leads to high pressure drops across ion exchange columns. Multiple evaluations have been performed to determine the feasibility of using spherical RF resin and to obtain data necessary for design of an SCIX process. The work performed consisted of examination of radiation effects on resin performance
Energy Technology Data Exchange (ETDEWEB)
Aleman, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hamm, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2007-06-27
This report discusses the expected performance of spherical Resorcinol-Formaldehyde (RF) ion exchange resin for the removal of cesium from alkaline Hanford radioactive waste. Predictions of full scale column performance in a carousel mode are made for the Hot Commissioning, Envelope B, and Subsequent Operations waste compositions under nominal operating conditions and for perturbations from the nominal. Only the loading phase of the process cycle is addressed in this report. Pertinent bench-scale column tests, kinetic experiments, and batch equilibrium experiments are used to estimate model parameters and to benchmark the ion-exchange model. The methodology and application presented in this report reflect the expected behavior of spherical RF resin manufactured at the intermediate-scale (i.e., approximately 100 gallon batch size; batch 5E-370/641). It is generally believed that scale-up to production-scale in resin manufacturing will result in similarly behaving resin batches whose chemical selectivity is unaffected while total capacity per gram of resin may vary some. As such, the full-scale facility predictions provided within this report should provide reasonable estimates of production-scale column performance.
Energy Technology Data Exchange (ETDEWEB)
Duignan, M.; Nash, C.
2010-03-31
A principal goal at the Savannah River Site (SRS) is to safely dispose of the large volume of liquid nuclear waste held in many storage tanks. In-tank ion exchange (IX) columns are being considered for cesium removal. The spherical form of resorcinol formaldehyde ion exchange resin (sRF) is being evaluated for decontamination of dissolved saltcake waste at SRS, which is generally lower in potassium and organic components than Hanford waste. The sRF performance with SRS waste was evaluated in two phases: resin batch contacts and IX column testing with both simulated and actual dissolved salt waste. The tests, equipment, and results are discussed.
Cesium Isotherm Testing with Spherical Resorcinol-Formaldehyde Resin at High Sodium Concentrations
Energy Technology Data Exchange (ETDEWEB)
Russell, Renee L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smoot, Margaret R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rinehart, Donald E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2016-04-01
Washington River Protection Solutions (WRPS) is developing a Low-Activity Waste Pretreatment System (LAWPS) to provide low-activity waste (LAW) directly to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low-Activity Waste Facility for immobilization. The pretreatment that will be conducted on tank waste supernate at the LAWPS facility entails filtration to remove entrained solids and cesium (Cs) ion exchange to remove Cs from the product sent to the WTP. Currently, spherical resorcinol-formaldehyde (sRF) resin (Microbeads AS, Skedsmokorset, Norway) is the Cs ion exchange resin of choice. Most work on Cs ion exchange efficacy in Hanford tank waste has been conducted at nominally 5 M sodium (Na). WRPS is examining the possibility of processing supernatant at high Na concentrations—up to 8 M Na—to maximize processing efficiency through the LAWPS. Minimal Cs ion exchange work has been conducted at 6 M and 8 M Na concentrations..
Energy Technology Data Exchange (ETDEWEB)
Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Levitskaia, Tatiana G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2016-09-15
The unexpected uptake and retention of plutonium (Pu) onto columns containing spherical resorcinol-formaldehyde (sRF) resin during ion exchange testing of Cs (Cs) removal from alkaline tank waste was observed in experiments at both the Pacific Northwest National Laboratory (PNNL) and the Savannah River National Laboratory (SRNL). These observations have raised concern regarding the criticality safety of the Cs removal unit operation within the low-activity waste pretreatment system (LAWPS). Accordingly, studies have been initiated at Washington River Protection Solutions (WRPS), who manages the operations of the Hanford Site tank farms, including the LAWPS, PNNL, and elsewhere to investigate these findings. As part of these efforts, PNNL has prepared the present report to summarize the laboratory testing observations, evaluate these phenomena in light of published and unpublished technical information, and outline future laboratory testing, as deemed appropriate based on the literature studies, with the goal to elucidate the mechanisms for the observed Pu uptake and retention.
Gas Generation Testing of Spherical Resorcinol-Formaldehyde (sRF) Resin
Energy Technology Data Exchange (ETDEWEB)
Colburn, Heather A.; Bryan, Samuel A.; Camaioni, Donald M.; Mahoney, Lenna A.; Adami, Susan R.
2018-01-19
This report describes gas generation testing of the spherical resorcinol-formaldehyde (sRF) resin that was conducted to support the technology maturation of the LAWPS facility. The current safety basis for the LAWPS facility is based primarily on two studies that had limited or inconclusive data sets. The two studies indicated a 40% increase in hydrogen generation rate of water (as predicted by the Hu model) with sRF resin over water alone. However, the previous studies did not test the range of conditions (process fluids and temperatures) that are expected in the LAWPS facility. Additionally, the previous studies did not obtain replicate test results or comparable liquid-only control samples. All of the testing described in this report, conducted with water, 0.45M nitric acid, and waste simulants with and without sRF resin, returned hydrogen generation rates that are within the current safety basis for the facility of 1.4 times the Hu model output for water.
REAL WASTE TESTING OF SPHERICAL RESORCINOL-FORMALDEHYDE ION EXCHANGE RESIN
Energy Technology Data Exchange (ETDEWEB)
Nash, C.; Duignan, M.
2009-10-30
This report presents data on batch contact and column testing tasks for spherical resorcinol-formaldehyde (sRF) resin. The testing used a non-radioactive simulant of SRS Tank 2F dissolved salt, as well as an actual radioactive waste sample of similar composition, which are both notably high in sodium (6 M). The resin was Microbeads batch 5E-370/641 which had been made on the hundred gallon scale. Equilibrium batch contact work focused on cesium at a temperature of 25 C due to the lack of such data to better benchmark existing isotherm models. Two campaigns were performed with small-scale ion exchange columns, first with Tank 2F simulant, then with actual dissolved salt in the Shielded Cells. An extrapolation of the batch contact results with radioactive waste over-predicted the cesium loaded onto the IX sRF resin bed by approximately 11%. This difference is not unexpected considering uncertainties from measurement and extrapolation and because the ion exchange that occurs when waste flows through a resin bed probably cannot reach the same level of equilibrium as when waste and resin are joined in a long term batch contact. Resin was also characterized to better understand basic chemistry issues such as holdup of trace transition metals present in the waste feed streams. The column tests involved using two beds of sRF resin in series, with the first bed referred to as the Lead column and the second bed as the Lag column. The test matrix included two complete IX cycles for both the simulant and actual waste phases. A cycle involves cesium adsorption, until the resin in the Lead column reaches saturation, and then regenerating the sRF resin, which includes eluting the cesium. Both the simulated and the actual wastes were treated with two cycles of operation, and the resin beds that were used in the Lead and Lag columns of simulant test phase were regenerated and reused in the actual waste test phase. This task is the first to demonstrate the treatment of SRS waste
Alternate Methods for Eluting Cesium from Spherical Resorcinol-Formaldehyde Resin
Energy Technology Data Exchange (ETDEWEB)
Taylor, Paul Allen [ORNL; Johnson, Heather Lauren [University of Tennessee, Knoxville (UTK)
2009-02-01
A small-column ion exchange (SCIX) system has been proposed for removing cesium from the supernate and dissolved salt solutions in the high-level-waste tanks at the Savannah River Site (SRS). The SCIX system could use either crystalline silicotitanate (CST), an inorganic, non-regenerable sorbent, or spherical resorcinol-formaldehyde (RF), a new regenerable resin, to remove cesium from the waste solutions. The baseline method for eluting the cesium from the RF resin uses 15 bed volumes (BV) of 0.5 M nitric acid (HNO{sub 3}). The nitric acid eluate, containing the radioactive cesium, would be combined with the sludge from the waste tanks and would be converted into glass at the Defense Waste Processing Facility (DWPF) at SRS. The amount of nitric acid that would be used to elute the RF resin, using the current elution protocol, exceeds the capacity of DWPF to destroy the nitrate ions and maintain the required chemical reducing environment in the glass melt. Installing a denitration evaporator at SRS is technically feasible but would add considerable cost to the project. Alternate methods for eluting the resin have been tested, including using lower concentrations of nitric acid, other acids, and changing the flow regimes. About 4 BV of 0.5 M HNO{sub 3} are required to remove the sodium (titrate the resin) and most of the cesium from the resin, so the bulk of the acid used for the baseline elution method removes a very small quantity of cesium from the resin. A summary of the elution methods that have been tested are listed.
Literature Review of Spherical Resorcinol-Formaldehyde for Cesium Ion Exchange
Energy Technology Data Exchange (ETDEWEB)
Brown, Garrett N.
2014-09-30
The current report summarizes work performed throughout the scientific community and DOE complex as reported in the open literature and DOE-sponsored reports to evaluate the Cs+ ion exchange (CIX) characteristics of SRF resin. King (2007) completed a similar literature review in support of material selection for the Small Column Ion Exchange (SCIX) project. Josephson et al. (2010) and Sams et al. (2009) provided a similar brief review of SRF CIX for the near-tank Cs+ removal (NTCR) project. Thorson (2008a) documented the basis for recommending SRF over SuperLigTM 644 as the primary CIX resin in the WTP. The current review expands on previous work, summarizes additional work completed to date, and provides a broad view of the literature without focusing on a specific column system. Although the focus of the current review is the SRF resin, many cited references include multiple materials such as the non-spherical GGRF and SuperLigTM 644 organic resins and crystalline silicotitanate (CST) IONSIVTM IE-911, a non-elutable inorganic material. This report summarizes relevant information provided in the literature.
Energy Technology Data Exchange (ETDEWEB)
Hubler, T.L.; Franz, J.A.; Shaw, W.J.; Bryan, S.A.; Hallen, R.T.; Brown, G.N.; Bray, L.A.; Linehan, J.C.
1995-08-01
The 177 underground storage tanks at the DOE`s Hanford Site contain an estimated 180 million tons of high-level radioactive wastes. It is desirable to remove and concentrate the highly radioactive fraction of the tank wastes for vitrification. Resorcinol-formaldehyde (R-F) resin, an organic ion-exchange resin with high selectivity and capacity for the cesium ion, which is a candidate ion-exchange material for use in remediation of tank wastes. The report includes information on the structure/function analysis of R-F resin and the synthetic factors that affect performance of the resin. CS-100, a commercially available phenol-formaldehyde (P-F) resin, and currently the baseline ion-exchanger for removal of cesium ion at Hanford, is compared with the R-F resin. The primary structural unit of the R-F resin was determined to consist of a 1,2,3,4-tetrasubstituted resorcinol ring unit while CS-100, was composed mainly of a 1,2,4-trisubstituted ring. CS-100 shows the presence of phenoxy-ether groups, and this may account for the much lower decontamination factor of CS-100 for cesium ion. Curing temperatures for the R-F resin were found to be optimal at 105--130C. At lower temperatures, insufficient curing, hence crosslinking, of the polymer resin occurs and selectivity for cesium drops. Curing at elevated temperatures leads to chemical degradation. Optimal particle size for R-F resin is in the range of 20--50 mesh-sized particles. R-F resin undergoes chemical degradation or oxidation which destroys ion-exchange sites. The ion-exchange sites (hydroxyl groups) are converted to quinones and ketones. CS-100, though it has much lower performance for cesium ion-exchange, is significantly more chemically stable than R-F resin. To gamma radiation, CS-100 is more radiolytically stable than R-F resin.
Hydraulic Permeability of Resorcinol-Formaldehyde Resin
Energy Technology Data Exchange (ETDEWEB)
Taylor, Paul Allen [ORNL
2010-01-01
An ion exchange process using spherical resorcinol-formaldehyde (RF) resin is the baseline process for removing cesium from the dissolved salt solution in the high-level waste tanks at the Hanford Site, using large scale columns as part of the Waste Treatment Plant (WTP). The RF resin is also being evaluated for use in the proposed small column ion exchange (SCIX) system, which is an alternative treatment option at Hanford and at the Savannah River Site (SRS). A recirculating test loop with a small ion exchange column was used to measure the effect of oxygen uptake and radiation exposure on the permeability of a packed bed of the RF resin. The lab-scale column was designed to be prototypic of the proposed Hanford columns at the WTP. Although the test equipment was designed to model the Hanford ion exchange columns, the data on changes in the hydraulic permeability of the resin will also be valuable for determining potential pressure drops through the proposed SCIX system. The superficial fluid velocity in the lab-scale test (3.4-5.7 cm/s) was much higher than is planned for the full-scale Hanford columns to generate the maximum pressure drop expected in those columns (9.7 psig). The frictional drag from this high velocity produced forces on the resin in the lab-scale tests that matched the design basis of the full-scale Hanford column. Any changes in the resin caused by the radiation exposure and oxygen uptake were monitored by measuring the pressure drop through the lab-scale column and the physical properties of the resin. Three hydraulic test runs were completed, the first using fresh RF resin at 25 C, the second using irradiated resin at 25 C, and the third using irradiated resin at 45 C. A Hanford AP-101 simulant solution was recirculated through a test column containing 500 mL of Na-form RF resin. Known amounts of oxygen were introduced into the primary recirculation loop by saturating measured volumes of the simulant solution with oxygen and reintroducing
Study of Mechanical Properties of Waste Biomass Reinforced Urea-Resorcinol-Formaldehyde Composites
Directory of Open Access Journals (Sweden)
A. S. SINGHA
2011-01-01
Full Text Available Natural fibers play an important role in developing high performing fully biodegradable composites which will be a key material to solve the current ecological and environmental problems. Due to enormous advantages of composites reinforced with natural fibers, a study on pine needles reinforced urea-resorcinol-formaldehyde composites has been made. Present investigation has revealed that urea-formaldehyde resin in 1.0: 2.5 ratio exhibits optimum mechanical behavior whereas in case urea-resorcinol- formaldehyde resin, the best mechanical behavior was shown by 1.0: 1.0: 2.5 ratios. However, reinforcing of this resin with pine-needles of 1 cm size and evaluation of their mechanical properties showed that mechanical properties increase with reinforcement. These results were further supported by the SEM and thermal studies.
40 CFR 721.9480 - Resorcinol, formaldehyde substituted carbomonocycle resin (generic).
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Resorcinol, formaldehyde substituted... New Uses for Specific Chemical Substances § 721.9480 Resorcinol, formaldehyde substituted... chemical substance identified generically as resorcinol, formaldehyde substituted carbomonocycle resin (PMN...
Study on efficient removal of clopyralid from water using resorcinol-formaldehyde carbon cryogel
National Research Council Canada - National Science Library
Momčilović Milan Z; Ranđelović Marjan S; Onjia Antonije E; Zarubica Aleksandra; Babić Biljana M; Matović Branko Z
2014-01-01
Resorcinol-formaldehyde carbon cryogel has been prepared, characterized and used for the removal of commonly used herbicide clopyralid from the aqueous solutions under varying experimental conditions...
Energy Technology Data Exchange (ETDEWEB)
Egorin, Andrei; Tokar, Eduard; Tutov, Mikhail; Avramenko, Valentin [Institute of Chemistry FEBRAS, Vladivostok (Russian Federation); Far Eastern Federal Univ., Vladivostok (Russian Federation); Palamarchuk, Marina; Marinin, Dmitry [Institute of Chemistry FEBRAS, Vladivostok (Russian Federation)
2017-04-01
A method of preconcentrating cesium-137 from seawater using a resorcinol-formaldehyde resin, which enables one to optimize the ecological monitoring procedure, has been suggested. Studies of sorption of cesium-137 from seawater by resorcinol-formaldehyde resin have been performed, and it has been demonstrated that the cation exchanger is characterized by high selectivity with respect to cesium-137. It was found that the selectivity depended on the temperature of resin solidification and the seawater pH value. The maximal value of the cesium-137 distribution coefficient is equal to 4.1-4.5 x 10{sup 3} cm{sup 3} g{sup -1}. Under dynamic conditions, the ion-exchange resin capacity is 310-910 bed volumes depending on the seawater pH, whereas the efficiency of cesium removal exceeds 95%. The removal of more than 95% of cesium-137 has been attained using 1-3 M solutions of nitric acid: here, the eluate volume was 8-8.4 bed volumes. Application of 3 M solution of nitric acid results in resin degradation with the release of gaseous products.
Bimodal activated carbons derived from resorcinol-formaldehyde cryogels
Energy Technology Data Exchange (ETDEWEB)
Szczurek, Andrzej; Amaral-Labat, Gisele; Fierro, Vanessa; Celzard, Alain [Institut Jean Lamour-UMR CNRS 7198, CNRS-Nancy-Universite-UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces. ENSTIB, 27 rue Philippe Seguin, BP 1041, 88051 Epinal cedex 9 (France); Pizzi, Antonio, E-mail: Alain.Celzard@enstib.uhp-nancy.fr [ENSTIB-LERMAB, Nancy-Universite, 27 rue Philippe Seguin, BP1041, 88051 Epinal cedex 9 (France)
2011-06-15
Resorcinol-formaldehyde cryogels prepared at different dilution ratios have been activated with phosphoric acid at 450 deg. C and compared with their carbonaceous counterparts obtained by pyrolysis at 900 deg. C. Whereas the latter were, as expected, highly mesoporous carbons, the former cryogels had very different pore textures. Highly diluted cryogels allowed preparation of microporous materials with high surface areas, but activation of initially dense cryogels led to almost non-porous carbons, with much lower surface areas than those obtained by pyrolysis. The optimal acid concentration for activation, corresponding to stoichiometry between molecules of acid and hydroxyl groups, was 2 M l{sup -1}, and the acid-cryogel contact time also had an optimal value. Such optimization allowed us to achieve surface areas and micropore volumes among the highest ever obtained by activation with H{sub 3}PO{sub 4}, close to 2200 m{sup 2} g{sup -1} and 0.7 cm{sup 3} g{sup -1}, respectively. Activation of diluted cryogels with a lower acid concentration of 1.2 M l{sup -1} led to authentic bimodal activated carbons, having a surface area as high as 1780 m{sup 2} g{sup -1} and 0.6 cm{sup 3} g{sup -1} of microporous volume easily accessible through a widely developed macroporosity.
Bimodal activated carbons derived from resorcinol-formaldehyde cryogels
Directory of Open Access Journals (Sweden)
Andrzej Szczurek, Gisele Amaral-Labat, Vanessa Fierro, Antonio Pizzi and Alain Celzard
2011-01-01
Full Text Available Resorcinol-formaldehyde cryogels prepared at different dilution ratios have been activated with phosphoric acid at 450 °C and compared with their carbonaceous counterparts obtained by pyrolysis at 900 °C. Whereas the latter were, as expected, highly mesoporous carbons, the former cryogels had very different pore textures. Highly diluted cryogels allowed preparation of microporous materials with high surface areas, but activation of initially dense cryogels led to almost non-porous carbons, with much lower surface areas than those obtained by pyrolysis. The optimal acid concentration for activation, corresponding to stoichiometry between molecules of acid and hydroxyl groups, was 2 M l−1, and the acid–cryogel contact time also had an optimal value. Such optimization allowed us to achieve surface areas and micropore volumes among the highest ever obtained by activation with H3PO4, close to 2200 m2 g−1 and 0.7 cm3 g−1, respectively. Activation of diluted cryogels with a lower acid concentration of 1.2 M l−1 led to authentic bimodal activated carbons, having a surface area as high as 1780 m2 g−1 and 0.6 cm3 g−1 of microporous volume easily accessible through a widely developed macroporosity.
FABRICATION AND PROPERTIES OF OER COATED RESORCINOL-FORMALDEHYDE SHELLS FOR OMEGA EXPERIMENTS
Energy Technology Data Exchange (ETDEWEB)
NIKROO,A; CZECHOWICZ,D; PAGUIO,R; GREENWOOD,A.L; TAKAGI,M
2003-06-01
OAK-B135 New high gain designs for direct drive ignition on NIF require foam shells. Scaled down versions of these designs are needed for near term experiments on the OMEGA laser facility at the Laboratory Laser Energetics (LLE). These shells need to be about 1 mm in diameter and 50-100 {micro}m wall thickness and densities of 100-250 mg/cc. In addition, a full density permeation seal needs to be deposited for retention of the fill gas at room temperature or the ice at cryogenic temperatures. They have fabricated such shells using Resorcinol-formaldehyde (R/F) as the selected foam material due to its transparency in the optical region. Extensive characterization of the wall uniformity of these shells has been performed. The foam shells have {approx} 5%-6% non-concentricities on the average. A full density permeation seal has been deposited on the R/F shells using two different techniques. In the first technique R/F shells are coated directly with plasma polymer to thicknesses of 3-4 {micro}m. In the second technique, R/F shells are coated with polyvinylphenol, using a chemical interfacial polymerization technique. Data on surface finish and gas retention for R/F shells coated by both methods are provided.
Chemical derivatization to enhance chemical/oxidative stability of resorcinol-formaldehyde resin
Energy Technology Data Exchange (ETDEWEB)
Hubler, T. [Pacific Northwest National Laboratory, Richland, WA (United States)
1996-10-01
The purpose of this work is to develop modified resorcinol-formaldehyde (R-F) resin with enhanced chemical/oxidative stability in conditions typically encountered in the remediation of radioactive waste tanks. R-F resin is a regenerable organic ion-exchanger developed at Savannah River Technology Center that is being considered for use in the selective removal of radioactive cesium from alkaline waste tank supernates at both the Hanford and Savannah River sites.
Qu, Lili; Hu, Huicheng; Yu, Jiaqi; Yu, Xiaoya; Liu, Jian; Xu, Yong; Zhang, Qiao
2017-05-30
Recently, Janus nanostructures that possess two or more different surface functions have attracted enormous attention because of their unique structures and promising applications in diverse fields. In this work, we present that Janus structured dendritic mesoporous silica@resorcinol-formaldehyde (DMS@RF) nanoparticles can be prepared through a simple one-pot colloidal method. The Janus DMS@RF nanoparticle shows a bonsai-like morphology which consists of a dendritic mesoporous silica part and a spherical RF part. After a systematic study on the growth process, we proposed a competing growth mechanism that accounts for the formation of Janus nanostructures. It is believed that suitable polymerization rate of silica and RF resin is critical. Based on the competing growth mechanism, eccentric and concentric core-shell nanostructures have been successfully prepared by tuning the polymerization rates of silica and RF, respectively. Metal-contained ternary Janus nanoparticles that might be used for catalysis have also been prepared. This research may pave the way for the practical applications of delicate nanomaterials with desired structures and properties.
Electrical Properties of Partial Carbonized Nanoporous Resin Based on Resorcinol-Formaldehyde
Directory of Open Access Journals (Sweden)
Imededdine NAJEH
2014-05-01
Full Text Available Organic xerogel compounds were prepared by sol-gel method from resorcinol- formaldehyde mixtures in acetone using picric acid as catalyst. The electrical properties of the obtained nanoporous carbon structures were explored by changing the pyrolysis temperature. In this study the electrical conductivity σ can be expressed as σ =/σ0exp(-Eσ/kT, where Eσ depends on the carbonized temperature. The dc and ac conductivities of the obtained amorphous carbon have been investigated from 80 to 300 °C and in the frequency range between 40 and 106 Hz for samples pyrolysed at different temperatures in the insulator-metal transition range. The temperature dependence of samples pyrolysed at low temperatures (Tp=600–675 °C follows a Mott law, whereas samples pyrolysed at high temperature (Tp=1000 °C show an Arrhenius dependence.
Characterization of pure and composite resorcinol formaldehyde aerogels doped with silver
Attia, S. M.; Abdelfatah, M. S.; Mossad, M. M.
2017-07-01
A series of Resorcinol Formaldehyde (RF) aerogels composites with nanoparticles of sliver were prepared by the sol-gel method at different concentrations doped silver. FTIR spectra of pure and composite RF aerogels show six absorption bands attributed to -OH groups bonded to the benzene ring, stretching of -CH2- bonds and aromatic ring stretching. FTIR results ensured that sliver particles do not interact with aerogel network. UV-visible spectrum of pure silver show an absorbance peak at 420 nm attributed to the surface plasmon excitation of sliver Nano spheres. UV-visible spectral of pure and composite RF aerogels shows a steep decrease of absorption with wavelength after 500 nm, making sample’s color reddish brown. TEM and SEM images of pure and composite RF aerogels revealed that the textural arrangement of RF aerogels can be described as densely packed small nodules.
Study on efficient removal of clopyralid from water using resorcinol-formaldehyde carbon cryogel
Directory of Open Access Journals (Sweden)
Momčilović Milan Z.
2014-01-01
Full Text Available Resorcinol-formaldehyde carbon cryogel has been prepared, characterized and used for the removal of commonly used herbicide clopyralid from the aqueous solutions under varying experimental conditions. Carbon has shown a relatively high specific surface area, significant mesoporosity and an amorphous structure. A set of the following isotherm models has been used to interpret the equilibrium data: Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Jovanović, Hurkins-Jura, and Helsey model. Several models have fitted well although the calculated values for qmax poorly correlate with the data obtained experimentally. The kinetic models of the pseudo-first and pseudo-second-order, the models of Elovich, Bangham and the intraparticle diffusion model have been used for fitting the kinetic data. The rate of the process is fast in the beginning while adsorption equilibrium is attained not until 24 hours. Adsorption was found to be pH dependent and favored in acidic solutions.
Fang, Xiaoliang; Liu, Shengjie; Zang, Jun; Xu, Chaofa; Zheng, Ming-Sen; Dong, Quan-Feng; Sun, Daohua; Zheng, Nanfeng
2013-07-01
This work provides a facile one-step sol-gel route to synthesize high-quality resorcinol-formaldehyde (RF) resin coated nanocomposites that can be further used to fabricate desired carbon nanostructures. Colloidal particles with different morphologies and sizes can be coated with high-quality RF resin shells by the proposed cationic surfactant assisted RF resin coating strategy. The as-synthesized RF resin coated nanocomposites are ideal candidates for selective synthesis of core-shell, hollow, and yolk-shell carbon nanostructures. Based on the carboxylic functional RF resin coating, graphitic carbon nanostructures can also be synthesized by employing the graphitization catalyst. The as-synthesized carbon nanostructures show the advantageous performances in several applications. Hollow carbon spheres are potential electrode materials for lithium-sulfur batteries. Hollow graphitic spheres are promising catalyst supports for oxygen reduction reaction. And yolk-shell structured Au@HCS nanoreactors with ultrathin shells exhibit high catalytic activity and recyclability in confined catalysis.This work provides a facile one-step sol-gel route to synthesize high-quality resorcinol-formaldehyde (RF) resin coated nanocomposites that can be further used to fabricate desired carbon nanostructures. Colloidal particles with different morphologies and sizes can be coated with high-quality RF resin shells by the proposed cationic surfactant assisted RF resin coating strategy. The as-synthesized RF resin coated nanocomposites are ideal candidates for selective synthesis of core-shell, hollow, and yolk-shell carbon nanostructures. Based on the carboxylic functional RF resin coating, graphitic carbon nanostructures can also be synthesized by employing the graphitization catalyst. The as-synthesized carbon nanostructures show the advantageous performances in several applications. Hollow carbon spheres are potential electrode materials for lithium-sulfur batteries. Hollow graphitic
Susanto, Tri
2016-01-01
Penelitian ini bertujuan untuk mengetahui perbandingan karakteristik vulkanisat komposit Styrene Butadiene Rubber (SBR) dan campuran Styrene Butadiene Rubber dan Natural Rubber (SBR/NR) yang keduanya menggunakan bahan pengisi starch (pati) termodifikasi Resorcinol Formaldehyde (SRF) sebagai bahan substituen Carbon Black (CB). Rasio CB/SRF untuk tiap vulkanisat yang digunakan berturut-turut 60/0; 55/5; 50/10; 45/15; 40/20 phr. Pengamatan dilakukan dengan menguji sifat physco-mechanic vulkanisa...
On-Chip Facile Preparation of Monodisperse Resorcinol Formaldehyde (RF Resin Microspheres
Directory of Open Access Journals (Sweden)
Jianmei Wang
2018-01-01
Full Text Available Monodisperse resorcinol formaldehyde resin (RF microspheres are an important polymeric material because of their rich surface functional group and uniform structural characteristics and have been increasingly applied as an electrode material, catalyst support, absorbent, and carbon microsphere precursor. The polymerization conditions, such as the gelation/solidification temperature and the residence time, can largely influence the physical properties and the formation of the 3D polymeric network of the RF microspheres as well as the carbon microspheres. However, few studies have reported on the complexity of the gelation and solidification processes of resol. In this work, we developed a new RF microsphere preparation device that contains three units: a droplet generation unit, a curing unit, and a collection unit. In this system, we controlled the gelation and solidification processes of the resol and observed its curing behavior, which helped us to uncover the curing mechanism of resol. Finally, we obtained the optimized polymerization parameters, obtaining uniform RF microspheres with a variation coefficient of 4.94%. The prepared porous RF microspheres presented a high absorption ability, reaching ~90% at 10 min. Thus, our method demonstrated the practicality of on-chip monodisperse microspheres synthesis. The product was useful in drug delivery and adsorbing large poisonous molecules.
Graphene oxide as an anti-shrinkage additive for resorcinol-formaldehyde composite aerogels.
Guo, Kang; Song, Huaihe; Chen, Xiaohong; Du, Xian; Zhong, Liang
2014-06-21
In order to strengthen the nanostructure and suppress the collapse of nanopores of resorcinol-formaldehyde (RF) aerogels during the drying process, graphene oxide (GO) was incorporated into the RF matrix to prepare GO-RF composite aerogels by sol-gel polymerization. The influences of GO content on the sol-gel process, structure, and physical properties of RF aerogels were investigated. The morphologies of composite aerogels were characterized by scanning electron microscopy and transmission electron microscopy, and it was found that GO was well dispersed in the RF matrix. In addition, GO can obviously accelerate the gelation of the RF solution and reduce both the drying shrinkage and aerogel density. As the content of GO increased from 0 to 2 wt%, both the linear shrinkage and density of composite aerogels decreased progressively from 28.3% to 2.0% and 506 to 195 kg m(-3), respectively, implying that GO is an effective additive for inhibiting the volume shrinkage of aerogels during the drying process.
Chemical derivatization to enhance chemical/oxidative stability of resorcinol-formaldehyde resin
Energy Technology Data Exchange (ETDEWEB)
Hubler, T.L. [Pacific Northwest National Lab., Richland, WA (United States)
1997-10-01
The goal of this task is to develop modified resorcinol-formaldehyde (R-F) resin to improve the chemical/oxidative stability of the resin. R-F resin is a regenerable organic ion-exchange resin that is selective for cesium ion in highly alkaline, high ionic-strength solutions. R-F resin tends to undergo chemical degradation, reducing its ability to remove cesium ion from waste solutions; the mechanistic details of these decomposition reactions are currently unknown. The approach used for this task is chemical modification of the resin structure, particularly the resorcinol ring unit of the polymer resin. This approach is based on prior characterization studies conducted at Pacific Northwest National Laboratory (PNNL) that indicated the facile chemical degradation of the resin is oxidation of the resorcinol ring to the para-quinone structure, with subsequent loss of ion-exchange sites for cesium ion. R-F resin represents an important alternative to current radiocesium remediation technology for tank wastes at both the Hanford and Savannah River sites, particularly if regenerable resins are needed.
Energy Technology Data Exchange (ETDEWEB)
Palamarchuk, Marina, E-mail: marina_p@ich.dvo.ru; Egorin, Andrey; Tokar, Eduard; Tutov, Mikhail; Marinin, Dmitry; Avramenko, Valentin
2017-01-05
Highlights: • Cesium radionuclides not removable by regeneration are bound to silicate deposits. • Application of RFR substantially increases cesium desorption from an ion-exchanger. • The radwaste volume was reduced at least 2-fold for zeolites and 10-fold for SIER. • The distribution coefficient values for RFR were high (K{sub d} > 10{sup 4}) after 6 regenerations. • The volume of secondary waste formed after regeneration of RFR was reduced 600-fold. - Abstract: The origin of the emergence of radioactive contamination not removable in the process of acid-base regeneration of ion-exchange resins used in treatment of technological media and liquid radioactive waste streams has been determined. It has been shown that a majority of cesium radionuclides not removable by regeneration are bound to inorganic deposits on the surface and inside the ion-exchange resin beads. The nature of the above inorganic inclusions has been investigated by means of the methods of electron microscopy, IR spectrometry and X-ray diffraction. The method of decontamination of spent ion-exchange resins and zeolites contaminated with cesium radionuclides employing selective resorcinol-formaldehyde resins has been suggested. Good prospects of such an approach in deep decontamination of spent ion exchangers have been demonstrated.
Attia, S. M.; Abdelfatah, M. S.; Mossad, M. M.
2017-07-01
Pure and composite Resorcinol-Formaldehyde (RF) aerogel samples were prepared by sol-gel process using KOH as a catalyst and doped with silver nanoparticles at different concentrations (1.2×10-4, 2.4×10-4, 3.6×10-4, and 4.8×10-4 wt.% at catalyst ratio 0.024 wt.%). DC electrical conductivity σdc, AC electrical conductivity σ‧, and the dielectric properties of the prepared samples have been measured at different frequencies and temperatures. The results show that σ‧ increases with increasing frequency. The values of σ‧ range from ˜10-4 Ω-1m-1 to around unity at room temperature. The analysis of the results of σ‧(ω, T) reveals that the large overlapping polaron (OLP) is the most favorable mechanism to describe the conduction mechanism in these samples. The behavior of the dielectric constant with the frequency of these samples is normal, where it decreases with increasing frequency, while the behavior of dielectric loss tangent tanδ exhibits a peaking behavior at relatively higher temperature.
MODELING RESULTS FROM CESIUM ION EXCHANGE PROCESSING WITH SPHERICAL RESINS
Energy Technology Data Exchange (ETDEWEB)
Nash, C.; Hang, T.; Aleman, S.
2011-01-03
Ion exchange modeling was conducted at the Savannah River National Laboratory to compare the performance of two organic resins in support of Small Column Ion Exchange (SCIX). In-tank ion exchange (IX) columns are being considered for cesium removal at Hanford and the Savannah River Site (SRS). The spherical forms of resorcinol formaldehyde ion exchange resin (sRF) as well as a hypothetical spherical SuperLig{reg_sign} 644 (SL644) are evaluated for decontamination of dissolved saltcake wastes (supernates). Both SuperLig{reg_sign} and resorcinol formaldehyde resin beds can exhibit hydraulic problems in their granular (nonspherical) forms. SRS waste is generally lower in potassium and organic components than Hanford waste. Using VERSE-LC Version 7.8 along with the cesium Freundlich/Langmuir isotherms to simulate the waste decontamination in ion exchange columns, spherical SL644 was found to reduce column cycling by 50% for high-potassium supernates, but sRF performed equally well for the lowest-potassium feeds. Reduced cycling results in reduction of nitric acid (resin elution) and sodium addition (resin regeneration), therefore, significantly reducing life-cycle operational costs. These findings motivate the development of a spherical form of SL644. This work demonstrates the versatility of the ion exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. The value of a resin with increased selectivity for cesium over potassium can be assessed for further development.
Energy Technology Data Exchange (ETDEWEB)
Tappan, Bryce C.; Brill, Thomas B. [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (United States)
2003-04-01
The objective of this work was to try to desensitize an energetic material by using sol-gel processing and freeze drying to incorporate the energetic material into the fuel matrix on the nano (or at least submicron) particle size scale. Hydrazinium diperchlorate ([N{sub 2}H{sub 6}][ClO{sub 4}]{sub 2} or HP{sub 2}) and resorcinol-formaldehyde (RF) were chosen as the oxidizer and fuel, respectively. Solid loading up to 88% HP{sub 2} was achieved by using the sol gel-to-cryogel method. Various weight percentages of HP{sub 2} in RF were characterized by elemental analysis, scanning electron (SEM) and optical microscopy, T-jump/FTIR spectroscopy, DSC, and drop-weight impact. SEM indicated that 20-50 nm diameter HP{sub 2} plates aggregated into porous 400-800 nm size clusters. Below 80% HP{sub 2} the cryogels are less sensitive to impact than physical mixtures having the same ratios of HP{sub 2} and RF. The decomposition temperatures of the cryogels are higher than that of pure HP{sub 2}, which is consistent with their lower impact sensitivity. The heat of decomposition as measured at a low heating rate increases with increasing percentage of HP{sub 2}. The cryogels and physical mixtures release similar amounts of energy, but the cryogels exhibit mainly a single exotherm by DSC whereas the physical mixtures showed a two-step energy release. Flash pyrolysis revealed gaseous product ratios suggestive of more energy being released from the cryogels than the physical mixtures. Cryogels also burn faster by visual observation. (Abstract Copyright [2003], Wiley Periodicals, Inc.)
Energy Technology Data Exchange (ETDEWEB)
Penwell, D.L.
1994-12-28
This preliminary flowsheet document describes an ion exchange process which uses resorcinol-formaldehyde (R-F) resin to remove cesium from Hanford tank waste. The flowsheet describes one possible equipment configuration, and contains mass balances based on that configuration with feeds of Neutralized Current Acid Waste, and Double Shell Slurry Feed. The flowsheet also discusses process alternatives, unresolved issues, and development needs associated with the ion exchange process. It is expected that this flowsheet will evolve as open issues are resolved and progress is made on development needs. This is part of the Tank Waste Remediation Program at Hanford. 26 refs, 6 figs, 25 tabs.
Modeling Ion-Exchange Processing With Spherical Resins For Cesium Removal
Energy Technology Data Exchange (ETDEWEB)
Hang, T.; Nash, C. A.; Aleman, S. E.
2012-09-19
The spherical Resorcinol-Formaldehyde and hypothetical spherical SuperLig(r) 644 ion-exchange resins are evaluated for cesium removal from radioactive waste solutions. Modeling results show that spherical SuperLig(r) 644 reduces column cycling by 50% for high-potassium solutions. Spherical Resorcinol Formaldehyde performs equally well for the lowest-potassium wastes. Less cycling reduces nitric acid usage during resin elution and sodium addition during resin regeneration, therefore, significantly decreasing life-cycle operational costs. A model assessment of the mechanism behind ''cesium bleed'' is also conducted. When a resin bed is eluted, a relatively small amount of cesium remains within resin particles. Cesium can bleed into otherwise decontaminated product in the next loading cycle. The bleed mechanism is shown to be fully isotherm-controlled vs. mass transfer controlled. Knowledge of residual post-elution cesium level and resin isotherm can be utilized to predict rate of cesium bleed in a mostly non-loaded column. Overall, this work demonstrates the versatility of the ion-exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. This evaluation justifies further development of a spherical form of the SL644 resin.
Energy Technology Data Exchange (ETDEWEB)
Hubler, T.L.; Franz, J.A.; Shaw, W.J.; Hogan, M.O.; Hallen, R.T.; Brown, G.N.; Linehan, J.C.
1996-09-01
he U.S. Department of Energy`s (DOE) Hanford Site was established to produce plutonium for the U.S. defense mission. Over the course of decades, hazardous, toxic, and radioactive chemical wastes were generated and disposed of in a variety of ways including storage in underground tanks. An estimated 180 million tons of high-level radioactive wastes are stored in 177 underground storage tanks. During production of fissile plutonium, large quantities of 90Sr and 137CS were produced. The high abundance and intermediate length half- lives of these fission products are the reason that effort is directed toward selective removal of these radionuclides from the bulk waste stream before final tank waste disposal is effected. Economically, it is desirable to remove the highly radioactive fraction of the tank waste for vitrification. Ion-exchange technology is being evaluated for removing cesium from Hanford Site waste tanks. This report summarizes data and analysis performed by Pacific Northwest National Laboratory (PNNL)for both resorcinol-formaldehyde (R-F) and phenol-formaldehyde (P-F) resins and relates their observed differences in performance and chemical stability to their structure. The experimental approach used to characterize the resins was conducted using primarily two types of data: batch distribution coefficients (Kds) and solid-state 13C NMR. Comparison of these data for a particular resin allowed correlation of resin performance to resin structure. Additional characterization techniques included solid-state 19F NMR, and elemental analyses.
Energy Technology Data Exchange (ETDEWEB)
Zhang Haijiao, E-mail: seaboyfang@163.com [Modern Manufacture Engineering Center, Heilongjiang Institute of Science and Technology, 150027 (China); Xu Huifang, E-mail: xuhf@hit.edu.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, 150001 (China); Zhao Can [Modern Manufacture Engineering Center, Heilongjiang Institute of Science and Technology, 150027 (China)
2012-03-15
Highlights: Black-Right-Pointing-Pointer Resorcinol-formaldehyde hollow particles could be obtained by inverse suspension method. Black-Right-Pointing-Pointer The morphologies of RF carbon precursor particles could be controlled by adjusting the pH values of the RF precursor. Black-Right-Pointing-Pointer The prepared carbon hollow particles, which derived from resorcinol-formaldehyde, exhibited microporous properties. Black-Right-Pointing-Pointer The RF carbon microcapsules displayed excellent power property and cycle durability. - Abstract: The morphology-controlled carbon hollow particles, derived from resorcinol-formaldehyde (RF) particles, were prepared by using an (oil phase) O/(water phase) W/(oil phase) O inverse-emulsion system which was formed by adding RF precursor (water phase) to n-hexane (oil phase) with Span-80 as surfactant and the following carbonization. This simple method led to the formation of various morphologies of RF carbon precursor particles such as hollow spheres, bowl-like hollow structures, microcapsules, or solid microspheres by adjusting the pH values of the RF precursor. The synthesized carbon particles exhibited porous characters with the surface area of 659 m{sup 2} g{sup -1} and the total pore volume of 0.44 cm{sup 3} g{sup -1}. Additionally, the electrochemical behavior of the typical RF carbon particles in lithium-ion batteries revealed that the RF carbon microcapsules displayed a high initial discharge capacity of 1059 mAh g{sup -1} and stabilized at about 330 mAh g{sup -1}, indicating its excellent power property and cycle durability.
Energy Technology Data Exchange (ETDEWEB)
Lewicki, James P.; Fox, Christina A.; Worsley, Marcus A.
2015-07-01
With the new impetus towards the development of hierarchical graphene and CNT macro-assemblies for application in fields such as advanced energy storage, catalysis and electronics; there is much renewed interest in organic carbon-based sol–gel processes as a synthetically convenient and versatile means of forming three dimensional, covalently bonded organic/inorganic networks. Such matrices can act as highly effective precursors, scaffolds or molecular ‘glues’ for the assembly of a wide variety of functional carbon macro-assemblies. However, despite the utility and broad use of organic sol–gel processes – such as the ubiquitous resorcinol-formaldehyde (RF) reaction, there are details of the reaction chemistries of these important sol–gel processes that remain poorly understood at present. It is therefore both timely and necessary to examine these reactions in more detail using modern analytical techniques in order to gain a more rigorous understanding of the mechanisms by which these organic networks form. The goal of such studies is to obtain improved and rational control over the organic network structure, in order to better direct and tailor the architecture of the final inorganic carbon matrix. In this study we have investigated in detail, the mechanism of the organic sol–gel network forming reaction of resorcinol and formaldehyde from a structural and kinetic standpoint, by using a combination of real-time high field solution state nuclear magnetic resonance (NMR), low field NMR relaxometry and differential scanning calorimetry (DSC). These investigations have allowed us to track the network formation processes in real-time, gain both detailed structural information on the mechanisms of the RF sol–gel process and a quantitative assessment of the kinetics of the global network formation process. It has been shown that the mechanism, by which the RF organic network forms, proceeds via an initial exothermic step correlated to the formation of a
High temperature performance of soy-based adhesives
Jane L. O’Dell; Christopher G. Hunt; Charles R. Frihart
2013-01-01
We studied the high temperature performance of soy meal processed to different protein concentrations (flour, concentrate, and isolate), as well as formulated soy-based adhesives, and commercial nonsoy adhesives for comparison. No thermal transitions were seen in phenol-resorcinol-formaldehyde (PRF) or soy-phenol-formaldehyde (SoyPF) or in as-received soy flour...
Optical design and performance analysis of a 25 m class telescope with a segmented spherical primary
DEFF Research Database (Denmark)
Owner-Petersen, Mette
1996-01-01
The basic design and an analysis of the performance possibilities of a 25 m class optical telescope are presented here. The configuration consists of a 28 m segmented spherical primary M1 followed by three highly aspherical corrective mirrors M2, M3 and M4 which also deviate from cartesian shape....
Energy Technology Data Exchange (ETDEWEB)
Daneshmand, Morteza [University of Tartu, Tartu (Estonia); Saadatzi, Mohammad Hossein [Colorado School of Mines, Golden (United States); Kaloorazi, Mohammad Hadi [École de Technologie Supérieur, Montréal (Canada); Masouleh, Mehdi Tale [University of Tehran, Tehran (Iran, Islamic Republic of); Anbarjafari, Gholamreza [Hasan Kalyoncu University, Gaziantep (Turkmenistan)
2016-03-15
This study aims to provide an optimal design for a Spherical parallel manipulator (SPM), namely, the Agile Eye. This aim is approached by investigating kinetostatic performance and workspace and searching for the most promising design. Previously recommended designs are examined to determine whether they provide acceptable kinetostatic performance and workspace. Optimal designs are provided according to different kinetostatic performance indices, especially kinematic sensitivity. The optimization process is launched based on the concept of the genetic algorithm. A single-objective process is implemented in accordance with the guidelines of an evolutionary algorithm called differential evolution. A multi-objective procedure is then provided following the reasoning of the nondominated sorting genetic algorithm-II. This process results in several sets of Pareto points for reconciliation between kinetostatic performance indices and workspace. The concept of numerous kinetostatic performance indices and the results of optimization algorithms are elaborated. The conclusions provide hints on the provided set of designs and their credibility to provide a well-conditioned workspace and acceptable kinetostatic performance for the SPM under study, which can be well extended to other types of SPMs.
Performance Evaluation of a Novel Propulsion System for the Spherical Underwater Robot (SURIII
Directory of Open Access Journals (Sweden)
Shuoxin Gu
2017-11-01
Full Text Available This paper considers a novel propulsion system for the third-generation Spherical Underwater Robot (SURIII, the improved propulsion system is designed and analyzed to verify its increased stability compared to the second-generation Spherical Underwater Robot (SURII. With the new propulsion system, the robot is not only symmetric on the X axis but also on the Y axis, which increases the flexibility of its movement. The new arrangement also reduces the space constraints of servomotors and vectored water-jet thrusters. This paper also aims to the hydrodynamic characteristic of the whole robot. According to the different situations of the surge and heave motion, two kinds of methods are used to calculate the drag coefficient for the SURIII. For surge motion, the drag coefficient can be determined by the Reynolds number. For heave motion, considering about the influences of edges and gaps of the SURIII, the drag coefficient needs to be calculated by the dynamic equation. In addition, the Computational Fluid Dynamics (CFD simulation is carried out to estimate some parameters which cannot be measured. The pressure contours, velocity vectors and velocity streamlines for different motions are extracted from the post-processor in the CFD simulation. The drag coefficients of surge and heave motion are both calculated by the simulation results and compared with the chosen one by Reynolds number. Finally, an experiment is also conducted for measure the propulsive force of the multi-vectored water-jet thrusters by using a 6-DoF load cell. The experimental results demonstrate the propulsive force is better than a previous version. Thus, the propulsive performance is better than before.
Objective performance analysis of spherical microphone arrays for speech enhancement in rooms.
Peled, Yotam; Rafaely, Boaz
2012-09-01
Reverberation and noise have a significant effect on the intelligibility of speech in rooms. The detection of clear speech in highly reverberant and noisy enclosures is an extremely difficult task. Recently, spherical microphone arrays have been studied for processing of sound fields in three-dimensions, with applications ranging from acoustic analysis to speech enhancement. This paper presents the derivation of a model that facilitates the prediction of spherical array configurations that guarantee an acceptable level of speech intelligibility in reverberant and noisy environments. A spherical microphone array is employed to generate a spatial filter that maximizes speech intelligibility according to an objective measure that combines the effects of both reverberation and noise. The spherical array beamformer is designed to enhance the speech signal while minimizing noise power and maintaining robustness over a wide frequency range. The paper includes simulation and experimental studies with a comparison to speech transmission index based analysis to provide initial validation of the model. Examples are presented in which the minimum number of microphones in a spherical array can be determined from environment conditions such as reverberation time, noise level, and distance of the array to the speech source.
Long Pulse High Performance Plasma Scenario Development for the National Spherical Torus Experiment
Energy Technology Data Exchange (ETDEWEB)
Kessel, C.E.; Bell, R.E.; Bell, M.G.; Gates, D.A.; Harvey, R.W.
2006-01-01
The National Spherical Torus Experiment [Ono et al., Nucl. Fusion, 44, 452 (2004)] is targeting long pulse high performance, noninductive sustained operations at low aspect ratio, and the demonstration of nonsolenoidal startup and current rampup. The modeling of these plasmas provides a framework for experimental planning and identifies the tools to access these regimes. Simulations based on neutral beam injection (NBI)-heated plasmas are made to understand the impact of various modifications and identify the requirements for (1) high elongation and triangularity, (2) density control to optimize the current drive, (3) plasma rotation and/or feedback stabilization to operate above the no-wall limit, and (4) electron Bernstein waves (EBW) for off-axis heating/current drive (H/CD). Integrated scenarios are constructed to provide the transport evolution and H/CD source modeling, supported by rf and stability analyses. Important factors include the energy confinement, Zeff, early heating/H mode, broadening of the NBI-driven current profile, and maintaining q(0) and qmin>1.0. Simulations show that noninductive sustained plasmas can be reached at IP=800 kA, BT=0.5 T, 2.5, N5, 15%, fNI=92%, and q(0)>1.0 with NBI H/CD, density control, and similar global energy confinement to experiments. The noninductive sustained high plasmas can be reached at IP=1.0 MA, BT=0.35 T, 2.5, N9, 43%, fNI=100%, and q(0)>1.5 with NBI H/CD and 3.0 MW of EBW H/CD, density control, and 25% higher global energy confinement than experiments. A scenario for nonsolenoidal plasma current rampup is developed using high harmonic fast wave H/CD in the early low IP and low Te phase, followed by NBI H/CD to continue the current ramp, reaching a maximum of 480 kA after 3.4 s.
Metrics for performance assessment of mixed-order Ambisonics spherical microphone arrays
DEFF Research Database (Denmark)
Favrot, Sylvain Emmanuel; Marschall, Marton
2012-01-01
Mixed-order Ambisonics (MOA) combines planar (2D) higher order Ambisonics (HOA) with lower order periphonic (3D) Ambisonics. MOA encoding from spherical microphone arrays has the potential to provide versatile recordings that can be played back using 2D, 3D or mixed systems. A procedure to genera...
Hu, Shuai; Gao, Taichang; Li, Hao; Yang, Bo; Jiang, Zidong; Liu, Lei; Chen, Ming
2017-10-01
The performance of absorbing boundary condition (ABC) is an important factor influencing the simulation accuracy of MRTD (Multi-Resolution Time-Domain) scattering model for non-spherical aerosol particles. To this end, the Convolution Perfectly Matched Layer (CPML), an excellent ABC in FDTD scheme, is generalized and applied to the MRTD scattering model developed by our team. In this model, the time domain is discretized by exponential differential scheme, and the discretization of space domain is implemented by Galerkin principle. To evaluate the performance of CPML, its simulation results are compared with those of BPML (Berenger's Perfectly Matched Layer) and ADE-PML (Perfectly Matched Layer with Auxiliary Differential Equation) for spherical and non-spherical particles, and their simulation errors are analyzed as well. The simulation results show that, for scattering phase matrices, the performance of CPML is better than that of BPML; the computational accuracy of CPML is comparable to that of ADE-PML on the whole, but at scattering angles where phase matrix elements fluctuate sharply, the performance of CPML is slightly better than that of ADE-PML. After orientation averaging process, the differences among the results of different ABCs are reduced to some extent. It also can be found that ABCs have a much weaker influence on integral scattering parameters (such as extinction and absorption efficiencies) than scattering phase matrices, this phenomenon can be explained by the error averaging process in the numerical volume integration.
Directory of Open Access Journals (Sweden)
Lehmann RP
2012-03-01
Full Text Available Robert P Lehmann1, Diane M Houtman21Lehmann Eye Center, Nacogdoches, TX, 2Alcon Research Ltd, Fort Worth, TX, USAPurpose: To evaluate whether visual performance could be improved in pseudophakic subjects by correcting low levels of postoperative astigmatism.Methods: An exploratory, noninterventional study was conducted using subjects who had been implanted with an aspheric intraocular lens and had 0.5–0.75 diopter postoperative astigmatism. Monocular visual performance using full correction was compared with visual performance using spherical equivalent correction. Testing consisted of high- and low-contrast visual acuity, contrast sensitivity, and reading acuity and speed using the Radner Reading Charts.Results: Thirty-eight of 40 subjects completed testing. Visual acuities at three contrast levels (100%, 25%, and 9% were significantly better using full correction than when using spherical equivalent correction (all P < 0.001. For contrast sensitivity testing under photopic, mesopic, and mesopic with glare conditions, only one out of twelve outcomes demonstrated a significant improvement with full correction compared with spherical equivalent correction (at six cycles per degree under mesopic without glare conditions, P = 0.046. Mean reading speed was numerically faster with full correction across all print sizes, reaching statistical significance at logarithm of the reading acuity determination (logRAD 0.2, 0.7, and 1.1 (P , 0.05. Statistically significant differences also favored full correction in logRAD score (P = 0.0376, corrected maximum reading speed (P < 0.001, and logarithm of the minimum angle of resolution/logRAD ratio (P < 0.001.Conclusions: In this study of pseudophakic subjects with low levels of postoperative astigmatism, full correction yielded significantly better reading performance and high- and low-contrast visual acuity than spherical equivalent correction, suggesting that cataractous patients may benefit from surgical
Mixture Design Approach on the Physical Properties of Lignin-Resorcinol-Formaldehyde Xerogels
Directory of Open Access Journals (Sweden)
Chris D. Castro
2015-01-01
Full Text Available Organic xerogels were functionalized by incorporating sugarcane bagasse lignin from soda pulping black liquor, not used so far in this materials, with the aim of introducing new functional groups on traditional gels that could improve its adsorptive capacity. Two mixing designs were applied to identify the reactive combinations that allow a well gel formation and to adjust models that predict physical properties. The designs study five components: resorcinol (R, 0.04–0.3, lignin (L, 0.004–0.14, formaldehyde (F, 0.08–0.17, water (W, 0.45–0.8, and NaOH (C, 0.0003–0.0035. The first experimental design was an extreme vertices design and its results showed shrinkage between 4.3 and 59.7 and a bulk density from 0.54 to 1.3; a mass ratio LR/F near 1.5 was required for gel formation. In the second design a D-Optimal was used to achieve better adjusted coefficients and incorporate the largest possible amount of lignin in the gels. Bulk density varies from 0.42 to 0.9, shrinkage varies from 3.42 to 25.35, and specific surface area reaches values of 451.86 m2/g with 13% lignin and 270 m2/g with 27% lignin. High catalyst content improves lignin dissolution and increase shrinkage and bulk density of xerogels and bulk density. Lignin contributes to reducing shrinkage and specific surface area due to his compact and rigid structure.
