WorldWideScience

Sample records for sphagnum nutrient concentrations

  1. Swift recovery of Sphagnum nutrient concentrations after excess supply.

    Science.gov (United States)

    Limpens, Juul; Heijmans, Monique M P D

    2008-08-01

    Although numerous studies have addressed the effects of increased N deposition on nutrient-poor environments such as raised bogs, few studies have dealt with to what extent, and on what time-scale, reductions in atmospheric N supply would lead to recovery of the ecosystems in question. Since a considerable part of the negative effects of elevated N deposition on raised bogs can be related to an imbalance in tissue nutrient concentrations of the dominant peat-former Sphagnum, changes in Sphagnum nutrient concentration after excess N supply may be used as an early indicator of ecosystem response. This study focuses on the N and P concentrations of Sphagnum magellanicum and Sphagnum fallax before, during and after a factorial fertilization experiment with N and P in two small peatlands subject to a background bulk deposition of 2 g N m(-2) year(-1). Three years of adding N (4.0 g N m(-2) year(-1)) increased the N concentration, and adding P (0.3 g P m(-2) year(-1)) increased the P concentration in Sphagnum relative to the control treatment at both sites. Fifteen months after the nutrient additions had ceased, N concentrations were similar to the control whereas P concentrations, although strongly reduced, were still slightly elevated. The changes in the N and P concentrations were accompanied by changes in the distribution of nutrients over the capitulum and the stem and were congruent with changes in translocation. Adding N reduced the stem P concentration, whereas adding P reduced the stem N concentration in favor of the capitulum. Sphagnum nutrient concentrations quickly respond to reductions in excess nutrient supply, indicating that a management policy aimed at reducing atmospheric nutrient input to bogs can yield results within a few years.

  2. Nutrient stoichiometry in Sphagnum along a nitrogen deposition gradient in highly polluted region of Central-East Europe

    Energy Technology Data Exchange (ETDEWEB)

    Jirousek, Martin, E-mail: machozrut@mail.muni.c [Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno (Czech Republic); Hajek, Michal [Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno (Czech Republic); Bragazza, Luca [WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, Station 2, Case Postale 96, CH-1015 Lausanne (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory of Ecological Systems - ECOS, Batiment GR, Station 2, CH-1015 Lausanne (Switzerland); Department of Biology and Evolution, University of Ferrara, Corso Ercole I d' Este 32, I-44100 Ferrara (Italy)

    2011-02-15

    We investigated the variation of N:P and N:K ratio in ombrotrophic Sphagnum plants along a gradient of atmospheric N deposition from 1 to 2.5 g m{sup -2} year{sup -1} in Central-East Europe. The N:P and N:K ratio in Sphagnum capitula increased significantly along the N deposition gradient. Sphagnum species from the Cuspidata section were characterised by significantly lower ratios at low N deposition. When we compared the observed N:P ratios in Sphagnum plants with the values reported in a previous European-wide study, we found a correspondence in nutrient stoichiometry only for a few bogs: higher P concentration in Sphagnum capitula caused a lower N:P ratio in most of the study bogs so that Sphagnum plants still seem N-limited despite their N saturation. Interaction between summer water table decrease and aerial liming of surrounding forests is proposed as an explanation for this discrepancy. Local forestry practice interacting with climate thus alter N:P stoichiometry of Sphagnum along the N deposition gradient. - Research highlights: Despite high atmopsheric nitrogen deposition, Sphagnum mosses still have rather low N:P ratio. Regional climate and landscape management can enhance P and K availability in bogs. Sphagnum species of the Cuspidata section were characterised by lower N:P ratio. - Regional climate and local forestry practices are expected to alter nutrient stoichiometry in Sphagnum mosses at high atmospheric N deposition in Central-East Europe.

  3. Nutrient stoichiometry in Sphagnum along a nitrogen deposition gradient in highly polluted region of Central-East Europe

    International Nuclear Information System (INIS)

    Jirousek, Martin; Hajek, Michal; Bragazza, Luca

    2011-01-01

    We investigated the variation of N:P and N:K ratio in ombrotrophic Sphagnum plants along a gradient of atmospheric N deposition from 1 to 2.5 g m -2 year -1 in Central-East Europe. The N:P and N:K ratio in Sphagnum capitula increased significantly along the N deposition gradient. Sphagnum species from the Cuspidata section were characterised by significantly lower ratios at low N deposition. When we compared the observed N:P ratios in Sphagnum plants with the values reported in a previous European-wide study, we found a correspondence in nutrient stoichiometry only for a few bogs: higher P concentration in Sphagnum capitula caused a lower N:P ratio in most of the study bogs so that Sphagnum plants still seem N-limited despite their N saturation. Interaction between summer water table decrease and aerial liming of surrounding forests is proposed as an explanation for this discrepancy. Local forestry practice interacting with climate thus alter N:P stoichiometry of Sphagnum along the N deposition gradient. - Research highlights: → Despite high atmopsheric nitrogen deposition, Sphagnum mosses still have rather low N:P ratio.→ Regional climate and landscape management can enhance P and K availability in bogs. → Sphagnum species of the Cuspidata section were characterised by lower N:P ratio. - Regional climate and local forestry practices are expected to alter nutrient stoichiometry in Sphagnum mosses at high atmospheric N deposition in Central-East Europe.

  4. Nutrient stoichiometry in Sphagnum along a nitrogen deposition gradient in highly polluted region of Central-East Europe.

    Science.gov (United States)

    Jiroušek, Martin; Hájek, Michal; Bragazza, Luca

    2011-02-01

    We investigated the variation of N:P and N:K ratio in ombrotrophic Sphagnum plants along a gradient of atmospheric N deposition from 1 to 2.5 g m(-2) year(-1) in Central-East Europe. The N:P and N:K ratio in Sphagnum capitula increased significantly along the N deposition gradient. Sphagnum species from the Cuspidata section were characterised by significantly lower ratios at low N deposition. When we compared the observed N:P ratios in Sphagnum plants with the values reported in a previous European-wide study, we found a correspondence in nutrient stoichiometry only for a few bogs: higher P concentration in Sphagnum capitula caused a lower N:P ratio in most of the study bogs so that Sphagnum plants still seem N-limited despite their N saturation. Interaction between summer water table decrease and aerial liming of surrounding forests is proposed as an explanation for this discrepancy. Local forestry practice interacting with climate thus alter N:P stoichiometry of Sphagnum along the N deposition gradient. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Nutrient additions in pristine Patagonian Sphagnum bog vegetation : can phosphorus addition alleviate (the effects of) increased nitrogen loads

    NARCIS (Netherlands)

    Fritz, C.; Dijk, G. van; Smolders, A.J.P.; Pancotto, V.A.; Elzenga, J.T.M.; Roelofs, J.G.M.; Grootjans, A.P.

    Sphagnum-bog ecosystems have a limited capability to retain carbon and nutrients when subjected to increased nitrogen (N) deposition. Although it has been proposed that phosphorus (P) can dilute negative effects of nitrogen by increasing biomass production of Sphagnum mosses, it is still unclear

  6. Effect of N deposition on tree amino acid concentrations in two Sphagnum species

    Energy Technology Data Exchange (ETDEWEB)

    Karsisto, M; Kitunen, V [Finnish Forest Research Inst., Vantaa (Finland). Vantaa Research Centre; Jauhiainen, J [Joensuu Univ. (Finland). Dept. of Biology; Vasander, H [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1997-12-31

    Nitrogen saturation of ecosystems occurs when the availability of nitrogen is not a growth limiting factor. This situation can be reached through fertilisation or by nitrogen deposition. Prolonged nitrogen saturation may overload the ecosystem and cause changes in the vigour and eventually in the composition of plant communities. But before this stage is reached, certain changes in nitrogen metabolism occur. These changes can be used as an early warning of nitrogen overload to ecosystems. A change in the amino acid pool of plants has been used as an indication of various kind of stress, including, temperature, nutrient imbalance, shading, drought or excess water. It has been postulated that such stresses have an effect on protein synthesis but not on the nitrogen uptake of plants. The result is an increase in the concentration of NH{sub 4}{sup +} ions in plant cells, which may have toxic effects to the plant and the processes that assimilate the free NH{sub 4}{sup +} ions. One of such process is the synthesis of amino acids, especially those containing a significant proportion of nitrogen, e.g. arginine, glutamine and asparagine. This study about the quantification of amino acids in two species of Sphagnum mosses is part of a larger study, the aim of which is to clarify how a number of Sphagnum species will cope with climatic change and nitrogen deposition. Sphagna are the most important members of the peat forming communities in the boreal zone. Sphagnum communities are formed by species specialised to grow in conditions of low nutrient availability, mainly provided via deposition. The present structure and composition of mire communities may be endangered due to elevated levels of nitrogen deposition that have persisted over the last few decades. (20 refs.)

  7. Effect of N deposition on tree amino acid concentrations in two Sphagnum species

    Energy Technology Data Exchange (ETDEWEB)

    Karsisto, M.; Kitunen, V. [Finnish Forest Research Inst., Vantaa (Finland). Vantaa Research Centre; Jauhiainen, J. [Joensuu Univ. (Finland). Dept. of Biology; Vasander, H. [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    Nitrogen saturation of ecosystems occurs when the availability of nitrogen is not a growth limiting factor. This situation can be reached through fertilisation or by nitrogen deposition. Prolonged nitrogen saturation may overload the ecosystem and cause changes in the vigour and eventually in the composition of plant communities. But before this stage is reached, certain changes in nitrogen metabolism occur. These changes can be used as an early warning of nitrogen overload to ecosystems. A change in the amino acid pool of plants has been used as an indication of various kind of stress, including, temperature, nutrient imbalance, shading, drought or excess water. It has been postulated that such stresses have an effect on protein synthesis but not on the nitrogen uptake of plants. The result is an increase in the concentration of NH{sub 4}{sup +} ions in plant cells, which may have toxic effects to the plant and the processes that assimilate the free NH{sub 4}{sup +} ions. One of such process is the synthesis of amino acids, especially those containing a significant proportion of nitrogen, e.g. arginine, glutamine and asparagine. This study about the quantification of amino acids in two species of Sphagnum mosses is part of a larger study, the aim of which is to clarify how a number of Sphagnum species will cope with climatic change and nitrogen deposition. Sphagna are the most important members of the peat forming communities in the boreal zone. Sphagnum communities are formed by species specialised to grow in conditions of low nutrient availability, mainly provided via deposition. The present structure and composition of mire communities may be endangered due to elevated levels of nitrogen deposition that have persisted over the last few decades. (20 refs.)

  8. Effects of elevated atmospheric CO2 concentration and increased nitrogen deposition on growth and chemical composition of ombrotrophic Sphagnum balticum and oligo-mesotrophic Sphagnum papillosum

    NARCIS (Netherlands)

    Van der Heijden, E; Jauhiainen, J; Silvola, J; Vasander, H; Kuiper, PJC

    2000-01-01

    The ombrotrophic Sphagnum balticum (Russ.) C. Jens. and the oligo-mesotrophic Sphagnum papillosum Lindb. were grown at ambient (360 mu l l(-1)) and at elevated (720 mu l l(-1)) atmospheric CO2 concentrations and at different nitrogen deposition rates, varying between 0 and 30kg N ha(-1) yr(-1), The

  9. Nutrient additions in pristine Patagonian Sphagnum bog vegetation: can phosphorus addition alleviate (the effects of) increased nitrogen loads.

    Science.gov (United States)

    Fritz, C; van Dijk, G; Smolders, A J P; Pancotto, V A; Elzenga, T J T M; Roelofs, J G M; Grootjans, A P

    2012-05-01

    Sphagnum-bog ecosystems have a limited capability to retain carbon and nutrients when subjected to increased nitrogen (N) deposition. Although it has been proposed that phosphorus (P) can dilute negative effects of nitrogen by increasing biomass production of Sphagnum mosses, it is still unclear whether P-addition can alleviate physiological N-stress in Sphagnum plants. A 3-year fertilisation experiment was conducted in lawns of a pristine Sphagnum magellanicum bog in Patagonia, where competing vascular plants were practically absent. Background wet deposition of nitrogen was low (≈ 0.1-0.2 g · N · m(-2) · year(-1)). Nitrogen (4 g · N · m(-2) · year(-1)) and phosphorus (1 g · P · m(-2) · year(-1)) were applied, separately and in combination, six times during the growing season. P-addition substantially increased biomass production of Sphagnum. Nitrogen and phosphorus changed the morphology of Sphagnum mosses by enhancing height increment, but lowering moss stem density. In contrast to expectations, phosphorus failed to alleviate physiological stress imposed by excess nitrogen (e.g. amino acid accumulation, N-saturation and decline in photosynthetic rates). We conclude that despite improving growth conditions by P-addition, Sphagnum-bog ecosystems remain highly susceptible to nitrogen additions. Increased susceptibility to desiccation by nutrients may even worsen the negative effects of excess nitrogen especially in windy climates like in Patagonia. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. The effect of elevated CO{sub 2} concentration on photosynthesis of Sphagnum fuscum

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J; Silvola, J [Joensuu Univ. (Finland). Dept. of Biology

    1997-12-31

    The objectives of the research were to measure photosynthesis of Sphagnum fuscum in long term exposure to four CO{sub 2} levels at semi-natural conditions, to find out if there is an acclimation of net photosynthesis into prevailing CO{sub 2} concentrations and to measure the moisture dependent net photosynthesis at various CO{sub 2} concentrations of samples grown at different CO{sub 2} concentrations

  11. The effect of elevated CO{sub 2} concentration on photosynthesis of Sphagnum fuscum

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J.; Silvola, J. [Joensuu Univ. (Finland). Dept. of Biology

    1996-12-31

    The objectives of the research were to measure photosynthesis of Sphagnum fuscum in long term exposure to four CO{sub 2} levels at semi-natural conditions, to find out if there is an acclimation of net photosynthesis into prevailing CO{sub 2} concentrations and to measure the moisture dependent net photosynthesis at various CO{sub 2} concentrations of samples grown at different CO{sub 2} concentrations

  12. Decreasing concentrations of metals in Sphagnum mosses in ombrotrophic mires of the Sudety mountains (SW Poland) since late 1980s.

    Science.gov (United States)

    Wojtuń, Bronisław; Samecka-Cymerman, Aleksandra; Kolon, Krzysztof; Kempers, Alexander J

    2013-06-01

    In this investigation we focus on the evaluation of changes in metal pollution between 1986 until 2011 by Sphagnum species as bioindicators in 100 km part of the Sudety mountains influenced by the former Black Triangle Region. Concentrations of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were measured in various Sphagnum species all from ombrotrophic bogs in the Sudety mountains (SW Poland). The tested hypothesis was that overall improvements in pollution control in the former Black Triangle Region between 1986 until recent reduced the amount of metals deposited and accumulated by these plants. Concentrations of Cd, Cr, Cu, Fe, Pb and Zn in Sphagnum species were very high in 1986 indicating a heavy pollution of the examined bogs in this period, and significantly higher than in samples collected in 2011. The PCCA ordination showed the similar pattern in all bogs. In 2011 concentration of the Co was significantly higher in hollow species and concentration of Mn was significantly higher in those from hummocks. Differences between hollow/hummock sites were more important than species-specific abilities of Sphagnum mosses to accumulate metals. Species from hollows were better bioindicators of Co and those from hummocks were better bioindicators of Mn pollution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Response of Sphagnum mosses to increased CO2 concentration and nitrogen deposition

    International Nuclear Information System (INIS)

    Jauhiainen, J.

    1998-01-01

    The main objective of this work was to study the effects of different CO 2 concentration and N deposition rates on Sphagna adapted to grow along a nutrient availability gradient (i.e. ombrotrophy-mesotrophy-eutrophy). The study investigated: (i) the effects of various longterm CO 2 concentrations on the rate of net photosynthesis in Sphagna, (ii) the effects of the CO 2 and N treatments on the moss density, shoot dry masses, length increment and dry mass production in Sphagna, (iii) the concentrations of the major nutrients in Sphagna after prolonged exposure to the CO 2 and N treatments, and (iv) species dependent differences in potential NH 4 + and NO 3 - uptake rates. The internal nutrient concentration of the capitulum and the production of biomass were effected less by the elevated CO 2 concentrations because the availability of N was a controlling factor. In addition responses to the N treatments were related to ecological differences between the Sphagna species. Species with a high tolerance of N availability were able to acclimatise to the increased N deposition rates. The data suggests a high nutrient status is less significant than the adaptation of the Sphagna to their ecological niche (e.g. low tolerance of meso-eutrophic S. warnstorfii to high N deposition rate). At the highest N deposition rate the ombrotrophic S. fuscum had the highest increase in tissue N concentration among the Sphagna studied. S. fuscum almost died at the highest N deposition rate because of the damaging effects of N to the plant's metabolism. Ombrotrophic hummock species such as S. fuscum, were also found to have the highest potential N uptake rate (on density of dry mass basis) compared to lawn species. The rate of net photosynthesis was initially increased with elevated CO 2 concentrations, but photosynthesis was down regulated with prolonged exposure to CO 2 . The water use efficiency in Sphagna appeared not to be coupled with exposure to the long-term CO 2 concentration. The

  14. Response of Sphagnum mosses to increased CO{sub 2} concentration and nitrogen deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J.

    1998-12-31

    The main objective of this work was to study the effects of different CO{sub 2} concentration and N deposition rates on Sphagna adapted to grow along a nutrient availability gradient (i.e. ombrotrophy-mesotrophy-eutrophy). The study investigated: (i) the effects of various longterm CO{sub 2} concentrations on the rate of net photosynthesis in Sphagna, (ii) the effects of the CO{sub 2} and N treatments on the moss density, shoot dry masses, length increment and dry mass production in Sphagna, (iii) the concentrations of the major nutrients in Sphagna after prolonged exposure to the CO{sub 2} and N treatments, and (iv) species dependent differences in potential NH{sub 4}{sup +} and NO{sub 3}{sup -} uptake rates. The internal nutrient concentration of the capitulum and the production of biomass were effected less by the elevated CO{sub 2} concentrations because the availability of N was a controlling factor. In addition responses to the N treatments were related to ecological differences between the Sphagna species. Species with a high tolerance of N availability were able to acclimatise to the increased N deposition rates. The data suggests a high nutrient status is less significant than the adaptation of the Sphagna to their ecological niche (e.g. low tolerance of meso-eutrophic S. warnstorfii to high N deposition rate). At the highest N deposition rate the ombrotrophic S. fuscum had the highest increase in tissue N concentration among the Sphagna studied. S. fuscum almost died at the highest N deposition rate because of the damaging effects of N to the plant`s metabolism. Ombrotrophic hummock species such as S. fuscum, were also found to have the highest potential N uptake rate (on density of dry mass basis) compared to lawn species. The rate of net photosynthesis was initially increased with elevated CO{sub 2} concentrations, but photosynthesis was down regulated with prolonged exposure to CO{sub 2}. The water use efficiency in Sphagna appeared not to be coupled

  15. Investigations of the structure and function of bacterial communities associated with Sphagnum mosses.

    Science.gov (United States)

    Opelt, Katja; Chobot, Vladimir; Hadacek, Franz; Schönmann, Susan; Eberl, Leo; Berg, Gabriele

    2007-11-01

    High acidity, low temperature and extremely low concentration of nutrients form Sphagnum bogs into extreme habitats for organisms. Little is known about the bacteria associated with living Sphagnum plantlets, especially about their function for the host. Therefore, we analysed the endo- and ectophytic bacterial populations associated with two widely distributed Sphagnum species, Sphagnum magellanicum and Sphagnum fallax, by a multiphasic approach. The screening of 1222 isolates for antagonistic activity resulted in 326 active isolates. The bacterial communities harboured a high proportion of antifungal (26%) but a low proportion of antibacterial isolates (0.4%). Members of the genus Burkholderia (38%) were found to be the most dominant group of antagonistic bacteria. The finding that a large proportion (89%) of the antagonistic bacteria produced antifungal compounds may provide an explanation for the well-known antimicrobial activity of certain Sphagnum species. The secondary metabolites of the Sphagnum species themselves were analysed by HPLC-PDA. The different spectra of detected compounds may not only explain the antifungal activity but also the species specificity of the microbial communities. The latter was analysed using cultivation-independent single-stranded conformation polymorphism (SSCP) analysis. Using Burkholderia-specific primers we found a high diversity of Burkholderia isolates in the endophytic and ectophytic habitats of Sphagnum. Furthermore, a high diversity of nitrogen-fixing bacteria was detected by using nifH-specific primers, especially inside Sphagnum mosses. In conclusion, this study provides evidence that both Sphagnum species were colonized by characteristic bacterial populations, which appear to be important for pathogen defence and nitrogen fixation.

  16. Ecophysiological adaptations of coexisting Sphagnum mosses

    OpenAIRE

    HÁJEK, Tomáš

    2008-01-01

    I studied ecological and physiological adaptations of peat misses (Sphagnum species) coexisting along the environmental gradients in mires. Production, decomposition, water relations, desiccation tolerance and nutrient economy of Sphagnum species were evaluates along the hummock-hollow gradient of water table, while the light adaptations were assessed in an open and forested mire

  17. Sphagnum can 'filter' N deposition, but effects on the plant and pore water depend on the N form.

    Science.gov (United States)

    Chiwa, Masaaki; Sheppard, Lucy J; Leith, Ian D; Leeson, Sarah R; Tang, Y Sim; Cape, J Neil

    2016-07-15

    The ability of Sphagnum moss to efficiently intercept atmospheric nitrogen (N) has been assumed to be vulnerable to increased N deposition. However, the proposed critical load (20kgNha(-1)yr(-1)) to exceed the capacity of the Sphagnum N filter has not been confirmed. A long-term (11years) and realistic N manipulation on Whim bog was used to study the N filter function of Sphagnum (Sphagnum capillifolium) in response to increased wet N deposition. On this ombrotrophic peatland where ambient deposition was 8kgNha(-1)yr(-1), an additional 8, 24, and 56kgNha(-1)yr(-1) of either ammonium (NH4(+)) or nitrate (NO3(-)) has been applied for 11years. Nutrient status of Sphagnum and pore water quality from the Sphagnum layer were assessed. The N filter function of Sphagnum was still active up to 32kgNha(-1)yr(-1) even after 11years. N saturation of Sphagnum and subsequent increases in dissolved inorganic N (DIN) concentration in pore water occurred only for 56kgNha(-1)yr(-1) of NH4(+) addition. These results indicate that the Sphagnum N filter is more resilient to wet N deposition than previously inferred. However, functionality will be more compromised when NH4(+) dominates wet deposition for high inputs (56kgNha(-1)yr(-1)). The N filter function in response to NO3(-) uptake increased the concentration of dissolved organic N (DON) and associated organic anions in pore water. NH4(+) uptake increased the concentration of base cations and hydrogen ions in pore water though ion exchange. The resilience of the Sphagnum N filter can explain the reported small magnitude of species change in the Whim bog ecosystem exposed to wet N deposition. However, changes in the leaching substances, arising from the assimilation of NO3(-) and NH4(+), may lead to species change. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Response of Sphagnum fuscum to Nitrogen Deposition: A Case Study of Ombrogenous Peatlands in Alberta, Canada

    Science.gov (United States)

    Vitt, D.H.; Wieder, K.; Halsey, L.A.; Turetsky, M.

    2003-01-01

    Peatlands cover about 30% of northeastern Alberta and are ecosystems that are sensitive to nitrogen deposition. In polluted areas of the UK, high atmospheric N deposition (as a component of acid deposition) has been considered among the causes of Sphagnum decline in bogs (ombrogenous peatlands). In relatively unpolluted areas of western Canada and northern Sweden, short-term experimental studies have shown that Sphagnum responds quickly to nutrient loading, with uptake and retention of nitrogen and increased production. Here we examine the response of Sphagnum fuscum to enhanced nitrogen deposition generated during 34 years of oil sands mining through the determination of net primary production (NPP) and nitrogen concentrations in the upper peat column. We chose six continental bogs receiving differing atmospheric nitrogen loads (modeled using a CALPUFF 2D dispersion model). Sphagnum fuscum net primary production (NPP) at the high deposition site (Steepbank - mean of 600 g/m2; median of 486 g/m2) was over three times as high than at five other sites with lower N deposition. Additionally, production of S. fuscum may be influenced to some extent by distance of the moss surface from the water table. Across all sites, peat nitrogen concentrations are highest at the surface, decreasing in the top 3 cm with no significant change with increasing depth. We conclude that elevated N deposition at the Steepbank site has enhanced Sphagnum production. Increased N concentrations are evident only in the top 1-cm of the peat profile. Thus, 34 years after mine startup, increased N-deposition has increased net primary production of Sphagnum fuscum without causing elevated levels of nitrogen in the organic matter profile. A response to N-stress for Sphagnum fuscum is proposed at 14-34 kg ha-1 yr-1. A review of N-deposition values reveals a critical N-deposition value of between 14.8 and 15.7 kg ha -1 yr-1 for NPP of Sphagnum species.

  19. Long-term interactive effects of N addition with P and K availability on N status of Sphagnum.

    Science.gov (United States)

    Chiwa, Masaaki; Sheppard, Lucy J; Leith, Ian D; Leeson, Sarah R; Tang, Y Sim; Neil Cape, J

    2018-06-01

    Little information exists concerning the long-term interactive effect of nitrogen (N) addition with phosphorus (P) and potassium (K) on Sphagnum N status. This study was conducted as part of a long-term N manipulation on Whim bog in south Scotland to evaluate the long-term alleviation effects of phosphorus (P) and potassium (K) on N saturation of Sphagnum (S. capillifolium). On this ombrotrophic peatland, where ambient deposition was 8 kg N ha -1 yr -1 , 56 kg N ha -1 yr -1 of either ammonium (NH 4 + , N red ) or nitrate (NO 3 - , N ox ) with and without P and K, were added over 11 years. Nutrient concentrations of Sphagnum stem and capitulum, and pore water quality of the Sphagnum layer were assessed. The N-saturated Sphagnum caused by long-term (11 years) and high doses (56 kg N ha -1 yr -1 ) of reduced N was not completely ameliorated by P and K addition; N concentrations in Sphagnum capitula for N red 56 PK were comparable with those for N red 56, although N concentrations in Sphagnum stems for N red 56 PK were lower than those for N red 56. While dissolved inorganic nitrogen (DIN) concentrations in pore water for N red 56 PK were not different from N red 56, they were lower for N ox 56 PK than for N ox 56 whose stage of N saturation had not advanced compared to N red 56. These results indicate that increasing P and K availability has only a limited amelioration effect on the N assimilation of Sphagnum at an advanced stage of N saturation. This study concluded that over the long-term P and K additions will not offset the N saturation of Sphagnum. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Sphagnum farming in Germany – a review of progress

    OpenAIRE

    G. Gaudig; F. Fengler; M. Krebs; A. Prager; J. Schulz; S. Wichmann; H. Joosten

    2014-01-01

    In ombrotrophic, nutrient-poor peatlands, the cultivation of peatmoss (Sphagnum spp.) is a promising paludiculture option. Since 2001 we have been studying peatmoss cultivation (‘Sphagnum farming’) in greenhouse and field experiments, paying special attention to propagation, propagule storage, establishment, productivity and regeneration. Our studies show that Sphagnum farming in Germany may provide a sustainable high-quality alternative to fossil white peat as a raw material for horticultural...

  1. Sphagnum farming in Germany – a review of progress

    Directory of Open Access Journals (Sweden)

    G. Gaudig

    2014-02-01

    Full Text Available In ombrotrophic, nutrient-poor peatlands, the cultivation of peatmoss (Sphagnum spp. is a promising paludiculture option. Since 2001 we have been studying peatmoss cultivation (‘Sphagnum farming’ in greenhouse and field experiments, paying special attention to propagation, propagule storage, establishment, productivity and regeneration. Our studies show that Sphagnum farming in Germany may provide a sustainable high-quality alternative to fossil white peat as a raw material for horticultural growing media. Sphagnum farming is, furthermore, a climate-friendly and sustainable land use option for abandoned cut-over bogs and degraded bog grassland.

  2. Biological N2 fixation mainly controlled by Sphagnum tissue N:P ratio in ombrotrophic bogs

    Science.gov (United States)

    Zivkovic, Tatjana; Moore, Tim R.

    2017-04-01

    Most of the 18 Pg nitrogen (N) accumulated in northern nutrient-poor and Sphagnum-dominated peatlands (bogs and fens) can be attributed to N2-fixation by diazotrophs either associated with the live Sphagnum or non-symbiotically in the deeper peat such as through methane consumption close to the water table. Where atmospheric N deposition is low (Sphagnum, suggested by the increase in tissue N:P to >16. It is unclear how Sphagnum-hosted diazotrophic activity may be affected by N deposition and thus changes in N:P ratio. First, we investigated the effects of long-term addition of different sources of nitrogen (0, 1.6, 3.2 and 6.4 g N m-2 y-1as NH4Cl and NaNO3), and phosphorus (5 g P m-2 y-1as KH2PO4) on Sphagnum nutrient status (N, P and N:P ratio), net primary productivity (NPP) and Sphagnum-associated N2fixation at Mer Bleue, a temperate ombrotrophic bog. We show that N concentration in Sphagnum tissue increased with larger rates of N addition, with a stronger effect on Sphagnum from NH4 than NO3. The addition of P created a 3.5 fold increase in Sphagnum P content compared to controls. Sphagnum NPP decreased linearly with the rise in N:P ratio, while linear growth declined exponentially with increase in Sphagnum N content. Rates of N2-fixation determined in the laboratory significantly decreased in response to even the smallest addition of both N species. In contrast, the addition of P increased N2 fixation by up to 100 times compared to N treatments and up to 5-30 times compared to controls. The change in N2-fixation was best modeled by the N:P ratio, across all experimental treatments. Secondly, to test the role of N:P ratio on N2-fixation across a range of bogs, eight study sites along the latitudinal gradient from temperate, boreal to subarctic zone in eastern Canada were selected. From each bog, two predominant microptopographies, hummocks and hollows, were tested for both N2-fixation activity in the laboratory and Sphagnum tissue concentrations of N, P and N

  3. Experiments on the effect of sphagnum on the pH of salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K T; Thompson, T G

    1936-01-01

    Addition of sphagnum to salt solutions produced marked increases in the concentrations of the hydrogen ions, as measured both electrometrically and colorimetrically. The greater the concentration of the salt solution, the greater the increase in hydrogen ion concentration upon the addition of sphagnum. With a given salt concentration, the hydrogen ion concentration increased with increase in quantity of sphagnum added. The divalent cations produced greater increases in the hydrogen concentration than the monovalent cations for equal weights of sphagnum. Divalent anions, while showing an increase in hydrogen ions, upon the addition of sphagnum were far less effective in increasing the hydrogen ion concentrations. Sphagnum may be a useful reagent for regulating the acidity of salt solutions for many types of scientific work. It seems probable that the adsorption of metallic and hydroxyl ions explains, at least in part, the acidity of the water of sphagnum bogs.

  4. Effect of organic and inorganic fertilizers on nutrient concentrations ...

    African Journals Online (AJOL)

    Effect of organic and inorganic fertilizers on nutrient concentrations in plantain ( Musa spp.) ... Fruit parameters measured were fruit weight, edible proportion and pulp dry matter content; also, the concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), iron (Fe) and zinc (Zn) in fruits were determined.

  5. Lake nutrient stoichiometry is less predictable than nutrient concentrations at regional and sub-continental scales.

    Science.gov (United States)

    Collins, Sarah M; Oliver, Samantha K; Lapierre, Jean-Francois; Stanley, Emily H; Jones, John R; Wagner, Tyler; Soranno, Patricia A

    2017-07-01

    Production in many ecosystems is co-limited by multiple elements. While a known suite of drivers associated with nutrient sources, nutrient transport, and internal processing controls concentrations of phosphorus (P) and nitrogen (N) in lakes, much less is known about whether the drivers of single nutrient concentrations can also explain spatial or temporal variation in lake N:P stoichiometry. Predicting stoichiometry might be more complex than predicting concentrations of individual elements because some drivers have similar relationships with N and P, leading to a weak relationship with their ratio. Further, the dominant controls on elemental concentrations likely vary across regions, resulting in context dependent relationships between drivers, lake nutrients and their ratios. Here, we examine whether known drivers of N and P concentrations can explain variation in N:P stoichiometry, and whether explaining variation in stoichiometry differs across regions. We examined drivers of N:P in ~2,700 lakes at a sub-continental scale and two large regions nested within the sub-continental study area that have contrasting ecological context, including differences in the dominant type of land cover (agriculture vs. forest). At the sub-continental scale, lake nutrient concentrations were correlated with nutrient loading and lake internal processing, but stoichiometry was only weakly correlated to drivers of lake nutrients. At the regional scale, drivers that explained variation in nutrients and stoichiometry differed between regions. In the Midwestern U.S. region, dominated by agricultural land use, lake depth and the percentage of row crop agriculture were strong predictors of stoichiometry because only phosphorus was related to lake depth and only nitrogen was related to the percentage of row crop agriculture. In contrast, all drivers were related to N and P in similar ways in the Northeastern U.S. region, leading to weak relationships between drivers and stoichiometry

  6. Nutrient uptake dynamics across a gradient of nutrient concentrations and ratios at the landscape scale

    Science.gov (United States)

    Gibson, Catherine A.; O'Reilly, Catherine M.; Conine, Andrea L.; Lipshutz, Sondra M.

    2015-02-01

    Understanding interactions between nutrient cycles is essential for recognizing and remediating human impacts on water quality, yet multielemental approaches to studying nutrient cycling in streams are currently rare. Here we utilized a relatively new approach (tracer additions for spiraling curve characterization) to examine uptake dynamics for three essential nutrients across a landscape that varied in absolute and relative nutrient availability. We measured nutrient uptake for soluble reactive phosphorous, ammonium-nitrogen, and nitrate-nitrogen in 16 headwater streams in the Catskill Mountains, New York. Across the landscape, ammonium-nitrogen and soluble reactive phosphorus had shorter uptake lengths and higher uptake velocities than nitrate-nitrogen. Ammonium-nitrogen and soluble reactive phosphorus uptake velocities were tightly correlated, and the slope of the relationship did not differ from one, suggesting strong demand for both nutrients despite the high ambient water column dissolved inorganic nitrogen: soluble reactive phosphorus ratios. Ammonium-nitrogen appeared to be the preferred form of nitrogen despite much higher nitrate-nitrogen concentrations. The uptake rate of nitrate-nitrogen was positively correlated with ambient soluble reactive phosphorus concentration and soluble reactive phosphorus areal uptake rate, suggesting that higher soluble reactive phosphorus concentrations alleviate phosphorus limitation and facilitate nitrate-nitrogen uptake. In addition, these streams retained a large proportion of soluble reactive phosphorus, ammonium-nitrogen, and nitrate-nitrogen supplied by the watershed, demonstrating that these streams are important landscape filters for nutrients. Together, these results (1) indicated phosphorus limitation across the landscape but similarly high demand for ammonium-nitrogen and (2) suggested that nitrate-nitrogen uptake was influenced by variability in soluble reactive phosphorus availability and preference for

  7. Nutrient Infiltrate Concentrations from Three Permeable Pavement Types

    Science.gov (United States)

    While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types have on nutrient concentrations present in stormwater runoff are limited. In 2009, the U.S. EPA constructed a 0.4-ha...

  8. NUTRIENTS CONCENTRATION AND RETRANSLOCATION IN THE Pinus taeda L. NEEDLES

    Directory of Open Access Journals (Sweden)

    Márcio Viera

    2010-03-01

    Full Text Available Aiming at evaluating nutrients concentration and retranslocation in the Pinus taeda L. needles, this study was developed in two stands, in native grass area and in second rotation area, with same species and same age (7.5 years old in Cambará do Sul, RS. The needles were collected in plants in four orthogonal points (South, North, East and West, sampled new needles, mature needles and old needles. The material was dried in a stove, milled and chemically analyzed (macro and micronutrients. The concentrations of N, P, K, B, Cu and Zn had decreased, of Ca, Fe and Mn increased, and the Mg and S have remained constant with the age of the needles. The retranslocation rate (old-new needles was more than 50% for most nutrients, except for Mn and Fe, showed that cumulative effect and the Ca reference element.

  9. Nitrogen deposition does not enhance Sphagnum decomposition.

    Science.gov (United States)

    Manninen, S; Kivimäki, S; Leith, I D; Leeson, S R; Sheppard, L J

    2016-11-15

    Long-term additions of nitrogen (N) to peatlands have altered bryophyte growth, species dominance, N content in peat and peat water, and often resulted in enhanced Sphagnum decomposition rate. However, these results have mainly been derived from experiments in which N was applied as ammonium nitrate (NH4NO3), neglecting the fact that in polluted areas, wet deposition may be dominated either by NO3(-) or NH4(+). We studied effects of elevated wet deposition of NO3(-) vs. NH4(+) alone (8 or 56kgNha(-1)yr(-1) over and above the background of 8kgNha(-1)yr(-1) for 5 to 11years) or combined with phosphorus (P) and potassium (K) on Sphagnum quality for decomposers, mass loss, and associated changes in hummock pore water in an ombrotrophic bog (Whim). Adding N, especially as NH4(+), increased N concentration in Sphagnum, but did not enhance mass loss from Sphagnum. Mass loss seemed to depend mainly on moss species and climatic factors. Only high applications of N affected hummock pore water chemistry, which varied considerably over time. Overall, C and N cycling in this N treated bog appeared to be decoupled. We conclude that moss species, seasonal and annual variation in climatic factors, direct negative effects of N (NH4(+) toxicity) on Sphagnum production, and indirect effects (increase in pH and changes in plant species dominance under elevated NO3(-) alone and with PK) drive Sphagnum decomposition and hummock C and N dynamics at Whim. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Detecting terrestrial nutrient limitation: a global meta-analysis of foliar nutrient concentrations after fertilization

    Directory of Open Access Journals (Sweden)

    Rebecca eOstertag

    2016-03-01

    Full Text Available Examining foliar nutrient concentrations after fertilization provides an alternative method for detecting nutrient limitation of ecosystems, which is logistically simpler to measure than biomass change. We present a meta-analysis of response ratios of foliar nitrogen and phosphorus (RRN, RRP after addition of fertilizer of nitrogen (N, phosphorus (P, or the two elements in combination, in relation to climate, ecosystem type, life form, family, and methodological factors. Results support other meta-analyses using biomass, and demonstrate there is strong evidence for nutrient limitation in natural communities. However, because N fertilization experiments greatly outnumber P fertilization trials, it is difficult to discern the absolute importance of N vs. P vs. co-limitation across ecosystems. Despite these caveats, it is striking that results did not follow conventional wisdom that temperate ecosystems are N-limited and tropical ones are P-limited. In addition, the use of ratios of N-to-P rather than response ratios also are a useful index of nutrient limitation, but due to large overlap in values, there are unlikely to be universal cutoff values for delimiting N vs. P limitation. Differences in RRN and RRP were most significant across ecosystem types, plant families, life forms, and between competitive environments, but not across climatic variables.

  11. High nitrogen availability reduces polyphenol content in Sphagnum peat.

    Science.gov (United States)

    Bragazza, Luca; Freeman, Chris

    2007-05-15

    Peat mosses of the genus Sphagnum constitute the bulk of living and dead biomass in bogs. These plants contain peculiar polyphenols which hamper litter peat decomposition through their inhibitory activity on microbial breakdown. In the light of the increasing availability of biologically active nitrogen in natural ecosystems, litter derived from Sphagnum mosses is an ideal substrate to test the potential effects of increased atmospheric nitrogen deposition on polyphenol content in litter peat. To this aim, we measured total nitrogen and soluble polyphenol concentration in Sphagnum litter peat collected in 11 European bogs under a chronic gradient of atmospheric nitrogen deposition. Our results demonstrate that increasing nitrogen concentration in Sphagnum litter, as a consequence of increased exogenous nitrogen availability, is accompanied by a decreasing concentration of polyphenols. This inverse relationship is consistent with reports that in Sphagnum mosses, polyphenol and protein biosynthesis compete for the same precursor. Our observation of modified Sphagnum litter chemistry under chronic nitrogen eutrophication has implications in the context of the global carbon balance, because a lower content of decay-inhibiting polyphenols would accelerate litter peat decomposition.

  12. [Methanotrophic bacteria of acid sphagnum bogs].

    Science.gov (United States)

    Dedysh, S N

    2002-01-01

    Acid sphagnum bogs cover a considerable part of the territory of Russia and are an important natural source of biogenic methane, which is formed in their anaerobic layers. A considerable portion of this methane is consumed in the aerobic part of the bog profile by acidophilic methanotrophic bacteria, which comprise the methane filter of sphagnum bogs and decrease CH4 emission to the atmosphere. For a long time, these bacteria escaped isolation, which became possible only after the elucidation of the optimal conditions of their functioning in situ: pH 4.5 to 5.5; temperature, from 15 to 20 degrees C; and low salt concentration in the solution. Reproduction of these conditions and rejection of earlier used media with a high content of biogenic elements allowed methanotrophic bacteria of two new genera and species--Methylocella palustris and Methylocapsa acidophila--to be isolated from the peat of sphagnum bogs of the northern part of European Russia and West Siberia. These bacteria are well adapted to the conditions in cold, acid, oligotrophic sphagnum bogs. They grow in a pH range of 4.2-7.5 with an optimum at 5.0-5.5, prefer moderate temperatures (15-25 degrees C) and media with a low content of mineral salts (200-500 mg/l), and are capable of active nitrogen fixation. Design of fluorescently labeled 16S rRNA-targeted oligonucleotide probes for the detection of Methylocella palustris and Methylocapsa acidophila and their application to the analysis of sphagnum peat samples showed that these bacteria represent dominant populations of methanotrophs with a density of 10(5)-10(6) cells/g peat. In addition to Methylocella and Methylocapsa populations, one more abundant population of methanotrophs was revealed (10(6) cells/g peat), which were phylogenetically close to the genus Methylocystis.

  13. Limiting nutrient emission from a cut rose closed system by high-flux irrigation and low nutrient concentrations?

    NARCIS (Netherlands)

    Baas, R.; Berg, van der D.

    2004-01-01

    A two-year project was aimed at decreasing nutrient emission from closed nutrient systems by using high irrigation rates in order to allow lower EC levels in the presence of accumulated Na and Cl. Experimental variables were growing media, irrigation frequencies, EC and NaCl concentrations for cut

  14. The Concentration of Nutrients in Tissues of Plantation-Grown Eastern Cottonwood (Populus deltoides Bart.)

    Science.gov (United States)

    M. G. Shelton; L. E. Nelson; G. L. Switzer; B. G. Blackmon

    1981-01-01

    Nutrient concentrations were determined for 10 tissues from each of 24 cottonwood trees that ranged in age from four to 16 years. Highest concentrations occurred in the most physiologically active tissues; i.e., stemtips, current branches and foliage. Tree age had little influence on the variation in nutrient concentration of tissues. Some differences in concentrations...

  15. Absorption and nutrient concentration in apple (Pyrus mains L.)

    OpenAIRE

    Trani, P.E.; Haag, H.P.; Sarruge, J.R.; Dechen, A.R.; Catani, CB

    1981-01-01

    In order to obtain the following informations: a) dry matter production and extraction of nutrients by the fruits at different ages; b) dry matter production and extraction of nutrient by the leaves and "trunk + branches" collected at the flowering stage; c) dry matter production and export of nutrients by pruning (leaves and branches) at the begining dormant stage; A trial was conducted on Latossolo Vermelho Escuro Orto group (Orthox) at Buri, São Paulo State, Brazil. The material was collec...

  16. Data to support "Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations & Biological Condition"

    Data.gov (United States)

    U.S. Environmental Protection Agency — Spreadsheets are included here to support the manuscript "Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition". This...

  17. Effects of macro nutrient concentration on biological N2 fixation by Azotobacter vinelandii ATCC 12837

    International Nuclear Information System (INIS)

    Liew Pauline Woan Ying; Nazalan Najimudin; Jong Bor Chyan; Latiffah Noordin; Khairuddin Abdul Rahim; Amir Hamzah Ahmad Ghazali

    2010-01-01

    The dynamic changes of biological N 2 fixation by Azotobacter vinelandii ATCC 12837 under the influence of various macro nutrients, specifically phosphorus (P) and potassium (K), was investigated. In this attempt, Oryza sativa L. var. MR 219 was used as the model plant. Results obtained showed changes in the biological N 2 fixation activities with different macro nutrient(s) manipulations. The research activity enables optimisation of macro nutrients concentration for optimal/ enhanced biological N 2 fixation by A. vinelandii ATCC 12837. (author)

  18. Interferences between Sphagnum and vascular plants: effects on plant community structure and peat formation

    OpenAIRE

    Malmer, Nils; Albinsson, C; Svensson, B M; Wallén, Bo

    2003-01-01

    The interference between vascular plants and peat mosses with respect to nitrogen and phosphorus was studied in a fertilization experiment and with respect to competition for light in a removal experiment in poor fens with either soligenous or topogenous hydrology using Narthecium ossifragum (L.) Huds. and three species of Sphagnum sect. Sphagnum as targets. Adding fertilizer either on the moss surface or below it confirmed the hypotheses of an asymmetric competition for nutrients, viz. that ...

  19. Effect of organic and inorganic fertilizers on nutrient concentrations ...

    African Journals Online (AJOL)

    Yomi

    2012-01-24

    Jan 24, 2012 ... food energy and basic nutrients for proper nutrition of man. ... 2008). Irrespective of the variety, crop yield is a direct ..... had recently formed the research drive of scientists so as .... Bioresource Technology for Sustainable.

  20. Managed nutrient reduction impacts on nutrient concentrations, water clarity, primary production, and hypoxia in a north temperate estuary

    Science.gov (United States)

    Oviatt, Candace; Smith, Leslie; Krumholz, Jason; Coupland, Catherine; Stoffel, Heather; Keller, Aimee; McManus, M. Conor; Reed, Laura

    2017-12-01

    Except for the Providence River and side embayments like Greenwich Bay, Narragansett Bay can no longer be considered eutrophic. In summer 2012 managed nitrogen treatment in Narragansett Bay achieved a goal of reducing effluent dissolved inorganic nitrogen inputs by over 50%. Narragansett Bay represents a small northeast US estuary that had been heavily loaded with sewage effluent nutrients since the late 1800s. The input reduction was reflected in standing stock nutrients resulting in a statistically significant 60% reduction in concentration. In the Providence River estuary, total nitrogen decreased from 100 μm to about 40 μm, for example. We tested four environmental changes that might be associated with the nitrogen reduction. System apparent production was significantly decreased by 31% and 45% in the upper and mid Bay. Nutrient reductions resulted in statistically improved water clarity in the mid and upper Bay and in a 34% reduction in summer hypoxia. Nitrogen reduction also reduced the winter spring diatom bloom; winter chlorophyll levels after nutrient reduction have been significantly lower than before the reduction. The impact on the Bay will continue to evolve over the next few years and be a natural experiment for other temperate estuaries that will be experiencing nitrogen reduction. To provide perspective we review factors effecting hypoxia in other estuaries with managed nutrient reduction and conclude that, as in Narragansett Bay, physical factors can be as important as nutrients. On a positive note managed nutrient reduction has mitigated further deterioration in most estuaries.

  1. Climatic modifiers of the response to nitrogen deposition in peat-forming Sphagnum mosses: a meta-analysis.

    Science.gov (United States)

    Limpens, J; Granath, G; Gunnarsson, U; Aerts, R; Bayley, S; Bragazza, L; Bubier, J; Buttler, A; van den Berg, L J L; Francez, A-J; Gerdol, R; Grosvernier, P; Heijmans, M M P D; Hoosbeek, M R; Hotes, S; Ilomets, M; Leith, I; Mitchell, E A D; Moore, T; Nilsson, M B; Nordbakken, J-F; Rochefort, L; Rydin, H; Sheppard, L J; Thormann, M; Wiedermann, M M; Williams, B L; Xu, B

    2011-07-01

    Peatlands in the northern hemisphere have accumulated more atmospheric carbon (C) during the Holocene than any other terrestrial ecosystem, making peatlands long-term C sinks of global importance. Projected increases in nitrogen (N) deposition and temperature make future accumulation rates uncertain. Here, we assessed the impact of N deposition on peatland C sequestration potential by investigating the effects of experimental N addition on Sphagnum moss. We employed meta-regressions to the results of 107 field experiments, accounting for sampling dependence in the data. We found that high N loading (comprising N application rate, experiment duration, background N deposition) depressed Sphagnum production relative to untreated controls. The interactive effects of presence of competitive vascular plants and high tissue N concentrations indicated intensified biotic interactions and altered nutrient stochiometry as mechanisms underlying the detrimental N effects. Importantly, a higher summer temperature (mean for July) and increased annual precipitation intensified the negative effects of N. The temperature effect was comparable to an experimental application of almost 4 g N m(-2)  yr(-1) for each 1°C increase. Our results indicate that current rates of N deposition in a warmer environment will strongly inhibit C sequestration by Sphagnum-dominated vegetation. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  2. Antibacterial activity of sphagnum acid and other phenolic compounds found in Sphagnum papillosum against food-borne bacteria.

    Science.gov (United States)

    Mellegård, H; Stalheim, T; Hormazabal, V; Granum, P E; Hardy, S P

    2009-07-01

    To identify the phenolic compounds in the leaves of Sphagnum papillosum and examine their antibacterial activity at pH appropriate for the undissociated forms. Bacterial counts of overnight cultures showed that whilst growth of Staphylococcus aureus 50084 was impaired in the presence of milled leaves, the phenol-free fraction of holocellulose of S. papillosum had no bacteriostatic effect. Liquid chromatography-mass spectrometry analysis of an acetone-methanol extract of the leaves detected eight phenolic compounds. Antibacterial activity of the four dominating phenols specific to Sphagnum leaves, when assessed in vitro as minimal inhibitory concentrations (MICs), were generally >2.5 mg ml(-1). MIC values of the Sphagnum-specific compound 'sphagnum acid' [p-hydroxy-beta-(carboxymethyl)-cinnamic acid] were >5 mg ml(-1). No synergistic or antagonistic effects of the four dominating phenols were detected in plate assays. Sphagnum-derived phenolics exhibit antibacterial activity in vitro only at concentrations far in excess of those found in the leaves. We have both identified the phenolic compounds in S. papillosum and assessed their antibacterial activity. Our data indicate that phenolic compounds in isolation are not potent antibacterial agents and we question their potency against food-borne pathogens.

  3. Human skin condition and its associations with nutrient concentrations in serum and diet

    NARCIS (Netherlands)

    Boelsma, E.; Vijver, L.P.L. van de; Goldbohm, R.A.; Klöpping-Ketelaars, I.A.A.; Hendriks, H.F.J.; Roza, L.

    2003-01-01

    Background: Nutritional factors exert promising actions on the skin, but only scant information is available on the modulating effects of physiologic concentrations of nutrients on the skin condition of humans. Objective: The objective was to evaluate whether nutrient concentrations in serum and

  4. Mineral content in Sphagnum mosses from ombrotrophic bogs of southwestern Poland: pattern in species and elements

    Directory of Open Access Journals (Sweden)

    Bronisław Wojtuń

    2014-01-01

    Full Text Available Major elements (N, P, K, Ca, Mg, Na, Fe were analyzed in 11 Sphagnum species from ombrotrophic bogs in southwestern Poland. The material included species from wet to dry microsites. The highest levels of elements were recorded for S. lindbergii, whereas S. balticum and S. cuspidatum were poorest in elements. The microhabitat gradient from hummock to hollow species is clearly reflected by decreasing concentrations of Ca and Mg, and increasing concentration of Na. Phosphorus, K and N were much more enriched into moss tissues than the remaining elements. These three nutrients were also accumulated in the upper green parts of mosses, while the concentrations of Na and Fe were higher in the bottom brown parts. There were no differences in Ca and Mg between the green and brown segments.

  5. Differences in response of two Sphagnum species to elevated CO2 and nitrogen input

    International Nuclear Information System (INIS)

    Jauhiainen, J.; Vasander, H.; Silvola, J.

    1992-01-01

    Cushions of Sphagnum fuscum and S. angustifolium were grown in the laboratory in four different CO 2 concentrations (350, 700, 1000 and 2000 ppm) and N deposition levels (0, 10, 30 and 100 kg/ha - 1 a - 1). The same N deposition levels were also applied in the field. CO 2 concentration increases both the shoot density and dry mass of S. fuscum but decreased the length increment. There was no net effect on production. For S. angustifolium, shoot density did not alter with elevated CO 2 concentration but the CO 2 induced increment in dry mass and length caused increased production. S. angustifolium suffered from nutrient deficiency on the 0kg/ha - 1 a - 1 treatment and S. fuscum had difficulties to survive at heaviest N load. No clear trends in length increment or cover was noticed in the field study during the first year

  6. The effect of temperature on growth and competition between Sphagnum species.

    Science.gov (United States)

    Breeuwer, Angela; Heijmans, Monique M P D; Robroek, Bjorn J M; Berendse, Frank

    2008-05-01

    Peat bogs play a large role in the global sequestration of C, and are often dominated by different Sphagnum species. Therefore, it is crucial to understand how Sphagnum vegetation in peat bogs will respond to global warming. We performed a greenhouse experiment to study the effect of four temperature treatments (11.2, 14.7, 18.0 and 21.4 degrees C) on the growth of four Sphagnum species: S. fuscum and S. balticum from a site in northern Sweden and S. magellanicum and S. cuspidatum from a site in southern Sweden. In addition, three combinations of these species were made to study the effect of temperature on competition. We found that all species increased their height increment and biomass production with an increase in temperature, while bulk densities were lower at higher temperatures. The hollow species S. cuspidatum was the least responsive species, whereas the hummock species S. fuscum increased biomass production 13-fold from the lowest to the highest temperature treatment in monocultures. Nutrient concentrations were higher at higher temperatures, especially N concentrations of S. fuscum and S. balticum increased compared to field values. Competition between S. cuspidatum and S. magellanicum was not influenced by temperature. The mixtures of S. balticum with S. fuscum and S. balticum with S. magellanicum showed that S. balticum was the stronger competitor, but it lost competitive advantage in the highest temperature treatment. These findings suggest that species abundances will shift in response to global warming, particularly at northern sites where hollow species will lose competitive strength relative to hummock species and southern species.

  7. The effect of temperature on growth and competition between Sphagnum species

    Science.gov (United States)

    Heijmans, Monique M. P. D.; Robroek, Bjorn J. M.; Berendse, Frank

    2008-01-01

    Peat bogs play a large role in the global sequestration of C, and are often dominated by different Sphagnum species. Therefore, it is crucial to understand how Sphagnum vegetation in peat bogs will respond to global warming. We performed a greenhouse experiment to study the effect of four temperature treatments (11.2, 14.7, 18.0 and 21.4°C) on the growth of four Sphagnum species: S. fuscum and S. balticum from a site in northern Sweden and S. magellanicum and S. cuspidatum from a site in southern Sweden. In addition, three combinations of these species were made to study the effect of temperature on competition. We found that all species increased their height increment and biomass production with an increase in temperature, while bulk densities were lower at higher temperatures. The hollow species S. cuspidatum was the least responsive species, whereas the hummock species S. fuscum increased biomass production 13-fold from the lowest to the highest temperature treatment in monocultures. Nutrient concentrations were higher at higher temperatures, especially N concentrations of S. fuscum and S. balticum increased compared to field values. Competition between S. cuspidatum and S. magellanicum was not influenced by temperature. The mixtures of S. balticum with S. fuscum and S. balticum with S. magellanicum showed that S. balticum was the stronger competitor, but it lost competitive advantage in the highest temperature treatment. These findings suggest that species abundances will shift in response to global warming, particularly at northern sites where hollow species will lose competitive strength relative to hummock species and southern species. PMID:18283501

  8. The Sphagnum microbiome supports bog ecosystem functioning under extreme conditions.

    Science.gov (United States)

    Bragina, Anastasia; Oberauner-Wappis, Lisa; Zachow, Christin; Halwachs, Bettina; Thallinger, Gerhard G; Müller, Henry; Berg, Gabriele

    2014-09-01

    Sphagnum-dominated bogs represent a unique yet widely distributed type of terrestrial ecosystem and strongly contribute to global biosphere functioning. Sphagnum is colonized by highly diverse microbial communities, but less is known about their function. We identified a high functional diversity within the Sphagnum microbiome applying an Illumina-based metagenomic approach followed by de novo assembly and MG-RAST annotation. An interenvironmental comparison revealed that the Sphagnum microbiome harbours specific genetic features that distinguish it significantly from microbiomes of higher plants and peat soils. The differential traits especially support ecosystem functioning by a symbiotic lifestyle under poikilohydric and ombrotrophic conditions. To realise a plasticity-stability balance, we found abundant subsystems responsible to cope with oxidative and drought stresses, to exchange (mobile) genetic elements, and genes that encode for resistance to detrimental environmental factors, repair and self-controlling mechanisms. Multiple microbe-microbe and plant-microbe interactions were also found to play a crucial role as indicated by diverse genes necessary for biofilm formation, interaction via quorum sensing and nutrient exchange. A high proportion of genes involved in nitrogen cycle and recycling of organic material supported the role of bacteria for nutrient supply. 16S rDNA analysis indicated a higher structural diversity than that which had been previously detected using PCR-dependent techniques. Altogether, the diverse Sphagnum microbiome has the ability to support the life of the host plant and the entire ecosystem under changing environmental conditions. Beyond this, the moss microbiome presents a promising bio-resource for environmental biotechnology - with respect to novel enzymes or stress-protecting bacteria. © 2014 John Wiley & Sons Ltd.

  9. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle.

    Science.gov (United States)

    Bragina, Anastasia; Berg, Christian; Cardinale, Massimiliano; Shcherbakov, Andrey; Chebotar, Vladimir; Berg, Gabriele

    2012-04-01

    Knowledge about Sphagnum-associated microbial communities, their structure and their origin is important to understand and maintain climate-relevant Sphagnum-dominated bog ecosystems. We studied bacterial communities of two cosmopolitan Sphagnum species, which are well adapted to different abiotic parameters (Sphagnum magellanicum, which are strongly acidic and ombrotrophic, and Sphagnum fallax, which are weakly acidic and mesotrophic), in three Alpine bogs in Austria by a multifaceted approach. Great differences between bacterial fingerprints of both Sphagna were found independently from the site. This remarkable specificity was confirmed by a cloning and a deep sequencing approach. Besides the common Alphaproteobacteria, we found a discriminative spectrum of bacteria; although Gammaproteobacteria dominated S. magellanicum, S. fallax was mainly colonised by Verrucomicrobia and Planctomycetes. Using this information for fluorescent in situ hybridisation analyses, corresponding colonisation patterns for Alphaproteobacteria and Planctomycetes were detected. Bacterial colonies were found in high abundances inside the dead big hyalocytes, but they were always connected with the living chlorocytes. Using multivariate statistical analysis, the abiotic factors nutrient richness and pH were identified to modulate the composition of Sphagnum-specific bacterial communities. Interestingly, we found that the immense bacterial diversity was transferred via the sporophyte to the gametophyte, which can explain the high specificity of Sphagnum-associated bacteria over long distances. In contrast to higher plants, which acquire their bacteria mainly from the environment, mosses as the phylogenetically oldest land plants maintain their bacterial diversity within the whole lifecycle.

  10. pH Lowering Ability of Sphagnum.

    Science.gov (United States)

    Glime, Janice M.; Li, Yenhung

    1998-01-01

    States that the ecological role of Sphagnum species in peatlands is enormous. Presents a cation exchange experiment and background information on the characteristics and economic importance of Sphagnum. Contains 42 references. (DDR)

  11. Assessment of Nutrient Concentration in Sokori River, Southwest ...

    African Journals Online (AJOL)

    Nutrient enrichment leads to excessive growth of primary producers as well as heterotrophic bacteria and fungi, which increases the metabolic activities of stream water leading to a depletion of dissolved oxygen. The low discharge of stream and its fairly flat terrain nature also influenced the metabolic activities in the mid- ...

  12. Nutrient and Bacteria Concentrations in the Coastal Waters off ...

    African Journals Online (AJOL)

    ammonium, nitrate, nitrite, soluble reactive phosphorous) and bacteria (total and faecal coliforms) in the waters off Zanzibar Town. The study covered both the SE and NE monsoon and the two transition periods for a total of one year. Nutrient ...

  13. Symbiosis revisited: phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth

    Science.gov (United States)

    van den Elzen, Eva; Kox, Martine A. R.; Harpenslager, Sarah F.; Hensgens, Geert; Fritz, Christian; Jetten, Mike S. M.; Ettwig, Katharina F.; Lamers, Leon P. M.

    2017-03-01

    In pristine Sphagnum-dominated peatlands, (di)nitrogen (N2) fixing (diazotrophic) microbial communities associated with Sphagnum mosses contribute substantially to the total nitrogen input, increasing carbon sequestration. The rates of symbiotic nitrogen fixation reported for Sphagnum peatlands, are, however, highly variable, and experimental work on regulating factors that can mechanistically explain this variation is largely lacking. For two common fen species (Sphagnum palustre and S. squarrosum) from a high nitrogen deposition area (25 kg N ha-1 yr-1), we found that diazotrophic activity (as measured by 15 - 15N2 labeling) was still present at a rate of 40 nmol N gDW-1 h-1. This was surprising, given that nitrogen fixation is a costly process. We tested the effects of phosphorus availability and buffering capacity by bicarbonate-rich water, mimicking a field situation in fens with stronger groundwater or surface water influence, as potential regulators of nitrogen fixation rates and Sphagnum performance. We expected that the addition of phosphorus, being a limiting nutrient, would stimulate both diazotrophic activity and Sphagnum growth. We indeed found that nitrogen fixation rates were doubled. Plant performance, in contrast, did not increase. Raised bicarbonate levels also enhanced nitrogen fixation, but had a strong negative impact on Sphagnum performance. These results explain the higher nitrogen fixation rates reported for minerotrophic and more nutrient-rich peatlands. In addition, nitrogen fixation was found to strongly depend on light, with rates 10 times higher in light conditions suggesting high reliance on phototrophic organisms for carbon. The contrasting effects of phosphorus and bicarbonate on Sphagnum spp. and their diazotrophic communities reveal strong differences in the optimal niche for both partners with respect to conditions and resources. This suggests a trade-off for the symbiosis of nitrogen fixing microorganisms with their Sphagnum

  14. Influence of harvest managements on biomass nutrient concentrations and removal rates of festulolium and tall fescue from a poorly drained nutrient-rich fen peatland

    DEFF Research Database (Denmark)

    Kandel, Tanka; Elsgaard, Lars; Lærke, Poul Erik

    2017-01-01

    This study was designed to show the effects of harvest time and frequency on biomass nutrient concentrations (total ash, N, P, K, Ca, Mg, Fe, Mn, Cu and Zn) as well as total nutrient removal potential by festulolium and tall fescue cultivated on a nutrient-rich fen peatland. The harvest managemen...

  15. Methanotrophic activity and diversity in different Sphagnum magellanicum dominated habitats in the southernmost peat bogs of Patagonia

    NARCIS (Netherlands)

    Kip, N.; Fritz, C.; Langelaan, E. S.; Pan, Y.; Bodrossy, L.; Pancotto, V.; Jetten, M. S. M.; Smolders, A. J. P.; den Camp, H. J. M. Op

    2012-01-01

    Sphagnum peatlands are important ecosystems in the methane cycle. Methanotrophs living inside the dead hyaline cells or on the Sphagnum mosses are able to act as a methane filter and thereby reduce methane emissions. We investigated in situ methane concentrations and the corresponding activity and

  16. Effects of thermal discharges on the seasonal patterns of nutrient concentrations in brackish water

    International Nuclear Information System (INIS)

    Nitchals, D.

    1985-05-01

    Massiv quantities of water are used in power plant cooling systems, especially nuclear power plants, and are often returned to the donor ecosystem at significantly elevated temperatures. Few studies of the environmental effects of such a situation have looked extensively at the effects on nutrients in the water. The present study examined the effects of cooling water discharges from a nuclear power plant on the seasonal nutrient patterns within and outside a brackish water, research artificial lake, the 0.9 km 2 Biotest Basin on Sweden's east coast. The lack of ice cover in winter is the most apparent effect. In a portion of the lake with a relatively long water residence time, on the order of a few days, the vernal nutrient depletion of phosphate, nitrate, and nitrite apparently began sooner than outside the lake. Benthic influence on nutrient concentrations in the free water mass may be very significant in coastal areas receiving heat inputs. This study's data apparently support the conclusion by other researchers that phosphorus may be the nutrient limiting algal growth in the spring in this area of the central Baltic Sea. Determination of a nutrient budget for the Basin was unachievable because inlet and outlet nutrient concentrations were insufficiently different to override experimental variation. Implications for management of heat inputs to coastal ecosystems include avoidance of areas with high nutrient content, rich organic sediment, or poor flushing. (author)

  17. Mapping of trophic states based on nutrients concentration and phytoplankton abundance in Jatibarang Reservoir

    Science.gov (United States)

    Rudiyanti, Siti; Anggoro, Sutrisno; Rahman, Arif

    2018-02-01

    Jatibarang Reservoir is one of the Indonesian Reservoirs, which used for human activities such as tourism and agriculture. These activities will provide input of organic matter and nutrients into the water. These materials will impact water quality and eutrophication process. Eutrophication is the water enrichment by nutrients, especially nitrogen and phosphorus which can promote the growth of phytoplankton. Some indicators of eutrophication are increasing nutrients, trophic states, and change of phytoplankton composition. The relationship between water quality and phytoplankton community can be used as an indicator of trophic states in Jatibarang Reservoir. The aim of this study was to analyze the effect of nutrients concentration and phytoplankton abundance to the trophic states and mapping trophic states based on nutrients concentration and phytoplankton in Jatibarang Reservoir. This study was conducted in June and July 2017 at 9 stations around Jatibarang Reservoir. The results showed that average concentration of nitrate, phosphate, and chlorophyll-a in Jatibarang Reservoir was 0.69 mg/L, 0.27 mg/L, and 1.66 mg/m3, respectively. The phytoplankton abundance ranged 16-62,200 cells/L, consists of 21 genera of four classes, i.e. Chlorophyceae, Cyanophyceae, Bacillariophyceae, and Dinophyceae. Cyanophyceae was a dominant phytoplankton group based on the composition of abundance (>80%). High nutrient concentrations and phytoplankton dominated by Anabaena (Cyanophyceae) which indicated that the waters in Jatibarang Reservoir were eutrophic.

  18. A Novel Framework for Quantifying past Methane Recycling by Sphagnum-Methanotroph Symbiosis Using Carbon and Hydrogen Isotope Ratios of Leaf Wax Biomarkers

    Science.gov (United States)

    Nichols, Jonathan E.; Isles, Peter D. F.; Peteet, Dorothy M.

    2014-01-01

    The concentration of atmospheric methane is strongly linked to variations in Earth's climate. Currently, we can directly reconstruct the total atmospheric concentration of methane, but not individual terms of the methane cycle. Northern wetlands, dominated by Sphagnum, are an important contributor of atmospheric methane, and we seek to understand the methane cycle in these systems. We present a novel method for quantifying the proportion of carbon Sphagnum assimilates from its methanotrophic symbionts using stable isotope ratios of leaf-wax biomarkers. Carbon isotope ratios of Sphagnum compounds are determined by two competing influences, water content and the isotope ratio of source carbon. We disentangled these effects using a combined hydrogen and carbon isotope approach. We constrained Sphagnum water content using the contrast between the hydrogen isotope ratios of Sphagnum and vascular plant biomarkers. We then used Sphagnum water content to calculate the carbon isotope ratio of Sphagnum's carbon pool. Using a mass balance equation, we calculated the proportion of recycled methane contributed to the Sphagnum carbon pool, 'PRM.' We quantified PRM in peat monoliths from three microhabitats in the Mer Bleue peatland complex. Modern studies have shown that water table depth and vegetation have strong influences on the peatland methane cycle on instrumental time scales. With this new approach, delta C-13 of Sphagnum compounds are now a useful tool for investigating the relationships among hydrology, vegetation, and methanotrophy in Sphagnum peatlands over the time scales of entire peatland sediment records, vital to our understanding of the global carbon cycle through the Late Glacial and Holocene.

