WorldWideScience

Sample records for spherical cermets fuel

  1. A New Innovative Spherical Cermet Nuclear Fuel Element to Achieve an Ultra-Long Core Life for use in Grid-Appropriate LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Senor, David J.; Painter, Chad L.; Geelhood, Ken J.; Wootan, David W.; Meriwether, George H.; Cuta, Judith M.; Adkins, Harold E.; Matson, Dean W.; Abrego, Celestino P.

    2007-12-01

    Spherical cermet fuel elements are proposed for use in the Atoms For Peace Reactor (AFPR-100) concept. AFPR-100 is a small-scale, inherently safe, proliferation-resistant reactor that would be ideal for deployment to nations with emerging economies that decide to select nuclear power for the generation of carbon-free electricity. The basic concept of the AFPR core is a water-cooled fixed particle bed, randomly packed with spherical fuel elements. The flow of coolant within the particle bed is at such a low rate that the bed does not fluidize. This report summarizes an approach to fuel fabrication, results associated with fuel performance modeling, core neutronics and thermal hydraulics analyses demonstrating a ~20 year core life, and a conclusion that the proliferation resistance of the AFPR reactor concept is high.

  2. Basic study on cermet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Kimihide; Sato, Seichi; Ohashi, Hiroshi [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering; Minato, Kazuo; Fukuda, Kosaku

    1996-01-01

    Cesium is a major nuclear fission product which is volatile and corrosive and it is able to interact with fuels, cladding tubes and/or other fission products resulting in productions of various compounds. The presence of those compounds may give rise to physical and chemical interactions between fuels and the cladding tube, resulting in changes in their heat transfer coefficients. In this study, some cesium uranates were prepared in the laboratory. Then, Cs{sub 2}UO{sub 4}, Cs{sub 2}U{sub 2}O{sub 7} and Cs{sub 2}U{sub 4}O{sub 12} were thermodynamically analyzed by phase equilibrium calculation using the calculation code, CHEMSAGE. And physicochemical properties of these compounds were investigated. The reaction conditions for producing the three compounds were determined. The equilibrium diagram revealed that Cs{sub 2}UO{sub 4} is stable in a wider range for the partial pressures of oxygen and cesium than Cs{sub 2}U{sub 2}O{sub 7} or Cs{sub 2}U{sub 4}O{sub 12}. Some orange colored product was obtained from the reaction of Cs{sub 2}CO{sub 3} and U{sub 3}O{sub 8} in an electric furnace and Cs{sub 2}U{sub 2}O{sub 7} but not Cs{sub 2}UO{sub 4} was identified by X-ray diffraction of the product. (M.N.)

  3. Spark Plasma Sintering of Fuel Cermets for Nuclear Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhong; Robert C. O' Brien; Steven D. Howe; Nathan D. Jerred; Kristopher Schwinn; Laura Sudderth; Joshua Hundley

    2011-11-01

    The feasibility of the fabrication of tungsten based nuclear fuel cermets via Spark Plasma Sintering (SPS) is investigated in this work. CeO2 is used to simulate fuel loadings of UO2 or Mixed-Oxide (MOX) fuels within tungsten-based cermets due to the similar properties of these materials. This study shows that after a short time sintering, greater than 90 % density can be achieved, which is suitable to possess good strength as well as the ability to contain fission products. The mechanical properties and the densities of the samples are also investigated as functions of the applied pressures during the sintering.

  4. Basic research on cermet nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Hiroshi; Sto, Seichi [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering; Takano, Masahide; Minato, Kazuo; Fukuda, Kosaku

    1998-01-01

    Production of cermet nuclear fuel having fine uranium dioxide (UO{sub 2}) particles dispersed in matrix metal requires basic property data on the compatibility of matrix metal with fission product compounds. It is thermodynamically suggested that, as burnup increases, cesium in oxide fuel reacts with the fuel, other fission products or cladding pipe and produces cesium uranates, cesium molybdate, or cesium chromate in stainless steel cladding pipe. Attempt was made to measure the thermal expansion coefficient and thermal conductivity of cesium uranates (Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7}), cesium molybdate (Cs{sub 2}MoO{sub 4}) and cesium chromate (Cs{sub 2}CrO{sub 4}). Thermal expansion was measured by X-ray diffraction and determined by Cohen`s method. Thermal conductivity was obtained by measuring thermal diffusion by laser flash method. The thermal expansion of Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7} is as low as 1.2% for the former and 1.0% for the latter, up to 1000K. The thermal expansion of Cs{sub 2}MoO{sub 4} is as high as that of Cs{sub 2}CrO{sub 4}, 2.1% for the former and 2.5% for the latter at temperatures from room temperature to 873K. Average thermal expansion in this temperature range is 4.4 x 10{sup -5} K{sup -1} for Cs{sub 2}MoO{sub 4} and 4.2 x 10{sup -5} K{sup -1}. The thermal expansion of Cs{sub 2}CrO{sub 4} is four times higher than that of UO{sub 2} and five times higher than that of Cr{sub 2}O{sub 3}. The thermal conductivity of Cs{sub 2}UO{sub 4} is nearly equal to that of Cs{sub 2}U{sub 2}O{sub 7} in absolute value and temperature dependency. Cs{sub 2}U{sub 2}O{sub 7}, having different thermal conductivity between {alpha} and {beta} phases, shows higher conductivity with {beta} than with {alpha}, about 1/4 of that of UO{sub 2} at 1000K. The thermal conductivity of Cs{sub 2}CrO{sub 4} is nearly equal to that of Cs{sub 2}MoO{sub 4} in absolute value and temperature dependency. (N.H.)

  5. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    Science.gov (United States)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  6. Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)

    Science.gov (United States)

    Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.

    2013-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.

  7. Study of Some Innovant Reactors without on- Site Refueling with Triso and Cermet Fuel

    OpenAIRE

    A.Chetaine; A. Benchrif; H. Amsil; V. Kuznetsov; Y. Shimazu

    2012-01-01

    The evaluation of unit cell neutronic parameters and lifetime for some innovant reactors without on sit-refuling will be held in this work. the behavior of some small and medium reactors without on site refueling with triso and cermet fuel. For the FBNR long life except we propose to change the enrichment of the Cermet MFE to 9%. For the AFPR reactor we can see that the use of the Cermet MFE can extend the life of this reactor but to maintain the same life period for AFPR...

  8. An Overview of Current and Past W-UO[2] CERMET Fuel Fabrication Technology

    Energy Technology Data Exchange (ETDEWEB)

    Douglas E. Burkes; Daniel M. Wachs; James E. Werner; Steven D. Howe

    2007-06-01

    Studies dating back to the late 1940s performed by a number of different organizations and laboratories have established the major advantages of Nuclear Thermal Propulsion (NTP) systems, particularly for manned missions. A number of NTP projects have been initiated since this time; none have had any sustained fuel development work that appreciably contributed to fuel fabrication or performance data from this era. As interest in these missions returns and previous space nuclear power researchers begin to retire, fuel fabrication technologies must be revisited, so that established technologies can be transferred to young researchers seamlessly and updated, more advanced processes can be employed to develop successful NTP fuels. CERMET fuels, specifically W-UO2, are of particular interest to the next generation NTP plans since these fuels have shown significant advantages over other fuel types, such as relatively high burnup, no significant failures under severe transient conditions, capability of accommodating a large fission product inventory during irradiation and compatibility with flowing hot hydrogen. Examples of previous fabrication routes involved with CERMET fuels include hot isostatic pressing (HIPing) and press and sinter, whereas newer technologies, such as spark plasma sintering, combustion synthesis and microsphere fabrication might be well suited to produce high quality, effective fuel elements. These advanced technologies may address common issues with CERMET fuels, such as grain growth, ductile to brittle transition temperature and UO2 stoichiometry, more effectively than the commonly accepted ‘traditional’ fabrication routes. Bonding of fuel elements, especially if the fabrication process demands production of smaller element segments, must be investigated. Advanced brazing techniques and compounds are now available that could produce a higher quality bond segment with increased ease in joining. This paper will briefly address the history of

  9. Development of Low Thermal Expansion Tungsten UO 2 Cermet Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Marlowe, M O; Kaznoff, A I

    1970-03-31

    An attempt was made to develop a tungsten-uranium dioxide cermet of high fue 1 loading with thermal expansion approaching that of tungsten and with good dimensional stability on thermal cycling. These goals were sought through the use of tungsten-coated uranium dioxide particles with sufficient locally available void volume to accommodate the difference in thermal expansion between the uranium dioxide and the tungsten matrix and through limitation of plastic deformation in the particles during fabrication to avoid mechanical keying of the particles and the matrix. The particles were vibratorily compacted prior to hot pressing. The thermal expansion of the cermets was determined and they were thermal cycle tested. The thermal expansion of the cermets was considerably closer to that of tungsten than was observed with previously reported specimens of similar composition. However, the thermal cycling of the cermets resulted in intolerable growth. This growth could be accounted for by the agglomeration of gases trapped in the uranium dioxide particles during deposition of the tungsten coating.

  10. Nickel/Yttria-stabilised zirconia cermet anodes for solid oxide fuel cells

    NARCIS (Netherlands)

    Primdahl, Søren

    1999-01-01

    This thesis deals with the porous Ni/yttria-stabilized zirconia (YSZ) cermet anode on a YSZ electrolyte for solid oxide fuel cells (SOFC). Such anodes are predominantly operated in moist hydrogen at 700°C to 1000°C, and the most important technological parameters are the polarization resistance and

  11. Compatibility study between U-UO{sub 2} cermet fuel and T91 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Sudhir, E-mail: sudhir@barc.gov.in [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kaity, Santu; Khan, K.B. [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sengupta, Pranesh; Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-12-01

    Cermet is a new fuel concept for the fast reactor system and is ideally designed to combine beneficial properties of both ceramic and metal. In order to understand fuel clad chemical compatibility, diffusion couples were prepared with U-UO{sub 2} cermet fuel and T91 cladding material. These diffusion couples were annealed at 923–1073 K for 1000 h and 1223 K for 50 h, subsequently their microstructures were examined using scanning electron microscope (SEM), X-ray energy dispersive spectroscope (EDS) and electron probe microanalyser (EPMA). It was observed that the interaction between the fuel and constituents of T91 clad was limited to a very small region up to the temperature 993 K and discrete U{sub 6}(Fe,Cr) and U(Fe,Cr){sub 2} intermetallic phases developed. Eutectic microstructure was observed in the reaction zone at 1223 K. The activation energy for reaction at the fuel clad interface was determined.

  12. Development of Ni-Ba(Zr,Y)O3 cermet anodes for direct ammonia-fueled solid oxide fuel cells

    Science.gov (United States)

    Miyazaki, Kazunari; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2017-10-01

    In this study, the availability of Ni-Ba(Zr,Y)O3-δ (BZY) cermet for the anode of direct ammonia-fueled solid oxide fuel cells (SOFCs) is evaluated. In this device, the anodes need to be active for the catalytic ammonia decomposition as well as the electrochemical hydrogen oxidation. In the catalytic activity test, ammonia decomposes completely over Ni-BZY at ca. 600 °C, while higher temperature is required to accomplish the complete decomposition over the conventional SOFC anode of Ni-yttria-stabilized zirconia cermet. The high activity of Ni-BZY is attributed to the high basicity of BZY and the high resistance to hydrogen poisoning effect. The electrochemical property of Ni-BZY anode is also evaluated with the anode-supported cell of Ni-BZY|BZY|Pt at 600-700 °C with feeding ammonia or hydrogen as a fuel. Since the residence time of ammonia fuel in the thick Ni-BZY anode is long, the difference in the cell performance between two fuels is relatively small. Furthermore, it is proved that the steam concentration in the fuel strongly affects the cell performance. We find that this factor is important to satisfy the above mentioned requirements for the anode of direct ammonia-fueled SOFCs. Throughout this study, it is concluded that Ni-BZY cermet will be a promising anode.

  13. A Comparison of Materials Issues for Cermet and Graphite-Based NTP Fuels

    Science.gov (United States)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2013-01-01

    This paper compares material issues for cermet and graphite fuel elements. In particular, two issues in NTP fuel element performance are considered here: ductile to brittle transition in relation to crack propagation, and orificing individual coolant channels in fuel elements. Their relevance to fuel element performance is supported by considering material properties, experimental data, and results from multidisciplinary fluid/thermal/structural simulations. Ductile to brittle transition results in a fuel element region prone to brittle fracture under stress, while outside this region, stresses lead to deformation and resilience under stress. Poor coolant distribution between fuel element channels can increase stresses in certain channels. NERVA fuel element experimental results are consistent with this interpretation. An understanding of these mechanisms will help interpret fuel element testing results.

  14. Multidisciplinary Simulation of Graphite-Composite and Cermet Fuel Elements for NTP Point of Departure Designs

    Science.gov (United States)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2015-01-01

    This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.

  15. Design Evolutuion of Hot Isotatic Press Cans for NTP Cermet Fuel Fabrication

    Science.gov (United States)

    Mireles, O. R.; Broadway, J.; Hickman, R.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) is under consideration for potential use in deep space exploration missions due to desirable performance properties such as a high specific impulse (> 850 seconds). Tungsten (W)-60vol%UO2 cermet fuel elements are under development, with efforts emphasizing fabrication, performance testing and process optimization to meet NTP service life requirements [1]. Fuel elements incorporate design features that provide redundant protection from crack initiation, crack propagation potentially resulting in hot hydrogen (H2) reduction of UO2 kernels. Fuel erosion and fission product retention barriers include W coated UO2 fuel kernels, W clad internal flow channels and fuel element external W clad resulting in a fully encapsulated fuel element design as shown.

  16. Fabrication and Testing of CERMET Fuel Materials for Nuclear Thermal Propulsion

    Science.gov (United States)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar

    2012-01-01

    A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on Nuclear Thermal Propulsion (NTP) is currently being developed for Advanced Space Exploration Systems. The overall goal of the project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of NTP systems. The current technology roadmap for NTP identifies the development of a robust fuel form as a critical near term need. The lack of a qualified nuclear fuel is a significant technical risk that will require a considerable fraction of program resources to mitigate. Due to these risks and the cost for qualification, the development and selection of a primary fuel must begin prior to Authority to Proceed (ATP) for a specific mission. The fuel development is a progressive approach to incrementally reduce risk, converge the fuel materials, and mature the design and fabrication process of the fuel element. A key objective of the current project is to advance the maturity of CERMET fuels. The work includes fuel processing development and characterization, fuel specimen hot hydrogen screening, and prototypic fuel element testing. Early fuel materials development is critical to help validate requirements and fuel performance. The purpose of this paper is to provide an overview and status of the work at Marshall Space Flight Center (MSFC).

  17. Prognosis and comparison of performances of composite CERCER and CERMET fuels dedicated to transmutation of TRU in an EFIT ADS

    Science.gov (United States)

    Sobolev, V.; Uyttenhove, W.; Thetford, R.; Maschek, W.

    2011-07-01

    The neutronic and thermomechanical performances of two composite fuel systems: CERCER with (Pu,Np,Am,Cm)O 2-x fuel particles in ceramic MgO matrix and CERMET with metallic Mo matrix, selected for transmutation of minor actinides in the European Facility for Industrial Transmutation (EFIT), were analysed aiming at their optimisation. The ALEPH burnup code system, based on MNCPX and ORIGEN codes and JEFF3.1 nuclear data library, and the modern version of the fuel rod performance code TRAFIC were used for this analysis. Because experimental data on the properties of the mixed minor-actinide oxides are scarce, and the in-reactor behaviour of the T91 steel chosen as cladding, as well as of the corrosion protective layer, is still not well-known, a set of "best estimates" provided the properties used in the code. The obtained results indicate that both fuel candidates, CERCER and CERMET, can satisfy the fuel design and safety criteria of EFIT. The residence time for both types of fuel elements can reach about 5 years with the reactivity swing within ±1000 pcm, and about 22% of the loaded MA is transmuted during this period. However, the fuel centreline temperature in the hottest CERCER fuel rod is close to the temperature above which MgO matrix becomes chemically instable. Moreover, a weak PCMI can appear in about 3 years of operation. The CERMET fuel can provide larger safety margins: the fuel temperature is more than 1000 K below the permitted level of 2380 K and the pellet-cladding gap remains open until the end of operation.

  18. In-pile and out-of-pile testing of a molybdenum-uranium dioxide cermet fueled themionic diode

    Science.gov (United States)

    Diianni, D. C.

    1972-01-01

    The behavior of Mo-UO2 cermet fuel in a diode for thermionic reactor application was studied. The diode had a Mo-0.5 Ti emitter and niobium collector. Output power ranged from 1.4 to 2.8 W/cm squared at emitter and collector temperatures of 1500 deg and 540 C. Thermionic performance was stable within the limits of the instrumentation sensitivity. Through 1000 hours of in-pile operation the emitter was dimensionally stable. However, some fission gases (15 percent) leaked through an inner clad imperfection that occurred during fuel fabrication.

  19. Spherically-Convergent, Advanced-Fuel Systems

    Science.gov (United States)

    Barnes, D. C.; Nebel, R. A.; Schauer, M. M.; Umstadter, K. R.

    1998-11-01

    Combining nonneutral electron confinement with spherical ion convergence leads to a cm sized reactor volume with high power density.(R. A. Nebel and D. C. Barnes, Fusion Technol.), to appear (1998); D. C. Barnes and R. A. Nebel, Phys. of Plasmas 5, 2498 (1998). This concept is being investigated experimentally,(D. C. Barnes, T. B. Mitchell, and M. M. Schauer, Phys. Plasmas) 4, 1745 (1997). and results will be reported. We argue that D-D operation of such a system offers all the advantages of aneutronic fusion cycles. In particular, no breeding or large tritium inventory is required, and material problems seem tractable based on previous LWR experience. In addition the extremely small unit size leads to a massively modular system which is easily maintained and repaired, suggesting a very high availability. It may also be possible to operate such a system with low or aneutronic fuels. Preliminary work in this direction will be presented.

  20. The behaviour under irradiation of molybdenum matrix for inert matrix fuel containing americium oxide (CerMet concept)

    Science.gov (United States)

    D'Agata, E.; Knol, S.; Fedorov, A. V.; Fernandez, A.; Somers, J.; Klaassen, F.

    2015-10-01

    Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors or Accelerator Driven System (ADS, subcritical reactors dedicated to transmutation) of long-lived nuclides like 241Am is therefore an option for the reduction of radiotoxicity of waste packages to be stored in a repository. In order to safely burn americium in a fast reactor or ADS, it must be incorporated in a matrix that could be metallic (CerMet target) or ceramic (CerCer target). One of the most promising matrix to incorporate Am is molybdenum. In order to address the issues (swelling, stability under irradiation, gas retention and release) of using Mo as matrix to transmute Am, two irradiation experiments have been conducted recently at the High Flux Reactor (HFR) in Petten (The Netherland) namely HELIOS and BODEX. The BODEX experiment is a separate effect test, where the molybdenum behaviour is studied without the presence of fission products using 10B to ;produce; helium, the HELIOS experiment included a more representative fuel target with the presence of Am and fission product. This paper covers the results of Post Irradiation Examination (PIE) of the two irradiation experiments mentioned above where molybdenum behaviour has been deeply investigated as possible matrix to transmute americium (CerMet fuel target). The behaviour of molybdenum looks satisfying at operating temperature but at high temperature (above 1000 °C) more investigation should be performed.

  1. The behaviour under irradiation of molybdenum matrix for inert matrix fuel containing americium oxide (CerMet concept)

    Energy Technology Data Exchange (ETDEWEB)

    D' Agata, E., E-mail: elio.dagata@ec.europa.eu [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, 1755 ZG Petten (Netherlands); Knol, S.; Fedorov, A.V. [Nuclear Research and Consultancy Group, P.O. Box 25, 1755 ZG Petten (Netherlands); Fernandez, A.; Somers, J. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Klaassen, F. [Nuclear Research and Consultancy Group, P.O. Box 25, 1755 ZG Petten (Netherlands)

    2015-10-15

    Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors or Accelerator Driven System (ADS, subcritical reactors dedicated to transmutation) of long-lived nuclides like {sup 241}Am is therefore an option for the reduction of radiotoxicity of waste packages to be stored in a repository. In order to safely burn americium in a fast reactor or ADS, it must be incorporated in a matrix that could be metallic (CerMet target) or ceramic (CerCer target). One of the most promising matrix to incorporate Am is molybdenum. In order to address the issues (swelling, stability under irradiation, gas retention and release) of using Mo as matrix to transmute Am, two irradiation experiments have been conducted recently at the High Flux Reactor (HFR) in Petten (The Netherland) namely HELIOS and BODEX. The BODEX experiment is a separate effect test, where the molybdenum behaviour is studied without the presence of fission products using {sup 10}B to “produce” helium, the HELIOS experiment included a more representative fuel target with the presence of Am and fission product. This paper covers the results of Post Irradiation Examination (PIE) of the two irradiation experiments mentioned above where molybdenum behaviour has been deeply investigated as possible matrix to transmute americium (CerMet fuel target). The behaviour of molybdenum looks satisfying at operating temperature but at high temperature (above 1000 °C) more investigation should be performed.

  2. Detailed impedance characterization of a well performing and durable Ni:CGO infiltrated cermet anode for metal-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Klemensø, Trine; Blennow Tullmar, Peter

    2012-01-01

    Further knowledge of the novel, well performing and durable Ni:CGO infiltrated cermet anode for metal supported fuel cells has been acquired by means of a detailed impedance spectroscopy study. The anode impedance was shown to consist of three arcs. Porous electrode theory (PET) represented...

  3. Determination of poisoning schemes for the innovating fuels reactivity. Application to plutonium CERCER and CERMET control; Determination de schemas d'empoisonnement pour le controle de la reactivite de combustibles innovants. Application au Cercer et Cermet au plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, St

    2000-03-01

    In the framework of the plutonium production optimization in the PWR, many solutions are studied to decrease or recycle the plutonium of the nuclear fuels. Among these solutions, the inert matrix fuels (IMF) are proposed in this thesis. In seven chapters the author presents, the context and the state of the art, the different matrix, the calculi codes such as APOLLO2 or TRIPOLI4 needed to the neutronic analysis, the different fuel assemblies (CERMET UO{sub 2}, MOX, PuO{sub 2} and PuO{sub 2}-UO{sub 2}), the efficiency of the control rods in the case of the PWR, the cross sections problem, preliminary reflexions on critical accidents. (A.L.B.)

  4. Reactive co-sputter deposition of nanostructured cermet anodes for solid oxide fuel cells

    Science.gov (United States)

    Ionov, Igor V.; Solovyev, Andrey A.; Shipilova, Anna V.; Lebedynskiy, Alexey M.; Smolyanskiy, Egor A.; Lauk, Alexander L.; Semenov, Vyacheslav A.

    2018-01-01

    The impact of a nanostructured NiO/yttria-stabilized zirconia (NiO/YSZ) and NiO/gadolinia-doped ceria (NiO/GDC) anode functional layers on low- and intermediate-temperature solid oxide fuel cell (SOFC) performance is investigated. NiO/YSZ and NiO/GDC thin films were reactively sputter-deposited by pulsed direct current magnetron sputtering from the Ni, Zr–Y, and Ce–Gd targets onto commercial NiO/YSZ substrates. Anode-supported SOFCs based on magnetron sputtered YSZ and GDC electrolytes (∼4 µm) with and without the nanostructured anode layers are fabricated. A direct comparison of the YSZ- and GDC-based SOFCs in temperature range of 600–800 and 400–600 °C is made. The performance of cells with the nanostructured anode layers significantly increases as compared to that of the cell without it, especially at lower temperatures. Increase of cells performance was achieved by reduction of the total area-specific resistance by 26–30%.

  5. Enhancing Sulfur Tolerance of Ni-Based Cermet Anodes of Solid Oxide Fuel Cells by Ytterbium-Doped Barium Cerate Infiltration.

    Science.gov (United States)

    Li, Meng; Hua, Bin; Luo, Jing-Li; Jiang, San Ping; Pu, Jian; Chi, Bo; Li, Jian

    2016-04-27

    Conventional anode materials for solid oxide fuel cells (SOFCs) are Ni-based cermets, which are highly susceptible to deactivation by contaminants in hydrocarbon fuels. Hydrogen sulfide is one of the commonly existed contaminants in readily available natural gas and gasification product gases of pyrolysis of biomasses. Development of sulfur tolerant anode materials is thus one of the critical challenges for commercial viability and practical application of SOFC technologies. Here we report a viable approach to enhance substantially the sulfur poisoning resistance of a Ni-gadolinia-doped ceria (Ni-GDC) anode through impregnation of proton conducting perovskite BaCe0.9Yb0.1O3-δ (BCYb). The impregnation of BCYb nanoparticles improves the electrochemical performance of the Ni-GDC anode in both H2 and H2S containing fuels. Moreover, more importantly, the enhanced stability is observed in 500 ppm of H2S/H2. The SEM and XPS analysis indicate that the infiltrated BCYb fine particles inhibit the adsorption of sulfur and facilitate sulfur removal from active sites, thus preventing the detrimental interaction between sulfur and Ni-GDC and the formation of cerium sulfide. The preliminary results of the cell with the BCYb+Ni-GDC anode in methane fuel containing 5000 ppm of H2S show the promising potential of the BCYb infiltration approach in the development of highly active and stable Ni-GDC-based anodes fed with hydrocarbon fuels containing a high concentration of sulfur compounds.

  6. H2 and CO oxidation process at the three-phase boundary of Cu-ceria cermet anode for solid oxide fuel cell

    Science.gov (United States)

    Zheng, Minghao; Wang, Shuang; Li, Mei; Xia, Changrong

    2017-03-01

    Cu-ceria cermets have been widely investigated as the anode materials for solid oxide fuel cells (SOFCs) that operated with hydrocarbon fuels. However, the anode reaction processes are not clear yet, especially those at the ceria-Cu-gas three phase boundary (3 PB). This work investigates samaria-doped ceria (SDC)-Cu-gas 3 PB reaction kinetics for the oxidation of H2 and CO, the products from hydrocarbons via external and internal reforming. Electrochemical conductivity relaxation measurement demonstrates that Cu is a synergistic catalyst that can significantly increase the reaction rate. The reaction at 3 PB contributes 81.3/66.8% of H2/CO oxidation when 5.4% SDC surface is covered with Cu particles. Combining with AC impedance analysis, elementary steps are proposed for the reaction at 3 PB. Water vapor combining to oxygen vacancy and carbon monoxide transforming to carbonate are the rate-determining steps for the oxidation of H2 and CO, respectively. Cu-SDC has shown much higher catalytic activity, i.e. about fivefold reaction rate, for the oxidation of CO than H2. In addition, Cu-SDC electrodes exhibit lower interfacial polarization resistance and lower activation energy for the electrochemical oxidation of CO than H2. Consequently, CO is easier to be oxidized than H2 when the Cu-ceria anode is fueled with syngas, the reforming product from hydrocarbons.

  7. Investigation of Impact Resistance of Protective Barriers Made from Cermets

    Science.gov (United States)

    Ischenko, A. N.; Tabachenko, A. N.; Afanasieva, S. A.; Belov, N. N.; Burkin, V. V.; Martsunova, L. S.; Rogaev, K. S.; Yugov, N. T.

    2016-01-01

    Ceramic-metal materials (cermets) based on titanium diboride and boron carbide are designed and produced by the method of self-propagating high-temperature synthesis, with the pressure applied to the combustion products. The data, obtained by an experimental-theoretical investigation of impact resistance of protective barriers containing the above-mentioned materials in collisions with a spherical steel projectile, are presented. A better impact resistance of TiB2 + B4C cermets compared to that of Al2O3- ceramics is demonstrated. A possibility of prediction calculations of impact resistance of the specimens containing cermets in the range of collision rates under study is shown.

  8. Effect of H{sub 2}S on the thermodynamic stability and electrochemical performance of Ni cermet-type of anodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswara Rao, M.

    2006-11-15

    For SOFCs to be main means of power generation, they should be able to exploit wide variety of fuels. Among Ni-cermets, Ni-YSZ is the state-of-the-art materials for SOFC-anode which is the fuel electrode. But sulphur impurity present in different gaseous fuels (e.g Biogas), depending on its concentration, is highly poisonous to the stability and electrochemical performance of the Ni catalyst in the cermet anodes. Thus in this study the microstructural stability of Ni-YSZ, Ni-CGO and Ni-LSGM cermets in H{sub 2}S-containing hydrogen gas is studied in the intermediate temperature range of SOFC operation. Thermodynamic modelling of Ni-S-O-H quaternary system was performed for the calculation of thermodynamic stability and sulphur-tolerance limit of Ni in the gaseous atmosphere made up of H, O and S. The effect of presence H{sub 2}S in fuel gas, in the concentrations well below the thermodynamic tolerance limit, on the electrochemical performance of the anodes is studied by using model Ni-patterned electrodes on YSZ and LSGM. Thermodynamic modelling of the Ni-S-O-H quaternary was performed by employing CALPHAD methodology. The modelling of Ni-S binary phase diagram was performed by using sublattice models for the non-stoichiometric phases. The optimised binaries of Ni-O, and Ni-H were taken from the literature. The Ni-O-S and Ni-O-H ternaries were extrapolated from the lower order binaries. In Ni-O-S ternary, NiSO{sub 4} is the only ternary compound present. The ternary compounds, Ni(OH){sub 2} and NiOOH in the Ni-O-H ternary were considered as stoichiometric line compounds. The model parameters of the ternary compounds were optimised using the experimental data. The Ni-S-O-H quaternary was calculated by extrapolation method as employed in the CALPHAD methodology. Inorder to understand the H{sub 2}-oxidation mechanism and the role played by the electrolyte in the reaction mechanism, symmetrical cells of Ni-patterned YSZ single crystals with different crystallographic

  9. Model-supported interpretation of the electrochemical characteristics of solid oxide fuel cells with Ni/YSZ cermet anodes; Modellgestuetzte Interpretation der elektrochemischen Charakteristik von Festoxid-Brennstoffzellen mit Ni/YSZ-Cermetanoden

    Energy Technology Data Exchange (ETDEWEB)

    Gewies, Stefan

    2009-01-29

    This work presents the development, validation and application of a multiscale model for the detailed description of a solid oxide fuel cell (SOFC) with a Ni/YSZ (nickel/yttria-stabilized zirconia) cermet anode. The aim of the study is the identification of the physico-chemical loss processes, as seen in impedance spectra and polarization curves. The model consists of an elementary kinetic description of the electrochemistry including the development of an electrical double layer at the electrode/electrolyte interface of the cermet anode, a homogenized description of charge and gas-phase transport in the electrodes as well as a macroscopic description of convective and diffusive mass transport in the gas phase above the electrodes. For the rst time this study allows for a complete description of the impedance spectra of a diffusively fuel-supplied cermet anode. By comparing simulations with experiments on symmetrical cells (University of Karlsruhe) three dominant loss processes could be identified. The model was extended to account for the description of segmented SOFCs. In correspondence with experimental data (German Aerospace Center) the simulations show strong gradients in current densities and gas concentrations. (orig.)

  10. Development of boron carbide-copper cermets. Status report

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The status of a program to develop a B/sub 4/C-Cu cermet for Breeder Reactor spent-fuel shipping cask neutron shields is presented. It is shown that inspectable 6 to 7 cm thick 60 to 70 volume percent B/sub 4/C cermets can be fabricated using hot isostatic powder processing procedures. An alternative manufacturing method, rheocasting, also appears to be a promising, perhaps more cost-effective method for producing these cermets. Recommendations for further development of these manufacturing processes are given.

  11. Micro-scale mechanical characterization of Inconel cermet coatings deposited by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ch.; Verdi, D.; Garrido, M.A.; Ruiz-Hervias, J.

    2016-07-01

    In this study, an Inconel 625-Cr3C2 cermet coating was deposited on a steel alloy by laser cladding. The elastic and plastic mechanical properties of the cermet matrix were studied by the depth sensing indentation (DSI) in the micro scale. These results were compared with those obtained from an Inconel 600 bulk specimen. The values of Young's modulus and hardness of cermet matrix were higher than those of an Inconel 600 bulk specimen. Meanwhile, the indentation stress–strain curve of the cermet matrix showed a strain hardening value which was more than twice the one obtained for the Inconel 600 bulk. Additionally, the mechanical properties of unmelted Cr3C2 ceramic particles, embedded in the cermet matrix were also evaluated by DSI using a spherical indenter. (Author)

  12. Micro-scale mechanical characterization of Inconel cermet coatings deposited by laser cladding

    Directory of Open Access Journals (Sweden)

    Chao Chang

    2016-07-01

    Full Text Available In this study, an Inconel 625-Cr3C2 cermet coating was deposited on a steel alloy by laser cladding. The elastic and plastic mechanical properties of the cermet matrix were studied by the depth sensing indentation (DSI in the micro scale. These results were compared with those obtained from an Inconel 600 bulk specimen. The values of Young's modulus and hardness of cermet matrix were higher than those of an Inconel 600 bulk specimen. Meanwhile, the indentation stress–strain curve of the cermet matrix showed a strain hardening value which was more than twice the one obtained for the Inconel 600 bulk. Additionally, the mechanical properties of unmelted Cr3C2 ceramic particles, embedded in the cermet matrix were also evaluated by DSI using a spherical indenter.

  13. Ignition curves for deuterium/helium-3 fuel in spherical tokamak ...

    Indian Academy of Sciences (India)

    Ignition curves for deuterium/helium-3 fuel in spherical tokamak reactor. S M MOTEVALLI1,∗ and F FADAEI2. 1Department of Physics, Faculty of Science, University of Mazandaran,. P.O. Box 47415-416, Babolsar, Iran. 2Department of Physics, Payam Noor University, P.O. Box 19395-3697, Tehran, Iran. ∗. Corresponding ...

  14. Low-temperature preparation by polymeric complex solution synthesis of Cu-Gd-doped ceria cermets for solid oxide fuel cells anodes: Sinterability, microstructures and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Tartaj, J.; Moure, A. [Instituto de Ceramica y Vidrio (CSIC), Electroceramics Department, Kelsen 5, 28049 Madrid (Spain); Gil, V. [Instituto de Ciencia de Materiales de Aragon, Universidad de Zaragoza-CSIC, Pedro Cerbuna 12, E-50009 Zaragoza (Spain)

    2010-05-01

    A homogeneous dispersion of fine CuO in a gadolinia-doped ceria (CGO) ceramic matrix by the polymeric organic complex solution method has been achieved. Highly sinterable powders were prepared by this method after calcining the precursor at 600 C and attrition milled. The powders consist of individual particles of few tens of nanometer in size with a low agglomeration state. The isopressed compacts were sintered in air at 1000 C and reducing in N{sub 2} 90%-H{sub 2} 10% atmosphere to form Cu-CGO cermets. The microstructures showed a uniform distribution of porous metallic Cu particles surrounded by microporous spaces. The influence of Cu content in Cu-CGO cermets on the electrode performance has been investigated in order to create the most suitable microstructure. The electrical properties of Cu-CGO cermets have been also studied using impedance spectroscopy, in the temperature range form 150 to about 700 C in argon atmosphere. These measurements determined a high value of electrical conductivity at 700 C, similar to that corresponded to pure metallic cupper. (author)

  15. Modified flooded spherical agglomerate model for gas-diffusion electrodes in alkaline fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Al-Saleh, M.A. [Dept. of Chemical Engineering, King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia); Gultekin, S. [Dept. of Chemical Engineering, King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia); Sleem-ur-Rahman [Dept. of Chemical Engineering, King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Zakri, A. [Dept. of Chemical Engineering, King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia)

    1995-05-01

    The spherical-grain mathematical model is modified and tested against experimental data for single-layer, gas-diffusion electrodes of alkaline fuel cells. The model assumes that the electrode is made of spherical agglomerates of Raney metal and polytetrafluoroethylene (PTFE) that are flooded with electrolyte; the gas occupies the macropores of the electrode. In addition to previous analysis of the diffusion and reaction in the grains, the modified model includes the resistance of gas diffusion into the macropores and a thin electrolyte film surrounding the grain. The original model and the modified model are both compared with experimental polarization data for hydrogen oxidation on an Ni/PTFE electrode in alkaline electrolyte. The newly developed model predicts accurately the experimental data in all regions. (orig.)

  16. Direct metal brazing to cermet feedthroughs

    Science.gov (United States)

    Not Available

    1982-07-29

    An improved method for brazing metallic components to a cermet surface in an alumina substrate eliminates the prior art metallized layer over the cermet via and adjoining alumina surfaces. Instead, a nickel layer is applied over the cermet surface only and metallic components are brazed directly to this nickel coated cermet surface. As a result, heretofore unachievable tensile strength joints are produced. In addition, cermet vias with their brazed metal components can be spaced more closely in the alumina substrate because of the elimination of the prior art metallized alumina surfaces.

  17. Development of a model to predict fission product behaviour in spherical fuel elements during water ingress events

    Energy Technology Data Exchange (ETDEWEB)

    Merwe, J.J. van der [PBMR, PO Box 9396, Centurion 0046 (South Africa)]. E-mail: hanno.vdmerwe@pbmr.co.za; Coetzee, P.P. [Randse Afrikaans University, PO Box 524, Auckland Park 2006 (South Africa)

    2007-01-15

    At PBMR gaseous fission product releases from spherical fuel elements under normal conditions are calculated by the code NOBLEG. The ability of NOBLEG to calculate noble gas and halogen release under oxidizing conditions during water ingress was developed. Observations made during the water vapour injection tests performed during the irradiation experiment HFR-K6, were used to determine simple relations that can be used to predict gaseous fission product release from spherical fuel elements under oxidizing conditions caused by small water ingress events, for PBMR operational temperatures. A new model was proposed to explain peculiarities observed during the water injection tests.

  18. Ni-YSZ solid oxide fuel cell anode behavior upon redox cycling based on electrical characterization

    DEFF Research Database (Denmark)

    Klemensø, Trine; Mogensen, Mogens Bjerg

    2007-01-01

    Nickel (Ni)—yttria-stabilized zirconia (YSZ) cermets are a prevalent material used for solid oxide fuel cells. The cermet degrades upon redox cycling. The degradation is related to microstructural changes, but knowledge of the mechanisms has been limited. Direct current conductivity measurements...... were performed on cermets and cermets where the Ni component was removed. Measurements were carried out before, during, and after redox cycling the cermet. The cermet conductivity degraded over time due to sintering of the nickel phase. Following oxidizing events, the conductivity of the cermets...

  19. Re-activation of degraded nickel cermet anodes - Nano-particle formation via reverse current pulses

    DEFF Research Database (Denmark)

    Hauch, Anne; Marchese, M.; Lanzini, A.

    2018-01-01

    The Ni/yttria-stabilized-zirconia (YSZ) cermet is the most commonly applied fuel electrode for solid oxide cells (SOCs). Loss of Ni/YSZ electrode activity is a key life-time limiting factor of the SOC. Developing means to mitigate this loss of performance or re-activate a fuel electrode is theref...

  20. Entropy generation during the quasi-steady burning of spherical fuel particles

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, V.; Gogos, G. [Department of Mechanical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Babu, V.; Sundararajan, T. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)

    2007-06-15

    Entropy generation during the quasi-steady combustion of spherical liquid fuel particles has been presented in detail. The effects of freestream velocity, particle diameter, ambient temperature and gravity, on the entropy generation rate, have been discussed in detail. In the range of sub-critical freestream velocity, where an envelope flame is present, the entropy generation rate presents a minimum value. At a critical velocity, where the flame transition occurs, the entropy generation rate reaches a maximum value. Flame transition significantly affects the entropy generation rate, which suffers a sharp decrease in its value after the transition. Heat transfer and chemical reaction contribute almost equally to the total entropy generation rate. When normal gravity is considered in an upward flow configuration, there is an increase in the entropy generation rate as compared to the zero gravity case. The effect of gravity poses a complex variation pattern in the entropy generation rate, for a downward flow configuration. The entropy generation rate decreases with increasing ambient temperature. The entropy generation rate increases with the particle diameter. A correlation has been presented for the non-dimensional entropy generation number as a function of Froude number. (author)

  1. Effects of ZrC on microstructure, mechanical properties and thermal shock resistance of TiC-ZrC-Co-Ni cermets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaobo, E-mail: xbxbzhang2003@163.com [School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167 (China); Liu, Ning [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China)

    2013-01-20

    TiC-ZrC-Co-Ni cermets with different ZrC contents were prepared by vacuum sintering. Microstructure, mechanical properties and thermal shock resistance were investigated. The results show that bright spherical grains in the microstructure are observed and their relative amounts increase with increasing ZrC addition. X-ray diffraction and energy-dispersive spectrometry results indicate that bright spherical grains are (Zr, Ti)C solid solution with more Zr content. The relative density, hardness and transverse rupture strength decrease with the increase of ZrC content. The fracture toughness, however, increases a little and then decreases. Thermal shock resistance of the cermets with 10%ZrC is the best and then declines with more ZrC addition. The parameter R{sub st} of the cermets is also calculated on the basis of the physical parameters of the constituents to interpret the thermal shock of the cermets.

  2. Fabrication of cermet bearings for the control system of a high temperature lithium cooled nuclear reactor

    Science.gov (United States)

    Yacobucci, H. G.; Heestand, R. L.; Kizer, D. E.

    1973-01-01

    The techniques used to fabricate cermet bearings for the fueled control drums of a liquid metal cooled reference-design reactor concept are presented. The bearings were designed for operation in lithium for as long as 5 years at temperatures to 1205 C. Two sets of bearings were fabricated from a hafnium carbide - 8-wt. % molybdenum - 2-wt. % niobium carbide cermet, and two sets were fabricated from a hafnium nitride - 10-wt. % tungsten cermet. Procedures were developed for synthesizing the material in high purity inert-atmosphere glove boxes to minimize oxygen content in order to enhance corrosion resistance. Techniques were developed for pressing cylindrical billets to conserve materials and to reduce machining requirements. Finishing was accomplished by a combination of diamond grinding, electrodischarge machining, and diamond lapping. Samples were characterized in respect to composition, impurity level, lattice parameter, microstructure and density.

  3. Solid solution lithium alloy cermet anodes

    Science.gov (United States)

    Richardson, Thomas J.

    2013-07-09

    A metal-ceramic composite ("cermet") has been produced by a chemical reaction between a lithium compound and another metal. The cermet has advantageous physical properties, high surface area relative to lithium metal or its alloys, and is easily formed into a desired shape. An example is the formation of a lithium-magnesium nitride cermet by reaction of lithium nitride with magnesium. The reaction results in magnesium nitride grains coated with a layer of lithium. The nitride is inert when used in a battery. It supports the metal in a high surface area form, while stabilizing the electrode with respect to dendrite formation. By using an excess of magnesium metal in the reaction process, a cermet of magnesium nitride is produced, coated with a lithium-magnesium alloy of any desired composition. This alloy inhibits dendrite formation by causing lithium deposited on its surface to diffuse under a chemical potential into the bulk of the alloy.

  4. Pt-free carbon-based fuel cell catalyst prepared from spherical polyimide for enhanced oxygen diffusion

    Science.gov (United States)

    Nabae, Yuta; Nagata, Shinsuke; Hayakawa, Teruaki; Niwa, Hideharu; Harada, Yoshihisa; Oshima, Masaharu; Isoda, Ayano; Matsunaga, Atsushi; Tanaka, Kazuhisa; Aoki, Tsutomu

    2016-01-01

    The development of a non-precious metal (NPM) fuel cell catalyst is extremely important to achieve globalization of polymer electrolyte fuel cells due to the cost and scarcity of platinum. Here, we report on a NPM cathode catalyst prepared by the pyrolysis of spherical polyimide nanoparticles that contain small amounts of Fe additive. 60 nm diameter Fe-containing polyimide nanoparticles were successfully synthesized by the precipitation polymerization of pyromellitic acid dianhydride and 1,3,5-tris(4-aminophenyl)benzene with Fe(acac)3 (acac = acetylacetonate) as an additive. The particles were subsequently carbonized by multistep pyrolysis to obtain the NPM catalyst while retaining the small particle size. The catalyst has good performance and promising durability for fuel cell applications. The fuel cell performance under a 0.2 MPa air atmosphere at 80 °C of 1.0 A cm−2 at 0.46 V is especially remarkable and better than that previously reported. PMID:26987682

  5. Kinetics of Oxidation and Reduction of Ni/YSZ Cermet

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, D.; Mueller, A.; Weber, A.; Ivers-Tiffee, E.

    2002-06-01

    A cyclic reduction and oxidation of Ni/YSZ-cermet anodes for Solid Oxide Fuel Cells (SOFC) resulted in an increase of the polarization resistance. Therefore, investigations concerning kinetics of oxidation/reduction and the impact of redox cycles on the microstructure of Ni/YSZ bulk ceramics were made. The reaction process of the basic system Ni/NiO was compared with cermet bulk samples and the influence of NiO and YSZ particle sizes and sintering temperatures on kinetics and microstructure was studied using thermogravimetry and dilatometry. The investigations on bulk ceramics indicated that no length change occurred during reduction, whereas reoxidation led to an increase in the length of the samples which strongly depended on the microstructure. It was shown that bulk samples sintered at temperatures below 1300{sup o}C can withstand redox cycles much better than those sintered at higher temperatures. Furthermore, it was found that by decreasing the NiO particle size and using a NiO/YSZ particle size ratio of approximately 3:2, a smaller length increase after reoxidation was achieved. An increase of the polarization resistance could be ascribed to the formation of cracks within the bulk sample which interrupt current paths and therefore reduce the amount of the active triple phase boundary. (author)

  6. A modular gas-cooled cermet reactor system for planetary base power

    Science.gov (United States)

    Jahshan, Salim N.; Borkowski, Jeffrey A.

    1993-01-01

    Fission nuclear power is foreseen as the source for electricity in planetary colonization and exploration. A six module gas-cooled, cermet-fueled reactor is proposed that can meet the design objectives. The highly enriched core is compact and can operate at high temperature for a long life. The helium coolant powers six modular Brayton cycles that compare favorably with the SP-100-based Brayton cycle.

  7. Methods of producing cermet materials and methods of utilizing same

    Science.gov (United States)

    Kong, Peter C [Idaho Falls, ID

    2008-12-30

    Methods of fabricating cermet materials and methods of utilizing the same such as in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The cermet material may be made from a transition metal aluminide phase and an alumina phase. The mixture may be pressed to form a green compact body and then heated in a nitrogen-containing atmosphere so as to melt aluminum particles and form the cermet. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The cermet material may also be formed so as to pass an electrical current therethrough to heat the material during use.

  8. Sensitivity of nickel cermet anodes to reduction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mallon, Christian; Kendall, Kevin [Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom)

    2005-08-18

    The direct use of methane as fuel for solid oxide fuel cell (SOFC) without pre-reforming would reduce running costs and enable higher efficiencies. But methane generally causes carbon deposition on the nickel anode and subsequent power degradation. This paper shows that carbon deposition from methane is very sensitive to anode reduction conditions. The effect of direct methane on microtubular SOFC reduced at two different conditions was studied at temperatures above 800{sup o}C. Reducing the cells at high temperature gave good performance on hydrogen but the current degraded quickly on methane, suggesting that carbon was blocking the nickel surfaces. This was not recoverable by bringing in hydrogen to replace the methane. Cells reduced under low temperature conditions gave higher current on methane than on hydrogen, showing that carbon deposited from the methane improved nickel anode conductivity in this case. These cells also did not degrade on methane under certain conditions but lasted for a long period. Extracting the carbon by feeding the cell with hydrogen interrupted this newly formed linkage between the nickel particles, reducing the electrical conductivity, which could be recovered by reintroducing methane. The conclusion was that nickel cermet anodes are very sensitive to reduction conditions, with low temperature reduction being preferred if methane is to be used as the chosen fuel. (author)

  9. Fabrication of advanced design (grooved) cermet anodes

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, C.F. Jr. [Pacific Northwest Lab., Richland, WA (United States); Huettig, F.R. [Ceramic Magnetics, Inc., Fairfield, NJ (United States)

    1993-05-01

    Attempts were made to fabricate full-size anodes with advanced, or grooved, design using isostatic pressing, slip casting injection molding. Of the three approaches, isostatic pressing produced an anode with dimensions nearest to the target specifications, without serious macroscopic flaws. This approach is considered the most promising for making advanced anodes for aluminum smelting. However, significant work still remains to optimize the physical properties and microstructure of the anode, both of which were significantly different from that of previous anodes. Injection molding and slip casting yielded anode materials with serious deficiencies, including cracks and holes. Injection molding gave cermet material with the best intrinsic microstructure, i.e., the microstructure of the material between macroscopic flaws was very similar to that of anodes previously made at PNL. Reason for the similarity may have to do with amount of residual binder in the material prior to sintering.

  10. Development of a spherical combustion chamber for measuring laminar flame speeds in Navy bulk fuels and biofuel blends

    OpenAIRE

    Buckley, Omari D.

    2011-01-01

    This thesis presents the results of an experimental study to determine laminar flame speeds using the spherical flame method. An experimental combustion chamber, based on the constant-volume bomb method, was designed, built, and instrumented to conduct these experiments. Premixed Ethylene/air mixtures at a pressure of 2 atm, temperature of 298ᆱ 5K and equivalence ratios ranging from 0.8 to 1.5 were ignited and using a high speed video Schlieren system images were taken to measure the laminar ...

  11. Fast heating of fuel assembled in a spherical deuterated polystyrene shell target by counter-irradiating tailored laser pulses delivered by a HAMA 1 Hz ICF driver

    Science.gov (United States)

    Mori, Y.; Nishimura, Y.; Hanayama, R.; Nakayama, S.; Ishii, K.; Kitagawa, Y.; Sekine, T.; Takeuchi, Y.; Kurita, T.; Satoh, N.; Kawashima, T.; Komeda, O.; Nishi, T.; Azuma, H.; Hioki, T.; Motohiro, T.; Sunahara, A.; Sentoku, Y.; Miura, E.

    2017-11-01

    Fast heating is a method of heating an assembled high-density plasma into a hot state by irradiating it with short-duration (sub-picosecond), high-intensity (> 1018 W cm-2 ) laser pulses before the plasma expands and dissolves hydrodynamically. In this paper, we present detailed experimental results of fast heating fuel assembled in a spherical deuterated polystyrene shell target of 500 μ m diameter and 7 μm thickness with counterbeam illumination by using a HAMA 1 Hz, 5.9 J inertial confinement fusion laser driver with pulse tailoring. These tailored pulses contain three pulses in sequence: a ‘foot’ pulse of 2.4 J/25 ns, a ‘spike’ pulse of 0.5 J/300 ps and a ‘heater’ pulse of 0.4 J/110 fs; these pulses are designed to assemble the fuel and heat it. By varying the energy of the foot pulse, we find that fast heating the fuel is achieved only if the fuel is weakly ablated by the foot pulse and then shock-assembled by the spike pulse into the target centre so that the heater pulse can access the fuel with a focal intensity greater than 1018 W cm-2 . Without a foot pulse, the heater pulse contributes to assembling the fuel. For higher foot-pulse energies, the heater pulse drives a hydrodynamic motion with speeds of the order 107 cm s-1 with intensities of the order 1017 W cm-2 , resulting in re-assembling and additional heating of the pre-assembled fuel. Once a shock-assembled core is achieved at the target centre, we succeed qualitatively in fast heating the core for shots in sequence with variations of laser energy within 18%. The coupling efficiency from the heating laser to the core is inferred to be (10 +/- 2) % in total: (8 +/- 1.6) % for the ionized bulk electrons and (2 +/- 0.4) % for the bulk ions. The fusion neutron spectrum detected on the laser axis exhibits peaks at 1.0 MeV, 1.7 MeV and 3.8 MeV. These peaks are attributed to the C(d, n){\\hspace{0pt}}13 N and d(d, n){\\hspace{0pt}}3 He reactions induced by counterpropagating fast deuterons

  12. Fe3C-based oxygen reduction catalysts: synthesis, hollow spherical structures and applications in fuel cells

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei

    2015-01-01

    of the catalyst. At high pyrolytic temperatures of 700–800 °C, simultaneous formation of Fe3Cnanoparticles and encasing graphitic layers occur within the morphological confinement of the microspheres. With negligible surface nitrogen or iron functionality, the thus-obtained catalysts exhibit superior ORR activity...... and stability. A new ORR active phase of Fe3C nanoparticles encapsulated by thin graphitic layers is proposed. The activity and durability of the catalysts are demonstrated in both Nafion-based low temperature and acid doped polybenzimidazole-based high temperature proton exchange membrane fuel cells....

  13. Spherical models

    CERN Document Server

    Wenninger, Magnus J

    2012-01-01

    Well-illustrated, practical approach to creating star-faced spherical forms that can serve as basic structures for geodesic domes. Complete instructions for making models from circular bands of paper with just a ruler and compass. Discusses tessellation, or tiling, and how to make spherical models of the semiregular solids and concludes with a discussion of the relationship of polyhedra to geodesic domes and directions for building models of domes. "". . . very pleasant reading."" - Science. 1979 edition.

  14. Structure And Properties Of PVD Coatings Deposited On Cermets

    Directory of Open Access Journals (Sweden)

    Żukowska L.

    2015-06-01

    Full Text Available The main aim of the research is the investigation of the structure and properties of single-layer and gradient coatings of the type (Ti,AlN and Ti(C,N deposited by physical vapour deposition technology (PVD on the cermets substrate.

  15. Re-activation of degraded nickel cermet anodes - Nano-particle formation via reverse current pulses

    Science.gov (United States)

    Hauch, A.; Marchese, M.; Lanzini, A.; Graves, C.

    2018-02-01

    The Ni/yttria-stabilized-zirconia (YSZ) cermet is the most commonly applied fuel electrode for solid oxide cells (SOCs). Loss of Ni/YSZ electrode activity is a key life-time limiting factor of the SOC. Developing means to mitigate this loss of performance or re-activate a fuel electrode is therefore important. In this work, we report a series of five tests on state-of-the-art Ni/YSZ-YSZ-CGObarrier-LSC/CGO cells. All cells were deliberately degraded via gas stream impurities in CO2/CO or harsh steam electrolysis operation. The cells were re-activated via a variety of reverse current treatments (RCTs). Via electrochemical impedance spectroscopy, we found that the Ni/YSZ electrode performance could be recovered via RCT, but not via constant fuel cell operation. For optimized RCT, we obtained a lower Ni/YSZ electrode resistance than the initial resistance. E.g. at 700 °C we measured fuel electrode resistance of 180 mΩ cm2, 390 mΩ cm2, and 159 mΩ cm2 before degradation, after degradation and after re-activation via RCT, respectively. Post-test SEM revealed that the RCT led to formation of nano-particles in the fuel electrode. Besides the remarkable improvement, the results also showed that RCTs can weaken Ni/YSZ interfaces and the electrode/electrolyte interface. This indicates that finding an optimum RCT profile is crucial for achieving maximum benefit.

  16. Progress report on NASA cermet studies identification SNC-12, January 1964

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J.J.