Directory of Open Access Journals (Sweden)
Dewei Deng
2015-10-01
Full Text Available The Ni-based coatings with different content of spherical tungsten carbide were deposited by plasma transfer arc welding (PTAW method on 304 austenitic stainless steel sheets in this study. The microstructure and wear property of spherical tungsten carbide particle reinforced composite coatings were investigated by means of optical microscope, scanning electron microscope (SEM, X-ray diffraction (XRD, electron probe microanalysis (EPMA and sliding wear test. It is shown that the fraction of spherical tungsten carbides has an important influence on microstructure of Ni-based overlay. The Ni40 overlay consists of γ-Ni dendrites with interdendritic Ni-based eutectics, borides and carbides improving the wear resistance. In the case of composite coatings with different content of tungsten carbide, many new phases are observed, such as Ni2W4C and NiW. In addition, there are a large number of irregular structures in composite coatings, such as acicular structure and irregular stripe organization. The results of sliding wear test indicate that the mass loss of coatings is influenced by the content of tungsten carbide. The mass loss decreases with the increase of tungsten carbide fraction. At high load, the abrasive resistance of composite coating with 60 wt. % tungsten carbide is improved about 50-fold compared to that of Ni40 overlay.
High Performance 3D PET Reconstruction Using Spherical Basis Functions on a Polar Grid
Directory of Open Access Journals (Sweden)
J. Cabello
2012-01-01
Full Text Available Statistical iterative methods are a widely used method of image reconstruction in emission tomography. Traditionally, the image space is modelled as a combination of cubic voxels as a matter of simplicity. After reconstruction, images are routinely filtered to reduce statistical noise at the cost of spatial resolution degradation. An alternative to produce lower noise during reconstruction is to model the image space with spherical basis functions. These basis functions overlap in space producing a significantly large number of non-zero elements in the system response matrix (SRM to store, which additionally leads to long reconstruction times. These two problems are partly overcome by exploiting spherical symmetries, although computation time is still slower compared to non-overlapping basis functions. In this work, we have implemented the reconstruction algorithm using Graphical Processing Unit (GPU technology for speed and a precomputed Monte-Carlo-calculated SRM for accuracy. The reconstruction time achieved using spherical basis functions on a GPU was 4.3 times faster than the Central Processing Unit (CPU and 2.5 times faster than a CPU-multi-core parallel implementation using eight cores. Overwriting hazards are minimized by combining a random line of response ordering and constrained atomic writing. Small differences in image quality were observed between implementations.
Directory of Open Access Journals (Sweden)
O. Klemp
2006-01-01
Full Text Available In order to satisfy the stringent demand for an accurate prediction of MIMO channel capacity and diversity performance in wireless communications, more effective and suitable models that account for real antenna radiation behavior have to be taken into account. One of the main challenges is the accurate modeling of antenna correlation that is directly related to the amount of channel capacity or diversity gain which might be achieved in multi element antenna configurations. Therefore spherical wave theory in electromagnetics is a well known technique to express antenna far fields by means of a compact field expansion with a reduced number of unknowns that was recently applied to derive an analytical approach in the computation of antenna pattern correlation. In this paper we present a novel and efficient computational technique to determine antenna pattern correlation based on the evaluation of the surface current distribution by means of a spherical mode expansion.
Wenninger, Magnus J
2012-01-01
Well-illustrated, practical approach to creating star-faced spherical forms that can serve as basic structures for geodesic domes. Complete instructions for making models from circular bands of paper with just a ruler and compass. Discusses tessellation, or tiling, and how to make spherical models of the semiregular solids and concludes with a discussion of the relationship of polyhedra to geodesic domes and directions for building models of domes. "". . . very pleasant reading."" - Science. 1979 edition.
Champman, A. J.
1972-01-01
Spherically blunted 0.44-radian (25 deg) half-angle conical models coated with elastomeric ablative materials were tested in supersonic arc-heated wind tunnels to evaluate performance of the ablators over a range of conditions typical of lifting entry. Four test conditions were combinations of stagnation point-heat transfer rates of 2.3 and 4.5 MW/m2 and stagnation pressures of 20 and 2kN/m2. Afterbody values of heat transfer rate and pressure were 0.05 to 0.20 of stagnation point values. Stagnation enthalpy varied from 4.4 to 25 MJ/kg (1900 to 11000 Btu/lbm) and free-stream Mach number was in a range from 3.5 to 4. Ablative materials retained the spherical nose shape throughout tests at the lower heat transfer level, but receded, assuming a flattened nose shape, during tests at the high heat transfer level. The residue layer that formed on the conical after-body was weak, friable, and extensively cracked. The reference ablative material, which contained phenolic microspheres, generally retained the conical shape on the model afterbody. However, a modified ablator, in which phenolic microspheres were replaced with silica microspheres, deformed and separated from the undegraded material, and thereby produced a very uneven surface. Substrate temperatures and ablator recession were in good agreement with values computed by a numerical analysis.
Wang, Junkai; Yue, Kaiqiang; Zhu, Xiaodan; Wang, Kang L; Duan, Lianfeng
2016-01-07
A unique C-S@PANI composite with a conductive polymer spherical network (PSN) has been successfully designed and synthesized by a simple processing approach. The PSN framework is formed at the surface of the oxidized carbon black by conductive polymer self-assembly and grafting, followed by pouring elemental sulfur into the pores of the polymer matrix. As the cathode material for lithium-sulfur batteries, the C-S@PANI composite delivered a high specific capacity of 1453 mA h g(-1) at a 0.1 C current rate and a stable cycling performance of 948 mA h g(-1) after 200 cycles. The composite also demonstrated high capacities of 922 and 581 mA h g(-1) at 50 °C and 0 °C, respectively, after 200 cycles. The conductive PANI coatings were connected with the C-S core-shell composites to form a three-dimensional conducting network, which improves the utilization of the active mass and dual conduction of Li(+) and electrons, while at the same time encapsulating sulfur into the PANI hollow spherical network. The structure effectively inhibits the dissolution and migration of polysulfides into the electrolyte, while improving the cycling stability and the coulombic efficiency of the electrode at high current rates, especially the low temperature electrochemical properties of Li-S batteries.
Directory of Open Access Journals (Sweden)
Yuan Tian
2018-01-01
Full Text Available An efficient, industry-accepted spray drying method was used to synthesize micro-spherical sulfur/graphene oxide (S/GO composites as cathode materials within lithium sulfur batteries. The as-designed wrapping of the sulfur-nanoparticles, with wrinkled GO composites, was characterized by scanning electron microscopy (SEM and transmission electron microscopy (TEM. The unique morphological design of this material enabled superior discharge capacity and cycling performance, demonstrating a high initial discharge capacity of 1400 mAh g−1 at 0.1 C. The discharge capacity remained at 828 mAh g−1 after 150 cycles. The superior electrochemical performance indicates that the S/GO composite improves electrical conductivity and alleviates the shuttle effect. This study represents the first time such a facile spray drying method has been adopted for lithium sulfur batteries and used in the fabrication of S/GO composites.
Yang, Sudong; Shen, Chengmin; Tian, Yuan; Zhang, Xiaogang; Gao, Hong-Jun
2014-10-01
Single-crystal palladium nanoparticles (NPs) with controllable morphology were synthesized on the surface of reduced graphene oxide (RGO) by a novel procedure, namely reducing palladium acetylacetonate [Pd(acac)2] with the N-methylpyrrolidone (NMP) solvent in the presence of poly(vinylpyrrolidone) (PVP). The resulting Pd nanocrystals (8 nm in diameter) were uniformly distributed on the RGO. A possible formation mechanism is discussed. The electrocatalytic performance of Pd nanocrystal/RGO catalysts during formic acid oxidation was investigated, which revealed that the cubic Pd/RGO catalyst performed significantly better than the spherical Pd/RGO catalyst. The shape of Pd nanocrystals on the surface of graphene nanosheets can be easily controlled via tuning the synthesis parameters, resulting in tunable catalytic properties. Moreover, this method can be easily extended to fabricate other noble metal nanostructures.
Kahn, R.; Fourme, R.; Bosshard, R.; Lewit-Bentley, A.; Prangé, T.
1989-07-01
We have developed at LURE a multiwire proportional chamber with a spherical drift space. The wire chamber consists of two cathode planes, comprising 512 wires with a spacing of 1 mm, set on both sides of the anodic plane. The drift space, a gas filled region bounded by two spherically curved electrodes 144 mm apart, offers several advantages: high quantum efficiency, no parallax effect, equivalent spatial resolution in both directions, and smoothing of the pulsed structure of the synchrotron radiation. The gaseous mixture of argon-xenon (58%), ethane (40%), and ethyl alcohol (2%) is circulated in a closed circuit and is continuously purified. Ethyl alcohol, which avoids electrical discharges and sparks, is essential to operate the instrument at high counting rates (>300 000 events/s). The signal processing, which makes use of one amplifier per cathode wire and of fast priority encoders, determines both coordinates with a resolution of 1 mm and a dead time of 240 ns. Each encoded event is stored into a 512×512 16 bit CAMAC histogramming memory. The experiment is controlled by a PDP11/34 linked to a VAX by a direct memory access channel. A complete set of programs, which performs the data collection and an off line data reduction, is operational. The adaptation of madnes, a general software package which performs an on line data reduction, is under way. Data, collected on a lysozyme crystal to 3.4-Å resolution, give a reliability factor based on intensities of equivalent reflections of 4.7% without absorption corrections; the variation of the detector efficiency is memory linked to a micro VAX.
Xia, Huicong; Zhang, Jianan; Yang, Zhao; Guo, Shiyu; Guo, Shihui; Xu, Qun
2017-10-01
Metal-organic frameworks (MOFs) are of great interest as potential electrochemically active materials. However, few studies have been conducted into understanding whether control of the shape and components of MOFs can optimize their electrochemical performances due to the rational realization of their shapes. Component control of MOFs remains a significant challenge. Herein, we demonstrate a solvothermal method to realize nanostructure engineering of 2D nanoflake MOFs. The hollow structures with Ni/Co- and Ni-MOF (denoted as Ni/Co-MOF nanoflakes and Ni-MOF nanoflakes) were assembled for their electrochemical performance optimizations in supercapacitors and in the oxygen reduction reaction (ORR). As a result, the Ni/Co-MOF nanoflakes exhibited remarkably enhanced performance with a specific capacitance of 530.4 F g-1 at 0.5 A g-1 in 1 M LiOH aqueous solution, much higher than that of Ni-MOF (306.8 F g-1) and ZIF-67 (168.3 F g-1), a good rate capability, and a robust cycling performance with no capacity fading after 2000 cycles. Ni/Co-MOF nanoflakes also showed improved electrocatalytic performance for the ORR compared to Ni-MOF and ZIF-67. The present work highlights the significant role of tuning 2D nanoflake ensembles of Ni/Co-MOF in accelerating electron and charge transportation for optimizing energy storage and conversion devices. [Figure not available: see fulltext.
Performance comparison of AV1, HEVC, and JVET video codecs on 360 (spherical) video
Topiwala, Pankaj; Dai, Wei; Krishnan, Madhu; Abbas, Adeel; Doshi, Sandeep; Newman, David
2017-09-01
This paper compares the coding efficiency performance on 360 videos, of three software codecs: (a) AV1 video codec from the Alliance for Open Media (AOM); (b) the HEVC Reference Software HM; and (c) the JVET JEM Reference SW. Note that 360 video is especially challenging content, in that one codes full res globally, but typically looks locally (in a viewport), which magnifies errors. These are tested in two different projection formats ERP and RSP, to check consistency. Performance is tabulated for 1-pass encoding on two fronts: (1) objective performance based on end-to-end (E2E) metrics such as SPSNR-NN, and WS-PSNR, currently developed in the JVET committee; and (2) informal subjective assessment of static viewports. Constant quality encoding is performed with all the three codecs for an unbiased comparison of the core coding tools. Our general conclusion is that under constant quality coding, AV1 underperforms HEVC, which underperforms JVET. We also test with rate control, where AV1 currently underperforms the open source X265 HEVC codec. Objective and visual evidence is provided.
Influence of Spherical Radiation Pattern Measurement Uncertainty on Handset Performance Measures
DEFF Research Database (Denmark)
Nielsen, Jesper Ødum; Pedersen, Gert Frølund
2005-01-01
), and mean effective gain (MEG) can be computed. Often this kind of measurements are made with a phantom head next to the handsets in order to simulate the influence of a real user. The measured radiation patterns are only expected to be repeatable if the same setup is used, i.e., the same phantom...... system that may introduce errors in standardized performance measurements. Radiation patterns of six handsets have been measured while they were mounted at various offsets from the reference position defined by the Cellular Telecommunications & Internet Association (CTIA) certification. The change...
Changes in Handset Performance Measures due to Spherical Radiation Pattern Measurement Uncertainty
DEFF Research Database (Denmark)
Nielsen, Jesper Ødum; Pedersen, Gert Frølund
), and mean effective gain (MEG) can be computed. Often this kind of measurements are made with a phantom head next to the handsets in order to simulate the influence of a real user. The measured radiation patterns are only expected to be repeatable if the same setup is used, i.e., the same phantom...... system that may introduce errors in standardized performance measurements. Radiation patterns of six handsets have been measured while they were mounted at various offsets from the reference position defined by the Cellular Telecommunications & Internet Association (CTIA) certification. The change...
ANALYSIS OF EUCALYPTUS GLUED-LAMINATED TIMBER PORTICOS STRUCTURAL PERFORMANCE
Directory of Open Access Journals (Sweden)
Sandra Maria Ferreira Couri Petrauski
Full Text Available ABSTRACT This study evaluated the structural behavior of porticos made from eucalyptus glued boards, using wood of Eucalyptus sp and resorcinol formaldehyde adhesive. Three units, in real scale, of tri-articulated straight porticos, with a 5 meter porthole and a 26º inclination, capable to support tiles covering placement were designed, constructed and subjected to load testing, until rupture. The amount of adhesive used in the construction of the porticos was 250 g/m2 and the bonding pressure of 1.3 MPa. The Hankinson model was employed as an estimator of the glued joints strength, under different angles between the fibers. The average value for the last resistance of the structures was 4.63 times the design load, according to the criteria established by the ABNT, 1997. The structures showed satisfactory mechanical performance and deformations lower than the ones allowed by the standard. It was concluded there is technical feasibility to manufacture porticos fully bonded with small thickness veneers.
Fundamentals of spherical array processing
Rafaely, Boaz
2015-01-01
This book provides a comprehensive introduction to the theory and practice of spherical microphone arrays. It is written for graduate students, researchers and engineers who work with spherical microphone arrays in a wide range of applications. The first two chapters provide the reader with the necessary mathematical and physical background, including an introduction to the spherical Fourier transform and the formulation of plane-wave sound fields in the spherical harmonic domain. The third chapter covers the theory of spatial sampling, employed when selecting the positions of microphones to sample sound pressure functions in space. Subsequent chapters present various spherical array configurations, including the popular rigid-sphere-based configuration. Beamforming (spatial filtering) in the spherical harmonics domain, including axis-symmetric beamforming, and the performance measures of directivity index and white noise gain are introduced, and a range of optimal beamformers for spherical arrays, includi...
Directory of Open Access Journals (Sweden)
Haibo Zhang
2017-05-01
Full Text Available As an emerging molecular imaging modality, cone-beam X-ray luminescence computed tomography (CB-XLCT uses X-ray-excitable probes to produce near-infrared (NIR luminescence and then reconstructs three-dimensional (3D distribution of the probes from surface measurements. A proper photon-transportation model is critical to accuracy of XLCT. Here, we presented a systematic comparison between the common-used Monte Carlo model and simplified spherical harmonics (SPN. The performance of the two methods was evaluated over several main spectrums using a known XLCT material. We designed both a global measurement based on the cosine similarity and a locally-averaged relative error, to quantitatively assess these methods. The results show that the SP3 could reach a good balance between the modeling accuracy and computational efficiency for all of the tested emission spectrums. Besides, the SP1 (which is equivalent to the diffusion equation (DE can be a reasonable alternative model for emission wavelength over 692nm. In vivo experiment further demonstrates the reconstruction performance of the SP3 and DE. This study would provide a valuable guidance for modeling the photon-transportation in CB-XLCT.
Liu, Yuxi; Dai, Hongxing; Deng, Jiguang; Zhang, Lei; Zhao, Zhenxuan; Li, Xinwei; Wang, Yuan; Xie, Shaohua; Yang, Huanggen; Guo, Guangsheng
2013-08-05
Uniform hollow spherical rhombohedral LaMO3 and solid spherical cubic MOx (M = Mn and Co) NPs were fabricated using the PMMA-templating strategy. Hollow spherical LaMO3 and solid spherical MOx NPs possessed surface areas of 21-33 and 21-24 m(2)/g, respectively. There were larger amounts of surface-adsorbed oxygen species and better low-temperature reducibility on/of the hollow spherical LaMO3 samples than on/of the solid spherical MOx samples. Hollow spherical LaMO3 and solid spherical MOx samples outperformed their nanosized counterparts for oxidation of CO and toluene, with the best catalytic activity being achieved over the solid spherical Co3O4 sample for CO oxidation (T50% = 81 °C and T90% = 109 °C) at space velocity = 10,000 mL/(g h) and the hollow spherical LaCoO3 sample for toluene oxidation (T50% = 220 °C and T90% = 237 °C) at space velocity = 20,000 mL/(g h). It is concluded that the higher surface areas and oxygen adspecies concentrations and better low-temperature reducibility are responsible for the excellent catalytic performance of the hollow spherical LaCoO3 and solid spherical Co3O4 NPs. We believe that the PMMA-templating strategy provides an effective route to prepare uniform perovskite-type oxide and transition-metal oxide NPs.
Peeples, Steven
2015-01-01
A three degree of freedom (DOF) spherical actuator is proposed that will replace functions requiring three single DOF actuators in robotic manipulators providing space and weight savings while reducing the overall failure rate. Exploration satellites, Space Station payload manipulators, and rovers requiring pan, tilt, and rotate movements need an actuator for each function. Not only does each actuator introduce additional failure modes and require bulky mechanical gimbals, each contains many moving parts, decreasing mean time to failure. A conventional robotic manipulator is shown in figure 1. Spherical motors perform all three actuation functions, i.e., three DOF, with only one moving part. Given a standard three actuator system whose actuators have a given failure rate compared to a spherical motor with an equal failure rate, the three actuator system is three times as likely to fail over the latter. The Jet Propulsion Laboratory reliability studies of NASA robotic spacecraft have shown that mechanical hardware/mechanism failures are more frequent and more likely to significantly affect mission success than are electronic failures. Unfortunately, previously designed spherical motors have been unable to provide the performance needed by space missions. This inadequacy is also why they are unavailable commercially. An improved patentable spherically actuated motor (SAM) is proposed to provide the performance and versatility required by NASA missions.
The ETE spherical Tokamak project
Energy Technology Data Exchange (ETDEWEB)
Ludwig, Gerson Otto; Andrade, Maria Celia Ramos de; Barbosa, Luis Filipe Wiltgen [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] [and others]. E-mail: ludwig@plasma.inpe.br
1999-07-01
This paper describes the general characteristics of spherical tokamaks, with a brief overview of work in the area of spherical torus already performed or in progress at several institutions. The paper presents also the historical development of the ETE (Spherical Tokamak Experiment) project, its research program, technical characteristics and status of construction in September, 1998 at the Associated plasma Laboratory (LAP) of the National Institute for Space Research (INPE) in Brazil. (author)
Spherical tokamak development in Brazil
Energy Technology Data Exchange (ETDEWEB)
Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] (and others)
2003-07-01
The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)
Energy Technology Data Exchange (ETDEWEB)
RAMSEY AA; THORSON MR
2010-12-28
At-tank supplemental pretreatment including both filtration and small column ion exchange is currently under evaluation to facilitate salt waste retrieval and processing in the Hanford tank farms. Spherical resorcinol formaldehyde (sRF) resin is the baseline ion exchange resin for use in the Waste Treatment and Immobilization Plant (WTP). This document provides background and technical rationale to assist in determining whether spherical resorcinol formaldehyde (sRF) is also the appropriate ion exchange resin for supplemental LAW pretreatment processes and compares sRF with crystalline silicotitanate (CST) as potential supplemental pretreatment ion exchange media.
Wang, Hui; Miao, Jian-Jun; Zhu, Jian-Min; Ma, Hong-Min; Zhu, Jun-Jie; Chen, Hong-Yuan
2004-12-21
A facile and efficient approach for the fabrication of mesoporous spherical aggregates of anatase nanocrystals is reported in this paper. Cetyltrimethylammonium bromide was used as the structure-directing agent, and the interaction between cyclohexane microdroplets and the cetyltrimethylammonium bromide self-assemblies led to the assembly of 4-5-nm-sized anatase nanocrystals into spherical aggregates with mesoporous structures. The as-prepared anatase powders exhibited high photocatalytic activity and could be effectively used as the catalyst for the room-temperature photodegradation of a variety of organic dye pollutants in aqueous media including methyl orange, bromopyrogallol red, and methylene blue.
1997-01-01
Developed largely through a Small Business Innovation Research contract through Langley Research Center, Interactive Picture Corporation's IPIX technology provides spherical photography, a panoramic 360-degrees. NASA found the technology appropriate for use in guiding space robots, in the space shuttle and space station programs, as well as research in cryogenic wind tunnels and for remote docking of spacecraft. Images of any location are captured in their entirety in a 360-degree immersive digital representation. The viewer can navigate to any desired direction within the image. Several car manufacturers already use IPIX to give viewers a look at their latest line-up of automobiles. Another application is for non-invasive surgeries. By using OmniScope, surgeons can look more closely at various parts of an organ with medical viewing instruments now in use. Potential applications of IPIX technology include viewing of homes for sale, hotel accommodations, museum sites, news events, and sports stadiums.
Liang, Caiyun; Wang, Zhijiang
2017-11-22
Heterostructured dielectric-dielectric nanowires of SiC core and carbon shell (SiC@C) with high-performance electromagnetic wave absorption were synthesized by combining an interfacial in situ polymer encapsulation and carbonization process. This approach overcomes the shortcomings of previous reported methods to prepare carbon shell that both carbon shell and free carbon particles are formed simultaneously. In our developed approach, the core of SiC nanowires are first positively charged. Then the negative resorcinol-formaldehyde polymers as the carbon source are anchored on SiC nanowires under the attraction of electrostatic force, which well suppresses the nucleation of free carbon particles. The thickness of the carbon shell could be modulated from 4 to 20 nm by simply adjusting the moral ratio of resorcinol to SiC nanowires. The resulting SiC@C core-shell nanostructures without free carbon particles offer synergism among the SiC nanowires and the carbon shells, generating multiple dipolar polarization, surfaced polarization, and associated relaxations, which endow SiC@C hybrid nanowires with a minimum reflection loss (RL) value of -50 dB at the frequency of 12 GHz and an effective absorption bandwidth of 8 GHz with RL value under -10 dB at the optimized state. Our results demonstrate that SiC@C hybrid nanowires are promising candidates for electromagnetic wave absorption applications.
Dong, Shihua; Li, Caixia; Ge, Xiaoli; Li, Zhaoqiang; Miao, Xianguang; Yin, Longwei
2017-06-27
Taking advantage of zeolitic imidazolate framework (ZIF-8), ZnS-Sb2S3@C core-double shell polyhedron structure is synthesized through a sulfurization reaction between Zn2+ dissociated from ZIF-8 and S2- from thioacetamide (TAA), and subsequently a metal cation exchange process between Zn2+ and Sb3+, in which carbon layer is introduced from polymeric resorcinol-formaldehyde to prevent the collapse of the polyhedron. The polyhedron composite with a ZnS inner-core and Sb2S3/C double-shell as anode for sodium ion batteries (SIBs) shows us a significantly improved electrochemical performance with stable cycle stability, high Coulombic efficiency and specific capacity. Peculiarly, introducing a carbon shell not only acts as an important protective layer to form a rigid construction and accommodate the volume changes, but also improves the electronic conductivity to optimize the stable cycle performance and the excellent rate property. The architecture composed of ZnS inner core and a complex Sb2S3/C shell not only facilitates the facile electrolyte infiltration to reduce the Na-ion diffusion length to improve the electrochemical reaction kinetics, but also prevents the structure pulverization caused by Na-ion insertion/extraction. This approach to prepare metal sulfides based on MOFs can be further extended to design other nanostructured systems for high performance energy storage devices.
Spherical tokamak development in Brazil
Energy Technology Data Exchange (ETDEWEB)
Ludwig, G.O.; Del Bosco, E.; Ferreira, J.G.; Berni, L.A.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Ueda, M.; Barroso, J.J.; Castro, P.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma; Barbosa, L.F.W. [Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Mecanica Espacial e Controle; The high-power microwave sources group
2003-12-01
This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the steps in the development of the ETE (Experimento Tokamak Esferico) project, its research program, technical characteristics and operating conditions as of December, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)
Liu, Huiping; Lu, Guanzhong; Guo, Yun; Wang, Yanqin; Guo, Yanglong
2010-06-15
Spherical-like Pt-MCM-41 meso-materials, including Pt-MCM-41, Pt-Al-MCM-41, and Pt-La-MCM-41, as well as MCM-41, were synthesized by a "one-step" approach with orthosilicate (TEOS) as silica source and cetyltrimethylammonium bromide (CTAB) as a template in the presence of suitable H(2)SO(4) (or HCl) at 0 degrees C. The samples were characterized by XRD, N(2) sorption, FTIR, SEM, TEM, ICP-AES, and XPS techniques. The results show that the metallic cations (such as Al(3+) and La(3+)) were hard to be incorporated into the synthesized samples under strong acidic conditions. However, H(2)PtCl(6) can be introduced almost 100% in the as-synthesized Pt-containing meso-materials, and H(2)PtCl(6) in the samples can be decomposed mostly into metallic Pt accompanied by part Pt(2)Si and few Pt oxides during the calcination at 550 degrees C to remove the template. In the catalytic hydrogenation of nitrobenzene, the calcined Pt-MCM-41 meso-materials, like the corresponding reduced samples, exhibit high catalytic activities with an excellent selectivity to aniline, which are much better than those of the reduced Pt/MCM-41 prepared by the incipient wetness method. 2010 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Balgis, R.; Ogi, T.; Okuyama, K. [Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, Higashi Hiroshima, Hiroshima (Japan); Anilkumar, G.M.; Sago, S. [Research and Development Centre, Noritake Co., Ltd., Higashiyama, Miyoshi, Aichi (Japan)
2012-08-15
A facile route for the rapid in situ synthesis of platinum nanoparticles on spherical microflower carbon has been developed. An aqueous precursor slurry containing carbon black, polystyrene latex (PSL), polyvinyl alcohol, and platinum salt was spray-dried, followed by calcination to simultaneously reduce platinum salt and to decompose PSL particles. Prepared Pt/C catalyst showed high-performance electrocatalytic activity with excellent durability. The mass activity and specific activity values were 132.26 mA mg{sup -1} Pt and 207.62 {mu}A cm{sup -2} Pt, respectively. This work presents a future direction for the production of high-performance Pt/C catalyst in an industrial scale. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
The ETE spherical Tokamak project. IAEA report
Energy Technology Data Exchange (ETDEWEB)
Ludwig, Gerson Otto; Del Bosco, E.; Berni, L.A.; Ferreira, J.G.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Barroso, J.J.; Castro, P.J.; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: ludwig@plasma.inpe.br
2002-07-01
This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the historical development of the ETE (Spherical Tokamak Experiment) project, its research program, technical characteristics and operating conditions as of October, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)
Nguyen, Jordan S; Nguyen, Tuan Nghia; Tran, Yvonne; Su, Steven W; Craig, Ashley; Nguyen, Hung T
2012-01-01
This paper is concerned with the operational performance of a semi-autonomous wheelchair system named TIM (Thought-controlled Intelligent Machine), which uses cameras in a system configuration modeled on the vision system of a horse. This new camera configuration utilizes stereoscopic vision for 3-Dimensional (3D) depth perception and mapping ahead of the wheelchair, combined with a spherical camera system for 360-degrees of monocular vision. The unique combination allows for static components of an unknown environment to be mapped and any surrounding dynamic obstacles to be detected, during real-time autonomous navigation, minimizing blind-spots and preventing accidental collisions with people or obstacles. Combining this vision system with a shared control strategy provides intelligent assistive guidance during wheelchair navigation, and can accompany any hands-free wheelchair control technology for people with severe physical disability. Testing of this system in crowded dynamic environments has displayed the feasibility and real-time performance of this system when assisting hands-free control technologies, in this case being a proof-of-concept brain-computer interface (BCI).
Lee, Yoon Jae; Park, Hai Woong; Hong, Ung Gi; Song, In Kyu
2013-12-01
Graphene-containing carbon aerogel was prepared by a polycondensation of resorcinol with formaldehyde using chemically exfoliated graphene oxide in ambient conditions, and its electrochemical performance as an electrode for supercapacitor was examined. The effect of pH in the preparation of RFGO (resorcinol-formaldehyde and graphene oxide) solution on the physical and electrochemical properties of graphene-containing carbon aerogel was investigated. For comparison, graphene-free carbon aerogel was also prepared. Among the samples, graphene-containing carbon aerogel prepared at pH 6.5 showed the highest BET surface area (733 m2/g) and the largest pore volume (1.39 cm3/g) with well-developed porous structure. Electrochemical properties of graphene-containing carbon aerogel and graphene-free carbon aerogel electrodes were measured by cyclic voltammetry at a scan rate of 10 mV/sec and by charge/discharge test at constant current of 1 A/g in 6 M KOH electrolyte. From cyclic voltammetry measurements, it was found that graphene-containing carbon aerogel prepared at pH 6.5 showed higher specific capacitance than graphene-free carbon aerogel (63 F/g vs. 54 F/g). Specific capacitance calculated by charge/discharge test also revealed that graphene-containing carbon aerogel prepared at pH 6.5 showed higher specific capacitance than graphene-free carbon aerogel (85 F/g vs. 79 F/g). Thus, electrochemical performance of graphene-containing carbon aerogel prepared at pH 6.5 could be enhanced by adding graphene into carbon aerogel.
Spherical grating spectrometers
O'Donoghue, Darragh; Clemens, J. Christopher
2014-07-01
We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.
Meng, L J; Chirkin, V M; Potapov, V N; Ivanov, O P; Ignatov, S M
2002-01-01
This paper presents details of the design and performance of a prototype large-volume scintillation detector used for gamma-ray spectroscopy. In this detector, a spherical CsI(Tl) scintillation crystal having a diameter of 5.7 cm was polished and packed in dry MgO powder. The scintillation light from the crystal was viewed using a single 1x1 cm sup 2 silicon PIN diode. A low-noise preamplifier was also integrated within the detector housing. The measured noise level was equivalent to approx 800 electrons (FWHM). Such a configuration provided a very good light collection efficiency, which resulted in an average of 20 electrons being generated per keV of energy deposited in the crystal. One of the key features of the detector design is that it minimises spatial variations in the light collection efficiency throughout the detector. Compared with a standard 3 in. NaI scintillation counter, this feature leads to a much-improved energy resolution, particularly for photon energies above 1 MeV. The results presented ...
Miniaturization of Spherical Magnetodielectric Antennas
DEFF Research Database (Denmark)
Hansen, Troels Vejle
The fundamental limitations in performance of electrically small antennas (ESAs) - and how far these may be approached - have been of great interest for over a century. Particularly over the past few decades, it has become increasingly relevant and important, to approach these limits in view...... to the important antenna parameters of radiation efficiency e and impedance bandwidth. For single-mode antennas the fundamental minimum Q is the Chu lower bound. In this Ph.D. dissertation, the topic is miniaturization of spherical antennas loaded by an internal magnetodielectric core. The goal is to determine......, quantify, and assess the effects of an internal material loading upon antenna performance, including its potentials towards miniaturization. Emphasis have been upon performing an exhaustive and exact analysis of rigorous validity covering a large class of spherical antennas. In the context of this study...
Isaev, Alexander
2011-01-01
We examine Levi non-degenerate tube hypersurfaces in complex linear space which are "spherical," that is, locally CR-equivalent to the real hyperquadric. Spherical hypersurfaces are characterized by the condition of the vanishing of the CR-curvature form, so such hypersurfaces are flat from the CR-geometric viewpoint. On the other hand, such hypersurfaces are also of interest from the point of view of affine geometry. Thus our treatment of spherical tube hypersurfaces in this book is two-fold: CR-geometric and affine-geometric. As the book shows, spherical tube hypersurfaces possess remarkable properties. For example, every such hypersurface is real-analytic and extends to a closed real-analytic spherical tube hypersurface in complex space. One of our main goals is to provide an explicit affine classification of closed spherical tube hypersurfaces whenever possible. In this book we offer a comprehensive exposition of the theory of spherical tube hypersurfaces, starting with the idea proposed in the pioneering...
Zhao, Bing; Wang, Zhixuan; Chen, Fang; Yang, Yaqing; Gao, Yang; Chen, Lu; Jiao, Zheng; Cheng, Lingli; Jiang, Yong
2017-01-18
Three-dimensional (3D) interconnected spherical graphene framework-decorated SnS nanoparticles (3D SnS@SG) is synthesized by self-assembly of graphene oxide nanosheets and positively charged polystyrene/SnO2 nanospheres, followed by a controllable in situ sulfidation reaction during calcination. The SnS nanoparticles with diameters of ∼10-30 nm are anchored to the surface of the spherical graphene wall tightly and uniformly. Benefiting from the 3D interconnected spherical graphene framework and subtle SnS nanoparticles, the generated Li2S could keep in close contact with Sn to make possible the in situ conversion reaction SnS + 2Li(+) + 2e(-) ↔ Sn + Li2S. As a result, the 3D SnS@SG as the anode material for lithium ion batteries shows a high initial Coulombic efficiency of 75.3%. Apart from the irreversible capacity loss of 3D spherical graphene, the initial Coulombic efficiency of SnS in the 3D SnS@SG composite is as high as 99.7%, demonstrating the almost complete reversibility of Li2S in this system. Furthermore, it also exhibits an excellent reversible capacity (800 mAh g(-1) after 100 cycles at 0.1 C and 527.1 mAh g(-1) after 300 cycles at 1 °C) and outstanding rate capability (380 mAh g(-1) at 5 °C).
Adhesion of RFL-coated aramid fibres to sulphur- and peroxide-cured elastomers
Sadatshirazi, S.; Talma, Auke; Noordermeer, Jacobus W.M.
2013-01-01
The performance of fibre-reinforced composites is strongly dependent on the nature and the strength of the fibre–matrix interface. Good interfacial bonding is required to ensure load transfer from matrix to reinforcing fibres. For rubber-reinforced composites, resorcinol formaldehyde latex (RFL) is
Effects of swelling forces on the durability of wood adhesive bonds
Blake M. Hofferber; Edward Kolodka; Rishawn Brandon; Robert J. Moon; Charles R. Frihart
2006-01-01
The purpose of this study was to investigate the role of wood swelling on performance of wood-adhesive bonds (resorcinol formaldehyde, epoxy, emulsion polymerisocyanate), for untreated and acetylated wood. Effects of these treatments on measured strain anisotropy and swelling stress were measured and then related to compressive shear strength and percentage wood...
Comparison of bonding strengths of the sapwoods and heartwoods ...
African Journals Online (AJOL)
oak (Quercus petrea L.) and Scotch pine (Pinus sylvestris L.) with polyurethane, epoxy, and resorcinol formaldehyde adhesives are the focus of the study since these wood species and adhesives are used extensively in Turkey. The results of the study indicated that oak has the best bonding strength performance for all ...
Spherical geodesic mesh generation
Energy Technology Data Exchange (ETDEWEB)
Fung, Jimmy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kenamond, Mark Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Burton, Donald E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shashkov, Mikhail Jurievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-02-27
In ALE simulations with moving meshes, mesh topology has a direct influence on feature representation and code robustness. In three-dimensional simulations, modeling spherical volumes and features is particularly challenging for a hydrodynamics code. Calculations on traditional spherical meshes (such as spin meshes) often lead to errors and symmetry breaking. Although the underlying differencing scheme may be modified to rectify this, the differencing scheme may not be accessible. This work documents the use of spherical geodesic meshes to mitigate solution-mesh coupling. These meshes are generated notionally by connecting geodesic surface meshes to produce triangular-prismatic volume meshes. This mesh topology is fundamentally different from traditional mesh topologies and displays superior qualities such as topological symmetry. This work describes the geodesic mesh topology as well as motivating demonstrations with the FLAG hydrocode.
The Spherical Deformation Model
DEFF Research Database (Denmark)
Hobolth, Asgar
2003-01-01
Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse...... the spherical deformation model in detail and describe how it may be used to summarize the shape of star-shaped three-dimensional objects with few parameters. It is of interest to make statistical inference about the three-dimensional shape parameters from continuous observations of the surface and from...
Friction factor for water flow through packed beds of spherical and non-spherical particles
Directory of Open Access Journals (Sweden)
Kaluđerović-Radoičić Tatjana
2017-01-01
Full Text Available The aim of this work was the experimental evaluation of different friction factor correlations for water flow through packed beds of spherical and non-spherical particles at ambient temperature. The experiments were performed by measuring the pressure drop across the bed. Packed beds made of monosized glass spherical particles of seven different diameters were used, as well as beds made of 16 fractions of quartz filtration sand obtained by sieving (polydisperse non-spherical particles. The range of bed voidages was 0.359–0.486, while the range of bed particle Reynolds numbers was from 0.3 to 286 for spherical particles and from 0.1 to 50 for non-spherical particles. The obtained results were compared using a number of available literature correlations. In order to improve the correlation results for spherical particles, a new simple equation was proposed in the form of Ergun’s equation, with modified coefficients. The new correlation had a mean absolute deviation between experimental and calculated values of pressure drop of 9.04%. For non-spherical quartz filtration sand particles the best fit was obtained using Ergun’s equation, with a mean absolute deviation of 10.36%. Surface-volume diameter (dSV necessary for correlating the data for filtration sand particles was calculated based on correlations for dV = f(dm and Ψ = f(dm. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. ON172022
Lee, M. C.; Kendall, J. M., Jr.; Bahrami, P. A.; Wang, T. G.
1986-01-01
Fluid-dynamic and capillary forces can be used to form nearly perfect, very small spherical shells when a liquid that can solidify is passed through an annular die to form an annular jet. Gravity and certain properties of even the most ideal materials, however, can cause slight asymmetries. The primary objective of the present work is the control of this shell formation process in earth laboratories rather than space microgravity, through the development of facilities and methods that minimize the deleterious effects of gravity, aerodynamic drag, and uncontrolled cooling. The spherical shells thus produced can be used in insulation, recyclable filter materials, fire retardants, explosives, heat transport slurries, shock-absorbing armor, and solid rocket motors.
Zapata-Benabithe, Zulamita; Carrasco-Marín, Francisco; de Vicente, Juan; Moreno-Castilla, Carlos
2013-05-21
Carbon xerogels in the form of microspheres and monoliths were obtained from the sol-gel polymerization of resorcinol and formaldehyde in the presence of potassium carbonate as catalyst, using water as solvent and two different molar dilution ratios. The objectives of this study were as follows: to investigate the effect of the dilution ratio, polymerization reaction time, and temperature on the rheological properties of the sols used to prepare the carbon xerogel microspheres and monoliths; and to determine the influence of their preparation methods and shapes on their surface characteristics and electrochemical double-layer (EDL) capacitance. An increase in the molar dilution ratio produced a decrease in the apparent activation energy of the sol-gel transition. Carbon xerogel microspheres were steam-activated at different burnoff percentages. The morphology, surface area, porosity, and surface chemistry of samples were determined. The main difference between the carbon xerogel microspheres and monoliths was that the latter are largely mesoporous. Better electrochemical behavior was shown by carbon xerogels in monolith than in microsphere form, but higher gravimetric and volumetric capacitances were found in activated carbon xerogel microspheres than in carbon xerogel monoliths.
Energy Technology Data Exchange (ETDEWEB)
Brown, G.N.; Bray, L.A.; Eloviche, R.J. [Pacific Northwest Lab., Richland, WA (United States); Bruening, R.L.; Decker, R.M. [IBC Advanced Technologies, Inc., Provo, UT (United States); Kafka, T.M.; White, L.R. [3M Co., St. Paul, MN (United States)
1995-03-01
PNL evaluated three polymeric materials for Cs removal efficiency from a simulated Hanford Neutralized Current Acid Waste (NCAW) supernatant liquid using 200 mL ion exchange columns. Cs loadings (mmole Cs/g resin) were 0.20, 0.18, and 0.039 for Super Lig 644, R-F, and CS-100 (0.045, 0.070, 0.011 mmole Cs/mL resin). Elution of each resin material with 0.5 M HNO{sub 3} required 3.5, 7.0, and 3.2 cv to reach 0.1 C/C{sub 0} for the respective materials, resulting in volume compressions of 27, 20, and 6.9. Peak Cs concentrations during elution was 185, 38.5, and 27.8 C/C{sub 0}. SuperLig 644 had the highest Cs loading per gram in NCAW and the greatest volume compression on aci elution. Because of high density and poor elution, R-F had the highest Cs loading per unit volume and lower volume compression. CS-100, the baseline material for Cs removal at Hanford, was inferior to both SuperLig 644 and R-F in terms of Cs loading and selectivity over sodium.
Recent Progress on Spherical Torus Research
Energy Technology Data Exchange (ETDEWEB)
Ono, Masayuki [PPPL; Kaita, Robert [PPPL
2014-01-01
The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ~ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ~ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of attractive fusion energy power source. Since the start of the two megaampere class ST facilities in 2000, National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all of fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.
Holographic Spherically Symmetric Metrics
Petri, Michael
The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.
Shi, Shaojun; Wang, Ting; Cao, Min; Wang, Jiawei; Zhao, Mengxi; Yang, Gang
2016-05-11
Spherical Li-rich Li1.2Mn0.56Ni0.16Co0.08O2 compound is rapidly synthesized through a facile microwave hydrothermal method followed by a high-temperature solid-state reaction. Homogenous spherical precursor can be precipitated through the microwave hydrothermal (MH) method within 30 min without rigorous coprecipitation condition. The as-prepared Li-rich compound exhibits a hierarchical structure composed of spherical secondary particles (2-3 μm) and small primary particles (150-250 nm) with pores. X-ray diffractometry (XRD) and Brunauer-Emmett-Teller (BET) tests prove that a well-formed layered structure and a large specific surface area containing pores are obtained through the MH method. Such structure is a benefit for the thorough contact between active materials and electrolyte to increase the reactive points. Thus, the as-prepared Li-rich compound exhibits perfect electrochemical performances with a high discharge capacity of 235.6 mAh g(-1) at a current density of 200 mA g(-1). Even at higher current densities of 1000 and 2000 mA g(-1), discharge capacities of 168.6 and 131.2 mAh g(-1) are still maintained, respectively. Furthermore, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic intermittent titration technique (GITT) are carried out to study the material prepared by microwave hydrothermal method. It is considered as an efficient way to synthesize Li-rich compound as cathode material for applications.
Computational spherical astronomy
Taff, Laurence G.
The subject of the considered volume is the applied mathematics of spherical astronomy. The book is intended to aid those scientists and engineers, not trained in astrometry, to rapidly master the computational aspects of positional astronomy. Celestial coordinate systems are considered, taking into account the celestial sphere, the horizon system, the equatorial systems, the ecliptic system, the rotational transformations of celestial coordinates, position angle and distance, and special star positions. Other subjects discussed are related to general precession and proper motion, the parallax, the computation of the topocentric place, time systems, photographic astrometry, celestial mechanics, and astronomical catalogs. Attention is given to the power series method for the combined effects of general precession and proper motion, atomic time, the gravitational force, perturbation theory, solar system objects, stars, nonstellar objects, and the linear plate model.
Pairing in spherical nanograins
Energy Technology Data Exchange (ETDEWEB)
Kuzmenko, N.K., E-mail: kuzmenko@NK9433.spb.ed [V.G. Khlopin Radium Institute, 2-nd Murinsky avenue 28, 194021 St.-Petersburg (Russian Federation); Mikhajlov, V.M. [Institute of Physics, St.-Petersburg State University, Ul' yanovskaya 3, 198904 Petergof (Russian Federation)
2010-02-01
Conditions are ascertained when the pairing and other thermodynamic properties of spherical nanograins with numbers of delocalized electrons N<10{sup 5} can be investigated by using the Single Shell Model (SSM) that gives the eigenvalues of the pairing Hamiltonian for a solitary shell. In the frame of SSM the exact canonical and grand canonical descriptions are employed first to analyze the absence of the abrupt superconducting-normal phase transition in finite systems in which an increase of the pairing and BCS critical temperature can be observed and secondly to study such new phenomena as the temperature re-entrance of the pairing in postcritical magnetic fields and also low temperature oscillations of the magnetic susceptibility and electronic heat capacity in an increasing uniform magnetic field.
Spherical wave rotation in spherical near-field antenna measurements
DEFF Research Database (Denmark)
Wu, Jian; Larsen, Flemming Holm; Lemanczyk, J.
1991-01-01
The rotation of spherical waves in spherical near-field antenna measurement is discussed. Considering the many difficult but interesting features of the rotation coefficients, an efficient rotation scheme is derived. The main feature of the proposed scheme is to ignore the calculation of the very...
First results of spherical GEMs
Pinto, Serge Duarte; Brock, Ian; Croci, Gabriele; David, Eric; de Oliveira, Rui; Ropelewski, Leszek; van Stenis, Miranda; Taureg, Hans; Villa, Marco
2010-01-01
We developed a method to make GEM foils with a spherical geometry. Tests of this procedure and with the resulting spherical GEMs are presented. Together with a spherical drift electrode, a spherical conversion gap can be formed. This eliminates the parallax error for detection of x-rays, neutrons or UV photons when a gaseous converter is used. This parallax error limits the spatial resolution at wide scattering angles. Besides spherical GEMs, we have developed curved spacers to maintain accurate spacing, and a conical field cage to prevent edge distortion of the radial drift field up to the limit of the angular acceptance of the detector. With these components first tests are done in a setup with a spherical entrance window but a planar readout structure; results will be presented and discussed. A flat readout structure poses difficulties, however. Therefore we will show advanced plans to make a prototype of an entirely spherical double-GEM detector, including a spherical 2D readout structure. This detector w...
Spherical hashing: binary code embedding with hyperspheres.
Heo, Jae-Pil; Lee, Youngwoon; He, Junfeng; Chang, Shih-Fu; Yoon, Sung-Eui
2015-11-01
Many binary code embedding schemes have been actively studied recently, since they can provide efficient similarity search, and compact data representations suitable for handling large scale image databases. Existing binary code embedding techniques encode high-dimensional data by using hyperplane-based hashing functions. In this paper we propose a novel hypersphere-based hashing function, spherical hashing, to map more spatially coherent data points into a binary code compared to hyperplane-based hashing functions. We also propose a new binary code distance function, spherical Hamming distance, tailored for our hypersphere-based binary coding scheme, and design an efficient iterative optimization process to achieve both balanced partitioning for each hash function and independence between hashing functions. Furthermore, we generalize spherical hashing to support various similarity measures defined by kernel functions. Our extensive experiments show that our spherical hashing technique significantly outperforms state-of-the-art techniques based on hyperplanes across various benchmarks with sizes ranging from one to 75 million of GIST, BoW and VLAD descriptors. The performance gains are consistent and large, up to 100 percent improvements over the second best method among tested methods. These results confirm the unique merits of using hyperspheres to encode proximity regions in high-dimensional spaces. Finally, our method is intuitive and easy to implement.
Spherically symmetric perfect fluid solutions
Energy Technology Data Exchange (ETDEWEB)
Hajj-Boutros, J.
1985-04-01
Many exact solutions for the spherically symmetric perfect fluid distribution of matter with shear, acceleration, and expansion are obtained. One of them is expressed in terms of Painleve's third transcendent.
Toroidal equilibria in spherical coordinates
Tsui, K. H.
2009-01-01
The standard Grad-Shafranov equation for axisymmetric toroidal plasma equilibrium is customary expressed in cylindrical coordinates with toroidal contours, and through which benchmark equilibria are solved. An alternative approach to cast the Grad-Shafranov equation in spherical coordinates is presented. This equation, in spherical coordinates, is examined for toroidal solutions to describe low $\\beta$ Solovev and high $\\beta$ plasma equilibria in terms of elementary functions.
Spherically symmetric charged compact stars
Energy Technology Data Exchange (ETDEWEB)
Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Jaypee Institute of Information Technology University, Department of Mathematics, Noida, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Chowdhury, Sourav Roy [Seth Anandaram Jaipuria College, Department of Physics, Kolkata, West Bengal (India)
2015-08-15
In this article we consider the static spherically symmetric metric of embedding class 1. When solving the Einstein-Maxwell field equations we take into account the presence of ordinary baryonic matter together with the electric charge. Specific new charged stellar models are obtained where the solutions are entirely dependent on the electromagnetic field, such that the physical parameters, like density, pressure etc. do vanish for the vanishing charge. We systematically analyze altogether the three sets of Solutions I, II, and III of the stellar models for a suitable functional relation of ν(r). However, it is observed that only the Solution I provides a physically valid and well-behaved situation, whereas the Solutions II and III are not well behaved and hence not included in the study. Thereafter it is exclusively shown that the Solution I can pass through several standard physical tests performed by us. To validate the solution set presented here a comparison has also been made with that of the compact stars, like RX J 1856 - 37, Her X - 1, PSR 1937+21, PSRJ 1614-2230, and PSRJ 0348+0432, and we have shown the feasibility of the models. (orig.)
Hodoroaba, Vasile-Dan; Motzkus, Charles; Macé, Tatiana; Vaslin-Reimann, Sophie
2014-04-01
The analytical performance of high-resolution scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) for accurate determination of the size, size distribution, qualitative elemental analysis of nanoparticles (NPs) was systematically investigated. It is demonstrated how powerful high-resolution SEM is by using both mono- and bi-modal distributions of SiO2 airborne NPs collected on appropriate substrates after their generation from colloidal suspension. The transmission mode of the SEM (TSEM) is systematically employed for NPs prepared on thin film substrates such as transmission electron microscopy grids. Measurements in the transmission mode were performed by using a "single-unit" TSEM transmission setup as manufactured and patented by Zeiss. This alternative to the "conventional" STEM detector consists of a special sample holder that is used in conjunction with the in-place Everhart-Thornley detector. In addition, the EDX capabilities for imaging NPs, highlighting the promising potential with respect to exploitation of the sensitivity of the new large area silicon drift detector energy dispersive X-ray spectrometers were also investigated. The work was carried out in the frame of a large prenormative VAMAS (Versailles Project on Advanced Materials and Standards) project, dedicated to finding appropriate methods and procedures for traceable characterization of NP size and size distribution.
Spherical warm shield design for infrared imaging systems
Tian, Qijie; Chang, Songtao; He, Fengyun; Li, Zhou; Qiao, Yanfeng
2017-09-01
The F-number matching is the primary means to suppress stray radiation for infrared imaging systems. However, it is difficult to achieve exact F-number matching, owing to the restriction from detectors, or multiple F-number design. Hence, an additional shield is required to block the certain thermal radiation. Typical shield is called flat warm shield, which is flat and operates at room temperature. For flat warm shield, it cannot suppress stray radiation while achieving F-number matching. To overcome the restriction, a spherical reflective warm shield is required. First of all, the detailed theory of spherical warm shield design is developed on basis of the principle that stray radiation cannot directly reach the infrared focal plane array. According to the theory developed above, a polished spherical warm shield, whose radius is 18 mm, is designed to match an F/2 infrared detector with an F/4 infrared imaging system. Then, the performance and alignment errors of the designed spherical warm shield are analyzed by simulation. Finally, a contrast experiment between the designed spherical warm shield and two differently processed flat warm shields is performed in a chamber with controllable inside temperatures. The experimental results indicate that the designed spherical warm shield cannot only achieve F-number matching but suppress stray radiation sufficiently. Besides, it is demonstrated that the theory of spherical warm shield design developed in this paper is valid and can be employed by arbitrary infrared imaging systems.
Wei, Qiliang; Zhang, Gaixia; Yang, Xiaohua; Chenitz, Régis; Banham, Dustin; Yang, Lijun; Ye, Siyu; Knights, Shanna; Sun, Shuhui
2017-10-25
Exploring inexpensive and high-performance nonprecious metal catalysts (NPMCs) to replace the rare and expensive Pt-based catalyst for the oxygen reduction reaction (ORR) is crucial for future low-temperature fuel cell devices. Herein, we developed a new type of highly efficient 3D porous Fe/N/C electrocatalyst through a simple pyrolysis approach. Our systematic study revealed that the pyrolysis temperature, the surface area, and the Fe content in the catalysts largely affect the ORR performance of the Fe/N/C catalysts, and the optimized parameters have been identified. The optimized Fe/N/C catalyst, with an interconnected hollow and open structure, exhibits one of the highest ORR activity, stability and selectivity in both alkaline and acidic conditions. In 0.1 M KOH, compared to the commercial Pt/C catalyst, the 3D porous Fe/N/C catalyst exhibits ∼6 times better activity (e.g., 1.91 mA cm(-2) for Fe/N/C vs 0.32 mA cm(-2) for Pt/C, at 0.9 V) and excellent stability (e.g., no any decay for Fe/N/C vs 35 mV negative half-wave potential shift for Pt/C, after 10000 cycles test). In 0.5 M H2SO4, this catalyst also exhibits comparable activity and better stability comparing to Pt/C catalyst. More importantly, in both alkaline and acidic media (RRDE environment), the as-synthesized Fe/N/C catalyst shows much better stability and methanol tolerance than those of the state-of-the-art commercial Pt/C catalyst. All these make the 3D porous Fe/N/C nanostructure an excellent candidate for non-precious-metal ORR catalyst in metal-air batteries and fuel cells.
Sparse acoustic imaging with a spherical array
DEFF Research Database (Denmark)
Fernandez Grande, Efren; Xenaki, Angeliki
2015-01-01
In recent years, a number of methods for sound source localization and sound field reconstruction with spherical microphone arrays have been proposed. These arrays have properties that are potentially very useful, e.g. omni-directionality, robustness, compensable scattering, etc. This paper...... proposes a plane wave expansion method based on measurements with a spherical microphone array, and solved in the framework provided by Compressed Sensing. The proposed methodology results in a sparse solution, i.e. few non-zero coefficients, and it is suitable for both source localization and sound field...... reconstruction. In general it provides fine spatial resolution for localization (delta-like functions), and robust reconstruction (the noisy components are naturally suppressed). The validity and performance of the proposed method is examined, and its limitations as well as the underlying assumptions...
Modelling and Simulation Analysis of Rolling Motion of Spherical Robot
Kamis, N. N.; Embong, A. H.; Ahmad, S.
2017-11-01
This paper presents the findings of modelling, control and analysis of the spherical rolling robot based on pendulum driven within the simulation environment. The spherical robot is modelled using Lagrange function based on the equation of rolling motion. PD-type Fuzzy logic controller (FLC) was designed to control the position of the spherical robot where 25 rules were constructed to control the rolling motion of spherical robot. It was then integrated with the model developed in Simulink-Matlab environment. The output scaling factor (output gain) of the FLC was heuristically tuned to improve the system performance. The simulation results show that the FLC managed to eliminate the overshoot response and demonstrated better performance with 29.67% increasing in settling time to reach 0.01% of steady state error.
Fluorescence of molecules placed near a spherical particle: Rabi splitting
Directory of Open Access Journals (Sweden)
M.M. Dvoynenko
2017-12-01
Full Text Available Theoretical study of spontaneously emitted spectra of point-like source placed near spherical Ag particle was performed. It was shown that near-field electromagnetic interaction between a point-like emitter and spherical Ag particle leads to strong coupling between them at very small emitter-metal surface distances. It was shown that values of Rabi splitting are quantitatively close to that of emitter-flat substrate interaction.