  19. Nutrient concentration in leaves, a tool for nutritional diagnosis in cocoa.

    Directory of Open Access Journals (Sweden)

    Yina Jazbleidi Puentes-Páramo

    2016-06-01

    Full Text Available The aim of this study was to estimate the foliar concentrations in cocoa farming (Theobroma cacao L as a diagnostic tool of their nutritional status. At the Research Center of the National Federation of Cocoa Producers (Fedecacao located in Miranda-Cauca, Colombia, the study assessed the effect of five doses of NPK fertilization in nutrient concentration in leaves of four cocoa clones CCN-51, TSH-565, ICS-39, and ICS-95 from 20102012. Experimental design was randomized complete block design with five treatments: TR(control, T1(25% NPK, T2(50% NPK, T3(75% NPK, T4(100% NPK and four replicates. The concentration of 11 nutrients (N, P, K+, Ca2+, S, Mg2+, B, Zn2+, Cu2+, Fe2+, Mn2+ and their relation with yield was evaluated for three years. Results showed differences in the foliar concentration of nutrients assessed by effect of treatments, by clone, and by clone*treatment interaction. The foliar concentration used was derived from higher yield-related treatment, whereby, a proposal for nutritional diagnosis in cocoa based on nutrient monitoring was created to evaluate nutrient concentration in leaves.

  20. Nutrient concentration age dynamics of teak (Tectona grandis L.f.) plantations in Central America

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Moya, J.; Murillo, R.; Portuguez, E.; Fallas, J. L.; Rios, V.; Kottman, F.; Verjans, J. M.; Mata, R.; Alvarado, A.

    2013-05-01

    Aim of study. Appropriate knowledge regarding teak (Tectona grandis L.f.) nutrition is required for a better management of the plantations to attain high productivity and sustainability. This study aims to answer the following questions: How can it be determined if a teak tree suffers a nutrient deficiency before it shows symptoms? Are nutrient concentration decreases in older trees associated with age-related declines in forest productivity? Area of study. Costa Rica and Panama. Material and Methods. Nutrient concentration in different tree tissues (bole, bark, branches and foliage) were measured at different ages using false-time-series in 28 teak plantations Research highlights. Foliar N concentration decreases from 2.28 in year 1 to 1.76% in year 19. Foliar Mg concentration increases from 0.23 in year 1 to 0.34% in year 19. The foliar concentrations of the other nutrients are assumed to be constant with tree age: 1.33% Ca, 0.88% K, 0.16% P, 0.12% S, 130 mg kg{sup -}1 Fe, 43 mg kg{sup -}1 Mn, 11 mg kg{sup -}1 Cu, 32 mg kg{sup -}1 Zn and 20 mg kg{sup -}1 B. The nutrient concentration values showed can be taken as a reference to evaluate the nutritional status of similar teak plantations in the region. The concentrations of K, Mg and N could be associated with declines in teak plantation productivity as the plantation becomes older. Whether age-related changes in nutrient concentrations are a cause or a consequence of age-related declines in productivity is an issue for future research with the aim of achieving higher growth rates throughout the rotation period. (Author) 35 refs.

  1. Nutrient concentrations in a Littorella uniflora community at higher CO2 concentrations and reduced light intensities

    DEFF Research Database (Denmark)

    Andersen, T.; Pedersen, O.; Andersen, F. Ø.

    2005-01-01

    laboratory experiments with isoetid vegetation (Littorella uniflora) where water column CO2 and light could be manipulated in order to test whether (i) light and CO2 availability affect nutrient concentrations in isoetid vegetation, and (ii) if changes in light and CO2 climate affect fluxes of inorganic...... nitrogen (N) and phosphorus (P) from sediment to water column, which potentially could result in increased growth of epiphytic algae. 3. The results showed that the standing stocks of phosphorus and nitrogen in the L. uniflora vegetation were significantly influenced by CO2 concentration and light...... intensity. Both standing stocks of P and N were significantly higher in the mesocosm treatments with high CO2 concentration than in those at low CO2 concentration. Similarly, standing stocks of P and N enhanced with increasing light intensity. 4. Measurements of nutrient fluxes both in the field...

  2. Concerted diurnal patterns in riverine nutrient concentrations and physical conditions

    International Nuclear Information System (INIS)

    Scholefield, David; Le Goff, Thierry; Braven, Jim; Ebdon, Les; Long, Terry; Butler, Mark

    2005-01-01

    Several long-term sets of hourly nitrate concentration data were obtained through deployment of a nitrate sensor in an upper reach of the River Taw, a small moorland-fed river in the South West of the UK. Examination of the data obtained during periods of low flow and the absence of rainfall in the catchment revealed the presence of marked diurnal cycles, which were in concert and negatively correlated with diurnal cycles in water temperature. After verifying that these cycles were natural, an intensive 90-h field monitoring campaign was conducted, in which river water was sampled hourly and immediately analysed in the laboratory for molybdate-reactive phosphorus (P), nitrate, nitrite, ammonium, and pH. Coincident measurements of water temperature, river discharge and solar energy were also taken at, or close to, the site. All measurements revealed diurnal patterns and all patterns were concerted. The cycles of P, nitrate, nitrite, and discharge had two maxima and minima per 24 h, while the cycle of water temperature had one, with a maximum at 20.00 and a minimum at 08.00. The amplitudes of the cycles of P and nitrate were each about 30% of the mean values, while the amplitude of the nitrite cycle was as great as 80% of the mean value on occasions. Both biological and physical mechanisms for the cycling could operate through water temperature and/or incident radiation to account for the observed phenomenon, but there remains uncertainty of which is the more important. The observations have important implications for both the accuracy of pollution assessment in rivers and the physiological rhythms of riverine organisms

  3. Concerted diurnal patterns in riverine nutrient concentrations and physical conditions.

    Science.gov (United States)

    Scholefield, David; Le Goff, Thierry; Braven, Jim; Ebdon, Les; Long, Terry; Butler, Mark

    2005-05-15

    Several long-term sets of hourly nitrate concentration data were obtained through deployment of a nitrate sensor in an upper reach of the River Taw, a small moorland-fed river in the South West of the UK. Examination of the data obtained during periods of low flow and the absence of rainfall in the catchment revealed the presence of marked diurnal cycles, which were in concert and negatively correlated with diurnal cycles in water temperature. After verifying that these cycles were natural, an intensive 90-h field monitoring campaign was conducted, in which river water was sampled hourly and immediately analysed in the laboratory for molybdate-reactive phosphorus (P), nitrate, nitrite, ammonium, and pH. Coincident measurements of water temperature, river discharge and solar energy were also taken at, or close to, the site. All measurements revealed diurnal patterns and all patterns were concerted. The cycles of P, nitrate, nitrite, and discharge had two maxima and minima per 24 h, while the cycle of water temperature had one, with a maximum at 20.00 and a minimum at 08.00. The amplitudes of the cycles of P and nitrate were each about 30% of the mean values, while the amplitude of the nitrite cycle was as great as 80% of the mean value on occasions. Both biological and physical mechanisms for the cycling could operate through water temperature and/or incident radiation to account for the observed phenomenon, but there remains uncertainty of which is the more important. The observations have important implications for both the accuracy of pollution assessment in rivers and the physiological rhythms of riverine organisms.

  4. Response of a Sphagnum bog plant community to elevated CO2 and N supply

    NARCIS (Netherlands)

    Heijmans, M.M.P.D.; Klees, H.; Visser, de W.; Berendse, F.

    2002-01-01

    The response of plant growth to rising CO2 levels appears to depend on nutrient availability, but it is not known whether the growth of bog plants reacts similarly. We therefore studied the effects of elevated CO2 in combination with N supply on the growth of Sphagnum mosses and vascular plants in

  5. Sphagnum modifies climate-change impacts on subarctic vascular bog plants.

    NARCIS (Netherlands)

    Dorrepaal, E.; Aerts, R.; Cornelissen, J.H.C.; van Logtestijn, R.S.P; Callaghan, T.V.

    2006-01-01

    1. Vascular plant growth forms in northern peatlands differ in their strategies to cope with the harsh climate, low nutrient availability and progressively increasing height of the Sphagnum carpet in which they grow. Climate change may therefore affect growth forms differentially, both directly and

  6. Decadal and seasonal trends of nutrient concentration and export from highly managed coastal catchments.

    Science.gov (United States)

    Wan, Yongshan; Wan, Lei; Li, Yuncong; Doering, Peter

    2017-05-15

    Understanding anthropogenic and hydro-climatic influences on nutrient concentrations and export from highly managed catchments often necessitates trend detection using long-term monitoring data. This study analyzed the temporal trend (1979-2014) of total nitrogen (TN) and total phosphorus (TP) concentrations and export from four adjacent coastal basins in south Florida where land and water resources are highly managed through an intricate canal network. The method of integrated seasonal-trend decomposition using LOESS (LOcally weighted regrESSion) was employed for trend detection. The results indicated that long-term trends in TN and TP concentrations (increasing/decreasing) varied with basins and nutrient species, reflecting the influence of basin specific land and water management practices. These long-term trends were intervened by short-term highs driven by high rainfall and discharges and lows associated with regional droughts. Seasonal variations in TP were more apparent than for TN. Nutrient export exhibited a chemostatic behavior for TN from all the basins, largely due to the biogenic nature of organic N associated with the ubiquity of organic materials in the managed canal network. Varying degrees of chemodynamic export was present for TP, reflecting complex biogeochemical responses to the legacy of long-term fertilization, low soil P holding capacity, and intensive stormwater management. The anthropogenic and hydro-climatic influences on nutrient concentration and export behavior had great implications in nutrient loading abatement strategies for aquatic ecosystem restoration of the downstream receiving waterbody. Published by Elsevier Ltd.

  7. Can We Manage Nonpoint-Source Pollution Using Nutrient Concentrations during Seasonal Baseflow?

    Directory of Open Access Journals (Sweden)

    James A. McCarty

    2016-05-01

    Full Text Available Nationwide, a substantial amount of resources has been targeted toward improving water quality, particularly focused on nonpoint-source pollution. This study was conducted to evaluate the relationship between nutrient concentrations observed during baseflow and runoff conditions from 56 sites across five watersheds in Arkansas. Baseflow and stormflow concentrations for each site were summarized using geometric mean and then evaluated for directional association. A significant, positive correlation was found for NO–N, total N, soluble reactive P, and total P, indicating that sites with high baseflow concentrations also had elevated runoff concentrations. Those landscape factors that influence nutrient concentrations in streams also likely result in increased runoff, suggesting that high baseflow concentrations may reflect elevated loads from the watershed. The results highlight that it may be possible to collect water-quality data during baseflow to help define where to target nonpoint-source pollution best management practices within a watershed.

  8. Nutrient concentrations in coarse and fine woody debris of Populus tremuloides Michx.-dominated forests, northern Minnesota, USA

    Science.gov (United States)

    Klockow, Paul A.; D'Amato, Anthony W.; Bradford, John B.; Fraver, Shawn

    2014-01-01

    Contemporary forest harvesting practices, specifically harvesting woody biomass as a source of bioenergy feedstock, may remove more woody debris from a site than conventional harvesting. Woody debris, particularly smaller diameter woody debris, plays a key role in maintaining ecosystem nutrient stores following disturbance. Understanding nutrient concentrations within woody debris is necessary for assessing the long-term nutrient balance consequences of altered woody debris retention, particularly in forests slated for use as bioenergy feedstocks. Nutrient concentrations in downed woody debris of various sizes, decay classes, and species were characterized within one such forest type, Populus tremuloides Michx.-dominated forests of northern Minnesota, USA. Nutrient concentrations differed significantly between size and decay classes and generally increased as decay progressed. Fine woody debris (≤ 7.5 cm diameter) had higher nutrient concentrations than coarse woody debris (> 7.5 cm diameter) for all nutrients examined except Na and Mn, and nutrient concentrations varied among species. Concentrations of N, Mn, Al, Fe, and Zn in coarse woody debris increased between one and three orders of magnitude, while K decreased by an order of magnitude with progressing decay. The variations in nutrient concentrations observed here underscore the complexity of woody debris nutrient stores in forested ecosystems and suggest that retaining fine woody debris at harvest may provide a potentially important source of nutrients following intensive removals of bioenergy feedstocks.

  9. Wind-induced flow velocity effects on nutrient concentrations at Eastern Bay of Lake Taihu, China.

    Science.gov (United States)

    Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Jianwei; Gao, Xiaomeng; Wang, Wencai; Acharya, Kumud

    2017-07-01

    Shallow lakes are highly sensitive to respond internal nutrient loading due to wind-induced flow velocity effects. Wind-induced flow velocity effects on nutrient suspension were investigated at a long narrow bay of large shallow Lake Taihu, the third largest freshwater lake in China. Wind-induced reverse/compensation flow and consistent flow field probabilities at vertical column of the water were measured. The probabilities between the wind field and the flow velocities provided a strong correlation at the surface (80.6%) and the bottom (65.1%) layers of water profile. Vertical flow velocity profile analysis provided the evidence of delay response time to wind field at the bottom layer of lake water. Strong wind field generated by the west (W) and west-north-west (WNW) winds produced displaced water movements in opposite directions to the prevailing flow field. An exponential correlation was observed between the current velocities of the surface and the bottom layers while considering wind speed as a control factor. A linear model was developed to correlate the wind field-induced flow velocity impacts on nutrient concentration at the surface and bottom layers. Results showed that dominant wind directions (ENE, E, and ESE) had a maximum nutrient resuspension contribution (nutrient resuspension potential) of 34.7 and 43.6% at the surface and the bottom profile layers, respectively. Total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP) average concentrations were 6.38, 1.5, and 0.03 mg/L during our field experiment at Eastern Bay of Lake Taihu. Overall, wind-induced low-to-moderate hydrodynamic disturbances contributed more in nutrient resuspension at Eastern Bay of Lake Taihu. The present study can be used to understand the linkage between wind-induced flow velocities and nutrient concentrations for shallow lakes (with uniform morphology and deep margins) water quality management and to develop further models.

  10. Evaporation from a sphagnum moss surface

    Science.gov (United States)

    D.S. Nichols; J.M. Brown

    1980-01-01

    Peat cores, 45 cm in diameter, were collected from a sphagnum bog in northern Minnesota, and used to measure the effects of different temperatures and water levels on evaporation from a sphagnum moss surface in a growth chamber. Under all conditions, evaporation from the moss surface was greater than that from a free-water surface. Evaporation from the moss increased...

  11. Similar diversity of Alphaproteobacteria and nitrogenase gene amplicons on two related Sphagnum mosses

    Directory of Open Access Journals (Sweden)

    Anastasia eBragina

    2012-01-01

    Full Text Available Sphagnum mosses represent a main component in ombrotrophic wetlands. They harbor a specific and diverse microbial community with essential functions for the host. To understand extend and degree of host specificity, Sphagnum fallax and S. angustifolium, two phylogenetically closely related species, which show distinct habitat preference with respect to the nutrient level, were analyzed by a multifaceted approach. Microbial fingerprints obtained by PCR-SSCP (single-strand conformation polymorphism using universal, group-specific and functional primers were highly similar. Similarity was confirmed for colonization patterns obtained by fluorescence in situ hybridization (FISH coupled with confocal laser scanning microscopy (CLSM: Alphaproteobacteria were the main colonizers inside the hyaline cells of Sphagnum leaves. A deeper survey of Alphaproteobacteria by 16S rRNA gene amplicon sequencing reveals a high diversity with Acidocella, Acidisphaera, Rhodopila and Phenylobacterium as major genera for both mosses. Pathogen defense and nitrogen fixation are important functions of Sphagnum-associated bacteria, which are fulfilled by microbial communities of both Sphagna in a similar way. NifH libraries of Sphagnum-associated microbial communities were characterized by high diversity and abundance of Alphaproteobacteria but contained also diverse amplicons of other taxa, e.g. Cyanobacteria, Geobacter and Spirochaeta. Statistically significant differences between the microbial communities of both Sphagnum species could not be discovered in any of the experimental approach. Our results show that the same close relationship, which exists between the physical, morphological and chemical characteristics of Sphagnum mosses and the ecology and function of bog ecosystems, also connects moss plantlets with their associated bacterial communities.

  12. Nutrient concentrations in leachate and runoff from dairy cattle lots with different surface materials

    Science.gov (United States)

    Nitrogen (N) and phosphorus (P) loss from agriculture persists as a water quality issue, and outdoor cattle lots can have a high loss potential. We monitored hydrology and nutrient concentrations in leachate and runoff from dairy heifer lots constructed with three surface materials (soil, sand, bark...

  13. Qualitative aspects of biomonitoring: Sphagnum auriculatum response vs. aerosol metal concentrations (Pb, Ca, Cr, Cu, Fe, Mn, Ni and Zn) in the Porto urban atmosphere

    International Nuclear Information System (INIS)

    Teresa, M.; Vasconcelos, S.D.; Tavares Laquipai, H.M.F.

    2000-01-01

    Bags of S. auriculatum and a low-volume aerosol sampler provided with 0.8 μm pore size filters were exposed, in parallel, to the atmosphere of Porto, at different sampling points and in different periods of time, between 1991 and 1997. The levels of lead in the moss (weekly samples) and in the filters (daily samples) were determined by atomic absorption spectrophotometry and the results were compared. Living S. auriculatum exposed in bags to the Porto atmosphere died in several weeks (about a month), but continued to sorb metals from the atmosphere for about another month. In dry weather periods (relative humidity ≤ 76%) the rate of lead uptake by moss was approximately constant and proportional to the levels of the metal in atmospheric aerosols. A converting factor [CF=parallel-Pb-parallel moss (μg/g.day)/ parallel-Pb-parallel air (μg/m 3 )] allowed conversion of the lead levels in S. auriculatum to those in the atmospheric aerosols. Because the moss fixed lead from gas, aerosol and particulate matter, the rate of sorption depends markedly on the distance to the lead sources (mainly traffic) and on surrounding obstacles which retain particles. Therefore, specific calibration by mechanic monitoring, at each sampling point is required in a first stage of biomonitoring, when moss bag samplers are used to provide quantitative information about lead levels in the atmosphere. The mean Pb levels were ≤ 0.5 μg/m 3 and approximately constants at each sample point up to January 1996. After that date it decreased about 50%, in consequence of the reduction of the Pb concentration in leaded gasoline. In wet weather periods, higher but irregular rate of lead uptake was observed. In contrast, the lead levels in atmospheric aerosols decreased when the humidity increased due to wet deposition. Therefore, no proportionality between lead levels in the moss and in air were found. For about two months, in 1994, during a dry weather period, the levels of Ca, Cr, Cu, Fe, Mn, Ni

  14. Relationships Between Land Use and Stream Nutrient Concentrations in a Highly Urbanized Tropical Region of Brazil: Thresholds and Riparian Zones.

    Science.gov (United States)

    Tromboni, F; Dodds, W K

    2017-07-01

    Nutrient enrichment in streams due to land use is increasing globally, reducing water quality and causing eutrophication of downstream fresh and coastal waters. In temperate developed countries, the intensive use of fertilizers in agriculture is a main driver of increasing nutrient concentrations, but high levels and fast rates of urbanization can be a predominant issue in some areas of the developing world. We investigated land use in the highly urbanized tropical State of Rio de Janeiro, Brazil. We collected total nitrogen, total phosphorus, and inorganic nutrient data from 35 independent watersheds distributed across the State and characterized land use at a riparian and entire watershed scales upstream from each sample station, using ArcGIS. We used regression models to explain land use influences on nutrient concentrations and to assess riparian protection relationships to water quality. We found that urban land use was the primary driver of nutrient concentration increases, independent of the scale of analyses and that urban land use was more concentrated in the riparian buffer of streams than in the entire watersheds. We also found significant thresholds that indicated strong increases in nutrient concentrations with modest increases in urbanization reaching maximum nutrient concentrations between 10 and 46% urban cover. These thresholds influenced calculation of reference nutrient concentrations, and ignoring them led to higher estimates of these concentrations. Lack of sewage treatment in concert with urban development in riparian zones apparently leads to the observation that modest increases in urban land use can cause large increases in nutrient concentrations.

  15. Increased nutrient concentrations in Lake Erie tributaries influenced by greenhouse agriculture.

    Science.gov (United States)

    Maguire, Timothy J; Wellen, Christopher; Stammler, Katie L; Mundle, Scott O C

    2018-08-15

    Greenhouse production of vegetables is a growing global trade. While greenhouses are typically captured under regulations aimed at farmland, they may also function as a point source of effluent. In this study, the cumulative impacts greenhouse effluents have on riverine macronutrient and trace metal concentrations were examined. Water samples were collected Bi-weekly for five years from 14 rivers in agriculturally dominated watersheds in southwestern Ontario. Nine of the watersheds contained greenhouses with their boundaries. Greenhouse influenced rivers had significantly higher concentrations of macronutrients (nitrogen, phosphorus, and potassium) and trace metals (copper, molybdenum, and zinc). Concentrations within greenhouse influenced rivers appeared to decrease over the 5-year study while concentrations within non-greenhouse influenced river remained constant. The different temporal pattern between river types was attributed to increased precipitation during the study period. Increases in precipitation diluted concentrations in greenhouse influenced rivers; however, non-influenced river runoff proportionally increased nutrient mobility and flow, stabilizing the observed concentrations of non-point sources. Understanding the dynamic nature of environmental releases of point and non-point sources of nutrients and trace metals in mixed agricultural systems using riverine water chemistry is complicated by changes in climatic conditions, highlighting the need for long-term monitoring of nutrients, river flows and weather data in assessing these agricultural sectors. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Restoration techniques for Sphagnum-dominated peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Ferland, C.; Rochefort, L. [Laval University, Sainte-Foy, PQ (Canada). Department of Phytology

    1997-07-01

    After peat harvesting, peat mosses do not usually recolonize the abandoned site. The purpose of this study is to develop techniques for restoring peatlands. Sphagnum diaspores from natural peatlands were introduced to exploited peatlands. The influence of microrelief, of planting companion species with the Sphagnum, and of light phosphorus fertilization on establishment of a peat moss carpet are examined. The results show that Sphagnum diaspores can be reintroduced on bare peat surfaces. The restoration method is combined with techniques to improve substrata moisture conditions, such as creation of surface roughness and the use of companion plant species. 32 refs., 6 figs., 3 tabs.

  17. Sudden increase in atmospheric concentration reveals strong coupling between shoot carbon uptake and root nutrient uptake in young walnut trees

    International Nuclear Information System (INIS)

    Delaire, M.; Sigogne, M.; Beaujard, F.; Frak, E.; Adam, B.; Le Roux, X.

    2005-01-01

    Short-term effects of a sudden increase in carbon dioxide concentration on nutrient uptake by roots during vegetative growth was studied in young walnut trees. Rates of carbon dioxide uptake and water loss by individual trees were determined by a branch bag method from three days before and six days after carbon dioxide concentration was increased. Nutrient uptake rates were measured concurrently by a hydroponic recirculating nutrient solution system. Carbon dioxide uptake rates increased greatly with increasing atmospheric carbon dioxide; nutrient uptake rates were proportional to carbon dioxide uptake rates, except for the phosphorus ion. Daily water loss rates were only slightly affected by elevated carbon dioxide. Overall, it was concluded that in the presence of non-limiting supplies of water and nutrients, root nutrient uptake and shoot carbon assimilation are strongly coupled in the short term in young walnut trees despite the important carbon and nutrient storage capacities od woody species. 45 refs., 7 figs

  18. Nutrient Concentrations and Stable Isotopes of Runoff from a Midwest Tile-Drained Corn Field

    Science.gov (United States)

    Wilkins, B. P.; Woo, D.; Li, J.; Michalski, G. M.; Kumar, P.; Conroy, J. L.; Keefer, D. A.; Keefer, L. L.; Hodson, T. O.

    2017-12-01

    Tile drains are a common crop drainage device used in Midwest agroecosystems. While efficient at drainage, the tiles provide a quick path for nutrient runoff, reducing the time available for microbes to use nutrients (e.g., NO3- and PO43-) and reduce export to riverine systems. Thus, understanding the effects of tile drains on nutrient runoff is critical to achieve nutrient reduction goals. Here we present isotopic and concentration data collected from tile drain runoff of a corn field located near Monticello, IL. Tile flow samples were measured for anion concentrations and stable isotopes of H2O and NO3-, while precipitation was measured for dual isotopes of H2O. Results demonstrate early tile flow from rain events have a low Cl- concentration (60% contribution) in the beginning of the hydrograph. As flow continues H2O isotopic values reflect pre-event water (ground and soil water), and Cl- concentrations increase representing a greater influence by matrix flow (60-90% contribution). Nitrate concentrations change dramatically, especially during the growing season, and do not follow a similar trend as the conservative Cl-, often decreasing days before, which represents missing nitrate in the upper surface portion of the soil. Nitrate isotopic data shows significant changes in 15N (4‰) and 18O (4‰) during individual hydrological events, representing that in addition to plant uptake and leaching, considerate NO3- is lost through denitrification. It is notable, that throughout the season d15N and d18O of nitrate change significantly representing that seasonally, substantial denitrification occurs.

  19. Major and trace elements in Sphagnum moss from four southern German bogs, and comparison with available moss monitoring data

    OpenAIRE

    KEMPTER HEIKE; KRACHLER MICHAEL; SHOTYK W.; ZACCONE CLAUDIO

    2017-01-01

    In this paper, we present concentrations of an array of major and trace elements (Ag, Al, As, Ba, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Rb, Sb, Sc, Sr, Th, Tl, U, V, Zn) in living Sphagnum mosses from four southern German bogs and compare them with moss monitoring data of the respective regions. To do this, Sphagnum mosses were collected in Upper Bavaria (Oberbayern, OB) and the Northern Black Forest (Nordschwarzwald, NBF). Surfaces of Sphagnum carpets were marked with plastic mesh and, one year la...

  20. Cerium enhances germination and shoot growth, and alters mineral nutrient concentration in rice

    Science.gov (United States)

    García-Morales, Soledad; Pérez-Sato, Juan Antonio

    2018-01-01

    Cerium (Ce) belongs to the rare earth elements (REEs), and although it is not essential for plants, it can stimulate growth and other physiological processes. The objective of this research was to evaluate the effect of Ce on seed germination, initial seedling growth, and vegetative growth in rice (Oryza sativa L.) cv. Morelos A-98. During the germination process, the seeds were treated with Ce concentrations of 0, 4, 8, and 12 μM; after 5 d, germination percentage was recorded and after 10 d seedling growth was measured. For vegetative growth, a hydroponic system was established where 14-d-old plants without previous Ce treatment were transferred into nutrient solution. After two weeks of acclimatizing, 0, 25, 50, and 100 μM Ce were added to the nutrient solution for 28 d. Ce significantly increased germination and the initial growth variables of the seedlings. During vegetative growth, Ce increased plant height, number of tillers, root volume, and shoot fresh and dry biomass, without affecting root biomass weight. With low Ce concentrations (25 and 50 μM), the concentrations of chlorophylls and amino acids in the shoots were similar to those in the control, like amino acid concentration in the roots at a concentration of 25 μM Ce. Conversely, the concentration of total sugars increased in the shoot with the application of 25, 50, and 100 μM Ce, and in the roots with the application of 50 μM Ce. Also, Ce did not affect the concentration of macro or micronutrients in the shoots. However, in the roots, the high Ce concentration decreased the concentrations of Ca, Fe, Mn, and Zn, while the Mg concentration increased. Our results indicate that Ce, at the right concentrations, can function as a biostimulant in rice germination and growth. PMID:29579100

  1. Lignification in beech grown at elevated CO2 concentrations: interaction with nutrient availability and leaf maturation

    International Nuclear Information System (INIS)

    Blaschke, L; Forstreuter, M.; Sheppard, L. J.; Leith, K.; Murray, M. B.; Polle, A.

    2002-01-01

    Results of a study undertaken to investigate contradictory observations reported in the literature to the effect that growth in elevated carbon dioxide affects ontogeny, are discussed. Results of this study showed that seedlings grown at elevated carbon dioxide had nitrogen concentrations of about 15 per cent lower than seedlings grown in ambient carbon dioxide. Elevated carbon dioxide caused increased growth and biomass production in trees with a medium to high nutrient supply, but had no effect on growth of trees with a low nutrient supply rate. Because elevated carbon dioxide enhanced seedling growth in the high nutrient supply treatments, the total amount of lignin produced per seedling was higher in these treatments. Overall, the results suggest that carbon dioxide availability does not directly affect lignin concentrations, but affects them indirectly through the effects on or an interaction with nitrogen supply and growth. In seedlings, elevated carbon dioxide reduced lignin concentration on a dry mass basis, indicating diminished wood quality in a carbon dioxide-enriched atmosphere. 51 refs., 2 tabs., 5 figs

  2. Effect of thymol and carvacrol on nutrient digestibility in rams fed high or low concentrate diets.

    Science.gov (United States)

    Zamiri, M J; Azizabadi, E; Momeni, Z; Rezvani, M R; Atashi, H; Akhlaghi, A

    2015-01-01

    Published data on the effects of essential oils (EO) on in vivo nutrient digestibility in sheep are contradictory. In 2 experiments, the effect of thymol and carvacrol on nutrient digestibility was studied in sheep fed with high (70%) or low (52%) concentrate diets, using incomplete Latin Square designs. The essential oils were mixed with the concentrate portion of the diet at the rate of 0.0, 0.3, or 0.6 g per kg dry matter (DM) diet. Supplementation of thymol had no significant effect on digestibility of dry matter (DM), organic matter (OM), crude protein (CP) and acid detergent fiber (ADF). The main effect of thymol on neutral detergent fiber (NDF) and ether extract (EE) digestibility and on nitrogen balance (NB) was significant (Pdigestibility. The main effect of carvacrol on ruminal ammonia levels and NB was significant, but within each level of dietary concentrate no significant differences were observed in ammonia levels and NB. Inclusion of 0.3 g/kg diet DM of carvacrol or thyme was more effective than 0.6 g/kg diet DM in terms of NB but neither dose affected nutrient digestibility. Future research should determine the long-term effects of essential oils on digestibility and performance in sheep, before recommendation can be made for their use under practical husbandry conditions.

  3. Litter production and its nutrient concentration in some fuelwood trees grown on sodic soil

    Energy Technology Data Exchange (ETDEWEB)

    Garg, V.K. (National Botanical Research Inst., Lucknow (India))

    1992-01-01

    Litter production was estimated in 8-year-old tree plantations of Acacia nilotica, Prosopis juliflora, Dalbergia sisso, and Terminalia arjuna planted in a monoculture tree cropping system on sodic soils of Lucknow Division, India. Mean annual litter fall of these trees amounted to 5.9, 7.4, 5.0 and 5.4 t ha[sup -1], respectively. Irrespective of tree species, the leaf litter concentrations of N, K and Ca were greater than those of P and Mg. The concentration of nutrients in leaf tissues was negatively correlated for N and Ca, with the magnitude of leaf fall in D. sissoo, but was positively correlated for Ca and Mg in A. nilotica; no such correlations were found in P. juliflora and T. arjuna. The variations in the concentration of leaf litter nutrient did not appear to be species specific but depended on adverse edaphic properties including the fertility status of sodic soil. A. nilotica and P. juliflora with bimodal patterns of litter fall return greater amounts of nutrients to the soil surface than D. sissoo and T. arjuna which have unimodal patterns of litter fall. The study indicated the potential benefit of a mixed plantation system having variable leaf fall patterns among the planted trees so providing constant litter mulch to help in conserving soil moisture. (author).

  4. Effects of watershed and riparian zone characteristics on nutrient concentrations in the River Scheldt Basin

    Directory of Open Access Journals (Sweden)

    J. Meynendonckx

    2006-01-01

    Full Text Available The relative influence of a set of watershed characteristics on surface water nutrient concentrations was examined in 173 watersheds within two subcatchments (Upper-Scheldt and Nete of the River Scheldt Basin (Flanders, Belgium. Each watershed was described by seasonal rainfall, discharge loading of point sources, morphological characteristics (area, average slope, drainage density, elongation, land use and soil properties (soil texture and drainage. Partial regression analysis revealed that soil drainage variables had the strongest influence on nutrient concentrations. Additional influence was exerted by land use and point source loading variables. Nitrate concentrations were positively correlated with effluent loadings coming from wastewater treatment plants and with the area of agricultural land. Phosphate concentrations were best explained by effluent loadings of industrial point sources and by the area of urban land. Land use close to the river was not a better predictor of nitrate and phosphate concentrations than land use away from the river. This suggests that the mediating impact of riparian zones is rather explained by the hydrologic pathways within the buffer strip.

  5. Modeled sensitivity of Lake Michigan productivity and zooplankton to changing nutrient concentrations and quagga mussels

    Science.gov (United States)

    Pilcher, Darren J.; McKinley, Galen A.; Kralj, James; Bootsma, Harvey A.; Reavie, Euan D.

    2017-08-01

    The recent decline in Lake Michigan productivity is often attributed to filter feeding by invasive quagga mussels, but some studies also implicate reductions in lakewide nutrient concentrations. We use a 3-D coupled hydrodynamic-biogeochemical model to evaluate the effect of changing nutrient concentrations and quagga mussel filtering on phytoplankton production and phytoplankton and zooplankton biomass. Sensitivity experiments are used to assess the net effect of each change separately and in unison. Quagga mussels are found to have the greatest impact during periods of isothermal mixing, while nutrients have the greatest impact during thermal stratification. Quagga mussels also act to enhance spatial heterogeneity, particularly between nearshore-offshore regions. This effect produces a reversal in the gradient of nearshore-offshore productivity: from relatively greater nearshore productivity in the prequagga lake to relatively lesser nearshore productivity after quaggas. The combined impact of both processes drives substantial reductions in phytoplankton and zooplankton biomass, as well as significant modifications to the seasonality of surface water pCO2, particularly in nearshore regions where mussel grazing continues year-round. These results support growing concern that considerable losses of phytoplankton and zooplankton will yield concurrent losses at higher trophic levels. Comparisons to observed productivity suggest that both quagga mussel filtration and lower lakewide total phosphorus are necessary to accurately simulate recent changes in primary productivity in Lake Michigan.

  6. The MANAGE database: nutrient load and site characteristic updates and runoff concentration data.

    Science.gov (United States)

    Harmel, Daren; Qian, Song; Reckhow, Ken; Casebolt, Pamela

    2008-01-01

    The "Measured Annual Nutrient loads from AGricultural Environments" (MANAGE) database was developed to be a readily accessible, easily queried database of site characteristic and field-scale nutrient export data. The original version of MANAGE, which drew heavily from an early 1980s compilation of nutrient export data, created an electronic database with nutrient load data and corresponding site characteristics from 40 studies on agricultural (cultivated and pasture/range) land uses. In the current update, N and P load data from 15 additional studies of agricultural runoff were included along with N and P concentration data for all 55 studies. The database now contains 1677 watershed years of data for various agricultural land uses (703 for pasture/rangeland; 333 for corn; 291 for various crop rotations; 177 for wheat/oats; and 4-33 yr for barley, citrus, vegetables, sorghum, soybeans, cotton, fallow, and peanuts). Across all land uses, annual runoff loads averaged 14.2 kg ha(-1) for total N and 2.2 kg ha(-1) for total P. On average, these losses represented 10 to 25% of applied fertilizer N and 4 to 9% of applied fertilizer P. Although such statistics produce interesting generalities across a wide range of land use, management, and climatic conditions, regional crop-specific analyses should be conducted to guide regulatory and programmatic decisions. With this update, MANAGE contains data from a vast majority of published peer-reviewed N and P export studies on homogeneous agricultural land uses in the USA under natural rainfall-runoff conditions and thus provides necessary data for modeling and decision-making related to agricultural runoff. The current version can be downloaded at http://www.ars.usda.gov/spa/manage-nutrient.

  7. Influence of light presence and biomass concentration on nutrient kinetic removal from urban wastewater by Scenedesmus obliquus.

    Science.gov (United States)

    Ruiz, J; Arbib, Z; Alvarez-Díaz, P D; Garrido-Pérez, C; Barragán, J; Perales, J A

    2014-05-20

    This work was aimed at studying the effect of light-darkness and high-low biomass concentrations in the feasibility of removing nitrogen and phosphorus from urban treated wastewater by the microalga Scenedesmus obliquus. Laboratory experiments were conducted in batch, where microalgae were cultured under different initial biomass concentrations (150 and 1500mgSSl(-1)) and light conditions (dark or illuminated). Nutrient uptake was more dependent on internal nutrient content of the biomass than on light presence or biomass concentration. When a maximum nitrogen or phosphorus content in the biomass was reached (around 8% and 2%, respectively), the removal of that nutrient was almost stopped. Biomass concentration affected more than light presence on the nutrient removal rate, increasing significantly with its increase. Light was only required to remove nutrients when the maximum nutrient storage capacity of the cells was reached and further growth was therefore needed. Residence times to maintain a stable biomass concentration, avoiding the washout of the reactor, were much higher than those needed to remove the nutrients from the wastewater. This ability to remove nutrients in the absence of light could lead to new configurations of reactors aimed to wastewater treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Nutrient digestibility and beef cattle performance fed by lerak (Sapindus rarak meal in concentrate ration

    Directory of Open Access Journals (Sweden)

    S. Suharti

    2009-10-01

    Full Text Available This research was aimed to study the use of Lerak fruit meal to improve performance and feed digestibility of beef cattle. The research consisted of two trials (in vitro and in vivo studies. The in vitro trial was screening of bioactive compounds (saponin, tanin, dan diosgenin in Lerak fruit (including seed and continued to evaluate the effectivity of these compounds against ruminal protozoa. The in vivo study was done using 12 Ongole Crossbreed cattle which received 1of 3 different treatments: 1 concentrate without Lerak as control, 2 concentrate containing 2.5% Lerak, and 3 concentrate containing 5% Lerak. Anti protozoal activity, daily gain, and nutrient digestibility of beef cattle were measured. Results showed that saponin concentration in Lerak extracted by methanol was higher than that in Lerak extracted by water and Lerak meal, 81.5%; 8.2% and 3.85% respectively. Lerak extracted by methanol have higher antiprotozoal activity in vitro than Lerak extracted by water. In vivo experiment showed that there were no significant differences (P>0.05 of nutrient intake and digestibility in all treatments, that means the ration had good palatability and quality. Average daily gain of PO fed 2.5% Lerak was 20% higher than that of control diet (0.9 kg/day.

  9. THE MAIN NUTRIENTS CONCENTRATION FROM INTRA TISSUE WATER OF BENTHOS ORAGANISMS FROM MURES BASIN

    Directory of Open Access Journals (Sweden)

    DANA POPA

    2008-05-01

    Full Text Available In the hydrographic basin of Mures river, aboard an altitude gradient, were taken samples of intra tissue waters from benthonic organisms for research the nutrients concentrations. The reference point was represented by a dairy caw farm where the agricultural fields of this is applied the organic fertilization with manure. The intra tissue water samples from benthonic organisms were prelevated in spring and autumn and the prelevate dates are the same with spread manure dates. At the intra tissue water level, concentrations value of N and P are bigger at the second data prelevations than first data prelevations and we can conclude that the benthonic oligochetas activity increase, more than, they density increase in Mures basin. The high concentrations of NH4 show as that Mures basin is a zone characterized by high degree of anoxia and this fact is supported by significant differences between seasonal prelevations. The explication is the manifestation to the cumulated and at distance effects of introduction in water to some organic products, very probably washed from neighborhoods agricultural field. Were calculated values of Student test for seasonal comparisons and were founded significant differences between nutrients concentration values at first and second prelevations.

  10. NPK fertilization effects on concentration of nutrients in Valencia orange leaves

    International Nuclear Information System (INIS)

    Basso, C.; Mielniczuk, J.; Bohnen, H.

    1983-01-01

    The effects of NPK fertilization on the nutrient concentration in the leaves was evaluated in a field experiment of Valencia orange (Citrus sinensis Osbeck) growing in a sandy acid soil, with 4N, 3P and 4K fertilizer levels. N and Cu contents in the leaves were high, while P and Zn levels were low, in all treatments. Increasing the levels of N, P 2 O 5 and K 2 O fertilization resulted in an increase of the N, P and K concentration in the leaves, respectively. Crescent levels of N fertilization raised Mn and decreased Ca concentration in the leaves. P and K contents in the leaves correlated positively. With a great availability and absorption of K, reduction on he foliar contents of Mg and Ca ocurred. (M.A.C.) [pt

  11. Relation of nutrient concentrations, nutrient loading, and algal production to changes in water levels in Kabetogama Lake, Voyageurs National Park, northern Minnesota, 2008-09

    Science.gov (United States)

    Christensen, Victoria G.; Maki, Ryan P.; Kiesling, Richard L.

    2011-01-01

    Nutrient enrichment has led to excessive algal growth in Kabetogama Lake, Voyageurs National Park, northern Minnesota. Water- and sediment-quality data were collected during 2008-09 to assess internal and external nutrient loading. Data collection was focused in Kabetogama Lake and its inflows, the area of greatest concern for eutrophication among the lakes of Voyageurs National Park. Nutrient and algal data were used to determine trophic status and were evaluated in relation to changes in Kabetogama Lake water levels following changes to dam operation starting in 2000. Analyses were used to estimate external nutrient loading at inflows and assess the potential contribution of internal phosphorus loading. Kabetogama Lake often was mixed vertically, except for a few occasionally stratified areas, including Lost Bay in the northeastern part of Kabetogama Lake. Stratification, combined with larger bottom-water nutrient concentrations, larger sediment phosphorus concentrations, and estimated phosphorus release rates from sediment cores indicate that Lost Bay may be one of several areas that may be contributing substantially to internal loading. Internal loading is a concern because nutrients may cause excessive algal growth including potentially toxic cyanobacteria. The cyanobacterial hepatotoxin, microcystin, was detected in 7 of 14 cyanobacterial bloom samples, with total concentrations exceeding 1.0 microgram per liter, the World Health Organization's guideline for finished drinking water for the congener, microcystin-LR. Comparisons of the results of this study to previous studies indicate that chlorophyll-a concentrations and trophic state indices have improved since 2000, when the rules governing dam operation changed. However, total-phosphorus concentrations have not changed significantly since 2000.

  12. Long-Term Trends in Nutrient Concentrations and Fluxes in Streams Draining to Lake Tahoe, California

    Science.gov (United States)

    Domagalski, J. L.

    2017-12-01

    Lake Tahoe, situated in the rain shadow of the eastern Sierra Nevada at an elevation of 1,897 meters, has numerous small to medium sized tributaries that are sources of nutrients and fine sediment. The Tahoe watershed is relatively small and the surface area of the lake occupies about 38% of the total watershed area (1,313 km2). Each stream contributing water to the lake therefore also occupies a small watershed, mostly forested, with typical trees being Jeffrey, Ponderosa, or Sugar Pine and White Fir. Outflow from the lake contributes to downstream uses such as water supply and ecological resources. Only about 6% of the watershed is urbanized or residential land, and wastewater is exported to adjacent basins and not discharged to the lake as part of a plan to maintain water clarity. The lake's exceptional clarity has been diminishing due to phytoplankton and fine sediment, prompting development of management plans to improve water quality. Much of the annual discharge and flux of nutrients to the lake results from snowmelt in the spring and summer months, and climatic changes have begun to shift this melt to earlier time frames. Winter rains on urbanized land also contribute to nutrient loads. To understand the relative importance of land use, climate, and other factors affecting stream concentrations and fluxes, a Weighted Regression on Time Discharge and Season (WRTDS) model documented trends over a time frame of greater than 25 years. Ten streams have records of discharge, nutrient (NO3, NH3, OP, TP, TKN) and sediment data to complete this analysis. Both urbanized and non-urbanized locations generally show NO3 trending down in the 1980s. Some locations show initially decreasing orthophosphate trends, followed by small significant increases in concentration and fluxes starting around 2000 to 2005. Although no wastewater enters the streams, ammonia concentrations mimic those of orthophosphate, with initially negative trends in concentration and flux followed by

  13. Transposing Concentration-Discharge Curves onto Unmonitored Catchments to Estimate Seasonal Nutrient Loads

    Science.gov (United States)

    Minaudo, C.; Moatar, F.; Abbott, B. W.; Dupas, R.; Gascuel-Odoux, C.; Pinay, G.; Roubeix, V.; Danis, P. A.

    2017-12-01

    Many lakes and reservoirs in Europe suffer from severe eutrophication. Accurate quantification of nutrient loads are critical for effective mitigation measures, but this information is often unknown. For example, in France, only 50 out of 481 lakes and reservoirs have national monitoring allowing estimation of interannual nitrogen and phosphorus loads, and even these loads are computed from low-frequency data. To address this lack of data, we developed a straightforward method to predict seasonal loads in lake tributaries. First, we analyzed concentration-discharge (C-Q) curves in monitored catchments and identified slopes, intercepts, and coefficient of variation of the log(C)-log(Q) regressions determined for both low and high flows, separated by the median daily flow [Moatar et al., 2017]. Then, we used stepwise multiple linear regression models to empirically link the characteristics of C-Q curves with a set of catchment descriptors such as land use, lithology, morphology indices, climate, and hydrological indicators. Modeled C-Q relationships were then used to estimate annual and seasonal nutrient loads in nearby and similar unmonitored catchments. We implemented this approach on a large dataset from France where stream flow was surveyed daily and water quality (suspended solids, nitrate, total phosphorus, and orthophosphate concentrations) was measured on a monthly basis at 233 stations over the past 20 years in catchments from 10 to 3000 km². The concentration at the median daily flow (seen here as a metric of the general level of contamination in a catchment) was predicted with uncertainty ranging between 30 and 100 %, depending on the variable. C-Q slopes were predicted with large errors, but a sensitivity analysis was conducted to determine the impact of C-Q slopes uncertainties on computed annual and seasonal loads. This approach allows estimation of seasonal and annual nutrient loads and could be potentially implemented to improve protection and

  14. Differences in nutrient concentrations and resources between seagrass communities on carbonate and terrigenous sediments in South Sulawesi, Indonesia

    NARCIS (Netherlands)

    Erftemeijer, P.L.A.

    1994-01-01

    Water column, sediment and plant parameters were studied in six tropical seagrass beds in South Sulawesi, Indonesia, to evaluate the relation between seagrass bed nutrient concentrations and sediment type. Coastal seagrass beds on terrigenous sediments had considerably higher biomass of

  15. EPA's Review of Concentrated Animal Feeding Operation (CAFO) Permits and Nutrient Management Plans in the Chesapeake Bay Watershed

    Science.gov (United States)

    Starting in 2013, EPA conducted reviews of Concentrated Animal Feeding Operations (CAFOs) permits and nutrient management plans (NMPs) in six of the Bay jurisdictions (Delaware, Maryland, New York, Pennsylvania, Virginia and West Virginia).

  16. Micro and Macroscale Drivers of Nutrient Concentrations in Urban Streams in South, Central and North America.

    Science.gov (United States)

    Loiselle, Steven A; Gasparini Fernandes Cunha, Davi; Shupe, Scott; Valiente, Elsa; Rocha, Luciana; Heasley, Eleanore; Belmont, Patricia Pérez; Baruch, Avinoam

    Global metrics of land cover and land use provide a fundamental basis to examine the spatial variability of human-induced impacts on freshwater ecosystems. However, microscale processes and site specific conditions related to bank vegetation, pollution sources, adjacent land use and water uses can have important influences on ecosystem conditions, in particular in smaller tributary rivers. Compared to larger order rivers, these low-order streams and rivers are more numerous, yet often under-monitored. The present study explored the relationship of nutrient concentrations in 150 streams in 57 hydrological basins in South, Central and North America (Buenos Aires, Curitiba, São Paulo, Rio de Janeiro, Mexico City and Vancouver) with macroscale information available from global datasets and microscale data acquired by trained citizen scientists. Average sub-basin phosphate (P-PO4) concentrations were found to be well correlated with sub-basin attributes on both macro and microscales, while the relationships between sub-basin attributes and nitrate (N-NO3) concentrations were limited. A phosphate threshold for eutrophic conditions (>0.1 mg L-1 P-PO4) was exceeded in basins where microscale point source discharge points (eg. residential, industrial, urban/road) were identified in more than 86% of stream reaches monitored by citizen scientists. The presence of bankside vegetation covaried (rho = -0.53) with lower phosphate concentrations in the ecosystems studied. Macroscale information on nutrient loading allowed for a strong separation between basins with and without eutrophic conditions. Most importantly, the combination of macroscale and microscale information acquired increased our ability to explain sub-basin variability of P-PO4 concentrations. The identification of microscale point sources and bank vegetation conditions by citizen scientists provided important information that local authorities could use to improve their management of lower order river ecosystems.

  17. Ultraviolet-B radiation and nitrogen affect nutrient concentrations and the amount of nutrients acquired by above-ground organs of maize.

    Science.gov (United States)

    Correia, Carlos M; Coutinho, João F; Bacelar, Eunice A; Gonçalves, Berta M; Björn, Lars Olof; Moutinho Pereira, José

    2012-01-01

    UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn concentrations in stems and nitrogen-use efficiency (NUE) were higher in N-starved plants. UV-B and N effects on shoot dry biomass were more pronounced than on nutrient concentrations. Nutrient uptake decreased under high UV-B and increased with increasing N application, mainly at maturity harvest. Significant interactions UV-B x N were observed for NUE and for concentration and mass of some elements. For instance, under enhanced UV-B, N, Cu, Zn, and Mn concentrations decreased in leaves, except on N-stressed plants, whereas they were less affected by N nutrition. In order to minimize nutritional, economical, and environmental negative consequences, fertiliser recommendations based on element concentration or yield goals may need to be adjusted.

  18. Ultraviolet-B Radiation and Nitrogen Affect Nutrient Concentrations and the Amount of Nutrients Acquired by Above-Ground Organs of Maize

    Directory of Open Access Journals (Sweden)

    Carlos M. Correia

    2012-01-01

    Full Text Available UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn concentrations in stems and nitrogen-use efficiency (NUE were higher in N-starved plants. UV-B and N effects on shoot dry biomass were more pronounced than on nutrient concentrations. Nutrient uptake decreased under high UV-B and increased with increasing N application, mainly at maturity harvest. Significant interactions UV-B x N were observed for NUE and for concentration and mass of some elements. For instance, under enhanced UV-B, N, Cu, Zn, and Mn concentrations decreased in leaves, except on N-stressed plants, whereas they were less affected by N nutrition. In order to minimize nutritional, economical, and environmental negative consequences, fertiliser recommendations based on element concentration or yield goals may need to be adjusted.

  19. Nutrient and sediment concentrations and loads in the Steele Bayou Basin, northwestern Mississippi, 2010–14

    Science.gov (United States)

    Hicks, Matthew B.; Murphy, Jennifer C.; Stocks, Shane J.

    2017-06-01

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers-Vicksburg District, monitored streamflow, water quality, and sediment at two stations on the Steele Bayou in northwestern Mississippi from October 2010 through September 2014 to characterize nutrient and sediment concentrations and loads in areas where substantial implementation of conservation efforts have been implemented. The motivation for this effort was to quantify improvements, or lack thereof, in water quality in the Steele Bayou watershed as a result of implementing large- and small-scale best-management practices aimed at reducing nutrient and sediment concentrations and loads. The results of this study document the hydrologic, water-quality, and sedimentation status of these basins following over two decades of ongoing implementation of conservation practices.Results from this study indicate the two Steele Bayou stations have comparable loads and yields of total nitrogen, phosphorus, and suspended sediment when compared to other agricultural basins in the southeastern and central United States. However, nitrate plus nitrite yields from basins in the Mississippi River alluvial plain, including the Steele Bayou Basin, are generally lower than other agricultural basins in the southeastern and central United States.Seasonal variation in nutrient and sediment loads was observed at both stations and for most constituents. About 50 percent of the total annual nutrient and sediment load was observed during the spring (February through May) and between 25 and 50 percent was observed during late fall and winter (October through January). These seasonal patterns probably reflect a combination of seasonal patterns in precipitation, runoff, streamflow, and in the timing of fertilizer application.Median concentrations of total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, and suspended sediment were slightly higher at the upstream station, Steele Bayou near Glen Allan

  20. Sphagnum farming on cut-over bog in NW Germany: Long-term studies on Sphagnum growth

    OpenAIRE

    G. Gaudig; M. Krebs; H. Joosten

    2017-01-01

    Sphagnum farming allows sustainable and climate-friendly land use on bogs while producing a renewable substitute for peat in horticultural growing media. We studied Sphagnum productivity on an experimental Sphagnum culture established on a cut-over bog in Germany with strongly humified peat at the surface. Preparation of the site included levelling of the peat surface, construction of an irrigation system, spreading of Sphagnum papillosum fragments, covering them with straw, and finally rewet...

  1. Monitoring Stream Nutrient Concentration Trends in a Mixed-Land-Use Watershed

    Science.gov (United States)

    Zeiger, S. J.; Hubbart, J. A.

    2014-12-01

    Mixed-land use watersheds are often a complex patchwork of forested, agricultural, and urban land-uses where differential land-use mediated non-point source pollution can significantly impact water quality. Stream nitrogen and phosphorus concentrations serve as important variables for quantifying land use effects on non-point source pollution in receiving waters and relative impacts on aquatic biota. The Hinkson Creek Watershed (HCW) is a representative mixed land use urbanizing catchment (231 km2) located in central Missouri, USA. A nested-scale experimental watershed study including five permanent hydroclimate stations was established in 2009 to provide quantitative understanding of multiple land use impacts on nutrient loading. Spectrophotometric analysis was used to quantify total inorganic nitrogen (TIN) and total phosphorus (TP as PO4) regimes. Results (2010 - 2013) indicate average nitrate (NO3-) concentration (mg/l) range of 0.28 to 0.46 mg/l, nitrite (NO2-) range of 0.02 to 0.03 mg/l, ammonia (NH3) ranged from 0.04 to 0.08 mg/l, and TP range of 0.26 to 0.39 mg/l. With n=858, NO3-, NO2-, NH3, and TP concentrations were significantly (CI=95%, p=0.00) higher in the subbasin with the greatest percent cumulative agricultural land use (57%). NH3 and TP concentrations were significantly (CI=95%, p=0.00) higher (with the exception of the agricultural subbasin) in the subbasin with the greatest percent cumulative urban land use (26%). Results from multiple regression analyses showed percent cumulative agricultural and urban land uses accounted for 85% and 96% of the explained variance in TIN loading (CI=95%, p=0.08) and TP loading (CI=95%, p=0.02), respectively, between gauging sites. These results improve understanding of agricultural and urban land use impacts on nutrient concentrations in mixed use watersheds of the Midwest and have implications for nutrient reduction programs in the Mississippi River Basin and hypoxia reductions in the Gulf of Mexico, USA.

  2. [Effect of microbial nutrient concentration on improvement of municipal sewage sludge dewaterability through bioleaching].

    Science.gov (United States)

    Song, Yong-wei; Liu, Fen-wu; Zhou, Li-xiang

    2012-08-01

    In this study, shaking flask batch experiments and practical engineering application tests were performed to investigate the effect of microbial nutrient concentration on the dewaterability of municipal sewage sludge with 2%, 3%, 4% and 5% solid contents via bioleaching. Meanwhile, the changes of pH value and the utilization efficiency of microbial nutrients during bioleaching were analyzed in this study. The results showed that the pH value decreased gradually at the beginning and then maintained a stable state in the treatments with different solid contents, and the nutrients were completely used up by the microorganisms after 2 days of bioleaching. It was found that the SRF of 2%, 3%, 4%, 5% sludges decreased quickly and then rose gradually with the extension of bioleaching time. In addition, the higher solid content the greater the increase. It was determined that the optimum microbial nutrient dosage for sludge with solid content of 2%, 3%, 4% and 5% were 3.0 g x L(-1), 4.5 g x L(-1), 8.3 g x L(-1) and 12.8 g x L(-1) respectively. At this point, the lowest SRF of sludge with each solid content were 0.61 x 10(12) m x kg(-1), 1.22 x 10(12) m x kg(-1), 3.09 x 10(12) m x kg(-1) and 4.83 x 10(12) m x kg(-1), respectively. Through the engineering application, it was showed that diluting the solid content of sewage sludge from 5% to 3% before bioleaching was feasible. It could not only improve the dewaterability of bioleached sewage sludge (the SRF declined from 3.29 x 10(12) m x kg(-1) to 1.10 x 10(12) m x kg(-1)), but also shorten the sludge nutrient time (shortened from 4 days to 2.35 days) and reduce the operation costs. Therefore, the results of this study have important significance for the engineering application of bioleaching of municipal sewage sludge with high solid content.

  3. Effects of soil characteristics on grape juice nutrient concentrations and other grape quality parameters in Shiraz

    Science.gov (United States)

    Concepción Ramos, Maria; Romero, Maria Paz

    2017-04-01

    This study investigated the response of grapes to soil properties in the variety Shiraz (SH) cultivated in the Costers de Segre Designation of Origin (NE, Spain). The research was carried out in two areas with differences in vigor, which was examined using the Normalized Difference Vegetation Index (NDVI). Soil properties such as organic matter content, pH, electrical conductivity and nutrients (N, P, K, Ca, Mg, Cu, Zn and Mn) were analysed in the two areas. Soil analyses were limited to the upper 40 cm. Soil N-NO3 was measured in 2M KCl extracts. Assimilable phosphorus was analysed by extraction with 0.5 M NaHCO3 at pH 8.5 using the Olsen method. The available K, Ca and Mg were evaluated in hemaaxinecobalt trichloride extracts and the available fraction of Cu, Zn, Mn and Fe in DTPA- trietanolamine extracts, by spectroscopy atomic emission/absorption. Berry grapes were collected at maturity. Nutrients in grape juice (K, Ca, Mg Cu, Zn, Mn and Fe) were determined after a microwave hydrogen peroxide digestion in a closed vessel microwave digestion system and measured by spectroscopy. Other grape properties that determine grape quality such as pH, berry weight and sugar content were analysed using the methods proposed by the OIV. Differences in soil properties were observed between plots, which determined the differences in vigour. The vines with lower vigour were grown in the soils with higher pH, electrical conductivity and silt content, which had in addition higher Ca, Mg and K available levels as well as higher levels of Fe and Mn than the soil in which vines had higher vigour. However, the available fraction of Cu and Zn was smaller. Similar differences in nutrient concentration in the berry were observed for all nutrients except for Cu. Grape juice pH and total soluble solids (°Brix) were higher in the most vigorous vines. However, the differences in berry weight and total acidity at ripening were not significant. Keywords: acidity; berry weight; nutrients; p

  4. Sphagnum moss disperses spores with vortex rings.

    Science.gov (United States)

    Whitaker, Dwight L; Edwards, Joan

    2010-07-23

    Sphagnum spores, which have low terminal velocities, are carried by turbulent wind currents to establish colonies many kilometers away. However, spores that are easily kept aloft are also rapidly decelerated in still air; thus, dispersal range depends strongly on release height. Vascular plants grow tall to lift spores into sufficient wind currents for dispersal, but nonvascular plants such as Sphagnum cannot grow sufficiently high. High-speed videos show that exploding capsules of Sphagnum generate vortex rings to efficiently carry spores high enough to be dispersed by turbulent air currents. Spores launched ballistically at similar speeds through still air would travel a few millimeters and not easily reach turbulent air. Vortex rings are used by animals; here, we report vortex rings generated by plants.

  5. Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake.

    Science.gov (United States)

    Lentz, R D; Ippolito, J A

    2012-01-01

    Carbon-rich biochar derived from the pyrolysis of biomass can sequester atmospheric CO, mitigate climate change, and potentially increase crop productivity. However, research is needed to confirm the suitability and sustainability of biochar application to different soils. To an irrigated calcareous soil, we applied stockpiled dairy manure (42 Mg ha dry wt) and hardwood-derived biochar (22.4 Mg ha), singly and in combination with manure, along with a control, yielding four treatments. Nitrogen fertilizer was applied when needed (based on preseason soil test N and crop requirements) in all plots and years, with N mineralized from added manure included in this determination. Available soil nutrients (NH-N; NO-N; Olsen P; and diethylenetriaminepentaacetic acid-extractable K, Mg, Na, Cu, Mn, Zn, and Fe), total C (TC), total N (TN), total organic C (TOC), and pH were evaluated annually, and silage corn nutrient concentration, yield, and uptake were measured over two growing seasons. Biochar treatment resulted in a 1.5-fold increase in available soil Mn and a 1.4-fold increase in TC and TOC, whereas manure produced a 1.2- to 1.7-fold increase in available nutrients (except Fe), compared with controls. In 2009 biochar increased corn silage B concentration but produced no yield increase; in 2010 biochar decreased corn silage TN (33%), S (7%) concentrations, and yield (36%) relative to controls. Manure produced a 1.3-fold increase in corn silage Cu, Mn, S, Mg, K, and TN concentrations and yield compared with the control in 2010. The combined biochar-manure effects were not synergistic except in the case of available soil Mn. In these calcareous soils, biochar did not alter pH or availability of P and cations, as is typically observed for acidic soils. If the second year results are representative, they suggest that biochar applications to calcareous soils may lead to reduced N availability, requiring additional soil N inputs to maintain yield targets. Copyright © by the

  6. Quantifying Nutrient and Mercury Concentrations and Loads in Lake Tahoe Snowpack

    Science.gov (United States)

    Pearson, C.; Obrist, D.; Schumer, R.

    2012-12-01

    Recent climate models predict a large decrease in Sierra Nevada snowpack over the next fifty years as a result of climate change. This decrease will not only affect the hydrologic balance but also change inputs of nutrients and pollutants through atmospheric deposition. In the Lake Tahoe basin, winter precipitation dominates and snowfall provides approximately 70 percent of the annual water input. From the first snowfall until the end of melting, snowpack acts as a temporary storage for atmospheric deposition that accumulates throughout winter and spring. Through melt and runoff processes, these nutrients and pollutants can enter the aquatic ecosystem where they can have detrimental effects on lake clarity and health. Most previous studies in this basin have focused on direct atmospheric deposition loads to the lake surface, and little temporal and spatial information is available on the dynamics of atmospheric deposition in the basin's snowpack. We here present nitrogen (N), phosphorus (P), and mercury (Hg) concentrations and pool sizes in snowpack along two elevational transects in the Tahoe Basin from January to April of 2012. Total N and P concentrations in the snowpack ranged from 0.07 mg/L to 0.38 mg/L and 0.003 mg/L to 0.109 mg/L, respectively. P concentrations showed strong increases from the west-side to the east-side of the basin which we attribute to local (e.g., urban or road-dust), in-basin sources that are distributed along the dominant west-wind patterns. N species, on the other hand, generally showed little spatial trends, indicating that its sources were more diffuse and possibly from out-of- basin. Hg concentrations ranged from 0.81 ppt to 6.25 ppt and showed similar spatial patterns as N. Hg, however, also showed significant snowpack concentration decreases during storm-free periods which we attribute to gaseous losses of Hg back to the atmosphere from photochemical reduction. These emissions are further supported by lower Hg concentrations in

  7. Physiological responses to nitrogen and sulphur addition and raised temperature in Sphagnum balticum.

    Science.gov (United States)

    Granath, Gustaf; Wiedermann, Magdalena M; Strengbom, Joachim

    2009-09-01

    Sphagnum, the main genus which forms boreal peat, is strongly affected by N and S deposition and raised temperature, but the physiological mechanisms behind the responses are largely unknown. We measured maximum photosynthetic rate (NP(max)), maximum efficiency of photosystem II [variable fluorescence (F (v))/maximum fluorescence yield (F (m))] and concentrations of N, C, chlorophyll and carotenoids as responses to N and S addition and increased temperature in Sphagnum balticum (a widespread species in the northern peatlands) in a 12-year factorial experiment. NP(max) did not differ between control (0.2 g N m(-2) year(-1)) and high N (3.0 g N m(-2) year(-1)), but was higher in the mid N treatment (1.5 g N m(-2) year(-1)). N, C, carotenoids and chlorophyll concentration increased in shoot apices after N addition. F (v)/F (m) did not differ between N treatments. Increased temperature (+3.6 degrees C) had a small negative effect on N concentration, but had no significant effect on NP(max) or F (v)/F (m). Addition of 2 g S m(-2) year(-1) showed a weak negative effect on NP(max) and F (v)/F (m). Our results suggest a unimodal response of NP(max) to N addition and tissue N concentration in S. balticum, with an optimum N concentration for photosynthetic rate of ~13 mg N g(-1). In conclusion, high S deposition may reduce photosynthetic capacity in Sphagnum, but the negative effects may be relaxed under high N availability. We suggest that previously reported negative effects on Sphagnum productivity under high N deposition are not related to negative effects on the photosynthetic apparatus, but differences in optimum N concentration among Sphagnum species may affect their competitive ability under different N deposition regimes.

  8. Alternative substrates to the sphagnum moss in the acclimatization of arundina graminifolia “alba”(Orchidaceae

    Directory of Open Access Journals (Sweden)

    Ana Paula Zandoná

    2014-09-01

    Full Text Available The Arundina graminifolia, is popularly known as bamboo orchid, by having their stems quite extensive. It is widely used in the business landscape, with a very rustic plant. Sphagnum moss is the most widely used substrate in the acclimatization of orchids, but environmental issues have led to an increase in the search for alternative substrates. The objective of this study was to evaluate substrates that can replace all or part of the use of sphagnum moss on the acclimatization of A. graminifolia. The substrates used were: sphagnum moss, rice hulls, rice hulls + coir 1:1 (v / v sphagnum + carbonized rice husk, 1:1 (v / v. Seedlings were kept in a greenhouse and after seven months were evaluated for survival rate (%, shoot height (cm, average root length (cm, number of leaves and roots, dry leaves, pseudobulbs and roots (g and leaf area (mm2. Also evaluated were pH, conductivity (uS.cm-1, density (g.cm-3 and water holding capacity (mL.L-1 were evaluated. The results showed high levels of survival (80% and the number of leaves (4.3 grown plants in rice hulls + coconut fiber 1:1 (v / v. The same with respect to pH (5.9 within the optimal range of nutrient availability. It is concluded that the mixture of rice hulls + coconut fiber 1:1 (v / v, is a suitable substrate for plant growth A. graminifolia during the acclimatization phase, which may replace the sphagnum, and the use of carbonized rice husk alone unfeasible during this period.

  9. Growth of sphagnum: methods of measurement

    Energy Technology Data Exchange (ETDEWEB)

    Clymo, R S

    1970-01-01

    The results presented here show that the growth of sphagnum is at least comparable with other communities from the same area. It seems desirable to know more about the field microenvironment and about the response of the plants. It is not possible, for example, to account satisfactorily for such obvious features of bog topography as hummocks and pools.

  10. Sphagnum bogs of Kelantan, Peninsular Malaysia

    NARCIS (Netherlands)

    Yao, T.L.; Kamarudin, S.; Chew, M.Y.; Kiew, R.