    1964-02-13

    This report details progress in an intensive investigation which was launched to determine the basic mechanisms leading to gross loss of UO{sub 2} fuel upon thermal cycling of UO{sub 2}-W cermets and to suggest means of overcoming this serious operational problem. (This problem was recently uncovered at both Lewis Research Center and at Hanford). More than 40 separate experiments were conducted in four high temperature furnaces, at temperatures to 2600 C, pressures from 10{sup {minus}5} mm vacuum to 1000 psi, atmospheres including wet, pure and tank H{sub 2}-Ar mixtures, N{sub 2}, and He, and cycle periods from 30 seconds to 15 hours. Specimens examined included two types of NASA-fabricated plates, three types of Hanford high energy impacted discs, and several other materials used for single experiment evaluation.

  17. Novel materials for more robust solid oxide fuel cells in small scale applications

    DEFF Research Database (Denmark)

    Holtappels, Peter

    Solid oxide fuel cells can offer supply of electrical energy with a high efficiency and based on a wide range of fuels. While natural gas and/or bio methane is a commonly used fuel for combined heat and power supply, liquid fuels such as gasoline, Diesel and alcohols are interesting fuels...... hydrocarbons, coking tolerant electrodes are required. State-of art fuel electrodes are based on a nickel ceramic composite, a nickel cermet, which suffers from low redox stability, susceptibility for sulfur poisoning and coking. Redox stable anodes can be achieved by replacing the Ni-cermet fuel electrode...

  18. A Science-Based Understanding of Cermet Processing.

    Energy Technology Data Exchange (ETDEWEB)

    Cesarano, Joseph; Roach, Robert Allen; Kilgo, Alice C.; Susan, Donald Francis; Van Ornum, David J.; Stuecker, John N.

    2006-04-01

    AbstractThis report is a summary of the work completed in FY01 for science-based characterization of the processes used to fabricate 1) cermet vias in source feedthrus using slurry and paste-filling techniques and 2) cermet powder for dry pressing. Common defects found in cermet vias were characterized based on the ability of subsequent processing techniques (isopressing and firing) to remove the defects. Non-aqueous spray drying and mist granulation techniques were explored as alternative methods of creating CND50, the powder commonly used for dry pressed parts. Compaction and flow characteristics of these techniques were analyzed and compared to standard dry-ball-milled CND50. Due to processing changes, changes in microstructure can occur. A microstructure characterization technique was developed to numerically describe cermet microstructure. Machining and electrical properties of dry pressed parts were also analyzed and related to microstructure using this analytical technique.3 Executive SummaryThis report outlines accomplishments in the science-based understanding of cermet processing up to fiscal year 2002 for Sandia National Laboratories. The three main areas of work are centered on 1) increasing production yields of slurry-filled cermets, 2) evaluating the viability of high-solids-loading pastes for the same cermet components, and 3) optimizing cermet powder used in pressing processes (CND50). An additional development that was created as a result of the effort to fully understand the impacts of alternative processing techniques is the use of analytical methods to relate microstructure to physical properties. Recommendations are suggested at the end of this report. Summaries of these four efforts are as follows:1.Increase Production Yields of Slurry-Filled Cermet Vias Finalized slurry filling criteria were determined based on three designs of experiments where the following factors were analyzed: vacuum time, solids loading, pressure drop across the filter

  19. Operational results of pilot cell test with cermet ``inert`` anodes

    Energy Technology Data Exchange (ETDEWEB)

    Alcorn, T.R.; Tabereaux, A.T.; Richards, N.E. [Reynolds Metals Co., Muscle Shoals, AL (United States). Mfg. Technology Lab.; Windisch, C.F. Jr.; Strachan, D.M. [Pacific Northwest Lab., Richland, WA (United States); Gregg, J.S.; Frederick, M.S. [ELTECH Research Corp., Fairport Harbor, OH (United States)

    1993-02-01

    The operational performance of a ``six-pack`` of cermet anodes and corrosion rates was evaluated in a six kA pilot reduction cell at Reynolds` Manufacturing Technology Laboratory. Two separate test periodswere conducted with the cermet anodes; the first period was in conjunction with the Pacific Northwest Laboratory and the second with ELTECH Research Corporation. Both tests used identical NiO-NiFe{sub 2}O{sub 4}-Cu anodes manufactured by Ceramic Magnetics, Inc.. The ELTECH testing involved the in situ coating of the anodes with cerium oxide. Primary evaluations for both test periods were conducted at target conditions of alumina saturation and 0.5 amp/cm{sup 2} anode current density. Individual anodes remained in operation for 25 days during the two and one-half month testing period. Operational difficulties developed throughout the test due to breakage of the anode conductor stems, cracking and breaking of the cermet anodes, unequal anode current distribution, and alumina muck build-up in the cell. These operational problems are discussed as well as an estimate of anode corrosion rates based on metal impurity levels in the aluminum metal pad.

  20. Effect of Particle Morphology on Cold Spray Deposition of Chromium Carbide-Nickel Chromium Cermet Powders

    Science.gov (United States)

    Fernandez, Ruben; Jodoin, Bertrand

    2017-08-01

    Nickel chromium-chromium carbide coatings provide good corrosion and wear resistance at high temperatures, making them ideal for applications where a harsh environment and high temperatures are expected. Thermal spray processes are preferred as deposition technique of cermets, but the high process temperatures can lead to decarburization and reduction of the coatings properties. Cold spray uses lower temperatures preventing decarburization. Since the metallic phase remains solid, the feedstock powder morphology becomes crucial on the deposition behavior. Six commercially available powders were studied, varying in morphology and metal/ceramic ratios. The powders were categorized into 4 groups depending on their morphology. Spherical powders lead to substrate erosion due to their limited overall ductility. Porous agglomerated and sintered powders lead to severely cracked coatings. For dense agglomerated and sintered powders, the outcome depended on the initial metal/ceramic ratio: powders with 25 wt.% NiCr led to substrate erosion while 35 wt.% NiCr powders led to dense coatings. Finally, blended ceramic-metal mixtures also lead to dense coatings. All coatings obtained had lower ceramic content than the initial feedstock powders. Interrupted spray tests, combined with FEA, helped drawing conclusions on the deposition behavior to explain the obtained results.

  1. Spherical Camera

    Science.gov (United States)

    1997-01-01

    Developed largely through a Small Business Innovation Research contract through Langley Research Center, Interactive Picture Corporation's IPIX technology provides spherical photography, a panoramic 360-degrees. NASA found the technology appropriate for use in guiding space robots, in the space shuttle and space station programs, as well as research in cryogenic wind tunnels and for remote docking of spacecraft. Images of any location are captured in their entirety in a 360-degree immersive digital representation. The viewer can navigate to any desired direction within the image. Several car manufacturers already use IPIX to give viewers a look at their latest line-up of automobiles. Another application is for non-invasive surgeries. By using OmniScope, surgeons can look more closely at various parts of an organ with medical viewing instruments now in use. Potential applications of IPIX technology include viewing of homes for sale, hotel accommodations, museum sites, news events, and sports stadiums.

  2. Preparation of Ni-YSZ Cermet through Reduction of NiO-YSZ Ceramic for SOFC Anode

    Science.gov (United States)

    Baity, P. S. N.; Budiana, B.; Suasmoro, S.

    2017-07-01

    Research on the synthesis of Nickel-Yttria Stabilized Zirconia (Ni-YSZ) cermet for Solid Oxide Fuel Cell (SOFC) anode has been performed. The preparation was carried out through the reduction process of the Nickel Oxide-Yttria stabilized Zirconia (NiO-YSZ) ceramic. NiO and YSZ were prepared separately, the NiO powder was prepared by calcination of CH4Ni3O7.xH2O at 500°C for 3 hours, while YSZ powder was prepared by calcination of 7mol% Y2O3 and 93mol% ZrO2 mixture at 1350°C for an hour. The NiO-YSZ ceramic preparation was carried outby mixing of YSZ and NiO powder with natural white starch by weight ratio NiO: YSZ: natural white starch = 4:6:1 followed by sintering at 1200°C for 4 hours. The completion of reduction process of NiO-YSZ ceramic was performed at 1000°C in flowing Argon (Ar) containing 10% Hydrogen (H2) up to 4 hours. The characterisations include thermogravimetric analysis (TGA), XRD, SEM-EDX and Impedance Analyzer meter. The synthesised Ni-YSZ cermet at composition 33wt% Ni and 67wt% YSZ, shows relative density 70% and electrical conductivity 10-2 S/cm at 700°C, it qualifies as anode for SOFC.

  3. Advanced CerMet ceramic composites for medical applications.

    Science.gov (United States)

    Dittmer, Robert; Schaefer, Christian M; Fischer, Jean-Francois; Hausch, Ulrich; Troetzschel, Jens; Specht, Heiko

    2017-11-01

    Implantable active devices such as pacemakers are facing rigorous requirements. Because they reside within the body for years, materials applied in this surrounding must exhibit biocompatibility and extraordinary reliability. They also have to provide a number of functional properties. In this work we present a method that enables the realization of a highly complex profile of properties by means of a dual composite approach. Using multilayer technology, an electrical conductor is embedded into a ceramic matrix, thus, creating conductive paths that are insulated from each other. In addition to this macroscopically hybrid architecture, this approach features a second composite aspect: the conductor is not composed of a single metallic phase, but is a ceramic-metal mixture. Owing to its interpenetrating microstructure, this CerMet allows for a strong and hermetic integration of the conductor into the ceramic matrix otherwise impossible due to mismatch in thermal expansion. In fact, the CerMet ceramic composite exhibits a higher strength than the pure ceramic as revealed by a three-point bending test study. At the same time, the CerMet offers high and virtually metal-like conductor properties, enabling a down-scaling of the conductive paths to 150µm diameter and smaller. Furthermore, the described composite is biocompatible, non-magnetic, and chemically inert, which is vital for the application in active, implantable, medical devices. Beside the general fabrication route, we present the microstructural, functional, and mechanical properties of this newly developed class of dual composites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Study of high gain spherical shell ICF targets containing uniform layers of liquid deuterium tritium fuel. A numericial model for analyzing thermal layering of liquid mixtures of hydrogen isotopes inside a spherical inertial confinement fusion target: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, E.M.; Kim, Kyekyoon [Lawrence Livermore National Lab., CA (United States)

    1994-05-01

    A numerical model has been developed to describe the thermally induced behavior of a liquid layer of hydrogen isotopes inside a spherical Inertial Confinement Fusion (ICF) target and to calculate the far-field temperature gradient which will sustain a uniform liquid layer. This method is much faster than the trial-and-error method previously employed. The governing equations are the equations of continuity, momentum, energy, mass diffusion-convection, and conservation of the individual isotopic species. Ordinary and thermal diffusion equations for the diffusion of fluxes of the species are included. These coupled equations are solved by a finite-difference method using upwind schemes, variable mesh, and rigorous boundary conditions. The solution methodology unique to the present problem is discussed in detail. in particular, the significance of the surface tension gradient driven flows (also called Marangoni flows) in forming uniform liquid layers inside ICF targets is demonstrated. Using the theoretical model, the values of the externally applied thermal gradients that give rise to uniform liquid layers of hydrogen inside a cryogenic spherical-shell ICF target are calculated, and the results compared with the existing experimental data.

  5. Mitigation of corrosion attack on carbon steel coated cermet alloy in different anion contents

    Science.gov (United States)

    Khalid, Muhamad Azrin Mohd; Ismail, Azzura

    2017-12-01

    This research study evaluated the corrosion mechanism attack on carbon steel coated with cermet alloys (WC-9% Ni) in seawater at different sulphate-to-chloride ratios. The four different sulphate-to-chloride ratios were synthesised with the same seawater salinity of 3.5 % and same pH of real seawater. The corrosion tests involved immersion and electrochemical tests. The immersion test is used to determine the cermet coating ability to withstand the corrosion attack based on different ratios of anions present in the seawater at different periods of immersion. The corrosion attack was characterized by optical and Scanning Electron Microscopy (SEM). The aggressive anions present in the seawater influenced the corrosion attack on the cermet coating. For immersion test, results revealed that increasing sulphate more than chloride, increased the weight loss of cermets. The electrochemistry analysis showed that the passive layer forms on cermet coating prevented the material from further corrosion attack. However, due to its porosity, the passive layer collapsed and exposed the material for other corrosion reaction. For electrochemical test, the result shows that the solution with sulphate-to-chloride ratio of 0.14 (real seawater) has the highest corrosion current and Open Circuit Potential (OCP) compared to other solutions (different sulphate-to-chloride ratio). In conclusion, sulfate and chloride show their competition to attack the cermet coating on carbon steel and the higher the amount of chloride present in seawater, the higher the corrosion rate and pits formed on the cermet coating.

  6. Performance of TiC base cermets sintered by different techniques

    Energy Technology Data Exchange (ETDEWEB)

    Klaasen, H.; Kollo, L.; Kuebarsepp, J.

    2005-09-15

    The performance and structure of some advanced TiC base cermets with Ni steel binder, sintered by different techniques (sintering atmosphere, vacuum level, etc.), prospective for metal forming, were investigated. It is shown that the influence of sintering technology on the performance characteristics of TiC cermets (strength, wear resistance) depends on the composition and structure of their binder. Regarding the performance characteristics (transverse rupture strength and adhesive wear resistance) TiC base cermets with martensitic-bainitic steel binder sintered by optimum techniques demonstrated a marked superiority over those with austenitic binder and particularly over those with Ni alloy. (author)

  7. Structural state scale-dependent physical characteristics and endurance of cermet composite for cutting metal

    Energy Technology Data Exchange (ETDEWEB)

    Ovcharenko, V. E., E-mail: ovcharenko.ove45@mail.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and Institute of Heavy-Current Electronics SB RAS, Tomsk, 634055 (Russian Federation); Ivanov, Yu. F., E-mail: ivanov.yufi55@mail.ru [Institute of Heavy-Current Electronics SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Mohovikov, A. A., E-mail: mohovikov.maa28@rambler.ru [Institute of Heavy-Current Electronics SB RAS, Tomsk, 634055 (Russian Federation); Baohai, Yu, E-mail: baohai.bhyu@imr.ac.cn, E-mail: yanhui.yhzhao@imr.ac.cn; Zhao, Yanhui, E-mail: baohai.bhyu@imr.ac.cn, E-mail: yanhui.yhzhao@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, 110016 (China)

    2014-11-14

    A structural-phase state developed on the surface of a TiC/Ni–Cr–Al cermet alloy under superfast heating and cooling produced by pulse electron beam melting has been presented. The effect of the surface’s structural state multimodality on the temperature dependencies of the friction and endurance of the cermet tool in cutting metal has been investigated. The high-energy flux treatment of subsurface layers by electron beam pulses in argon-containing gas discharge plasma serves to improve the endurance of metal cutting tools manifold (by a factor of 6), to reduce the friction via precipitation of secondary 200 nm carbides in binder interlayers. It is possible to improve the cermet tool endurance for cutting metal by a factor of 10–12 by irradiating the cermet in a reactive nitrogen-containing atmosphere with the ensuing precipitation of nanosize 50 nm AlN particles in the binder interlayers.

  8. The Influence of Sintering Temperature of Reactive Sintered (Ti, MoC-Ni Cermets

    Directory of Open Access Journals (Sweden)

    Marek Jõeleht

    2015-09-01

    Full Text Available Titanium-molybdenum carbide nickel cermets ((Ti, MoC-Ni were produced using high energy milling and reactive sintering process. Compared to conventional TiC-NiMo cermet sintering the parameters for reactive sintered cermets vary since additional processes are present such as carbide synthesis. Therefore, it is essential to acquire information about the suitable sintering regime for reactive sintered cermets. One of the key parameters is the final sintering temperature when the liquid binder Ni forms the final matrix and vacancies inside the material are removed. The influence of the final sintering temperature is analyzed by scanning electron microscopy. Mechanical properties of the material are characterized by transverse rupture strength, hardness and fracture toughness.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7179

  9. Cermet based metamaterials for multi band absorbers over NIR to LWIR frequencies

    Science.gov (United States)

    Pradhan, Jitendra K.; Behera, Gangadhar; Agarwal, Amit K.; Ghosh, Amitava; Ramakrishna, S. Anantha

    2017-06-01

    Cermets or ceramic-metals are known for their use in solar thermal technologies for their absorption across the solar band. Use of cermet layers in a metamaterial perfect absorber allows for flexible control of infra-red absorption over the short wave infra-red, to long wave infra-red bands, while keeping the visible/near infra-red absorption properties constant. We design multilayered metamaterials consisting of a conducting ground plane, a low metal volume fraction cermet/ZnS as dielectric spacer layers, and a top structured layer of an array of circular discs of metal/high volume metal fraction cermet that give rise to specified absorption bands in the near-infra-red (NIR) frequencies, as well as any specified band at SWIR-LWIR frequencies. Thus, a complete decoupling of the absorption at optical/NIR frequencies and the infra-red absorption behaviour of a structured metamaterial is demonstrated.

  10. Results from a pilot cell test of cermet anodes

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, Jr, C F; Strachan, D M; Henager, Jr, C H; Greenwell, E N [Pacific Northwest Lab., Richland, WA (United States); Alcorn, T R [Reynolds Metals Co., Muscle Shoals, AL (United States). Mfg. Technology Lab.

    1992-08-01

    Goal was to develop long-lasting, energy-efficient anodes for Hall-Heroult cells used to produce Al metal. The anodes were made from a ceramic/metal composite consisting of NiO and NiFe{sub 2}O{sub 4} and a Cu/Ni metal phase. Thirteen cermet anodes were tested at Reynolds Metals Co., Muscle Shoals, AL. All anodes corroded severely during the pilot test. Electrolyte components were found deep within the anodes. However, there were many deficiencies in the pilot cell test, mainly the failure to maintain optimal operating conditions. It is concluded that there is a variety of fabrication and operational considerations that need to be addressed carefully in any future testing. 118 figs, 16 tabs, 17 refs.(DLC)

  11. PREPARATION OF SPHERICAL URANIUM DIOXIDE PARTICLES

    Science.gov (United States)

    Levey, R.P. Jr.; Smith, A.E.

    1963-04-30

    This patent relates to the preparation of high-density, spherical UO/sub 2/ particles 80 to 150 microns in diameter. Sinterable UO/sub 2/ powder is wetted with 3 to 5 weight per cent water and tumbled for at least 48 hours. The resulting spherical particles are then sintered. The sintered particles are useful in dispersion-type fuel elements for nuclear reactors. (AEC)

  12. Rapid in situ synthesis of spherical microflower Pt/C catalyst via spray-drying for high performance fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Balgis, R.; Ogi, T.; Okuyama, K. [Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, Higashi Hiroshima, Hiroshima (Japan); Anilkumar, G.M.; Sago, S. [Research and Development Centre, Noritake Co., Ltd., Higashiyama, Miyoshi, Aichi (Japan)

    2012-08-15

    A facile route for the rapid in situ synthesis of platinum nanoparticles on spherical microflower carbon has been developed. An aqueous precursor slurry containing carbon black, polystyrene latex (PSL), polyvinyl alcohol, and platinum salt was spray-dried, followed by calcination to simultaneously reduce platinum salt and to decompose PSL particles. Prepared Pt/C catalyst showed high-performance electrocatalytic activity with excellent durability. The mass activity and specific activity values were 132.26 mA mg{sup -1} Pt and 207.62 {mu}A cm{sup -2} Pt, respectively. This work presents a future direction for the production of high-performance Pt/C catalyst in an industrial scale. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Microstructural evolution in WC-Co cermet reinforced - A17075 metal matrix composites by stir casting

    Science.gov (United States)

    Gopal Krishna, U. B.; Ranganatha, P.; Auradi, V.; Mahendra Kumar, S.; Vasudeva, B.

    2016-09-01

    Aluminium metal matrix composites (AMMCs) are preferred because of their enhanced properties like high strength to weight ratio, stiffness and wear resistance. In the present work, an attempt is made to develop cermet (WC-Co) reinforced with Al7075 metal matrix composite by stir casting technique. WC-Co cermet is reduced to an average size of 10μm through ball milling using Alumina as grinding media. Ball milled WC-Co Cermet in an amount of 6 wt. % is used as reinforcement in Al7075 matrix. Microstructural characterization of the prepared composites is carried out using SEM/EDX and XRD studies. X-ray diffraction studies have revealed the peaks corresponding to α-Al, WC, Co and minor Al5W phases. SEM/EDX characterization revealed the uniform distribution of cermet in Al matrix. Further studies also revealed that, addition of WC-Co cermet to Al7075 matrix has resulted in improvement in hardness and Densities of Al7075 matrix.

  14. Mo-Al{sub 2}O{sub 3} cermet research and development

    Energy Technology Data Exchange (ETDEWEB)

    Glass, S.J.; Monroe, S.L.; Stephens, J.J.; Moore, R.H. [and others

    1997-08-01

    This report describes the results to date of a program that was initiated to predict and measure residual stresses in Mo-Al{sub 2}O{sub 3} cermet-containing components and to develop new materials and processes that would lead to the reduction or elimination of the thermal mismatch stresses. The period of performance includes work performed CY95-97. Excessive thermal mismatch stresses had produced cracking in some cermet-containing neutron tube components. This cracking could lead to a loss of hermeticity or decreased tube reliability. Stress predictions were conducted using finite element models of the various components, along with the thermal coefficient of expansion (CTE), Young`s modulus, and strength properties. A significant portion of the program focused on the property measurements for the existing cermet materials, processing conditions, and the measurement technique. The effects of differences in the properties on the predicted residual stresses were calculated for existing designs. Several potential approaches were evaluated for reducing the residual stresses and cracking in cermet-containing parts including reducing the Mo content of the cermet, substituting a ternary alloy with a better CTE match with alumina, and substituting Nb for Mo. Processing modifications were also investigated for minimizing warpage that occurs during sintering due to differential sintering. These modifications include changing the pressing of the 94ND2 alumina and changing to a 96% alumina powder from AlSiMag.

  15. Spherical carbon capsules with hollow macroporous core and mesoporous shell structures as a highly efficient catalyst support in the direct methanol fuel cell.

    Science.gov (United States)

    Chai, Geun Seok; Yoon, Suk Bon; Kim, Jung Ho; Yu, Jong-Sung

    2004-12-07

    Carbon capsules with hollow core and mesoporous shell (HCMS) structures were used as a support material for Pt(50)-Ru(50) catalyst, and the catalytic performance of the HCMS supported catalyst in the direct methanol fuel cell was described; the HCMS carbon supported catalysts exhibited much higher specific activity for methanol oxidation than the commonly used E-TEK catalyst by about 80%, proving that the HCMS carbon capsules are an excellent support for electrode catalysts in DMFC.

  16. Improved bonding strength of bioactive cermet Cold Gas Spray coatings.

    Science.gov (United States)

    Gardon, M; Concustell, A; Dosta, S; Cinca, N; Cano, I G; Guilemany, J M

    2014-12-01

    The fabrication of cermet biocompatible coatings by means Cold Gas Spray (CGS) provides prosthesis with outstanding mechanical properties and the required composition for enhancing the bioactivity of prosthetic materials. In this study, hydroxyapatite/Titanium coatings were deposited by means of CGS technology onto titanium alloy substrates with the aim of building-up well-bonded homogeneous coatings. Powders were blended in different percentages and sprayed; as long as the amount of hydroxyapatite in the feedstock increased, the quality of the coating was reduced. Besides, the relation between the particle size distribution of ceramic and metallic particles is of significant consideration. Plastic deformation of titanium particles at the impact eased the anchoring of hard hydroxyapatite particles present at the top surface of the coating, which assures the looked-for interaction with the cells. Coatings were immersed in Hank's solution for 1, 4 and 7 days; bonding strength value was above 60 MPa even after 7 days, which enhances common results of HAp coatings obtained by conventional thermal spray technologies. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Effect of Mo and C additions on magnetic properties of TiC–TiN–Ni cermets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Man [State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Yang, Qingqing, E-mail: yqqah@sina.com [State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Xiong, Weihao [State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Zheng, Liyun [School of Equipment Manufacture, Hebei University of Engineering, Handan 056038 (China); Huang, Bin; Chen, Shan; Yao, Zhenhua [State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-11-25

    The effect of 2–8 mol.% Mo and 4 mol.% C additions on magnetic properties of TiC–10TiN–30Ni (mol.%) cermet was investigated. Saturation magnetization M{sub s}, remanence M{sub r} and Curie temperature T{sub c} of as-sintered cermets (1420 °C, 1 h) decreased with increasing Mo. This was mainly attributed to that the total content of non-magnetic alloying elements Mo and Ti in Ni-based binder phase increased with increasing Mo in cermets, leading to the weakening of magnetic exchange interaction among Ni atoms in binder phase. The further addition of 4 mol.% C inversely increased M{sub s}, M{sub r} and T{sub c} of cermets, which was mainly attributed to that it decreased the total content of Mo and Ti in binder phase, leading to the strengthening of magnetic exchange interaction among Ni atoms in binder phase. T{sub c} of cermets without C addition was about 250 K at 6 mol.% Mo and 115 K at 8 mol.% Mo, respectively, and that of cermets with 4 mol.% C addition was about 194 K at 8 mol.% Mo. - Highlights: • M{sub s}, M{sub r} and T{sub c} of TiC–10TiN–30Ni–xMo cermets decreased with the increase of Mo content, x. • Further addition of 4 mol.% C inversely increased M{sub s}, M{sub r} and T{sub c} of cermets at the same Mo content. • T{sub c} of cermets without C addition was about 250 K at x = 6 and 115 K at x = 8, respectively. • T{sub c} of cermets with 4 mol.% C addition was about 194 K at x = 8.

  18. High-performance circular sawing of AISI 1045 steel with cermet and tungsten carbide inserts

    Energy Technology Data Exchange (ETDEWEB)

    Abrao, A. M.; Rubio, J. C. Campos; Moreira, C.; Faria, P. E. [Universidade Federal de Minas Gerais, Belo Horizonte (Brazil)

    2014-10-15

    This work investigated the influence of cutting speed and feed rate on cutting forces, surface roughness, and slot width circular sawing of AISI 1045 steel. The effects of tool material (cermet and tungsten carbide) and geometry (chip breaker flute and pre-cutting/postcutting teeth) were also investigated. Thrust and radial forces generally tended to decrease as the cutting speed increased and tended to increase with the feed rate. The lowest values of thrust and radial forces were obtained using a tungsten carbide saw ground with precutting and post-cutting teeth. With regard to the quality of the machined wall, the lowest surface roughness was obtained by applying the highest cutting speed and lowest feed rate and employing a cermet brazed saw. Under this condition, roughness values comparable to face turning and parting off operations were obtained. The cermet brazed saw was responsible for producing the narrowest slot widths.

  19. High temperature mechanical behaviour of various cermets and hard metals; Comportement mecanique a haute temperature du metal dur et de differents cermets de coupe

    Energy Technology Data Exchange (ETDEWEB)

    Viatte, T. [Stellram SA, Nyon (Switzerland); Bolognini, S.; Feusier, G.; Benoit, W. [Ecole Polytechnique Federale, Lausanne (Switzerland); Cutard, T. [Ecole Nationale Superieure des Mines, 81 - Albi (France)

    1997-12-31

    In the course of development of new cemented carbides, the possibility to join the high toughness properties of WC-Co with the high resistance to plastic deformation of Ti(C,N)-Mo{sub 2}C-Ni cermets remains an important research axis. This paper presents some results of an ongoing project, between Stellram SA-Nyon (Switzerland) and the Swiss Federal Institute of Technology of Lausanne (Switzerland), which is directly inscribed in the field. The aim is to study the effects of several compositional parameters on the microstructure and on the high temperature mechanical behaviour of Ti(C,N)-Mo{sub 2}C-(Ni,Co) cermets and of WC-Co. Microstructures are characterized by conventional and analytical TEM observations and by complementary SEM analysis. The high temperature mechanical behaviour is investigated both by internal friction measurements and by macroscopic three point bend tests. (authors) 16 refs.

  20. Preparation of anode-electrolyte structures using graphite, sodium bicarbonate or citric acid as pore forming agents for application in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Paz Fiuza, Raigenis da; Silva, Marcos Aurelio da; Guedes, Bruna C.; Pontes, Luiz A.; Boaventura, Jaime Soares [UFBA, Salvador, Bahia (Brazil). Energy and Materials Science Group

    2010-07-01

    Cermets based on Ni supported on YSZ or GDC were prepared for use as anode in direct reform SOFCs. NaHCO3 (Na-Ni-YSZ and Na-Ni-GDC) or citric acid (Ac-Ni-YSZ and Ac-Ni-GDC) were used as pore forming agents (PFAs). The SOFC anode was also prepared using graphite (G-Ni-YSZ and G-Ni-GDC) as PFA for the purposes of comparison. The testing unitary SOFC, planar type, was made by pressing the anode-electrolyte assembly, followed by sintering at 1500 C. After this, LSM (lanthanum and strontium manganite) paint was used for the cathode deposition. The powdered cermets were evaluated in ethanol steam reforming at 650 C. The ethanol conversion was 84% and 32% for cermets Na-Ni-YSZ and G-Ni-YSZ, respectively and the selectivity to H{sub 2} was 32 and 20% for the two cermets, respectively. The Na-Ni-YSZ cermet was ten times more resistant to carbon deposition than the G-Ni-YSZ cermet. SEM micrographs of the anode-electrolyte assembly showed that the use of NaHCO{sub 3} as PFA created a well formed interface between layers with homogeneously distributed pores. In contrast, graphite as PFA formed a loose interface between anode and electrolyte. The performance of the unitary SOFC was evaluated using ethanol, hydrogen or methane as fuel. The cell operated well using any of these fuels; however, they exhibited different electrochemical behavior. (orig.)

  1. Exploring Cu{sub 2}O/Cu cermet as a partially inert anode to produce aluminum in a sustainable way

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Li-Chao [School of Mechanical Engineering, Huaihai Institute of Technology and Jiangsu Province R and D Institute of Marine Resources, Lianyungang 222005 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xie, Ning, E-mail: xiening@hit.edu.cn [School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Shao, Wen-Zhu, E-mail: wzshao@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhen, Liang [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ivanov, V.V. [Physical Chemistry Department, Siberian Federal University, Krasnoyarsk 660041 (Russian Federation)

    2014-10-15

    Highlights: • Cu{sub 2}O/Cu cermet was used as a candidate partially inert anode material to produce aluminum alloys. • The thermal corrosion behavior of Cu{sub 2}O/Cu was investigated in molten salt at 960 °C. • The corrosion rate is largely governed by the geometrical structures of Cu in the prepared samples. • The corrosion rate increases with decreasing sizes and increasing filling contents of Cu phase. • The corrosion rate was 1.8–9 cm/y and the Cu contents is less than 6.2 wt.% in the produced aluminum. - Abstract: As an energy-intensive process, aluminum production by the Hall–Héroult method accounts for significant emissions of CO{sub 2} and some toxic greenhouse gases. The utilization of an inert anode in place of a carbon anode was considered as a revolutionary technique to solve most of the current environmental problems resulting from the Hall–Héroult process. However, the critical property requirements of the inert anode materials significantly limit the application of this technology. In light of the higher demand for aluminum alloys than for pure aluminum, a partially inert anode was designed to produce aluminum alloys in a more sustainable way. Here, Cu{sub 2}O/Cu cermet was chosen as the material of interest. The thermal corrosion behavior of Cu{sub 2}O/Cu was investigated in Na{sub 3}AlF{sub 6}–CaF{sub 2}–Al{sub 2}O{sub 3} electrolyte at 960 °C to elucidate the corrosion mechanisms of this type of partially inert anode for the production of aluminum or aluminum alloys. Furthermore, the effects of the geometrical structure of the Cu phase on the thermal corrosion behavior of Cu{sub 2}O/Cu cermet in the electrolyte were investigated as well. The thermal corrosion rate was evaluated by the weight loss method and the results show that the samples prepared with branch-like Cu have higher thermal corrosion rate than those prepared with spherical Cu, and the corrosion rate increases with decreasing size and increasing filling

  2. Characterization of Nanometric-Sized Carbides Formed During Tempering of Carbide-Steel Cermets

    Directory of Open Access Journals (Sweden)

    Matus K.

    2016-06-01

    Full Text Available The aim of this article of this paper is to present issues related to characterization of nanometric-sized carbides, nitrides and/or carbonitrides formed during tempering of carbide-steel cermets. Closer examination of those materials is important because of hardness growth of carbide-steel cermet after tempering. The results obtained during research show that the upswing of hardness is significantly higher than for high-speed steels. Another interesting fact is the displacement of secondary hardness effect observed for this material to a higher tempering temperature range. Determined influence of the atmosphere in the sintering process on precipitations formed during tempering of carbide-steel cermets. So far examination of carbidesteel cermet produced by powder injection moulding was carried out mainly in the scanning electron microscope. A proper description of nanosized particles is both important and difficult as achievements of nanoscience and nanotechnology confirm the significant influence of nanocrystalline particles on material properties even if its mass fraction is undetectable by standard methods. The following research studies have been carried out using transmission electron microscopy, mainly selected area electron diffraction and energy dispersive spectroscopy. The obtained results and computer simulations comparison were made.

  3. Influence of oxidation on the high-temperature mechanical properties of zirconia/nickel cermets

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Rodriguez, A. [Departamento de Fisica de la Materia Condensada, Universidad de Sevilla, Av. Reina Mercedes s/n, Facultad de Fisica, 41012 Seville (Spain)]. E-mail: amr@us.es; Bravo-Leon, A. [Departamento de Fisica de la Materia Condensada, Universidad de Sevilla, Av. Reina Mercedes s/n, Facultad de Fisica, 41012 Seville (Spain); Richter, G. [Max-Planck-Institut fuer Metallforschung, Stuttgart (Germany); Ruehle, M. [Max-Planck-Institut fuer Metallforschung, Stuttgart (Germany); Dominguez-Rodriguez, A. [Departamento de Fisica de la Materia Condensada, Universidad de Sevilla, Av. Reina Mercedes s/n, Facultad de Fisica, 41012 Seville (Spain); Jimenez-Melendo, M. [Departamento de Fisica de la Materia Condensada, Universidad de Sevilla, Av. Reina Mercedes s/n, Facultad de Fisica, 41012 Seville (Spain)

    2006-06-15

    influence of an oxidizing atmosphere on the high-temperature plasticity of zirconia/nickel cermets has been studied by conducting creep tests in air. The resulting microstructure has been characterized by scanning, conventional and high-resolution electron microscopy. Despite the large microstructural changes, the composites do not exhibit mechanical degradation.

  4. Materials for fuel cell; Nenryo denkyoku zairyo

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, A. [Mitsubishi Heavy Industries Ltd., Tokyo (Japan). Advanced Technology Research Center

    1995-01-31

    YSZ is introduced as the aggregate for the conventional fuel cell material from the viewpoint of consistency, but the resistance of YSZ is 10{Omega}{center_dot}cm originally, and the electrode resistance of the electrode increases to degrade the cell performance if the mixed amount of YSZ is increased for the consistency of thermal expansion. This invention relates to the employment of a cermet composition to reconcile high conductivity of the fuel electrode with the consistency of thermal expansion coefficient by mixing, as the aggregate for Ni cermet, cermet composition mixed with 3Al2O3{center_dot}2SiO2 or that mixed with MgAl2O4 or CaAl2O4. By such use of low thermal expansion aggregate for the fuel electrode, not only flat plate type SOFC having large capacity and large area can be fabricated easily, but also contact points between Ni particles are increased because the amount of Ni introduction can be increased largely than before, Joule heat due to current concentration is not produced, and separation and cracking of electrode due to thermal stress can be prevented. 7 figs., 2 tabs.

  5. Erosion-oxidation behavior of thermal sprayed Ni20Cr alloy and WC and Cr3C2 cermet coatings

    Directory of Open Access Journals (Sweden)

    Clarice Terui Kunioshi

    2005-06-01

    Full Text Available An apparatus to conduct high temperature erosion-oxidation studies up to 850 °C and with particle impact velocities up to 15 m.s-1 was designed and constructed in the Corrosion Laboratories of IPEN. The erosion-oxidation behavior of high velocity oxy fuel (HVOF sprayed alloy and cermet coatings of Ni20Cr, WC 20Cr7Ni and Cr3C2 Ni20Cr on a steel substrate has been studied. Details of this apparatus and the erosion-oxidation behavior of these coatings are presented and discussed. The erosion-oxidation behavior of HVOF coated Cr3C2 25(Ni20Cr was better than that of WC 20Cr7Ni, and the erosion-oxidation regimes have been identified for these coatings at particle impact velocity of 3.5 m.s-1, impact angle of 90° and temperatures in the range 500 to 850 °C.

  6. Pt-Al2O3 selective cermet coatings on superalloy substrates for photothermal conversion up to 600C

    Energy Technology Data Exchange (ETDEWEB)

    Tran Khan Vien; Sella, C.; Lafait, J.; Berthier, S.

    1985-04-12

    The following features of Pt-Al2O3 cermet coatings deposited by R.F. cosputtering on metallic substrates are reported in this paper. (1) An appropriate choice of cermet composition and coating thickness results in very good optical selectivity. (2) This selectivity is increased if the cermet film has a molybdenum underlayer and an Al2O3 overlayer of adequate thickness. An absorptivity a of 0.92 and an emissivity e of 0.14 (at 300C) have been obtained. (3) These selective absorbers are stable at temperatures of up to 400C when cermet coatings are deposited on stainless steel substrates and over 600C when superalloy substrate are used. (orig.).

  7. Spherical tube hypersurfaces

    CERN Document Server

    Isaev, Alexander

    2011-01-01

    We examine Levi non-degenerate tube hypersurfaces in complex linear space which are "spherical," that is, locally CR-equivalent to the real hyperquadric. Spherical hypersurfaces are characterized by the condition of the vanishing of the CR-curvature form, so such hypersurfaces are flat from the CR-geometric viewpoint. On the other hand, such hypersurfaces are also of interest from the point of view of affine geometry. Thus our treatment of spherical tube hypersurfaces in this book is two-fold: CR-geometric and affine-geometric. As the book shows, spherical tube hypersurfaces possess remarkable properties. For example, every such hypersurface is real-analytic and extends to a closed real-analytic spherical tube hypersurface in complex space. One of our main goals is to provide an explicit affine classification of closed spherical tube hypersurfaces whenever possible. In this book we offer a comprehensive exposition of the theory of spherical tube hypersurfaces, starting with the idea proposed in the pioneering...

  8. Zr-ZrO sub 2 cermet solar coatings designed by modelling calculations and deposited by dc magnetron sputtering

    CERN Document Server

    Zhang Qi Chu; Lee, K D; Shen, Y G

    2003-01-01

    High solar performance Zr-ZrO sub 2 cermet solar coatings were designed using a numerical computer model and deposited experimentally. The layer thickness and Zr metal volume fraction for the Zr-ZrO sub 2 cermet solar selective coatings on a Zr or Al reflector with a surface ZrO sub 2 or Al sub 2 O sub 3 anti-reflection layer were optimized to achieve maximum photo-thermal conversion efficiency at 80 deg. C under concentration factors of 1-20 using the downhill simplex method in multi-dimensions in the numerical calculation. The dielectric function and the complex refractive index of Zr-ZrO sub 2 cermet materials were calculated using Sheng's approximation. Optimization calculations show that Al sub 2 O sub 3 /Zr-ZrO sub 2 /Al solar coatings with two cermet layers and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimized Al sub 2 O sub 3 /Zr-ZrO sub 2 /Al solar coating film w...

  9. A Comparison in Mechanical Properties of Cermets of Calcium Silicate with Ti-55Ni and Ti-6Al-4V Alloys for Hard Tissues Replacement

    Directory of Open Access Journals (Sweden)

    Azim Ataollahi Oshkour

    2014-01-01

    Full Text Available This study investigated the impact of calcium silicate (CS content on composition, compressive mechanical properties, and hardness of CS cermets with Ti-55Ni and Ti-6Al-4V alloys sintered at 1200°C. The powder metallurgy route was exploited to prepare the cermets. New phases of materials of Ni16Ti6Si7, CaTiO3, and Ni31Si12 appeared in cermet of Ti-55Ni with CS and in cermet of Ti-6Al-4V with CS, the new phases Ti5Si3, Ti2O, and CaTiO3, which were emerged during sintering at different CS content (wt%. The minimum shrinkage and density were observed in both groups of cermets for the 50 and 100 wt% CS content, respectively. The cermets with 40 wt% of CS had minimum compressive Young’s modulus. The minimum of compressive strength and strain percentage at maximum load were revealed in cermets with 50 and 40 wt% of CS with Ti-55Ni and Ti-6Al-4V cermets, respectively. The cermets with 80 and 90 wt% of CS showed more plasticity than the pure CS. It concluded that the composition and mechanical properties of sintered cermets of Ti-55Ni and Ti-6Al-4V with CS significantly depend on the CS content in raw cermet materials. Thus, the different mechanical properties of the cermets can be used as potential materials for different hard tissues replacements.

  10. Effects of metal binder on the microstructure and mechanical properties of Ti(C,N)-based cermets

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingzhong; Ai, Xing, E-mail: aixingsdu@163.com; Zhao, Jun; Gong, Feng; Pang, Jiming; Wang, Yintao

    2015-09-25

    Highlights: • Ni–Co binder improves the solid solution reaction and the wetting of hard phases. • Cermets with 25 wt.% binder have evenly distributed grains with moderate rims. • Co/(Ni + Co) ratios influence the grain sizes and microstructure features of cermets. • The cermets with pure Co as binder exhibit optimal mechanical properties. - Abstract: To optimize the mechanical properties of Ti(C,N)-based cermets used as tool materials, the cermets with different Ni–Co binder contents and Co/(Ni + Co) weight ratios were prepared. The effects of metal binder content and Co/(Ni + Co) ratio on the microstructure and mechanical properties of Ti(C,N)-based cermets were investigated by scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and measuring the transverse rupture strength (TRS), Vickers hardness (HV) and fracture toughness (K{sub IC}). The experimental results reveal that increasing Ni–Co binder content can increase the thickness of rim phases by improving the solid solution reaction and the wetting of hard phases. The cermets with 25 wt.% binder addition present good comprehensive mechanical properties, which is attributed to the moderate rim phases and uniformly distributed Ti(C,N) grains. The Co/(Ni + Co) weight ratios in binder have a great influence on the grain sizes and microstructure features of Ti(C,N)-based cermets, in virtue of the synergic effects between the wettability of Co and the solubilizing capacity of Ni on hard phases. The cermets with pure Co as binder exhibit optimal mechanical properties with a TRS of 1767 ± 81 MPa, a hardness of 12.26 ± 0.10 GPa and a K{sub IC} of 8.40 ± 0.47 MPa m{sup 1/2}, which meet the requirements for tool materials. And the cermets with a Co/(Ni + Co) ratio of 0.2 have the second best mechanical properties with a TRS of 1848 ± 201 MPa, a hardness of 11.12 ± 0.40 GPa and a K{sub IC} of 9.43 ± 0.54 MPa m{sup 1/2}, in which the lower hardness can

  11. Dynamic SEM wear studies of tungsten carbide cermets. [friction and wear experiments

    Science.gov (United States)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined, and etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the tungsten carbide (WC) and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation, and the wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation, and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  12. Metal-Matrix Hardmetal/Cermet Reinforced Composite Powders for Thermal Spray

    Directory of Open Access Journals (Sweden)

    Dmitri GOLJANDIN

    2012-03-01

    Full Text Available Recycling of materials is becoming increasingly important as industry response to public demands, that resources must be preserved and environment protected. To produce materials competitive in cost with primary product, secondary producers have to pursue new technologies and other innovations. For these purposes different recycling technologies for composite materials (oxidation, milling, remelting etc are widely used. The current paper studies hardmetal/cermet powders produced by mechanical milling technology. The following composite materials were studied: Cr3C2-Ni cermets and WC-Co hardmetal. Different disintegrator milling systems for production of powders with determined size and shape were used. Chemical composition of produced powders was analysed.  To estimate the properties of recycled hardmetal/cermet powders, sieving analysis, laser granulometry and angularity study were conducted. To describe the angularity of milled powders, spike parameter–quadric fit (SPQ was used and experiments for determination of SPQ sensitivity and precision to characterize particles angularity were performed. Images used for calculating SPQ were taken by SEM processed with Omnimet Image Analyser 22. The graphs of grindability and angularity were composed. Composite powders based on Fe- and Ni-self-fluxing alloys for thermal spray (plasma and HVOF were produced. Technological properties of powders and properties of thermal sprayed coatings from studied powders were investigated. The properties of spray powders reinforced with recycled hardmetal and cermet particles as alternatives for cost-sensitive applications were demonstrated.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1348

  13. Spherically Actuated Motor

    Science.gov (United States)

    Peeples, Steven

    2015-01-01

    A three degree of freedom (DOF) spherical actuator is proposed that will replace functions requiring three single DOF actuators in robotic manipulators providing space and weight savings while reducing the overall failure rate. Exploration satellites, Space Station payload manipulators, and rovers requiring pan, tilt, and rotate movements need an actuator for each function. Not only does each actuator introduce additional failure modes and require bulky mechanical gimbals, each contains many moving parts, decreasing mean time to failure. A conventional robotic manipulator is shown in figure 1. Spherical motors perform all three actuation functions, i.e., three DOF, with only one moving part. Given a standard three actuator system whose actuators have a given failure rate compared to a spherical motor with an equal failure rate, the three actuator system is three times as likely to fail over the latter. The Jet Propulsion Laboratory reliability studies of NASA robotic spacecraft have shown that mechanical hardware/mechanism failures are more frequent and more likely to significantly affect mission success than are electronic failures. Unfortunately, previously designed spherical motors have been unable to provide the performance needed by space missions. This inadequacy is also why they are unavailable commercially. An improved patentable spherically actuated motor (SAM) is proposed to provide the performance and versatility required by NASA missions.

  14. Operational results of pilot cell test with cermet inert'' anodes

    Energy Technology Data Exchange (ETDEWEB)

    Alcorn, T.R.; Tabereaux, A.T.; Richards, N.E. (Reynolds Metals Co., Muscle Shoals, AL (United States). Mfg. Technology Lab.); Windisch, C.F. Jr.; Strachan, D.M. (Pacific Northwest Lab., Richland, WA (United States)); Gregg, J.S.; Frederick, M.S. (ELTECH Research Corp., Fairport Harbor, OH (United States))

    1993-02-01

    The operational performance of a six-pack'' of cermet anodes and corrosion rates was evaluated in a six kA pilot reduction cell at Reynolds' Manufacturing Technology Laboratory. Two separate test periodswere conducted with the cermet anodes; the first period was in conjunction with the Pacific Northwest Laboratory and the second with ELTECH Research Corporation. Both tests used identical NiO-NiFe[sub 2]O[sub 4]-Cu anodes manufactured by Ceramic Magnetics, Inc.. The ELTECH testing involved the in situ coating of the anodes with cerium oxide. Primary evaluations for both test periods were conducted at target conditions of alumina saturation and 0.5 amp/cm[sup 2] anode current density. Individual anodes remained in operation for 25 days during the two and one-half month testing period. Operational difficulties developed throughout the test due to breakage of the anode conductor stems, cracking and breaking of the cermet anodes, unequal anode current distribution, and alumina muck build-up in the cell. These operational problems are discussed as well as an estimate of anode corrosion rates based on metal impurity levels in the aluminum metal pad.

  15. Combating Wear of ASTM A36 Steel by Surface Modification Using Thermally Sprayed Cermet Coatings

    Directory of Open Access Journals (Sweden)

    Vineet Shibe

    2016-01-01

    Full Text Available Thermal spray coatings can be applied economically on machine parts to enhance their requisite surface properties like wear, corrosion, erosion resistance, and so forth. Detonation gun (D-Gun thermal spray coatings can be applied on the surface of carbon steels to improve their wear resistance. In the present study, alloy powder cermet coatings WC-12% Co and Cr3C2-25% NiCr have been deposited on ASTM A36 steel with D-Gun thermal spray technique. Sliding wear behavior of uncoated ASTM A36 steel and D-Gun sprayed WC-12% Co and Cr3C2-25% NiCr coatings on base material is observed on a Pin-On-Disc Wear Tester. Sliding wear performance of WC-12% Co coating is found to be better than the Cr3C2-25% NiCr coating. Wear performance of both these cermet coatings is found to be better than uncoated ASTM A36 steel. Thermally sprayed WC-12% Co and Cr3C2-25% NiCr cermet coatings using D-Gun thermal spray technique is found to be very useful in improving the sliding wear resistance of ASTM A36 steel.

  16. Rapid sintering and microstructure evolution of composite TiC cermet

    Science.gov (United States)

    Ding, L.; Liu, X. G.; Pan, Y. L.; Wang, Y. W.; Xiang, D. P.

    2017-01-01

    Ti, Ni, activated carbon, and Mo powders were used as raw materials to prepare a composite TiC cermet in this study. The powders were mixed and prepared through high-energy ball milling and then sintered in a spark plasma sintering (SPS) system. Results revealed that ball milling time affected the raw materials. After ball milling was performed for 10 h, Ti and C particles reacted and generated TiC, meanwhile, the solid Mo solutionized in TiC and formed (Ti,Mo)C lumps. XRD results showed that the product of (Ti,Mo)C cermet with high hardness can be prepared at a low sintering temperature of 1150 °C. The microstructure of composite TiC cermet was different from the traditional core-ring structure. In particular, the developed microstructure comprises a (Ti,Mo)C-Ni dark-gray phase at the center surrounded by (Ti,Mo)C light-gray phase and dispersed Mo white phase.

  17. Spherical geodesic mesh generation

    Energy Technology Data Exchange (ETDEWEB)

    Fung, Jimmy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kenamond, Mark Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Burton, Donald E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shashkov, Mikhail Jurievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-27

    In ALE simulations with moving meshes, mesh topology has a direct influence on feature representation and code robustness. In three-dimensional simulations, modeling spherical volumes and features is particularly challenging for a hydrodynamics code. Calculations on traditional spherical meshes (such as spin meshes) often lead to errors and symmetry breaking. Although the underlying differencing scheme may be modified to rectify this, the differencing scheme may not be accessible. This work documents the use of spherical geodesic meshes to mitigate solution-mesh coupling. These meshes are generated notionally by connecting geodesic surface meshes to produce triangular-prismatic volume meshes. This mesh topology is fundamentally different from traditional mesh topologies and displays superior qualities such as topological symmetry. This work describes the geodesic mesh topology as well as motivating demonstrations with the FLAG hydrocode.

  18. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse...... the spherical deformation model in detail and describe how it may be used to summarize the shape of star-shaped three-dimensional objects with few parameters. It is of interest to make statistical inference about the three-dimensional shape parameters from continuous observations of the surface and from...

  19. Influence of the silicon content on the core corrosion properties of dispersion type fuel plates; Influencia del Contenido en silicio sobre la corrosion acuosa de los nucleos de placas combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, C.; Saenz de Tejada, L. M.; Diaz Diaz, J.

    1969-07-01

    A new process to produce aluminium base dispersion type fuel plates has been developed at the Spanish JEN (Junta de Energia Nuclear). The dispersed fuel material is obtained by an aluminothermic process to render a stoichiometric cermet of UAI{sub 3} and AI{sub 2}O{sub 3} according to the reaction. (Author)

  20. The Manufacture of W-UO2 Fuel Elements for NTP Using the Hot Isostatic Pressing Consolidation Process

    Science.gov (United States)

    Broadway, Jeramie; Hickman, Robert; Mireles, Omar

    2012-01-01

    NTP is attractive for space exploration because: (1) Higher Isp than traditional chemical rockets (2)Shorter trip times (3) Reduced propellant mass (4) Increased payload. Lack of qualified fuel material is a key risk (cost, schedule, and performance). Development of stable fuel form is a critical path, long lead activity. Goals of this project are: Mature CERMET and Graphite based fuel materials and Develop and demonstrate critical technologies and capabilities.

  1. Development of Planar Metal Supported SOFC with Novel Cermet Anode

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Hjelm, Johan; Klemensø, Trine

    2009-01-01

    Metal-supported solid oxide fuel cells are expected to offer several potential advantages over conventional anode (Ni-YSZ) supported cells, such as increased resistance against mechanical and thermal stresses and a reduction in materials cost. When Ni-YSZ based anodes are used in metal supported...... a promising performance and durability at a broad range of temperatures and is especially suitable for intermediate temperature operation....

  2. Planar metal-supported SOFC with novel cermet anode

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Hjelm, Johan; Klemensø, Trine

    2011-01-01

    Metal-supported solid oxide fuel cells are expected to offer several potential advantages over conventional anode (Ni-YSZ) supported cells. For example, increased resistance against mechanical and thermal stresses and a reduction in material costs. When Ni-YSZ based anodes are used in metal...... and durability at a broad range of temperatures and is especially suitable for intermediate temperature operation at around 650°C. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  3. Fabrication of hard cermets by in-situ synthesis and infiltration of metal melts into WC powder compacts

    Directory of Open Access Journals (Sweden)

    Guanghua Liu

    2017-12-01

    Full Text Available Hard carbide cermets are prepared by in-situ synthesis and infiltration of metal melts into WC powder compacts. Ni–W and Ni–W–Cr metal melts are in-situ synthesized from thermite reactions and infiltrated into WC powder compacts under high-gravity. During the infiltration, W in the metal melts reacts with WC to form W2C, and more W2C and W are observed at the upper parts of the cermets than the lower parts. The cermets show a maximum hardness of 15.4 GPa, which is higher than most commercial cemented carbides, although they are not fully dense and have a porosity of 15–20%.

  4. Sensational spherical shells

    Science.gov (United States)

    Lee, M. C.; Kendall, J. M., Jr.; Bahrami, P. A.; Wang, T. G.

    1986-01-01

    Fluid-dynamic and capillary forces can be used to form nearly perfect, very small spherical shells when a liquid that can solidify is passed through an annular die to form an annular jet. Gravity and certain properties of even the most ideal materials, however, can cause slight asymmetries. The primary objective of the present work is the control of this shell formation process in earth laboratories rather than space microgravity, through the development of facilities and methods that minimize the deleterious effects of gravity, aerodynamic drag, and uncontrolled cooling. The spherical shells thus produced can be used in insulation, recyclable filter materials, fire retardants, explosives, heat transport slurries, shock-absorbing armor, and solid rocket motors.

  5. The anomalous behaviour of Ag-Al sub 2 O sub 3 Cermet electroformed devices

    CERN Document Server

    Khan, M S R

    2003-01-01

    Cermet coating consisting of silver particles in an aluminium oxide matrix were prepared on glass substrates by vacuum deposition. Variation of the circulating current with potential difference was obtained in evaporated Al/Ag-Al sub 2 O sub 3 /Cu sandwich structures, 100 to 200 nm thick containing 10 wt % Ag. It was observed that the investigated sandwich structures exhibit anomalous behaviour such as electroforming with Voltage-Controlled-Negative Resistance (VCNR) in vacuo of approx 4 x 10 sup - sup 6 torr. The formed characteristics were explained on the basis of filamentary model.