Spherical agglomeration of acetylsalicylic acid
Directory of Open Access Journals (Sweden)
Polowczyk Izabela
2016-01-01
Full Text Available In this paper spherical agglomeration of acetylsalicylic acid was described. In the first step, the system of good and poor solvents as well as bridging liquid was selected. As a result of a preliminary study, ethyl alcohol, water and carbon tetrachloride were used as the good solvent, poor one, and bridging liquid, respectively. Then, the amount of acetylsalicylic acid and the ratio of the solvents as well as the volume of the bridging liquid were examined. In the last step, the agglomeration conditions, such as mixing intensity and time, were investigated. The spherical agglomerates obtained under optimum conditions could be subjected to a tableting process afterwards.
Basketballs as spherical acoustic cavities
Russell, Daniel A.
2010-06-01
The sound field resulting from striking a basketball is found to be rich in frequency content, with over 50 partials in the frequency range of 0-12 kHz. The frequencies are found to closely match theoretical expectations for standing wave patterns inside a spherical cavity. Because of the degenerate nature of the mode shapes, explicit identification of the modes is not possible without internal investigation with a microphone probe. A basketball proves to be an interesting application of a boundary value problem involving spherical coordinates.
The Quest for the Most Spherical Bubble
Obreschkow, Danail; Dorsaz, Nicolas; Kobel, Philippe; de Bosset, Aurele; Farhat, Mohamed
2013-01-01
We describe a recently realized experiment producing the most spherical cavitation bubbles today. The bubbles grow inside a liquid from a point-plasma generated by a nanosecond laser pulse. Unlike in previous studies, the laser is focussed by a parabolic mirror, resulting in a plasma of unprecedented symmetry. The ensuing bubbles are sufficiently spherical that the hydrostatic pressure gradient caused by gravity becomes the dominant source of asymmetry in the collapse and rebound of the cavitation bubbles. To avoid this natural source of asymmetry, the whole experiment is therefore performed in microgravity conditions (ESA, 53rd and 56th parabolic flight campaign). Cavitation bubbles were observed in microgravity (~0g), where their collapse and rebound remain spherical, and in normal gravity (1g) to hyper-gravity (1.8g), where a gravity-driven jet appears. Here, we describe the experimental setup and technical results, and overview the science data. A selection of high-quality shadowgraphy movies and time-res...
Spherical Pendulum, Actions, and Spin
Richter, Peter H.; Dullin, Holger R.; Waalkens, Holger; Wiersig, Jan
1996-01-01
The classical and quantum mechanics of a spherical pendulum are worked out, including the dynamics of a suspending frame with moment of inertia θ. The presence of two separatrices in the bifurcation diagram of the energy-momentum mapping has its mathematical expression in the hyperelliptic nature of
Strichartz Estimates in Spherical Coordinates
Cho, Yonggeun; Lee, Sanghyuk
2012-01-01
In this paper we study Strichartz estimates for dispersive equations which are defined by radially symmetric pseudo-differential operators, and of which initial data belongs to spaces of Sobolev type defined in spherical coordinates. We obtain the space time estimates on the best possible range including the endpoint cases.
Spherical hohlraum energetics studies on the SG series laser facility
Huo, Wenyi; Li, Zhichao; Xie, Xufei; Chen, Yaohua; Ren, Guoli; Liu, Jie; Lan, Ke
2017-10-01
The integrated experiments at the National Ignition Facility indicates that the radiation asymmetry control in the cylindrical hohlraums is an extremely challenging problem in achieving ignition by using indirect drive. Recently, Lan et al. proposed the octahedral spherical hohlraum which has the natural superiority in providing high radiation symmetry. As new and promising hohlraums, the performance of spherical hohlraum attracts much research interests. Hohlraum energetics is one of the fundamental problems in indirect drive inertial confinement study. We report on the spherical hohlraum experiments performed at the SG series laser facility. At the SGIII-prototype laser facility, we performed the first spherical energetics experiment. The radiation temperature is measured by using an array of flat-response x-ray detectors through a laser entrance hole at different angles. The radiation temperature and M-ban fraction inside the hohlraum are determined by the shock wave technique. At the SGIII laser facility, we performed the first octahedral spherical hohlraum energetics experiment. The 32 of 48 laser beams enter the hohlraum through six laser entrance holes. The radiation flux is measured by 5 FXRDs at different angles. And the radiation temperature inside the hohlraum is determined by the shock wave technique. The repetition of the experimental results is excellent.
DEFF Research Database (Denmark)
Wu, Guanglei
2012-01-01
This paper deals with the kinematic synthesis problem of a 3-RRR spherical parallel manipulator, based on the evaluation criteria of the kinematic, kinetostatic and dynamic performances of the manipulator. A multiobjective optimization problem is formulated to optimize the structural and geometric...... parameters of the spherical parallel manipulator. The proposed approach is illustrated with the optimum design of a special spherical parallel manipulator with unlimited rolling motion. The corresponding optimization problem aims to maximize the kinematic and dynamic dexterities over its regular shaped...
Energy Technology Data Exchange (ETDEWEB)
Wereszczak, Andrew A [ORNL; Johanns, Kurt E [ORNL
2007-01-01
Instrumented Hertzian indentation testing was performed on several grades of SiCs and the results and preliminary interpretations are presented. The grades included hot-pressed and sintered compositions. One of the hot-pressed grades was additionally subjected to high temperature heat treatment to produce a coarsened grain microstructure to enable the examination of exaggerated grain size on indentation response. Diamond spherical indenters were used in the testing. Indentation load, indentation depth of penetration, and acoustic activity were continually measured during each indentation test. Indentation response and postmortem analysis of induced damage (e.g., ring/cone, radial and median cracking, quasi-plasticity) are compared and qualitatively as a function of grain size. For the case of SiC-N, the instrumented spherical indentation showed that yielding initiated at an average contact stress 12-13 GPa and that there was another event (i.e., a noticeable rate increase in compliance probably associated with extensive ring and radial crack formations) occurring around an estimated average contact stress of 19 GPa.
Progress in octahedral spherical hohlraum study
Directory of Open Access Journals (Sweden)
Ke Lan
2016-01-01
Full Text Available In this paper, we give a review of our theoretical and experimental progress in octahedral spherical hohlraum study. From our theoretical study, the octahedral spherical hohlraums with 6 Laser Entrance Holes (LEHs of octahedral symmetry have robust high symmetry during the capsule implosion at hohlraum-to-capsule radius ratio larger than 3.7. In addition, the octahedral spherical hohlraums also have potential superiority on low backscattering without supplementary technology. We studied the laser arrangement and constraints of the octahedral spherical hohlraums, and gave a design on the laser arrangement for ignition octahedral hohlraums. As a result, the injection angle of laser beams of 50°–60° was proposed as the optimum candidate range for the octahedral spherical hohlraums. We proposed a novel octahedral spherical hohlraum with cylindrical LEHs and LEH shields, in order to increase the laser coupling efficiency and improve the capsule symmetry and to mitigate the influence of the wall blowoff on laser transport. We studied on the sensitivity of the octahedral spherical hohlraums to random errors and compared the sensitivity among the octahedral spherical hohlraums, the rugby hohlraums and the cylindrical hohlraums, and the results show that the octahedral spherical hohlraums are robust to these random errors while the cylindrical hohlraums are the most sensitive. Up till to now, we have carried out three experiments on the spherical hohlraum with 2 LEHs on Shenguang(SG laser facilities, including demonstration of improving laser transport by using the cylindrical LEHs in the spherical hohlraums, spherical hohlraum energetics on the SGIII prototype laser facility, and comparisons of laser plasma instabilities between the spherical hohlraums and the cylindrical hohlraums on the SGIII laser facility.
Source distance determination based on the spherical harmonics
Koutny, Adam; Jiricek, Ondrej; Thomas, Jean-Hugh; Brothanek, Marek
2017-02-01
This paper deals with the processing of signals measured by a spherical microphone array, focusing on the utilization of near-field information of such an array. The processing, based on the spherical harmonics decomposition, is performed in order to investigate the radial-dependent spherical functions and extract their argument - distance to the source. Using the low-frequency approximation of these functions, the source distance is explicitly expressed. The source distance is also determined from the original equation (using no approximation) by comparing both sides of this equation. The applicability of both methods is first presented in the noise-less data simulation, then validated with data contaminated by the additive white noise of different signal-to-noise ratios. Finally, both methods are tested for real data measured by a rigid spherical microphone array of radius 0.15 m, consisting of 36 microphones for a point source represented by a small speaker. The possibility of determination of the source distance using low-order spherical harmonics is shown.
Design and Transmission Analysis of an Asymmetrical Spherical Parallel Manipulator
DEFF Research Database (Denmark)
Wu, Guanglei; Caro, Stéphane; Wang, Jiawei
2015-01-01
analysis and optimal design of the proposed manipulator based on its kinematic analysis. The input and output transmission indices of the manipulator are defined for its optimum design based on the virtual coefficient between the transmission wrenches and twist screws. The sets of optimal parameters......This paper presents an asymmetrical spherical parallel manipulator and its transmissibility analysis. This manipulator contains a center shaft to both generate a decoupled unlimited-torsion motion and support the mobile platform for high positioning accuracy. This work addresses the transmission...... are identified and the distribution of the transmission index is visualized. Moreover, a comparative study regarding to the performances with the symmetrical spherical parallel manipulators is conducted and the comparison shows the advantages of the proposed manipulator with respect to its spherical parallel...
Plane-wave decomposition by spherical-convolution microphone array
Rafaely, Boaz; Park, Munhum
2004-05-01
Reverberant sound fields are widely studied, as they have a significant influence on the acoustic performance of enclosures in a variety of applications. For example, the intelligibility of speech in lecture rooms, the quality of music in auditoria, the noise level in offices, and the production of 3D sound in living rooms are all affected by the enclosed sound field. These sound fields are typically studied through frequency response measurements or statistical measures such as reverberation time, which do not provide detailed spatial information. The aim of the work presented in this seminar is the detailed analysis of reverberant sound fields. A measurement and analysis system based on acoustic theory and signal processing, designed around a spherical microphone array, is presented. Detailed analysis is achieved by decomposition of the sound field into waves, using spherical Fourier transform and spherical convolution. The presentation will include theoretical review, simulation studies, and initial experimental results.
Spherical sila- and germa-homoaromaticity.
Chen, Zhongfang; Hirsch, Andreas; Nagase, Shigeru; Thiel, Walter; Schleyer, Paul von Ragué
2003-12-17
Guided by the 2(N + 1)2 electron-counting rule for spherical aromatic molecules, we have designed various spherical sila- and germa-homoaromatic systems rich in group 14 elements. Their aromaticity is revealed by density-functional computations of their structures and the nucleus-independent chemical shifts (NICS). Besides the formerly used endohedral inclusion strategy, spherical homoaromaticity is another way to stabilize silicon and germanium clusters.
Measuring Spherical Harmonic Coefficients on a Sphere
Energy Technology Data Exchange (ETDEWEB)
Pollaine, S; Haan, S W
2003-05-16
The eigenfunctions of Rayleigh-Taylor modes on a spherical capsule are the spherical harmonics Y{sub l,m} These can be measured by measuring the surface perturbations along great circles and fitting them to the first few modes by a procedure described in this article. For higher mode numbers, it is more convenient to average the Fourier power spectra along the great circles, and then transform them to spherical harmonic modes by an algorithm derived here.
Spherical Collapse in Chameleon Models
Brax, Ph; Steer, D A
2010-01-01
We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse depends on the initial comoving size of the inhomogeneity.
Towards Non-spherical Radio Models
Ribeiro, V. A. R. M.; Steffen, W.; Chomiuk, L.; Koning, N.; O'Brien, T. J.; Woudt, P. A.
2014-12-01
Radio observations of novae in outburst are of particular interest due to the physical parameters that may be retrieved from fitting the radio light curves. Most models that have fitted previous data assumed spherical symmetry however, it is becoming more and more clear that this is not the case. We explore morpho-kinematical techniques to retrieve the free-free radio light curves of non-spherical models and explore the effects of a non-spherical outburst on the physical parameters. In particular, we find that we may have been over estimating the ejected masses in the outburst of non-spherical novae.
The geometry of spherical space form groups
Gilkey, Peter B
1989-01-01
In this volume, the geometry of spherical space form groups is studied using the eta invariant. The author reviews the analytical properties of the eta invariant of Atiyah-Patodi-Singer and describes how the eta invariant gives rise to torsion invariants in both K-theory and equivariant bordism. The eta invariant is used to compute the K-theory of spherical space forms, and to study the equivariant unitary bordism of spherical space forms and the Pin c and Spin c equivariant bordism groups for spherical space form groups. This leads to a complete structure theorem for these bordism and K-theor
Energy Technology Data Exchange (ETDEWEB)
M. Ono; M. Peng; C. Kessel; C. Neumeyer; J. Schmidt; J. Chrzanowski; D. Darrow; L. Grisham; P. Heitzenroeder; T. Jarboe; C. Jun; S. Kaye; J. Menard; R. Raman; T. Stevenson; M. Viola; J. Wilson; R. Woolley; I. Zatz
2003-10-27
A spherical torus (ST) fusion energy development path which is complementary to proposed tokamak burning plasma experiments such as ITER is described. The ST strategy focuses on a compact Component Test Facility (CTF) and higher performance advanced regimes leading to more attractive DEMO and Power Plant scale reactors. To provide the physics basis for the CTF an intermediate step needs to be taken which we refer to as the ''Next Step Spherical Torus'' (NSST) device and examine in some detail herein. NSST is a ''performance extension'' (PE) stage ST with the plasma current of 5-10 MA, R = 1.5 m, and Beta(sub)T less than or equal to 2.7 T with flexible physics capability. The mission of NSST is to: (1) provide a sufficient physics basis for the design of CTF, (2) explore advanced operating scenarios with high bootstrap current fraction/high performance regimes, which can then be utilized by CTF, DEMO, and Power Plants, and (3) contribute to the general plasma/fusion science of high beta toroidal plasmas. The NSST facility is designed to utilize the Tokamak Fusion Test Reactor (or similar) site to minimize the cost and time required for the design and construction.
How Spherical Is a Cube (Gravitationally)?
Sanny, Jeff; Smith, David
2015-01-01
An important concept that is presented in the discussion of Newton's law of universal gravitation is that the gravitational effect external to a spherically symmetric mass distribution is the same as if all of the mass of the distribution were concentrated at the center. By integrating over ring elements of a spherical shell, we show that the…
Sharp Strichartz estimates in spherical coordinates
Schippa, Robert
2016-01-01
We prove almost Strichartz estimates found after adding regularity in the spherical coordinates for Schr\\"odinger-like equations. The estimates are sharp up to endpoints. The proof relies on estimates involving spherical averages. Sharpness is discussed making use of a modified Knapp-type example.
Statistical mechanics of thin spherical shells
Kosmrlj, Andrej
2016-01-01
We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes and the local out-of-plane undulations, leads to novel phenomena. In spherical shells thermal fluctuations produce a radius-dependent negative effective surface tension, equivalent to applying an inward external pressure. By adapting renormalization group calculations to allow for a spherical background curvature, we show that while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated "pressure". Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows non-linearly with increasing outward pressure, with the same universal power law expone...
Scaling of a fast spherical discharge
Antsiferov, P. S.; Dorokhin, L. A.
2017-02-01
The influence of the discharge cavity dimensions on the properties of the spherical plasma formed in a fast discharge was studied experimentally. The passage of a current pulse with an amplitude of 30-40 kA and a rise rate of 1012 A/s (a fast discharge) through a spherical ceramic (Al2O3) cavity with an inner diameter of 11 mm filled with argon at a pressure of 80 Pa results in the formation of a 1- to 2-mm-diameter spherical plasma with an electron temperature of several tens of electronvolts and a density of 1018-1019 cm-3. It is shown that an increase in the inner diameter of the discharge cavity from 11 to 21 mm leads to the fourfold increase in the formation time of the spherical plasma and a decrease in the average ion charge. A decrease in the cavity diameter to 7 mm makes the spherical plasma unstable.
CMB Anisotropy of Spherical Spaces
Aurich, Ralf; Steiner, Frank
2005-01-01
The first-year WMAP data taken at their face value hint that the Universe might be slightly positively curved and therefore necessarily finite, since all spherical (Clifford-Klein) space forms M^3 = S^3/Gamma, given by the quotient of S^3 by a group Gamma of covering transformations, possess this property. We examine the anisotropy of the cosmic microwave background (CMB) for all typical groups Gamma corresponding to homogeneous universes. The CMB angular power spectrum and the temperature correlation function are computed for the homogeneous spaces as a function of the total energy density parameter Omega_tot in the large range [1.01, 1.20] and are compared with the WMAP data. We find that out of the infinitely many homogeneous spaces only the three corresponding to the binary dihedral group T*, the binary octahedral group O*, and the binary icosahedral group I* are in agreement with the WMAP observations. Furthermore, if Omega_tot is restricted to the interval [1.00, 1.04], the space described by T* is excl...
Fast calculation of spherical computer generated hologram using spherical wave spectrum method.
Jackin, Boaz Jessie; Yatagai, Toyohiko
2013-01-14
A fast calculation method for computer generation of spherical holograms in proposed. This method is based on wave propagation defined in spectral domain and in spherical coordinates. The spherical wave spectrum and transfer function were derived from boundary value solutions to the scalar wave equation. It is a spectral propagation formula analogous to angular spectrum formula in cartesian coordinates. A numerical method to evaluate the derived formula is suggested, which uses only N(logN)2 operations for calculations on N sampling points. Simulation results are presented to verify the correctness of the proposed method. A spherical hologram for a spherical object was generated and reconstructed successfully using the proposed method.
Acoustic source localization in mixed field using spherical microphone arrays
Huang, Qinghua; Wang, Tong
2014-12-01
Spherical microphone arrays have been used for source localization in three-dimensional space recently. In this paper, a two-stage algorithm is developed to localize mixed far-field and near-field acoustic sources in free-field environment. In the first stage, an array signal model is constructed in the spherical harmonics domain. The recurrent relation of spherical harmonics is independent of far-field and near-field mode strengths. Therefore, it is used to develop spherical estimating signal parameter via rotational invariance technique (ESPRIT)-like approach to estimate directions of arrival (DOAs) for both far-field and near-field sources. In the second stage, based on the estimated DOAs, simple one-dimensional MUSIC spectrum is exploited to distinguish far-field and near-field sources and estimate the ranges of near-field sources. The proposed algorithm can avoid multidimensional search and parameter pairing. Simulation results demonstrate the good performance for localizing far-field sources, or near-field ones, or mixed field sources.
Numerical Simulations of Thermal Convection in Rapidly Rotating Spherical Shell
Energy Technology Data Exchange (ETDEWEB)
Nenkov, Constantine; Peltier, Richard, E-mail: nenkov@atmosp.physics.utoronto.ca, E-mail: peltier@atmosp.physics.utoronto.ca [Department of Physics, University of Toronto Toronto, Ontario, M5S 1A7 (Canada)
2010-11-01
We present a novel numerical model used to simulate convection in the atmospheres of the Gas Giant planets Jupiter and Saturn. Nonlinear, three-dimensional, time-dependant solutions of the anelastic hydrodynamic equations are presented for a stratified, rotating spherical fluid shell heated from below. This new model is specified in terms of a grid-point based methodology which employs a hierarchy of tessellations of the regular icosahedron onto the sphere through the process of recurrent dyadic refinements of the spherical surface. We describe discretizations of the governing equations in which all calculations are performed in Cartesian coordinates in the local neighborhoods of the almost uniform icosahedral grid, a methodology which avoids the potential mathematical and numerical difficulties associated with the pole problem in spherical geometry. Using this methodology we have built our model in primitive equations formulation, whereas the three-dimensional vector velocity field and temperature are directly advanced in time. We show results of thermal convection in rapidly rotating spherical shell which leads to the formation of well pronounced prograde zonal jets at the equator, results which previous experiments with two-dimensional models in the limit of freely evolving turbulence were not able to achieve.
Spherical aberration in contact lens wear.
Lindskoog Pettersson, A; Jarkö, C; Alvin, A; Unsbo, P; Brautaset, R
2008-08-01
The aim of the present studies was to investigate the effect on spherical aberration of different non custom-made contact lenses, both with and without aberration control. A wavefront analyser (Zywave, Bausch & Lomb) was used to measure the aberrations in each subject's right eye uncorrected and with the different contact lenses. The first study evaluated residual spherical aberration with a standard lens (Focus Dailies Disposable, Ciba Vision) and with an aberration controlled contact lens (ACCL) (Definition AC, Optical Connection Inc.). The second study evaluated the residual spherical aberrations with a monthly disposable silicone hydrogel lens with aberration reduction (PureVision, Bausch & Lomb). Uncorrected spherical aberration was positive for all pupil sizes in both studies. In the first study, residual spherical aberration was close to zero with the standard lens for all pupil sizes whereas the ACCL over-corrected spherical aberration. The results of the second study showed that the monthly disposable lens also over-corrected the aberration making it negative. The changes in aberration were statistically significant (plenses. Since the amount of aberration varies individually we suggest that aberrations should be measured with lenses on the eye if the aim is to change spherical aberration in a certain direction.
Novel Electrically Small Spherical Electric Dipole Antenna
DEFF Research Database (Denmark)
Kim, Oleksiy S.
2010-01-01
This paper introduces a novel electrically small spherical meander antenna. Horizontal sections of the meander are composed of wire loops, radii of which are chosen so that the whole structure is conformal to a sphere of radius a. To form the meander the loops are connected by wires at a meridian...... plane. The antenna operates as an electric dipole, i.e. it radiates the TM10 spherical mode. The antenna is self-resonant and can be matched to a wide range of input feed lines without an external matching network. In this paper, a spherical meander antenna of the size ka = 0.27 and the input impedance...
De Brabander, J; Chateau, N; Bouchard, F; Guidollet, S
1998-01-01
In optical systems, it is usual to compensate for longitudinal spherical aberration. In order to increase image quality, lens surfaces can be made aspheric to bring all object light rays into focus at the image plane. Theoretically, soft contact lenses with high power and spherical surfaces show significant amounts of spherical aberration. The use of spherical aberration-free soft contact lenses could therefore improve retinal image quality in the case of high ametropia. However, because of ocular aberration, accommodation effects, pupil dynamics, contact lens flexure, and positioning, the computation of the spherical aberration induced when a contact lens is placed on the eye is complicated. In this study, the spatial contrast sensitivity (CS) of 61 high ametropes wearing soft contact lenses with, and without, in-air spherical aberration compensation is measured. A slightly better overall performance was found with the standard lenses. There was no significant influence by the type of ametropia, age, and gender. If individual results are considered, clinically significant differences between the two lens groups are observed in approximately 30% of the cases. It seems that correcting in-air soft contact lens spherical aberration systematically is of no clinical interest. However, selective manipulation of spherical aberration could, in high power soft contact lenses, significantly improve CS in individuals.
de Boer, T; Mol, R; de Zeeuw, RA; de Jong, GJ; Sherrington, DC; Cormack, PAG; Ensing, K
Spherical molecularly imprinted polymer particles obtained via precipitation polymerization, were introduced as a pseudostationary phase in capillary electrophoresis (CE) to study molecular recognition. Analyses were performed via a partial filling technique using (+)-ephedrine-imprinted
Spherical nuclei near the stability line and far from it
Energy Technology Data Exchange (ETDEWEB)
Isakov, V. I., E-mail: visakov@thd.pnpi.spb.ru [National Research Centre Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation)
2016-11-15
Results of microscopic and semiphenomenological calculations of features of spherical nuclei lying near the stability line and far from it are presented. The reason why the nuclei being considered are spherical is that they are magic at least in one nucleon sort. The present analysis is performed for Z = 50 and Z = 28 isotopes and for N = 50 isotones, the region extending from neutron-rich to neutron-deficient nuclei being covered. The isotopic dependence of the mean-field spin–orbit nuclear potential is revealed; systematics of energies of levels and probabilities for electromagnetic transitions is examined; and root-mean-square radii of nuclei are calculated, along with the proton- and neutron-density distributions in them. Nuclei in the vicinity of closed shells are considered in detail, and the axial-vector weak coupling constant in nuclei is evaluated. A systematic comparison of the results of calculations with experimental data is performed.
Holographic Refraction and the Measurement of Spherical Ametropia.
Nguyen, Nicholas Hoai Nam
2016-10-01
To evaluate the performance of a holographic logMAR chart for the subjective spherical refraction of the human eye. Bland-Altman analysis was used to assess the level of agreement between subjective spherical refraction using the holographic logMAR chart and conventional autorefraction and subjective spherical refraction. The 95% limits of agreement (LoA) were calculated between holographic refraction and the two standard methods (subjective and autorefraction). Holographic refraction has a lower mean spherical refraction when compared to conventional refraction (LoA 0.11 ± 0.65 D) and when compared to autorefraction (LoA 0.36 ± 0.77 D). After correcting for systemic bias, this is comparable between autorefraction and conventional subjective refraction (LoA 0.45 ± 0.79 D). After correcting for differences in vergence distance and chromatic aberration between holographic and conventional refraction, approximately 65% (group 1) of measurements between holography and conventional subjective refraction were similar (MD = 0.13 D, SD = 0.00 D). The remaining 35% (group 2) had a mean difference of 0.45 D (SD = 0.12 D) between the two subjective methods. Descriptive statistics showed group 2's mean age (21 years, SD = 13 years) was considerably lower than group 1's mean age (41 years, SD = 17), suggesting accommodation may have a role in the greater mean difference of group 2. Overall, holographic refraction has good agreement with conventional refraction and is a viable alternative for spherical subjective refraction. A larger bias between holographic and conventional refraction was found in younger subjects than older subjects, suggesting an association between accommodation and myopic over-correction during holographic refraction.
Spherically symmetric inhomogeneous dust collapse in higher ...
Indian Academy of Sciences (India)
We consider a collapsing spherically symmetric inhomogeneous dust cloud in higher dimensional space-time. We show that the central singularity of collapse can be a strong curvature or a weak curvature naked singularity depending on the initial density distribution.
PREPARATION OF SPHERICAL URANIUM DIOXIDE PARTICLES
Levey, R.P. Jr.; Smith, A.E.
1963-04-30
This patent relates to the preparation of high-density, spherical UO/sub 2/ particles 80 to 150 microns in diameter. Sinterable UO/sub 2/ powder is wetted with 3 to 5 weight per cent water and tumbled for at least 48 hours. The resulting spherical particles are then sintered. The sintered particles are useful in dispersion-type fuel elements for nuclear reactors. (AEC)
3D Printing Electrically Small Spherical Antennas
DEFF Research Database (Denmark)
Kim, Oleksiy S.
2013-01-01
3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....
Spherical cows in dark matter indirect detection
Bernal, Nicolás; Necib, Lina; Slatyer, Tracy R.
2016-12-01
Dark matter (DM) halos have long been known to be triaxial, but in studies of possible annihilation and decay signals they are often treated as approximately spherical. In this work, we examine the asymmetry of potential indirect detection signals of DM annihilation and decay, exploiting the large statistics of the hydrodynamic simulation Illustris. We carefully investigate the effects of the baryons on the sphericity of annihilation and decay signals for both the case where the observer is at 8.5 kpc from the center of the halo (exemplified in the case of Milky Way-like halos), and for an observer situated well outside the halo. In the case of Galactic signals, we find that both annihilation and decay signals are expected to be quite symmetric, with axis ratios very different from 1 occurring rarely. In the case of extragalactic signals, while decay signals are still preferentially spherical, the axis ratio for annihilation signals has a much flatter distribution, with elongated profiles appearing frequently. Many of these elongated profiles are due to large subhalos and/or recent mergers. Comparing to gamma-ray emission from the Milky Way and X-ray maps of clusters, we find that the gamma-ray background appears less spherical/more elongated than the expected DM signal from the large majority of halos, and the Galactic gamma ray excess appears very spherical, while the X-ray data would be difficult to distinguish from a DM signal by elongation/sphericity measurements alone.
Natural melting within a spherical shell
Bahrami, Parviz A.
1990-01-01
Fundamental heat transfer experiments were performed on the melting of a phase change medium in a spherical shell. Free expansion of the medium into a void space within the sphere was permitted. A step function temperature jump on the outer shell wall was imposed and the timewise evolution of the melting process and the position of the solid-liquid interface was photographically recorded. Numerical integration of the interface position data yielded information about the melted mass and the energy of melting. It was found that the rate of melting and the heat transfer were significantly affected by the movement of the solid medium to the base of the sphere due to gravity. The energy transfer associated with melting was substantially higher than that predicted by the conduction model. Furthermore, the radio of the measured values of sensible energy in the liquid melt to the energy of melting were nearly proportional to the Stefan number. The experimental results are in agreement with a theory set forth in an earlier paper.
Morphological and electrochemical studies of spherical boron doped diamond electrodes
Energy Technology Data Exchange (ETDEWEB)
Mendes de Barros, R.C. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Ferreira, N.G. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Azevedo, A.F. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Corat, E.J. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Sumodjo, P.T.A. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Serrano, S.H.P. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil)]. E-mail: shps@iq.usp.br
2006-08-14
Morphological and electrochemical characteristics of boron doped diamond electrode in new geometric shape are presented. The main purpose of this study is a comparison among voltammetric behavior of planar glassy carbon electrode (GCE), planar boron doped diamond electrode (PDDE) and spherical boron doped diamond electrode (SDDE), obtained from similar experimental parameters. SDDE was obtained by the growth of boron doped film on textured molybdenum tip. This electrode does not present microelectrode characteristics. However, its voltammetric peak current, determined at low scan rates, is largest associated to the smallest {delta}E {sub p} values for ferrocyanide system when compared with PDDE or GCE. In addition, the capacitance is about 200 times smaller than that for GCE. These results show that the analytical performance of boron doped diamond electrodes can be implemented just by the change of sensor geometry, from plane to spherical shape.
Spherical gyroscopic moment stabilizer for attitude control of microsatellites
Keshtkar, Sajjad; Moreno, Jaime A.; Kojima, Hirohisa; Uchiyama, Kenji; Nohmi, Masahiro; Takaya, Keisuke
2018-02-01
This paper presents a new and improved concept of recently proposed two-degrees of freedom spherical stabilizer for triaxial orientation of microsatellites. The analytical analysis of the advantages of the proposed mechanism over the existing inertial attitude control devices are introduced. The extended equations of motion of the stabilizing satellite including the spherical gyroscope, for control law design and numerical simulations, are studied in detail. A new control algorithm based on continuous high-order sliding mode algorithms, for managing the torque produced by the stabilizer and therefore the attitude control of the satellite in the presence of perturbations/uncertainties, is presented. Some numerical simulations are carried out to prove the performance of the proposed mechanism and control laws.
Spherical convolutions and their application in molecular modelling
DEFF Research Database (Denmark)
Boomsma, Wouter; Frellsen, Jes
2017-01-01
Convolutional neural networks are increasingly used outside the domain of image analysis, in particular in various areas of the natural sciences concerned with spatial data. Such networks often work out-of-the box, and in some cases entire model architectures from image analysis can be carried over...... of spherical convolutions in the context of molecular modelling, by considering structural environments within proteins. We show that the models are capable of learning non-trivial functions in these molecular environments, and that our spherical convolutions generally outperform standard 3D convolutions...... in this setting. In particular, despite the lack of any domain specific feature-engineering, we demonstrate performance comparable to state-of-the-art methods in the field, which build on decades of domain-specific knowledge....
Directory of Open Access Journals (Sweden)
Guanglei Wu
2012-07-01
Full Text Available This paper deals with the kinematic synthesis problem of a 3-underlineRRR spherical parallel manipulator, based on the evaluation criteria of the kinematic, kinetostatic and dynamic performances of the manipulator. A multiobjective optimization problem is formulated to optimize the structural and geometric parameters of the spherical parallel manipulator. The proposed approach is illustrated with the optimum design of a special spherical parallel manipulator with unlimited rolling motion. The corresponding optimization problem aims to maximize the kinematic and dynamic dexterities over its regular shaped workspace.
Scaling of a fast spherical discharge
Energy Technology Data Exchange (ETDEWEB)
Antsiferov, P. S., E-mail: Ants@isan.troitsk.ru; Dorokhin, L. A. [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation)
2017-02-15
The influence of the discharge cavity dimensions on the properties of the spherical plasma formed in a fast discharge was studied experimentally. The passage of a current pulse with an amplitude of 30–40 kA and a rise rate of ~10{sup 12} A/s (a fast discharge) through a spherical ceramic (Al{sub 2}O{sub 3}) cavity with an inner diameter of 11 mm filled with argon at a pressure of 80 Pa results in the formation of a 1- to 2-mm-diameter spherical plasma with an electron temperature of several tens of electronvolts and a density of 10{sup 18}–10{sup 19} cm{sup –3}. It is shown that an increase in the inner diameter of the discharge cavity from 11 to 21 mm leads to the fourfold increase in the formation time of the spherical plasma and a decrease in the average ion charge. A decrease in the cavity diameter to 7 mm makes the spherical plasma unstable.
Spherical angular spectrum and the fractional order Fourier transform.
Pellat-Finet, Pierre; Durand, Pierre-Emmanuel; Fogret, Eric
2006-12-01
The notion of a spherical angular spectrum leads to the decomposition of the field amplitude on a spherical emitter into a sum of spherical waves that converge onto the Fourier sphere of the emitter. Unlike the usual angular spectrum, the spherical angular spectrum is propagated as the field amplitude, in a way that can be expressed by a fractional order Fourier transform.
Directory of Open Access Journals (Sweden)
Fang Wu
2017-05-01
Full Text Available Due to their efficient locomotion and natural tolerance to hazardous environments, spherical robots have wide applications in security surveillance, exploration of unknown territory and emergency response. Numerous studies have been conducted on the driving mechanism, motion planning and trajectory tracking methods of spherical robots, yet very limited studies have been conducted regarding the obstacle avoidance capability of spherical robots. Most of the existing spherical robots rely on the “hit and run” technique, which has been argued to be a reasonable strategy because spherical robots have an inherent ability to recover from collisions. Without protruding components, they will not become stuck and can simply roll back after running into bstacles. However, for small scale spherical robots that contain sensitive surveillance sensors and cannot afford to utilize heavy protective shells, the absence of obstacle avoidance solutions would leave the robot at the mercy of potentially dangerous obstacles. In this paper, a compact magnetic field-based obstacle detection and avoidance system has been developed for miniature spherical robots. It utilizes a passive magnetic field so that the system is both compact and power efficient. The proposed system can detect not only the presence, but also the approaching direction of a ferromagnetic obstacle, therefore, an intelligent avoidance behavior can be generated by adapting the trajectory tracking method with the detection information. Design optimization is conducted to enhance the obstacle detection performance and detailed avoidance strategies are devised. Experimental results are also presented for validation purposes.
Quantum confinement induced shift in energy band edges and band gap of a spherical quantum dot
Borah, P.; Siboh, D.; Kalita, P. K.; Sarma, J. K.; Nath, N. M.
2018-02-01
We have proposed and validated an ansatz as effective potential for confining electron/hole within a spherical quantum dot in order to understand quantum confinement and its consequences associated with energy states and band gap of Spherical Quantum Dots. Within effective mass approximation formalism, we have considered an ansatz incorporating a conjoined harmonic oscillator and Coulomb interaction as the effective potential for confining an electron or a hole within a spherical quantum dot and by employing appropriate boundary conditions, we have calculated the shifts in energy of minimum of conduction band (CBM) and maximum of valence band (VBM) with respect to size of spherical quantum dots. We have also determined the quantum confinement induced shift in band gap energy of spherical quantum dots. In order to verify our theoretical predictions as well as to validate our ansatz, we have performed phenomenological analysis in comparison with available experimental results for quantum dots made of CdSe and observe a very good agreement in this regard. Our experimentally consistent theoretical results also help in mapping the probability density of electron and hole inside a spherical quantum dot. The consistency of our results with available experimental data signifies the capability as well as applicability of the ansatz for the effective confining potential to have reasonable information in the study of real nano-structured spherical systems.
Directory of Open Access Journals (Sweden)
Isao Tsutsui
Full Text Available The unique beauty of spherical aggregation forming algae has attracted much attention from both the scientific and lay communities. Several aegagropilous seaweeds have been identified to date, including the plants of genus Cladophora and Chaetomorpha. However, this phenomenon remains poorly understood. In July 2013, a mass occurrence of spherical Cladophora aggregations was observed in a salt field reservoir in Central Thailand. The aims of the present study were to describe the habitat of the spherical aggregations and confirm the species. We performed a field survey, internal and external morphological observations, pyrenoid ultrastructure observations, and molecular sequence analysis. Floating spherical Cladophora aggregations (1-8 cm in diameter were observed in an area ~560 m2, on the downwind side of the reservoir where there was water movement. Individual filaments in the aggregations were entangled in each other; consequently, branches growing in different directions were observed within a clump. We suggest that water movement and morphological characteristics promote the formation of spherical aggregations in this species. The molecular sequencing results revealed that the study species was highly homologous to both C. socialis and C. coelothrix. However, the diameter of the apical cells in the study species was less than that of C. coelothrix. The pyrenoid ultrastructure was more consistent with that of C. socialis. We conclude that the study species is C. socialis. This first record of spherical aggregations in this species advances our understanding of these formations. However, further detailed physical measurements are required to fully elucidate the mechanism behind these spherical formations.
Wu, Fang; Vibhute, Akash; Soh, Gim Song; Wood, Kristin L; Foong, Shaohui
2017-05-28
Due to their efficient locomotion and natural tolerance to hazardous environments, spherical robots have wide applications in security surveillance, exploration of unknown territory and emergency response. Numerous studies have been conducted on the driving mechanism, motion planning and trajectory tracking methods of spherical robots, yet very limited studies have been conducted regarding the obstacle avoidance capability of spherical robots. Most of the existing spherical robots rely on the "hit and run" technique, which has been argued to be a reasonable strategy because spherical robots have an inherent ability to recover from collisions. Without protruding components, they will not become stuck and can simply roll back after running into bstacles. However, for small scale spherical robots that contain sensitive surveillance sensors and cannot afford to utilize heavy protective shells, the absence of obstacle avoidance solutions would leave the robot at the mercy of potentially dangerous obstacles. In this paper, a compact magnetic field-based obstacle detection and avoidance system has been developed for miniature spherical robots. It utilizes a passive magnetic field so that the system is both compact and power efficient. The proposed system can detect not only the presence, but also the approaching direction of a ferromagnetic obstacle, therefore, an intelligent avoidance behavior can be generated by adapting the trajectory tracking method with the detection information. Design optimization is conducted to enhance the obstacle detection performance and detailed avoidance strategies are devised. Experimental results are also presented for validation purposes.
Tsutsui, Isao; Miyoshi, Tatsuo; Sukchai, Halethichanok; Pinphoo, Piyarat; Aue-Umneoy, Dusit; Meeanan, Chonlada; Songphatkaew, Jaruwan; Klomkling, Sirimas; Yamaguchi, Iori; Ganmanee, Monthon; Sudo, Hiroyuki; Hamano, Kaoru
2015-01-01
The unique beauty of spherical aggregation forming algae has attracted much attention from both the scientific and lay communities. Several aegagropilous seaweeds have been identified to date, including the plants of genus Cladophora and Chaetomorpha. However, this phenomenon remains poorly understood. In July 2013, a mass occurrence of spherical Cladophora aggregations was observed in a salt field reservoir in Central Thailand. The aims of the present study were to describe the habitat of the spherical aggregations and confirm the species. We performed a field survey, internal and external morphological observations, pyrenoid ultrastructure observations, and molecular sequence analysis. Floating spherical Cladophora aggregations (1-8 cm in diameter) were observed in an area ~560 m2, on the downwind side of the reservoir where there was water movement. Individual filaments in the aggregations were entangled in each other; consequently, branches growing in different directions were observed within a clump. We suggest that water movement and morphological characteristics promote the formation of spherical aggregations in this species. The molecular sequencing results revealed that the study species was highly homologous to both C. socialis and C. coelothrix. However, the diameter of the apical cells in the study species was less than that of C. coelothrix. The pyrenoid ultrastructure was more consistent with that of C. socialis. We conclude that the study species is C. socialis. This first record of spherical aggregations in this species advances our understanding of these formations. However, further detailed physical measurements are required to fully elucidate the mechanism behind these spherical formations.
Background reduction of a spherical gaseous detector
Energy Technology Data Exchange (ETDEWEB)
Fard, Ali Dastgheibi [Laboratoire Souterrain de Modane, France ali.dastgheibi-fard@lsm.in2p3.fr (France); Loaiza, Pia; Piquemal, Fabrice [Laboratoire Souterrain de Modane (France); Giomataris, Ioannis; Gray, David; Gros, Michel; Magnier, Patrick; Navick, Xavier-François [CEA Saclay - IRFU/SEDI - 91191 Gif sur Yvette (France); Savvidis, Ilias [Aristotle University of Thessaloniki (Greece)
2015-08-17
The Spherical gaseous detector (or Spherical Proportional Counter, SPC) is a novel type of detector. It consists of a large spherical volume filled with gas, using a single detection readout channel. The detector allows 100 % detection efficiency. SEDINE is a low background version of SPC installed at the Laboratoire Souterrain de Modane (LSM) underground laboratory (4800 m.w.e) looking for rare events at very low energy threshold, below 100 eV. This work presents the details on the chemical cleaning to reduce internal {sup 210}Pb surface contamination on the copper vessel and the external radon reduction achieved via circulation of pure air inside anti-radon tent. It will be also show the radon measurement of pure gases (Ar, N, Ne, etc) which are used in the underground laboratory for the low background experiments.
Overview of spherical tokamak research in Japan
Takase, Y.; Ejiri, A.; Fujita, T.; Fukumoto, N.; Fukuyama, A.; Hanada, K.; Idei, H.; Nagata, M.; Ono, Y.; Tanaka, H.; Uchida, M.; Horiuchi, R.; Kamada, Y.; Kasahara, H.; Masuzaki, S.; Nagayama, Y.; Oishi, T.; Saito, K.; Takeiri, Y.; Tsuji-Iio, S.
2017-10-01
Nationally coordinated research on spherical tokamak is being conducted in Japan. Recent achievements include: (i) plasma current start-up and ramp-up without the use of the central solenoid by RF waves (in electron cyclotron and lower hybrid frequency ranges), (ii) plasma current start-up by AC Ohmic operation and by coaxial helicity injection, (iii) development of an advanced fuelling technique by compact toroid injection, (iv) ultra-long-pulse operation and particle control using a high temperature metal wall, (v) access to the ultra-high-β regime by high-power reconnection heating, and (vi) improvement of spherical tokamak plasma stability by externally applied helical field.
POLARON IN CYLINDRICAL AND SPHERICAL QUANTUM DOTS
Directory of Open Access Journals (Sweden)
L.C.Fai
2004-01-01
Full Text Available Polaron states in cylindrical and spherical quantum dots with parabolic confinement potentials are investigated applying the Feynman variational principle. It is observed that for both kinds of quantum dots the polaron energy and mass increase with the increase of Frohlich electron-phonon coupling constant and confinement frequency. In the case of a spherical quantum dot, the polaron energy for the strong coupling is found to be greater than that of a cylindrical quantum dot. The energy and mass are found to be monotonically increasing functions of the coupling constant and the confinement frequency.
Avni, Amir; Ahrens, Jens; Geier, Matthias; Spors, Sascha; Wierstorf, Hagen; Rafaely, Boaz
2013-05-01
The area of sound field synthesis has significantly advanced in the past decade, facilitated by the development of high-quality sound-field capturing and re-synthesis systems. Spherical microphone arrays are among the most recently developed systems for sound field capturing, enabling processing and analysis of three-dimensional sound fields in the spherical harmonics domain. In spite of these developments, a clear relation between sound fields recorded by spherical microphone arrays and their perception with a re-synthesis system has not yet been established, although some relation to scalar measures of spatial perception was recently presented. This paper presents an experimental study of spatial sound perception with the use of a spherical microphone array for sound recording and headphone-based binaural sound synthesis. Sound field analysis and processing is performed in the spherical harmonics domain with the use of head-related transfer functions and simulated enclosed sound fields. The effect of several factors, such as spherical harmonics order, frequency bandwidth, and spatial sampling, are investigated by applying the repertory grid technique to the results of the experiment, forming a clearer relation between sound-field capture with a spherical microphone array and its perception using binaural synthesis regarding space, frequency, and additional artifacts. The experimental study clearly shows that a source will be perceived more spatially sharp and more externalized when represented by a binaural stimuli reconstructed with a higher spherical harmonics order. This effect is apparent from low spherical harmonics orders. Spatial aliasing, as a result of sound field capturing with a finite number of microphones, introduces unpleasant artifacts which increased with the degree of aliasing error.
Spherical Horn Array for Wideband Propagation Measurements
DEFF Research Database (Denmark)
Franek, Ondrej; Pedersen, Gert Frølund
2011-01-01
A spherical array of horn antennas designed to obtain directional channel information and characteristics is introduced. A dual-polarized quad-ridged horn antenna with open flared boundaries and coaxial feeding for the frequency band 600 MHz–6 GHz is used as the element of the array. Matching...... for a wideband multipath propagation studies....
Exact solutions of the spherically symmetric multidimensional ...
African Journals Online (AJOL)
The complete orthonormalised energy eigenfunctions and the energy eigenvalues of the spherically symmetric isotropic harmonic oscillator in N dimensions, are obtained through the methods of separation of variables. Also, the degeneracy of the energy levels are examined. KEY WORDS: - Schrödinger Equation, Isotropic ...
Spherical projections and liftings in geometric tomography
DEFF Research Database (Denmark)
Goodey, Paul; Kiderlen, Markus; Weil, Wolfgang
2011-01-01
We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies and to rad...
Noncommutative spherically symmetric spacetimes at semiclassical order
Fritz, Christopher; Majid, Shahn
2017-07-01
Working within the recent formalism of Poisson-Riemannian geometry, we completely solve the case of generic spherically symmetric metric and spherically symmetric Poisson-bracket to find a unique answer for the quantum differential calculus, quantum metric and quantum Levi-Civita connection at semiclassical order O(λ) . Here λ is the deformation parameter, plausibly the Planck scale. We find that r, t, d r, d t are all forced to be central, i.e. undeformed at order λ, while for each value of r, t we are forced to have a fuzzy sphere of radius r with a unique differential calculus which is necessarily nonassociative at order λ2 . We give the spherically symmetric quantisation of the FLRW cosmology in detail and also recover a previous analysis for the Schwarzschild black hole, now showing that the quantum Ricci tensor for the latter vanishes at order λ. The quantum Laplace-Beltrami operator for spherically symmetric models turns out to be undeformed at order λ while more generally in Poisson-Riemannian geometry we show that it deforms to □f+λ2ωαβ(Ricγα-Sγα)(∇^βdf)γ+O(λ2) in terms of the classical Levi-Civita connection \\widehat\
Spherical Tolman-Bondi Models in Cosmology
Bochicchio, I.; Laserra, E.
2010-09-01
Spherical symmetry is considered and exact solutions of Tolman-Bondi equations are studied taking advantage from Ricci principal curvature depending on the radial coordinate. Moreover an expansion of the exact solutions in fractional Puiseux series in considered to compare Euclidean and not Euclidean cases.
Determining a Sonographic Nomogram for Gallbladder Spherical ...
African Journals Online (AJOL)
Kurtosis and skewness values (0.991 and 0.152 respectively) showed even distribution . This study establishes a normogram for the population using the model formula and could be used in the assessment of gallbladder in conditions giving rise to gallbladder hydrops. Keywords: Sonography, Gallbladder Spherical index, ...
A Generalization of the Spherical Inversion
Ramírez, José L.; Rubiano, Gustavo N.
2017-01-01
In the present article, we introduce a generalization of the spherical inversion. In particular, we define an inversion with respect to an ellipsoid, and prove several properties of this new transformation. The inversion in an ellipsoid is the generalization of the elliptic inversion to the three-dimensional space. We also study the inverse images…
Spherically symmetric inhomogeneous dust collapse in higher ...
Indian Academy of Sciences (India)
Higher dimensional space-time; naked singularity; cosmic censorship. PACS Nos 04.20.Dw; 04.50. ... The existence of strong curvature naked singularities in gravitational collapse of spherically symmetric space-times ..... distributions (in an appropriate metric space) can be discussed along the lines of [16]. 3. Strength of the ...
Collapsing spherical null shells in general relativity
Directory of Open Access Journals (Sweden)
S Khakshournia
2011-03-01
Full Text Available In this work, the gravitational collapse of a spherically symmetric null shell with the flat interior and a charged Vaidya exterior spacetimes is studied. There is no gravitational impulsive wave present on the null hypersurface which is shear-free and contracting. It follows that there is a critical radius at which the shell bounces and starts expanding.
Review of the Methods for Production of Spherical Ti and Ti Alloy Powder
Sun, Pei; Fang, Zhigang Zak; Zhang, Ying; Xia, Yang
2017-10-01
Spherical titanium alloy powder is an important raw material for near-net-shape fabrication via a powder metallurgy (PM) manufacturing route, as well as feedstock for powder injection molding, and additive manufacturing (AM). Nevertheless, the cost of Ti powder including spherical Ti alloy has been a major hurdle that prevented PM Ti from being adopted for a wide range of applications. Especially with the increasing importance of powder-bed based AM technologies, the demand for spherical Ti powder has brought renewed attention on properties and cost, as well as on powder-producing processes. The performance of Ti components manufactured from powder has a strong dependence on the quality of powder, and it is therefore crucial to understand the properties and production methods of powder. This article aims to provide a cursory review of the basic techniques of commercial and emerging methods for making spherical Ti powder. The advantages as well as limitations of different methods are discussed.
CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge.
Aftab, S M A; Ahmad, K A
2017-01-01
The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE) effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD) study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c), the wavelength (0.25c) is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil.
Yoon, Suk-Ja; Wang, Rui-Feng; Ryu, Sun-Youl; Hwang, Hyeon-Shik; Kang, Byung-Cheol; Lee, Jae-Seo; Palomo, Juan M
2014-03-01
This study aimed to assess the three-dimensional (3D) facial changes after orthognathic surgery by evaluating the spherical coordinates of facial lines using 3D computed tomography (CT). A 19-year-old girl was diagnosed with class III malocclusion and facial asymmetry. Orthognathic surgery was performed after orthodontic treatment. Facial CT scans were taken before and after orthognathic surgery. The patient had a menton deviation of 12.72 mm before surgery and 0.83 mm after surgery. The spherical coordinates of four bilateral facial lines (ramal height, ramal lateral, ramal posterior and mandibular body) were estimated from CT scans before and after surgery on the deviated and opposite side. The spherical coordinates of all facial lines changed after orthognathic surgery. Moreover, the bilateral differences of all facial lines changed after surgery, and no bilateral differences were zero. The spherical coordinate system was useful to compare differences between the presurgical and postsurgical changes to facial lines.
Townson, Reid W
2013-01-01
Due to the increasing complexity of radiotherapy delivery, accurate dose verification has become an essential part of the clinical treatment process. The purpose of this work was to develop an electronic portal image (EPI) based pre-treatment verification technique capable of quickly reconstructing 3D dose distributions from both coplanar and non-coplanar treatments. The dose reconstruction is performed in a spherical water phantom by modulating, based on EPID measurements, pre-calculated Monte Carlo (MC) doselets defined on a spherical coordinate system. This is called the spherical doselet modulation (SDM) method. This technique essentially eliminates the statistical uncertainty of the MC dose calculations by exploiting both azimuthal symmetry in a patient-independent phase-space and symmetry of a virtual spherical water phantom. The symmetry also allows the number of doselets necessary for dose reconstruction to be reduced by a factor of about 250. In this work, 51 doselets were used. The SDM method mitiga...
Use of spherical coordinates to evaluate three-dimension facial changes after orthognathic surgery
Energy Technology Data Exchange (ETDEWEB)
Yoon, Suk Ja; Ryu, Sun Youl; Hwang, Hyeon Shik; Kang, Byung Cheol; Lee, Jae [School of Dentistry, Chonnam National University, Gwangju (Korea, Republic of); Wang, Rui Feng [Dept. of Biologic and Material Sciences, School of Dentistry, University of Michigan, Ann Arbor (United States); Palomo, Juan M. [Dept. of Orthodontics, School of Dental Medicine, Case Western Reserve University, Cleveland (United States)
2014-03-15
This study aimed to assess the three-dimensional (3D) facial changes after orthognathic surgery by evaluating the spherical coordinates of facial lines using 3D computed tomography (CT). A 19-year-old girl was diagnosed with class III malocclusion and facial asymmetry. Orthognathic surgery was performed after orthodontic treatment. Facial CT scans were taken before and after orthognathic surgery. The patient had a menton deviation of 12.72 mm before surgery and 0.83 mm after surgery. The spherical coordinates of four bilateral facial lines (ramal height, ramal lateral, ramal posterior and mandibular body) were estimated from CT scans before and after surgery on the deviated and opposite side. The spherical coordinates of all facial lines changed after orthognathic surgery. Moreover, the bilateral differences of all facial lines changed after surgery, and no bilateral differences were zero. The spherical coordinate system was useful to compare differences between the presurgical and postsurgical changes to facial lines.
Thermo-mechanical screening tests to qualify beryllium pebble beds with non-spherical pebbles
Energy Technology Data Exchange (ETDEWEB)
Reimann, Joerg, E-mail: joerg.reimann@partner.kit.edu [IKET, Karlsruhe Institute of Technology, Karlsruhe (Germany); Fretz, Benjamin [KBHF GmbH, Eggenstein-Leopoldshafen (Germany); Pupeschi, Simone [IAM, Karlsruhe Institute of Technology, Karlsruhe (Germany)
2015-10-15
Highlights: • In present ceramic breeder blankets, pebble-shaped beryllium is used as a neutron multiplier. • Spherical pebbles are considered as the candidate material, however, non-spherical particles are of economic interest. • Thermo-mechanical pebble bed data do merely exist for non-spherical beryllium grades. • Uniaxial compression tests (UCTs), combined with the Hot Wire Technique (HWT) were used to measure the stress–strain relations and the thermal conductivity. • A small experimental set-up had to be used and a detailed 3D modelling was of prime importance. • Compared to spherical pebble beds, non-spherical pebble beds are generally softer and mainly the thermal conductivity is lower. - Abstract: In present ceramic breeder blankets, pebble-shaped beryllium is used as a neutron multiplier. Fairly spherical pebbles are considered as a candidate material, however, non-spherical particles are of economic interest because production costs are much lower. Yet, thermo-mechanical pebble bed data do merely exist for these beryllium grades, and the blanket relevant potential of these grades cannot be judged. Screening experiments were performed with three different grades of non-spherical beryllium pebbles, produced by different companies, accompanied by experiments with the reference beryllium pebble beds. Uniaxial compression tests (UCTs), combined with the Hot Wire Technique (HWT), were performed to measure both the stress–strain relation and the thermal conductivity, k, at different stress levels. Because of the limited amounts of the non-spherical materials, the experimental set-ups were small and a detailed 3D modelling was of prime importance in order to prove that the used design was appropriate. Compared to the pebble beds consisting of spherical pebbles, non-spherical pebble beds are generally softer (smaller stress for a given strain), and, mainly as a consequence of this, for a given strain value, the thermal conductivity is lower. This
Metallic spherical anechoic chamber for antenna pattern measurement
Farahbakhsh, Ali; Khalaj-Amirhosseini, Mohammad
2016-08-01
Anechoic chambers are used for indoor antenna measurements. The common method of constructing an anechoic chamber is to cover all inside walls by the electromagnetic absorbers. In this paper, a fully metallic spherical chamber structure is presented in which the propagation of the electromagnetic waves inside the chamber is controlled and they are guided to an absorber. In the proposed method, an appropriate quiet zone is obtained, and unlike ordinary anechoic chambers, the absorber usage amount is reduced greatly. The performance of the chamber is evaluated by simulation. The results show that the proposed method could provide a useful technique for the indoor antenna measurements.