    2009-01-01

    Sphagnum bog, a unique plant community for Peninsular Malaysia was encountered on Padang Ragut, Kelantan. Its topographical features and flora are described, and compared with padang and upper montane floras. It is postulated that the community is derived from upper montane forest and is the result

  11. Outstanding accumulation of Sphagnum palustre in central-southern Italy

    Science.gov (United States)

    Casella, Laura; Zaccone, Claudio

    2017-04-01

    Lake Fibreno is a site where some outstanding anomalies for the flora and vegetation of the wetlands of peninsular Italy are concentrated. Here one the southernmost European population of Sphagnum palustre occurs, and is restricted on the surface of a free-floating island, i.e., a round-shaped portion of fen (with a core of Sphagnum), erratically floating on the surface of a submerged sinkhole. Geological evidences point out the existence in the area of a large lacustrine basin since Late Pleistocene. The progressive filling of the lake, caused by changing in climatic conditions and neotectonic events, resulted in the formation of peat deposits in the area, following different depositional cycles in a swampy environment. So that, the studied free-floating island, probably originated around lake margins in the waterlogged area, was somehow isolated from the bank and started to float. Once the separation occurred, sedge peat stopped to accumulate, thus enhancing the role of S. palustre as the main peat-forming plant. The vegetation occurring at the moment of the isolation of the island was a coverage of Salix cinerea/Populus tremula stands below which cushions of moss and, in a lower extent, Thelypteris palustris/Equisetum palustre accumulated resulting in the formation of 2-3 meters of peat dominated by reeds and sedges. This vegetation has been partially degraded by grazing until 1970s, while in 1980s the lake became a nature reserve. Since then, the succession could resume in a spontaneous and natural way and it was possible for the vegetation to recover to natural dynamics and growing rate. The Sphagnum tussocks were measured in an empirical way at a distance of about 60 years after the last signaling and the result was a measurement of an accretion open to about 70 cm thick. Moreover, in a recent study, a 4-m deep peat core was collected from the centre of the island and results were surprising. In fact, 14C age dating, confirmed using 210Pb and 137Cs, showed

  12. Sphagnum growth and ecophysiology during mire succession.

    Science.gov (United States)

    Laine, Anna M; Juurola, Eija; Hájek, Tomáš; Tuittila, Eeva-Stiina

    2011-12-01

    Sphagnum mosses are widespread in areas where mires exist and constitute a globally important carbon sink. Their ecophysiology is known to be related to the water level, but very little is currently known about the successional trend in Sphagnum. We hypothesized that moss species follow the known vascular plant growth strategy along the successional gradient (i.e., decrease in production and maximal photosynthesis while succession proceeds). To address this hypothesis, we studied links between the growth and related ecophysiological processes of Sphagnum mosses from a time-since-initiation chronosequence of five wetlands. We quantified the rates of increase in biomass and length of different Sphagnum species in relation to their CO(2) assimilation rates, their photosynthetic light reaction efficiencies, and their physiological states, as measured by the chlorophyll fluorescence method. In agreement with our hypothesis, increase in biomass and CO(2) exchange rate of Sphagnum mosses decreased along the successional gradient, following the tactics of more intensely studied vascular plants. Mosses at the young and old ends of the chronosequence showed indications of downregulation, measured as a low ratio between variable and maximum fluorescence (F(v)/F(m)). Our study divided the species into three groups; pioneer species, hollow species, and ombrotrophic hummock formers. The pioneer species S. fimbriatum is a ruderal plant that occurred at the first sites along the chronosequence, which were characterized by low stress but high disturbance. Hollow species are competitive plants that occurred at sites with low stress and low disturbance (i.e., in the wet depressions in the middle and at the old end of the chronosequence). Ombrotrophic hummock species are stress-tolerant plants that occurred at sites with high stress and low disturbance (i.e., at the old end of the chronosequence). The three groups along the mire successional gradient appeared to be somewhat analogous

  13. Modeling the interaction of light intensity, nutrient concentration and uranium toxicity in Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, E.; Horemans, N.; Vandenhove, H. [Belgian Nuclear Research Centre SCK-CEN (Belgium); Cedergreen, N. [University of Copenhagen (Denmark); Jager, T. [Vrije Universiteit Amsterdam (Netherlands)

    2014-07-01

    Radioecology aims at assessing the effect of radionuclides and radiation on the environment. Since we cannot test every possible environmental situation in the laboratory, we need modeling approaches to extrapolate the results of toxicity assays to environmentally relevant scenarios. Therefore, it is of crucial importance to understand the effect of relevant environmental factors, such as nutrients, temperature and light on the toxicity of the test. Radionuclides are often found to induce the production of reactive oxygen species (ROS). In plants, an overload of ROS can lead to disturbances of the photosynthetic system. Since the light intensity determines the efficiency of the photo-systems in plants, it can be expected to interact with the effect of radionuclides. The nutrient concentration of the test medium determines the physiological state of the plant, affecting in turn the plant's capability of dealing with stress and hence influences the toxicity of the contaminant. To study the interaction of stressors with environmental conditions, mechanistic effect modeling is promoted widely in ecotoxicology. In principle, the modelling aims at a mechanistic understanding of the different processes causing the stress individually, and integrating them in one framework to study their joint effect and possible interaction. We here present a mechanistic effect model for Lemna minor (common duckweed), which is based on Dynamic Energy Budget (DEB) theory. Models based on DEB have been used widely to study the effects of compounds on animals. Due to its general applicability to all types of organisms, it holds potential to be used for comparison of species and compounds in a broad context. Energy uptake from the environment is modeled explicitly, and metabolic rates are set to depend on temperature in DEB models. Therefore, they can be used to extrapolate effects to a wide range of environmentally relevant scenarios. Until now, the DEB research in ecotoxicology has

  14. Zinc deficiency in field-grown pecan trees: changes in leaf nutrient concentrations and structure.

    Science.gov (United States)

    Ojeda-Barrios, Dámaris; Abadía, Javier; Lombardini, Leonardo; Abadía, Anunciación; Vázquez, Saúl

    2012-06-01

    Zinc (Zn) deficiency is a typical nutritional disorder in pecan trees [Carya illinoinensis (Wangenh.) C. Koch] grown under field conditions in calcareous soils in North America, including northern Mexico and south-western United States. The aim of this study was to assess the morphological and nutritional changes in pecan leaves affected by Zn deficiency as well as the Zn distribution within leaves. Zinc deficiency led to decreases in leaf chlorophyll concentrations, leaf area and trunk cross-sectional area. Zinc deficiency increased significantly the leaf concentrations of K and Ca, and decreased the leaf concentrations of Zn, Fe, Mn and Cu. All nutrient values found in Zn-deficient leaves were within the sufficiency ranges, with the only exception of Zn, which was approximately 44, 11 and 9 µg g(-1) dry weight in Zn-sufficient, moderately and markedly Zn-deficient leaves, respectively. Zinc deficiency led to decreases in leaf thickness, mainly due to a reduction in the thickness of the palisade parenchyma, as well as to increases in stomatal density and size. The localisation of Zn was determined using the fluorophore Zinpyr-1 and ratio-imaging technique. Zinc was mainly localised in the palisade mesophyll area in Zn-sufficient leaves, whereas no signal could be obtained in Zn-deficient leaves. The effects of Zn deficiency on the leaf characteristics of pecan trees include not only decreases in leaf chlorophyll and Zn concentrations, but also a reduction in the thickness of the palisade parenchyma, an increase in stomatal density and pore size and the practical disappearance of Zn leaf pools. These characteristics must be taken into account to design strategies to correct Zn deficiency in pecan tree in the field. Copyright © 2012 Society of Chemical Industry.

  15. Ultraviolet-B Radiation and Nitrogen Affect Nutrient Concentrations and the Amount of Nutrients Acquired by Above-Ground Organs of Maize

    OpenAIRE

    Correia, Carlos M.; Coutinho, João F.; Bacelar, Eunice A.; Gonçalves, Berta M.; Björn, Lars Olof; Moutinho Pereira, José

    2012-01-01

    UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn con...

  16. Dredging effects on selected nutrient concentrations and ecoenzymatic activity in two drainage ditch sediments in the lower Mississippi River Valley

    Directory of Open Access Journals (Sweden)

    Matt Moore

    2017-09-01

    Full Text Available Agricultural drainage ditches are conduits between production acreage and receiving aquatic systems. Often overlooked for their mitigation capabilities, agricultural drainage ditches provide an important role for nutrient transformation via microbial metabolism. Variations in ecoenzyme activities have been used to elucidate microbial metabolism and resource demand of microbial communities to better understand the relationship between altered nutrient ratios and microbial activity in aquatic ecosystems. Two agricultural drainage ditches, one in the northeast portion of the Arkansas Delta and the other in the lower Mississippi Delta, were monitored for a year. Sediment samples were collected prior to each ditch being dredged (cleaned, and subsequent post-dredging samples occurred as soon as access was available. Seasonal samples were then collected throughout a year to examine effects of dredging on selected nutrient concentrations and ecoenzymatic activity recovery in drainage ditch sediments. Phosphorus concentrations in sediments after dredging decreased 33–66%, depending on ditch and phosphorus extraction methodology. Additionally, ecoenzymatic activity was significantly decreased in most sediment samples after dredging. Fluorescein diacetate hydrolysis activity, an estimate of total microbial activity, decreased 56–67% after dredging in one of the two ditches. Many sample sites also had significant phosphorus and ecoenzymatic activity differences between the post-dredge samples and the year-long follow-up samples. Results indicate microbial metabolism in dredged drainage ditches may take up to a year or more to recover to pre-dredged levels. Likewise, while sediment nutrient concentrations may be decreased through dredging and removal, runoff and erosion events over time tend to quickly replenish nutrient concentrations in replaced sediments. Understanding nutrient dynamics and microbial metabolism within agricultural drainage ditches is

  17. Symbiosis revisited : Phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth

    NARCIS (Netherlands)

    Van Den Elzen, Eva; Kox, Martine A R; Harpenslager, Sarah F.; Hensgens, Geert; Fritz, Christian; Jetten, Mike S M; Ettwig, Katharina F.; Lamers, Leon P M

    2017-01-01

    In pristine Sphagnum-dominated peatlands, (di)nitrogen (N2) fixing (diazotrophic) microbial communities associated with Sphagnum mosses contribute substantially to the total nitrogen input, increasing carbon sequestration. The rates of symbiotic nitrogen fixation reported for Sphagnum peatlands,

  18. Sphagnum farming on cut-over bog in NW Germany: Long-term studies on Sphagnum growth

    Directory of Open Access Journals (Sweden)

    G. Gaudig

    2017-05-01

    Full Text Available Sphagnum farming allows sustainable and climate-friendly land use on bogs while producing a renewable substitute for peat in horticultural growing media. We studied Sphagnum productivity on an experimental Sphagnum culture established on a cut-over bog in Germany with strongly humified peat at the surface. Preparation of the site included levelling of the peat surface, construction of an irrigation system, spreading of Sphagnum papillosum fragments, covering them with straw, and finally rewetting. Provided there was an adequate (95 % initial cover of Sphagnum fragments, the most relevant variables for Sphagnum productivity were found to be water supply and regular mowing of vascular plants. As long as sufficient water was supplied, the dry biomass accumulation of the established Sphagnum lawn remained high, reaching 3.7 t ha-1 yr-1 between 2007 and 2011. Annual dry Sphagnum biomass productivity over the period 2010–2011 was up to 6.9 t ha-1. During periods when high water table could not be maintained, substantial decomposition of the previously accumulated biomass occurred. After nine years the net accumulated dry mass per hectare was on average 19.5 t of pure Sphagnum and 0.7 t of subsurface vascular-plant biomass. Nitrogen deposition in the study region is apparently sufficient to support fast Sphagnum growth, whereas phosphorus and potassium may be limiting.

  19. High nutrient concentration and temperature alleviated formation of large colonies of Microcystis: Evidence from field investigations and laboratory experiments.

    Science.gov (United States)

    Zhu, Wei; Zhou, Xiaohua; Chen, Huaimin; Gao, Li; Xiao, Man; Li, Ming

    2016-09-15

    Correlations between Microcystis colony size and environmental factors were investigated in Meiliang Bay and Gonghu Bay of Lake Taihu (China) from 2011 to 2013. Compared with Gonghu Bay, both nutrient concentrations and Microcystis colony sizes were greater in Meiliang Bay. The median colony size (D50: 50% of the total mass of particles smaller than this size) increased from April to August and then decreased until November. In both bays, the average D50 of Microcystis colonies were 500 μm) dominated in summer. The differences in colony size in Meiliang Bay and Gonghu Bay were probably due to horizontal drift driven by the prevailing south wind in summer. Redundancy analysis (RDA) of field data indicated that colony size was negatively related to nutrient concentrations but positively related to air temperature, suggesting that low nutrient concentrations and high air temperature promoted formation of large colonies. To validate the field survey, Microcystis colonies collected from Lake Taihu were cultured at different temperatures (15, 20, 25 and 30 °C) under high and low nutrient concentrations for 9 days. The size of Microcystis colonies significantly decreased when temperature was above 20 °C but had no significant change at 15 °C. The differences in temperature effects on colony formation shown from field and laboratory suggested that the larger colonies in summer were probably due to the longer growth period rather than the higher air temperature and light intensity. In addition, colony size decreased more significantly at high nutrient levels. Therefore, it could be concluded that high nutrient concentration and temperature may alleviate formation of large colonies of Microcystis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Sphagnum mosses--masters of efficient N-uptake while avoiding intoxication.

    Science.gov (United States)

    Fritz, Christian; Lamers, Leon P M; Riaz, Muhammad; van den Berg, Leon J L; Elzenga, Theo J T M

    2014-01-01

    Peat forming Sphagnum mosses are able to prevent the dominance of vascular plants under ombrotrophic conditions by efficiently scavenging atmospherically deposited nitrogen (N). N-uptake kinetics of these mosses are therefore expected to play a key role in differential N availability, plant competition, and carbon sequestration in Sphagnum peatlands. The interacting effects of rain N concentration and exposure time on moss N-uptake rates are, however, poorly understood. We investigated the effects of N-concentration (1, 5, 10, 50, 100, 500 µM), N-form ((15)N-ammonium or nitrate) and exposure time (0.5, 2, 72 h) on uptake kinetics for Sphagnum magellanicum from a pristine bog in Patagonia (Argentina) and from a Dutch bog exposed to decades of N-pollution. Uptake rates for ammonium were higher than for nitrate, and N-binding at adsorption sites was negligible. During the first 0.5 h, N-uptake followed saturation kinetics revealing a high affinity (Km 3.5-6.5 µM). Ammonium was taken up 8 times faster than nitrate, whereas over 72 hours this was only 2 times. Uptake rates decreased drastically with increasing exposure times, which implies that many short-term N-uptake experiments in literature may well have overestimated long-term uptake rates and ecosystem retention. Sphagnum from the polluted site (i.e. long-term N exposure) showed lower uptake rates than mosses from the pristine site, indicating an adaptive response. Sphagnum therefore appears to be highly efficient in using short N pulses (e.g. rainfall in pristine areas). This strategy has important ecological and evolutionary implications: at high N input rates, the risk of N-toxicity seems to be reduced by lower uptake rates of Sphagnum, at the expense of its long-term filter capacity and related competitive advantage over vascular plants. As shown by our conceptual model, interacting effects of N-deposition and climate change (changes in rainfall) will seriously alter the functioning of Sphagnum peatlands.

  1. Sphagnum Mosses - Masters of Efficient N-Uptake while Avoiding Intoxication

    Science.gov (United States)

    Fritz, Christian; Lamers, Leon P. M.; Riaz, Muhammad; van den Berg, Leon J. L.; Elzenga, Theo J. T. M.

    2014-01-01

    Peat forming Sphagnum mosses are able to prevent the dominance of vascular plants under ombrotrophic conditions by efficiently scavenging atmospherically deposited nitrogen (N). N-uptake kinetics of these mosses are therefore expected to play a key role in differential N availability, plant competition, and carbon sequestration in Sphagnum peatlands. The interacting effects of rain N concentration and exposure time on moss N-uptake rates are, however, poorly understood. We investigated the effects of N-concentration (1, 5, 10, 50, 100, 500 µM), N-form (15N - ammonium or nitrate) and exposure time (0.5, 2, 72 h) on uptake kinetics for Sphagnum magellanicum from a pristine bog in Patagonia (Argentina) and from a Dutch bog exposed to decades of N-pollution. Uptake rates for ammonium were higher than for nitrate, and N-binding at adsorption sites was negligible. During the first 0.5 h, N-uptake followed saturation kinetics revealing a high affinity (Km 3.5–6.5 µM). Ammonium was taken up 8 times faster than nitrate, whereas over 72 hours this was only 2 times. Uptake rates decreased drastically with increasing exposure times, which implies that many short-term N-uptake experiments in literature may well have overestimated long-term uptake rates and ecosystem retention. Sphagnum from the polluted site (i.e. long-term N exposure) showed lower uptake rates than mosses from the pristine site, indicating an adaptive response. Sphagnum therefore appears to be highly efficient in using short N pulses (e.g. rainfall in pristine areas). This strategy has important ecological and evolutionary implications: at high N input rates, the risk of N-toxicity seems to be reduced by lower uptake rates of Sphagnum, at the expense of its long-term filter capacity and related competitive advantage over vascular plants. As shown by our conceptual model, interacting effects of N-deposition and climate change (changes in rainfall) will seriously alter the functioning of Sphagnum peatlands

  2. Impact of the river Liffey discharge on nutrient and chlorophyll concentrations in the Liffey estuary and Dublin Bay (Irish Sea)

    Science.gov (United States)

    O'Higgins, T. G.; Wilson, J. G.

    2005-08-01

    Temperature, salinity, nutrients (total oxidised nitrogen (TON), ammonium (NH 4) and orthophosphate (PO 4)) and chlorophyll a were monitored in the Liffey estuary and Dublin Bay from June 2000 to June 2003. Four groups of sites were defined comprising the upper estuary (Gp. I), the outer estuary (Gp. III) with a small set (Gp. II) of sites between Groups I and III heavily influenced by the sewage treatment works outflow, and the Bay proper (Gp. IV). Riverine inputs of TON and PO 4 were calculated at an average of 826 t N y -1 and 31 t P y -1, respectively, and were largely controlled by flow rate. The sewage treatment works were identified as a major source of PO 4 and NH 4 to the system. Mixing in the upper estuary of nutrient limited saline waters with hypernutrified river water regularly (i.e. annually) produced relatively high concentrations of chlorophyll a (>10 mg chl a m -3), and also sporadic blooms with extremely high chlorophyll a values (max. 121.6 mg chl a m -3). These latter phytoplankton blooms occurred in high salinity waters and were due to mixing of nutrient limited saline waters and nutrient rich river waters. The mean annual flux of phytoplankton carbon from the river Liffey was calculated at 23.5 t C y -1, of which half was accumulated or remineralised in the estuary and did not enter the Bay. In the Bay proper (Gp. IV) summer nutrient concentrations dropped below detection limits, and chlorophyll a concentrations followed the classic pattern with a spring bloom maximum of 5.5 mg chl a m -3. This pattern in nutrients and chlorophyll a came from the advection of waters into the Bay from an offshore source. Overall while there was considerable evidence for eutrophication in the estuary, the bay itself showed little biological response to nutrient loading.

  3. The effect of growing media and concentration of nutrient solution on growth, flowering and macroelement content of media and leaves of Tymophylla tenuiloba Small

    Directory of Open Access Journals (Sweden)

    Joanna Nowak

    2013-12-01

    Full Text Available Effects of growing media and concentration of nutrient solution on growth, flowering, evapotranspiration and macroelement content of media and leaves of Tymophylla tenuiloba were evaluated under ebb-and-flow conditions. Two media: peat and peat + perlite (3:l, v/v, and four concentrations of nutrient solution: 1.0, 1.5, 2.0, 2.5 mS cm-1 were applied. High quality plants were produced in both media and all concentration of nutrient solution. The lowest evapotranspiration was measured at the highest concentration of nutrient solution. N concentration of leaves was high in all treatments. Concentrations of K, Ca, and Mg decreased with increasing concentration of nutrient solution. Opposite was found for P. At the end of cultivation the lowest pH was measured in the upper layer of growing media. The highest total soluble salt level was measured in the upper layers. Upper layers accumulated more N-NO3, P, Ca, and Mg. Mineral element content of both media was high in all concentrations of nutrient solution. Low concentration of nutrient solution at 1.0 mS cm-1 is recommended, although -1Tymophylla tenuiloba-1 can be also cultivated at higher concentrations of nutrient solution up to 2.5mS cm-1, if placed on the same bench with other bedding plants requiring more nutrients.

  4. Relationships between nutrients and chlorophyll a concentration in the international Alma Gol Wetland, Iran

    Directory of Open Access Journals (Sweden)

    Saeed Balali

    2013-05-01

    Full Text Available This study investigated the relationships between nutrients and chlorophyll, a concentration in the International Alma Gol Wetland. Chlorophyll a is the major photosynthetic pigment in lots of phytoplanktons and has been used as a trophy index in aquatic ecosystems. Water samples were collected fortnightly from five stations in the wetland during summer and autumn. Chlorophyll-a ranged between 4.38 to 156.55 mg/m3, sulfate ranged between 138 to 190 mg/l, total alkalinity ranged between 80 to 280 mg/l, silica ranged between 3.80 to 35.00 mg/l, phosphate ranged between 0.02 to 3.70 mg/l, ammonia ranged between 0.10 to 11.90 mg/l, nitrate ranged between 0.01 to 2.75 mg/l and nitrite ranged between 0.01 to 0.39 mg/l. There was a significant correlation between chlorophyll a and nitrate, nitrite and ammonia but there was no significant correlation between chlorophyll a and silica, total alkalinity, sulfate and phosphorus.

  5. Plants sensitivity on nickel under different conditions of iron or calcium concentration in the nutrient medium

    Directory of Open Access Journals (Sweden)

    Renata Matraszek

    2013-12-01

    Full Text Available The sensitivity of six vegetable plants on nickel at early stages of their growth was investigated by index of tolerance. Besides the possibility of nickel fitostabilization by additional application of iron or calcium was tested. The experiment was conducted on Petri dishes. Different concentrations of nickel (0; 0,03; 0,06mM Ni as nickel sulphate, iron (0,05; O,OlmM Fe as Fe2+ citrate and calcium (0,50; 0,75; lmM Ca as calcium carbonate were added. Taking into consideration the sensitivity, investigated vegetables can be ordered in the following way: Cucurbita pepo conv. giromontiina L.>Lactuca sativa L.>Sinapis alba L.>Spinacia oleracea L.=Zea mays var. saccharata Kcke.>Phaseolus vulgaris L. Positive, statistically significant effect ofnickel fitostabilization (0,03 or 0,06mM Ni on elongative growth by the iron application (0,10mM Fe was shown for Zea mays var. saccharata Kcke independently of Ni concentration in the nutrient medium as well as for Sinapis alba L. and Phaseolus vulgaris L. in 0,06mM Ni. Addition as much as 0,75mM Ca in the presence 0,03mM Ni had positive result on Sinapis alba L and Phaseolus vulgaris L. seedlings as well as on Zea mays var. saccharata Kcke and Lactuca sativa L. roots and Cucurbita pepo convar. giromontiina L. shoots. Addition of 0,75mM Ca in the presence 0,06mM Ni promoted elongative growth of Zea mays var. saccharata Kcke seedlings. Application lmM Ca resulted in the promotion of elongative growth of Zea mays var. saccharata Kcke. roots (0,03mM Ni as well as Spinacia oleracea L. roots (0,06mM Ni.

  6. Nutrient and secondary metabolite concentrations in a savanna are independently affected by large herbivores and shoot growth rate

    CSIR Research Space (South Africa)

    Scogings, PF

    2014-01-01

    Full Text Available Carbon-based secondary metabolites (CBSMs) such as tannins are assumed to function as plant defences against herbivores. CBSMs are thought to be inversely related to growth rate and nutrient concentrations because a physiological trade-off exists...

  7. Mineral nutrient economy in competing species of Sphagnum mosses

    Czech Academy of Sciences Publication Activity Database

    Hájek, Tomáš; Adamec, Lubomír

    2009-01-01

    Roč. 24, č. 2 (2009), s. 291-302 ISSN 0912-3814 R&D Projects: GA AV ČR KJB600050503 Institutional research plan: CEZ:AV0Z60050516 Keywords : exchange capacity * species coexistence * bog Subject RIV: EF - Botanics Impact factor: 1.485, year: 2009

  8. Metal and proton adsorption capacities of natural and cloned Sphagnum mosses.

    Science.gov (United States)

    Gonzalez, Aridane G; Pokrovsky, Oleg S; Beike, Anna K; Reski, Ralf; Di Palma, Anna; Adamo, Paola; Giordano, Simonetta; Angel Fernandez, J

    2016-01-01

    Terrestrial mosses are commonly used as bioindicators of atmospheric pollution. However, there is a lack of standardization of the biomonitoring preparation technique and the efficiency of metal adsorption by various moss species is poorly known. This is especially true for in vitro-cultivated moss clones, which are promising candidates for a standardized moss-bag technique. We studied the adsorption of copper and zinc on naturally grown Sphagnum peat moss in comparison with in vitro-cultivated Sphagnum palustre samples in order to provide their physico-chemical characterization and to test the possibility of using cloned peat mosses as bioindicators within the protocol of moss-bag technique. We demonstrate that in vitro-grown clones of S. palustre exhibit acid-base properties similar to those of naturally grown Sphagnum samples, whereas the zinc adsorption capacity of the clones is approx. twice higher than that of the samples from the field. At the same time, the field samples adsorbed 30-50% higher amount of Cu(2+) compared to that of the clones. This contrast may be related to fine differences in the bulk chemical composition, specific surface area, morphological features, type and abundance of binding sites at the cell surfaces and in the aqueous solution of natural and cloned Sphagnum. The clones exhibited much lower concentration of most metal pollutants in their tissues relative to the natural samples thus making the former better indicators of low metal loading. Overall, in vitro-produced clones of S. palustre can be considered as an adequate, environmentally benign substitution for protected natural Sphagnum sp. samples to be used in moss-bags for atmospheric monitoring. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Nutrient and salinity concentrations effects on quality and storability of cherry tomato fruits grown by hydroponic system

    Directory of Open Access Journals (Sweden)

    Mohammad Zahirul Islam

    2018-04-01

    Full Text Available ABSTRACT This study was conducted to investigate the effects of nutrient and salinity concentrations on the quality of deepflow technique hydroponic system cultivated cherry tomatoes (Lycopersicon esculentum Mill ‘Unicorn’. The conditions were: (1 control (NS-1 × nutrient Solution, Electrical Conductivity – EC: 2.5 mS∙cm–1; (2 2 × NS (2 × NS-Double NS, EC: 5 mS∙cm–1; (3 NS + 4.23 mM NaCl (NaCl-Sodium Chloride, EC: 5 mS∙cm–1; and (4 NS + 13.70 mM Sea Water – SW (EC: 7.5 mS∙cm–1. NS + 13.70 mM SW treatment showed the lowest fresh weight loss. Visual quality as well as shelf life was the longest in NS (1 × nutrient solution treated tomato fruits. The longest shelf life at 5 °C, 11 °C, and 24 °C were 21, 16, and 8 days, respectively, in NS (1 × nutrient solution treated tomato fruits. The highest firmness was recorded in NS (1 × nutrient solution treated tomato fruits, which was retained after storage. Moreover, NS + 13.70 mM SW treatment increased the cherry tomato fruit’s quality, especially soluble solids and sugar contents. These results indicate that salinity concentration has effect the soluble solids and sugar of cherry tomato fruits. In addition, nutrient concentration influenced the shelf life and firmness of cherry tomato fruits.

  10. Nitrogen and potassium concentrations in the nutrients solution for melon plants growing in coconut fiber without drainage.

    Science.gov (United States)

    Gratieri, Luiz Augusto; Cecílio Filho, Arthur Bernardes; Barbosa, José Carlos; Pavani, Luiz Carlos

    2013-01-01

    With the objective of evaluating the effects of N and K concentrations for melon plants, an experiment was carried out from July 1, 2011 to January 3, 2012 in Muzambinho city, Minas Gerais State, Brazil. The "Bonus no. 2" was cultivated at the spacing of 1.1 × 0.4. The experimental design was a randomized complete block with three replications in a 4 × 4 factorial scheme with four N concentrations (8, 12, 16, and 20 mmol L(-1)) and four K concentrations (4, 6, 8, and 10 mmol L(-1)). The experimental plot constituted of eight plants. It was observed that the leaf levels of N and K, of N-NO₃ and of K, and the electrical conductivity (CE) of the substrate increased with the increment of N and K in the nutrients' solution. Substratum pH, in general, was reduced with increments in N concentration and increased with increasing K concentrations in the nutrients' solution. Leaf area increased with increments in N concentration in the nutrients solution. Fertigation with solutions stronger in N (20 mmol L(-1)) and K (10 mmol L(-1)) resulted in higher masses for the first (968 g) and the second (951 g) fruits and crop yield (4,425 gm(-2)).

  11. Nitrogen and Potassium Concentrations in the Nutrients Solution for Melon Plants Growing in Coconut Fiber without Drainage

    Directory of Open Access Journals (Sweden)

    Luiz Augusto Gratieri

    2013-01-01

    Full Text Available With the objective of evaluating the effects of N and K concentrations for melon plants, an experiment was carried out from July 1, 2011 to January 3, 2012 in Muzambinho city, Minas Gerais State, Brazil. The “Bonus no. 2” was cultivated at the spacing of 1.1 × 0.4. The experimental design was a randomized complete block with three replications in a 4 × 4 factorial scheme with four N concentrations (8, 12, 16, and 20 mmol L−1 and four K concentrations (4, 6, 8, and 10 mmol L−1. The experimental plot constituted of eight plants. It was observed that the leaf levels of N and K, of N-NO3 and of K, and the electrical conductivity (CE of the substrate increased with the increment of N and K in the nutrients' solution. Substratum pH, in general, was reduced with increments in N concentration and increased with increasing K concentrations in the nutrients' solution. Leaf area increased with increments in N concentration in the nutrients solution. Fertigation with solutions stronger in N (20 mmol L−1 and K (10 mmol L−1 resulted in higher masses for the first (968 g and the second (951 g fruits and crop yield (4,425 gm−2.

  12. A field study to evaluate the impact of different factors on the nutrient pollutant concentrations in green roof runoff.

    Science.gov (United States)

    Wang, Xiaochen; Zhao, Xinhua; Peng, Chenrui; Zhang, Xinbo; Wang, Jianghai

    2013-01-01

    The objectives of this study are to investigate the impact of different factors on the nutrient pollutant concentrations in green roof runoff and to provide reference data for the engineering design of dual substrate layer green roofs. The data were collected from eight different trays under three kinds of artificial rains. The results showed that except for total phosphorus, dual substrate layer green roofs behaved as a sink for most of the nutrient pollutants (significant at p green roof and the depth of the adsorption substrates. Compared with the influence of the substrates, the influence of the plant density and drainage systems was small.

  13. Factors controlling sulfur gas exchange in Sphagnum-dominated wetlands

    Science.gov (United States)

    Demello, William Zamboni; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Atmosphere-peatland exchange of reduced sulfur gases was determined seasonally in fen in NH, and in an artificially-acidified fen at the Experimental Lakes Area (ELA) in Canada. Dimethyl sulfide (DMS) dominated gas fluxes at rates as high as 400 nmol/m(sup -2)hr(sup -1). DMS fluxes measured using enclosures were much higher than those calculated using a stagnant-film model, suggesting that Sphagnum regulated efflux. Temperature controlled diel and seasonal variability in DMS emissions. Use of differing enclosure techniques indicated that vegetated peatlands consume atmospheric carbonyl sulfide. Sulfate amendments caused DMS and methane thiol concentrations in near-surface pore waters to increase rapidly, but fluxes of these gases to the atmosphere were not affected. However, emission data from sites experiencing large differences in rates of sulfate deposition from the atmosphere suggested that chronic elevated sulfate inputs enhance DMS emissions from northern wetlands.

  14. Synergistic effects and optimization of nitrogen and phosphorus concentrations on the growth and nutrient uptake of a freshwater Chlorella vulgaris.

    Science.gov (United States)

    Alketife, Ahmed M; Judd, Simon; Znad, Hussein

    2017-01-01

    The synergistic effects and optimization of nitrogen (N) and phosphorus (P) concentrations on the growth of Chlorella vulgaris (CCAP 211/11B, CS-42) and nutrient removal have been investigated under different concentrations of N (0-56 mg/L) and P (0-19 mg/L). The study showed that N/P ratio has a crucial effect on the biomass growth and nutrient removal. When N/P=10, a complete P and N removal was achieved at the end of cultivation with specific growth rate (SGR) of 1 d -1 and biomass concentration of 1.58 g/L. It was also observed that when the N content <2.5 mg/L, the SGR significantly reduced from 1.04 to 0.23 d -1 and the maximum biomass produced was decreased more than three-fold to 0.5 g/L. The Box-Behnken experimental design and response surface method were used to study the effects of the initial concentrations (P, N and C) on P and N removal efficiencies. The optimized P, N and C concentrations supporting 100% removal of both P and N at an SGR of 0.95 were 7, 55 and 10 mg/L respectively, with desirability value of 0.94. The results and analysis obtained could be very useful when applying the microalgae for efficient wastewater treatment and nutrient removal.

  15. Effects of watershed densities of animal feeding operations on nutrient concentrations and estrogenic activity in agricultural streams.

    Science.gov (United States)

    Ciparis, Serena; Iwanowicz, Luke R; Voshell, J Reese

    2012-01-01

    Application of manures from animal feeding operations (AFOs) as fertilizer on agricultural land can introduce nutrients and hormones (e.g. estrogens) to streams. A landscape-scale study was conducted in the Shenandoah River watershed (Virginia, USA) in order to assess the relationship between densities of AFOs in watersheds of agricultural streams and in-stream nutrient concentrations and estrogenic activity. The effect of wastewater treatment plants (WWTPs) on nutrients and estrogenic activity was also evaluated. During periods of high and low flow, dissolved inorganic nitrogen (DIN) and orthophosphate (PO(4)-P) concentrations were analyzed and estrogens/estrogenic compounds were extracted and quantified as17β-estradiol equivalents (E2Eq) using a bioluminescent yeast estrogen screen. Estrogenic activity was measurable in the majority of collected samples, and 20% had E2Eq concentrations >1 ng/L. Relatively high concentrations of DIN (>1000 μg/L) were also frequently detected. During all sampling periods, there were strong relationships between watershed densities of AFOs and in-stream concentrations of DIN (R(2) = 0.56-0.81) and E2Eq (R(2) = 0.39-0.75). Relationships between watershed densities of AFOs and PO(4)-P were weaker, but were also significant (R(2) = 0.27-0.57). When combined with the effect of watershed AFO density, streams receiving WWTP effluent had higher concentrations of PO(4)-P than streams without WWTP discharges, and PO(4)-P was the only analyte with a consistent relationship to WWTPs. The results of this study suggest that as the watershed density of AFOs increases, there is a proportional increase in the potential for nonpoint source pollution of agricultural streams and their receiving waters by nutrients, particularly DIN, and compounds that can cause endocrine disruption in aquatic organisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Effects of watershed densities of animal feeding operations on nutrient concentrations and estrogenic activity in agricultural streams

    Science.gov (United States)

    Ciparis, Serena; Iwanowicz, Luke R.; Voshell, J. Reese

    2012-01-01

    Application of manures from animal feeding operations (AFOs) as fertilizer on agricultural land can introduce nutrients and hormones (e.g. estrogens) to streams. A landscape-scale study was conducted in the Shenandoah River watershed (Virginia, USA) in order to assess the relationship between densities of AFOs in watersheds of agricultural streams and in-stream nutrient concentrations and estrogenic activity. The effect of wastewater treatment plants (WWTPs) on nutrients and estrogenic activity was also evaluated. During periods of high and low flow, dissolved inorganic nitrogen (DIN) and orthophosphate (PO4-P) concentrations were analyzed and estrogens/estrogenic compounds were extracted and quantified as17β-estradiol equivalents (E2Eq) using a bioluminescent yeast estrogen screen. Estrogenic activity was measurable in the majority of collected samples, and 20% had E2Eq concentrations > 1 ng/L. Relatively high concentrations of DIN (> 1000 μg/L) were also frequently detected. During all sampling periods, there were strong relationships between watershed densities of AFOs and in-stream concentrations of DIN (R2 = 0.56–0.81) and E2Eq (R2 = 0.39–0.75). Relationships between watershed densities of AFOs and PO4-P were weaker, but were also significant (R2 = 0.27–0.57). When combined with the effect of watershed AFO density, streams receiving WWTP effluent had higher concentrations of PO4-P than streams without WWTP discharges, and PO4-P was the only analyte with a consistent relationship to WWTPs. The results of this study suggest that as the watershed density of AFOs increases, there is a proportional increase in the potential for nonpoint source pollution of agricultural streams and their receiving waters by nutrients, particularly DIN, and compounds that can cause endocrine disruption in aquatic organisms.

  17. Phytotoxic effects of nickel on yield and concentration of macro- and micro-nutrients in sunflower (Helianthus annuus L.) achenes.

    Science.gov (United States)

    Ahmad, Muhammad Sajid Aqeel; Ashraf, Muhammad; Hussain, Mumtaz

    2011-01-30

    The phytotoxic effects of varying levels of nickel (0, 10, 20, 30, and 40 mg L(-1)) on growth, yield and accumulation of macro- and micro-nutrients in leaves and achenes of sunflower (Helianthus annuus L.) were appraised in this study. A marked reduction in root and shoot fresh biomass was recorded at higher Ni levels. Nickel stress also caused a substantial decrease in all macro- and micro-nutrients in leaves and achenes. The lower level of Ni (10 mg L(-1)) had a non-significant effect on various yield attributes, but higher Ni levels considerably decreased these parameters. Higher Ni levels decreased the concentrations of Ca, Mn and Fe in achenes. In contrast, achene N, K, Zn, Mn and Cu decreased consistently with increasing level of Ni, even at lower level (10 mg L(-1)). Sunflower hybrid Hysun-33 had better yield and higher most of the nutrients in achenes as compared with SF-187. The maximum reduction in all parameters was observed at the maximum level of nickel (40 mg L(-1)) where almost all parameters were reduced more than 50% of those of control plants. In conclusion, the pattern of uptake and accumulation of different nutrients in sunflower plants were nutrient- and cultivar-specific under Ni-stress. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. A comparative study of lipids in Sphagnum species

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Baas, M.; Pancost, R.D.; Geel, B. van

    2000-01-01

    The free lipid compositions of twelve species of Sphagnum were determined by capillary gas chromatography/mass spectrometry as part of a study to identify characteristic lipids for Sphagnum in peat bogs. Complex mixtures of lipids, comprised of C28 C29 sterols, C30 triterpenoids, C16 C30 fatty

  19. The Sphagnum microbiome: new insights from an ancient plant lineage

    Science.gov (United States)

    Joel E. Kostka; David J. Weston; Jennifer B. Glass; Erik A. Lilleskov; A. Jonathan Shaw; Merritt Turetsky

    2016-01-01

    Peat mosses of the genus Sphagnum play a major role in global carbon storage and dominate many northern peatland ecosystems, which are currently being subjected to some of the most rapid climate changes on Earth.Arapidly expanding database indicates that a diverse community of microorganisms is intimately associated with Sphagnum...

  20. Deciphering relationships between in-stream travel times, nutrient concentrations, and uptake through analysis of hysteretic and non-hysteretic kinetic behavior

    Science.gov (United States)

    Covino, T. P.; Bowden, W. B.; Gooseff, M. N.; Wollheim, W. M.; McGlynn, B. L.; Whittinghill, K. A.; Wlostowski, A. N.; Herstand, M. R.

    2012-12-01

    Understanding the relationship between solute travel time, concentration, and nutrient uptake remains a central question in watershed hydrology and biogeochemistry. Theoretical understanding predicts that nutrient uptake should increase as in-stream solute travel time lengthens and/or as concentration increases; however, results from field-based studies have been contradictory. We used a newly developed approach, Tracer Additions for Spiraling Curve Characterization (TASCC), to investigate relationships between solute travel time, nutrient concentration, and nutrient uptake across a range of stream types. This approach allows us to quantify in-stream nutrient uptake across a range of travel times and nutrient concentrations using single instantaneous injections (slugs) of conservative and non-conservative tracers. In some systems we observed counter-clockwise hysteresis loops in the relationship between nutrient uptake and concentration. Greater nutrient uptake on the falling limb of tracer breakthrough curves indicates stronger uptake for a given concentration at longer travel times. However, in other systems we did not observe hysteresis in these relationships. Lack of hysteresis indicates that nutrient uptake kinetics were not influenced by travel time travel time. Here we investigate the potential roles of travel time and in-stream flowpaths that could be responsible for hysteretic behavior.

  1. Value assignment of nutrient concentrations in five standard reference materials and six reference materials.

    Science.gov (United States)

    Sharpless, K E; Gill, L M

    2000-01-01

    A number of food-matrix reference materials (RMs) are available from the National Institute of Standards and Technology (NIST) and from Agriculture Canada through NIST. Most of these materials were originally value-assigned for their elemental composition (major, minor, and trace elements), but no additional nutritional information was provided. Two of the materials were certified for selected organic constituents. Ten of these materials (Standard Reference Material [SRM] 1,563 Cholesterol and Fat-Soluble Vitamins in Coconut Oil [Natural and Fortified], SRM 1,566b Oyster Tissue, SRM 1,570a Spinach Leaves, SRM 1,974a Organics in Mussel Tissue (Mytilus edulis), RM 8,415 Whole Egg Powder, RM 8,418 Wheat Gluten, RM 8,432 Corn Starch, RM 8,433 Corn Bran, RM 8,435 Whole Milk Powder, and RM 8,436 Durum Wheat Flour) were recently distributed by NIST to 4 laboratories with expertise in food analysis for the measurement of proximates (solids, fat, protein, etc.), calories, and total dietary fiber, as appropriate. SRM 1846 Infant Formula was distributed as a quality control sample for the proximates and for analysis for individual fatty acids. Two of the materials (Whole Egg Powder and Whole Milk Powder) were distributed in an earlier interlaboratory comparison exercise in which they were analyzed for several vitamins. Value assignment of analyte concentrations in these 11 SRMs and RMs, based on analyses by the collaborating laboratories, is described in this paper. These materials are intended primarily for validation of analytical methods for the measurement of nutrients in foods of similar composition (based on AOAC INTERNATIONAL's fat-protein-carbohydrate triangle). They may also be used as "primary control materials" in the value assignment of in-house control materials of similar composition. The addition of proximate information for 10 existing reference materials means that RMs are now available from NIST with assigned values for proximates in 6 of the 9 sectors of

  2. Ozone effects on Sphagnum mosses, carbon dioxide exchange and methane emission in boreal peatland microcosms

    International Nuclear Information System (INIS)

    Niemi, Riikka; Holopainen, Toini; Martikainen, Pertti J.; Silvola, Jouko

    2002-01-01

    Microcosms of a boreal peatland originating from an oligotrophic fen in Eastern Finland were fumigated under four ozone concentrations (0, 50, 100 and 150 ppb O 3 ) in laboratory growth chambers during two separate experiments (autumn and summer) for 4 and 6 weeks, respectively. Ozone effects on Sphagnum mosses and the fluxes of carbon dioxide and methane were evaluated. In both experiments, the three Sphagnum species studied showed only a few significant responses to ozone. In the autumn experiment, membrane permeability of S. angustifolium, measured as conductivity and magnesium leakage, was significantly higher under ozone fumigation (P=0.005 and 2 exchange during the 6-week-long summer experiment, but dark ecosystem respiration was transiently increased by ozone concentration of 100 ppb after 14 days of exposure (P<0.05). Fumigation with 100 ppb of ozone, however, more than doubled (P<0.05) methane emission from the peatland monoliths. Our results suggest that increasing tropospheric ozone concentration may cause substantial changes in the carbon gas cycling of boreal peatlands, even though these changes are not closely associated with the changes in Sphagnum vegetation

  3. Tomato root growth and phosphorus absorption kinetics by tomato plants as affected by phosphorus concentration in nutrient solution

    International Nuclear Information System (INIS)

    Fontes, P.C.R.; Barber, S.A.

    1984-01-01

    To evaluate the effects P concentrations in nutrient solution on root growth and on root physiological characteristics involved in P uptake by tomato Lycopersicon esculentum Mill plants, six seedlings were grown in nutrient solution at initial concentrations of 48.5, 97, 194 and 388 μMP until one day before harvest. They were then transferred to solutions with P at 20 μM and 30 μM, and the depletion curves and Michaelis-Menten parameters were determined. The conclusions were that as P supply increased and as the plant P contents are sufficient for maximum growth, the rate of P uptake tends to be lower. The results also indicate that total P uptake by tomato seedlings depends on the amount of root surface area exposed to P. (M.A.C.) [pt

  4. Yield, Quality, and Nutrient Concentrations of Strawberry (Fragaria ×ananassa Duch. cv. 'Sonata') Grown with Different Organic Fertilizer Strategies.

    Science.gov (United States)

    Pokhrel, Bhaniswor; Laursen, Kristian Holst; Petersen, Karen Koefoed

    2015-06-17

    Four combinations of two solid organic fertilizers (Monterra Malt and chicken manure) applied before planting and two liquid organic fertilizers (broad bean and Pioner Hi-Fruit/K-Max) given through drip irrigation (fertigation) were compared with inorganic fertilization regarding growth, yield, nutrient concentration, and fruit quality of strawberries. Broad bean fertigation combined with Monterra Malt resulted in a similar fruit yield as inorganic fertilizer and a higher yield than Monterra Malt combined with Pioner; however, total soluble solids, firmness, and titratable acid were improved with Pioner fertigation, although these parameters were more affected by harvest time than the applied fertilizers. The concentrations of most nutrients in fruits and leaves were higher in inorganically fertigated plants. The reductions in fruit yield in three of four treatments and fruit weight in all organic treatments may be due to a combination of the following conditions in the root zone: (1) high pH and high NH4(+)/NO3(-) ratio; (2) high EC and/or high NaCl concentration; (3) cation imbalance; and (4) nutrient deficiency.

  5. Validating modelled data on major and trace element deposition in southern Germany using Sphagnum moss

    Science.gov (United States)

    Kempter, Heike; Krachler, Michael; Shotyk, William; Zaccone, Claudio

    2017-10-01

    Sphagnum mosses were collected from four ombrotrophic bogs in two regions of southern Germany: Upper Bavaria (Oberbayern, OB) and the Northern Black Forest (Nordschwarzwald, NBF). Surfaces of Sphagnum carpets were marked with plastic mesh and, one year later, plant matter was harvested and productivity determined. Major and trace element concentrations (Ag, Al, As, Ba, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sc, Sr, Th, Ti, Tl, U, V, Zn) were determined in acid digests using sector field ICP-MS. Up to 12 samples (40 × 40 cm) were collected per site, and 6-10 sites investigated per bog. Variation in element accumulation rates within a bog is mostly the result of the annual production rate of the Sphagnum mosses which masks not only the impact of site effects, such as microtopography and the presence of dwarf trees, but also local and regional conditions, including land use in the surrounding area, topography, etc. The difference in productivity between peat bogs results in distinctly higher element accumulation rates at the NBF bogs compared to those from OB for all studied elements. The comparison with the European Monitoring and Evaluation Program (EMEP; wet-only and total deposition) and Modelling of Air Pollutants and Ecosystem Impact (MAPESI; total deposition) data shows that accumulation rates obtained using Sphagnum are in the same range of published values for direct measurements of atmospheric deposition of As, Cd, Cu, Co, Pb, and V in both regions. The accordance is very dependent on how atmospheric deposition rates were obtained, as different models to calculate the deposition rates may yield different fluxes even for the same region. In future studies of atmospheric deposition of trace metals, both Sphagnum moss and deposition collectors have to be used on the same peat bog and results compared. Antimony, however, shows considerable discrepancy, because it is either under-estimated by Sphagnum moss or over-estimated by both atmospheric deposition

  6. Predicted harvest time effects on switchgrass moisture content, nutrient concentration, yield, and profitability

    Science.gov (United States)

    Production costs change with harvest date of switchgrass (Panicum virgatum L.) as a result of nutrient recycling and changes in yield of this perennial crop. This study examines the range of cost of production from an early, yield-maximizing harvest date to a late winter harvest date at low moisture...

  7. Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss).

    Science.gov (United States)

    Jonathan Shaw, A; Devos, Nicolas; Liu, Yang; Cox, Cymon J; Goffinet, Bernard; Flatberg, Kjell Ivar; Shaw, Blanka

    2016-08-01

    Sphagnum-dominated peatlands contain approx. 30 % of the terrestrial carbon pool in the form of partially decomposed plant material (peat), and, as a consequence, Sphagnum is currently a focus of studies on biogeochemistry and control of global climate. Sphagnum species differ in ecologically important traits that scale up to impact ecosystem function, and sequencing of the genome from selected Sphagnum species is currently underway. As an emerging model system, these resources for Sphagnum will facilitate linking nucleotide variation to plant functional traits, and through those traits to ecosystem processes. A solid phylogenetic framework for Sphagnum is crucial to comparative analyses of species-specific traits, but relationships among major clades within Sphagnum have been recalcitrant to resolution because the genus underwent a rapid radiation. Herein a well-supported hypothesis for phylogenetic relationships among major clades within Sphagnum based on organellar genome sequences (plastid, mitochondrial) is provided. We obtained nucleotide sequences (273 753 nucleotides in total) from the two organellar genomes from 38 species (including three outgroups). Phylogenetic analyses were conducted using a variety of methods applied to nucleotide and amino acid sequences. The Sphagnum phylogeny was rooted with sequences from the related Sphagnopsida genera, Eosphagnum and Flatbergium Phylogenetic analyses of the data converge on the following subgeneric relationships: (Rigida (((Subsecunda) (Cuspidata)) ((Sphagnum) (Acutifolia))). All relationships were strongly supported. Species in the two major clades (i.e. Subsecunda + Cuspidata and Sphagnum + Acutifolia), which include >90 % of all Sphagnum species, differ in ecological niches and these differences correlate with other functional traits that impact biogeochemical cycling. Mitochondrial intron presence/absence are variable among species and genera of the Sphagnopsida. Two new nomenclatural combinations are made

  8. Greenhouse gas balance of an establishing Sphagnum culture on a former bog grassland in Germany

    OpenAIRE

    A. Günther; G. Jurasinski; K. Albrecht; G. Gaudig; M. Krebs; S. Glatzel

    2017-01-01

    The cultivation of Sphagnum mosses on re-wetted peat bogs for use in horticulture is a new land use strategy. We provide the first greenhouse gas balances for a field-scale Sphagnum farming experiment on former bog grassland, in its establishment phase. Over two years we used closed chambers to make measurements of GHG exchange on production strips of Sphagnum palustre L. and Sphagnum papillosum Lindb. and on irrigation ditches. Methane fluxes of both Sphagnum species showed a significant dec...

  9. Effect of fire on phosphorus forms in Sphagnum moss and peat soils of ombrotrophic bogs.

    Science.gov (United States)

    Wang, Guoping; Yu, Xiaofei; Bao, Kunshan; Xing, Wei; Gao, Chuanyu; Lin, Qianxin; Lu, Xianguo

    2015-01-01

    The effect of burning Sphagnum moss and peat on phosphorus forms was studied with controlled combustion in the laboratory. Two fire treatments, a light fire (250 °C) and a severe fire (600 °C), were performed in a muffle furnace with 1-h residence time to simulate the effects of different forest fire conditions. The results showed that fire burning Sphagnum moss and peat soils resulted in losses of organic phosphorus (Po), while inorganic phosphorus (Pi) concentrations increased. Burning significantly changed detailed phosphorus composition and availability, with severe fires destroying over 90% of organic phosphorus and increasing the availability of inorganic P by more than twofold. Our study suggest that, while decomposition processes in ombrotrophic bogs occur very slowly, rapid changes in the form and availability of phosphorus in vegetation and litter may occur as the result of forest fires on peat soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Bacterial Abundance and Activity across Sites within Two Northern Wisconsin Sphagnum Bogs.

    Science.gov (United States)

    Fisher; Graham; Graham

    1998-11-01

    Abstract Bacterial abundance, temperature, pH, and dissolved organic carbon (DOC) concentration were compared across surface sites within and between two northern Wisconsin Sphagnum peatlands over the summer seasons in 1995 and 1996. Sites of interest were the Sphagnum mat surface, the water-filled moat (lagg) at the bog margin, and the bog lake littoral zone. Significant differences in both bacterial populations and water chemistry were observed between sites. pH was highest in the lake and lowest in the mat at both bogs; the opposite was true for DOC. Large populations of bacteria were present in surface interstitial water from the mat; abundance in this site was consistently higher than in the moat or lake. Bacterial abundance also increased across sites of increasing DOC concentration and declining pH. Bacterial activities (rates of [3H]leucine incorporation) and growth in dilution cultures (with grazers removed) were also assessed in lake, moat, and mat sites. Results using these measures generally supported the trends observed in abundance, although high rates of [3H]leucine incorporation were recorded in the moat at one of the bogs. Our results indicate that bacterial populations in Sphagnum peatlands are not adversely affected by acidity, and that DOC may be more important than pH in determining bacterial abundance in these environments.

  11. Geographic variation in the relationships of temperature, salinity or sigma sub t versus plant nutrient concentrations in the world ocean. [silicic acid, nitrate, and phosphate concentration

    Science.gov (United States)

    Kamykowski, D.; Zentara, S. J.

    1985-01-01

    A NODC data set representing all regions of the world ocean was analyzed for temperature and sigma-t relationships with nitrate, phosphate or silicic acid. Six cubic regressions were for each ten degree square of latitude and longitude containing adequate data. World maps display the locations that allow the prediction of plant nutrient concentrations from temperature or sigma-t. Geographic coverage improves along the sequence: nitrate, phosphate, and silicic acid and is better for sigma-t than for temperature. Contour maps of the approximate temperature of sigma-t at which these nitrients are no longer measurable in a parcel of water are generated, based on a percentile analysis of the temperature or sigma-t at which less than a selected amount of plant nutrient occurs. Results are stored on magnetic tape in tabular form. The global potential to predict plant nutrient concentrations from remotely sensed temperature of sigma-t and to emphasize the latitudinally and longitudinally changing phytoplankton growth environment in present and past oceans is demonstrated.

  12. The Sphagnum microbiome: new insights from an ancient plant lineage.

    Science.gov (United States)

    Kostka, Joel E; Weston, David J; Glass, Jennifer B; Lilleskov, Erik A; Shaw, A Jonathan; Turetsky, Merritt R

    2016-07-01

    57 I. 57 II. 58 III. 59 IV. 59 V. 61 VI. 62 63 References 63 SUMMARY: Peat mosses of the genus Sphagnum play a major role in global carbon storage and dominate many northern peatland ecosystems, which are currently being subjected to some of the most rapid climate changes on Earth. A rapidly expanding database indicates that a diverse community of microorganisms is intimately associated with Sphagnum, inhabiting the tissues and surface of the plant. Here we summarize the current state of knowledge regarding the Sphagnum microbiome and provide a perspective for future research directions. Although the majority of the microbiome remains uncultivated and its metabolic capabilities uncharacterized, prokaryotes and fungi have the potential to act as mutualists, symbionts, or antagonists of Sphagnum. For example, methanotrophic and nitrogen-fixing bacteria may benefit the plant host by providing up to 20-30% of Sphagnum carbon and nitrogen, respectively. Next-generation sequencing approaches have enabled the detailed characterization of microbiome community composition in peat mosses. However, as with other ecologically or economically important plants, our knowledge of Sphagnum-microbiome associations is in its infancy. In order to attain a predictive understanding of the role of the microbiome in Sphagnum productivity and ecosystem function, the mechanisms of plant-microbiome interactions and the metabolic potential of constituent microbial populations must be revealed. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  13. Lipid-based nutrient supplements do not affect efavirenz but lower plasma nevirapine concentrations in Ethiopian adult HIV patients

    DEFF Research Database (Denmark)

    Abdissa, A; Olsen, Mette Frahm; Yilma, D

    2015-01-01

    OBJECTIVES: Lipid-based nutrient supplements (LNSs) are increasingly used in HIV programmes in resource-limited settings. However, the possible effects of LNSs on the plasma concentrations of antiretroviral drugs have not been assessed. Here, we aimed to assess the effects of LNSs on plasma...... efavirenz and nevirapine trough concentrations in Ethiopian adult HIV-infected patients. METHODS: The effects of LNSs were studied in adults initiating antiretroviral therapy (ART) in a randomized trial. Patients with body mass index (BMI) > 17 kg/m(2) (n = 282) received daily supplementation of an LNS.......9; -0.9 μg/mL; P = 0.01), respectively, compared with the group not receiving supplements. There were no differences between groups with respect to efavirenz plasma concentrations. The CYP2B6 516 G>T polymorphism was associated with a 5 μg/mL higher plasma efavirenz concentration compared with the wild...

  14. Effect of phosphorus concentration of the nutrient solution on the volatile constituents of leaves and bracts of Origanum dictamnus.

    Science.gov (United States)

    Economakis, C; Skaltsa, Helen; Demetzos, Costas; Soković, M; Thanos, Costas A

    2002-10-23

    The chemical composition of the essential oils obtained from the leaves and bracts of hydroponically cultivated Origanum dictamnus were analyzed by GC-MS techniques. Three different concentrations of phosphorus (5, 30, and 60 mg/L) in the nutrient solution were used for the cultivation, using the nutrient film technique (NFT). A total of 46 different compounds were identified and significant differences (qualitative and quantitative) were observed between the samples. Carvacrol and p-cymene were identified as the main compounds in all samples analyzed, whereas thymoquinone was found in higher percentage in the leaves than in bracts. The essential oils were tested for their antibacterial activity against Gram-positive and Gram-negative bacteria. The oils obtained from the bracts were found to be more active. The results obtained from GC-MS analyses were submitted to chemometric analysis.

  15. Application of sphagnum peat, calcium carbonate and hydrated lime for immobilizing radioactive and hazardous contaminants in the subsurface

    International Nuclear Information System (INIS)

    Longmire, P.A.; Thomson, B.M.; Eller, P.G.; Barr, M.E.

    1991-01-01

    Batch experiments, mineralogical studies, and geochemical modeling were conducted to evaluate the effectiveness of sphagnum peat, calcium carbonate, and hydrated lime in removing dissolved concentrations of As, Mo, NO 3 , and U present in uranium-tailings pore water at Gunnison, Colorado. Amounts of As, Mo, and U removal by sphagnum peat, calcium carbonate, and hydrated lime at 5.0,2.5, and 2.5 wt.%, respectively, were typically above 97%. Nitrate removal ranged between 55 and 80%. Significant contaminant removal was achieved by sphagnum peat alone at pH 3.18. Results from base potentiometric titration and IR spectroscopy investigations suggest that U(VI) binds onto carboxylate and phenolate groups. Addition of 2.5 wt.% hydrated lime to the acidic tailings increased Mo concentrations by a factor of 2 under moderately alkaline conditions (pH 12). During neutralization of tailings-pore water, precipitation of ferric oxyhydroxides may provide additional removal of As, Mo, and U(VI) from solution through adsorption and coprecipitation processes. Sphagnum peat and other forms of solid organic matter effectively remove anthropogenic organic compounds from solution through hydrophobic sorption and partitioning processes

  16. Influence of drainage and nutrient-solution nitrogen and potassium concentrations on the agronomic behavior of bell-pepper plants cultivated in a substrate.

    Science.gov (United States)

    Wamser, Anderson Fernando; Cecilio Filho, Arthur Bernardes; Nowaki, Rodrigo Hiyoshi Dalmazzo; Mendoza-Cortez, Juan Waldir; Urrestarazu, Miguel

    2017-01-01

    The interactive effects of N (6, 9, 12 and 15 mmol L-1) and K (3, 5, 7, and 9 mmol L-1) concentrations in nutrient solutions were evaluated on bell pepper grown in a coconut-coir substrate and fertilized without drainage. An additional treatment with drainage was evaluated using N and K concentrations of 12 and 7 mmol L-1, respectively. The hybrid Eppo cultivar of yellow bell pepper was cultivated for 252 days beginning 9 November 2012. Electrical conductivity (EC), the N and K concentrations in the substrate solution, marketable fruit yield, total dry weight and macronutrient concentrations in shoots were periodically evaluated. Fruit production was lower in the system without drainage, regardless of the N and K concentrations, compared to the recommended 10-20% drainage of the volume of nutrient solution applied. Higher K concentrations in the nutrient solution did not affect plant production in the system without drainage for the substrate with an initial K concentration of 331.3 mg L-1. Fruit yield was higher without drainage at a nutrient-solution N concentration of 10.7 mmol L-1. The upper EC limit of the substrate solution in the system without drainage was exceeded 181 days after planting. Either lower nutrient concentrations in the nutrient solution or a drainage system could thus control the EC in the substrate solution.

  17. Source Material and Concentration of Wildfire-Produced Pyrogenic Carbon Influence Post-Fire Soil Nutrient Dynamics

    Directory of Open Access Journals (Sweden)

    Lucas A. Michelotti

    2015-04-01

    Full Text Available Pyrogenic carbon (PyC is produced by the thermal decomposition of organic matter in the absence of oxygen (O. PyC affects nutrient availability, may enhance post-fire nitrogen (N mineralization rates, and can be a significant carbon (C pool in fire-prone ecosystems. Our objectives were to characterize PyC produced by wildfires and examine the influence that contrasting types of PyC have on C and N mineralization rates. We determined C, N, O, and hydrogen (H concentrations and atomic ratios of charred bark (BK, charred pine cones (PC, and charred woody debris (WD using elemental analysis. We also incubated soil amended with BK, PC, and WD at two concentrations for 60 days to measure C and N mineralization rates. PC had greater H/C and O/C ratios than BK and WD, suggesting that PC may have a lesser aromatic component than BK and WD. C and N mineralization rates decreased with increasing PyC concentrations, and control samples produced more CO2 than soils amended with PyC. Soils with PC produced greater CO2 and had lower N mineralization rates than soils with BK or WD. These results demonstrate that PyC type and concentration have potential to impact nutrient dynamics and C flux to the atmosphere in post-fire forest soils.

  18. Changing climate and nutrient transfers: Evidence from high temporal resolution concentration-flow dynamics in headwater catchments.

    Science.gov (United States)

    Ockenden, M C; Deasy, C E; Benskin, C McW H; Beven, K J; Burke, S; Collins, A L; Evans, R; Falloon, P D; Forber, K J; Hiscock, K M; Hollaway, M J; Kahana, R; Macleod, C J A; Reaney, S M; Snell, M A; Villamizar, M L; Wearing, C; Withers, P J A; Zhou, J G; Haygarth, P M

    2016-04-01

    We hypothesise that climate change, together with intensive agricultural systems, will increase the transfer of pollutants from land to water and impact on stream health. This study builds, for the first time, an integrated assessment of nutrient transfers, bringing together a) high-frequency data from the outlets of two surface water-dominated, headwater (~10km(2)) agricultural catchments, b) event-by-event analysis of nutrient transfers, c) concentration duration curves for comparison with EU Water Framework Directive water quality targets, d) event analysis of location-specific, sub-daily rainfall projections (UKCP, 2009), and e) a linear model relating storm rainfall to phosphorus load. These components, in combination, bring innovation and new insight into the estimation of future phosphorus transfers, which was not available from individual components. The data demonstrated two features of particular concern for climate change impacts. Firstly, the bulk of the suspended sediment and total phosphorus (TP) load (greater than 90% and 80% respectively) was transferred during the highest discharge events. The linear model of rainfall-driven TP transfers estimated that, with the projected increase in winter rainfall (+8% to +17% in the catchments by 2050s), annual event loads might increase by around 9% on average, if agricultural practices remain unchanged. Secondly, events following dry periods of several weeks, particularly in summer, were responsible for high concentrations of phosphorus, but relatively low loads. The high concentrations, associated with low flow, could become more frequent or last longer in the future, with a corresponding increase in the length of time that threshold concentrations (e.g. for water quality status) are exceeded. The results suggest that in order to build resilience in stream health and help mitigate potential increases in diffuse agricultural water pollution due to climate change, land management practices should target

  19. An Integrated Multimodal Sensor for the On-site Monitoring of the Water Content and Nutrient Concentration of Soil by Measuring the Phase and Electrical Conductivity

    Directory of Open Access Journals (Sweden)

    Masato FUTAGAWA

    2012-03-01

    Full Text Available We have fabricated a new multimodal sensor chip which is capable of simultaneous on-site measurements of the water content and nutrient concentration. Until now, in agriculture, water content sensors, such as TDR sensors, have been unable to provide accurate measurements, since these sensors are affected by the nutrient concentration in the soil solution. Therefore, tensiometers have generally been used. However, these are large-scale sensors and are not suitable for the precise measurements required in agriculture. Our proposed sensors are the world’s first to enable independent measurements of the water content and nutrient concentration.

  20. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    Science.gov (United States)

    Velescu, Andre; Valarezo, Carlos; Wilcke, Wolfgang

    2016-05-01

    In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM) by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth. In 2007, we established a nutrient manipulation experiment (NUMEX) to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N), 10 kg ha-1 a-1 of phosphorus (P), 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca) in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes. Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC) and dissolved organic nitrogen (DON) concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments. Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N and P

  1. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    Directory of Open Access Journals (Sweden)

    Andre eVelescu

    2016-05-01

    Full Text Available In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth.In 2007, we established a nutrient manipulation experiment (NUMEX to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N, 10 kg ha-1 a-1 of phosphorus (P, 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes.Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC and dissolved organic nitrogen (DON concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments.Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N

  2. Studies on sphagnum peat. III. A quantitative study on the carbohydrate constituents of sphagnum mosses and sphagnum peat

    Energy Technology Data Exchange (ETDEWEB)

    Theander, O

    1954-01-01

    A qualitative and a quantitative investigation of the carbohydrates in two sphagnum mosses and five samples of sphagnum peat of different age and degree of huminosity has been performed. The two mosses investigated showed no significant differences. Samples of very different age but with the same degree of physical huminosity were very similar, indicating that the chief changes occur at the top of the bog and/or are determined by the conditions at the start of the humification. The total amount of carbohydrates was about 90% of the organic material in the mosses and about 65% and 35% in peats with a degree of huminosity of 3-4 and 6-7 respectively. Of the constituent sugars, fructose which occurred in the mosses, was completely absent in the peat. Another sugar, which occurs in nature as a furanoside, arabinose, disappeared almost completely during the humification. The uronic acids and galactose decreased faster, while ylose and glucose decreased at about the same rate as the total carbohydrates. Mannose and probably also rhamnose are the most stable components and accumulate during the humification. The polysaccharides in mosses and peat seem to constitute a very complex mixture. The presence of a fructan in the living moss, of a polyuronide (pectin) and a large amount of more complex polysaccharides built up of galactose, xylose, rhamnose and uronic acids is indicated. The glucose, the most important constituent, probably occurs chiefly as cellulose, the presence of which has been demonstrated by other workers. Finally the behaviour of mannose during the humification indicates the presence of a stable mannan. There is no evidence of polysaccharides formed by microorganisms in the peat.

  3. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L

    International Nuclear Information System (INIS)

    Tu Cong; Ma, Lena Q.