  6. Neutronics Study on LEU Nuclear Thermal Rocket Fuel Options

    Energy Technology Data Exchange (ETDEWEB)

    Venneri, Paolo; Kim, Yong Hee [KAIST, Daejeon (Korea, Republic of); Howe, Steven [CSNR, Idaho (United States)

    2014-10-15

    This has resulted in a non-trivial simplification of the tasks needed to develop such an engine and the quick initial development of the concept. There are, however, a series of key core-design choices that are currently under scrutiny in the field that have to be resolved in order for the LEU-NTR to be fully developed. The most important of these is the choice of fuel: carbide composite or tungsten cermet. This study presents a first comparison of the two fuel types specifically in the neutronic application to the LEU-NTR, keeping in mind the unique neutronic environment and the system requirements of the system. The scope of the study itself is limited to a neutronics study of the two fuels and only a cursory overview of the material properties of the fuels themselves... The results of this study have led to two major conclusions. First of all is that the carbide composite fuel is, from a neutronics standpoint, a much better fuel. It has a low absorption cross-section, is inherently a strong moderator, is able to achieve a higher reactivity using smaller amounts of fissile material, and can potentially enable a smaller reactor. Second is that despite its neutronic difficulties (high absorption, inferior moderating abilities, and lower k-infinity values) the tungsten cermet fuel is still able to perform satisfactorily in an LEU-NTR, largely due to its ability to have an extremely high fuel loading.

  7. Fundamentals of spherical array processing

    CERN Document Server

    Rafaely, Boaz

    2015-01-01

    This book provides a comprehensive introduction to the theory and practice of spherical microphone arrays. It is written for graduate students, researchers and engineers who work with spherical microphone arrays in a wide range of applications.   The first two chapters provide the reader with the necessary mathematical and physical background, including an introduction to the spherical Fourier transform and the formulation of plane-wave sound fields in the spherical harmonic domain. The third chapter covers the theory of spatial sampling, employed when selecting the positions of microphones to sample sound pressure functions in space. Subsequent chapters present various spherical array configurations, including the popular rigid-sphere-based configuration. Beamforming (spatial filtering) in the spherical harmonics domain, including axis-symmetric beamforming, and the performance measures of directivity index and white noise gain are introduced, and a range of optimal beamformers for spherical arrays, includi...

  8. Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, R J; Johnson, Jr, A B; Lund, A L; Gilbert, E R [and others

    1996-07-01

    The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

  9. Holographic Spherically Symmetric Metrics

    Science.gov (United States)

    Petri, Michael

    The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.

  10. Degradation of conductivity and microstructure under thermal and current load in Ni-YSZ cermets for SOFC anodes

    DEFF Research Database (Denmark)

    Thydén, Karl Tor Sune; Barfod, R.; Liu, Yuliang

    2006-01-01

    The degradation of electrical conductivity in porous nickel-yttria stabilized zirconia composite cermets in a H2/H2O atmosphere under high temperature treatments has been investigated. The parameters varied were: temperature, water partial pressure, and electrical current load. The microstructure...

  11. Impact of Reduction Parameters on the Initial Performance and Stability of Ni/(Sc)YSZ Cermet Anodes for SOFCs

    DEFF Research Database (Denmark)

    Ebbehøj, Søren Lyng; Ramos, Tania; Mogensen, Mogens Bjerg

    2012-01-01

    In-situ reduction of Ni cermet anodes produces the porosity and influences the microstructure, performance and stability of the anodes. The impact on initial performance, stability and microstructure of two different reduction procedures currently in use at DTU Energy Conversion with reduction...... stability under high steam conditions was evaluated, and very stable performances and microstructures of the anode layers were observed....

  12. Richtmyer - Meshkov instability in a spherical target with density variation

    CERN Document Server

    Mandal, Labakanta; Banerjee, Rahul; Khan, Manoranjan; Gupta, M R

    2011-01-01

    The motion of unstable fluid interface due to Richtmyer - Meshkov (RM) instability incorporating with density variation has been studied in a spherical target using Lagrangian formulation. During the compression in Inertial Confinement Fusion (ICF)process, the density of deuterium - tritium (DT) fuel increases 1000 times greater than the density of gaseous DT fuel within the core of spherical target. We have extended the feature of density variation [PRA,84-Mikaelian & Lindl] in spherical geometry.Due to convergent shock impingement, the perturbed interface will be nonspherical which leads to the density variation in both radial as well as in polar angle. We have shown that the interface of perturbed surface decreases with time to reach a minimum and then kick back to gradual increase. As the perturbed radius decreases, the density increases and reaches a maxima corresponding to a minima of perturbed radius. This is the practical situation of density characteristics during implosion of ICF. The numerical ...

  13. Preparation of one-step NiO/Ni-CGO composites using factorial design; Efeitos do processamento e do teor de formador de poros na microestrutura de cermets Ni-CGO

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, A.J.M. de; Sousa, A R.O. de; Camposa, L.F.A.; Macedo, D.A. [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil); Loureiro, F. J.A.; Fagg, D.P., E-mail: allanjp1993@hotmail.com [Universidade de Aveiro (Portugal)

    2016-07-01

    This work deals with the synthesis, processing and characterization of NiO/Ni- CGO composite materials as potential solid oxide fuel cell (SOFC) anodes. The particulate materials were obtained by a one-step synthesis method and characterized by thermal analysis (prior to calcination) and X-ray diffraction (calcined powder). The ceramic processing of samples containing from 30 to 70 wt.% NiO was carried out by factorial design. Besides the NiO content controlled during the chemical synthesis, the impacts of the pore-former content (citric acid, used in proportions of 0, 7.5 and 15 wt.%) and the sintering temperature (1300, 1350 and 1400 °C) were also investigated. The open porosity of NiO-CGO composites and reduced Ni-CGO cermets was modeled as a function of factors (NiO content, citric acid content and sintering temperature) and interaction of factors. (author)

  14. The ETE spherical Tokamak project

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Andrade, Maria Celia Ramos de; Barbosa, Luis Filipe Wiltgen [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] [and others]. E-mail: ludwig@plasma.inpe.br

    1999-07-01

    This paper describes the general characteristics of spherical tokamaks, with a brief overview of work in the area of spherical torus already performed or in progress at several institutions. The paper presents also the historical development of the ETE (Spherical Tokamak Experiment) project, its research program, technical characteristics and status of construction in September, 1998 at the Associated plasma Laboratory (LAP) of the National Institute for Space Research (INPE) in Brazil. (author)

  15. Spherical tokamak development in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] (and others)

    2003-07-01

    The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  16. Computational spherical astronomy

    Science.gov (United States)

    Taff, Laurence G.

    The subject of the considered volume is the applied mathematics of spherical astronomy. The book is intended to aid those scientists and engineers, not trained in astrometry, to rapidly master the computational aspects of positional astronomy. Celestial coordinate systems are considered, taking into account the celestial sphere, the horizon system, the equatorial systems, the ecliptic system, the rotational transformations of celestial coordinates, position angle and distance, and special star positions. Other subjects discussed are related to general precession and proper motion, the parallax, the computation of the topocentric place, time systems, photographic astrometry, celestial mechanics, and astronomical catalogs. Attention is given to the power series method for the combined effects of general precession and proper motion, atomic time, the gravitational force, perturbation theory, solar system objects, stars, nonstellar objects, and the linear plate model.

  17. Pairing in spherical nanograins

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmenko, N.K., E-mail: kuzmenko@NK9433.spb.ed [V.G. Khlopin Radium Institute, 2-nd Murinsky avenue 28, 194021 St.-Petersburg (Russian Federation); Mikhajlov, V.M. [Institute of Physics, St.-Petersburg State University, Ul' yanovskaya 3, 198904 Petergof (Russian Federation)

    2010-02-01

    Conditions are ascertained when the pairing and other thermodynamic properties of spherical nanograins with numbers of delocalized electrons N<10{sup 5} can be investigated by using the Single Shell Model (SSM) that gives the eigenvalues of the pairing Hamiltonian for a solitary shell. In the frame of SSM the exact canonical and grand canonical descriptions are employed first to analyze the absence of the abrupt superconducting-normal phase transition in finite systems in which an increase of the pairing and BCS critical temperature can be observed and secondly to study such new phenomena as the temperature re-entrance of the pairing in postcritical magnetic fields and also low temperature oscillations of the magnetic susceptibility and electronic heat capacity in an increasing uniform magnetic field.

  18. Spherical grating spectrometers

    Science.gov (United States)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  19. Tribological properties of B{sub 4}C-TiB{sub 2}-TiC-Ni cermet coating produced by HVOF

    Energy Technology Data Exchange (ETDEWEB)

    Rafiei, Mahdi [Islamic Azad Univ., Najafabad (Iran, Islamic Republic of). Dept. of Materials Engineering; Isfahan Univ. of Technology, Isfahan (Iran, Islamic Republic of). Depr. of Materials Engineering; Shamanian, Morteza; Salehi, Mehdi [Isfahan Univ. of Technology, Isfahan (Iran, Islamic Republic of). Depr. of Materials Engineering; Mostaan, Hossein [Arak Univ., Arak (Iran, Islamic Republic of). Dept. of Materials and Metallurgical Engineering

    2017-08-15

    In this study, B{sub 4}C-TiB{sub 2}-TiC-Ni coating was sprayed on the surface of 4130 steel by high velocity oxy-fuel torch. The tribological behavior of samples was studied by ball on disk wear testing. Structural evolution of the coating was analyzed by X-ray diffractometry. The microstructure of the coating, wear track and Al{sub 2}O{sub 3} ball was investigated by scanning electron microscopy, field emission scanning electron microscopy and optical microscopy. Elemental analysis of the wear track was done by energy dispersive X-ray spectroscopy. It was found that a cermet coating containing B{sub 4}C, TiB{sub 2}, TiC and Ni phases with good bonding to the 4130 steel substrate with no sign of any cracking or pores was formed. The wear mechanism of the composite coating was delamination. The friction coefficient of samples was decreased with increasing load because of higher frictional heat and creation of more oxide islands.

  20. Spherical wave rotation in spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Wu, Jian; Larsen, Flemming Holm; Lemanczyk, J.

    1991-01-01

    The rotation of spherical waves in spherical near-field antenna measurement is discussed. Considering the many difficult but interesting features of the rotation coefficients, an efficient rotation scheme is derived. The main feature of the proposed scheme is to ignore the calculation of the very...

  1. Ni-CeO2 Cermets Synthesis by Solid State Sintering of Ni/CeO2 Multilayer

    Directory of Open Access Journals (Sweden)

    Aleksandras ILJINAS

    2013-12-01

    Full Text Available Nickel and gadolinium doped cerium oxide (GDC cermet is intensively investigated for an application as an anode material for solid oxide fuel cells based on various electrolytes. The purpose of the present investigation is to analyze morphology, microstructure, and optical properties of deposited and annealed for one hour in the temperatures from 500 ºC to 900 ºC Ni/CeO2 multilayer thin films deposited by sputtering. The crystallographic structure of thin films was investigated by X-ray diffraction. The morphology of the film cross-section was investigated with scanning electron microscope. The elemental analysis of samples was investigated by energy-dispersive X-ray spectroscopy. The fitting of the optical reflectance data was made using Abeles matrix method that is used for the design of interference coatings. The film cross-section of the post-annealed samples consisted of four layers. The first CeO2 layer (on Si had the same fine columnar structure with no features of Ni intermixing. The part of Ni (middle-layer after annealing was converted to NiO with grain size exceeding 100 nm. The CeO2 layer deposited on Ni was divided into two layers. Lower layer had small grains not exceeding 25 nm and consisting of NiO and CeO2 mixture. Upper layer consisted of CeO2 columns with approximate thickness of 50 nm. Ni sample annealed at 600 ºC was fully oxidized. The NiO thickness and refraction index were almost steady after annealing in various temperatures. The approximation of experimental reflectance data was successful only for the samples with one transparent homogeneous layer. The reflectance of the Ni/CeO2 samples annealed at intermediate temperatures could not be fitted using one-layer or three-layer model. That may show that a simplified model could not be implemented.  The real system has complicated distribution of refraction index. DOI: http://dx.doi.org/10.5755/j01.ms.19.4.3073

  2. First results of spherical GEMs

    CERN Document Server

    Pinto, Serge Duarte; Brock, Ian; Croci, Gabriele; David, Eric; de Oliveira, Rui; Ropelewski, Leszek; van Stenis, Miranda; Taureg, Hans; Villa, Marco

    2010-01-01

    We developed a method to make GEM foils with a spherical geometry. Tests of this procedure and with the resulting spherical GEMs are presented. Together with a spherical drift electrode, a spherical conversion gap can be formed. This eliminates the parallax error for detection of x-rays, neutrons or UV photons when a gaseous converter is used. This parallax error limits the spatial resolution at wide scattering angles. Besides spherical GEMs, we have developed curved spacers to maintain accurate spacing, and a conical field cage to prevent edge distortion of the radial drift field up to the limit of the angular acceptance of the detector. With these components first tests are done in a setup with a spherical entrance window but a planar readout structure; results will be presented and discussed. A flat readout structure poses difficulties, however. Therefore we will show advanced plans to make a prototype of an entirely spherical double-GEM detector, including a spherical 2D readout structure. This detector w...

  3. Redox Stable Anodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Guoliang eXiao

    2014-06-01

    Full Text Available Solid oxide fuel cells (SOFCs can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conventional Ni-based anode has low tolerance to sulfur-contamination, is vulnerable to deactivation by carbon build-up (coking from direct oxidation of hydrocarbon fuels, and suffers volume instability upon redox cycling. Among these limitations, the redox instability of the anode is particularly important and has been intensively studied since the SOFC anode may experience redox cycling during fuel cell operations even with the ideal pure hydrogen as the fuel. This review aims to highlight recent progresses on improving redox stability of the conventional Ni-based anode through microstructure optimization and exploration of alternative ceramic-based anode materials.

  4. Faradaic current in different mullite materials. Single crystal, ceramic and cermets

    Energy Technology Data Exchange (ETDEWEB)

    Mata-Osoro, Gustavo; Moya, Jose S.; Pecharroman, Carlos [Instituto de Ciencia de Materiales de Madrid (CSIC) (Spain); Morales, Miguel [Universidad de Santiago de Compostela (Spain). LabCaF; Diaz, L. Antonio [Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN-CSIC), Llanera (Spain); Schneider, Hartmut [Koeln Univ. (Germany). Inst. fuer Kristallographie

    2012-04-15

    Faradaic current measurements have been carried out on three different types of mullite: 2: 1 mullite single crystals (E perpendicular to c), 3: 2 ceramics and 11 % mullite/Mo composites. Measurements were carried out on very thin samples (60 {mu}m) at high voltages (500 to 1 000 V). Under these conditions, measurable currents were recorded even at room temperature. Results indicate notable differences between these three samples, which suggest that, although they share the same name and similar crystalline structure, binding energies and defect distributions seem to be very different. Finally, it has been seen that the excellent behaviour against dielectric breakdown of ceramic mullite does not hold for single crystals or mullite based cermets. (orig.)

  5. Cold spraying of aluminum bronze on profiled submillimeter cermet structures formed by laser cladding

    Science.gov (United States)

    Ryashin, N. S.; Malikov, A. G.; Shikalov, V. S.; Gulyaev, I. P.; Kuchumov, B. M.; Klinkov, S. V.; Kosarev, V. F.; Orishich, A. M.

    2017-10-01

    The paper presents results of the cold spraying of aluminum bronze coatings on substrates profiled with WC/Ni tracks obtained by laser cladding. Reinforcing cermet frames shaped as grids with varied mesh sizes were clad on stainless steel substrates using a CO2 laser machine "Siberia" (ITAM SB RAS, Russia). As a result, surfaces/substrates with heterogeneous shape, composition, and mechanical properties were obtained. Aluminum bronze coatings were deposited from 5lF-NS powder (Oerlikon Metco, Switzerland) on those substrates using cold spraying equipment (ITAM SB RAS). Data of profiling, microstructure diagnostics, EDS analysis, and mechanical tests of obtained composites is reported. Surface relief of the sprayed coatings dependence on substrate structure has been demonstrated.

  6. Effect of Mo microstructure on the critical volume fraction for conduction in Mo-alumina cermets

    Energy Technology Data Exchange (ETDEWEB)

    Kelso, J.F.; Higgins, R.R.; Krivda, F.J. [Alcoa Technical Center, Alcoa Center, Pennsylvania 15069 (United States)

    1997-03-01

    The microstructure of Mo in an alumina/frit matrix was found to be dependent on the initial partial sizes of the alumina and Mo powders, the glass content in the matrix ceramic, and the amount of moisture in the firing atmosphere. The Mo microstructure had a significant influence on the critical volume fraction for conductivity in these cermets. Coarser alumina powder, finer Mo powder, and higher glass content promoted coalescence of Mo into conductive networks at lower metal contents. Drier firing atmospheres produced a more coarsened Mo microstructure with a slight decrease in the amount of network contiguity, causing an increase in the amount required for electrical percolation. {copyright} {ital 1997 Materials Research Society.}

  7. Microstructural changes during wear by plastic deformation of cemented carbide and cermet cutting inserts

    Science.gov (United States)

    Östberg, Gustaf; Andrén, Hans-Olof

    2006-05-01

    The microstructure of one WC-Co and two Ti(C,N)-WC-Co cutting inserts has been studied before and after plastic deformation, caused by high-speed turning. It was found that after deformation, the binder phase had infiltrated some of the grain boundaries and formed lamellae between the hard phase grains. The infiltration of grain boundaries was assumed to occur by a stress-induced dissolution along the grain boundaries of the hard phase grains as a wide front of binder phase, rather than gradually by Co grain boundary diffusion. Some localized dissolution of the hard phase could also be seen as faceting of grains in WC-Co and at triple points in cermets. It was concluded that the plastic deformation occurs by grain boundary infiltration with simultaneous grain boundary sliding. The rate of deformation is controlled by grain boundary infiltration through dissolution of the hard phase grains.

  8. Freeze-casting as a Novel Manufacturing Process for Fast Reactor Fuels. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wegst, Ulrike G.K. [Dartmouth College, Hanover, NH (United States). Thayer School of Engineering; Allen, Todd [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States)

    2014-04-07

    Advanced burner reactors are designed to reduce the amount of long-lived radioactive isotopes that need to be disposed of as waste. The input feedstock for creating advanced fuel forms comes from either recycle of used light water reactor fuel or recycle of fuel from a fast burner reactor. Fuel for burner reactors requires novel fuel types based on new materials and designs that can achieve higher performance requirements (higher burn up, higher power, and greater margins to fuel melting) then yet achieved. One promising strategy to improved fuel performance is the manufacture of metal or ceramic scaffolds which are designed to allow for a well-defined placement of the fuel into the host, and this in a manner that permits greater control than that possible in the production of typical CERMET fuels.

  9. Pt-Al/sub 2/O/sub 3/ selective cermet coatings for high temperature photothermal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sella, C.; Vien, T.K.; Lafait, J.; Berthier, S.

    1982-04-30

    Preliminary results obtained with Pt-Al/sub 2/O/sub 3/ cermets prepared by cosputtering onto stainless steel substrates are presented. The reflectivity of the coatings is measured in the spectral range 0.35-15 ..mu..m for various platinum volume filling factors and thicknesses. From the variations in the reflectivity and in the electrical resistivity with the temperature of annealing in air the stability of the cermets up to 500/sup 0/C is found to be good. Very thin films (about 600 A) with a platinum volume filling factor q close to the percolation composition (qapprox. equal to0.37) exhibit a selective profile well suited to photothermal conversion at high temperatures.

  10. Spherically symmetric perfect fluid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hajj-Boutros, J.

    1985-04-01

    Many exact solutions for the spherically symmetric perfect fluid distribution of matter with shear, acceleration, and expansion are obtained. One of them is expressed in terms of Painleve's third transcendent.

  11. [A study of different polishing techniques for amalgams and glass-cermet cement by scanning electron microscope (SEM)].

    Science.gov (United States)

    Kakaboura, A; Vougiouklakis, G; Argiri, G

    1989-01-01

    Finishing and polishing an amalgam restoration, is considered as an important and necessary step of the restorative procedure. Various polishing techniques have been recommended to success a smooth amalgam surface. The aim of this study was to investigate the influence of three different polishing treatments on the marginal integrity and surface smoothness of restorations made of three commercially available amalgams and a glass-cermet cement. The materials used were the amalgams, Amalcap (Vivadent), Dispersalloy (Johnson and Johnson), Duralloy (Degussa) and the glass-cermet Katac-Silver (ESPE). The occlusal surfaces of the restorations were polished by the methods: I) round bur, No4-rubber cup-zinc oxide paste in a small brush, II) round bur No 4-bur-brown, green and super green (Shofu) polishing cups and points successively and III) amalgam polishing bur of 12-blades-smooth amalgam polishing bur. Photographs from unpolished and polished surfaces of the restorations, were taken with scanning electron microscope, to evaluate the polishing techniques. An improvement of marginal integrity and surface smoothness of all amalgam restorations was observed after the specimens had been polished with the three techniques. Method II, included Shofu polishers, proved the best results in comparison to the methods I and III. Polishing of glass-cermet cement was impossible with the examined techniques.

  12. Low cost selective absorber based on a Fe-Al/sub 2/O/sub 3/ cermet film

    Energy Technology Data Exchange (ETDEWEB)

    Sella, C.; Kaba, A.; Berthier, S.; Lafait, J.

    1987-08-01

    The absorber-reflector tandem configuration is used for the realization of a selective absorbing surface for the photothermal conversion of solar energy. The infrared reflector consists of a stainless steel substrate, covered or not with a W or Mo thick film. The visible absorbing function is realized by a thin, low cost, Fe-Al/sub 2/O/sub 3/ cermet film. The cermet films are prepared by rf cosputtering onto a rotating stainless steel substrate. The target consists of a circular Al/sub 2/O/sub 3/ plate covered with small discs, the concentration varying with the Fe disc number. The optical properties of the thin Fe-Al/sub 2/O/sub 3/ films are studied as a function of the Fe volume fraction from 0.2 to 0.9. The dielectric function is calculated from the reflectivity and transmittivity measurements in the 300-50 000 nm spectral range. The films exhibiting the required selective properties (high absorptivity in the visible, high transparency in the infrared) are selected. A sandwich, composed of a thin Al/sub 2/O/sub 3/ antireflecting film, the cermet film (with adequate thickness and composition) and the reflecting substrate, exhibits a good selectivity for the photothermal conversion at low and middle temperatures (..cap alpha..=0.95; epsilon(300 K)=0.06; epsilon(700 K)=0.14).

  13. Structural Characteristics and Magnetic Properties of Al2O3 Matrix-Based Co-Cermet Nanogranular Films

    Directory of Open Access Journals (Sweden)

    Giap Van Cuong

    2015-01-01

    Full Text Available Magnetic micro- and nanogranular materials prepared by different methods have been used widely in studies of magnetooptical response. However, among them there seems to be nothing about magnetic nanogranular thin films prepared by a rf cosputtering technique for both metals and insulators till now. This paper presented and discussed preparation, structural characteristics, and magnetic properties of alumina (Al2O3 matrix-based granular Co-cermet thin films deposited by means of the cosputtering technique for both Co and Al2O3. By varying the ferromagnetic (Co atomic fraction, x, from 0.04 to 0.63, several dominant features of deposition for these thin films were shown. Structural characteristics by X-ray diffraction confirmed a cermet-type structure for these films. Furthermore, magnetic behaviours presented a transition from paramagnetic- to superparamagnetic- and then to ferromagnetic-like properties, indicating agglomeration and growth following Co components of Co clusters or nanoparticles. These results show a typical granular Co-cermet feature for the Co-Al2O3 thin films prepared, in which Co magnetic nanogranules are dispersed in a ceramic matrix. Such nanomaterials can be applied suitably for our investigations in future on the magnetooptical responses of spinplasmonics.

  14. Solid oxide fuels cells past present and future perspectives for SOFC technologies

    CERN Document Server

    Irvine, John TS

    2012-01-01

    Solid Oxide Fuel Cells (SOFCs) operate at high temperatures allowing more fuel flexibility and also useful heat output and so increase total efficiency, but does give some interesting engineering challenges. Solid Oxide Fuels Cells: Facts and Figures provides clear and accurate data for a selection of SOFC topics from the specific details of Ni cermet anodes, chemical expansion in materials, and the measuring and modelling of mechanical stresses, to the broader scope of the history and present design of cells, to SOFC systems and the future of SOFC. Celebrating Ulf Bossel s work on Solid Oxide

  15. Toroidal equilibria in spherical coordinates

    OpenAIRE

    Tsui, K. H.

    2009-01-01

    The standard Grad-Shafranov equation for axisymmetric toroidal plasma equilibrium is customary expressed in cylindrical coordinates with toroidal contours, and through which benchmark equilibria are solved. An alternative approach to cast the Grad-Shafranov equation in spherical coordinates is presented. This equation, in spherical coordinates, is examined for toroidal solutions to describe low $\\beta$ Solovev and high $\\beta$ plasma equilibria in terms of elementary functions.

  16. Spherical tokamak development in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, G.O.; Del Bosco, E.; Ferreira, J.G.; Berni, L.A.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Ueda, M.; Barroso, J.J.; Castro, P.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma; Barbosa, L.F.W. [Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Mecanica Espacial e Controle; The high-power microwave sources group

    2003-12-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the steps in the development of the ETE (Experimento Tokamak Esferico) project, its research program, technical characteristics and operating conditions as of December, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  17. Compact Fuel Element Environment Test

    Science.gov (United States)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.; Broadway, J. W.

    2012-01-01

    Deep space missions with large payloads require high specific impulse (I(sub sp)) and relatively high thrust to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average I(sub sp). Nuclear thermal rockets (NTRs) capable of high I(sub sp) thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3,000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements that employ high melting point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high-temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via noncontact radio frequency heating and expose samples to hydrogen for typical mission durations has been developed to assist in optimal material and manufacturing process selection without employing fissile material. This Technical Memorandum details the test bed design and results of testing conducted to date.

  18. Phase Evolution in Boride-Based Cermets and Reaction Bonding onto Plain Low Carbon Steel Substrate

    Science.gov (United States)

    Palanisamy, B.; Upadhyaya, A.

    2012-04-01

    Reaction sinter bonding is a process that aims to bond two materials for improvement in properties through reactive sintering technique. The process has been effectively used to sinter hard materials like borides in situ which not only possess excellent oxidation resistance, good corrosion resistance but also resistant to abrasive wear. Sinter bonding is a unique surface modification process achieved through powder metallurgy and is competent with other techniques like boronizing sintering and sinter-brazing since it eliminates the additional operations of heat treatment and assembly and removes the inherent setbacks with these processes. This study focuses on identifying the phase evolution mechanism using characterization tools like x-ray diffractometry and energy dispersive spectroscopy and study of sinter bonding of the boron containing precursors (Mo-Cr-Fe-Ni-FeB-MoB) onto plain carbon steel. A microstructure containing Fe-based matrix dispersed with complex borides develops with temperature in the tape cast sheets. A fivefold increase in hardness between plain carbon steel in wrought condition and sinter bonded steel was observed. The multilayer consisted of a reaction zone adjacent to the interface and was investigated with the composition profile and hardness measurements. A model of sinter bonding between the cermet and the steel has also been proposed.

  19. Corrosion of cermet anodes during low temperature electrolysis of alumina. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kozarek, R.L.; Ray, S.P.; Dawless, R.K.; LaCamera, A.F.

    1997-09-26

    Successful development of inert anodes to replace carbon anodes in Hall cells has the potential benefits of lower energy consumption,lower operating costs, and reduced CO{sub 2} and CO emissions. Using inert anodes at reduced current density and reduced operating temperature (800 C) has potential for decreasing the corrosion rate of inert anodes. It may also permit the use of new materials for containment and insulation. This report describes the fabrication characteristics and the corrosion performance of 5324-17% Cu Cermet anodes in 100 hour tests. Although some good results were achieved, the corrosion rate at low temperature (800 C) is varied and not significantly lower than typical results at high temperature ({approximately} 960 C). This report also describes several attempts at 200 hour tests, with one anode achieving 177 hours of continuous operation and another achieving a total of 235 hours but requiring three separate tests of the same anode. The longest run did show a lower wear rate in the last test; but a high resistance layer developed on the anode surface and forced an unacceptably low current density. It is recommended that intermediate temperatures be explored as a more optimal environment for inert anodes. Other electrolyte chemistries and anode compositions (especially high conductivity anodes) should be considered to alleviate problems associated with lower temperature operation.

  20. Spherical agglomeration of acetylsalicylic acid

    Directory of Open Access Journals (Sweden)

    Polowczyk Izabela

    2016-01-01

    Full Text Available In this paper spherical agglomeration of acetylsalicylic acid was described. In the first step, the system of good and poor solvents as well as bridging liquid was selected. As a result of a preliminary study, ethyl alcohol, water and carbon tetrachloride were used as the good solvent, poor one, and bridging liquid, respectively. Then, the amount of acetylsalicylic acid and the ratio of the solvents as well as the volume of the bridging liquid were examined. In the last step, the agglomeration conditions, such as mixing intensity and time, were investigated. The spherical agglomerates obtained under optimum conditions could be subjected to a tableting process afterwards.

  1. Basketballs as spherical acoustic cavities

    Science.gov (United States)

    Russell, Daniel A.

    2010-06-01

    The sound field resulting from striking a basketball is found to be rich in frequency content, with over 50 partials in the frequency range of 0-12 kHz. The frequencies are found to closely match theoretical expectations for standing wave patterns inside a spherical cavity. Because of the degenerate nature of the mode shapes, explicit identification of the modes is not possible without internal investigation with a microphone probe. A basketball proves to be an interesting application of a boundary value problem involving spherical coordinates.

  2. Soudage par explosion thermique sous charge de cermets poreux à base de TiC-Ni sur substrat en acier-comportement tribologique Welding of porous TiC–Ni based cermets on substrate steel by thermal explosion under load-tribological behaviour

    Directory of Open Access Journals (Sweden)

    Lemboub Samia

    2013-11-01

    Full Text Available Dans ce travail, nous nous intéressons à l'élaboration de cermets à base de TiC-Ni par dispersion de particules de carbures, oxydes ou borures dans une matrice de nickel, grâce à la technique de l'explosion thermique sous une charge de 20 MPa. La combustion de mélanges actifs (Ti-C-Ni-An où An = Al2O3, MgO, SiC, TiB2, WC, basée sur la réaction de synthèse de TiC (ΔHf298K = −184 kJ/mole, génère des cermets complexes. Un court maintien sous charge du cermet à 1373 K, après l'explosion thermique, permet son soudage sur un substrat en acier XC55. Les cermets obtenus dans ces conditions demeurent poreux et conservent une porosité de l'ordre de 25–35 %. La densité relative du cermet, sa dureté et son comportement tribologique, dépendront de la nature de l'addition dans les mélanges de départ. Porous TiC-Ni based cermets were obtained by dispersion of carbides, oxides or borides particles in a nickel matrix thanks to the thermal explosion technique realized under a load of 20 MPa. The combustion of active mixtures (Ti-C-Ni-An where An = Al2O3, MgO, SiC, TiB2 or WC based on the titanium carbide reaction synthesis (ΔHf = −184 kJ/mol, generates porous complex cermets. After the thermal explosion, a short maintenance under load at 1373 K of the combustion product, allows at the same time the cermets welding on a carbon steel substrate. The obtained cermets under these conditions preserve a porosity of about 25–35%. The relative density, hardness and tribological behaviour of the complex cermets depend on the additions nature (An in the starting mixtures.

  3. Effect of double addition of V and Cr on the properties of Mo{sub 2}NiB{sub 2} ternary boride-based cermets

    Energy Technology Data Exchange (ETDEWEB)

    Shiota, Yuusuke; Miyajima, Yuuta; Fujima, Takuya; Takagi, Ken-ichi [Department of Mechanical Engineering, Tokyo City University 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557 (Japan)], E-mail: ktakagi@tcu.ac.jp

    2009-06-01

    The effect of double addition of V and Cr on the mechanical properties and microstructure of Mo{sub 2}NiB{sub 2} base cermet was investigated. Total additional amount of V and Cr was fixed to 12.5 mass% and the fraction between the two additives was varied. Transverse rupture strength (TRS) and Rockwell A-scale hardness (HRA) were measured on the cermets and discussed together with their microstructure obtained by X-ray diffraction (XRD) and backscattered electron images (COMP). Addition of 2.5-mass% Cr and 10-mass% V showed the highest mechanical properties. Microstructural analysis revealed that brittle orthoronbic-M{sub 5}B{sub 3} phase was formed in high V fraction. The corrosion resistance of the cermets against hydrochloric acid was superior to that of JIS SUS 304. The resistance against nitric acid decreased with decreasing Cr content and was lower than that of SUS 304.

  4. Microstructure and temperature coefficient of resistance of thin cermet resistor films deposited from CrSi{sub 2}-Cr-SiC targets by S-gun magnetron

    Energy Technology Data Exchange (ETDEWEB)

    Felmetsger, Valery V. [Tegal Corporation, 51 Daggett Drive, San Jose, California 95134 (United States)

    2010-01-15

    Technological solutions for producing nanoscale cermet resistor films with sheet resistances above 1000 {Omega}/{open_square} and low temperature coefficients of resistance (TCR) have been investigated. 2-40 nm thick cermet films were sputter deposited from CrSi{sub 2}-Cr-SiC targets by a dual cathode dc S-gun magnetron. In addition to studying film resistance versus temperature, the nanofilm structural features and composition were analyzed using scanning electron microscopy, atomic force microscopy, high-resolution transmission electron microscopy, energy-dispersive x-ray spectroscopy, and electron energy loss spectroscopy. This study has revealed that all cermet resistor films deposited at ambient and elevated temperatures were amorphous. The atomic ratio of Si to Cr in these films was about 2 to 1. The film TCR displayed a significant increase when the deposited film thickness was reduced below 2.5 nm. An optimized sputter process consisting of wafer degassing, cermet film deposition at elevated temperature with rf substrate bias, and a double annealing in vacuum, consisting of in situ annealing following the film sputtering and an additional annealing following the exposure of the wafers to air, has been found to be very effective for the film thermal stabilization and for fine tuning the film TCR. Cermet films with thicknesses in the range of 2.5-4 nm deposited using this technique had sheet resistances ranging from 1800 to 1200 {Omega}/{open_square} and TCR values from -50 ppm/ deg. C to near zero, respectively. A possible mechanism responsible for the high efficiency of annealing the cermet films in vacuum (after preliminary exposure to air), resulting in resistance stabilization and TCR reduction, is also discussed.

  5. Spherical Pendulum, Actions, and Spin

    NARCIS (Netherlands)

    Richter, Peter H.; Dullin, Holger R.; Waalkens, Holger; Wiersig, Jan

    1996-01-01

    The classical and quantum mechanics of a spherical pendulum are worked out, including the dynamics of a suspending frame with moment of inertia θ. The presence of two separatrices in the bifurcation diagram of the energy-momentum mapping has its mathematical expression in the hyperelliptic nature of

  6. Strichartz Estimates in Spherical Coordinates

    OpenAIRE

    Cho, Yonggeun; Lee, Sanghyuk

    2012-01-01

    In this paper we study Strichartz estimates for dispersive equations which are defined by radially symmetric pseudo-differential operators, and of which initial data belongs to spaces of Sobolev type defined in spherical coordinates. We obtain the space time estimates on the best possible range including the endpoint cases.

  7. Influence of heat treatment on the high temperature oxidation mechanisms of an Fe-TiCN cermet

    OpenAIRE

    Alvaredo Olmos, Paula; Abajo Clemente, Carolina; Tsipas, Sophia Alexandra; Gordo Odériz, Elena

    2014-01-01

    In this study, the oxidation behaviour of an iron matrix cermet containing 50 % vol. Ti(C,N) was investigated before and after heat treatment by oxidation tests performed in static air at temperatures between 500 °C and 1000 °C. The oxidation mechanism for this type of composite materials was established and it was found that the heat treated material presents lower mass gain than the as-sintered material at the early stages of the oxidation, due to the volatilization of oxides. The oxidation...

  8. Fuel flexible fuel injector

    Science.gov (United States)

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  9. Spherical microwave confinement and ball lightning

    Science.gov (United States)

    Robinson, William Richard

    This dissertation presents the results of research done on unconventional energy technologies from 1995 to 2009. The present civilization depends on an infrastructure that was constructed and is maintained almost entirely using concentrated fuels and ores, both of which will run out. Diffuse renewable energy sources rely on this same infrastructure, and hence face the same limitations. I first examined sonoluminescence directed toward fusion, but demonstrated theoretically that this is impossible. I next studied Low Energy Nuclear Reactions and developed methods for improving results, although these have not been implemented. In 2000, I began Spherical Microwave Confinement (SMC), which confines and heats plasma with microwaves in a spherical chamber. The reactor was designed and built to provide the data needed to investigate the possibility of achieving fusion conditions with microwave confinement. A second objective was to attempt to create ball lightning (BL). The reactor featured 20 magnetrons, which were driven by a capacitor bank and operated in a 0.2 s pulse mode at 2.45 GHz. These provided 20 kW to an icosahedral array of 20 antennas. Video of plasmas led to a redesign of the antennas to provide better coupling of the microwaves to the plasma. A second improvement was a grid at the base of the antennas, which provided corona electrons and an electric field to aid quick formation of plasmas. Although fusion conditions were never achieved and ball lightning not observed, experience gained from operating this basic, affordable system has been incorporated in a more sophisticated reactor design intended for future research. This would use magnets that were originally planned. The cusp geometry of the magnetic fields is suitable for electron cyclotron resonance in the same type of closed surface that in existing reactors has generated high-temperature plasmas. Should ball lightning be created, it could be a practical power source with nearly ideal

  10. The strength and rheology of commercial tungsten carbide cermets used in high-pressure apparatus

    Science.gov (United States)

    Getting, Ivan C.; Chen, Ganglin; Brown, Jennifer A.

    1993-06-01

    Uniaxial compressive stress-strain curves have been measured on a suite of 26 commercial grades of tungsten carbide cermets and three maraging steels of interest for use in high-pressure apparatus. Tests were conducted on cylindrical specimens with a length to diameter ratio of two. Load was applied to the specimens by tungsten carbide anvils padded by extrudable lead disks. Interference fit binding rings of maraging steel were pressed on to the ends of the specimens to inhibit premature corner fractures. Bonded resistance strain gages were used to measure both axial and tangential strains. Deformation was exremely uniform in the central, gauged portion of the specimens. Tests were conducted at a constant engineering strain rate of 1×10-5s-1. The composition of the specimens was principally WC/Co with minor amounts of other carbides in some cases. The Co weight fraction ranged from 2 to 15%. Observed compressive strengths ranged from about 4 to just above 8 GPa. Axial strain amplitude at failure varied from ˜1.5% to ˜9%. Representative stress-strain curves and a ranking of the grades in terms of yield strength and strain at failure are presented. A power law strain hardening relation and the Ramberg-Osgood stress-strain equation were fit to the data. Fits were very good for both functions to axial strain amplitudes of about 2%. The failure of these established functions is accompanied by an abrupt change in the trend of volumetric strain consistent with the onset of substantial microcrack volume.

  11. Miniaturization of Spherical Magnetodielectric Antennas

    DEFF Research Database (Denmark)

    Hansen, Troels Vejle

    The fundamental limitations in performance of electrically small antennas (ESAs) - and how far these may be approached - have been of great interest for over a century. Particularly over the past few decades, it has become increasingly relevant and important, to approach these limits in view...... to the important antenna parameters of radiation efficiency e and impedance bandwidth. For single-mode antennas the fundamental minimum Q is the Chu lower bound. In this Ph.D. dissertation, the topic is miniaturization of spherical antennas loaded by an internal magnetodielectric core. The goal is to determine......, quantify, and assess the effects of an internal material loading upon antenna performance, including its potentials towards miniaturization. Emphasis have been upon performing an exhaustive and exact analysis of rigorous validity covering a large class of spherical antennas. In the context of this study...

  12. Effect of Mo{sub 2}C/(Mo{sub 2}C + WC) weight ratio on the microstructure and mechanical properties of Ti(C,N)-based cermet tool materials

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingzhong; Zhao, Jun, E-mail: zhaojun@sdu.edu.cn; Ai, Xing; Qin, Wenzhen; Wang, Dawei; Huang, Weimin

    2015-11-15

    To optimize the Mo{sub 2}C content in Ti(C,N)-based cermet tool materials used for cutting the high-strength steel of 42CrMo (AISI 4140/4142 steel), the cermets with different Mo{sub 2}C/(Mo{sub 2}C + WC) weight ratios were prepared. And the microstructure and mechanical properties of cermets were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD) and measurements of transverse rupture strength (TRS), Vickers hardness (HV) and fracture toughness (K{sub IC}). The results indicate that the Mo{sub 2}C/(Mo{sub 2}C + WC) ratios have great influences on the microstructure features and mechanical properties of Ti(C,N)-based cermets. When the Mo{sub 2}C/(Mo{sub 2}C + WC) ratio increases, the Ti(C,N) grains become finer with smaller black cores surrounded by thinner rims, and the structure of cermets tends to be more compact with smaller binder mean free path. Owing to the medium grains and moderate rims, the cermets with a Mo{sub 2}C/(Mo{sub 2}C + WC) ratio of 0.4 exhibit better mechanical properties, and can be chosen as the tool material for machining 42CrMo steel due to the lower Mo content. - Highlights: • Mo{sub 2}C/(Mo{sub 2}C + WC) ratios affect microstructure and mechanical properties of cermets. • Grains become fine and structure of cermets tends to be compact with raised Mo{sub 2}C. • The cermets with a Mo{sub 2}C/(Mo{sub 2}C + WC) ratio of 0.4 can be used to machine 42CrMo steel.

  13. Vaporization and Poor Wettability as the Main Challenges in Fabrication of TiB2-Cu Cermets Studied by SPS

    Directory of Open Access Journals (Sweden)

    Marta Ziemnicka-Sylwester

    2014-12-01

    Full Text Available TiB2-Cu cermets with various volume fractions of copper (from 3 to 30 vol. % were produced via liquid phase sintering at the temperature range 1100–1200 °C in vacuum using spark plasma sintering (SPS technique. Full densification could not be achieved as the consequence of poor wettability and vaporizing Cu. The quantitative Rietveld analysis indicated that insignificant reduction in Cu content occurred only in sample with initially 3 vol. % of Cu, but then densification was negligible. The relative density improved along with increasing volume content of Cu (10–20 vol. %, but then predominant amount of Cu introduced was reduced as the effect of vaporization or swelling, which caused that pellet with intended 20 or 30 vol. % of Cu contained respectively only 6 or 17 vol. % after sintering. Moreover, Cu droplets were released from the die at the temperature of 1000–1030 °C near the Cu melting point. The effect of vaporization was successfully reduced by increased heating rate and when isothermal annealing process was skipped, however, it could not be entirely eliminated. The experimental results on Cu vaporization are confronted with parameters that are commonly considered in the production of cermets, such as oxidation, wettability, contact angle and viscosity as well as their impact on densification.

  14. The effects of microstructure on the corrosion of glycine/nitrate processed cermet inert anodes: A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, Jr, C F; Chick, L A; Maupin, G D; Stice, N D

    1991-07-01

    The Inert Electrodes Program at the Pacific Northwest Laboratory (PNL) is supported by the Office of Industrial Processes of the US Department of Energy and is aimed at improving the energy efficiency of Hall-Heroult cells through the development of inert anodes. The inert anodes currently under the study are composed of a cermet material of the general composition NiO-NiFe{sub 2}O{sub 4}-Cu. The program has three primary objectives: (a) to evaluate the anode material in a scaled-up, pilot cell facility, (b) to investigate the mechanisms of the electrochemical reactions at the anodes surface, and (c) to develop sensors for monitoring various anode and/or electrolyte conditions. This report covers the results of a portion of the studies on anode reaction mechanisms. The anode mechanism studies were focused in four areas in FY 1990 and FY 1991: (a) the determination of whether a film formed on cermet inert anodes and (if it existed) the characterization of this film, (b) the determination of the sources of the anode impedance, (c) the evaluation of the effects of silica and a precorroded state on anode corrosion, and (d) a preliminary study on the effect of microstructure on the corrosion properties of the anodes. This report discusses the results of the microstructure studies. 6 refs., 32 figs., 3 tabs.

  15. Investigation on hole manufacture in 42CrMo4 steel using 3-flute carbide drills and 6-flute cermet reamers

    DEFF Research Database (Denmark)

    Müller, Pavel; De Chiffre, Leonardo

    2009-01-01

    An investigation on cutting forces and hole quality using carbide 3-flute self-centering drills and 6-flute cermet reamers was performed on 42CrMo4 alloy steel. Different depths of cuts were analyzed with respect to cutting thrust and cutting torque, hole diameter, form and surface integrity. Good...

  16. Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Sudireddy, Bhaskar Reddy; Hagen, Anke

    2016-01-01

    Two metal supported solid oxide fuel cells (active area 16 cm2) with nanostructured Ni:GDC infiltrated anodes, possessing different anode and support microstructures were studied in respect to sulfur tolerance at an operating temperature of 650°C. The studied MS-SOFCs are based on ferretic...... galvanostatic operation at a current load of 0.25 Acm−2. The results were compared with literature on the sulfur tolerance of conventional SOFC Ni/YSZ cermet anode. The comparison in terms of absolute cell resistance increase and relative anode polarization resistance increase indicates, that the nanostructured...... Ni:GDC MS-SOFC based anode is significantly more sulfur tolerant than the conventional Ni/YSZ cermet anode. Furthermore, it was shown that the believed extension of the electrochemical three-phase-boundary reaction zone in the presence of GDC must be very limited and cannot account for the higher...

  17. Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Sudireddy, Bhaskar Reddy; Hagen, Anke

    2015-01-01

    Two metal supported solid oxide fuel cells (active area 16 cm2) with nanostructured Ni:GDC infiltrated anodes, but different anode and support microstructures were studied in respect to sulfur tolerance at the aimed operating temperature of 650ºC. The studied MS-SOFCs are based on ferretic...... at a current load of 0.25Acm-2. The results were compared with literature on the sulfur tolerance of the conventional SOFC Ni/YSZ cermet anode. The comparison in terms of absolute cell resistance increase and relative anode polarization resistance increase indicate, that the nanostructured Ni:GDC MS-SOFC based...... anode is significantly more sulfur tolerant than the conventional Ni/YSZ cermet anode. © 2015 ECS - The Electrochemical Society...

  18. Effectiveness of paper-structured catalyst for the operation of biodiesel-fueled solid oxide fuel cell

    Science.gov (United States)

    Quang-Tuyen, Tran; Kaida, Taku; Sakamoto, Mio; Sasaki, Kazunari; Shiratori, Yusuke

    2015-06-01

    Mg/Al-hydrotalcite (HDT)-dispersed paper-structured catalyst (PSC) was prepared by a simple paper-making process. The PSC exhibited excellent catalytic activity for the steam reforming of model biodiesel fuel (BDF), pure oleic acid methyl ester (oleic-FAME, C19H36O2) which is a mono-unsaturated component of practical BDFs. The PSC exhibited fuel conversion comparable to a pelletized catalyst material, here, conventional Ni-zirconia cermet anode for solid oxide fuel cell (SOFC) with less than one-hundredth Ni weight. Performance of electrolyte-supported cell connected with the PSC was evaluated in the feed of oleic-FAME, and stable operation was achieved. After 60 h test, coking was not observed in both SOFC anode and PSC.

  19. Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion

    Science.gov (United States)

    Ren, G.; Yan, J.; Liu, J.; Lan, K.; Chen, Y. H.; Huo, W. Y.; Fan, Z.; Zhang, X.; Zheng, J.; Chen, Z.; Jiang, W.; Chen, L.; Tang, Q.; Yuan, Z.; Wang, F.; Jiang, S.; Ding, Y.; Zhang, W.; He, X. T.

    2017-04-01

    We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 1 014- 1 015 W /cm2 intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Yn to be related to the laser energy EL, the hohlraum radius Rh, and the pulse duration τ through a scaling law of Yn∝(EL/Rh1.2τ0.2 )2.5. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.

  20. A spherical cavity model for quadrupolar dielectrics

    Science.gov (United States)

    Dimitrova, Iglika M.; Slavchov, Radomir I.; Ivanov, Tzanko; Mosbach, Sebastian

    2016-03-01

    The dielectric properties of a fluid composed of molecules possessing both dipole and quadrupole moments are studied based on a model of the Onsager type (molecule in the centre of a spherical cavity). The dielectric permittivity ɛ and the macroscopic quadrupole polarizability αQ of the fluid are related to the basic molecular characteristics (molecular dipole, polarizability, quadrupole, quadrupolarizability). The effect of αQ is to increase the reaction field, to bring forth reaction field gradient, to decrease the cavity field, and to bring forth cavity field gradient. The effects from the quadrupole terms are significant in the case of small cavity size in a non-polar liquid. The quadrupoles in the medium are shown to have a small but measurable effect on the dielectric permittivity of several liquids (Ar, Kr, Xe, CH4, N2, CO2, CS2, C6H6, H2O, CH3OH). The theory is used to calculate the macroscopic quadrupolarizabilities of these fluids as functions of pressure and temperature. The cavity radii are also determined for these liquids, and it is shown that they are functions of density only. This extension of Onsager's theory will be important for non-polar solutions (fuel, crude oil, liquid CO2), especially at increased pressures.

  1. Progress in octahedral spherical hohlraum study

    Directory of Open Access Journals (Sweden)

    Ke Lan

    2016-01-01

    Full Text Available In this paper, we give a review of our theoretical and experimental progress in octahedral spherical hohlraum study. From our theoretical study, the octahedral spherical hohlraums with 6 Laser Entrance Holes (LEHs of octahedral symmetry have robust high symmetry during the capsule implosion at hohlraum-to-capsule radius ratio larger than 3.7. In addition, the octahedral spherical hohlraums also have potential superiority on low backscattering without supplementary technology. We studied the laser arrangement and constraints of the octahedral spherical hohlraums, and gave a design on the laser arrangement for ignition octahedral hohlraums. As a result, the injection angle of laser beams of 50°–60° was proposed as the optimum candidate range for the octahedral spherical hohlraums. We proposed a novel octahedral spherical hohlraum with cylindrical LEHs and LEH shields, in order to increase the laser coupling efficiency and improve the capsule symmetry and to mitigate the influence of the wall blowoff on laser transport. We studied on the sensitivity of the octahedral spherical hohlraums to random errors and compared the sensitivity among the octahedral spherical hohlraums, the rugby hohlraums and the cylindrical hohlraums, and the results show that the octahedral spherical hohlraums are robust to these random errors while the cylindrical hohlraums are the most sensitive. Up till to now, we have carried out three experiments on the spherical hohlraum with 2 LEHs on Shenguang(SG laser facilities, including demonstration of improving laser transport by using the cylindrical LEHs in the spherical hohlraums, spherical hohlraum energetics on the SGIII prototype laser facility, and comparisons of laser plasma instabilities between the spherical hohlraums and the cylindrical hohlraums on the SGIII laser facility.

  2. Assessment of cold composite fuels for PWR

    Energy Technology Data Exchange (ETDEWEB)

    Coulon-Picard, E.; Agard, M.; Boulore, A.; Castelier, E.; Chabert, C.; Conti, A.; Frayssines, P.E.; Lechelle, J.; Maillard, S.; Matheron, P.; Pelletier, M.; Phelip, M.; Piluso, P.; Vaudano, A

    2009-06-15

    This study is devoted to evaluation of a new innovative micro structured fuel for future pressurized water reactor. This fuel would have potential to increase the safety margins, lowering fuel temperatures by adding a small fraction of a high conductivity second phase material in the oxide fuel phase. The behavior of this fuel in a standard rod has been modeled with finite element codes and was assessed for different aspects of the cycle as neutronic studies, thermal behavior, reprocessing and economics. Feasibility of fuels has been investigated with the fabrication and characterizations of the microstructure of composite fuels with powder metallurgy and HIP processes. First, a CERCER (Ceramic = UO{sub 2}- Ceramic matrix made of silicon carbide, SiC) fuel type has been investigated, the advantages of a ceramic being generally its transparency to neutrons and its high melting temperature. A first design of kernel type fuel was first chosen with a gap between the UO{sub 2} particles and the second phase material in order to avoid mechanical interaction between the two components. Due to lowering thermal conductivity of SiC under irradiation, this CERCER fuel did not allow a temperature gain compared to current fuel. No ceramic material seems to exhibit all required properties. Even beryllium oxide (BeO), which conductivity does not decrease with irradiation according to the literature, induces difficulties with ({alpha}, n) reactions and toxicity. The study then focused on Cermet fuels (Ceramic-Metal). The metal matrix must be transparent to neutrons and have a good thermal conductivity. Several materials have been considered such as zirconium alloys, austenitic and ferritic stainless steals and chromium based alloys. The heterogeneous composite fuels were modeled using the 3D/CASTM finite element code. From an economical and neutron point of view, it was important to keep a low fraction of metal phase, i.e. less than 10 % of Zr for example. However, the fuel

  3. Cermets Ni-GDC para su uso como ánodos en IT-SOFC basadas en electrolitos GDC

    Directory of Open Access Journals (Sweden)

    Gil, V.

    2008-08-01

    Full Text Available The purpose of this work is to investigate the possible solid state reactions between the NiO-Ce0.9Gd0.1O1.95 (NiO-GDC composites with 50% wt NiO, and cermets Ni- Ce0.9Gd0.1O1.95 (Ni-GDC with 39 vol. % of Ni, and electrolyte solid solutions based on Ce0.9Gd0.1O1.95 (GDC employing the X-ray diffraction technique. At the same time the thermochemical and thermomechanical compatibility between these materials was established. Results obtained from SEM and EDAX analysis showed that the electrolyte based on ceria (GDC and the anode based on nickel-ceria cermet (Ni-GDC present good adhesion and well defined interfaces. No reactive phases and other type of defects were detected. This study showed that both materials, Ni-GDC and GDC are thermochemical and thermomechanically compatible.

    El objetivo de este trabajo es estudiar en un amplio rango de temperaturas (1000-1450ºC y mediante difracción de rayos-X (DRX las posibles reacciones en estado sólido que pueden tener lugar en las regiones interfaciales de sistemas constituidos por composites NiO-Ce0.9Gd0.1O1.95 (NiO-GDC con un 50% en peso de NiO, y de Cermets Ni-Ce0.9Gd0.1O1.95 (Ni-GDC con un 39% en volumen Ni, y electrolitos basados en soluciones sólidas Ce0.9Gd0.1O1.95 (GDC. Y así mismo, estudiar la compatibilidad termoquímica y termomecánica entre los distintos materiales cerámicos que constituyen los sistemas electrolito/ánodo. Se confirma mediante MEB y análisis EDAX que los sistemas cosinterizados entre 1350 y 1400ºC durante 2h y constituidos por un electrolito basado en ceria (GDC y un ánodo basado en un cermet níquel-ceria (Ni-GDC, presentan una buena adherencia entre capas, sin la formación de defectos y sin la presencia de interdifusión de especies a lo

  4. Nondestructive inspection of thin plasma-sprayed ceramic and cermet protective coatings for coal conversion and utilization equipment

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G.W.; Cook, K.V.; Davis, E.V.; Dodd, C.V.; Foster, B.E.; Mason, W.J.; McClung, R.W.; Simpson, W.A. Jr.; Snyder, S.D.