Rotationally invariant clustering of diffusion MRI data using spherical harmonics
DEFF Research Database (Denmark)
Liptrot, Matthew George; Lauze, Francois Bernard
2016-01-01
coefficients therefore may permit classification of DWI voxels according to their inferred underlying fibre properties, whilst ignoring the specifics of orientation. After smoothing apparent diffusion coefficients volumes, we apply a spherical harmonic transform, which models the multi-directional diffusion...... classification of DWI data can be performed without the need for a model reconstruction step. This avoids the potential confounds and uncertainty that such models may impose, and has the benefit of being computable directly from the DWI volumes. As such, the method could prove useful in subsequent pre...
Kawashima, Y; Okumura, M; Takenaka, H
1982-06-04
Direct spherical agglomeration of salicylic acid crystals during crystallization is described. The needle-like salicylic acid crystals simultaneously form and agglomerate in a mixture of three partially miscible liquids, such as water, ethanol, and chloroform, with agitation. The agglomerates can be made directly into tablets because of their excellent flowability. Spherical crystallization could eliminate the usual separate agglomeration step after crystallization and may be adaptable to other pharmaceutical and chemical systems.
Optical properties of spherical gold mesoparticles
DEFF Research Database (Denmark)
Evlyukhin, A. B.; Kuznetsov, A. I.; Novikov, S. M.
2012-01-01
Optical properties of spherical gold particles with diameters of 150-650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond the quadrup......Optical properties of spherical gold particles with diameters of 150-650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond...... results obtained in homogeneous environment is demonstrated. Multipole resonance features in the experimental reflection spectra of particles located on a gold substrate, in the wavelength range of 500-1000 nm, are discussed and theoretically analyzed on the basis of finite-difference time...
Imaging with spherically bent crystals or reflectors
Bitter, M.; Delgado Aparicio, L. F.; Hill, K. W.; Scott, S.; Ince-Cushman, A.; Reinke, M.; Podpaly, Y.; Rice, J. E.; Beiersdorfer, P.; Wang, E.
2010-07-01
This paper consists of two parts: part I describes the working principle of a recently developed x-ray imaging crystal spectrometer, where the astigmatism of spherically bent crystals is being used with advantage to record spatially resolved spectra of highly charged ions for Doppler measurements of the ion-temperature and toroidal plasma-rotation-velocity profiles in tokamak plasmas. This type of spectrometer was thoroughly tested on NSTX and Alcator C-Mod, and its concept was recently adopted for the design of the ITER crystal spectrometers. Part II describes imaging schemes, where the astigmatism has been eliminated by the use of matched pairs of spherically bent crystals or reflectors. These imaging schemes are applicable over a wide range of the electromagnetic radiation, which includes microwaves, visible light, EUV radiation and x-rays. Potential applications with EUV radiation and x-rays are the diagnosis of laser-produced plasmas, imaging of biological samples with synchrotron radiation and lithography.
Quality metric for spherical panoramic video
Zakharchenko, Vladyslav; Choi, Kwang Pyo; Park, Jeong Hoon
2016-09-01
Virtual reality (VR)/ augmented reality (AR) applications allow users to view artificial content of a surrounding space simulating presence effect with a help of special applications or devices. Synthetic contents production is well known process form computer graphics domain and pipeline has been already fixed in the industry. However emerging multimedia formats for immersive entertainment applications such as free-viewpoint television (FTV) or spherical panoramic video require different approaches in content management and quality assessment. The international standardization on FTV has been promoted by MPEG. This paper is dedicated to discussion of immersive media distribution format and quality estimation process. Accuracy and reliability of the proposed objective quality estimation method had been verified with spherical panoramic images demonstrating good correlation results with subjective quality estimation held by a group of experts.
Technical notes. Spherical harmonics approximations of neutron transport
Energy Technology Data Exchange (ETDEWEB)
Demeny, A.; Dede, K.M.; Erdei, K.
1976-12-01
A double-range spherical harmonics approximation obtained by expanding the angular flux separately in the two regions combined with the conventional single-range spherical harmonics is found to give superior description of neutron transport.
Dynamics and control of vibratory gyroscopes with special spherical symmetry
CSIR Research Space (South Africa)
Shatalov, M
2006-01-01
Full Text Available are obtained in the spherical Bessel and the associated Legendre functions, the effects of rotation are investigated and scales factors are determined for different vibrating modes of the spherical body, spheroidal and torsional. Corresponding scales factors...
Spherical Cancer Models in Tumor Biology
Directory of Open Access Journals (Sweden)
Louis-Bastien Weiswald
2015-01-01
Full Text Available Three-dimensional (3D in vitro models have been used in cancer research as an intermediate model between in vitro cancer cell line cultures and in vivo tumor. Spherical cancer models represent major 3D in vitro models that have been described over the past 4 decades. These models have gained popularity in cancer stem cell research using tumorospheres. Thus, it is crucial to define and clarify the different spherical cancer models thus far described. Here, we focus on in vitro multicellular spheres used in cancer research. All these spherelike structures are characterized by their well-rounded shape, the presence of cancer cells, and their capacity to be maintained as free-floating cultures. We propose a rational classification of the four most commonly used spherical cancer models in cancer research based on culture methods for obtaining them and on subsequent differences in sphere biology: the multicellular tumor spheroid model, first described in the early 70s and obtained by culture of cancer cell lines under nonadherent conditions; tumorospheres, a model of cancer stem cell expansion established in a serum-free medium supplemented with growth factors; tissue-derived tumor spheres and organotypic multicellular spheroids, obtained by tumor tissue mechanical dissociation and cutting. In addition, we describe their applications to and interest in cancer research; in particular, we describe their contribution to chemoresistance, radioresistance, tumorigenicity, and invasion and migration studies. Although these models share a common 3D conformation, each displays its own intrinsic properties. Therefore, the most relevant spherical cancer model must be carefully selected, as a function of the study aim and cancer type.
Marching Cubes in Cylindrical and Spherical Coordinates
Goldsmith, J.; Jacobson, A. S.
1996-01-01
Isosurface extraction is a common analysis and visualization technique for three-dimensional scalar data. Marching Cubes is the most commonly-used algorithm for finding polygonal representations of isosurfaces in such data. We extend Marching Cubes to produce geometry for data sets that lie in spherical and cylindrical coordinate systems as well as show the steps for derivation of transformations for other coordinate systems.
Indentation of pressurized viscoplastic polymer spherical shells
DEFF Research Database (Denmark)
Tvergaard, Viggo; Needleman, A.
2016-01-01
The indentation response of polymer spherical shells is investigated. Finite deformation analyses are carried out with the polymer characterized as a viscoelastic/viscoplastic solid. Both pressurized and unpressurized shells are considered. Attention is restricted to axisymmetric deformations...... large strains are attained. The transition from an indentation type mode of deformation to a structural mode of deformation involving bending that occurs as the indentation depth increases is studied. The results show the effects of shell thickness, internal pressure and polymer constitutive...
Energy Technology Data Exchange (ETDEWEB)
Green, D.W.; Willhite, G.P.
1996-05-01
The objectives of the research program are to (1) identify and develop polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) determine the performance of these systems in bulk and in porous media, and (3) develop methods to predict their performance in field applications. The research focused on four types of gel systems -- KUSP1 systems which contain an aqueous polysaccharide designated KUSP1, phenolic-aldehyde systems composed of resorcinol and formaldehyde, colloidal-dispersion systems composed of polyacrylamide and aluminum citrate, and a chromium-based system where polyacrylamide is crosslinked by chromium(III). Gelation behavior of the resorcinol-formaldehyde systems and the KUSP1-borate system was examined. Size distributions of aggregates that form in the polyacrylamide-aluminum colloidal-dispersion gel system were determined. Permeabilities to brine of several rock materials were significantly reduced by gel treatments using the KUSP1 polymer-ester (monoethylphthalate) system, the KUSP1 polymer-boric acid system, and the sulfomethylated resorcinol-formaldehyde system. The KUSP1 polymer-ester system and the sulfomethylated resorcinol-formaldehyde system were also shown to significantly reduce the permeability to super-critical carbon dioxide. A mathematical model was developed to simulate the behavior of a chromium redox-polyacrylamide gel system that is injected through a wellbore into a multi-layer reservoir in which crossflow between layers is allowed. The model describes gelation kinetics and filtration of pre-gel aggregates in the reservoir. Studies using the model demonstrated the effect filtration of gel aggregates has on the placement of gel systems in layered reservoirs.
Fusion potential for spherical and compact tokamaks
Energy Technology Data Exchange (ETDEWEB)
Sandzelius, Mikael
2003-02-01
The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high {beta}-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect.
Spherically symmetric thick branes cosmological evolution
Bernardini, A. E.; Cavalcanti, R. T.; da Rocha, Roldão
2015-01-01
Spherically symmetric time-dependent solutions for the 5D system of a scalar field canonically coupled to gravity are obtained and identified as an extension of recent results obtained by Ahmed et al. (JHEP 1404:061. arXiv:1312.3576 [hep-th], 2014). The corresponding cosmology of models with regularized branes generated by such a 5D scalar field scenario is also investigated. It has been shown that the anisotropic evolution of the warp factor and consequently the Hubble like parameter are both driven by the radial coordinate on the brane, which leads to an emergent thick brane-world scenario with spherically symmetric time dependent warp factor. Meanwhile, the separability of variables depending on fifth dimension, , which is exhibited by the equations of motion, allows one to recover the extra dimensional profiles obtained in Ahmed et al. (2014), namely the extra dimensional part of the scale (warp) factor and the scalar field dependence on . Therefore, our results are mainly concerned with the time dependence of a spherically symmetric warp factor. Besides evincing possibilities for obtaining asymmetric stable brane-world scenarios, the extra dimensional profiles here obtained can also be reduced to those ones investigated in Ahmed et al. (2014).
TOWARDS AN EASIER ORIENTATION FOR SPHERICAL PHOTOGRAMMETRY
Directory of Open Access Journals (Sweden)
G. Fangi
2015-02-01
Full Text Available For architectural metric documentation, Spherical Photogrammetry (SP has demonstrated its validity and efficiency in many projects already. The speed of surveying is high, the accuracy and completeness of the plotting are satisfactory. However, there are still many problems to be solved. The weakest point is the orientation procedure, which is rather difficult to perform, in the sense that only very experienced people can run it, and few people only make use of it. The old orientation steps are 1 model formation (limited to binocular panoramas couples; 2 link of all the models in a block adjustment with independent model triangulation; 3 block bundle adjustment with 4 parameters/pano (3 coord.+1 orientation bearing; 4 block bundle adjustment with 6 parameters/pano, say the previous 4 + 2 correction angles around the horizontal axes. The panoramas must be spherical and quasi-horizontal. In order to make easier the orientation, enabling more people to use SP, an improved approach has been set up. It consists in the combination of any possible model formed either by three and two panoramas. The trinocular vision, say the combination of three different panoramas to form a unique model, has the advantage to be much more robust in comparison to binocular vision in the sense that the trinocular model is likely to be more error-free than any of the three composing binocular models. It contains less model deformation, the model coordinates are validated by the mutual comparison of the three intersecting binocular models. In addition, the number of possible trinocular models is normally much larger than the one of binocular models. The steps for a semi-automatic orientation of a block of panoramas proceed as follows: - Form any possible trinocular models by combination of the panoramas; - in case that no trinocular model has been formed, form any possible binocular model; - run a block adjustment with the algorithm of independent model, to link together
Spherical Arrays for Wireless Channel Characterization and Emulation
DEFF Research Database (Denmark)
Franek, Ondrej; Pedersen, Gert Frølund
2014-01-01
Three types of spherical arrays for use in wireless communication research are presented. First, a spherical array of 32 monopoles with beam steering in arbitrary direction and with arbitrary polarization is described. Next, a spherical array with 16 quad-ridged open-flared horns is introduced...
PENETRATION OF A SOUND FIELD THROUGH A MULTILAYERED SPHERICAL SHELL
Directory of Open Access Journals (Sweden)
G. Ch. Shushkevich
2013-01-01
Full Text Available An analytical solution of the boundary problem describing the process of penetration of thesound field of a spherical emitter located inside a thin unclosed spherical shell through a permeable multilayered spherical shell is considered. The influence of some parameters of the problem on the value of the sound field weakening (screening coefficient is studied via a numerical simulation.
Energy Technology Data Exchange (ETDEWEB)
Kurath, D.E.; Bray, L.A.; Brooks, K.P.; Carlson, C.D.; Kim, A.Y.
1996-04-01
This report contains the results of a partial analysis and correlation of a large amount of equilibrium data obtained for cesium ion exchange. Data from testing of organic resins, a phenolic- carboxylic acid resin, and a resorcinol-formaldehyde resin with NCAW and CC waste simulants were assessed. The isotherms that were considered for correlating the data include the Langmuir, the Freundlich, and a combination of the two. These correlations are being developed to provide equations that can be used with models for assessing column behavior and provide correlations that will allow prediction of the equilibrium performance of the two resins with wastes of different compositions.
Quality of LVL panels produced with wood from Eucalyptus urophylla clones
Directory of Open Access Journals (Sweden)
José Benedito Guimarães Junior
2015-09-01
Full Text Available The objective of this research was to verify the quality of LVL panels manufactured with wood of five clones of Eucalyptus urophylla. Five LVL panels were produced for each clone, with 2 mm veneer, resorcinol-formaldehyde adhesive with a 320 g m-² weight, 1.47 MPa pressure for a period of 8 h at room temperature. In general, all clones showed potential to be used for production of LVL panels, especially clone 26, as it showed better performance regarding physical properties and bonding strength.
A charged fusion product diagnostic for a spherical tokamak
Perez, Ramona Leticia Valenzuela
Designs for future nuclear fusion power reactors rely on the ability to create a stable plasma (hot ionized gas of hydrogen isotopes) as a medium with which to sustain nuclear fusion reactions. My dissertation work involves designing, constructing, testing, installing, operating, and validating a new diagnostic for spherical tokamaks, a type of reactor test facility. Through detecting charged particles emitted from the plasma, this instrument can be used to study fusion reaction rates within the plasma and how they are affected by plasma perturbations. Quantitatively assessing nuclear fusion reaction rates at specific locations inside the plasma and as a function of time can provide valuable data that can be used to evaluate theory-based simulations related to energy transport and plasma stability. The Proton Detector (PD), installed in the Mega Amp Spherical Tokamak (MAST) at the Culham Centre for Fusion Energy (CCFE) in Abingdon, England, was the first instrument to experimentally detect 3 MeV Protons and 1 MeV Tritons created from deuterium- deuterium (hydrogen isotopes) nuclear fusion reactions inside a spherical tokamak's plasma. The PD consists of an array of particle detectors with a protective housing and the necessary signal conditioning electronics and readout. After several years of designing (which included simulations for detector orientations), fabricating, and testing the PD, it was installed in MAST and data were collected over a period of two months in the summer of 2013. Proton and triton rates as high as 200 kHz were measured and an initial radial profile of these fusion reaction rates inside the plasma was extracted. These results will be compared to a complementary instrument at MAST as well as theory-based simulations and form the knowledge basis for developing a larger future instrument. The design and performance of all instrument components (electrical, computational, mechanical), and subsequent data analysis methods and results are
Magnetic and acoustic investigations of turbulent spherical Couette flow
Adams, Matthew Michael
This dissertation describes experiments in spherical Couette devices, using both gas and liquid sodium. The experimental geometry is motivated by the Earth's outer core, the seat of the geodynamo, and consists of an outer spherical shell and an inner sphere, both of which can be rotated independently to drive a shear flow in the fluid lying between them. In the case of experiments with liquid sodium, we apply DC axial magnetic fields, with a dominant dipole or quadrupole component, to the system. We measure the magnetic field induced by the flow of liquid sodium using an external array of Hall effect magnetic field probes, as well as two probes inserted into the fluid volume. This gives information about possible velocity patterns present, and we extend previous work categorizing flow states, noting further information that can be extracted from the induced field measurements. The limitations due to a lack of direct velocity measurements prompted us to work on developing the technique of using acoustic modes to measure zonal flows. Using gas as the working fluid in our 60 cm diameter spherical Couette experiment, we identified acoustic modes of the container, and obtained excellent agreement with theoretical predictions. For the case of uniform rotation of the system, we compared the acoustic mode frequency splittings with theoretical predictions for solid body flow, and obtained excellent agreement. This gave us confidence in extending this work to the case of differential rotation, with a turbulent flow state. Using the measured splittings for this case, our colleagues performed an inversion to infer the pattern of zonal velocities within the flow, the first such inversion in a rotating laboratory experiment. This technique holds promise for use in liquid sodium experiments, for which zonal flow measurements have historically been challenging.
Addition theorems for spin spherical harmonics: II. Results
Energy Technology Data Exchange (ETDEWEB)
Bouzas, Antonio O, E-mail: abouzas@mda.cinvestav.mx [Departamento de Fisica Aplicada, CINVESTAV-IPN, Carretera Antigua a Progreso Km. 6, Apdo. Postal 73 ' Cordemex' , Merida 97310, Yucatan (Mexico)
2011-04-22
Based on the results of part I (2011 J. Phys. A: Math. Theor. 44 165301), we obtain the general form of the addition theorem for spin spherical harmonics and give explicit results in the cases involving one spin-s' and one spin-s spherical harmonics with s', s = 1/2, 1, 3/2, and |s' - s| = 0, 1. We also obtain a fully general addition theorem for one scalar and one tensor spherical harmonic of arbitrary rank. A variety of bilocal sums of ordinary and spin spherical harmonics are given in explicit form, including a general explicit expression for bilocal spherical harmonics.
Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route
Energy Technology Data Exchange (ETDEWEB)
Chang, Binbin, E-mail: changbinbin806@163.com; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng, E-mail: baochengyang@yahoo.com
2015-01-15
Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses
Forward modeling of the Earth's lithospheric field using spherical prisms
Baykiev, Eldar; Ebbing, Jörg; Brönner, Marco; Fabian, Karl
2014-05-01
The ESA satellite mission Swarm consists of three satellites that measure the magnetic field of the Earth at average flight heights of about 450 km and 530 km above surface. Realistic forward modeling of the expected data is an indispensible first step for both, evaluation and inversion of the real data set. This forward modeling requires a precise definition of the spherical geometry of the magnetic sources. At satellite height only long wavelengths of the magnetic anomalies are reliably measured. Because these are very sensitive to the modeling error in case of a local flat Earth approximation, conventional magnetic modeling tools cannot be reliably used. For an improved modeling approach, we start from the existing gravity modeling code "tesseroids" (http://leouieda.github.io/tesseroids/), which calculates gravity gradient tensor components for any collection of spherical prisms (tesseroids). By Poisson's relation the magnetic field is mathematically equivalent to the gradient of a gravity field. It is therefore directly possible to apply "tesseroids" for magnetic field modeling. To this end, the Earth crust is covered by spherical prisms, each with its own prescribed magnetic susceptibility and remanent magnetization. Induced magnetizations are then derived from the products of the local geomagnetic fields for the chosen main field model (such as the International Geomagnetic Reference Field), and the corresponding tesseroid susceptibilities. Remanent magnetization vectors are directly set. This method inherits the functionality of the original "tesseroids" code and performs parallel computation of the magnetic field vector components on any given grid. Initial global calculations for a simplified geometry and piecewise constant magnetization for each tesseroid show that the method is self-consistent and reproduces theoretically expected results. Synthetic induced crustal magnetic fields and total field anomalies of the CRUST1.0 model converted to magnetic
Spherical Coordinate Systems for Streamlining Suited Mobility Analysis
Benson, Elizabeth; Cowley, Matthew S.; Harvill. Lauren; Rajulu, Sudhakar
2014-01-01
When describing human motion, biomechanists generally report joint angles in terms of Euler angle rotation sequences. However, there are known limitations in using this method to describe complex motions such as the shoulder joint during a baseball pitch. Euler angle notation uses a series of three rotations about an axis where each rotation is dependent upon the preceding rotation. As such, the Euler angles need to be regarded as a set to get accurate angle information. Unfortunately, it is often difficult to visualize and understand these complex motion representations. One of our key functions is to help design engineers understand how a human will perform with new designs and all too often traditional use of Euler rotations becomes as much of a hindrance as a help. It is believed that using a spherical coordinate system will allow ABF personnel to more quickly and easily transmit important mobility data to engineers, in a format that is readily understandable and directly translatable to their design efforts. Objectives: The goal of this project is to establish new analysis and visualization techniques to aid in the examination and comprehension of complex motions. Methods: This project consisted of a series of small sub-projects, meant to validate and verify the method before it was implemented in the ABF's data analysis practices. The first stage was a proof of concept, where a mechanical test rig was built and instrumented with an inclinometer, so that its angle from horizontal was known. The test rig was tracked in 3D using an optical motion capture system, and its position and orientation were reported in both Euler and spherical reference systems. The rig was meant to simulate flexion/extension, transverse rotation and abduction/adduction of the human shoulder, but without the variability inherent in human motion. In the second phase of the project, the ABF estimated the error inherent in a spherical coordinate system, and evaluated how this error would
Application of spherical diodes for megavoltage photon beams dosimetry
Energy Technology Data Exchange (ETDEWEB)
Barbés, Benigno, E-mail: bbarbes@unav.es [Servicio de Oncología Radioterápica, Clínica Universidad de Navarra, Avda. Pío XII, 36, E-31008 Pamplona, Navarra (Spain); Azcona, Juan D. [Department of Radiation Oncology, Stanford University, Stanford, California 94305 and Servicio de Oncología Radioterápica, Clínica Universidad de Navarra, Avda. Pío XII 36, E-31008 Pamplona, Navarra (Spain); Burguete, Javier [Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Navarra (Spain); Martí-Climent, Josep M. [Servicio de Medicina Nuclear, Clínica Universidad de Navarra, Avda. Pío XII 36, E-31008 Pamplona, Navarra (Spain)
2014-01-15
Purpose: External beam radiation therapy (EBRT) usually uses heterogeneous dose distributions in a given volume. Designing detectors for quality control of these treatments is still a developing subject. The size of the detectors should be small to enhance spatial resolution and ensure low perturbation of the beam. A high uniformity in angular response is also a very important feature in a detector, because it has to measure radiation coming from all the directions of the space. It is also convenient that detectors are inexpensive and robust, especially to performin vivo measurements. The purpose of this work is to introduce a new detector for measuring megavoltage photon beams and to assess its performance to measure relative dose in EBRT. Methods: The detector studied in this work was designed as a spherical photodiode (1.8 mm in diameter). The change in response of the spherical diodes is measured regarding the angle of incidence, cumulated irradiation, and instantaneous dose rate (or dose per pulse). Additionally, total scatter factors for large and small fields (between 1 × 1 cm{sup 2} and 20 × 20 cm{sup 2}) are evaluated and compared with the results obtained from some commercially available ionization chambers and planar diodes. Additionally, the over-response to low energy scattered photons in large fields is investigated using a shielding layer. Results: The spherical diode studied in this work produces a high signal (150 nC/Gy for photons of nominal energy of 15 MV and 160 for 6 MV, after 12 kGy) and its angular dependence is lower than that of planar diodes: less than 5% between maximum and minimum in all directions, and 2% around one of the axis. It also has a moderated variation with accumulated dose (about 1.5%/kGy for 15 MV photons and 0.7%/kGy for 6 MV, after 12 kGy) and a low variation with dose per pulse (±0.4%), and its behavior is similar to commercial diodes in total scatter factor measurements. Conclusions: The measurements of relative dose
Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles
Energy Technology Data Exchange (ETDEWEB)
Choudhuri, Ahsan [Univ. of Texas, El Paso, TX (United States). Dept. of Mechanical Engineering
2013-06-30
One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed
Einstein-Vlasov system in spherical symmetry. II. Spherical perturbations of static solutions
Gundlach, Carsten
2017-10-01
We reduce the equations governing the spherically symmetric perturbations of static spherically symmetric solutions of the Einstein-Vlasov system (with either massive or massless particles) to a single stratified wave equation -ψ,t t=H ψ , with H containing second derivatives in radius, and integrals over energy and angular momentum. We identify an inner product with respect to which H is symmetric, and use the Ritz method to approximate the lowest eigenvalues of H numerically. For two representative background solutions with massless particles we find a single unstable mode with a growth rate consistent with the universal one found by Akbarian and Choptuik in nonlinear numerical time evolutions.
Compressive sensing with a spherical microphone array
DEFF Research Database (Denmark)
Fernandez Grande, Efren; Xenaki, Angeliki
2016-01-01
A wave expansion method is proposed in this work, based on measurements with a spherical microphone array, and formulated in the framework provided by Compressive Sensing. The method promotes sparse solutions via ‘1-norm minimization, so that the measured data are represented by few basis functions....... This results in fine spatial resolution and accuracy. This publication covers the theoretical background of the method, including experimental results that illustrate some of the fundamental differences with the “conventional” leastsquares approach. The proposed methodology is relevant for source localization...
Static spherical metrics: a geometrical approach
Tiwari, A. K.; Maharaj, S. D.; Narain, R.
2017-08-01
There exist several solution generating algorithms for static spherically symmetric metrics. Here we use the geometrical approach of Lie point symmetries to solve the condition of pressure isotropy by finding the associated five-dimensional Lie algebra of symmetry generators. For the non-Abelian subalgebras the underlying equation is solved to obtain a general solution. Contained within this class are vacuum models, constant density models, metrics with linear equations of state and the Buchdahl representation of the polytrope with index five. For a different particular symmetry generator the condition of pressure isotropy is transformed to a Riccati equation which admits particular solutions.
Spherical conformal models for compact stars
Energy Technology Data Exchange (ETDEWEB)
Takisa, P.M.; Maharaj, S.D.; Manjonjo, A.M.; Moopanar, S. [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)
2017-10-15
We consider spherical exact models for compact stars with anisotropic pressures and a conformal symmetry. The conformal symmetry condition generates an integral relationship between the gravitational potentials. We solve this condition to find a new anisotropic solution to the Einstein field equations. We demonstrate that the exact solution produces a relativistic model of a compact star. The model generates stellar radii and masses consistent with PSR J1614-2230, Vela X1, PSR J1903+327 and Cen X-3. A detailed physical examination shows that the model is regular, well behaved and stable. The mass-radius limit and the surface red shift are consistent with observational constraints. (orig.)
The Spherical Bolometric Albedo of Planet Mercury
Mallama, Anthony
2017-01-01
Published reflectance data covering several different wavelength intervals has been combined and analyzed in order to determine the spherical bolometric albedo of Mercury. The resulting value of 0.088 +/- 0.003 spans wavelengths from 0 to 4 {\\mu}m which includes over 99% of the solar flux. This bolometric result is greater than the value determined between 0.43 and 1.01 {\\mu}m by Domingue et al. (2011, Planet. Space Sci., 59, 1853-1872). The difference is due to higher reflectivity at wavelen...
Inversion of band patterns in spherical tumblers.
Chen, Pengfei; Lochman, Bryan J; Ottino, Julio M; Lueptow, Richard M
2009-04-10
Bidisperse granular mixtures in spherical tumblers segregate into three bands: one at each pole and one at the equator. For low fill levels, large particles are at the equator; for high fill levels, the opposite occurs. Segregation is robust, though the transition depends on fill level, particle size, and rotational speed. Discrete element method simulations reproduce surface patterns and reveal internal structures. Particle trajectories show that small particles flow farther toward the poles than large particles in the upstream portion of the flowing layer for low fill levels leading to a band of small particles at each pole. The opposite occurs for high fill levels, though more slowly.
VORTEX FLOW INSIDE THE DEEP SPHERICAL DIMPLE
Directory of Open Access Journals (Sweden)
В. Воскобійник
2012-04-01
Full Text Available The results of experimental researches of the forming features of the vortex flow which is formed at the turbulentflow above of the deep spherical dimple are presented. Visualization shows that inclined asymmetric large-scale vortices are generated inside the dimple. These vortex structures are switched from one tilt in other, exciting lowfrequencyoscillations. During an evolution the asymmetric vortices are broken up above an aft wall of the dimple andthe angle of their incline and break up is increased with the growth of Reynolds number.
Discrete analogues in harmonic analysis: Spherical averages
Magyar, A; Stein, E. M.; Wainger, S.
2004-01-01
In this paper we prove an analogue in the discrete setting of \\Bbb Z^d, of the spherical maximal theorem for \\Bbb R^d. The methods used are two-fold: the application of certain "sampling" techniques, and ideas arising in the study of the number of representations of an integer as a sum of d squares in particular, the "circle method". The results we obtained are by necessity limited to d \\ge 5, and moreover the range of p for the L^p estimates differs from its analogue in \\Bbb R^d.
The dynamo bifurcation in rotating spherical shells
Morin, Vincent; 10.1142/S021797920906378X
2010-01-01
We investigate the nature of the dynamo bifurcation in a configuration applicable to the Earth's liquid outer core, i.e. in a rotating spherical shell with thermally driven motions. We show that the nature of the bifurcation, which can be either supercritical or subcritical or even take the form of isola (or detached lobes) strongly depends on the parameters. This dependence is described in a range of parameters numerically accessible (which unfortunately remains remote from geophysical application), and we show how the magnetic Prandtl number and the Ekman number control these transitions.
Space Radiation Detector with Spherical Geometry
Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)
2012-01-01
A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.
Formability of spherical and large aluminum sheets
Zimmermann, F.; Brosius, A.; Beyer, E.; Standfuß, J.; Jahn, A.
2017-10-01
The novel aluminum alloy AlMgSc (AA5028) shows a high potential for aeronautical applications, especially to replace the currently used material for structural components within metallic aircraft fuselages [1]. As AlMgSc sheets cannot be stretch formed at room temperature due to cracking in the clamping zones, an alternative technology called "creep-forming" was investigated by Jambu [2]. Nevertheless, creep-forming is only applicable for panels to be formed in moulds with small curvatures, because shaping double-curved geometries with small radii of curvature tends to buckling [3]. Hence, the formability of large spherical aluminum sheets as double-curved geometries is investigated.
Flexural Strength of Functionally Graded Nanotube Reinforced Sandwich Spherical Panel
Mahapatra, Trupti R.; Mehar, Kulmani; Panda, Subrata K.; Dewangan, S.; Dash, Sushmita
2017-02-01
The flexural behaviour of the functionally graded sandwich spherical panel under uniform thermal environment has been investigated in the present work. The face sheets of the sandwich structure are made by the functionally graded carbon nanotube reinforced material and the core face is made by the isotropic and homogeneous material. The material properties of both the fiber and matrix are assumed to be temperature dependent. The sandwich panel model is developed in the framework of the first order shear deformation theory and the governing equation of motion is derived using the variational principle. For the discretization purpose a suitable shell element has been employed from the ANSYS library and the responses are computed using a parametric design language (APDL) coding. The performance and accuracy of the developed model has been established through the convergence and validation by comparing the obtained results with previously published results. Finally, the influence of different geometrical parameters and material properties on the flexural behaviour of the sandwich spherical panel in thermal environment has been investigated through various numerical illustrations and discussed in details.
Electrostatic spherically symmetric configurations in gravitating nonlinear electrodynamics
Diaz-Alonso, J.; Rubiera-Garcia, D.
2010-03-01
We perform a study of the gravitating electrostatic spherically symmetric (G-ESS) solutions of Einstein field equations minimally coupled to generalized nonlinear Abelian gauge models in three space dimensions. These models are defined by Lagrangian densities which are general functions of the gauge field invariants, restricted by some physical conditions of admissibility. They include the class of nonlinear electrodynamics supporting electrostatic spherically symmetric (ESS) nontopological soliton solutions in absence of gravity. We establish that the qualitative structure of the G-ESS solutions of admissible models is fully characterized by the asymptotic and central-field behaviors of their ESS solutions in flat space (or, equivalently, by the behavior of the Lagrangian densities in vacuum and on the point of the boundary of their domain of definition, where the second gauge invariant vanishes). The structure of these G-ESS configurations for admissible models supporting divergent-energy ESS solutions in flat space is qualitatively the same as in the Reissner-Nordström case. In contrast, the G-ESS configurations of the models supporting finite-energy ESS solutions in flat space exhibit new qualitative features, which are discussed in terms of the Arnowitt-Deser-Misner mass, the charge, and the soliton energy. Most of the results concerning well-known models, such as the electrodynamics of Maxwell, Born-Infeld, and the Euler-Heisenberg effective Lagrangian of QED, minimally coupled to gravitation, are shown to be corollaries of general statements of this analysis.
Simulating CMB maps on a spherical cap with FFTs.
Goetz, Eric; Bunn, Emory
2018-01-01
The current methods of simulating the Cosmic Microwave Background involve simulating the entire sky using spherical transforms. These methods are inefficient because most surveys only cover a fraction of the sky, so simulating the entire sky is very wasteful. One alternative method of CMB simulation is to simulate the random processes behind the CMB in a 3 dimensional box that contains the part of the sphere that we want to measure. Then, we can select the points we want from the box. This method should be more efficient than previous methods because it performs simulations over a box instead of a sphere. This allows us to use Fourier transforms instead of spherical harmonic transforms, which are much slower. For this method to work, there must be a 3 dimensional power spectrum defined on the box that has the same correlation function as the angular power spectrum. Since the angular power spectrum is known, this becomes a linear programming problem, where the constraints for the 3-D power spectrum are that it match the angular power spectrum and that it be non-negative. If a power spectrum satisfying these constraints exists, we can use it to simulate the CMB. We have found a power spectrum for some reasonable parameter values, and are working to find a more complete answer to this question.
Magnetic-luminescent spherical particles synthesized by ultrasonic spray pyrolysis
Michel, Norma L.; Flores, Dora L.; Hirata, Gustavo A.
2015-07-01
The combination of magnetic and luminescent properties in a single particle system, opens-up a wide range of potential applications in biotechnology and biomedicine. In this work, we performed the synthesis of magnetic-luminescent Gd2O3:Eu3+@Fe2O3 particles by ultrasonic spray pyrolysis performed in a tubular furnace. In order to achieve the composite formation, commercial superparamagnetic Fe3O4 nanoparticles were coated with a luminescent Eu3+-doped Gd2O3 shell in a low-cost one-step process. The spray pyrolysis method yields deagglomerated spherical shape magneto/luminescent particles. The photoluminescence spectra under UV excitation (λExc = 265 nm) of the magnetic Gd2O3:Eu3+@Fe2O3 compound showed the characteristic red emission of Eu3+ (λEm = 612 nm). This magneto/luminescent system will find applications in biomedicine and biotechnology.
Neutral beam optimisation for the spherical tokamak ST40
Energy Technology Data Exchange (ETDEWEB)
Salmi, A., E-mail: antti.salmi@vtt.fi [VTT, P.O. Box 1000, FIN-02044 VTT (Finland); Gryaznevich, M.; Buxton, P.; Nightingale, M. [Tokamak Energy Ltd., Culham Science Centre, Abingdon, Oxon OX143DB (United Kingdom); Tala, T. [VTT, P.O. Box 1000, FIN-02044 VTT (Finland)
2017-04-15
Orbit following Monte Carlo code (ASCOT) calculations of neutral beam (NB) induced torque, current and heating have been performed for a selected set of plasma scenarios to optimise the neutral beam injection system for the proposed high magnetic field spherical tokamak ST40. It is found that there are strong variations especially in the current drive efficiency and in the toroidal torque depending on the NB alignment and injection energy. The optimal alignments as well as the optimal injection energy depend both on the scenario and whether the current drive or the toroidal torque is to be maximised. Due to the relatively small calculated current drive efficiency (0.05–0.2 MA/MW) we find that for the studied scenarios a relatively central low field side (LFS) deposition below midplane provides the best overall performance still at a tolerable shine through power.
Ion Exchange Testing with SRF Resin FY2012
Energy Technology Data Exchange (ETDEWEB)
Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.
2013-06-11
Ion exchange using spherical resorcinol-formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection (DOE-ORP) for use in the Pretreatment Facility (PTF) of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in at-tank deployment. Numerous studies have shown SRF resin to be effective for removing 137Cs from a wide variety of actual and simulated tank waste supernatants (Adamson et al. 2006; Blanchard et al. 2008; Burgeson et al. 2004; Duignan and Nash 2009; Fiskum et al. 2006a; Fiskum et al. 2006b; Fiskum et al. 2006c; Fiskum et al. 2007; Hassan and Adu-Wusu 2003; King et al. 2004; Nash et al. 2006). Prior work at the Pacific Northwest National Laboratory (PNNL) has focused primarily on the loading behavior for 4 to 6 M Na solutions at 25 to 45°C. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (0.1 to 8 M) and higher temperatures (50°C) to alleviate post-filtration precipitation issues. This report discusses ion exchange loading kinetics testing activities performed in accordance with Test Plan TP-WTPSP-002, Rev. 3.0 , which was prepared and approved in response to the Test Specification 24590 PTF-TSP-RT-09-002, Rev. 0 (Lehrman 2010) and Test Exception 24590 PTF TEF RT-11-00003, Rev. 0 (Meehan 2011). This testing focused on column tests evaluating the impact of elevated temperature on resin degradation over an extended period of time and batch contacts evaluating the impact on Cs loading over a broad range of sodium concentrations (0.1 to 5 M). These changes may be required to alleviate post-filtration precipitation issues and broaden the data range of SRF resin loading under the conditions expected with the new equipment and process changes.
Investigation of spherical aberration effects on coherent lidar performance
DEFF Research Database (Denmark)
Hu, Qi; Rodrigo, Peter John; Iversen, Theis Faber Quist
2013-01-01
with different telescope configurations using a hard target. It is experimentally and numerically proven that the SA has a significant impact on lidar antenna efficiency and optimal beam truncation ratio. Furthermore, we demonstrate that both effective probing range and spatial resolution of the system...
Spherically symmetric conformal gravity and "gravitational bubbles"
Berezin, V A; Eroshenko, Yu N
2016-01-01
The general structure of the spherically symmetric solutions in the Weyl conformal gravity is described. The corresponding Bach equation are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions is found. It consists of two classes. The first one contains the solutions with constant two-dimensional curvature scalar of our specific metrics, and the representatives are the famous Robertson-Walker metrics. One of them we called the "gravitational bubbles", which is compact and with zero Weyl tensor. The second class is more general, with varying curvature scalar. We found its representative as the one-parameter family. It appears that it can be conformally covered by the thee-parameter Mannheim-Kazanas solution. We also investigated the general structure of the energy-momentum tensor in the spherical conformal gravity and constructed the vectorial equation that reveals clearly the same features of non-vacuum solu...
Initial assessments of ignition spherical torus
Energy Technology Data Exchange (ETDEWEB)
Peng, Y.K.M.; Borowski, S.K.; Bussell, G.T.; Dalton, G.R.; Gorker, G.E.; Haines, J.R.; Hamilton, W.R.; Kalsi, S.S.; Lee, V.D.; Miller, J.B.
1985-12-01
Initial assessments of ignition spherical tori suggest that they can be highly cost effective and exceptionally small in unit size. Assuming advanced methods of current drive to ramp up the plasma current (e.g., via lower hybrid wave at modest plasma densities and temperatures), the inductive solenoid can largely be eliminated. Given the uncertainties in plasma energy confinement times and the effects of strong paramagnetism on plasma pressure, and allowing for the possible use of high-strength copper alloys (e.g., C-17510, Cu-Ni-Be alloy), ignition spherical tori with a 50-s burn are estimated to have major radii ranging from 1.0 to 1.6 m, aspect ratios from 1.4 to 1.7, vacuum toroidal fields from 2 to 3 T, plasma currents from 10 to 19 MA, and fusion power from 50 to 300 MW. Because of its modest field strength and simple poloidal field coil configuration, only conventional engineering approaches are needed in the design. A free-standing toroidal field coil/vacuum vessel structure is assessed to be feasible and relatively independent of the shield structure and the poloidal field coils. This exceptionally simple configuration depends significantly, however, on practical fabrication approaches of the center conductor post, about which there is presently little experience. 19 refs.
Flow and scour around spherical bodies
DEFF Research Database (Denmark)
Truelsen, Christoffer
2003-01-01
near an erodible bed. In Chapter 2, a 3-D Reynolds-Average Navier-Stokes (RANS) flow solver has been used to simulate flow around and forces on a free and a near-wall sphere. Fluid forces are computed and validated against experimental data. A good agreement is found between the model and experimental...... results except in the critical flow regime. For flow around a near-wall sphere, a weak horseshoe vortex emerges as the gap ratio becomes less than or equal to 0.3. In Chapter 3, a RANS flow solver has been used to compute the bed shear stress for a near-wall sphere. The model results compare well......Spherical bodies placed in the marine environment may bury themselves due to the action of the waves and the current on the sediment in their immediate neighborhood. The present study addresses this topic by a numerical and an experimental investigation of the flow and scour around a spherical body...
Clusters of polyhedra in spherical confinement
Teich, Erin G.; van Anders, Greg; Klotsa, Daphne; Dshemuchadse, Julia; Glotzer, Sharon C.
2016-01-01
Dense particle packing in a confining volume remains a rich, largely unexplored problem, despite applications in blood clotting, plasmonics, industrial packaging and transport, colloidal molecule design, and information storage. Here, we report densest found clusters of the Platonic solids in spherical confinement, for up to N=60 constituent polyhedral particles. We examine the interplay between anisotropic particle shape and isotropic 3D confinement. Densest clusters exhibit a wide variety of symmetry point groups and form in up to three layers at higher N. For many N values, icosahedra and dodecahedra form clusters that resemble sphere clusters. These common structures are layers of optimal spherical codes in most cases, a surprising fact given the significant faceting of the icosahedron and dodecahedron. We also investigate cluster density as a function of N for each particle shape. We find that, in contrast to what happens in bulk, polyhedra often pack less densely than spheres. We also find especially dense clusters at so-called magic numbers of constituent particles. Our results showcase the structural diversity and experimental utility of families of solutions to the packing in confinement problem. PMID:26811458
Shape normalization of 3D cell nuclei using elastic spherical mapping.
Gladilin, E; Goetze, S; Mateos-Langerak, J; VAN Driel, R; Eils, R; Rohr, K
2008-07-01
Topological analysis of cells and subcellular structures on the basis of image data, is one of the major trends in modern quantitative biology. However, due to the dynamic nature of cell biology, the optical appearance of different cells or even time-series of the same cell is undergoing substantial variations in shape and texture, which makes a comparison of shapes and distances across different cells a nontrivial task. In the absence of canonical invariances, a natural approach to the normalization of cells consists of spherical mapping, enabling the analysis of targeted regions in terms of canonical spherical coordinates, that is, radial distances and angles. In this work, we present a physically-based approach to spherical mapping, which has been applied for topological analysis of multichannel confocal laser scanning microscopy images of human fibroblast nuclei. Our experimental results demonstrate that spherical mapping of entire nuclear domains can automatically be obtained by inverting affine and elastic transformations, performed on a spherical finite element template mesh.
Li, Hao; Chen, Guang; Sinha, Shayandev; Das, Siddhartha; Soft Matter, Interfaces,; Energy Laboratory (Smiel) Team
Understanding the electric double layer (EDL) electrostatics of spherical polyelectrolyte (PE) brushes, which are spherical particles grafted with PE layers, is essential for appropriate use of PE-grfated micro-nanoparticles for targeted drug delivery, oil recovery, water harvesting, emulsion stabilization, emulsion breaking, etc. Here we elucidate the EDL electrostatics of spherical PE brushes for the case where the PE exhibits pH-dependent charge density. This pH-dependence necessitates the consideration of explicit hydrogen ion concentration, which in turn dictates the distribution of monomers along the length of the grafted PE. This monomer distribution is shown to be a function of the nature of the sphere (metallic or a charged or uncharged dielectric or a liquid-filled sphere). All the calculations are performed for the case where the PE electrostatics can be decoupled from the PE elastic and excluded volume effects. Initial predictions are also provided for the case where such decoupling is not possible.
Modelling of influence of spherical aberration coefficients on depth of focus of optical systems
Pokorný, Petr; Šmejkal, Filip; Kulmon, Pavel; Mikš, Antonín.; Novák, Jiří; Novák, Pavel
2017-06-01
This contribution describes how to model the influence of spherical aberration coefficients on the depth of focus of optical systems. Analytical formulas for the calculation of beam's caustics are presented. The conditions for aberration coefficients are derived for two cases when we require that either the Strehl definition or the gyration radius should be the identical in two symmetrically placed planes with respect to the paraxial image plane. One can calculate the maximum depth of focus and the minimum diameter of the circle of confusion of the optical system corresponding to chosen conditions. This contribution helps to understand how spherical aberration may affect the depth of focus and how to design such an optical system with the required depth of focus. One can perform computer modelling and design of the optical system and its spherical aberration in order to achieve the required depth of focus.
The Combination of Spherical Photogrammetry and UAV for 3D Modeling
Ihsanudin, T.; Affriani, A. R.
2017-12-01
The complete of 3D models required the object that was recorded from both side and top. If the object recorded from above, then the object from the side can not be covered, and if the objects recorded from the side, it can not be covered from the top. Recording of objects from the side using spherical photogrammetry method and from the top using UAV method. The merge of both models using a conform transformation, by bringing the spherical photogrammetry coordinates system to the UAV model. The object of this research is Ratu Boko temple, Sleman, Yogyakarta. The spherical photogrammetry recording was performed by rotating the camera in 360° angle on the entire area of the temple. The area consists of 12 stations. The UAV method uses a drone with flight attitude of 20 meters. The merge of the both models produced the completeness of the temple model from the top and side.
Directory of Open Access Journals (Sweden)
Francesco Semeraro
2014-01-01
Full Text Available Aims: To compare the quality of vision in pseudophakic patients implanted with aspherical and spherical intraocular lenses (IOLs. Materials and Methods: Randomized prospective longitudinal intrapatient comparison between aspherical and spherical IOLs performed on 22 patients who underwent bilateral cataract surgery. Best corrected visual acuity, subjective contrast sensitivity, Strehl ratio and spherical aberrations (SA, and higher order wavefront aberrations for a 3.5 mm and a 6.0 mm pupil were measured after 3 months of cataract surgery. Results: SA (Z4,0 decreased significantly in eyes with aspherical IOL implant (P = 0.004. Modulation transfer function (MTF and point spread function (PSF resulted no significant difference between the two groups (P = 0.87; P = 0.32. Conclusion: Although the SA is significantly lower in eyes implanted with aspherical IOL, the quality of vision determined with MTF and PSF does not significantly differ for subjective and objective parameters that were analyzed.
Energetic particles in spherical tokamak plasmas
McClements, K. G.; Fredrickson, E. D.
2017-05-01
Spherical tokamaks (STs) typically have lower magnetic fields than conventional tokamaks, but similar mass densities. Suprathermal ions with relatively modest energies, in particular beam-injected ions, consequently have speeds close to or exceeding the Alfvén velocity, and can therefore excite a range of Alfvénic instabilities which could be driven by (and affect the behaviour of) fusion α-particles in a burning plasma. STs heated with neutral beams, including the small tight aspect ratio tokamak (START), the mega amp spherical tokamak (MAST), the national spherical torus experiment (NSTX) and Globus-M, have thus provided an opportunity to study toroidal Alfvén eigenmodes (TAEs), together with higher frequency global Alfvén eigenmodes (GAEs) and compressional Alfvén eigenmodes (CAEs), which could affect beam current drive and channel fast ion energy into bulk ions in future devices. In NSTX GAEs were correlated with a degradation of core electron energy confinement. In MAST pulses with reduced magnetic field, CAEs were excited across a wide range of frequencies, extending to the ion cyclotron range, but were suppressed when hydrogen was introduced to the deuterium plasma, apparently due to mode conversion at ion-ion hybrid resonances. At lower frequencies fishbone instabilities caused fast particle redistribution in some MAST and NSTX pulses, but this could be avoided by moving the neutral beam line away from the magnetic axis or by operating the plasma at either high density or elevated safety factor. Fast ion redistribution has been observed during GAE avalanches on NSTX, while in both NSTX and MAST fast ions were transported by saturated kink modes, sawtooth crashes, resonant magnetic perturbations and TAEs. The energy dependence of fast ion redistribution due to both sawteeth and TAEs has been studied in Globus-M. High energy charged fusion products are unconfined in present-day STs, but have been shown in MAST to provide a useful diagnostic of beam ion
Focusing Bessel Beams by a Lens with Strong Spherical Aberrations
Directory of Open Access Journals (Sweden)
Vladimir N. Belyi
2012-01-01
Full Text Available We have carried out the calculation and experimental measurement of the field formed by optical schemes composed of an axicon and lens with strong spherical aberrations. The calculation is performed by the methods of geometrical optics and diffraction integral. A mechanism is revealed, which is responsible for increasing the intensity in the near-axial focus of the doublet. It is shown that the formed bottle beam has a small length and the field at the periphery is of two types: oscillating and smooth ones. The changeover of the field from the bottle beam to a z-dependent Bessel beam is traced. The last beam is characterized, in particular, by the Bessel-type structure of its Fourier spectrum.
Exact Thermal Analysis of Functionally Graded Cylindrical and Spherical Vessels
Directory of Open Access Journals (Sweden)
Vebil Yıldırım
2017-07-01
Full Text Available Thermal analyses of radially functionally graded (FG thick-walled a spherical vessel and an infinite cylindrical vessel or a circular annulus are conducted analytically by the steady-state 1-D Fourier heat conduction theory under Dirichlet’s boundary conditions. By employing simple-power material grading pattern the differential equations are obtained in the form of Euler-Cauchy types. Analytical solution of the differential equations gives the temperature field and the heat flux distribution in the radial direction in a closed form. Three different physical metal-ceramic pairs first considered to study the effect of the aspect ratio, which is defined as the inner radius to the outer radius of the structure, on the temperature and heat flux variation along the radial coordinate. Then a parametric study is performed with hypothetic inhomogeneity indexes for varying aspect ratios.
Dynamics of an initially spherical bubble rising in quiescent liquid
Tripathi, Manoj Kumar; Sahu, Kirti Chandra; Govindarajan, Rama
2015-02-01
The beauty and complexity of the shapes and dynamics of bubbles rising in liquid have fascinated scientists for centuries. Here we perform simulations on an initially spherical bubble starting from rest. We report that the dynamics is fully three-dimensional, and provide a broad canvas of behaviour patterns. Our phase plot in the Galilei-Eötvös plane shows five distinct regimes with sharply defined boundaries. Two symmetry-loss regimes are found: one with minor asymmetry restricted to a flapping skirt; and another with marked shape evolution. A perfect correlation between large shape asymmetry and path instability is established. In regimes corresponding to peripheral breakup and toroid formation, the dynamics is unsteady. A new kind of breakup, into a bulb-shaped bubble and a few satellite drops is found at low Morton numbers. The findings are of fundamental and practical relevance. It is hoped that experimenters will be motivated to check our predictions.
Dynamics of an initially spherical bubble rising in quiescent liquid.
Tripathi, Manoj Kumar; Sahu, Kirti Chandra; Govindarajan, Rama
2015-02-17
The beauty and complexity of the shapes and dynamics of bubbles rising in liquid have fascinated scientists for centuries. Here we perform simulations on an initially spherical bubble starting from rest. We report that the dynamics is fully three-dimensional, and provide a broad canvas of behaviour patterns. Our phase plot in the Galilei-Eötvös plane shows five distinct regimes with sharply defined boundaries. Two symmetry-loss regimes are found: one with minor asymmetry restricted to a flapping skirt; and another with marked shape evolution. A perfect correlation between large shape asymmetry and path instability is established. In regimes corresponding to peripheral breakup and toroid formation, the dynamics is unsteady. A new kind of breakup, into a bulb-shaped bubble and a few satellite drops is found at low Morton numbers. The findings are of fundamental and practical relevance. It is hoped that experimenters will be motivated to check our predictions.
Crystal growth of drug materials by spherical crystallization
Szabó-Révész, P.; Hasznos-Nezdei, M.; Farkas, B.; Göcző, H.; Pintye-Hódi, K.; Erős, I.
2002-04-01
One of the crystal growth processes is the production of crystal agglomerates by spherical crystallization. Agglomerates of drug materials were developed by means of non-typical (magnesium aspartate) and typical (acetylsalicylic acid) spherical crystallization techniques. The growth of particle size and the spherical form of the agglomerates resulted in formation of products with good bulk density, flow, compactibility and cohesivity properties. The crystal agglomerates were developed for direct capsule-filling and tablet-making.
Spherical Location Problems with Restricted Regions and Polygonal Barriers
Dedigama Dewage, Mangalika Jayasundara
2005-01-01
This thesis investigates the constrained form of the spherical Minimax location problem and the spherical Weber location problem. Specifically, we consider the problem of locating a new facility on the surface of the unit sphere in the presence of convex spherical polygonal restricted regions and forbidden regions such that the maximum weighted distance from the new facility on the surface of the unit sphere to m existing facilities is minimized and the sum of the weighted distance from the n...
Regularised reconstruction of sound fields with a spherical microphone array
DEFF Research Database (Denmark)
Granados Corsellas, Alba; Jacobsen, Finn; Fernandez Grande, Efren
2013-01-01
Spherical near field acoustic holography with microphones mounted on a rigid spherical surface is used to reconstruct the incident sound field. However, reconstruction outside the sphere is an ill-posed inverse problem, and since this is very sensitive to the measurement noise, straightforward...... become apparent. Hence, a number of regularisation methods, including truncated singular value decomposition, standard Tikhonov, constrained Tikhonov, iterative Tikhonov, Landweber and Rutishauser, have been adapted for spherical near field acoustic holography. The accuracy of the methods is examined...
Geometric inequalities in spherically symmetric spacetimes
Csukás, Károly Z.
2017-07-01
In geometric inequalities ADM mass plays more fundamental role than the concept of quasi-local mass. This paper is to demonstrate that using the quasi-local mass some new insights can be acquired. In spherically symmetric spacetimes the Misner-Sharp mass and the concept of the Kodama vector field provides an ideal setting to the investigations of geometric inequalities. We applying the proposed new techniques to investigate the spacetimes containing black hole or cosmological horizons but we shall also apply them in context of normal bodies. Most of the previous investigations applied only the quasi-local charges and the area. Our main point is to include the quasi-local mass in the corresponding geometrical inequalities. This way we recover some known relations but new inequalities are also derived.
Stability of Spherical Vesicles in Electric Fields
2010-01-01
The stability of spherical vesicles in alternating (ac) electric fields is studied theoretically for asymmetric conductivity conditions across their membranes. The vesicle deformation is obtained from a balance between the curvature elastic energies and the work done by the Maxwell stresses. The present theory describes and clarifies the mechanisms for the four types of morphological transitions observed experimentally on vesicles exposed to ac fields in the frequency range from 500 to 2 × 107 Hz. The displacement currents across the membranes redirect the electric fields toward the membrane normal to accumulate electric charges by the Maxwell−Wagner mechanism. These accumulated electric charges provide the underlying molecular mechanism for the morphological transitions of vesicles as observed on the micrometer scale. PMID:20575588
Spherically-Convergent, Advanced-Fuel Systems
Barnes, D. C.; Nebel, R. A.; Schauer, M. M.; Umstadter, K. R.