    2005-01-01

    Pteris vittata was the first terrestrial plant known to hyperaccumulate arsenic (As). However, it is unclear how As hyperaccumulation influences nutrient uptake by this plant. P. vittata fern was grown in soil spiked with 0-500 mg As kg -1 in the greenhouse for 24 weeks. The concentrations of essential macro- (P, K, Ca, and Mg) and micro- (Fe, Mn, Cu, Zn, B and Mo) elements in the fronds of different age were examined. Both macro- and micronutrients in the fronds were found to be within the normal concentration ranges for non-hyperaccumulators. However, As hyperaccumulation did influence the elemental distribution among fronds of different age of P. vittata. Arsenic-induced P and K enhancements in the fronds contributed to the As-induced growth stimulation at low As levels. The frond P/As molar ratios of 1.0 can be used as the threshold value for normal growth of P. vittata. Potassium may function as a counter-cation for As in the fronds as shown by the As-induced K increases in the fronds. The present findings not only demonstrate that P. vittata has the ability to maintain adequate concentrations of essential nutrients while hyperaccumulating As from the soil, but also have implications for soil management (fertilization in particular) of P. vittata in As phytoextraction practice

  4. Changes in nutrients and decay rate of Ginkgo biloba leaf litter exposed to elevated O3 concentration in urban area

    Directory of Open Access Journals (Sweden)

    Wei Fu

    2018-03-01

    Full Text Available Ground-level ozone (O3 pollution has been widely concerned in the world, particularly in the cities of Asia, including China. Elevated O3 concentrations have potentially influenced growth and nutrient cycling of trees in urban forest. The decomposition characteristics of urban tree litters under O3 exposure are still poorly known. Ginkgo biloba is commonly planted in the cities of northern China and is one of the main tree species in the urban forest of Shenyang, where concentrations of ground-level O3 are very high in summer. Here, we hypothesized that O3 exposure at high concentrations would alter the decomposition rate of urban tree litter. In open-top chambers (OTCs, 5-year-old G. biloba saplings were planted to investigate the impact of elevated O3 concentration (120 ppb on changes in nutrient contents and decomposition rate of leaf litters. The results showed that elevated O3 concentration significantly increased K content (6.31 ± 0.29 vs 17.93 ± 0.40, P < 0.01 in leaves of G. biloba, significantly decreased the contents of total phenols (2.82 ± 0.93 vs 1.60 ± 0.44, P < 0.05 and soluble sugars (86.51 ± 19.57 vs 53.76 ± 2.40, P < 0.05, but did not significantly alter the contents of C, N, P, lignin and condensed tannins, compared with that in ambient air. Furthermore, percent mass remaining in litterbags after 150 days under ambient air and elevated O3 concentration was 56.0% and 52.8%, respectively. No significant difference between treatments was observed in mass remaining at any sampling date during decomposition. The losses of the nutrients in leaf litters of G. biloba showed significant seasonal differences regardless of O3 treatment. However, we found that elevated O3 concentration slowed down the leaf litter decomposition only at the early decomposition stage, but slightly accelerated the litter decomposition at the late stage (after 120 days. This study provides our understanding of the ecological processes regulating

  5. Vortex rings from Sphagnum moss capsules

    Science.gov (United States)

    Whitaker, Dwight; Strassman, Sam; Cha, Jung; Chang, Emily; Guo, Xinyi; Edwards, Joan

    2010-11-01

    The capsules of Sphagnum moss use vortex rings to disperse spores to suitable habitats many kilometers away. Vortex rings are created by the sudden release of pressurized air when the capsule ruptures, and are an efficient way to carry the small spores with low terminal velocities to heights where they can be carried by turbulent wind currents. We will present our computational model of these explosions, which are carried out using a 2-D large eddy simulation (LES) on FLUENT. Our simulations can reproduce the observed motion of the spore clouds observed from moss capsules with high-speed videos, and we will discuss the roles of bursting pressure, cap mass, and capsule morphology on the formation and quality of vortex rings created by this plant.

  6. Experimental analysis of an effect of the nutrient type and its concentration on the rheological properties of the baker’s yeast suspensions

    Directory of Open Access Journals (Sweden)

    Major-Godlewska Marta

    2015-09-01

    Full Text Available The aim of the study presented was to experimentally analyze an effect of the nutrient type and its concentration on the variability of rheological properties of the baker’s yeast suspensions for different time periods. Aqueous suspensions of the baker’s yeast of various concentration (solution I, without nutrient and yeasts suspended in aqueous solution of sucrose or honey as nutrients with different concentration (solution II or solution III were tested. Experiments were carried out using rotational rheoviscometer of type RT10 by a company HAAKE. The measurements were conducted for different time periods (from 1 h up to 144 h at given fluid temperature. On the basis of the obtained data, rheological characteristics of the aqueous solution of baker’s yeast suspensions without and with nutrients of different sucrose or honey concentration were identified and mathematically described.

  7. In vitro decomposition of Sphagnum by some microfungi resembles white rot of wood.

    Science.gov (United States)

    Rice, Adrianne V; Tsuneda, Akihiko; Currah, Randolph S

    2006-06-01

    The abilities of some ascomycetes (Myxotrichaceae) from a Sphagnum bog in Alberta to degrade cellulose, phenolics, and Sphagnum tissue were compared with those of two basidiomycetes. Most Myxotrichaceae degraded cellulose and tannic acid, and removed cell-wall components simultaneously from Sphagnum tissues, whereas the basidiomycetes degraded cellulose and insoluble phenolics, and preferentially removed the polyphenolic matrix from Sphagnum cell walls. Mass losses from Sphagnum varied from up to 50% for some ascomycetes to a maximum of 35% for the basidiomycetes. The decomposition of Sphagnum by the Myxotrichaceae was analogous to the white rot of wood and indicates that these fungi have the potential to cause significant mineralization of carbon in bogs.

  8. The Relative Concentrations of Nutrients and Toxins Dictate Feeding by a Vertebrate Browser, the Greater Glider Petauroides volans.

    Directory of Open Access Journals (Sweden)

    Lora M Jensen

    Full Text Available Although ecologists believe that vertebrate herbivores must select a diet that allows them to meet their nutritional requirements, while avoiding intoxication by plant secondary metabolites, this is remarkably difficult to show. A long series of field and laboratory experiments means that we have a good understanding of the factors that affect feeding by leaf-eating marsupials. This knowledge and the natural intraspecific variation in Eucalyptus chemistry allowed us to test the hypothesis that the feeding decisions of greater gliders (Petauroides volans depend on the concentrations of available nitrogen (incorporating total nitrogen, dry matter digestibility and tannins and of formylated phloroglucinol compounds (FPCs, potent antifeedants unique to Eucalyptus. We offered captive greater gliders foliage from two species of Eucalyptus, E. viminalis and E. melliodora, which vary naturally in their concentrations of available nitrogen and FPCs. We then measured the amount of foliage eaten by each glider and compared this with our laboratory analyses of foliar total nitrogen, available nitrogen and FPCs for each tree offered. The concentration of FPCs was the main factor that determined how much gliders ate of E. viminalis and E. melliodora, but in gliders fed E. viminalis the concentration of available nitrogen was also a significant influence. In other words, greater gliders ate E. viminalis leaves with a particular combination of FPCs and available nitrogen that maximised the nutritional gain but minimised their ingestion of toxins. In contrast, the concentration of total nitrogen was not correlated with feeding. This study is among the first to empirically show that browsing herbivores select a diet that balances the potential gain (available nutrients and the potential costs (plant secondary chemicals of eating leaves. The major implication of the study is that it is essential to identify the limiting nutrients and relevant toxins in a system in

  9. Relationships between fruit nutrients and concentrations of flavonoids and chlorogenic acid in 'Elstar' apple skin

    NARCIS (Netherlands)

    Awad, M.A.; Jager, de A.

    2002-01-01

    The relationships between fruit N, P, K, Mg and Ca concentrations during the season and flavonoid and chlorogenic acid concentrations in skin of `Elstar¿ apples at maturity have been studied during three seasons in a nutrition experiment (with the mutant `Elshof¿), and in a separate experiment with

  10. Gamma radiation and osmotic potential of the nutrient solution differentially affect macronutrient concentrations, pH and EC in chilhuacle pepper fruits

    International Nuclear Information System (INIS)

    Victor Garcia-Gaytan, Libia Iris Trejo-Tellez; Olga Tejeda-Sartorius; Maribel Ramirez-Martinez; Julian Delgadillo-Martinez; Fernando Carlos Gomez-Merino; Soledad Garcia-Morales

    2018-01-01

    Chilhuacle pepper (Capsicum annuum L.) seeds were exposed to gamma radiation (GR) doses (0, 10, 80 and 120 Gy), and plants were grown in hydroponics with different osmotic potentials (OP) (- 0.036, - 0.072, - 0.092, and - 0.108 MPa) in the nutrient solution. We measured the nutrient concentrations, pH and electrical conductivity (EC) in fruits at different time points after transplanting (70, 90 and 130 dat), and found the GR, nutrient solution OP and their interactions differentially affected N, P, K, Ca, and Mg concentrations, as well as pH and EC in chilhuacle peppers. (author)

  11. Linking river nutrient concentrations to land use and rainfall in a paddy agriculture-urban area gradient watershed in southeast China.

    Science.gov (United States)

    Xia, Yongqiu; Ti, Chaopu; She, Dongli; Yan, Xiaoyuan

    2016-10-01

    The effects of land use and land-use changes on river nutrient concentrations are not well understood, especially in the watersheds of developing countries that have a mixed land use of rice paddy fields and developing urban surfaces. Here, we present a three-year study of a paddy agricultural-urban area gradient watershed in southeast China. The annual anthropogenic nitrogen (N) input from the agricultural region to the urban region was high, yet the results showed that the monthly nutrient concentrations in the river were low in the rainy seasons. The nutrient concentrations decreased continuously as the river water passed through the traditional agriculture region (TAR; paddy rice and wheat rotation) and increased substantially in the city region (CR). The traditional agricultural reference region exported most of the nutrient loads at high flows (>1mmd(-1)), the intensified agricultural region (IAR, aquaculture and poultry farming) exported most of the nutrient loads at moderate flows (between 0.5 and 1mmd(-1)), and the CR reference area exported most of the nutrient loads under low to moderate flows. We developed a statistical model to link variations in the nutrient concentrations to the proportion of land-use types and rainfall. The statistical results showed that impervious surfaces, which we interpret as a proxy for urban activities including sewage disposal, were the most important drivers of nutrient concentrations, whereas water surfaces accounted for a substantial proportion of the nutrient sinks. Therefore, to efficiently reduce water pollution, sewage from urban areas must be addressed as a priority, although wetland restoration could also achieve substantial pollutant removal. Copyright © 2016. Published by Elsevier B.V.

  12. Interannual heavy element and nutrient concentration trends in the top sediments of Venice Lagoon (Italy).

    Science.gov (United States)

    Masiol, Mauro; Facca, Chiara; Visin, Flavia; Sfriso, Adriano; Pavoni, Bruno

    2014-12-15

    The elemental composition of surficial sediments of Venice Lagoon (Italy) in 1987, 1993, 1998 and 2003 were investigated. Zn and Cr concentrations resulted in higher than background levels, but only Cd and Hg were higher than legal quality standards (Italian Decree 2010/260 and Water Framework Directive 2000/60/EC). Contaminants with similar spatial distribution are sorted into three groups by means of correlation analysis: (i) As, Co, Cd, Cu, Fe, Pb, Zn; (ii) Ni, Cr; (iii) Hg. Interannual concentrations are compared by applying a factor analysis to the matrix of differences between subsequent samplings. A general decrease of heavy metal levels is observed from 1987 to 1993, whereas particularly high concentrations of Ni and Cr are recorded in 1998 as a consequence of intense clam fishing, subsequently mitigated by better prevention of illegal harvesting. Due to the major role played by anthropogenic sediment resuspension, bathymetric variations are also considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Substitution of common concentrates with by-products modulated ruminal fermentation, nutrient degradation, and microbial community composition in vitro.

    Science.gov (United States)

    Ertl, P; Knaus, W; Metzler-Zebeli, B U; Klevenhusen, F; Khiaosa-Ard, R; Zebeli, Q

    2015-07-01

    A rumen simulation technique was used to evaluate the effects of the complete substitution of a common concentrate mixture (CON) with a mixture consisting solely of by-products from the food industry (BP) at 2 different forage-to-concentrate ratios on ruminal fermentation profile, nutrient degradation, and abundance of rumen microbiota. The experiment was a 2×2 factorial arrangement with 2 concentrate types (CON and BP) and 2 concentrate levels (25 and 50% of diet dry matter). The experiment consisted of 2 experimental runs with 12 fermentation vessels each (n=6 per treatment). Each run lasted for 10d, with data collection on the last 5d. The BP diets had lower starch, but higher neutral detergent fiber (NDF) and fat contents compared with CON. Degradation of crude protein was decreased, but NDF and nonfiber carbohydrate degradation were higher for the BP diets. At the 50% concentrate level, organic matter degradation tended to be lower for BP and CH4 formation per unit of NDF degraded was also lower for BP. The BP mixture led to a higher concentration of propionate and a lower acetate-to-propionate ratio, whereas concentrations of butyrate and caproate decreased. Concentrate type did not affect microbial community composition, except that the abundance of bacteria of the genus Prevotella was higher for BP. Increasing the concentrate level resulted in higher degradation of organic matter and crude protein. At the higher concentrate level, total short-chain fatty acid formation increased and concentrations of isobutyrate and valerate decreased. In addition, at the 50% concentrate level, numbers of protozoa increased, whereas numbers of methanogens, anaerobic fungi, and fibrolytic bacteria decreased. No interaction was noted between the 2 dietary factors on most variables, except that at the higher concentrate level the effects of BP on CH4 and CO2 formation per unit of NDF degraded, crude protein degradation, and the abundance of Prevotella were more prominent. In

  14. Desiccation tolerance of Sphagnum revisited: a puzzle resolved.

    Science.gov (United States)

    Hájek, T; Vicherová, E

    2014-07-01

    As ecosystem engineers, Sphagnum mosses control their surroundings through water retention, acidification and peat accumulation. Because water retention avoids desiccation, sphagna are generally intolerant to drought; however, the literature on Sphagnum desiccation tolerance (DT) provides puzzling results, indicating the inducible nature of their DT. To test this, various Sphagnum species and other mesic bryophytes were hardened to drought by (i) slow drying; (ii) ABA application and (iii) chilling or frost. DT tolerance was assessed as recovery of chlorophyll fluorescence parameters after severe desiccation. We monitored the seasonal course of DT in bog bryophytes. Under laboratory conditions, following initial de-hardening, untreated Sphagnum shoots lacked DT; however, DT was induced by all hardening treatments except chilling, notably by slow drying, and in Sphagnum species of the section Cuspidata. In the field, sphagna in hollows and lawns developed DT several times during the growing season, responding to reduced precipitation and a lowered water table. Hummock and aquatic species developed DT only in late autumn, probably as a response to frost. Sphagnum protonemata failed to develop DT; hence, desiccation may limit Sphagnum establishment in drier habitats with suitable substrate chemistry. Desiccation avoiders among sphagna form compact hummocks or live submerged; thus, they do not develop DT in the field, lacking the initial desiccation experience, which is frequent in hollow and lawn habitats. We confirmed the morpho-physiological trade-off: in contrast to typical hollow sphagna, hummock species invest more resources in water retention (desiccation avoidance), while they have a lower ability to develop physiological DT. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Estimating space-time mean concentrations of nutrients in surface waters of variable depth

    NARCIS (Netherlands)

    Knotters, M.; Brus, D.J.

    2010-01-01

    A monitoring scheme has been designed to test whether the space-time mean concentration total Nitrogen (N-total) in the surface water in the Northern Frisian Woodlands (NFW, The Netherlands) complies with standards of the European Water Framework directive. Since in statistical testing for

  16. Interannual heavy element and nutrient concentration trends in the top sediments of Venice Lagoon (Italy)

    International Nuclear Information System (INIS)

    Masiol, Mauro; Facca, Chiara; Visin, Flavia; Sfriso, Adriano; Pavoni, Bruno

    2014-01-01

    Highlights: • Heavy element concentrations in sediments of a transitional system were studied. • Element contamination in the recent years has generally declined. • Mercury and cadmium contamination still remain above the limits in hot spots. • The role of sediment resuspension due to anthropogenic activity is discussed. • A basic knowledge to assess the impact of the MOSE construction is provided. - Abstract: The elemental composition of surficial sediments of Venice Lagoon (Italy) in 1987, 1993, 1998 and 2003 were investigated. Zn and Cr concentrations resulted in higher than background levels, but only Cd and Hg were higher than legal quality standards (Italian Decree 2010/260 and Water Framework Directive 2000/60/EC). Contaminants with similar spatial distribution are sorted into three groups by means of correlation analysis: (i) As, Co, Cd, Cu, Fe, Pb, Zn; (ii) Ni, Cr; (iii) Hg. Interannual concentrations are compared by applying a factor analysis to the matrix of differences between subsequent samplings. A general decrease of heavy metal levels is observed from 1987 to 1993, whereas particularly high concentrations of Ni and Cr are recorded in 1998 as a consequence of intense clam fishing, subsequently mitigated by better prevention of illegal harvesting. Due to the major role played by anthropogenic sediment resuspension, bathymetric variations are also considered

  17. Intake and nutrient digestibilies of all-concentrate diet form forage ...

    African Journals Online (AJOL)

    A total or 20 animals comprising 10 rams and 10 bucks were involved in a digestibility study to assess the nutritive value of a combination of yam peel, ... The dry matter intakes in the all-concentrate diet by the sheep and goat ( > 4% of body weight) were higher (p<0.05) than obtained for the conventional diet of grass hay ...

  18. An integrated membrane bioreactor - nanofiltration concept with concentrate recirculation for wastewater treatment and nutrient recovery

    NARCIS (Netherlands)

    Kappel, C.

    2014-01-01

    Increasing water shortages drive the need for water reuse. Membranes are a very suitable technology for purification of wastewater. Membrane bioreactor (MBR) permeate can be polished by nanofiltration (NF), allowing the production of high quality reusable water. The NF concentrate potentially is an

  19. Dynamic response of land use and river nutrient concentration to long-term climatic changes.

    Science.gov (United States)

    Bussi, Gianbattista; Janes, Victoria; Whitehead, Paul G; Dadson, Simon J; Holman, Ian P

    2017-07-15

    The combined indirect and direct impacts of land use change and climate change on river water quality were assessed. A land use allocation model was used to evaluate the response of the catchment land use to long-term climatic changes. Its results were used to drive a water quality model and assess the impact of climatic alterations on freshwater nitrate and phosphorus concentrations. Climatic projections were employed to estimate the likelihood of such response. The River Thames catchment (UK) was used as a case-study. If land use is considered as static parameter, according to the model results, climate change alone should reduce the average nitrate concentration, although just by a small amount, by the 2050s in the Lower Thames, due to reduced runoff (and lower export of nitrate from agricultural soils) and increased instream denitrification, and should increase the average phosphorus concentration by 12% by the 2050s in the Lower Thames, due to a reduction of the effluent dilution capacity of the river flow. However, the results of this study also show that these long-term climatic alterations are likely to lead to a reduction in the arable land in the Thames, replaced by improved grassland, due to a decrease in agriculture profitability in the UK. Taking into account the dynamic co-evolution of land use with climate, the average nitrate concentration is expected to be decreased by around 6% by the 2050s in both the upper and the lower Thames, following the model results, and the average phosphorus concentration increased by 13% in the upper Thames and 5% in the lower Thames. On the long term (2080s), nitrate is expected to decrease by 9% and 8% (upper and lower Thames respectively) and phosphorus not to change in the upper thames and increase by 5% in the lower Thames. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The effect of nutrient enrichment on the growth, nucleic acid concentrations, and elemental stoichiometry of coral reef macroalgae.

    Science.gov (United States)

    Reef, Ruth; Pandolfi, John M; Lovelock, Catherine E

    2012-08-01

    The growth rate hypothesis (GRH) links growth rates with organism elemental stoichiometry. Support for the GRH was found for many animal species, but less so for plants. This is the first study to test the GRH in macroalgae. Tropical coral reef macroalgae from three lineages, Caulerpa serrulata (Chlorophyta), Laurencia intricata (Rhodophyta), and Sargassum polyphyllum (Phaeophyceae) were grown enriched with nitrogen or phosphorous and under control conditions at Heron Island on the Great Barrier Reef, Australia. Growth rate, photosynthesis, nucleic acid composition, and elemental stoichiometry were measured. Nutrient enrichment had positive effects on photosynthetic rates and on investment in RNA. However, growth rate was not correlated with either photosynthetic rates or RNA content; thus, we did not find support for the GRH in tropical macroalgae. Macroalgae, especially L. intricata, accumulated P to very high levels (>0.6% of dry weight). The growth rate response to tissue P concentrations was unimodal. Above 0.21%, P accumulation had negative effects on growth. Nitrogen was not stored, but evidence of futile cycling was observed. The capacity to store large amounts of P is probably an adaptation to the low and patchy nutrient environment of the tropical oceans.

  1. Sphagnum moss as a growing media constituent: some effects of harvesting, processing and storage

    OpenAIRE

    S. Kumar

    2017-01-01

    The Sphagnum material used in horticulture so far has been harvested manually, and most of the available data about Sphagnum properties have been obtained from this material. A question that remains unanswered is how changes during harvesting and processing, as well as the use of mechanical methods, affect the important properties of Sphagnum moss as a growing media constituent. Some of the effects have been evaluated in Sphagnum farming projects in Germany during the past ten years, and are ...

  2. Soil Respiration Controls Ionic Nutrient Concentration In Percolating Water In Rice Fields

    Science.gov (United States)

    Kimura, M.

    2004-12-01

    Soil water in the plow layer in rice fields contains various kinds of cations and anions, and they are lost from the plow layer by water percolation. Some portions of CO2 produced by respirations of rice roots and soil microorganisms are also leached by water percolation to the subsoil layer as HCO3-. As the electrical neutrality of inorganic substances in percolating water is maintained when they are assumed to be in the form of simple cations and anions, soil respiration accelerates the leaching of ionic nutrients from the plow layer by water percolation. The proportion of inorganic carbon (Σ CO2) originated from photosynthates in the total Σ CO2 in soil solution in the plow layer was from 28 to 36 % in the rice straw amended soil and from 16 to 31 % in the soil without rice straw amendment in a soil pot experiment with rice plant after the maximum tillering stage. Most of Σ CO2 in percolating water from the plow layer accumulates in the subsoil layer. Periodical measurement of Σ CO2 in percolating water at 13 and 40 cm soil depths indicated that 10 % of total soil organic C in the plow layer was leached down from the plow layer (13 cm), and that about 90 % of it was retained in the subsoil layer to the depth of 40 cm. Water soluble organic materials are also leached from the plow layer by water percolation, and the leaching is accelerated by soil reduction. Soil reduction decreased the content of organic materials that were bound with ferric iron in soil (extractable by 0.1M Na4P2O7 + NaBH4) and increased the content of organic materials that were extractable by the neutral chelating solution (0.1M Na4P2O7). In addition, water percolation transformed the latter organic materials to those that were extractable by water and a neutral salt. Considerable portions of organic materials in percolating water are adsorbed in the subsoil layer, and then partially decomposed and polymerized to specific soil organic materials in the subsoil. Organic materials that were

  3. The Effect of Potassium Concentration in Nutrient Solution on Lycopene, Vitamin C and Qualitative Characteristics of Cherry Tomato in Saline Conditions

    Directory of Open Access Journals (Sweden)

    E. Shabani Sangtarashani

    2013-06-01

    Full Text Available Potassium (K has a special place in improving the quality of agricultural products. To evaluate the effect of K concentration in nutrient solution on lycopene content, vitamin C and qualitative characteristics of cherry tomato in NaCl salinity conditions, an experiment was carried out as a completely randomized design with five treatments and three replications at university of Tabriz, Tabriz, Iran, in 2010. Treatments consisted of four concentrations of K (0.2, 2, 7 and 14 mM in nutrient solution with 60 mM NaCl concentration. A nutrient solution treatment without salinity was considered as control. The experiment was conducted in greenhouse, in a hydroponic system. The results indicated that increasing of K concentration increased lycopene content in fruit. Lycopene content in control treatment showed significant difference (P<0.01 in comparison with salinity treatments. With increasing the K concentration (except at 14 mM concentration, vitamin C content was increased, but indicated no statistically significant difference. Vitamin C content in saline conditions was more than control treatment, but showed no significant difference. Adding potassium concentration in nutrient solution improved yield and enhanced quality parameters such as percentage of dry matter, soluble solids and electrical conductivity of fruit extract. Since in saline conditions, the qualitative characteristics of tomato at 7 mM concentration were in the best situation, therefore using this concentration is recommended.

  4. High specificity but contrasting biodiversity of Sphagnum-associated bacterial and plant communities in bog ecosystems independent of the geographical region.

    Science.gov (United States)

    Opelt, Katja; Berg, Christian; Schönmann, Susan; Eberl, Leo; Berg, Gabriele

    2007-10-01

    Mosses represent ecological niches that harbor a hitherto largely uncharacterized microbial diversity. To investigate which factors affect the biodiversity of bryophyte-associated bacteria, we analyzed the bacterial communities associated with two moss species, which exhibit different ecological behaviors and importance in bog ecosystems, Sphagnum magellanicum and Sphagnum fallax, from six temperate and boreal bogs in Germany and Norway. Furthermore, their surrounding plant communities were studied. Molecular analysis of bacterial communities was determined by single-strand conformation polymorphism (SSCP) analysis using eubacterial and genus-specific primers for the dominant genera Burkholderia and Serratia as well as by sequence analysis of a Burkholderia 16S rRNA gene clone library. Plant communities were analyzed by monitoring the abundance and composition of bryophyte and vascular plant species, and by determining ecological indicator values. Interestingly, we found a high degree of host specificity for associated bacterial and plant communities of both Sphagnum species independent of the geographical region. Calculation of diversity indices on the basis of SSCP gels showed that the S. fallax-associated communities displayed a statistically significant higher degree of diversity than those associated with S. magellanicum. In contrast, analyses of plant communities of Sphagnum-specific habitats resulted in a higher diversity of S. magellanicum-specific habitats for all six sites. The higher content of nutrients in the S. fallax-associated ecosystems can explain higher diversity of microorganisms.

  5. Prenatal lipid-based nutrient supplements increase cord leptin concentration in pregnant women from rural Burkina Faso.

    Science.gov (United States)

    Huybregts, Lieven; Roberfroid, Dominique; Lanou, Hermann; Meda, Nicolas; Taes, Youri; Valea, Innocent; D'Alessandro, Umberto; Kolsteren, Patrick; Van Camp, John

    2013-05-01

    In developing countries, prenatal lipid-based nutrient supplements (LNSs) were shown to increase birth size; however, the mechanism of this effect remains unknown. Cord blood hormone concentrations are strongly associated with birth size. Therefore, we hypothesize that LNSs increase birth size through a change in the endocrine regulation of fetal development. We compared the effect of daily prenatal LNSs with multiple micronutrient tablets on cord blood hormone concentrations using a randomized, controlled design including 197 pregnant women from rural Burkina Faso. Insulin-like growth factors (IGF) I and II, their binding proteins IGFBP-1 and IGFBP-3, leptin, cortisol, and insulin were quantified in cord sera using immunoassays. LNS was associated with higher cord blood leptin mainly in primigravidae (+57%; P = 0.02) and women from the highest tertile of BMI at study inclusion (+41%; P = 0.02). We did not find any significant LNS effects on other measured cord hormones. The observed increase in cord leptin was associated with a significantly higher birth weight. Cord sera from small-for-gestational age newborns had lower median IGF-I (-9 μg/L; P = 0.003), IGF-II (-79 μg/L; P = 0.003), IGFBP-3 (-0.7 μg/L; P = 0.007), and leptin (-1.0 μg/L; P = 0.016) concentrations but higher median cortisol (+18 μg/L; P = 0.037) concentrations compared with normally grown newborns. Prenatal LNS resulted in increased cord leptin concentrations in primigravidae and mothers with higher BMI at study inclusion. The elevated leptin concentrations could point toward a higher neonatal fat mass.

  6. The importance of groundwater-derived carbon dioxide in the restoration of small Sphagnum bogs

    NARCIS (Netherlands)

    Patberg, Wouter; Baaijens, Gert Jan; Smolders, Alfons J. P.; Grootjans, Ab P.; Elzenga, J. Theo M.

    Essential for successful bog restoration is the reestablishment of Sphagnum mosses. High carbon dioxide availability has been shown to be of great importance for the growth of Sphagnum mosses. In well-developed Sphagnum bogs large amounts of carbon dioxide are produced by (an)aerobic decomposition

  7. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog

    Science.gov (United States)

    Walker, Anthony P.; Carter, Kelsey R.; Gu, Lianhong; Hanson, Paul J.; Malhotra, Avni; Norby, Richard J.; Sebestyen, Stephen D.; Wullschleger, Stan D.; Weston, David J.

    2017-05-01

    Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. We investigate the seasonal drivers of Sphagnum gross primary production (GPP)—the entry point of carbon into wetland ecosystems. Continuous flux measurements and flux partitioning show a seasonal cycle of Sphagnum GPP that peaked in the late summer, well after the peak in photosynthetically active radiation. Wavelet analysis showed that water table height was the key driver of weekly variation in Sphagnum GPP in the early summer and that temperature was the primary driver of GPP in the late summer and autumn. Flux partitioning and a process-based model of Sphagnum photosynthesis demonstrated the likelihood of seasonally dynamic maximum rates of photosynthesis and a logistic relationship between the water table and photosynthesizing tissue area when the water table was at the Sphagnum surface. The model also suggested that variability in internal resistance to CO2 transport, a function of Sphagnum water content, had minimal effect on GPP. To accurately model Sphagnum GPP, we recommend the following: (1) understanding seasonal photosynthetic trait variation and its triggers in Sphagnum; (2) characterizing the interaction of Sphagnum photosynthesizing tissue area with water table height; (3) modeling Sphagnum as a "soil" layer for consistent simulation of water dynamics; and (4) measurement of Sphagnum "canopy" properties: extinction coefficient (k), clumping (Ω), and maximum stem area index (SAI).

  8. Effects of Salinity Stress on Gas Exchange, Growth, and Nutrient Concentrations of Two Citrus Rootstocks

    Directory of Open Access Journals (Sweden)

    D. Khoshbakht

    2015-03-01

    Full Text Available A greenhouse study was undertaken to assess the salt tolerance of two citrus rootstocks, namely, Bakraii (Citrus sp. and Trifoliate orange (Poncirus trifoliata. A factorial experiment through a completely randomized design (CRD with three replications and four levels of salt including 0, 20, 40 and 60 mM NaCl was conducted. After eight weeks of treatment, number of leaves, plant height, leaf area, wet and dry weight of leaf, stem and root, length of root, chlorophyll content, net CO2 assimilation rate (ACO2, stomatal conductance (gs, transpiration (E and water use efficiency (WUE and ion concentrations were measured. Salinity decreased growth and net gas exchange. Trifoliate orange showed the most decrease in growth indices and net gas exchange compared with Bakraii. The ability to limit the transfer of sodium to leaves in low levels of salt was observed in Trifoliate orange, but this ability was not observed in high levels of salt. Results showed that accumulation of chloride in leaves and roots were less in Bakraii compared to the Trifoliate orange. The lower Cl- concentration in leaves of Bakraii than trifoliate orange suggests that the salinity tolerance of Bakraii is associated with less transport of Cl- to the leaves. Salinity increased K+ and decreased Mg2+ and Ca2+ concentrations in leaves of both rootstocks. It is proposed that salt stress effect on plant physiological processes such as changes in plant growth, Cl- and Na+ toxicity, and mineral distribution, decreases chlorophyll content and reduces the photosynthetic efficiency of these citrus species.

  9. Effect of increasing concentrations of lead, cadmium, chromium, nickel, or zinc on lettuce grown in nutrient solution

    Energy Technology Data Exchange (ETDEWEB)

    Foroughi, M.; Hoffmann, G.; Teicher, K.; Venter, F.

    1975-01-01

    Experiments were performed to examine concentrations at which excess symptoms could be expected, which kind of damage symptoms appear and in which amount the heavy metals are enriched in roots and leaves. The following results were revealed. Lettuce (Lactuca sativa L. var. capitata L.) can tolerate amounts of Cd below 1 ppm, of Ni below 2 ppm and of Pb below 20 ppm in the nutrient solution without any symptoms of excess. The growth of lettuce was mostly influenced by Cd, least of all by Pb. Only Ni caused specific poisoning symptoms. Heavy metals were enriched in different amounts in roots and leaves. The contents of Cd and Ni were more than twice as high as those of Pb. The heavy metals influenced the uptake and distribution of macro-elements more (nitrogen) or less (potassium) vigorously.

  10. Effect of xylose and nutrients concentration on ethanol production by a newly isolated extreme thermophilic bacterium

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2011-01-01

    An extreme thermophilic ethanol-producing strain was isolated from an ethanol high-yielding mixed culture, originally isolated from a hydrogen producing reactor operated at 70 °C. Ethanol yields were assessed with increasing concentrations of xylose, up to 20 g/l. The ability of the strain to gro...... product under most of the conditions tested, including in media lacking vitamins, peptone and yeast extract. The results indicate that this new organism is a promising candidate for the development of a second generation bio-ethanol production process. © IWA Publishing 2011....

  11. Evolution of niche preference in Sphagnum peat mosses.

    Science.gov (United States)

    Johnson, Matthew G; Granath, Gustaf; Tahvanainen, Teemu; Pouliot, Remy; Stenøien, Hans K; Rochefort, Line; Rydin, Håkan; Shaw, A Jonathan

    2015-01-01

    Peat mosses (Sphagnum) are ecosystem engineers-species in boreal peatlands simultaneously create and inhabit narrow habitat preferences along two microhabitat gradients: an ionic gradient and a hydrological hummock-hollow gradient. In this article, we demonstrate the connections between microhabitat preference and phylogeny in Sphagnum. Using a dataset of 39 species of Sphagnum, with an 18-locus DNA alignment and an ecological dataset encompassing three large published studies, we tested for phylogenetic signal and within-genus changes in evolutionary rate of eight niche descriptors and two multivariate niche gradients. We find little to no evidence for phylogenetic signal in most component descriptors of the ionic gradient, but interspecific variation along the hummock-hollow gradient shows considerable phylogenetic signal. We find support for a change in the rate of niche evolution within the genus-the hummock-forming subgenus Acutifolia has evolved along the multivariate hummock-hollow gradient faster than the hollow-inhabiting subgenus Cuspidata. Because peat mosses themselves create some of the ecological gradients constituting their own habitats, the classic microtopography of Sphagnum-dominated peatlands is maintained by evolutionary constraints and the biological properties of related Sphagnum species. The patterns of phylogenetic signal observed here will instruct future study on the role of functional traits in peatland growth and reconstruction. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  12. Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses.

    Science.gov (United States)

    Kip, Nardy; Ouyang, Wenjing; van Winden, Julia; Raghoebarsing, Ashna; van Niftrik, Laura; Pol, Arjan; Pan, Yao; Bodrossy, Levente; van Donselaar, Elly G; Reichart, Gert-Jan; Jetten, Mike S M; Damsté, Jaap S Sinninghe; Op den Camp, Huub J M

    2011-08-15

    Sphagnum peatlands are important ecosystems in the methane cycle. Methane-oxidizing bacteria in these ecosystems serve as a methane filter and limit methane emissions. Yet little is known about the diversity and identity of the methanotrophs present in and on Sphagnum mosses of peatlands, and only a few isolates are known. The methanotrophic community in Sphagnum mosses, originating from a Dutch peat bog, was investigated using a pmoA microarray. A high biodiversity of both gamma- and alphaproteobacterial methanotrophs was found. With Sphagnum mosses as the inoculum, alpha- and gammaproteobacterial acidophilic methanotrophs were isolated using established and newly designed media. The 16S rRNA, pmoA, pxmA, and mmoX gene sequences showed that the alphaproteobacterial isolates belonged to the Methylocystis and Methylosinus genera. The Methylosinus species isolated are the first acid-tolerant members of this genus. Of the acidophilic gammaproteobacterial strains isolated, strain M5 was affiliated with the Methylomonas genus, and the other strain, M200, may represent a novel genus, most closely related to the genera Methylosoma and Methylovulum. So far, no acidophilic or acid-tolerant methanotrophs in the Gammaproteobacteria class are known. All strains showed the typical features of either type I or II methanotrophs and are, to the best of our knowledge, the first isolated (acidophilic or acid-tolerant) methanotrophs from Sphagnum mosses.

  13. Effect of Nitrogen Form and pH of Nutrient Solution on the Shoot Concentration of Phosphorus, Nitrate, and Nitrogen of Spinach in Hydroponic Culture

    OpenAIRE

    N. Najafi; M. Parsazadeh

    2010-01-01

    In order to study the effect of nitrogen form and pH of nutrient solution on the shoot concentration of P, nitrate, organic N + inorganic ammonium, and total N of spinach, a factorial experiment was conducted with two factors including pH of nutrient solution in three levels (4.5, 6.5 and 8.0) and nitrate to ammonium ratio of nutrient solution in five levels (100:0, 75:25, 50:50, 25:75 and 0:100). This factorial experiment was carried out in a completely randomized design with four replicatio...

  14. Contrasting phylogeographic patterns in Sphagnum fimbriatum and Sphagnum squarrosum (Bryophyta, Sphagnopsida) in Europe.

    Science.gov (United States)

    Szövényi, Péter; Hock, Zsófia; Urmi, Edwin; Schneller, Jakob J

    2006-01-01

    The chloroplast phylogeography of two peat mosses (Sphagnum fimbriatum and Sphagnum squarrosum) with similar distributions but different life history characteristics was investigated in Europe. Our main aim was to test whether similar distributions reflect similar phylogeographic and phylodemographic processes. Accessions covering the European distributions of the species were collected and approx. 2000 bp of the chloroplast genome of each species was sequenced. Maximum parsimony, statistical parsimony and phylodemographic analyses were used to address the question of whether these species with similar distributions show evidence of similar phylogeographic and phylodemographic processes. The chloroplast haplotypes of the currently spreading species S. fimbriatum showed strong geographic structure, whereas those of S. squarrosum, which has stable historical population sizes, showed only very weak geographic affinity and were widely distributed. We hypothesize that S. fimbriatum survived the last glaciations along the Atlantic coast of Europe, whereas S. squarrosum had numerous, scattered refugia in Europe. The dominance of one haplotype of S. fimbriatum across almost all of Europe suggests rapid colonization after the last glacial maximum. We hypothesize that high colonizing ability is an inherent characteristic of the species and its recent expansion in Europe is a response to climate change.

  15. Ion exchange in sphagnum and its relation to bog ecology

    Energy Technology Data Exchange (ETDEWEB)

    Clymo, R S

    1963-01-01

    In sphagnum cuspidatum unesterified polyuronic acids form 12 percent of the dry weight; in S. acutifolium 25 percent of the dry weight. A good correlation has been found for sphagna between the content of unesterified polyuronic acid and the cation exchange ability, and between cation exchange ability and height of normal habitat above the water table. Anion exchange ability in sphagna is less than 0.0026 m.eq./g. d.w. compared with about 1.2 m.eq./g. d.w. for cations at pH values above 7. In natural conditions the exchange sites are, however, only partly dissociated. The production of new plant material in a bog dependent on rainwater for nurients can be sufficient to maintain the pH below 4.5, but on other than H/sup +/ could be retained in exchangeable form. A greater proportion of polyvalent cations could be retained. The kinetics of cation exchange are consistent with a heterogeneous exchange phase containing regions of high charge density and regions with lower charge density. At equilibrium the proportions of different cations in the exchange phase are largely explicable by a Donnan distribution, but there are notable exceptions. Two estimates based on donnan distribution suggest that with low external pH and/or low cation concentration the apparent concentration of exchange sites may be 2-3 eq./l., falling with rise in pH and/or increase in cation concentration to 0.9 -1.5 eq./l. The apparent dissociation coefficient also varies in these conditions from 2 x 10/sup -3/ to 1 x 10/sup -4/.

  16. Response of Yield, Yield Components and Nutrient Concentration of Cumin (Cuminum cyminum L. to Mycorrhizal Symbiosis under Salt Stress Conditions

    Directory of Open Access Journals (Sweden)

    M. Bijhani

    2016-01-01

    Full Text Available To study the effects of mycorrhizal inoculation and salinity stress on the growth, yield and nutrient concentrations of cumin (Cuminum cyminum L., an experiment was carried out as split plot in a completely randomized block design at Zabol University Research Farm in 2013. Treatments consisted of three salinity stresses: 1 (control, 5 and 10 dSm-1, was considered as the main treatments, and four levels of mycorrhizal inoculation (Glomus intraradices, G. etanicatum, G. hoi and non-inoculation as control as the sub-treatments. The effects of salinity on all traits under study, except umbers per plant, were significant, and severe stress (10 dSm-1 reduced 100 seed weight, number of seeds per umbel, concentrations of phosphorus, calcium and magnesium in seeds by 17.71, 11.4, 14.95, 46.08, 13.60 %, respectively, as compared to the control. The numbers of seeds per umbel and phosphorus concentration in seed were highest in G. intraradices with 28.4 and 54.4%, respectively as compared to control and umbels per plant was also maximum (9.7 by using G. etanicatum. Mycorrhizal inoculation did not have significant effect on calcium and magnesium concentrations in seeds and 1000 seed weight. However mycorrhiza × salinity stress interaction was significant about concentration of sodium, potassium and sodium to potassium ratio (Na/K in seeds, as well as seed yield and seed number per plant. Among the species of mycorrhiza, applied G. intraradices had better performance in severe salinity (10 dS-1 and increased seed yield and seed number per plant by 28.5 and 47.6%, respectively in comparision control. The results suggested that mycorrhizal inoculation improves water absorption by plant. Yield increases of plants under different salinity regimes dependent on their mycorrhizal inoculation.

  17. Development of a Waste Water Regenerative System - Using Sphagnum Moss Ion-exchange

    Science.gov (United States)

    McKeon, M.; Wheeler, R.; Leahy, Jj

    The use of inexpensive, light weight and regenerative systems in an enclosed environment is of great importance to sustained existence in such habitats as the International Space Station, Moon or even Mars. Many systems exist which utilise various synthetic ion exchangers to complete the process of waste water clean-up. These systems do have a very good exchange rate for cations but a very low exchange rate for anions. They also have a maximum capacity before they need regeneration. This research proposes a natural alternative to these synthetic ion-exchangers that utilises one of natures greatest ion-exchangers, that of Sphagnum Moss. Sphagna can be predominantly found in the nutrient poor environment of Raised Bogs, a type of isolated wetland with characteristic low pH and little interaction with the surrounding water table. All nutrients come from precipitation. The sphagna have developed as the bog's sponges, soaking up all available nutrients (both cation & anion) from the precipitation and eventually distributing them to the surrounding flora and fauna, through the water. The goal of this research is to use this ability in the processing of waste water from systems similar to isolated microgravity environments, to produce clean water for reuse in these environments. The nutrients taken up by the sphagna will also be utilised as a growth medium for cultivar growth, such as those selected for hydroponics' systems.

  18. Effects of Dietary Zinc Pectin Oligosaccharides Chelate Supplementation on Growth Performance, Nutrient Digestibility and Tissue Zinc Concentrations of Broilers.

    Science.gov (United States)

    Wang, Zhongcheng; Yu, Huimin; Wu, Xuezhuang; Zhang, Tietao; Cui, Hu; Wan, Chunmeng; Gao, Xiuhua

    2016-10-01

    The experiment was conducted to investigate the effects of zinc pectin oligosaccharides (Zn-POS) chelate on growth performance, nutrient digestibility, and tissue zinc concentrations of Arbor Acre broilers aged from 1 to 42 days. A total of 576 1-day-old broilers were randomly assigned into 4 groups with 9 replicates per group and 16 chicks per replicate. Chicks were fed either a basal diet (control) or basal diet supplemented with Zn-POS at 300 (Zn-POS-300), 600 (Zn-POS-600), or 900 mg/kg (Zn-POS-900), respectively, for 42 days. A 3-day metabolism trial was conducted during the last week of the experiment feeding. The average daily gain and the average daily feed intake of Zn-POS-600 were significantly higher (P digestibility of dry matter, crude protein, and metabolic energy among all groups. The control group had the lowest apparent digestibility of dry matter (P digestibility of dry matter in Zn-POS-600 was higher (P digestibility of crude protein in Zn-POS-600 or Zn-POS-900 was higher (P digestibility of metabolic energy in Zn-POS-600 or Zn-POS-900 was higher (P < 0.05) than that of Zn-POS-300. Zn-POS-600 had the highest liver zinc concentrations (P < 0.05), while Zn-POS-900 had the highest pancreatic zinc concentrations (P < 0.05). Our data suggest that the supplementation of 600 mg/kg Zn-POS is optimal in improving the average daily gain and the average daily feed intake, utilization of dietary dry matter and crude protein, and increasing tissue zinc concentrations in liver and pancreas of broilers.

  19. Effect of light Sphagnum peat on odour formation in the early stages of biowaste composting.

    Science.gov (United States)

    Kurola, Jukka M; Arnold, Mona; Kontro, Merja H; Talves, Matti; Romantschuk, Martin

    2010-05-01

    In the present study, we investigated the effects of two bulking materials, Sphagnum peat and pine wood chips, on the early stages of biowaste composting in two pilot-scale processes. Emphasis was placed on studying the formation conditions of malodorous compost gases in the initial phases of the processes. The results showed that gas emission leaving an open windrow and a closed drum composting system contained elevated concentrations of fermentative microbial metabolites when acid Sphagnum peat (pH 3.2) was used as a bulking material. Moreover, the gas emission of the peat amended drum composter contained a high concentration of odour (up to 450,000oum(-3) of air). The highest odour values in the outlet gas of peat amended composts coincided with the elevated concentrations of volatile organic compounds such as acetoin and buthanedion. We conclude that the acidifying qualities of composting substrates or bulking material may intensify odour emission from biowaste composts and prolong the early stages of the composting process. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions.

    Science.gov (United States)

    Jassey, Vincent E J; Chiapusio, Geneviève; Binet, Philippe; Buttler, Alexandre; Laggoun-Défarge, Fatima; Delarue, Frédéric; Bernard, Nadine; Mitchell, Edward A D; Toussaint, Marie-Laure; Francez, André-Jean; Gilbert, Daniel

    2013-03-01

    Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above- and belowground linkages that regulate soil organic carbon dynamics and C-balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top-predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum-polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above- and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatlands. © 2012 Blackwell Publishing Ltd.

  1. Nutrient concentrations, loads, and yields in the Eucha-Spavinaw Basin, Arkansas and Oklahoma, 2002-09

    Science.gov (United States)

    Esralew, Rachel A.; Tortorelli, Robert L.

    2010-01-01

    The city of Tulsa, Oklahoma, uses Lake Eucha and Spavinaw Lake in the Eucha-Spavinaw Basin in northwestern Arkansas and northeastern Oklahoma for public water supply. The city has spent millions of dollars over the last decade to eliminate taste and odor problems in the drinking water from the Eucha-Spavinaw system, which may be attributable to blue-green algae. Increases in the algal biomass in the lakes may be attributable to increases in nutrient concentrations in the lakes and in the waters feeding the lakes. The U.S. Geological Survey, in cooperation with the City of Tulsa, investigated and summarized total nitrogen and total phosphorus concentrations in water samples and provided estimates of nitrogen and phosphorus loads, yields, and flow-weighted concentrations during base flow and runoff for two streams discharging to Lake Eucha for the period January 2002 through December 2009. This report updates a previous report that used data from water-quality samples collected from January 2002 through December 2006. Based on the results from the Mann-Whitney statistical test, unfiltered total nitrogen concentrations were significantly greater in runoff water samples than in base-flow water samples collected from Spavinaw Creek near Maysville and near Cherokee City, Arkansas; Spavinaw Creek near Colcord, Oklahoma, and Beaty Creek near Jay, Oklahoma. Nitrogen concentrations in runoff water samples collected from all stations generally increased with increasing streamflow. Nitrogen concentrations in base-flow and runoff water samples collected in Spavinaw Creek significantly increased from the station furthest upstream (near Maysville) to the Sycamore station and then significantly decreased from the Sycamore station to the station furthest downstream (near Colcord). Nitrogen concentrations in base-flow and runoff water samples collected from Beaty Creek were significantly less than base-flow and runoff water samples collected from Spavinaw Creek. Based on the results

  2. Active moss biomonitoring of trace elements with Sphagnum girgensohnii moss bags in relation to atmospheric bulk deposition in Belgrade, Serbia

    International Nuclear Information System (INIS)

    Anicic, M.; Tasic, M.; Frontasyeva, M.V.; Tomasevic, M.; Rajsic, S.; Mijic, Z.; Popovic, A.

    2009-01-01

    Active biomonitoring with wet and dry moss bags was used to examine trace element atmospheric deposition in the urban area of Belgrade. The element accumulation capability of Sphagnum girgensohnii Russow was tested in relation to atmospheric bulk deposition. Moss bags were mounted for five 3-month periods (July 2005-October 2006) at three representative urban sites. For the same period monthly bulk atmospheric deposition samples were collected. The concentrations of Al, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, and Pb were determined by instrumental neutron activation analyses and atomic absorption spectrometry. Significant accumulation of most elements occurred in the exposed moss bags compared with the initial moss content. High correlations between the elements in moss and bulk deposits were found for V, Cu, As, and Ni. The enrichment factors of the elements for both types of monitor followed the same pattern at the corresponding sites. - Accumulated trace elements in the moss Sphagnum girgensohnii reflect atmospheric deposition

  3. Photosynthetic performance in Sphagnum transplanted along a latitudinal nitrogen deposition gradient.

    Science.gov (United States)

    Granath, Gustaf; Strengbom, Joachim; Breeuwer, Angela; Heijmans, Monique M P D; Berendse, Frank; Rydin, Håkan

    2009-04-01

    Increased N deposition in Europe has affected mire ecosystems. However, knowledge on the physiological responses is poor. We measured photosynthetic responses to increasing N deposition in two peatmoss species (Sphagnum balticum and Sphagnum fuscum) from a 3-year, north-south transplant experiment in northern Europe, covering a latitudinal N deposition gradient ranging from 0.28 g N m(-2) year(-1) in the north, to 1.49 g N m(-2) year(-1) in the south. The maximum photosynthetic rate (NP(max)) increased southwards, and was mainly explained by tissue N concentration, secondly by allocation of N to the photosynthesis, and to a lesser degree by modified photosystem II activity (variable fluorescence/maximum fluorescence yield). Although climatic factors may have contributed, these results were most likely attributable to an increase in N deposition southwards. For S. fuscum, photosynthetic rate continued to increase up to a deposition level of 1.49 g N m(-2) year(-1), but for S. balticum it seemed to level out at 1.14 g N m(-2) year(-1). The results for S. balticum suggested that transplants from different origin (with low or intermediate N deposition) respond differently to high N deposition. This indicates that Sphagnum species may be able to adapt or physiologically adjust to high N deposition. Our results also suggest that S. balticum might be more sensitive to N deposition than S. fuscum. Surprisingly, NP(max) was not (S. balticum), or only weakly (S. fuscum) correlated with biomass production, indicating that production is to a great extent is governed by factors other than the photosynthetic capacity.

  4. Concentração e conteúdo de nutrientes em lisianto, cultivado em hidroponia, em sistema NFT = Concentration and nutrient content in lisianthus grown in a hydroponic NFT system

    Directory of Open Access Journals (Sweden)

    Fernanda Alice Antonello Londero Backes

    2008-10-01

    Full Text Available O diagnóstico nutricional é fundamental para determinar as exigências das plantas quanto aos nutrientes, de forma a se proceder a um manejo adequado, de acordo com a espécie. Assim, para determinar as concentrações e conteúdos nutricionais adequados à produção e qualidade de plantas de lisianto em cultivo hidropônico, instalou-se um experimento onde as plantas foram cultivadas em sistema NFT, em diferentes soluções nutritivas. O experimento foi conduzido, segundo delineamento experimental em blocos casualizados, em esquema fatorial 4x3, totalizando 12 tratamentos, com três repetições. Ostratamentos foram compostos de quatro cultivares (Echo Champagne, Mariachi Pure White, Balboa Yellow e Ávila Blue Rim e três soluções nutritivas (Teste, Steiner modificada e Barbosa. Foram avaliadas as concentrações e os conteúdos dos nutrientes nas folhas e conteúdos na parte aérea das plantas. As plantas cultivadas nas soluções Barbosa eTeste apresentaram resultados satisfatórios quanto às concentrações e aos conteúdos de nutrientes, enquanto a solução Steiner modificada produziu plantas com limitações nutricionais.The nutritional diagnosis is fundamental for determining plantnutrients, in order to correctly manage the nutritional requirements for each species. Thus, in order to determine the ideal nutrient amount and concentration for obtaining the best yield and quality of lisianthus grown hydroponically, an experiment was conducted inwhich the plants were grown under the NFT system in different nutrient solutions. The experiment was conducted according to a random block design arrangement in a 4x3 factorial scheme, totaling 12 treatments with three repetitions. The treatments werecomprised of four cultivars (Echo Champagne, Mariachi Pure White, Balboa Yellow and Ávila Blue Rim and three nutrient solutions (Test, modified Steiner and Barbosa. In the leaves, nutrient concentration and content were evaluated; in the aerial

  5. The role of Sphagnum mosses in the methane cycling of a boreal mire.

    Science.gov (United States)

    Larmola, Tuula; Tuittila, Eeva-Stiina; Tiirola, Marja; Nykänen, Hannu; Martikainen, Pertti J; Yrjälä, Kim; Tuomivirta, Tero; Fritze, Hannu

    2010-08-01

    Peatlands are a major natural source of atmospheric methane (CH4). Emissions from Sphagnum-dominated mires are lower than those measured from other mire types. This observation may partly be due to methanotrophic (i.e., methane-consuming) bacteria associated with Sphagnum. Twenty-three of the 41 Sphagnum species in Finland can be found in the peatland at Lakkasuo. To better understand the Sphagnum-methanotroph system, we tested the following hypotheses: (1) all these Sphagnum species support methanotrophic bacteria; (2) water level is the key environmental determinant for differences in methanotrophy across habitats; (3) under dry conditions, Sphagnum species will not host methanotrophic bacteria; and (4) methanotrophs can move from one Sphagnum shoot to another in an aquatic environment. To address hypotheses 1 and 2, we measured the water table and CH4 oxidation for all Sphagnum species at Lakkasuo in 1-5 replicates for each species. Using this systematic approach, we included Sphagnum spp. with narrow and broad ecological tolerances. To estimate the potential contribution of CH4 to moss carbon, we measured the uptake of delta13C supplied as CH4 or as carbon dioxide dissolved in water. To test hypotheses 2-4, we transplanted inactive moss patches to active sites and measured their methanotroph communities before and after transplantation. All 23 Sphagnum species showed methanotrophic activity, confirming hypothesis 1. We found that water level was the key environmental factor regulating methanotrophy in Sphagnum (hypothesis 2). Mosses that previously exhibited no CH4 oxidation became active when transplanted to an environment in which the microbes in the control mosses were actively oxidizing CH4 (hypothesis 4). Newly active transplants possessed a Methylocystis signature also found in the control Sphagnum spp. Inactive transplants also supported a Methylocystis signature in common with active transplants and control mosses, which rejects hypothesis 3. Our

  6. Peatmoss (Sphagnum) diversification associated with Miocene Northern Hemisphere climatic cooling?

    Science.gov (United States)

    Shaw, A Jonathan; Devos, Nicolas; Cox, Cymon J; Boles, Sandra B; Shaw, Blanka; Buchanan, Alex M; Cave, Lynette; Seppelt, Rodney

    2010-06-01

    Global climate changes sometimes spark biological radiations that can feed back to effect significant ecological impacts. Northern Hemisphere peatlands dominated by living and dead peatmosses (Sphagnum) harbor almost 30% of the global soil carbon pool and have functioned as a net carbon sink throughout the Holocene, and probably since the late Tertiary. Before that time, northern latitudes were dominated by tropical and temperate plant groups and ecosystems. Phylogenetic analyses of mosses (phylum Bryophyta) based on nucleotide sequences from the plastid, mitochondrial, and nuclear genomes indicate that most species of Sphagnum are of recent origin (ca. Sphagnum species are not only well-adapted to boreal peatlands, they create the conditions that promote development of peatlands. The recent radiation that gave rise to extant diversity of peatmosses is temporally associated with Miocene climatic cooling in the Northern Hemisphere. The evolution of Sphagnum has had profound influences on global biogeochemistry because of the unique biochemical, physiological, and morphological features of these plants, both while alive and after death. 2010 Elsevier Inc. All rights reserved.

  7. Sphagnum distribution patterns along environmental gradients in Bulgaria

    Czech Academy of Sciences Publication Activity Database

    Hájková, Petra; Hájek, Michal

    2007-01-01

    Roč. 29, č. 1 (2007), s. 18-26 ISSN 0373-6687 Grant - others:GA AV ČR(CZ) KJB6163302 Institutional research plan: CEZ:AV0Z60050516 Keywords : Sphagnum * the Balkans * ecology Subject RIV: EF - Botanics Impact factor: 1.218, year: 2007

  8. The disappearance of Sphagnum imbricatum from Butterburn Flow, UK

    NARCIS (Netherlands)

    McClymont, E.L.; Mauquoy, D.; Yeloff, D.; Broekens, P.; van Geel, B.; Charman, D.J.; Pancost, R.D.; Chambers, F.M.; Evershed, R.P.

    2008-01-01

    The disappearance of the previously abundant moss species Sphagnum imbricatum has been investigated at Butterburn Flow, northern England, using organic geochemical, elemental, macrofossil, pollen and testate amoebae analyses. Variations in the assemblage of peat-forming plants were tracked using the

  9. Revival of Dutch Sphagnum bogs: a reasonable perspective?

    NARCIS (Netherlands)

    Tomassen, H.B.M.

    2004-01-01

    In the Netherlands, the area of raised bogs has been virtually lost during two millennia of human impact. Much effort has been invested in rewetting these cut-over bogs, but the recovery of Sphagnum-dominated vegetation often failed. The work presented includes research on the role of hydrochemistry

  10. Intercropping of Green Garlic (Allium sativum L.) Induces Nutrient Concentration Changes in the Soil and Plants in Continuously Cropped Cucumber (Cucumis sativus L.) in a Plastic Tunnel

    Science.gov (United States)

    Xiao, Xuemei; Cheng, Zhihui; Meng, Huanwen; Liu, Lihong; Li, Hezi; Dong, Yinxin

    2013-01-01

    A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and manganese (Mn) in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg) concentrations were decreased in the cucumber plants. Shoot iron (Fe) concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn) concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic. PMID:23637994

  11. Intercropping of green garlic (Allium sativum L.) induces nutrient concentration changes in the soil and plants in continuously cropped cucumber (Cucumis sativus L.) in a plastic tunnel.

    Science.gov (United States)

    Xiao, Xuemei; Cheng, Zhihui; Meng, Huanwen; Liu, Lihong; Li, Hezi; Dong, Yinxin

    2013-01-01

    A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and manganese (Mn) in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg) concentrations were decreased in the cucumber plants. Shoot iron (Fe) concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn) concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic.

  12. Intercropping of green garlic (Allium sativum L. induces nutrient concentration changes in the soil and plants in continuously cropped cucumber (Cucumis sativus L. in a plastic tunnel.

    Directory of Open Access Journals (Sweden)

    Xuemei Xiao

    Full Text Available A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N, phosphorus (P, potassium (K, calcium (Ca and manganese (Mn in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg concentrations were decreased in the cucumber plants. Shoot iron (Fe concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic.

  13. Mass loss and nutrient concentrations of buried wood as a function of organic matter removal, soil compaction, and vegetation control in a regenerating oak-pine forest

    Science.gov (United States)

    Felix Ponder; John M. Kabrick; Mary Beth Adams; Deborah S. Page-Dumroese; Marty F. Jurgensen

    2017-01-01

    Mass loss and nutrient concentrations of northern red oak (Quercus rubra) and white oak (Q. alba) wood stakes were measured 30 months after their burial in the upper 10 cm of soil in a regenerating forest after harvesting and soil disturbance. Disturbance treatments were two levels of organic matter (OM) removal (only...

  14. Effect of Carbohydrate Source and Cottonseed Meal Level in the Concentrate on Feed Intake, Nutrient Digestibility, Rumen Fermentation and Microbial Protein Synthesis in Swamp Buffaloes

    Directory of Open Access Journals (Sweden)

    M. Wanapat

    2013-07-01

    Full Text Available The objective of this study was to investigate the effect of carbohydrate source and cottonseed meal level in the concentrate on feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in swamp buffaloes. Four, 4-yr old rumen fistulated swamp buffaloes were randomly assigned to receive four dietary treatments according to a 2×2 factorial arrangement in a 4×4 Latin square design. Factor A was carbohydrate source; cassava chip (CC and CC+rice bran at a ratio 3:1 (CR3:1, and factor B was level of cottonseed meal (CM; 109 g CP/kg (LCM and 328 g CP/kg (HCM in isonitrogenous diets (490 g CP/kg. Buffaloes received urea-treated rice straw ad libitum and supplemented with 5 g concentrate/kg BW. It was found that carbohydrate source did not affect feed intake, nutrient intake, digested nutrients, nutrient digestibility, ammonia nitrogen concentration, fungi and bacterial populations, or microbial protein synthesis (p>0.05. Ruminal pH at 6 h after feeding and the population of protozoa at 4 h after feeding were higher when buffalo were fed with CC than in the CR3:1 treatment (p0.05. Based on this experiment, concentrate with a low level of cottonseed meal could be fed with cassava chips as an energy source in swamp buffalo receiving rice straw.

  15. Effect of Ni and Urea on Growth, Nitrate and Nutrients Concentration in Lettuce (Lactuca sativa Grown in Hydroponics

    Directory of Open Access Journals (Sweden)

    Hosein Nazari Mamaqani

    2017-02-01

    Full Text Available Introduction: The N source used in commercial hydroponic culture of vegetables is mainly NO3-N. The rate of NO3- uptake is usually high, particularly in leafy vegetables and it can be markedly increased when the NO3- supply in the environment is high. An abundant N supply leads to a high NO3-N absorption and accumulation in plants. When NO3- rich vegetables are consumed, various harmful effects on human health may occur such as met-hemoglobinemia (Blue Baby Syndrome and cancer. Keeping levels of NO3- below limits of FAO seems to be impossible without changing conventional fertilizer application techniques. The suitability of urea for the cultivation of field crops has been well documented. Urea is used as the main source of N fertilizer for crops grown in soil. Its use as N source for crops grown under the hydroponic system has yet to be evaluated. To hydrolyze urea, the enzyme urease requires Ni as a component. Substitution of urea for commonly used N03-N fertilizers in hydroponic culture of vegetables would not only enable to avoid excessive accumulation of N03- in plants but would also reduce the cost of production. Leafy vegetable crops, such as lettuce and spinach, contain large amounts of N03-N. Therefore, it is important to reduce N03- concentrations in hydroponically grown with lowest negative effects on yield. Materials and Methods: The experiments were carried outin greenhouse hydroponicsResearchFaculty of Agriculture, University of Tabriz in randomized complete block designwithtwo factors ureaatfivelevels of 0,25, 50, 75and100milligrams perliter(U0, U25,U50, U75, U100andnickelattwo levels of0and2mg per liter (Ni0, Ni2ofnickelsulfate(NiSO4in4replicatesusinglettuce(Lactuca sativa cv. Siyahoo. Plants fed with the modifiedHoagland solutionorhalf theconcentration. Treatments added to nutrient solution when plants were in four leaf stage. Plants were harvested 50 days after treatment. Different organs (leaves, stems and roots were separated

  16. Preferential degradation of polyphenols from Sphagnum – 4-Isopropenylphenol as a proxy for past hydrological conditions in Sphagnum-dominated peat

    NARCIS (Netherlands)

    Schellekens, J.; Bindler, R.; Martinez Cortizas, A.; McClymont, E.L.; Abbott, G.D.; Biester, H.; Pontevedra Pombal, X.; Buurman, P.

    2015-01-01

    The net accumulation of remains of Sphagnum spp. is fundamental to the development of many peatlands. The effect of polyphenols from Sphagnum on decomposition processes is frequently cited but has barely been studied. The central area of the Rödmossamyran peatland (Sweden) is an open lawn that

  17. The use of acoustic doppler meters to estimate sediment and nutrient concentrations in freshwater inflows to Texas coastal ecosystems

    Science.gov (United States)

    Zullmar Lucena; Micheal Lee

    2016-01-01

    Excessive sediment and nutrient loading are among the leading causes of impairment in water bodies of the United States due to their effect on biologic productivity, water quality, and aquatic food webs. Understanding the nutrient and suspended sediment loads affecting estuarine waters is fundamental to the assessment of the physical, chemical, and biological processes...

  18. The Roles of Sphagnum and Cyperaceae in the Methane Cycle of an Ombrotrophic Bog Revealed by the Carbon Isotope Ratios of Leaf Waxes

    Science.gov (United States)

    Isles, P. D.; Nichols, J. E.; Peteet, D. M.; Kenna, T. C.

    2011-12-01

    Methane is a strong greenhouse gas, and the role of the terrestrial carbon cycle in the concentrations of atmospheric methane is poorly understood. What is clear, is that northern peatlands are a significant source of methane to the atmosphere. A recent discovery, and a topic of much scrutiny, has been the relationship between Sphagnum in peatlands and symbiotic methanotrophic bacteria. These bacteria oxidize methane produced at depth in peatlands before it is released to the atmosphere, contributing 13C-depleted CO2 to Sphagnum photosynthate. We seek to better understand the fate of methane produced in peatlands at depth, and the relationship between methane release from peatland surfaces and parameters such as temperature, moisture, and vegetation type. We compare carbon isotope ratios of leaf wax n-alkanes from sphagnum and vascular plants and major element chemistry at three different microhabitats, hummock, hollow, and sedge tussock, in Mer Bleue an ombrotrophic peatland near Ottowa, Ontario, Canada. We use these compound-specific carbon isotope measurements to constrain the amount of methane-derived CO2 incorporated by Sphagnum. We also compare our multiannually resolved down-core measurements to data from long-term monitoring of climate parameters and methane flux from the same microhabitats to ground-truth our sedimentary signature of methane with instrumental measurements.

  19. Sphagnum moss as a growing media constituent: some effects of harvesting, processing and storage

    Directory of Open Access Journals (Sweden)

    S. Kumar

    2017-09-01

    Full Text Available The Sphagnum material used in horticulture so far has been harvested manually, and most of the available data about Sphagnum properties have been obtained from this material. A question that remains unanswered is how changes during harvesting and processing, as well as the use of mechanical methods, affect the important properties of Sphagnum moss as a growing media constituent. Some of the effects have been evaluated in Sphagnum farming projects in Germany during the past ten years, and are described in this article. Different possibilities for drying, screening and cleaning the Sphagnum material are described. The results obtained indicate that Sphagnum moss can be dried and processed using mechanical methods without negative impacts on its quality as a growing media constituent.