    1978-04-01

    Results of a project to develop nondestructive inspection techniques for ceramic and cermet wear- and process-resistant coatings used in coal system compounds are described. The general inspection problem has been analyzed and the difficulties peculiar to plasma-sprayed coatings are discussed. Physical properties, especially porosity, and the nominal 0.25 mm thickness make the inspection of these coatings difficult. The literature has been reviewed for inspection methods and technology adaptable to coating inspection. Several inspection methods have been evaluated for feasibility by laboratory experiments. The basic coating defect conditions considered are cracks or holes, variations in thickness, lamellar separations, and inhomogeneities. Assessment of current technology indicates that a few nondestructive methods can be applied directly to the inspection of coatings with very little development; in most cases, however, considerable development is required.

  5. Spherical sila- and germa-homoaromaticity.

    Science.gov (United States)

    Chen, Zhongfang; Hirsch, Andreas; Nagase, Shigeru; Thiel, Walter; Schleyer, Paul von Ragué

    2003-12-17

    Guided by the 2(N + 1)2 electron-counting rule for spherical aromatic molecules, we have designed various spherical sila- and germa-homoaromatic systems rich in group 14 elements. Their aromaticity is revealed by density-functional computations of their structures and the nucleus-independent chemical shifts (NICS). Besides the formerly used endohedral inclusion strategy, spherical homoaromaticity is another way to stabilize silicon and germanium clusters.

  6. The ETE spherical Tokamak project. IAEA report

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Del Bosco, E.; Berni, L.A.; Ferreira, J.G.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Barroso, J.J.; Castro, P.J.; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: ludwig@plasma.inpe.br

    2002-07-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the historical development of the ETE (Spherical Tokamak Experiment) project, its research program, technical characteristics and operating conditions as of October, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  7. Measuring Spherical Harmonic Coefficients on a Sphere

    Energy Technology Data Exchange (ETDEWEB)

    Pollaine, S; Haan, S W

    2003-05-16

    The eigenfunctions of Rayleigh-Taylor modes on a spherical capsule are the spherical harmonics Y{sub l,m} These can be measured by measuring the surface perturbations along great circles and fitting them to the first few modes by a procedure described in this article. For higher mode numbers, it is more convenient to average the Fourier power spectra along the great circles, and then transform them to spherical harmonic modes by an algorithm derived here.

  8. Spherical Collapse in Chameleon Models

    CERN Document Server

    Brax, Ph; Steer, D A

    2010-01-01

    We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse depends on the initial comoving size of the inhomogeneity.

  9. Towards Non-spherical Radio Models

    Science.gov (United States)

    Ribeiro, V. A. R. M.; Steffen, W.; Chomiuk, L.; Koning, N.; O'Brien, T. J.; Woudt, P. A.

    2014-12-01

    Radio observations of novae in outburst are of particular interest due to the physical parameters that may be retrieved from fitting the radio light curves. Most models that have fitted previous data assumed spherical symmetry however, it is becoming more and more clear that this is not the case. We explore morpho-kinematical techniques to retrieve the free-free radio light curves of non-spherical models and explore the effects of a non-spherical outburst on the physical parameters. In particular, we find that we may have been over estimating the ejected masses in the outburst of non-spherical novae.

  10. The geometry of spherical space form groups

    CERN Document Server

    Gilkey, Peter B

    1989-01-01

    In this volume, the geometry of spherical space form groups is studied using the eta invariant. The author reviews the analytical properties of the eta invariant of Atiyah-Patodi-Singer and describes how the eta invariant gives rise to torsion invariants in both K-theory and equivariant bordism. The eta invariant is used to compute the K-theory of spherical space forms, and to study the equivariant unitary bordism of spherical space forms and the Pin c and Spin c equivariant bordism groups for spherical space form groups. This leads to a complete structure theorem for these bordism and K-theor

  11. Release of fission products from irradiated SRP fuels at elevated temperature. Data report on the first stage of the SRP source term study

    Energy Technology Data Exchange (ETDEWEB)

    Woodley, R.E.

    1986-06-01

    For a sound evaluation of the consequences of a hypothetical nuclear reactor accident, a knowledge of the extent of fission product release from the fuel at anticipated temperatures and atmosphere conditions is required. Measurements of fission product release have been performed with a variety of nuclear fuels under various conditions of temperature and atmosphere. While the use of data obtained on fuels similar to the fuel of interest may provide a reasonable estimate of release fractions, precise information of this nature can only be obtained from measurements employing specimens of the actual fuels used in the nuclear reactor under consideration. The two fuels of interest in the present study are an alloy, a dispersion of UAl/sub 4/ in an aluminum matrix, and a cermet, a dispersion of U/sub 3/O/sub 8/ in an aluminum matrix. Both fuels are clad in aluminum.

  12. Molecular-Dynamic Simulation In Substation Of Advanced Fuel With Improved Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kolokol, Alexander S.; Shimkevich, Alexander L. [Russian Research Center ' Kurchatov Institute' , 1 Kurchatov Sq. Moscow 123182 (Russian Federation)

    2008-07-01

    A disadvantage of the uranium dioxide fuel is very low thermal conductivity than the one of nitride, carbide, metal fuel, and cermets as composites, UO{sub 2}+Me, due to the portion in thermal conductivity of their electronic conductivity and high phonon mobility. An investigation of the microstructure and atomic dynamics of solid solutions as well as the physical and chemical processes in them will make it possible to adjust the properties of the solutions in steps according to prescribed indicators by using alloying additives. The concept for designing an oxide fuel may be promising for the development of a new generation of nuclear reactors. In developing the methods for designing reactor materials as to the nuclear fuel, microscopic structure improving its thermal and physical properties is formulated here. (authors)

  13. Performance of Electrolyte Supported Solid Oxide Fuel Cells with STN Anodes

    DEFF Research Database (Denmark)

    Veltzé, Sune; Reddy Sudireddy, Bhaskar; Jørgensen, Peter Stanley

    2013-01-01

    high fuel utilization and redox cycling have been performed to identify the performance limiting parameters in this new type of full ceramic SOFCs. Measured performances and stability have been further tentatively linked to modifications of the nano-sized infiltrates within the anode.......In order to replace the state of the art Ni-cermet as SOFC anode, electrolyte supported cells comprising CGO/Ni infiltrated Nbdoped SrTiO3 anodes, and LSM/YSZ cathodes have been developed and tested as single 5 x 5 cm2 cells. The initial performance reached 0.4 W/cm2 at 850 C. Further tests under...

  14. Rapid thermal cycling of metal-supported solid oxide fuel cellmembranes

    Energy Technology Data Exchange (ETDEWEB)

    Matus, Yuriy B.; De Jonghe, Lutgard C.; Jacobson, Craig P.; Visco, Steven J.

    2004-01-02

    Solid oxide fuel cell (SOFC) membranes were developed in which zirconia-based electrolyte thin films were supported by a composite metal/ceramic electrode, and were subjected to rapid thermal cycling between 200 and 800 C. The effects of this cycling on membrane performance were evaluated. The membranes, not yet optimized for performance, showed a peak power density of 350mW/cm2at 900 C in laboratory-sized SOFCs that was not affected by the thermal cycling. This resistance to cycling degradation is attributed to the close matching of thermal expansion coefficient of the cermet support electrode with that of the zirconia electrolyte.

  15. How Spherical Is a Cube (Gravitationally)?

    Science.gov (United States)

    Sanny, Jeff; Smith, David

    2015-01-01

    An important concept that is presented in the discussion of Newton's law of universal gravitation is that the gravitational effect external to a spherically symmetric mass distribution is the same as if all of the mass of the distribution were concentrated at the center. By integrating over ring elements of a spherical shell, we show that the…

  16. Sharp Strichartz estimates in spherical coordinates

    OpenAIRE

    Schippa, Robert

    2016-01-01

    We prove almost Strichartz estimates found after adding regularity in the spherical coordinates for Schr\\"odinger-like equations. The estimates are sharp up to endpoints. The proof relies on estimates involving spherical averages. Sharpness is discussed making use of a modified Knapp-type example.

  17. Propriétés thermomécaniques de cermets à base de ferrite spinelle : influence de l'oxydation

    OpenAIRE

    Huchet, Guillaume

    2010-01-01

    Co-encadrement de la thèse : Vincent Maurel; In order to replace consumable carbon electrodes in the Hall-Heroult electrolysis process, the development of inert anodes resistant to oxidation is a technical challenge for main leaders in aluminum production. Some of the recent researches were focused on promising and original cermets constituted of a dual phase ceramic matrix and dispersed metallic particles, which have sufficient electric conductivity and corrosion resistance at high temperatu...

  18. Estudio del desgaste del flanco de carburos recubiertos y cermet durante el torneado de alta velocidad en seco del acero AISI 1045

    OpenAIRE

    Hernández-González, L. W.; R. Pérez-Rodríguez; Zambrano-Robledo, P.; Guerrero-Mata, M.; Dumitrescu, L.

    2011-01-01

    This work deals with the experimental study of the flank wear evolution of two coating carbide inserts and a cermet insert during the dry finishing turning of AISI 1045 steel with 400, 500 and 600 m/min cutting speeds. The results were analyzed using the variance analysis and lineal regression analysis in order to describe the relationship between the flank wear and machining time, obtaining the adjusted model equation. The investigation demonstrated a significant effect of cutting speed and ...

  19. Statistical mechanics of thin spherical shells

    CERN Document Server

    Kosmrlj, Andrej

    2016-01-01

    We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes and the local out-of-plane undulations, leads to novel phenomena. In spherical shells thermal fluctuations produce a radius-dependent negative effective surface tension, equivalent to applying an inward external pressure. By adapting renormalization group calculations to allow for a spherical background curvature, we show that while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated "pressure". Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows non-linearly with increasing outward pressure, with the same universal power law expone...

  20. Scaling of a fast spherical discharge

    Science.gov (United States)

    Antsiferov, P. S.; Dorokhin, L. A.

    2017-02-01

    The influence of the discharge cavity dimensions on the properties of the spherical plasma formed in a fast discharge was studied experimentally. The passage of a current pulse with an amplitude of 30-40 kA and a rise rate of 1012 A/s (a fast discharge) through a spherical ceramic (Al2O3) cavity with an inner diameter of 11 mm filled with argon at a pressure of 80 Pa results in the formation of a 1- to 2-mm-diameter spherical plasma with an electron temperature of several tens of electronvolts and a density of 1018-1019 cm-3. It is shown that an increase in the inner diameter of the discharge cavity from 11 to 21 mm leads to the fourfold increase in the formation time of the spherical plasma and a decrease in the average ion charge. A decrease in the cavity diameter to 7 mm makes the spherical plasma unstable.

  1. CMB Anisotropy of Spherical Spaces

    CERN Document Server

    Aurich, Ralf; Steiner, Frank

    2005-01-01

    The first-year WMAP data taken at their face value hint that the Universe might be slightly positively curved and therefore necessarily finite, since all spherical (Clifford-Klein) space forms M^3 = S^3/Gamma, given by the quotient of S^3 by a group Gamma of covering transformations, possess this property. We examine the anisotropy of the cosmic microwave background (CMB) for all typical groups Gamma corresponding to homogeneous universes. The CMB angular power spectrum and the temperature correlation function are computed for the homogeneous spaces as a function of the total energy density parameter Omega_tot in the large range [1.01, 1.20] and are compared with the WMAP data. We find that out of the infinitely many homogeneous spaces only the three corresponding to the binary dihedral group T*, the binary octahedral group O*, and the binary icosahedral group I* are in agreement with the WMAP observations. Furthermore, if Omega_tot is restricted to the interval [1.00, 1.04], the space described by T* is excl...

  2. Spherically symmetric charged compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Jaypee Institute of Information Technology University, Department of Mathematics, Noida, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Chowdhury, Sourav Roy [Seth Anandaram Jaipuria College, Department of Physics, Kolkata, West Bengal (India)

    2015-08-15

    In this article we consider the static spherically symmetric metric of embedding class 1. When solving the Einstein-Maxwell field equations we take into account the presence of ordinary baryonic matter together with the electric charge. Specific new charged stellar models are obtained where the solutions are entirely dependent on the electromagnetic field, such that the physical parameters, like density, pressure etc. do vanish for the vanishing charge. We systematically analyze altogether the three sets of Solutions I, II, and III of the stellar models for a suitable functional relation of ν(r). However, it is observed that only the Solution I provides a physically valid and well-behaved situation, whereas the Solutions II and III are not well behaved and hence not included in the study. Thereafter it is exclusively shown that the Solution I can pass through several standard physical tests performed by us. To validate the solution set presented here a comparison has also been made with that of the compact stars, like RX J 1856 - 37, Her X - 1, PSR 1937+21, PSRJ 1614-2230, and PSRJ 0348+0432, and we have shown the feasibility of the models. (orig.)

  3. Fuel Exhaling Fuel Cell.

    Science.gov (United States)

    Manzoor Bhat, Zahid; Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Varhade, Swapnil; Gautam, Manu; Thotiyl, Musthafa Ottakam

    2018-01-18

    State-of-the-art proton exchange membrane fuel cells (PEMFCs) anodically inhale H 2 fuel and cathodically expel water molecules. We show an unprecedented fuel cell concept exhibiting cathodic fuel exhalation capability of anodically inhaled fuel, driven by the neutralization energy on decoupling the direct acid-base chemistry. The fuel exhaling fuel cell delivered a peak power density of 70 mW/cm 2 at a peak current density of 160 mA/cm 2 with a cathodic H 2 output of ∼80 mL in 1 h. We illustrate that the energy benefits from the same fuel stream can at least be doubled by directing it through proposed neutralization electrochemical cell prior to PEMFC in a tandem configuration.

  4. Fast calculation of spherical computer generated hologram using spherical wave spectrum method.

    Science.gov (United States)

    Jackin, Boaz Jessie; Yatagai, Toyohiko

    2013-01-14

    A fast calculation method for computer generation of spherical holograms in proposed. This method is based on wave propagation defined in spectral domain and in spherical coordinates. The spherical wave spectrum and transfer function were derived from boundary value solutions to the scalar wave equation. It is a spectral propagation formula analogous to angular spectrum formula in cartesian coordinates. A numerical method to evaluate the derived formula is suggested, which uses only N(logN)2 operations for calculations on N sampling points. Simulation results are presented to verify the correctness of the proposed method. A spherical hologram for a spherical object was generated and reconstructed successfully using the proposed method.

  5. Spherical aberration in contact lens wear.

    Science.gov (United States)

    Lindskoog Pettersson, A; Jarkö, C; Alvin, A; Unsbo, P; Brautaset, R

    2008-08-01

    The aim of the present studies was to investigate the effect on spherical aberration of different non custom-made contact lenses, both with and without aberration control. A wavefront analyser (Zywave, Bausch & Lomb) was used to measure the aberrations in each subject's right eye uncorrected and with the different contact lenses. The first study evaluated residual spherical aberration with a standard lens (Focus Dailies Disposable, Ciba Vision) and with an aberration controlled contact lens (ACCL) (Definition AC, Optical Connection Inc.). The second study evaluated the residual spherical aberrations with a monthly disposable silicone hydrogel lens with aberration reduction (PureVision, Bausch & Lomb). Uncorrected spherical aberration was positive for all pupil sizes in both studies. In the first study, residual spherical aberration was close to zero with the standard lens for all pupil sizes whereas the ACCL over-corrected spherical aberration. The results of the second study showed that the monthly disposable lens also over-corrected the aberration making it negative. The changes in aberration were statistically significant (plenses. Since the amount of aberration varies individually we suggest that aberrations should be measured with lenses on the eye if the aim is to change spherical aberration in a certain direction.

  6. Novel Electrically Small Spherical Electric Dipole Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    This paper introduces a novel electrically small spherical meander antenna. Horizontal sections of the meander are composed of wire loops, radii of which are chosen so that the whole structure is conformal to a sphere of radius a. To form the meander the loops are connected by wires at a meridian...... plane. The antenna operates as an electric dipole, i.e. it radiates the TM10 spherical mode. The antenna is self-resonant and can be matched to a wide range of input feed lines without an external matching network. In this paper, a spherical meander antenna of the size ka = 0.27 and the input impedance...

  7. Fuel electrode for solid oxide electrolyte fuel cell. Kotai denkaishitsugata nenryo denchi no nenryo denkyoku

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, A.

    1993-03-19

    Cermet mixed with nickel and stabilized zirconia (YSZ) is normally used for the fuel electrode of the high temperature solid oxide electrolyte fuel cell which uses coal gasification gas or natural gas as the primary fuel. When acidic YSZ is used as the aggregate for this electrode, however, carbon tends to precipitate to shorten the life of the fuel cell. This invention relates to means of preventing direct contact of hydrocarbon with the first porous electrode layer, wherein the first porous electrode layer containing YSZ aggregate and nickel metal or its oxide particles is formed on the surface of the solid electrolyte substrate, on which the second porous electrode layer containing basic aggregate and nickel metal or its oxide particles is formed. MgAl2O4, CaAl2O4, MgO[center dot]2TiO2, and MgO[center dot]ZrO2 are used as the basic aggregates which comprise the second porous electrode layer. 12 figs., 2 tabs.

  8. Spherically symmetric inhomogeneous dust collapse in higher ...

    Indian Academy of Sciences (India)

    We consider a collapsing spherically symmetric inhomogeneous dust cloud in higher dimensional space-time. We show that the central singularity of collapse can be a strong curvature or a weak curvature naked singularity depending on the initial density distribution.

  9. 3D Printing Electrically Small Spherical Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2013-01-01

    3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....

  10. Spherical cows in dark matter indirect detection

    Science.gov (United States)

    Bernal, Nicolás; Necib, Lina; Slatyer, Tracy R.

    2016-12-01

    Dark matter (DM) halos have long been known to be triaxial, but in studies of possible annihilation and decay signals they are often treated as approximately spherical. In this work, we examine the asymmetry of potential indirect detection signals of DM annihilation and decay, exploiting the large statistics of the hydrodynamic simulation Illustris. We carefully investigate the effects of the baryons on the sphericity of annihilation and decay signals for both the case where the observer is at 8.5 kpc from the center of the halo (exemplified in the case of Milky Way-like halos), and for an observer situated well outside the halo. In the case of Galactic signals, we find that both annihilation and decay signals are expected to be quite symmetric, with axis ratios very different from 1 occurring rarely. In the case of extragalactic signals, while decay signals are still preferentially spherical, the axis ratio for annihilation signals has a much flatter distribution, with elongated profiles appearing frequently. Many of these elongated profiles are due to large subhalos and/or recent mergers. Comparing to gamma-ray emission from the Milky Way and X-ray maps of clusters, we find that the gamma-ray background appears less spherical/more elongated than the expected DM signal from the large majority of halos, and the Galactic gamma ray excess appears very spherical, while the X-ray data would be difficult to distinguish from a DM signal by elongation/sphericity measurements alone.

  11. Laser nanostructured Co nanocylinders-Al{sub 2}O{sub 3} cermets for enhanced & flexible solar selective absorbers applications

    Energy Technology Data Exchange (ETDEWEB)

    Karoro, A., E-mail: angela@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Western Cape (South Africa); Nuru, Z.Y.; Kotsedi, L.; Bouziane, Kh. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Western Cape (South Africa); Mothudi, B.M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Physics Dept., University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Western Cape (South Africa)

    2015-08-30

    Highlights: • Co-Al{sub 2}O{sub 3} was synthesized by electrodeposition & femtosecond laser structuring. • The ultrafast laser structuring significantly increases the solar absorption. • Co-Al{sub 2}O{sub 3} exhibited 0.98 solar absorptance and 0.03 thermal emittance. - Abstract: We report on the structural and optical properties of laser surface structured Co nanocylinders-Al{sub 2}O{sub 3} cermets on flexible Aluminium substrate for enhanced solar selective absorbers applications. This new family of solar selective absorbers coating consisting of Co nanocylinders embedded into nanoporous alumina template which were produced by standard electrodeposition and thereafter submitted to femtosecond laser surface structuring. While their structural and chemical properties were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry and atomic force microscopy, their optical characteristics were investigated by specular & diffuse reflectance. The optimized samples exhibit an elevated optical absorptance α(λ) above 98% and an emittance ε(λ) ∼0.03 in the spectral range of 200–1100 nm. This set of values was suggested to be related to several surface and volume phenomena such as light trapping, plasmon surface effect as well as angular dependence of light reflection induced by the ultrafast laser multi-scale structuring.

  12. Microscopic Examination of Cold Spray Cermet Sn+In2O3 Coatings for Sputtering Target Materials

    Directory of Open Access Journals (Sweden)

    M. Winnicki

    2017-01-01

    Full Text Available Low-pressure cold spraying is a newly developed technology with high application potential. The aim of this study was to investigate potential application of this technique for producing a new type of transparent conductive oxide films target. Cold spraying technique allows the manufacture of target directly on the backing plate; therefore the proposed sputtering target has a form of Sn+In2O3 coating sprayed onto copper substrate. The microstructure and properties of the feedstock powder prepared using three various methods as well as the deposited ones by low-pressure cold spraying coatings were evaluated, compared, and analysed. Produced cermet Sn+In2O3 targets were employed in first magnetron sputtering process to deposit preliminary, thin, transparent conducting oxide films onto the glass substrates. The resistivity of obtained preliminary films was measured and allows believing that fabrication of TCO (transparent conducting oxide films using targets produced by cold spraying is possible in the future, after optimization of the deposition conditions.

  13. Microscopic Examination of Cold Spray Cermet Sn+In2O3 Coatings for Sputtering Target Materials.

    Science.gov (United States)

    Winnicki, M; Baszczuk, A; Rutkowska-Gorczyca, M; Jasiorski, M; Małachowska, A; Posadowski, W; Znamirowski, Z; Ambroziak, A

    2017-01-01

    Low-pressure cold spraying is a newly developed technology with high application potential. The aim of this study was to investigate potential application of this technique for producing a new type of transparent conductive oxide films target. Cold spraying technique allows the manufacture of target directly on the backing plate; therefore the proposed sputtering target has a form of Sn+In2O3 coating sprayed onto copper substrate. The microstructure and properties of the feedstock powder prepared using three various methods as well as the deposited ones by low-pressure cold spraying coatings were evaluated, compared, and analysed. Produced cermet Sn+In2O3 targets were employed in first magnetron sputtering process to deposit preliminary, thin, transparent conducting oxide films onto the glass substrates. The resistivity of obtained preliminary films was measured and allows believing that fabrication of TCO (transparent conducting oxide) films using targets produced by cold spraying is possible in the future, after optimization of the deposition conditions.

  14. Fossil fuels -- future fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  15. Effect of Electric Field on Outwardly Propagating Spherical Flame

    KAUST Repository

    Mannaa, Ossama

    2012-06-01

    The thesis comprises effects of electric fields on a fundamental study of spheri­cal premixed flame propagation.Outwardly-propagating spherical laminar premixed flames have been investigated in a constant volume combustion vessel by applying au uni-directional electric potential.Direct photography and schlieren techniques have been adopted and captured images were analyzed through image processing. Unstretched laminar burning velocities under the influence of electric fields and their associated Markstein length scales have been determined from outwardly prop­agating spherical flame at a constant pressure. Methane and propane fuels have been tested to assess the effect of electric fields on the differential diffusion of the two fuels.The effects of varying equivalence ratios and applied voltages have been in­vestigated, while the frequency of AC was fixed at 1 KHz. Directional propagating characteristics were analyzed to identify the electric filed effect. The flame morphology varied appreciably under the influence of electric fields which in turn affected the burning rate of mixtures.The flame front was found to propagate much faster toward to the electrode at which the electric fields were supplied while the flame speeds in the other direction were minimally influenced. When the voltage was above 7 KV the combustion is markedly enhanced in the downward direction since intense turbulence is generated and as a result the mixing process or rather the heat and mass transfer within the flame front will be enhanced.The com­bustion pressure for the cases with electric fields increased rapidly during the initial stage of combustion and was relatively higher since the flame front was lengthened in the downward direction.

  16. CHARACTERISTICS OF NEXT-GENERATION SPENT NUCLEAR FUEL (SNF) TRANSPORT AND STORAGE CASKS

    Energy Technology Data Exchange (ETDEWEB)

    Haire, M.J.; Forsberg, C.W.; Matveev, V.Z.; Shapovalov, V.I.

    2004-10-03

    The design of spent nuclear fuel (SNF) casks used in the present SNF disposition systems has evolved from early concepts about the nuclear fuel cycle. The reality today is much different from that envisioned by early nuclear scientists. Most SNF is placed in pool storage, awaiting reprocessing (as in Russia) or disposal at a geologic SNF repository (as in the United States). Very little transport of SNF occurs. This paper examines the requirements for SNF casks from today's perspective and attempts to answer this question: What type of SNF cask would be produced if we were to start over and design SNF casks based on today's requirements? The characteristics for a next-generation SNF cask system are examined and are found to be essentially the same in Russia and the United States. It appears that the new depleted uranium dioxide (DUO2)-steel cermet material will enable these requirements to be met. Depleted uranium (DU) is uranium in which a portion of the 235U isotope has been removed during a uranium enrichment process. The DUO2-steel cermet material is described. The United States and Russia are cooperating toward the development of a next-generation, dual-purpose, storage and transport SNF system.

  17. Recent Progress on Spherical Torus Research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Masayuki [PPPL; Kaita, Robert [PPPL

    2014-01-01

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ~ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ~ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of attractive fusion energy power source. Since the start of the two megaampere class ST facilities in 2000, National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all of fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.

  18. Scaling of a fast spherical discharge

    Energy Technology Data Exchange (ETDEWEB)

    Antsiferov, P. S., E-mail: Ants@isan.troitsk.ru; Dorokhin, L. A. [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation)

    2017-02-15

    The influence of the discharge cavity dimensions on the properties of the spherical plasma formed in a fast discharge was studied experimentally. The passage of a current pulse with an amplitude of 30–40 kA and a rise rate of ~10{sup 12} A/s (a fast discharge) through a spherical ceramic (Al{sub 2}O{sub 3}) cavity with an inner diameter of 11 mm filled with argon at a pressure of 80 Pa results in the formation of a 1- to 2-mm-diameter spherical plasma with an electron temperature of several tens of electronvolts and a density of 10{sup 18}–10{sup 19} cm{sup –3}. It is shown that an increase in the inner diameter of the discharge cavity from 11 to 21 mm leads to the fourfold increase in the formation time of the spherical plasma and a decrease in the average ion charge. A decrease in the cavity diameter to 7 mm makes the spherical plasma unstable.

  19. Spherical angular spectrum and the fractional order Fourier transform.

    Science.gov (United States)

    Pellat-Finet, Pierre; Durand, Pierre-Emmanuel; Fogret, Eric

    2006-12-01

    The notion of a spherical angular spectrum leads to the decomposition of the field amplitude on a spherical emitter into a sum of spherical waves that converge onto the Fourier sphere of the emitter. Unlike the usual angular spectrum, the spherical angular spectrum is propagated as the field amplitude, in a way that can be expressed by a fractional order Fourier transform.

  20. Friction factor for water flow through packed beds of spherical and non-spherical particles

    Directory of Open Access Journals (Sweden)

    Kaluđerović-Radoičić Tatjana

    2017-01-01

    Full Text Available The aim of this work was the experimental evaluation of different friction factor correlations for water flow through packed beds of spherical and non-spherical particles at ambient temperature. The experiments were performed by measuring the pressure drop across the bed. Packed beds made of monosized glass spherical particles of seven different diameters were used, as well as beds made of 16 fractions of quartz filtration sand obtained by sieving (polydisperse non-spherical particles. The range of bed voidages was 0.359–0.486, while the range of bed particle Reynolds numbers was from 0.3 to 286 for spherical particles and from 0.1 to 50 for non-spherical particles. The obtained results were compared using a number of available literature correlations. In order to improve the correlation results for spherical particles, a new simple equation was proposed in the form of Ergun’s equation, with modified coefficients. The new correlation had a mean absolute deviation between experimental and calculated values of pressure drop of 9.04%. For non-spherical quartz filtration sand particles the best fit was obtained using Ergun’s equation, with a mean absolute deviation of 10.36%. Surface-volume diameter (dSV necessary for correlating the data for filtration sand particles was calculated based on correlations for dV = f(dm and Ψ = f(dm. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. ON172022

  1. A novel perovskite based catalyst with high selectivity and activity for partial oxidation of methane for fuel cell applications.

    Science.gov (United States)

    Staniforth, J; Evans, S E; Good, O J; Darton, R J; Ormerod, R M

    2014-10-28

    Solid oxide fuel cells (SOFCs) have the potential to revolutionise the present fuel economy due to their higher fuel conversion efficiency compared with standard heat engines and the possibility of utilizing the heat produced in a combined heat and power system. One of the reasons they have yet to fulfil this potential is that the conventional anode material of choice, a nickel/yttria-stabilised zirconia cermet, requires a high temperature production process and under operating conditions is susceptible to carbon and sulphur poisoning. Perovskite-based materials have been proposed as potential anode materials for SOFCs due to their potentially high electronic conductivity and catalytic properties. One of the problems in realizing this potential has been their low catalytic activity towards methane reforming compared to conventional nickel based cermet materials. A nickel doped strontium zirconate material produced by low temperature hydrothermal synthesis is described which has high activity for methane reforming and high selectivity towards partial oxidation of methane as opposed to total oxidation products. Initial studies show a very low level of carbon formation which does not increase over time.

  2. Background reduction of a spherical gaseous detector

    Energy Technology Data Exchange (ETDEWEB)

    Fard, Ali Dastgheibi [Laboratoire Souterrain de Modane, France ali.dastgheibi-fard@lsm.in2p3.fr (France); Loaiza, Pia; Piquemal, Fabrice [Laboratoire Souterrain de Modane (France); Giomataris, Ioannis; Gray, David; Gros, Michel; Magnier, Patrick; Navick, Xavier-François [CEA Saclay - IRFU/SEDI - 91191 Gif sur Yvette (France); Savvidis, Ilias [Aristotle University of Thessaloniki (Greece)

    2015-08-17

    The Spherical gaseous detector (or Spherical Proportional Counter, SPC) is a novel type of detector. It consists of a large spherical volume filled with gas, using a single detection readout channel. The detector allows 100 % detection efficiency. SEDINE is a low background version of SPC installed at the Laboratoire Souterrain de Modane (LSM) underground laboratory (4800 m.w.e) looking for rare events at very low energy threshold, below 100 eV. This work presents the details on the chemical cleaning to reduce internal {sup 210}Pb surface contamination on the copper vessel and the external radon reduction achieved via circulation of pure air inside anti-radon tent. It will be also show the radon measurement of pure gases (Ar, N, Ne, etc) which are used in the underground laboratory for the low background experiments.

  3. Overview of spherical tokamak research in Japan

    Science.gov (United States)

    Takase, Y.; Ejiri, A.; Fujita, T.; Fukumoto, N.; Fukuyama, A.; Hanada, K.; Idei, H.; Nagata, M.; Ono, Y.; Tanaka, H.; Uchida, M.; Horiuchi, R.; Kamada, Y.; Kasahara, H.; Masuzaki, S.; Nagayama, Y.; Oishi, T.; Saito, K.; Takeiri, Y.; Tsuji-Iio, S.

    2017-10-01

    Nationally coordinated research on spherical tokamak is being conducted in Japan. Recent achievements include: (i) plasma current start-up and ramp-up without the use of the central solenoid by RF waves (in electron cyclotron and lower hybrid frequency ranges), (ii) plasma current start-up by AC Ohmic operation and by coaxial helicity injection, (iii) development of an advanced fuelling technique by compact toroid injection, (iv) ultra-long-pulse operation and particle control using a high temperature metal wall, (v) access to the ultra-high-β regime by high-power reconnection heating, and (vi) improvement of spherical tokamak plasma stability by externally applied helical field.

  4. POLARON IN CYLINDRICAL AND SPHERICAL QUANTUM DOTS

    Directory of Open Access Journals (Sweden)

    L.C.Fai

    2004-01-01

    Full Text Available Polaron states in cylindrical and spherical quantum dots with parabolic confinement potentials are investigated applying the Feynman variational principle. It is observed that for both kinds of quantum dots the polaron energy and mass increase with the increase of Frohlich electron-phonon coupling constant and confinement frequency. In the case of a spherical quantum dot, the polaron energy for the strong coupling is found to be greater than that of a cylindrical quantum dot. The energy and mass are found to be monotonically increasing functions of the coupling constant and the confinement frequency.

  5. Ni-YSZ solid oxide fuel cell anode behavior upon redox cycling based on electrical characterization

    DEFF Research Database (Denmark)

    Klemensø, Trine; Mogensen, Mogens Bjerg

    2006-01-01

    , where the Ni component was removed, before, during and after redox cycling the cermet. The cermet conductivity degraded over time due to sintering of the nickel phase. Following oxidizing events, the conductivity of the cermets improved, whereas the conductivity of the YSZ phase decreased. A model...

  6. Investigations into the interactions between sulfur and anodes for solid oxide fuel cells

    Science.gov (United States)

    Cheng, Zhe

    Solid oxide fuel cells (SOFCs) are electrochemical devices based on solid oxide electrolytes that convert chemical energy in fuels directly into electricity via electrode reactions. SOFCs have the advantages of high energy efficiency and low emissions and hold the potential to be the power of the future especially for small power generation systems (1-10 kW). Another unique advantage of SOFCs is the potential to directly utilize hydrocarbon fuels such as natural gas through internal reforming. However, all hydrocarbon fuels contain some sulfur compounds, which transform to hydrogen sulfide (H2S) in the reforming process and dramatically degrade the performance of the existing SOFCs. In this study, the interactions between sulfur contaminant (in the form of H2S) and the anodes for SOFCs were systematically investigated in order to gain a fundamental understanding of the mechanism of sulfur poisoning and ultimately to achieve rational design of sulfur-tolerant anodes. The sulfur poisoning behavior of the state-of-the-art Ni-YSZ cermet anodes was characterized using electrochemical measurements performed on button cells (of different structures) under various operating conditions, including H2S concentration, temperature, cell current density/terminal voltage, and cell structure. Also, the mechanisms of interactions between sulfur and the Ni-YSZ cermet anode were investigated using both ex situ and in situ characterization techniques such as Raman spectroscopy. Results suggest that the sulfur poisoning of Ni-YSZ cermet anodes at high temperatures in fuels with ppm-level H2S is due not to the formation of multi-layer conventional nickel sulfides but to the adsorption of sulfur on the nickel surface. In addition, new sulfur-tolerant anode materials were explored in this study. Thermodynamic principles were applied to predict the stability of candidate sulfur-tolerant anode materials and explain complex phenomena concerning the reactivity of candidate materials with

  7. Spherical Horn Array for Wideband Propagation Measurements

    DEFF Research Database (Denmark)

    Franek, Ondrej; Pedersen, Gert Frølund

    2011-01-01

    A spherical array of horn antennas designed to obtain directional channel information and characteristics is introduced. A dual-polarized quad-ridged horn antenna with open flared boundaries and coaxial feeding for the frequency band 600 MHz–6 GHz is used as the element of the array. Matching...... for a wideband multipath propagation studies....

  8. Exact solutions of the spherically symmetric multidimensional ...

    African Journals Online (AJOL)

    The complete orthonormalised energy eigenfunctions and the energy eigenvalues of the spherically symmetric isotropic harmonic oscillator in N dimensions, are obtained through the methods of separation of variables. Also, the degeneracy of the energy levels are examined. KEY WORDS: - Schrödinger Equation, Isotropic ...

  9. Spherical projections and liftings in geometric tomography

    DEFF Research Database (Denmark)

    Goodey, Paul; Kiderlen, Markus; Weil, Wolfgang

    2011-01-01

    We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies and to rad...

  10. Noncommutative spherically symmetric spacetimes at semiclassical order

    Science.gov (United States)

    Fritz, Christopher; Majid, Shahn

    2017-07-01

    Working within the recent formalism of Poisson-Riemannian geometry, we completely solve the case of generic spherically symmetric metric and spherically symmetric Poisson-bracket to find a unique answer for the quantum differential calculus, quantum metric and quantum Levi-Civita connection at semiclassical order O(λ) . Here λ is the deformation parameter, plausibly the Planck scale. We find that r, t, d r, d t are all forced to be central, i.e. undeformed at order λ, while for each value of r, t we are forced to have a fuzzy sphere of radius r with a unique differential calculus which is necessarily nonassociative at order λ2 . We give the spherically symmetric quantisation of the FLRW cosmology in detail and also recover a previous analysis for the Schwarzschild black hole, now showing that the quantum Ricci tensor for the latter vanishes at order λ. The quantum Laplace-Beltrami operator for spherically symmetric models turns out to be undeformed at order λ while more generally in Poisson-Riemannian geometry we show that it deforms to □f+λ2ωαβ(Ricγα-Sγα)(∇^βdf)γ+O(λ2) in terms of the classical Levi-Civita connection \\widehat\

  11. Spherical Tolman-Bondi Models in Cosmology

    Science.gov (United States)

    Bochicchio, I.; Laserra, E.

    2010-09-01

    Spherical symmetry is considered and exact solutions of Tolman-Bondi equations are studied taking advantage from Ricci principal curvature depending on the radial coordinate. Moreover an expansion of the exact solutions in fractional Puiseux series in considered to compare Euclidean and not Euclidean cases.

  12. Determining a Sonographic Nomogram for Gallbladder Spherical ...

    African Journals Online (AJOL)

    Kurtosis and skewness values (0.991 and 0.152 respectively) showed even distribution . This study establishes a normogram for the population using the model formula and could be used in the assessment of gallbladder in conditions giving rise to gallbladder hydrops. Keywords: Sonography, Gallbladder Spherical index, ...

  13. A Generalization of the Spherical Inversion

    Science.gov (United States)

    Ramírez, José L.; Rubiano, Gustavo N.

    2017-01-01

    In the present article, we introduce a generalization of the spherical inversion. In particular, we define an inversion with respect to an ellipsoid, and prove several properties of this new transformation. The inversion in an ellipsoid is the generalization of the elliptic inversion to the three-dimensional space. We also study the inverse images…

  14. Spherically symmetric inhomogeneous dust collapse in higher ...

    Indian Academy of Sciences (India)

    Higher dimensional space-time; naked singularity; cosmic censorship. PACS Nos 04.20.Dw; 04.50. ... The existence of strong curvature naked singularities in gravitational collapse of spherically symmetric space-times ..... distributions (in an appropriate metric space) can be discussed along the lines of [16]. 3. Strength of the ...

  15. Spherical hashing: binary code embedding with hyperspheres.

    Science.gov (United States)

    Heo, Jae-Pil; Lee, Youngwoon; He, Junfeng; Chang, Shih-Fu; Yoon, Sung-Eui

    2015-11-01

    Many binary code embedding schemes have been actively studied recently, since they can provide efficient similarity search, and compact data representations suitable for handling large scale image databases. Existing binary code embedding techniques encode high-dimensional data by using hyperplane-based hashing functions. In this paper we propose a novel hypersphere-based hashing function, spherical hashing, to map more spatially coherent data points into a binary code compared to hyperplane-based hashing functions. We also propose a new binary code distance function, spherical Hamming distance, tailored for our hypersphere-based binary coding scheme, and design an efficient iterative optimization process to achieve both balanced partitioning for each hash function and independence between hashing functions. Furthermore, we generalize spherical hashing to support various similarity measures defined by kernel functions. Our extensive experiments show that our spherical hashing technique significantly outperforms state-of-the-art techniques based on hyperplanes across various benchmarks with sizes ranging from one to 75 million of GIST, BoW and VLAD descriptors. The performance gains are consistent and large, up to 100 percent improvements over the second best method among tested methods. These results confirm the unique merits of using hyperspheres to encode proximity regions in high-dimensional spaces. Finally, our method is intuitive and easy to implement.

  16. Collapsing spherical null shells in general relativity

    Directory of Open Access Journals (Sweden)

    S Khakshournia

    2011-03-01

    Full Text Available In this work, the gravitational collapse of a spherically symmetric null shell with the flat interior and a charged Vaidya exterior spacetimes is studied. There is no gravitational impulsive wave present on the null hypersurface which is shear-free and contracting. It follows that there is a critical radius at which the shell bounces and starts expanding.

  17. Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Kevin [Export, PA; Ruka, Roswell J [Pittsburgh, PA

    2012-05-08

    An intermediate temperature solid oxide fuel cell structure capable of operating at from 600.degree. C. to 800.degree. C. having a very thin porous hollow elongated metallic support tube having a thickness from 0.10 mm to 1.0 mm, preferably 0.10 mm to 0.35 mm, a porosity of from 25 vol. % to 50 vol. % and a tensile strength from 700 GPa to 900 GPa, which metallic tube supports a reduced thickness air electrode having a thickness from 0.010 mm to 0.2 mm, a solid oxide electrolyte, a cermet fuel electrode, a ceramic interconnection and an electrically conductive cell to cell contact layer.

  18. Spherical crystallization: direct spherical agglomeration of salicylic Acid crystals during crystallization.

    Science.gov (United States)

    Kawashima, Y; Okumura, M; Takenaka, H

    1982-06-04

    Direct spherical agglomeration of salicylic acid crystals during crystallization is described. The needle-like salicylic acid crystals simultaneously form and agglomerate in a mixture of three partially miscible liquids, such as water, ethanol, and chloroform, with agitation. The agglomerates can be made directly into tablets because of their excellent flowability. Spherical crystallization could eliminate the usual separate agglomeration step after crystallization and may be adaptable to other pharmaceutical and chemical systems.

  19. Tribología de recubrimientos Cermet/NiCrBSi depositados mediante HVOF

    Directory of Open Access Journals (Sweden)

    Guilemany, J. M.

    2004-04-01

    Full Text Available This work consists on a deep tribological study of the WX system composed by a mechanical blend in different compositions of NiCrBSi and WC-12Co powders: 20% NiCrBSi (W2, 40% NiCrBSi (W4 y 60% NiCrBSi (W6. The coatings have been obtained by high velocity oxy-fuel process (HVOF. The measurements made by Ball-On-Disk test are: the friction coefficient is lower than 0.5 and the exchanged energy between the counterparts is under 10 KJ. To quantify the friction wear rate, the volume loss and the track depth, Scanning White Light Interferometry and SEM have been used. The track depth is proportional to the amount of NiCrBSi. A higher percentage of WC-12Co increases the friction wear resistance and decreases the abrasion wear rate (Rubber Wheel test. In all the coatings studied, no diffusion processes are found between the mixed phases, the adhesion between the coatings and the substrate is excellent, the porosity level is below 2% and an increase of microhardness of the coating due to a strengthening of the matrix produced by impacts of solid particles, takes place.

    El trabajo consta de un completo estudio tribológico del sistema WX que consiste en la mezcla mecánica de WC-12Co y NiCrBSi en diferentes proporciones: 20% NiCrBSi (W2, 40% NiCrBSi (W4 y 60% NiCrBSi (W6. Los recubrimientos se han obtenido por proyección térmica de alta velocidad (HVOF. Para todos los sistemas, el coeficiente de fricción es menor que 0.5 y la energía intercambiada entre el par friccionante y el recubrimiento es inferior a 10 KJ. Para cuantificar el desgaste por fricción se han utilizado la profundidad de la huella y el volumen perdido durante el ensayo, obtenidos mediante Interferometría de Barrido de Luz Blanca (SLWI y SEM. La profundidad de la huella sigue una evolución directamente proporcional al contenido en NiCrBSi. Un mayor contenido en WC-12Co aumenta la resistencia al desgaste por fricción y disminuye la velocidad de desgaste por abrasión (ensayo

  20. Optical properties of spherical gold mesoparticles

    DEFF Research Database (Denmark)

    Evlyukhin, A. B.; Kuznetsov, A. I.; Novikov, S. M.

    2012-01-01

    Optical properties of spherical gold particles with diameters of 150-650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond the quadrup......Optical properties of spherical gold particles with diameters of 150-650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond...... results obtained in homogeneous environment is demonstrated. Multipole resonance features in the experimental reflection spectra of particles located on a gold substrate, in the wavelength range of 500-1000 nm, are discussed and theoretically analyzed on the basis of finite-difference time...

  1. Sparse acoustic imaging with a spherical array

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Xenaki, Angeliki

    2015-01-01

    In recent years, a number of methods for sound source localization and sound field reconstruction with spherical microphone arrays have been proposed. These arrays have properties that are potentially very useful, e.g. omni-directionality, robustness, compensable scattering, etc. This paper...... proposes a plane wave expansion method based on measurements with a spherical microphone array, and solved in the framework provided by Compressed Sensing. The proposed methodology results in a sparse solution, i.e. few non-zero coefficients, and it is suitable for both source localization and sound field...... reconstruction. In general it provides fine spatial resolution for localization (delta-like functions), and robust reconstruction (the noisy components are naturally suppressed). The validity and performance of the proposed method is examined, and its limitations as well as the underlying assumptions...

  2. Imaging with spherically bent crystals or reflectors

    Science.gov (United States)

    Bitter, M.; Delgado Aparicio, L. F.; Hill, K. W.; Scott, S.; Ince-Cushman, A.; Reinke, M.; Podpaly, Y.; Rice, J. E.; Beiersdorfer, P.; Wang, E.

    2010-07-01

    This paper consists of two parts: part I describes the working principle of a recently developed x-ray imaging crystal spectrometer, where the astigmatism of spherically bent crystals is being used with advantage to record spatially resolved spectra of highly charged ions for Doppler measurements of the ion-temperature and toroidal plasma-rotation-velocity profiles in tokamak plasmas. This type of spectrometer was thoroughly tested on NSTX and Alcator C-Mod, and its concept was recently adopted for the design of the ITER crystal spectrometers. Part II describes imaging schemes, where the astigmatism has been eliminated by the use of matched pairs of spherically bent crystals or reflectors. These imaging schemes are applicable over a wide range of the electromagnetic radiation, which includes microwaves, visible light, EUV radiation and x-rays. Potential applications with EUV radiation and x-rays are the diagnosis of laser-produced plasmas, imaging of biological samples with synchrotron radiation and lithography.

  3. Quality metric for spherical panoramic video

    Science.gov (United States)

    Zakharchenko, Vladyslav; Choi, Kwang Pyo; Park, Jeong Hoon

    2016-09-01

    Virtual reality (VR)/ augmented reality (AR) applications allow users to view artificial content of a surrounding space simulating presence effect with a help of special applications or devices. Synthetic contents production is well known process form computer graphics domain and pipeline has been already fixed in the industry. However emerging multimedia formats for immersive entertainment applications such as free-viewpoint television (FTV) or spherical panoramic video require different approaches in content management and quality assessment. The international standardization on FTV has been promoted by MPEG. This paper is dedicated to discussion of immersive media distribution format and quality estimation process. Accuracy and reliability of the proposed objective quality estimation method had been verified with spherical panoramic images demonstrating good correlation results with subjective quality estimation held by a group of experts.

  4. Technical notes. Spherical harmonics approximations of neutron transport

    Energy Technology Data Exchange (ETDEWEB)

    Demeny, A.; Dede, K.M.; Erdei, K.

    1976-12-01

    A double-range spherical harmonics approximation obtained by expanding the angular flux separately in the two regions combined with the conventional single-range spherical harmonics is found to give superior description of neutron transport.

  5. Dynamics and control of vibratory gyroscopes with special spherical symmetry

    CSIR Research Space (South Africa)

    Shatalov, M

    2006-01-01

    Full Text Available are obtained in the spherical Bessel and the associated Legendre functions, the effects of rotation are investigated and scales factors are determined for different vibrating modes of the spherical body, spheroidal and torsional. Corresponding scales factors...

  6. Spherical Cancer Models in Tumor Biology

    Directory of Open Access Journals (Sweden)

    Louis-Bastien Weiswald

    2015-01-01

    Full Text Available Three-dimensional (3D in vitro models have been used in cancer research as an intermediate model between in vitro cancer cell line cultures and in vivo tumor. Spherical cancer models represent major 3D in vitro models that have been described over the past 4 decades. These models have gained popularity in cancer stem cell research using tumorospheres. Thus, it is crucial to define and clarify the different spherical cancer models thus far described. Here, we focus on in vitro multicellular spheres used in cancer research. All these spherelike structures are characterized by their well-rounded shape, the presence of cancer cells, and their capacity to be maintained as free-floating cultures. We propose a rational classification of the four most commonly used spherical cancer models in cancer research based on culture methods for obtaining them and on subsequent differences in sphere biology: the multicellular tumor spheroid model, first described in the early 70s and obtained by culture of cancer cell lines under nonadherent conditions; tumorospheres, a model of cancer stem cell expansion established in a serum-free medium supplemented with growth factors; tissue-derived tumor spheres and organotypic multicellular spheroids, obtained by tumor tissue mechanical dissociation and cutting. In addition, we describe their applications to and interest in cancer research; in particular, we describe their contribution to chemoresistance, radioresistance, tumorigenicity, and invasion and migration studies. Although these models share a common 3D conformation, each displays its own intrinsic properties. Therefore, the most relevant spherical cancer model must be carefully selected, as a function of the study aim and cancer type.

  7. Marching Cubes in Cylindrical and Spherical Coordinates

    Science.gov (United States)

    Goldsmith, J.; Jacobson, A. S.

    1996-01-01

    Isosurface extraction is a common analysis and visualization technique for three-dimensional scalar data. Marching Cubes is the most commonly-used algorithm for finding polygonal representations of isosurfaces in such data. We extend Marching Cubes to produce geometry for data sets that lie in spherical and cylindrical coordinate systems as well as show the steps for derivation of transformations for other coordinate systems.

  8. Indentation of pressurized viscoplastic polymer spherical shells

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, A.

    2016-01-01

    The indentation response of polymer spherical shells is investigated. Finite deformation analyses are carried out with the polymer characterized as a viscoelastic/viscoplastic solid. Both pressurized and unpressurized shells are considered. Attention is restricted to axisymmetric deformations...... large strains are attained. The transition from an indentation type mode of deformation to a structural mode of deformation involving bending that occurs as the indentation depth increases is studied. The results show the effects of shell thickness, internal pressure and polymer constitutive...

  9. Mesoporous NiO-samaria doped ceria for low-temperature solid oxide fuel cells.

    Science.gov (United States)

    Kim, Jin-Yeop; Kim, Ji Hyeon; Choi, Hyung Wook; Kim, Kyung Hwan; Park, Sang Joon

    2014-08-01

    In order to prepare anode material for low-temperature solid oxide fuel cells (SOFCs), the mesoporous NiO-SDC was synthesized using a cationic surfactant (cetyltrimethyl-ammonium bromide; CTAB) for obtaining wide triple-phase boundary (TPB). In addition, Ni-SDC anode-supported SOFC single cells with YSZ electrolyte and LSM cathode were fabricated and the performance of single cells was evaluated at 600 °C. The microstructure of NiO-SDC was characterized by XRD, EDX, SEM, and BET, and the results showed that the mesoporous NiO-SDC with 10 nm pores could be obtained. It was found that the surface area and the electrical performance were strongly influenced by the Ni content in Ni-SDC cermets. After calcined at 600 °C, the surface area of NiO-SDC was between 90-117 m2/g at 35-45 Ni wt%, which was sufficiently high for providing large TPB in SOFC anode. The optimum Ni content for cell performance was around 45 wt% and the corresponding MPD was 0.36 W/cm2. Indeed, the mesoporous NiO-SDC cermet may be of interest for use as an anode for low-temperature SOFCs.

  10. Preconditioning of the YSZ-NiO Fuel Cell Anode in Hydrogenous Atmospheres Containing Water Vapor

    Science.gov (United States)

    Vasyliv, Bogdan; Podhurska, Viktoriya; Ostash, Orest

    2017-04-01

    The YSZ-NiO ceramics for solid oxide fuel cells (SOFCs) anode have been investigated. A series of specimens were singly reduced in a hydrogenous atmosphere (Ar-5 vol% H2 mixture) at 600 °C under the pressure of 0.15 MPa or subjected to `reduction in the mixture-oxidation in air' (redox) cycling at 600 °C. The YSZ-Ni cermets formed in both treatment conditions were then aged in `water vapor in Ar-5 vol% H2 mixture' atmosphere at 600 °C under the pressure of 0.15 MPa. Additionally, the behaviour of the as-received material in this atmosphere was studied. It was revealed that small amount of water vapor in Ar-5 vol% H2 mixture (water vapor pressure below 0.03 MPa) does not affect the reduction of the nickel phase in the YSZ-NiO ceramics, but causes some changes in the YSZ-Ni cermet structure. In particular, nanopore growth in tiny Ni particles takes place. At higher concentration of water vapor in the mixture (water vapor pressure above 0.03-0.05 MPa), converse changes in the kinetics of reduction occur. The best physical and mechanical properties were revealed for the material treated by redox cycling after holding at 600 °C in water depleted gas mixture. The dual effect of water vapor on nickel-zirconia anode behaviour is discussed basing on scanning electron microscopy analysis data, material electrical conductivity, and strength.

  11. The Quest for the Most Spherical Bubble

    CERN Document Server

    Obreschkow, Danail; Dorsaz, Nicolas; Kobel, Philippe; de Bosset, Aurele; Farhat, Mohamed

    2013-01-01

    We describe a recently realized experiment producing the most spherical cavitation bubbles today. The bubbles grow inside a liquid from a point-plasma generated by a nanosecond laser pulse. Unlike in previous studies, the laser is focussed by a parabolic mirror, resulting in a plasma of unprecedented symmetry. The ensuing bubbles are sufficiently spherical that the hydrostatic pressure gradient caused by gravity becomes the dominant source of asymmetry in the collapse and rebound of the cavitation bubbles. To avoid this natural source of asymmetry, the whole experiment is therefore performed in microgravity conditions (ESA, 53rd and 56th parabolic flight campaign). Cavitation bubbles were observed in microgravity (~0g), where their collapse and rebound remain spherical, and in normal gravity (1g) to hyper-gravity (1.8g), where a gravity-driven jet appears. Here, we describe the experimental setup and technical results, and overview the science data. A selection of high-quality shadowgraphy movies and time-res...

  12. Fusion potential for spherical and compact tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sandzelius, Mikael

    2003-02-01

    The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high {beta}-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect.

  13. Spherically symmetric thick branes cosmological evolution

    Science.gov (United States)

    Bernardini, A. E.; Cavalcanti, R. T.; da Rocha, Roldão

    2015-01-01

    Spherically symmetric time-dependent solutions for the 5D system of a scalar field canonically coupled to gravity are obtained and identified as an extension of recent results obtained by Ahmed et al. (JHEP 1404:061. arXiv:1312.3576 [hep-th], 2014). The corresponding cosmology of models with regularized branes generated by such a 5D scalar field scenario is also investigated. It has been shown that the anisotropic evolution of the warp factor and consequently the Hubble like parameter are both driven by the radial coordinate on the brane, which leads to an emergent thick brane-world scenario with spherically symmetric time dependent warp factor. Meanwhile, the separability of variables depending on fifth dimension, , which is exhibited by the equations of motion, allows one to recover the extra dimensional profiles obtained in Ahmed et al. (2014), namely the extra dimensional part of the scale (warp) factor and the scalar field dependence on . Therefore, our results are mainly concerned with the time dependence of a spherically symmetric warp factor. Besides evincing possibilities for obtaining asymmetric stable brane-world scenarios, the extra dimensional profiles here obtained can also be reduced to those ones investigated in Ahmed et al. (2014).