1998-11-01
Combining nonneutral electron confinement with spherical ion convergence leads to a cm sized reactor volume with high power density.(R. A. Nebel and D. C. Barnes, Fusion Technol.), to appear (1998); D. C. Barnes and R. A. Nebel, Phys. of Plasmas 5, 2498 (1998). This concept is being investigated experimentally,(D. C. Barnes, T. B. Mitchell, and M. M. Schauer, Phys. Plasmas) 4, 1745 (1997). and results will be reported. We argue that D-D operation of such a system offers all the advantages of aneutronic fusion cycles. In particular, no breeding or large tritium inventory is required, and material problems seem tractable based on previous LWR experience. In addition the extremely small unit size leads to a massively modular system which is easily maintained and repaired, suggesting a very high availability. It may also be possible to operate such a system with low or aneutronic fuels. Preliminary work in this direction will be presented.
Effects of coating spherical iron oxide nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Milosevic, Irena; Motte, Laurence; Aoun, Bachir; Li, Tao; Ren, Yang; Sun, Chengjun; Saboungi, Marie-Louise
2017-01-01
We investigate the effect of several coatings applied in biomedical applications to iron oxide nanoparticles on the size, structure and composition of the particles. The four structural techniques employed - TEM, DLS, VSM, SAXS and EXAFS - show no significant effects of the coatings on the spherical shape of the bare nanoparticles, the average sizes or the local order around the Fe atoms. The NPs coated with hydroxylmethylene bisphosphonate or catechol have a lower proportion of magnetite than the bare and citrated ones, raising the question whether the former are responsible for increasing the valence state of the oxide on the NP surfaces and lowering the overall proportion of magnetite in the particles. VSM measurements show that these two coatings lead to a slightly higher saturation magnetization than the citrate. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazu and Dr. Federica Migliardo.
Laser Pulse Heating of Spherical Metal Particles
Directory of Open Access Journals (Sweden)
Michael I. Tribelsky
2011-12-01
Full Text Available We consider the general problem of laser pulse heating of spherical metal particles with the sizes ranging from nanometers to millimeters. We employ the exact Mie solution of the diffraction problem and solve the heat-transfer equation to determine the maximum temperature rise at the particle surface as a function of optical and thermometric parameters of the problem. Primary attention is paid to the case when the thermal diffusivity of the particle is much larger than that of the environment, as it is in the case of metal particles in fluids. We show that, in this case, for any given duration of the laser pulse, the maximum temperature rise as a function of the particle size reaches a maximum at a certain finite size of the particle. We suggest simple approximate analytical expressions for this dependence, which cover the entire parameter range of the problem and agree well with direct numerical simulations.
Simple spherical ablative-implosion model
Energy Technology Data Exchange (ETDEWEB)
Mayer, F.J.; Steele, J.T.; Larsen, J.T.
1980-06-23
A simple model of the ablative implosion of a high-aspect-ratio (shell radius to shell thickness ratio) spherical shell is described. The model is similar in spirit to Rosenbluth's snowplow model. The scaling of the implosion time was determined in terms of the ablation pressure and the shell parameters such as diameter, wall thickness, and shell density, and compared these to complete hydrodynamic code calculations. The energy transfer efficiency from ablation pressure to shell implosion kinetic energy was examined and found to be very efficient. It may be possible to attach a simple heat-transport calculation to our implosion model to describe the laser-driven ablation-implosion process. The model may be useful for determining other energy driven (e.g., ion beam) implosion scaling.
Spherical microwave confinement and ball lightning
Robinson, William Richard
This dissertation presents the results of research done on unconventional energy technologies from 1995 to 2009. The present civilization depends on an infrastructure that was constructed and is maintained almost entirely using concentrated fuels and ores, both of which will run out. Diffuse renewable energy sources rely on this same infrastructure, and hence face the same limitations. I first examined sonoluminescence directed toward fusion, but demonstrated theoretically that this is impossible. I next studied Low Energy Nuclear Reactions and developed methods for improving results, although these have not been implemented. In 2000, I began Spherical Microwave Confinement (SMC), which confines and heats plasma with microwaves in a spherical chamber. The reactor was designed and built to provide the data needed to investigate the possibility of achieving fusion conditions with microwave confinement. A second objective was to attempt to create ball lightning (BL). The reactor featured 20 magnetrons, which were driven by a capacitor bank and operated in a 0.2 s pulse mode at 2.45 GHz. These provided 20 kW to an icosahedral array of 20 antennas. Video of plasmas led to a redesign of the antennas to provide better coupling of the microwaves to the plasma. A second improvement was a grid at the base of the antennas, which provided corona electrons and an electric field to aid quick formation of plasmas. Although fusion conditions were never achieved and ball lightning not observed, experience gained from operating this basic, affordable system has been incorporated in a more sophisticated reactor design intended for future research. This would use magnets that were originally planned. The cusp geometry of the magnetic fields is suitable for electron cyclotron resonance in the same type of closed surface that in existing reactors has generated high-temperature plasmas. Should ball lightning be created, it could be a practical power source with nearly ideal
Explosive fragmentation of liquids in spherical geometry
Milne, A.; Longbottom, A.; Frost, D. L.; Loiseau, J.; Goroshin, S.; Petel, O.
2017-05-01
Rapid acceleration of a spherical shell of liquid following central detonation of a high explosive causes the liquid to form fine jets that are similar in appearance to the particle jets that are formed during explosive dispersal of a packed layer of solid particles. Of particular interest is determining the dependence of the scale of the jet-like structures on the physical parameters of the system, including the fluid properties (e.g., density, viscosity, and surface tension) and the ratio of the mass of the liquid to that of the explosive. The present paper presents computational results from a multi-material hydrocode describing the dynamics of the explosive dispersal process. The computations are used to track the overall features of the early stages of dispersal of the liquid layer, including the wave dynamics, and motion of the spall and accretion layers. The results are compared with new experimental results of spherical charges surrounded by a variety of different fluids, including water, glycerol, ethanol, and vegetable oil, which together encompass a significant range of fluid properties. The results show that the number of jet structures is not sensitive to the fluid properties, but primarily dependent on the mass ratio. Above a certain mass ratio of liquid fill-to-explosive burster ( F / B), the number of jets is approximately constant and consistent with an empirical model based on the maximum thickness of the accretion layer. For small values of F / B, the number of liquid jets is reduced, in contrast with explosive powder dispersal, where small F / B yields a larger number of particle jets. A hypothetical explanation of these features based on the nucleation of cavitation is explored numerically.
ICPP: Results from the MAST Spherical Tokamak
Sykes, Alan
2000-10-01
The MAST (Mega-Amp Spherical Tokamak) experiment is now fully operational, producing 1MA plasmas with MW level auxiliary heating from Neutral Beam Injection and 60GHz Electron Cyclotron Resonance Heating. Central electron and ion temperatures are both of order 1keV (measured by 30-point Thomson Scattering, Neutral Particle Analyzer and Charge-Exchange spectroscopy respectively). Following boronisation, the Greenwald density limit has been exceeded in double-null divertor discharges by 50operation has been achieved in both Ohmic and NBI heated plasmas. In addition to conventional plasma induction, MAST can employ the `merging-compression' scheme (pioneered on START) producing initial spherical tokamak plasmas of up to 0.5MA without use of flux from the central solenoid. The central solenoid can then be applied to further increase the current at ramp rates of up to 13MA/s; plasma current of 1MA is reached at only one-half of the full solenoid swing. Studies of strike point power loading in both Ohmic and beam heated plasmas have confirmed the result from START that the fraction of power loading on the inboard strike point is lower than predicted from simple models. Comprehensive arrays of halo detectors indicate tolerable levels of halo currents with low asymmetries; an encouraging result for the ST concept, and providing key data to test models. Results from MAST will be used both to extend the conventional tokamak database, and to determine the potential of the ST as a route to fusion power in its own right. Acknowledgement: this work is funded jointly by the UK Department of Trade and Industry and EURATOM. The NBI equipment is on loan from ORNL, the NPA from PPPL.
Dynamical systems and spherically symmetric cosmological models
He, Yanjing
2006-06-01
In this thesis we present a study of the timelike self-similar spherically symmetric cosmological models with two scalar fields with exponential potentials. We first define precisely the timelike self-similar spherically symmetric (TSS) spacetimes. We write the TSS metric in a conformally isometric form in a coordinate system adapted to the geometry of the spacetime manifold. In this coordinate system, both the metric functions of the TSS spacetimes and the potential functions of the scalar fields can be simplified to four undetermined functions of a single coordinate. As a result, the Einstein field equations reduce to an autonomous system of first-order ODEs and polynomial constraints in terms of these undetermined functions. By introducing new bounded variables as well as a new independent variable and solving the constraints, we are able to apply the theory of dynamical systems to study the properties of the TSS solutions. By finding invariant sets and associated monotonic functions, by applying the LaSalle Invariance Principle and the Monotonicity Principle, by applying the [straight phi] t -connected property of a limit set, and using other theorems, we prove that all of the TSS trajectories are heteroclinic trajectories. In addition, we conduct numerical simulations to confirm and support the qualitative analysis. We obtain all possible types of TSS solutions, by analyzing the qualitative behavior of the original system of ODES from those of the reduced one. We obtain asymptotic expressions for the TSS solutions (e.g., the asymptotic expressions for the metric functions, the source functions and the Ricci scalar). In particular, self-similar flat Friedmann-Robertson-Walker spacetimes are examined in order to obtain insights into the issues related to the null surface in general TSS spacetimes in these coordinates. A discussion of the divergence of the spacetime Ricci scalar and the possible extension of the TSS solutions across the null boundary is presented
Measurement of Turbulence Modulation by Non-Spherical Particles
DEFF Research Database (Denmark)
Mandø, Matthias; Rosendahl, Lasse
2010-01-01
The change in the turbulence intensity of an air jet resulting from the addition of particles to the flow is measured using Laser Doppler Anemometry. Three distinct shapes are considered: the prolate spheroid, the disk and the sphere. Measurements of the carrier phase and particle phase velocities......, the particle mass flow and the integral length scale of the flow. The expression developed on basis of spherical particles only is applied on the data for the non-spherical particles. The results suggest that non-spherical particles attenuate the carrier phase turbulence significantly more than spherical...
A multiball read-out for the spherical proportional counter
Giganon, A.; Giomataris, I.; Gros, M.; Katsioulas, I.; Navick, X. F.; Tsiledakis, G.; Savvidis, I.; Dastgheibi-Fard, A.; Brossard, A.
2017-12-01
We present a novel concept of proportional gas amplification for the read-out of the spherical proportional counter. The standard single-ball read-out presents limitations for large diameter spherical detectors and high-pressure operations. We have developed a multi-ball read-out system which consists of several balls placed at a fixed distance from the center of the spherical vessel. Such a module can tune the volume electric field at the desired value and can also provide detector segmentation with individual ball read-out. In the latter case, the large volume of the vessel becomes a spherical time projection chamber with 3D capabilities.
Investigation of spherical and concentric mechanism of compound droplets
Directory of Open Access Journals (Sweden)
Meifang Liu
2016-07-01
Full Text Available Polymer shells with high sphericity and uniform wall thickness are always needed in the inertial confined fusion (ICF experiments. Driven by the need to control the shape of water-in-oil (W1/O compound droplets, the effects of the density matching level, the interfacial tension and the rotation speed of the continuing fluid field on the sphericity and wall thickness uniformity of the resulting polymer shells were investigated and the spherical and concentric mechanisms were also discussed. The centering of W1/O compound droplets, the location and movement of W1/O compound droplets in the external phase (W2 were significantly affected by the density matching level of the key stage and the rotation speed of the continuing fluid field. Therefore, by optimizing the density matching level and rotation speed, the batch yield of polystyrene (PS shells with high sphericity and uniform wall thickness increased. Moreover, the sphericity also increased by raising the oil/water (O/W2 interfacial tension, which drove a droplet to be spherical. The experimental results show that the spherical driving force is from the interfacial tension affected by the two relative phases, while the concentric driving force, as a resultant force, is not only affected by the three phases, but also by the continuing fluid field. The understanding of spherical and concentric mechanism can provide some guidance for preparing polymer shells with high sphericity and uniform wall thickness.
Low-Q Electrically Small Spherical Magnetic Dipole Antennas
DEFF Research Database (Denmark)
Kim, Oleksiy S.
2010-01-01
Three novel electrically small antenna configurations radiating a TE10 spherical mode corresponding to a magnetic dipole are presented and investigated: multiarm spherical helix (MSH) antenna, spherical split ring resonator (S-SRR) antenna, and spherical split ring (SSR) antenna. All three antennas...... are self-resonant, with the input resistance tuned to 50 ohms by an excitation curved dipole/monopole. A prototype of the SSR antenna has been fabricated and measured, yielding results that are consistent with the numerical simulations. Radiation quality factors (Q) of these electrically small antennas (in...
Directory of Open Access Journals (Sweden)
Michael A. Sprague
1999-01-01
Full Text Available The title problem is solved through extension of a method previously formulated for plane step-wave excitation, which employs generalized Fourier series augmented by partial closure of those series at early time. The extension encompasses both plane and spherical incident waves with step-exponential pressure profiles. The effects of incident-wave curvature and profile decay rate on response behavior are examined. A method previously developed for assessing the discrepancy between calculated and measured response histories is employed to evaluate the convergence of the truncated series solutions. Also studied is the performance of doubly-asymptotic approximations. Finally, the efficacy of modified Cesàro summation for improving the convergence of series solutions is examined. The documented computer program that produced the numerical results appearing in this paper, SPHSHK/MODSUM, may be down-loaded from the Web site http://saviac.xservices.com.
Spherical-shell boundaries for two-dimensional compressible convection in a star
Pratt, J.; Baraffe, I.; Goffrey, T.; Geroux, C.; Viallet, M.; Folini, D.; Constantino, T.; Popov, M.; Walder, R.
2016-10-01
Context. Studies of stellar convection typically use a spherical-shell geometry. The radial extent of the shell and the boundary conditions applied are based on the model of the star investigated. We study the impact of different two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from an established one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone representative of a young low-mass star, like our sun at 106 years of age. Aims: We analyze how the radial extent of the spherical shell changes the convective dynamics that result in the deep interior of the young sun model, far from the surface. In the near-surface layers, simple small-scale convection develops from the profiles of temperature and density. A central radiative zone below the convection zone provides a lower boundary on the convection zone. The inclusion of either of these physically distinct layers in the spherical shell can potentially affect the characteristics of deep convection. Methods: We perform hydrodynamic implicit large eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over tens or even hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: To measure the impact of the spherical-shell geometry and our treatment of boundaries, we evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional stellar evolution calculations, so that our results are focused toward studies exploiting the so
Chong, Shaokun; Wu, Yifang; Chen, Yuanzhen; Shu, Chengyong; Liu, Yongning
2017-07-01
Serious decay of capacity and voltage for Li-rich layered cathode materials restrict their commercial application for Li-ion batteries. In this paper, a spherical core-shell structure, Li1.2Ni0.2Mn0.6O2@Li1.2Ni0.4Mn0.4O2 was in-situ prepared using hydrothermal method. SEM images as well as the analysis with XPS and EDS verified that the core-shell structure grows well. Electrochemical properties showed that the merits of the both materials have been preserved for high capacity of core material and high voltage as well as superior cycling stability of shell material. C/S-1/1 sample, whose mass proportion of core to shell is 1:1, exhibits the initial discharge capacity of 218 mAh·g-1 with the highest operating voltage of 3.763 V at 0.1C between 2.0 and 4.8 V, splendid cycling stability with the capacity retention of 93.1% and high voltage retention value of 3.335 V after 100 cycles. The improvement of electrochemical performances are attributed to the stable Li1.2Ni0.4Mn0.4O2 protective shell, which is beneficial to improve the electrochemical kinetics, mitigate the morphology evolution and retard the layered-spinel phase transition by restraining the release of O2 and weakening the electrode-electrolyte interfacial reaction.
Acoustic radiation force control: Pulsating spherical carriers.
Rajabi, Majid; Mojahed, Alireza
2018-02-01
The interaction between harmonic plane progressive acoustic beams and a pulsating spherical radiator is studied. The acoustic radiation force function exerted on the spherical body is derived as a function of the incident wave pressure and the monopole vibration characteristics (i.e., amplitude and phase) of the body. Two distinct strategies are presented in order to alter the radiation force effects (i.e., pushing and pulling states) by changing its magnitude and direction. In the first strategy, an incident wave field with known amplitude and phase is considered. It is analytically shown that the zero- radiation force state (i.e., radiation force function cancellation) is achievable for specific pulsation characteristics belong to a frequency-dependent straight line equation in the plane of real-imaginary components (i.e., Nyquist Plane) of prescribed surface displacement. It is illustrated that these characteristic lines divide the mentioned displacement plane into two regions of positive (i.e., pushing) and negative (i.e., pulling) radiation forces. In the second strategy, the zero, negative and positive states of radiation force are obtained through adjusting the incident wave field characteristics (i.e., amplitude and phase) which insonifies the radiator with prescribed pulsation characteristics. It is proved that zero radiation force state occurs for incident wave pressure characteristics belong to specific frequency-dependent circles in Nyquist plane of incident wave pressure. These characteristic circles divide the Nyquist plane into two distinct regions corresponding to positive (out of circles) and negative (in the circles) values of radiation force function. It is analytically shown that the maximum amplitude of negative radiation force is exactly equal to the amplitude of the (positive) radiation force exerted upon the sphere in the passive state, by the same incident field. The developed concepts are much more deepened by considering the required
Characterizing Student Mathematics Teachers' Levels of Understanding in Spherical Geometry
Guven, Bulent; Baki, Adnan
2010-01-01
This article presents an exploratory study aimed at the identification of students' levels of understanding in spherical geometry as van Hiele did for Euclidean geometry. To do this, we developed and implemented a spherical geometry course for student mathematics teachers. Six structured, "task-based interviews" were held with eight student…
Cylindrical and spherical dust-acoustic wave modulations in dusty ...
Indian Academy of Sciences (India)
The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distributions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified nonlinear ...
Effect of the spherical Earth on a simple pendulum
Burko, Lior M.
2003-01-01
We consider the period of a simple pendulum in the gravitational field of the spherical Earth. Effectively, gravity is enhanced compared with the often used flat Earth approximation, such that the period of the pendulum is shortened. We discuss the flat Earth approximation, and show when the corrections due to the spherical Earth may be of interest.
Spherical dust acoustic solitary waves with two temperature ions
Eslami, Esmaeil
2014-01-01
The nonlinear dust acoustic waves in unmagnetized dusty plasma which consists of two temperature Boltzmann distributed ions and Boltzmann distributed electrons in spherical dimension investigated and obtained spherical Kadomtsev Petviashvili (SKP) equation and shown that the dust acoustic solitary wave can exist in the SKP equation.
Rapid Prototyping of Electrically Small Spherical Wire Antennas
DEFF Research Database (Denmark)
Kim, Oleksiy S.
2014-01-01
It is shown how modern rapid prototyping technologies can be applied for quick and inexpensive, but still accurate, fabrication of electrically small wire antennas. A well known folded spherical helix antenna and a novel spherical zigzag antenna have been fabricated and tested, exhibiting the imp...
demonstrating close-packing of atoms using spherical bubble gums
African Journals Online (AJOL)
Admin
ABSTRACT: In this paper, the use of spherical bubble gums (Gum Balls) to demonstrate the close-packing of atoms and ions is presented. Spherical bubble gums having distinctive colours were used to illustrate the different layers in variety of crystalline packing and the formation of tetrahedral and octahedral holes.
Development of a spherical aerial vehicle for urban search
Hou, Kang; Sun, Hanxu; Jia, Qingxuan; Zhang, Yanheng
2014-06-01
With the ability to provide close surveillance in narrow space or urban areas, spherical aerial vehicles have been of great interest to many scholars and researchers. The spherical aerial vehicle offers substantial design advantages over the conventional small aerial vehicles. As a kind of small aerial vehicles, spherical aerial vehicle is presented in this paper. Firstly, the unique structure of spherical aerial vehicle is presented in detail. And then as the key component of the spherical aerial vehicle, the meshed spherical shell is analyzed. The shell is made of carbon fiber and is used to protect the inner devices, so the deformation of the shell is analyzed and simulated. Then the experimental results verify the above analysis and the composite carbon fiber material makes the mesh spherical shell small deformation. Considering the whole vehicle has a shell outside, the lift affect of the meshed spherical shell is analyzed. The simulation and experiment results are basically consistent with theoretical analysis, and the impact of the meshed shell has small resistance for the airflow through the sphere.
Some spherical analysis related to the pairs (U (n), Hn)
Indian Academy of Sciences (India)
In this paper, we define the normalized spherical transform associated with the generalized Gelfand pair ( U ( p , q ) , H n ) , where H n is the Heisenberg group 2 + 1-dimensional and + = . We show that the normalized spherical transform F ( f ) of a Schwartz function on H n restricted to the spectrum of the Gelfand ...
Calculated scan characteristics of a large spherical reflector antenna
Agrawal, P. K.; Croswell, W. F.; Kauffman, J. F.
1979-01-01
A previously published numerical method to calculate the radiation properties of parabolic reflectors has been modified to also include very large spherical reflectors. The method has been verified by comparing the calculated and the measured results for a 120-wavelength spherical reflector.
Cylindrical and spherical dust-acoustic wave modulations in dusty ...
Indian Academy of Sciences (India)
Abstract. The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distribu- tions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified ...
On spherically symmetric singularity-free models in relativistic ...
Indian Academy of Sciences (India)
These observations led to the search of spherically symmetric singularity-free cosmo- logical models with a perfect fluid source characterized by isotropic pressure This search resulted in construction of two spherically symmetric singularity-free relativistic cosmo- logical models, describing universes filled with non-adiabatic ...
A Robust Solution of the Spherical Burmester Problem
DEFF Research Database (Denmark)
Angeles, Jorge; Bai, Shaoping
2010-01-01
The problem of spherical four-bar linkage synthesis is revisited in this paper. The work is aimed at developing a robust synthesis method by taking into account both the formulation and the solution method. In addition, the synthesis of linkages with spherical prismatic joints is considered...
Creep stresses in a spherical shell under steady state temperature
Verma, Gaurav; Rana, Puneet
2017-10-01
The paper investigates the problem of creep of a spherical structure under the influence of steady state temperature. The problem of creep in spherical shell is solved by using the concept of generalized strain measures and transition hypothesis given by Seth. The problem has reduced to non-linear differential equation for creep transition. This paper deals with the non-linear behaviour of spherical shell under thermal condition. The spherical shell structures are easily vulnerable to creep, shrinkage and thermal effects; a thorough understanding of their time-dependent behaviour has been fully established. The paper aims to provide thermal creep analysis to enhance the effective design and long life of shells, and a theoretical model is developed for calculating creep stresses and strains in a spherical shell with purpose. Results obtained for the problem are depicted graphically.
Theory and applications of spherical microphone array processing
Jarrett, Daniel P; Naylor, Patrick A
2017-01-01
This book presents the signal processing algorithms that have been developed to process the signals acquired by a spherical microphone array. Spherical microphone arrays can be used to capture the sound field in three dimensions and have received significant interest from researchers and audio engineers. Algorithms for spherical array processing are different to corresponding algorithms already known in the literature of linear and planar arrays because the spherical geometry can be exploited to great beneficial effect. The authors aim to advance the field of spherical array processing by helping those new to the field to study it efficiently and from a single source, as well as by offering a way for more experienced researchers and engineers to consolidate their understanding, adding either or both of breadth and depth. The level of the presentation corresponds to graduate studies at MSc and PhD level. This book begins with a presentation of some of the essential mathematical and physical theory relevant to ...
Hu, Jun; Dong, Yuancai; Pastorin, Giorgia; Ng, Wai Kiong; Tan, Reginald B. H.
2013-04-01
The aim of this study was to produce micron-sized spherical agglomerates of pure drug nanoparticles to achieve improved aerosol performance in dry powder inhalers (DPIs). Sodium cromoglicate was chosen as the model drug. Pure drug nanoparticles were prepared through a bottom-up particle formation process, liquid antisolvent precipitation, and then rapidly agglomerated into porous spherical microparticles by immediate (on-line) spray drying. Nonporous spherical drug microparticles with similar geometric size distribution were prepared by conventional spray drying of the aqueous drug solution, which together with the mechanically micronized drug particles were used as the control samples. The three samples were characterized by field emission scanning electron microscopy, laser diffraction, Brunauer-Emmett-Teller analysis, density measurement, powder X-ray diffraction, and in vitro aerosol deposition measurement with a multistage liquid impinger. It was found that drug nanoparticles with a diameter of 100 nm were precipitated and agglomerated into highly porous spherical microparticles with a volume median diameter ( D 50 %) of 2.25 ± 0.08 μm and a specific surface area of 158.63 ± 3.27 m2/g. In vitro aerosol deposition studies showed the fine particle fraction of such spherical agglomerates of drug nanoparticles was increased by more than 50 % in comparison with the control samples, demonstrating significant improvements in aerosol performance. The results of this study indicated the potential of the combined particle engineering process of liquid antisolvent precipitation followed by immediate (on-line) spray drying in the development of novel DPI drug products with improved aerosol performance.
Effects of coating spherical iron oxide nanoparticles.
Milosevic, Irena; Motte, Laurence; Aoun, Bachir; Li, Tao; Ren, Yang; Sun, Chengjun; Saboungi, Marie-Louise
2017-01-01
We investigate the effect of several coatings applied in biomedical applications to iron oxide nanoparticles on the size, structure and composition of the particles. The four structural techniques employed - TEM, DLS, VSM, SAXS and EXAFS - show no significant effects of the coatings on the spherical shape of the bare nanoparticles, the average sizes or the local order around the Fe atoms. The NPs coated with hydroxylmethylene bisphosphonate or catechol have a lower proportion of magnetite than the bare and citrated ones, raising the question whether the former are responsible for increasing the valence state of the oxide on the NP surfaces and lowering the overall proportion of magnetite in the particles. VSM measurements show that these two coatings lead to a slightly higher saturation magnetization than the citrate. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.
Spherical Process Models for Global Spatial Statistics
Jeong, Jaehong
2017-11-28
Statistical models used in geophysical, environmental, and climate science applications must reflect the curvature of the spatial domain in global data. Over the past few decades, statisticians have developed covariance models that capture the spatial and temporal behavior of these global data sets. Though the geodesic distance is the most natural metric for measuring distance on the surface of a sphere, mathematical limitations have compelled statisticians to use the chordal distance to compute the covariance matrix in many applications instead, which may cause physically unrealistic distortions. Therefore, covariance functions directly defined on a sphere using the geodesic distance are needed. We discuss the issues that arise when dealing with spherical data sets on a global scale and provide references to recent literature. We review the current approaches to building process models on spheres, including the differential operator, the stochastic partial differential equation, the kernel convolution, and the deformation approaches. We illustrate realizations obtained from Gaussian processes with different covariance structures and the use of isotropic and nonstationary covariance models through deformations and geographical indicators for global surface temperature data. To assess the suitability of each method, we compare their log-likelihood values and prediction scores, and we end with a discussion of related research problems.
The Spherical Tokamak MEDUSA for Costa Rica
Ribeiro, Celso; Vargas, Ivan; Guadamuz, Saul; Mora, Jaime; Ansejo, Jose; Zamora, Esteban; Herrera, Julio; Chaves, Esteban; Romero, Carlos
2012-10-01
The former spherical tokamak (ST) MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, Rphysics /technical related issues which will help all tasks of the very low aspect ratio stellarator SCR-1(A≡R/>=3.6, under design[2]) and also the ongoing activities in low temperature plasmas. Courses in plasma physics at undergraduate and post-graduate joint programme levels are regularly conducted. The scientific programme is intend to clarify several issues in relevant physics for conventional and mainly STs, including transport, heating and current drive via Alfv'en wave, and natural divertor STs with ergodic magnetic limiter[3,4]. [1] G.D.Garstka, PhD thesis, University of Wisconsin at Madison, 1997 [2] L.Barillas et al., Proc. 19^th Int. Conf. Nucl. Eng., Japan, 2011 [3] C.Ribeiro et al., IEEJ Trans. Electrical and Electronic Eng., 2012(accepted) [4] C.Ribeiro et al., Proc. 39^th EPS Conf. Contr. Fusion and Plasma Phys., Sweden, 2012
A spherical cavity model for quadrupolar dielectrics
Dimitrova, Iglika M.; Slavchov, Radomir I.; Ivanov, Tzanko; Mosbach, Sebastian
2016-03-01
The dielectric properties of a fluid composed of molecules possessing both dipole and quadrupole moments are studied based on a model of the Onsager type (molecule in the centre of a spherical cavity). The dielectric permittivity ɛ and the macroscopic quadrupole polarizability αQ of the fluid are related to the basic molecular characteristics (molecular dipole, polarizability, quadrupole, quadrupolarizability). The effect of αQ is to increase the reaction field, to bring forth reaction field gradient, to decrease the cavity field, and to bring forth cavity field gradient. The effects from the quadrupole terms are significant in the case of small cavity size in a non-polar liquid. The quadrupoles in the medium are shown to have a small but measurable effect on the dielectric permittivity of several liquids (Ar, Kr, Xe, CH4, N2, CO2, CS2, C6H6, H2O, CH3OH). The theory is used to calculate the macroscopic quadrupolarizabilities of these fluids as functions of pressure and temperature. The cavity radii are also determined for these liquids, and it is shown that they are functions of density only. This extension of Onsager's theory will be important for non-polar solutions (fuel, crude oil, liquid CO2), especially at increased pressures.
Scaling regimes in spherical shell rotating convection
Gastine, T; Aubert, J
2016-01-01
Rayleigh-B\\'enard convection in rotating spherical shells can be considered as a simplified analogue of many astrophysical and geophysical fluid flows. Here, we use three-dimensional direct numerical simulations to study this physical process. We construct a dataset of more than 200 numerical models that cover a broad parameter range with Ekman numbers spanning $3\\times 10^{-7} \\leq E \\leq 10^{-1}$, Rayleigh numbers within the range $10^3 < Ra < 2\\times 10^{10}$ and a Prandtl number unity. We investigate the scaling behaviours of both local (length scales, boundary layers) and global (Nusselt and Reynolds numbers) properties across various physical regimes from onset of rotating convection to weakly-rotating convection. Close to critical, the convective flow is dominated by a triple force balance between viscosity, Coriolis force and buoyancy. For larger supercriticalities, a subset of our numerical data approaches the asymptotic diffusivity-free scaling of rotating convection $Nu\\sim Ra^{3/2}E^{2}$ in ...
LoVerde, Marilena
2014-10-01
The abundance of massive dark matter halos hosting galaxy clusters provides an important test of the masses of relic neutrino species. The dominant effect of neutrino mass is to lower the typical amplitude of density perturbations that eventually form halos, but for neutrino masses ≳0.4 eV the threshold for halo formation can be changed significantly as well. We study the spherical collapse model for halo formation in cosmologies with neutrino masses in the range mνi=0.05-1 eV and find that halo formation is differently sensitive to Ων and mν. That is, different neutrino hierarchies with a common Ων are in principle distinguishable. The added sensitivity to mν is small but potentially important for scenarios with heavier sterile neutrinos. Massive neutrinos cause the evolution of density perturbations to be scale dependent at high redshift which complicates the usual mapping between the collapse threshold and halo abundance. We propose one way of handling this and compute the correction to the halo mass function within this framework. For ∑mνi≲0.3 eV, our prescription for the halo abundance is only ≲15% different than the standard calculation. However for larger neutrino masses the differences approach 50-100% which, if verified by simulations, could alter neutrino mass constraints from cluster abundance.
Drop impact on spherical soft surfaces
Chen, Simeng; Bertola, Volfango
2017-08-01
The impact of water drops on spherical soft surfaces is investigated experimentally through high-speed imaging. The effect of a convex compliant surface on the dynamics of impacting drops is relevant to various applications, such as 3D ink-jet printing, where drops of fresh material impact on partially cured soft substrates with arbitrary shape. Several quantities which characterize the morphology of impacting drops are measured through image-processing, including the maximum and minimum spreading angles, length of the wetted curve, and dynamic contact angle. In particular, the dynamic contact angle is measured using a novel digital image-processing scheme based on a goniometric mask, which does not require edge fitting. It is shown that the surface with a higher curvature enhances the retraction of the spreading drop; this effect may be due to the difference of energy dissipation induced by the curvature of the surface. In addition, the impact parameters (elastic modulus, diameter ratio, and Weber number) are observed to significantly affect the dynamic contact angle during impact. A quantitative estimation of the deformation energy shows that it is significantly smaller than viscous dissipation.
A nonlinear elasticity phantom containing spherical inclusions
Pavan, Theo Z.; Madsen, Ernest L.; Frank, Gary R.; Jiang, Jingfeng; Carneiro, Antonio A. O.; Hall, Timothy J.
2012-08-01
The strain image contrast of some in vivo breast lesions changes with increasing applied load. This change is attributed to differences in the nonlinear elastic properties of the constituent tissues suggesting some potential to help classify breast diseases by their nonlinear elastic properties. A phantom with inclusions and long-term stability is desired to serve as a test bed for nonlinear elasticity imaging method development, testing, etc. This study reports a phantom designed to investigate nonlinear elastic properties with ultrasound elastographic techniques. The phantom contains four spherical inclusions and was manufactured from a mixture of gelatin, agar and oil. The phantom background and each of the inclusions have distinct Young's modulus and nonlinear mechanical behavior. This phantom was subjected to large deformations (up to 20%) while scanning with ultrasound, and changes in strain image contrast and contrast-to-noise ratio between inclusion and background, as a function of applied deformation, were investigated. The changes in contrast over a large deformation range predicted by the finite element analysis (FEA) were consistent with those experimentally observed. Therefore, the paper reports a procedure for making phantoms with predictable nonlinear behavior, based on independent measurements of the constituent materials, and shows that the resulting strain images (e.g., strain contrast) agree with that predicted with nonlinear FEA.
Strike Point Control for the National Spherical Torus Experiment (NSTX)
Energy Technology Data Exchange (ETDEWEB)
Kolemen, E.; Gates, D. A.; Rowley, C. W.; Kasdin, N. J.; Kallman, J.; Gerhardt, S.; Soukhanovskii, V.; Mueller, D.
2010-07-09
This paper presents the first control algorithm for the inner and outer strike point position for a Spherical Torus (ST) fusion experiment and the performance analysis of the controller. A liquid lithium divertor (LLD) will be installed on NSTX which is believed to provide better pumping than lithium coatings on carbon PFCs. The shape of the plasma dictates the pumping rate of the lithium by channeling the plasma to LLD, where strike point location is the most important shape parameter. Simulations show that the density reduction depends on the proximity of strike point to LLD. Experiments were performed to study the dynamics of the strike point, design a new controller to change the location of the strike point to desired location and stabilize it. The most effective PF coils in changing inner and outer strike points were identified using equilibrium code. The PF coil inputs were changed in a step fashion between various set points and the step response of the strike point position was obtained. From the analysis of the step responses, PID controllers for the strike points were obtained and the controller was tuned experimentally for better performance. The strike controller was extended to include the outer-strike point on the inner plate to accommodate the desired low outer-strike points for the experiment with the aim of achieving "snowflake" divertor configuration in NSTX.
Spherical Accretion in a Uniformly Expanding Universe
Colpi, Monica; Shapiro, Stuart L.; Wasserman, Ira
1996-10-01
We consider spherically symmetric accretion of material from an initially homogeneous, uniformly expanding medium onto a Newtonian point mass M. The gas is assumed to evolve adiabatically with a constant adiabatic index F, which we vary over the range Γ ɛ [1, 5/3]. We use a one-dimensional Lagrangian code to follow the spherical infall of material as a function of time. Outflowing shells gravitationally bound to the point mass fall back, giving rise to a inflow rate that, after a rapid rise, declines as a power law in time. If there were no outflow initially, Bondi accretion would result, with a characteristic accretion time-scale ta,0. For gas initially expanding at a uniform rate, with a radial velocity U = R/t0 at radius R, the behavior of the flow at all subsequent times is determined by ta,0/t0. If ta,0/t0 ≫ 1, the gas has no time to respond to pressure forces, so the fluid motion is nearly collisionless. In this case, only loosely bound shells are influenced by pressure gradients and are pushed outward. The late-time evolution of the mass accretion rate Mdot is close to the result for pure dust, and we develop a semianalytic model that accurately accounts for the small effect of pressure gradients in this limit. In the opposite regime, ta,0/t0 ≪ 1, pressure forces significantly affect the motion of the gas. At sufficiently early times, t ≤ ttr, the flow evolved along a sequence of quasi-stationary, Bondi-like states, with a time-dependent Mdot determined by the slowly varying gas density at large distances. However, at later times, t ≥ ttr, the fluid flow enters a dustllke regime; ttr is the time when the instantaneous Bondi accretion radius reaches the marginally bound radius. The transition time ttr depends sensitively on ta,0/t0 for a given Γ and can greatly exceed t0. We show that there exists a critical value Γ = 11/9, below which the transition from fluid to ballistic motion disappears. As one application of our calculations, we consider the
Fluid diversion and sweep improvement with chemical gels in oil recovery processes
Energy Technology Data Exchange (ETDEWEB)
Seright, F.S.; Martin, F.D.
1991-04-01
The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gas floods. The work will establish how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. This report describes progress made during the first year of this three-year study the following tasks: gel screening studies; impact of gelation pH, rock permeability, and lithology on the performance of a monomer-based gel; preliminary study of the permeability reduction for CO{sub 2} and water using a resorcinol-formaldehyde gel; preliminary study of permeability reduction for oil and water using a resorcinol-formaldehyde gel; rheology of Cr(III)-xanthan gel and gelants in porous media; impact of diffusion, dispersion, and viscous fingering on gel placement in injection wells; examination of flow-profile changes for field applications of gel treatments in injection wells; and placement of gels in production wells. Papers have been indexed separately for inclusion on the data base.
Error analysis of terrestrial laser scanning data by means of spherical statistics and 3D graphs.
Cuartero, Aurora; Armesto, Julia; Rodríguez, Pablo G; Arias, Pedro
2010-01-01
This paper presents a complete analysis of the positional errors of terrestrial laser scanning (TLS) data based on spherical statistics and 3D graphs. Spherical statistics are preferred because of the 3D vectorial nature of the spatial error. Error vectors have three metric elements (one module and two angles) that were analyzed by spherical statistics. A study case has been presented and discussed in detail. Errors were calculating using 53 check points (CP) and CP coordinates were measured by a digitizer with submillimetre accuracy. The positional accuracy was analyzed by both the conventional method (modular errors analysis) and the proposed method (angular errors analysis) by 3D graphics and numerical spherical statistics. Two packages in R programming language were performed to obtain graphics automatically. The results indicated that the proposed method is advantageous as it offers a more complete analysis of the positional accuracy, such as angular error component, uniformity of the vector distribution, error isotropy, and error, in addition the modular error component by linear statistics.
Simulating The Prompt Electromagnetic Pulse In 3D Using Vector Spherical Harmonics
Friedman, Alex; Cohen, Bruce I.; Eng, Chester D.; Farmer, William A.; Grote, David P.; Kruger, Hans W.; Larson, David J.
2017-10-01
We describe a new, efficient code for simulating the prompt electromagnetic pulse. In SHEMP (``Spherical Harmonic EMP''), we extend to 3-D the methods pioneered in C. Longmire's CHAP code. The geomagnetic field and air density are consistent with CHAP's assumed spherical symmetry only for narrow domains of influence about the line of sight, limiting validity to very early times. Also, we seek to model inherently 3-D situations. In CHAP and our own CHAP-lite, the independent coordinates are r (the distance from the source) and τ = t-r/c; the pulse varies slowly with r at fixed τ, so a coarse radial grid suffices. We add non-spherically-symmetric physics via a vector spherical harmonic decomposition. For each (l,m) harmonic, the radial equation is similar to that in CHAP and CHAP-lite. We present our methodology and results on model problems. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Directory of Open Access Journals (Sweden)
I. V. Makeev
2016-01-01
Full Text Available Stokes flows in cylindrical and spherical geometry are considered. Such flows are rather natural for geophysics. We derive some exact particular solutions of Stokes and continuity equations for particular dependence of viscosity and density on cylindrical coordinates. These solutions correspond to axisymmetric flows for the case when viscosity is a function of radius. We suggest exact particular solutions of Stokes and continuity equations with variable viscosity and density in spherical coordinates for the case of spherically symmetric viscosity and density distributions. We demonstrate how these solutions can be used for creation of test problems suitable for benchmarking numerical algorithms. Examples of such benchmarking are presented. The advantage of this benchmarking approach is the ability to test numerical algorithms for variable viscosity and density gradients. We suggest numerical scheme of multigrid algorithm for solving Stokes and continuity equations with variable viscosity in a spherical coordinate system. Calculations are performed on a sequence of orthogonal staggered grids. The quality of the numerical scheme was verified by comparing the numerical solution with the analytical solution of the test problem.
CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge.
Directory of Open Access Journals (Sweden)
S M A Aftab
Full Text Available The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c, the wavelength (0.25c is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil.
HFE and Spherical Cryostats MC Study
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Jason P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-09-26
The copper vessel containing the nEXO TPC is surrounded by a buffer of HFE, a liquid refrigerant with very low levels of radioactive element contamination. The HFE is contained within the cryostat’s inner vessel, which is in turn inside the outer vessel. While some HFE may be necessary for stable cooling of nEXO, it is possible that using substantially more than necessary for thermal reasons will help reduce backgrounds originating in the cryostats. Using a larger amount of HFE is accomplished by making the cryostat vessels larger. By itself, increasing the cryostat size somewhat increases the background rate, as the thickness of the cryostat wall must increase at larger sizes. However, the additional space inside the cryostat will be filled with HFE which can absorb gamma rays headed for the TPC. As a result, increasing the HFE reduces the number of backgrounds reaching the TPC. The aim of this study was to determine the relationship between HFE thickness and background rate. Ultimately, this work should support choosing a cryostat and HFE size that satisfies nEXO’s background budget. I have attempted to account for every consequence of changing the cryostat size, although naturally this remains a work in progress until a final design is achieved. At the moment, the scope of the study includes only the spherical cryostat design. This study concludes that increasing cryostat size reduces backgrounds, reaching neglible backgrounds originating from the cryostat at the largest sizes. It also shows that backgrounds originating from the inherent radioactivity of the HFE plateau quickly, so may be considered essentially fixed at any quantity of HFE.
A quantum reduction to spherical symmetry in loop quantum gravity
Directory of Open Access Journals (Sweden)
N. Bodendorfer
2015-07-01
Full Text Available Based on a recent purely geometric construction of observables for the spatial diffeomorphism constraint, we propose two distinct quantum reductions to spherical symmetry within full 3+1-dimensional loop quantum gravity. The construction of observables corresponds to using the radial gauge for the spatial metric and allows to identify rotations around a central observer as unitary transformations in the quantum theory. Group averaging over these rotations yields our first proposal for spherical symmetry. Hamiltonians of the full theory with angle-independent lapse preserve this spherically symmetric subsector of the full Hilbert space. A second proposal consists in implementing the vanishing of a certain vector field in spherical symmetry as a constraint on the full Hilbert space, leading to a close analogue of diffeomorphisms invariant states. While this second set of spherically symmetric states does not allow for using the full Hamiltonian, it is naturally suited to implement the spherically symmetric midisuperspace Hamiltonian, as an operator in the full theory, on it. Due to the canonical structure of the reduced variables, the holonomy-flux algebra behaves effectively as a one parameter family of 2+1-dimensional algebras along the radial coordinate, leading to a diagonal non-vanishing volume operator on 3-valent vertices. The quantum dynamics thus becomes tractable, including scenarios like spherically symmetric dust collapse.
Pulsar science with the Five hundred metre Aperture Spherical Telescope
Smits, R.; Lorimer, D. R.; Kramer, M.; Manchester, R.; Stappers, B.; Jin, C. J.; Nan, R. D.; Li, D.
2009-10-01
With a collecting area of 70 000 m^2, the Five hundred metre Aperture Spherical Telescope (FAST) will allow for great advances in pulsar astronomy. We have performed simulations to estimate the number of previously unknown pulsars FAST will find with its 19-beam or possibly 100-beam receivers for different survey strategies. With the 19-beam receiver, a total of 5200 previously unknown pulsars could be discovered in the Galactic plane, including about 460 millisecond pulsars (MSPs). Such a survey would take just over 200 days with eight hours survey time per day. We also estimate that, with about 80 six-hour days, a survey of M 31 and M 33 could yield 50-100 extra-Galactic pulsars. A 19-beam receiver would produce just under 500 MB of data per second and requires about 9 tera-ops to perform the major part of a real time analysis. We also simulate the logistics of high-precision timing of MSPs with FAST. Timing of the 50 brightest MSPs to a signal-to-noise of 500 would take about 24 h per epoch.
Spherical Cryogenic Hydrogen Tank Preliminary Design Trade Studies
Arnold, Steven M.; Bednarcyk, Brett A.; Collier, Craig S.; Yarrington, Phillip W.
2007-01-01
A structural analysis, sizing optimization, and weight prediction study was performed by Collier Research Corporation and NASA Glenn on a spherical cryogenic hydrogen tank. The tank consisted of an inner and outer wall separated by a vacuum for thermal insulation purposes. HyperSizer (Collier Research and Development Corporation), a commercial automated structural analysis and sizing software package was used to design the lightest feasible tank for a given overall size and thermomechanical loading environment. Weight trade studies were completed for different panel concepts and metallic and composite material systems. Extensive failure analyses were performed for each combination of dimensional variables, materials, and layups to establish the structural integrity of tank designs. Detailed stress and strain fields were computed from operational temperature changes and pressure loads. The inner tank wall is sized by the resulting biaxial tensile stresses which cause it to be strength driven, and leads to an optimum panel concept that need not be stiffened. Conversely, the outer tank wall is sized by a biaxial compressive stress field, induced by the pressure differential between atmospheric pressure and the vacuum between the tanks, thereby causing the design to be stability driven and thus stiffened to prevent buckling. Induced thermal stresses become a major sizing driver when a composite or hybrid composite/metallic material systems are used for the inner tank wall for purposes such as liners to contain the fuel and reduce hydrogen permeation.
Non-Spherical Microcapsules for Increased Core Content Volume Delivery
Oliva-Buisson, Yvette J.
2014-01-01
The goal of this project was to advance microencapsulation from the standard spherical microcapsule to a non-spherical, high-aspect ratio (HAR), elongated microcapsule. This was to be accomplished by developing reproducible methods of synthesizing or fabricating robust, non-spherical, HAR microcapsules. An additional goal of this project was to develop the techniques to the point where scale-up of these methods could be examined. Additionally, this project investigated ways to apply the microencapsulation techniques developed as part of this project to self-healing formulations.
Diffraction model of peristrophic multiplexing with spherical reference wave.
Yoshida, Shuhei; Takahata, Yosuke; Horiuchi, Shuma; Yamamoto, Manabu
2015-02-01
Multiplexing recording is a primary contributor to determining the recording density in holographic data storage. Therefore, many different kinds of recording methods have been proposed. Among them, the method that utilizes spherical waves as reference waves is characterized by the ability to enable multiplexing recording only by moving (shifting or rotating) the recording medium. In our research, we propose a theoretical diffraction model of peristrophic multiplexing with a spherical reference wave and evaluate the diffraction efficiency; this multiplexing recording method has incorporated spherical reference waves in rotation of the media. Additionally, we verify the effectiveness of the model by comparing it with experimental results.
van Gaalen, Kim W.; Jansonius, Nomdo M.; Koopmans, Steven A.; Terwee, Thom; Kooijman, Aart C.
PURPOSE: To find a contrast sensitivity test that can be used clinically to evaluate interventions aimed at minimizing spherical aberration and determine the circumstances under which these tests should be performed. SETTING: Laboratory of Experimental Ophthalmology, University of Groningen,
Directory of Open Access Journals (Sweden)
Yan Chen
2017-06-01
Full Text Available AIM: To evaluate the impact of spherical and aspherical intraocular lenses on the postoperative visual quality of age-related cataract patients using Optical Quality Analysis System (OQAS. METHODS: Seventy-four eyes with age-related cataracts were randomly divided into spherical and aspherical lens implantation groups. Best-corrected visual acuity (BCVA was measured preoperatively, one day, one week, two weeks, one month and two months after surgery. A biometric systems analysis using the OQAS objective scattering index (OSI was performed. RESULTS: There were no significant differences in visual acuity (P>0.05 before and after spherical and aspheric lens implantation. There was a negative linear correction between the OSI value and BCVA (r=-0.634, P=0.000, and positive corrections between the OSI value and the lens LOCUS III value of nucleus color (NC, nucleus opacity (NO, cortex (C and posterior lens capsular (P (r=0.704, P=0.000; r=0.514, P=0.000; r=0.276, P=0.020; r=0.417, P=0.000, respectively. OSI values of spherical vs aspherical lenses were 11.5±3.6 vs 11.8±3.4, 4.1±0.9 vs 3.3±0.8, 3.5±0.9 vs 2.7±0.7, 3.3±0.8 vs 2.6±0.7, 3.2±0.7 vs 2.5±0.8, and 3.2±0.8 vs 2.5±0.8 before and 1d, 1, 2wk, 1 and 2mo after surgery, respectively. All time points varied significantly (P<0.01 between the two groups. CONCLUSION: Aspherical IOLs does not significantly affect visual acuity compared with spherical IOLs. The OSI value, was significantly lower in the aspherical lens group compared with the spherical lens. This study shows that objective visual quality of aspheric IOLs is better than that of the spherical lens by means of OQAS biological measurement method.
Shell closure at {ital N}=164: Spherical or deformed?
Energy Technology Data Exchange (ETDEWEB)
Rigol, J. [Joint Institute for Nuclear Research, 141980 Dubna (Russia)
1997-02-01
Brenner {ital et al}. [1] recently reported the apparent evidence for a spherical shell at {ital N}=164. Some arguments are given which may make it necessary to reconsider this conclusion. {copyright} {ital 1997} {ital The American Physical Society}
Aircraft navigation and surveillance analysis for a spherical earth
2014-10-01
This memorandum addresses a fundamental function in surveillance and navigation analysis : quantifying the geometry of two or more locations relative to each other and to a spherical earth. Here, geometry refers to: (a) points (idealized lo...
Sound field reconstruciton using a spherical microphone array
DEFF Research Database (Denmark)
Fernandez Grande, Efren
2016-01-01
measurement area consisting of an array of spheres, and the sound field at any point of the source-free domain can be estimated, not being restricted to spherical surfaces. Because it is formulated as an elementary wave model, it allows for diverse solution strategies (least squares, ℓ1-norm minimization, etc......A method is presented that makes it possible to reconstruct an arbitrary sound field based on measurements with a spherical microphone array. The proposed method (spherical equivalent source method) makes use of a point source expansion to describe the sound field on the rigid spherical array, from...... which it is possible to reconstruct the sound field over a three-dimensional domain, inferring all acoustic quantities: sound pressure, particle velocity, and sound intensity. The problem is formulated using a Neumann Green's function that accounts for the presence of the rigid sphere in the medium. One...
Development of a hydrothermal method to synthesize spherical ...
African Journals Online (AJOL)
Vis spectroscopy. Through these techniques, it was found that the pure ZnSe nanoparticles have a zinc blend structure and in a spherical form with average diameter of 30 nm. KEY WORDS: ZnSe, Nanosphere, Hydrothermal, Surfactant. Bull.
Resonant vibrations and acoustic radiation of rotating spherical structures.
CSIR Research Space (South Africa)
Shatalov, M
2006-07-01
Full Text Available on nature of the modes, spheroidal or torsional and their numbers. Bryan’s factors of radiated spherical body are calculated and compared with corresponding factors of a free body....
Design considerations in the development of a spherical mobile robot
Das, Tuhin; Mukherjee, Ranjan; Yuksel, H.
2001-09-01
The design problems in the development of a spherical mobile robot are discussed in this paper. These problems include dynamics and design of the propulsion mechanism, motion planning and control problems, actuator selection and sensor placement, design and fabrication of the exo-skeleton, and other issues related to power management and computing. Each of the problems are discussed in brief and presented in relation to the spherical mobile robot currently under development at Michigan State University.
Minimum Q Electrically Small Spherical Magnetic Dipole Antenna - Theory
DEFF Research Database (Denmark)
Breinbjerg, Olav; Kim, Oleksiy S.
2009-01-01
The stored energies, radiated power, and quality factor of a magnetic-dipole antenna, consisting of a spherical electrical surface current density enclosing a magnetic core, is obtained through direct spatial integration of the internally and externally radiated field expressed in terms...... of spherical vector waves. The obtained quality factor agrees with that of Wheeler and Thal for vanishing free-space electric radius but holds also for larger radii and facilitates the optimal choice of permeability in the presence of the resonances....
Horizon Quantum Mechanics: spherically symmetric and rotating sources
Giusti, Andrea
2017-12-01
In this paper we discuss some mathematical aspects of the horizon wave-function formalism, also known in the literature as horizon quantum mechanics. In particular, first we review the structure of both the global and local formalism for static spherically symmetric sources. Then, we present an extension of the global analysis for rotating black holes and we also point out some technical diffculties that arise while attempting the local analysis for non-spherically symmetric sources.
Turbulent dynamos in spherical shell segments of varying geometrical extent
Mitra, Dhrubaditya; Tavakol, Reza; Brandenburg, Axel; Moss, David
2008-01-01
We use three-dimensional direct numerical simulations of the helically forced magnetohydrodynamic equations in spherical shell segments in order to study the effects of changes in the geometrical shape and size of the domain on the growth and saturation of large-scale magnetic fields. We inject kinetic energy along with kinetic helicity in spherical domains via helical forcing using Chandrasekhar-Kendall functions. We take perfect conductor boundary conditions for the magnetic field to ensure...
Energy Technology Data Exchange (ETDEWEB)
Alasia, F. [Dipartimento di Fisica, Universita di Milano, via Celoria 16, I-20133 Milano (Italy); Serra, L. [Departament de Fisica, Universitat de les Illes Balears, E-07071 Palma de Mallorca (Spain); Broglia, R.A. [Dipartimento di Fisica, Universita di Milano, Via Celoria 16, I-20133 Milano (Italy)]|[Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy)]|[The Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Van Giai, N. [Division de Physique Theorique, Institut de Physique Nucleaire, F-91406 Orsay Cedex (France); Lipparini, E. [Dipartimento di Fisica, Universita degli Studi di Trento, Trento, I-38050 Povo Trento (Italy)]|[Gruppo Collegato, Istituto Nationale di Fisica Nucleare, Trento I-38050 Povo Trento (Italy); Roman, H.E. [Institut fur Theoretische Physik, Universitaet Giessen, Heinrich-Buff-Ring 16, 35392 Giessen (Germany)
1995-09-15
Using realistic nonlocal pseudopotentials to describe ion-valence electron interaction, we perform self-consistent calculations of ground and excited states of spherical alkali-metal clusters within the local-density approximation. The ion pseudopotential is uniformly averaged in the cluster sphere within the proposed pseudopotential jellium model. It is found that in small clusters, pseudopotentials lead to predictions that strongly improve those of the jellium model and are very close to the results found previously with pseudo-Hamiltonians.
Alasia, F.; Serra, Ll.; Broglia, R. A.; van Giai, Nguyen; Lipparini, E.; Roman, H. E.
1995-09-01
Using realistic nonlocal pseudopotentials to describe ion-valence electron interaction, we perform self-consistent calculations of ground and excited states of spherical alkali-metal clusters within the local-density approximation. The ion pseudopotential is uniformly averaged in the cluster sphere within the proposed pseudopotential jellium model. It is found that in small clusters, pseudopotentials lead to predictions that strongly improve those of the jellium model and are very close to the results found previously with pseudo-Hamiltonians.