  20. Polymer-Coated Urea Delays Growth and Accumulation of Key Nutrients in Aerobic Rice but Does Not Affect Grain Mineral Concentrations

    Directory of Open Access Journals (Sweden)

    Terry J. Rose

    2016-01-01

    Full Text Available Enhanced efficiency nitrogen (N fertilizers (EEFs may improve crop recovery of fertilizer-N, but there is evidence that some EEFs cause a lag in crop growth compared to growth with standard urea. Biomass and mineral nutrient accumulation was investigated in rice fertilized with urea, urea-3,4-dimethylpyrazole phosphate (DMPP and polymer-coated urea (PCU to determine whether any delays in biomass production alter the accumulation patterns, and subsequent grain concentrations, of key mineral nutrients. Plant growth and mineral accumulation and partitioning to grains did not differ significantly between plants fertilized with urea or urea-DMPP. In contrast, biomass accumulation and the accumulation of phosphorus, potassium, calcium, magnesium, copper, zinc and manganese were delayed during the early growth phase of plants fertilized with PCU. However, plants in the PCU treatment ultimately compensated for this by increasing growth and nutrient uptake during the latter vegetative stages so that no differences in biomass or nutrient accumulation generally existed among N fertilizer treatments at anthesis. Delayed biomass accumulation in rice fertilized with PCU does not appear to reduce the total accumulation of mineral nutrients, nor to have any impact on grain mineral nutrition when biomass and grain yields are equal to those of rice grown with urea or urea-DMPP.

  1. Sphagnum mosses from 21 ombrotrophic bogs in the athabasca bituminous sands region show no significant atmospheric contamination of "heavy metals".

    Science.gov (United States)

    Shotyk, William; Belland, Rene; Duke, John; Kempter, Heike; Krachler, Michael; Noernberg, Tommy; Pelletier, Rick; Vile, Melanie A; Wieder, Kelman; Zaccone, Claudio; Zhang, Shuangquan

    2014-11-04

    Sphagnum moss was collected from 21 ombrotrophic (rain-fed) peat bogs surrounding open pit mines and upgrading facilities of Athabasca bituminous sands in Alberta (AB). In comparison to contemporary Sphagnum moss from four bogs in rural locations of southern Germany (DE), the AB mosses yielded lower concentrations of Ag, Cd, Ni, Pb, Sb, and Tl, similar concentrations of Mo, but greater concentrations of Ba, Th, and V. Except for V, in comparison to the "cleanest", ancient peat samples ever tested from the northern hemisphere (ca. 6000-9000 years old), the concentrations of each of these metals in the AB mosses are within a factor of 3 of "natural, background" values. The concentrations of "heavy metals" in the mosses, however, are proportional to the concentration of Th (a conservative, lithophile element) and, therefore, contributed to the plants primarily in the form of mineral dust particles. Vanadium, the single most abundant trace metal in bitumen, is the only anomaly: in the AB mosses, V exceeds that of ancient peat by a factor of 6; it is therefore enriched in the mosses, relative to Th, by a factor of 2. In comparison to the surface layer of peat cores collected in recent years from across Canada, from British Columbia to New Brunswick, the Pb concentrations in the mosses from AB are far lower.

  2. How to know which food is good for you: bumblebees use taste to discriminate between different concentrations of food differing in nutrient content.

    Science.gov (United States)

    Ruedenauer, Fabian A; Spaethe, Johannes; Leonhardt, Sara D

    2015-07-01

    In view of the ongoing pollinator decline, the role of nutrition in bee health has received increasing attention. Bees obtain fat, carbohydrates and protein from pollen and nectar. As both excessive and deficient amounts of these macronutrients are detrimental, bees would benefit from assessing food quality to guarantee an optimal nutrient supply. While bees can detect sucrose and use it to assess nectar quality, it is unknown whether they can assess the macronutrient content of pollen. Previous studies have shown that bees preferentially collect pollen of higher protein content, suggesting that differences in pollen quality can be detected either by individual bees or via feedback from larvae. In this study, we examined whether and, if so, how individuals of the buff-tailed bumblebee (Bombus terrestris) discriminate between different concentrations of pollen and casein mixtures and thus nutrients. Bumblebees were trained using absolute and differential conditioning of the proboscis extension response (PER). As cues related to nutrient concentration could theoretically be perceived by either smell or taste, bees were tested on both olfactory and, for the first time, chemotactile perception. Using olfactory cues, bumblebees learned and discriminated between different pollen types and casein, but were unable to discriminate between different concentrations of these substances. However, when they touched the substances with their antennae, using chemotactile cues, they could also discriminate between different concentrations. Bumblebees are therefore able to discriminate between foods of different concentrations using contact chemosensory perception (taste). This ability may enable them to individually regulate the nutrient intake of their colonies. © 2015. Published by The Company of Biologists Ltd.

  3. Atmospheric Pb and Ti accumulation rates from Sphagnum moss: dependence upon plant productivity.

    Science.gov (United States)

    Kempter, H; Krachler, M; Shotyk, W

    2010-07-15

    The accumulation rates of atmospheric Pb and Ti were obtained using the production rates of Sphagnum mosses collected in four ombrotrophic bogs from two regions of southern Germany: Upper Bavaria (Oberbayern, OB) and the Northern Black Forest (Nordschwarzwald, NBF). Surfaces of Sphagnum carpets were marked with plastic mesh and one year later the production of plant matter was harvested. Metal concentrations were determined in acid digests using sector field ICP-MS employing well established analytical procedures. Up to 12 samples (40 x 40 cm) were collected per site, and 6-10 sites were investigated per bog. Variations within a given sampling site were in the range 2.3-4x for Pb concentrations, 1.8-2.5x for Ti concentrations, 3-8.3x for Pb/Ti, 5.6-7.8x for Pb accumulation rates, and 2.3-6.4x for Ti accumulation rates. However, the median values of these parameters for the sites (6-10 per bog) were quite consistent. The mosses from the bogs in NBF exhibited significantly greater productivity (187-202 g m(-2) a(-1)) compared to the OB peat bogs (71-91 g m(-2) a(-1)), and these differences had a pronounced effect on the Pb and Ti accumulation rates. Highly productive mosses showed no indication of a "dilution effect" of Pb or Ti concentrations, suggesting that more productive plants were simply able to accumulate more particles from the air. The median rates of net Pb accumulation by the mosses are in excellent agreement with the fluxes obtained by direct atmospheric measurements at nearby monitoring stations in both regions (EMEP and MAPESI data).

  4. Effect of Temperature and Nutrient Concentration on Survival of Foodborne Pathogens in Deciduous Fruit Processing Environments for Effective Hygiene Management.

    Science.gov (United States)

    Duvenage, Stacey; Korsten, Lise

    2016-11-01

    Temperature and good sanitation practices are important factors for controlling growth of microorganisms. Fresh produce is stored at various temperatures to ensure quality and to prolong shelf life. When foodborne pathogens survive and grow on fresh produce at storage temperatures, then additional control strategies are needed to inactivate these pathogens. The aim of this study was to determine how temperatures associated with deciduous fruit processing and storage facilities (0.5, 4, and 21°C) affect the growth and/or survival of Escherichia coli O157:H7, Listeria monocytogenes , Salmonella enterica subsp. enterica serovar Typhimurium, and Staphylococcus aureus under different nutrient conditions (nutrient rich and nutrient poor) and on simulated contact surfaces (vinyl coupons). Information on the growth and survival of foodborne pathogens at specific deciduous fruit processing and storage temperatures (0.5°C) is not available. All pathogens except E. coli O157:H7 were able to survive on vinyl coupons at all temperatures. L. monocytogenes proliferated under both nutrient conditions independent of temperature. S. aureus was the pathogen least affected by nutrient conditions. The survival of foodborne pathogens on the vinyl coupons, a model system for studying surfaces in fruit preparation and storage environments, indicates the potential for cross-contamination of deciduous fruit products under poor sanitation conditions. Foodborne pathogens that can proliferate and survive at various temperatures under different nutrient conditions could lead to fruit cross-contamination. Temperature mismanagement, which could allow pathogen proliferation in contaminated fruit packing houses and storage environments, is a concern. Therefore, proper hygiene and sanitation practices, removal of possible contaminants, and proper food safety management systems are needed to ensure food safety.

  5. Sphagnum growth in floating cultures: Effect of planting design

    Directory of Open Access Journals (Sweden)

    Y. Hoshi

    2017-11-01

    Full Text Available To establish rapid and stable Sphagnum growth, capitulum culture of a selected strain of S. palustre was carried out using a floating culture method. Four planting treatments were tested at mountain and urban sites in Kumamoto Prefecture on Kyushu Island, south-west Japan. Capitula were planted in colonies of different sizes on 30 cm square floating rafts, but with strict control of the number (75–77 of capitula per raft. The initial cover of live green Sphagnum ranged from 15 to 20 %. Growth of the colonies was followed throughout the growing season (April to November of 2008. After three months, green coverage rates reached 40–50 % in all planting treatments. At the end of the growing season, the highest Sphagnum cover (almost 90 % at the urban site was recorded in the planting treatment with eleven re-introduced colonies of seven capitula (‘11×7cap’, while the highest capitulum number and biomass (dry weight gain occurred in the ‘4×19cap’ planting treatment. Average stem elongation ranged from 5 cm to 7 cm in the ‘77×1cap’ and ‘4×19cap’planting treatments, respectively, indicating that the larger sized colony grew longer stems. However, contrary to expectation, the ‘4×19cap’planting treatment - which had the largest colony size - did not deliver the highest number of newly formed side shoots.

  6. Heavy metal toxicities in vegetable crops. VI. The effect of potassium and calcium concentration in the nutrient solution on manganese toxicities in vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Osawa, T; Ikeda, H

    1977-01-01

    Eight species of vegetable crops were grown in solution culture in order to investigate the effect of potassium and calcium concentration in the nutrient solution on manganese toxicities in vegetable crops. Manganese was supplied at levels of 0.5, 30, and 100 ppm. At each manganese level potassium or calcium was supplied at rates of 2, 6, and 18 me/l. The pH of the nutrient solution was adjusted to 5. Manganese excess induced interveinal chlorosis on upper leaves in bean, eggplant, pepper, and spinach, and marginal chlorosis on lower leaves in cabbage, lettuce, and celery. In Welsh onions chlorosis was induced on lower leaves. Increasing the supply of potassium and calcium reduced the severity of manganese-induced chlorosis. This beneficial effect was generally more marked with calcium than with potassium. Increasing the supply of potassium and calcium was effective in alleviating the growth reduction of vegetable crops due to manganese excess. This effect also was more marked with calcium than with potassium. With increasing manganese level in the nutrient solution the manganese concentration in leaves of vegetable crops increased. Increasing the supply of potassium and calcium inhibited excessive accumulation of manganese in leaves. The influence of calcium was stronger than that of potassium. In any of the vegetable crops tested, regardless of potassium and calcium treatments, manganese concentration in leaves was closely related to manganese toxicities; the more the accumulation of manganese in leaves increased, the more the severity of manganese-induced chlorosis and growth reduction increased.

  7. Macro- and micro-nutrient concentration in leaf, woody, and root tissue of Populus irrigated with landfill leachate

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Bart T. Sexton; Richard B. Hall

    2007-01-01

    Landfill leachate offers an opportunity to supply water and plant nutritional benefits at a lower cost than traditional sources. Information about nutrient uptake and distribution into tissues of Populus irrigated with landfill leachate helps increase biomass production along with evaluating the impacts of leachate chemistry on tree health.

  8. Phylogenetic or environmental control on the organo-chemical composition of Sphagnum mosses?

    Science.gov (United States)

    Limpens, Juul; Nilsson, Mats

    2014-05-01

    Decomposition of organic material is one of the key processes that determines the size of the soil-feedback to global warming, but it is also a process surrounded with one of the largest uncertainties, making understanding its mechanistic drivers of crucial importance. In organic soils decomposition is closely determined by the organo-chemical composition of the litter entering the soil. But what, in turn drives the organo-chemical composition? Is it an emergent feature of the environment the species producing the litter grow in, or is it an evolutionary trait that can be tracked through the species' phylogeny? We set out to answer this question for one of the most import peat-forming plants on earth: the genus Sphagnum. We sampled 18 Sphagnum species, about equally distributed over 6 sites spanning a wide range of environmental conditions: most species were collected at multiple sites. For all species we characterised the chemical composition, focussing on three functional chemistry groups: (i) mineral elements, (ii) carbohydrate polymers (iii) non-carbohydrate polymers (aromatic and aliphatic compounds) . For each group of compounds we used multivariate statistical techniques to derive the degree of variation explained by environment: (site, position within site) and phylogeny (sections within genus Sphagnum). We found that the variation in mineral element concentrations was mostly explained by environment, with the biggest differences in the concentrations of basic cat-ions calcium and magnesium. In contrast, the variation in carbohydrates was mostly explained by phylogeny, with clear associations between sections and monosaccharides. The monosaccharide rhamnose was associated with species from the Acutifolia section known for their poor degradability, whereas xylose and galactose were closely associated with degradable species from the Cuspidata section. The composition non-carbohydrate polymers took an intermediate position: both environment and phylogeny

  9. Effect of Nutrient Solution Concentration, Time and Frequency of Foliar Application on Growth of Leaf and Daughter Corms of Saffron (Crocus sativus L.

    Directory of Open Access Journals (Sweden)

    R Khorasani

    2015-07-01

    Full Text Available In order to investigate the effect of different levels of nutrient solution concentration and times and frequencies of foliar applications on dry weight, nitrogen, phosphorus and potassium concentrations of leaf and corm of saffron, a pot experiment was conducted as a completely randomized design with factorial arrangement and three replications under open door conditions in research garden of ferdowsi university, faculty of agriculture. The experimental treatments were included 4 levels of solution concentration (0, 4, 8 and 12 per 1000 and 7 levels of time and frequency of foliar applications (F1: foliar application on 3th February, F2: foliar application on 18th February, F3: foliar application on 5th March, F4: foliar applications on 3th and 18th February, F5: foliar applications on 3th February and 5th March, F6: foliar applications on 18th February and 5th March, F7: foliar applications on 3th and 18th February and 5th March. Results of variance analysis showed that fresh and dry weight of corm and leaf were not influenced by concentration, time and frequency of foliar applications. Also, comparison of nitrogen, phosphorus and potassium concentrations of leaf and corm showed that there was no significant difference between levels of foliar treatments and control. Therefore, it seems that due attention to pattern of leaf and low nutrient demand of saffron, foliar applications in different levels of nutrient solution concentrations and times and frequencies of foliar applications could not increase vegetative growth and consequently, could not improve the growth and nutritional properties of saffron corms.

  10. Inhibitory effect of Sphagnum palustre extract and its bioactive compounds on aromatase activity

    Directory of Open Access Journals (Sweden)

    Hee Jeong Eom

    2016-09-01

    Full Text Available Sphagnum palustre (a moss has been traditionally used in Korea for the cure of several diseases such as cardiac pain and stroke. In this research, the inhibitory effect of S. palustre on aromatase (cytochrome P450 19, CYP19 activity was studied. [1β-3H] androstenedione was used as a substrate and incubated with S. palustre extract and recombinant human CYP19 in the presence of NADPH. S. palustre extract inhibited aromatase in a concentration-dependent manner (IC50 value: 36.4 ± 8.1 µg/mL. To elucidate the major compounds responsible for the aromatase inhibitory effects of S. palustre extract, nine compounds were isolated from the extract and tested for their inhibition of aromatase activity. Compounds 1, 6, and 7 displayed aromatase inhibition, while the inhibition by the other compounds was negligible.

  11. Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro

    NARCIS (Netherlands)

    Hajek, T.; Ballance, S.; Limpens, J.; Verhoeven, J.T.A.; Zijlstra, M.J.

    2011-01-01

    Sphagnum-dominated peatlands head the list of ecosystems with the largest known reservoirs of organic carbon (C). The bulk of this C is stored in decomposition-resistant litter of one bryophyte genus: Sphagnum. Understanding how Sphagnum litter chemistry controls C mineralization is essential for

  12. Soluble organic nutrient fluxes

    Science.gov (United States)

    Robert G. Qualls; Bruce L. Haines; Wayne Swank

    2014-01-01

    Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...

  13. The effect of temperature on growth and competition between Sphagnum species

    NARCIS (Netherlands)

    Breeuwer, A.J.G.; Heijmans, M.M.P.D.; Robroek, B.J.M.; Berendse, F.

    2008-01-01

    Peat bogs play a large role in the global sequestration of C, and are often dominated by different Sphagnum species. Therefore, it is crucial to understand how Sphagnum vegetation in peat bogs will respond to global warming. We performed a greenhouse experiment to study the effect of four

  14. Photosynthetic performance in Sphagnum transplanted along a latitudinal nitrogen deposition gradient

    NARCIS (Netherlands)

    Granath, G.; Strengbom, J.; Breeuwer, A.J.G.; Heijmans, M.M.P.D.; Berendse, F.; Rydin, H.

    2009-01-01

    Increased N deposition in Europe has affected mire ecosystems. However, knowledge on the physiological responses is poor. We measured photosynthetic responses to increasing N deposition in two peatmoss species (Sphagnum balticum and Sphagnum fuscum) from a 3-year, north-south transplant experiment

  15. Sphagnum re-introduction in degraded peatlands: the effects of aggregation, species and water table

    NARCIS (Netherlands)

    Robroek, B.J.M.; Ruijven, van J.; Schouten, M.G.C.; Breeuwer, A.J.G.; Crushell, P.H.; Berendse, F.; Limpens, J.

    2009-01-01

    In European peatlands which have been drained and cut-over in the past, re-vegetation often stagnates after the return of a species-poor Sphagnum community. Re-introduction of currently absent species may be a useful tool to restore a typical, and more diverse, Sphagnum vegetation and may ultimately

  16. Sphagnum mosses limit total carbon consumption during fire in Alaskan black spruce forests

    Science.gov (United States)

    G. Shetler; .R. Turetsky; E. Kane; E. Kasischke

    2008-01-01

    The high water retention of hummock-forming Sphagnum species minimizes soil moisture fluctuations and might protect forest floor organic matter from burning during wildfire. We hypothesized that Sphagnum cover reduces overall forest floor organic matter consumption during wildfire compared with other ground-layer vegetation. We...

  17. Greenhouse gas balance of an establishing Sphagnum culture on a former bog grassland in Germany

    Directory of Open Access Journals (Sweden)

    A. Günther

    2017-04-01

    Full Text Available The cultivation of Sphagnum mosses on re-wetted peat bogs for use in horticulture is a new land use strategy. We provide the first greenhouse gas balances for a field-scale Sphagnum farming experiment on former bog grassland, in its establishment phase. Over two years we used closed chambers to make measurements of GHG exchange on production strips of Sphagnum palustre L. and Sphagnum papillosum Lindb. and on irrigation ditches. Methane fluxes of both Sphagnum species showed a significant decrease over the study period. This trend was stronger for S. papillosum. In contrast, the estimated CO2 fluxes did not show a significant temporal trend over the study period. The production strips of both Sphagnum species were net GHG sinks of 5–9 t ha 1 a 1 (in CO2-equivalents during the establishment phase of the moss carpets. In comparison, the ditches were a CO2 source instead of a CO2 sink and emitted larger amounts of CH4, resulting in net GHG release of ~11 t ha 1 a 1 CO2-equivalents. We conclude that Sphagnum farming fields should be designed to minimise the area covered by irrigation ditches. Overall, Sphagnum farming on bogs has lower on-field GHG emissions than low-intensity agriculture.

  18. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog

    Science.gov (United States)

    Anthony P. Walker; Kelsey R. Carter; Lianhong Gu; Paul J. Hanson; Avni Malhotra; Richard J. Norby; Stephen D. Sebestyen; Stan D. Wullschleger; David J. Weston

    2017-01-01

    Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. We investigate the seasonal drivers of Sphagnum...

  19. Mixing ratio and species affect the use of substrate-derived CO2 by Sphagnum

    NARCIS (Netherlands)

    Limpens, J.; Robroek, B.J.M.; Heijmans, M.M.P.D.; Tomassen, H.B.M.

    2008-01-01

    Question: Can mixing ratio and species affect the use of substrate-derived CO2 by Sphagnum? Location: Poor fen in south Sweden and greenhouse in Wageningen, The Netherlands. Methods: Two mixing ratios of Sphagnum cuspidatum and S. magellanicum were exposed to two levels of CO2 by pumping CO2

  20. Mycorrhiza formation and nutrient concentration in leeks (¤Allium porrum¤) in relation to previous crop and cover crop management on high P soils

    DEFF Research Database (Denmark)

    Sørensen, J.N.; Larsen, J.; Jakobsen, I.

    2005-01-01

    An improved integration of mycorrhizas may increase the sustainability in plant production. Two strategies for increasing the soil inoculum potential of mycorrhizal fungi were investigated in field experiments with leeks: Pre-cropping with mycorrhizal main crops and pre-establishment of mycorrhizal......, increased the colonization of leek roots by mycorrhizal fungi. During early growth stages, this increase was 45-95% relative to no cover crop. However, cover cropping did not significantly increase nutrient concentration or growth. These variables were not influenced by the time of cover crop incorporation...... or tillage treatments. Differences in colonization, nutrient uptake and plant growth diminished during the growing period and at the final harvest date, the effects on plant production disappeared. High soil P level or high soil inoculum level was most likely responsible for the limited response of increased...

  1. Peatland restoration in Canada by the sphagnum moss layer transfer method

    Energy Technology Data Exchange (ETDEWEB)

    Rochefort, L.; Boismenu, C. [Laval Univ., Quebec City, PQ (Canada). Dept. de Phytologie, Peatland Ecology and Research Group; Quinty, F. [SNC-Lavalin, Montreal, PQ (Canada)

    2009-04-01

    This article described a peatland restoration approach that has received international recognition for restoring the ecological functions of cutover sphagnum dominated peatlands. The Peatland Ecology Research Group (PERG) conducted a long-term study at the Bois-des-Bel (BDB) peatland site in Quebec to restore plant composition to a peat accumulating ecosystem. The sphagnum moss layer transfer restoration method includes 5 obligatory steps and one optional. These include planning; surface preparation; plant collection and spreading; straw mulch spreading; blocking drainage ditches; and fertilization if needed. Variable moisture conditions throughout the restoration site contribute to the spatial variability in the development of the sphagnum layer. The site has been monitored each year since its restoration. sphagnum cover reached 60 per cent in the restored zone in 2005, a value close to the range of sphagnum cover found in natural sites. In addition, a new moss layer has developed with an average of 25 cm in thickness. 27 refs., 4 figs.

  2. Effects of bryophytes on succession from alkaline marsh to Sphagnum bog

    Energy Technology Data Exchange (ETDEWEB)

    Glime, J.M.; Wetzel, R.G.; Kennedy, B.J.

    1982-10-01

    The alkaline eastern marsh of Lawrence Lake, a marl lake in southwestern Michigan, was sampled by randomly placed line transects to determine the bryophyte cover and corresponding vascular plant zones. Cluster analysis indicated three distinct bryophyte zones which correspond with the recognized vascular plant zones. Mosses occupied over 50% of the surface in some areas. Invasion of Sphagnum, vertical zonation of the mosses on hummocks, zonation with distance from the lake, the abundance of non-Sphagnum moss hummocks, and the ability of the non-Sphagnum species to lower the pH of marsh water during laboratory incubations are evidence that non-Sphagnum mosses facilitate succession from alkaline marsh to Sphagnum bog.

  3. Spatial and temporal shifts in gross primary productivity, respiration, and nutrient concentrations in urban streams impacted by wastewater treatment plant effluent

    Science.gov (United States)

    Ledford, S. H.; Toran, L.

    2017-12-01

    Impacts of wastewater treatment plant effluent on nutrient retention and stream productivity are highly varied. The working theory has been that large pulses of nutrients from plants may hinder in-stream nutrient retention. We evaluated nitrate, total dissolved phosphorus, and dissolved oxygen in Wissahickon Creek, an urban third-order stream in Montgomery and Philadelphia counties, PA, that receives effluent from four wastewater treatment plants. Wastewater treatment plant effluent had nitrate concentrations of 15-30 mg N/L and total dissolved phosphorus of 0.3 to 1.8 mg/L. Seasonal longitudinal water quality samples showed nitrate concentrations were highest in the fall, peaking at 22 mg N/L, due to low baseflow, but total dissolved phosphorous concentrations were highest in the spring, reaching 0.6 mg/L. Diurnal dissolved oxygen patterns above and below one of the treatment plants provided estimates of gross primary productivity (GPP) and ecosystem respiration (ER). A site 1 km below effluent discharge had higher GPP in April (80 g O2 m-2 d-1) than the site above the plant (28 g O2 m-2 d-1). The pulse in productivity did not continue downstream, as the site 3 km below the plant had GPP of only 12 g O2 m-2 d-1. Productivity fell in June to 1-2 g O2 m-2 d-1 and the differences in productivity above and below plants were minimal. Ecosystem respiration followed a similar pattern in April, increasing from -17 g O2 m-2 d-1 above the plant to -47 g O2 m-2 d-1 1 km below the plant, then decreasing to -8 g O2 m-2 d-1 3 km below the plant. Respiration dropped to -3 g O2 m-2 d-1 above the plant in June but only fell to -9 to -10 g O2 m-2 d-1 at the two downstream sites. These findings indicate that large nutrient pulses from wastewater treatment plants spur productivity and respiration, but that these increases may be strongly seasonally dependent. Examining in-stream productivity and respiration is critical in wastewater impacted streams to understanding the seasonal and

  4. Impact of seasonality on the nutrient concentrations in Gautami-Godavari Estuarine Mangrove Complex, Andhra Pradesh, India.

    Science.gov (United States)

    Rao, Karuna; Priya, Namrata; Ramanathan, A L

    2018-04-01

    Spatiotemporal variations of dissolved nutrients were studied along Gautami-Godavari mangrove ecosystem to delineate their sources and fate. Average values of nitrate (NO 3 - ), dissolved silica (DSi) and phosphate (PO 4 3- ) is 2.09 mg/l, 12.7 mg/l and 0.16 mg/l in wet season and 0.47 mg/l, 6.96 mg/l and 0.29 mg/l in dry season respectively. In wet season river discharge has significant influence on NO 3 - and DSi. In dry season, NO 3 - and PO 4 3- are controlled by groundwater discharge, benthic exchange and various in situ processes owing to sediment redox condition. Mixing model shows net addition of phosphate in Coringa mangroves (95%) and Lower estuary (13%) and net removal of nitrate (24.79%) in Coringa mangrove and in estuary (58.9%). Thus present mangrove acts as net source for phosphate and net sink for nitrate and DSi. Nutrient ratio shows seasonal switching between potential Phosphorus and Nitrogen limitation in wet and dry season respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Concentrations of some macro and micro plant nutrient of cultivated soils in Central and Eastern Blacksea Region and their mapping by inverse distance weighted (IDW method

    Directory of Open Access Journals (Sweden)

    Mehmet Arif Özyazıcı

    2015-11-01

    Full Text Available The aim of this study was to determine plant nutrients content and to in terms of soil variables their soil database and generate maps of their distribution on agricultural land in Central and Eastern Black Sea Region using geographical information system (GIS. In this research, total 3400 soil samples (0-20 cm depth were taken at 2.5 x 2.5 km grid points representing agricultural soils. Total nitrogen, extractable calcium, magnesium, sodium, boron, iron, copper, zinc and manganese contents were analysed in collected soil samples. Analysis results of these samples were classified and evaluated for deficiency, sufficiency or excess with respect to plant nutrients. Afterwards, in terms of GIS, a soil database and maps for current status of the study area were created by using inverse distance weighted (IDW interpolation method. According to this research results, it was determined sufficient plant nutrient elements in terms of total nitrogen, extractable iron, copper and manganese in arable soils of Central and Eastern Blacksea Region while, extractable calcium, magnesium, sodium were found good and moderate level in 66.88%, 81.44% and 64.56% of total soil samples, respectively. In addition, insufficient boron and zinc concentration were found in 34.35% and 51.36% of soil samples, respectively.

  6. Characteristics of Eastern Canadian cultivated Sphagnum and potential use as a substitute for perlite and vermiculite in peat-based horticultural substrates

    OpenAIRE

    M. Aubé; M. Quenum; L.L. Ranasinghe

    2015-01-01

    Sphagnum cultivation on harvested peatlands to meet wetland restoration objectives could be an economically feasible activity since cultivated Sphagnum has potential horticultural applications. We compared the characteristics of cultivated Sphagnum from Shippagan (Canada) with those of non-cultivated Sphagnum products from Chile, New Zealand and Canada, and assessed its potential as a perlite and vermiculite substitute in horticultural peat-based substrates. Shippagan cultivated Sphagnum was ...

  7. Effect of Plant Growth Promoting Rhizobacteria on the Concentration and Uptake of Macro Nutrients by Corn in a Cd-contaminated Calcareous Soil under Drought Stress

    Directory of Open Access Journals (Sweden)

    shahrzad karami

    2017-02-01

    Full Text Available Introduction: Heavy metals such as cadmium (Cd are found naturally in soils, but their amount can be changed by human activities. The study of the uptake and accumulation of heavy metals by plants is done in order to prevent their threats on human and animal’s health.Cadmium is a toxic element for living organisms. Cadmium competes with many of nutrients to be absorbed by the plant and interferes with their biological roles. Water stress affects the cell structure and the food is diverted from its normal metabolic pathway. It also reduces the availability and uptake of nutrients by the plant. One reason for the reduction of plant growth under drought stress is the accumulation of ethylene in plants. There are ways to mitigate the negative effects of drought stress that one of which is the use of Plant Growth Promoting Rhizobacteria(PGPRs to increasing the availability of nutrients. Soil beneficial bacteria play an important role in the biological cycles and have been used to increase plant health and soil fertility over the past few decades.The aim of this study was to investigate theeffect of PGPRson the concentration and uptake of macro nutrients by corn in a Cd-contaminated calcareous soil under drought stress. Materials and Methods: A greenhouse factorial experiment was conducted in a completely randomized design with three replications. The treatments were two levels of bacteria (with and without bacteria, four levels of Cd (5, 10, 20, and 40 mg kg-1, and three levels of drought stress (without stress, 80, and 65% of field capacity. The pots were filled with 3 kg of treated soil. Cd was treated as its sulfate salt in amounts of 5, 10, 20, and 40 mg kg-1. The soil was mixed uniformly with 150 mg N kg-1 as urea, 20 mg P kg-1 as Ca (H2PO42, 5 mg Fe kg-1 as Fe-EDDHA and 10, 10 and 2.5 mg Zn, Mn and Cu kg-1, respectively as their sulfate salt in order to meet plant needs for these nutrients. Six seeds of Zea mays (var. HIDO were planted at

  8. The distribution of {sup 137}Cs, K, Rb and Cs in plants in a Sphagnum-dominated peatland in eastern central Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Vinichuk, M., E-mail: mykhailo.vinichuk@mark.slu.s [Department of Soil and Environment, Swedish University of Agricultural Sciences, SLU, P.O. Box 7014, SE-750 07 Uppsala (Sweden); Department of Ecology, Zhytomyr State Technological University, 103 Chernyakhovsky Street, 10005 Zhytomyr (Ukraine); Johanson, K.J. [Department of Soil and Environment, Swedish University of Agricultural Sciences, SLU, P.O. Box 7014, SE-750 07 Uppsala (Sweden); Rydin, H. [Department of Plant Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvaegen 18D, SE-752 36 Uppsala (Sweden); Rosen, K. [Department of Soil and Environment, Swedish University of Agricultural Sciences, SLU, P.O. Box 7014, SE-750 07 Uppsala (Sweden)

    2010-02-15

    We record the distribution of {sup 137}Cs, K, Rb and Cs within individual Sphagnum plants (down to 20 cm depth) as well as {sup 137}Cs in vascular plants growing on a peatland in eastern central Sweden. In Calluna vulgaris{sup 137}Cs was mainly located within the green parts, whereas Andromeda polifolia, Eriophorum vaginatum and Vaccinium oxycoccos showed higher {sup 137}Cs activity in roots. Carex rostrata and Menyanthes trifoliata showed variable distribution of {sup 137}Cs within the plants. The patterns of {sup 137}Cs activity concentration distribution as well as K, Rb and Cs concentrations within individual Sphagnum plants were rather similar and were usually highest in the capitula and/or in the subapical segments and lowest in the lower dead segments, which suggests continuous relocation of those elements to the actively growing apical part. The {sup 137}Cs and K showed relatively weak correlations, especially in capitula and living green segments (0-10 cm) of the plant (r = 0.50). The strongest correlations were revealed between {sup 137}Cs and Rb (r = 0.89), and between {sup 137}Cs and stable Cs (r = 0.84). This suggests similarities between {sup 137}Cs and Rb in uptake and relocation within the Sphagnum, but that {sup 137}Cs differs from K.

  9. The distribution of 137Cs, K, Rb and Cs in plants in a Sphagnum-dominated peatland in eastern central Sweden

    International Nuclear Information System (INIS)

    Vinichuk, M.; Johanson, K.J.; Rydin, H.; Rosen, K.

    2010-01-01

    We record the distribution of 137 Cs, K, Rb and Cs within individual Sphagnum plants (down to 20 cm depth) as well as 137 Cs in vascular plants growing on a peatland in eastern central Sweden. In Calluna vulgaris 137 Cs was mainly located within the green parts, whereas Andromeda polifolia, Eriophorum vaginatum and Vaccinium oxycoccos showed higher 137 Cs activity in roots. Carex rostrata and Menyanthes trifoliata showed variable distribution of 137 Cs within the plants. The patterns of 137 Cs activity concentration distribution as well as K, Rb and Cs concentrations within individual Sphagnum plants were rather similar and were usually highest in the capitula and/or in the subapical segments and lowest in the lower dead segments, which suggests continuous relocation of those elements to the actively growing apical part. The 137 Cs and K showed relatively weak correlations, especially in capitula and living green segments (0-10 cm) of the plant (r = 0.50). The strongest correlations were revealed between 137 Cs and Rb (r = 0.89), and between 137 Cs and stable Cs (r = 0.84). This suggests similarities between 137 Cs and Rb in uptake and relocation within the Sphagnum, but that 137 Cs differs from K.

  10. The distribution of (137)Cs, K, Rb and Cs in plants in a Sphagnum-dominated peatland in eastern central Sweden.

    Science.gov (United States)

    Vinichuk, M; Johanson, K J; Rydin, H; Rosén, K

    2010-02-01

    We record the distribution of (137)Cs, K, Rb and Cs within individual Sphagnum plants (down to 20cm depth) as well as (137)Cs in vascular plants growing on a peatland in eastern central Sweden. In Calluna vulgaris(137)Cs was mainly located within the green parts, whereas Andromeda polifolia, Eriophorum vaginatum and Vaccinium oxycoccos showed higher (137)Cs activity in roots. Carex rostrata and Menyanthes trifoliata showed variable distribution of (137)Cs within the plants. The patterns of (137)Cs activity concentration distribution as well as K, Rb and Cs concentrations within individual Sphagnum plants were rather similar and were usually highest in the capitula and/or in the subapical segments and lowest in the lower dead segments, which suggests continuous relocation of those elements to the actively growing apical part. The (137)Cs and K showed relatively weak correlations, especially in capitula and living green segments (0-10cm) of the plant (r=0.50). The strongest correlations were revealed between (137)Cs and Rb (r=0.89), and between (137)Cs and stable Cs (r=0.84). This suggests similarities between (137)Cs and Rb in uptake and relocation within the Sphagnum, but that (137)Cs differs from K. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Spatio-temporal trends of nitrogen deposition and climate effects on Sphagnum productivity in European peatlands

    International Nuclear Information System (INIS)

    Granath, Gustaf; Limpens, Juul; Posch, Maximilian; Mücher, Sander; Vries, Wim de

    2014-01-01

    To quantify potential nitrogen (N) deposition impacts on peatland carbon (C) uptake, we explored temporal and spatial trends in N deposition and climate impacts on the production of the key peat forming functional group (Sphagnum mosses) across European peatlands for the period 1900–2050. Using a modelling approach we estimated that between 1900 and 1950 N deposition impacts remained limited irrespective of geographical position. Between 1950 and 2000 N deposition depressed production between 0 and 25% relative to 1900, particularly in temperate regions. Future scenarios indicate this trend will continue and become more pronounced with climate warming. At the European scale, the consequences for Sphagnum net C-uptake remained small relative to 1900 due to the low peatland cover in high-N areas. The predicted impacts of likely changes in N deposition on Sphagnum productivity appeared to be less than those of climate. Nevertheless, current critical loads for peatlands are likely to hold under a future climate. - Highlights: • We model the effect of N deposition combined with climate on production of Sphagnum between 1900 and 2050. • Spatially explicit projections are indicated on an updated European peatland distribution map. • Results stress the vulnerability of temperate Sphagnum peatlands to current and future N deposition. • Future impacts of N deposition on Sphagnum productivity likely depend more on climate change than on N deposition rate. - Temperate Sphagnum peatlands are vulnerable to current and future N deposition and current critical loads for peatlands are likely to hold under a future climate

  12. Molybdenum-based diazotrophy in a Sphagnum peatland in northern Minnesota.

    Science.gov (United States)

    Warren, Melissa J; Lin, Xueju; Gaby, John C; Kretz, Cecilia B; Kolton, Max; Morton, Peter L; Pett-Ridge, Jennifer; Weston, David J; Schadt, Christopher W; Kostka, Joel E; Glass, Jennifer B

    2017-06-30

    Microbial N 2 fixation (diazotrophy) represents an important nitrogen source to oligotrophic peatland ecosystems, which are important sinks for atmospheric CO 2 and susceptible to changing climate. The objectives of this study were: (i) to determine the active microbial group and type of nitrogenase mediating diazotrophy in a ombrotrophic Sphagnum -dominated peat bog (the S1 peat bog, Marcell Experimental Forest, Minnesota, USA); and (ii) to determine the effect of environmental parameters (light, O 2 , CO 2 , CH 4 ) on potential rates of diazotrophy measured by acetylene (C 2 H 2 ) reduction and 15 N 2 incorporation. Molecular analysis of metabolically active microbial communities suggested that diazotrophy in surface peat was primarily mediated by Alphaproteobacteria ( Bradyrhizobiaceae and Beijerinckiaceae ). Despite higher dissolved vanadium (V; 11 nM) than molybdenum (Mo; 3 nM) in surface peat, a combination of metagenomic, amplicon sequencing and activity measurements indicated that Mo-containing nitrogenases dominate over the V-containing form. Acetylene reduction was only detected in surface peat exposed to light, with the highest rates observed in peat collected from hollows with the highest water content. Incorporation of 15 N 2 was suppressed 90% by O 2 and 55% by C 2 H 2 , and was unaffected by CH 4 and CO 2 amendments. These results suggest that peatland diazotrophy is mediated by a combination of C 2 H 2 -sensitive and C 2 H 2 -insensitive microbes that are more active at low O 2 and show similar activity at high and low CH 4 Importance Previous studies indicate that diazotrophy provides an important nitrogen source and is linked to methanotrophy in Sphagnum -dominated peatlands. However, the environmental controls and enzymatic pathways of peatland diazotrophy, as well as the metabolically active microbial populations that catalyze this process remain in question. Our findings indicate that oxygen levels and photosynthetic activity override low

  13. A phylogenetic delimitation of the "Sphagnum subsecundum complex" (Sphagnaceae, Bryophyta).

    Science.gov (United States)

    Shaw, A Jonathan; Boles, Sandra; Shaw, Blanka

    2008-06-01

    A seemingly obvious but sometimes overlooked premise of any evolutionary analysis is delineating the group of taxa under study. This is especially problematic in some bryophyte groups because of morphological simplicity and convergence. This research applies information from nucleotide sequences for eight plastid and nuclear loci to delineate a group of northern hemisphere peat moss species, the so-called Sphagnum subsecundum complex, which includes species known to be gametophytically haploid or diploid (i.e., sporophytically diploid-tetraploid). Despite the fact that S. subsecundum and several species in the complex have been attributed disjunct ranges that include all major continents, phylogenetic analyses suggest that the group is actually restricted to Europe and eastern North America. Plants from western North America, from California to Alaska, which are morphologically similar to species of the S. subsecundum complex in eastern N. America and Europe, actually belong to a different deep clade within Sphagnum section Subsecunda. One species often considered part of the S. subsecundum complex, S. contortum, likely has a reticulate history involving species in the two deepest clades within section Subsecunda. Nucleotide sequences have a strong geographic structure across the section Subsecunda, but shallow tip clades suggest repeated long-distance dispersal in the section as well.

  14. The influence of change of concentration of sum of nutrient elements on uptake 137Cs from inert substrate to the lettuce

    International Nuclear Information System (INIS)

    Alipbekov, O.A.; Dlimbetova, G.K.

    2002-01-01

    Radiation ecology has become the science of applied character after the numbers of great accidents at the nuclear fuel cycle enterprises (United Kingdom, 1957; Russia,1957; Ukraine, 1986). The success of the fight on the consequences liquidations of the uncontrolled fallen artificial radionuclides on the agricultural fields depends a lot on the correct use of accumulated division products in the soil-plant system in the field migration appropriateness. The considerable lowering of radionuclides uptake into the plants from the soil can be achieved by increase of disability of products fastening of soil division. At the same time the addition of the stuff with high sorption and fixing characteristics into the soil, as a rule, gives a considerable effect only in the first period of their use. Later the fixed isotopes can come into ion-exchange process again after the achievement of the balance condition with the soil-absorbing complex, i.e. pass in the more mobile forms. Entering of mineral fertilizers into the soil often leads to the contradictory results, so the search in this direction is going on. The given information emphasizes the actuality of the further studying the methods of regulation of long living radionuclides availability from the soil to the plants with the help of the nutrient mineral elements. The aim of the present work is the study of the influence of concentration of sum of basic nutrient elements (nitrogen, phosphorus, potassium, calcium, magnesium, iron, copper, zinc, manganese, cobalt, molybdenum, boron) on the uptake of 137 Cs from the inert substrate to the Lettuce plants. The vegetation experiments were carried out in one liter polyethylene vascular. One liter of milled quartz sand (size of the fractions was 0.5-1.0 mm) was put into each vascular specially cleaned from admixtures. The nutrient elements were added according to Rinkis. The results of the carried out researches have shown that the decrease of the concentration of sum of macro

  15. Effect of mechanical fragmentation of sphagnum on population density and structure of micromycete communities

    Science.gov (United States)

    Semenova, T. A.; Golovchenko, A. V.

    2017-07-01

    The population density and taxonomic structure of micromycetes were monitored for six months in a model experiment with natural and mechanically fragmented (fine and coarse) samples of sphagnum. Sphagnum fragmentation favored an increase in the number of micromycetes only during the first week of the experiment. On the average, the number of micromycetes in fine-fragmented samples was two times greater than that in the coarse-fragmented samples. The diversity of micromycetes increased in the fragmented samples of sphagnum owing to the activation of some species, which remained in the inactive state as spores in the peat before fragmentation.

  16. Reintroduction of Sphagnum into harvested peatlands: evaluation of various methods for protection against dessication

    Energy Technology Data Exchange (ETDEWEB)

    Rochefort, L.; Bastien, D.F. [Laval University, Sainte-Foy, PQ (Canada). Dept. of Phytology

    1998-09-01

    In order to restore peatlands after peat harvesting operations, Sphagnum diaspores were introduced in combination with 1) physical protection devices or 2) an irrigating system. The response of five Sphagnum species was investigated in relation to two types of peat substrates for two growing seasons. The physical protections consisting of plastic shade cloth (40% and 60% shade) improved the development of a greater number of capitula compared with control surfaces without protection or surfaces covered with a perforated polyethylene sheet. This stimulating effect could be caused by higher humidity created by a shale screen. Irrigation also enhanced the establishment success of Sphagnum but the effect was less successful than expected.

  17. Effect of repeated mowing to reduce graminoid plant cover on the moss carpet at a Sphagnum farm in North America

    Directory of Open Access Journals (Sweden)

    M. Guêné-Nanchen

    2017-09-01

    Full Text Available Sphagnum farming is defined as the sustainable production of non-decomposed Sphagnum biomass on a cyclical and renewable basis. In this article, the influence and necessity of mowing graminoid plants to optimise Sphagnum growth in Sphagnum farming basins are examined. Repeated mowing was applied to reduce graminoid plant cover at two different stages of the production cycle (one-year-old and seven-year-old Sphagnum moss carpet at the beginning of the experiment at an experimental Sphagnum farm in eastern Canada. Sphagnum growth (cover, biomass, moss layer thickness was measured after three years of mowing. In addition, a greenhouse experiment was carried out to determine whether there is a threshold for graminoid plant cover beyond which mowing becomes necessary. Sphagnum cover and biomass were not affected by repeated mowing, even if mowing reduced the cover of graminoid plants. Thus, it appears that mowing is unnecessary if the dominant vascular species is a graminoid plant such as Eriophorum angustifolium, which accumulates minimal amounts of litter. Furthermore, high cover of Eriophorum angustifolium (up to 85 % did not affect Sphagnum cover in a density-controlled greenhouse experiment. When the specific goal is Sphagnum fibre production, decisions about control of graminoid plants should be made after considering the cover, life form and litter accumulation potentials of the dominant graminoid species involved.

  18. Abundant Trimethylornithine Lipids and Specific Gene Sequences Are Indicative of Planctomycete Importance at the Oxic/Anoxic Interface in Sphagnum-Dominated Northern Wetlands.

    Science.gov (United States)

    Moore, Eli K; Villanueva, Laura; Hopmans, Ellen C; Rijpstra, W Irene C; Mets, Anchelique; Dedysh, Svetlana N; Sinninghe Damsté, Jaap S

    2015-09-01

    Northern wetlands make up a substantial terrestrial carbon sink and are often dominated by decay-resistant Sphagnum mosses. Recent studies have shown that planctomycetes appear to be involved in degradation of Sphagnum-derived debris. Novel trimethylornithine (TMO) lipids have recently been characterized as abundant lipids in various Sphagnum wetland planctomycete isolates, but their occurrence in the environment has not yet been confirmed. We applied a combined intact polar lipid (IPL) and molecular analysis of peat cores collected from two northern wetlands (Saxnäs Mosse [Sweden] and Obukhovskoye [Russia]) in order to investigate the preferred niche and abundance of TMO-producing planctomycetes. TMOs were present throughout the profiles of Sphagnum bogs, but their concentration peaked at the oxic/anoxic interface, which coincided with a maximum abundance of planctomycete-specific 16S rRNA gene sequences. The sequences detected at the oxic/anoxic interface were affiliated with the Isosphaera group, while sequences present in the anoxic peat layers were related to an uncultured planctomycete group. Pyrosequencing-based analysis identified Planctomycetes as the major bacterial group at the oxic/anoxic interface at the Obukhovskoye peat (54% of total 16S rRNA gene sequence reads), followed by Acidobacteria (19% reads), while in the Saxnäs Mosse peat, Acidobacteria were dominant (46%), and Planctomycetes contributed to 6% of the total reads. The detection of abundant TMO lipids in planctomycetes isolated from peat bogs and the lack of TMO production by cultures of acidobacteria suggest that planctomycetes are the producers of TMOs in peat bogs. The higher accumulation of TMOs at the oxic/anoxic interface and the change in the planctomycete community with depth suggest that these IPLs could be synthesized as a response to changing redox conditions at the oxic/anoxic interface. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability

    Science.gov (United States)

    Joseph M. Craine; Andrew J. Elmore; Marcos P. M. Aidar; Mercedes Bustamante; Todd E. Dawson; Erik A. Hobbie; Ansgar Kahmen; Michelle C. Mack; Kendra K. McLauchlan; Anders Michelsen; Gabriela Nardoto; Linda H. Pardo; Josep Penuelas; Peter B. Reich; Edward A.G. Schuur; William D. Stock; Pamela H. Templer; Ross A. Virginia; Jeffrey M. Welker; Ian J. Wright

    2009-01-01

    Ratios of nitrogen (N) isotopes in leaves could elucidate underlying patterns of N cycling across ecological gradients. To better understand global-scale patterns of N cycling, we compiled data on foliar N isotope ratios, foliar N concentrations, mycorrhizal type and climate for over 11 000 plants worldwide. Global-scale comparisons of other components of the N cycle...

  20. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability

    DEFF Research Database (Denmark)

    Craine, J M; Elmore, A J; Aidar, M P M

    2009-01-01

    Ratios of nitrogen (N) isotopes in leaves could elucidate underlying patterns of N cycling across ecological gradients. To better understand global-scale patterns of N cycling, we compiled data on foliar N isotope ratios (d15N), foliar N concentrations, mycorrhizal type and climate for over 11 00...

  1. Circulating fat-soluble vitamin concentrations and nutrient composition of aquatic prey eaten by American oystercatchers (Haematopus palliatus) in the southeastern United States

    Science.gov (United States)

    Carlson-Bremer, Daphne; Norton, Terry M.; Sanders, Felicia J.; Winn, Brad; Spinks, Mark D.; Glatt, Batsheva A.; Mazzaro, Lisa; Jodice, Patrick G.R.; Chen, Tai C.; Dierenfeld, Ellen S.

    2014-01-01

    The American oystercatcher (Haematopus palliatus palliatus) is currently listed as a species of high concern by the United States Shorebird Conservation Plan. Because nutritional status directly impacts overall health and reproduction of individuals and populations, adequate management of a wildlife population requires intimate knowledge of a species' diet and nutrient requirements. Fat-soluble vitamin concentrations in blood plasma obtained from American oystercatchers and proximate, vitamin, and mineral composition of various oystercatcher prey species were determined as baseline data to assess nutritional status and nutrient supply. Bird and prey species samples were collected from the Cape Romain region, South Carolina, USA, and the Altamaha River delta islands, Georgia, USA, where breeding populations appear relatively stable in recent years. Vitamin A levels in blood samples were higher than ranges reported as normal for domestic avian species, and vitamin D concentrations were lower than anticipated based on values observed in poultry. Vitamin E levels were within ranges previously reported for avian groups with broadly similar feeding niches such as herons, gulls, and terns (eg, aquatic/estuarine/marine). Prey species (oysters, mussels, clams, blood arks [Anadara ovalis], whelks [Busycon carica], false angel wings [Petricola pholadiformis]) were similar in water content to vertebrate prey, moderate to high in protein, and moderate to low in crude fat. Ash and macronutrient concentrations in prey species were high compared with requirements of carnivores or avian species. Prey items analyzed appear to meet nutritional requirements for oystercatchers, as estimated by extrapolation from domestic carnivores and poultry species; excesses, imbalances, and toxicities—particularly of minerals and fat-soluble vitamins—may warrant further investigation.

  2. Concentrations and loads of nutrients in the tributaries of the Lake Okeechobee watershed, south-central Florida, water years 2004-2008

    Science.gov (United States)

    Byrne, Michael J.; Wood, Molly S.

    2011-01-01

    Lake Okeechobee in south-central Florida is the second largest freshwater lake in the contiguous United States. Excessive phosphorus loading, harmful high and low water levels, and rapid expansion of non-native vegetation have threatened the health of the lake in recent decades. A study was conducted to monitor discharge and nutrient concentrations from selected tributaries into Lake Okeechobee and to evaluate nutrient loads. The data analysis was performed at 16 monitoring stations from December 2003 to September 2008. Annual and seasonal discharge measured at monitoring stations is affected by rainfall. Hurricanes affected three wet years (2004, 2005, and the latter part of 2008) and resulted in substantially greater discharge than the drought years of 2006, 2007, and the early part of 2008. Rainfall supplies about 50 percent of the water to Lake Okeechobee, discharge from the Kissimmee River supplies about 25 percent, and discharge from tributaries and groundwater seepage along the lake perimeter collectively provide the remaining 25 percent. Annually, tributary discharge from basins located on the west side of the Kissimmee River is about 5 to 6 times greater than that from basins located on the east side. For the purposes of this study, the basins on the east side of the Kissimmee River are called "priority basins" because of elevated phosphorus concentrations, while those on the west side are called "nonpriority" basins. Total annual discharge in the non-priority basins ranged from 245,000 acre-feet (acre-ft) in 2007 to 1,322,000 acre-ft in 2005, while annual discharge from the priority basins ranged from 41,000 acre-ft in 2007 to 219,000 acre-ft in 2005. Mean total phosphorus concentrations ranged from 0.10 to 0.54 milligrams per liter (mg/L) at the 16 tributaries during 2004–2008. Mean concentrations were significantly higher at priority basin sites than at non-priority basin sites, particularly at Arbuckle Creek and C 41A Canal. Concentrations of organic

  3. Modelling hydrological processes and dissolved organic carbon dynamics in a rehabilitated Sphagnum-dominated peatland

    Science.gov (United States)

    Bernard-Jannin, Léonard; Binet, Stéphane; Gogo, Sébastien; Leroy, Fabien; Perdereau, Laurent; Laggoun-Défarge, Fatima

    2017-04-01

    Sphagnum-dominated peatlands represent a global major stock of carbon (C). Dissolved organic carbon (DOC) exports through runoff and leaching could reduce their potential C sink function and impact downstream water quality. DOC production in peatlands is strongly controlled by the hydrology, especially water table depth (WTD). Therefore, disturbances such as drainage can lead to increase DOC exports by lowering the WTD. Hydrological restoration (e.g. rewetting) can be undertaken to restore peatland functioning with an impact on DOC exports. The objective of this study is to assess the impact of drainage and rewetting on hydrological processes and their interactions with DOC dynamics in a Sphagnum dominated peatland. A hydrological model has been applied to a drained peatland (La Guette, France) which experienced a rewetting action on February 2014 and where WTD has been recorded in four piezometers at a 15 min time step since 2009. In addition, DOC concentrations in the peatland have been measured 6 times a year since 2014. The hydrological model is a WTD dependent reservoir model composed by two reservoirs representing the micro and macro porosity of the peatland (Binet et al., 2013). A DOC production module in both reservoirs was implemented based on temperature and WTD. The model was calibrated against WTD and DOC concentrations for each piezometer. The results show that the WTD in the study area is strongly affected by local meteorological conditions that could hide the effect of the rewetting action. The preliminary results evidenced that an additional source of water, identified as groundwater supply originating from the surrounding sandy layer aquifer, is necessary to maintain the water balance, especially during wet years (NS>0.8). Finally, the DOC module was able to describe DOC concentrations measured in the peatland and could be used to assess the impact of rewetting on DOC dynamics at different locations and to identify the factors of control of DOC

  4. Effect of Carbohydrate Sources and Levels of Cotton Seed Meal in Concentrate on Feed Intake, Nutrient Digestibility, Rumen Fermentation and Microbial Protein Synthesis in Young Dairy Bulls

    Directory of Open Access Journals (Sweden)

    M. Wanapat

    2013-04-01

    Full Text Available The objective of this study was to investigate the effect of levels of cottonseed meal with various carbohydrate sources in concentrate on feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in dairy bulls. Four, 6 months old dairy bulls were randomly assigned to receive four dietary treatments according to a 2×2 factorial arrangement in a 4×4 Latin square design. Factor A was carbohydrate source; cassava chip (CC and cassava chip+rice bran in the ratio of 3:1 (CR3:1, and factor B was cotton seed meal levels in the concentrate; 109 g CP/kg (LCM and 328 g CP/kg (HCM at similar overall CP levels (490 g CP/kg. Bulls received urea-lime treated rice straw ad libitum and were supplemented with 10 g of concentrate/kg BW. It was found that carbohydrate source and level of cotton seed meal did not have significant effects on ruminal pH, ammonia nitrogen concentration, microbial protein synthesis or feed intake. Animals which received CC showed significantly higher BUN concentration, ruminal propionic acid and butyric acid proportions, while dry matter, organic matter digestibility, populations of total viable bacteria and proteolytic bacteria were lower than those in the CR3:1 treatment. The concentration of total volatile fatty acids was higher in HCM than LCM treatments, while the concentration of butyric acid was higher in LCM than HCM treatments. The population of proteolytic bacteria with the LCM treatments was higher than the HCM treatments; however other bacteria groups were similar among the different levels of cotton seed meal. Bulls which received LCM had higher protein digestibility than those receiving HCM. Therefore, using high levels of cassava chip and cotton seed meal might positively impact on energy and nitrogen balance for the microbial population in the rumen of the young dairy bull.

  5. Seasonal pattern of metal bioaccumulation and their toxicity on Sphagnum squarrosum.

    Science.gov (United States)

    Saxena, Anuj

    2006-01-01

    Present study was undertaken as an attempt to study the effect of pollutants on biological responses of Sphagnum growing at Kainchi, Kumaon hills (Uttranchal). Sphagnum plants of almost identical size, collected from the marked sites of Kainchi in different seasons viz., monsoon, winter, summer and again in monsoon, were analysed for chlorophyll, protein, shoot length and nitrate reductase and peroxidase activities. Maximum chlorophyll, protein, shoots length and nitrate reductase activities were observed during the monsoon while minimum in summers. The abundance of Sphagnum and two other bryophytes, Marchantia and Plagiochasma was also higher in monsoon than in other seasons. The study also indicated that Sphagnum has more bioaccumulation and tolerance potential for heavy metals than Marchantia and Plagiochasma.

  6. Comparison of two organic fertilizers along with Zn and B elements on concentration, uptake of nutrients and some growth parameters in millet (Panicum miliaceum L.

    Directory of Open Access Journals (Sweden)

    T Nezhad hoseini

    2016-05-01

    Full Text Available A field experiment was conducted to study the effect of two organic fertilizers along with zinc and boron elements on some growth parameters, concentration and uptake of nutrients in millet (Panicum miliaceum L. by using factorial based on randomized completely block design with three replications in Qaen region, Iran. The main treatments were municipal solid waste compost and cow manure (each at 0 and 25 t.ha-1 and sub treatments were elements of Zn (0, 50 kg.ha-1 and B (0, 10 kg.ha-1 using their respective ZnSO4 and H3BO3 salts. Results showed that treatments interaction had significant effects on total dry matter yield, number of tillers per plant and plant height of Millet. The highest total dry matter production was achieved by interaction of cow manure along with Zn and B elements. Concentrations of N, Fe, Zn, B and Cu in plant were increased significantly by treatments interaction effects compared to control. Interaction effect of organic fertilizers with B (in the absence of Zn enhanced plant B concentration significantly, whereas, interaction of organic fertilizers with Zn (in the absence of B decreased B concentration in plant. The highest plant uptake of N, P, K, Zn, and B was observed in plots with cow manure and Zn and B elements.

  7. Differential Concentrations of some Nutrient Element in Forage of Corn (Zea mays L. as Affected by Organic Fertilizers and Soil Compaction

    Directory of Open Access Journals (Sweden)

    N. Najafi

    2016-01-01

    Full Text Available Soil compaction is one of the most important limiting factor for normal crop growth, because it reduces absorption by the plant. Application of organic fertilizers in agricultural soils can reduce the detrimental effects of soil compaction on plant growth and also supply some nutrients to plant. Thus, a factorial experiment was carried out in a randomized complete block design with three replications and 14 treatments to evaluate the effects of organic fertilizers in mitigating soil compaction. The first factor in this study was the source and amount of organic fertilizer at seven levels (control, farmyard manure, sewage sludge compost and municipal solid waste compost and each of organic fertilizers at two levels of 15 and 30 g/kg of soil. The second factor was soil compaction at two levels (bulk density of 1.2 and 1.7 g/cm3. To perform this experiment, 10 kg of dry soil was poured into special PVC pots and then seeds of single cross 704 corn were planted. At the end of the growth period, the corn shoot was harvested and concentrations of phosphorus (P, potassium (K, sodium (Na, iron (Fe, zinc (Zn, manganese (Mn, cadmium (Cd and lead (Pb were determined by dry ashing method. The results showed that concentrations of Cd and Pb in the shoot, related to the different treatments, were negligible. Concentrations of P, K, Fe, Mn and Zn in the corn shoot were increased significantly by application of farmyard manure, sewage sludge compost and municipal solid waste compost at both levels of soil compaction. However, Na concentration of shoot did not change significantly. Soil compaction significantly reduced P, Fe, Mn and Zn concentrations of corn shoot, but it affected concentrations of Na and K significantly. Application of organic fertilizers and increasing their levels reduced the negative effects of soil compaction on nutrients uptake by corn plant. This study showed that to improve forage corn nutrition, application of 15 or 30 g of farmyard

  8. Dependence of the degree of antibacterial and antiphage action of ozone on cell and phage particle concentrations in nutrient media

    Energy Technology Data Exchange (ETDEWEB)

    Grits, N.V.; Fomichev, A.Iu.

    1985-05-01

    The work was aimed at studying the inactivating effect of ozone on Escherichia coli K-12 AB1157, Pseudomonas aeruginosa PA01, Erwinia herbicola EH103 and their phages T4, SM and I4. The degree of bacterial and phage inactivation was found to increase with a decrease in their initial concentration during the treatment. The effect depends on differences in the quantity of ozone per cell or per phage particle in the reaction medium. This conclusion is based on the fact that, irrespective of the suspension density, the amount of surviving bacteria and phages plotted versus O3 concentration and recalculated per one bacterial cell or phage particle is described graphically by one and the same curve typical of a strain under study. This technique for assessing the sensitivity of microbiological objects to ozone can be used in order to compare experimental data obtained in different laboratories.

  9. Use of flow-normalization to evaluate nutrient concentration and flux changes in Lake Champlain tributaries, 1990-2009

    Science.gov (United States)

    Medalie, Laura; Hirsch, Robert M.; Archfield, Stacey A.

    2012-01-01

    The U.S. Geological Survey evaluated 20 years of total phosphorus (P) and total nitrogen (N) concentration data for 18 Lake Champlain tributaries using a new statistical method based on weighted regressions to estimate daily concentration and flux histories based on discharge, season, and trend as explanatory variables. The use of all the streamflow discharge values for a given date in the record, in a process called "flow-normalization," removed the year-to-year variation due to streamflow and generated a smooth time series from which trends were calculated. This approach to data analysis can be of great value to evaluations of the success of restoration efforts because it filters out the large random fluctuations in the flux that are due to the temporal variability in streamflow. Results for the full 20 years of record showed a mixture of upward and downward trends for concentrations and yields of P and N. When the record was broken into two 10-year periods, for many tributaries, the more recent period showed a reversal in N from upward to downward trends and a similar reversal or reduction in magnitude of upward trends for P. Some measures of P and N concentrations and yields appear to be related to intensity of agricultural activities, point-source loads of P, or population density. Total flow-normalized P flux aggregated from the monitored tributaries showed a decrease of 30 metric tons per year from 1991 to 2009, which is about 15% of the targeted reduction established by the operational management plan for the Lake Champlain Basin.

  10. Ecophysiological adjustment of two Sphagnum species in response to anthropogenic nitrogen deposition.

    Science.gov (United States)

    Wiedermann, Magdalena M; Gunnarsson, Urban; Ericson, Lars; Nordin, Annika

    2009-01-01

    Here, it was investigated whether Sphagnum species have adjusted their nitrogen (N) uptake in response to the anthropogenic N deposition that has drastically altered N-limited ecosystems, including peatlands, worldwide. A lawn species, Sphagnum balticum, and a hummock species, Sphagnum fuscum, were collected from three peatlands along a gradient of N deposition (2, 8 and 12 kg N ha(-1) yr(-1)). The mosses were subjected to solutions containing a mixture of four N forms. In each solution one of these N forms was labeled with (15)N (namely (15)NH(+)(4), (15)NO(-)(3) and the amino acids [(15)N]alanine (Ala) and [(15)N]glutamic acid (Glu)). It was found that for both species most of the N taken up was from , followed by Ala, Glu, and very small amounts from NO(-)(3). At the highest N deposition site N uptake was reduced, but this did not prevent N accumulation as free amino acids in the Sphagnum tissues. The reduced N uptake may have been genetically selected for under the relatively short period with elevated N exposure from anthropogenic sources, or may have been the result of plasticity in the Sphagnum physiological response. The negligible Sphagnum NO(-)(3) uptake may make any NO(-)(3) deposited readily available to co-occurring vascular plants.

  11. Influence of Poultry Manure Rates and Spacing on Growth, Yield, Nutrient Concentration , Uptake and Proximate Composition of Onion (Allium cepa L.

    Directory of Open Access Journals (Sweden)

    Ehizogie Joyce FALODUN

    2018-03-01

    Full Text Available Plant spacing determines to a greater extent crop performance in terms of growth and yield. The production of crop with organic fertilizer also plays a vital role in organic agriculture. Field studies were conducted to evaluate the effects of spacing and poultry manure on the growth, yield and quality of onion. Three spacing regimes were carried out consisting of (15cm x 15 cm , 20 cm x 20 cm and 25 cm x 25 cm and four levels of poultry manure at ( 0, 5, 10 and 15 t /ha . The effects of spacing and poultry manure were evaluated for 2 years based on plant growth, yield, nutrient concentration, uptake and proximate composition of onion plant. Leaf thickness, bulb and shoot fresh weights were significantly increased by the wider spacing of 20 cm x 20 cm and 25 cm x 25 cm, compared with the narrower spacing of 15cm x 15 cm in both seasons. However, highest total dry yield (1.82 and 1.58 t /ha, shoot yield (2.31 and 1.32 t /ha and total fresh yield (13.69 and 12.55 t/ha were obtained with the spacing of 20cm x 20 cm in both years. Similarly, application of poultry manure increased leaf thickness, bulb and shoot fresh weights and yields compared with the control. Generally, using 10 t/ha poultry manure has a superior effect on proximate composition and most of growth parameters and yield components achieved the highest nutrient concentrations and uptake on most of the macro and micronutrients in leaves and bulbs as compared with the control in both years.

  12. Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro

    OpenAIRE

    Hajek, T.; Ballance, S.; Limpens, J.; Verhoeven, J.T.A.; Zijlstra, M.J.

    2011-01-01

    Sphagnum-dominated peatlands head the list of ecosystems with the largest known reservoirs of organic carbon (C). The bulk of this C is stored in decomposition-resistant litter of one bryophyte genus: Sphagnum. Understanding how Sphagnum litter chemistry controls C mineralization is essential for understanding potential interactions between environmental changes and C mineralization in peatlands. We aimed to separate the effects of phenolics from structural polysaccharides on decay of Sphagnu...

  13. Artocarpin Induces Apoptosis in Human Cutaneous Squamous Cell Carcinoma HSC-1 Cells and Its Cytotoxic Activity Is Dependent on Protein-Nutrient Concentration

    Directory of Open Access Journals (Sweden)

    Stephen Chu-Sung Hu

    2015-01-01

    Full Text Available Artocarpin, a natural prenylated flavonoid, has been shown to have various biological properties. However, its effects on human cutaneous squamous cell carcinoma (SCC have not been previously investigated. We set out to determine whether artocarpin has cytotoxic effects on SCC cells and whether its pharmacological activity is dependent on protein-nutrient concentration. Our results showed that treatment of HSC-1 cells (a human cutaneous SCC cell line with artocarpin decreased cell viability and induced cell apoptosis by increasing caspase 3/7 activity. These effects were more pronounced at low fetal bovine serum (FBS concentrations. Artocarpin induced an increase in the level of phospho-p38 and a decrease in the levels of phospho-ERK, phospho-JNK, phospho-Akt, phospho-mTOR, and phospho-S6K. High FBS concentrations in the culture media inhibited and delayed the uptake of artocarpin from the extracellular compartment (culture media into the intracellular compartment, as determined by high performance liquid chromatography (HPLC analysis. In conclusion, artocarpin induces apoptosis in HSC-1 cells through modulation of MAPK and Akt/mTOR pathways. Binding of artocarpin to proteins in the FBS may inhibit cellular uptake and reduce the cytotoxic activity of artocarpin on HSC-1 cells. Therefore, artocarpin may have potential use in the future as a form of treatment for cutaneous SCC.