  14. Spherical Arrays for Wireless Channel Characterization and Emulation

    DEFF Research Database (Denmark)

    Franek, Ondrej; Pedersen, Gert Frølund

    2014-01-01

    Three types of spherical arrays for use in wireless communication research are presented. First, a spherical array of 32 monopoles with beam steering in arbitrary direction and with arbitrary polarization is described. Next, a spherical array with 16 quad-ridged open-flared horns is introduced...

  15. PENETRATION OF A SOUND FIELD THROUGH A MULTILAYERED SPHERICAL SHELL

    Directory of Open Access Journals (Sweden)

    G. Ch. Shushkevich

    2013-01-01

    Full Text Available An analytical solution of the boundary problem describing the process of penetration of thesound field of a spherical emitter located inside a thin unclosed spherical shell through a permeable multilayered spherical shell is considered. The influence of some parameters of the problem on the value of the sound field weakening (screening coefficient is studied via a numerical simulation.

  16. AFCI Transmutation Fuel Processes and By-Products Planning: Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Eric L. Shaber

    2005-09-01

    The goals of the Advanced Fuel Cycle Initiative (AFCI) Program are to reduce high-level waste volume, reduce long-lived and radiotoxic elements, and reclaim valuable energy content of spent nuclear fuel. The AFCI chartered the Fuel Development Working Group (FDWG) to develop advanced fuels in support of the AFCI goals. The FDWG organized a phased strategy of fuel development that is designed to match the needs of the AFCI program: Phase 1 - High-burnup fuels for light-water reactors (LWRs) and tri-isotopic (TRISO) fuel for gas-cooled reactors Phase 2 – Mixed oxide fuels with minor actinides for LWRs, Am transmutation targets for LWRs, inert matrix fuels for LWRs, and TRISO fuel containing Pu and other transuranium for gas-cooled reactors Phase 3 – Fertile free or low-fertile metal, ceramic, ceramic dispersed in a metal matrix (CERMET), and ceramics dispersed in a ceramic matrix (CERCER) that would be used primarily in fast reactors. Development of advanced fuels requires the fabrication, assembly, and irradiation of prototypic fuel under bounding reactor conditions. At specialized national laboratory facilities small quantities of actinides are being fabricated into such fuel for irradiation tests. Fabrication of demonstration quantities of selected fuels for qualification testing is needed but not currently feasible, because existing manual glovebox fabrication approaches result in significant radiation exposures when larger quantities of actinides are involved. The earliest demonstration test fuels needed in the AFCI program are expected to be variants of commercial mixed oxide fuel for use in an LWR as lead test assemblies. Manufacture of such test assemblies will require isolated fabrication lines at a facility not currently available in the U.S. Such facilities are now being planned as part of an Advanced Fuel Cycle Facility (AFCF). Adequate planning for and specification of actinide fuel fabrication facilities capable of producing transmutation fuels

  17. Fuel accident performance testing for small HTRs

    Science.gov (United States)

    Schenk, W.; Pott, G.; Nabielek, H.

    1990-04-01

    Irradiated spherical fuel elements containing 16400 coated UO 2 particles each were heated at temperatures between 1600 and 1800°C and the fission product release was measured. The demonstrated fission product retention at 1600°C establishes the basis for the design of small modular HTRs which inherently limit the temperature to 1600°C by passive means. In addition to this demonstration, the test data show that modern TRISO fuels provide an ample performance margin: release normally sets in at 1800°C; this occurs at 1600°C only with fuels irradiated under conditions which significantly exceed current reactor design requirements.

  18. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2

  19. Nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F

    2009-07-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO{sub 2} pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO{sub 2} and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under

  20. Addition theorems for spin spherical harmonics: II. Results

    Energy Technology Data Exchange (ETDEWEB)

    Bouzas, Antonio O, E-mail: abouzas@mda.cinvestav.mx [Departamento de Fisica Aplicada, CINVESTAV-IPN, Carretera Antigua a Progreso Km. 6, Apdo. Postal 73 ' Cordemex' , Merida 97310, Yucatan (Mexico)

    2011-04-22

    Based on the results of part I (2011 J. Phys. A: Math. Theor. 44 165301), we obtain the general form of the addition theorem for spin spherical harmonics and give explicit results in the cases involving one spin-s' and one spin-s spherical harmonics with s', s = 1/2, 1, 3/2, and |s' - s| = 0, 1. We also obtain a fully general addition theorem for one scalar and one tensor spherical harmonic of arbitrary rank. A variety of bilocal sums of ordinary and spin spherical harmonics are given in explicit form, including a general explicit expression for bilocal spherical harmonics.

  1. Shock-initiated Combustion of a Spherical Density Inhomogeneity

    Science.gov (United States)

    Haehn, Nicholas; Oakley, Jason; Rothamer, David; Anderson, Mark; Ranjan, Devesh; Bonazza, Riccardo

    2010-11-01

    A spherical density inhomogeneity is prepared using fuel and oxidizer at a stoichiometric ratio and Xe as a diluent that increases the overall density of the bubble mixture (55% Xe, 30% H2, 15% O2). The experiments are performed in the Wisconsin Shock Tube Laboratory in a 9.2 m vertical shock tube with a 25.4 cm x 25.4 cm square cross-section. An injector is used to generate a 5 cm diameter soap film bubble filled with the combustible mixture. The injector retracts flush into the side of the tube releasing the bubble into a state of free fall. The combustible bubble is accelerated by a planar shock wave in N2 (2.0 temperatures and pressures significantly larger than nominal conditions behind a planar shock wave, resulting in auto-ignition at the focus. Planar Mie scattering and chemiluminescence are used simultaneously to visualize the bubble morphology and combustion characteristics. During the combustion phase, both the span-wise and stream-wise lengths of the bubble are seen to increase compared to the non-combustible scenario. Additionally, smaller instabilities are observed on the upstream surface, which are absent in the non-combustible bubbles.

  2. Spherical Cryogenic Hydrogen Tank Preliminary Design Trade Studies

    Science.gov (United States)

    Arnold, Steven M.; Bednarcyk, Brett A.; Collier, Craig S.; Yarrington, Phillip W.

    2007-01-01

    A structural analysis, sizing optimization, and weight prediction study was performed by Collier Research Corporation and NASA Glenn on a spherical cryogenic hydrogen tank. The tank consisted of an inner and outer wall separated by a vacuum for thermal insulation purposes. HyperSizer (Collier Research and Development Corporation), a commercial automated structural analysis and sizing software package was used to design the lightest feasible tank for a given overall size and thermomechanical loading environment. Weight trade studies were completed for different panel concepts and metallic and composite material systems. Extensive failure analyses were performed for each combination of dimensional variables, materials, and layups to establish the structural integrity of tank designs. Detailed stress and strain fields were computed from operational temperature changes and pressure loads. The inner tank wall is sized by the resulting biaxial tensile stresses which cause it to be strength driven, and leads to an optimum panel concept that need not be stiffened. Conversely, the outer tank wall is sized by a biaxial compressive stress field, induced by the pressure differential between atmospheric pressure and the vacuum between the tanks, thereby causing the design to be stability driven and thus stiffened to prevent buckling. Induced thermal stresses become a major sizing driver when a composite or hybrid composite/metallic material systems are used for the inner tank wall for purposes such as liners to contain the fuel and reduce hydrogen permeation.

  3. Einstein-Vlasov system in spherical symmetry. II. Spherical perturbations of static solutions

    Science.gov (United States)

    Gundlach, Carsten

    2017-10-01

    We reduce the equations governing the spherically symmetric perturbations of static spherically symmetric solutions of the Einstein-Vlasov system (with either massive or massless particles) to a single stratified wave equation -ψ,t t=H ψ , with H containing second derivatives in radius, and integrals over energy and angular momentum. We identify an inner product with respect to which H is symmetric, and use the Ritz method to approximate the lowest eigenvalues of H numerically. For two representative background solutions with massless particles we find a single unstable mode with a growth rate consistent with the universal one found by Akbarian and Choptuik in nonlinear numerical time evolutions.

  4. Estudio del desgaste del flanco de carburos recubiertos y cermet durante el torneado de alta velocidad en seco del acero AISI 1045

    Directory of Open Access Journals (Sweden)

    Hernández-González, L. W.

    2011-06-01

    Full Text Available This work deals with the experimental study of the flank wear evolution of two coating carbide inserts and a cermet insert during the dry finishing turning of AISI 1045 steel with 400, 500 and 600 m/min cutting speeds. The results were analyzed using the variance analysis and lineal regression analysis in order to describe the relationship between the flank wear and machining time, obtaining the adjusted model equation. The investigation demonstrated a significant effect of cutting speed and machining time on the flank wear at high speed machining. The three coating layers insert showed the best performance while the two layers insert had the worst behaviour of the cutting tool wear at high cutting speeds.

    El objetivo de este trabajo es el estudio experimental de la evolución del desgaste del flanco respecto al tiempo de dos insertos de carburo recubiertos y un cermet durante el torneado de acabado en seco del acero AISI 1045 con velocidades de corte de 400, 500 y 600 m/min. Los resultados fueron comparados utilizando el análisis de varianza y el análisis de regresión lineal para describir la relación entre el desgaste del flanco y el tiempo de maquinado, obteniéndose la ecuación del modelo ajustado. La investigación demostró un efecto significativo de la velocidad de corte y del tiempo de maquinado en el desgaste del flanco en el maquinado de alta velocidad. El mejor desempeño se obtuvo para el carburo recubierto con tres capas, mientras que el carburo con dos capas sufrió el mayor desgaste a elevadas velocidades de corte.

  5. Compressive sensing with a spherical microphone array

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Xenaki, Angeliki

    2016-01-01

    A wave expansion method is proposed in this work, based on measurements with a spherical microphone array, and formulated in the framework provided by Compressive Sensing. The method promotes sparse solutions via ‘1-norm minimization, so that the measured data are represented by few basis functions....... This results in fine spatial resolution and accuracy. This publication covers the theoretical background of the method, including experimental results that illustrate some of the fundamental differences with the “conventional” leastsquares approach. The proposed methodology is relevant for source localization...

  6. Static spherical metrics: a geometrical approach

    Science.gov (United States)

    Tiwari, A. K.; Maharaj, S. D.; Narain, R.

    2017-08-01

    There exist several solution generating algorithms for static spherically symmetric metrics. Here we use the geometrical approach of Lie point symmetries to solve the condition of pressure isotropy by finding the associated five-dimensional Lie algebra of symmetry generators. For the non-Abelian subalgebras the underlying equation is solved to obtain a general solution. Contained within this class are vacuum models, constant density models, metrics with linear equations of state and the Buchdahl representation of the polytrope with index five. For a different particular symmetry generator the condition of pressure isotropy is transformed to a Riccati equation which admits particular solutions.

  7. Spherical conformal models for compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Takisa, P.M.; Maharaj, S.D.; Manjonjo, A.M.; Moopanar, S. [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)

    2017-10-15

    We consider spherical exact models for compact stars with anisotropic pressures and a conformal symmetry. The conformal symmetry condition generates an integral relationship between the gravitational potentials. We solve this condition to find a new anisotropic solution to the Einstein field equations. We demonstrate that the exact solution produces a relativistic model of a compact star. The model generates stellar radii and masses consistent with PSR J1614-2230, Vela X1, PSR J1903+327 and Cen X-3. A detailed physical examination shows that the model is regular, well behaved and stable. The mass-radius limit and the surface red shift are consistent with observational constraints. (orig.)

  8. The Spherical Bolometric Albedo of Planet Mercury

    OpenAIRE

    Mallama, Anthony

    2017-01-01

    Published reflectance data covering several different wavelength intervals has been combined and analyzed in order to determine the spherical bolometric albedo of Mercury. The resulting value of 0.088 +/- 0.003 spans wavelengths from 0 to 4 {\\mu}m which includes over 99% of the solar flux. This bolometric result is greater than the value determined between 0.43 and 1.01 {\\mu}m by Domingue et al. (2011, Planet. Space Sci., 59, 1853-1872). The difference is due to higher reflectivity at wavelen...

  9. Inversion of band patterns in spherical tumblers.

    Science.gov (United States)

    Chen, Pengfei; Lochman, Bryan J; Ottino, Julio M; Lueptow, Richard M

    2009-04-10

    Bidisperse granular mixtures in spherical tumblers segregate into three bands: one at each pole and one at the equator. For low fill levels, large particles are at the equator; for high fill levels, the opposite occurs. Segregation is robust, though the transition depends on fill level, particle size, and rotational speed. Discrete element method simulations reproduce surface patterns and reveal internal structures. Particle trajectories show that small particles flow farther toward the poles than large particles in the upstream portion of the flowing layer for low fill levels leading to a band of small particles at each pole. The opposite occurs for high fill levels, though more slowly.

  10. VORTEX FLOW INSIDE THE DEEP SPHERICAL DIMPLE

    Directory of Open Access Journals (Sweden)

    В. Воскобійник

    2012-04-01

    Full Text Available The results of experimental researches of the forming features of the vortex flow which is formed at the turbulentflow above of the deep spherical dimple are presented. Visualization shows that inclined asymmetric large-scale vortices are generated inside the dimple. These vortex structures are switched from one tilt in other, exciting lowfrequencyoscillations. During an evolution the asymmetric vortices are broken up above an aft wall of the dimple andthe angle of their incline and break up is increased with the growth of Reynolds number.

  11. Discrete analogues in harmonic analysis: Spherical averages

    OpenAIRE

    Magyar, A; Stein, E. M.; Wainger, S.

    2004-01-01

    In this paper we prove an analogue in the discrete setting of \\Bbb Z^d, of the spherical maximal theorem for \\Bbb R^d. The methods used are two-fold: the application of certain "sampling" techniques, and ideas arising in the study of the number of representations of an integer as a sum of d squares in particular, the "circle method". The results we obtained are by necessity limited to d \\ge 5, and moreover the range of p for the L^p estimates differs from its analogue in \\Bbb R^d.

  12. The dynamo bifurcation in rotating spherical shells

    CERN Document Server

    Morin, Vincent; 10.1142/S021797920906378X

    2010-01-01

    We investigate the nature of the dynamo bifurcation in a configuration applicable to the Earth's liquid outer core, i.e. in a rotating spherical shell with thermally driven motions. We show that the nature of the bifurcation, which can be either supercritical or subcritical or even take the form of isola (or detached lobes) strongly depends on the parameters. This dependence is described in a range of parameters numerically accessible (which unfortunately remains remote from geophysical application), and we show how the magnetic Prandtl number and the Ekman number control these transitions.

  13. Space Radiation Detector with Spherical Geometry

    Science.gov (United States)

    Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)

    2012-01-01

    A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.

  14. Formability of spherical and large aluminum sheets

    Science.gov (United States)

    Zimmermann, F.; Brosius, A.; Beyer, E.; Standfuß, J.; Jahn, A.

    2017-10-01

    The novel aluminum alloy AlMgSc (AA5028) shows a high potential for aeronautical applications, especially to replace the currently used material for structural components within metallic aircraft fuselages [1]. As AlMgSc sheets cannot be stretch formed at room temperature due to cracking in the clamping zones, an alternative technology called "creep-forming" was investigated by Jambu [2]. Nevertheless, creep-forming is only applicable for panels to be formed in moulds with small curvatures, because shaping double-curved geometries with small radii of curvature tends to buckling [3]. Hence, the formability of large spherical aluminum sheets as double-curved geometries is investigated.

  15. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  16. Spherically symmetric conformal gravity and "gravitational bubbles"

    CERN Document Server

    Berezin, V A; Eroshenko, Yu N

    2016-01-01

    The general structure of the spherically symmetric solutions in the Weyl conformal gravity is described. The corresponding Bach equation are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions is found. It consists of two classes. The first one contains the solutions with constant two-dimensional curvature scalar of our specific metrics, and the representatives are the famous Robertson-Walker metrics. One of them we called the "gravitational bubbles", which is compact and with zero Weyl tensor. The second class is more general, with varying curvature scalar. We found its representative as the one-parameter family. It appears that it can be conformally covered by the thee-parameter Mannheim-Kazanas solution. We also investigated the general structure of the energy-momentum tensor in the spherical conformal gravity and constructed the vectorial equation that reveals clearly the same features of non-vacuum solu...

  17. Initial assessments of ignition spherical torus

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Y.K.M.; Borowski, S.K.; Bussell, G.T.; Dalton, G.R.; Gorker, G.E.; Haines, J.R.; Hamilton, W.R.; Kalsi, S.S.; Lee, V.D.; Miller, J.B.

    1985-12-01

    Initial assessments of ignition spherical tori suggest that they can be highly cost effective and exceptionally small in unit size. Assuming advanced methods of current drive to ramp up the plasma current (e.g., via lower hybrid wave at modest plasma densities and temperatures), the inductive solenoid can largely be eliminated. Given the uncertainties in plasma energy confinement times and the effects of strong paramagnetism on plasma pressure, and allowing for the possible use of high-strength copper alloys (e.g., C-17510, Cu-Ni-Be alloy), ignition spherical tori with a 50-s burn are estimated to have major radii ranging from 1.0 to 1.6 m, aspect ratios from 1.4 to 1.7, vacuum toroidal fields from 2 to 3 T, plasma currents from 10 to 19 MA, and fusion power from 50 to 300 MW. Because of its modest field strength and simple poloidal field coil configuration, only conventional engineering approaches are needed in the design. A free-standing toroidal field coil/vacuum vessel structure is assessed to be feasible and relatively independent of the shield structure and the poloidal field coils. This exceptionally simple configuration depends significantly, however, on practical fabrication approaches of the center conductor post, about which there is presently little experience. 19 refs.

  18. Flow and scour around spherical bodies

    DEFF Research Database (Denmark)

    Truelsen, Christoffer

    2003-01-01

    near an erodible bed. In Chapter 2, a 3-D Reynolds-Average Navier-Stokes (RANS) flow solver has been used to simulate flow around and forces on a free and a near-wall sphere. Fluid forces are computed and validated against experimental data. A good agreement is found between the model and experimental...... results except in the critical flow regime. For flow around a near-wall sphere, a weak horseshoe vortex emerges as the gap ratio becomes less than or equal to 0.3. In Chapter 3, a RANS flow solver has been used to compute the bed shear stress for a near-wall sphere. The model results compare well......Spherical bodies placed in the marine environment may bury themselves due to the action of the waves and the current on the sediment in their immediate neighborhood. The present study addresses this topic by a numerical and an experimental investigation of the flow and scour around a spherical body...

  19. SPHERICAL INDENTATION OF SiC

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Johanns, Kurt E [ORNL

    2007-01-01

    Instrumented Hertzian indentation testing was performed on several grades of SiCs and the results and preliminary interpretations are presented. The grades included hot-pressed and sintered compositions. One of the hot-pressed grades was additionally subjected to high temperature heat treatment to produce a coarsened grain microstructure to enable the examination of exaggerated grain size on indentation response. Diamond spherical indenters were used in the testing. Indentation load, indentation depth of penetration, and acoustic activity were continually measured during each indentation test. Indentation response and postmortem analysis of induced damage (e.g., ring/cone, radial and median cracking, quasi-plasticity) are compared and qualitatively as a function of grain size. For the case of SiC-N, the instrumented spherical indentation showed that yielding initiated at an average contact stress 12-13 GPa and that there was another event (i.e., a noticeable rate increase in compliance probably associated with extensive ring and radial crack formations) occurring around an estimated average contact stress of 19 GPa.

  20. Clusters of polyhedra in spherical confinement

    Science.gov (United States)

    Teich, Erin G.; van Anders, Greg; Klotsa, Daphne; Dshemuchadse, Julia; Glotzer, Sharon C.

    2016-01-01

    Dense particle packing in a confining volume remains a rich, largely unexplored problem, despite applications in blood clotting, plasmonics, industrial packaging and transport, colloidal molecule design, and information storage. Here, we report densest found clusters of the Platonic solids in spherical confinement, for up to N=60 constituent polyhedral particles. We examine the interplay between anisotropic particle shape and isotropic 3D confinement. Densest clusters exhibit a wide variety of symmetry point groups and form in up to three layers at higher N. For many N values, icosahedra and dodecahedra form clusters that resemble sphere clusters. These common structures are layers of optimal spherical codes in most cases, a surprising fact given the significant faceting of the icosahedron and dodecahedron. We also investigate cluster density as a function of N for each particle shape. We find that, in contrast to what happens in bulk, polyhedra often pack less densely than spheres. We also find especially dense clusters at so-called magic numbers of constituent particles. Our results showcase the structural diversity and experimental utility of families of solutions to the packing in confinement problem. PMID:26811458

  1. Novel approaches to the creation of alternative motor fuels from renewable raw materials

    Directory of Open Access Journals (Sweden)

    Ольга Олександрівна Гайдай

    2016-06-01

    Full Text Available The paper considers the method of obtaining aliphatic alcohols as components of alternative fuels by catalytic processing of synthesis gas under the conditions of mechanochemical activation of the catalyst without using high pressure.It is established that the introduction of hydrocarbon spherical clusters (onions in the alternative fuel changes physical, chemical and chemmotological characteristics of fuel due to the effect of structure formation. The results of comparative studies of the performance properties of hydrocarbon and alternative fuels are displayed

  2. Fuel distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tison, R.R.; Baker, N.R.; Blazek, C.F.

    1979-07-01

    Distribution of fuel is considered from a supply point to the secondary conversion sites and ultimate end users. All distribution is intracity with the maximum distance between the supply point and end-use site generally considered to be 15 mi. The fuels discussed are: coal or coal-like solids, methanol, No. 2 fuel oil, No. 6 fuel oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Although the fuel state, i.e., gas, liquid, etc., can have a major impact on the distribution system, the source of these fuels (e.g., naturally-occurring or coal-derived) does not. Single-source, single-termination point and single-source, multi-termination point systems for liquid, gaseous, and solid fuel distribution are considered. Transport modes and the fuels associated with each mode are: by truck - coal, methanol, No. 2 fuel oil, and No. 6 fuel oil; and by pipeline - coal, methane, No. 2 fuel oil, No. 6 oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Data provided for each distribution system include component makeup and initial costs.

  3. Reactive Hydrodynamics in Rotating Spherical and Cylindrical Geometry

    Science.gov (United States)

    Sohrab, Siavash H.

    1997-01-01

    In turbulent spray combustion among many complex interactions between local flow structures called turbulent eddies and droplets are those associated with rotation of droplets. In general, for a complete statistical description of turbulent sprays, consideration of at least four degrees of freedom respectively associated with translational, rotational, vibrational (pulsational), and internal motions of the droplet are needed. Clearly the interactions between all degrees of freedom of the droplets and those for the gaseous background field will be exceedingly complex. For example, one type of interaction between the translational and the rotational velocity of droplets results in droplet helicity, H(d) = w(d).v(d), the significance of which in turbulent spray combustion is yet to be recognized. The role of droplet rotation in turbulent spray combustion modeling and its impact on the evaporation of liquid fuel droplets was recently investigated. Also, the impact of rotation on combustion of solid particles such as is encountered in pulverized coal combustion has been emphasized. The problem of viscous flow around a rotating sphere discussed above also occurs in other areas of physical sciences such as astrophysics and geophysics. Consequently, the subject has been addressed in many classical as well as more recent investigations. According to these investigations, the rotation of a rigid sphere in an otherwise quiescent, unconfined environment results in the motion of the fluid towards the poles. The polar flows from the northern and southern hemispheres move along helical trajectories towards the equatorial plane. Eventually, the polar flows collide at the equatorial plane, thus producing a sheet of rotating fluid that is radially ejected outward on this plane. Therefore, a droplet induces a strained flow field as a result of its rotation. Since the spatial extent of equatorial jets could easily exceed many droplet diameters, interactions between neighboring

  4. Energetic particles in spherical tokamak plasmas

    Science.gov (United States)

    McClements, K. G.; Fredrickson, E. D.

    2017-05-01

    Spherical tokamaks (STs) typically have lower magnetic fields than conventional tokamaks, but similar mass densities. Suprathermal ions with relatively modest energies, in particular beam-injected ions, consequently have speeds close to or exceeding the Alfvén velocity, and can therefore excite a range of Alfvénic instabilities which could be driven by (and affect the behaviour of) fusion α-particles in a burning plasma. STs heated with neutral beams, including the small tight aspect ratio tokamak (START), the mega amp spherical tokamak (MAST), the national spherical torus experiment (NSTX) and Globus-M, have thus provided an opportunity to study toroidal Alfvén eigenmodes (TAEs), together with higher frequency global Alfvén eigenmodes (GAEs) and compressional Alfvén eigenmodes (CAEs), which could affect beam current drive and channel fast ion energy into bulk ions in future devices. In NSTX GAEs were correlated with a degradation of core electron energy confinement. In MAST pulses with reduced magnetic field, CAEs were excited across a wide range of frequencies, extending to the ion cyclotron range, but were suppressed when hydrogen was introduced to the deuterium plasma, apparently due to mode conversion at ion-ion hybrid resonances. At lower frequencies fishbone instabilities caused fast particle redistribution in some MAST and NSTX pulses, but this could be avoided by moving the neutral beam line away from the magnetic axis or by operating the plasma at either high density or elevated safety factor. Fast ion redistribution has been observed during GAE avalanches on NSTX, while in both NSTX and MAST fast ions were transported by saturated kink modes, sawtooth crashes, resonant magnetic perturbations and TAEs. The energy dependence of fast ion redistribution due to both sawteeth and TAEs has been studied in Globus-M. High energy charged fusion products are unconfined in present-day STs, but have been shown in MAST to provide a useful diagnostic of beam ion

  5. Crystal growth of drug materials by spherical crystallization

    Science.gov (United States)

    Szabó-Révész, P.; Hasznos-Nezdei, M.; Farkas, B.; Göcző, H.; Pintye-Hódi, K.; Erős, I.

    2002-04-01

    One of the crystal growth processes is the production of crystal agglomerates by spherical crystallization. Agglomerates of drug materials were developed by means of non-typical (magnesium aspartate) and typical (acetylsalicylic acid) spherical crystallization techniques. The growth of particle size and the spherical form of the agglomerates resulted in formation of products with good bulk density, flow, compactibility and cohesivity properties. The crystal agglomerates were developed for direct capsule-filling and tablet-making.

  6. Spherical Location Problems with Restricted Regions and Polygonal Barriers

    OpenAIRE

    Dedigama Dewage, Mangalika Jayasundara

    2005-01-01

    This thesis investigates the constrained form of the spherical Minimax location problem and the spherical Weber location problem. Specifically, we consider the problem of locating a new facility on the surface of the unit sphere in the presence of convex spherical polygonal restricted regions and forbidden regions such that the maximum weighted distance from the new facility on the surface of the unit sphere to m existing facilities is minimized and the sum of the weighted distance from the n...

  7. Regularised reconstruction of sound fields with a spherical microphone array

    DEFF Research Database (Denmark)

    Granados Corsellas, Alba; Jacobsen, Finn; Fernandez Grande, Efren

    2013-01-01

    Spherical near field acoustic holography with microphones mounted on a rigid spherical surface is used to reconstruct the incident sound field. However, reconstruction outside the sphere is an ill-posed inverse problem, and since this is very sensitive to the measurement noise, straightforward...... become apparent. Hence, a number of regularisation methods, including truncated singular value decomposition, standard Tikhonov, constrained Tikhonov, iterative Tikhonov, Landweber and Rutishauser, have been adapted for spherical near field acoustic holography. The accuracy of the methods is examined...

  8. Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Persson, Åsa Helen; Sudireddy, Bhaskar Reddy

    2015-01-01

    ’s commercially available and relevant SOFC fuels such as natural gas and diesel etc. contain trace amounts of sulfur. Thus, tolerance towards sulfur poisoning is desirable. Ceria and gadolinium doped ceria (GDC) have been reported in the literature to have a beneficial effect on the tolerance towards sulfur...... poisoning. The ceria can be incorporated as a Ni:GDC cermet anode, but also via infiltration of ceria and doped ceria into the conventional Ni:YSZ cermet anode. Both approaches have been reported to improve the tolerance towards sulfur poisoning [1-3]. In the present study we report the performance...... cells (active area 16 cm2) have initial area specific resistances (ASR) at 650ºC of 0.35 Ωcm2 and 0.7 Ωcm2 respectively. It was found that the porosity of the support and the AFL seems to have a pronounced effect on the resulting performance. The MS-SOFCs were subjected to technologically relevant H2S...

  9. Geometric inequalities in spherically symmetric spacetimes

    Science.gov (United States)

    Csukás, Károly Z.

    2017-07-01

    In geometric inequalities ADM mass plays more fundamental role than the concept of quasi-local mass. This paper is to demonstrate that using the quasi-local mass some new insights can be acquired. In spherically symmetric spacetimes the Misner-Sharp mass and the concept of the Kodama vector field provides an ideal setting to the investigations of geometric inequalities. We applying the proposed new techniques to investigate the spacetimes containing black hole or cosmological horizons but we shall also apply them in context of normal bodies. Most of the previous investigations applied only the quasi-local charges and the area. Our main point is to include the quasi-local mass in the corresponding geometrical inequalities. This way we recover some known relations but new inequalities are also derived.

  10. Stability of Spherical Vesicles in Electric Fields

    Science.gov (United States)

    2010-01-01

    The stability of spherical vesicles in alternating (ac) electric fields is studied theoretically for asymmetric conductivity conditions across their membranes. The vesicle deformation is obtained from a balance between the curvature elastic energies and the work done by the Maxwell stresses. The present theory describes and clarifies the mechanisms for the four types of morphological transitions observed experimentally on vesicles exposed to ac fields in the frequency range from 500 to 2 × 107 Hz. The displacement currents across the membranes redirect the electric fields toward the membrane normal to accumulate electric charges by the Maxwell−Wagner mechanism. These accumulated electric charges provide the underlying molecular mechanism for the morphological transitions of vesicles as observed on the micrometer scale. PMID:20575588

  11. Effects of coating spherical iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Milosevic, Irena; Motte, Laurence; Aoun, Bachir; Li, Tao; Ren, Yang; Sun, Chengjun; Saboungi, Marie-Louise

    2017-01-01

    We investigate the effect of several coatings applied in biomedical applications to iron oxide nanoparticles on the size, structure and composition of the particles. The four structural techniques employed - TEM, DLS, VSM, SAXS and EXAFS - show no significant effects of the coatings on the spherical shape of the bare nanoparticles, the average sizes or the local order around the Fe atoms. The NPs coated with hydroxylmethylene bisphosphonate or catechol have a lower proportion of magnetite than the bare and citrated ones, raising the question whether the former are responsible for increasing the valence state of the oxide on the NP surfaces and lowering the overall proportion of magnetite in the particles. VSM measurements show that these two coatings lead to a slightly higher saturation magnetization than the citrate. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazu and Dr. Federica Migliardo.

  12. Laser Pulse Heating of Spherical Metal Particles

    Directory of Open Access Journals (Sweden)

    Michael I. Tribelsky

    2011-12-01

    Full Text Available We consider the general problem of laser pulse heating of spherical metal particles with the sizes ranging from nanometers to millimeters. We employ the exact Mie solution of the diffraction problem and solve the heat-transfer equation to determine the maximum temperature rise at the particle surface as a function of optical and thermometric parameters of the problem. Primary attention is paid to the case when the thermal diffusivity of the particle is much larger than that of the environment, as it is in the case of metal particles in fluids. We show that, in this case, for any given duration of the laser pulse, the maximum temperature rise as a function of the particle size reaches a maximum at a certain finite size of the particle. We suggest simple approximate analytical expressions for this dependence, which cover the entire parameter range of the problem and agree well with direct numerical simulations.

  13. Simple spherical ablative-implosion model

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, F.J.; Steele, J.T.; Larsen, J.T.

    1980-06-23

    A simple model of the ablative implosion of a high-aspect-ratio (shell radius to shell thickness ratio) spherical shell is described. The model is similar in spirit to Rosenbluth's snowplow model. The scaling of the implosion time was determined in terms of the ablation pressure and the shell parameters such as diameter, wall thickness, and shell density, and compared these to complete hydrodynamic code calculations. The energy transfer efficiency from ablation pressure to shell implosion kinetic energy was examined and found to be very efficient. It may be possible to attach a simple heat-transport calculation to our implosion model to describe the laser-driven ablation-implosion process. The model may be useful for determining other energy driven (e.g., ion beam) implosion scaling.

  14. The rate of pressure rise of gaseous propylene-air explosions in spherical and cylindrical enclosures.

    Science.gov (United States)

    Razus, Domnina; Movileanua, Codina; Oancea, Dumitru

    2007-01-02

    The maximum rates of pressure rise of propylene-air explosions at various initial pressures and various fuel/oxygen ratios in three closed vessels (a spherical vessel with central ignition and two cylindrical vessels with central or with top ignition) are reported. It was found that in explosions of quiescent mixtures the maximum rates of pressure rise are linear functions on total initial pressure, at constant initial temperature and fuel/oxygen ratio. The slope and intercept of found correlations are greatly influenced by vessel's volume and shape and by the position of the ignition source--factors which determine the amount of heat losses from the burned gas in a closed vessel explosion. Similar data on propylene-air inert mixtures are discussed in comparison with those referring to propylene-air, revealing the influence of nature and amount of inert additive. The deflagration index KG of centrally ignited explosions was also calculated from maximum rates of pressure rise.

  15. Performance of a novel type of electrolyte-supported solid oxide fuel cell with honeycomb structure

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Morales, Juan Carlos; Savvin, Stanislav N.; Nunez, Pedro [Departmento de Quimica Inorganica, Universidad de La Laguna, 38200 Tenerife (Spain); Marrero-Lopez, David [Departamento de Fisica Aplicada I, Universidad de Malaga, 29071 Malaga (Spain); Pena-Martinez, Juan; Canales-Vazquez, Jesus [Instituto de Energias Renovables-Universidad de Castilla la Mancha, 02006 Albacete (Spain); Roa, Joan Josep; Segarra, Merce [DIOPMA, Departamento de Ciencia de los Materiales e Ing. Metalurgica, 08028 Barcelona (Spain)

    2010-01-15

    A novel design, alternative to the conventional electrolyte-supported solid oxide fuel cell (SOFC) is presented. In this new design, a honeycomb-electrolyte is fabricated from hexagonal cells, providing high mechanical strength to the whole structure and supporting the thin layer used as electrolyte of a SOFC. This new design allows a reduction of {proportional_to}70% of the electrolyte material and it renders modest performances over 320 mW cm{sup -2} but high volumetric power densities, i.e. 1.22 W cm{sup -3} under pure CH{sub 4} at 900 C, with a high OCV of 1.13 V, using the standard Ni-YSZ cermet as anode, Pt as cathode material and air as the oxidant gas. (author)

  16. Optimization of spin-coated electrodes for electrolyte-supported solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, Shayenne Diniz da; Monteiro, Natalia Kondo; Tabuti, Francisco; Fonseca, Fabio Coral, E-mail: shaynnedn@hotmail.com, E-mail: nataliakm@usp.br, E-mail: fntabuti@ipen.br, E-mail: fabiocf@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil); Florio, Daniel Zanetti de, E-mail: daniel.florio@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2017-01-15

    Electrodes for electrolyte-supported solid oxide fuel cells (SOFC’s) were fabricated by spin coating. Strontium-doped lanthanum manganite (LSM) cathode and nickel yttria-stabilized zirconia cermet anodes were synthesized and processed for enhanced deposition conditions. The influence of electrode microstructural parameters was investigated by a systematic experimental procedure aiming at optimized electrochemical performance of single cells. Polarization curves showed a strong dependence on both electrode thickness and sintering temperature. By a systematic control of such parameters, the performance of single cells was significantly enhanced due to decreasing of polarization resistance from 26 Ω cm² to 0.6 Ω cm² at 800°C. The results showed that spin-coated electrodes can be optimized for fast and cost effective fabrication of SOFCs. (author)

  17. Explosive fragmentation of liquids in spherical geometry

    Science.gov (United States)

    Milne, A.; Longbottom, A.; Frost, D. L.; Loiseau, J.; Goroshin, S.; Petel, O.

    2017-05-01

    Rapid acceleration of a spherical shell of liquid following central detonation of a high explosive causes the liquid to form fine jets that are similar in appearance to the particle jets that are formed during explosive dispersal of a packed layer of solid particles. Of particular interest is determining the dependence of the scale of the jet-like structures on the physical parameters of the system, including the fluid properties (e.g., density, viscosity, and surface tension) and the ratio of the mass of the liquid to that of the explosive. The present paper presents computational results from a multi-material hydrocode describing the dynamics of the explosive dispersal process. The computations are used to track the overall features of the early stages of dispersal of the liquid layer, including the wave dynamics, and motion of the spall and accretion layers. The results are compared with new experimental results of spherical charges surrounded by a variety of different fluids, including water, glycerol, ethanol, and vegetable oil, which together encompass a significant range of fluid properties. The results show that the number of jet structures is not sensitive to the fluid properties, but primarily dependent on the mass ratio. Above a certain mass ratio of liquid fill-to-explosive burster ( F / B), the number of jets is approximately constant and consistent with an empirical model based on the maximum thickness of the accretion layer. For small values of F / B, the number of liquid jets is reduced, in contrast with explosive powder dispersal, where small F / B yields a larger number of particle jets. A hypothetical explanation of these features based on the nucleation of cavitation is explored numerically.

  18. ICPP: Results from the MAST Spherical Tokamak

    Science.gov (United States)

    Sykes, Alan

    2000-10-01

    The MAST (Mega-Amp Spherical Tokamak) experiment is now fully operational, producing 1MA plasmas with MW level auxiliary heating from Neutral Beam Injection and 60GHz Electron Cyclotron Resonance Heating. Central electron and ion temperatures are both of order 1keV (measured by 30-point Thomson Scattering, Neutral Particle Analyzer and Charge-Exchange spectroscopy respectively). Following boronisation, the Greenwald density limit has been exceeded in double-null divertor discharges by 50operation has been achieved in both Ohmic and NBI heated plasmas. In addition to conventional plasma induction, MAST can employ the `merging-compression' scheme (pioneered on START) producing initial spherical tokamak plasmas of up to 0.5MA without use of flux from the central solenoid. The central solenoid can then be applied to further increase the current at ramp rates of up to 13MA/s; plasma current of 1MA is reached at only one-half of the full solenoid swing. Studies of strike point power loading in both Ohmic and beam heated plasmas have confirmed the result from START that the fraction of power loading on the inboard strike point is lower than predicted from simple models. Comprehensive arrays of halo detectors indicate tolerable levels of halo currents with low asymmetries; an encouraging result for the ST concept, and providing key data to test models. Results from MAST will be used both to extend the conventional tokamak database, and to determine the potential of the ST as a route to fusion power in its own right. Acknowledgement: this work is funded jointly by the UK Department of Trade and Industry and EURATOM. The NBI equipment is on loan from ORNL, the NPA from PPPL.

  19. Dynamical systems and spherically symmetric cosmological models

    Science.gov (United States)

    He, Yanjing

    2006-06-01

    In this thesis we present a study of the timelike self-similar spherically symmetric cosmological models with two scalar fields with exponential potentials. We first define precisely the timelike self-similar spherically symmetric (TSS) spacetimes. We write the TSS metric in a conformally isometric form in a coordinate system adapted to the geometry of the spacetime manifold. In this coordinate system, both the metric functions of the TSS spacetimes and the potential functions of the scalar fields can be simplified to four undetermined functions of a single coordinate. As a result, the Einstein field equations reduce to an autonomous system of first-order ODEs and polynomial constraints in terms of these undetermined functions. By introducing new bounded variables as well as a new independent variable and solving the constraints, we are able to apply the theory of dynamical systems to study the properties of the TSS solutions. By finding invariant sets and associated monotonic functions, by applying the LaSalle Invariance Principle and the Monotonicity Principle, by applying the [straight phi] t -connected property of a limit set, and using other theorems, we prove that all of the TSS trajectories are heteroclinic trajectories. In addition, we conduct numerical simulations to confirm and support the qualitative analysis. We obtain all possible types of TSS solutions, by analyzing the qualitative behavior of the original system of ODES from those of the reduced one. We obtain asymptotic expressions for the TSS solutions (e.g., the asymptotic expressions for the metric functions, the source functions and the Ricci scalar). In particular, self-similar flat Friedmann-Robertson-Walker spacetimes are examined in order to obtain insights into the issues related to the null surface in general TSS spacetimes in these coordinates. A discussion of the divergence of the spacetime Ricci scalar and the possible extension of the TSS solutions across the null boundary is presented

  20. Measurement of Turbulence Modulation by Non-Spherical Particles

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse

    2010-01-01

    The change in the turbulence intensity of an air jet resulting from the addition of particles to the flow is measured using Laser Doppler Anemometry. Three distinct shapes are considered: the prolate spheroid, the disk and the sphere. Measurements of the carrier phase and particle phase velocities......, the particle mass flow and the integral length scale of the flow. The expression developed on basis of spherical particles only is applied on the data for the non-spherical particles. The results suggest that non-spherical particles attenuate the carrier phase turbulence significantly more than spherical...

  1. A multiball read-out for the spherical proportional counter

    Science.gov (United States)

    Giganon, A.; Giomataris, I.; Gros, M.; Katsioulas, I.; Navick, X. F.; Tsiledakis, G.; Savvidis, I.; Dastgheibi-Fard, A.; Brossard, A.

    2017-12-01

    We present a novel concept of proportional gas amplification for the read-out of the spherical proportional counter. The standard single-ball read-out presents limitations for large diameter spherical detectors and high-pressure operations. We have developed a multi-ball read-out system which consists of several balls placed at a fixed distance from the center of the spherical vessel. Such a module can tune the volume electric field at the desired value and can also provide detector segmentation with individual ball read-out. In the latter case, the large volume of the vessel becomes a spherical time projection chamber with 3D capabilities.

  2. Investigation of spherical and concentric mechanism of compound droplets

    Directory of Open Access Journals (Sweden)

    Meifang Liu

    2016-07-01

    Full Text Available Polymer shells with high sphericity and uniform wall thickness are always needed in the inertial confined fusion (ICF experiments. Driven by the need to control the shape of water-in-oil (W1/O compound droplets, the effects of the density matching level, the interfacial tension and the rotation speed of the continuing fluid field on the sphericity and wall thickness uniformity of the resulting polymer shells were investigated and the spherical and concentric mechanisms were also discussed. The centering of W1/O compound droplets, the location and movement of W1/O compound droplets in the external phase (W2 were significantly affected by the density matching level of the key stage and the rotation speed of the continuing fluid field. Therefore, by optimizing the density matching level and rotation speed, the batch yield of polystyrene (PS shells with high sphericity and uniform wall thickness increased. Moreover, the sphericity also increased by raising the oil/water (O/W2 interfacial tension, which drove a droplet to be spherical. The experimental results show that the spherical driving force is from the interfacial tension affected by the two relative phases, while the concentric driving force, as a resultant force, is not only affected by the three phases, but also by the continuing fluid field. The understanding of spherical and concentric mechanism can provide some guidance for preparing polymer shells with high sphericity and uniform wall thickness.

  3. Low-Q Electrically Small Spherical Magnetic Dipole Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    Three novel electrically small antenna configurations radiating a TE10 spherical mode corresponding to a magnetic dipole are presented and investigated: multiarm spherical helix (MSH) antenna, spherical split ring resonator (S-SRR) antenna, and spherical split ring (SSR) antenna. All three antennas...... are self-resonant, with the input resistance tuned to 50 ohms by an excitation curved dipole/monopole. A prototype of the SSR antenna has been fabricated and measured, yielding results that are consistent with the numerical simulations. Radiation quality factors (Q) of these electrically small antennas (in...

  4. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  5. Acoustic radiation force control: Pulsating spherical carriers.

    Science.gov (United States)

    Rajabi, Majid; Mojahed, Alireza

    2018-02-01

    The interaction between harmonic plane progressive acoustic beams and a pulsating spherical radiator is studied. The acoustic radiation force function exerted on the spherical body is derived as a function of the incident wave pressure and the monopole vibration characteristics (i.e., amplitude and phase) of the body. Two distinct strategies are presented in order to alter the radiation force effects (i.e., pushing and pulling states) by changing its magnitude and direction. In the first strategy, an incident wave field with known amplitude and phase is considered. It is analytically shown that the zero- radiation force state (i.e., radiation force function cancellation) is achievable for specific pulsation characteristics belong to a frequency-dependent straight line equation in the plane of real-imaginary components (i.e., Nyquist Plane) of prescribed surface displacement. It is illustrated that these characteristic lines divide the mentioned displacement plane into two regions of positive (i.e., pushing) and negative (i.e., pulling) radiation forces. In the second strategy, the zero, negative and positive states of radiation force are obtained through adjusting the incident wave field characteristics (i.e., amplitude and phase) which insonifies the radiator with prescribed pulsation characteristics. It is proved that zero radiation force state occurs for incident wave pressure characteristics belong to specific frequency-dependent circles in Nyquist plane of incident wave pressure. These characteristic circles divide the Nyquist plane into two distinct regions corresponding to positive (out of circles) and negative (in the circles) values of radiation force function. It is analytically shown that the maximum amplitude of negative radiation force is exactly equal to the amplitude of the (positive) radiation force exerted upon the sphere in the passive state, by the same incident field. The developed concepts are much more deepened by considering the required

  6. Characterizing Student Mathematics Teachers' Levels of Understanding in Spherical Geometry

    Science.gov (United States)

    Guven, Bulent; Baki, Adnan

    2010-01-01

    This article presents an exploratory study aimed at the identification of students' levels of understanding in spherical geometry as van Hiele did for Euclidean geometry. To do this, we developed and implemented a spherical geometry course for student mathematics teachers. Six structured, "task-based interviews" were held with eight student…

  7. Cylindrical and spherical dust-acoustic wave modulations in dusty ...

    Indian Academy of Sciences (India)

    The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distributions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified nonlinear ...

  8. Effect of the spherical Earth on a simple pendulum

    OpenAIRE

    Burko, Lior M.

    2003-01-01

    We consider the period of a simple pendulum in the gravitational field of the spherical Earth. Effectively, gravity is enhanced compared with the often used flat Earth approximation, such that the period of the pendulum is shortened. We discuss the flat Earth approximation, and show when the corrections due to the spherical Earth may be of interest.

  9. Spherical dust acoustic solitary waves with two temperature ions

    CERN Document Server

    Eslami, Esmaeil

    2014-01-01

    The nonlinear dust acoustic waves in unmagnetized dusty plasma which consists of two temperature Boltzmann distributed ions and Boltzmann distributed electrons in spherical dimension investigated and obtained spherical Kadomtsev Petviashvili (SKP) equation and shown that the dust acoustic solitary wave can exist in the SKP equation.

  10. Rapid Prototyping of Electrically Small Spherical Wire Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2014-01-01

    It is shown how modern rapid prototyping technologies can be applied for quick and inexpensive, but still accurate, fabrication of electrically small wire antennas. A well known folded spherical helix antenna and a novel spherical zigzag antenna have been fabricated and tested, exhibiting the imp...

  11. demonstrating close-packing of atoms using spherical bubble gums

    African Journals Online (AJOL)

    Admin

    ABSTRACT: In this paper, the use of spherical bubble gums (Gum Balls) to demonstrate the close-packing of atoms and ions is presented. Spherical bubble gums having distinctive colours were used to illustrate the different layers in variety of crystalline packing and the formation of tetrahedral and octahedral holes.

  12. Development of a spherical aerial vehicle for urban search

    Science.gov (United States)

    Hou, Kang; Sun, Hanxu; Jia, Qingxuan; Zhang, Yanheng

    2014-06-01

    With the ability to provide close surveillance in narrow space or urban areas, spherical aerial vehicles have been of great interest to many scholars and researchers. The spherical aerial vehicle offers substantial design advantages over the conventional small aerial vehicles. As a kind of small aerial vehicles, spherical aerial vehicle is presented in this paper. Firstly, the unique structure of spherical aerial vehicle is presented in detail. And then as the key component of the spherical aerial vehicle, the meshed spherical shell is analyzed. The shell is made of carbon fiber and is used to protect the inner devices, so the deformation of the shell is analyzed and simulated. Then the experimental results verify the above analysis and the composite carbon fiber material makes the mesh spherical shell small deformation. Considering the whole vehicle has a shell outside, the lift affect of the meshed spherical shell is analyzed. The simulation and experiment results are basically consistent with theoretical analysis, and the impact of the meshed shell has small resistance for the airflow through the sphere.

  13. Some spherical analysis related to the pairs (U (n), Hn)

    Indian Academy of Sciences (India)

    In this paper, we define the normalized spherical transform associated with the generalized Gelfand pair ( U ( p , q ) , H n ) , where H n is the Heisenberg group 2 + 1-dimensional and + = . We show that the normalized spherical transform F ( f ) of a Schwartz function on H n restricted to the spectrum of the Gelfand ...

  14. Calculated scan characteristics of a large spherical reflector antenna

    Science.gov (United States)

    Agrawal, P. K.; Croswell, W. F.; Kauffman, J. F.

    1979-01-01

    A previously published numerical method to calculate the radiation properties of parabolic reflectors has been modified to also include very large spherical reflectors. The method has been verified by comparing the calculated and the measured results for a 120-wavelength spherical reflector.

  15. Cylindrical and spherical dust-acoustic wave modulations in dusty ...

    Indian Academy of Sciences (India)

    Abstract. The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distribu- tions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified ...

  16. On spherically symmetric singularity-free models in relativistic ...

    Indian Academy of Sciences (India)

    These observations led to the search of spherically symmetric singularity-free cosmo- logical models with a perfect fluid source characterized by isotropic pressure This search resulted in construction of two spherically symmetric singularity-free relativistic cosmo- logical models, describing universes filled with non-adiabatic ...

  17. A Robust Solution of the Spherical Burmester Problem

    DEFF Research Database (Denmark)

    Angeles, Jorge; Bai, Shaoping

    2010-01-01

    The problem of spherical four-bar linkage synthesis is revisited in this paper. The work is aimed at developing a robust synthesis method by taking into account both the formulation and the solution method. In addition, the synthesis of linkages with spherical prismatic joints is considered...

  18. Flank wear study of coating carbides and cermet inserts during the dry high speed turning of AISI 1045 steel; Estudio del desgaste del flanco de carburos recubiertos y cermet durante el torneado de alta velocidad en seco del acero AISI 1045

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Gonzalez, L. W.; Perez-Rodriguez, R.; Zambrano-Robledo, P.; Guerrero-Mata, M.; Dumitrescu, L.

    2011-07-01

    This work deals with the experimental study of the flank wear evolution of two coating carbide inserts and a cermet insert during the dry finishing turning of AISI 1045 steel with 400, 500 and 600 m/min cutting speeds. The results were analyzed using the variance analysis and lineal regression analysis in order to describe the relationship between the flank wear and machining time, obtaining the adjusted model equation. The investigation demonstrated a significant effect of cutting speed and machining time on the flank wear at high speed machining. The three coating layers insert showed the best performance while the two layers insert had the worst behaviour of the cutting tool wear at high cutting speeds. (Author) 19 refs.

  19. Creep stresses in a spherical shell under steady state temperature

    Science.gov (United States)

    Verma, Gaurav; Rana, Puneet

    2017-10-01

    The paper investigates the problem of creep of a spherical structure under the influence of steady state temperature. The problem of creep in spherical shell is solved by using the concept of generalized strain measures and transition hypothesis given by Seth. The problem has reduced to non-linear differential equation for creep transition. This paper deals with the non-linear behaviour of spherical shell under thermal condition. The spherical shell structures are easily vulnerable to creep, shrinkage and thermal effects; a thorough understanding of their time-dependent behaviour has been fully established. The paper aims to provide thermal creep analysis to enhance the effective design and long life of shells, and a theoretical model is developed for calculating creep stresses and strains in a spherical shell with purpose. Results obtained for the problem are depicted graphically.

  20. Theory and applications of spherical microphone array processing

    CERN Document Server

    Jarrett, Daniel P; Naylor, Patrick A

    2017-01-01

    This book presents the signal processing algorithms that have been developed to process the signals acquired by a spherical microphone array. Spherical microphone arrays can be used to capture the sound field in three dimensions and have received significant interest from researchers and audio engineers. Algorithms for spherical array processing are different to corresponding algorithms already known in the literature of linear and planar arrays because the spherical geometry can be exploited to great beneficial effect. The authors aim to advance the field of spherical array processing by helping those new to the field to study it efficiently and from a single source, as well as by offering a way for more experienced researchers and engineers to consolidate their understanding, adding either or both of breadth and depth. The level of the presentation corresponds to graduate studies at MSc and PhD level. This book begins with a presentation of some of the essential mathematical and physical theory relevant to ...

  1. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...... and nuclear fuel-based energy technologies....

  2. Effects of coating spherical iron oxide nanoparticles.

    Science.gov (United States)

    Milosevic, Irena; Motte, Laurence; Aoun, Bachir; Li, Tao; Ren, Yang; Sun, Chengjun; Saboungi, Marie-Louise

    2017-01-01

    We investigate the effect of several coatings applied in biomedical applications to iron oxide nanoparticles on the size, structure and composition of the particles. The four structural techniques employed - TEM, DLS, VSM, SAXS and EXAFS - show no significant effects of the coatings on the spherical shape of the bare nanoparticles, the average sizes or the local order around the Fe atoms. The NPs coated with hydroxylmethylene bisphosphonate or catechol have a lower proportion of magnetite than the bare and citrated ones, raising the question whether the former are responsible for increasing the valence state of the oxide on the NP surfaces and lowering the overall proportion of magnetite in the particles. VSM measurements show that these two coatings lead to a slightly higher saturation magnetization than the citrate. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Spherical Process Models for Global Spatial Statistics

    KAUST Repository

    Jeong, Jaehong

    2017-11-28

    Statistical models used in geophysical, environmental, and climate science applications must reflect the curvature of the spatial domain in global data. Over the past few decades, statisticians have developed covariance models that capture the spatial and temporal behavior of these global data sets. Though the geodesic distance is the most natural metric for measuring distance on the surface of a sphere, mathematical limitations have compelled statisticians to use the chordal distance to compute the covariance matrix in many applications instead, which may cause physically unrealistic distortions. Therefore, covariance functions directly defined on a sphere using the geodesic distance are needed. We discuss the issues that arise when dealing with spherical data sets on a global scale and provide references to recent literature. We review the current approaches to building process models on spheres, including the differential operator, the stochastic partial differential equation, the kernel convolution, and the deformation approaches. We illustrate realizations obtained from Gaussian processes with different covariance structures and the use of isotropic and nonstationary covariance models through deformations and geographical indicators for global surface temperature data. To assess the suitability of each method, we compare their log-likelihood values and prediction scores, and we end with a discussion of related research problems.

  4. Natural melting within a spherical shell

    Science.gov (United States)

    Bahrami, Parviz A.

    1990-01-01

    Fundamental heat transfer experiments were performed on the melting of a phase change medium in a spherical shell. Free expansion of the medium into a void space within the sphere was permitted. A step function temperature jump on the outer shell wall was imposed and the timewise evolution of the melting process and the position of the solid-liquid interface was photographically recorded. Numerical integration of the interface position data yielded information about the melted mass and the energy of melting. It was found that the rate of melting and the heat transfer were significantly affected by the movement of the solid medium to the base of the sphere due to gravity. The energy transfer associated with melting was substantially higher than that predicted by the conduction model. Furthermore, the radio of the measured values of sensible energy in the liquid melt to the energy of melting were nearly proportional to the Stefan number. The experimental results are in agreement with a theory set forth in an earlier paper.