National Research Council Canada - National Science Library
I. V. Makeev; I. Y. Popov; I. V. Blinova
2016-01-01
.... We suggest exact particular solutions of Stokes and continuity equations with variable viscosity and density in spherical coordinates for the case of spherically symmetric viscosity and density distributions...
Sphericity estimation bias for repeated measures designs in simulation studies.
Bono, Roser; Arnau, Jaume; Blanca, María J; Alarcón, Rafael
2016-12-01
In this study, we explored the accuracy of sphericity estimation and analyzed how the sphericity of covariance matrices may be affected when the latter are derived from simulated data. We analyzed the consequences that normal and nonnormal data generated from an unstructured population covariance matrix-with low (ε = .57) and high (ε = .75) sphericity-can have on the sphericity of the matrix that is fitted to these data. To this end, data were generated for four types of distributions (normal, slightly skewed, moderately skewed, and severely skewed or log-normal), four sample sizes (very small, small, medium, and large), and four values of the within-subjects factor (K = 4, 6, 8, and 10). Normal data were generated using the Cholesky decomposition of the correlation matrix, whereas the Vale-Maurelli method was used to generate nonnormal data. The results indicate the extent to which sphericity is altered by recalculating the covariance matrix on the basis of simulated data. We concluded that bias is greater with spherical covariance matrices, nonnormal distributions, and small sample sizes, and that it increases in line with the value of K. An interaction was also observed between sample size and K: With very small samples, the observed bias was greater as the value of K increased.
Broken Ergodicity in MHD Turbulence in a Spherical Domain
Shebalin, John V.; wang, Yifan
2011-01-01
Broken ergodicity (BE) occurs in Fourier method numerical simulations of ideal, homogeneous, incompressible magnetohydrodynamic (MHD) turbulence. Although naive statistical theory predicts that Fourier coefficients of fluid velocity and magnetic field are zero-mean random variables, numerical simulations clearly show that low-wave-number coefficients have non-zero mean values that can be very large compared to the associated standard deviation. In other words, large-scale coherent structure (i.e., broken ergodicity) in homogeneous MHD turbulence can spontaneously grow out of random initial conditions. Eigenanalysis of the modal covariance matrices in the probability density functions of ideal statistical theory leads to a theoretical explanation of observed BE in homogeneous MHD turbulence. Since dissipation is minimal at the largest scales, BE is also relevant for resistive magnetofluids, as evidenced in numerical simulations. Here, we move beyond model magnetofluids confined by periodic boxes to examine BE in rotating magnetofluids in spherical domains using spherical harmonic expansions along with suitable boundary conditions. We present theoretical results for 3-D and 2-D spherical models and also present computational results from dynamical simulations of 2-D MHD turbulence on a rotating spherical surface. MHD turbulence on a 2-D sphere is affected by Coriolus forces, while MHD turbulence on a 2-D plane is not, so that 2-D spherical models are a useful (and simpler) intermediate stage on the path to understanding the much more complex 3-D spherical case.
Imperfection sensitivity of pressured buckling of biopolymer spherical shells.
Zhang, Lei; Ru, C Q
2016-06-01
Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.
Daniel J. Yelle
2017-01-01
Resorcinol-formaldehyde adhesives can reinforce stress fractures that appear from wood surface preparation. Researchers have found that applying the resorcinol-formaldehyde prepolymer, hydroxymethylated resorcinol is thought to plasticize lignin components and stabilize stress fractures through reactions with lignin subunits and hemicelluloses in wood. In this study, a...
Analysis of binning of normals for spherical harmonic cross-correlation
Larkins, Robert L.; Cree, Michael J.; Dorrington, Adrian A.
2012-03-01
Spherical harmonic cross-correlation is a robust registration technique that uses the normals of two overlapping point clouds to bring them into coarse rotational alignment. This registration technique however has a high computational cost as spherical harmonics need to be calculated for every normal. By binning the normals, the computational efficiency is improved as the spherical harmonics can be pre-computed and cached at each bin location. In this paper we evaluate the efficiency and accuracy of the equiangle grid, icosahedron subdivision and the Fibonacci spiral, an approach we propose. It is found that the equiangle grid has the best efficiency as it can perform direct binning, followed by the Fibonacci spiral and then the icosahedron, all of which decrease the computational cost compared to no binning. The Fibonacci spiral produces the highest achieved accuracy of the three approaches while maintaining a low number of bins. The number of bins allowed by the equiangle grid and icosahedron are much more restrictive than the Fibonacci spiral. The performed analysis shows that the Fibonacci spiral can perform as well as the original cross-correlation algorithm without binning, while also providing a significant improvement in computational efficiency.
Spherical tokamak Globus-M2: design, integration, construction
Minaev, V. B.; Gusev, V. K.; Sakharov, N. V.; Varfolomeev, V. I.; Bakharev, N. N.; Belyakov, V. A.; Bondarchuk, E. N.; Brunkov, P. N.; Chernyshev, F. V.; Davydenko, V. I.; Dyachenko, V. V.; Kavin, A. A.; Khitrov, S. A.; Khromov, N. A.; Kiselev, E. O.; Konovalov, A. N.; Kornev, V. A.; Kurskiev, G. S.; Labusov, A. N.; Melnik, A. D.; Mineev, A. B.; Mironov, M. I.; Miroshnikov, I. V.; Patrov, M. I.; Petrov, Yu. V.; Rozhansky, V. A.; Saveliev, A. N.; Senichenkov, I. Yu.; Shchegolev, P. B.; Shcherbinin, O. N.; Shikhovtsev, I. V.; Sladkomedova, A. D.; Solokha, V. V.; Tanchuk, V. N.; Telnova, A. Yu.; Tokarev, V. A.; Tolstyakov, S. Yu.; Zhilin, E. G.
2017-06-01
The Globus-M spherical tokamak has demonstrated practically all of the project objectives during the 15-year period of operation. The main factor limiting further progress in plasma performance is a relatively low toroidal magnetic field. The maximum toroidal magnetic field achieved on Globus-M was 0.4 T with the exception of a limited number of shots with 0.55 T, which led to damage of the toroidal field coil in 2002. The increase of the magnetic field up to 1.0 T together with the plasma current up to 0.5 MA will result in the significant enhancement of the operating parameters in the upgraded Globus-M2 machine. The experimental program will be focused on plasma heating and non-inductive current drive and will contribute to the creation of a physical and technological base for the compact fusion neutron source development. In the article a brief overview of the physical background for the machine upgrade is outlined. The current status of the project implementation is described. First experimental results on moderate magnetic field increase from 0.4 T up to 0.5 T in the existing Globus-M machine are discussed. The improvement of plasma confinement as well as enhancement of efficiency of the beam driven current is observed.
Luminescence induced by spherically focused acoustic pulses in liquids
Sankin, G. N.
2005-06-01
The determination of the phase of the bubble oscillation at the instant of light emission, which is a key issue for understanding the origin of cavitation luminescence of liquids, is discussed. The observation of luminescence in the course of the nucleation and growth of a bubble up to its collapse is performed in a bipolar wave consisting of a compression phase followed by a rarefaction phase in the regime of a two-fraction bubble cluster formation. The space-time distributions of the luminescence intensity and pressure and the dynamics of the cluster in water and a glycerin solution are investigated at the early stage of cavitation. A correlation between the maximal density of light flashes and the positive pressure pulses in the field of superposition of the initial and secondary cavitation compression waves is revealed. It is shown that the spherical focusing of acoustic pulses both away from the boundaries of the liquid and near its free surface makes it possible to compare the luminescence intensities for different rates of the pressure decrease.
Geometric Calibration of Full Spherical Panoramic Ricoh-Theta Camera
Aghayari, S.; Saadatseresht, M.; Omidalizarandi, M.; Neumann, I.
2017-05-01
A novel calibration process of RICOH-THETA, full-view fisheye camera, is proposed which has numerous applications as a low cost sensor in different disciplines such as photogrammetry, robotic and machine vision and so on. Ricoh Company developed this camera in 2014 that consists of two lenses and is able to capture the whole surrounding environment in one shot. In this research, each lens is calibrated separately and interior/relative orientation parameters (IOPs and ROPs) of the camera are determined on the basis of designed calibration network on the central and side images captured by the aforementioned lenses. Accordingly, designed calibration network is considered as a free distortion grid and applied to the measured control points in the image space as correction terms by means of bilinear interpolation. By performing corresponding corrections, image coordinates are transformed to the unit sphere as an intermediate space between object space and image space in the form of spherical coordinates. Afterwards, IOPs and EOPs of each lens are determined separately through statistical bundle adjustment procedure based on collinearity condition equations. Subsequently, ROPs of two lenses is computed from both EOPs. Our experiments show that by applying 3*3 free distortion grid, image measurements residuals diminish from 1.5 to 0.25 degrees on aforementioned unit sphere.
Shock-initiated Combustion of a Spherical Density Inhomogeneity
Haehn, Nicholas; Oakley, Jason; Rothamer, David; Anderson, Mark; Ranjan, Devesh; Bonazza, Riccardo
2010-11-01
A spherical density inhomogeneity is prepared using fuel and oxidizer at a stoichiometric ratio and Xe as a diluent that increases the overall density of the bubble mixture (55% Xe, 30% H2, 15% O2). The experiments are performed in the Wisconsin Shock Tube Laboratory in a 9.2 m vertical shock tube with a 25.4 cm x 25.4 cm square cross-section. An injector is used to generate a 5 cm diameter soap film bubble filled with the combustible mixture. The injector retracts flush into the side of the tube releasing the bubble into a state of free fall. The combustible bubble is accelerated by a planar shock wave in N2 (2.0 temperatures and pressures significantly larger than nominal conditions behind a planar shock wave, resulting in auto-ignition at the focus. Planar Mie scattering and chemiluminescence are used simultaneously to visualize the bubble morphology and combustion characteristics. During the combustion phase, both the span-wise and stream-wise lengths of the bubble are seen to increase compared to the non-combustible scenario. Additionally, smaller instabilities are observed on the upstream surface, which are absent in the non-combustible bubbles.
Physics objectives of PI3 spherical tokamak program
Howard, Stephen; Laberge, Michel; Reynolds, Meritt; O'Shea, Peter; Ivanov, Russ; Young, William; Carle, Patrick; Froese, Aaron; Epp, Kelly
2017-10-01
Achieving net energy gain with a Magnetized Target Fusion (MTF) system requires the initial plasma state to satisfy a set of performance goals, such as particle inventory (1021 ions), sufficient magnetic flux (0.3 Wb) to confine the plasma without MHD instability, and initial energy confinement time several times longer than the compression time. General Fusion (GF) is now constructing Plasma Injector 3 (PI3) to explore the physics of reactor-scale plasmas. Energy considerations lead us to design around an initial state of Rvessel = 1 m. PI3 will use fast coaxial helicity injection via a Marshall gun to create a spherical tokamak plasma, with no additional heating. MTF requires solenoid-free startup with no vertical field coils, and will rely on flux conservation by a metal wall. PI3 is 5x larger than SPECTOR so is expected to yield magnetic lifetime increase of 25x, while peak temperature of PI3 is expected to be similar (400-500 eV) Physics investigations will study MHD activity and the resistive and convective evolution of current, temperature and density profiles. We seek to understand the confinement physics, radiative loss, thermal and particle transport, recycling and edge physics of PI3.
Analysis of dark matter axion clumps with spherical symmetry
Schiappacasse, Enrico D.; Hertzberg, Mark P.
2018-01-01
Recently there has been much interest in the spatial distribution of light scalar dark matter, especially axions, throughout the universe. When the local gravitational interactions between the scalar modes are sufficiently rapid, it can cause the field to re-organize into a BEC of gravitationally bound clumps. While these clumps are stable when only gravitation is included, the picture is complicated by the presence of the axion's attractive self-interactions, which can potentially cause the clumps to collapse. Here we perform a detailed stability analysis to determine under what conditions the clumps are stable. In this paper we focus on spherical configurations, leaving aspherical configurations for future work. We identify branches of clump solutions of the axion-gravity-self-interacting system and study their stability properties. We find that clumps that are (spatially) large are stable, while clumps that are (spatially) small are unstable and may collapse. Furthermore, there is a maximum number of particles that can be in a clump. We map out the full space of solutions, which includes quasi-stable axitons, and clarify how a recent claim in the literature of a new ultra-dense branch of stable solutions rests on an invalid use of the non-relativistic approximation. We also consider repulsive self-interactions that may arise from a generic scalar dark matter candidate, finding a single stable branch that extends to arbitrary particle number.
The LBL 55-meter spherical grating monochromator at SSRL
McKinney, W. R.; Howells, M. R.; Lauritzen, T.; Chin, J.; DiGennaro, R.; Fong, E.; Gath, W.; Guigli, J.; Hogrefe, H.; Meneghetti, J.; Plate, D.; Heimann, P. A.; Terminello, L.; Ji, Z.; Shirley, D.; Senf, F.
1990-05-01
A 55 meter spherical grating monochromator has been completed at the Stanford Synchrotron Radiation Laboratory (SSRL). The monochromator includes a unique capability for water cooled gratings, and is presently operating with a fused silica grating from 180 to 820 eV. A resolution of 60 meV has been achieved at 400 eV, inferred from the linewidths of the nitrogen 1s-π∗ resonance. A photon flux of 4 × 10 10 photon/s has been observed at 440 eV and 40 mA ring current (and with 0.5 eV resolution). It is expected that this flux value will improve by a factor of approximately 10-30 when a full-performance condensing system is installed later this year. The optical and mechanical systems design of the Rowland Circle monochromator with moving entrance and exit slits is reviewed. The details of the laser interferometer encoded wavelength drive, the mounting of the water cooled gratings, and the mechanical design features which improve the stability and accuracy of the system are described. The alignment of the gratings, grating chamber, and slits is discussed.
Hybrid Locomotion Evaluation for a Novel Amphibious Spherical Robot
Directory of Open Access Journals (Sweden)
Huiming Xing
2018-01-01
Full Text Available We describe the novel, multiply gaited, vectored water-jet, hybrid locomotion-capable, amphibious spherical robot III (termed ASR-III featuring a wheel-legged, water-jet composite driving system incorporating a lifting and supporting wheel mechanism (LSWM and mechanical legs with a water-jet thruster. The LSWM allows the ASR-III to support the body and slide flexibly on smooth (flat terrain. The composite driving system facilitates two on-land locomotion modes (sliding and walking and underwater locomotion mode with vectored thrusters, improving adaptability to the amphibious environment. Sliding locomotion improves the stability and maneuverability of ASR-III on smooth flat terrain, whereas walking locomotion allows ASR-III to conquer rough terrain. We used both forward and reverse kinematic models to evaluate the walking and sliding gait efficiency. The robot can also realize underwater locomotion with four vectored water-jet thrusters, and is capable of forward motion, heading angle control and depth control. We evaluated LSWM efficiency and the sliding velocities associated with varying extensions of the LSWM. To explore gait stability and mobility, we performed on-land experiments on smooth flat terrain to define the optimal stride length and frequency. We also evaluated the efficacy of waypoint tracking when the sliding gait was employed, using a closed-loop proportional-integral-derivative (PID control mechanism. Moreover, experiments of forward locomotion, heading angle control and depth control were conducted to verify the underwater performance of ASR-III. Comparison of the previous robot and ASR-III demonstrated the ASR-III had better amphibious motion performance.
PROJECT W-551 DETERMINATION DATA FOR EARLY LAW INTERIM PRETREATMENT SYSTEM SELECTION
Energy Technology Data Exchange (ETDEWEB)
TEDESCHI AR
2008-08-11
This report provides the detailed assessment forms and data for selection of the solids separation and cesium separation technology for project W-551, Interim Pretreatment System. This project will provide early pretreated low activity waste feed to the Waste Treatment Plant to allow Waste Treatment Plan Low Activity Waste facility operation prior to construction completion of the Pretreatment and High Level Waste facilities. The candidate solids separations technologies are rotary microfiltration and crossflow filtration, and the candidate cesium separation technologies are fractional crystallization, caustic-side solvent extraction, and ion-exchange using spherical resorcinol-formaldehyde resin. This data was used to prepare a cross-cutting technology summary, reported in RPP-RPT-37740.
Energy Technology Data Exchange (ETDEWEB)
Doll, Stephanie R. [Hanford Site (HNF), Richland, WA (United States); Cooke, Gary A. [Hanford Site (HNF), Richland, WA (United States)
2017-08-31
The 222-S Laboratory blended supernate waste from Hanford Tanks 241-AN-101, 241-AN- 106, 241-AP-105, 241-AP-106, 241-AP-107, and 241-AY-101 from the hot cell archive to create a bulk composite. The composite was blended with 600 mL 19.4 M NaOH, which brought the total volume to approximately 11.5 L (3 gal). The composite was filtered to remove solids and passed through spherical resorcinol-formaldehyde ion-exchange resin columns to remove cesium. The composite masses were tracked as a treatability study. Samples collected before, during, and after the ion-exchange process were characterized for a full suite of analytes (inorganic, organic, and radionuclides) to aid in the classification of the waste for shipping, receiving, treatment, and disposal determinations.
Energy Technology Data Exchange (ETDEWEB)
Doll, S. R.; Cooke, G. A.
2017-08-31
The 222-S Laboratory blended supernate waste from Hanford Tanks 241-AN-101, 241-AN- 106, 241-AP-105, 241-AP-106, 241-AP-107, and 241-AY-101 from the hot cell archive to create a bulk composite. The composite was blended with 600 mL 19.4 M NaOH, which brought the total volume to approximately 11.5 L (3 gal). The composite was filtered to remove solids and passed through spherical resorcinol-formaldehyde ion-exchange resin columns to remove cesium. The composite masses were tracked as a treatability study. Samples collected before, during, and after the ion exchange process were characterized for a full suite of analytes (inorganic, organic, and radionuclides) to aid in the classification of the waste for shipping, receiving, treatment, and disposal determinations.
Energy Technology Data Exchange (ETDEWEB)
Akbar, M.M., E-mail: akbar@utdallas.edu
2017-06-10
It is well known that static spherically symmetric spacetimes can admit foliations by flat spacelike hypersurfaces, which are best described in terms of the Painlevè–Gullstrand coordinates. The uniqueness and existence of such foliations were addressed earlier. In this paper, we prove, purely geometrically, that any possible foliation of a static spherically symmetric spacetime by an arbitrary codimension-one spherical spacelike geometry, up to time translation and rotation, is unique, and we find the algebraic condition under which it exists. This leads us to what can be considered as the most natural generalization of the Painlevè–Gullstrand coordinate system for static spherically symmetric metrics, which, in turn, makes it easy to derive generic conclusions on foliation and to study specific cases as well as to easily reproduce previously obtained generalizations as special cases. In particular, we note that the existence of foliation by flat hypersurfaces guarantees the existence of foliation by hypersurfaces whose Ricci curvature tensor is everywhere non-positive (constant negative curvature is a special case). The study of uniqueness and the existence concurrently solves the question of embeddability of a spherical spacelike geometry in one-dimensional higher static spherically symmetric spacetimes, and this produces known and new results geometrically, without having to go through the momentum and Hamiltonian constraints.
Directory of Open Access Journals (Sweden)
M.M. Akbar
2017-06-01
Full Text Available It is well known that static spherically symmetric spacetimes can admit foliations by flat spacelike hypersurfaces, which are best described in terms of the Painlevè–Gullstrand coordinates. The uniqueness and existence of such foliations were addressed earlier. In this paper, we prove, purely geometrically, that any possible foliation of a static spherically symmetric spacetime by an arbitrary codimension-one spherical spacelike geometry, up to time translation and rotation, is unique, and we find the algebraic condition under which it exists. This leads us to what can be considered as the most natural generalization of the Painlevè–Gullstrand coordinate system for static spherically symmetric metrics, which, in turn, makes it easy to derive generic conclusions on foliation and to study specific cases as well as to easily reproduce previously obtained generalizations as special cases. In particular, we note that the existence of foliation by flat hypersurfaces guarantees the existence of foliation by hypersurfaces whose Ricci curvature tensor is everywhere non-positive (constant negative curvature is a special case. The study of uniqueness and the existence concurrently solves the question of embeddability of a spherical spacelike geometry in one-dimensional higher static spherically symmetric spacetimes, and this produces known and new results geometrically, without having to go through the momentum and Hamiltonian constraints.
Perdew, John P; Tao, Jianmin; Hao, Pan; Ruzsinszky, Adrienn; Csonka, Gábor I; Pitarke, J M
2012-10-24
Fullerene molecules such as C(60) are large nearly spherical shells of carbon atoms. Pairs of such molecules have a strong long-range van der Waals attraction that can produce scattering or binding into molecular crystals. A simplified classical-electrodynamics model for a fullerene is a spherical metal shell, with uniform electron density confined between outer and inner radii (just as a simplified model for a nearly spherical metallic nanocluster is a solid metal sphere or filled shell). For the spherical-shell model, the exact dynamic multipole polarizabilities are all known analytically. From them, we can derive exact analytic expressions for the van der Waals coefficients of all orders between two spherical metal shells. The shells can be identical or different, and hollow or filled. To connect the model to a real fullerene, we input the static dipole polarizability, valence electron number and estimated shell thickness t of the real molecule. Our prediction for the leading van der Waals coefficient C(6) between two C(60) molecules ((1.30 ± 0.22) × 10(5) hartree bohr(6)) agrees well with a prediction for the real molecule from time-dependent density functional theory. Our prediction is remarkably insensitive to t. Future work might include the prediction of higher-order (e.g. C(8) and C(10)) coefficients for C(60), applications to other fullerenes or nearly spherical metal clusters, etc. We also make general observations about the van der Waals coefficients.
Shao, Qingguo; Tang, Jie; Sun, Yige; Li, Jing; Zhang, Kun; Yuan, Jinshi; Zhu, Da-Ming; Qin, Lu-Chang
2017-03-30
We have designed and synthesized a unique structured graphene/SnO2 composite, where SnO2 nanoparticles are inserted in between interconnected graphene sheets which form hollow spherical multilayers. The hollow spherical multilayered structure provides much flexibility to accommodate the configuration and volume changes of SnO2 in the material. When it is used as an anode material for lithium-ion batteries, such a novel nanostructure can not only provide a stable conductive matrix and suppress the mechanical stress, but also eliminate the need of any binders for constructing electrodes. Electrochemical tests show that the unique graphene/SnO2 composite electrode as designed could exhibit a large reversible capacity over 1000 mA h g-1 and long cycling life with 88% retention after 100 cycles. These results indicate the great potential of the composite for being used as a high performance anode material for lithium-ion batteries.
Forming Of Spherical Titanium Cups From Circular Blanks With Cutouts On The Perimeter
Directory of Open Access Journals (Sweden)
Lacki P.
2015-06-01
Full Text Available Despite substantial demand for drawn parts made of high-strength sheet metal (including titanium alloys observed in the modern industry, particularly automotive and aviation, their application remains insignificant. This results from the fact that such sheet metal shows poor plasticity and its cold-forming is almost impossible. Low drawability makes it impossible to obtain even such simple shapes as spherical cups. The authors of this study developed circular sheet-metal blanks with cutouts on their perimeter. The blanks allow for cold forming of spherical cups from Ti6Al4V titanium alloy sheet metal using conventional rigid tools. The cutouts proposed in the study affect plastic strain distribution, which in turn leads to an increase in forming depth by about 30%. The numerical analysis, performed using the PamStamp 2G System software based on finite element method, was verified experimentally.
Liu, Xiaolin; Li, Lanfei; Sun, Hanxu
2017-12-01
Spherical flying robot can perform various tasks in the complex and varied environment to reduce labor costs. However, it is difficult to guarantee the stability of the spherical flying robot in the case of strong coupling and time-varying disturbance. In this paper, an artificial neural network controller (ANNC) based on MPSO-BFGS hybrid optimization algorithm is proposed. The MPSO algorithm is used to optimize the initial weights of the controller to avoid the local optimal solution. The BFGS algorithm is introduced to improve the convergence ability of the network. We use Lyapunov method to analyze the stability of ANNC. The controller is simulated under the condition of nonlinear coupling disturbance. The experimental results show that the proposed controller can obtain the expected value in shoter time compared with the other considered methods.
Tian, Qijie; Chang, Songtao; He, Fengyun; Li, Zhou; Qiao, Yanfeng
2017-06-10
Internal stray radiation is a key factor that influences infrared imaging systems, and its suppression level is an important criterion to evaluate system performance, especially for cryogenic infrared imaging systems, which are highly sensitive to thermal sources. In order to achieve accurate measurement for internal stray radiation, an approach is proposed, which is based on radiometric calibration using a spherical mirror. First of all, the theory of spherical mirror design is introduced. Then, the calibration formula considering the integration time is presented. Following this, the details regarding the measurement method are presented. By placing a spherical mirror in front of the infrared detector, the influence of internal factors of the detector on system output can be obtained. According to the calibration results of the infrared imaging system, the output caused by internal stray radiation can be acquired. Finally, several experiments are performed in a chamber with controllable inside temperatures to validate the theory proposed in this paper. Experimental results show that the measurement results are in good accordance with the theoretical analysis, and demonstrate that the proposed theories are valid and can be employed in practical applications. The proposed method can achieve accurate measurement for internal stray radiation at arbitrary integration time and ambient temperatures. The measurement result can be used to evaluate whether the suppression level meets the system requirement.
A Comparison of Spherical Harmonics and Slepian Basis Functions in Magnetic Field Analysis
Boxham, J.; Sterenborg, M. G.
2008-12-01
Planetary probes often have equatorial, low inclination, orbits around the planet in question, leaving polar data gaps. For example, the orbital path of the Cassini probe around Saturn is essentially limited to a narrow latitudinal band around the equator. For potential field studies this can lead to problems as such studies traditionally employ spherical harmonics, which require global support, to describe the potential field (Simons 2006, Simons 2006a, Wieczorek 2005). Here we consider the use of different basis functions that have been specifically designed to deal with such situations. In contrast to using spherical harmonics for a spectral representation of such 'equatorial' data, an approach which can be prone to errors because global support is required to achieve orthogonality over the whole sphere, Slepian functions, which are orthogonal over both the whole sphere and the region of data coverage, and which have their energy optimally concentrated in the spatial and spectral domain, should yield better results. We have set out to compare the use of these new basis functions in magnetic field analysis with the canonical spherical harmonics. Are the Slepian basis functions better for resolving the magnetic field? Such comparisons have been done in the past, (Simons 2006, Simons 2006a) but took a more theoretical stance, evaluating only a bandlimited white noise source field. We are more interested in the performance under practical circumstances. We employ a number of criteria to evaluate the performance of both basis functions such as: errors, variances, spectral leakage. We have used an Earth magnetic field model, POMME, to generate realistic magnetic field values and Cassini's trajectory scaled to Earth to generate typical equatorial coverage. Simons, F., Dahlen, F., 2006. Spherical Slepian functions and the polar gap in geodesy. Geophysical Journal International 166(3). Simons, F., Dahlen, F., Wieczorek, M. A., 2006. Spatiospectral concentration on a
Preparation of spherical particles by vibrating orifice technique
Shibata, Shuichi; Tomizawa, Atsushi; Yoshikawa, Hidemi; Yano, Tetsuji; Yamane, Masayuki
2000-05-01
Preparation of micrometer-sized spherical particles containing Rhodamine 6G (R6G) has been investigated for the spherical cavity micro-laser. Using phenyl triethoxy silane (PTES) as a starting material, R6G-doped monodisperse spherical particles were prepared by the vibrating orifice technique. Processing consists of two major processes: (1) Hydrolysis and polymerization of PTES and (2) Droplet formation from PTES oligomers by vibrating orifice technique. A cylindrical liquid jet passing through the orifice of 10 and 20 micrometers in diameter breaks up into equal- sized droplets by mechanical vibration. Alcohol solvent of these droplets was evaporated during flying with carrier gas and subsequently solidified in ammonium water trap. For making smooth surface and god shaped particles, control of molecular weight of PTES oligomer was essential. R6G-doped hybrid spherical particles of 4 to 10 micrometers size of cavity structure were successfully obtained. The spherical particles were pumped by a second harmonic pulse of Q- switched Nd:YAG laser and laser emission peaks were observed at wavelengths which correspond to the resonance modes.
Templated nucleation of acetaminophen on spherical excipient agglomerates.
Quon, Justin L; Chadwick, Keith; Wood, Geoffrey P F; Sheu, Iris; Brettmann, Blair K; Myerson, Allan S; Trout, Bernhardt L
2013-03-12
We investigated the effect of spherical agglomeration of heterogeneous crystalline substrates on the nucleation of acetaminophen (AAP). Optical and electron microscopy showed that the surface morphologies of single crystal triclinic lactose and D-mannitol differed significantly from their counterparts formed via spherical agglomeration. Spherical agglomerates of lactose were shown to enhance the nucleation rate of acetaminophen (AAP) by a factor of 11 compared to single crystal lactose; however, no such enhancement was observed for D-mannitol. X-ray powder diffraction identified the presence of new crystal faces of lactose present only in the spherical agglomerates However, D-mannitol did not show any significant change in crystal morphology. The new crystal faces of triclinic lactose were analyzed using geometric lattice matching software and molecular dynamics simulations to establish any new and significant epitaxial matches between lactose and AAP. A coincident lattice match and a large favorable energy interaction from hydrogen bonding were observed between the (141¯) and (001) crystal faces of lactose and AAP, respectively. The enhanced nucleation kinetics, X-ray data, and computational studies indicated that the spherical crystallization of lactose exposed the (141¯) face on the surface of the agglomerates, which subsequently enhanced the nucleation rate of AAP through geometric lattice matching and molecular functionality. This study highlights the importance of exploring different heterogeneous substrate morphologies for enhancing nucleation kinetics.
Peripheral Defocus with Spherical and Multifocal Soft Contact Lenses
Berntsen, David A.; Kramer, Carl E.
2014-01-01
Purpose To describe peripheral defocus when myopic eyes are corrected with spherical and center-distance multifocal soft contact lenses while looking at distance and near. Methods Twenty-five young adults with spherical contact lens-corrected refractive error of −0.50 to −6.00 D participated. Refractive error of each participant’s right eye was measured while it wore a spherical soft contact lens (Biofinity) and again while it wore a center-distance multifocal soft contact lens with a +2.50-D add (Biofinity Multifocal "D"). Measurements were made centrally and along the horizontal meridian at ±20°, ±30°, and ±40° from the line of sight at distance and near (3.33-D demand). Results The mean (±SD) age and spherical equivalent refractive error were 23.8 ± 1.3 years and −3.62 ± 1.56 D, respectively. At distance, the multifocal contact lens resulted in significantly more myopic defocus than the spherical contact lens at the 40° and 30° locations on the nasal retina and at the 20° and 30° locations on the temporal retina (pcontact lens in this study make it a good candidate for studies seeking to examine the effect of peripheral myopic defocus on myopia progression in children. PMID:24076542
Energy Technology Data Exchange (ETDEWEB)
Merwe, J.J. van der [PBMR, PO Box 9396, Centurion 0046 (South Africa)]. E-mail: hanno.vdmerwe@pbmr.co.za; Coetzee, P.P. [Randse Afrikaans University, PO Box 524, Auckland Park 2006 (South Africa)
2007-01-15
At PBMR gaseous fission product releases from spherical fuel elements under normal conditions are calculated by the code NOBLEG. The ability of NOBLEG to calculate noble gas and halogen release under oxidizing conditions during water ingress was developed. Observations made during the water vapour injection tests performed during the irradiation experiment HFR-K6, were used to determine simple relations that can be used to predict gaseous fission product release from spherical fuel elements under oxidizing conditions caused by small water ingress events, for PBMR operational temperatures. A new model was proposed to explain peculiarities observed during the water injection tests.
DEFF Research Database (Denmark)
Laitinen, Tommi; Pivnenko, Sergey; Breinbjerg, Olav
2006-01-01
An iterative probe-correction technique for spherical near-field antenna measurements is examined. This technique has previously been shown to be well-suited for non-ideal first-order probes. In this paper, its performance in the case of a high-order probe (a dual-ridged horn) is examined....
Influence of initial imperfections on ultimate strength of spherical shells
Directory of Open Access Journals (Sweden)
Chang-Li Yu
2017-09-01
Full Text Available Comprehensive consideration regarding influence mechanisms of initial imperfections on ultimate strength of spherical shells is taken to satisfy requirement of deep-sea structural design. The feasibility of innovative numerical procedure that combines welding simulation and non-linear buckling analysis is verified by a good agreement to experimental and theoretical results. Spherical shells with a series of wall thicknesses to radius ratios are studied. Residual stress and deformations from welding process are investigated separately. Variant influence mechanisms are discovered. Residual stress is demonstrated to be influential to stress field and buckling behavior but not to the ultimate strength. Deformations are proved to have a significant impact on ultimate strength. When central angles are less than critical value, concave magnitudes reduce ultimate strengths linearly. However, deformations with central angles above critical value are of much greater harm. Less imperfection susceptibility is found in spherical shells with larger wall thicknesses to radius ratios.
CT Scanning Imaging Method Based on a Spherical Trajectory.
Directory of Open Access Journals (Sweden)
Ping Chen
Full Text Available In industrial computed tomography (CT, the mismatch between the X-ray energy and the effective thickness makes it difficult to ensure the integrity of projection data using the traditional scanning model, because of the limitations of the object's complex structure. So, we have developed a CT imaging method that is based on a spherical trajectory. Considering an unrestrained trajectory for iterative reconstruction, an iterative algorithm can be used to realise the CT reconstruction of a spherical trajectory for complete projection data only. Also, an inclined circle trajectory is used as an example of a spherical trajectory to illustrate the accuracy and feasibility of this new scanning method. The simulation results indicate that the new method produces superior results for a larger cone-beam angle, a limited angle and tabular objects compared with traditional circle trajectory scanning.
A Review of Active Mechanical Driving Principles of Spherical Robots
Directory of Open Access Journals (Sweden)
Richard Chase
2012-11-01
Full Text Available Spherical robotics is an emerging research field due to a ball’s characteristic to be holonomic, have a sealed internal environment, and rebound from collisions easily. As the research moves forward, individual groups have begun to develop unique methods of propulsion, each having distinctive engineering trade-offs: weight is sacrificed for power; speed is forfeited for control accuracy, etc. Early spherical robots operated similar to a hamster ball and had a limited torque and a high-energy loss due to internal friction. Researchers have begun to develop various novel concepts to maneuver and control this family of robot. This article is an overview of the current research directions that various groups have taken, the nomenclature used in this subdiscipline, and the various uses of the fundamental principles of physics for propelling a spherical robot.
Mechanisms of Stochastic Diffusion of Energetic Ions in Spherical Tori
Energy Technology Data Exchange (ETDEWEB)
Ya.I. Kolesnichenko; R.B. White; Yu.V. Yakovenko
2001-01-18
Stochastic diffusion of the energetic ions in spherical tori is considered. The following issues are addressed: (I) Goldston-White-Boozer diffusion in a rippled field; (ii) cyclotron-resonance-induced diffusion caused by the ripple; (iii) effects of non-conservation of the magnetic moment in an axisymmetric field. It is found that the stochastic diffusion in spherical tori with a weak magnetic field has a number of peculiarities in comparison with conventional tokamaks; in particular, it is characterized by an increased role of mechanisms associated with non-conservation of the particle magnetic moment. It is concluded that in current experiments on National Spherical Torus eXperiment (NSTX) the stochastic diffusion does not have a considerable influence on the confinement of energetic ions.
Richtmyer - Meshkov instability in a spherical target with density variation
Mandal, Labakanta; Banerjee, Rahul; Khan, Manoranjan; Gupta, M R
2011-01-01
The motion of unstable fluid interface due to Richtmyer - Meshkov (RM) instability incorporating with density variation has been studied in a spherical target using Lagrangian formulation. During the compression in Inertial Confinement Fusion (ICF)process, the density of deuterium - tritium (DT) fuel increases 1000 times greater than the density of gaseous DT fuel within the core of spherical target. We have extended the feature of density variation [PRA,84-Mikaelian & Lindl] in spherical geometry.Due to convergent shock impingement, the perturbed interface will be nonspherical which leads to the density variation in both radial as well as in polar angle. We have shown that the interface of perturbed surface decreases with time to reach a minimum and then kick back to gradual increase. As the perturbed radius decreases, the density increases and reaches a maxima corresponding to a minima of perturbed radius. This is the practical situation of density characteristics during implosion of ICF. The numerical ...
Site symmetry and crystal symmetry: a spherical tensor analysis
Energy Technology Data Exchange (ETDEWEB)
Brouder, Christian; Juhin, Amelie; Bordage, Amelie; Arrio, Marie-Anne [Institut de Mineralogie et de Physique des Milieux Condenses, CNRS UMR 7590, Universites Paris 6 et 7, IPGP, 140 rue de Lourmel, 75015 Paris (France)], E-mail: christian.brouder@impmc.jussieu.fr
2008-11-12
The relation between the properties of a specific crystallographic site and the properties of the full crystal is discussed by using spherical tensors. The concept of spherical tensors is introduced and the way it transforms under the symmetry operations of the site and from site to site is described in detail. The law of spherical tensor coupling is given and illustrated with the example of the electric dipole and quadrupole transitions in x-ray absorption spectroscopy. The main application of the formalism is the reduction of computation time in the calculation of the properties of crystals by band-structure methods. The general approach is illustrated by the examples of substitutional chromium in spinel and substitutional vanadium in garnet.
Turbulence Modulation by Non-Spherical Particles
DEFF Research Database (Denmark)
Mandø, Matthias
This study deals with the interaction between turbulence and non-spherical particles and represents an extension of the modeling framework for particleladen flows. The effect of turbulence on particles is commonly referred to as turbulent dispersion while the effect of particles on the carrier...... phase turbulence is known as turbulence modulation. Whereas the former is well understood, no commonly accepted explanation has been presented for the latter. Moreover, considerations regarding the influence of shape on the experienced turbulence modulation must be considered as terra incognita......-spherical particles and turbulence modulation are outlined. A complete description of the motion of non-spherical particles is still lacking. However, evidence suggests that the equation of motion for a sphere only represent an asymptotical value for a more general, but yet unformulated, description of the motion...
Plastic instabilities in statically and dynamically loaded spherical vessels
Energy Technology Data Exchange (ETDEWEB)
Duffey, Thomas A [Los Alamos National Laboratory; Rodriguez, Edward A [Los Alamos National Laboratory
2010-01-01
Significant changes were made in design limits for pressurized vessels in the 2007 version of the ASME Code (Section VIII, Div. 3) and 2008 and 2009 Addenda. There is now a local damage-mechanics based strain-exhaustion limit as well as the well-known global plastic collapse limit. Moreover, Code Case 2564 (Section VIII, Div. 3) has recently been approved to address impulsively loaded vessels. It is the purpose of this paper to investigate the plastic collapse limit as it applies to dynamically loaded spherical vessels. Plastic instabilities that could potentially develop in spherical shells under symmetric loading conditions are examined for a variety of plastic constitutive relations. First, a literature survey of both static and dynamic instabilities associated with spherical shells is presented. Then, a general plastic instability condition for spherical shells subjected to displacement controlled and impulsive loading is given. This instability condition is evaluated for six plastic and visco-plastic constitutive relations. The role of strain-rate sensitivity on the instability point is investigated. Calculations for statically and dynamically loaded spherical shells are presented, illustrating the formation of instabilities as well as the role of imperfections. Conclusions of this work are that there are two fundamental types of instabilities associated with failure of spherical shells. In the case of impulsively loaded vessels, where the pulse duration is short compared to the fundamental period of the structure, one instability type is found not to occur in the absence of static internal pressure. Moreover, it is found that the specific role of strain-rate sensitivity on the instability strain depends on the form of the constitutive relation assumed.
E. Hari Krishna*, V. Ram Mohan Gupta and S. Jyothi
2012-01-01
The present work deals with the spherical crystallization process by Spherical agglomeration method applied to Zaltoprofen, a novel NSAID drug. The object of present study was to prepare and characterize the spherical agglomeration of water insoluble non-steroidal anti-inflammatory drug. Zaltoprofen spherical agglomerates prepared with poly ethylene glycol, which is hydrophilic polymer by using simple spherical agglomeration technique for enhancing micromeritic properties and dissolution rate...
Strongly Localized Image States of Spherical Graphitic Particles
Directory of Open Access Journals (Sweden)
Godfrey Gumbs
2014-01-01
Full Text Available We investigate the localization of charged particles by the image potential of spherical shells, such as fullerene buckyballs. These spherical image states exist within surface potentials formed by the competition between the attractive image potential and the repulsive centripetal force arising from the angular motion. The image potential has a power law rather than a logarithmic behavior. This leads to fundamental differences in the nature of the effective potential for the two geometries. Our calculations have shown that the captured charge is more strongly localized closest to the surface for fullerenes than for cylindrical nanotube.
Characterization of diffusivity based on spherical array processing
DEFF Research Database (Denmark)
Nolan, Melanie; Fernandez Grande, Efren; Jeong, Cheol-Ho
2015-01-01
The purpose of this study is to assess the diffuse field conditions in a reverberant space using a sound field reconstruction method based on spherical microphone array measurements. Spherical microphone arrays are particularly well suited for applications in non-anechoic enclosures, where...... in such an environment. This initial investigation shows the validity of the suggested processing and reveals interesting perspectives for future work. Ultimately, the aim is to define a proper and reliable measure of the diffuse sound field conditions in a reverberation chamber, with the prospect of improving...
A Transmission Line Model for the Spherical Beltrami Problem
Papageorgiou, C. D.; Raptis, T. E.
We extend a previously introduced model for finding eigenvalues and eigenfunctions of PDEs with a certain natural symmetry set based on an analysis of an equivalent transmission line circuit. This was previously applied with success in the case of optical fibers [8], [9] as well as in the case of a linear Schroedinger equation [10], [11] and recently in the case of spherical symmetry (Ball Lightning) [12]. We explore the interpretation of eigenvalues as resonances of the corresponding transmission line model. We use the generic Beltrami problem of non-constant eigen-vorticity in spherical coordinates as a test bed and we locate the bound states and the eigen-vorticity functions.
Mechanical characterization of ibuprofen, naproxen, and their spherically crystallized products
Anderson, Stephen R.
The objectives of this study were to establish a rational basis for choosing parameters for conducting the tensile strength and indentation hardness test on pharmaceutical compacts, to describe the changes in tableting indices based on the different parameters, to develop a method to spherically crystallize ibuprofen, and to compare the mechanical and micromeritic properties of spherically crystallized ibuprofen and naproxen to the starting materials. This work described the importance of establishing the appropriate test parameters for tensile strength and indentation hardness tests so that reliable and predictive tableting indices could be determined. The fracture strength for diametral compression of ibuprofen compacts was determined for two modes of stress application, constant stress rate and constant strain rate. The tensile strength for diametral compression of ibuprofen and naproxen compacts was determined using a constant strain rate (0.05 to 16 mm/min). The static indentation hardness (Meyer hardness) of ibuprofen and naproxen compacts was determined at varying solid fractions and indentor depth of penetration. Results from these studies were used to establish an appropriate rate of stress application during diametral compression and an appropriate depth of penetration for indentation hardness testing in order to calculate tableting indices. The tableting indices calculated from the aforementioned properties were: the brittle fracture index (BFI), the best case bonding index (BIsb{b}), the worst case bonding index (BIsb{w}), the brittle/viscoelastic bonding index (bBIsb{v}), and the viscoelastic index (VI). In addition, changes in compactibility between the starting materials and their spherically crystallized products were assessed through the analysis of Athy-Heckel profiles. A comparison of micromeritic properties included particle size, porosity, surface area, bulk density, tap density, true density, and flowability as measured by the Carr Index. The
Addition theorems for spin spherical harmonics: I. Preliminaries
Energy Technology Data Exchange (ETDEWEB)
Bouzas, Antonio O, E-mail: abouzas@mda.cinvestav.mx [Departamento de Fisica Aplicada, CINVESTAV-IPN, Carretera Antigua a Progreso Km. 6, Apdo. Postal 73 ' Cordemex' , Merida 97310, Yucatan (Mexico)
2011-04-22
We develop a systematic approach to deriving addition theorems for, and some other bilocal sums of, spin spherical harmonics. In this first part we establish some necessary technical results. We discuss the factorization of orbital and spin degrees of freedom in certain products of Clebsch-Gordan coefficients, and obtain general explicit results for the matrix elements in configuration space of tensor products of arbitrary rank of the position and angular-momentum operators. These results are the basis of the addition theorems for spin spherical harmonics obtained in part II (2011 J. Phys. A: Math. Theor. 44 165302).
Transitions in a magnetized quasi-laminar spherical Couette Flow
Kaprzyk, C; Seilmayer, M; Stefani, F
2016-01-01
First results of a new spherical Couette experiment are presented. The liquid metal flow in a spherical shell is exposed to a homogeneous axial magnetic field. For a Reynolds number Re=1000, we study the effect of increasing Hartmann number Ha. The resulting flow structures are inspected by ultrasound Doppler velocimetry. With a weak applied magnetic field, we observe an equatorially anti-symmetric jet instability with azimuthal wave number m=3. As the magnetic field strength increases, this instability vanishes. When the field is increased further, an equatorially symmetric return flow instability arises. Our observations are shown to be in good agreement with linear stability analysis and non-linear flow simulations.
Quantum nonlocal effects on optical properties of spherical nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Engineering Physics, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)
2015-02-15
To study the scattering of electromagnetic radiation by a spherical metallic nanoparticle with quantum spatial dispersion, we develop the standard nonlocal Mie theory by allowing for the excitation of the quantum longitudinal plasmon modes. To describe the quantum nonlocal effects, we use the quantum longitudinal dielectric function of the system. As in the standard Mie theory, the electromagnetic fields are expanded in terms of spherical vector wavefunctions. Then, the usual Maxwell boundary conditions are imposed plus the appropriate additional boundary conditions. Examples of calculated extinction spectra are presented, and it is found that the frequencies of the subsidiary peaks, due to quantum bulk plasmon excitations exhibit strong dependence on the quantum spatial dispersion.
Curvature-driven stability of defects in nematic textures over spherical disks
Duan, Xiuqing; Yao, Zhenwei
2017-06-01
Stabilizing defects in liquid-crystal systems is crucial for many physical processes and applications ranging from functionalizing liquid-crystal textures to recently reported command of chaotic behaviors of active matters. In this work, we perform analytical calculations to study the curvature-driven stability mechanism of defects based on the isotropic nematic disk model that is free of any topological constraint. We show that in a growing spherical disk covering a sphere the accumulation of curvature effect can prevent typical +1 and +1/2 defects from forming boojum textures where the defects are repelled to the boundary of the disk. Our calculations reveal that the movement of the equilibrium position of the +1 defect from the boundary to the center of the spherical disk occurs in a very narrow window of the disk area, exhibiting the first-order phase-transition-like behavior. For the pair of +1/2 defects by splitting a +1 defect, we find the curvature-driven alternating repulsive and attractive interactions between the two defects. With the growth of the spherical disk these two defects tend to approach and finally recombine towards a +1 defect texture. The sensitive response of defects to curvature and the curvature-driven stability mechanism demonstrated in this work in nematic disk systems may have implications towards versatile control and engineering of liquid-crystal textures in various applications.
Spherical rotation orientation indication for HEVC and JEM coding of 360 degree video
Boyce, Jill; Xu, Qian
2017-09-01
Omnidirectional (or "360 degree") video, representing a panoramic view of a spherical 360° ×180° scene, can be encoded using conventional video compression standards, once it has been projection mapped to a 2D rectangular format. Equirectangular projection format is currently used for mapping 360 degree video to a rectangular representation for coding using HEVC/JEM. However, video in the top and bottom regions of the image, corresponding to the "north pole" and "south pole" of the spherical representation, is significantly warped. We propose to perform spherical rotation of the input video prior to HEVC/JEM encoding in order to improve the coding efficiency, and to signal parameters in a supplemental enhancement information (SEI) message that describe the inverse rotation process recommended to be applied following HEVC/JEM decoding, prior to display. Experiment results show that up to 17.8% bitrate gain (using the WS-PSNR end-to-end metric) can be achieved for the Chairlift sequence using HM16.15 and 11.9% gain using JEM6.0, and an average gain of 2.9% for HM16.15 and 2.2% for JEM6.0.
Optimization of magnetic field system for glass spherical tokamak GLAST-III
Ahmad, Zahoor; Ahmad, S.; Naveed, M. A.; Deeba, F.; Aqib Javeed, M.; Batool, S.; Hussain, S.; Vorobyov, G. M.
2017-04-01
GLAST-III (Glass Spherical Tokamak) is a spherical tokamak with aspect ratio A = 2. The mapping of its magnetic system is performed to optimize the GLAST-III tokamak for plasma initiation using a Hall probe. Magnetic field from toroidal coils shows 1/R dependence which is typical with spherical tokamaks. Toroidal field (TF) coils can produce 875 Gauss field, an essential requirement for electron cyclotron resonance assisted discharge. The central solenoid (CS) of GLAST-III is an air core solenoid and requires compensation coils to reduce unnecessary magnetic flux inside the vessel region. The vertical component of magnetic field from the CS in the vacuum vessel region is reduced to 1.15 Gauss kA-1 with the help of a differential loop. The CS of GLAST can produce flux change up to 68 mVs. Theoretical and experimental results are compared for the current waveform of TF coils using a combination of fast and slow capacitor banks. Also the magnetic field produced by poloidal field (PF) coils is compared with theoretically predicted values. It is found that calculated results are in good agreement with experimental measurement. Consequently magnetic field measurements are validated. A tokamak discharge with 2 kA plasma current and pulse length 1 ms is successfully produced using different sets of coils.
Analysis of weighting of normals for spherical harmonic cross-correlation
Larkins, Robert L.; Cree, Michael J.; Dorrington, Adrian A.
2013-03-01
Spherical harmonic cross-correlation is a robust registration technique that uses the normals of two overlapping meshes to bring them into coarse rotational alignment. The amount of overlap between the two meshes is the primary determinant of whether the spherical harmonic cross-correlation achieves correct registration. By weighting each normal or clusters of normals, their contribution to the registration is influenced, allowing beneficial normals to be emphasized and deemphasizing those that are not. In this paper we evaluate how different weighting schemes impact registration efficiency and accuracy. It is found that two of the proposed weighting schemes are capable of correctly registering 22% of the mesh pairs, while the baseline, which equally weighted all normals, registered 14% of the mesh pairs. Using Fibonacci binning to equally weight surfaces provided the best all-round advantage, especially if efficiency is considered, as binning allows spherical harmonics to be pre-computed. By increasing the threshold that is applied to the weighting schemes, meshes with minimal overlap can be registered, with one case only having 2% overlap. The performed analysis shows that weighting normals when applied in a conducive manner can achieve considerable improvements improvements to registration accuracy.
Physically Based Modeling and Simulation with Dynamic Spherical Volumetric Simplex Splines
Tan, Yunhao; Hua, Jing; Qin, Hong
2009-01-01
In this paper, we present a novel computational modeling and simulation framework based on dynamic spherical volumetric simplex splines. The framework can handle the modeling and simulation of genus-zero objects with real physical properties. In this framework, we first develop an accurate and efficient algorithm to reconstruct the high-fidelity digital model of a real-world object with spherical volumetric simplex splines which can represent with accuracy geometric, material, and other properties of the object simultaneously. With the tight coupling of Lagrangian mechanics, the dynamic volumetric simplex splines representing the object can accurately simulate its physical behavior because it can unify the geometric and material properties in the simulation. The visualization can be directly computed from the object’s geometric or physical representation based on the dynamic spherical volumetric simplex splines during simulation without interpolation or resampling. We have applied the framework for biomechanic simulation of brain deformations, such as brain shifting during the surgery and brain injury under blunt impact. We have compared our simulation results with the ground truth obtained through intra-operative magnetic resonance imaging and the real biomechanic experiments. The evaluations demonstrate the excellent performance of our new technique. PMID:20161636
Directory of Open Access Journals (Sweden)
Fei Wang
2016-12-01
Full Text Available Strong demands for accurate non-cooperative target measurement have been arising recently for the tasks of assembling and capturing. Spherical objects are one of the most common targets in these applications. However, the performance of the traditional vision-based reconstruction method was limited for practical use when handling poorly-textured targets. In this paper, we propose a novel multi-sensor fusion system for measuring and reconstructing textureless non-cooperative spherical targets. Our system consists of four simple lasers and a visual camera. This paper presents a complete framework of estimating the geometric parameters of textureless spherical targets: (1 an approach to calibrate the extrinsic parameters between a camera and simple lasers; and (2 a method to reconstruct the 3D position of the laser spots on the target surface and achieve the refined results via an optimized scheme. The experiment results show that our proposed calibration method can obtain a fine calibration result, which is comparable to the state-of-the-art LRF-based methods, and our calibrated system can estimate the geometric parameters with high accuracy in real time.
Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking.
Liu, Hua; Wu, Wen
2017-03-31
Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering target tracking may decline in accuracy and even diverge when a target makes abrupt state changes. To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm. Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted states' error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this way, the proposed algorithm has the advantages of both STF's strong robustness and SSRCKF's high accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get better estimation accuracy and greater robustness for maneuvering target tracking.
MHD peristaltic transport of spherical and cylindrical magneto-nanoparticles suspended in water
Directory of Open Access Journals (Sweden)
F. M. Abbasi
2015-07-01
Full Text Available Advancements in the biomedical engineering have enhanced the usage of magnto-nanoparticles in improving the precision and efficiency of the magneto-drug delivery systems. Such systems make use of the externally applied magnetic fields to direct the drug towards a specific target in the human body. Peristalsis of magneto-nanofluids is of significant importance in such considerations. Hence peristaltic transport of Fe3O4-water nanofluid through a two-dimensional symmetric channel is analyzed in the presence of an externally applied constant magnetic field. Hamilton-Crosser’s model of the thermal conductivity is utilized in the problem development. The nanofluid saturates a non-uniform porous medium in which the porosity of the porous medium varies with the distance from the channel walls. Analysis is performed for the spherical and the cylindrical nanoparticles. Resulting system of equations is numerically solved. Impacts of sundry parameters on the axial velocity, temperature, pressure gradient and heat transfer rate at the boundary are examined. Comparison between the results for spherical and cylindrical nanoparticles is also presented. Results show that the nanoparticles volume fraction and the Hartman number have increasing effect on the pressure gradient throughout the peristaltic tract. Effective heat transfer rate at the boundary tends to enhance with an increase in the nanoparticles volume fraction. Use of spherical nanoparticles results in a higher value of axial velocity and the temperature at the center of channel when compared with the case of cylindrical nanoparticles.
One-dimensional MHD simulations of MTF systems with compact toroid targets and spherical liners
Khalzov, Ivan; Zindler, Ryan; Barsky, Sandra; Delage, Michael; Laberge, Michel
2017-10-01
One-dimensional (1D) MHD code is developed in General Fusion (GF) for coupled plasma-liner simulations in magnetized target fusion (MTF) systems. The main goal of these simulations is to search for optimal parameters of MTF reactor, in which spherical liquid metal liner compresses compact toroid plasma. The code uses Lagrangian description for both liner and plasma. The liner is represented as a set of spherical shells with fixed masses while plasma is discretized as a set of nested tori with circular cross sections and fixed number of particles between them. All physical fields are 1D functions of either spherical (liner) or small toroidal (plasma) radius. Motion of liner and plasma shells is calculated self-consistently based on applied forces and equations of state. Magnetic field is determined by 1D profiles of poloidal and toroidal fluxes - they are advected with shells and diffuse according to local resistivity, this also accounts for flux leakage into the liner. Different plasma transport models are implemented, this allows for comparison with ongoing GF experiments. Fusion power calculation is included into the code. We performed a series of parameter scans in order to establish the underlying dependencies of the MTF system and find the optimal reactor design point.