  14. Sphagnum restoration on degraded blanket and raised bogs in the UK using micropropagated source material: a review of progress

    Directory of Open Access Journals (Sweden)

    S.J.M Caporn

    2018-05-01

    Full Text Available There is a growing demand for a supply of Sphagnum to re-introduce to degraded peatlands. However, available supplies of Sphagnum of the desired species are often limited. We describe the propagation of Sphagnum from vegetative material in sterile tissue culture and the introduction of juvenile mosses into the field. Sphagnum produced in the laboratory in three different forms (beads, gel and plugs was introduced to different peatland surfaces on upland degraded blanket bog and lowland cut-over peatland in northern England. On degraded blanket bog, the establishment of mixed-species Sphagnum plugs was typically 99 % while the survival of beads was much lower, ranging from little above zero on bare eroding peat to a maximum of 12 % on stabilised peat surfaces. On lowland cut-over peatland, all trials took place on peat with an expanding cover of Eriophorum angustifolium and tested Sphagnum gel as well as beads and plugs. This work showed that survival and establishment of plugs was high (99 % and greater than for beads. Sphagnum gel reached a cover of 95 % in two years. The vegetative micropropagation of Sphagnum offers an effective source of Sphagnum for re-introduction to degraded peatlands.

  15. Trends in nutrient concentrations, loads, and yields in streams in the Sacramento, San Joaquin, and Santa Ana Basins, California, 1975-2004

    Science.gov (United States)

    Kratzer, Charles R.; Kent, Robert; Seleh, Dina K.; Knifong, Donna L.; Dileanis, Peter D.; Orlando, James L.

    2011-01-01

    A comprehensive database was assembled for the Sacramento, San Joaquin, and Santa Ana Basins in California on nutrient concentrations, flows, and point and nonpoint sources of nutrients for 1975-2004. Most of the data on nutrient concentrations (nitrate, ammonia, total nitrogen, orthophosphate, and total phosphorus) were from the U.S. Geological Survey's National Water Information System database (35.2 percent), the California Department of Water Resources (21.9 percent), the University of California at Davis (21.6 percent), and the U.S. Environmental Protection Agency's STOrage and RETrieval database (20.0 percent). Point-source discharges accounted for less than 1 percent of river flows in the Sacramento and San Joaquin Rivers, but accounted for close to 80 percent of the nonstorm flow in the Santa Ana River. Point sources accounted for 4 and 7 percent of the total nitrogen and total phosphorus loads, respectively, in the Sacramento River at Freeport for 1985-2004. Point sources accounted for 8 and 17 percent of the total nitrogen and total phosphorus loads, respectively, in the San Joaquin River near Vernalis for 1985-2004. The volume of wastewater discharged into the Santa Ana River increased almost three-fold over the study period. However, due to improvements in wastewater treatment, the total nitrogen load to the Santa Ana River from point sources in 2004 was approximately the same as in 1975 and the total phosphorus load in 2004 was less than in 1975. Nonpoint sources of nutrients estimated in this study included atmospheric deposition, fertilizer application, manure production, and tile drainage. The estimated dry deposition of nitrogen exceeded wet deposition in the Sacramento and San Joaquin Valleys and in the basin area of the Santa Ana Basin, with ratios of dry to wet deposition of 1.7, 2.8, and 9.8, respectively. Fertilizer application increased appreciably from 1987 to 2004 in all three California basins, although manure production increased in the

  16. Densidade de plantio na produtividade e nos teores de nutrientes nas folhas e frutos da bananeira cv. Thap Maeo Plants density on yield and nutrients concentration in leaves and fruits of banana cv. Thap Maeo

    Directory of Open Access Journals (Sweden)

    Adônis Moreira

    2007-01-01

    Full Text Available O objetivo deste estudo foi avaliar o efeito da densidade de plantio na produtividade, tempo de colheita e teores dos nutrientes nas folhas e nos frutos de bananeira cv. Thap Maeo (AAB cultivada em Manaus (AM. O delineamento experimental foi o de blocos casualizados, com três repetições. Os tratamentos foram constituídos pelos fatores: três densidades de plantio (1.111; 1.667 e 3.333 plantas ha-1 e duas épocas de colheita (primeiro e segundo ciclos. Os resultados do primeiro e segundo ciclos mostraram incremento significativo da produtividade, com aumento da densidade de plantio. O tempo médio para colheita dos cachos foi menor na densidade de 1.111 plantas ha-1 (1º ciclo, 338 e 2º ciclo, 401 dias. Na média das densidades e independentemente do ciclo, os teores de macronutrientes nos frutos apresentaram a ordem de: K>N>P>Mg>Ca=S, enquanto a dos micronutrientes foi: 1º ciclo - Cl>Fe>Mn=B>Zn>Cu e 2º ciclo - Cl>Fe>Zn>B=Mn>Cu.This study aimed to evaluate the effect of plants density on yield, period of harvest and nutrients concentration in leaves and fruits of banana cv. Thap Maeo (AAB, cultivated in Manaus, State of Amazonas, Brazil. The experiment was conduced in a randomized blocks, with three replicates. Treatments were comprised of planting density (1,111; 1,667 and 3,333 plants ha-1, and two cycles of harvest (sub treatments. The results obtained from 1st cycle and 2nd cycle showed significant increase in the yield per unit area as the employed plant density increased. The shortest average period to harvest banana bunches (1st cycle, 338 days and 2nd cycle, 401 days was observed for the lower density (1,111 plants ha-1. Pooled data of density and cycles showed that exportation of macronutrients through the fruits was, in order: K>N>P>Mg>Ca=S, while in micronutrients was: 1st cycle - Cl>Fe>Mn=B>Zn>Cu, and 2nd cycle - Cl>Fe>Zn>B=Mn>Cu.

  17. Sphagnum farming in a eutrophic world : The importance of optimal nutrient stoichiometry

    NARCIS (Netherlands)

    Temmink, Ralph J. M.; Fritz, Christian; van Dijk, Gijs; Hensgens, Geert; Lamers, Leon P. M.; Krebs, Matthias; Gaudig, Greta; Joosten, Hans

    Large areas of peatlands have worldwide been drained to facilitate agriculture, which has adverse effects on the environment and the global climate. Agriculture on rewetted peatlands (paludiculture) provides a sustainable alternative to drainage-based agriculture. One form of paludiculture is the

  18. Application of a Weighted Regression Model for Reporting Nutrient and Sediment Concentrations, Fluxes, and Trends in Concentration and Flux for the Chesapeake Bay Nontidal Water-Quality Monitoring Network, Results Through Water Year 2012

    Science.gov (United States)

    Chanat, Jeffrey G.; Moyer, Douglas L.; Blomquist, Joel D.; Hyer, Kenneth E.; Langland, Michael J.

    2016-01-13

    In the Chesapeake Bay watershed, estimated fluxes of nutrients and sediment from the bay’s nontidal tributaries into the estuary are the foundation of decision making to meet reductions prescribed by the Chesapeake Bay Total Maximum Daily Load (TMDL) and are often the basis for refining scientific understanding of the watershed-scale processes that influence the delivery of these constituents to the bay. Two regression-based flux and trend estimation models, ESTIMATOR and Weighted Regressions on Time, Discharge, and Season (WRTDS), were compared using data from 80 watersheds in the Chesapeake Bay Nontidal Water-Quality Monitoring Network (CBNTN). The watersheds range in size from 62 to 70,189 square kilometers and record lengths range from 6 to 28 years. ESTIMATOR is a constant-parameter model that estimates trends only in concentration; WRTDS uses variable parameters estimated with weighted regression, and estimates trends in both concentration and flux. WRTDS had greater explanatory power than ESTIMATOR, with the greatest degree of improvement evident for records longer than 25 years (30 stations; improvement in median model R2= 0.06 for total nitrogen, 0.08 for total phosphorus, and 0.05 for sediment) and the least degree of improvement for records of less than 10 years, for which the two models performed nearly equally. Flux bias statistics were comparable or lower (more favorable) for WRTDS for any record length; for 30 stations with records longer than 25 years, the greatest degree of improvement was evident for sediment (decrease of 0.17 in median statistic) and total phosphorus (decrease of 0.05). The overall between-station pattern in concentration trend direction and magnitude for all constituents was roughly similar for both models. A detailed case study revealed that trends in concentration estimated by WRTDS can operationally be viewed as a less-constrained equivalent to trends in concentration estimated by ESTIMATOR. Estimates of annual mean flow

  19. The Influence of Gamma Irradiation on the Bacterial Growth and the Concentration of Macro nutrient Plant Elements (N,P,K) in The Sludge

    International Nuclear Information System (INIS)

    Yazid, M.; Zainul Kamal; Elin Nuraini

    2002-01-01

    The investigation of the gamma irradiation influence for bacterial growth and macro-nutrient plant element in the sludge has been done. The objective of the research is to study the gamma irradiation influence on bacterial growth and macro-nutrient plant element concentration; after that, can be determine the effective dose for killing pathogenic bacteria, while the other kind of bacteria such as the decomposer has been survived. The sludge samples was collected from the vicinity of Surabaya such as Sukolilo for sewage, PT SIER Rungkut for industrial and Dr. Sutomo hospital waste sludge. The irradiation of the sludge has been done at P3TIR-BATAN by Co-60 irradiator and the dose variation are 0, 5, 10, 15, 20 and 25 kGy. Microbiological observation was done after irradiation at FMIPA-UNAIR laboratory and the analysis of N,P,K elements by using fast neutron activation analysis. The observation involving total bacterial and one kind of pathogenic microbial which is Salmonella, from this observation can be deduced that population of total bacteria in the sludge is in the range at 1.0 x 10 7 to 3.7 x 10 8 . For every 5 kGy increment could be able to decrease total bacterial growth about 10 times, and at 25 kGy the total bacterial growth can be suppressed. The higher population of Salmonella can be found in the hospital sludge is in range of 3.0 to 3.5 x 10 5 , in the sewage sludge is 1.4 to 1.6 x 10 4 and industry is 1.0 to 1.4 x 10 3 . For the Salmonella disinfection need the 15 to 20 kGy radiation dose. From the calculation results can be known that the nitrogen content in the sludge is in the range at 1.393 ± 0.692 to 3.147 ± 0.697 % , the phosphor 3.714 ± 0.892 to 8.120 ± 1.034 % and the potassium 1.999 ± 0.523 to 4.52 ± 0.599 %. The variation of the irradiation dose 10 - 25 kGy does not have any significant influence for the macro-nutrient plant (N,P,K) content in the sludge from the industrial, the sewage or the hospital waste water treatment. (author)

  20. Growth, aboveground biomass, and nutrient concentration of young Scots pine and lodgepole pine in oil shale post-mining landscapes in Estonia.

    Science.gov (United States)

    Kuznetsova, Tatjana; Tilk, Mari; Pärn, Henn; Lukjanova, Aljona; Mandre, Malle

    2011-12-01

    The investigation was carried out in 8-year-old Scots pine (Pinus sylvestris L.) and lodgepole pine (Pinus contorta var. latifolia Engelm.) plantations on post-mining area, Northeast Estonia. The aim of the study was to assess the suitability of lodgepole pine for restoration of degraded lands by comparing the growth, biomass, and nutrient concentration of studied species. The height growth of trees was greater in the Scots pine stand, but the tree aboveground biomass was slightly larger in the lodgepole pine stand. The aboveground biomass allocation to the compartments did not differ significantly between species. The vertical distribution of compartments showed that 43.2% of the Scots pine needles were located in the middle layer of the crown, while 58.5% of the lodgepole pine needles were in the lowest layer of the crown. The largest share of the shoots and stem of both species was allocated to the lowest layer of the crown. For both species, the highest NPK concentrations were found in the needles and the lowest in the stems. On the basis of the present study results, it can be concluded that the early growth of Scots pine and lodgepole pine on oil shale post-mining landscapes is similar.

  1. Three-genome mosses: complex double allopolyploid origins for triploid gametophytes in Sphagnum.

    Science.gov (United States)

    Karlin, Eric F; Boles, S B; Ricca, M; Temsch, E M; Greilhuber, J; Shaw, A J

    2009-04-01

    This paper documents the occurrence of allotriploidy (having three differentiated genomes) in gametophytes of two Southern Hemisphere Sphagnum species (S. australe, S. falcatulum). The pattern of microsatellite alleles indicates that both species are composed of a complex of allodiploid and allotriploid gametophytes, with the latter resulting from two allopolyploidization events. No haploid (n = x) gametophytes were found for either species. The ploidal levels suggested by the pattern of microsatellite alleles were confirmed by flow cytometry and Feulgen DNA image densitometry. For both S. australe and S. falcatulum, the respective allodiploid plants (or their ancestors) are one of the parent species of the allotriploid plants. This is the first report of triploidy in Sphagnum gametophytes occurring in nature and also the first report of the presence of three differentiated genomes in any bryophyte. It is also the first report of intersectional allopolyploidy in Sphagnum, with S. australe appearing to have parental species from Sphagnum sections Rigida and Sphagnum, and S. falcatulum having parental species from Sphagnum sections Cuspidata and Subsecunda. In both species, the allotriploid cytotypes were the most prevalent cytotype on the South Island of New Zealand. The pattern of microsatellite alleles shows the presence of two genetically distinct populations of allodiploid S. australe, possibly indicating multiple origins of polyploidy for that allodiploid cytotype. Morphological evidence is also highly indicative of recurrent polyploidy in the allotriploid cytotype of S. falcatulum. Allopolyploidy has clearly played a major evolutionary role in these two Southern Hemisphere taxa. This study, in conjunction with other recent research, indicates that allopolyploidy is a common, if not the predominant, form of polyploidy in Sphagnum.

  2. Nutrient supply of plants in aquaponic systems

    OpenAIRE

    Bittsánszky, András; Uzinger, Nikolett; Gyulai, Gábor; Mathis, Alex; Junge, Ranka; Villarroel, Morris; Kotzen, Benzion; Komives, Tamas

    2016-01-01

    In this preliminary article we present data on plant nutrient concentrations in aquaponic systems, and compare them to nutrient concentrations in “standard” hydroponic solutions. Our data shows that the nutrient concentrations supplied by the fish in aquaponic system are significantly lower for most nutrients, compared to hydroponic systems. Nevertheless, plants do thrive in solutions that have lower nutrient levels than “standard” hydroponic solutions. This is especially true for green leafy...

  3. Effects of limited concentrate feeding on growth and blood and serum variables, and on nutrient digestibility and gene expression of hepatic gluconeogenic enzymes in dairy calves.

    Science.gov (United States)

    Lohakare, J D; van de Sand, H; Gerlach, K; Hosseini, A; Mielenz, M; Sauerwein, H; Pries, M; Südekum, K-H

    2012-02-01

    This study elucidated the effects of limited concentrate feeding on growth, nutrient digestibility, blood profile and gene expression of gluconeogenic enzymes in the liver of dairy calves. The study utilized 36 German Holstein dairy calves (5-7 days of age) divided into two groups of 18 calves each for 150 days. Control group calves received 2 kg/(calf × day) of concentrate, whereas calves in the restricted group received only 1 kg/(calf × day). Good quality forage (mixture of maize and grass silages) was available for ad libitum consumption to both groups. The intake of milk replacer before weaning, and of concentrate were recorded daily per calf; however, the consumption of forages was quantified as daily average of the group. Body weights (BW) were recorded at start and on days 35, 70, 112 and 150. Blood and serum samples and spot urinary and faecal samples were also collected at similar time points. On days 70 and 150, liver biopsies were collected from seven animals in each group. The BW was not different between the groups at all times. Total BW gain in the control group was 124 kg as opposed to 111 kg in restricted group that led to average BW gain of 827 g/day and 739 g/day in respective groups, and the differences were significant (p = 0.018). As planned, the control group had higher concentrate and lower forage intake than the restricted group. The blood haemoglobin, haematocrit and serum variables (glucose, total protein, albumin and urea) were within the normal range in both groups, but serum glucose was higher (p < 0.05) in control than in restricted group at 70 days. There was no difference between groups in organic matter (OM) digestibility which declined (p < 0.001) with increasing age in both groups. Microbial crude protein (MCP) synthesis estimated from urinary allantoin excretion increased (p < 0.001) in both groups with increasing age but was not different between groups. The mRNA expressions for the gluconeogenic enzymes, cytosolic and

  4. Effects of dietary forage-to-concentrate ratio on nutrient digestibility and enteric methane production in growing goats ( and Sika deer (

    Directory of Open Access Journals (Sweden)

    Youngjun Na

    2017-07-01

    Full Text Available Objective Two experiments were conducted to determine the effects of forage-to-concentrate (F:C ratio on the nutrient digestibility and enteric methane (CH4 emission in growing goats and Sika deer. Methods Three male growing goats (body weight [BW] = 19.0±0.7 kg and three male growing deer (BW = 19.3±1.2 kg were respectively allotted to a 3×3 Latin square design with an adaptation period of 7 d and a data collection period of 3 d. Respiration-metabolism chambers were used for measuring the enteric CH4 emission. Treatments of low (25:75, moderate (50:50, and high (73:27 F:C ratios were given to both goats and Sika deer. Results Dry matter (DM and organic matter (OM digestibility decreased linearly with increasing F:C ratio in both goats and Sika deer. In both goats and Sika deer, the CH4 emissions expressed as g/d, g/kg BW0.75, % of gross energy intake, g/kg DM intake (DMI, and g/kg OM intake (OMI decreased linearly as the F:C ratio increased, however, the CH4 emissions expressed as g/kg digested DMI and OMI were not affected by the F:C ratio. Eight equations were derived for predicting the enteric CH4 emission from goats and Sika deer. For goat, equation 1 was found to be of the highest accuracy: CH4 (g/d = 3.36+4.71×DMI (kg/d−0.0036×neutral detergent fiber concentrate (NDFC, g/kg+0.01563×dry matter digestibility (DMD, g/kg−0.0108×neutral detergent fiber digestibility (NDFD, g/kg. For Sika deer, equation 5 was found to be of the highest accuracy: CH4 (g/d = 66.3+27.7×DMI (kg/d−5.91×NDFC (g/kg−7.11× DMD (g/kg+0.0809×NDFD (g/kg. Conclusion Digested nutrient intake could be considered when determining the CH4 generation factor in goats and Sika deer. Finally, the enteric CH4 prediction model for goats and Sika deer were estimated.

  5. Tangled history of the European uses of Sphagnum moss and sphagnol.

    Science.gov (United States)

    Drobnik, Jacek; Stebel, Adam

    2017-09-14

    Sphagnum mosses and peat could have been utilized as wound dressings for centuries, however reliable data on this subject are ambiguous; sometimes even no distinction between peat moss (Sphagnum spp.) and peat is made or these terms become confused. The first scientific account on surgical use of peat comes from 1882: a peat digger who successfully, by himself and in the way unknown to the then medicine, cured an open fracture of his forearm with peat. The peat, and very soon the peat moss itself (which is the major constituent of peat) drew attention of the 19th-century surgeons. We search for reliable information on: (1) inspirations for Sphagnum usage for medical purposes and its beginnings in the 19th century, (2) substances or products named sphagnol and their connections with (1); (3) on the origin of this name, (4) and on the occurrence of this name in medical sources. We have identified and studied published sources on the uses of peat-based and Sphagnum-based preparations and products of any processing level (including herbal stock, distillate, isolated pure or impure active principle, or a mixture of such) in surgery, pharmacy or cosmetics. A special attention was paid to the name sphagnol, which appeared many a time, in more than one context since 1899. Source publications were critically analysed from the taxonomical, pharmacognostical and ethnopharmacological points of view. Gathered data were cross-checked with the modern knowledge of the biologically active principles of Sphagnum and the prospects of their medical use. The application of peat in surgery started 1882. The use of peat moss as dressings was developed in the 1880's. It returned to surgical practice during WW1. The name sphagnol has two meanings: (1) A chemical substance isolated from the cell walls of Sphagnum mosses in 1899. A post-1950 research showed it to be a mixture of phenols dominated by sphagnum acid. (2) A product of dry distillation of peat contains solid and liquid fractions

  6. Detection, Isolation, and Characterization of Acidophilic Methanotrophs from Sphagnum Mosses ▿ †

    Science.gov (United States)

    Kip, Nardy; Ouyang, Wenjing; van Winden, Julia; Raghoebarsing, Ashna; van Niftrik, Laura; Pol, Arjan; Pan, Yao; Bodrossy, Levente; van Donselaar, Elly G.; Reichart, Gert-Jan; Jetten, Mike S. M.; Sinninghe Damsté, Jaap S.; Op den Camp, Huub J. M.

    2011-01-01

    Sphagnum peatlands are important ecosystems in the methane cycle. Methane-oxidizing bacteria in these ecosystems serve as a methane filter and limit methane emissions. Yet little is known about the diversity and identity of the methanotrophs present in and on Sphagnum mosses of peatlands, and only a few isolates are known. The methanotrophic community in Sphagnum mosses, originating from a Dutch peat bog, was investigated using a pmoA microarray. A high biodiversity of both gamma- and alphaproteobacterial methanotrophs was found. With Sphagnum mosses as the inoculum, alpha- and gammaproteobacterial acidophilic methanotrophs were isolated using established and newly designed media. The 16S rRNA, pmoA, pxmA, and mmoX gene sequences showed that the alphaproteobacterial isolates belonged to the Methylocystis and Methylosinus genera. The Methylosinus species isolated are the first acid-tolerant members of this genus. Of the acidophilic gammaproteobacterial strains isolated, strain M5 was affiliated with the Methylomonas genus, and the other strain, M200, may represent a novel genus, most closely related to the genera Methylosoma and Methylovulum. So far, no acidophilic or acid-tolerant methanotrophs in the Gammaproteobacteria class are known. All strains showed the typical features of either type I or II methanotrophs and are, to the best of our knowledge, the first isolated (acidophilic or acid-tolerant) methanotrophs from Sphagnum mosses. PMID:21724892

  7. Holocene climate variability revealed by oxygen isotope analysis of Sphagnum cellulose from Walton Moss, northern England

    Science.gov (United States)

    Daley, T. J.; Barber, K. E.; Street-Perrott, F. A.; Loader, N. J.; Marshall, J. D.; Crowley, S. F.; Fisher, E. H.

    2010-07-01

    Stable isotope analyses of Sphagnum alpha-cellulose, precipitation and bog water from three sites across northwestern Europe (Raheenmore, Ireland, Walton Moss, northern England and Dosenmoor, northern Germany) over a total period of 26 months were used to investigate the nature of the climatic signal recorded by Sphagnum moss. The δ18O values of modern alpha-cellulose tracked precipitation more closely than bog water, with a mean isotopic fractionation factor αcellulose-precipitation of 1.0274 ± 0.001 (1 σ) (≈27‰). Sub-samples of isolated Sphagnum alpha-cellulose were subsequently analysed from core WLM22, Walton Moss, northern England yielding a Sphagnum-specific isotope record spanning the last 4300 years. The palaeo-record, calibrated using the modern data, provides evidence for large amplitude variations in the estimated oxygen isotope composition of precipitation during the mid- to late Holocene. Estimates of palaeotemperature change derived from statistical relationships between modern surface air temperatures and δ18O precipitation values for the British Isles give unrealistically large variation in comparison to proxies from other archives. We conclude that use of such relationships to calibrate mid-latitude palaeo-data must be undertaken with caution. The δ18O record from Sphagnum cellulose was highly correlated with a palaeoecologically-derived index of bog surface wetness (BSW), suggesting a common climatic driver.

  8. Interploidal hybridization and mating patterns in the Sphagnum subsecundum complex.

    Science.gov (United States)

    Ricca, M; Szövényi, P; Temsch, E M; Johnson, M G; Shaw, A J

    2011-08-01

    Polyploidization is thought to result in instant sympatric speciation, but several cases of hybrid zones between one of the parental species and its polyploid derivative have been documented. Previous work showed that diploid Sphagnum lescurii is an allopolyploid derived from the haploids S. lescurii (maternal progenitor) and S. subsecundum (paternal progenitor). Here, we report the results from analyses of a population where allodiploid and haploid S. lescurii co-occur and produce sporophytes. We tested (i) whether haploids and diploids form hybrid triploid sporophytes; (ii) how hybrid and nonhybrid sporophytes compare in fitness; (iii) whether hybrid sporophytes form viable spores; (iv) the ploidy of any viable gametophyte offspring from hybrid sporophytes; (v) the relative viability of sporelings derived from hybrid and nonhybrid sporophytes; and (vi) if interploidal hybridization results in introgression between the allopolyploid and its haploid progenitor. We found that triploid hybrid sporophytes do occur and are larger than nonhybrid sporophytes, but exhibit very low germination percentages and produce sporelings that develop more slowly than those from nonhybrid sporophytes. All sporophytes attached to haploid gametophytes were triploid and were sired by diploid males, but all sporophytes attached to diploid gametophytes were tetraploid. This asymmetric pattern of interploidal hybridization is related to an absence of haploid male gametophytes in the population. Surprisingly, all sporelings from triploid sporophytes were triploid, yet were genetically variable, suggesting some form of aberrant meiosis that warrants further study. There was limited (but some) evidence of introgression between allodiploid and haploid S. lescurii. © 2011 Blackwell Publishing Ltd.

  9. Role of physical forcings and nutrient availability on the control of satellite-based chlorophyll a concentration in the coastal upwelling area of the Sicilian Channel

    Directory of Open Access Journals (Sweden)

    Bernardo Patti

    2010-08-01

    Full Text Available The northern sector of the Sicilian Channel is an area of favourable upwelling winds, which ought to support primary production. However, the values for primary production are low when compared with other Mediterranean areas and very low compared with the most biologically productive regions of the world’s oceans: California, the Canary Islands, Humboldt and Benguela. The aim of this study was to identify the main factors that limit phytoplankton biomass in the Sicilian Channel and modulate its monthly changes. We compared satellite-based estimates of chlorophyll a concentration in the Strait of Sicily with those observed in the four Eastern Boundary Upwelling Systems mentioned above and in other Mediterranean wind-induced coastal upwelling systems (the Alboran Sea, the Gulf of Lions and the Aegean Sea. Our results show that this low level of chlorophyll is mainly due to the low nutrient level in surface and sub-surface waters, independently of wind-induced upwelling intensity. Further, monthly changes in chlorophyll are mainly driven by the mixing of water column and wind-induced and/or circulation-related upwelling processes. Finally, primary production limitation due to the enhanced stratification processes resulting from the general warming trend of Mediterranean waters is not active over most of the coastal upwelling area off the southern Sicilian coast.

  10. Nutrient Concentrations of Bush Bean (Phaseolus vulgaris L. and Potato (Solanum tuberosum L. Cultivated in Subarctic Soils Managed with Intercropping and Willow (Salix spp. Agroforestry

    Directory of Open Access Journals (Sweden)

    Meaghan J. Wilton

    2017-12-01

    Full Text Available To ease food insecurities in northern Canada, some remote communities started gardening initiatives to gain more access to locally grown foods. Bush beans (Phaseolus vulgaris L. and potatoes (Solanum tuberosum L. were assessed for N, P, K, Mg, and Ca concentrations of foliage as indicators of plant nutrition in a calcareous silty loam soil of northern Ontario James Bay lowlands. Crops were grown in sole cropping and intercropping configurations, with comparisons made between an open field and an agroforestry site enclosed with willow (Salix spp. trees. Foliage chemical analysis of the sites revealed an abundance of Ca, adequacies for Mg and N, and deficiencies in P and K. Intercropping bean and potato did not show significant crop–crop facilitation for nutrients. The agroforestry site showed to be a superior management practice for the James Bay lowland region, specifically for P. The agroforestry site had significantly greater P for bean plant (p = 0.024 and potato foliage (p = 0.002 compared to the open site. It is suspected that the presence of willows improve plant available P to bean and potatoes by tree root—crop root interactions and microclimate enhancements.

  11. Nutrient concentrations and loads and Escherichia coli densities in tributaries of the Niantic River estuary, southeastern Connecticut, 2005 and 2008–2011

    Science.gov (United States)

    Mullaney, John R.

    2013-01-01

    Nutrient concentrations and loads and Escherichia coli (E. coli) densities were studied in 2005 and from 2008 through 2011 in water-quality samples from tributaries of the Niantic River Estuary in southeastern Connecticut. Data from a water-quality survey of the base flow of subbasins in the watershed in June 2005 were used to determine the range of total nitrogen concentrations (0.09 to 2.4 milligrams per liter), instantaneous loads (less than 1 to 62 pounds per day) and the yields of total nitrogen ranging from 0.02 to 11.2 pounds per square mile per day (less than 1 to 7.2 kilograms per hectare per year) from basin segments. Nitrogen yields were positively correlated with the amount of developed land in each subbasin. Stable isotope measurements of nitrate (δ15N) and oxygen (δ18O) ranged from 3.9 to 9.4 per mil and 0.7 to 4.1 per mil, respectively, indicating that likely sources of nitrate in base flow are soil nitrate and ammonium fertilizers, sewage or animal waste, or a mixture of these sources. Continuous streamflow and monthly water-quality sampling, with additional storm event sampling, were conducted at the three major tributaries (Latimer Brook, Oil Mill Brook, and Stony Brook) of the Niantic River from October 2008 through September 2011. Samples were analyzed for nitrogen and phosphorus constituents and E. coli densities. Total freshwater discharge from these tributaries, which is reduced by upstream withdrawals, ranged from 25.9 to 37.8 million gallons per day. Total nitrogen and phosphorus concentrations generally were low, with the mean values below the U.S. Environmental Protection Agency recommended nutrient concentration values of 0.71 milligram per liter and 0.031 milligram per liter, respectively. Total nitrogen was predominantly in the form of total ammonia plus organic nitrogen at the Oil Mill Brook and Stony Brook sites and in the form of nitrate at Latimer Brook. Annual total nitrogen loads that flowed into the Niantic River estuary from

  12. The effects of feeding rations that differ in neutral detergent fiber and starch concentration within a day on rumen digesta nutrient concentration, pH, and fermentation products in dairy cows.

    Science.gov (United States)

    Ying, Y; Rottman, L W; Crawford, C; Bartell, P A; Harvatine, K J

    2015-07-01

    There is a daily pattern of feed intake in the dairy cow, and feeding a single total mixed ration results in variation in the amount of fermentable substrate entering the rumen over the day. The object of this study was to determine if feeding multiple rations over the day that complement the pattern of feed intake would stabilize rumen pool sizes and fermentation. Nine ruminally cannulated cows were used in a 3×3 Latin square design with 23-d periods. Diets were a control diet [33.3% neutral detergent fiber (NDF)], a low-fiber diet (LF; 29.6% NDF), and a high-fiber diet (HF; 34.8% NDF). The LF and HF diets were balanced to provide the same nutrient composition as the control diet when cows were fed 3 parts of LF and 7 parts of HF. Cows on the control treatment (CON) were fed at 0900h, cows on the high/low treatment (H/L) were fed HF at 70% of daily offering at 0900h and LF at 30% of daily offering at 2200h, and cows on the low/high (L/H) treatment were fed LF at 30% of daily offering at 0900h and HF at 70% of daily offering at 1300h. All treatments were fed at 110% of daily intake. Preplanned contrasts compared CON with H/L and H/L with L/H. Feeding the LF diet in the evening resulted in a large increase in the amount of feed consumed immediately after feed delivery at that feeding. Rumen digesta starch concentration increased and NDF concentration decreased following feeding of the LF diet in both the L/H and H/L treatments. Starch pool size also increased following feeding of the LF diet in the evening and tended to increase after feeding the LF diet in the morning. Rumen ammonia concentration was increased following feeding of the HF diet in the morning and the LF diet in the evening in the H/L treatment. Additionally, cis-9 C18:1 and cis-9,cis-12 18:2 are higher in concentrate feeds and were increased after feeding the LF diet in both treatments. Trans fatty acid isomers of the normal and alternate biohydrogenation pathways followed a daily pattern, and the H

  13. Evaluation of food and nutrient intake assessment using concentration biomarkers in European adolescents from the Healthy Lifestyle in Europe by Nutrition in Adolescence study

    NARCIS (Netherlands)

    Vandevijvere, S.; Geelen, A.; Gonzalez-Gross, M.; Veer, van 't P.; Dallongeville, J.; Mouratidu, T.; Dekkers, A.; Börnhorst, C.; Breidenassel, C.

    2013-01-01

    Accurate food and nutrient intake assessment is essential for investigating diet–disease relationships. In the present study, food and nutrient intake assessment among European adolescents using 24 h recalls (mean of two recalls) and a FFQ (separately and the combination of both) were evaluated

  14. Influence of the inclusion of cooked cereals and pea starch in diets based on soy or pea protein concentrate on nutrient digestibility and performance of young pigs.

    Science.gov (United States)

    Parera, N; Lázaro, R P; Serrano, M P; Valencia, D G; Mateos, G G

    2010-02-01

    An experiment was conducted to compare different dietary vegetable sources of starch and protein on the coefficient of apparent total tract digestibility (CATTD) of energy and nutrients and performance of piglets from 29 to 60 d of age. The experiment was completely randomized with 6 treatments arranged factorially with 3 sources of starch (cooked-flaked corn, cooked-flaked rice, and pea starch) and 2 sources of protein [soy protein concentrate (SPC) and pea protein concentrate (PPC)]. The pea starch and the PPC used were obtained by dehulling and grinding pea seeds to a mean particle size of 30 microm. Each treatment was replicated 6 times (6 pigs per pen). For the entire experiment, piglets fed cooked rice had greater ADG than piglets fed pea starch with piglets fed cooked corn being intermediate (471, 403, and 430 g/d, respectively; P Protein source did not have any effect on piglet performance. The CATTD of DM, OM, and GE were greater (P pea starch being intermediate. Crude protein digestibility was not affected by source of starch but was greater for the diets based on SPC than for diets based on PPC (0.836 vs. 0.821; P Protein source did not affect the digestibility of any of the other dietary components. It is concluded that cooked rice is an energy source of choice in diets for young pigs. The inclusion of PPC in the diet reduced protein digestibility but had no effects on energy digestibility or piglet performance. Therefore, the finely ground starch and protein fractions of peas can be used in substitution of cooked corn or SPC, respectively, in diets for young pigs.

  15. Concentration and accumulation of nutrients in the aerial biomass of teak plantations 3 to 18 old, in the Panama Canal watershed.

    Directory of Open Access Journals (Sweden)

    Rafael Murillo

    2015-11-01

    Full Text Available Tissue samples from aerial biomass compartments (bark, wood, primary and secondary branches, and foliage were taken from 16 dominant trees of teak in plantations of the Panama Canal watershed, whose volume yield ranged between 9.4 and 13.3 m3 ha-1. year-1 at ages 3 and 18 years, respectively, growing in clayey, red, and acid Ultisols. Wet and dry weight of the different tissues was measured and subsamples taken to be analyzed for macronutrients (N, K, Ca, Mg, P and S and micronutrients (Fe, Mn, Zn, Cu and B. Regression analyses allowed to relate nutrients accumulation with tree age. Dry biomass of the wood was 59.6% (C.V. 5% of total dry biomass, while primary branches, bark, foliage, and secondary branches represented 16.6, 9.4, 7.9, and 6.5, respectively. Larger concentrations of macronutrients were Ca (2.01% found in the bark, and N in the foliage (1.98%. As for micronutrients, larger concentrations were found in the bark, in the order of Fe (767 mg.kg-1, Mn (60 mg.kg-1 and Zn (50 mg.kg-1. At 18 years of age accumulation of macronutrients was 15.9 kg. tree-1 (7.3 kg Ca, 3.9 kg N, 2.6 kg K, 1.0 kg Mg, 0.7 kg P and 0.4 kg S and 124 g of micronutrients (89 g Fe, 18 g Zn, 9 g B, 5 g Mn and 3 g Cu.

  16. Effects of dietary crude protein and rumen-degradable protein concentrations on urea recycling, nitrogen balance, omasal nutrient flow, and milk production in dairy cows.

    Science.gov (United States)

    Mutsvangwa, T; Davies, K L; McKinnon, J J; Christensen, D A

    2016-08-01

    The objective of this study was to determine how interactions between dietary crude protein (CP) and rumen-degradable protein (RDP) concentrations alter urea-nitrogen recycling, nitrogen (N) balance, omasal nutrient flow, and milk production in lactating Holstein cows. Eight multiparous Holstein cows (711±21kg of body weight; 91±17d in milk at the start of the experiment) were used in a replicated 4×4 Latin square design with a 2×2 factorial arrangement of dietary treatments and 29-d experimental periods. Four cows in one Latin square were fitted with ruminal cannulas to allow ruminal and omasal sampling. The dietary treatment factors were CP (14.9 vs. 17.5%; dry matter basis) and RDP (63 vs. 69% of CP) contents. Dietary RDP concentration was manipulated by including unprocessed or micronized canola meal. Diet adaptation (d 1-20) was followed by 8d (d 21-29) of sample and data collection. Continuous intrajugular infusions of [(15)N(15)N]-urea (220mg/d) were conducted for 4d (d 25-29) with concurrent total collections of urine and feces to estimate N balance and whole-body urea kinetics. Proportions of [(15)N(15)N]- and [(14)N(15)N]-urea in urinary urea, and (15)N enrichment in feces were used to calculate urea kinetics. For the low-CP diets, cows fed the high-RDP diet had a greater DM intake compared with those fed the low-RDP diet, but the opposite trend was observed for cows fed the high-CP diets. Dietary treatment had no effect on milk yield. Milk composition and milk component yields were largely unaffected by dietary treatment; however, on the low-CP diets, milk fat yield was greater for cows fed the low-RDP diet compared with those fed the high-RDP diet, but it was unaffected by RDP concentration on the high-CP diets. On the high-CP diets, milk urea nitrogen concentration was greater in cows fed the high-RDP diet compared with those fed the low-RDP diet, but it was unaffected by RDP concentration on the low-CP diets. Ruminal NH3-N concentration tended to

  17. Regeneration and vegetative propagation of Sphagnum palustre as factor of population stability

    Directory of Open Access Journals (Sweden)

    Dygna Sobotka

    2015-01-01

    Full Text Available The stability of the Sphagnum palustre populations on the meadows of the Kampinos National Park situated north-west of Warsaw was investigated in the period 1971-1974. Laboratory cultures were also started to establish the regenerative ability of various gametophyte parts of Sphagnum: the main stem, branches, leaves and spore germination. The green stems and apical branches of the plants showed the highest regeneration ability. Brown stems and white branches developed less intensively. Leaves showed no tendency to develop into new plants. Gametophores were found to form quicker and more effectively by way of regeneration than from spores. In natural conditions more intensive growth of branchings (new shoots from the apical and green parts of Sphagnum was also observed, whereas the brown parts did not exhibit this ability.

  18. A Comparison of Concentrations of Sodium and Related Nutrients (Potassium, Total Dietary Fiber, Total and Saturated Fat, and Total Sugar) in Private-Label and National Brands of Popular, Sodium-Contributing, Commercially Packaged Foods in the United States.

    Science.gov (United States)

    Ahuja, Jaspreet K C; Pehrsson, Pamela R; Cogswell, Mary

    2017-05-01

    Private-label brands account for about one in four foods sold in US supermarkets. They provide value to consumers due to their low cost. We know of no US studies comparing the nutrition content of private-label products with corresponding national brand products. The objective was to compare concentrations of sodium and related nutrients (potassium, total dietary fiber, total and saturated fat, and total sugar) in popular sodium-contributing, commercially packaged foods by brand type (national or private-label brand). During 2010 to 2014, the Nutrient Data Laboratory of the US Department of Agriculture obtained 1,706 samples of private-label and national brand products from up to 12 locations nationwide and chemically analyzed 937 composites for sodium and related nutrients. The samples came from 61 sodium-contributing, commercially packaged food products for which both private-label and national brands were among the top 75% to 80% of brands for US unit sales. In this post hoc comparative analysis, the authors assigned a variable brand type (national or private label) to each composite and determined mean nutrient contents by brand type overall and by food product and type. The authors tested for significant differences (Pfoods sampled, differences between brand types were not statistically significant for any of the nutrients studied. However, differences in both directions exist for a few individual food products and food categories. Concentrations of sodium and related nutrients (potassium, total dietary fiber, total and saturated fat, and total sugar) do not differ systematically between private-label and national brands, suggesting that brand type is not a consideration for nutritional quality of foods in the United States. The study data provide public health officials with baseline nutrient content by brand type to help focus US sodium-reduction efforts. Published by Elsevier Inc.

  19. Carbon balance modification in Sphagnum-dominated peat mesocosms invaded by Molinia caerulea

    Science.gov (United States)

    Leroy, Fabien; Gogo, Sébastien; Guimbaud, Christophe; Bernard-Jannin, Léonard; Laggoun-Défarge, Fatima

    2017-04-01

    Plant communities have a key role in regulating greenhouse gas (GHG) emissions in peatland ecosystems and thus on their capacity to act as carbon (C) sink. However, in response to global change, boreal and temperate peatlands may shift from Sphagnum to vascular plant-dominated peatlands that may alter their C-sink function. We set up a mesocosm experiment to investigate how the main GHG fluxes (CO2 and CH4) are affected by plant community modification from Sphagnum mosses to Molinia caerulea dominance. Gross primary production (GPP), ecosystem respiration (ER) and CH4 emissions models were used to compare the C balance and global warming potential under both vegetation cover. While the annual CO2 and CH4 emissions modeling estimated an output of respectively 652 and 18 gC m-2 y-1 in Sphagnum mesocosms, it represented a release of 1473 and 50 gC m-2 y-1 with Molinia caerulea occurrence. Annual modeled GPP was respectively -495 and -1968 gC m-2 y-1 in Sphagnum and Molinia mesocosms leading to a net ecosystem carbon balance (NECB) of 175 g gC m-2 y-1 in Sphagnum mesocosms (i.e., a C-source) and of -445 gC m-2 y-1 for Molinia ones (i.e., a C-sink). Even if CH4 emission accounted for a small part of the gaseous C efflux ( 3%), its global warming potential value to get CO2 equivalent makes both plant communities acting as a warming climate effect. The vegetation shift from Sphagnum mosses to Molinia caerulea seems beneficial for C sequestration regarding the gaseous pool. However, roots and litters of Molinia caerulea could further provide substrates for C emissions and dissolved organic C release.

  20. Bioaccumulation and glutathione-mediated detoxification of copper and cadmium in Sphagnum squarrosum Crome Samml.

    Science.gov (United States)

    Saxena, Anuj; Saxena, Anjali

    2012-07-01

    Physiological and biochemical responses, metal bioaccumulation and tolerance potential of Sphagnum squarrosum Crome Samml. to Cu and Cd were studied to determine its bioindication and bioremediation potential. Results suggest that glutathione treatment increases the metal accumulation potential and plays a definite role in heavy metal scavenging. High abundance of Sphagnum in metal-rich sites strongly suggests its high metal tolerance capabilities. This experiment demonstrates that S. squarrosum is able to accumulate and tolerate a high amount of metals and feasibility of its application as bioindicator and remediator test species of metal-contaminated environment.

  1. Alternative substrates to the sphagnum moss in the acclimatization of arundina graminifolia “alba”(Orchidaceae)

    OpenAIRE

    Ana Paula Zandoná; Ricardo Tadeu de Faria; Alessandro Borini Lone; Rodrigo Thibes Hoshino

    2014-01-01

    The Arundina graminifolia, is popularly known as bamboo orchid, by having their stems quite extensive. It is widely used in the business landscape, with a very rustic plant. Sphagnum moss is the most widely used substrate in the acclimatization of orchids, but environmental issues have led to an increase in the search for alternative substrates. The objective of this study was to evaluate substrates that can replace all or part of the use of sphagnum moss on the acclimatization of A. graminif...

  2. Inoculation of sphagnum-based soil substrate with entomopathogenic fungus Isaria fumosorosea (Hypocreales: Cordycipitaceae)

    Science.gov (United States)

    Zemek, Rostislav; Konopická, Jana; Bohatá, Andrea

    2018-04-01

    Convenient ecological alternative to broad-spectrum chemical pesticides is the utilization of natural enemies, like predators, parasitoids and microorganisms. A substantial number of microbial biopesticides based on entomopathogenic fungi have been developed worldwide since 1960s. Beauveria bassiana (Balsamo-Crivelli) Vuillemin, Metarhizium anisopliae (Metchnikoff) Sorokin, Isaria fumosorosea (Wize), and B. brongniartii (Saccardo) Petch are the most common species used in commercially produced mycopesticides. Besides direct biological pest control, these fungi could be also used in preventive application programs, particularly in ornamental or nursery plants to provide better control against pests. The aim of the present study was to investigate potential of pre-colonization of sphagnum-based soil substrate with I. fumosorosea strain CCM 8367 which was found earlier to be highly virulent against several pest species. We developed simple laboratory apparatus for application of fungal spore suspension into the substrate. Suspension was prepared from blastospores obtained by submerged cultivation on potato dextrose broth (PDB) medium using an orbital shaker. Inoculated substrate was placed into plastic bags and stored at constant temperature for six months. Every month, samples were analyzed for concentration of colony forming units (CFU) by elution and selective medium technique. The results showed that at 20°C the fungus successfully colonized the soil substrate and persisted there although the mean concentration slightly decreased from 5.89×104 to 2.76×104 CFU per milliliter of substrate during the experiment. Temperature 30°C had negative effect on survival of the fungus and is not recommended for long-term storage of pre-inoculated substrate. We can conclude that I. fumosorosea-colonized substrate can be convenient for preventive and permanent protection of various plants against soil-dwelling pests.

  3. Water flow in Sphagnum hummocks: Mesocosm measurements and modelling

    Science.gov (United States)

    Price, Jonathan S.; Whittington, Peter N.

    2010-02-01

    SummaryThe internal water fluxes within Sphagnum mosses critically affect the rate of evaporation and the wetness of the living upper few centimetres of moss (capitula) and the physiological processes (e.g. photosynthesis) that support them. To quantify water fluxes and stores in Sphagnum rubellum hummocks we used a 30 cm high column (mesocosm) of undisturbed hummock moss including the capitula, and applied a number of experiments to investigate (1) staged lowering (and raising) of the water table ( wt) with a manometer tube; (2) pumped seepage of about 0.7 cm d -1 to produce a wt drop of 1.5 cm day -1; and (3) evaporation averaging 3.2 mm d -1. Water content ( θ) at saturation ( θ s) was ˜0.9 cm 3 cm -3 for all depths. Residual water content ( θ r) was 0.2 cm 3 cm -3 at 5 cm depth, increasing to 0.47 cm 3 cm -3 at 25 cm depth. Hydraulic conductivity ( K) of the same top 5 cm layer ranged from 1.8 × 10 -3 m s -1 at θ s to 4 × 10 -8 m s -1 at θ r. By comparison K at 25 cm depth had a much more limited range from 2.3 × 10 -4 m s -1 at θ s to 1.1 × 10 -5 m s -1 at θ r. Staged wt lowering from -10 cm to -30 cm (no evaporation allowed) resulted in an abrupt change in θ that reached a stable value generally within an hour, indicating the responsiveness of moss to drainage. Staged increases also resulted in an abrupt rise in θ, but in some cases several days were required for θ to equilibrate. Pumped seepage resulted in a sequential decline of θ, requiring about 10 days for each layer to reach θ r after the water table dropped below the sensor at the respective depths. Evaporation resulted in a similar pattern of decline but took almost three times as long. The computer simulation Hydrus 1D was used to model the fluxes and provided a good fit for the staged lowering and pumped seepage experiments, but overestimated the water loss by evaporation. We believe the reason for this is that over the longer evaporation experiment, the monolith underwent

  4. Alterações no teores de nutrientes em dois solos alagados, com e sem plantas de arroz Nutrients concentration changes in two flooded soils during the rice cycle

    Directory of Open Access Journals (Sweden)

    Leandro Souza da Silva

    2003-06-01

    Full Text Available O alagamento e a presença de plantas alteram as propriedades biológicas e químicas do solo em relação ao ambiente anteriormente oxidado, influenciando a disponibilidade de nutrientes. Foi conduzido um experimento com o objetivo de avaliar as alterações dos teores de alguns nutrientes na solução de um Planossolo e um Gleissolo durante o ciclo do arroz. Os solos foram acondicionados em vasos (50 litros contendo dispositivos para coleta da solução em diferentes profundidades, mantidos sem ou com plantas de arroz. A solução foi coletada aos 10, 19, 44, 77 e 113 dias de alagamento e determinados os teores de P, K, Ca, Mg, Fe e Mn. A concentração dos nutrientes na solução, especialmente o K, variou com a profundidade de coleta e com a presença de plantas, demonstrando a influência desses fatores na disponibilidade dos nutrientes em solos alagados.Flooding a soil and growing plant on it can change its biological and chemistry properties, in comparison with a non-flooded environment. An experiment was conducted in order to study the nutrients dynamics in the solution of two soils (Planossolo and Gleissolo during the rice cycle. Rice plants were cultivated in 50L containers having devices to collect soil solution at several depths (2.5, 5.0, 7.5 and 31cm. In the soil solution, with and without plant, P, K, Ca, Mg, Fe and Mn, were measured at 10, 19, 44, 77, and 113 days after the flooding. Potassium was especially sensible to the rice plant and depth of sampling

  5. Characteristics of Eastern Canadian cultivated Sphagnum and potential use as a substitute for perlite and vermiculite in peat-based horticultural substrates

    Directory of Open Access Journals (Sweden)

    M. Aubé

    2015-03-01

    Full Text Available Sphagnum cultivation on harvested peatlands to meet wetland restoration objectives could be an economically feasible activity since cultivated Sphagnum has potential horticultural applications. We compared the characteristics of cultivated Sphagnum from Shippagan (Canada with those of non-cultivated Sphagnum products from Chile, New Zealand and Canada, and assessed its potential as a perlite and vermiculite substitute in horticultural peat-based substrates. Shippagan cultivated Sphagnum was shorter than the Chilean and New Zealand products with which it was compared, yet more similar to them than to the Canadian product currently on the market. Laboratory tests on physical properties and greenhouse growth trials indicated that 50–100 % of the perlite or vermiculite of a peat-based substrate can be successfully replaced with cultivated Sphagnum. Non-sieved coarsely shredded Sphagnum or the large (> 6.3 mm fragments of sieved coarsely shredded Sphagnum best replicated the aeration provided by perlite and vermiculite in the substrates that were tested. Decomposition tests and comparisons of changes in physical properties of substrates containing Sphagnum after six weeks of growth trials indicated that Sphagnum degradation leading to reduced substrate performance is not likely to be an issue. Therefore, cultivated Sphagnum has great potential as a substitute for perlite and vermiculite.

  6. Estimates of Water-Column Nutrient Concentrations and Carbonate System Parameters in the Global Ocean: A Novel Approach Based on Neural Networks

    Directory of Open Access Journals (Sweden)

    Raphaëlle Sauzède

    2017-05-01

    Full Text Available A neural network-based method (CANYON: CArbonate system and Nutrients concentration from hYdrological properties and Oxygen using a Neural-network was developed to estimate water-column (i.e., from surface to 8,000 m depth biogeochemically relevant variables in the Global Ocean. These are the concentrations of three nutrients [nitrate (NO3−, phosphate (PO43−, and silicate (Si(OH4] and four carbonate system parameters [total alkalinity (AT, dissolved inorganic carbon (CT, pH (pHT, and partial pressure of CO2 (pCO2], which are estimated from concurrent in situ measurements of temperature, salinity, hydrostatic pressure, and oxygen (O2 together with sampling latitude, longitude, and date. Seven neural-networks were developed using the GLODAPv2 database, which is largely representative of the diversity of open-ocean conditions, hence making CANYON potentially applicable to most oceanic environments. For each variable, CANYON was trained using 80 % randomly chosen data from the whole database (after eight 10° × 10° zones removed providing an “independent data-set” for additional validation, the remaining 20 % data were used for the neural-network test of validation. Overall, CANYON retrieved the variables with high accuracies (RMSE: 1.04 μmol kg−1 (NO3−, 0.074 μmol kg−1 (PO43−, 3.2 μmol kg−1 (Si(OH4, 0.020 (pHT, 9 μmol kg−1 (AT, 11 μmol kg−1 (CT and 7.6 % (pCO2 (30 μatm at 400 μatm. This was confirmed for the eight independent zones not included in the training process. CANYON was also applied to the Hawaiian Time Series site to produce a 22 years long simulated time series for the above seven variables. Comparison of modeled and measured data was also very satisfactory (RMSE in the order of magnitude of RMSE from validation test. CANYON is thus a promising method to derive distributions of key biogeochemical variables. It could be used for a variety of global and regional applications ranging from data quality control

  7. Clonal in vitro propagation of peat mosses (Sphagnum L.) as novel green resources for basic and applied research.

    Science.gov (United States)

    Beike, Anna K; Spagnuolo, Valeria; Lüth, Volker; Steinhart, Feray; Ramos-Gómez, Julia; Krebs, Matthias; Adamo, Paola; Rey-Asensio, Ana Isabel; Angel Fernández, J; Giordano, Simonetta; Decker, Eva L; Reski, Ralf

    As builders and major components of peatlands, Sphagnopsida (peat mosses) are very important organisms for ecosystems and world's climate. Nowadays many Sphagnum species as well as their habitats are largely protected, while their scientific and economic relevance remains considerable. Advanced methods of in vitro cultivation provide the potential to work in a sustainable way with peat mosses and address aspects of basic research as well as biotechnological and economical topics like biomonitoring or the production of renewable substrates for horticulture ( Sphagnum farming). Here, we describe the establishment of axenic in vitro cultures of the five peat moss species Sphagnum fimbriatum Wils. and Hook., Sphagnum magellanicum Brid., Sphagnum palustre L., Sphagnum rubellum Wils. and Sphagnum subnitens Russ. and Warnst. with specific focus on large-scale cultivation of S. palustre in bioreactors. Axenic, clonal cultures were established to produce high quantities of biomass under standardized laboratory conditions. For advanced production of S. palustre we tested different cultivation techniques, growth media and inocula, and analyzed the effects of tissue disruption. While cultivation on solid medium is suitable for long term storage, submerse cultivation in liquid medium yielded highest amounts of biomass. By addition of sucrose and ammonium nitrate we were able to increase the biomass by around 10- to 30-fold within 4 weeks. The morphology of in vitro-cultivated gametophores showed similar phenotypic characteristics compared to material from the field. Thus the tested culture techniques are suitable to produce S. palustre material for basic and applied research.

  8. Concentrations and transport of suspended sediment, nutrients, and pesticides in the lower Mississippi-Atchafalaya River subbasin during the 2011 Mississippi River flood, April through July

    Science.gov (United States)

    Welch, Heather L.; Coupe, Richard H.; Aulenbach, Brent T.

    2014-01-01

    High streamflow associated with the April–July 2011 Mississippi River flood forced the simultaneous opening of the three major flood-control structures in the lower Mississippi-Atchafalaya River subbasin for the first time in history in order to manage the amount of water moving through the system. The U.S. Geological Survey (USGS) collected samples for analysis of field properties, suspended-sediment concentration, particle-size, total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, and up to 136 pesticides at 11 water-quality stations and 2 flood-control structures in the lower Mississippi-Atchafalaya River subbasin from just above the confluence of the upper Mississippi and Ohio Rivers downstream from April through July 2011. Monthly fluxes of suspended sediment, suspended sand, total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, atrazine, simazine, metolachlor, and acetochlor were estimated at 9 stations and 2 flood-control structures during the flood period. Although concentrations during the 2011 flood were within the range of what has been observed historically, concentrations decreased during peak streamflow on the lower Mississippi River. Prior to the 2011 flood, high concentrations of suspended sediment and nitrate were observed in March 2011 at stations downstream of the confluence of the upper Mississippi and Ohio Rivers, which probably resulted in a loss of available material for movement during the flood. In addition, the major contributor of streamflow to the lower Mississippi-Atchafalaya River subbasin during April and May was the Ohio River, whose water contained lower concentrations of suspended sediment, pesticides, and nutrients than water from the upper Mississippi River. Estimated fluxes for the 4-month flood period were still quite high and contributed approximately 50 percent of the estimated annual suspended sediment, nitrate, and total phosphorus fluxes in 2011; the largest fluxes were estimated at

  9. Sphagnum mosses : Masters of efficient N-uptake while avoiding intoxication

    NARCIS (Netherlands)

    Fritz, Christian; Lamers, Leon P.M.; Riaz, Muhammed; van den Berg, Leon J.L.; Elzenga, Theo J.T.M.

    2014-01-01

    Peat forming Sphagnum mosses are able to prevent the dominance of vascular plants under ombrotrophic conditions by efficiently scavenging atmospherically deposited nitrogen (N). N-uptake kinetics of these mosses are therefore expected to play a key role in differential N availability, plant

  10. [Analysis of the bacterial community developing in the course of Sphagnum moss decomposition].

    Science.gov (United States)

    Kulichevskaia, I S; Belova, S E; Kevbrin, V V; Dedysh, S N; Zavarzin, G A

    2007-01-01

    Slow degradation of organic matter in acidic Sphagnum peat bogs suggests a limited activity of organotrophic microorganisms. Monitoring of the Sphagnum debris decomposition in a laboratory simulation experiment showed that this process was accompanied by a shift in the water color to brownish due to accumulation of humic substances and by the development of a specific bacterial community with a density of 2.4 x 10(7) cells ml(-1). About half of these organisms are metabolically active and detectable with rRNA-specific oligonucleotide probes. Molecular identification of the components of this microbial community showed the numerical dominance of bacteria affiliated with the phyla Alphaproteobacteria, Actinobacteria, and Phanctomycetes. The population sizes of Firmicutes and Bacteroidetes, which are believed to be the main agents of bacterially-mediated decomposition in eutrophic wetlands, were low. The numbers of planctomycetes increased at the final stage of Sphagnum decomposition. The representative isolates of Alphaproteobacteria were able to utilize galacturonic acid, the only low-molecular-weight organic compound detected in the water samples; the representatives of Planctomycetes were able to decompose some heteropolysaccharides, which points to the possible functional role of these groups of microorganisms in the community under study. Thus, the composition of the bacterial community responsible for Sphagnum decomposition in acidic and low-mineral oligotrophic conditions seems to be fundamentally different from that of the bacterial community which decomposes plant debris in eutrophic ecosystems at neutral pH.

  11. The trapping of fly-ash particles in the surface layers of Sphagnum-dominated peat

    International Nuclear Information System (INIS)

    Punning, J.-M.; Alliksaar, T.

    1997-01-01

    The movement of fly-ash particles in a sequence of Sphagnum moss was studied in laboratory experiments and field investigations. Fly ash was obtained from the electrostatic precipitators of the Estonian Thermal Power Plant operating on oil shale. The data obtained in the laboratory show that only 0.8% of particles, placed on the surface of a 6-10 cm thick Sphagnum layer, were washed out with water (700-750 mm) during the 241 days of the experiment. The majority of added particles were fixed in the upper part (90% in 1-3 cm) of the moss layer. A SEM study indicates that sorption is slightly species-dependent due to the micromorphological parameters of the Sphagnum species. The storage of particles by Sphagnum mosses allows the use of natural sequences to study the history of atmospheric pollution. The distribution of particles in the upper part of moss layers in Viru Bog (50 km east of Tallinn, North Estonia) shows good agreement with the known air pollution history in Tallinn. 13 refs., 6 figs., 2 tabs

  12. The interaction between epiphytic algae, a parasitic fungus and Sphagnum as affected by N. and P.

    NARCIS (Netherlands)

    Limpens, J.; Jeffrey, T.A.G.; Baar, J.; Berendse, F.; Zijlstra, J.D.

    2003-01-01

    We report the effects of fertilisation with N and P on the infection of Sphagnum by its fungal parasite Lyophyllum palustre, the expansion of epiphytic algae and the interaction between the latter two from 1998 to 2001. We added 40 kg N ha(-1) yr(-1) or 3 kg P ha(-1) yr(-1) in a full factorial

  13. Exploding a myth: the capsule dehiscence mechanism and the function of pseudostomata in Sphagnum.

    Science.gov (United States)

    Duckett, Jeffrey G; Pressel, Silvia; P'ng, Ken M Y; Renzaglia, Karen S

    2009-01-01

    The nineteenth century air-gun explanation for explosive spore discharge in Sphagnum has never been tested experimentally. Similarly, the function of the numerous stomata ubiquitous in the capsule walls has never been investigated. Both intact and pricked Sphagnum capsules, that were allowed to dry out, all dehisced over an 8-12 h period during which time the stomatal guard cells gradually collapsed and their potassium content, measured by X-ray microanalysis in a cryoscanning electron microscope, gradually increased. By contrast, guard cell potassium fell in water-stressed Arabidopsis. The pricking experiments demonstrate that the air-gun notion for explosive spore discharge in Sphagnum is inaccurate; differential shrinkage of the capsule walls causes popping off the rigid operculum. The absence of evidence for a potassium-regulating mechanism in the stomatal guard cells and their gradual collapse before spore discharge indicates that their sole role is facilitation of sporophyte desiccation that ultimately leads to capsule dehiscence. Our novel functional data on Sphagnum, when considered in relation to bryophyte phylogeny, suggest the possibility that stomata first appeared in land plants as structures that facilitated sporophyte drying out before spore discharge and only subsequently acquired their role in the regulation of gaseous exchange.

  14. Decomposition of Carex and Sphagnum litter in two mesotrophic fens differing in dominant plant species

    NARCIS (Netherlands)

    Scheffer, R.A.; Van Logtestijn, R. S P; Verhoeven, J. T A

    2001-01-01

    Peatlands can be classified into fens and bogs based on their hydrology. Development of fens to bogs is accompanied by the invasion of Sphagnum species. The purpose of this study was to determine how the decomposition process in fens is influenced by the transition from a vascular plant-dominated

  15. Ecohydrology of a Sphagnum peatland in transitional climate - an interdysciplinary study

    Science.gov (United States)

    Słowińska, S.; Słowiński, M.; Lamentowicz, M.; Skrzypek, G.

    2012-04-01

    Sphagnum peatlands of the Central Europe are regarded as the valuable and endangered habitats. Their existence depends on the complex climatic, hydrological, topographical and botanical conditions. Good understanding of peatlands' ecohydrology is crucial for the appropriate environmental management. Our long-term ecological study is focused on a poor fen located in Northern Poland - a unique floristic nature reserve and Nature 2000 area. Main aims of the research were to: a) understand an influence of the temperature and precipitation on the ground water, b) explain an impact of the local climate and the groundwater table level on testate amoebae communities, Sphagnum mosses growth and stable carbon, nitrogen and oxygen isotope compositions, c) use the neo- ecological data for the quantitative palaeoecological reconstructions. We have been conducting the monitoring of the growth of Sphagnum mosses in five plots. Vegetation was sampled three times during the growing season for the stable isotope and testate amoebae analyses (July, September and December 2009). Temperature of the air and acrotelm, air humidity, precipitation and groundwater table were recorded using automatic data loggers. Our research confirmed that even small fluctuation of temperature, precipitation and annual distribution of precipitation have a very strong impact on the hydrology of the peatland. Testate amoeba communities and stable isotopes from Sphagnum clearly indicated the hydrological response of the mire in the different parts of the peatland. The next step is a detailed seasonal study supported by the manipulative warming experiment.

  16. Response of Sphagnum species mixtures to increased temperature and nitrogen availability

    NARCIS (Netherlands)

    Breeuwer, A.J.G.; Heijmans, M.M.P.D.; Berendse, F.; Gleichman, J.M.; Robroek, B.J.M.; Limpens, J.

    2009-01-01

    To predict the role of ombrotrophic bogs as carbon sinks in the future, it is crucial to understand how Sphagnum vegetation in bogs will respond to global change. We performed a greenhouse experiment to study the effects of two temperature treatments (17.5 and 21.7°C) and two N addition treatments

  17. Expansion of Sphagnum fallax in bogs: striking the ballance between N and P availability

    NARCIS (Netherlands)

    Limpens, J.; Tomassen, H.B.M.; Berendse, F.

    2003-01-01

    Nitrogen deposition may cause shifts in the Sphagnum species composition of bogs, ultimately affecting the conservation value of these systems. We studied the effects of N and P on the expansion of S. fallax and S. flexuosum in bogs. We related historical census data of S. fallax, S. flexuosum, and

  18. Análise sensorial, teores de nitrato e de nutrientes de alface cultivada em hidroponia sob águas salinas Sensory analysis, nitrate and nutrient concentration of lettuce grown in hydroponics under saline water

    Directory of Open Access Journals (Sweden)

    Dalva Paulus

    2012-03-01

    Full Text Available O presente trabalho teve como objetivos determinar os teores de nutrientes e de nitrato e realizar análise sensorial de alface cultivada em sistema hidropônico sob água salina. O experimento foi conduzido em ambiente protegido no período de dezembro de 2007 a janeiro de 2008, em Piracicaba (SP. O delineamento experimental foi de blocos ao acaso, sendo estudados cinco níveis de salinidade da água de irrigação, utilizando-se NaCl (Condutividade elétrica da água (CEa: 0,42, 1,53, 3,52, 5,55 e 7,43 dS m-1 em duas cultivares de alface (Verônica e Pira Roxa, em esquema fatorial. Foram avaliados a análise sensorial aplicando escala hedônica e através dessa, o que os provadores mais apreciaram e o que menos gostaram de cada amostra, intenção de compra e consumo, teor de nitrato, absorção de nutrientes pela folhas e determinação dos nutrientes presentes na solução nutritiva. Para o atributo sabor a cultivar Verônica recebeu as melhores notas no nível de salinidade 1,53 e 5,55 dS m-1. Para a cultivar Pira Roxa a melhor nota foi atribuída para a alface produzida na água não salina. Para os demais atributos não houve diferença significativa nos diferentes níveis de salinidade. Com relação à intenção de compra, constatou-se que as alfaces cv. Verônica e Pira Roxa apresentaram boa aceitação de mercado. Os menores níveis de nitrato (1960 mg kg-1 e 2620 mg kg-1 de massa de matéria fresca, da Verônica e Pira Roxa, respectivamente, foram relacionados à condutividade elétrica de 0,42 dS m-1, aumentando a salinidade da água para 7,43 dS m-1, o teor foliar de nitrato aumentou para 2500 mg kg-1 e 3420 mg kg-1 para as cultivares Verônica e Pira Roxa. Como o tempo de exposição da alface à salinidade em sistema hidropônico foi curto, em torno de 25 dias, não se verificou sintomas de deficiência nutricional e toda alface foi classificada como apropriada para consumo humano.This study aimed to evaluate the content of

  19. Genotoxic effect of Pb and Cd on in vitro cultures of Sphagnum palustre: An evaluation by ISSR markers.

    Science.gov (United States)

    Sorrentino, Maria Cristina; Capozzi, Fiore; Giordano, Simonetta; Spagnuolo, Valeria

    2017-08-01

    In the present work, the genotoxic effect of cadmium and lead supplied in a laboratory trial, was investigated for the first time in the moss Sphagnum palustre, by ISSR molecular markers. A total of 169 reproducible bands were obtained with 12 primers, ten of which gave polymorphisms (i.e., appearance/disappearance of bands), indicating a clear genotoxic effect induced by the metals. Both metals induced a decrease of the genome template stability in a dose dependent manner. At concentration >10 -5 Cd also induced a general toxic effect in S. palustre, leading to chlorophyll degradation and moss death. Moreover, we followed the fate of supplied heavy metals into the moss tissue by SEM-EDX to see if they entered the cells. SEM-EDX observations on moss cultures treated with equimolar concentrations of the two metals showed that most Pb precipitated in form of particles on moss surface, while Cd did not aggregate in particles and was not found on moss surface. In light of these findings, we concluded that probably Pb induced a genotoxic effect at lower intracellular concentrations than Cd. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Irrigation water acidification to neutralize alkalinity for nursery crop production: Substrate pH, electrical conductivity, nutrient concentrations, and plant nutrition and growth

    Science.gov (United States)

    Liming agents in irrigation water, typically associated with carbonates and bicarbonates of calcium and magnesium, contribute to water alkalinity. Repeated application of LA to container crops can cause media-solution pH to rise overtime, that uncorrected, can lead to a nutrient availability imbalan...