  5. The Spherical Tokamak MEDUSA for Costa Rica

    Science.gov (United States)

    Ribeiro, Celso; Vargas, Ivan; Guadamuz, Saul; Mora, Jaime; Ansejo, Jose; Zamora, Esteban; Herrera, Julio; Chaves, Esteban; Romero, Carlos

    2012-10-01

    The former spherical tokamak (ST) MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, Rphysics /technical related issues which will help all tasks of the very low aspect ratio stellarator SCR-1(A≡R/>=3.6, under design[2]) and also the ongoing activities in low temperature plasmas. Courses in plasma physics at undergraduate and post-graduate joint programme levels are regularly conducted. The scientific programme is intend to clarify several issues in relevant physics for conventional and mainly STs, including transport, heating and current drive via Alfv'en wave, and natural divertor STs with ergodic magnetic limiter[3,4]. [1] G.D.Garstka, PhD thesis, University of Wisconsin at Madison, 1997 [2] L.Barillas et al., Proc. 19^th Int. Conf. Nucl. Eng., Japan, 2011 [3] C.Ribeiro et al., IEEJ Trans. Electrical and Electronic Eng., 2012(accepted) [4] C.Ribeiro et al., Proc. 39^th EPS Conf. Contr. Fusion and Plasma Phys., Sweden, 2012

  6. Scaling regimes in spherical shell rotating convection

    CERN Document Server

    Gastine, T; Aubert, J

    2016-01-01

    Rayleigh-B\\'enard convection in rotating spherical shells can be considered as a simplified analogue of many astrophysical and geophysical fluid flows. Here, we use three-dimensional direct numerical simulations to study this physical process. We construct a dataset of more than 200 numerical models that cover a broad parameter range with Ekman numbers spanning $3\\times 10^{-7} \\leq E \\leq 10^{-1}$, Rayleigh numbers within the range $10^3 < Ra < 2\\times 10^{10}$ and a Prandtl number unity. We investigate the scaling behaviours of both local (length scales, boundary layers) and global (Nusselt and Reynolds numbers) properties across various physical regimes from onset of rotating convection to weakly-rotating convection. Close to critical, the convective flow is dominated by a triple force balance between viscosity, Coriolis force and buoyancy. For larger supercriticalities, a subset of our numerical data approaches the asymptotic diffusivity-free scaling of rotating convection $Nu\\sim Ra^{3/2}E^{2}$ in ...

  7. Spherical collapse in νΛCDM

    Science.gov (United States)

    LoVerde, Marilena

    2014-10-01

    The abundance of massive dark matter halos hosting galaxy clusters provides an important test of the masses of relic neutrino species. The dominant effect of neutrino mass is to lower the typical amplitude of density perturbations that eventually form halos, but for neutrino masses ≳0.4 eV the threshold for halo formation can be changed significantly as well. We study the spherical collapse model for halo formation in cosmologies with neutrino masses in the range mνi=0.05-1 eV and find that halo formation is differently sensitive to Ων and mν. That is, different neutrino hierarchies with a common Ων are in principle distinguishable. The added sensitivity to mν is small but potentially important for scenarios with heavier sterile neutrinos. Massive neutrinos cause the evolution of density perturbations to be scale dependent at high redshift which complicates the usual mapping between the collapse threshold and halo abundance. We propose one way of handling this and compute the correction to the halo mass function within this framework. For ∑mνi≲0.3 eV, our prescription for the halo abundance is only ≲15% different than the standard calculation. However for larger neutrino masses the differences approach 50-100% which, if verified by simulations, could alter neutrino mass constraints from cluster abundance.

  8. Drop impact on spherical soft surfaces

    Science.gov (United States)

    Chen, Simeng; Bertola, Volfango

    2017-08-01

    The impact of water drops on spherical soft surfaces is investigated experimentally through high-speed imaging. The effect of a convex compliant surface on the dynamics of impacting drops is relevant to various applications, such as 3D ink-jet printing, where drops of fresh material impact on partially cured soft substrates with arbitrary shape. Several quantities which characterize the morphology of impacting drops are measured through image-processing, including the maximum and minimum spreading angles, length of the wetted curve, and dynamic contact angle. In particular, the dynamic contact angle is measured using a novel digital image-processing scheme based on a goniometric mask, which does not require edge fitting. It is shown that the surface with a higher curvature enhances the retraction of the spreading drop; this effect may be due to the difference of energy dissipation induced by the curvature of the surface. In addition, the impact parameters (elastic modulus, diameter ratio, and Weber number) are observed to significantly affect the dynamic contact angle during impact. A quantitative estimation of the deformation energy shows that it is significantly smaller than viscous dissipation.

  9. A nonlinear elasticity phantom containing spherical inclusions

    Science.gov (United States)

    Pavan, Theo Z.; Madsen, Ernest L.; Frank, Gary R.; Jiang, Jingfeng; Carneiro, Antonio A. O.; Hall, Timothy J.

    2012-08-01

    The strain image contrast of some in vivo breast lesions changes with increasing applied load. This change is attributed to differences in the nonlinear elastic properties of the constituent tissues suggesting some potential to help classify breast diseases by their nonlinear elastic properties. A phantom with inclusions and long-term stability is desired to serve as a test bed for nonlinear elasticity imaging method development, testing, etc. This study reports a phantom designed to investigate nonlinear elastic properties with ultrasound elastographic techniques. The phantom contains four spherical inclusions and was manufactured from a mixture of gelatin, agar and oil. The phantom background and each of the inclusions have distinct Young's modulus and nonlinear mechanical behavior. This phantom was subjected to large deformations (up to 20%) while scanning with ultrasound, and changes in strain image contrast and contrast-to-noise ratio between inclusion and background, as a function of applied deformation, were investigated. The changes in contrast over a large deformation range predicted by the finite element analysis (FEA) were consistent with those experimentally observed. Therefore, the paper reports a procedure for making phantoms with predictable nonlinear behavior, based on independent measurements of the constituent materials, and shows that the resulting strain images (e.g., strain contrast) agree with that predicted with nonlinear FEA.

  10. Carbon Tolerant Fuel Electrodes for Reversible Sofc Operating on Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Papazisi Kalliopi Maria

    2017-01-01

    Full Text Available A challenging barrier for the broad, successful implementation of Reversible Solid Oxide Fuel Cell (RSOFC technology for Mars application utilizing CO2 from the Martian atmosphere as primary reactant, remains the long term stability by the effective control and minimization of degradation resulting from carbon built up. The perovskitic type oxide material La0.75Sr0.25Cr0.9Fe0.1O3-δ (LSCF has been developed and studied for its performance and tolerance to carbon deposition, employed as bi-functional fuel electrode in a Reversible SOFC operating on the CO2 cycle (Solid Oxide Electrolysis Cell/SOEC: CO2 electrolysis, Solid Oxide Fuel Cell/SOFC: power generation through the electrochemical reaction of CO and oxygen. A commercial state-of-the-art NiO-YSZ (8% mol Y2O3 stabilized ZrO2 cermet was used as reference material. CO2 electrolysis and fuel cell operation in 70% CO/CO2 were studied in the temperature range of 900-1000°C. YSZ was used as electrolyte while LSM-YSZ/LSM (La0.2Sr0.8MnO3 as oxygen electrode. Results showed that LSCF had high and stable performance under RSOFC operation.

  11. Fuel cell-fuel cell hybrid system

    Science.gov (United States)

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  12. Modeling and multi-objective optimization of surface roughness and productivity in dry turning of AISI 52100 steel using (TiCN-TiN coating cermet tools

    Directory of Open Access Journals (Sweden)

    Ouahid Keblouti

    2017-01-01

    Full Text Available The present work concerns an experimental study of turning with coated cermet tools with TiCN-TiN coating layer of AISI 52100 bearing steel. The main objectives are firstly focused on the effect of cutting parameters and coating material on the performances of cutting tools. Secondly, to perform a Multi-objective optimization for minimizing surface roughness (Ra and maximizing material removal rate by desirability approach. A mathematical model was developed based on the Response Surface Methodology (RSM. ANOVA method was used to quantify the cutting parameters effects on the machining surface quality and the material removal rate. The results analysis shows that the feed rate has the most effect on the surface quality. The effect of coating layers on the surface quality is also studied. It is observed that a lower surface roughness is obtained when using PVD (TiCN-TiN coated insert when compared with uncoated tool. The values of root mean square deviation and coefficient of correlation between the theoretical and experimental data are also given in this work where the maximum calculated error is 2.65 %.

  13. Cermet composite thermal spray coatings for erosion and corrosion protection in combustion environments of advanced coal-fired boilers. Semiannual technical report, January 14, 1997--August 14, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Schorr, B.S.; Levin, B.F.; DuPont, J.N.; Marder, A.R.

    1997-08-31

    Research is presently being conducted to determine the optimum ceramic/metal combination in thermally sprayed metal matrix composite coatings for erosion and corrosion resistance in new coal-fired boilers. The research will be accomplished by producing model cermet composites using powder metallurgy and electrodeposition methods in which the effect of ceramic/metal combination for the erosion and corrosion resistance will be determined. These results will provide the basis for determining the optimum hard phase constituent size and volume percent in thermal spray coatings. Thermal spray coatings will be applied by our industrial sponsor and tested in our erosion and corrosion laboratories. Bulk powder processed Ni-Al{sub 2}O{sub 3} composites were produced at Idaho National Engineering Laboratory. The composite samples contained 0, 21, 27, 37, and 45 volume percent Al{sub 2}O{sub 3} with an average particle size of 12 um. Also, to deposit model Ni-Al{sub 2}O{sub 3} coatings, an electrodeposition technique was developed and coatings with various volume fractions (0-35%) of Al{sub 2}O{sub 3} were produced. The powder and electrodeposition processing of Ni-Al{sub 2}O{sub 3} Composites provide the ability to produce two phase microstructure without changing the microstructure of the matrix material. Therefore, the effect of hard second phase particles size and volume fraction on erosion resistance could be analyzed.

  14. Spherical Accretion in a Uniformly Expanding Universe

    Science.gov (United States)

    Colpi, Monica; Shapiro, Stuart L.; Wasserman, Ira

    1996-10-01

    We consider spherically symmetric accretion of material from an initially homogeneous, uniformly expanding medium onto a Newtonian point mass M. The gas is assumed to evolve adiabatically with a constant adiabatic index F, which we vary over the range Γ ɛ [1, 5/3]. We use a one-dimensional Lagrangian code to follow the spherical infall of material as a function of time. Outflowing shells gravitationally bound to the point mass fall back, giving rise to a inflow rate that, after a rapid rise, declines as a power law in time. If there were no outflow initially, Bondi accretion would result, with a characteristic accretion time-scale ta,0. For gas initially expanding at a uniform rate, with a radial velocity U = R/t0 at radius R, the behavior of the flow at all subsequent times is determined by ta,0/t0. If ta,0/t0 ≫ 1, the gas has no time to respond to pressure forces, so the fluid motion is nearly collisionless. In this case, only loosely bound shells are influenced by pressure gradients and are pushed outward. The late-time evolution of the mass accretion rate Mdot is close to the result for pure dust, and we develop a semianalytic model that accurately accounts for the small effect of pressure gradients in this limit. In the opposite regime, ta,0/t0 ≪ 1, pressure forces significantly affect the motion of the gas. At sufficiently early times, t ≤ ttr, the flow evolved along a sequence of quasi-stationary, Bondi-like states, with a time-dependent Mdot determined by the slowly varying gas density at large distances. However, at later times, t ≥ ttr, the fluid flow enters a dustllke regime; ttr is the time when the instantaneous Bondi accretion radius reaches the marginally bound radius. The transition time ttr depends sensitively on ta,0/t0 for a given Γ and can greatly exceed t0. We show that there exists a critical value Γ = 11/9, below which the transition from fluid to ballistic motion disappears. As one application of our calculations, we consider the

  15. HFE and Spherical Cryostats MC Study

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Jason P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-26

    The copper vessel containing the nEXO TPC is surrounded by a buffer of HFE, a liquid refrigerant with very low levels of radioactive element contamination. The HFE is contained within the cryostat’s inner vessel, which is in turn inside the outer vessel. While some HFE may be necessary for stable cooling of nEXO, it is possible that using substantially more than necessary for thermal reasons will help reduce backgrounds originating in the cryostats. Using a larger amount of HFE is accomplished by making the cryostat vessels larger. By itself, increasing the cryostat size somewhat increases the background rate, as the thickness of the cryostat wall must increase at larger sizes. However, the additional space inside the cryostat will be filled with HFE which can absorb gamma rays headed for the TPC. As a result, increasing the HFE reduces the number of backgrounds reaching the TPC. The aim of this study was to determine the relationship between HFE thickness and background rate. Ultimately, this work should support choosing a cryostat and HFE size that satisfies nEXO’s background budget. I have attempted to account for every consequence of changing the cryostat size, although naturally this remains a work in progress until a final design is achieved. At the moment, the scope of the study includes only the spherical cryostat design. This study concludes that increasing cryostat size reduces backgrounds, reaching neglible backgrounds originating from the cryostat at the largest sizes. It also shows that backgrounds originating from the inherent radioactivity of the HFE plateau quickly, so may be considered essentially fixed at any quantity of HFE.

  16. A quantum reduction to spherical symmetry in loop quantum gravity

    Directory of Open Access Journals (Sweden)

    N. Bodendorfer

    2015-07-01

    Full Text Available Based on a recent purely geometric construction of observables for the spatial diffeomorphism constraint, we propose two distinct quantum reductions to spherical symmetry within full 3+1-dimensional loop quantum gravity. The construction of observables corresponds to using the radial gauge for the spatial metric and allows to identify rotations around a central observer as unitary transformations in the quantum theory. Group averaging over these rotations yields our first proposal for spherical symmetry. Hamiltonians of the full theory with angle-independent lapse preserve this spherically symmetric subsector of the full Hilbert space. A second proposal consists in implementing the vanishing of a certain vector field in spherical symmetry as a constraint on the full Hilbert space, leading to a close analogue of diffeomorphisms invariant states. While this second set of spherically symmetric states does not allow for using the full Hamiltonian, it is naturally suited to implement the spherically symmetric midisuperspace Hamiltonian, as an operator in the full theory, on it. Due to the canonical structure of the reduced variables, the holonomy-flux algebra behaves effectively as a one parameter family of 2+1-dimensional algebras along the radial coordinate, leading to a diagonal non-vanishing volume operator on 3-valent vertices. The quantum dynamics thus becomes tractable, including scenarios like spherically symmetric dust collapse.

  17. Spherical warm shield design for infrared imaging systems

    Science.gov (United States)

    Tian, Qijie; Chang, Songtao; He, Fengyun; Li, Zhou; Qiao, Yanfeng

    2017-09-01

    The F-number matching is the primary means to suppress stray radiation for infrared imaging systems. However, it is difficult to achieve exact F-number matching, owing to the restriction from detectors, or multiple F-number design. Hence, an additional shield is required to block the certain thermal radiation. Typical shield is called flat warm shield, which is flat and operates at room temperature. For flat warm shield, it cannot suppress stray radiation while achieving F-number matching. To overcome the restriction, a spherical reflective warm shield is required. First of all, the detailed theory of spherical warm shield design is developed on basis of the principle that stray radiation cannot directly reach the infrared focal plane array. According to the theory developed above, a polished spherical warm shield, whose radius is 18 mm, is designed to match an F/2 infrared detector with an F/4 infrared imaging system. Then, the performance and alignment errors of the designed spherical warm shield are analyzed by simulation. Finally, a contrast experiment between the designed spherical warm shield and two differently processed flat warm shields is performed in a chamber with controllable inside temperatures. The experimental results indicate that the designed spherical warm shield cannot only achieve F-number matching but suppress stray radiation sufficiently. Besides, it is demonstrated that the theory of spherical warm shield design developed in this paper is valid and can be employed by arbitrary infrared imaging systems.

  18. Non-Spherical Microcapsules for Increased Core Content Volume Delivery

    Science.gov (United States)

    Oliva-Buisson, Yvette J.

    2014-01-01

    The goal of this project was to advance microencapsulation from the standard spherical microcapsule to a non-spherical, high-aspect ratio (HAR), elongated microcapsule. This was to be accomplished by developing reproducible methods of synthesizing or fabricating robust, non-spherical, HAR microcapsules. An additional goal of this project was to develop the techniques to the point where scale-up of these methods could be examined. Additionally, this project investigated ways to apply the microencapsulation techniques developed as part of this project to self-healing formulations.

  19. Diffraction model of peristrophic multiplexing with spherical reference wave.

    Science.gov (United States)

    Yoshida, Shuhei; Takahata, Yosuke; Horiuchi, Shuma; Yamamoto, Manabu

    2015-02-01

    Multiplexing recording is a primary contributor to determining the recording density in holographic data storage. Therefore, many different kinds of recording methods have been proposed. Among them, the method that utilizes spherical waves as reference waves is characterized by the ability to enable multiplexing recording only by moving (shifting or rotating) the recording medium. In our research, we propose a theoretical diffraction model of peristrophic multiplexing with a spherical reference wave and evaluate the diffraction efficiency; this multiplexing recording method has incorporated spherical reference waves in rotation of the media. Additionally, we verify the effectiveness of the model by comparing it with experimental results.

  20. Utilisation of coal for energy production in fuel cells

    Directory of Open Access Journals (Sweden)

    Dudek Magdalena

    2016-01-01

    Full Text Available In this paper a brief characterization of fuel cell technology and its possible application in sustainable energy development was described. Special attention was paid to direct carbon fuel cell technology. The direct carbon fuel cell is an electrochemical device which directly converts the chemical energy of carbonaceous based fuel into electricity without ‘flame burning’. The electrical efficiency of a DCFC is indeed very high (in practice exceeding 80%, and the product of conversion consists of almost pure CO2, eliminating the most expensive step of sequestration: the separation of carbon from flue gases. In this paper the process of electrochemical oxidation of carbon particles on the surface of oxide electrolytes at 8% mol Y2O3 in ZrO2 (8YSZ as well as cermet anode Ni-8YSZ was analysed. The graphite, carbon black powders were considered as reference solid fuels for coal samples. It was found that the main factors contributing to the electrochemical reactivity of carbon particles is not only the high carbon content in samples but also structural disorder. It was found that structurally disordered carbon-based materials are the most promising solid fuels for direct carbon solid oxide fuel cells. Special impact was placed on the consideration of coal as possible solid fuels for DC-SOFC. Statistical and economic analyses show that in the coming decades, in developing countries such as China, India, and some EU countries, coal-fuelled power plants will maintain their strong position in the power sector due to their reliability and low costs as well as the large reserves of coal and lignite in the world. Coal is mined in politically stable areas, which guarantees its easy and safe purchase and transport. The impact of the physiochemical properties of raw and purified coal on the performance of the DC-SOFC was studied. An analysis of the stability of electrical parameters was performed for a DC-SOFC operating under a load over an extended

  1. Next-Step Spherical Torus Experiment and Spherical Torus Strategy in the Fusion Energy Development Path

    Energy Technology Data Exchange (ETDEWEB)

    M. Ono; M. Peng; C. Kessel; C. Neumeyer; J. Schmidt; J. Chrzanowski; D. Darrow; L. Grisham; P. Heitzenroeder; T. Jarboe; C. Jun; S. Kaye; J. Menard; R. Raman; T. Stevenson; M. Viola; J. Wilson; R. Woolley; I. Zatz

    2003-10-27

    A spherical torus (ST) fusion energy development path which is complementary to proposed tokamak burning plasma experiments such as ITER is described. The ST strategy focuses on a compact Component Test Facility (CTF) and higher performance advanced regimes leading to more attractive DEMO and Power Plant scale reactors. To provide the physics basis for the CTF an intermediate step needs to be taken which we refer to as the ''Next Step Spherical Torus'' (NSST) device and examine in some detail herein. NSST is a ''performance extension'' (PE) stage ST with the plasma current of 5-10 MA, R = 1.5 m, and Beta(sub)T less than or equal to 2.7 T with flexible physics capability. The mission of NSST is to: (1) provide a sufficient physics basis for the design of CTF, (2) explore advanced operating scenarios with high bootstrap current fraction/high performance regimes, which can then be utilized by CTF, DEMO, and Power Plants, and (3) contribute to the general plasma/fusion science of high beta toroidal plasmas. The NSST facility is designed to utilize the Tokamak Fusion Test Reactor (or similar) site to minimize the cost and time required for the design and construction.

  2. High-Voltage Thermionic Reactor Using Double-Sheath Fuel Elements, 3rd Interational Electrical Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1972-06-01

    A novel design concept for a "flashlight-type" in-core thermionic reactor is described. This concept, called the "double-sheath" design in contrast to the previously considered "wet-sheath" and "dry-sheath" concepts, permits the build-up of high reactor output voltages, without the danger of cesium breakdown and shorts-to-ground. In addition to a description of the design and its functional components, a brief discussion of suggested fuel element fabrication and reactor assembly techniques is presented. The proposed design offers the potential of high reliability because only insulators at very low potentials (e.g.<3 volts) are in contact with cesium vapor; because there are no ceramic or cermet seals within the reactor (all are outside, beyond the reflectors); and because all vacuum-tight joints in the reactor are between ductile niobium components.

  3. Numerical evaluation of oxide growth in metallic support microstructures of Solid Oxide Fuel Cells and its influence on mass transport

    DEFF Research Database (Denmark)

    Reiss, Georg; Frandsen, Henrik Lund; Persson, Åsa Helen

    2015-01-01

    is evaluated by determining an effective diffusion coefficient and the equivalent electrical area specific resistance (ASR) due to diffusion over time. It is thus possible to assess the applicability (in terms of corrosion behaviour) of potential metallic supports without costly long-term experiments......Metal-supported Solid Oxide Fuel Cells (SOFCs) are developed as a durable and cost-effective alternative to the state-of-the-art cermet SOFCs. This novel technology offers new opportunities but also new challenges. One of them is corrosion of the metallic support, which will decrease the long......-term performance of the SOFCs. In order to understand the implications of the corrosion on the mass-transport through the metallic support, a corrosion model is developed that is capable of determining the change of the porous microstructure due to oxide scale growth. The model is based on high...

  4. Status of the atomized uranium silicide fuel development at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.K.; Kim, K.H.; Park, H.D.; Kuk, I.H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-08-01

    While developing KMRR fuel fabrication technology an atomizing technique has been applied in order to eliminate the difficulties relating to the tough property of U{sub 3}Si and to take advantage of the rapid solidification effect of atomization. The comparison between the conventionally comminuted powder dispersion fuel and the atomized powder dispersion fuel has been made. As the result, the processes, uranium silicide powdering and heat treatment for U{sub 3}Si transformation, become simplified. The workability, the thermal conductivity and the thermal compatibility of fuel meat have been investigated and found to be improved due to the spherical shape of atomized powder. In this presentation the overall developments of atomized U{sub 3}Si dispersion fuel and the planned activities for applying the atomizing technique to the real fuel fabrication are described.

  5. Effect of inlet fuel type on the degradation of Ni/YSZ anode of solid oxide fuel cell by carbon deposition

    Directory of Open Access Journals (Sweden)

    Suttichai Assabumrungrat

    2006-11-01

    Full Text Available According to the high operating temperature of Solid Oxide Fuel Cell (SOFC (700-1100ºC, it is known that some hydrocarbon fuels can be directly used as inlet fuel instead of hydrogen by feeding straight to the anode. This operation is called a direct internal reforming SOFC (DIR-SOFC. However, the major difficulty of this operation is the possible degradation of anode by the carbon deposition, as the carbon species are easily formed. In the present work, the effect of inlet fuel (i.e. H2, synthesis gas (H2+CO, CH4, CH4+H2O, CH3OH+H2O, and C2H5OH+H2O on the degradation of nickel cermet (Ni/YSZ, which is the most common anode material of SOFC, was studied.It was found from the work that hydrogen and synthesis gas (CO+H2 are proper to be used as direct inlet fuels for DIR-SOFC with Ni/YSZ anode, since the carbon formation on Ni/YSZ occurred in the small quantity. The mixture of methane and steam (CH4+H2O can also be used as the inlet feed, but the H2O/CH4 ratio plays an important role. In contrast, pure methane (CH4, methanol with steam (CH3OH+H2O and ethanol with steam (C2H5OH+H2O are not suitable for using as direct inlet fuel for DIR-SOFC with Ni/YSZ anode even the higher H2O/CH3OH and H2O/C2H5OH ratios were applied.

  6. Shell closure at {ital N}=164: Spherical or deformed?

    Energy Technology Data Exchange (ETDEWEB)

    Rigol, J. [Joint Institute for Nuclear Research, 141980 Dubna (Russia)

    1997-02-01

    Brenner {ital et al}. [1] recently reported the apparent evidence for a spherical shell at {ital N}=164. Some arguments are given which may make it necessary to reconsider this conclusion. {copyright} {ital 1997} {ital The American Physical Society}

  7. Aircraft navigation and surveillance analysis for a spherical earth

    Science.gov (United States)

    2014-10-01

    This memorandum addresses a fundamental function in surveillance and navigation analysis : quantifying the geometry of two or more locations relative to each other and to a spherical earth. Here, geometry refers to: (a) points (idealized lo...

  8. Sound field reconstruciton using a spherical microphone array

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren

    2016-01-01

    measurement area consisting of an array of spheres, and the sound field at any point of the source-free domain can be estimated, not being restricted to spherical surfaces. Because it is formulated as an elementary wave model, it allows for diverse solution strategies (least squares, ℓ1-norm minimization, etc......A method is presented that makes it possible to reconstruct an arbitrary sound field based on measurements with a spherical microphone array. The proposed method (spherical equivalent source method) makes use of a point source expansion to describe the sound field on the rigid spherical array, from...... which it is possible to reconstruct the sound field over a three-dimensional domain, inferring all acoustic quantities: sound pressure, particle velocity, and sound intensity. The problem is formulated using a Neumann Green's function that accounts for the presence of the rigid sphere in the medium. One...

  9. Modelling and Simulation Analysis of Rolling Motion of Spherical Robot

    Science.gov (United States)

    Kamis, N. N.; Embong, A. H.; Ahmad, S.

    2017-11-01

    This paper presents the findings of modelling, control and analysis of the spherical rolling robot based on pendulum driven within the simulation environment. The spherical robot is modelled using Lagrange function based on the equation of rolling motion. PD-type Fuzzy logic controller (FLC) was designed to control the position of the spherical robot where 25 rules were constructed to control the rolling motion of spherical robot. It was then integrated with the model developed in Simulink-Matlab environment. The output scaling factor (output gain) of the FLC was heuristically tuned to improve the system performance. The simulation results show that the FLC managed to eliminate the overshoot response and demonstrated better performance with 29.67% increasing in settling time to reach 0.01% of steady state error.

  10. Development of a hydrothermal method to synthesize spherical ...

    African Journals Online (AJOL)

    Vis spectroscopy. Through these techniques, it was found that the pure ZnSe nanoparticles have a zinc blend structure and in a spherical form with average diameter of 30 nm. KEY WORDS: ZnSe, Nanosphere, Hydrothermal, Surfactant. Bull.

  11. Resonant vibrations and acoustic radiation of rotating spherical structures.

    CSIR Research Space (South Africa)

    Shatalov, M

    2006-07-01

    Full Text Available on nature of the modes, spheroidal or torsional and their numbers. Bryan’s factors of radiated spherical body are calculated and compared with corresponding factors of a free body....

  12. TOWARDS AN EASIER ORIENTATION FOR SPHERICAL PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    G. Fangi

    2015-02-01

    Full Text Available For architectural metric documentation, Spherical Photogrammetry (SP has demonstrated its validity and efficiency in many projects already. The speed of surveying is high, the accuracy and completeness of the plotting are satisfactory. However, there are still many problems to be solved. The weakest point is the orientation procedure, which is rather difficult to perform, in the sense that only very experienced people can run it, and few people only make use of it. The old orientation steps are 1 model formation (limited to binocular panoramas couples; 2 link of all the models in a block adjustment with independent model triangulation; 3 block bundle adjustment with 4 parameters/pano (3 coord.+1 orientation bearing; 4 block bundle adjustment with 6 parameters/pano, say the previous 4 + 2 correction angles around the horizontal axes. The panoramas must be spherical and quasi-horizontal. In order to make easier the orientation, enabling more people to use SP, an improved approach has been set up. It consists in the combination of any possible model formed either by three and two panoramas. The trinocular vision, say the combination of three different panoramas to form a unique model, has the advantage to be much more robust in comparison to binocular vision in the sense that the trinocular model is likely to be more error-free than any of the three composing binocular models. It contains less model deformation, the model coordinates are validated by the mutual comparison of the three intersecting binocular models. In addition, the number of possible trinocular models is normally much larger than the one of binocular models. The steps for a semi-automatic orientation of a block of panoramas proceed as follows: - Form any possible trinocular models by combination of the panoramas; - in case that no trinocular model has been formed, form any possible binocular model; - run a block adjustment with the algorithm of independent model, to link together

  13. Fluorescence of molecules placed near a spherical particle: Rabi splitting

    Directory of Open Access Journals (Sweden)

    M.M. Dvoynenko

    2017-12-01

    Full Text Available Theoretical study of spontaneously emitted spectra of point-like source placed near spherical Ag particle was performed. It was shown that near-field electromagnetic interaction between a point-like emitter and spherical Ag particle leads to strong coupling between them at very small emitter-metal surface distances. It was shown that values of Rabi splitting are quantitatively close to that of emitter-flat substrate interaction.

  14. Design considerations in the development of a spherical mobile robot

    Science.gov (United States)

    Das, Tuhin; Mukherjee, Ranjan; Yuksel, H.

    2001-09-01

    The design problems in the development of a spherical mobile robot are discussed in this paper. These problems include dynamics and design of the propulsion mechanism, motion planning and control problems, actuator selection and sensor placement, design and fabrication of the exo-skeleton, and other issues related to power management and computing. Each of the problems are discussed in brief and presented in relation to the spherical mobile robot currently under development at Michigan State University.

  15. Minimum Q Electrically Small Spherical Magnetic Dipole Antenna - Theory

    DEFF Research Database (Denmark)

    Breinbjerg, Olav; Kim, Oleksiy S.

    2009-01-01

    The stored energies, radiated power, and quality factor of a magnetic-dipole antenna, consisting of a spherical electrical surface current density enclosing a magnetic core, is obtained through direct spatial integration of the internally and externally radiated field expressed in terms...... of spherical vector waves. The obtained quality factor agrees with that of Wheeler and Thal for vanishing free-space electric radius but holds also for larger radii and facilitates the optimal choice of permeability in the presence of the resonances....

  16. Horizon Quantum Mechanics: spherically symmetric and rotating sources

    Science.gov (United States)

    Giusti, Andrea

    2017-12-01

    In this paper we discuss some mathematical aspects of the horizon wave-function formalism, also known in the literature as horizon quantum mechanics. In particular, first we review the structure of both the global and local formalism for static spherically symmetric sources. Then, we present an extension of the global analysis for rotating black holes and we also point out some technical diffculties that arise while attempting the local analysis for non-spherically symmetric sources.

  17. Turbulent dynamos in spherical shell segments of varying geometrical extent

    OpenAIRE

    Mitra, Dhrubaditya; Tavakol, Reza; Brandenburg, Axel; Moss, David

    2008-01-01

    We use three-dimensional direct numerical simulations of the helically forced magnetohydrodynamic equations in spherical shell segments in order to study the effects of changes in the geometrical shape and size of the domain on the growth and saturation of large-scale magnetic fields. We inject kinetic energy along with kinetic helicity in spherical domains via helical forcing using Chandrasekhar-Kendall functions. We take perfect conductor boundary conditions for the magnetic field to ensure...

  18. BENCHMARK SOLUTIONS FOR STOKES EQUATIONS WITH VARIABLE VISCOSITY IN CYLINDRICAL AND SPHERICAL COORDINATES

    National Research Council Canada - National Science Library

    I. V. Makeev; I. Y. Popov; I. V. Blinova

    2016-01-01

    .... We suggest exact particular solutions of Stokes and continuity equations with variable viscosity and density in spherical coordinates for the case of spherically symmetric viscosity and density distributions...

  19. Preconditioning of the YSZ-NiO Fuel Cell Anode in Hydrogenous Atmospheres Containing Water Vapor.

    Science.gov (United States)

    Vasyliv, Bogdan; Podhurska, Viktoriya; Ostash, Orest

    2017-12-01

    The YSZ-NiO ceramics for solid oxide fuel cells (SOFCs) anode have been investigated. A series of specimens were singly reduced in a hydrogenous atmosphere (Ar-5 vol% H2 mixture) at 600 °C under the pressure of 0.15 MPa or subjected to 'reduction in the mixture-oxidation in air' (redox) cycling at 600 °C. The YSZ-Ni cermets formed in both treatment conditions were then aged in 'water vapor in Ar-5 vol% H2 mixture' atmosphere at 600 °C under the pressure of 0.15 MPa. Additionally, the behaviour of the as-received material in this atmosphere was studied. It was revealed that small amount of water vapor in Ar-5 vol% H2 mixture (water vapor pressure below 0.03 MPa) does not affect the reduction of the nickel phase in the YSZ-NiO ceramics, but causes some changes in the YSZ-Ni cermet structure. In particular, nanopore growth in tiny Ni particles takes place. At higher concentration of water vapor in the mixture (water vapor pressure above 0.03-0.05 MPa), converse changes in the kinetics of reduction occur. The best physical and mechanical properties were revealed for the material treated by redox cycling after holding at 600 °C in water depleted gas mixture. The dual effect of water vapor on nickel-zirconia anode behaviour is discussed basing on scanning electron microscopy analysis data, material electrical conductivity, and strength.

  20. Sphericity estimation bias for repeated measures designs in simulation studies.

    Science.gov (United States)

    Bono, Roser; Arnau, Jaume; Blanca, María J; Alarcón, Rafael

    2016-12-01

    In this study, we explored the accuracy of sphericity estimation and analyzed how the sphericity of covariance matrices may be affected when the latter are derived from simulated data. We analyzed the consequences that normal and nonnormal data generated from an unstructured population covariance matrix-with low (ε = .57) and high (ε = .75) sphericity-can have on the sphericity of the matrix that is fitted to these data. To this end, data were generated for four types of distributions (normal, slightly skewed, moderately skewed, and severely skewed or log-normal), four sample sizes (very small, small, medium, and large), and four values of the within-subjects factor (K = 4, 6, 8, and 10). Normal data were generated using the Cholesky decomposition of the correlation matrix, whereas the Vale-Maurelli method was used to generate nonnormal data. The results indicate the extent to which sphericity is altered by recalculating the covariance matrix on the basis of simulated data. We concluded that bias is greater with spherical covariance matrices, nonnormal distributions, and small sample sizes, and that it increases in line with the value of K. An interaction was also observed between sample size and K: With very small samples, the observed bias was greater as the value of K increased.

  1. Broken Ergodicity in MHD Turbulence in a Spherical Domain

    Science.gov (United States)

    Shebalin, John V.; wang, Yifan

    2011-01-01

    Broken ergodicity (BE) occurs in Fourier method numerical simulations of ideal, homogeneous, incompressible magnetohydrodynamic (MHD) turbulence. Although naive statistical theory predicts that Fourier coefficients of fluid velocity and magnetic field are zero-mean random variables, numerical simulations clearly show that low-wave-number coefficients have non-zero mean values that can be very large compared to the associated standard deviation. In other words, large-scale coherent structure (i.e., broken ergodicity) in homogeneous MHD turbulence can spontaneously grow out of random initial conditions. Eigenanalysis of the modal covariance matrices in the probability density functions of ideal statistical theory leads to a theoretical explanation of observed BE in homogeneous MHD turbulence. Since dissipation is minimal at the largest scales, BE is also relevant for resistive magnetofluids, as evidenced in numerical simulations. Here, we move beyond model magnetofluids confined by periodic boxes to examine BE in rotating magnetofluids in spherical domains using spherical harmonic expansions along with suitable boundary conditions. We present theoretical results for 3-D and 2-D spherical models and also present computational results from dynamical simulations of 2-D MHD turbulence on a rotating spherical surface. MHD turbulence on a 2-D sphere is affected by Coriolus forces, while MHD turbulence on a 2-D plane is not, so that 2-D spherical models are a useful (and simpler) intermediate stage on the path to understanding the much more complex 3-D spherical case.

  2. Imperfection sensitivity of pressured buckling of biopolymer spherical shells.

    Science.gov (United States)

    Zhang, Lei; Ru, C Q

    2016-06-01

    Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.

  3. History of ``NANO''-Scale VERY EARLY Solid-State (and Liquid-State) Physics/Chemistry/Metallurgy/ Ceramics; Interstitial-Alloys Carbides/Nitrides/Borides/...Powders and Cermets, Rock Shocks, ...

    Science.gov (United States)

    Maiden, Colin; Siegel, Edward

    History of ``NANO'': Siegel-Matsubara-Vest-Gregson[Mtls. Sci. and Eng. 8, 6, 323(`71); Physica Status Solidi (a)11,45(`72)] VERY EARLY carbides/nitrides/borides powders/cermets solid-state physics/chemistry/metallurgy/ ceramics FIRST-EVER EXPERIMENTAL NANO-physics/chemistry[1968 ->Physica Status Solidi (a)11,45(`72); and EARLY NANO-``physics''/NANO-``chemistry'' THEORY(after: Kubo(`62)-Matsubara(`60s-`70s)-Fulde (`65) [ref.: Sugano[Microcluster-Physics, Springer('82 `98)

  4. EPMA of interfaces applied to the solid oxide fuel cell.

    Science.gov (United States)

    Grübmeier, H; Naoumidis, A; Stochniol, G; Tsoga, A

    1995-10-01

    Chemical interactions at the phase boundaries of materials applied for the solid oxide fuel cell (SOFC) have been studied by EPMA. The chemical reactivity at the interface of La(y-x)Sr(x)MnO(3)/ZrO(2)-Y(2)O(3) is dependent on the stoichiometry (y) and the Sr content (x) of the perovskite. Typical reaction products (zirconates) and a diffusion zone in the ZrO(2)-Y(2)O(3) have been observed. The extension of cation release (Mn) is related to the increasing chemical activity of Mn oxide in the perovskite by the Sr substitution for La. The wettability of the metal/oxide interface in the anode cermet (Ni/ZrO(2)-Y(2)O(3)) has been found to be influenced by chemical reactions resulting from the applied reducing atmosphere with high carbon activity. The disintegration of ZrO(2)-Y(2)O(3) in contact with molten Ni or Ni-Ti and Ni-Cr alloys leads to the redeposition of Y(2)O(3)-enriched oxides and also to Zr-rich intermetallic compounds and eutectics.

  5. Reprocessability of molybdenum and magnesia based inert matrix fuels

    Directory of Open Access Journals (Sweden)

    Ebert Elena L.

    2015-12-01

    Full Text Available This work focuses on the reprocessability of metallic 92Mo and ceramic MgO, which is under investigation for (Pu,MA-oxide (MA = minor actinide fuel within a metallic 92Mo matrix (CERMET and a ceramic MgO matrix (CERCER. Magnesium oxide and molybdenum reference samples have been fabricated by powder metallurgy. The dissolution of the matrices was studied as a function of HNO3 concentration (1-7 mol/L and temperature (25-90°C. The rate of dissolution of magnesium oxide and metallic molybdenum increased with temperature. While the MgO rate was independent of the acid concentration (1-7 mol/L, the rate of dissolution of Mo increased with acid concentration. However, the dissolution of Mo at high temperatures and nitric acid concentrations was accompanied by precipitation of MoO3. The extraction of uranium, americium, and europium in the presence of macro amounts of Mo and Mg was studied by three different extraction agents: tri-n-butylphosphate (TBP, N,Nʹ-dimethyl-N,Nʹ-dioctylhexylethoxymalonamide (DMDOHEMA, and N,N,N’,N’- -tetraoctyldiglycolamide (TODGA. With TBP no extraction of Mo and Mg occurred. Both matrix materials are partly extracted by DMDOHEMA. Magnesium is not extracted by TODGA (D < 0.1, but a weak extraction of Mo is observed at low Mo concentration.

  6. An all-in-one flourite-based symmetrical solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Morales, Juan Carlos; Marrero-Lopez, David; Perez-Coll, Domingo; Pena-Martinez, Juan; Nunez, Pedro [Department of Inorganic Chemistry, University of La Laguna, Avda. Francisco Sanchez s/n, La Laguna, CP 38200 Tenerife (Spain); Canales-Vazquez, Jesus [Renewable Energy Research Institute, University of Castilla la Mancha, 02006 Albacete (Spain)

    2008-02-15

    A novel concept of solid oxide fuel cell (SOFC), the symmetrical SOFC, that uses simultaneously the same material as both anode and cathode has been investigated. Common materials typically used as anode components such as a combination of YSZ and CeO{sub 2} plus a noble metal may be considered good candidates for such a configuration at relatively high temperatures (i.e. above 900 C). These symmetrical electrodes exhibit enhanced electrochemical properties under both reducing and oxidising conditions, in part due to the catalytic properties of the noble metal used. In air the polarisation values are improved by a factor of four compared to electrodes without CeO{sub 2}, whereas under reducing conditions an improvement of two-three orders of magnitude has been observed. The best results correspond to cermets containing 50-60% of CeO{sub 2}. This simple combination allows the assembly of all-in-one fluorite-based symmetrical fuel cells (SFCs): YSZ-CeO{sub 2}/YSZ/YSZ-CeO{sub 2} plus a noble metal with good catalytic behaviour. Performances of 140 mW cm{sup -2} at 950 C were obtained when using H{sub 2} as fuel and thick YSZ electrolytes. Interesting performances of 500 mW cm{sup -2} are expected for thin YSZ electrolyte layer under identical experimental conditions. (author)

  7. Reforming of fuel inside fuel cell generator

    Science.gov (United States)

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  8. Spherical spacelike geometries in static spherically symmetric spacetimes: Generalized Painlevè–Gullstrand coordinates, foliation, and embedding

    Energy Technology Data Exchange (ETDEWEB)

    Akbar, M.M., E-mail: akbar@utdallas.edu

    2017-06-10

    It is well known that static spherically symmetric spacetimes can admit foliations by flat spacelike hypersurfaces, which are best described in terms of the Painlevè–Gullstrand coordinates. The uniqueness and existence of such foliations were addressed earlier. In this paper, we prove, purely geometrically, that any possible foliation of a static spherically symmetric spacetime by an arbitrary codimension-one spherical spacelike geometry, up to time translation and rotation, is unique, and we find the algebraic condition under which it exists. This leads us to what can be considered as the most natural generalization of the Painlevè–Gullstrand coordinate system for static spherically symmetric metrics, which, in turn, makes it easy to derive generic conclusions on foliation and to study specific cases as well as to easily reproduce previously obtained generalizations as special cases. In particular, we note that the existence of foliation by flat hypersurfaces guarantees the existence of foliation by hypersurfaces whose Ricci curvature tensor is everywhere non-positive (constant negative curvature is a special case). The study of uniqueness and the existence concurrently solves the question of embeddability of a spherical spacelike geometry in one-dimensional higher static spherically symmetric spacetimes, and this produces known and new results geometrically, without having to go through the momentum and Hamiltonian constraints.

  9. Spherical spacelike geometries in static spherically symmetric spacetimes: Generalized Painlevè–Gullstrand coordinates, foliation, and embedding

    Directory of Open Access Journals (Sweden)

    M.M. Akbar

    2017-06-01

    Full Text Available It is well known that static spherically symmetric spacetimes can admit foliations by flat spacelike hypersurfaces, which are best described in terms of the Painlevè–Gullstrand coordinates. The uniqueness and existence of such foliations were addressed earlier. In this paper, we prove, purely geometrically, that any possible foliation of a static spherically symmetric spacetime by an arbitrary codimension-one spherical spacelike geometry, up to time translation and rotation, is unique, and we find the algebraic condition under which it exists. This leads us to what can be considered as the most natural generalization of the Painlevè–Gullstrand coordinate system for static spherically symmetric metrics, which, in turn, makes it easy to derive generic conclusions on foliation and to study specific cases as well as to easily reproduce previously obtained generalizations as special cases. In particular, we note that the existence of foliation by flat hypersurfaces guarantees the existence of foliation by hypersurfaces whose Ricci curvature tensor is everywhere non-positive (constant negative curvature is a special case. The study of uniqueness and the existence concurrently solves the question of embeddability of a spherical spacelike geometry in one-dimensional higher static spherically symmetric spacetimes, and this produces known and new results geometrically, without having to go through the momentum and Hamiltonian constraints.

  10. Spherical-shell model for the van der Waals coefficients between fullerenes and/or nearly spherical nanoclusters.

    Science.gov (United States)

    Perdew, John P; Tao, Jianmin; Hao, Pan; Ruzsinszky, Adrienn; Csonka, Gábor I; Pitarke, J M

    2012-10-24

    Fullerene molecules such as C(60) are large nearly spherical shells of carbon atoms. Pairs of such molecules have a strong long-range van der Waals attraction that can produce scattering or binding into molecular crystals. A simplified classical-electrodynamics model for a fullerene is a spherical metal shell, with uniform electron density confined between outer and inner radii (just as a simplified model for a nearly spherical metallic nanocluster is a solid metal sphere or filled shell). For the spherical-shell model, the exact dynamic multipole polarizabilities are all known analytically. From them, we can derive exact analytic expressions for the van der Waals coefficients of all orders between two spherical metal shells. The shells can be identical or different, and hollow or filled. To connect the model to a real fullerene, we input the static dipole polarizability, valence electron number and estimated shell thickness t of the real molecule. Our prediction for the leading van der Waals coefficient C(6) between two C(60) molecules ((1.30 ± 0.22) × 10(5) hartree bohr(6)) agrees well with a prediction for the real molecule from time-dependent density functional theory. Our prediction is remarkably insensitive to t. Future work might include the prediction of higher-order (e.g. C(8) and C(10)) coefficients for C(60), applications to other fullerenes or nearly spherical metal clusters, etc. We also make general observations about the van der Waals coefficients.

  11. Microstructural degradation of Ni-YSZ anodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Thyden, K.

    2008-03-15

    Ni-YSZ cermets have been used as anode materials in SOFCs for more than 20 years. Despite this fact, the major cause of degradation within the Ni-YSZ anode, namely Ni sintering / coarsening, is still not fully understood. Even if microstructural studies of anodes in tested cells are of technological relevance, it is difficult to identify the effect from isolated parameters such as temperature, fuel gas composition and polarization. Model studies of high temperature aged Ni-YSZ cermets are generally performed in atmospheres containing relatively low concentrations of H2O. In this work, the microstructural degradation in both electrochemically longterm tested cells and high-temperature aged model materials are studied. Since Ni particle sintering / coarsening is attributed to be the major cause of anode degradation, this subject attains the primary focus. A large part of the work is focused on improving microstructural techniques and shows that the application of low acceleration voltages (<= 1 kV) in a FE-SEM makes it possible to obtain two useful types of contrast between the phases in Ni-YSZ composites. By changing between the ordinary lateral SE detector and the inlens detector, using similar microscope settings, two very different sample characteristics are probed: 1) The difference in secondary emission coefficient, delta, between the percolating and non-percolating Ni is maximized in the low-voltage range due to a high delta for the former and the suppression of delta by a positive charge for the latter. This difference yields a contrast between the two phases which is picked up by an inlens secondary electron detector. 2) The difference in backscatter coefficient, eta, between Ni and YSZ is shown to increase with decreasing voltage. The contrast is illustrated in images collected by the normal secondary detector since parts of the secondary signals are generated by backscattered electrons. High temperature aging experiments of model Ni-YSZ anode cermets show

  12. Realizing "2001: A Space Odyssey": Piloted Spherical Torus Nuclear Fusion Propulsion

    Science.gov (United States)

    Williams, Craig H.; Dudzinski, Leonard A.; Borowski, Stanley K.; Juhasz, Albert J.

    2005-01-01

    A conceptual vehicle design enabling fast, piloted outer solar system travel was created predicated on a small aspect ratio spherical torus nuclear fusion reactor. The initial requirements were satisfied by the vehicle concept, which could deliver a 172 mt crew payload from Earth to Jupiter rendezvous in 118 days, with an initial mass in low Earth orbit of 1,690 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including artificial gravity payload, central truss, nuclear fusion reactor, power conversion, magnetic nozzle, fast wave plasma heating, tankage, fuel pellet injector, startup/re-start fission reactor and battery bank, refrigeration, reaction control, communications, mission design, and space operations. Detailed fusion reactor design included analysis of plasma characteristics, power balance/utilization, first wall, toroidal field coils, heat transfer, and neutron/x-ray radiation. Technical comparisons are made between the vehicle concept and the interplanetary spacecraft depicted in the motion picture 2001: A Space Odyssey.

  13. A Spherical Torus Nuclear Fusion Reactor Space Propulsion Vehicle Concept for Fast Interplanetary Travel

    Science.gov (United States)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1998-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a greater than 5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all ma or systems including payload, central truss, nuclear reactor (including divertor and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, power utilization, and component design.

  14. On the shape and orientation control of an orbiting shallow spherical shell structure

    Science.gov (United States)

    Bainum, P. M.; Reddy, A. S. S. R.

    1982-01-01

    The dynamics of orbiting shallow flexible spherical shell structures under the influence of control actuators was studied. Control laws are developed to provide both attitude and shape control of the structure. The elastic modal frequencies for the fundamental and lower modes are closely grouped due to the effect of the shell curvature. The shell is gravity stabilized by a spring loaded dumbbell type damper attached at its apex. Control laws are developed based on the pole clustering techniques. Savings in fuel consumption can be realized by using the hybrid shell dumbbell system together with point actuators. It is indicated that instability may result by not including the orbital and first order gravity gradient effects in the plant prior to control law design.

  15. On the shape and orientation control of orbiting shallow spherical shell structure

    Science.gov (United States)

    Bainum, P. M.; Reddy, A. S. S. R.

    1983-01-01

    The dynamics of orbiting shallow flexible spherical shell structures under the influence of control actuators was studied. Control laws are developed to provide both attitude and shape control of the structure. The elastic modal frequencies for the fundamental and lower modes are closely grouped due to the effect of the shell curvature. The shell is gravity stabilized by a spring loaded dumbell type damper attached at its apex. Control laws are developed based on the pole clustering techniques. Savings in fuel consumption can be realized by using the hybrid shell dumbbell system together with point actuators. It is indicated that instability may result by not including the orbital and first order gravity gradient effects in the plant prior to control law design. Previously announced in STAR as N82-17243

  16. Numerical analysis of latent heat storage system with encapsulated phase change material in spherical capsules

    Directory of Open Access Journals (Sweden)

    Bellan Selvan

    2017-01-01

    Full Text Available Solar energy has been considered as one of the promising solutions to replace the fossil fuels. To generate electricity beyond normal daylight hours, thermal energy storage systems (TES play a vital role in concentrated solar power (CSP plants. Thus, a significant focus has been given on the improvement of TES systems from the past few decades. In this study, a numerical model is developed to obtain the detailed heat transfer characteristics of lab-scale latent thermal energy storage system, which consists of molten salt encapsulated spherical capsules and air. The melting process and the corresponding temperature and velocity distributions in every capsule of the system are predicted. The enthalpy-porosity approach is used to model the phase change region. The model is validated with the reported experimental results. Influence of initial condition on the thermal performance of the TES system is predicted.

  17. Transport fuel

    DEFF Research Database (Denmark)

    Ronsse, Frederik; Jørgensen, Henning; Schüßler, Ingmar

    2014-01-01

    Worldwide, the use of transport fuel derived from biomass increased four-fold between 2003 and 2012. Mainly based on food resources, these conventional biofuels did not achieve the expected emission savings and contributed to higher prices for food commod - ities, especially maize and oilseeds...

  18. Fuel Cells

    Science.gov (United States)

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  19. Preparation of spherical particles by vibrating orifice technique

    Science.gov (United States)

    Shibata, Shuichi; Tomizawa, Atsushi; Yoshikawa, Hidemi; Yano, Tetsuji; Yamane, Masayuki

    2000-05-01

    Preparation of micrometer-sized spherical particles containing Rhodamine 6G (R6G) has been investigated for the spherical cavity micro-laser. Using phenyl triethoxy silane (PTES) as a starting material, R6G-doped monodisperse spherical particles were prepared by the vibrating orifice technique. Processing consists of two major processes: (1) Hydrolysis and polymerization of PTES and (2) Droplet formation from PTES oligomers by vibrating orifice technique. A cylindrical liquid jet passing through the orifice of 10 and 20 micrometers in diameter breaks up into equal- sized droplets by mechanical vibration. Alcohol solvent of these droplets was evaporated during flying with carrier gas and subsequently solidified in ammonium water trap. For making smooth surface and god shaped particles, control of molecular weight of PTES oligomer was essential. R6G-doped hybrid spherical particles of 4 to 10 micrometers size of cavity structure were successfully obtained. The spherical particles were pumped by a second harmonic pulse of Q- switched Nd:YAG laser and laser emission peaks were observed at wavelengths which correspond to the resonance modes.

  20. Source distance determination based on the spherical harmonics

    Science.gov (United States)

    Koutny, Adam; Jiricek, Ondrej; Thomas, Jean-Hugh; Brothanek, Marek

    2017-02-01

    This paper deals with the processing of signals measured by a spherical microphone array, focusing on the utilization of near-field information of such an array. The processing, based on the spherical harmonics decomposition, is performed in order to investigate the radial-dependent spherical functions and extract their argument - distance to the source. Using the low-frequency approximation of these functions, the source distance is explicitly expressed. The source distance is also determined from the original equation (using no approximation) by comparing both sides of this equation. The applicability of both methods is first presented in the noise-less data simulation, then validated with data contaminated by the additive white noise of different signal-to-noise ratios. Finally, both methods are tested for real data measured by a rigid spherical microphone array of radius 0.15 m, consisting of 36 microphones for a point source represented by a small speaker. The possibility of determination of the source distance using low-order spherical harmonics is shown.

  1. Templated nucleation of acetaminophen on spherical excipient agglomerates.

    Science.gov (United States)

    Quon, Justin L; Chadwick, Keith; Wood, Geoffrey P F; Sheu, Iris; Brettmann, Blair K; Myerson, Allan S; Trout, Bernhardt L

    2013-03-12

    We investigated the effect of spherical agglomeration of heterogeneous crystalline substrates on the nucleation of acetaminophen (AAP). Optical and electron microscopy showed that the surface morphologies of single crystal triclinic lactose and D-mannitol differed significantly from their counterparts formed via spherical agglomeration. Spherical agglomerates of lactose were shown to enhance the nucleation rate of acetaminophen (AAP) by a factor of 11 compared to single crystal lactose; however, no such enhancement was observed for D-mannitol. X-ray powder diffraction identified the presence of new crystal faces of lactose present only in the spherical agglomerates However, D-mannitol did not show any significant change in crystal morphology. The new crystal faces of triclinic lactose were analyzed using geometric lattice matching software and molecular dynamics simulations to establish any new and significant epitaxial matches between lactose and AAP. A coincident lattice match and a large favorable energy interaction from hydrogen bonding were observed between the (141¯) and (001) crystal faces of lactose and AAP, respectively. The enhanced nucleation kinetics, X-ray data, and computational studies indicated that the spherical crystallization of lactose exposed the (141¯) face on the surface of the agglomerates, which subsequently enhanced the nucleation rate of AAP through geometric lattice matching and molecular functionality. This study highlights the importance of exploring different heterogeneous substrate morphologies for enhancing nucleation kinetics.