VUV-SX spherical grating monochromator beam lines at BEPC and HESYRL
Shu, Deming; Wang, Wei; Wang, Motuo; Liu, Jing; He, Wei; Zhang, Yijuan; Liu, Wumin; Sao, Beibei; Xie, Qi; Zheng, Hongwei; Wu, Chuancou; Cong, Zhibing; Zong, Congcang; Xu, Pengsou; Cai, Yong
1990-05-01
Two VUV-SX spherical grating monochromator (SGM) beam lines have been designed and constructed for laboratories in China; one for the Beijing Electron-Positron Collider (BEPC) and one for the Hefei Synchrotron Radiation Laboratory (HESYRL). Each of them will cover a wide spectral range, approximately 10-1000 eV, with four or five spherical laminar gratings. Tuning of the wavelength in the monochromators is achieved by rotation of the grating and translation of a pair of stepping-motor-driven slits to follow the Rowland circle to improve the monochromator's performance. The prefocusing mirrors are different on the BEPC and HESYRL beam lines. To accept 20 mrad of the synchrotron radiation horizontally from the 800-MeV HESYRL ring, a combined Kirkpatrick-Baez-type mirror set has been developed. The 1240-mm-long horizontal prefocusing mirror consists of four 310 mm × 70 mm × 40 mm gold-coated Zerodur spherical mirrors, each of which is independently adjustable in three dimensions. In the BEPC SGM beam line, a toroidal nickel-coated aluminum prefocusing mirror intercepts up to 4.5 mrad at a distance of 12 m from the source. A heat-pipe cooling system has also been designed for this mirror to accommodate the higher power from the 2.2-2.8 GeV beam stored in BEPC in its dedicated SR mode. The optical ray tracing results, the mechanics, and control systems are described in this paper.
Energy Technology Data Exchange (ETDEWEB)
Medasani, Bharat; Ovanesyan, Zaven; Thomas, Dennis G.; Sushko, Maria L.; Marucho, Marcelo
2014-05-29
In this article we present a classical density functional theory for electrical double layers of spherical macroions that extends the capabilities of conventional approaches by accounting for electrostatic ion correlations, size asymmetry and excluded volume effects. The approach is based on a recent approximation introduced by Hansen-Goos and Roth for the hard sphere excess free energy of inhomogeneous fluids (J. Chem. Phys. 124, 154506). It accounts for the proper and efficient description of the effects of ionic asymmetry and solvent excluded volume, especially at high ion concentrations and size asymmetry ratios including those observed in experimental studies. Additionally, we utilize a leading functional Taylor expansion approximation of the ion density profiles. In addition, we use the Mean Spherical Approximation for multi-component charged hard sphere fluids to account for the electrostatic ion correlation effects. These approximations are implemented in our theoretical formulation into a suitable decomposition of the excess free energy which plays a key role in capturing the complex interplay between charge correlations and excluded volume effects. We perform Monte Carlo simulations in various scenarios to validate the proposed approach, obtaining a good compromise between accuracy and computational cost. We use the proposed computational approach to study the effects of ion size, ion size asymmetry and solvent excluded volume on the ion profiles, integrated charge, mean electrostatic potential, and ionic coordination number around spherical macroions in various electrolyte mixtures. Our results show that both solvent hard sphere diameter and density play a dominant role in the distribution of ions around spherical macroions, mainly for experimental water molarity and size values where the counterion distribution is characterized by a tight binding to the macroion, similar to that predicted by the Stern model.
Li, Hao; Chen, Guang; Das, Siddhartha
2016-11-01
Understanding the behavior and properties of spherical polyelectrolyte brushes (SPEBs), which are polyelectrolyte brushes grafted to a spherical core, is fundamental to many applications in biomedical, chemical and petroleum engineering as well as in pharmaceutics. In this paper, we study the pH-responsive electrostatics of such SPEBs in the decoupled regime. In the first part of the paper, we derive the scaling conditions in terms of the grafting density of the PEs on the spherical core that ensure that the analysis can be performed in the decoupled regime. In such a regime the elastic and the excluded volume effects of polyelectrolyte brushes (PEBs) can be decoupled from the electrostatic effects associated with the PE charge and the induced EDL. As a consequence the PE brush height, assumed to be dictated by the balance of the elastic and excluded volume effects, can be independent of the electrostatic effects. In the second part, we quantify the pH-responsive electrostatics of the SPEBs - we pinpoint that the radial monomer distribution for a given brush molecule exhibit a non-unique cubic distribution that decays away from the spherical core. Such a monomer distribution ensures that the hydrogen ion concentration is appropriately accounted for in the description of the SPEB thermodynamics. We anticipate that the present analysis, which provides possibly one of the first models for probing the electrostatics of pH-responsive SPEBs in a thermodynamically-consistent framework, will be vital for understanding the behavior of a large number of entities ranging from PE-coated NPs and stealth liposomes to biomolecules like bacteria and viruses. Copyright © 2016 Elsevier B.V. All rights reserved.
FY 2011 Miniature Spherical Retroreflectors - Final Report
Energy Technology Data Exchange (ETDEWEB)
Anheier, Norman C.; Bernacki, Bruce E.; Qiao, Hong (Amy)
2011-09-01
PNNL conducted a systematic optical modeling effort to study and compare retroreflector designs with respect to available optical materials. The optical Strehl ratio (SR) and cross section figures of merit were used to compare the performance of candidate optical designs. Further modeling was conducted to assess the relationships between standoff range and retroreflector diameter and cross section. Analysis showed that small diameter retroreflectors have very high optical link loss, since the net loss scales by retroreflector diameter to the 4th power. Optical retroreflection efficiency is also important, but extracting ideal performance from a complicated design must be tempered by the fact that the effective retroreflector range varies only as the fourth root of the cross section. It's therefore imperative to maintain a reasonable retroreflector diameter, but striving for perfect optical performance may be a costly effort that does not merit the modest performance gain. Several promising designs were developed for visible and mid-infrared applications, which embraced lessons learned in the standoff range study. These designs included a polymer clad glass core approach for visible wavelengths and a concentric shell design using chalcogenide glass for the mid-infrared. Injection molding feasibility studies demonstrated that it was practical to fabricate visible polymer retroreflectors using this approach. Such an approach may be a practical solution for the LLNL project. Our primary focus is to develop mid-infrared designs; therefore compression molding chalcogenide glass was adopted for fabricating mid-infrared retroreflectors. A significant effort was focused on developing practical compression molding methods that provided reasonable device yield. A custom compression molding press was developed in collaboration with a private engineering firm. Many successful molding studies were conducted during this effort, but ultimately the fragile nature of the
Gravitational field of spherical domain wall in higher dimension
Indian Academy of Sciences (India)
An exact solution of Einstein's equations is found describing the gravitational ﬁeld of a spherical domain wall with nonvanishing stress component in the direction perpendicular to the plane of the wall. Also we have studied the motion of test particle around the domain wall.
Gravitational field of spherical domain wall in higher dimension
Indian Academy of Sciences (India)
Gravitational field of spherical domain wall in higher dimension. FAROOK RAHAMAN and MEHEDI KALAM. Khodar Bazar, Baruipur, 24 Parganas (South), West Bengal 743 302, India. Email: jumath@cal.vsnl.net.in. MS received 5 May 2001; revised 17 August 2001. Abstract. An exact solution of Einstein's equations is ...
Radiation quality factor of spherical antennas with material cores
DEFF Research Database (Denmark)
Hansen, Troels Vejle; Kim, Oleksiy S.; Breinbjerg, Olav
2011-01-01
This paper gives a description of the radiation quality factor and resonances of spherical antennas with material cores. Conditions for cavity and radiating resonances are given, and a theoretical description of the radiation quality factor, as well as simple expressions describing the relative...
STRESS CONCENTRATION DUE TO A SPHERICAL VOID UNDER HERTZIAN CONTACT
Directory of Open Access Journals (Sweden)
Stelian ALACI,
2010-06-01
Full Text Available The present paper presents the method of estimating the stress concentrator effect of a spherical void from an elastic half-space. An essential part consists in estimation of FEM error by finding the contact pressure from half-plane using an analytical method. Next, the stress concentrator effect of the same void, except for placed into elastic space, is found.
Hydrodynamic coefficients for water-wave diffraction by spherical ...
Indian Academy of Sciences (India)
Evaluation of hydrodynamic coefﬁcients and loads on submerged or ﬂoating bodies is of great signiﬁcance in designing these structures. Some special regular-shaped geometries such as those of cylindrical (circular, elliptic) and spherical (hemisphere, sphere, spheroid) structures are usually considered to obtain analytical ...
Spherical aberration from trajectories in real and hard-edge ...
Indian Academy of Sciences (India)
(3)–(4) by comparing with spherical aberration obtained from the ensemble of particle trajectories. The scaled field gives the same focal length. 3. Particle trajectory. 3.1 Ray equation with aberration. The particle trajectory in a solenoid magnet with aberrations is governed by the third-order paraxial ray equation given in eq.
Anisometropia is independently associated with both spherical and cylindrical ametropia.
Qin, Xue-Jiao; Margrain, Tom H; To, Chi Ho; Bromham, Nathan; Guggenheim, Jeremy A
2005-11-01
To explore the associations between anisometropia and spherical ametropia, astigmatism, age, and sex. Associations between the prevalence and magnitude of anisometropia with age, sex, spherical power, and cylindrical power, were assessed in a group of 90,884 subjects attending optometry practices in the United Kingdom. Logistic regression models were used to assess the independent contribution of each explanatory variable. Logistic regression analyses that included all subjects or just those aged 20 to 40 years showed that spherical ametropia and astigmatism were independently associated with anisometropia (myopes, P Anisometropia was relatively stable between the ages of 20 and 40 years, but then became more common with age, in myopes from the age of 40 years onward (P anisometropia to a clinically significant extent. This is the first study to show an independent association between anisometropia and both spherical ametropia and astigmatism. The results also suggest that the previously noted increased prevalence of anisometropia with age occurs later in hyperopes than in myopes, once other covariates have been controlled for. However, it could not be ruled out that this latter effect was due to clinical selection bias in our sample. The findings suggest that research projects involving the recruitment of highly ametropic subjects, such as those investigating the genetics of refractive error, may benefit by avoiding the use of stringent inclusion criteria for anisometropia, because otherwise a large proportion of the relevant population will be excluded.
Novel spherical hohlraum with cylindrical laser entrance holes and shields
Energy Technology Data Exchange (ETDEWEB)
Lan, Ke [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Zheng, Wudi [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)
2014-09-15
Our recent works [K. Lan et al., Phys. Plasmas 21, 010704 (2014); K. Lan et al., Phys. Plasmas 21, 052704 (2014)] have shown that the octahedral spherical hohlraums are superior to the cylindrical hohlraums in both higher symmetry during the capsule implosion and lower backscatter without supplementary technology. However, both the coupling efficiency from the drive laser energy to the capsule and the capsule symmetry decrease remarkably when larger laser entrance holes (LEHs) are used. In addition, the laser beams injected at angles > 45° transport close to the hohlraum wall, thus the wall blowoff causes the LEH to close faster and results in strong laser plasma interactions inside the spherical hohlraums. In this letter, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs to alleviate these problems. From our theoretical study, with the LEH shields, the laser coupling efficiency is significantly increased and the capsule symmetry is remarkably improved in the spherical hohlraums. The cylindrical LEHs take advantage of the cylindrical hohlraum near the LEH and mitigate the influence of the blowoff on laser transport inside a spherical hohlraum. The cylindrical LEHs can also be applied to the rugby and elliptical hohlraums.
Low lying collective 2/sup +/ states of spherical nuclei
Energy Technology Data Exchange (ETDEWEB)
Khodel, V.A.
1976-02-01
The nature of low-lying collective 2/sup +/ states of superfluid spherical nuclei is investigated. It is shown that the dominating role in formation of these excitations is played by effective attraction between the quasiparticles of the last unfilled shell, arising from exchange by quantal capillar waves--capons.
Is the dark halo of our Galaxy spherical?
Helmi, A
2004-01-01
It has been recently claimed that the confined structure of the debris from the Sagittarius dwarf implies that the dark matter halo of our Galaxy should be nearly spherical, in strong contrast with predictions from cold dark matter simulations, where dark haloes are found to have typical density
Minimum Q circularly polarized electrically small spherical antennas
DEFF Research Database (Denmark)
Kim, Oleksiy S.
2011-01-01
The radiation problem for the TM10- and TE10-mode electric current densities on the surface of a spherical magnetic-coated PEC core is solved analytically. The combination of the electric and magnetic dipole modes reduces the radiation Q of the antenna. Moreover, with an appropriately designed...
Buckling-driven Delamination in Layered Spherical Shells
DEFF Research Database (Denmark)
Sørensen, Kim Dalsten; Jensen, Henrik Myhre
2008-01-01
An analysis of buckling-driven delamination of a thin film on a spherical substrate has been carried out. The effects of the substrate having a double curvature compared to previous studies of delamination on cylindrical substrates turn out to be non-trivial: In addition to the effect of the shap...
development of a hydrothermal method to synthesize spherical znse ...
African Journals Online (AJOL)
Preferred Customer
A hydrothermal method to synthesize spherical ZnSe nanoparticles. Bull. Chem. Soc. Ethiop. 2014, 28(1). 39 resulting in the equalization of scattering coefficients of the reference side and sample side. The integrating sphere method involves a barium sulfate-coated sphere that draws the scattered light, allowing all the light ...
Application of Tietz potential to study optical properties of spherical ...
Indian Academy of Sciences (India)
Abstract. In this work, we study the optical properties of spherical quantum dots by using. Tietz potential. In this regard, we have applied Nikiforov–Uvarov (NU) technique and numeri- cally solved the Schrödinger equation to obtain energy levels and wave functions. Then, by using the density matrix method, we have derived ...
Spherically symmetric inhomogeneous bianisotropic media: Wave propagation and light scattering
DEFF Research Database (Denmark)
Novitsky, Andrey; Shalin, Alexander S.; Lavrinenko, Andrei
2017-01-01
We develop a technique for finding closed-form expressions for electromagnetic fields in radially inhomogeneous bianisotropic media, both the solutions of the Maxwell equations and material tensors being defined by the set of auxiliary two-dimensional matrices. The approach is applied to determin...... the scattering cross-sections by spherical particles, the fields inside which correspond to the Airy-exponential waves....
Scour around spherical bodies and self-burial
DEFF Research Database (Denmark)
Truelsen, Christoffer; Sumer, B. Mutlu; fredsøe, jørgen
2005-01-01
This paper summarizes the results of an experimental study on scour around spherical bodies and self-burial in steady current and in waves. The equilibrium scour depth below a fixed sphere in steady current for live-bed conditions was found to be S/D = O(O.3) D being the sphere diameter. The effe...
Advanced spherical near-field antenna measurement techniques
DEFF Research Database (Denmark)
Nielsen, Jeppe Majlund; Pivnenko, Sergey; Breinbjerg, Olav
2011-01-01
The DTU-ESA facility has since the 1980es provided highly accurate antenna radiation pattern measurements and gain calibration by use of the probe corrected spherical nearfield technique, both for ESA (the European Space Agency) and other customers and continues to do so. Recent years activities ...
Turning Points of the Spherical Pendulum and the Golden Ratio
Essen, Hanno; Apazidis, Nicholas
2009-01-01
We study the turning point problem of a spherical pendulum. The special cases of the simple pendulum and the conical pendulum are noted. For simple initial conditions the solution to this problem involves the golden ratio, also called the golden section, or the golden number. This number often appears in mathematics where you least expect it. To…
DLVO interaction energies between hollow spherical particles and collector surfaces
The surface element integration technique was used to systematically study Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies/forces between hollow spherical particles (HPs) and a planar surface or two intercepting half planes under different ionic strength conditions. The inner and outer ...
The Volume of a Torus Using Cylindrical and Spherical Coordinates
Farmer, Jim
2005-01-01
The author of this article, while recently working through some problem sets on determining volumes by triple integrals in cylindrical and spherical coordinate systems, realized that, although the textbook he was using included many interesting problems involving spheres, cylinders and cones and the increasingly complex solids that arose from the…
The volume of fluid method in spherical coordinates
Janse, A.M.C.; Janse, A.M.C.; Dijk, P.E.; Kuipers, J.A.M.
2000-01-01
The volume of fluid (VOF) method is a numerical technique to track the developing free surfaces of liquids in motion. This method can, for example, be applied to compute the liquid flow patterns in a rotating cone reactor. For this application a spherical coordinate system is most suited. The novel
A simplified derivation of leaf normal spherical coordinates
Card, Don H.
1987-01-01
The paper presents formulas for the direction in spherical coordinates of the normal vector to a planar leaf in terms of the coordinates of incident and reflected rays. A simple idea from vector analysis is applied. These formulas are important in plant canopy modeling and experimental data collection in situations where specular reflection at optical wavelengths plays a part.
Testing for Sphericity in Phase I Control Chart Applications
DEFF Research Database (Denmark)
Windfeldt, Gitte Bjørg; Bisgaard, Søren
2009-01-01
When using (x) over bar -R charts it is a crucial assumption that the observations within samples are independent and have common variance. However, this assumption is almost never checked. We propose to use the samples gathered during the phase I study and the test for distributional sphericity...
Aerosol-Assisted Self-Assembly of Mesostructured Spherical Nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Brinker, C.J.; Fan,; H.; Lu, Y.; Rieker, T.; Stump, A.; Ward, T.L.
1999-03-23
Nanostructured particles exhibiting well-defined pore sizes and pore connectivities (1-, 2-, or 3-dimensional) are of interest for catalysis, chromatography, controlled release, low dielectric constant fillers, and custom-designed pigments and optical hosts. During the last several years considerable progress has been made on controlling the macroscopic forms of mesoporous silicas prepared by surfactant and block copolymer liquid crystalline templating procedures. Typically interfacial phenomena are used to control the macroscopic form (particles, fibers, or films), while self-assembly of amphiphilic surfactants or polymers is used to control the mesostructure. To date, although a variety of spherical or nearly-spherical particles have been prepared, their extent of order is limited as is the range of attainable mesostructures. They report a rapid, aerosol process that results in solid, completely ordered spherical particles with stable hexagonal, cubic, or vesicular mesostructures. The process relies on evaporation-induced interfacial self-assembly (EISA) confined to a spherical aerosol droplet. The process is simple and generalizable to a variety of materials combinations. Additionally, it can be modified to provide the first aerosol route to the formation of ordered mesostructured films.
Optimization of laser hole drilling process on thick gold spherical ...
Indian Academy of Sciences (India)
Abstract. Hohlraums of high-Z materials are used as soft X-ray sources to study indi- rect drive fusion, equation of state of materials etc. Here, we describe a method to develop spherical gold hohlraums of large wall thickness (~70–80 µm) on which laser entrance and diagnostics holes are drilled using a 10 Hz Nd:YLF laser.
Coupled Person Orientation Estimation and Appearance Modeling using Spherical Harmonics
Liem, M.C.; Gavrila, D.M.
2014-01-01
We present a novel approach for the estimation of a person's overall body orientation, 3D shape and texture, from overlapping cameras. A distinguishing aspect of our approach is the use of spherical harmonics for 3D shape- and texture-representation; it offers a compact, low-dimensional
Spherical nanoindentation stress-strain analysis, Version 1
Energy Technology Data Exchange (ETDEWEB)
2016-11-07
Nanoindentation is a tool that allows the mechanical response of a variety of materials at the nano to micron length scale to be measured. Recent advances in spherical nanoindentation techniques have allowed for a more reliable and meaningful characterization of the mechanical response from nanoindentation experiments in the form on an indentation stress-strain curve. This code base, Spin, is written in MATLAB (The Mathworks, Inc.) and based on the analysis protocols developed by S.R. Kalidindi and S. Pathak [1, 2]. The inputs include the displacement, load, harmonic contact stiffness, harmonic displacement, and harmonic load from spherical nanoindentation tests in the form of an Excel (Microsoft) spreadsheet. The outputs include indentation stress-strain curves and indentation properties as well their variance due to the uncertainty of the zero-point correction in the form of MATLAB data (.mat) and figures (.png). [1] S. Pathak, S.R. Kalidindi. Spherical nanoindentation stress–strain curves, Mater. Sci. Eng R-Rep 91 (2015). [2] S.R. Kalidindi, S. Pathak. Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves, Acta Materialia 56 (2008) 3523-3532.
Recording gaze trajectory of wheelchair users by a spherical camera.
Li, Shigang; Fujiura, Tatsuya; Nakanishi, Isao
2017-07-01
Wheelchairs are widely used in the facilities of rehabilitation. In this paper, we propose a method of recording the gaze trajectory of wheelchair users by using a spherical camera mounted on the wheelchairs. A spherical camera has a full field of view and can observe the entire surrounding scenes. First, the gaze point of a user sitting on a wheelchair is estimated from the corneal reflection image observed by a wearable eye camera. Then, the gaze point is mapped onto the full-view image captured by the spherical camera via feature matching. Since it is not guaranteed that the gaze point in an eye image is a distinctive feature point, the matching of a gaze point between these two images cannot be carried out directly. To cope with this problem, we use a coarse-to-fine approach, in which, first, distinctive feature points are used to estimate the relative orientation between the eye camera and the spherical camera, and then, the estimated relative orientation matrix is used to determine the location of gaze points. The effectiveness of the proposed method is shown by real-world experimental results.
Exact solution of the neutron transport equation in spherical geometry
Energy Technology Data Exchange (ETDEWEB)
Anli, Fikret; Akkurt, Abdullah; Yildirim, Hueseyin; Ates, Kemal [Kahramanmaras Suetcue Imam Univ. (Turkey). Faculty of Sciences and Letters
2017-03-15
Solution of the neutron transport equation in one dimensional slab geometry construct a basis for the solution of neutron transport equation in a curvilinear geometry. Therefore, in this work, we attempt to derive an exact analytical benchmark solution for both neutron transport equations in slab and spherical medium by using P{sub N} approximation which is widely used in neutron transport theory.
Calculation of the electrophoretic mobility of a spherical colloid particle
Wiersema, P.H.; Loeb, A.L.; Overbeek, J.Th.G.
A new calculation of the relation between the electrophoretic mobility and the ζ-potential of a spherical colloid particle is presented. The model consists of a rigid, electrically insulating sphere surrounded by a Gouy-Chapman double layer. The appropriate differential equations (which account for
Spherical agglomerates of lactose with enhanced mechanical properties.
Lamešić, Dejan; Planinšek, Odon; Lavrič, Zoran; Ilić, Ilija
2017-01-10
The aim of this study was to prepare spherical agglomerates of lactose and to evaluate their physicochemical properties, flow properties, particle friability and compaction properties, and to compare them to commercially available types of lactose for direct compression (spray-dried, granulated and anhydrous β-lactose). Porous spherical agglomerates of α-lactose monohydrate with radially arranged prism-like primary particles were prepared exhibiting a high specific surface area. All types of lactose analysed had passable or better flow properties, except for anhydrous β-lactose, which had poor flowability. Particle friability was more pronounced in larger granulated lactose particles; however, particle structure was retained in all samples analysed. The mechanical properties of spherical agglomerates of lactose, in terms of compressibility, established with Walker analysis, and compactibility, established with a compactibility profile, were found to be superior to any commercially available types of lactose. Higher compactibility of spherical agglomerates of lactose is ascribed to significantly higher particle surface area due to a unique internal structure with higher susceptibility to fragmentation. Copyright © 2016 Elsevier B.V. All rights reserved.
Comparison of visual quality between aspheric and spherical IOLs.
Yagci, Ramazan; Uzun, Feyza; Acer, Semra; Hepsen, Ibrahim F
2014-01-01
To determine if aspheric intraocular lens (IOL) implantation produces the same degree of postoperative ocular aberration and contrast sensitivity as spherical IOL implantation. In this randomized prospective comparative study, 60 eyes of 30 cataract surgery patients were randomly assigned to receive a spherical IOL (Rayner 620H) in one eye and an aspheric IOL (Rayner 920H) in the contralateral eye. All patients were examined at 1 month postoperatively. Primary outcomes of contrast sensitivity and ocular wavefront higher order aberrations (HOAs) were assessed. Aspheric IOLs (median total HOAs 0.26 root mean square [RMS]; range 0.13-0.82 RMS) produced significantly lower total HOAs than spherical IOLs (median total HOAs 0.34 RMS; range 0.18-1.08 RMS; pIOLs (median contrast sensitivity 1.8 log units; range 1.35-1.8 log units) than with spherical IOLs (median contrast sensitivity 1.65 log units; range 1.35-1.8 log units; pIOL (Rayner 620H), aspheric IOLs (Rayner 920H) appear to significantly reduce HOAs and yield better levels of contrast sensitivity under photopic conditions.
Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley; Vo, Hi T.; Maloy, Stuart A.; Hosemann, Peter; Mara, Nathan A.
2017-09-01
Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current work focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-induced increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa-30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. The disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.
DEFF Research Database (Denmark)
Sack-Nielsen, Torsten
2015-01-01
The article describes the potential of building skins being climate-adaptive. The principle of folding, and the relation between form and performance of facades are discussed here.......The article describes the potential of building skins being climate-adaptive. The principle of folding, and the relation between form and performance of facades are discussed here....
Amigó, Alfredo; Martinez-Sorribes, Paula; Recuerda, Margarita
2017-07-01
To study the effect on vision of induced negative and positive spherical aberration within the range of laser vision correction procedures. In 10 eyes (mean age: 35.8 years) under cyclopegic conditions, spherical aberration values from -0.75 to +0.75 µm in 0.25-µm steps were induced by an adaptive optics system. Astigmatism and spherical refraction were corrected, whereas the other natural aberrations remained untouched. Visual acuity, depth of focus defined as the interval of vision for which the target was still perceived acceptable, contrast sensitivity, and change in spherical refraction associated with the variation in pupil diameter from 6 to 2.5 mm were measured. A refractive change of 1.60 D/µm of induced spherical aberration was obtained. Emmetropic eyes became myopic when positive spherical aberration was induced and hyperopic when negative spherical aberration was induced (R2 = 81%). There were weak correlations between spherical aberration and visual acuity or depth of focus (R2 = 2% and 3%, respectively). Contrast sensitivity worsened with the increment of spherical aberration (R2 = 59%). When pupil size decreased, emmetropic eyes became hyperopic when preexisting spherical aberration was positive and myopic when spherical aberration was negative, with an average refractive change of 0.60 D/µm of spherical aberration (R2 = 54%). An inverse linear correlation exists between the refractive state of the eye and spherical aberration induced within the range of laser vision correction. Small values of spherical aberration do not worsen visual acuity or depth of focus, but positive spherical aberration may induce night myopia. In addition, the changes in spherical refraction when the pupil constricts may worsen near vision when positive spherical aberration is induced or improve it when spherical aberration is negative. [J Refract Surg. 2017;33(7):470-474.]. Copyright 2017, SLACK Incorporated.
Baddour, Natalie
2010-10-01
For functions that are best described with spherical coordinates, the three-dimensional Fourier transform can be written in spherical coordinates as a combination of spherical Hankel transforms and spherical harmonic series. However, to be as useful as its Cartesian counterpart, a spherical version of the Fourier operational toolset is required for the standard operations of shift, multiplication, convolution, etc. This paper derives the spherical version of the standard Fourier operation toolset. In particular, convolution in various forms is discussed in detail as this has important consequences for filtering. It is shown that standard multiplication and convolution rules do apply as long as the correct definition of convolution is applied.
Attitude Estimation Based on the Spherical Simplex Transformation Modified Unscented Kalman Filter
Directory of Open Access Journals (Sweden)
Jianwei Zhao
2014-01-01
Full Text Available An antenna attitude estimation algorithm is proposed to improve the antenna pointing accuracy for the satellite communication on-the-move. The extrapolated angular acceleration is adopted to improve the performance of the time response. The states of the system are modified according to the modification rules. The spherical simplex transformation unscented Kalman filter is used to improve the precision of the estimated attitude and decrease the calculation of the unscented Kalman filter. The experiment results show that the proposed algorithm can improve the instantaneity of the estimated attitude and the precision of the antenna pointing, which meets the requirement of the antenna pointing.
Pattern recognition in RICH counters using the Possibilistic C- Spherical Shell algorithm
Massone, A M; Masulli, F
2000-01-01
The pattern recognition problem in RICH counters concerns the identification of an unknown number of imperfect roughly-circular rings made of a low number of discrete points in presence of background. We present some preliminary results obtained using the Possibilistic C-Spherical Shell algorithm. In particular, we show that the algorithm is very tolerant and robust to noise (outliers rate) level. Moreover, for complex images full of rings, we introduce an iterative scheme that greatly improves performance. Also, the rings are not required to be complete, arcs are sufficient to recognize the underlying rings. (4 refs).
Controller tuning based on optimization algorithms of a novel spherical rolling robot
Energy Technology Data Exchange (ETDEWEB)
Sadegjian, Rasou [Dept. of Electrical, Biomedical, and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, QazvinI (Iran, Islamic Republic of); Masouleh, Mehdi Tale [Human and Robot Interaction Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran (Iran, Islamic Republic of)
2016-11-15
This study presents the construction process of a novel spherical rolling robot and control strategies that are used to improve robot locomotion. The proposed robot drive mechanism is constructed based on a combination of the pendulum and wheel drive mechanisms. The control model of the proposed robot is developed, and the state space model is calculated based on the obtained control model. Two control strategies are defined to improve the synchronization performance of the proposed robot motors. The proportional-derivative and proportional-integral-derivative controllers are designed based on the pole placement method. The proportional-integral-derivative controller leads to a better step response than the proportional-derivative controller. The controller parameters are tuned with genetic and differential evaluation algorithms. The proportional-integral-derivative controller which is tuned based on the differential evaluation algorithm leads to a better step response than the proportional-integral-derivative controller that is tuned based on genetic algorithm. Fuzzy logics are used to reduce the robot drive mechanism motors synchronizing process time to the end of achieving a high-performance controller. The experimental implementation results of fuzzy-proportional-integral-derivative on the proposed spherical rolling robot resulted in a desirable synchronizing performance in a short time.
Energy Technology Data Exchange (ETDEWEB)
Williamson, D.L.; Hack, J.J.; Jakob, R.; Swarztrauber, P.N. (National Center for Atmospheric Research, Boulder, CO (United States)); Drake, J.B. (Oak Ridge National Lab., TN (United States))
1991-08-01
A suite of seven test cases is proposed for the evaluation of numerical methods intended for the solution of the shallow water equations in spherical geometry. The shallow water equations exhibit the major difficulties associated with the horizontal dynamical aspects of atmospheric modeling on the spherical earth. These cases are designed for use in the evaluation of numerical methods proposed for climate modeling and to identify the potential trade-offs which must always be made in numerical modeling. Before a proposed scheme is applied to a full baroclinic atmospheric model it must perform well on these problems in comparison with other currently accepted numerical methods. The cases are presented in order of complexity. They consist of advection across the poles, steady state geostrophically balanced flow of both global and local scales, forced nonlinear advection of an isolated low, zonal flow impinging on an isolated mountain, Rossby-Haurwitz waves and observed atmospheric states. One of the cases is also identified as a computer performance/algorithm efficiency benchmark for assessing the performance of algorithms adapted to massively parallel computers. 31 refs.
Adaptive optical versus spherical aberration corrections for in vivo brain imaging.
Turcotte, Raphaël; Liang, Yajie; Ji, Na
2017-08-01
Adjusting the objective correction collar is a widely used approach to correct spherical aberrations (SA) in optical microscopy. In this work, we characterized and compared its performance with adaptive optics in the context of in vivo brain imaging with two-photon fluorescence microscopy. We found that the presence of sample tilt had a deleterious effect on the performance of SA-only correction. At large tilt angles, adjusting the correction collar even worsened image quality. In contrast, adaptive optical correction always recovered optimal imaging performance regardless of sample tilt. The extent of improvement with adaptive optics was dependent on object size, with smaller objects having larger relative gains in signal intensity and image sharpness. These observations translate into a superior performance of adaptive optics for structural and functional brain imaging applications in vivo, as we confirmed experimentally.
Shielding of electromagnetic fields of current sources by spherical enclosures
Shastry, S. V. K.; Rao, M. N.; Katti, V. R.
Expressions for the shielding effectiveness of a conductive spherical enclosure excited by a Hertzian dipole have been derived using the dyadic Green's function technique. This technique has the advantage that the fields inside or outside the enclosure due to arbitrary current distribution may be found by employing the same set of dyadic Green's functions. The shielding effectiveness for plane wave incidence has been determined by considering the limiting case of the current source external to the spherical shell. Computed values of shielding effectiveness deduced in this manner have been compared with those obtained by the numerical evaluation of the expressions derived by earlier authors. The theory presented here may be useful to EMC (electromagnetic compatibility) engineers who must consider electromagnetic coupling from current sources in the vicinity of shielding enclosures.
Modeling and Analysis of a 2-DOF Spherical Parallel Manipulator
Directory of Open Access Journals (Sweden)
Xuechao Duan
2016-09-01
Full Text Available The kinematics of a two rotational degrees-of-freedom (DOF spherical parallel manipulator (SPM is developed based on the coordinate transformation approach and the cosine rule of a trihedral angle. The angular displacement, angular velocity, and angular acceleration between the actuators and end-effector are thus determined. Moreover, the dynamic model of the 2-DOF SPM is established by using the virtual work principle and the first-order influence coefficient matrix of the manipulator. Eventually, a typical motion plan and simulations are carried out, and the actuating torque needed for these motions are worked out by employing the derived inverse dynamic equations. In addition, an analysis of the mechanical characteristics of the parallel manipulator is made. This study lays a solid base for the control of the 2-DOF SPM, and also provides the possibility of using this kind of spherical manipulator as a 2-DOF orientation, angular velocity, or even torque sensor.
Viscous Rayleigh-Taylor instability in spherical geometry
Mikaelian, Karnig O.
2016-02-01
We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955), 10.1093/qjmam/8.1.1] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer a somewhat improved one. A third DR, based on transforming a planar DR into a spherical one, suffers no unphysical predictions and compares reasonably well with the exact work of Chandrasekhar and a more recent numerical analysis of the problem [Terrones and Carrara, Phys. Fluids 27, 054105 (2015), 10.1063/1.4921648].
Gravitational and electric energies in collapse of spherically thin capacitor
Ruffini, Remo
2013-01-01
In our previous article (PHYSICAL REVIEW D 86, 084004 (2012)), we present a study of strong oscillating electric fields and electron-positron pair-production in gravitational collapse of a neutral stellar core at or over nuclear densities. In order to understand the back-reaction of such electric energy building and radiating on collapse, we adopt a simplified model describing the collapse of a spherically thin capacitor to give an analytical description how gravitational energy is converted to both kinetic and electric energies in collapse. It is shown that (i) averaged kinetic and electric energies are the same order, about an half of gravitational energy of spherically thin capacitor in collapse; (ii) caused by radiating and rebuilding electric energy, gravitational collapse undergoes a sequence of "on and off" hopping steps in the microscopic Compton scale. Although such a collapse process is still continuous in terms of macroscopic scales, it is slowed down as kinetic energy is reduced and collapsing tim...
Enhancement of octupole strength in near spherical nuclei
Energy Technology Data Exchange (ETDEWEB)
Robledo, L.M. [Universidad Autonoma de Madrid, Dep. Fisica Teorica, Facultad de Ciencias, Madrid (Spain)
2016-09-15
The validity of the rotational formula used to compute E1 and E3 transition strengths in even-even nuclei is analyzed within the Generator Coordinate Method framework based on mean field wave functions. It turns out that those nuclei with spherical or near spherical shapes the E1 and E3 strengths computed with this formula are strongly underestimated and a sound evaluation of them requires angular-momentum projected wave functions. Results for several isotopic chains with proton number equal to or near magic numbers are analyzed and compared with experimental data. The use of angular-momentum projected wave functions greatly improves the agreement with the scarce experimental data. (orig.)
Minimum Q Electrically Small Spherical Magnetic Dipole Antenna - Practice
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Breinbjerg, Olav
2009-01-01
Practical aspects of applying a magnetic core to approach the Chu lower bound for the radiation Q factor of an electrically small magnetic dipole antenna are considered. It is shown that although a magnetic core does reduce the Q factor, its effect is not as strong as predicted by Wheeler....... This is due to the fact that a finite size magnetic core supports multiple internal resonances, which spoil the Q factor also away from exact resonance frequencies; and in a worst case they can even significantly increase Q. The resonances in question are not only those of the TE10 spherical mode, but also...... resonances of all other modes that are not sufficiently suppressed in the antenna. Numerical results for a 4-arm spherical helix antenna filled with magnetic material demonstrate the destroying effect of the parasitic TM11 mode on the antenna Q factor. Theoretical considerations as well as numerical results...
Reconstruction of sound fields with a spherical microphone array
DEFF Research Database (Denmark)
Fernandez Grande, Efren; Walton, Tim
2014-01-01
Spherical microphone arrays are very well suited for sound field measurements in enclosures or interior spaces, and generally in acoustic environments where sound waves impinge on the array from multiple directions. Because of their directional properties, they make it possible to resolve sound...... waves traveling in any direction. In particular, rigid sphere microphone arrays are robust, and have the favorable property that the scattering introduced by the array can be compensated for - making the array virtually transparent. This study examines a recently proposed sound field reconstruction...... method based on a point source expansion, i.e. equivalent source method, using a rigid spherical array. The study examines the capability of the method to distinguish between sound waves arriving from different directions (i.e., as a sound field separation method). This is representative of the potential...
Compact representation of radiation patterns using spherical mode expansions
Energy Technology Data Exchange (ETDEWEB)
Simpson, T.L.; Chen, Yinchao (South Carolina Univ., Columbia, SC (USA). Dept. of Electrical and Computer Engineering)
1990-07-15
This report presents the results of an investigation of SM (Spherical Mode) expansions as a compact and efficient alternative to the use of current distributions for generating radiation patterns. The study included three areas: (1) SM expansion from the radiation pattern; (2) SM expansion from the antenna current; and (3) Literature search. SM expansions were obtained from radiation patterns during the initial phase of this study. Although straightforward in principal, however, this technique was found to be awkward for the treatment on theoretical radiation patterns. It is included here for completeness and for possible use to summarize experimental results in a more meaningful way than with an exhaustive display of amplitude with azimuth and elevation angles. In essence, the work in this area served as as warm-up problem to develop our skills in computing and manipulating spherical modes as mathematical entities. 6 refs., 21 figs., 6 tabs.
On the Field of a Stationary Charged Spherical Source
Directory of Open Access Journals (Sweden)
Stavroulakis N.
2009-04-01
Full Text Available The equations of gravitation related to the field of a spherical charged source imply the existence of an interdependence between gravitation and electricity [5]. The present paper deals with the joint action of gravitation and electricity in the case of a stationary charged spherical source. Let m and " be respectively the mass and the charge of the source, and let k be the gravitational constant. Then the equations of gravitation need specific discussion according as j " j m p k (source strongly charged. In any case the curvature radius of the sphere bounding the matter possesses a strictly positive greatest lower hound, so that the source is necessarily an extended object. Pointwise sources do not exist. In particular, charged black holes do not exist.
Ultrasmooth, Highly Spherical Monocrystalline Gold Particles for Precision Plasmonics
Lee, You-Jin
2013-12-23
Ultrasmooth, highly spherical monocrystalline gold particles were prepared by a cyclic process of slow growth followed by slow chemical etching, which selectively removes edges and vertices. The etching process effectively makes the surface tension isotropic, so that spheres are favored under quasi-static conditions. It is scalable up to particle sizes of 200 nm or more. The resulting spherical crystals display uniform scattering spectra and consistent optical coupling at small separations, even showing Fano-like resonances in small clusters. The high monodispersity of the particles we demonstrate should facilitate the self-assembly of nanoparticle clusters with uniform optical resonances, which could in turn be used to fabricate optical metafluids. Narrow size distributions are required to control not only the spectral features but also the morphology and yield of clusters in certain assembly schemes. © 2013 American Chemical Society.
Realization of a Service Robot for Cleaning Spherical Surfaces
Directory of Open Access Journals (Sweden)
Houxiang Zhang
2005-03-01
Full Text Available There are more and more buildings with complicated shape emerging all over the world. Their walls require constant cleaning which is difficult to realize. In this paper, based on analyzing the characteristics of the working target, a new kind of auto-climbing robot is proposed, which is used for cleaning the spherical surface of the National GrandTheatre in China. The robots' mechanism and unique aspects are presented in detail. A distributed controller based onCAN bus is designed to meet the requirements of controlling the robot. The control system is divided into 6 parts, fiveCAN bus control nodes and a remote controller, which are designed and established based mainly on the P80C592. Finally, the motion function is described in detail. The experimental results confirm the principle described above andthe robot's ability to work on the spherical surface.
Analysis of Shield Construction in Spherical Weathered Granite Development Area
Cao, Quan; Li, Peigang; Gong, Shuhua
2018-01-01
The distribution of spherical weathered bodies (commonly known as "boulder") in the granite development area directly affects the shield construction of urban rail transit engineering. This paper is based on the case of shield construction of granite globular development area in Southern China area, the parameter control in shield machine selection and shield advancing during the shield tunneling in this special geological environment is analyzed. And it is suggested that shield machine should be selected for shield construction of granite spherical weathered zone. Driving speed, cutter torque, shield machine thrust, the amount of penetration and the speed of the cutter head of shield machine should be controlled when driving the boulder formation, in order to achieve smooth excavation and reduce the disturbance to the formation.
Dynamics of Shape Fluctuations of Quasi-spherical Vesicles Revisited
DEFF Research Database (Denmark)
Miao, L.; Lomholt, Michael Andersen; Kleis, J.
2002-01-01
of the phenomenological constants in a canonical continuum description of fluid lipid-bilayer membranes and shown the consequences of this new interpretation in terms of the characteristics of the dynamics of vesicle shape fluctuations. Moreover, we have used the systematic formulation of our theory as a framework...... against which we have discussed the previously existing theories and their discrepancies. Finally, we have made a systematic prediction about the system-dependent characteristics of the relaxation dynamics of shape fluctuations of quasi-spherical vesicles with a view of experimental studies......In this paper, the dynamics of spontaneous shape fluctuations of a single, giant quasi-spherical vesicle formed from a single lipid species is revisited theoretically. A coherent physical theory for the dynamics is developed based on a number of fundamental principles and considerations...
Surface Plasmon Coupling and Control Using Spherical Cap Structures
Energy Technology Data Exchange (ETDEWEB)
Gong, Yu; Joly, Alan G.; Zhang, Xin; El-Khoury, Patrick Z.; Hess, Wayne P.
2017-06-05
Propagating surface plasmons (PSPs) launched from a protruded silver spherical cap structure are investigated using photoemission electron microscopy (PEEM) and finite difference time domain (FDTD) calculations. Our combined experimental and theoretical findings reveal that PSP coupling efficiency is comparable to conventional etched-in plasmonic coupling structures. Additionally, plasmon propagation direction can be varied by a linear rotation of the driving laser polarization. A simple geometric model is proposed in which the plasmon direction selectivity is proportional to the projection of the linear laser polarization on the surface normal. An application for the spherical cap coupler as a gate device is proposed. Overall, our results indicate that protruded cap structures hold great promise as elements in emerging surface plasmon applications.
On an open problem in spherical facility location
Xue, Guoliang
1995-03-01
In this paper we partially resolve an open problem in spherical facility location. The spherical facility location problem is a generalization of the planar Euclidean facility location problem. This problem was first studied by Katz and Cooper and by Drezner and Wesolowsky where a Weszfeld-like algorithm was proposed. This algorithm is very simple and does not require a line search. However, its convergence has been an open problem for more than ten years. In this paper, we prove that the sequence generated by the algorithm converges to the unique optimal solution under the condition that the oscillation of the sequence converges to zero. We conjecture that the algorithm is a descent algorithm and prove that the sequence generated by the algorithm converges to the optimal solution under this conjecture.
Development of spherical crystals of acetylsalicylic acid for direct tablet-making.
Göczõ, H; Szabó-Révész, P; Farkas, B; Hasznos-Nezdei, M; Serwanis, S F; Pintye-Hódi, A K; Kása, P; Erõs, I; Antal, I; Marto, S
2000-12-01
The production of spherical crystals has recently gained great attention due to the fact that the crystal habit (form, surface, size, etc.) can be modified during the crystallization process. Spherical crystals of ASA were developed by non-typical and typical spherical crystallization techniques. The non-typical spherical crystallization process (conventional stirred tank method) resulted in few monocrystals and non-spherical crystal agglomerates. The typical spherical crystallization process was carried out by the three solvent-system (ethanol-water-carbon tetrachloride). The products were qualified by morphological study, NIR investigation, salicylic acid content, dissolution rate, studies on flowability, compactibility, cohesivity and tablettability. The results demonstrate that only typical spherical crystallization can be recommended for the production of spherical crystals of ASA. Only product made by this technique shows excellent flow properties and favourable compactibility, cohesiveness and tablettability values.
On dynamics and control of vibratory gyroscopes with special spherical symmetry
CSIR Research Space (South Africa)
Shatalov, M
2006-05-01
Full Text Available are obtained in the spherical Bessel and the associated Legendre functions, the effects of rotation are investigated and scales factors are determined for different vibrating modes of the spherical body, spheroidal and torsional. Corresponding scales factors...
The relativistic Boltzmann equation on a spherically symmetric gravitational field
Takou, Etienne; Ciake Ciake, Fidèle L.
2017-10-01
In this paper, we consider the Cauchy problem for the relativistic Boltzmann equation with near vacuum initial data where the distribution function depends on the time, the position and the impulsion. We consider this equation on a spherically symmetric gravitational field spacetime. The collision kernel considered here is for the hard potentials case. We prove the existence of a unique global (in time) mild solution in a suitable weighted space.
Magnetic interaction in all silicon waveguide spherical coupler device.
Shi, Lei; Meseguer, Francisco
2012-09-24
The magnetic field component of light in dielectric materials generally plays a negligible role at optical frequency values. However, it is a key component of metal based metamaterials. Here we report on the dominant role of the magnetic interaction in a dielectric spherical silicon nanocavity coupled to a silicon waveguide. The analytical method, as well as the finite difference time domain (FDTD) simulation, show a three dimensional (3D) magnetic trap effect when the magnetic like Mie resonances of the nanocavity are excited.
Ptolemy-Alhazen problem and spherical mirror reflection
FUJIMURA, Masayo; Hariri, Parisa; Mocanu, Marcelina; Vuorinen, Matti
2017-01-01
An ancient optics problem of Ptolemy, studied later by Alhazen, is discussed. This problem deals with reflection of light in spherical mirrors. Mathematically this reduces to the solution of a quartic equation, which we solve and analyze using a symbolic computation software. Similar problems have been recently studied in connection with ray-tracing, catadioptric optics, scattering of electromagnetic waves, and mathematical billiards, but we were led to this problem in our study of the so-cal...
Full light absorption in single arrays of spherical nanoparticles
Ra'di, Y.; Asadchy, V. S.; Kosulnikov, S. U.; Omelyanovich, M. M.; Morits, D.; Osipov, A. V.; Simovski, C. R.; Tretyakov, S.A.
2015-01-01
In this paper we show that arrays of core-shell nanoparticles function as effective thin absorbers of light. In contrast to known metamaterial absorbers, the introduced absorbers are formed by single planar arrays of spherical inclusions and enable full absorption of light incident on either or both sides of the array. We demonstrate possibilities for realizing different kinds of symmetric absorbers, including resonant, ultra-broadband, angularly selective, and all-angle absorbers. The physic...
Characterization of Rubbers from Spherical Punch - Plate Indentation Tests
Directory of Open Access Journals (Sweden)
Florina Carmen Ciornei
2016-12-01
Full Text Available Rubber plates with different compositions and hardness were tested by continuous indentation, using a spherical punch and hysteretic phenomenon was evidenced. The experimental data interpolation with polynomial functions is accurate and permits estimation of the lost work during loading cycles. The interpolation by power law functions is more convenient by using less parameters and having a form accepted in literature. From the rubbers tested, two were considered to present good damping properties.
A Spherically Symmetric Model for the Tumor Growth
Directory of Open Access Journals (Sweden)
Saeed M. Ali
2014-01-01
Full Text Available The nonlinear tumor equation in spherical coordinates assuming that both the diffusivity and the killing rate are functions of concentration of tumor cell is studied. A complete classification with regard to the diffusivity and net killing rate is obtained using Lie symmetry analysis. The reduction of the nonlinear governing equation is carried out in some interesting cases and exact solutions are obtained.
The Electrochemical Behavior of Dispersions of Spherical Ultramicroelectrodes.
1986-07-30
means of bipolar electrolyses with dispersions. Polarization equations are predicted for highly simplified models based on the concept of the mixture...three-dimensional electrodes. Bipolar electrolyses on dispersions of spherical particles have been proposed and the behavior of such electrodes in the... electrolyses (I0řcm < a < j0-3cm) is intermediate to that of the colloidal systems (typically 10- 6cm) and fluidized bed electrodes (typically 10- 2cm
Plasma Current Start-up in a Spherical Tokamak
Mitarai, Osamu; Kessel, Charles; Hirose, Akira
The various plasma current start-up techniques and related topics in a spherical tokamak (ST) device are described. The Ohmic heating coil current clamp experiments in NSTX are described and discussed, and the plasma current start-up experiments in the STOR-M tokamak with iron core and the outer vertical field coil is presented as one of technique for a plasma current start-up in a ST.
Quasi-homologous spherically symmetric branes and their symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Abdalla, M.C.B.; Carlesso, P.F. [UNESP - Universidade Estadual Paulista, Instituto de Fisica Teorica, Rua Dr. Bento Teobaldo Ferraz, 271, Bloco II, Barra-Funda, Caixa Postal 70532-2, Sao Paulo, SP (Brazil); Hoff da Silva, J.M. [UNESP - Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)
2013-06-15
We revisit the dynamical system-based approach of spherically symmetric vacuum braneworlds, pointing out and studying the existence of a transcritical bifurcation as the dark pressure parameter changes its sign, we analyze some consequences of not discard the brane cosmological constant. For instance, it is noteworthy that the existence of an isothermal state equation between the dark fluid parameters cannot be obtained via the requirement of a quasi-homologous symmetry of the vacuum. (orig.)
Electromagnetically driven zonal flows in a rapidly rotating spherical shell
Hollerbach, Rainer; Wei, Xing; Noir, Jérõme; JACKSON, Andrew
2013-01-01
We consider the flow of an electrically conducting fluid confined in a rotating spherical shell. The flow is driven by a directly imposed electromagnetic body force, created by the combination of an electric current flowing from the inner sphere to a ring-shaped electrode around the equator of the outer sphere and a separately imposed predominantly axial magnetic field. We begin by numerically computing the axisymmetric basic states, which consist of a strong zonal flow. We nex...
An introduction to spherically symmetric loop quantum gravity black holes
Energy Technology Data Exchange (ETDEWEB)
Gambini, Rodolfo [Instituto de Física, Facultad de Ciencias, Iguá 4-225, esq. Mataojo, 11400 Montevideo (Uruguay); Pullin, Jorge [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States)
2015-03-26
We review recent developments in the treatment of spherically symmetric black holes in loop quantum gravity. In particular, we discuss an exact solution to the quantum constraints that represents a black hole and is free of singularities. We show that new observables that are not present in the classical theory arise in the quantum theory. We also discuss Hawking radiation by considering the quantization of a scalar field on the quantum spacetime.
Constrained field theories on spherically symmetric spacetimes with horizons
Fernandes, Karan; Lahiri, Amitabha; Ghosh, Suman
2017-02-01
We apply the Dirac-Bergmann algorithm for the analysis of constraints to gauge theories defined on spherically symmetric black hole backgrounds. We find that the constraints for a given theory are modified on such spacetimes through the presence of additional contributions from the horizon. As a concrete example, we consider the Maxwell field on a black hole background, and determine the role of the horizon contributions on the dynamics of the theory.
Surface tension of spherical drops from surface of tension
Energy Technology Data Exchange (ETDEWEB)
Homman, A.-A.; Bourasseau, E. [CEA/DAM DIF, F-91297 Arpajon Cedex (France); Stoltz, G. [Université Paris-Est, CERMICS (ENPC), INRIA, F-77455 Marne-la-Vallée (France); Malfreyt, P. [Institut de Chimie de Clermont-Ferrand, Université Blaise Pascal, UMR CNRS 6296, ICCF, BP 10448, F-63000 Clermont-Ferrand (France); Strafella, L.; Ghoufi, A., E-mail: aziz.ghoufi@univ-rennes1.fr [Institut de Physique de Rennes, Université de Rennes 1 UMR 6251 CNRS, 263 avenue Général Leclerc, 35042 Rennes (France)
2014-01-21
The determination of surface tension of curved interfaces is a topic that raised many controversies during the last century. Explicit liquid-vapor interface modelling (ELVI) was unable up to now to reproduce interfacial behaviors in drops due to ambiguities in the mechanical definition of the surface tension. In this work, we propose a thermodynamic approach based on the location of surface of tension and its use in the Laplace equation to extract the surface tension of spherical interfaces from ELVI modelling.
Hysteresis of dynamos in rotating spherical shell convection
Feudel, F.; Tuckerman, L. S.; Zaks, M.; Hollerbach, R.
2017-05-01
Bifurcations of dynamos in rotating and buoyancy-driven spherical Rayleigh-Bénard convection in an electrically conducting fluid are investigated numerically. Both nonmagnetic and magnetic solution branches comprised of rotating waves are traced by path-following techniques, and their bifurcations and interconnections for different Ekman numbers are determined. In particular, the question of whether the dynamo branches bifurcate super- or subcritically and whether a direct link to the primary pure convective states exists is answered.
Symmetric functions and B sub N -invariant spherical harmonics
Dunkl, C F
2002-01-01
The wavefunctions of a quantum isotropic harmonic oscillator modified by reflecting barriers at the coordinate planes in N-dimensional space can be expressed in terms of certain generalized spherical harmonics. These are associated with a product-type weight function on the sphere. Their analysis is carried out by means of differential-difference operators. The symmetries of this system involve the Weyl group of type B, generated by permutations and changes of sign of the coordinates. A new basis for symmetric functions as well as an explicit transition matrix to the monomial basis is constructed. This basis leads to a basis for invariant spherical harmonics. The determinant of the Gram matrix for the basis in the natural inner product over the sphere is evaluated. When the underlying parameter is specialized to zero, the basis consists of ordinary spherical harmonics with cube group symmetry, as used for wavefunctions of electrons in crystals. The harmonic oscillator can also be considered as a degenerate in...
Axisymmetric bifurcations of thick spherical shells under inflation and compression
deBotton, G.
2013-01-01
Incremental equilibrium equations and corresponding boundary conditions for an isotropic, hyperelastic and incompressible material are summarized and then specialized to a form suitable for the analysis of a spherical shell subject to an internal or an external pressure. A thick-walled spherical shell during inflation is analyzed using four different material models. Specifically, one and two terms in the Ogden energy formulation, the Gent model and an I1 formulation recently proposed by Lopez-Pamies. We investigate the existence of local pressure maxima and minima and the dependence of the corresponding stretches on the material model and on shell thickness. These results are then used to investigate axisymmetric bifurcations of the inflated shell. The analysis is extended to determine the behavior of a thick-walled spherical shell subject to an external pressure. We find that the results of the two terms Ogden formulation, the Gent and the Lopez-Pamies models are very similar, for the one term Ogden material we identify additional critical stretches, which have not been reported in the literature before.© 2012 Published by Elsevier Ltd.