  1. Irrigation water acidification to neutralize alkalinity for nursery crop production: Substrate pH, electrical conductivity, and nutrient concentrations; and plant nutrition and growth

    Science.gov (United States)

    Liming agents (LA) in irrigation water, typically associated with carbonates and bicarbonates of calcium (Ca) and magnesium (Mg), contribute to water alkalinity. Repeated application of LA to container crops can cause media-solution pH to rise overtime, that uncorrected, can lead to a nutrient avail...

  2. Establishing Sphagnum cultures on bog grassland, cut-over bogs, and floating mats: procedures, costs and area potential in Germany

    Directory of Open Access Journals (Sweden)

    S. Wichmann

    2017-04-01

    Full Text Available Sphagnum biomass is valued as a high-quality constituent of horticultural growing media. The cultivation of Sphagnum (peatmoss was tested successfully on peat soil and on artificial mats floating on acidic water bodies. But whether Sphagnum farming is economically feasible is unclear. Drawing on experience gained during four research projects in Germany we compared the procedures, costs and area potential for establishing large-scale Sphagnum cultures. Establishment costs were clearly lower for soil-based cultivation (€8.35 m-2 to €12.80 m 2 than for water-based cultivation (€17.34 m-2 to €21.43 m-2. Relating costs to the predicted dry mass yield over the total cultivation time resulted in values of €1,723 t-1 on cut-over bog, €2,646 t-1 on former bog grassland, €9,625 t -1 on floating mats without pre-cultivation and €11,833 t-1 on pre-cultivated Sphagnum mats. The high production costs of the mats (without pre-cultivation 54 % and with pre-cultivation 63 % of total costs resulted in the highest overall costs. In the case of soil-based Sphagnum cultures, the costs of purchasing Sphagnum diaspores were most influential (on bog grassland 46 % and on cut-over bog 71 % of total costs. The lowest costs relate to cut-over bog because of the smaller effort required for site preparation compared to taking off the topsoil of former bog grassland and the limited costs for the assumed irrigation system. In the case of former bog grassland, the high investment costs for the project-specific automatic water management boosted the establishment costs. Taking into account potential savings on the irrigation system and the high area potential, bog grassland emerges as the most promising land category for Sphagnum farming in Germany.

  3. Nutrient supply of plants in aquaponic systems

    Directory of Open Access Journals (Sweden)

    Andras Bittsanszky

    2016-10-01

    Full Text Available In this preliminary article we present data on plant nutrient concentrations in aquaponics systems, and we compare them to nutrient concentrations in “standard” hydroponic solutions. Our data shows that the nutrient concentrations supplied by the fish in the aquaponics system are significantly lower for most nutrients compared to hydroponic systems. Nevertheless, plants do thrive in solutions that have lower nutrient levels compared to “standard” hydroponic solutions. This is especially true for green leafy vegetables that rarely need additional nutritional supplementation. It is concluded that in the highly complex system of aquaponics, special care has to be taken, via continuous monitoring of the chemical composition of the circulating water, to provide adequate concentrations and ratios of nutrients, and especially for the potentially toxic component, ammonium. If certain plants require nutrient supplementation, we consider that one based on organic substances would be most beneficial. However, protocols for the application of such nutrient amendments still need to be developed.

  4. Relative importance of local habitat complexity and regional factors for assemblages of oribatid mites (Acari: Oribatida) in Sphagnum peat bogs.

    Science.gov (United States)

    Minor, M A; Ermilov, S G; Philippov, D A; Prokin, A A

    2016-11-01

    We investigated communities of oribatid mites in five peat bogs in the north-west of the East European plain. We aimed to determine the extent to which geographic factors (latitude, separation distance), local environment (Sphagnum moss species, ground water level, biogeochemistry) and local habitat complexity (diversity of vascular plants and bryophytes in the surrounding plant community) influence diversity and community composition of Oribatida. There was a significant north-to-south increase in Oribatida abundance. In the variance partitioning, spatial factors explained 33.1 % of variability in abundance across samples; none of the environmental factors were significant. Across all bogs, Oribatida species richness and community composition were similar in Sphagnum rubellum and Sphagnum magellanicum, but significantly different and less diverse in Sphagnum cuspidatum. Sphagnum microhabitat explained 52.2 % of variability in Oribatida species richness, whereas spatial variables explained only 8.7 %. There was no distance decay in community similarity between bogs with increased geographical distance. The environmental variables explained 34.9 % of the variance in community structure, with vascular plants diversity, bryophytes diversity, and ground water level all contributing significantly; spatial variables explained 15.1 % of the total variance. Overall, only 50 % of the Oribatida community variance was explained by the spatial structure and environmental variables. We discuss relative importance of spatial and local environmental factors, and make general inferences about the formation of fauna in Sphagnum bogs.

  5. Effect of crustose lichen on soil CO2 efflux in sphagnum moss regime of tundra, west Alaska

    Science.gov (United States)

    Kim, Y.; Park, S. J.; Suzuki, R.; Lee, B. Y.

    2017-12-01

    Increasing ambient temperatures across the Arctic have induced changes in plant extent and phenology, degradation of permafrost, snow depth and covered extent, decomposition of soil organic matter, and subsequently, soil carbon emission to the atmosphere. However, there is fully not understood on the effect of crustose lichen on soil CO2 emission to the atmosphere. Although the spores of lichen are spread by wind and animals, the crustose lichen is infected to the only sphagnum moss widely distributed in the Arctic, and is terminally killed the moss. Here, we report the research findings on the soil CO2 efflux-measurement with forced diffusion (FD) chamber system that is continuously monitored in sphagnum moss regime of west Alaska for the growing season of 2016. The environmental parameters (e.g., soil temperature and moisture) were measured at intact and infected sphagnum moss regime. The FD chamber is measured at an interval of 10-min and 30-min, which is not significant difference between both intervals (R2 = 0.94; n = 1360; RMSE = 0.043; p sphagnum moss, and 0.27(0.47), 0.45(0.17), 0.50(0.22), and 0.31(0.49) in intact sphagnum moss, respectively. This finding demonstrates that 1) soil CO2 in infected sphagnum moss is one of atmospheric CO2 source in June and July, and 2) soil CO2 efflux is not significant difference between both regimes for August and September of 2016.

  6. Doses de N e K no tomateiro sob estresse salino: I. Concentração de nutrientes no solo e na planta Doses of N and K in tomato under saline stress: I. Concentration of nutrients in the soil solution and plant

    Directory of Open Access Journals (Sweden)

    Flávio F. Blanco

    2008-02-01

    Full Text Available Em geral, culturas tolerantes à salinidade geralmente apresentam maiores teores foliares de certos nutrientes, sugerindo que a adubação em culturas sensíveis poderia elevar os teores desses nutrientes nas folhas, aumentando sua tolerância aos sais. Este trabalho teve o objetivo de estudar os efeitos do N e do K na condutividade elétrica, pH e concentração de nutrientes da solução do solo e nos teores de nutrientes e prolina nas folhas do tomateiro irrigado com água salina. Os tratamentos foram compostos da combinação de três níveis de N (7,5; 15,0 e 22,5 g por planta e de K (8, 16 e 24 gK2O por planta aplicados via fertirrigação por gotejamento, no esquema fatorial 3 x 3, com cinco repetições, sendo que à água de irrigação foram adicionados os sais cloreto de sódio e cloreto de cálcio, para obtenção de condutividade elétrica da água de 9,5 dS m-1. As concentrações de NO3 e K na solução do solo e de N e K nas folhas do tomateiro aumentaram com as doses de N e K mas não promoveram redução dos teores de Cl nem de Na nas folhas das plantas. O aumento do teor de prolina com as doses de K e a redução de Cl/N com as doses de N, sugerem que o aumento na adubação potássica e nitrogenada pode ser benéfico para o tomateiro sob condições de salinidade moderada.Crops tolerant to salinity generally present higher concentrations of some nutrients in the leaves, suggesting that the fertilization of sensitive crops could increase the contents of these nutrients in the leaves to increase the crop tolerance to salts. This work had the objective of studying the effects of N and K on electrical conductivity, pH and nutrient concentrations of soil solution and on concentration of nutrients and proline in the leaves of tomatos irrigated with saline water. The treatments were composed of the combination of three levels of N (7.5, 15.0 and 22.5 g per plant and K (8, 16 and 24 g K2O per plant applied by drip fertigation, in a 3

  7. Late gestational nutrient restriction

    DEFF Research Database (Denmark)

    Tygesen, Malin Plumhoff; Nielsen, Mette Olaf; Nørgaard, Peder

    2008-01-01

    We investigated the effect of 50% nutrient restriction during the last 6 weeks of gestation on twin-pregnant ewes' plasma glucose, non-esterified fatty acid, ß-hydroxybutyrate, insulin, IGF-1 and leptin concentrations and the effects on lamb birth weight and ewes' lactation performance. Plasma...

  8. [Effect of mechanical grinding of Sphagnum on the structure and physiological state of bacterial communities].

    Science.gov (United States)

    Dobrovol'skaya, T G; Golovchenko, A V; Yakushev, A V; Manucharova, N A; Yurchenko, E N

    2014-01-01

    The microcosm method was used to demonstrate an increase in bacterial numbers and drastic changes in the taxonomic structure of saprotrophic bacteria as a result of mechanical grinding of Sphagnum moss. Ekkrisotrophic agrobacteria predominant in untreated moss were replaced by hydrolytic bacteria. Molecular biological approaches revealed such specific hydrolytic bacteria as Janthinobacterium agaricum and Streptomyces purpurascens among the dominant taxa. The application of kinetic technique for determination of the physiological state of bacteria in situ revealed higher functional diversity of hydrolytic bacteria in ground moss than in untreated samples. A considerable decrease of the C/N ratio in ground samples of living Sphagnum incubated using the microcosm technique indicated decomposition of this substrate.

  9. Spatio-temporal trends of nitrogen deposition and climate effects on Sphagnum productivity in European peatlands.

    Science.gov (United States)

    Granath, Gustaf; Limpens, Juul; Posch, Maximilian; Mücher, Sander; de Vries, Wim

    2014-04-01

    To quantify potential nitrogen (N) deposition impacts on peatland carbon (C) uptake, we explored temporal and spatial trends in N deposition and climate impacts on the production of the key peat forming functional group (Sphagnum mosses) across European peatlands for the period 1900-2050. Using a modelling approach we estimated that between 1900 and 1950 N deposition impacts remained limited irrespective of geographical position. Between 1950 and 2000 N deposition depressed production between 0 and 25% relative to 1900, particularly in temperate regions. Future scenarios indicate this trend will continue and become more pronounced with climate warming. At the European scale, the consequences for Sphagnum net C-uptake remained small relative to 1900 due to the low peatland cover in high-N areas. The predicted impacts of likely changes in N deposition on Sphagnum productivity appeared to be less than those of climate. Nevertheless, current critical loads for peatlands are likely to hold under a future climate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Radiocarbon dating of Sphagnum cellulose from Mohos peat bog, East Carpathians

    Science.gov (United States)

    Hubay, Katalin; Braun, Mihály; Harangi, Sándor; Palcsu, László; Túri, Marianna; Rinyu, László; Molnár, Mihály

    2015-04-01

    This work focuses on building a high-resolution age-depth model for quantitative paleoclimate study from the Mohos peat bog, East Carpathians. Peats are important archives for Quaternary science, because they preserve environmental changes. To study the chronology of peat profiles the key is in the precise coring and reliable dating. However, many studies dealing with coring and radiocarbon dating of peat deposits they often shown problems with the proper methods and material. With our novel coring technique we reached undisturbed and uncompressed peat cores from the Mohos bog. A 10 meter deep peat profile was drilled in 2012 using a modified technique of a piston corer. The core presents a continuous peat profile from the last 11.500 cal. yr BP. The chronology was based on AMS radiocarbon analyses of the separated Sphagnum samples from different depths of the profile. The peat samples were wet sieved (40-280 μm) to avoid contamination by rootlets. Dry Sphagnum samples for AMS dating were prepared using the classical acid-base-acid (ABA) method completed with an oxidative bleaching step to get clean cellulose. Sphagnum cellulose samples were converted to CO2 and later graphite and measured by EnvironMICADAS accelerator mass spectrometry (AMS) in Hertelendi Laboratory (Debrecen, Hungary). Fine peat accumulation rate changes (sections with lowest accumulation values) were observed along the profile. Based on the chronology in further studies we want to focus special intervals to investigate environmental changes in the Holocene. Key words: peat, radiocarbon, cellulose

  11. Effect of Plant Growth Promoting Rhizobacteria on the Concentration and Uptake of Macro Nutrients by Corn in a Cd-contaminated Calcareous Soil under Drought Stress

    OpenAIRE

    shahrzad karami; mehdi zarei; jafar yasrebi; najafali karimian; s.Ali Akbar Moosavi

    2017-01-01

    Introduction: Heavy metals such as cadmium (Cd) are found naturally in soils, but their amount can be changed by human activities. The study of the uptake and accumulation of heavy metals by plants is done in order to prevent their threats on human and animal’s health.Cadmium is a toxic element for living organisms. Cadmium competes with many of nutrients to be absorbed by the plant and interferes with their biological roles. Water stress affects the cell structure and the food is diverted fr...

  12. Ebullition, Plant-Mediated Transport, and Subsurface Horizontal Water Flow Dominate Methane Transport in an Arctic Sphagnum Bog

    Science.gov (United States)

    Wehr, R. A.; McCalley, C. K.; Logan, T. A.; Chanton, J.; Crill, P. M.; Rich, V. I.; Saleska, S. R.

    2017-12-01

    Emission of the greenhouse gas methane from wetlands is of prime concern in the prediction of climate change - especially emission associated with thawing permafrost, which may drive a positive feedback loop of emission and warming. In addition to the biochemistry of methane production and consumption, wetland methane emission depends critically on the transport mechanisms by which methane moves through and out of the ecosystem. We therefore developed a model of methane biochemistry and transport for a sphagnum bog representing an intermediate permafrost thaw stage in Stordalen Mire, Sweden. In order to simultaneously reproduce measured profiles of both the concentrations and isotopic compositions of both methane and carbon dioxide in the peat pore water (Fig. 1) - as well as the surface methane emission - it was necessary for the model to include ebullition, plant-mediated transport via aerenchyma, and subsurface horizontal water flow. Diffusion of gas through the pore water was relatively unimportant. As a result, 90% of the produced methane escaped the wetland rather than being consumed by methanotrophic organisms in the near-surface pore water. Our model provides a comprehensive picture of methane emission from this bog site by quantifying the vertical profiles of: acetoclastic methanogenesis, hydrogenotrophic methanogenesis, methane oxidation, aerobic respiration, ebullition, plant-mediated transport, subsurface horizontal water flow, and diffusion.

  13. Sphagnum mosses as a microhabitat for invertebrates in acidified lakes and the colour adaptation and substrate preference in Leucorrhinia dubia (Odonata, Anisoptera)

    Energy Technology Data Exchange (ETDEWEB)

    Henrikson, B.-I. (Dept. of Zoology, Sect. of Animal Ecology, Univ. of Goeteborg, Goeteborg (Sweden))

    1993-01-01

    The increase of peat mosses, Sphagnum spp., in acidified lakes leads to a changed microhabitat structure for benthic invertebrates. The importance of this change was investigated for some benthic invertebrates. Comparisons between quantitative samples of Sphagnum and debris within the acidified Lake Stora Haestevatten, in the Lake Gaardsjoen catchment of SW Sweden, showed significantly higher abundances of Chironomidae, Ceratopogonidae, Odonata, Trichoptera, Cladocera and Argyroneta aquatica (Araneae) in Sphagnum. For chironomidae and Cladocera the differences were tenfold. Special reference was made to the libellulid Leucorrhinia dubia which is common in acid lakes. In a laboratory test, late instar larvae of L. dubia were shown to change colour to correspond to the brown and green colour of Sphagnum. This result was completed with a field test where larvae of L. dubia were significantly more common in Sphagnum of the same colour as the larvae. The ability to change colour may have an adaptive value when coexisting with visual predators. Small larvae were more prevalent in Sphagnum and they also showed a preference for this substrate in the laboratory test. Laboratory tests showed mediumsized larvae preferred Sphagnum. Larvae of L. dubia were more successful as predators on Asellus aquaticus in Sphagnum substrate than in debris in the laboratory test. Laboratory predation tests with notonecta glauca, Corixa dentipes, Acilius sulcatus, Hyphydrus ovatus and L. dubia showed that they could all feed on larvae of L. dubia. The complex habitat structure of Sphagnum is probably the reason for the high abundance of invertebrates since it may serve as both shelter against predation and as foraging sites. it is probably important as a key habitat for young instars of, for example, L. dubia. In lakes with large Sphagnum mats, L. dubia can coexist with fish. The expansion of Sphagnum due to acidification will probably benefit many acid-tolerant invertebrate species. (au)

  14. Monitoring Heavy Metal Contents with Sphagnum Junghuhnianum Moss Bags in Relation to Traffic Volume in Wuxi, China

    Directory of Open Access Journals (Sweden)

    Rong Hu

    2018-02-01

    Full Text Available Despite its small size, a moss bag can reveal the different temporal and spatial deposition patterns of pollutants at a particular site; therefore, researchers can use moss bags to determine pollution sources and to put forward strategies for pollution control. Although the use of moss bags to monitor atmospheric pollution has been widely reported in Europe, there are few such empirical studies in China. Thus, in this study, bags containing the moss Sphagnum junghuhnianum were used to assess the concentrations of heavy metals (chromium (Cr, copper (Cu, lead (Pb, vanadium (V, and zinc (Zn at five sampling sites (four roads and a forest park during the summer and winter of 2012. According to the relative accumulation factor (RAF and contamination factor (CF results, pollution in winter was heavier than that in summer, and Cr was found to be the most contaminating, having the highest mean CF. There was a significant positive correlation (p < 0.05 between traffic volume and concentration for three heavy metals (Cr, Cu, and V in winter, whereas a significant positive correlation (p < 0.05 was observed between traffic volume and concentrations for four heavy metal elements (Cr, Pb, V, and Zn in summer, indicating a close relationship between heavy metal contents and traffic volume. Although there was substantial variation in the concentrations of the five heavy metals in the moss bags, significant correlations between heavy metals suggested that the contaminants originated from a common source, namely vehicle emissions. The results demonstrated that the four roads were subject to different degrees of pollution depending on the volume of traffic using each road. Therefore, the results of this study suggest that traffic volume is a major reason for heavy metal pollution.

  15. Nutrient Concentrations in Upper and Lower Echo, Fallen Leaf, Spooner, and Marlette Lakes and Associated Outlet Streams, California and Nevada, 2002-03

    National Research Council Canada - National Science Library

    2004-01-01

    .... Water samples were collected to determine seasonal and spatial concentrations of dissolved nitrite plus nitrate, dissolved ammonia, total Kjeldahl nitrogen, dissolved orthophosphate, total phosphorus...

  16. The Effect of Long-term Nutrient Addition on Peat Properties in an Ombrotrophic Bog

    Science.gov (United States)

    Moore, T. R.; Bubier, J. L.; Knorr, K. H.; Roy, C.

    2017-12-01

    Atmospheric inputs of nutrients, particularly N and P, to ecosystems have increased and may have a significant effect on nutrient-deficient peatlands such as bogs. At the Mer Bleue ombrotrophic bog near Ottawa, Canada, we have conducted an experiment over 10 to 20 years by adding 1.6 to 6.4 g N m-2 yr-1 (as NH4NO3), with/without 6 g P m-2 yr-1 (as K phosphate), to evaluate the effect of increased inputs on ecosystem functions. Increased N and P amendment has changed the vegetation from a mixed shrub-Sphagnum community into one dominated by shrubs with the disappearance of mosses, with changes in plant production and litter input. The largest N and P amendments have resulted in an increase in bulk density at 0-10 cm and a lowering of the peat surface by 10 to 20 cm, creating an effective rise in the water table and an increase in CH4 emission from 15 to 50 mg m-2 d-1. Peat cores to a depth of 40 cm were collected after 10 to 15 yr of amendment and showed little change in soil pH (range 4.1 to 4.5). There were substantial increases in the concentration of N and P in the peat (8 to 14 and 0.5 to 1.5 mg g-1, respectively) and general decreases in Ca and Mg concentration. The von Post humification index increased by about 1 unit in the heavily fertilized plots, with shrub leaves replacing Sphagnum as the primary litterfall. FTIR analysis of the 0-20 cm peat showed significant increases in abundance of phenolic+aliphatic, aromatic, and carboxylic relative to polysaccharide components, revealed by the following ratios of absorbance at the respective wavenumbers: 1420/1090 cm-1, 0.41 to 0.45; 1510/1090 cm-1, 0.23 to 0.30; 1630/1090 cm-1, 0.53 to 0.65; and 1720/1090 cm-1, 0.44 to 0.48, respectively. Laboratory incubations of peat samples showed that potential rates of aerobic CH4 consumption were unaffected by nutrient treatment, apart from position relative to the water table, whereas potential rates of anaerobic CH4 production near the water table increased under the P

  17. Effects of a specific blend of essential oils on apparent nutrient digestion, rumen fermentation and rumen microbial populations in sheep fed a 50:50 alfalfa hay:concentrate diet

    Directory of Open Access Journals (Sweden)

    N. Khateri

    2017-03-01

    Full Text Available Objective An experiment was conducted to investigate the effects of a specific mixture of essential oils (MEO, containing thyme, clove and cinnamon EO, on rumen microbial fermentation, nutrient apparent digestibility and blood metabolites in fistulated sheep. Methods Six sheep fitted with ruminal fistulas were used in a repeated measurement design with two 24-d periods to investigate the effect of adding MEO at 0 (control, 0.8, and 1.6 mL/d on apparent nutrient digestibility, rumen fermentation characteristics, rumen microbial population and blood chemical metabolites. Animals were fed with a 50:50 alfalfa hay:concentrate diet. Results Ruminal pH, total volatile fatty acids (VFA concentration, molar proportion of individual VFA, acetate: propionate ratio and methane production were not affected with MEO. Relative to the control, Small peptides plus amino acid nitrogen and large peptides nitrogen concentration in rumen fluid were not affected with MEO supplementation; while, rumen fluid ammonia nitrogen concentration at 0 and 6 h after morning feeding in sheep fed with 1.6 mL/d of MEO was lower (p<0.05 compared to the control and 0.8 mL/d of MEO. At 0 h after morning feeding, ammonia nitrogen concentration was higher (p<0.05 in sheep fed 0.8 mL/d of MEO relative to 1.6 mL/d and control diet. Ruminal protozoa and hyper ammonia producing (HAP bacteria counts were not affected by addition of MEO in the diet. Relative to the control, no changes were observed in the red and white blood cells, hemoglobin, hematocrit, glucose, beta-hydroxybutyric acid, cholesterol, total protein, albumin, blood urea nitrogen and aspartate aminotransferase and alanine aminotransferase concentration. Apparent total tract digestibility of dry matter, crude proten, organic matter, and neutral detergent fiber were not influenced by MEO supplementation. Conclusion The results of the present study suggested that supplementation of MEO may have limited effects on apparent

  18. Light-stress avoidance mechanisms in a Sphagnum-dominated wet coastal Arctic tundra ecosystem in Alaska.

    Science.gov (United States)

    Zona, D; Oechel, Walter C; Richards, James H; Hastings, Steven; Kopetz, Irene; Ikawa, Hiroki; Oberbauer, Steven

    2011-03-01

    The Arctic experiences a high-radiation environment in the summer with 24-hour daylight for more than two months. Damage to plants and ecosystem metabolism can be muted by overcast conditions common in much of the Arctic. However, with climate change, extreme dry years and clearer skies could lead to the risk of increased photoxidation and photoinhibition in Arctic primary producers. Mosses, which often exceed the NPP of vascular plants in Arctic areas, are often understudied. As a result, the effect of specific environmental factors, including light, on these growth forms is poorly understood. Here, we investigated net ecosystem exchange (NEE) at the ecosystem scale, net Sphagnum CO2 exchange (NSE), and photoinhibition to better understand the impact of light on carbon exchange from a moss-dominated coastal tundra ecosystem during the summer season 2006. Sphagnum photosynthesis showed photoinhibition early in the season coupled with low ecosystem NEE. However, later in the season, Sphagnum maintained a significant CO2 uptake, probably for the development of subsurface moss layers protected from strong radiation. We suggest that the compact canopy structure of Sphagnum reduces light penetration to the subsurface layers of the moss mat and thereby protects the active photosynthetic tissues from damage. This stress avoidance mechanism allowed Sphagnum to constitute a significant percentage (up to 60%) of the ecosystem net daytime CO2 uptake at the end of the growing season despite the high levels of radiation experienced.

  19. Elevated atmospheric CO2 and increased nitrogen deposition : effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) Warnst

    NARCIS (Netherlands)

    van der Heijden, E; Verbeek, S.K.; Kuiper, P.J C

    Sphagnum bogs play an important role when considering the impacts of global change on global carbon and nitrogen cycles. Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) was grown at 360 (ambient) and 700 mu L L-1 (elevated) atmospheric [CO2] in combination with different nitrogen deposition

  20. Evaluation of iodate toxicity (KIO3 on growth, morpho-physiological characteristics and mineral nutrients concentrations of potato (Solanum tuberosum L. cv. Agria

    Directory of Open Access Journals (Sweden)

    Ezatollah Esfandiari

    2015-08-01

    Full Text Available The current study was aimed to assess the effects of different iodate concentrations on morpho-physiological characteristics of potato. In this regard, a pot experiment was carried out during the spring and summer 2013. Five concentrations of KIO3 including control beside 10, 20, 40, and 80 mg/Kgsoil were applied through irrigation system. The results showed that all selected agronomical and morphological characteristics of potato except dry weight of stem (SDW and root (RDW were negatively affected by high iodate concentrations. The results showed that applying 80 mg KIO3/Kgsoil compared to control resulted in around 15, 86, 84, 41, 16, 25, 20, and 87% reductions in harvest index (HI, leaf dry weight (LDW, tuber dry weight (TDW, plant dry weight (PDW, stem length (SL, root length (RL, plant height (PH, and number of tuber per plant (NT, respectively. Iodate application (80 mg KIO3/Kgsoil vs. control also affected potato’s physiological characteristics including chlorophyll content (SPAD, relative water content (RWC, water use efficiency (WUE, evapo-transpiration efficiency (ETE, cell membrane stability index (CMSI and tolerance index (TI showing around 27, 12, 87, 39, 40, and 77% reductions for each one, respectively. Increasing iodate concentrations, although, showed no effect of Zn concentration of root and Fe and Mn concentrations of leaf, gradually decreased Zn concentration of leaf and increased Fe and Mn concentrations of root and Cu concentrations of root and leaf. Plants also showed several visible symptoms including stunting, chlorosis, browning of leaf tip and reduction in growth due to iodate toxicity.

  1. INFLUÊNCIA DE HÚMUS DE MINHOCA E DE ESTERCO DE GADO NA CONCENTRAÇÃO FOLIAR DE NUTRIENTES E NA PRODUÇÃO DE MANGA 'TOMMY ATKINS' EFFECT OF EARTHWORM EXCREMENTS AND CATTLE MANURE ON LEAF NUTRIENT CONCENTRATION AND ON THE PRODUCTION OF MANGO

    Directory of Open Access Journals (Sweden)

    DAVI JOSÉ SILVA

    2001-12-01

    Full Text Available Com o objetivo de avaliar o efeito da aplicação de húmus de minhoca e de esterco de gado na concentração foliar de nutrientes e na produção de manga 'Tommy Atkins', conduziu-se um experimento na empresa Meta Export Agrícola Ltda, no período de 1996 a 1999. Os tratamentos resultaram da combinação fatorial de três fontes (húmus de minhoca - HM, esterco de gado - EG e mistura de HM + EG e cinco doses de matéria orgânica (0;20; 40; 60 e 80 dm³/planta. Os tratamentos foram aplicados, anualmente, no mês de janeiro, e as avaliações foram realizadas nas safras de 1997, 1998 e 1999. Não houve efeito dos tratamentos sobre a concentração foliar de nutrientes. Os teores de nitrogênio nas folhas mostraram-se bastante elevados, e a concentração de cálcio apresentou-se muito baixa. Não houve diferença entre as fontes, nem entre as doses de matéria orgânica durante o período de estudo. Houve um crescimento na produção ao longo das safras, devido ao aumento na idade das plantas.Concurrent studies on the benefits of earthworm excrements and of cattle manure on leaf nutrient concentration and on the production of mango (Mangifera indica, variety Tommy Atkins, were conducted at Meta Export Agrícola Ltda, from 1996 to 1999. The treatments consisted of a factorial combination among three sources (earthworm excrements -- HM, cattle manure -- EG and a mixture of HM + EG and five levels of organic matter (0, 20, 40, 60 and 80 dm³/plant. The treatments were applied annually always in January. The evaluations were carried out on growing season of 1997, 1998 and 1999. There was no effect of treatments on leaf nutrient concentration. The traits of nitrogen in the leaves were high and the concentration of calcium was low. There was neither difference among sources, nor among the levels of organic matter in the three years of study. There was an increase in production in all growing seasons, because of plant age.

  2. Infant cortisol concentrations do not differ by group in a randomized controlled trial of lipid based nutrient supplements among mothers and infants in Malawi

    Science.gov (United States)

    Background: Prenatal malnutrition and stress have been associated with the regulation of the offspring hypothalamic-pituitary-adrenal (HPA) axis. Objective: To evaluate whether maternal and infant nutritional supplementation was associated with salivary cortisol concentrations in Malawian infants. ...

  3. Late-pregnancy salivary cortisol concentrations of Ghanaian women participating in a randomized controlled trial of prenatal lipid-based nutrient supplements

    Science.gov (United States)

    Background: High maternal circulating cortisol in pregnancy is associated with miscarriage, preterm birth, and low birth weight. Research in non-pregnant individuals suggests that reducing nutritional deficiencies may lower cortisol concentrations. It is unknown whether nutritional supplementation d...

  4. Concentration of nutrient solution in the hydroponic production of potato minitubers Concentração da solução nutritiva na produção hidropônica de minitubérculos de batata

    Directory of Open Access Journals (Sweden)

    Manuel Benito Novella

    2008-09-01

    Full Text Available The effect of the nutrient solution concentration on potato plant growth and minituber yield were determined in a sand closed hydroponic system. Minitubers and micropropagated plantlets of the cv. 'Macaca' were used. Treatments were five nutrient solution concentrations at electrical conductivities (EC of 1.0 (T1, 2.2 (T2, 3.4 (T3, 4.7 (T4 and 5.8dS m-1 (T5. The split plot randomised experimental design was used with three replications. Plants from minitubers produced higher fresh and mean weight of minitubers, shoot dry mass and leaf area index than the micropropagated ones. However, higher dry mass of minitubers was found with micropropagated plantlets compared to minitubers. The concentration of the nutrient solution did not affect minituber number. Increasing the nutrient solution concentration decreased total and minituber dry mass production of micropropagated plantlets and plant growth and minituber production of minituber-originated plants. Low concentration of nutrient solution at an EC of about 1.0dS m-1 can be used in the hydroponic production of potato minitubers of both micropropagated and minituber-originated plants.Neste trabalho foi determinado o efeito da concentração da solução nutritiva no crescimento e na produtividade de minitubérculos de batata em um sistema hidropônico fechado empregando areia como substrato. Plântulas micropropagadas e minitubérculos foram plantados em 24 de março de 2004. Os tratamentos foram cinco soluções nutritivas com condutividades elétricas (CE de 1,0 (T1, 2,2 (T2, 3,4 (T3, 4,7 (T4 e 5,8dS m-1 (T5. O experimento foi conduzido em parcelas subdivididas no delineamento inteiramente casualizado com três repetições. Plantas originadas de minitubérculos produziram mais massa fresca total e média de minitubérculos, massa seca da parte aérea e maior índice de área foliar que plantas micropropagadas. Entretanto, maior massa seca dos minitubérculos foi obtida em plantas micropropagadas

  5. Trends in nutrients

    Science.gov (United States)

    Heathwaite, A.L.; Johnes, P.J.; Peters, N.E.

    1996-01-01

    The roles of nitrogen (N) and phosphorus (P) as key nutrients determining the trophic status of water bodies are examined, and evidence reviewed for trends in concentrations of N and P species which occur in freshwaters, primarily in northern temperate environments. Data are reported for water bodies undergoing eutrophication and acidification, especially water bodies receiving increased nitrogen inputs through the atmospheric deposition of nitrogen oxides (NOx). Nutrient loading on groundwaters and surface freshwaters is assessed with respect to causes and rates of (change, relative rates of change for N and P, and implications of change for the future management of lakes, rivers and groundwaters. In particular, the nature and emphasis of studies for N species and P fractions in lakes versus rivers and groundwaters are contrasted. This review paper primarily focuses on results from North America and Europe, particularly for the UK where a wide range of data sets exists. Few nutrient loading data have been published on water bodies in less developed countries; however, some of the available data are presented to provide a global perspective. In general, N and P concentrations have increased dramatically (>20 times background concentrations) in many areas and causes vary considerably, ranging from urbanization to changes in agricultural practices.

  6. Numerical simulations of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay, Indonesia.

    Science.gov (United States)

    van der Wulp, Simon A; Damar, Ario; Ladwig, Norbert; Hesse, Karl-J

    2016-09-30

    The present application of numerical modelling techniques provides an overview of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay. A hydrological model simulated river discharges with a total of 90 to 377m(3)s(-1) entering Jakarta Bay. Daily total nitrogen and total phosphorus loads ranged from 40 to 174tons and 14 to 60tons, respectively. Flow model results indicate that nutrient gradients are subject to turbulent mixing by tides and advective transport through circulation driven by wind, barotropic and baroclinic pressure gradients. The bulk of nutrient loads originate from the Citarum and Cisadane rivers flowing through predominantly rural areas. Despite lower nutrient loads, river discharges from the urban area of Jakarta exhibit the highest impact of nutrient concentrations in the near shore area of Jakarta Bay and show that nutrient concentrations were not only regulated by nutrient loads but were strongly regulated by initial river concentrations and local flow characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Environmental controls on δ13C variations of Sphagnum derived n-alkanes in the Dajiuhu peatland, central China

    Science.gov (United States)

    Huang, X.; Xue, J.; Wang, X.; WANG, H.; Meyers, P. A.; Qin, Y.; Gong, L.; Ding, W.

    2012-12-01

    Northern peatlands are one of the very important atmospheric carbon sinks and represent about 30% of the global soil organic carbon (Gorham, 1991). In peatland conditions, high water levels and consequent anoxia make them an important source of methane. A recent study revealed that methanotrophic bacteria growing on stems or in hyaline cells of Sphagnum can provide methane derived carbon for photosynthesis (Raghoebarsing et al., 2005). This interaction has been found to be globally prevalent in peat-moss ecosystems and can contribute up to 30% of carbon for Sphagnum photosynthesis (Kip et al., 2010). Due to the uptake of 13C-depleted methane-derived CO2 and the sensitivity of methane oxidizing bacteria to the surface wetness, the carbon isotopic signatures of Sphagnum derived lipids have the potential to be used as a proxy for the surface wetness in peatlands and hence as paleoclimate archives (Nichols et al., 2009). In this study, we report the δ13C variations of the Sphagnum derived n-C23 alkane in both fresh Sphagnum and surface peat samples in the Dajiuhu peatland, a small fen located in the Shennongjia forestry region, Hubei province, central China. The δ13C23 values of Sphagnum show a negative correlation with the water level, supporting the idea that that the carbon isotope fractionation of Sphagnum is mainly manifested by the diffusion resistance of CO2 in hyaline cells of Sphagnum. However, δ13C23 values of surface peats collected in Sphagnum dominated ecosystems display a positive relation with the water level when the water level is less than 30 cm. Such an inconsistency probably results from the higher potential for methane-oxidizing activity in the lower parts of Sphagnum in fen meadows. When the water level is higher than 30 cm, the influence of symbiotic methanotrophic bacteria on Sphagnum derived n-C23 alkane is weak or nearly absent. These findings provide direct evidence to support the hypothesis that the carbon isotopic signatures of Sphagnum

  8. Concentration, flux, and trend estimates with uncertainty for nutrients, chloride, and total suspended solids in tributaries of Lake Champlain, 1990–2014

    Science.gov (United States)

    Medalie, Laura

    2016-12-20

    The U.S. Geological Survey, in cooperation with the New England Interstate Water Pollution Control Commission and the Vermont Department of Environmental Conservation, estimated daily and 9-month concentrations and fluxes of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids from 1990 (or first available date) through 2014 for 18 tributaries of Lake Champlain. Estimates of concentration and flux, provided separately in Medalie (2016), were made by using the Weighted Regressions on Time, Discharge, and Season (WRTDS) regression model and update previously published WRTDS model results with recent data. Assessment of progress towards meeting phosphorus-reduction goals outlined in the Lake Champlain management plan relies on annual estimates of phosphorus flux. The percent change in annual concentration and flux is provided for two time periods. The R package EGRETci was used to estimate the uncertainty of the trend estimate. Differences in model specification and function between this study and previous studies that used WRTDS to estimate concentration and flux using data from Lake Champlain tributaries are described. Winter data were too sparse and nonrepresentative to use for estimates of concentration and flux but were sufficient for estimating the percentage of total annual flux over the period of record. Median winter-to-annual fractions ranged between 21 percent for total suspended solids and 27 percent for dissolved phosphorus. The winter contribution was largest for all constituents from the Mettawee River and smallest from the Ausable River. For the full record (1991 through 2014 for total and dissolved phosphorus and chloride and 1993 through 2014 for nitrogen and total suspended solids), 6 tributaries had decreasing trends in concentrations of total phosphorus, and 12 had increasing trends; concentrations of dissolved phosphorus decreased in 6 and increased in 8 tributaries; fluxes of total phosphorus decreased in 5 and

  9. Effects of shading on relative competitive advantage of three species of Sphagnum

    Directory of Open Access Journals (Sweden)

    J.Z. Ma

    2015-06-01

    Full Text Available (1 Sphagnum is an important genus of bryophytes holding 10–15 % of the terrestrial carbon stock. With climate change a drier surface may increase the abundance of vascular plants on peatlands, so shading of Sphagnum may increase. Here we describe growth cabinet experiments to reveal the effects of shading on interactions among mixtures of three species: S. capillifolium, S. palustre (hummock species, and S. fallax (a hollow species. We measured the six traits: growth in length, growth as increase in dry mass, side-shoot production, nitrogen and carbon proportion of the capitulum dry mass, and C:N ratio in the capitulum. (2 Shading had no effect on biomass production or side-shoot production but increased height increment in all three species. It also increased the C and N proportions of total dry mass but decreased C:N ratio in the capitula. (3 Neighbours of a different species reduced biomass and side-shoot production in the two hummock species but had no effect on the hollow species. (4 All three species showed interaction between shading and neighbour in two or more plant traits. S. fallax showed competitive advantage over S. palustre in no-shading treatments and over S. capillifolium in moderate shading treatments. In addition, under deep shading, S. fallax showed a competitive advantage over both hummock species. A clear competitive hierarchy S. fallax>S. capillifolium>S. palustre emerged which was consistent with the hierarchy of side-shoot production. (5 The results suggest that all the species appear to tolerate deep shade (for a few months at least. In a shaded environment, especially under deeply shaded conditions, S. fallax retains its dominance in hollow habitats (if water availability is guaranteed by virtue of its advantage in side-shoot production. (6 If shading increases then the abundance of different Sphagnum species is likely to change.

  10. Spatial Genetic Structure of the Abundant and Widespread Peatmoss Sphagnum magellanicum Brid.

    Directory of Open Access Journals (Sweden)

    Magni Olsen Kyrkjeeide

    Full Text Available Spore-producing organisms have small dispersal units enabling them to become widespread across continents. However, barriers to gene flow and cryptic speciation may exist. The common, haploid peatmoss Sphagnum magellanicum occurs in both the Northern and Southern hemisphere, and is commonly used as a model in studies of peatland ecology and peatmoss physiology. Even though it will likely act as a rich source in functional genomics studies in years to come, surprisingly little is known about levels of genetic variability and structuring in this species. Here, we assess for the first time how genetic variation in S. magellanicum is spatially structured across its full distribution range (Northern Hemisphere and South America. The morphologically similar species S. alaskense was included for comparison. In total, 195 plants were genotyped at 15 microsatellite loci. Sequences from two plastid loci (trnG and trnL were obtained from 30 samples. Our results show that S. alaskense and almost all plants of S. magellanicum in the northern Pacific area are diploids and share the same gene pool. Haploid plants occur in South America, Europe, eastern North America, western North America, and southern Asia, and five genetically differentiated groups with different distribution ranges were found. Our results indicate that S. magellanicum consists of several distinct genetic groups, seemingly with little or no gene flow among them. Noteworthy, the geographical separation of diploids and haploids is strikingly similar to patterns found within other haploid Sphagnum species spanning the Northern Hemisphere. Our results confirm a genetic division between the Beringian and the Atlantic that seems to be a general pattern in Sphagnum taxa. The pattern of strong genetic population structuring throughout the distribution range of morphologically similar plants need to be considered in future functional genomic studies of S. magellanicum.

  11. Unsaturated hydraulic properties of Sphagnum moss and peat reveal trimodal pore-size distributions

    Science.gov (United States)

    Weber, Tobias K. D.; Iden, Sascha C.; Durner, Wolfgang

    2017-01-01

    In ombrotrophic peatlands, the moisture content of the vadose zone (acrotelm) controls oxygen diffusion rates, redox state, and the turnover of organic matter. Whether peatlands act as sinks or sources of atmospheric carbon thus relies on variably saturated flow processes. The Richards equation is the standard model for water flow in soils, but it is not clear whether it can be applied to simulate water flow in live Sphagnum moss. Transient laboratory evaporation experiments were conducted to observe evaporative water fluxes in the acrotelm, containing living Sphagnum moss, and a deeper layer containing decomposed moss peat. The experimental data were evaluated by inverse modeling using the Richards equation as process model for variably-saturated flow. It was tested whether water fluxes and time series of measured pressure heads during evaporation could be simulated. The results showed that the measurements could be matched very well providing the hydraulic properties are represented by a suitable model. For this, a trimodal parametrization of the underlying pore-size distribution was necessary which reflects three distinct pore systems of the Sphagnum constituted by inter-, intra-, and inner-plant water. While the traditional van Genuchten-Mualem model led to great discrepancies, the physically more comprehensive Peters-Durner-Iden model which accounts for capillary and noncapillary flow, led to a more consistent description of the observations. We conclude that the Richards equation is a valid process description for variably saturated moisture fluxes over a wide pressure range in peatlands supporting the conceptualization of the live moss as part of the vadose zone.

  12. Spatial Genetic Structure of the Abundant and Widespread Peatmoss Sphagnum magellanicum Brid.

    Science.gov (United States)

    Kyrkjeeide, Magni Olsen; Hassel, Kristian; Flatberg, Kjell Ivar; Shaw, A Jonathan; Yousefi, Narjes; Stenøien, Hans K

    2016-01-01

    Spore-producing organisms have small dispersal units enabling them to become widespread across continents. However, barriers to gene flow and cryptic speciation may exist. The common, haploid peatmoss Sphagnum magellanicum occurs in both the Northern and Southern hemisphere, and is commonly used as a model in studies of peatland ecology and peatmoss physiology. Even though it will likely act as a rich source in functional genomics studies in years to come, surprisingly little is known about levels of genetic variability and structuring in this species. Here, we assess for the first time how genetic variation in S. magellanicum is spatially structured across its full distribution range (Northern Hemisphere and South America). The morphologically similar species S. alaskense was included for comparison. In total, 195 plants were genotyped at 15 microsatellite loci. Sequences from two plastid loci (trnG and trnL) were obtained from 30 samples. Our results show that S. alaskense and almost all plants of S. magellanicum in the northern Pacific area are diploids and share the same gene pool. Haploid plants occur in South America, Europe, eastern North America, western North America, and southern Asia, and five genetically differentiated groups with different distribution ranges were found. Our results indicate that S. magellanicum consists of several distinct genetic groups, seemingly with little or no gene flow among them. Noteworthy, the geographical separation of diploids and haploids is strikingly similar to patterns found within other haploid Sphagnum species spanning the Northern Hemisphere. Our results confirm a genetic division between the Beringian and the Atlantic that seems to be a general pattern in Sphagnum taxa. The pattern of strong genetic population structuring throughout the distribution range of morphologically similar plants need to be considered in future functional genomic studies of S. magellanicum.

  13. Plant diversity affects GHG fluxes in an ecological engineering experiment in a disturbed Sphagnum peatland (La Guette, France)

    Science.gov (United States)

    Gogo, Sébastien; Laggoun-Défarge, Fatima; Leroy, Fabien; Guimbaud, Christophe; Bernard-Jannin, Léonard

    2017-04-01

    Many Sphagnum peatlands are experiencing vegetation change caused mainly by hydrological disturbances. In the context of these direct and indirect modifications, greenhouse gases (GHG) fluxes are affected by peat oxygenation, changes in litter composition (and thus decomposition) and rhizospheric processes (such as root exudates). This could lead a C sink system to switch to a source. To restore peatland functioning, ecological engineering works can be undertaken. Our study site, La Guette peatland (central France) is invaded by Molinia caerulea because a drain at the output decreased the water table depth. It was shown that it functioned as a source of C. In 2014, hydrological works were undertaken: 8 dams were installed, ditches were dug perpendicular to the water flow and back-filled with a mixture of shales and bentonite. In addition, a biodiversity experiment with 2 identical experimental stations was implemented: "downstream", close to the hydraulic works (relatively wet), "upstream", (relatively dry), with types of 3 vegetation plot (2m x 2m, n=4): 1) "control": intact vegetation (Molinia caerulea, Erica tetralix), 2) "bare" peat: vegetation and 5cm of peat were removed, 3) "Sphagnum": bare peat+Sphagnum. Our study aims to assess the effect of the vegetation treatment on the GHG fluxes. CO2 (ecosystem respiration or ER, Gross Primary Production or GPP, and Net Ecosystem Exchange) and CH4 fluxes (manual accumulation chamber), air and soil temperature, water table level, soil moisture were measured. After 18 months, half of the surface of "bare" and "Sphagnum" plots were covered by vegetation (Eriophorum angustifolium, Rynchospora alba, Trichophorum cespitosum). With time, as succession unfolds in these 2 types of station, ER and GPP increased. The sensitivity of ER to temperature increased sharply in "bare" and "Sphagnum" plots with years and became higher than the sensitivity in "control" plots. GPP increased with the total vegetation percentage cover

  14. Monitoring Heavy Metal Contents with Sphagnum Junghuhnianum Moss Bags in Relation to Traffic Volume in Wuxi, China.

    Science.gov (United States)

    Hu, Rong; Yan, Yun; Zhou, Xiaoli; Wang, Yanan; Fang, Yanming

    2018-02-22

    Despite its small size, a moss bag can reveal the different temporal and spatial deposition patterns of pollutants at a particular site; therefore, researchers can use moss bags to determine pollution sources and to put forward strategies for pollution control. Although the use of moss bags to monitor atmospheric pollution has been widely reported in Europe, there are few such empirical studies in China. Thus, in this study, bags containing the moss Sphagnum junghuhnianum were used to assess the concentrations of heavy metals (chromium (Cr), copper (Cu), lead (Pb), vanadium (V), and zinc (Zn)) at five sampling sites (four roads and a forest park) during the summer and winter of 2012. According to the relative accumulation factor (RAF) and contamination factor (CF) results, pollution in winter was heavier than that in summer, and Cr was found to be the most contaminating, having the highest mean CF. There was a significant positive correlation ( p heavy metals (Cr, Cu, and V) in winter, whereas a significant positive correlation ( p heavy metal elements (Cr, Pb, V, and Zn) in summer, indicating a close relationship between heavy metal contents and traffic volume. Although there was substantial variation in the concentrations of the five heavy metals in the moss bags, significant correlations between heavy metals suggested that the contaminants originated from a common source, namely vehicle emissions. The results demonstrated that the four roads were subject to different degrees of pollution depending on the volume of traffic using each road. Therefore, the results of this study suggest that traffic volume is a major reason for heavy metal pollution.

  15. Odorous volatile organic compounds, Escherichia coli, and nutrient concentrations when kiln-dried pine chips and corn stover bedding are used in beef bedded manure packs

    Science.gov (United States)

    Pine (Pinus spp.) bedding has been shown to lower the concentration of odorous volatile organic compounds (VOCs) and pathogenic bacteria compared with corn (Zea mays L.) stover bedding, but availability and cost limit the use of pine bedding in cattle confinement facilities. The objectives of this s...

  16. Mechanochemical treatment of amorphous carbon from brown sphagnum moss for the preparation of carbon nanotubes

    International Nuclear Information System (INIS)

    Onishchenko, D.V.

    2013-01-01

    Under consideration is the mechanism of multiwalled nanotubes formation during mechanical activation of amorphous carbon synthesized by pyrolysis of sphagnum moss. The formation of nanotubes has been shown to take place in the array of carbon particles. A complex study of the sorption characteristics of carbon nanotubes has been carried out. The dependence of the sorption capacity of carbon nanotubes on their storage time, as well as the effect of the process parameters of nanotubes formation on their ability for oxidative modification, is represented. (authors)

  17. The response of vegetation structure to active warming and precipitation reduction of the Sphagnum peatland

    Science.gov (United States)

    Łuców, Dominika; Basińska, Anna; Chojnicki, Bogdan; Gąbka, Maciej; Józefczyk, Damian; Juszczak, Radosław; Leśny, Jacek; Olejnik, Janusz; Reczuga, Monika; Samson, Mateusz; Silvennoinen, Hanna; Stróżecki, Marcin; Urbaniak, Marek; Zielińska, Małgorzata; Lamentowicz, Mariusz

    2017-04-01

    The recent climate change (e.g. increased temperature and decreased precipitation) is expected to affect biodiversity and vegetation structure of the European peatlands, as well as carbon fluxes. Our experimental study carried out in Western Poland, tests the hypothesis that the increased temperature, in particular in combination with rainfall reduction affects vegetation structure of the Sphagnum peatland, through changes in moss and vascular plants abundance. The innovative climate manipulation system was installed on the Rzecin peatland in 2014. The field site consists of four blocks: "drought" "warming and drought" "warming" and "control". The air and peat temperatures were increased in 2015 and 2016 by about 0.2 oC and 1.0 oC, respectively, using infrared radiators. Precipitation was reduced by automatic curtain operated only during the nights by about 37 % in both years. Data resulting from the analyses of digital pictures as well as Point Intercept method were used to identify changes in vegetation structure as a response to warming and drought. We observed increase in abundance of vascular plant and decrease in abundance of mosses during the very dry 2015 vegetation season. It appeared that Carex spp. (C. limosa and C. rostrata) abundance responded positively to warming, while Sphagnum spp. (S. angustifolium and S. teres) responded negatively. The "warming" block was characterized by an increase in abundance of Carex spp. by 8.3 % to 16.7 % and decreased abundance of Sphagnum spp. from 25 % to 19.4 %, whereas in the block of "warming and drought" 11.4 % to by 18.3 and 38 % to 26.9 %, respectively in the August 2015. However, we observed decrease in Sphagnum spp. abundance in the treatment with rainfall reduction in wetter 2016, and their increase in the control. Our results show how considerable changes in vegetation structure can be expected under the stress of warming and modified rainfall conditions, even after a short-term manipulation. However, it is

  18. Reducing crude protein and rumen degradable protein with a constant concentration of rumen undegradable protein in the diet of dairy cows: Production performance, nutrient digestibility, nitrogen efficiency, and blood metabolites.

    Science.gov (United States)

    Bahrami-Yekdangi, M; Ghorbani, G R; Khorvash, M; Khan, M A; Ghaffari, M H

    2016-02-01

    The goals of ruminant protein nutrition are to provide adequate amounts of RDP for optimal ruminal efficiency and to obtain the desired animal productivity with a minimum amount of dietary CP. The aim of the present study was to examine effects of decreasing dietary protein by decreasing RDP with the optimum concentration of RUP on production performance, nutrient digestibility, N retention, rumen fermentation parameters, and blood metabolites in high-producing Holstein cows in early lactation. Nine multiparous lactating cows (second parities, averaging 50 ± 12 d in milk and milk yield of 48 ± 5 kg/d) were used in a triplicate 3 × 3 Latin square design with 3 rations: 1) a total mixed ration (TMR) containing 16.4% CP (10.9% RDP based on DM), 2) a TMR containing 15.6% CP (10% RDP), and 3) a TMR containing 14.8% CP (9.3% RDP). The level of RUP was constant at 5.5% DM across the treatments. All diets were calculated to supply a postruminal lysine to methionine ratio of about 3:1. Dry matter intake, milk yield and composition, 4% fat-corrected milk, and energy-corrected milk were not significantly affected by decreasing dietary CP and RDP levels. Cows fed 16.4% CP diets had greater ( RUP and fecal N excretion (g/d) did not change. Apparent digestibility of nutrients, ruminal pH, and NH-N concentration were not affected with decreasing dietary CP and RDP levels. Apparent N efficiency increased, and RDP N intake and predicted urine N output decreased with decreased concentration of dietary CP and RDP in the diets ( RUP.

  19. Numerical simulations of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay, Indonesia

    International Nuclear Information System (INIS)

    Wulp, Simon A. van der; Damar, Ario; Ladwig, Norbert; Hesse, Karl-J.

    2016-01-01

    The present application of numerical modelling techniques provides an overview of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay. A hydrological model simulated river discharges with a total of 90 to 377 m 3 s −1 entering Jakarta Bay. Daily total nitrogen and total phosphorus loads ranged from 40 to 174 tons and 14 to 60 tons, respectively. Flow model results indicate that nutrient gradients are subject to turbulent mixing by tides and advective transport through circulation driven by wind, barotropic and baroclinic pressure gradients. The bulk of nutrient loads originate from the Citarum and Cisadane rivers flowing through predominantly rural areas. Despite lower nutrient loads, river discharges from the urban area of Jakarta exhibit the highest impact of nutrient concentrations in the near shore area of Jakarta Bay and show that nutrient concentrations were not only regulated by nutrient loads but were strongly regulated by initial river concentrations and local flow characteristics. - Highlights: • Full overview of river discharges, nutrient flux and nutrient levels in Jakarta Bay • Important overview of nutrient flux from individual rivers • Simulations identify the principal drivers of water circulation and nutrient gradient. • Nutrient dispersion model includes the local effects of the Java Sea current system.

  20. Concentrations, loads, and yields of nutrients and suspended sediment in the South Pacolet, North Pacolet, and Pacolet Rivers, northern South Carolina and southwestern North Carolina, October 2005 to September 2009

    Science.gov (United States)

    Journey, Celeste A.; Caldwell, Andral W.; Feaster, Toby D.; Petkewich, Mattew D.; Bradley, Paul M.

    2011-01-01

    The U.S. Geological Survey, in cooperation with Spartanburg Water, evaluated the concentrations, loads, and yields of suspended sediment, dissolved ammonia, dissolved nitrate plus nitrite, total organic nitrogen, total nitrogen, dissolved orthophosphate, dissolved phosphorus, and total phosphorus at sites in the South Pacolet, North Pacolet, and Pacolet Rivers in northern South Carolina and southwestern North Carolina from October 1, 2005, to September 30, 2009 (water years 2006 to 2009). Nutrient and sediment loads and yields also were computed for the intervening subbasin of the Pacolet River not represented by the South and North Pacolet River Basins. Except for a few outliers, the majority of the measurements of total nitrogen concentrations were well below the U.S. Environmental Protection Agency recommended guideline of 0.69 milligram per liter for streams and rivers in the nutrient ecoregion IX, which includes the study area within the Pacolet River Basin. Dissolved orthophosphate, dissolved phosphorus, and total phosphorus concentrations were significantly lower at the South Pacolet River site compared to the North Pacolet and Pacolet River sites. About 90 percent of the total phosphorus concentrations at the South Pacolet River site were below the U.S. Environmental Protection Agency recommended guideline of 0.37 milligram per liter, and more than 75 percent of the total phosphorus concentrations at the North Pacolet and Pacolet River sites were above that guideline. At all sites, minimum annual nutrient loads for the estimation period were observed during water year 2008 when severe drought conditions were present. An estimated mean annual total nitrogen load of 37,770 kilograms per year and yield of 2.63 kilograms per hectare per year were determined for the South Pacolet River site for the estimation period. The North Pacolet River site had a mean annual total nitrogen load of 65,890 kilograms per year and yield of 2.19 kilograms per hectare per year

  1. Combining short-term manipulative experiments with long-term palaeoecological investigations at high resolution to assess the response of Sphagnum peatlands to drought, fire and warming

    Directory of Open Access Journals (Sweden)

    M. Lamentowicz

    2016-09-01

    Full Text Available Northern hemisphere peatlands are substantial carbon stores. However, recent climate change and human impacts (e.g., drainage and atmospheric nutrient deposition may trigger the emission of their stored carbon to the atmosphere. Biodiversity losses are also an important consequence of those changes. Therefore, there is a need to recognise these processes in space and time. Global change experiments are often conducted to improve our understanding of the potential responses of various ecosystems to global warming and drought. Most of the experiments carried out in peatlands are focused on carbon balance and nitrogen deposition. Nevertheless, it is still unclear how fast peatlands respond to temperature changes and water-table lowering in the continental climate setting. This is important because continental regions account for a significant proportion of all northern hemisphere peatlands. A combination of short-term and long-term approaches in a single research project is especially helpful because it facilitates the correct interpretation of experimental data. Here we describe the CLIMPEAT project - a manipulative field experiment in a Sphagnum-dominated peatland supported by a high-resolution multi-proxy palaeoecological study. The design of the field experiment (e.g., treatments, methodology and biogeographical setting are presented. We suggest it is beneficial to support field experiments with an investigation of past environmental changes in the studied ecosystem, as human impacts during the past 300 years have already caused substantial changes in ecosystem functioning which may condition the response in experimental studies.

  2. Rates and Controls of N2 Fixation in Sphagnum spp. along the Hydrological Gradient - Beaver Pond to Bog Transition at Mer Bleue, Ontario, Canada

    Science.gov (United States)

    Zivkovic, T.; Moore, T. R.

    2014-12-01

    Many northern bogs with low atmospheric N inputs acquire N only via N2-fixation. Little is known about rates and controls on N2-fixation in bogs. The aim of this study was to: 1) test the important ecological drivers for N2-fixation, 2) investigate seasonal and temporal patterns of N2 fixation, and 3) to estimate current N2-fixation rates at Mer Bleue bog. We used acetylene reduction assay (ARA) to measure N2-fixation from June-October 2013 and 2014 (currently ongoing field season) along a hydrological gradient (beaver pond, hollows and hummocks). The highest ARA rates in 2013 growing season occurred in the pond in floating Sphagnum cuspidatum mats (50.3 ± 12.9 μmol m-2 d-1 Mean ± Std Err) which were up to 2.5 times latger than the rates found in the hummock with the lowest water table depth throughout the season. Two rain events during the summer 2013 increased ARA rates in all plots by 1 to 4 times, suggesting that moisture availability may play a crucial role on N2 fixation potential in the field. We are currently investigating the role of moisture, temperature, PAR and nutrient content (N, phosphorous and metals) on ARA along the gradient. In addition, we are using 15N2 enrichment method to estimate N2 fixation rates and compare them to ARA method at Mer Bleue bog.

  3. Absolute nutrient concentration measurements in cell culture media: 1H q-NMR spectra and data to compare the efficiency of pH-controlled protein precipitation versus CPMG or post-processing filtering approaches

    Directory of Open Access Journals (Sweden)

    Luca Goldoni

    2016-09-01

    Full Text Available The NMR spectra and data reported in this article refer to the research article titled “A simple and accurate protocol for absolute polar metabolite quantification in cell cultures using q-NMR” [1]. We provide the 1H q-NMR spectra of cell culture media (DMEM after removal of serum proteins, which show the different efficiency of various precipitating solvents, the solvent/DMEM ratios, and pH of the solution. We compare the data of the absolute nutrient concentrations, measured by PULCON external standard method, before and after precipitation of serum proteins and those obtained using CPMG (Carr-Purcell-Meiboom-Gill sequence or applying post-processing filtering algorithms to remove, from the 1H q-NMR spectra, the proteins signal contribution. For each of these approaches, the percent error in the absolute value of every measurement for all the nutrients is also plotted as accuracy assessment. Keywords: 1H NMR, pH-controlled serum removal, PULCON, Accuracy, CPMG, Deconvolution

  4. The effect of increasing the nutrient and amino acid concentration of milk diets on dairy heifer individual feed intake, growth, development, and lactation performance.

    Science.gov (United States)

    Margerison, J K; Robarts, A D J; Reynolds, G W

    2013-10-01

    percentage, and total milk fat and protein yields were greater for animals reared on MP and MPA compared with M. Body weight, hip height and width at parturition, milk protein percentage, somatic cell count, or days in milk did not differ among treatments. Increasing nutrient intake, during the milk feeding period, improved the BW gain of calves and milk production of dairy heifers during first lactation. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Nutritional geometry of calcium and phosphorus nutrition in broiler chicks. The effect of different dietary calcium and phosphorus concentrations and ratios on nutrient digestibility.

    Science.gov (United States)

    Wilkinson, S J; Bradbury, E J; Thomson, P C; Bedford, M R; Cowieson, A J

    2014-07-01

    A total of 600 Ross 308-day-old male broiler chicks were used in a 28 day digestibility study to investigate the interaction between dietary calcium (Ca) and non-phytate phosphorus (nPP) on the digestibility of minerals and amino acids. Diets were formulated to be nutritionally adequate except for Ca and nPP. Fifteen mash diets based on corn and soya bean meal with varying concentrations of Ca (6.4 to 12.0 g/kg) and nPP (2.4 to 7.0 g/kg) were used. Diets were clustered around total densities of Ca and nPP of 12, 13.5 or 15.0 (g/kg) and within each density, a range of five Ca : nPP ratios (1.14 : 1, 1.5 : 1, 2.0 : 1, 2.75 : 1 and 4.0 : 1) were fed. Birds had free access to feed and water throughout the study. At day 28, birds were euthanised for the determination of apparent ileal mineral and amino acid digestibility. Data were modelled in R version 2.15 using a linear mixed-effects model and interrogation of the data was performed by fitting a low order polynomial function. At high Ca concentrations, increasing nPP led to an increase in the apparent digestibility of minerals. Apparent ileal digestibility of phosphorus (P) was enhanced with increasing dietary nPP up to 5.5 g/kg beyond which no improvements were found. Maximal Ca digestibility was found in diets with >8.0 g/kg Ca with concomitant low concentrations of nPP. Diets with a broader Ca : nPP ratio improved the digestibility of Ca but were deleterious to the digestibility of P. In this study, apparent digestibility of amino acids was broadly unaffected by dietary Ca and nPP concentrations. However, interactions between Ca and nPP were observed for the digestibility of glutamine, tyrosine and methionine (all P<0.001). Nitrogen digestibility showed discrete optima around 10.0 and 5.0 g/kg nPP and Na digestibility was maximised around 8 to 9.0 g/kg Ca and 4.5 to 5.4 g/kg nPP. These data show that the ratio of Ca : nPP is more influential to mineral digestibility than the absolute dietary concentration of each

  6. Effects of volume change on the unsaturated hydraulic conductivity of Sphagnum moss

    Science.gov (United States)

    Golubev, V.; Whittington, P.

    2018-04-01

    Due to the non-vascular nature of Sphagnum mosses, the capitula (growing surface) of the moss must rely solely on capillary action to receive water from beneath. Moss subsides and swells in accordance with water table levels, an effect called "mire-breathing", which has been thought to be a self-preservation mechanism, although no systematic studies have been done to demonstrate exactly how volume change affects hydrophysical properties of moss. In this study, the unsaturated hydraulic conductivity (Kunsat) and water content of two different species of Sphagnum moss were measured at different compression rates, up to the maximum of 77%. The findings show that the Kunsat increases by up to an order of magnitude (10×) with compression up to a certain bulk density of the moss, after which higher levels of compression result in lowered unsaturated hydraulic conductivity. This was coupled with an increase in soil water retention with increased compression. The increase of the Kunsat with compression suggests that the mire-breathing effect should be considered a self-preservation mechanism to provide sufficient amount of water to growing moss in times of low water availability.

  7. Seasonal changes in Sphagnum peatland testate amoeba communities along a hydrological gradient.

    Science.gov (United States)

    Marcisz, Katarzyna; Lamentowicz, Lukasz; Słowińska, Sandra; Słowiński, Michał; Muszak, Witold; Lamentowicz, Mariusz

    2014-10-01

    Testate amoebae are an abundant and functionally important group of protists in peatlands, but little is known about the seasonal patterns of their communities. We investigated the relationships between testate amoeba diversity and community structure and water table depth and light conditions (shading vs. insolation) in a Sphagnum peatland in Northern Poland (Linje mire) in spring and summer 2010. We monitored the water table at five sites across the peatland and collected Sphagnum samples in lawn and hummock micro-sites around each piezometer, in spring (3 May) and mid-summer (6 August) 2010. Water table differed significantly between micro-sites and seasons (Kruskal-Wallis test, p=0.001). The community structure of testate amoebae differed significantly between spring and summer in both hummock and lawn micro-sites. We recorded a small, but significant drop in Shannon diversity, between spring and summer (1.76 vs. 1.72). Strongest correlations were found between testate amoeba communities and water table lowering and light conditions. The relative abundance of mixotrophic species Hyalosphenia papilio, Archerella flavum and of Euglypha ciliata was higher in the summer. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Sphagnum peatland development at their southern climatic range in West Siberia: trends and peat accumulation patterns

    International Nuclear Information System (INIS)

    Peregon, Anna; Uchida, Masao; Shibata, Yasuyuki

    2007-01-01

    A region of western Siberia is vulnerable to the predicted climatic change which may induce an important modification to the carbon balance in wetland ecosystems. This study focuses on the evaluation of both the long-term and contemporary trends of peat (carbon) accumulation and its patterns at the southern climatic range of Sphagnum peatlands in western Siberia. Visible and physical features of peat and detailed reconstructions of successional change (or sediment stratigraphies) were analysed at two types of forest-peatland ecotones, which are situated close to each other but differ by topography and composition of their plant communities. Our results suggest that Siberian peatlands exhibit a general trend towards being a carbon sink rather than a source even at or near the southern limit of their distribution. Furthermore, two types of peat accumulation were detected in the study area, namely persistent and intermittent. As opposed to persistent peat accumulation, the intermittent one is characterized by the recurrent degradation of the upper peat layers at the marginal parts of raised bogs. Persistent peat accumulation is the case for the majority of Sphagnum peatlands under current climatic conditions. It might be assumed that more peat will accumulate under the 'increased precipitation' scenarios of global warming, although intermittent peat accumulation could result in the eventual drying that may change peatlands from carbon sinks to carbon sources

  9. North American origin and recent European establishments of the amphi-Atlantic peat moss Sphagnum angermanicum.

    Science.gov (United States)

    Stenøien, Hans K; Shaw, A Jonathan; Shaw, Blanka; Hassel, Kristian; Gunnarsson, Urban

    2011-04-01

    Genetic and morphological similarity between populations separated by large distances may be caused by frequent long-distance dispersal or retained ancestral polymorphism. The frequent lack of differentiation between disjunct conspecific moss populations on different continents has traditionally been explained by the latter model, and has been cited as evidence that many or most moss species are extremely ancient and slowly diverging. We have studied intercontinental differentiation in the amphi-Atlantic peat moss Sphagnum angermanicum using 23 microsatellite markers. Two major genetic clusters are found, both of which occur throughout the distributional range. Patterns of genetic structuring and overall migration patterns suggest that the species probably originated in North America, and seems to have been established twice in Northern Europe during the past 40,000 years. We conclude that similarity between S. angermanicum populations on different continents is not the result of ancient vicariance and subsequent stasis. Rather, the observed pattern can be explained by multiple long-distance dispersal over limited evolutionary time. The genetic similarity can also partly be explained by incomplete lineage sorting, but this appears to be caused by the short time since separation. Our study adds to a growing body of evidence suggesting that Sphagnum, constituting a significant part of northern hemisphere biodiversity, may be more evolutionary dynamic than previously assumed. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  10. The use of Sphagnum cellulose oxygen isotope ratios in ombrotrophic peatlands as a proxy for paleoclimate.