  2. Peripheral Defocus with Spherical and Multifocal Soft Contact Lenses

    Science.gov (United States)

    Berntsen, David A.; Kramer, Carl E.

    2014-01-01

    Purpose To describe peripheral defocus when myopic eyes are corrected with spherical and center-distance multifocal soft contact lenses while looking at distance and near. Methods Twenty-five young adults with spherical contact lens-corrected refractive error of −0.50 to −6.00 D participated. Refractive error of each participant’s right eye was measured while it wore a spherical soft contact lens (Biofinity) and again while it wore a center-distance multifocal soft contact lens with a +2.50-D add (Biofinity Multifocal "D"). Measurements were made centrally and along the horizontal meridian at ±20°, ±30°, and ±40° from the line of sight at distance and near (3.33-D demand). Results The mean (±SD) age and spherical equivalent refractive error were 23.8 ± 1.3 years and −3.62 ± 1.56 D, respectively. At distance, the multifocal contact lens resulted in significantly more myopic defocus than the spherical contact lens at the 40° and 30° locations on the nasal retina and at the 20° and 30° locations on the temporal retina (pcontact lens in this study make it a good candidate for studies seeking to examine the effect of peripheral myopic defocus on myopia progression in children. PMID:24076542

  3. Spherical hohlraum energetics studies on the SG series laser facility

    Science.gov (United States)

    Huo, Wenyi; Li, Zhichao; Xie, Xufei; Chen, Yaohua; Ren, Guoli; Liu, Jie; Lan, Ke

    2017-10-01

    The integrated experiments at the National Ignition Facility indicates that the radiation asymmetry control in the cylindrical hohlraums is an extremely challenging problem in achieving ignition by using indirect drive. Recently, Lan et al. proposed the octahedral spherical hohlraum which has the natural superiority in providing high radiation symmetry. As new and promising hohlraums, the performance of spherical hohlraum attracts much research interests. Hohlraum energetics is one of the fundamental problems in indirect drive inertial confinement study. We report on the spherical hohlraum experiments performed at the SG series laser facility. At the SGIII-prototype laser facility, we performed the first spherical energetics experiment. The radiation temperature is measured by using an array of flat-response x-ray detectors through a laser entrance hole at different angles. The radiation temperature and M-ban fraction inside the hohlraum are determined by the shock wave technique. At the SGIII laser facility, we performed the first octahedral spherical hohlraum energetics experiment. The 32 of 48 laser beams enter the hohlraum through six laser entrance holes. The radiation flux is measured by 5 FXRDs at different angles. And the radiation temperature inside the hohlraum is determined by the shock wave technique. The repetition of the experimental results is excellent.

  4. Potential electrode materials for symmetrical Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Ruiz Morales, J. C.

    2008-08-01

    Full Text Available Chromites, titanates and Pt-YSZ-CeO2 cermets have been investigated as potential electrode materials for an alternative concept of Solid Oxide Fuel Cell (SOFC, the symmetrical SOFCs (SFC. In this configuration, the same electrode material is used simultaneously as anode and cathode. Interconnector materials, such as chromites, could be considered as potential SFC electrodes, at least under pure hydrogen-fed at relatively high temperatures, as they do not exhibit significant catalytic activity towards hydrocarbon oxidation. This may be overcome by partially substituting Cr in the perovskite B-sites by other transition metal cations such as Mn. La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM is a good candidate for such SFCs, rendering fuel cell performances in excess of 500 and 300mW/cm2 using pure H2 and CH4 as fuel, at 950 oC. Similarly, typical n-type electronic conductors traditionally regarded as anode materials, such as strontium titanates, may also operate under oxidising conditions as cathodes by substituting some Ti content for Fe to introduce p-type conductivity. Preliminary electrochemical experiments on La4Sr8Ti12-xFexO38-δ-based SFCs show that they perform reasonably well under humidified H2, at high temperatures. A third group of materials is the support material of any typical cermet anode, i.e. YSZ, CeO2 plus a current collector. It has been found that this combination could be optimised to operate as SFC electrodes, rendering performances of 400mW/cm2 under humidified pure H2 at 950oC.

    Cromitas, titanatos y cermets de Pt-YSZ-CeO2 han sido investigados como potenciales materiales de electrodo para un concepto alternativo de Pilas de Combustible de Óxidos Sólidos (SOFC, las pilas SOFC simétricas (SFC. En

  5. Influence of initial imperfections on ultimate strength of spherical shells

    Directory of Open Access Journals (Sweden)

    Chang-Li Yu

    2017-09-01

    Full Text Available Comprehensive consideration regarding influence mechanisms of initial imperfections on ultimate strength of spherical shells is taken to satisfy requirement of deep-sea structural design. The feasibility of innovative numerical procedure that combines welding simulation and non-linear buckling analysis is verified by a good agreement to experimental and theoretical results. Spherical shells with a series of wall thicknesses to radius ratios are studied. Residual stress and deformations from welding process are investigated separately. Variant influence mechanisms are discovered. Residual stress is demonstrated to be influential to stress field and buckling behavior but not to the ultimate strength. Deformations are proved to have a significant impact on ultimate strength. When central angles are less than critical value, concave magnitudes reduce ultimate strengths linearly. However, deformations with central angles above critical value are of much greater harm. Less imperfection susceptibility is found in spherical shells with larger wall thicknesses to radius ratios.

  6. CT Scanning Imaging Method Based on a Spherical Trajectory.

    Directory of Open Access Journals (Sweden)

    Ping Chen

    Full Text Available In industrial computed tomography (CT, the mismatch between the X-ray energy and the effective thickness makes it difficult to ensure the integrity of projection data using the traditional scanning model, because of the limitations of the object's complex structure. So, we have developed a CT imaging method that is based on a spherical trajectory. Considering an unrestrained trajectory for iterative reconstruction, an iterative algorithm can be used to realise the CT reconstruction of a spherical trajectory for complete projection data only. Also, an inclined circle trajectory is used as an example of a spherical trajectory to illustrate the accuracy and feasibility of this new scanning method. The simulation results indicate that the new method produces superior results for a larger cone-beam angle, a limited angle and tabular objects compared with traditional circle trajectory scanning.

  7. A Review of Active Mechanical Driving Principles of Spherical Robots

    Directory of Open Access Journals (Sweden)

    Richard Chase

    2012-11-01

    Full Text Available Spherical robotics is an emerging research field due to a ball’s characteristic to be holonomic, have a sealed internal environment, and rebound from collisions easily. As the research moves forward, individual groups have begun to develop unique methods of propulsion, each having distinctive engineering trade-offs: weight is sacrificed for power; speed is forfeited for control accuracy, etc. Early spherical robots operated similar to a hamster ball and had a limited torque and a high-energy loss due to internal friction. Researchers have begun to develop various novel concepts to maneuver and control this family of robot. This article is an overview of the current research directions that various groups have taken, the nomenclature used in this subdiscipline, and the various uses of the fundamental principles of physics for propelling a spherical robot.

  8. Mechanisms of Stochastic Diffusion of Energetic Ions in Spherical Tori

    Energy Technology Data Exchange (ETDEWEB)

    Ya.I. Kolesnichenko; R.B. White; Yu.V. Yakovenko

    2001-01-18

    Stochastic diffusion of the energetic ions in spherical tori is considered. The following issues are addressed: (I) Goldston-White-Boozer diffusion in a rippled field; (ii) cyclotron-resonance-induced diffusion caused by the ripple; (iii) effects of non-conservation of the magnetic moment in an axisymmetric field. It is found that the stochastic diffusion in spherical tori with a weak magnetic field has a number of peculiarities in comparison with conventional tokamaks; in particular, it is characterized by an increased role of mechanisms associated with non-conservation of the particle magnetic moment. It is concluded that in current experiments on National Spherical Torus eXperiment (NSTX) the stochastic diffusion does not have a considerable influence on the confinement of energetic ions.

  9. Site symmetry and crystal symmetry: a spherical tensor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brouder, Christian; Juhin, Amelie; Bordage, Amelie; Arrio, Marie-Anne [Institut de Mineralogie et de Physique des Milieux Condenses, CNRS UMR 7590, Universites Paris 6 et 7, IPGP, 140 rue de Lourmel, 75015 Paris (France)], E-mail: christian.brouder@impmc.jussieu.fr

    2008-11-12

    The relation between the properties of a specific crystallographic site and the properties of the full crystal is discussed by using spherical tensors. The concept of spherical tensors is introduced and the way it transforms under the symmetry operations of the site and from site to site is described in detail. The law of spherical tensor coupling is given and illustrated with the example of the electric dipole and quadrupole transitions in x-ray absorption spectroscopy. The main application of the formalism is the reduction of computation time in the calculation of the properties of crystals by band-structure methods. The general approach is illustrated by the examples of substitutional chromium in spinel and substitutional vanadium in garnet.

  10. Design and Transmission Analysis of an Asymmetrical Spherical Parallel Manipulator

    DEFF Research Database (Denmark)

    Wu, Guanglei; Caro, Stéphane; Wang, Jiawei

    2015-01-01

    analysis and optimal design of the proposed manipulator based on its kinematic analysis. The input and output transmission indices of the manipulator are defined for its optimum design based on the virtual coefficient between the transmission wrenches and twist screws. The sets of optimal parameters......This paper presents an asymmetrical spherical parallel manipulator and its transmissibility analysis. This manipulator contains a center shaft to both generate a decoupled unlimited-torsion motion and support the mobile platform for high positioning accuracy. This work addresses the transmission...... are identified and the distribution of the transmission index is visualized. Moreover, a comparative study regarding to the performances with the symmetrical spherical parallel manipulators is conducted and the comparison shows the advantages of the proposed manipulator with respect to its spherical parallel...

  11. Turbulence Modulation by Non-Spherical Particles

    DEFF Research Database (Denmark)

    Mandø, Matthias

    This study deals with the interaction between turbulence and non-spherical particles and represents an extension of the modeling framework for particleladen flows. The effect of turbulence on particles is commonly referred to as turbulent dispersion while the effect of particles on the carrier...... phase turbulence is known as turbulence modulation. Whereas the former is well understood, no commonly accepted explanation has been presented for the latter. Moreover, considerations regarding the influence of shape on the experienced turbulence modulation must be considered as terra incognita......-spherical particles and turbulence modulation are outlined. A complete description of the motion of non-spherical particles is still lacking. However, evidence suggests that the equation of motion for a sphere only represent an asymptotical value for a more general, but yet unformulated, description of the motion...

  12. Plane-wave decomposition by spherical-convolution microphone array

    Science.gov (United States)

    Rafaely, Boaz; Park, Munhum

    2004-05-01

    Reverberant sound fields are widely studied, as they have a significant influence on the acoustic performance of enclosures in a variety of applications. For example, the intelligibility of speech in lecture rooms, the quality of music in auditoria, the noise level in offices, and the production of 3D sound in living rooms are all affected by the enclosed sound field. These sound fields are typically studied through frequency response measurements or statistical measures such as reverberation time, which do not provide detailed spatial information. The aim of the work presented in this seminar is the detailed analysis of reverberant sound fields. A measurement and analysis system based on acoustic theory and signal processing, designed around a spherical microphone array, is presented. Detailed analysis is achieved by decomposition of the sound field into waves, using spherical Fourier transform and spherical convolution. The presentation will include theoretical review, simulation studies, and initial experimental results.

  13. Plastic instabilities in statically and dynamically loaded spherical vessels

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, Thomas A [Los Alamos National Laboratory; Rodriguez, Edward A [Los Alamos National Laboratory

    2010-01-01

    Significant changes were made in design limits for pressurized vessels in the 2007 version of the ASME Code (Section VIII, Div. 3) and 2008 and 2009 Addenda. There is now a local damage-mechanics based strain-exhaustion limit as well as the well-known global plastic collapse limit. Moreover, Code Case 2564 (Section VIII, Div. 3) has recently been approved to address impulsively loaded vessels. It is the purpose of this paper to investigate the plastic collapse limit as it applies to dynamically loaded spherical vessels. Plastic instabilities that could potentially develop in spherical shells under symmetric loading conditions are examined for a variety of plastic constitutive relations. First, a literature survey of both static and dynamic instabilities associated with spherical shells is presented. Then, a general plastic instability condition for spherical shells subjected to displacement controlled and impulsive loading is given. This instability condition is evaluated for six plastic and visco-plastic constitutive relations. The role of strain-rate sensitivity on the instability point is investigated. Calculations for statically and dynamically loaded spherical shells are presented, illustrating the formation of instabilities as well as the role of imperfections. Conclusions of this work are that there are two fundamental types of instabilities associated with failure of spherical shells. In the case of impulsively loaded vessels, where the pulse duration is short compared to the fundamental period of the structure, one instability type is found not to occur in the absence of static internal pressure. Moreover, it is found that the specific role of strain-rate sensitivity on the instability strain depends on the form of the constitutive relation assumed.

  14. SPHERICAL CRYSTALLIZATION OF ZALTOPROFEN FOR ENHANCEMENT OF MICROMERITIC PROPERTIES AND DISSOLUTION RATE

    OpenAIRE

    E. Hari Krishna*, V. Ram Mohan Gupta and S. Jyothi

    2012-01-01

    The present work deals with the spherical crystallization process by Spherical agglomeration method applied to Zaltoprofen, a novel NSAID drug. The object of present study was to prepare and characterize the spherical agglomeration of water insoluble non-steroidal anti-inflammatory drug. Zaltoprofen spherical agglomerates prepared with poly ethylene glycol, which is hydrophilic polymer by using simple spherical agglomeration technique for enhancing micromeritic properties and dissolution rate...

  15. Strongly Localized Image States of Spherical Graphitic Particles

    Directory of Open Access Journals (Sweden)

    Godfrey Gumbs

    2014-01-01

    Full Text Available We investigate the localization of charged particles by the image potential of spherical shells, such as fullerene buckyballs. These spherical image states exist within surface potentials formed by the competition between the attractive image potential and the repulsive centripetal force arising from the angular motion. The image potential has a power law rather than a logarithmic behavior. This leads to fundamental differences in the nature of the effective potential for the two geometries. Our calculations have shown that the captured charge is more strongly localized closest to the surface for fullerenes than for cylindrical nanotube.

  16. Characterization of diffusivity based on spherical array processing

    DEFF Research Database (Denmark)

    Nolan, Melanie; Fernandez Grande, Efren; Jeong, Cheol-Ho

    2015-01-01

    The purpose of this study is to assess the diffuse field conditions in a reverberant space using a sound field reconstruction method based on spherical microphone array measurements. Spherical microphone arrays are particularly well suited for applications in non-anechoic enclosures, where...... in such an environment. This initial investigation shows the validity of the suggested processing and reveals interesting perspectives for future work. Ultimately, the aim is to define a proper and reliable measure of the diffuse sound field conditions in a reverberation chamber, with the prospect of improving...

  17. A Transmission Line Model for the Spherical Beltrami Problem

    Science.gov (United States)

    Papageorgiou, C. D.; Raptis, T. E.

    We extend a previously introduced model for finding eigenvalues and eigenfunctions of PDEs with a certain natural symmetry set based on an analysis of an equivalent transmission line circuit. This was previously applied with success in the case of optical fibers [8], [9] as well as in the case of a linear Schroedinger equation [10], [11] and recently in the case of spherical symmetry (Ball Lightning) [12]. We explore the interpretation of eigenvalues as resonances of the corresponding transmission line model. We use the generic Beltrami problem of non-constant eigen-vorticity in spherical coordinates as a test bed and we locate the bound states and the eigen-vorticity functions.

  18. Mechanical characterization of ibuprofen, naproxen, and their spherically crystallized products

    Science.gov (United States)

    Anderson, Stephen R.

    The objectives of this study were to establish a rational basis for choosing parameters for conducting the tensile strength and indentation hardness test on pharmaceutical compacts, to describe the changes in tableting indices based on the different parameters, to develop a method to spherically crystallize ibuprofen, and to compare the mechanical and micromeritic properties of spherically crystallized ibuprofen and naproxen to the starting materials. This work described the importance of establishing the appropriate test parameters for tensile strength and indentation hardness tests so that reliable and predictive tableting indices could be determined. The fracture strength for diametral compression of ibuprofen compacts was determined for two modes of stress application, constant stress rate and constant strain rate. The tensile strength for diametral compression of ibuprofen and naproxen compacts was determined using a constant strain rate (0.05 to 16 mm/min). The static indentation hardness (Meyer hardness) of ibuprofen and naproxen compacts was determined at varying solid fractions and indentor depth of penetration. Results from these studies were used to establish an appropriate rate of stress application during diametral compression and an appropriate depth of penetration for indentation hardness testing in order to calculate tableting indices. The tableting indices calculated from the aforementioned properties were: the brittle fracture index (BFI), the best case bonding index (BIsb{b}), the worst case bonding index (BIsb{w}), the brittle/viscoelastic bonding index (bBIsb{v}), and the viscoelastic index (VI). In addition, changes in compactibility between the starting materials and their spherically crystallized products were assessed through the analysis of Athy-Heckel profiles. A comparison of micromeritic properties included particle size, porosity, surface area, bulk density, tap density, true density, and flowability as measured by the Carr Index. The

  19. Addition theorems for spin spherical harmonics: I. Preliminaries

    Energy Technology Data Exchange (ETDEWEB)

    Bouzas, Antonio O, E-mail: abouzas@mda.cinvestav.mx [Departamento de Fisica Aplicada, CINVESTAV-IPN, Carretera Antigua a Progreso Km. 6, Apdo. Postal 73 ' Cordemex' , Merida 97310, Yucatan (Mexico)

    2011-04-22

    We develop a systematic approach to deriving addition theorems for, and some other bilocal sums of, spin spherical harmonics. In this first part we establish some necessary technical results. We discuss the factorization of orbital and spin degrees of freedom in certain products of Clebsch-Gordan coefficients, and obtain general explicit results for the matrix elements in configuration space of tensor products of arbitrary rank of the position and angular-momentum operators. These results are the basis of the addition theorems for spin spherical harmonics obtained in part II (2011 J. Phys. A: Math. Theor. 44 165302).

  20. Transitions in a magnetized quasi-laminar spherical Couette Flow

    CERN Document Server

    Kaprzyk, C; Seilmayer, M; Stefani, F

    2016-01-01

    First results of a new spherical Couette experiment are presented. The liquid metal flow in a spherical shell is exposed to a homogeneous axial magnetic field. For a Reynolds number Re=1000, we study the effect of increasing Hartmann number Ha. The resulting flow structures are inspected by ultrasound Doppler velocimetry. With a weak applied magnetic field, we observe an equatorially anti-symmetric jet instability with azimuthal wave number m=3. As the magnetic field strength increases, this instability vanishes. When the field is increased further, an equatorially symmetric return flow instability arises. Our observations are shown to be in good agreement with linear stability analysis and non-linear flow simulations.

  1. Quantum nonlocal effects on optical properties of spherical nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Engineering Physics, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2015-02-15

    To study the scattering of electromagnetic radiation by a spherical metallic nanoparticle with quantum spatial dispersion, we develop the standard nonlocal Mie theory by allowing for the excitation of the quantum longitudinal plasmon modes. To describe the quantum nonlocal effects, we use the quantum longitudinal dielectric function of the system. As in the standard Mie theory, the electromagnetic fields are expanded in terms of spherical vector wavefunctions. Then, the usual Maxwell boundary conditions are imposed plus the appropriate additional boundary conditions. Examples of calculated extinction spectra are presented, and it is found that the frequencies of the subsidiary peaks, due to quantum bulk plasmon excitations exhibit strong dependence on the quantum spatial dispersion.

  2. Conception of transport cask with advanced safety, aimed at transportation and storage of spent nuclear fuel of power reactors, which meets the requirements of IAEA in terms of safety and increased stability during beyond-design-basis accidents and acts of terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Il' kaev, R.I.; Matveev, V.Z.; Morenko, A.I.; Shapovalov, V.I. [Russian Federal Nuclear Center - All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation); Semenov, A.G.; Sergeyev, V.M.; Orlov, V.K. [All-Russian Research Inst. of Inorganic Materials, Moscow (Russian Federation); Shatalov, V.V.; Gotovchikov, V.T.; Seredenko, V.A. [All-Russian Research Inst. of Applied Chemistry, Moscow (Russian Federation); Haire, Jonathan M.; Forsberg, C.W. [Oak Ridge National Lab., Oak Ridge (United States)

    2004-07-01

    The report is devoted to the problem of creation of a new generation of multi-purpose universal transport cask with advanced safety, aimed at transportation and storage of spent nuclear fuel (SNF) of power reactors, which meets all requirements of IAEA in terms of safety and increased stability during beyond-design-basis accidents and acts of terrorism. Meeting all IAEA requirements in terms of safety both in normal operation conditions and accidents, as well as increased stability of transport cask (TC) with SNF under the conditions of beyond-design-basis accidents and acts of terrorism has been achieved in the design of multi-purpose universal TC due to the use of DU (depleted uranium) in it. At that, it is suggested to use DU in TC, which acts as effective gamma shield and constructional material in the form of both metallic depleted uranium and metal-ceramic mixture (cermet), based on stainless or carbon steel and DU dioxide. The metal in the cermet is chosen to optimize cask performance. The use of DU in the design of multi-purpose universal TC enables getting maximum load of the container for spent nuclear fuel when meeting IAEA requirements in terms of safety and providing increased stability of the container with SNF under conditions of beyond-design-basis accident and acts of terrorism.

  3. Multi-metallic anodes for solid oxide fuel cell applications; Anodos multi-metalicos para aplicacoes em celulas a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Restivo, T.A. Guisard; Mello-Castanho, S.R.H. [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia dos Materiais; Leite, D. Will [Instituto de Pesquisas e Estudos Industriais (IPEI/FEI), Sao Bernardo do Campo, SP (Brazil). Fac. de Engenharia Industrial

    2009-07-01

    A new method for direct preparation of materials for solid oxide fuel cell anode - Ni- YSZ cermets - based on mechanical alloying (MA) of the original powders is developed, allowing to admix homogeneously any component. Additive metals are selected from thermodynamic criteria, leading to compacts consolidation through sintering by activated surface (SAS). The combined process MA-SSA can reduce the sintering temperature by 300 deg C, yielding porous anodes. Densification mechanisms are discussed from quasi-isothermal sintering kinetics results. Doping with Ag, W, Cu, Mo, Nb, Ta, in descending order, promotes the densification of pellets through liquid phase sintering and evaporation of metals and oxides, which allow reducing the sintering temperature. Powders and pellets characterization by electronic microscopy and X-ray diffraction completes the result analyses. (author)

  4. Gravitational field of spherical domain wall in higher dimension

    Indian Academy of Sciences (India)

    An exact solution of Einstein's equations is found describing the gravitational field of a spherical domain wall with nonvanishing stress component in the direction perpendicular to the plane of the wall. Also we have studied the motion of test particle around the domain wall.

  5. Gravitational field of spherical domain wall in higher dimension

    Indian Academy of Sciences (India)

    Gravitational field of spherical domain wall in higher dimension. FAROOK RAHAMAN and MEHEDI KALAM. Khodar Bazar, Baruipur, 24 Parganas (South), West Bengal 743 302, India. Email: jumath@cal.vsnl.net.in. MS received 5 May 2001; revised 17 August 2001. Abstract. An exact solution of Einstein's equations is ...

  6. Radiation quality factor of spherical antennas with material cores

    DEFF Research Database (Denmark)

    Hansen, Troels Vejle; Kim, Oleksiy S.; Breinbjerg, Olav

    2011-01-01

    This paper gives a description of the radiation quality factor and resonances of spherical antennas with material cores. Conditions for cavity and radiating resonances are given, and a theoretical description of the radiation quality factor, as well as simple expressions describing the relative...

  7. Acoustic source localization in mixed field using spherical microphone arrays

    Science.gov (United States)

    Huang, Qinghua; Wang, Tong

    2014-12-01

    Spherical microphone arrays have been used for source localization in three-dimensional space recently. In this paper, a two-stage algorithm is developed to localize mixed far-field and near-field acoustic sources in free-field environment. In the first stage, an array signal model is constructed in the spherical harmonics domain. The recurrent relation of spherical harmonics is independent of far-field and near-field mode strengths. Therefore, it is used to develop spherical estimating signal parameter via rotational invariance technique (ESPRIT)-like approach to estimate directions of arrival (DOAs) for both far-field and near-field sources. In the second stage, based on the estimated DOAs, simple one-dimensional MUSIC spectrum is exploited to distinguish far-field and near-field sources and estimate the ranges of near-field sources. The proposed algorithm can avoid multidimensional search and parameter pairing. Simulation results demonstrate the good performance for localizing far-field sources, or near-field ones, or mixed field sources.

  8. STRESS CONCENTRATION DUE TO A SPHERICAL VOID UNDER HERTZIAN CONTACT

    Directory of Open Access Journals (Sweden)

    Stelian ALACI,

    2010-06-01

    Full Text Available The present paper presents the method of estimating the stress concentrator effect of a spherical void from an elastic half-space. An essential part consists in estimation of FEM error by finding the contact pressure from half-plane using an analytical method. Next, the stress concentrator effect of the same void, except for placed into elastic space, is found.

  9. Hydrodynamic coefficients for water-wave diffraction by spherical ...

    Indian Academy of Sciences (India)

    Evaluation of hydrodynamic coefficients and loads on submerged or floating bodies is of great significance in designing these structures. Some special regular-shaped geometries such as those of cylindrical (circular, elliptic) and spherical (hemisphere, sphere, spheroid) structures are usually considered to obtain analytical ...

  10. Spherical aberration from trajectories in real and hard-edge ...

    Indian Academy of Sciences (India)

    (3)–(4) by comparing with spherical aberration obtained from the ensemble of particle trajectories. The scaled field gives the same focal length. 3. Particle trajectory. 3.1 Ray equation with aberration. The particle trajectory in a solenoid magnet with aberrations is governed by the third-order paraxial ray equation given in eq.

  11. Anisometropia is independently associated with both spherical and cylindrical ametropia.

    Science.gov (United States)

    Qin, Xue-Jiao; Margrain, Tom H; To, Chi Ho; Bromham, Nathan; Guggenheim, Jeremy A

    2005-11-01

    To explore the associations between anisometropia and spherical ametropia, astigmatism, age, and sex. Associations between the prevalence and magnitude of anisometropia with age, sex, spherical power, and cylindrical power, were assessed in a group of 90,884 subjects attending optometry practices in the United Kingdom. Logistic regression models were used to assess the independent contribution of each explanatory variable. Logistic regression analyses that included all subjects or just those aged 20 to 40 years showed that spherical ametropia and astigmatism were independently associated with anisometropia (myopes, P Anisometropia was relatively stable between the ages of 20 and 40 years, but then became more common with age, in myopes from the age of 40 years onward (P anisometropia to a clinically significant extent. This is the first study to show an independent association between anisometropia and both spherical ametropia and astigmatism. The results also suggest that the previously noted increased prevalence of anisometropia with age occurs later in hyperopes than in myopes, once other covariates have been controlled for. However, it could not be ruled out that this latter effect was due to clinical selection bias in our sample. The findings suggest that research projects involving the recruitment of highly ametropic subjects, such as those investigating the genetics of refractive error, may benefit by avoiding the use of stringent inclusion criteria for anisometropia, because otherwise a large proportion of the relevant population will be excluded.

  12. Novel spherical hohlraum with cylindrical laser entrance holes and shields

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Ke [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Zheng, Wudi [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2014-09-15

    Our recent works [K. Lan et al., Phys. Plasmas 21, 010704 (2014); K. Lan et al., Phys. Plasmas 21, 052704 (2014)] have shown that the octahedral spherical hohlraums are superior to the cylindrical hohlraums in both higher symmetry during the capsule implosion and lower backscatter without supplementary technology. However, both the coupling efficiency from the drive laser energy to the capsule and the capsule symmetry decrease remarkably when larger laser entrance holes (LEHs) are used. In addition, the laser beams injected at angles > 45° transport close to the hohlraum wall, thus the wall blowoff causes the LEH to close faster and results in strong laser plasma interactions inside the spherical hohlraums. In this letter, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs to alleviate these problems. From our theoretical study, with the LEH shields, the laser coupling efficiency is significantly increased and the capsule symmetry is remarkably improved in the spherical hohlraums. The cylindrical LEHs take advantage of the cylindrical hohlraum near the LEH and mitigate the influence of the blowoff on laser transport inside a spherical hohlraum. The cylindrical LEHs can also be applied to the rugby and elliptical hohlraums.

  13. Low lying collective 2/sup +/ states of spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Khodel, V.A.

    1976-02-01

    The nature of low-lying collective 2/sup +/ states of superfluid spherical nuclei is investigated. It is shown that the dominating role in formation of these excitations is played by effective attraction between the quasiparticles of the last unfilled shell, arising from exchange by quantal capillar waves--capons.

  14. Is the dark halo of our Galaxy spherical?

    NARCIS (Netherlands)

    Helmi, A

    2004-01-01

    It has been recently claimed that the confined structure of the debris from the Sagittarius dwarf implies that the dark matter halo of our Galaxy should be nearly spherical, in strong contrast with predictions from cold dark matter simulations, where dark haloes are found to have typical density

  15. Minimum Q circularly polarized electrically small spherical antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2011-01-01

    The radiation problem for the TM10- and TE10-mode electric current densities on the surface of a spherical magnetic-coated PEC core is solved analytically. The combination of the electric and magnetic dipole modes reduces the radiation Q of the antenna. Moreover, with an appropriately designed...

  16. Buckling-driven Delamination in Layered Spherical Shells

    DEFF Research Database (Denmark)

    Sørensen, Kim Dalsten; Jensen, Henrik Myhre

    2008-01-01

    An analysis of buckling-driven delamination of a thin film on a spherical substrate has been carried out. The effects of the substrate having a double curvature compared to previous studies of delamination on cylindrical substrates turn out to be non-trivial: In addition to the effect of the shap...

  17. development of a hydrothermal method to synthesize spherical znse ...

    African Journals Online (AJOL)

    Preferred Customer

    A hydrothermal method to synthesize spherical ZnSe nanoparticles. Bull. Chem. Soc. Ethiop. 2014, 28(1). 39 resulting in the equalization of scattering coefficients of the reference side and sample side. The integrating sphere method involves a barium sulfate-coated sphere that draws the scattered light, allowing all the light ...

  18. Application of Tietz potential to study optical properties of spherical ...

    Indian Academy of Sciences (India)

    Abstract. In this work, we study the optical properties of spherical quantum dots by using. Tietz potential. In this regard, we have applied Nikiforov–Uvarov (NU) technique and numeri- cally solved the Schrödinger equation to obtain energy levels and wave functions. Then, by using the density matrix method, we have derived ...

  19. Spherically symmetric inhomogeneous bianisotropic media: Wave propagation and light scattering

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Shalin, Alexander S.; Lavrinenko, Andrei

    2017-01-01

    We develop a technique for finding closed-form expressions for electromagnetic fields in radially inhomogeneous bianisotropic media, both the solutions of the Maxwell equations and material tensors being defined by the set of auxiliary two-dimensional matrices. The approach is applied to determin...... the scattering cross-sections by spherical particles, the fields inside which correspond to the Airy-exponential waves....

  20. Scour around spherical bodies and self-burial

    DEFF Research Database (Denmark)

    Truelsen, Christoffer; Sumer, B. Mutlu; fredsøe, jørgen

    2005-01-01

    This paper summarizes the results of an experimental study on scour around spherical bodies and self-burial in steady current and in waves. The equilibrium scour depth below a fixed sphere in steady current for live-bed conditions was found to be S/D = O(O.3) D being the sphere diameter. The effe...

  1. Advanced spherical near-field antenna measurement techniques

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Majlund; Pivnenko, Sergey; Breinbjerg, Olav

    2011-01-01

    The DTU-ESA facility has since the 1980es provided highly accurate antenna radiation pattern measurements and gain calibration by use of the probe corrected spherical nearfield technique, both for ESA (the European Space Agency) and other customers and continues to do so. Recent years activities ...

  2. Turning Points of the Spherical Pendulum and the Golden Ratio

    Science.gov (United States)

    Essen, Hanno; Apazidis, Nicholas

    2009-01-01

    We study the turning point problem of a spherical pendulum. The special cases of the simple pendulum and the conical pendulum are noted. For simple initial conditions the solution to this problem involves the golden ratio, also called the golden section, or the golden number. This number often appears in mathematics where you least expect it. To…

  3. DLVO interaction energies between hollow spherical particles and collector surfaces

    Science.gov (United States)

    The surface element integration technique was used to systematically study Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies/forces between hollow spherical particles (HPs) and a planar surface or two intercepting half planes under different ionic strength conditions. The inner and outer ...

  4. The Volume of a Torus Using Cylindrical and Spherical Coordinates

    Science.gov (United States)

    Farmer, Jim

    2005-01-01

    The author of this article, while recently working through some problem sets on determining volumes by triple integrals in cylindrical and spherical coordinate systems, realized that, although the textbook he was using included many interesting problems involving spheres, cylinders and cones and the increasingly complex solids that arose from the…

  5. The volume of fluid method in spherical coordinates

    NARCIS (Netherlands)

    Janse, A.M.C.; Janse, A.M.C.; Dijk, P.E.; Kuipers, J.A.M.

    2000-01-01

    The volume of fluid (VOF) method is a numerical technique to track the developing free surfaces of liquids in motion. This method can, for example, be applied to compute the liquid flow patterns in a rotating cone reactor. For this application a spherical coordinate system is most suited. The novel

  6. A simplified derivation of leaf normal spherical coordinates

    Science.gov (United States)

    Card, Don H.

    1987-01-01

    The paper presents formulas for the direction in spherical coordinates of the normal vector to a planar leaf in terms of the coordinates of incident and reflected rays. A simple idea from vector analysis is applied. These formulas are important in plant canopy modeling and experimental data collection in situations where specular reflection at optical wavelengths plays a part.

  7. Testing for Sphericity in Phase I Control Chart Applications

    DEFF Research Database (Denmark)

    Windfeldt, Gitte Bjørg; Bisgaard, Søren

    2009-01-01

    When using (x) over bar -R charts it is a crucial assumption that the observations within samples are independent and have common variance. However, this assumption is almost never checked. We propose to use the samples gathered during the phase I study and the test for distributional sphericity...

  8. Aerosol-Assisted Self-Assembly of Mesostructured Spherical Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Brinker, C.J.; Fan,; H.; Lu, Y.; Rieker, T.; Stump, A.; Ward, T.L.

    1999-03-23

    Nanostructured particles exhibiting well-defined pore sizes and pore connectivities (1-, 2-, or 3-dimensional) are of interest for catalysis, chromatography, controlled release, low dielectric constant fillers, and custom-designed pigments and optical hosts. During the last several years considerable progress has been made on controlling the macroscopic forms of mesoporous silicas prepared by surfactant and block copolymer liquid crystalline templating procedures. Typically interfacial phenomena are used to control the macroscopic form (particles, fibers, or films), while self-assembly of amphiphilic surfactants or polymers is used to control the mesostructure. To date, although a variety of spherical or nearly-spherical particles have been prepared, their extent of order is limited as is the range of attainable mesostructures. They report a rapid, aerosol process that results in solid, completely ordered spherical particles with stable hexagonal, cubic, or vesicular mesostructures. The process relies on evaporation-induced interfacial self-assembly (EISA) confined to a spherical aerosol droplet. The process is simple and generalizable to a variety of materials combinations. Additionally, it can be modified to provide the first aerosol route to the formation of ordered mesostructured films.

  9. Numerical Simulations of Thermal Convection in Rapidly Rotating Spherical Shell

    Energy Technology Data Exchange (ETDEWEB)

    Nenkov, Constantine; Peltier, Richard, E-mail: nenkov@atmosp.physics.utoronto.ca, E-mail: peltier@atmosp.physics.utoronto.ca [Department of Physics, University of Toronto Toronto, Ontario, M5S 1A7 (Canada)

    2010-11-01

    We present a novel numerical model used to simulate convection in the atmospheres of the Gas Giant planets Jupiter and Saturn. Nonlinear, three-dimensional, time-dependant solutions of the anelastic hydrodynamic equations are presented for a stratified, rotating spherical fluid shell heated from below. This new model is specified in terms of a grid-point based methodology which employs a hierarchy of tessellations of the regular icosahedron onto the sphere through the process of recurrent dyadic refinements of the spherical surface. We describe discretizations of the governing equations in which all calculations are performed in Cartesian coordinates in the local neighborhoods of the almost uniform icosahedral grid, a methodology which avoids the potential mathematical and numerical difficulties associated with the pole problem in spherical geometry. Using this methodology we have built our model in primitive equations formulation, whereas the three-dimensional vector velocity field and temperature are directly advanced in time. We show results of thermal convection in rapidly rotating spherical shell which leads to the formation of well pronounced prograde zonal jets at the equator, results which previous experiments with two-dimensional models in the limit of freely evolving turbulence were not able to achieve.

  10. Optimization of laser hole drilling process on thick gold spherical ...

    Indian Academy of Sciences (India)

    Abstract. Hohlraums of high-Z materials are used as soft X-ray sources to study indi- rect drive fusion, equation of state of materials etc. Here, we describe a method to develop spherical gold hohlraums of large wall thickness (~70–80 µm) on which laser entrance and diagnostics holes are drilled using a 10 Hz Nd:YLF laser.

  11. Coupled Person Orientation Estimation and Appearance Modeling using Spherical Harmonics

    NARCIS (Netherlands)

    Liem, M.C.; Gavrila, D.M.

    2014-01-01

    We present a novel approach for the estimation of a person's overall body orientation, 3D shape and texture, from overlapping cameras. A distinguishing aspect of our approach is the use of spherical harmonics for 3D shape- and texture-representation; it offers a compact, low-dimensional

  12. Spherical nanoindentation stress-strain analysis, Version 1

    Energy Technology Data Exchange (ETDEWEB)

    2016-11-07

    Nanoindentation is a tool that allows the mechanical response of a variety of materials at the nano to micron length scale to be measured. Recent advances in spherical nanoindentation techniques have allowed for a more reliable and meaningful characterization of the mechanical response from nanoindentation experiments in the form on an indentation stress-strain curve. This code base, Spin, is written in MATLAB (The Mathworks, Inc.) and based on the analysis protocols developed by S.R. Kalidindi and S. Pathak [1, 2]. The inputs include the displacement, load, harmonic contact stiffness, harmonic displacement, and harmonic load from spherical nanoindentation tests in the form of an Excel (Microsoft) spreadsheet. The outputs include indentation stress-strain curves and indentation properties as well their variance due to the uncertainty of the zero-point correction in the form of MATLAB data (.mat) and figures (.png). [1] S. Pathak, S.R. Kalidindi. Spherical nanoindentation stress–strain curves, Mater. Sci. Eng R-Rep 91 (2015). [2] S.R. Kalidindi, S. Pathak. Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves, Acta Materialia 56 (2008) 3523-3532.

  13. Recording gaze trajectory of wheelchair users by a spherical camera.

    Science.gov (United States)

    Li, Shigang; Fujiura, Tatsuya; Nakanishi, Isao

    2017-07-01

    Wheelchairs are widely used in the facilities of rehabilitation. In this paper, we propose a method of recording the gaze trajectory of wheelchair users by using a spherical camera mounted on the wheelchairs. A spherical camera has a full field of view and can observe the entire surrounding scenes. First, the gaze point of a user sitting on a wheelchair is estimated from the corneal reflection image observed by a wearable eye camera. Then, the gaze point is mapped onto the full-view image captured by the spherical camera via feature matching. Since it is not guaranteed that the gaze point in an eye image is a distinctive feature point, the matching of a gaze point between these two images cannot be carried out directly. To cope with this problem, we use a coarse-to-fine approach, in which, first, distinctive feature points are used to estimate the relative orientation between the eye camera and the spherical camera, and then, the estimated relative orientation matrix is used to determine the location of gaze points. The effectiveness of the proposed method is shown by real-world experimental results.

  14. Exact solution of the neutron transport equation in spherical geometry

    Energy Technology Data Exchange (ETDEWEB)

    Anli, Fikret; Akkurt, Abdullah; Yildirim, Hueseyin; Ates, Kemal [Kahramanmaras Suetcue Imam Univ. (Turkey). Faculty of Sciences and Letters

    2017-03-15

    Solution of the neutron transport equation in one dimensional slab geometry construct a basis for the solution of neutron transport equation in a curvilinear geometry. Therefore, in this work, we attempt to derive an exact analytical benchmark solution for both neutron transport equations in slab and spherical medium by using P{sub N} approximation which is widely used in neutron transport theory.

  15. MODELING RESULTS FROM CESIUM ION EXCHANGE PROCESSING WITH SPHERICAL RESINS

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C.; Hang, T.; Aleman, S.

    2011-01-03

    Ion exchange modeling was conducted at the Savannah River National Laboratory to compare the performance of two organic resins in support of Small Column Ion Exchange (SCIX). In-tank ion exchange (IX) columns are being considered for cesium removal at Hanford and the Savannah River Site (SRS). The spherical forms of resorcinol formaldehyde ion exchange resin (sRF) as well as a hypothetical spherical SuperLig{reg_sign} 644 (SL644) are evaluated for decontamination of dissolved saltcake wastes (supernates). Both SuperLig{reg_sign} and resorcinol formaldehyde resin beds can exhibit hydraulic problems in their granular (nonspherical) forms. SRS waste is generally lower in potassium and organic components than Hanford waste. Using VERSE-LC Version 7.8 along with the cesium Freundlich/Langmuir isotherms to simulate the waste decontamination in ion exchange columns, spherical SL644 was found to reduce column cycling by 50% for high-potassium supernates, but sRF performed equally well for the lowest-potassium feeds. Reduced cycling results in reduction of nitric acid (resin elution) and sodium addition (resin regeneration), therefore, significantly reducing life-cycle operational costs. These findings motivate the development of a spherical form of SL644. This work demonstrates the versatility of the ion exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. The value of a resin with increased selectivity for cesium over potassium can be assessed for further development.

  16. Calculation of the electrophoretic mobility of a spherical colloid particle

    NARCIS (Netherlands)

    Wiersema, P.H.; Loeb, A.L.; Overbeek, J.Th.G.

    A new calculation of the relation between the electrophoretic mobility and the ζ-potential of a spherical colloid particle is presented. The model consists of a rigid, electrically insulating sphere surrounded by a Gouy-Chapman double layer. The appropriate differential equations (which account for

  17. Spherical agglomerates of lactose with enhanced mechanical properties.

    Science.gov (United States)

    Lamešić, Dejan; Planinšek, Odon; Lavrič, Zoran; Ilić, Ilija

    2017-01-10

    The aim of this study was to prepare spherical agglomerates of lactose and to evaluate their physicochemical properties, flow properties, particle friability and compaction properties, and to compare them to commercially available types of lactose for direct compression (spray-dried, granulated and anhydrous β-lactose). Porous spherical agglomerates of α-lactose monohydrate with radially arranged prism-like primary particles were prepared exhibiting a high specific surface area. All types of lactose analysed had passable or better flow properties, except for anhydrous β-lactose, which had poor flowability. Particle friability was more pronounced in larger granulated lactose particles; however, particle structure was retained in all samples analysed. The mechanical properties of spherical agglomerates of lactose, in terms of compressibility, established with Walker analysis, and compactibility, established with a compactibility profile, were found to be superior to any commercially available types of lactose. Higher compactibility of spherical agglomerates of lactose is ascribed to significantly higher particle surface area due to a unique internal structure with higher susceptibility to fragmentation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Comparison of visual quality between aspheric and spherical IOLs.

    Science.gov (United States)

    Yagci, Ramazan; Uzun, Feyza; Acer, Semra; Hepsen, Ibrahim F

    2014-01-01

    To determine if aspheric intraocular lens (IOL) implantation produces the same degree of postoperative ocular aberration and contrast sensitivity as spherical IOL implantation. In this randomized prospective comparative study, 60 eyes of 30 cataract surgery patients were randomly assigned to receive a spherical IOL (Rayner 620H) in one eye and an aspheric IOL (Rayner 920H) in the contralateral eye. All patients were examined at 1 month postoperatively. Primary outcomes of contrast sensitivity and ocular wavefront higher order aberrations (HOAs) were assessed. Aspheric IOLs (median total HOAs 0.26 root mean square [RMS]; range 0.13-0.82 RMS) produced significantly lower total HOAs than spherical IOLs (median total HOAs 0.34 RMS; range 0.18-1.08 RMS; pIOLs (median contrast sensitivity 1.8 log units; range 1.35-1.8 log units) than with spherical IOLs (median contrast sensitivity 1.65 log units; range 1.35-1.8 log units; pIOL (Rayner 620H), aspheric IOLs (Rayner 920H) appear to significantly reduce HOAs and yield better levels of contrast sensitivity under photopic conditions.

  19. Direct operation of Ag-based anode solid oxide fuel cells on propane

    Science.gov (United States)

    Zhang, Yapeng; Yu, Fangyong; Wang, Xiaoqiang; Zhou, Qian; Liu, Jiang; Liu, Meilin

    2017-10-01

    A cermet of sliver and gadolinium-doped ceria (GDC) is investigated as the anode material of solid oxide fuel cells (SOFCs). The SOFCs are operated with hydrogen and dry propane as the fuel and ambient air as the oxidant. Their electrochemical and durability performances are tested and compared to those of SOFCs with conventional Ni-GDC anode. Experimental results show that performances of the SOFCs, respectively with Ag-GDC and Ni-GDC anode, are similar when operated on hydrogen, while quite different on propane. The open circuit voltage (OCV) of a SOFC with Ag-GDC anode is stable at ∼1 V while that with Ni-GDC anode continuously drops from the initial 1.2 V-0.85 V in 140 min. A SOFC with Ag-GDC anode has been stably operated on propane at a constant current density of 103 mA cm-2 for more than 160 h while that with Ni-GDC anode for only 50 h. SEM examination shows Ni-GDC anode is destroyed by carbon deposition during operation on propane, while Ag-GDC anode is well conserved and has a carbon layer, with some breakages, built on its surface. Mechanisms of the stable operation of SOFCs with Ag-GDC anode on dry propane is investigated and analyzed.

  20. Holographic Refraction and the Measurement of Spherical Ametropia.

    Science.gov (United States)

    Nguyen, Nicholas Hoai Nam

    2016-10-01

    To evaluate the performance of a holographic logMAR chart for the subjective spherical refraction of the human eye. Bland-Altman analysis was used to assess the level of agreement between subjective spherical refraction using the holographic logMAR chart and conventional autorefraction and subjective spherical refraction. The 95% limits of agreement (LoA) were calculated between holographic refraction and the two standard methods (subjective and autorefraction). Holographic refraction has a lower mean spherical refraction when compared to conventional refraction (LoA 0.11 ± 0.65 D) and when compared to autorefraction (LoA 0.36 ± 0.77 D). After correcting for systemic bias, this is comparable between autorefraction and conventional subjective refraction (LoA 0.45 ± 0.79 D). After correcting for differences in vergence distance and chromatic aberration between holographic and conventional refraction, approximately 65% (group 1) of measurements between holography and conventional subjective refraction were similar (MD = 0.13 D, SD = 0.00 D). The remaining 35% (group 2) had a mean difference of 0.45 D (SD = 0.12 D) between the two subjective methods. Descriptive statistics showed group 2's mean age (21 years, SD = 13 years) was considerably lower than group 1's mean age (41 years, SD = 17), suggesting accommodation may have a role in the greater mean difference of group 2. Overall, holographic refraction has good agreement with conventional refraction and is a viable alternative for spherical subjective refraction. A larger bias between holographic and conventional refraction was found in younger subjects than older subjects, suggesting an association between accommodation and myopic over-correction during holographic refraction.

  1. Refractive Changes Induced by Spherical Aberration in Laser Correction Procedures: An Adaptive Optics Study.

    Science.gov (United States)

    Amigó, Alfredo; Martinez-Sorribes, Paula; Recuerda, Margarita

    2017-07-01

    To study the effect on vision of induced negative and positive spherical aberration within the range of laser vision correction procedures. In 10 eyes (mean age: 35.8 years) under cyclopegic conditions, spherical aberration values from -0.75 to +0.75 µm in 0.25-µm steps were induced by an adaptive optics system. Astigmatism and spherical refraction were corrected, whereas the other natural aberrations remained untouched. Visual acuity, depth of focus defined as the interval of vision for which the target was still perceived acceptable, contrast sensitivity, and change in spherical refraction associated with the variation in pupil diameter from 6 to 2.5 mm were measured. A refractive change of 1.60 D/µm of induced spherical aberration was obtained. Emmetropic eyes became myopic when positive spherical aberration was induced and hyperopic when negative spherical aberration was induced (R2 = 81%). There were weak correlations between spherical aberration and visual acuity or depth of focus (R2 = 2% and 3%, respectively). Contrast sensitivity worsened with the increment of spherical aberration (R2 = 59%). When pupil size decreased, emmetropic eyes became hyperopic when preexisting spherical aberration was positive and myopic when spherical aberration was negative, with an average refractive change of 0.60 D/µm of spherical aberration (R2 = 54%). An inverse linear correlation exists between the refractive state of the eye and spherical aberration induced within the range of laser vision correction. Small values of spherical aberration do not worsen visual acuity or depth of focus, but positive spherical aberration may induce night myopia. In addition, the changes in spherical refraction when the pupil constricts may worsen near vision when positive spherical aberration is induced or improve it when spherical aberration is negative. [J Refract Surg. 2017;33(7):470-474.]. Copyright 2017, SLACK Incorporated.

  2. Fuel utilization and fuel sensitivity of solid oxide fuel cells

    Science.gov (United States)

    Huang, Kevin

    2011-03-01

    Fuel utilization and fuel sensitivity are two important process variables widely used in operation of SOFC cells, stacks, and generators. To illustrate the technical values, the definitions of these two variables as well as practical examples are particularly given in this paper. It is explicitly shown that the oxygen-leakage has a substantial effect on the actual fuel utilization, fuel sensitivity and V-I characteristics. An underestimation of the leakage flux could potentially results in overly consuming fuel and oxidizing Ni-based anode. A fuel sensitivity model is also proposed to help extract the leakage flux information from a fuel sensitivity curve. Finally, the "bending-over" phenomenon observed in the low-current range of a V-I curve measured at constant fuel-utilization is quantitatively coupled with leakage flux.

  3. Operational and convolution properties of three-dimensional Fourier transforms in spherical polar coordinates.

    Science.gov (United States)

    Baddour, Natalie

    2010-10-01

    For functions that are best described with spherical coordinates, the three-dimensional Fourier transform can be written in spherical coordinates as a combination of spherical Hankel transforms and spherical harmonic series. However, to be as useful as its Cartesian counterpart, a spherical version of the Fourier operational toolset is required for the standard operations of shift, multiplication, convolution, etc. This paper derives the spherical version of the standard Fourier operation toolset. In particular, convolution in various forms is discussed in detail as this has important consequences for filtering. It is shown that standard multiplication and convolution rules do apply as long as the correct definition of convolution is applied.

  4. Development of materials for use in solid oxid fuel cells anodes using renewable fuels in direct operation; Desenvolvimento de materiais ceramicos aplicados em anodos de celulas a combustivel de oxidos solidos para operacao direta com combustiveis renovaveis

    Energy Technology Data Exchange (ETDEWEB)

    Lima, D.B.P.L. de [Instituto Federal do Parana (IFPR), PR (Brazil); Florio, D.Z. de; Bezerra, M.E.O., E-mail: daniela.bianchi@ifpr.edu.br [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2016-07-01

    Fuel cells produce electrical current from the electrochemical combustion of a gas or liquid (H2, CH4, C2H5OH, CH3OH, etc.) inserted into the anode cell. An important class of fuel cells is the SOFC (Solid Oxide Cell Fuel). It has a ceramic electrolyte that transports protons (H +) or O-2 ions and operating at high temperatures (500-1000 °C) and mixed conductive electrodes (ionic and electronic) ceramics or cermets. This work aims to develop anodes for fuel cells of solid oxide (SOFC) in order to direct operations with renewable fuels and strategic for the country (such as bioethanol and biogas). In this context, it becomes important to study in relation to the ceramic materials, especially those that must be used in high temperatures. Some types of double perovskites such as Sr2MgMoO6 (or simply SMMO) have been used as anodes in SOFC. In this study were synthesized by the polymeric precursor method, analyzed and characterized different ceramic samples of families SMMO, doped with Nb, this is: Sr2 (MgMo)1-xNbxO6 with 0 ≤ x ≤ 0.2. The materials produced were characterized by various techniques such as, thermal analysis, X-ray diffraction and scanning electron microscopy, and electrical properties determined by dc and ac measurements in a wide range of temperature, frequency and partial pressure of oxygen. The results of this work will contribute to a better understanding of advanced ceramic properties with mixed driving (electronic and ionic) and contribute to the advancement of SOFC technology operating directly with renewable fuels. (author)

  5. Parameter Estimates for a Polymer Electrolyte Membrane Fuel Cell Cathode

    OpenAIRE

    Guo, Qingzhi; Sethuraman, Vijay A.; White, Ralph E.

    2013-01-01

    Five parameters of a model of a polymer electrolyte membrane fuel cell cathode (the porosity of the gas diffusion layer, the porosity of the catalyst layer, the exchange current density of the oxygen reduction reaction, the effective ionic conductivity of the electrolyte, and the ratio of the effective diffusion coefficient of oxygen in a flooded spherical agglomerate particle to the squared particle radius) were determined by the least square fitting of experimental polarization curves. The ...

  6. Fuel processors for fuel cell APU applications

    Science.gov (United States)

    Aicher, T.; Lenz, B.; Gschnell, F.; Groos, U.; Federici, F.; Caprile, L.; Parodi, L.

    The conversion of liquid hydrocarbons to a hydrogen rich product gas is a central process step in fuel processors for auxiliary power units (APUs) for vehicles of all kinds. The selection of the reforming process depends on the fuel and the type of the fuel cell. For vehicle power trains, liquid hydrocarbons like gasoline, kerosene, and diesel are utilized and, therefore, they will also be the fuel for the respective APU systems. The fuel cells commonly envisioned for mobile APU applications are molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Since high-temperature fuel cells, e.g. MCFCs or SOFCs, can be supplied with a feed gas that contains carbon monoxide (CO) their fuel processor does not require reactors for CO reduction and removal. For PEMFCs on the other hand, CO concentrations in the feed gas must not exceed 50 ppm, better 20 ppm, which requires additional reactors downstream of the reforming reactor. This paper gives an overview of the current state of the fuel processor development for APU applications and APU system developments. Furthermore, it will present the latest developments at Fraunhofer ISE regarding fuel processors for high-temperature fuel cell APU systems on board of ships and aircrafts.