Toral and exponential stabilization for homotopy spherical spaceforms
Kwasik, Slawomir; Schultz, Reinhard
2004-11-01
The Atiyah-Singer equivariant signature formula implies that the products of isometrically inequivalent classical spherical space forms with the circle are not homeomorphic, and in fact the same conclusion holds if the circle is replaced by a torus of arbitrary dimension. These results are important in the study of group actions on manifolds. Algebraic K-theory yields standard classes of counterexamples for topological and smooth analogs of spherical spaceforms. The results of this paper characterize pairs of nonhomeomorphic topological spherical space forms whose products with a given torus of arbitrary dimension are homeomorphic, and the main result is that the known counterexamples are the only ones that exist. In particular, this and basic results in lower algebraic K-theory show that if such products are homeomorphic, then the products are already homeomorphic if one uses a 3-dimensional torus. Sharper results are established for important special cases such as fake lens spaces. The methods are basically surgery-theoretic with some input from homotopy theory. One consequence is the existence of new infinite families of manifolds in all dimensions greater than three such that the squares of the manifolds are homeomorphic although the manifolds themselves are not. Analogous results are obtained in the smooth category.
Spherical magnetic nanoparticles fabricated by laser target evaporation
Safronov, A. P.; Beketov, I. V.; Komogortsev, S. V.; Kurlyandskaya, G. V.; Medvedev, A. I.; Leiman, D. V.; Larrañaga, A.; Bhagat, S. M.
2013-05-01
Magnetic nanoparticles of iron oxide (MNPs) were prepared by the laser target evaporation technique (LTE). The main focus was on the fabrication of de-aggregated spherical maghemite MNPs with a narrow size distribution and enhanced effective magnetization. X-ray diffraction, transmission electron microscopy, magnetization and microwave absorption measurements were comparatively analyzed. The shape of the MNPs (mean diameter of 9 nm) was very close to being spherical. The lattice constant of the crystalline phase was substantially smaller than that of stoichiometric magnetite but larger than the lattice constant of maghemite. High value of Ms up to 300 K was established. The 300 K ferromagnetic resonance signal is a single line located at a field expected from spherical magnetic particles with negligible magnetic anisotropy. The maximum obtained concentration of water based ferrofluid was as high as 10g/l of magnetic material. In order to understand the temperature and field dependence of MNPs magnetization, we invoke the core-shell model. The nanoparticles is said to have a ferrimagnetic core (roughly 70 percent of the caliper size) while the shell consists of surface layers in which the spins are frozen having no long range magnetic order. The core-shell interactions were estimated in frame of random anisotropy model. The obtained assembly of de-aggregated nanoparticles is an example of magnetic nanofluid stable under ambient conditions even without an electrostatic stabilizer.
Magnetic actuation and transition shapes of a bistable spherical cap
Directory of Open Access Journals (Sweden)
E.G. Loukaides
2014-10-01
Full Text Available Multistable shells have been proposed for a variety of applications; however, their actuation is almost exclusively addressed through embedded piezoelectric patches. Additional actuation techniques are needed for applications requiring high strains or where remote actuation is desirable. Part of the reason for the lack of research in this area is the absence of appropriate models describing the detailed deformation and energetics of such shells. This work presents a bistable spherical cap made of iron carbonyl-infused polydimethylsiloxane. The magnetizable structure can be actuated remotely through permanent magnets while the transition is recorded with a high-speed camera. Moreover, the experiment is reproduced in a finite element (FE dynamic model for comparison with the physical observations. High-speed footage of the physical cap inversion together with the FE modeling gives valuable insight on preferable intermediate geometries. Both methods return similar values for the magnetic field strength required for the snap-through. High-strain multistable spherical cap transformation is demonstrated, based on informed material selection. We discover that non-axisymmetric transition shapes are preferred in intermediate geometries by bistable spherical caps. We develop the methods for design and analysis of such actuators, including the feasibility of remote actuation methods for multistable shells.
Dye-doped spherical particles of optical cavity structure
Shibata, Shuichi; Yano, Tetsuji; Yamane, Masayuki
1997-10-01
Preparation of micrometer-sized spherical particles containing Rhodamine 6G (R6G) has been investigated for spherical cavity structure. Hydrolysis and polymerization processes of phenyltriethoxysilane (PTES) as a starting material was pursued by observing the change of PTES/R6G in HCl solution with its optical absorption and viscosity. As the polymerization of PTES proceeded, increase of molecular size resulted in change its properties from hydrophilic to hydrophobic, and subsequently the solution separated into two layers of aqueous and organic. Polymerized PTES in the organic layer showed good affinity with incorporated R6G, and high monomer/dimer ratio in particles was achieved. Moreover, using them intermixing of unsuitable particles of submicron size was avoided, because hydrolyzed PTES of small molecular size that is the origin of submicron-sized particles was removed to the aqueous layer. With stirring, titration of diluted droplets containing polymerized PTES was suitable for preparing several micrometer sized particles, and followed by solidification in ammonia water. Degree of the polymerization of PTES and viscosity of liquid droplets were the key factors for determining the properties of R6G-doped spherical particles of optical cavity structure.
Robotic penguin-like propulsor with novel spherical joint
Sudki, Bassem; Lauria, Michel; Noca, Flavio
2013-11-01
We have designed and manufactured an innovative spherical joint mechanism with three actuated degrees of freedom, aimed at mimicking a penguin shoulder and enabling a potential propulsion technology with high efficiency and maneuverability. In addition, the mechanism might also lead to propellers with directional thrusting capability. A parallel architecture was chosen for this type of mechanism in order to ensure rigidity as well high actuation frequencies and amplitudes. Indeed, as the motors are fixed, inertial forces are lower than for a serial robot. The resulting spherical parallel mechanism (SPM) with coaxial shafts was designed and manufactured with the following specifications: fixed center of rotation (spherical joint); working frequency of 2.5 Hz under charge; unlimited rotation about main axis; and arbitrary motion within a cone of 60 degrees. The equations for the inverse kinematics of the mechanism have been established and can yield the trajectories of each actuator for any desired motion applied to the oar or blade. The technology will be illustrated with preliminary experiments in a hydrodynamic channel at the University of Applied Sciences - hepia - Switzerland.
Spherical Domain Wall Collapse in a Dust Universe
Tanahashi, Norihiro
2014-01-01
To clarify observational consequence of bubble nucleations in inflationary era, we analyse dynamics of a spherical domain wall in an expanding universe. We consider a spherical shell of the domain wall with tension $\\sigma$ collapsing in a spherically-symmetric dust universe, which is initially separated into the open Friedmann-Lema\\^itre-Robertson-Walker universe inside the shell and the Einstein-de Sitter universe outside. The domain wall shell collapses due to the tension, and sweeps the dust fluid. The universe after the collapse becomes inhomogeneous and is described by the Lema\\^itre-Tolman-Bondi model. We construct solutions describing this inhomogeneous universe by solving dynamical equations obtained from Israel's junction conditions applied to this system. We find that a black hole forms after the domain wall collapse for any initial condition, and that the black hole mass at the moment of its formation is universally given by $M_{\\rm BH}\\simeq 17 \\sigma/H_{\\rm hc}$, where $H_{\\rm hc}$ is the Hubble...
Visual Detection and Tracking System for a Spherical Amphibious Robot.
Guo, Shuxiang; Pan, Shaowu; Shi, Liwei; Guo, Ping; He, Yanlin; Tang, Kun
2017-04-15
With the goal of supporting close-range observation tasks of a spherical amphibious robot, such as ecological observations and intelligent surveillance, a moving target detection and tracking system was designed and implemented in this study. Given the restrictions presented by the amphibious environment and the small-sized spherical amphibious robot, an industrial camera and vision algorithms using adaptive appearance models were adopted to construct the proposed system. To handle the problem of light scattering and absorption in the underwater environment, the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used to detect moving targets entering the field of view of the robot. A fast compressive tracker with a Kalman prediction mechanism was used to track the specified target. Considering the limited load space and the unique mechanical structure of the robot, the proposed vision system was fabricated with a low power system-on-chip using an asymmetric and heterogeneous computing architecture. Experimental results confirmed the validity and high efficiency of the proposed system. The design presented in this paper is able to meet future demands of spherical amphibious robots in biological monitoring and multi-robot cooperation.
Spherical Indicatrices of Involute of a Space Curve in Euclidean 3-Space
Tunçer, Yılmaz; ÜNAL, Serpil; KARACAN, Murat Kemal
2012-01-01
In this work, we studied the properties of the spherical indicatrices of involute curve of a space curve and presented some characteristic properties in the cases that involute curve and evolute curve are slant helices and helices, spherical indicatrices are slant helices and helices and we introduced new representations of spherical indicatrices.
Directory of Open Access Journals (Sweden)
Shrestha Siddhartha
2017-01-01
Full Text Available Bubble dynamics significantly affect the hydrodynamics of gas-solid fluidized bed since they influence the gas-solid mixing. In this study, simulations using CFD-DEM were carried out to characterize the bubble size and shape for a bubble formed at a single orifice in gas-solid fluidized bed. Impact of parameters such as jet velocity, orifice size and particle shape on bubble equivalent diameter and bubble aspect ratio were analysed and discussed. Bubble equivalent diameter was found to increase with increasing jet velocity, decreasing bed width to orifice width ratio, and particle shape deviating from spherical. The bubble shape illustrated by aspect ratio, was found to elongate more as it rise through the bed and then commence to expand horizontally after it was detached from the orifice. Aspect ratio was found to be closer to a circle for the bubble at higher jet velocity, lower orifice width to bed ratio and for non-spherical particles.
Podhorodeski, R. P.; Fenton, R. G.; Goldenberg, A. A.
1989-01-01
Using a method based upon resolving joint velocities using reciprocal screw quantities, compact analytical expressions are generated for the inverse solution of the joint rates of a seven revolute (spherical-revolute-spherical) manipulator. The method uses a sequential decomposition of screw coordinates to identify reciprocal screw quantities used in the resolution of a particular joint rate solution, and also to identify a Jacobian null-space basis used for the direct solution of optimal joint rates. The results of the screw decomposition are used to study special configurations of the manipulator, generating expressions for the inverse velocity solution for all non-singular configurations of the manipulator, and identifying singular configurations and their characteristics. Two functions are therefore served: a new general method for the solution of the inverse velocity problem is presented; and complete analytical expressions are derived for the resolution of the joint rates of a seven degree of freedom manipulator useful for telerobotic and industrial robotic application.
Shrestha, Siddhartha; Zhou, Zongyan
2017-06-01
Bubble dynamics significantly affect the hydrodynamics of gas-solid fluidized bed since they influence the gas-solid mixing. In this study, simulations using CFD-DEM were carried out to characterize the bubble size and shape for a bubble formed at a single orifice in gas-solid fluidized bed. Impact of parameters such as jet velocity, orifice size and particle shape on bubble equivalent diameter and bubble aspect ratio were analysed and discussed. Bubble equivalent diameter was found to increase with increasing jet velocity, decreasing bed width to orifice width ratio, and particle shape deviating from spherical. The bubble shape illustrated by aspect ratio, was found to elongate more as it rise through the bed and then commence to expand horizontally after it was detached from the orifice. Aspect ratio was found to be closer to a circle for the bubble at higher jet velocity, lower orifice width to bed ratio and for non-spherical particles.
Spherical Coordinate Systems for Streamlining Suited Mobility Analysis
Benson, Elizabeth; Cowley, Matthew; Harvill, Lauren; Rajulu. Sudhakar
2015-01-01
Introduction: When describing human motion, biomechanists generally report joint angles in terms of Euler angle rotation sequences. However, there are known limitations in using this method to describe complex motions such as the shoulder joint during a baseball pitch. Euler angle notation uses a series of three rotations about an axis where each rotation is dependent upon the preceding rotation. As such, the Euler angles need to be regarded as a set to get accurate angle information. Unfortunately, it is often difficult to visualize and understand these complex motion representations. It has been shown that using a spherical coordinate system allows Anthropometry and Biomechanics Facility (ABF) personnel to increase their ability to transmit important human mobility data to engineers, in a format that is readily understandable and directly translatable to their design efforts. Objectives: The goal of this project was to use innovative analysis and visualization techniques to aid in the examination and comprehension of complex motions. Methods: This project consisted of a series of small sub-projects, meant to validate and verify a new method before it was implemented in the ABF's data analysis practices. A mechanical test rig was built and tracked in 3D using an optical motion capture system. Its position and orientation were reported in both Euler and spherical reference systems. In the second phase of the project, the ABF estimated the error inherent in a spherical coordinate system, and evaluated how this error would vary within the reference frame. This stage also involved expanding a kinematic model of the shoulder to include the rest of the joints of the body. The third stage of the project involved creating visualization methods to assist in interpreting motion in a spherical frame. These visualization methods will be incorporated in a tool to evaluate a database of suited mobility data, which is currently in development. Results: Initial results
DEFF Research Database (Denmark)
Hansen, Troels V.; Kim, Oleksiy S.; Breinbjerg, Olav
2012-01-01
wave, the excitation coefficients for the internal and external spherical waves, the radiated power, the internal and external stored electric and magnetic energies, the difference of total electric and total magnetic energy, the cavity and radiating resonance conditions, and the quality factor. We...... investigate the variation of the internal/external and electric/magnetic stored energies with the electrical size of the antenna to study their relative significance for the quality factor....
Analysis of the turbulent flow field in a spherically convergent implosion problem
Boureima, Ismael; Ramaprabhu, Praveen; Attal, Nitesh
2016-11-01
We describe results from 3D, numerical simulations of a spherically convergent, implosion problem. The problem definition follows, and involves a time-dependent pressure drive that sustains the implosion of an interface in a slow-fast configuration. The simulations are performed within a spherical wedge, where the interface is initialized with multimode perturbations leading to turbulent flow. The initial stages of the implosion are dominated by the Richtymer-Meshkov (RM) instability, while the late stages involve a stagnation phase interspersed with reshocks during which both RM and Rayleigh-Taylor (RT) instabilities are observed. The simulations were performed with the FLASH code, with a mesh resolution corresponding to 512x512 zones in the (θ, ϕ) directions, and proportional gridding in the r-direction. We report on several quantities that could provide insights in to the evaluation of turbulence models including the turbulent kinetic energy, anisotropy tensor, density self-correlation, and atomic mixing among others. This work was supported in part by the (U.S.) Department of Energy (DOE) under Contract No. DE-AC52-06NA2-5396.
Directory of Open Access Journals (Sweden)
Michael Lasta
2017-01-01
Full Text Available Purpose. To compare the effect of spherical aberration on optical quality in eyes with two different aspherical intraocular lenses. Methods. 120 eyes of 60 patients underwent phacoemulsification. In patients’ eyes, an aberration-free IOL (Aspira-aA; Human Optics or an aberration-correcting aspherical IOL (Tecnis ZCB00; Abott Medical Optics was randomly implanted. After surgery, contrast sensitivity and wavefront measurements as well as tilt and decentration measurements were performed. Results. Contrast sensitivity was significantly higher in eyes with Aspira lens under mesopic conditions with 12 cycles per degree (CPD and under photopic conditions with 18 CPD (p=0.02. Wavefront measurements showed a higher total spherical aberration with a minimal pupil size of 4 mm in the Aspira group (0.05 ± 0.03 than in the Tecnis group (0.03 ± 0.02 (p=0.001. Strehl ratio was higher in eyes with Tecnis (0.28 ± 0.17 with a minimal pupil size larger than 5 mm than that with Aspira (0.16 ± 0.14 (p=0.04. In pupils with a minimum diameter of 4 mm spherical aberration had a significant effect on Strehl ratio, but not in pupils with a diameter less than 4 mm. Conclusions. Optical quality was better in eyes with the aberration-correcting Tecnis IOL when pupils were large. In contrast, this could not be shown in eyes with pupils under 4 mm or larger. This trial is registered with Clinicaltrials.gov NCT03224728.
Sitko, Rafal; Zawisza, Beata; Talik, Ewa; Janik, Paulina; Osoba, Grzegorz; Feist, Barbara; Malicka, Ewa
2014-06-27
Graphene oxide (GO) is a novel material with excellent adsorptive properties. However, the very small particles of GO can cause serious problems is solid-phase extraction (SPE) such as the high pressure in SPE system and the adsorbent loss through pores of frit. These problems can be overcome by covalently binding GO nanosheets to a support. In this paper, GO was covalently bonded to spherical silica by coupling the amino groups of spherical aminosilica and the carboxyl groups of GO (GO@SiO2). The successful immobilization of GO nanosheets on the aminosilica was confirmed by scanning electron microscopy and X-ray photoelectron spectroscopy. The spherical particle covered by GO with crumpled silk wave-like carbon sheets are an ideal sorbent for SPE of metal ions. The wrinkled structure of the coating results in large surface area and a high extractive capacity. The adsorption bath experiment shows that Cu(II) and Pb(II) can be quantitatively adsorbed at pH 5.5 with maximum adsorption capacity of 6.0 and 13.6 mg g(-1), respectively. Such features of GO nanosheets as softness and flexibility allow achieving excellent contact with analyzed solution in flow-rate conditions. In consequence, the metal ions can be quantitatively preconcentrated from high volume of aqueous samples with excellent flow-rate. SPE column is very stable and several adsorption-elution cycles can be performed without any loss of adsorptive properties. The GO@SiO2 was used for analysis of various water samples by flame atomic absorption spectrometry with excellent enrichment factors (200-250) and detection limits (0.084 and 0.27 ng mL(-1) for Cu(II) and Pb(II), respectively). Copyright © 2014 Elsevier B.V. All rights reserved.
Kong, Qingzhao; Fan, Shuli; Bai, Xiaolong; Mo, Y. L.; Song, Gangbing
2017-09-01
Recently developed piezoceramic-based transducers, known as smart aggregates (SAs), have shown their applicability and versatility in various applications of structural health monitoring (SHM). The lead zirconate titanate (PZT) patches embedded inside SAs have different modes that are more suitable for generating or receiving different types of stress waves (e.g. P and S waves, each of which has a unique role in SHM). However, due to the geometry of the 2D PZT patch, the embedded SA can only generate or receive the stress wave in a single direction and thus greatly limits its applications. This paper is the first of a series of two companion papers that introduces the authors’ latest work in developing a novel, embeddable spherical smart aggregate (SSA) for the health monitoring of concrete structures. In addition to the 1D guided wave produced by SA, the SSA embedded in concrete structures can generate or receive omni-directional stress waves that can significantly improve the detection aperture and provide additional functionalities in SHM. In the first paper (Part I), the detailed fabrication procedures with the help of 3D printing technology and electrical characterization of the proposed SSA is presented. The natural frequencies of the SSA were experimentally obtained and further compared with the numerical results. In addition, the influence of the components’ thickness (spherical piezoceramic shell and epoxy) and outer radius (spherical piezoceramic shell and protection concrete) on the natural frequencies of the SSA were analytically studied. The results will help elucidate the key parameters that determine the natural frequencies of the SSA. The natural frequencies of the SSA can thus be designed for suitability in the damage detection of concrete structures. In the second paper (Part II), further numerical and experimental verifications on the performance of the proposed SSA in concrete structures will be discussed.
Excited-states of hydrogenic-like impurities in InGaN–GaN spherical QD: Electric field effect
Energy Technology Data Exchange (ETDEWEB)
El Ghazi, Haddou, E-mail: hadghazi@gmail.com [LPS, Faculty of Sciences, Dhar EL Mehrez, B.P 1796 Atlas Fez (Morocco); Special Mathematics, CPGE Kénitra (Morocco); Jorio, Anouar [LPS, Faculty of Sciences, Dhar EL Mehrez, B.P 1796 Atlas Fez (Morocco)
2013-12-01
By means of a traditional Ritz variational method within the effective-mass and single parabolic band approximations, the excited-states energy with and without the existence of the impurity is performed. Externally applied electric field and system radius effects are considered in wurtzite (In,Ga)N–GaN spherical quantum dot with finite potential barrier. The normalized binding energy is also reported. Compared to the previous theoretical findings, a good agreement is shown.
Cassibry, J. T.; Stanic, M.; Hsu, S.C.; Abarzhi, S. I.; Witherspoon, F. D.
2012-01-01
Three dimensional hydrodynamic simulations have been performed using smoothed particle hydrodynamics (SPH) in order to study the effects of discrete jets on the processes of plasma liner formation, implosion on vacuum, and expansion. The pressure history of the inner portion of the liner was qualitatively and quantitatively similar from peak compression through the complete stagnation of the liner among simulation results from two one dimensional radiationhydrodynamic codes, 3D SPH with a uni...
Directory of Open Access Journals (Sweden)
M Cilli
2014-10-01
Full Text Available This study aimed to investigate the kinematic and kinetic changes when resistance is applied in horizontal and vertical directions, produced by using different percentages of body weight, caused by jumping movements during a dynamic warm-up. The group of subjects consisted of 35 voluntary male athletes (19 basketball and 16 volleyball players; age: 23.4 ± 1.4 years, training experience: 9.6 ± 2.7 years; height: 177.2 ± 5.7 cm, body weight: 69.9 ± 6.9 kg studying Physical Education, who had a jump training background and who were training for 2 hours, on 4 days in a week. A dynamic warm-up protocol containing seven specific resistance movements with specific resistance corresponding to different percentages of body weight (2%, 4%, 6%, 8%, 10% was applied randomly on non consecutive days. Effects of different warm-up protocols were assessed by pre-/post- exercise changes in jump height in the countermovement jump (CMJ and the squat jump (SJ measured using a force platform and changes in hip and knee joint angles at the end of the eccentric phase measured using a video camera. A significant increase in jump height was observed in the dynamic resistance warm-up conducted with different percentages of body weight (p 0.05. In jump movements before and after the warm-up, while no significant difference between the vertical ground reaction forces applied by athletes was observed (p>0.05, in some cases of resistance, a significant reduction was observed in hip and knee joint angles (p<0.05. The dynamic resistance warm-up method was found to cause changes in the kinematics of jumping movements, as well as an increase in jump height values. As a result, dynamic warm-up exercises could be applicable in cases of resistance corresponding to 6-10% of body weight applied in horizontal and vertical directions in order to increase the jump performance acutely.
Worldwide complete spherical Bouguer and isostatic anomaly maps
Bonvalot, S.; Balmino, G.; Briais, A.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.
2011-12-01
We present here a set of digital maps of the Earth's gravity anomalies (surface "free air", Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW). The free air and Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, submitted). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial Intelligence Agency (NGA) (Pavlis
Jokic, B; Mitric, M; Popovic, M; Sima, L; Petrescu, S M; Petrovic, R; Janackovic, Dj
2011-10-01
In this work, the influence of the morphology of hydroxyapatite particles on silicon substitution through hydrothermal synthesis performed under the same conditions was investigated. Spherical- and whisker-like hydroxyapatite particles were obtained starting from calcium-nitrate, sodium dihydrogen phosphate, disodium-ethylenediaminetetraacetic acid and urea (used only for the synthesis of whisker-like particles) dissolved in aqueous solutions. Silicon was introduced into the solution using tetraethylorthosilicate. X-ray diffraction, infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy indicate that silicon doping induce different phase compositions and bioactivity of spherical- and whisker-like hydroxyapatite particles obtained under the same hydrothermal conditions. Silicon-substituted, spherical hydroxyapatites particles showed greater phase transformation to silicon-substituted α- calcium-phosphate compared with whiskers-like hydroxyapatite particles synthesized with the same amount of added silicon. Metabolic activity assay performed with SaOs2 osteosarcoma cells showed better biocompatibility of annealed biphasic spherical-like particles compared with annealed whiskerlike particles while dried spherical-like particles induce high cytotoxicity effect.
Yang, Xiutao; Xia, Hui; Liang, Zhongguan; Li, Haiyan; Yu, Hongwen
2017-09-01
Carbon nanospheres with distinguishable microstructure were prepared by carbonization and subsequent KOH activation of F108/resorcinol-formaldehyde composites. The dosage of triblock copolymer Pluronic F108 is crucial to the microstructure differences. With the adding of F108, the polydisperse carbon nanospheres (PCNS) with microporous structure, monodisperse carbon nanospheres (MCNS) with hierarchical porous structure, and agglomerated carbon nanospheres (ACNS) were obtained. Their microstructure and capacitance properties were carefully compared. As a result of the synergetic effect of mono-dispersion spheres and hierarchical porous structures, the MCNS sample shows improved electrochemical performance, i.e., the highest specific capacitance of 224 F g-1 (0.2 A g-1), the best rate capability (73% retention at 20 A g-1), and the most excellent capacitance retention of 93% over 10,000 cycles, making it to be the promising electrode material for high-performance supercapacitors.
Carbon xerogels as catalyst supports for PEM fuel cell cathode
Energy Technology Data Exchange (ETDEWEB)
Job, Nathalie; Lambert, Stephanie [Laboratoire de Genie chimique, Universite de Liege, Institut de Chimie B6a, Sart-Tilman, B-4000 Liege (Belgium); Marie, Julien; Berthon-Fabry, Sandrine; Achard, Patrick [Ecole des Mines de Paris, Centre Energetique et Procedes, BP 207, F-06904 Sophia-Antipolis Cedex (France)
2008-09-15
Carbon xerogels with various pore textures were prepared by evaporative drying and pyrolysis of resorcinol-formaldehyde gels, and used as supports for Pt catalysts in PEM fuel cell cathodes. The goal of this study was to determine whether carbon xerogels could replace the carbon aerogels which were previously used as Pt catalyst supports in the same electrochemical system, and to determine how the pore texture influences the cell performances. Pt catalysts were prepared by impregnation of carbon supports with aqueous H{sub 2}PtCl{sub 6} solution followed by reduction in aqueous phase with NaBH{sub 4}. Fuel cell measurements show that the metal surface actually available for the oxygen reduction reaction and the voltage losses due to diffusion phenomena strongly depend on the carbon pore texture. Finally, some carbon xerogels yield similar performance than carbon aerogels. (author)
Full light absorption in single arrays of spherical nanoparticles
Ra'di, Y; Kosulnikov, S U; Omelyanovich, M M; Morits, D; Osipov, A V; Simovski, C R; Tretyakov, S A
2015-01-01
In this paper we show that arrays of core-shell nanoparticles function as effective thin absorbers of light. In contrast to known metamaterial absorbers, the introduced absorbers are formed by single planar arrays of spherical inclusions and enable full absorption of light incident on either or both sides of the array. We demonstrate possibilities for realizing different kinds of symmetric absorbers, including resonant, ultra-broadband, angularly selective, and all-angle absorbers. The physical principle behind these designs is explained considering balanced electric and magnetic responses of unit cells. Photovoltaic devices and thermal emitters are the two most important potential applications of the proposed designs.
Geometric scalar theory of gravity beyond spherical symmetry
Moschella, U.; Novello, M.
2017-04-01
We construct several exact solutions for a recently proposed geometric scalar theory of gravity. We focus on a class of axisymmetric geometries and a big-bang-like geometry and discuss their Lorentzian character. The axisymmetric solutions are parametrized by an integer angular momentum l . The l =0 (spherical) case gives rise to the Schwarzschild geometry. The other solutions have naked singular surfaces. While not a priori obvious, all the solutions that we present here are globally Lorentzian. The Lorentzian signature appears to be a robust property of the disformal geometries solving the vacuum geometric scalar theory of gravity equations.
Phases of dense matter with non-spherical nuclei
Energy Technology Data Exchange (ETDEWEB)
Pethick, C.J. [NORDITA, Copenhagen (Denmark)]|[Dept. of Physics, Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States); Ravenhall, D.G. [Dept. of Physics, Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)
1998-06-01
A brief review is given of some of the important physics related to phases with non-spherical nuclei that can exist in neutron stars and in matter in stellar collapse at densities just below the saturation density of nuclear matter. Comparisons are made with other systems that exhibit similar liquid-crystal-like phases, both in nuclear physics and in condensed matter physics. A short account is given of recent work on the elastic properties of these phases, and their vibration spectrum, as well as on neutron superfluid gaps. (orig.)
Synthesis of Thermally Spherical CuO Nanoparticles
Directory of Open Access Journals (Sweden)
Nittaya Tamaekong
2014-01-01
Full Text Available Copper oxide (CuO nanoparticles were successfully synthesized by a thermal method. The CuO nanoparticles were further characterized by thermogravimetric analysis (TGA, differential thermal analysis (DTA, X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray spectrometry (EDS, and high resolution transmission electron microscopy (HRTEM, respectively. The specific surface area (SSABET of CuO nanoparticles was determined by nitrogen adsorption. The SSABET was found to be 99.67 m2/g (dBET of 9.5 nm. The average diameter of the spherical CuO nanoparticles was approximately 6–9 nm.
Note: Attenuation motion of acoustically levitated spherical rotor
Lü, P.; Hong, Z. Y.; Yin, J. F.; Yan, N.; Zhai, W.; Wang, H. P.
2016-11-01
Here we observe the attenuation motion of spherical rotors levitated by near-field acoustic radiation force and analyze the factors that affect the duration time of free rotation. It is found that the rotating speed of freely rotating rotor decreases exponentially with respect to time. The time constant of exponential attenuation motion depends mainly on the levitation height, the mass of rotor, and the depth of concave ultrasound emitter. Large levitation height, large mass of rotor, and small depth of concave emitter are beneficial to increase the time constant and hence extend the duration time of free rotation.
ECCENTRIC ROLLING OF POWDER AND BONDING AGENT INTO SPHERICAL PELLETS
Patton, G. Jr.; Zirinsky, S.
1961-06-01
A machine is described for pelletizing powder and bonding agent into spherical pellets of high density and uniform size. In this device, the material to be compacted is added to a flat circular pan which is moved in a circular orbit in a horizontal plane about an axis displaced from that of the pan's central axis without rotating the pan about its central axis. This movement causes the material contained therein to roll around the outside wall of the container and build up pellets of uniform shape, size, and density.
DSM complete synthetic seismograms: SH, spherically symmetric, case
Cummins, Phil R.; Geller, Robert J.; Hatori, Tomohiko; Takeuchi, Nozomu
1994-04-01
We present a new technique, based om the Direct Solution Method (DSM) (Geller et al., 1990; Hara et al., 1991; Geller and Ohminato, 1994), for calculating SH (toroidal) synthetic seismograms for spherically symmetric, isotropic, media. No asymptotic approximations are used and the synthetics, which fully include both body and surface waves, can be computed for a broad range of frequencies. Our algorithm accurately handles sources that require discontinuities in the vertically dependent part of the displacement. We use matrix operators that minimize the numerical error of the solutions. An example synthetic profile is presented for a 600km deep source in the IASP91 model for the period range 4-5000s.
Compact magnetic confinement fusion: Spherical torus and compact torus
Directory of Open Access Journals (Sweden)
Zhe Gao
2016-05-01
Full Text Available The spherical torus (ST and compact torus (CT are two kinds of alternative magnetic confinement fusion concepts with compact geometry. The ST is actually a sub-category of tokamak with a low aspect ratio; while the CT is a toroidal magnetic configuration with a simply-connected geometry including spheromak and field reversed pinch. The ST and CT have potential advantages for ultimate fusion reactor; while at present they can also provide unique fusion science and technology contributions for mainstream fusion research. However, some critical scientific and technology issues should be extensively investigated.
Spectrum analysis of hydrogen plasma in spherically convergent beam fusion
Energy Technology Data Exchange (ETDEWEB)
Ogasawara, Kazuki; Yamauchi, Kunihito; Watanabe, Masato; Sunaga, Yoshitaka; Hotta, Eiki [Tokyo Institute of Technology, Dept. of Energy Sciences, Yokohama, Kanagawa (Japan); Okino, Akitoshi [Tokyo Institute of Technology, Dept. of Electrical and Electronic Engineering, Tokyo (Japan)
2001-09-01
Spectroscopic analysis of spherical glow discharge fusion device was carried out using hydrogen gas. Effects of the discharge current and cathode voltage on spectrum profiles of hydrogen Balmar lines were measured. The profiles of all hydrogen lines were broadened with the cathode voltage. From the relationship between the maximum broadening width and the cathode voltage, it was indicated that the broadening was caused by the Doppler effect. From the spatial distribution of emission intensity, it was found that plasma core size became larger with discharge current and smaller with cathode voltage. (author)
Hierarchical structures of ZnO spherical particles synthesized solvothermally
Directory of Open Access Journals (Sweden)
Noriko Saito and Hajime Haneda
2011-01-01
Full Text Available We review the solvothermal synthesis, using a mixture of ethylene glycol (EG and water as the solvent, of zinc oxide (ZnO particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i EG restricts the growth of ZnO microcrystals, (ii EG promotes the self-assembly of small crystallites into spheroidal particles and (iii the high water content of EG results in hollow spheres.
A spherical x-ray transform and hypercube sections
DEFF Research Database (Denmark)
Kazantsev, Ivan G; Schmidt, Soren
2014-01-01
We investigate the problem of sampling a unit great circle on the unit sphere S-3 as a support of orientation distribution functions on which acts the discrete spherical x-ray transform. The circle's partition subsets are gnomonically mapped onto lines that constitute a convex polygon inside...... the bounding cubes of hypercube. Thus the problem of the great circle tracing is reduced to the problem of the four-dimensional cube sectioning by the plane containing the circle and the intersection figure (the polygon) vertices finding. In this paper, a fast, non-combinatorial approach for the polygon...
A numerical optimization approach to generate smoothing spherical splines
Machado, L.; Monteiro, M. Teresa T.
2017-01-01
Approximating data in curved spaces is a common procedure that is extremely required by modern applications arising, for instance, in aerospace and robotics industries. Here, we are particularly interested in finding smoothing cubic splines that best fit given data in the Euclidean sphere. To achieve this aim, a least squares optimization problem based on the minimization of a certain cost functional is formulated. To solve the problem a numerical algorithm is implemented using several routines from MATLAB toolboxes. The proposed algorithm is shown to be easy to implement, very accurate and precise for spherical data chosen randomly.
Internally Pressurized Spherical and Cylindrical Cavities in Rock Salt
DEFF Research Database (Denmark)
Krenk, Steen
1978-01-01
-linear zone and the volume reduction. Results are given for cavities in rock salt, and a comparison with measured stress concentrations is used to support the assumption of a hydrostatic stress state in undisturbed salt formations. Finally a method to estimate convergence due to creep is outlined.......The paper deals with the stress distribution around cavities under pressure in an infinite, non-linear elastic material. A homogeneous stress state is assumed at infinity. For spherical and cylindrical cavities simple formulae are derived for the stress concentration, the extent of the non...
Static spherically symmetric solutions in f(G) gravity
Sharif, M.; Fatima, H. Ismat
2016-05-01
We investigate interior solutions for static spherically symmetric metric in the background of f(G) gravity. We use the technique of conformal Killing motions to solve the field equations with both isotropic and anisotropic matter distributions. These solutions are then used to obtain density, radial and tangential pressures for power-law f(G) model. For anisotropic case, we assume a linear equation-of-state and investigate solutions for the equation-of-state parameter ω = -1.5. We check physical validity of the solutions through energy conditions and also examine its stability. Finally, we study equilibrium configuration using Tolman-Oppenheimer-Volkoff equation.
All spherically symmetric charged anisotropic solutions for compact stars
Energy Technology Data Exchange (ETDEWEB)
Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, UP (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)
2017-06-15
In the present paper we develop an algorithm for all spherically symmetric anisotropic charged fluid distributions. Considering a new source function ν(r) we find a set of solutions which is physically well behaved and represents compact stellar models. A detailed study specifically shows that the models actually correspond to strange stars in terms of their mass and radius. In this connection we investigate several physical properties like energy conditions, stability, mass-radius ratio, electric charge content, anisotropic nature and surface redshift through graphical plots and mathematical calculations. All the features from these studies are in excellent agreement with the already available evidence in theory as well as observations. (orig.)
Minimal Length Effects on Tunnelling from Spherically Symmetric Black Holes
Directory of Open Access Journals (Sweden)
Benrong Mu
2015-01-01
Full Text Available We investigate effects of the minimal length on quantum tunnelling from spherically symmetric black holes using the Hamilton-Jacobi method incorporating the minimal length. We first derive the deformed Hamilton-Jacobi equations for scalars and fermions, both of which have the same expressions. The minimal length correction to the Hawking temperature is found to depend on the black hole’s mass and the mass and angular momentum of emitted particles. Finally, we calculate a Schwarzschild black hole's luminosity and find the black hole evaporates to zero mass in infinite time.
Oscillations of spherical fullerenes interacting with graphene sheet
Energy Technology Data Exchange (ETDEWEB)
Ghavanloo, Esmaeal, E-mail: ghavanloo@shirazu.ac.ir; Fazelzadeh, S. Ahmad
2017-01-01
In the present study, the oscillations of spherical fullerenes in the vicinity of a fully constrained graphene sheet are investigated. Using the continuous approximation and Lennard-Jones potential, the van der Waals (vdW) potential energy and interaction forces are obtained. The equation of motion is derived and directly solved based on the actual force distribution between the fullerene molecules and the graphene sheet. Numerical results are obtained and shown that the oscillation is sensitive to the size of the fullerene as well as the distance between the center of the fullerene and the graphene sheet.
Boundary controllability of Maxwell's equations in a spherical region
Kime, Katherine A.
1987-02-01
This paper examines the question of control of electromagnetic fields in a three dimensional spherical region by means of control currents on the boundary of that region. Results of this type are significant in connection with the theory of waveguides, electromagnetic pulse devices, and stealth technology, as well as being of independent mathematical interest. The necessary theory of divergence-free solutions of the vector wave equation is developed. By use of eigenfunctions of the vector Laplacian in appropriate divergence-free domains and moment problem techniques, sufficient conditions for controllability are set forth.
Multiscale 3D shape analysis using spherical wavelets.
Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen R
2005-01-01
Shape priors attempt to represent biological variations within a population. When variations are global, Principal Component Analysis (PCA) can be used to learn major modes of variation, even from a limited training set. However, when significant local variations exist, PCA typically cannot represent such variations from a small training set. To address this issue, we present a novel algorithm that learns shape variations from data at multiple scales and locations using spherical wavelets and spectral graph partitioning. Our results show that when the training set is small, our algorithm significantly improves the approximation of shapes in a testing set over PCA, which tends to oversmooth data.
Development of light-weight spherical mirrors for RICH detectors
Metlica, Fabio
2007-01-01
Glass-coated beryllium and carbon-fiber light-weight spherical mirrors, with radii of curvature of $\\sim$ 2700mm, have been successfully developed and tested as part of the LHCb RICH experimental programme. The low mass mirror is necessary to minimize the amount of material within the LHCb spectrometer acceptance, with a requirement of less than 2% of a radiation length. Both technologies are suitable for light-weight mirror applications. The R&D and characterization of the mirrors are reported.
Particle digital in-line holography with spherical wave recording
Ge, Baozhen; Lu, Qieni; Zhang, Yimo
2003-09-01
In this paper, we propose a method of digital in-line holography of particle. A diverging spherical beam is used for illumination in recording hologram, the complex amplitude distribution generated by particle field at a single plane located in the Fresnel diffraction region is recorded by CCD, and a plane beam for reconstructing hologram, then, the magnified image can be obtained by numerical reconstruction in computer. This procedure can be interpreted by Fourier optical theory and the theoretical analysis have been done in detail, the experimental results, the air freshener being subject, are also given.
Light-weight spherical mirrors for Cherenkov detectors
Cisbani, E; Colilli, S; Crateri, R; Cusanno, F; De Leo, R; Fratoni, R; Frullani, S; Garibaldi, F; Giuliani, F; Gricia, M; Iodice, M; Iommi, R; Lagamba, L; Lucentini, M; Mostarda, A; Nappi, E; Pierangeli, L; Santavenere, F; Urciuoli, G M; Vernin, P
2003-01-01
Light-weight spherical mirrors have been appositely designed and built for the gas threshold Cherenkov detectors of the two Hall A spectrometers. The mirrors are made of a 1 mm thick aluminized plexiglass sheet, reinforced by a rigid backing consisting of a phenolic honeycomb sandwiched between two carbon fiber mats epoxy glued. The produced mirrors have a thickness equivalent to 0.55% of radiation length, and an optical slope error of about 5.5 mrad. These characteristics make these mirrors suitable for the implementation in Cherenkov threshold detectors. Ways to improve the mirror features are also discussed in view of their possible employment in RICH detectors.
A Study of the Nearfield of an Excited Spherical Shell.
1980-03-17
screwed on an aluminum adapter (1/2 inch in diameter, 1/4 inch thick) which was attached to the shell with epoxy resin. Both of the shells were...Spheres in Water," J. Acoust. Soc. Amer. 41, 380-393 (1967). 7. Dragonette, L. R., Vogt, R. H., Flax , L. and Neubauer, W. G., "Acoustic Reflection from...34High Frequency Response of an Elastic Spherical Shell," J. Appl. Mech. 36, 4, 859-864 (December 1969). 9. Flax , L., "High ka Scattering of Elastic
Plane waves and spherical means applied to partial differential equations
John, Fritz
2004-01-01
Elementary and self-contained, this heterogeneous collection of results on partial differential equations employs certain elementary identities for plane and spherical integrals of an arbitrary function, showing how a variety of results on fairly general differential equations follow from those identities. The first chapter deals with the decomposition of arbitrary functions into functions of the type of plane waves. Succeeding chapters introduce the first application of the Radon transformation and examine the solution of the initial value problem for homogeneous hyperbolic equations with con
Ion Exchange Testing with SRF Resin FY 2012
Energy Technology Data Exchange (ETDEWEB)
Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.
2014-07-02
Ion exchange using spherical resorcinol-formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection (DOE-ORP) for use in the Pretreatment Facility (PTF) of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in at-tank deployment. Numerous studies have shown SRF resin to be effective for removing 137Cs from a wide variety of actual and simulated tank waste supernatants (Adamson et al. 2006; Blanchard et al. 2008; Burgeson et al. 2004; Duignan and Nash 2009; Fiskum et al. 2006a; Fiskum et al. 2006b; Fiskum et al. 2006c; Fiskum et al. 2007; Hassan and Adu-Wusu 2003; King et al. 2004; Nash et al. 2006). Prior work at the Pacific Northwest National Laboratory (PNNL) has focused primarily on the loading behavior for 4 to 6 M Na solutions at 25 to 45°C. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (0.1 to 8 M) and higher temperatures (50°C) to alleviate post-filtration precipitation issues. This report discusses ion exchange loading kinetics testing activities performed in accordance with Test Plan TP-WTPSP-002, Rev. 3.01, which was prepared and approved in response to the Test Specification 24590-PTF-TSP-RT-09-002, Rev. 0 (Lehrman 2010) and Test Exception 24590-PTF-TEF-RT-11-00003, Rev. 0 (Meehan 2011). This testing focused on column tests evaluating the impact of elevated temperature on resin degradation over an extended period of time and batch contacts evaluating the impact on Cs loading over a broad range of sodium concentrations (0.1 to 5 M). These changes may be required to alleviate post-filtration precipitation issues and broaden the data range of SRF resin loading under the conditions expected with the new equipment and process changes.
Mamon, Gary A.; Biviano, Andrea; Boué, Gwenaël
2013-03-01
Mass modelling of spherical systems through internal kinematics is hampered by the mass-velocity anisotropy degeneracy inherent in the Jeans equation, as well as the lack of techniques that are both fast and adaptable to realistic systems. A new fast method, called Modelling Anisotropy and Mass Profiles of Observed Spherical Systems (MAMPOSSt), is developed and thoroughly tested. MAMPOSSt performs a maximum-likelihood fit of the distribution of observed tracers in projected phase space (projected radius and line-of-sight velocity). As in other methods, MAMPOSSt assumes a shape for the gravitational potential (or equivalently the total mass profile). However, instead of postulating a shape for the distribution function in terms of energy and angular momentum, or supposing Gaussian line-of-sight velocity distributions, MAMPOSSt assumes a velocity anisotropy profile and a shape for the 3D velocity distribution. The formalism is presented for the case of a Gaussian 3D velocity distribution. In contrast to most methods based on moments, MAMPOSSt requires no binning, differentiation, nor extrapolation of the observables. Tests on cluster-mass haloes from ΛCDM dissipationless cosmological simulations indicate that, with 500 tracers, MAMPOSSt is able to jointly recover the virial radius, tracer scale radius, dark matter scale radius and outer or constant velocity anisotropy with small bias (elliptical and dwarf spheroidal galaxies.
Prediction of Near-Field Wave Attenuation Due to a Spherical Blast Source
Ahn, Jae-Kwang; Park, Duhee
2017-11-01
Empirical and theoretical far-field attenuation relationships, which do not capture the near-field response, are most often used to predict the peak amplitude of blast wave. Jiang et al. (Vibration due to a buried explosive source. PhD Thesis, Curtin University, Western Australian School of Mines, 1993) present rigorous wave equations that simulates the near-field attenuation to a spherical blast source in damped and undamped media. However, the effect of loading frequency and velocity of the media have not yet been investigated. We perform a suite of axisymmetric, dynamic finite difference analyses to simulate the propagation of stress waves induced by spherical blast source and to quantify the near-field attenuation. A broad range of loading frequencies, wave velocities, and damping ratios are used in the simulations. The near-field effect is revealed to be proportional to the rise time of the impulse load and wave velocity. We propose an empirical additive function to the theoretical far-field attenuation curve to predict the near-field range and attenuation. The proposed curve is validated against measurements recorded in a test blast.
A fast code for channel limb radiances with gas absorption and scattering in a spherical atmosphere
Eluszkiewicz, Janusz; Uymin, Gennady; Flittner, David; Cady-Pereira, Karen; Mlawer, Eli; Henderson, John; Moncet, Jean-Luc; Nehrkorn, Thomas; Wolff, Michael
2017-05-01
We present a radiative transfer code capable of accurately and rapidly computing channel limb radiances in the presence of gaseous absorption and scattering in a spherical atmosphere. The code has been prototyped for the Mars Climate Sounder measuring limb radiances in the thermal part of the spectrum (200-900 cm-1) where absorption by carbon dioxide and water vapor and absorption and scattering by dust and water ice particles are important. The code relies on three main components: 1) The Gauss Seidel Spherical Radiative Transfer Model (GSSRTM) for scattering, 2) The Planetary Line-By-Line Radiative Transfer Model (P-LBLRTM) for gas opacity, and 3) The Optimal Spectral Sampling (OSS) for selecting a limited number of spectral points to simulate channel radiances and thus achieving a substantial increase in speed. The accuracy of the code has been evaluated against brute-force line-by-line calculations performed on the NASA Pleiades supercomputer, with satisfactory results. Additional improvements in both accuracy and speed are attainable through incremental changes to the basic approach presented in this paper, which would further support the use of this code for real-time retrievals and data assimilation. Both newly developed codes, GSSRTM/OSS for MCS and P-LBLRTM, are available for additional testing and user feedback.
Energy Technology Data Exchange (ETDEWEB)
Waizmann, Jean-Claude
2010-11-24
One of the main objectives of the PLANCK mission is to perform a full-sky cluster survey based on the Sunyaev-Zel'dovich (SZ) effect, which leads to the question of how such a survey would be affected by cosmological models with a different history of structure formation than LCDM. To answer this question, I developed a fast semi-analytic approach for simulating full-sky maps of the Compton-y parameter, ready to be fed into a realistic simulation pipeline. I also implemented a filter and detection pipeline based on spherical multi-frequency matched filters, that was used to study the expected SZ cluster sample of PLANCK. It turned out that realistic samples will comprise 1000 clusters at low rate of contamination, significantly lower than originally anticipated. Driven by wrong estimates of the impact of early dark energy models on structure formation, we studied the spherical collapse model in dark energy model, finding that models with varying equation-of-state have a negligible impact on the structure formation. Yet, the different expansion history for the different models can be detected via volume effects, when counting objects in a known volume. Furthermore, it turned out that the different expansion history strongly affects the angular SZ power spectra for the various models, making them an interesting tool to distinguish and constrain alternative cosmologies. (orig.)
Directory of Open Access Journals (Sweden)
Yury Petrov
Full Text Available EEG/MEG source localization based on a "distributed solution" is severely underdetermined, because the number of sources is much larger than the number of measurements. In particular, this makes the solution strongly affected by sensor noise. A new way to constrain the problem is presented. By using the anatomical basis of spherical harmonics (or spherical splines instead of single dipoles the dimensionality of the inverse solution is greatly reduced without sacrificing the quality of the data fit. The smoothness of the resulting solution reduces the surface bias and scatter of the sources (incoherency compared to the popular minimum-norm algorithms where single-dipole basis is used (MNE, depth-weighted MNE, dSPM, sLORETA, LORETA, IBF and allows to efficiently reduce the effect of sensor noise. This approach, termed Harmony, performed well when applied to experimental data (two exemplars of early evoked potentials and showed better localization precision and solution coherence than the other tested algorithms when applied to realistically simulated data.
Kong, Qingzhao; Fan, Shuli; Mo, Y. L.; Song, Gangbing
2017-09-01
The newly developed spherical smart aggregate (SSA) based on a radially polarized spherical piezoceramic shell element has unique omnidirectional actuating and sensing capabilities that can greatly improve the detection aperture and provide additional functionalities in health monitoring applications in concrete structures. Detailed fabrication procedures and electrical characterization of the SSA have been previously studied (Part I). In this second paper (Part II), the functionalities of the SSA used in both active sensing and passive sensing approaches were investigated in experiments and numerical simulations. One SSA sample was embedded in a 1 ft3 concrete specimen. In the active sensing approach, the SSA was first utilized as an actuator to generate stress waves and six conventional smart aggregates (SA) mounted on the six faces of the concrete cube were utilized as sensors to detect the wave response. Conversely, the embedded SSA was then utilized as a sensor to successively detect the wave response from each SA. The experimentally obtained behavior of the SSA was then compared with the numerical simulation results. Further, a series of impact tests were conducted to verify the performance of the SSA in the detection of the impact events from different directions. Comparison with the wave response associated with different faces of the cube verified the omnidirectional actuating and sensing capabilities of the SSA.
Dynamic Arm Gesture Recognition Using Spherical Angle Features and Hidden Markov Models
Directory of Open Access Journals (Sweden)
Hyesuk Kim
2015-01-01
Full Text Available We introduce a vision-based arm gesture recognition (AGR system using Kinect. The AGR system learns the discrete Hidden Markov Model (HMM, an effective probabilistic graph model for gesture recognition, from the dynamic pose of the arm joints provided by the Kinect API. Because Kinect’s viewpoint and the subject’s arm length can substantially affect the estimated 3D pose of each joint, it is difficult to recognize gestures reliably with these features. The proposed system performs the feature transformation that changes the 3D Cartesian coordinates of each joint into the 2D spherical angles of the corresponding arm part to obtain view-invariant and more discriminative features. We confirmed high recognition performance of the proposed AGR system through experiments with two different datasets.
Energy Technology Data Exchange (ETDEWEB)
Soukhanovskii, V. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-09-13
A successful high-performance plasma operation with a radiative divertor has been demonstrated on many tokamak devices, however, significant uncertainty remains in accurately modeling detachment thresholds, and in how detachment depends on divertor geometry. Whereas it was originally planned to perform dedicated divertor experiments on the National Spherical Tokamak Upgrade to address critical detachment and divertor geometry questions for this milestone, the experiments were deferred due to technical difficulties. Instead, existing NSTX divertor data was summarized and re-analyzed where applicable, and additional simulations were performed.
AdS nonlinear instability: moving beyond spherical symmetry
Dias, Óscar J. C.; Santos, Jorge E.
2016-12-01
Anti-de Sitter (AdS) is conjectured to be nonlinear unstable to a weakly turbulent mechanism that develops a cascade towards high frequencies, leading to black hole formation (Dafermos and Holzegel 2006 Seminar at DAMTP (University of Cambridge) available at https://dpmms.cam.ac.uk/~md384/ADSinstability.pdf, Bizon and Rostworowski 2011 Phys. Rev. Lett. 107 031102). We give evidence that the gravitational sector of perturbations behaves differently from the scalar one studied by Bizon and Rostworowski. In contrast with Bizon and Rostworowski, we find that not all gravitational normal modes of AdS can be nonlinearly extended into periodic horizonless smooth solutions of the Einstein equation. In particular, we show that even seeds with a single normal mode can develop secular resonances, unlike the spherically symmetric scalar field collapse studied by Bizon and Rostworowski. Moreover, if the seed has two normal modes, more than one resonance can be generated at third order, unlike the spherical collapse of Bizon and Rostworowski. We also show that weak turbulent perturbative theory predicts the existence of direct and inverse cascades, with the former dominating the latter for equal energy two-mode seeds.
From Spheric to Aspheric Solid Polymer Lenses: A Review
Directory of Open Access Journals (Sweden)
Kuo-Yung Hung
2011-01-01
Full Text Available This paper presents a new approach in the use of MEMS technology to fabricate micro-optofluidic polymer solid lenses in order to achieve the desired profile, focal length, numerical aperture, and spot size. The resulting polymer solid lenses can be applied in optical data storage systems, imaging systems, and automated optical inspection systems. In order to meet the various needs of different applications, polymer solid lenses may have a spherical or aspherical shape. The method of fabricating polymer solid lenses is different from methods used to fabricate tunable lenses with variable focal length or needing an external control system to change the lens geometry. The current trend in polymer solid lenses is toward the fabrication of microlenses with a high numerical aperture, small clear aperture (<2 mm, and high transmittance. In this paper we focus on the use of thermal energy and electrostatic force in shaping the lens profile, including both spherical and aspherical lenses. In addition, the paper discusses how to fabricate a lens with a high numerical aperture of 0.6 using MEMS and also compares the optical characteristics of polymer lens materials, including SU-8, Norland Optical Adhesive (NOA, and cyclic olefin copolymer (COC. Finally, new concepts and applications related to micro-optofluidic lenses and polymer materials are also discussed.
Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion
Ren, G.; Yan, J.; Liu, J.; Lan, K.; Chen, Y. H.; Huo, W. Y.; Fan, Z.; Zhang, X.; Zheng, J.; Chen, Z.; Jiang, W.; Chen, L.; Tang, Q.; Yuan, Z.; Wang, F.; Jiang, S.; Ding, Y.; Zhang, W.; He, X. T.
2017-04-01
We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 1 014- 1 015 W /cm2 intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Yn to be related to the laser energy EL, the hohlraum radius Rh, and the pulse duration τ through a scaling law of Yn∝(EL/Rh1.2τ0.2 )2.5. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.
Weakly nonlinear incompressible Rayleigh-Taylor instability in spherical geometry
Zhang, J.; Wang, L. F.; Ye, W. H.; Wu, J. F.; Guo, H. Y.; Zhang, W. Y.; He, X. T.
2017-06-01
In this research, a weakly nonlinear (WN) model for the incompressible Rayleigh-Taylor instability in cylindrical geometry [Wang et al., Phys. Plasmas 20, 042708 (2013)] is generalized to spherical geometry. The evolution of the interface with an initial small-amplitude single-mode perturbation in the form of Legendre mode (Pn) is analysed with the third-order WN solutions. The transition of the small-amplitude perturbed spherical interface to the bubble-and-spike structure can be observed by our model. For single-mode perturbation Pn, besides the generation of P 2 n and P 3 n , which are similar to the second and third harmonics in planar and cylindrical geometries, many other modes in the range of P0- P 3 n are generated by mode-coupling effects up to the third order. With the same initial amplitude, the bubbles at the pole grow faster than those at the equator in the WN regime. Furthermore, it is found that the behavior of the bubbles at the pole is similar to that of three-dimensional axisymmetric bubbles, while the behavior of the bubbles at the equator is similar to that of two-dimensional bubbles.