  7. Fuel Property Blend Model

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wagnon, Scott J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhang, Kuiwen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kukkadapu, Goutham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-12

    The object of this project is to develop chemical models and associated correlations to predict the blending behavior of bio-derived fuels when mixed with conventional fuels like gasoline and diesel fuels.

  8. Renewable Fuel Standard Program

    Science.gov (United States)

    Information about regulations, developed by EPA, in collaboration with refiners, renewable fuel producers, and many other stakeholders, that ensure that transportation fuel sold in the United States contains a minimum volume of renewable fuel.

  9. Logistic Fuel Processor Development

    National Research Council Canada - National Science Library

    Salavani, Reza

    2004-01-01

    The Air Base Technologies Division of the Air Force Research Laboratory has developed a logistic fuel processor that removes the sulfur content of the fuel and in the process converts logistic fuel...

  10. Pebble Bed Reactor: core physics and fuel cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Worley, B.A.

    1979-10-01

    The Pebble Bed Reactor is a gas-cooled, graphite-moderated high-temperature reactor that is continuously fueled with small spherical fuel elements. The projected performance was studied over a broad range of reactor applicability. Calculations were done for a burner on a throwaway cycle, a converter with recycle, a prebreeder and breeder. The thorium fuel cycle was considered using low, medium (denatured), and highly enriched uranium. The base calculations were carried out for electrical energy generation in a 1200 MW/sub e/ plant. A steady-state, continuous-fueling model was developed and one- and two-dimensional calculations were used to characterize performance. Treating a single point in time effects considerable savings in computer time as opposed to following a long reactor history, permitting evaluation of reactor performance over a broad range of design parameters and operating modes.

  11. Shielding of electromagnetic fields of current sources by spherical enclosures

    Science.gov (United States)

    Shastry, S. V. K.; Rao, M. N.; Katti, V. R.

    Expressions for the shielding effectiveness of a conductive spherical enclosure excited by a Hertzian dipole have been derived using the dyadic Green's function technique. This technique has the advantage that the fields inside or outside the enclosure due to arbitrary current distribution may be found by employing the same set of dyadic Green's functions. The shielding effectiveness for plane wave incidence has been determined by considering the limiting case of the current source external to the spherical shell. Computed values of shielding effectiveness deduced in this manner have been compared with those obtained by the numerical evaluation of the expressions derived by earlier authors. The theory presented here may be useful to EMC (electromagnetic compatibility) engineers who must consider electromagnetic coupling from current sources in the vicinity of shielding enclosures.

  12. Modeling and Analysis of a 2-DOF Spherical Parallel Manipulator

    Directory of Open Access Journals (Sweden)

    Xuechao Duan

    2016-09-01

    Full Text Available The kinematics of a two rotational degrees-of-freedom (DOF spherical parallel manipulator (SPM is developed based on the coordinate transformation approach and the cosine rule of a trihedral angle. The angular displacement, angular velocity, and angular acceleration between the actuators and end-effector are thus determined. Moreover, the dynamic model of the 2-DOF SPM is established by using the virtual work principle and the first-order influence coefficient matrix of the manipulator. Eventually, a typical motion plan and simulations are carried out, and the actuating torque needed for these motions are worked out by employing the derived inverse dynamic equations. In addition, an analysis of the mechanical characteristics of the parallel manipulator is made. This study lays a solid base for the control of the 2-DOF SPM, and also provides the possibility of using this kind of spherical manipulator as a 2-DOF orientation, angular velocity, or even torque sensor.

  13. Viscous Rayleigh-Taylor instability in spherical geometry

    Science.gov (United States)

    Mikaelian, Karnig O.

    2016-02-01

    We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955), 10.1093/qjmam/8.1.1] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer a somewhat improved one. A third DR, based on transforming a planar DR into a spherical one, suffers no unphysical predictions and compares reasonably well with the exact work of Chandrasekhar and a more recent numerical analysis of the problem [Terrones and Carrara, Phys. Fluids 27, 054105 (2015), 10.1063/1.4921648].

  14. Spherical nuclei near the stability line and far from it

    Energy Technology Data Exchange (ETDEWEB)

    Isakov, V. I., E-mail: visakov@thd.pnpi.spb.ru [National Research Centre Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation)

    2016-11-15

    Results of microscopic and semiphenomenological calculations of features of spherical nuclei lying near the stability line and far from it are presented. The reason why the nuclei being considered are spherical is that they are magic at least in one nucleon sort. The present analysis is performed for Z = 50 and Z = 28 isotopes and for N = 50 isotones, the region extending from neutron-rich to neutron-deficient nuclei being covered. The isotopic dependence of the mean-field spin–orbit nuclear potential is revealed; systematics of energies of levels and probabilities for electromagnetic transitions is examined; and root-mean-square radii of nuclei are calculated, along with the proton- and neutron-density distributions in them. Nuclei in the vicinity of closed shells are considered in detail, and the axial-vector weak coupling constant in nuclei is evaluated. A systematic comparison of the results of calculations with experimental data is performed.

  15. Gravitational and electric energies in collapse of spherically thin capacitor

    CERN Document Server

    Ruffini, Remo

    2013-01-01

    In our previous article (PHYSICAL REVIEW D 86, 084004 (2012)), we present a study of strong oscillating electric fields and electron-positron pair-production in gravitational collapse of a neutral stellar core at or over nuclear densities. In order to understand the back-reaction of such electric energy building and radiating on collapse, we adopt a simplified model describing the collapse of a spherically thin capacitor to give an analytical description how gravitational energy is converted to both kinetic and electric energies in collapse. It is shown that (i) averaged kinetic and electric energies are the same order, about an half of gravitational energy of spherically thin capacitor in collapse; (ii) caused by radiating and rebuilding electric energy, gravitational collapse undergoes a sequence of "on and off" hopping steps in the microscopic Compton scale. Although such a collapse process is still continuous in terms of macroscopic scales, it is slowed down as kinetic energy is reduced and collapsing tim...

  16. Enhancement of octupole strength in near spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Robledo, L.M. [Universidad Autonoma de Madrid, Dep. Fisica Teorica, Facultad de Ciencias, Madrid (Spain)

    2016-09-15

    The validity of the rotational formula used to compute E1 and E3 transition strengths in even-even nuclei is analyzed within the Generator Coordinate Method framework based on mean field wave functions. It turns out that those nuclei with spherical or near spherical shapes the E1 and E3 strengths computed with this formula are strongly underestimated and a sound evaluation of them requires angular-momentum projected wave functions. Results for several isotopic chains with proton number equal to or near magic numbers are analyzed and compared with experimental data. The use of angular-momentum projected wave functions greatly improves the agreement with the scarce experimental data. (orig.)

  17. Morphological and electrochemical studies of spherical boron doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mendes de Barros, R.C. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Ferreira, N.G. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Azevedo, A.F. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Corat, E.J. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Sumodjo, P.T.A. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Serrano, S.H.P. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil)]. E-mail: shps@iq.usp.br

    2006-08-14

    Morphological and electrochemical characteristics of boron doped diamond electrode in new geometric shape are presented. The main purpose of this study is a comparison among voltammetric behavior of planar glassy carbon electrode (GCE), planar boron doped diamond electrode (PDDE) and spherical boron doped diamond electrode (SDDE), obtained from similar experimental parameters. SDDE was obtained by the growth of boron doped film on textured molybdenum tip. This electrode does not present microelectrode characteristics. However, its voltammetric peak current, determined at low scan rates, is largest associated to the smallest {delta}E {sub p} values for ferrocyanide system when compared with PDDE or GCE. In addition, the capacitance is about 200 times smaller than that for GCE. These results show that the analytical performance of boron doped diamond electrodes can be implemented just by the change of sensor geometry, from plane to spherical shape.

  18. Minimum Q Electrically Small Spherical Magnetic Dipole Antenna - Practice

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2009-01-01

    Practical aspects of applying a magnetic core to approach the Chu lower bound for the radiation Q factor of an electrically small magnetic dipole antenna are considered. It is shown that although a magnetic core does reduce the Q factor, its effect is not as strong as predicted by Wheeler....... This is due to the fact that a finite size magnetic core supports multiple internal resonances, which spoil the Q factor also away from exact resonance frequencies; and in a worst case they can even significantly increase Q. The resonances in question are not only those of the TE10 spherical mode, but also...... resonances of all other modes that are not sufficiently suppressed in the antenna. Numerical results for a 4-arm spherical helix antenna filled with magnetic material demonstrate the destroying effect of the parasitic TM11 mode on the antenna Q factor. Theoretical considerations as well as numerical results...

  19. Spherical gyroscopic moment stabilizer for attitude control of microsatellites

    Science.gov (United States)

    Keshtkar, Sajjad; Moreno, Jaime A.; Kojima, Hirohisa; Uchiyama, Kenji; Nohmi, Masahiro; Takaya, Keisuke

    2018-02-01

    This paper presents a new and improved concept of recently proposed two-degrees of freedom spherical stabilizer for triaxial orientation of microsatellites. The analytical analysis of the advantages of the proposed mechanism over the existing inertial attitude control devices are introduced. The extended equations of motion of the stabilizing satellite including the spherical gyroscope, for control law design and numerical simulations, are studied in detail. A new control algorithm based on continuous high-order sliding mode algorithms, for managing the torque produced by the stabilizer and therefore the attitude control of the satellite in the presence of perturbations/uncertainties, is presented. Some numerical simulations are carried out to prove the performance of the proposed mechanism and control laws.

  20. Reconstruction of sound fields with a spherical microphone array

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Walton, Tim

    2014-01-01

    Spherical microphone arrays are very well suited for sound field measurements in enclosures or interior spaces, and generally in acoustic environments where sound waves impinge on the array from multiple directions. Because of their directional properties, they make it possible to resolve sound...... waves traveling in any direction. In particular, rigid sphere microphone arrays are robust, and have the favorable property that the scattering introduced by the array can be compensated for - making the array virtually transparent. This study examines a recently proposed sound field reconstruction...... method based on a point source expansion, i.e. equivalent source method, using a rigid spherical array. The study examines the capability of the method to distinguish between sound waves arriving from different directions (i.e., as a sound field separation method). This is representative of the potential...

  1. Compact representation of radiation patterns using spherical mode expansions

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, T.L.; Chen, Yinchao (South Carolina Univ., Columbia, SC (USA). Dept. of Electrical and Computer Engineering)

    1990-07-15

    This report presents the results of an investigation of SM (Spherical Mode) expansions as a compact and efficient alternative to the use of current distributions for generating radiation patterns. The study included three areas: (1) SM expansion from the radiation pattern; (2) SM expansion from the antenna current; and (3) Literature search. SM expansions were obtained from radiation patterns during the initial phase of this study. Although straightforward in principal, however, this technique was found to be awkward for the treatment on theoretical radiation patterns. It is included here for completeness and for possible use to summarize experimental results in a more meaningful way than with an exhaustive display of amplitude with azimuth and elevation angles. In essence, the work in this area served as as warm-up problem to develop our skills in computing and manipulating spherical modes as mathematical entities. 6 refs., 21 figs., 6 tabs.

  2. On the Field of a Stationary Charged Spherical Source

    Directory of Open Access Journals (Sweden)

    Stavroulakis N.

    2009-04-01

    Full Text Available The equations of gravitation related to the field of a spherical charged source imply the existence of an interdependence between gravitation and electricity [5]. The present paper deals with the joint action of gravitation and electricity in the case of a stationary charged spherical source. Let m and " be respectively the mass and the charge of the source, and let k be the gravitational constant. Then the equations of gravitation need specific discussion according as j " j m p k (source strongly charged. In any case the curvature radius of the sphere bounding the matter possesses a strictly positive greatest lower hound, so that the source is necessarily an extended object. Pointwise sources do not exist. In particular, charged black holes do not exist.

  3. Ultrasmooth, Highly Spherical Monocrystalline Gold Particles for Precision Plasmonics

    KAUST Repository

    Lee, You-Jin

    2013-12-23

    Ultrasmooth, highly spherical monocrystalline gold particles were prepared by a cyclic process of slow growth followed by slow chemical etching, which selectively removes edges and vertices. The etching process effectively makes the surface tension isotropic, so that spheres are favored under quasi-static conditions. It is scalable up to particle sizes of 200 nm or more. The resulting spherical crystals display uniform scattering spectra and consistent optical coupling at small separations, even showing Fano-like resonances in small clusters. The high monodispersity of the particles we demonstrate should facilitate the self-assembly of nanoparticle clusters with uniform optical resonances, which could in turn be used to fabricate optical metafluids. Narrow size distributions are required to control not only the spectral features but also the morphology and yield of clusters in certain assembly schemes. © 2013 American Chemical Society.

  4. Realization of a Service Robot for Cleaning Spherical Surfaces

    Directory of Open Access Journals (Sweden)

    Houxiang Zhang

    2005-03-01

    Full Text Available There are more and more buildings with complicated shape emerging all over the world. Their walls require constant cleaning which is difficult to realize. In this paper, based on analyzing the characteristics of the working target, a new kind of auto-climbing robot is proposed, which is used for cleaning the spherical surface of the National GrandTheatre in China. The robots' mechanism and unique aspects are presented in detail. A distributed controller based onCAN bus is designed to meet the requirements of controlling the robot. The control system is divided into 6 parts, fiveCAN bus control nodes and a remote controller, which are designed and established based mainly on the P80C592. Finally, the motion function is described in detail. The experimental results confirm the principle described above andthe robot's ability to work on the spherical surface.

  5. Analysis of Shield Construction in Spherical Weathered Granite Development Area

    Science.gov (United States)

    Cao, Quan; Li, Peigang; Gong, Shuhua

    2018-01-01

    The distribution of spherical weathered bodies (commonly known as "boulder") in the granite development area directly affects the shield construction of urban rail transit engineering. This paper is based on the case of shield construction of granite globular development area in Southern China area, the parameter control in shield machine selection and shield advancing during the shield tunneling in this special geological environment is analyzed. And it is suggested that shield machine should be selected for shield construction of granite spherical weathered zone. Driving speed, cutter torque, shield machine thrust, the amount of penetration and the speed of the cutter head of shield machine should be controlled when driving the boulder formation, in order to achieve smooth excavation and reduce the disturbance to the formation.

  6. Dynamics of Shape Fluctuations of Quasi-spherical Vesicles Revisited

    DEFF Research Database (Denmark)

    Miao, L.; Lomholt, Michael Andersen; Kleis, J.

    2002-01-01

    of the phenomenological constants in a canonical continuum description of fluid lipid-bilayer membranes and shown the consequences of this new interpretation in terms of the characteristics of the dynamics of vesicle shape fluctuations. Moreover, we have used the systematic formulation of our theory as a framework...... against which we have discussed the previously existing theories and their discrepancies. Finally, we have made a systematic prediction about the system-dependent characteristics of the relaxation dynamics of shape fluctuations of quasi-spherical vesicles with a view of experimental studies......In this paper, the dynamics of spontaneous shape fluctuations of a single, giant quasi-spherical vesicle formed from a single lipid species is revisited theoretically. A coherent physical theory for the dynamics is developed based on a number of fundamental principles and considerations...

  7. Surface Plasmon Coupling and Control Using Spherical Cap Structures

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yu; Joly, Alan G.; Zhang, Xin; El-Khoury, Patrick Z.; Hess, Wayne P.

    2017-06-05

    Propagating surface plasmons (PSPs) launched from a protruded silver spherical cap structure are investigated using photoemission electron microscopy (PEEM) and finite difference time domain (FDTD) calculations. Our combined experimental and theoretical findings reveal that PSP coupling efficiency is comparable to conventional etched-in plasmonic coupling structures. Additionally, plasmon propagation direction can be varied by a linear rotation of the driving laser polarization. A simple geometric model is proposed in which the plasmon direction selectivity is proportional to the projection of the linear laser polarization on the surface normal. An application for the spherical cap coupler as a gate device is proposed. Overall, our results indicate that protruded cap structures hold great promise as elements in emerging surface plasmon applications.

  8. Spherical convolutions and their application in molecular modelling

    DEFF Research Database (Denmark)

    Boomsma, Wouter; Frellsen, Jes

    2017-01-01

    Convolutional neural networks are increasingly used outside the domain of image analysis, in particular in various areas of the natural sciences concerned with spatial data. Such networks often work out-of-the box, and in some cases entire model architectures from image analysis can be carried over...... of spherical convolutions in the context of molecular modelling, by considering structural environments within proteins. We show that the models are capable of learning non-trivial functions in these molecular environments, and that our spherical convolutions generally outperform standard 3D convolutions...... in this setting. In particular, despite the lack of any domain specific feature-engineering, we demonstrate performance comparable to state-of-the-art methods in the field, which build on decades of domain-specific knowledge....

  9. On an open problem in spherical facility location

    Science.gov (United States)

    Xue, Guoliang

    1995-03-01

    In this paper we partially resolve an open problem in spherical facility location. The spherical facility location problem is a generalization of the planar Euclidean facility location problem. This problem was first studied by Katz and Cooper and by Drezner and Wesolowsky where a Weszfeld-like algorithm was proposed. This algorithm is very simple and does not require a line search. However, its convergence has been an open problem for more than ten years. In this paper, we prove that the sequence generated by the algorithm converges to the unique optimal solution under the condition that the oscillation of the sequence converges to zero. We conjecture that the algorithm is a descent algorithm and prove that the sequence generated by the algorithm converges to the optimal solution under this conjecture.

  10. Development of spherical crystals of acetylsalicylic acid for direct tablet-making.

    Science.gov (United States)

    Göczõ, H; Szabó-Révész, P; Farkas, B; Hasznos-Nezdei, M; Serwanis, S F; Pintye-Hódi, A K; Kása, P; Erõs, I; Antal, I; Marto, S

    2000-12-01

    The production of spherical crystals has recently gained great attention due to the fact that the crystal habit (form, surface, size, etc.) can be modified during the crystallization process. Spherical crystals of ASA were developed by non-typical and typical spherical crystallization techniques. The non-typical spherical crystallization process (conventional stirred tank method) resulted in few monocrystals and non-spherical crystal agglomerates. The typical spherical crystallization process was carried out by the three solvent-system (ethanol-water-carbon tetrachloride). The products were qualified by morphological study, NIR investigation, salicylic acid content, dissolution rate, studies on flowability, compactibility, cohesivity and tablettability. The results demonstrate that only typical spherical crystallization can be recommended for the production of spherical crystals of ASA. Only product made by this technique shows excellent flow properties and favourable compactibility, cohesiveness and tablettability values.

  11. On dynamics and control of vibratory gyroscopes with special spherical symmetry

    CSIR Research Space (South Africa)

    Shatalov, M

    2006-05-01

    Full Text Available are obtained in the spherical Bessel and the associated Legendre functions, the effects of rotation are investigated and scales factors are determined for different vibrating modes of the spherical body, spheroidal and torsional. Corresponding scales factors...

  12. Fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Hirofumi.

    1989-05-22

    This invention aims to maintain a long-term operation with stable cell output characteristics by uniformly supplying an electrolyte from the reserver to the matrix layer over the entire matrix layer, and further to prevent the excessive wetting of the catalyst layer by smoothly absorbing the volume change of the electrolyte, caused by the repeated stop/start-up of the fuel cell, within the reserver system. For this purpose, in this invention, an electrolyte transport layer, which connects with an electrolyte reservor formed at the electrode end, is partly formed between the electrode material and the catalyst layer; a catalyst layer, which faces the electrolyte transport layer, has through-holes, which connect to the matrix, dispersely distributed. The electrolyte-transport layer is a thin sheet of a hydrophilic fibers which are non-wovens of such fibers as carbon, silicon carbide, silicon nitride or inorganic oxides. 11 figs.

  13. Fuel processor for fuel cell power system

    Science.gov (United States)

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  14. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2000-01-01

    .... The focus during the subject period was directed to understanding the pyrolysis and combustion of endothermic fuels under subcritical conditions and the pyrolysis of these fuels under supercritical conditions...

  15. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2001-01-01

    .... The focus during the subject period was directed to understanding the pyrolysis and combustion of endothermic fuels under subcritical conditions and the pyrolysis of these fuels under supercritical conditions...

  16. The relativistic Boltzmann equation on a spherically symmetric gravitational field

    Science.gov (United States)

    Takou, Etienne; Ciake Ciake, Fidèle L.

    2017-10-01

    In this paper, we consider the Cauchy problem for the relativistic Boltzmann equation with near vacuum initial data where the distribution function depends on the time, the position and the impulsion. We consider this equation on a spherically symmetric gravitational field spacetime. The collision kernel considered here is for the hard potentials case. We prove the existence of a unique global (in time) mild solution in a suitable weighted space.

  17. Magnetic interaction in all silicon waveguide spherical coupler device.

    Science.gov (United States)

    Shi, Lei; Meseguer, Francisco

    2012-09-24

    The magnetic field component of light in dielectric materials generally plays a negligible role at optical frequency values. However, it is a key component of metal based metamaterials. Here we report on the dominant role of the magnetic interaction in a dielectric spherical silicon nanocavity coupled to a silicon waveguide. The analytical method, as well as the finite difference time domain (FDTD) simulation, show a three dimensional (3D) magnetic trap effect when the magnetic like Mie resonances of the nanocavity are excited.

  18. Ptolemy-Alhazen problem and spherical mirror reflection

    OpenAIRE

    FUJIMURA, Masayo; Hariri, Parisa; Mocanu, Marcelina; Vuorinen, Matti

    2017-01-01

    An ancient optics problem of Ptolemy, studied later by Alhazen, is discussed. This problem deals with reflection of light in spherical mirrors. Mathematically this reduces to the solution of a quartic equation, which we solve and analyze using a symbolic computation software. Similar problems have been recently studied in connection with ray-tracing, catadioptric optics, scattering of electromagnetic waves, and mathematical billiards, but we were led to this problem in our study of the so-cal...

  19. Full light absorption in single arrays of spherical nanoparticles

    OpenAIRE

    Ra'di, Y.; Asadchy, V. S.; Kosulnikov, S. U.; Omelyanovich, M. M.; Morits, D.; Osipov, A. V.; Simovski, C. R.; Tretyakov, S.A.

    2015-01-01

    In this paper we show that arrays of core-shell nanoparticles function as effective thin absorbers of light. In contrast to known metamaterial absorbers, the introduced absorbers are formed by single planar arrays of spherical inclusions and enable full absorption of light incident on either or both sides of the array. We demonstrate possibilities for realizing different kinds of symmetric absorbers, including resonant, ultra-broadband, angularly selective, and all-angle absorbers. The physic...

  20. Characterization of Rubbers from Spherical Punch - Plate Indentation Tests

    Directory of Open Access Journals (Sweden)

    Florina Carmen Ciornei

    2016-12-01

    Full Text Available Rubber plates with different compositions and hardness were tested by continuous indentation, using a spherical punch and hysteretic phenomenon was evidenced. The experimental data interpolation with polynomial functions is accurate and permits estimation of the lost work during loading cycles. The interpolation by power law functions is more convenient by using less parameters and having a form accepted in literature. From the rubbers tested, two were considered to present good damping properties.

  1. A Spherically Symmetric Model for the Tumor Growth

    Directory of Open Access Journals (Sweden)

    Saeed M. Ali

    2014-01-01

    Full Text Available The nonlinear tumor equation in spherical coordinates assuming that both the diffusivity and the killing rate are functions of concentration of tumor cell is studied. A complete classification with regard to the diffusivity and net killing rate is obtained using Lie symmetry analysis. The reduction of the nonlinear governing equation is carried out in some interesting cases and exact solutions are obtained.

  2. The Electrochemical Behavior of Dispersions of Spherical Ultramicroelectrodes.

    Science.gov (United States)

    1986-07-30

    means of bipolar electrolyses with dispersions. Polarization equations are predicted for highly simplified models based on the concept of the mixture...three-dimensional electrodes. Bipolar electrolyses on dispersions of spherical particles have been proposed and the behavior of such electrodes in the... electrolyses (I0řcm < a < j0-3cm) is intermediate to that of the colloidal systems (typically 10- 6cm) and fluidized bed electrodes (typically 10- 2cm

  3. Plasma Current Start-up in a Spherical Tokamak

    Science.gov (United States)

    Mitarai, Osamu; Kessel, Charles; Hirose, Akira

    The various plasma current start-up techniques and related topics in a spherical tokamak (ST) device are described. The Ohmic heating coil current clamp experiments in NSTX are described and discussed, and the plasma current start-up experiments in the STOR-M tokamak with iron core and the outer vertical field coil is presented as one of technique for a plasma current start-up in a ST.

  4. Quasi-homologous spherically symmetric branes and their symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, M.C.B.; Carlesso, P.F. [UNESP - Universidade Estadual Paulista, Instituto de Fisica Teorica, Rua Dr. Bento Teobaldo Ferraz, 271, Bloco II, Barra-Funda, Caixa Postal 70532-2, Sao Paulo, SP (Brazil); Hoff da Silva, J.M. [UNESP - Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)

    2013-06-15

    We revisit the dynamical system-based approach of spherically symmetric vacuum braneworlds, pointing out and studying the existence of a transcritical bifurcation as the dark pressure parameter changes its sign, we analyze some consequences of not discard the brane cosmological constant. For instance, it is noteworthy that the existence of an isothermal state equation between the dark fluid parameters cannot be obtained via the requirement of a quasi-homologous symmetry of the vacuum. (orig.)

  5. Electromagnetically driven zonal flows in a rapidly rotating spherical shell

    OpenAIRE

    Hollerbach, Rainer; Wei, Xing; Noir, Jérõme; JACKSON, Andrew

    2013-01-01

    We consider the flow of an electrically conducting fluid confined in a rotating spherical shell. The flow is driven by a directly imposed electromagnetic body force, created by the combination of an electric current flowing from the inner sphere to a ring-shaped electrode around the equator of the outer sphere and a separately imposed predominantly axial magnetic field. We begin by numerically computing the axisymmetric basic states, which consist of a strong zonal flow. We nex...

  6. An introduction to spherically symmetric loop quantum gravity black holes

    Energy Technology Data Exchange (ETDEWEB)

    Gambini, Rodolfo [Instituto de Física, Facultad de Ciencias, Iguá 4-225, esq. Mataojo, 11400 Montevideo (Uruguay); Pullin, Jorge [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States)

    2015-03-26

    We review recent developments in the treatment of spherically symmetric black holes in loop quantum gravity. In particular, we discuss an exact solution to the quantum constraints that represents a black hole and is free of singularities. We show that new observables that are not present in the classical theory arise in the quantum theory. We also discuss Hawking radiation by considering the quantization of a scalar field on the quantum spacetime.

  7. Constrained field theories on spherically symmetric spacetimes with horizons

    Science.gov (United States)

    Fernandes, Karan; Lahiri, Amitabha; Ghosh, Suman

    2017-02-01

    We apply the Dirac-Bergmann algorithm for the analysis of constraints to gauge theories defined on spherically symmetric black hole backgrounds. We find that the constraints for a given theory are modified on such spacetimes through the presence of additional contributions from the horizon. As a concrete example, we consider the Maxwell field on a black hole background, and determine the role of the horizon contributions on the dynamics of the theory.

  8. Surface tension of spherical drops from surface of tension

    Energy Technology Data Exchange (ETDEWEB)

    Homman, A.-A.; Bourasseau, E. [CEA/DAM DIF, F-91297 Arpajon Cedex (France); Stoltz, G. [Université Paris-Est, CERMICS (ENPC), INRIA, F-77455 Marne-la-Vallée (France); Malfreyt, P. [Institut de Chimie de Clermont-Ferrand, Université Blaise Pascal, UMR CNRS 6296, ICCF, BP 10448, F-63000 Clermont-Ferrand (France); Strafella, L.; Ghoufi, A., E-mail: aziz.ghoufi@univ-rennes1.fr [Institut de Physique de Rennes, Université de Rennes 1 UMR 6251 CNRS, 263 avenue Général Leclerc, 35042 Rennes (France)

    2014-01-21

    The determination of surface tension of curved interfaces is a topic that raised many controversies during the last century. Explicit liquid-vapor interface modelling (ELVI) was unable up to now to reproduce interfacial behaviors in drops due to ambiguities in the mechanical definition of the surface tension. In this work, we propose a thermodynamic approach based on the location of surface of tension and its use in the Laplace equation to extract the surface tension of spherical interfaces from ELVI modelling.

  9. Hysteresis of dynamos in rotating spherical shell convection

    Science.gov (United States)

    Feudel, F.; Tuckerman, L. S.; Zaks, M.; Hollerbach, R.

    2017-05-01

    Bifurcations of dynamos in rotating and buoyancy-driven spherical Rayleigh-Bénard convection in an electrically conducting fluid are investigated numerically. Both nonmagnetic and magnetic solution branches comprised of rotating waves are traced by path-following techniques, and their bifurcations and interconnections for different Ekman numbers are determined. In particular, the question of whether the dynamo branches bifurcate super- or subcritically and whether a direct link to the primary pure convective states exists is answered.

  10. Investigation of High Pressure, Multi-Hole Diesel Fuel Injection Using High Speed Imaging

    Science.gov (United States)

    Morris, Steven; Eagle, Ethan; Wooldridge, Margaret

    2012-10-01

    Research to experimentally capture and understand transient fuel spray behavior of modern fuel injection systems remains underdeveloped. To this end, a high-pressure diesel common-rail fuel injector was instrumented in a spherical, constant volume combustion chamber to image the early time history of injection of diesel fuel. The research-geometry fuel injector has four holes aligned on a radial plane of the nozzle with hole sizes of 90, 110, 130 and 150 μm in diameter. Fuel was injected into a non-reacting environment with ambient densities of 17.4, 24.0, and 31.8 kg/m3 at fuel rail pressures of 1000, 1500, and 2000 bar. High speed images of fuel injection were taken using backlighting at 100,000 frames per second (100 kfps) and an image processing algorithm. The experimental results are compared with a one-dimensional fuel-spray model that was historically developed and applied to fuel sprays from single-hole fuel injectors. Fuel spray penetration distance was evaluated as a function of time for the different injector hole diameters, fuel injection pressures and ambient densities. The results show the differences in model predictions and experimental data at early times in the spray development.

  11. Catalytic Fuel Conversion Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility enables unique catalysis research related to power and energy applications using military jet fuels and alternative fuels. It is equipped with research...

  12. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL)Established to investigate, integrate, testand verifyperformance and technology readiness offuel cell systems and fuel reformers for use with...

  13. Symmetric functions and B sub N -invariant spherical harmonics

    CERN Document Server

    Dunkl, C F

    2002-01-01

    The wavefunctions of a quantum isotropic harmonic oscillator modified by reflecting barriers at the coordinate planes in N-dimensional space can be expressed in terms of certain generalized spherical harmonics. These are associated with a product-type weight function on the sphere. Their analysis is carried out by means of differential-difference operators. The symmetries of this system involve the Weyl group of type B, generated by permutations and changes of sign of the coordinates. A new basis for symmetric functions as well as an explicit transition matrix to the monomial basis is constructed. This basis leads to a basis for invariant spherical harmonics. The determinant of the Gram matrix for the basis in the natural inner product over the sphere is evaluated. When the underlying parameter is specialized to zero, the basis consists of ordinary spherical harmonics with cube group symmetry, as used for wavefunctions of electrons in crystals. The harmonic oscillator can also be considered as a degenerate in...

  14. Axisymmetric bifurcations of thick spherical shells under inflation and compression

    KAUST Repository

    deBotton, G.

    2013-01-01

    Incremental equilibrium equations and corresponding boundary conditions for an isotropic, hyperelastic and incompressible material are summarized and then specialized to a form suitable for the analysis of a spherical shell subject to an internal or an external pressure. A thick-walled spherical shell during inflation is analyzed using four different material models. Specifically, one and two terms in the Ogden energy formulation, the Gent model and an I1 formulation recently proposed by Lopez-Pamies. We investigate the existence of local pressure maxima and minima and the dependence of the corresponding stretches on the material model and on shell thickness. These results are then used to investigate axisymmetric bifurcations of the inflated shell. The analysis is extended to determine the behavior of a thick-walled spherical shell subject to an external pressure. We find that the results of the two terms Ogden formulation, the Gent and the Lopez-Pamies models are very similar, for the one term Ogden material we identify additional critical stretches, which have not been reported in the literature before.© 2012 Published by Elsevier Ltd.

  15. Toral and exponential stabilization for homotopy spherical spaceforms

    Science.gov (United States)

    Kwasik, Slawomir; Schultz, Reinhard

    2004-11-01

    The Atiyah-Singer equivariant signature formula implies that the products of isometrically inequivalent classical spherical space forms with the circle are not homeomorphic, and in fact the same conclusion holds if the circle is replaced by a torus of arbitrary dimension. These results are important in the study of group actions on manifolds. Algebraic K-theory yields standard classes of counterexamples for topological and smooth analogs of spherical spaceforms. The results of this paper characterize pairs of nonhomeomorphic topological spherical space forms whose products with a given torus of arbitrary dimension are homeomorphic, and the main result is that the known counterexamples are the only ones that exist. In particular, this and basic results in lower algebraic K-theory show that if such products are homeomorphic, then the products are already homeomorphic if one uses a 3-dimensional torus. Sharper results are established for important special cases such as fake lens spaces. The methods are basically surgery-theoretic with some input from homotopy theory. One consequence is the existence of new infinite families of manifolds in all dimensions greater than three such that the squares of the manifolds are homeomorphic although the manifolds themselves are not. Analogous results are obtained in the smooth category.

  16. Spherical magnetic nanoparticles fabricated by laser target evaporation

    Science.gov (United States)

    Safronov, A. P.; Beketov, I. V.; Komogortsev, S. V.; Kurlyandskaya, G. V.; Medvedev, A. I.; Leiman, D. V.; Larrañaga, A.; Bhagat, S. M.

    2013-05-01

    Magnetic nanoparticles of iron oxide (MNPs) were prepared by the laser target evaporation technique (LTE). The main focus was on the fabrication of de-aggregated spherical maghemite MNPs with a narrow size distribution and enhanced effective magnetization. X-ray diffraction, transmission electron microscopy, magnetization and microwave absorption measurements were comparatively analyzed. The shape of the MNPs (mean diameter of 9 nm) was very close to being spherical. The lattice constant of the crystalline phase was substantially smaller than that of stoichiometric magnetite but larger than the lattice constant of maghemite. High value of Ms up to 300 K was established. The 300 K ferromagnetic resonance signal is a single line located at a field expected from spherical magnetic particles with negligible magnetic anisotropy. The maximum obtained concentration of water based ferrofluid was as high as 10g/l of magnetic material. In order to understand the temperature and field dependence of MNPs magnetization, we invoke the core-shell model. The nanoparticles is said to have a ferrimagnetic core (roughly 70 percent of the caliper size) while the shell consists of surface layers in which the spins are frozen having no long range magnetic order. The core-shell interactions were estimated in frame of random anisotropy model. The obtained assembly of de-aggregated nanoparticles is an example of magnetic nanofluid stable under ambient conditions even without an electrostatic stabilizer.

  17. Magnetic actuation and transition shapes of a bistable spherical cap

    Directory of Open Access Journals (Sweden)

    E.G. Loukaides

    2014-10-01

    Full Text Available Multistable shells have been proposed for a variety of applications; however, their actuation is almost exclusively addressed through embedded piezoelectric patches. Additional actuation techniques are needed for applications requiring high strains or where remote actuation is desirable. Part of the reason for the lack of research in this area is the absence of appropriate models describing the detailed deformation and energetics of such shells. This work presents a bistable spherical cap made of iron carbonyl-infused polydimethylsiloxane. The magnetizable structure can be actuated remotely through permanent magnets while the transition is recorded with a high-speed camera. Moreover, the experiment is reproduced in a finite element (FE dynamic model for comparison with the physical observations. High-speed footage of the physical cap inversion together with the FE modeling gives valuable insight on preferable intermediate geometries. Both methods return similar values for the magnetic field strength required for the snap-through. High-strain multistable spherical cap transformation is demonstrated, based on informed material selection. We discover that non-axisymmetric transition shapes are preferred in intermediate geometries by bistable spherical caps. We develop the methods for design and analysis of such actuators, including the feasibility of remote actuation methods for multistable shells.

  18. Dye-doped spherical particles of optical cavity structure

    Science.gov (United States)

    Shibata, Shuichi; Yano, Tetsuji; Yamane, Masayuki

    1997-10-01

    Preparation of micrometer-sized spherical particles containing Rhodamine 6G (R6G) has been investigated for spherical cavity structure. Hydrolysis and polymerization processes of phenyltriethoxysilane (PTES) as a starting material was pursued by observing the change of PTES/R6G in HCl solution with its optical absorption and viscosity. As the polymerization of PTES proceeded, increase of molecular size resulted in change its properties from hydrophilic to hydrophobic, and subsequently the solution separated into two layers of aqueous and organic. Polymerized PTES in the organic layer showed good affinity with incorporated R6G, and high monomer/dimer ratio in particles was achieved. Moreover, using them intermixing of unsuitable particles of submicron size was avoided, because hydrolyzed PTES of small molecular size that is the origin of submicron-sized particles was removed to the aqueous layer. With stirring, titration of diluted droplets containing polymerized PTES was suitable for preparing several micrometer sized particles, and followed by solidification in ammonia water. Degree of the polymerization of PTES and viscosity of liquid droplets were the key factors for determining the properties of R6G-doped spherical particles of optical cavity structure.

  19. Robotic penguin-like propulsor with novel spherical joint

    Science.gov (United States)

    Sudki, Bassem; Lauria, Michel; Noca, Flavio

    2013-11-01

    We have designed and manufactured an innovative spherical joint mechanism with three actuated degrees of freedom, aimed at mimicking a penguin shoulder and enabling a potential propulsion technology with high efficiency and maneuverability. In addition, the mechanism might also lead to propellers with directional thrusting capability. A parallel architecture was chosen for this type of mechanism in order to ensure rigidity as well high actuation frequencies and amplitudes. Indeed, as the motors are fixed, inertial forces are lower than for a serial robot. The resulting spherical parallel mechanism (SPM) with coaxial shafts was designed and manufactured with the following specifications: fixed center of rotation (spherical joint); working frequency of 2.5 Hz under charge; unlimited rotation about main axis; and arbitrary motion within a cone of 60 degrees. The equations for the inverse kinematics of the mechanism have been established and can yield the trajectories of each actuator for any desired motion applied to the oar or blade. The technology will be illustrated with preliminary experiments in a hydrodynamic channel at the University of Applied Sciences - hepia - Switzerland.

  20. Spherical Domain Wall Collapse in a Dust Universe

    CERN Document Server

    Tanahashi, Norihiro

    2014-01-01

    To clarify observational consequence of bubble nucleations in inflationary era, we analyse dynamics of a spherical domain wall in an expanding universe. We consider a spherical shell of the domain wall with tension $\\sigma$ collapsing in a spherically-symmetric dust universe, which is initially separated into the open Friedmann-Lema\\^itre-Robertson-Walker universe inside the shell and the Einstein-de Sitter universe outside. The domain wall shell collapses due to the tension, and sweeps the dust fluid. The universe after the collapse becomes inhomogeneous and is described by the Lema\\^itre-Tolman-Bondi model. We construct solutions describing this inhomogeneous universe by solving dynamical equations obtained from Israel's junction conditions applied to this system. We find that a black hole forms after the domain wall collapse for any initial condition, and that the black hole mass at the moment of its formation is universally given by $M_{\\rm BH}\\simeq 17 \\sigma/H_{\\rm hc}$, where $H_{\\rm hc}$ is the Hubble...

  1. Visual Detection and Tracking System for a Spherical Amphibious Robot.

    Science.gov (United States)

    Guo, Shuxiang; Pan, Shaowu; Shi, Liwei; Guo, Ping; He, Yanlin; Tang, Kun

    2017-04-15

    With the goal of supporting close-range observation tasks of a spherical amphibious robot, such as ecological observations and intelligent surveillance, a moving target detection and tracking system was designed and implemented in this study. Given the restrictions presented by the amphibious environment and the small-sized spherical amphibious robot, an industrial camera and vision algorithms using adaptive appearance models were adopted to construct the proposed system. To handle the problem of light scattering and absorption in the underwater environment, the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used to detect moving targets entering the field of view of the robot. A fast compressive tracker with a Kalman prediction mechanism was used to track the specified target. Considering the limited load space and the unique mechanical structure of the robot, the proposed vision system was fabricated with a low power system-on-chip using an asymmetric and heterogeneous computing architecture. Experimental results confirmed the validity and high efficiency of the proposed system. The design presented in this paper is able to meet future demands of spherical amphibious robots in biological monitoring and multi-robot cooperation.

  2. Internal reforming fuel cell assembly with simplified fuel feed

    Science.gov (United States)

    Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  3. Spherical Indicatrices of Involute of a Space Curve in Euclidean 3-Space

    OpenAIRE

    Tunçer, Yılmaz; ÜNAL, Serpil; KARACAN, Murat Kemal

    2012-01-01

    In this work, we studied the properties of the spherical indicatrices of involute curve of a space curve and presented some characteristic properties in the cases that involute curve and evolute curve are slant helices and helices, spherical indicatrices are slant helices and helices and we introduced new representations of spherical indicatrices.

  4. A CFD-DEM study of single bubble formation in gas fluidization of spherical and non-spherical particles

    Directory of Open Access Journals (Sweden)

    Shrestha Siddhartha

    2017-01-01

    Full Text Available Bubble dynamics significantly affect the hydrodynamics of gas-solid fluidized bed since they influence the gas-solid mixing. In this study, simulations using CFD-DEM were carried out to characterize the bubble size and shape for a bubble formed at a single orifice in gas-solid fluidized bed. Impact of parameters such as jet velocity, orifice size and particle shape on bubble equivalent diameter and bubble aspect ratio were analysed and discussed. Bubble equivalent diameter was found to increase with increasing jet velocity, decreasing bed width to orifice width ratio, and particle shape deviating from spherical. The bubble shape illustrated by aspect ratio, was found to elongate more as it rise through the bed and then commence to expand horizontally after it was detached from the orifice. Aspect ratio was found to be closer to a circle for the bubble at higher jet velocity, lower orifice width to bed ratio and for non-spherical particles.

  5. A complete analytical solution for the inverse instantaneous kinematics of a spherical-revolute-spherical (7R) redundant manipulator

    Science.gov (United States)

    Podhorodeski, R. P.; Fenton, R. G.; Goldenberg, A. A.

    1989-01-01

    Using a method based upon resolving joint velocities using reciprocal screw quantities, compact analytical expressions are generated for the inverse solution of the joint rates of a seven revolute (spherical-revolute-spherical) manipulator. The method uses a sequential decomposition of screw coordinates to identify reciprocal screw quantities used in the resolution of a particular joint rate solution, and also to identify a Jacobian null-space basis used for the direct solution of optimal joint rates. The results of the screw decomposition are used to study special configurations of the manipulator, generating expressions for the inverse velocity solution for all non-singular configurations of the manipulator, and identifying singular configurations and their characteristics. Two functions are therefore served: a new general method for the solution of the inverse velocity problem is presented; and complete analytical expressions are derived for the resolution of the joint rates of a seven degree of freedom manipulator useful for telerobotic and industrial robotic application.

  6. A CFD-DEM study of single bubble formation in gas fluidization of spherical and non-spherical particles

    Science.gov (United States)

    Shrestha, Siddhartha; Zhou, Zongyan

    2017-06-01

    Bubble dynamics significantly affect the hydrodynamics of gas-solid fluidized bed since they influence the gas-solid mixing. In this study, simulations using CFD-DEM were carried out to characterize the bubble size and shape for a bubble formed at a single orifice in gas-solid fluidized bed. Impact of parameters such as jet velocity, orifice size and particle shape on bubble equivalent diameter and bubble aspect ratio were analysed and discussed. Bubble equivalent diameter was found to increase with increasing jet velocity, decreasing bed width to orifice width ratio, and particle shape deviating from spherical. The bubble shape illustrated by aspect ratio, was found to elongate more as it rise through the bed and then commence to expand horizontally after it was detached from the orifice. Aspect ratio was found to be closer to a circle for the bubble at higher jet velocity, lower orifice width to bed ratio and for non-spherical particles.

  7. Spherical Coordinate Systems for Streamlining Suited Mobility Analysis

    Science.gov (United States)

    Benson, Elizabeth; Cowley, Matthew; Harvill, Lauren; Rajulu. Sudhakar

    2015-01-01

    Introduction: When describing human motion, biomechanists generally report joint angles in terms of Euler angle rotation sequences. However, there are known limitations in using this method to describe complex motions such as the shoulder joint during a baseball pitch. Euler angle notation uses a series of three rotations about an axis where each rotation is dependent upon the preceding rotation. As such, the Euler angles need to be regarded as a set to get accurate angle information. Unfortunately, it is often difficult to visualize and understand these complex motion representations. It has been shown that using a spherical coordinate system allows Anthropometry and Biomechanics Facility (ABF) personnel to increase their ability to transmit important human mobility data to engineers, in a format that is readily understandable and directly translatable to their design efforts. Objectives: The goal of this project was to use innovative analysis and visualization techniques to aid in the examination and comprehension of complex motions. Methods: This project consisted of a series of small sub-projects, meant to validate and verify a new method before it was implemented in the ABF's data analysis practices. A mechanical test rig was built and tracked in 3D using an optical motion capture system. Its position and orientation were reported in both Euler and spherical reference systems. In the second phase of the project, the ABF estimated the error inherent in a spherical coordinate system, and evaluated how this error would vary within the reference frame. This stage also involved expanding a kinematic model of the shoulder to include the rest of the joints of the body. The third stage of the project involved creating visualization methods to assist in interpreting motion in a spherical frame. These visualization methods will be incorporated in a tool to evaluate a database of suited mobility data, which is currently in development. Results: Initial results

  8. Stored Energy and Quality Factor of Spherical Wave Functions–in Relation to Spherical Antennas With Material Cores

    DEFF Research Database (Denmark)

    Hansen, Troels V.; Kim, Oleksiy S.; Breinbjerg, Olav

    2012-01-01

    wave, the excitation coefficients for the internal and external spherical waves, the radiated power, the internal and external stored electric and magnetic energies, the difference of total electric and total magnetic energy, the cavity and radiating resonance conditions, and the quality factor. We...... investigate the variation of the internal/external and electric/magnetic stored energies with the electrical size of the antenna to study their relative significance for the quality factor....

  9. Fuel dissipater for pressurized fuel cell generators

    Science.gov (United States)

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  10. Effects of Structure and Hydrodynamics on the Sooting Behavior of Spherical Microgravity Diffusion Flames

    Science.gov (United States)

    Sunderland, P. B.; Axelbaum, R. L.; Urban, D. L.

    1999-01-01

    , similar to that of other gas-phase reactions in flames. For example, when the flame moves across the stagnation plane no significant changes in flame chemistry are observed. Furthermore, since the soot-inception zone has a finite thickness, soot has been produced in counterflow flames with (Z(sub st)) > 0.5. For large (Z(sub st)) the fuel concentration decreases and oxygen concentration increases in the soot forming regions of the flame. This yields a shift in the OH profile toward the fuel side of the flame, and this shift can dramatically influence soot inception because it essentially narrows the soot inception zone. Soot-free (permanently-blue) conditions can be realized when the structure of the flame is adjusted to the extent that significant oxidizing species exist on the fuel side of the flame at temperatures above the critical temperature for soot inception, ca. 1250 K. In previously considered flames it was impossible to independently vary flame structure and convection direction. In contrast, spherical diffusion flames (which generally require microgravity) allow both properties to be varied independently. We altered structure (Z(sub st)) by exchanging inert between the oxidizer and the fuel and we independently varied convection direction at the flame sheet by interchanging the injected and ambient gases. In this work we established four flames: (a) ethylene issuing into air, (b) diluted ethylene issuing into oxygen, (c) air issuing into ethylene, and (d) oxygen issuing into diluted ethylene. (Z(sub st)) is 0.064 in flames (a) and (c) and 0.78 in flames (b) and (d). The convection direction is from fuel to oxidizer in flames (a) and (b) and from oxidizer to fuel in flames (c) and (d). Under the assumption of equal diffusivities of all species and heat, the stoichiometric contours of these flames have identical temperatures and nitrogen concentrations.

  11. Multipoint Fuel Injection Arrangements

    Science.gov (United States)

    Prociw, Lev Alexander (Inventor)

    2017-01-01

    A multipoint fuel injection system includes a plurality of fuel manifolds. Each manifold is in fluid communication with a plurality of injectors arranged circumferentially about a longitudinal axis for multipoint fuel injection. The injectors of separate respective manifolds are spaced radially apart from one another for separate radial staging of fuel flow to each respective manifold.

  12. Fuel transfer system

    Science.gov (United States)

    Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  13. Microfluidic fuel cell systems

    Science.gov (United States)

    Ho, Bernard; Kjeang, Erik

    2011-06-01

    A microfluidic fuel cell is a microfabricated device that produces electrical power through electrochemical reactions involving a fuel and an oxidant. Microfluidic fuel cell systems exploit co-laminar flow on the microscale to separate the fuel and oxidant species, in contrast to conventional fuel cells employing an ion exchange membrane for this function. Since 2002 when the first microfluidic fuel cell was invented, many different fuels, oxidants, and architectures have been investigated conceptually and experimentally. In this mini-review article, recent advancements in the field of microfluidic fuel cell systems are documented, with particular emphasis on design, operation, and performance. The present microfluidic fuel cell systems are categorized by the fluidic phases of the fuel and oxidant streams, featuring gaseous/gaseous, liquid/gaseous, and liquid/liquid systems. The typical cell configurations and recent contributions in each category are analyzed. Key research challenges and opportunities are highlighted and recommendations for further work are provided.

  14. Fuel cells seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This year`s meeting highlights the fact that fuel cells for both stationary and transportation applications have reached the dawn of commercialization. Sales of stationary fuel cells have grown steadily over the past 2 years. Phosphoric acid fuel cell buses have been demonstrated in urban areas. Proton-exchange membrane fuel cells are on the verge of revolutionizing the transportation industry. These activities and many more are discussed during this seminar, which provides a forum for people from the international fuel cell community engaged in a wide spectrum of fuel cell activities. Discussions addressing R&D of fuel cell technologies, manufacturing and marketing of fuel cells, and experiences of fuel cell users took place through oral and poster presentations. For the first time, the seminar included commercial exhibits, further evidence that commercial fuel cell technology has arrived. A total of 205 papers is included in this volume.

  15. Worldwide complete spherical Bouguer and isostatic anomaly maps

    Science.gov (United States)

    Bonvalot, S.; Balmino, G.; Briais, A.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.

    2011-12-01

    We present here a set of digital maps of the Earth's gravity anomalies (surface "free air", Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW). The free air and Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, submitted). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial Intelligence Agency (NGA) (Pavlis

  16. X-ray Imaging of MagLIF Experiments Using a Spherically-Bent Crystal Optic

    Science.gov (United States)

    Harding, E. C.; Gomez, M. R.; Jennings, C. A.; Knapp, P. F.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Hansen, S. B.; Peterson, K. J.; Hahn, K. D.; McBride, R. D.; Rochau, G. A.; Sinars, D. B.; Golovkin, I.

    2015-11-01

    The recent Magnetized Liner Inertial Fusion (MagLIF) experiments performed on Sandia's Z-machine produced significant thermonuclear DD fusion yields that were accompanied by observable x-ray emission [M.R. Gomez et. al., PRL (2014)]. The MagLIF experiments relied on a spherically-bent crystal optic to image portions of the x-ray continuum that were generated by the hot stagnation plasma. The images of stagnation show a long (6 to 8 mm) and narrow (~100 micron) column of x-ray emission with structure in both directions. This structure may be caused by variations in the electron temperature (Te) and density (ne) , as well as opacity variations in the surrounding Be pusher. Here we investigate the possible contributions from each of these effects. We will also discuss the development of a diagnostic technique in which Te and ne of the DD fuel are inferred from spectra emitted by Fe impurities that become ionized to a He-like charge state. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DoE NNSA under contract DE-AC04-94AL85000.

  17. Alternate Fuels Combustion Research

    Science.gov (United States)

    1983-10-01

    nozzle using a vernier e. take photographs of carbon accumulation Carbon deposition checks were done for all fifteen fuels with simplex nozzle and six... micrometer valve and open cooler valve - set fuel circuit to bypass mode - start fuel pump & close cooler valve until abotit 100 psi is indicated on the...cooler gauge - open micrometer valve to desired fuel flow - start main air and switch on the refrigeration unit - allow both the fuel and air systems to

  18. Materials for fuel cells

    OpenAIRE

    Haile, Sossina M

    2003-01-01

    Because of their potential to reduce the environmental impact and geopolitical consequences of the use of fossil fuels, fuel cells have emerged as tantalizing alternatives to combustion engines. Like a combustion engine, a fuel cell uses some sort of chemical fuel as its energy source but, like a battery, the chemical energy is directly converted to electrical energy, without an often messy and relatively inefficient combustion step. In addition to high efficiency and low emissions, fuel cell...

  19. Hybrid Fuel Cell Systems

    OpenAIRE

    Brouwer, J.; Samuelsen, GS

    2001-01-01

    Examples of hybrid fuel cell power generation cycles are the combine high-temperature fuel cells and gas turbines, reciprocating engines, or another fuel cell. These represent the hybrid power plants of the future. The conceptual systems have the potential to achieve efficiencies greater than 70 percent and be commercially ready by year 2010 or sooner. The hybrid fuel cell/turbine (FC/T) power plant will combine a high-temperature, conventional molten carbonate fuel cell (MCFC)...

  20. A charged fusion product diagnostic for a spherical tokamak

    Science.gov (United States)

    Perez, Ramona Leticia Valenzuela

    Designs for future nuclear fusion power reactors rely on the ability to create a stable plasma (hot ionized gas of hydrogen isotopes) as a medium with which to sustain nuclear fusion reactions. My dissertation work involves designing, constructing, testing, installing, operating, and validating a new diagnostic for spherical tokamaks, a type of reactor test facility. Through detecting charged particles emitted from the plasma, this instrument can be used to study fusion reaction rates within the plasma and how they are affected by plasma perturbations. Quantitatively assessing nuclear fusion reaction rates at specific locations inside the plasma and as a function of time can provide valuable data that can be used to evaluate theory-based simulations related to energy transport and plasma stability. The Proton Detector (PD), installed in the Mega Amp Spherical Tokamak (MAST) at the Culham Centre for Fusion Energy (CCFE) in Abingdon, England, was the first instrument to experimentally detect 3 MeV Protons and 1 MeV Tritons created from deuterium- deuterium (hydrogen isotopes) nuclear fusion reactions inside a spherical tokamak's plasma. The PD consists of an array of particle detectors with a protective housing and the necessary signal conditioning electronics and readout. After several years of designing (which included simulations for detector orientations), fabricating, and testing the PD, it was installed in MAST and data were collected over a period of two months in the summer of 2013. Proton and triton rates as high as 200 kHz were measured and an initial radial profile of these fusion reaction rates inside the plasma was extracted. These results will be compared to a complementary instrument at MAST as well as theory-based simulations and form the knowledge basis for developing a larger future instrument. The design and performance of all instrument components (electrical, computational, mechanical), and subsequent data analysis methods and results are