    Science.gov (United States)

    Taylor, M.; Pendall, E.; Jackson, S.; Booth, R. K.; Nichols, J. E.; Huang, Y.

    2006-12-01

    Developing proxies for discerning paleoclimate that are independent of the pollen record can provide insight into various aspects of climate variability and improve confidence in the interpretation of climate-vegetation interactions. To date, proxies including plant macrofossils, humification indices, testate amoebae, and ratios of n-alkane abundances have been used to infer past climate variability from temperate ombrotrophic peatlands in upper Midwestern North America. These proxies are used to infer past changes in surface-moisture conditions, which in ombrotrophic peatlands is primarily a function of precipitation and temperature. This study investigates the potential uses of stable oxygen isotopes to complement hydrologic proxies. δ18O of surface water and Sphagnum moss cellulose from bogs throughout North America indicates a correlation between average growing season temperatures and δ18O-values. The existence of a modern temperature signal in moss cellulose suggests that δ18O-derived records will not only complement paleohydrological records, but also help assess relative changes in precipitation and temperature. Humification and testate amoebae data from two cores taken from Minden and Irwin Smith Bogs in central and northeastern Michigan have recorded several extreme drought events during the Holocene, including one at 1000 YBP. Comparison of δ18O-values of picked Sphagnum remains to down-core humification and testate amoebae data suggest good temporal correspondence, with the δ18O-values around 1000 YBP indicating a warmer growing season.

  11. The emerging farmed fish species meagre (Argyrosomus regius): how culinary treatment affects nutrients and contaminants concentration and associated benefit-risk balance.

    Science.gov (United States)

    Costa, Sara; Afonso, Cláudia; Bandarra, Narcisa Maria; Gueifão, Sandra; Castanheira, Isabel; Carvalho, Maria Luísa; Cardoso, Carlos; Nunes, Maria Leonor

    2013-10-01

    The effect of cooking methods (boiling, grilling, and roasting) on the proximate and mineral composition, contaminants concentration and fatty acids profile was evaluated aiming to understand the benefits and risks associated to the consumption of the emerging farmed fish meagre (Argyrosomus regius). All the treatments led to lower moisture content. After grilling and roasting, the SFA, MUFA and PUFA contents increased. There was no degradation of EPA and DHA during the culinary processes. Significant retention of minerals in grilled and roasted meagre samples was registered. For Pb and Cd there were no concentration differences between culinary treatments and regarding raw fish. Whereas As level was higher in grilled meagre, total Hg and Me-Hg values were augmented in grilled and roasted meagre. The consumption of meagre is advisable due to the low and healthy fat, high selenium and protein content. Grilling would be the best culinary treatment due to the retention of protein, EPA, DHA and minerals. But as the risk of ingestion of Me-Hg content also increases, based on the risk assessment, intake should not exceed two weekly meals, provided that no other important Me-Hg food source is present in the diet. Otherwise, even this maximum threshold should be lower. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification

    Energy Technology Data Exchange (ETDEWEB)

    Samecka-Cymerman, A. [Department of Ecology and Nature Protection, Wroclaw University, ul. Kanonia 6/8, 50-328 Wroclaw (Poland); Kempers, A.J. [Department of Biogeology, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen (Netherlands)

    2001-12-17

    Concentration of heavy metals (Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V and Zn) as well as macronutrients (N, P, K, Ca, Mg, S) were measured in water, bottom sediments and plants from anthropogenic lakes in West Poland. The collected plants were: Phragmites australis, Potamogeton natans, Iris pseudoacorus, Juncus effusus, Drepanocladus aduncus, Juncus bulbosus, Phalaris arundinacea, Carex remota and Calamagrostis epigeios. Two reference lakes were sampled for Nymphaea alba, Phragmites australis, Schoenoplectus lacustris, Typha angustifolia and Polygonum hydropiper. These plants contained elevated levels of Cd, Co, Cr, Cu and Mn, and part of the plants contained in addition elevated levels of Mn, Fe, Pb, Ni and Zn. Analyses of water indicated pollution with sulfates, Cd, Co, Ni, Zn, Pb and Cu, and bottom sediments indicated that some of the examined lakes were polluted with Cd, Co and Cr. Strong positive correlations were found between concentrations of Co in water and in plants and between Zn in sediments and plants, indicating the potential of plants for pollution monitoring for this metal. Heavy metal accumulation seemed to be directly associated with the exclusion of Ca and Mg.

  13. Changes in the aquatic moss Sphagnum denticulatum Brid. population abundance in a softwater lake over a period of three years

    Directory of Open Access Journals (Sweden)

    Józef Szmeja

    2011-01-01

    Full Text Available Changes in population abundance of submerged Sphagnum denticulatum Brid. were studied in an acidic and oligotrophic lake in NW Poland over three years. Individuals were counted in a moss carpet at a depth of 2.5 m on 4 experimental plots, 1 × 1 m each, every 30 days for 36 months using the SCUBA method. PAR intensity was seasonally variable (in winter higher than in summer. Changes in water pH, conductivity, HCO3- concentration, hydration and sediment pH were statistically insignificant (p > 0.05. In the summer of the second study year the moss carpet disappeared almost completely due to a massive bloom of filamentous green algae. Periods of growth, regression and regeneration were observed in the population. The stabilisation of population size took 24 months and followed the pattern: slight fluctuations, then rapid growth and repetition of slight fluctuations. The first stage lasted nine, the second four and the third nine months. These stages took place irrespective of seasons, temperature or PAR intensity. Each rapid increase in abundance lasted about 30 days, at PAR intensity >20% and water temperature ranging from 11 to 16oC (in winter, spring or autumn. The regression stage brought about by the algal bloom started in the second year (in summer and lasted six months (until the end of January in the third year. The population regeneration began in winter (in February, water temperature 3.0oC, PAR about 20%, ice cover 0.15 m and finished with the end of spring. The population of S. denticulatum shows a repetitive pattern of abundance variations, which is seriously disturbed in summer, especially after a warm spring, by a massive bloom of filamentous green algae.

  14. Comportamento ingestivo de cordeiros e digestibilidade dos nutrientes de dietas contendo alta proporção de concentrado e diferentes fontes de fibra em detergente neutro Lamb feeding behavior and nutrient digestibility of high concentrate diets with different neutral detergent fiber sources

    Directory of Open Access Journals (Sweden)

    Clayton Quirino Mendes

    2010-03-01

    Full Text Available Dois experimentos foram realizados para avaliar os efeitos da substituição da fibra em detergente neutro (FDN do bagaço de cana-de-açúcar in natura pela FDN da casca de soja em dietas com alta proporção de concentrado sobre o comportamento ingestivo de cordeiros e a digestibilidade dos nutrientes. No primeiro experimento, 60 cordeiros com 16,4 ± 0,3 kg de peso corporal e idade inicial de 67 ± 2 dias foram distribuídos em delineamento de blocos completos casualizados, em esquema fatorial 2 × 2 + 1, composto de duas fontes de FDN (bagaço de cana in natura ou casca de soja, dois teores de FDN (14 ou 18% e uma dieta controle contendo 100% de concentrado. No segundo experimento, cinco cordeiros foram distribuídos em quadrado latino 5 × 5 e submetidos às mesmas dietas do experimento 1. As dietas contendo as fontes de fibra promoveram maior consumo de matéria seca, matéria orgânica e FDN e maior tempo de ingestão, ruminação e mastigação (minutos/dia em comparação à dieta contendo 100% de concentrado. As dietas contendo o bagaço de canade-açúcar in natura proporcionaram maior atividade de ruminação que aquelas com casca de soja. Entretanto, a utilização da casca de soja proporcionou menor atividade de mastigação e maior digestibilidade dos nutrientes em relação ao bagaço de cana-de-açúcar in natura. A casca de soja pode ser utilizada como única fonte adicional de FDN em dietas contendo alto teor de concentrado para cordeiros.Two experiments were performed to determine the effects of replacing the neutral detergent fiber from sugarcane bagasse with soybean hulls neutral detergent fiber in high concentrate diets on lamb feeding behavior and apparent nutrient digestibility. In the first experiment, 60 ram lambs with 16.4 ± 0.3 kg body weight and 67 ± 2 days old were allotted to a complete randomized block design as a 2 × 2 + 1 factorial arrangement of treatments, consisting of two neutral detergent fiber sources

  15. Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils

    DEFF Research Database (Denmark)

    Woldetsadik, Desta; Drechsel, Pay; Keraita, Bernard

    2016-01-01

    To assess the efficiency of seven treatments including biochars produced from dried faecal matter and manures as stabilizing agents of cadmium (Cd)-spiked soils, lettuce was grown in glasshouse on two contrasting soils. The soils used were moderately fertile silty loam and less fertile sandy loam...... and the applied treatments were 7 % w/w. The reduction of bioavailable Cd (ammonium nitrate extractable) and its phytoavailability for lettuce were used as assessment criteria in the evaluation of stabilization performance of each treatment. Moreover, the agronomic values of the treatments were also investigated...... extracts. The immobilization potential of faecal matter biochar and lime were superior than the other treatments. However, lime and egg shell promoted statistically lower yield and P, K and Zn concentrations response of lettuce plants compared to the biochar treatments. The lowest Cd and highest P tissue...

  16. Minor effects of long-term ozone exposure on boreal peatland species Eriophorum vaginatum and Sphagnum papillosum

    DEFF Research Database (Denmark)

    Mörsky, SK; Haapala, JK; Rinnan, Riikka

    2011-01-01

    The effects of long-term ozone fumigation on two common peatland plant species, a sedge Eriophorum vaginatum L. and a moss Sphagnum papillosum Lindb., were studied applying peatland microcosms. The peat cores with intact vegetation were cored from an oligotrophic pine fen and partially embedded...

  17. Fractionation of hydrogen, oxygen and carbon isotopes in n-alkanes and cellulose of three Sphagnum species

    NARCIS (Netherlands)

    Brader, A.V.; Winden, J.F.; Bohncke, S.J.P.; Beets, C.J.; Reichart, G.-J.; De Leeuw, J.W.

    2010-01-01

    Compound-specific isotope measurements of organic compounds are increasingly important in palaeoclimate reconstruction. Searching for more accurate peat-based palaeoenvironmental proxies, compound-specific fractionation of stable C, H and O isotopes of organic compounds synthesized by Sphagnum were

  18. Sphagnum-mediated successional pattern in the mixed mire in the Muránska planina Mts (Western Carpathians, Slovakia)

    Czech Academy of Sciences Publication Activity Database

    Hájková, P.; Hájek, Michal

    2004-01-01

    Roč. 59, č. 1 (2004), s. 65-74 ISSN 0006-3088 R&D Projects: GA AV ČR KSK6005114; GA ČR GA206/02/0568 Institutional research plan: CEZ:AV0Z6005908 Keywords : Sphagnum ecology * brown mosses * niche breadth Subject RIV: EF - Botanics Impact factor: 0.207, year: 2004

  19. Effect of a temperature gradient on Sphagnum fallax and its associated living microbial communities: a study under controlled conditions.

    Science.gov (United States)

    Jassey, Vincent E J; Gilbert, Daniel; Binet, Philippe; Toussaint, Marie-Laure; Chiapusio, Geneviève

    2011-03-01

    Microbial communities living in Sphagnum are known to constitute early indicators of ecosystem disturbances, but little is known about their response (including their trophic relationships) to climate change. A microcosm experiment was designed to test the effects of a temperature gradient (15, 20, and 25°C) on microbial communities including different trophic groups (primary producers, decomposers, and unicellular predators) in Sphagnum segments (0-3 cm and 3-6 cm of the capitulum). Relationships between microbial communities and abiotic factors (pH, conductivity, temperature, and polyphenols) were also studied. The density and the biomass of testate amoebae in Sphagnum upper segments increased and their community structure changed in heated treatments. The biomass of testate amoebae was linked to the biomass of bacteria and to the total biomass of other groups added and, thus, suggests that indirect effects on the food web structure occurred. Redundancy analysis revealed that microbial assemblages differed strongly in Sphagnum upper segments along a temperature gradient in relation to abiotic factors. The sensitivity of these assemblages made them interesting indicators of climate change. Phenolic compounds represented an important explicative factor in microbial assemblages and outlined the potential direct and (or) indirect effects of phenolics on microbial communities.

  20. The sensitivity of Sphagnum to surface layer conditions in a re-wetted bog: a simulation study of water stress

    NARCIS (Netherlands)

    Schouwenaars, J.M.; Gosen, A.M.

    2007-01-01

    The behaviour of the water table in re-wetted bogs varies widely between different locations so that recolonising Sphagnum is vulnerable to water stress, especially when the water table is drawn down in summer. It is important to understand how physical site conditions influence the occurrence of

  1. Competition between Sphagnum magellanicum and Eriophorum angustifolium as affected by raised CO2 and increased N deposition

    NARCIS (Netherlands)

    Heijmans, M.M.P.D.; Klees, H.; Berendse, F.

    2002-01-01

    The competition between peat mosses (Sphagnum) and vascular plants as affected by raised CO2 and increased N deposition was studied in a glasshouse experiment by exposing peat monoliths with monocultures and mixtures of Sphagnummagellanicum and Eriophorumangustifolium to ambient (350 ppmv) or raised

  2. The effects of water management on the CO2 uptake of Sphagnum moss in a reclaimed peatland

    Directory of Open Access Journals (Sweden)

    C.M. Brown

    2017-07-01

    Full Text Available To harvest Sphagnum on a cyclic basis and rapidly accumulate biomass, active water management is necessary. The goal of this study is to determine the hydrological conditions that will maximise CO2 uptake in Sphagnum farming basins following the moss-layer transfer technique. Plot CO2 uptake doubled from the first growing season to the second, but growth was not uniform across the site. Results indicate that the seasonal oscillations in water table (WT position were more important than actual WT position for estimating Sphagnum ground cover and CO2 uptake when the seasonal WT is shallow (< -25 cm. Plots with higher productivity had a WT range (seasonal maximum – minimum less than 15 cm, a WT position which did not fluctuate more than ± 7.5 cm, and a low WT standard deviation. Each basin was a CO2 source during the second growing season, and seasonal modelled NEE ranged from 107.1 to 266.8 g CO2 m-2. Decomposition from the straw mulch accounted for over half of seasonal respiration, and the site is expected to become a CO2 sink as the straw mulch decomposes and moss cover increases. This study highlights the importance of maintaining stable moisture conditions to increase Sphagnum growth and CO2 sink functions.

  3. Acidicapsa borealis gen. nov., sp. nov. and Acidicapsa ligni sp. nov., subdivision 1 Acidobacteria from Sphagnum peat and decaying wood

    NARCIS (Netherlands)

    Kulichevskaya, I.S.; Kostina, L.A.; Valášková, V.; Rijpstra, I.C.; Sinninghe Damsté, J.S.; De Boer, W.; Dedysh, S.N.

    2012-01-01

    Two strains of subdivision 1 Acidobacteria, namely the pink-pigmented bacterium KA1T and the colorless isolate WH120T, were obtained from acidic Sphagnum peat and wood under decay by the white-rot fungus Hyploma fasciculare, respectively. Cells of these isolates are Gram-negative, non-motile, short

  4. Singulisphaera rosea sp. nov., a planctomycete from acidic Sphagnum peat, and emended description of the genus Singulisphaera

    NARCIS (Netherlands)

    Kulichevskaya, I.S.; Detkova, E.N.; Bodelier, P.L.E.; Rijpstra, W.I.C.; Sinninghe Damsté, J.S.; Dedysh, S.N.

    2012-01-01

    A novel species, Singulisphaera rosea sp. nov., is proposed for aerobic, pink-pigmented, budding bacterium isolated from an acidic Sphagnum peat bog of northwestern Russia. This bacterium, designated strain S26T, has non-motile, spherical cells that occur singly, in pairs or in short chains and

  5. Root Fungal Endophytes Enhance Heavy-Metal Stress Tolerance of Clethra barbinervis Growing Naturally at Mining Sites via Growth Enhancement, Promotion of Nutrient Uptake and Decrease of Heavy-Metal Concentration.

    Directory of Open Access Journals (Sweden)

    Keiko Yamaji

    Full Text Available Clethra barbinervis Sieb. et Zucc. is a tree species that grows naturally at several mine sites and seems to be tolerant of high concentrations of heavy metals, such as Cu, Zn, and Pb. The purpose of this study is to clarify the mechanism(s underlying this species' ability to tolerate the sites' severe heavy-metal pollution by considering C. barbinervis interaction with root fungal endophytes. We measured the heavy metal concentrations of root-zone soil, leaves, branches, and fine roots collected from mature C. barbinervis at Hitachi mine. We isolated fungal endophytes from surface-sterilized root segments, and we examined the growth, and heavy metal and nutrient absorption of C. barbinervis seedlings growing in sterilized mine soil with or without root fungal endophytes. Field analyses showed that C. barbinervis contained considerably high amounts of Cu, Zn, and Pb in fine roots and Zn in leaves. The fungi, Phialocephala fortinii, Rhizodermea veluwensis, and Rhizoscyphus sp. were frequently isolated as dominant fungal endophyte species. Inoculation of these root fungal endophytes to C. barbinervis seedlings growing in sterilized mine soil indicated that these fungi significantly enhanced the growth of C. barbinervis seedlings, increased K uptake in shoots and reduced the concentrations of Cu, Ni, Zn, Cd, and Pb in roots. Without root fungal endophytes, C. barbinervis could hardly grow under the heavy-metal contaminated condition, showing chlorosis, a symptom of heavy-metal toxicity. Our results indicate that the tree C. barbinervis can tolerate high heavy-metal concentrations due to the support of root fungal endophytes including P. fortinii, R. veluwensis, and Rhizoscyphus sp. via growth enhancement, K uptake promotion and decrease of heavy metal concentrations.

  6. Seasonal and inter-annual variation in the chlorophyll content of three co-existing Sphagnum species exceeds the effect of solar UV reduction in a subarctic peatland.

    Science.gov (United States)

    Hyyryläinen, Anna; Rautio, Pasi; Turunen, Minna; Huttunen, Satu

    2015-01-01

    We measured chlorophyll (chl) concentration and chl a/b ratio in Sphagnum balticum, S. jensenii, and S. lindbergii, sampled after 7 and 8 years of ultraviolet-B (UVB) and temperature manipulation in an open field experiment in Finnish Lapland (68°N). We used plastic filters with different transmittance of UVB radiation to manipulate the environmental conditions. The plants were exposed to (1) attenuated UVB and increased temperature, (2) ambient UVB and increased temperature and (3) ambient conditions. Chlorophyll was extracted from the capitula of the mosses and the content and a/b ratio were measured spectrophotometrically. Seasonal variation of chlorophyll concentration in the mosses was species specific. Temperature increase to 0.5-1 °C and/or attenuation of solar UVB radiation to ca. one fifth of the ambient (on average 12 vs. 59 uW/cm(2)) had little effect on the chlorophyll concentration or its seasonal variation. In the dominant S. lindbergii, UVB attenuation under increased temperature led to a transient decrease in chlorophyll concentration. Altogether, species-specific patterns of seasonal chlorophyll variation in the studied Sphagna were more pronounced than temperature and UVB treatment effects.

  7. Effect of Saccharomyces cerevisiae on alfalfa nutrient degradation characteristics and rumen microbial populations of steers fed diets with different concentrate-to-forage ratios.

    Science.gov (United States)

    Ding, Gengzhi; Chang, Ying; Zhao, Liping; Zhou, Zhenming; Ren, Liping; Meng, Qingxiang

    2014-01-01

    Live yeast (Saccharomyces cerevisiae) constitutes an effective additive for animal production; its probiotic effect may be related to the concentrate-to-forage ratio (CTFR). The objective of this study was to assess the effects of S. cerevisiae (SC) on fiber degradation and rumen microbial populations in steers fed diets with different levels of dietary concentrate. Ten Simmental × Local crossbred steers (450 ± 50 kg BW) were assigned to a control group or an SC group. Both groups were fed the same basal diet but the SC group received SC supplementation (8 × 10(9) cfu/h/d through the ruminal fistula) following a two-period crossover design. Each period consisted of four phases, each of which lasted 17 d: 10 d for dietary adaptation, 6 d for degradation study, and 1 d for rumen sample collection. From the 1(st) to the 4(th) phase, steers were fed in a stepwise fashion with increasing CTFRs, i.e., 30:70, 50:50, 70:30, and 90:10. The kinetics of dry matter and fiber degradation of alfalfa pellets were evaluated; the rumen microbial populations were detected using real-time PCR. The results revealed no significant (P > 0.05) interactions between dietary CTFR and SC for most parameters. Dietary CTFR had a significant effect (P trend for these parameters. SC supplementation significantly (P trend of rumen fungi and protozoa in SC group (P < 0.1); copies of total bacteria in SC group were significantly higher (P < 0.05). Additionally, percentage of Ruminobacter amylophilus was significantly lower (P < 0.05) but percentage of Selenomonas ruminantium was significantly higher (P < 0.05) in the SC group. In a word, dietary CTFR had a significant effect on degradation characteristics of forage and rumen microbial population. S. cerevisiae had positive effects on DM and NDF degradation rate or effective degradability of forage; S. cerevisiae increased rumen total bacteria, fungi, protozoa, and lactate-utilizing bacteria but reduced

  8. Associação micorrízica e teores de nutrientes nas folhas de cupuaçuzeiro (Theobroma grandiflorum e guaranazeiro (Paullinia cupana de um sistema agroflorestal em Manaus, Amazonas Arbuscular mycorrhizal association and foliar nutrient concentrations of cupuassu (Theobroma grandiflorum and guaraná (Paullinia cupana plants in an agroforestry system in Manaus, AM, Brazil

    Directory of Open Access Journals (Sweden)

    A. N. Oliveira

    2004-12-01

    Full Text Available As micorrizas arbusculares podem ser importantes na nutrição das plantas em solos ácidos e de baixa fertilidade, como são os da Amazônia de modo geral. Avaliaram-se a colonização radicular por fungos micorrízicos arbusculares (FMAs nativos e os teores de nutrientes em cupuaçuzeiro e guaranazeiro em um sistema agroflorestal no município de Manaus, Amazonas. Dez plantas de cada espécie foram selecionadas, das quais foram coletadas amostras de raiz, folha e solo durante o período seco e chuvoso da região de Manaus. Os guaranazeiros e os cupuaçuzeiros apresentaram maior colonização radicular por FMAs na época chuvosa. Os teores foliares de Ca, Mg, K, P, Zn, Cu e Mn nas duas espécies não foram influenciados pelas épocas de amostragem. O teor de Fe nas folhas dos cupuaçuzeiros foi maior na época chuvosa, enquanto o dos guaranazeiros, na época seca. A colonização micorrízica correlacionou-se com a concentração foliar de Ca, Mg, P e Cu nos cupuaçuzeiros e com a de Ca, Fe, Zn e Cu nos guaranazeiros.Arbuscular mycorrhiza can be important for plant nutrition in acid and low fertility soils such as those of the Amazon. The present study evaluated the mycorrhizal colonization by native arbuscular mycorrhizal fungi (AMF and nutrient concentrations of cupuassu and guarana leaves in an agroforestry system in Manaus, Amazonas State, Brazil. Ten plants of each species were selected, of which the roots, soil and leaves were sampled during the rainy and dry seasons. Guarana and cupuassu trees presented higher levels of AMF colonization during the rainy season. Ca, Mg, K, P, Zn, Cu, and Mn concentrations in both species were not affected by the season. Fe concentration was higher during the rainy season in the cupuassu leaves, but higher in the dry season in the guarana leaves. Mycorrhizal colonization correlated with Ca, Mg, P, and Cu concentrations in cupuassu plants and with Ca, Fe, Zn, and Cu in guarana plants.

  9. Nutrient Management in Recirculating Hydroponic Culture

    Science.gov (United States)

    Bugbee, Bruce

    2004-01-01

    There is an increasing need to recirculate and reuse nutrient solutions in order to reduce environmental and economic costs. However, one of the weakest points in hydroponics is the lack of information on managing the nutrient solution. Many growers and research scientists dump out nutrient solutions and refill at weekly intervals. Other authors have recommended measuring the concentrations of individual nutrients in solution as a key to nutrient control and maintenance. Dumping and replacing solution is unnecessary. Monitoring ions in solution is not always necessary; in fact the rapid depletion of some nutrients often causes people to add toxic amounts of nutrients to the solution. Monitoring ions in solution is interesting, but it is not the key to effective maintenance.

  10. Growth and yield of summer squash: effect of the ionic concentration of nutrient solutionCrescimento e produtividade da abobrinha italiana: efeito da concentração iônica da solução nutritiva

    Directory of Open Access Journals (Sweden)

    Tiago Zanatta Aumonde

    2011-07-01

    Full Text Available With the objective of evaluating the effect of different ionic concentrations of the nutrient solution on growth of summer squash cultivated in raw rice husk substrate with leaching recirculation, two experiments were conducted in two crop-seasons: spring-summer of 2005 and summer-autumn of 2006, in Pelotas, RS. Four ionic concentrations of the nutrient solution (based on electrical conductivity - EC were studied: 1.3; 1.7; 2.1 and 4.2 dS m-1. Crop growth was determinated by accumulated dry mass production and partitioning among the different above-ground plant organs (leafs, stem and fruits at the end of the crop-seasons. Fruit yield was also evaluated. The obtained results indicate that ionic concentrations equal or lower than 1.7 dS m-1 were limiting for proper growth and yield of the crop. The effect of high ionic concentration of the nutrient solution (above 2.1 dS m-1 on dry mass production and partitioning varied according to the crop-season. The lower solar radiation availability of the summer-autumn crop season minimized the effects of the different concentrations of nutrient solution on dry mass production and partitioning to the fruits, as well as on the yield. The fruits comprised from 28 to 52% of the total above-ground dry mass production. Fruits represented the largest sink of assimilates of the plant only at 2.1 dS m-1 ionic concentration of the nutrient solution and in crescent solar radiation availability condition (spring-summer. According the mathematics models, the electrical conductivity that maximizes dry mass production and yield is approximately 3.0 dS m-1 for both crop-seasons.Com o objetivo de avaliar o efeito de diferentes concentrações iônicas da solução nutritiva sobre o crescimento e a produtividade da abobrinha italiana cultivada em substrato de casca de arroz in natura com recirculação dos lixiviados, foram realizados dois experimentos em duas épocas de cultivo: primavera-verão de 2005 e verão-outono de

  11. Influence of Ocean Acidification on a Natural Winter-to-Summer Plankton Succession: First Insights from a Long-Term Mesocosm Study Draw Attention to Periods of Low Nutrient Concentrations.

    Directory of Open Access Journals (Sweden)

    Lennart T Bach

    more responsive to changing carbonate chemistry than those having access to high inorganic nutrient concentrations and may deserve particular attention in future studies.

  12. Influence of Ocean Acidification on a Natural Winter-to-Summer Plankton Succession: First Insights from a Long-Term Mesocosm Study Draw Attention to Periods of Low Nutrient Concentrations

    Science.gov (United States)

    Taucher, Jan; Boxhammer, Tim; Ludwig, Andrea; Achterberg, Eric P.; Algueró-Muñiz, María; Anderson, Leif G.; Bellworthy, Jessica; Büdenbender, Jan; Czerny, Jan; Ericson, Ylva; Esposito, Mario; Fischer, Matthias; Haunost, Mathias; Hellemann, Dana; Horn, Henriette G.; Hornick, Thomas; Meyer, Jana; Sswat, Michael; Zark, Maren; Riebesell, Ulf

    2016-01-01

    responsive to changing carbonate chemistry than those having access to high inorganic nutrient concentrations and may deserve particular attention in future studies. PMID:27525979

  13. Biofortification of lettuce (Lactuca sativa L.) with iodine: the effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce grown in water culture.

    Science.gov (United States)

    Voogt, Wim; Holwerda, Harmen T; Khodabaks, Rashied

    2010-04-15

    Iodine is an essential trace element for humans. Two billion individuals have insufficient iodine intake. Biofortification of vegetables with iodine offers an excellent opportunity to increase iodine intake by humans. The main aim was to study the effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce, grown in water culture. In both a winter and summer trial, dose rates of 0, 13, 39, 65, and 90 or 129 microg iodine L(-1), applied as iodate (IO(3)(-)) or iodide (I(-)), did not affect plant biomass, produce quality or water uptake. Increases in iodine concentration significantly enhanced iodine content in the plant. Iodine contents in plant tissue were up to five times higher with I(-) than with IO(3)(-). Iodine was mainly distributed to the outer leaves. The highest iodide dose rates in both trials resulted in 653 and 764 microg iodine kg(-1) total leaf fresh weight. Biofortification of lettuce with iodine is easily applicable in a hydroponic growing system, both with I(-) and IO(3)(-). I(-) was more effective than IO(3)(-). Fifty grams of iodine-biofortified lettuce would provide, respectively, 22% and 25% of the recommended daily allowance of iodine for adolescents and adults. (c) 2010 Society of Chemical Industry.

  14. Volume de madeira e concentração foliar de nutrientes em parcelas experimentais de Eucalyptus grandis fertilizadas com lodos de esgoto úmido e seco Wood volume and foliar concentration of nutrients in Eucalyptus grandis after wet and dry sewage sludge application

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Muller da Silva

    2008-10-01

    over after wastewater treatment and its disposal needs to be well planned, considering sanitary, environmental, economic and social implications. Sewage sludge (biosolids is high in organic content and plant nutrient and could be applied as fertilizer in forest plantations. The aim of this research, conducted at the Experimental Station of Itatinga (University of São Paulo was to evaluate the effects of increasing doses (10, 20 and 30 tons ha-1 of wet and dry biosolids(pellets, complemented with K and B, and applied to planting rows in experimental Eucalyptus grandis plots 1.5 years after seedling plantation. Trunk volume increased significantly regarding the eucalypt trees that received wet and dry sewage sludge, compared to the control treatment (no fertilization, and a similar growth of eucalypt trees that received full mineral fertilization. Regarding mineral nutrition, a positive correlation was observed between doses of biosolids and P, Ca, and Zn concentrations in the leaves, but a negative effect for Mn and biosolid dose. The foliar concentration of all the nutrients in the biosolid-treated eucalypt trees remained within the limits observed in commercial plantations, with no signs of nutritional imbalance.

  15. Nutrient concentrations in potato stem, petiole and leaflet in response to potassium fertilizer Teores de nutrientes no caule, pecíolo e limbo da batateira em função da adubação potássica

    Directory of Open Access Journals (Sweden)

    Roberto dos Anjos Reis Jr.

    2000-06-01

    Full Text Available Chemical composition of potato stem, petiole and leaflet were evaluated in response to the application of K fertilizer. Potassium was applied at six different rates (0, 60, 120, 240, 480 and 960 kg ha-1 of K2O, as K2SO4 and was placed in the furrow during planting. Two plants per plot were sampled 48 days after plant emergence to evaluate N, P, K, Ca, Mg, S, Cu, Mn and Zn concentrations in stems, petioles and leaflets of the youngest fully expanded leaf. It is recommended using potato petioles to evaluate the N, P, K, Ca, Mg and Cu status and using potato leaflet to evaluate the S, Mn and Zn status. The stem was not a good indicator of S nutritional status. Petiole N, P and Cu concentrations associated with the maximum tuber yield (30.5 t ha-1, with 353.4 kg ha-1 of K2O were 25.9 g kg-1, 1.4 g kg-1 and 9.7 mg kg-1, respectively, while, the leaflet S, Mn and Zn concentrations associated with the maximum tuber yield were 4.0 g kg-1, 155.2 mg kg-1 and 59.4 mg kg-1, respectively. This information should be used to build data banks of adequate nutrient concentration at different portions of potato plant and like this, to aid the nutrient diagnosis in potato crops.Para avaliar a composição mineral em órgãos da batateira em função da adubação potássica, foi realizado experimento com doses de potássio (0, 60, 120, 240, 480 e 960 kg ha-1 de K2O delineado em blocos casualizados com quatro repetições. Duas plantas por parcela foram amostradas aos 48 dias após emergência das plantas para avaliar teores de N, P, K, Ca, Mg, S, Cu, Mn e Zn no caule, pecíolo e limbo da folha recém madura. Recomenda-se utilizar o pecíolo da batateira para avaliar o status de N, P, K, Ca, Mg e Cu e utilizar o limbo da batateira para avaliar o status de S, Mn e Zn. O caule não foi um bom indicador do estado nutricional em relação ao S. A aplicação de 353,4 kg ha-1 de K2O proporcionou a máxima produtividade de tubérculos (30,5 t ha-1 e teores de N, P e Cu no

  16. Growth and physiological responses to water and nutrient stress in ...

    African Journals Online (AJOL)

    Growth and physiological responses to water and nutrient stress in oil palm. ... changes in growth, physiology and nutrient concentration in response to two watering regimes (well-watered and water-stress conditions) and ... from 32 Countries:.

  17. Late Holocene palaeohydrological changes in a Sphagnum peat bog from NW Romania based on testate amoebae

    Directory of Open Access Journals (Sweden)

    Andrei-Cosmin Diaconu

    2016-04-01

    Full Text Available This paper investigates the possibility of reconstructing the palaeohydrological changes in an active Sphagnum peat bog from north-western Romania using testate amoebae fauna and organic matter content determined by loss on ignition (LOI. In total 28 taxa of testate amoebae were identified of which 11 were frequent enough to present a remarkable ecological significance. Based on the relative abundance of these taxa nine zones were identified, crossing from very wet to dry climate conditions. The wet periods identified are characterized by taxa like Centropyxis cassis, Amphitrema flavum and Hyalosphenia papilio, while in the dry periods Difflugia pulex and Nebela militaris thrive. We showed that combining qualitative information regarding hydrological preferences with the quantitative percentage data from the fossil record it is possible to obtain information regarding major surface moisture changes from the peat bog surface. Furthermore we identified a link between distribution of testate amoebae assemblages, organic matter variation and minerogenic material.

  18. Cultivable mycobacteria in sphagnum vegetation of moors in South Sweden and coastal Norway.

    Science.gov (United States)

    Kazda, J; Müller, K; Irgens, L M

    1979-04-01

    Intact sphagnum vegetation from moors in south Sweden and coastal areas of west Norway contained cultivable mycobacteria in 32% and 30% of the specimens, respectively. This frequency of specimens is lower than the 50% previously found in the partly altered moors of northwestern Germany, but the Scandinavian moors contained a larger variety of species. On both intact and altered moors M. chelonei and M. sphagni sp. nov. were found, the latter a homologous group of 151 strains. In south Sweden the highest frequency was found in S. balticum, S. recurvum. S. tenellum and S. compactum & molle. (40-65%). In coastal Norway the highest frequency was found in S. rubellum (48%) which offers favourable conditions for the accumulation of solar energy due to the red brown colour in the upper parts. Combined with a high humidity in coastal Norway in summer, this may contribute to the growth of mesophilic mycobacteria. A significant affinity of M. chelonei to S. tenellum was stated.

  19. [Effects of shading on two Sphagnum species growth and their interactions].

    Science.gov (United States)

    Ma, Jin-Ze; Bu, Zhao-Jun; Zheng, Xing-Xing; Li, Shan-Lin; Zeng, Jing; Zhao, Gao-Lin

    2012-02-01

    Taking Sphagnum palustre and S. fallax as test materials, this paper studied their growth and interactions under shading. In monoculture, shading promoted the height growth of S. palustre markedly, but had no effect on the growth of S. fallax and the biomass and branching of S. palustre. In mixed culture, S. fallax suppressed the increase of biomass and branching of S. palustre, while S. palustre had no effects on S. fallax. With the increase of shading stress, the competition of neighbour on S. fallax intensified. When the stress increased further, neighbor effect on S. fallax tended to be positive. However, the effect of neighbour on S. palustre was always competitive and did not change with the increase of shading stress.

  20. Net ecosystem exchange in a sedge-sphagnum fen at the South of West Siberia, Russia

    Science.gov (United States)

    Dyukarev, Egor

    2017-04-01

    The model of net ecosystem exchange was used to study the influence of different environmental factors and to calculate daily and growing season carbon budget for minerotrophic fen at South of West Siberia, Russia. Minerotrophic sedge-sphagnum fen occupies the central part of the Bakcharskoe bog. The model uses air and soil temperature, incoming photosynthetically active radiation, and leaf area index as the explanatory factors for gross primary production, heterotrophic and autotrophic respiration. The model coefficients were calibrated using data collected by automated soil CO2 flux system with clear long-term chamber. The studied ecosystem is a sink of carbon according to modelling and observation results. This study was supported by Russian Foundation for Basic Researches (grant numbers 16-07-01205 and 16-45-700562.

  1. Acidity of sphagnum and its relation to chalk and mineral salts

    Energy Technology Data Exchange (ETDEWEB)

    Skene, M

    1915-01-01

    In addition to the criticism and elucidation of various other points, the chief conclusions which may be drawn from the preceding pages are: (1) There is a variation in acidity and in sensitiveness to chalk between the different species of sphagnum. (2) There is a correlation between degree of acidity and degree of sensitiveness. (3) The connection between the two is indirect, not direct. (4) The sphagna thrive in acid solutions: the injurious effect of chalk, and of alkalies in general, is due to the substitution of an alkaline for an acid reaction. (5) Mineral solutions are generally physiologically harmless, but may be ecologically harmful. (6) The sphagna do actually utilize in growth bases held absorbed by the acid compounds of the cell-walls.

  2. Regulation of nitrogen removal and retention in sphagnum bogs and other peatlands

    International Nuclear Information System (INIS)

    Damman, A.W.H.

    1988-01-01

    Nitrogen concentrations range from 0.3-l.3% in ombrotrophic peat of raised bogs. Within ombrogenous bogs, the N concentration of the peat increases in oceanic regions, with the highest concentrations found in blanket bogs on Southern Hemisphere islands. In minerotrophic peat, N concentrations increase with age (depth) as in upland humus. In this paper, I propose that N immobilization is truncated at low levels in ombrotrophic peat because 1) microbial activity is reduced well below that determined by environmental conditions, and 2) N is not limiting decay, in spite of low N concentrations. Consequently, net mineralization of N occurs at C:N quotients 80 to over 100 in inland raised bogs. Nutrient deficiency, probably P deficiency, appears to limit microbial activity and N immobilization. The increased N immobilization in oceanic bogs is attributed to higher Mg inputs that stimulate the biochemical release of P by enzymatic catalysis, and hence increase microbial activity. In ombrotrophi bogs, peat formed during periods of slow accumulation and long residence in the acrotelm has the highest N concentrations but, paradoxically, has also lost more of its original N content than peat that accumulated rapidly. Irregular changes in the anaerobic peat reflect conditions of decay when the peat was in the acrotelm. In a dated profile, N losses were largest during the last 2000 yr. This indicates a change in environmental conditions in the surface peat. Presumably, during this period the bog reached its maximum elevation with respect to the water mound that can be maintained in the peat under the present climatic conditions, and N losses increased as peat accumulation decreased. (author)

  3. Novel insights on the structure and composition of pseudostomata of Sphagnum.

    Science.gov (United States)

    Merced, Amelia

    2015-03-01

    The occurrence of stomata on sporophytes of mosses and hornworts is congruent with a single origin in land plants. Although true stomata are absent in early-divergent mosses, Sphagnum has specialized epidermal cells, pseudostomata, that partially separate but do not open to the inside. This research examined two competing hypotheses that explain the origin of pseudostomata: (1) they are modified stomata, or (2) they evolved from epidermal cells independently from stomata.• Capsule anatomy and ultrastructure of pseudostomata were studied using light and electron microscopy, including immunolocalization of pectins.• Cell walls in pseudostomata are thin, two-layered, and rich in pectins, similar to young moss stomata, including the presence of cuticle on exterior walls. Outer and ventral walls have a thick cuticle that suggests that initial separation of ventral walls involves cuticle deposition as in true stomata. Further mechanical separation between ventral walls does not form a pore and occurs as the capsule dries.• As in moss stomata, pseudostomata wall architecture and behavior facilitate capsule dehydration, shape change, and dehiscence, supporting a common function. The divergent structure and fate of pseudostomata may be explained by the retention of Sphagnum sporophytes within protective leaves until nearly mature. Ultrastructural and immunocytological data suggest that pseudostomata are related to stomata but do not conclusively support either hypothesis. Solving the relationship of early land plants is critical to understanding stomatal evolution. Pseudostomata are structurally and anatomically unique, but their relationship to true stomata remains to be determined. © 2015 Botanical Society of America, Inc.

  4. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat.

    Science.gov (United States)

    Pankratov, Timofey A; Ivanova, Anastasia O; Dedysh, Svetlana N; Liesack, Werner

    2011-07-01

    Northern peatlands represent a major global carbon store harbouring approximately one-third of the global reserves of soil organic carbon. A large proportion of these peatlands consists of acidic Sphagnum-dominated ombrotrophic bogs, which are characterized by extremely low rates of plant debris decomposition. The degradation of cellulose, the major component of Sphagnum-derived litter, was monitored in long-term incubation experiments with acidic (pH 4.0) peat extracts. This process was almost undetectable at 10°C and occurred at low rates at 20°C, while it was significantly accelerated at both temperature regimes by the addition of available nitrogen. Cellulose breakdown was only partially inhibited in the presence of cycloheximide, suggesting that bacteria participated in this process. We aimed to identify these bacteria by a combination of molecular and cultivation approaches and to determine the factors that limit their activity in situ. The indigenous bacterial community in peat was dominated by Alphaproteobacteria and Acidobacteria. The addition of cellulose induced a clear shift in the community structure towards an increase in the relative abundance of the Bacteroidetes. Increasing temperature and nitrogen availability resulted in a selective development of bacteria phylogenetically related to Cytophaga hutchinsonii (94-95% 16S rRNA gene sequence similarity), which densely colonized microfibrils of cellulose. Among isolates obtained from this community only some subdivision 1 Acidobacteria were capable of degrading cellulose, albeit at a very slow rate. These Acidobacteria represent indigenous cellulolytic members of the microbial community in acidic peat and are easily out-competed by Cytophaga-like bacteria under conditions of increased nitrogen availability. Members of the phylum Firmicutes, known to be key players in cellulose degradation in neutral habitats, were not detected in the cellulolytic community enriched at low pH. © 2011 Society for

  5. Cellulose and Lignin Carbon Isotope Signatures in Sphagnum Moss Reveal Complementary Environmental Properties

    Science.gov (United States)

    Loisel, J.; Nichols, J. E.; Kaiser, K.; Beilman, D. W.; Yu, Z.

    2016-12-01

    The carbon isotope signature (δ13C) of Sphagnum moss is increasingly used as a proxy for past surface wetness in peatlands. However, conflicting interpretations of these carbon isotope records have recently been published. While the water film hypothesis suggests that the presence of a thick (thin) water film around hollow (hummock) mosses leads to less (more) negative δ13C values, the carbon source hypothesis poses that a significant (insignificant) amount of CH4 assimilation by hollow (hummock) mosses leads to more (less) negative δ13C values. To evaluate these competing mechanisms and their impact on moss δ13C, we gathered 30 moss samples from 6 peatlands in southern Patagonia. Samples were collected along a strong hydrological gradient, from very dry hummocks (80 cm above water table depth) to submerged hollows (5 cm below water surface). These peat bogs have the advantage of being colonized by a single cosmopolitan moss species, Sphagnum magellanicum, limiting potential biases introduced by species-specific carbon discrimination. We measured δ13C from stem cellulose and leaf waxes on the same samples to quantify compound-specific carbon signatures. We found that stem cellulose and leaf-wax lipids were both strongly negatively correlated with moss water content, suggesting a primary role of water film thickness on carbon assimilation. In addition, isotopic fractionation during wax synthesis was greater than for cellulose. This offset decreases as conditions get drier, due to (i) a more effective carbon assimilation, or (ii) CH4 uptake through symbiosis with methanotrophic bacteria within the leaves of wet mosses. Biochemical analysis (carbohydrates, amino acids, hydrophenols, cutin acids) of surface moss are currently being conducted to characterize moss carbon allocation under different hydrological conditions. Overall, this modern calibration work should be of use for interpreting carbon isotope records from peatlands.

  6. Nutrient cycling strategies.

    NARCIS (Netherlands)

    Breemen, van N.

    1995-01-01

    This paper briefly reviews pathways by which plants can influence the nutrient cycle, and thereby the nutrient supply of themselves and of their competitors. Higher or lower internal nutrient use efficiency positively feeds back into the nutrient cycle, and helps to increase or decrease soil

  7. High Throughput Sequencing to Detect Differences in Methanotrophic Methylococcaceae and Methylocystaceae in Surface Peat, Forest Soil, and Sphagnum Moss in Cranesville Swamp Preserve, West Virginia, USA

    Science.gov (United States)

    Lau, Evan; Nolan, Edward J.; Dillard, Zachary W.; Dague, Ryan D.; Semple, Amanda L.; Wentzell, Wendi L.

    2015-01-01

    Northern temperate forest soils and Sphagnum-dominated peatlands are a major source and sink of methane. In these ecosystems, methane is mainly oxidized by aerobic methanotrophic bacteria, which are typically found in aerated forest soils, surface peat, and Sphagnum moss. We contrasted methanotrophic bacterial diversity and abundances from the (i) organic horizon of forest soil; (ii) surface peat; and (iii) submerged Sphagnum moss from Cranesville Swamp Preserve, West Virginia, using multiplex sequencing of bacterial 16S rRNA (V3 region) gene amplicons. From ~1 million reads, >50,000 unique OTUs (Operational Taxonomic Units), 29 and 34 unique sequences were detected in the Methylococcaceae and Methylocystaceae, respectively, and 24 potential methanotrophs in the Beijerinckiaceae were also identified. Methylacidiphilum-like methanotrophs were not detected. Proteobacterial methanotrophic bacteria constitute Sphagnum moss) or co-occurred in both Sphagnum moss and peat. This study provides insights into the structure of methanotrophic communities in relationship to habitat type, and suggests that peat and Sphagnum moss can influence methanotroph community structure and biogeography. PMID:27682082

  8. Sphagnum physiology in the context of changing climate: emergent influences of genomics, modelling and host-microbiome interactions on understanding ecosystem function.

    Science.gov (United States)

    Weston, David J; Timm, Collin M; Walker, Anthony P; Gu, Lianhong; Muchero, Wellington; Schmutz, Jeremy; Shaw, A Jonathan; Tuskan, Gerald A; Warren, Jeffrey M; Wullschleger, Stan D

    2015-09-01

    Peatlands harbour more than one-third of terrestrial carbon leading to the argument that the bryophytes, as major components of peatland ecosystems, store more organic carbon in soils than any other collective plant taxa. Plants of the genus Sphagnum are important components of peatland ecosystems and are potentially vulnerable to changing climatic conditions. However, the response of Sphagnum to rising temperatures, elevated CO2 and shifts in local hydrology have yet to be fully characterized. In this review, we examine Sphagnum biology and ecology and explore the role of this group of keystone species and its associated microbiome in carbon and nitrogen cycling using literature review and model simulations. Several issues are highlighted including the consequences of a variable environment on plant-microbiome interactions, uncertainty associated with CO2 diffusion resistances and the relationship between fixed N and that partitioned to the photosynthetic apparatus. We note that the Sphagnum fallax genome is currently being sequenced and outline potential applications of population-level genomics and corresponding plant photosynthesis and microbial metabolic modelling techniques. We highlight Sphagnum as a model organism to explore ecosystem response to a changing climate and to define the role that Sphagnum can play at the intersection of physiology, genetics and functional genomics. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  9. Produtividade e qualidade de frutos de meloeiro cultivado em substrato com três doses de solução nutritiva Yield and quality of muskmelon fruits grown in substrate under three concentrations of the nutrient solution

    Directory of Open Access Journals (Sweden)

    Jerônimo Luiz Andriolo

    2005-08-01

    .0 K+ ; 5.01 Ca++ ; 2.25 Mg++ ; 2.25 SO4-, with added micronutrients. For treatments T1 and T3, quantities of fertilizers from T2 were multiplied by a factor of 0.5 and 2, respectively. LAI values at the ending date were 1.99; 2.22 and 2.28 m² m-2 for T1, T2 and T3, respectively, T1 differing significantly from T2 and T3. Fruit yield reached 56.2; 65.0 and 65.9 Mg++ ha-1, for T1, T2 and T3, respectively. Maximum fruit yield was estimated by a nutrient concentration of 44.1 mmol L-1, corresponding to the following composition of the nutrient solution, in mmol L-1: 19.5 of NO3-; 1.35 of H2PO4-; 9.0 of K+; 7.51 of Ca++; 3.37 of Mg++; 3.37 of SO4-, and in mumol L-1: 50.25 of Fe; 22.5 of Mn; 3.45 of Zn; 1.5 of Cu; 22.5 of B e 0.78 of Mo. Similar results were observed for fruit quality variables.

  10. Consumo e digestibilidade aparente total dos nutrientes e ganho de peso de bovinos de corte alimentados com silagem de Brachiaria brizantha e concentrado em diferentes proporções Intake and apparent digestibility of the nutrients and weight gain of beef cattle fed diets with different proportions of Brachiaria brizantha silage and concentrate

    Directory of Open Access Journals (Sweden)

    Bruno Ceolin da Silva

    2005-06-01

    Full Text Available Avaliaram-se o consumo e as digestibilidades aparentes totais dos nutrientes e o ganho de peso de bovinos de corte recebendo dietas contendo concentrado e silagem de Brachiaria brizantha cv. Marandu nas seguintes proporções: 20:80, 35:65, 50:50 e 65:35, com base na matéria seca. Foram utilizados vinte e quatro animais castrados Holandês x Zebu, com peso vivo inicial médio de 364 kg, distribuídos em um delineamento em blocos casualizados. Por ocasião da ensilagem, procedeu-se o tratamento do capim com o inoculante enzimo-bacteriano Nutroeste 50 t. Para o cálculo da matéria seca fecal, utilizou-se a fibra em detergente ácido indigestível (FDAI como indicador. Os animais foram alojados em baias individuais e alimentados ad libitum. O ensaio teve duração de 84 dias, divididos em três períodos de 28 dias após 15 dias de adaptação. Os consumos médios de matéria seca (MS, matéria orgânica (MO, proteína bruta (PB, extrato etéreo (EE e carboidratos totais (CHO e as digestibilidades aparentes totais de MS, MO, CHO e carboidratos não-fibrosos (CNF elevaram linearmente com o aumento dos níveis de concentrado nas dietas. Comportamento semelhante foi observado para o ganho de peso médio diário, estimando-se incrementos de 0,0184 kg/unidade de concentrado adicionado. Contudo, as digestibilidades aparentes de PB, EE e fibra em detergente neutro (FDN não foram influenciadas pelas dietas, registrando-se, respectivamente, valores médios de 77, 88 e 60%. Silagem de Brachiaria brizantha não-emurchecida, constituindo 50% da dieta de bovinos H x Z, promoveu ganhos de peso em torno de 1,0 kg/dia.Intake and total apparent digestibilities of the nutrients and average daily gains (ADG by beef cattle fed diets based on concentrate and Brachiaria brizantha cv. Marandu silage in the following proportions: 20:80, 35:65, 50:50 and 65:35, in dry matter basis were evaluated. Twenty-four crossbred (Holstein x Zebu steers, with initial live weight of

  11. Linking nutrient enrichment, sediment erodibility and biofilms

    Science.gov (United States)

    Conrad, B.; Mahon, R.; Sojka, S. L.

    2014-12-01

    Sediment movement in coastal lagoons affects nutrient flux and primary producer growth. Previous research has shown that sediment erodibility is affected by biofilm concentration and that growth of benthic organisms, which produce biofilm, is affected by nutrient enrichment. However, researchers have not examined possible links between nutrient addition and sediment erodibility. We manipulated nutrient levels in the water column of 16 microcosms filled with homogenized sediment from a shallow coastal lagoon and artificial seawater to determine the effects on biofilm growth, measured through chlorophyll a and colloidal carbohydrate concentrations. Erosion tests using a Gust microcosm were conducted to determine the relationship between sediment erodibility and biofilm concentration. Results show that carbohydrate levels decreased with increasing nutrient enrichment and were unrelated to chlorophyll concentrations and erodibility. The nutrient levels did not predictably affect the chlorophyll levels, with lower chlorophyll concentrations in the control and medium enrichment treatments than the low and high enrichment treatments. Controls on biofilm growth are still unclear and the assumed relationship between carbohydrates and erodibility may be invalid. Understanding how biofilms respond to nutrient enrichment and subsequent effects on sediment erodibility is essential for protecting and restoring shallow coastal systems.

  12. Potential NH{sub 4}{sup +} and NO{sub 3}{sup -} uptake on various Sphagnum species

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J [Joensuu Univ. (Finland). Dept. of Biology; Wallen, B; Malmer, N [Lund Univ. (Sweden). Dept. of Plant Ecology

    1997-12-31

    The objective of this research is to test differences in NH{sub 4}{sup +} and NO{sub 3}{sup -} uptake on various Sphagnum species under laboratory conditions. The studied species represent two gradients: the minerotrophy-ombrotrophy (mire margin - mire expanse) gradient, and the hummock-hollow gradient. There are distinct differences in the uptake rate between various Sphagnum species and these differences seem to be due to both structural and environmental factors: (1) on individual basis the highest uptake rate is in species with large capitulum and high number of ion exchange sites i.e. lawn species, (2) on dry mass basis the most effective species are the hummock species though they have a low DM, (3) from the ecosystem point of view, hummock species with high number of shoots per unit area and high uptake rate on dry mass basis, are the most effective species in filtering available nitrogen. (1 ref.)

  13. Greenhouse gas exchange of rewetted bog peat extraction sites and a Sphagnum cultivation site in northwest Germany

    Science.gov (United States)

    Beyer, C.; Höper, H.

    2015-04-01

    During the last decades an increasing area of drained peatlands has been rewetted. Especially in Germany, rewetting is the principal treatment on cutover sites when peat extraction is finished. The objectives are bog restoration and the reduction of greenhouse gas (GHG) emissions. The first sites were rewetted in the 1980s. Thus, there is a good opportunity to study long-term effects of rewetting on greenhouse gas exchange, which has not been done so far on temperate cutover peatlands. Moreover, Sphagnum cultivating may become a new way to use cutover peatlands and agriculturally used peatlands as it permits the economical use of bogs under wet conditions. The climate impact of such measures has not been studied yet. We conducted a field study on the exchange of carbon dioxide, methane and nitrous oxide at three rewetted sites with a gradient from dry to wet conditions and at a Sphagnum cultivation site in NW Germany over the course of more than 2 years. Gas fluxes were measured using transparent and opaque closed chambers. The ecosystem respiration (CO2) and the net ecosystem exchange (CO2) were modelled at a high temporal resolution. Measured and modelled values fit very well together. Annually cumulated gas flux rates, net ecosystem carbon balances (NECB) and global warming potential (GWP) balances were determined. The annual net ecosystem exchange (CO2) varied strongly at the rewetted sites (from -201.7 ± 126.8 to 29.7± 112.7g CO2-C m-2 a-1) due to differing weather conditions, water levels and vegetation. The Sphagnum cultivation site was a sink of CO2 (-118.8 ± 48.1 and -78.6 ± 39.8 g CO2-C m-2 a-1). The annual CH4 balances ranged between 16.2 ± 2.2 and 24.2 ± 5.0g CH4-C m-2 a-1 at two inundated sites, while one rewetted site with a comparatively low water level and the Sphagnum farming site show CH4 fluxes close to 0. The net N2O fluxes were low and not significantly different between the four sites. The annual NECB was between -185.5 ± 126.9 and 49

  14. Greenhouse gas emissions from rewetted bog peat extraction sites and a Sphagnum cultivation site in Northwest Germany

    Science.gov (United States)

    Beyer, C.; Höper, H.

    2014-03-01

    During the last three decades, an increasing area of drained peatlands was rewetted. This was done with the objective to convert these sites from sources back to sinks or, at least, to much smaller sources of greenhouse gases (GHG). However, available data is still scarce, especially on the long-term climatic effects of rewetting of temperate bogs. Moreover, first field trials are established for Sphagnum cultivating (paludiculture) on wet bog sites and an assessment of the climate impact of such measures has not been studied yet. We conducted a field study on the exchange of carbon dioxide, methane and nitrous oxide at three rewetted sites with a gradient from dry to wet conditions and at a Sphagnum cultivation site in NW Germany over more than two years. Gas fluxes were measured using transparent and opaque closed chambers. The ecosystem respiration (CO2) and the net ecosystem exchange (CO2) were modelled in high time resolution using automatically monitored climate data. Measured and modelled values fit very well together (R2 between 0.88 and 0.98). Annually cumulated gas flux rates, net ecosystem carbon balances (NECB) and global warming potential (GWP) balances were determined. The annual net ecosystem exchange (CO2) varied strongly at the rewetted sites (from -201.7 ± 126.8 to 29.7 ± 112.7 g CO2-C m-2 a-1) due to different weather conditions, water level and vegetation. The Sphagnum cultivation site was a sink of CO2 (-118.8 ± 48.1 and -78.6 ± 39.8 g CO2-C m-2 a-1). The yearly CH4 balances ranged between 16.2 ± 2.2 and 24.2 ± 5.0 g CH4-C m-2 a-1 at two inundated sites, while one rewetted site with a comparatively low water level and the Sphagnum farming site show CH4 fluxes close to zero. The net N2O fluxes were low and not significantly different between the four sites. The annual NECB at the rewetted sites was between -183.8 ± 126.9 and 51.6 ± 112.8 g CO2-C m-2 a-1 and at the Sphagnum cultivating site -114.1 ± 48.1 and -75.3 ± 39.8 g CO2-C m-2 a-1

  15. Potential NH{sub 4}{sup +} and NO{sub 3}{sup -} uptake on various Sphagnum species

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J. [Joensuu Univ. (Finland). Dept. of Biology; Wallen, B.; Malmer, N. [Lund Univ. (Sweden). Dept. of Plant Ecology

    1996-12-31

    The objective of this research is to test differences in NH{sub 4}{sup +} and NO{sub 3}{sup -} uptake on various Sphagnum species under laboratory conditions. The studied species represent two gradients: the minerotrophy-ombrotrophy (mire margin - mire expanse) gradient, and the hummock-hollow gradient. There are distinct differences in the uptake rate between various Sphagnum species and these differences seem to be due to both structural and environmental factors: (1) on individual basis the highest uptake rate is in species with large capitulum and high number of ion exchange sites i.e. lawn species, (2) on dry mass basis the most effective species are the hummock species though they have a low DM, (3) from the ecosystem point of view, hummock species with high number of shoots per unit area and high uptake rate on dry mass basis, are the most effective species in filtering available nitrogen. (1 ref.)

  16. The potential influence of short-term environmental variability on the composition of testate amoeba communities in Sphagnum peatlands.

    Science.gov (United States)

    Sullivan, Maura E; Booth, Robert K

    2011-07-01

    Testate amoebae are a group of moisture-sensitive, shell-producing protozoa that have been widely used as indicators of changes in mean water-table depth within oligotrophic peatlands. However, short-term environmental variability (i.e., sub-annual) also probably influences community composition. The objective of this study was to assess the potential influence of short-term environmental variability on the composition of testate amoeba communities in Sphagnum-dominated peatlands. Testate amoebae and environmental conditions, including hourly measurements of relative humidity within the upper centimeter of the peatland surface, were examined throughout the 2008 growing season at 72 microsites within 11 peatlands of Pennsylvania and Wisconsin, USA. Relationships among testate amoeba communities, vegetation, depth to water table, pH, and an index of short-term environmental variability (EVI), were examined using nonmetric multidimensional scaling and correlation analysis. Results suggest that EVI influences testate amoeba communities, with some taxa more abundant under highly variable conditions (e.g., Arcella discoides, Difflugia pulex, and Hyalosphenia subflava) and others more abundant when environmental conditions at the peatland surface were relatively stable (e.g., Archerella flavum and Bullinularia indica). The magnitude of environmental variability experienced at the peatland surface appears to be primarily controlled by vegetation composition and density. In particular, sites with dense Sphagnum cover had lower EVI values than sites with loose-growing Sphagnum or vegetation dominated by vascular plants and/or non-Sphagnum bryophytes. Our results suggest that more environmental information may be inferred from testate amoebae than previously recognized. Knowledge of relationships between testate amoebae and short-term environmental variability should lead to more detailed and refined environmental inferences.

  17. Sphagnum-dominated bog systems are highly effective yet variable sources of bio-available iron to marine waters.

    Science.gov (United States)

    Krachler, Regina; Krachler, Rudolf F; Wallner, Gabriele; Steier, Peter; El Abiead, Yasin; Wiesinger, Hubert; Jirsa, Franz; Keppler, Bernhard K

    2016-06-15

    Iron is a micronutrient of particular interest as low levels of iron limit primary production of phytoplankton and carbon fluxes in extended regions of the world's oceans. Sphagnum-peatland runoff is extraordinarily rich in dissolved humic-bound iron. Given that several of the world's largest wetlands are Sphagnum-dominated peatlands, this ecosystem type may serve as one of the major sources of iron to the ocean. Here, we studied five near-coastal creeks in North Scotland using freshwater/seawater mixing experiments of natural creek water and synthetic seawater based on a (59)Fe radiotracer technique combined with isotopic characterization of dissolved organic carbon by Accelerator Mass Spectrometry. Three of the creeks meander through healthy Sphagnum-dominated peat bogs and the two others through modified peatlands which have been subject to artificial drainage for centuries. The results revealed that, at the time of sampling (August 16-24, 2014), the creeks that run through modified peatlands delivered 11-15μg iron per liter creek water to seawater, whereas the creeks that run through intact peatlands delivered 350-470μg iron per liter creek water to seawater. To find out whether this humic-bound iron is bio-available to marine algae, we performed algal growth tests using the unicellular flagellated marine prymnesiophyte Diacronema lutheri and the unicellular marine green alga Chlorella salina, respectively. In both cases, the riverine humic material provided a highly bio-available source of iron to the marine algae. These results add a new item to the list of ecosystem services of Sphagnum-peatlands. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Size matters for violent discharge height and settling speed of Sphagnum spores: important attributes for dispersal potential.

    Science.gov (United States)

    Sundberg, Sebastian

    2010-02-01

    Initial release height and settling speed of diaspores are biologically controlled components which are key to modelling wind dispersal. Most Sphagnum (peat moss) species have explosive spore liberation. In this study, how capsule and spore sizes affect the height to which spores are propelled were measured, and how spore size and spore number of discharged particles relate to settling speed in the aspherical Sphagnum spores. Spore discharge and spore cloud development were filmed in a closed chamber (nine species). Measurements were taken from snapshots at three stages of cloud development. Settling speed of spores (14 species) and clusters were timed in a glass tube. The maximum discharge speed measured was 3.6 m s(-1). Spores reached a maximum height of 20 cm (average: 15 cm) above the capsule. The cloud dimensions at all stages were related positively to capsule size (R(2) = 0.58-0.65). Thus species with large shoots (because they have large capsules) have a dispersal advantage. Half of the spores were released as singles and the rest as clusters (usually two to four spores). Single spores settled at 0.84-1.86 cm s(-1), about 52 % slower than expected for spherical spores with the same diameters. Settling speed displayed a positive curvilinear relationship with spore size, close to predictions by Stokes' law for spherical spores with 68 % of the actual diameters. Light-coloured spores settled slower than dark spores. Settling speed of spore clusters agrees with earlier studies. Effective spore discharge and small, slowly settling spores appear particularly important for species in forested habitats. The spore discharge heights in Sphagnum are among the greatest for small, wind-dispersed propagules. The discharge heights and the slow settling of spores affect dispersal distances positively and may help to explain the wide distribution of most boreal Sphagnum species.

  19. Mining for Nonribosomal Peptide Synthetase and Polyketide Synthase Genes Revealed a High Level of Diversity in the Sphagnum Bog Metagenome.

    Science.gov (United States)

    Müller, Christina A; Oberauner-Wappis, Lisa; Peyman, Armin; Amos, Gregory C A; Wellington, Elizabeth M H; Berg, Gabriele

    2015-08-01

    Sphagnum bog ecosystems are among the oldest vegetation forms harboring a specific microbial community and are known to produce an exceptionally wide variety of bioactive substances. Although the Sphagnum metagenome shows a rich secondary metabolism, the genes have not yet been explored. To analyze nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), the diversity of NRPS and PKS genes in Sphagnum-associated metagenomes was investigated by in silico data mining and sequence-based screening (PCR amplification of 9,500 fosmid clones). The in silico Illumina-based metagenomic approach resulted in the identification of 279 NRPSs and 346 PKSs, as well as 40 PKS-NRPS hybrid gene sequences. The occurrence of NRPS sequences was strongly dominated by the members of the Protebacteria phylum, especially by species of the Burkholderia genus, while PKS sequences were mainly affiliated with Actinobacteria. Thirteen novel NRPS-related sequences were identified by PCR amplification screening, displaying amino acid identities of 48% to 91% to annotated sequences of members of the phyla Proteobacteria, Actinobacteria, and Cyanobacteria. Some of the identified metagenomic clones showed the closest similarity to peptide synthases from Burkholderia or Lysobacter, which are emerging bacterial sources of as-yet-undescribed bioactive metabolites. This report highlights the role of the extreme natural ecosystems as a promising source for detection of secondary compounds and enzymes, serving as a source for biotechnological applications. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Sensitivity of spectral indices to CO2 fluxes for several plant communities in a Sphagnum-dominated peatland

    International Nuclear Information System (INIS)

    Letendre, J.; Poulin, M.; Rochefort, L.

    2008-01-01

    A study was conducted in which the relationship between spectral indices and carbon dioxide (CO 2 ) fluxes was tested for different communities in a Sphagnum-dominated peatland. This paper focused on the remote sensing approach that was used to directly link spectral indices to CO 2 fluxes to highlight the potential of remote sensing for mapping the spatial distribution of CO 2 fluxes. Carbon exchange in these ecosystems has become an environmental concern since peatlands play a key role in the global carbon cycle. A portable climate-controlled chamber was used to measure fluxes while simultaneously recording reflectance with a hand-held spectroradiometer. A laboratory experiment was also conducted to find a water-related index that most correlated with Sphagnum water content in order to regulate the normalized difference vegetation index (NDVI) values obtained in the field. The laboratory experiment showed a strong correlation between Sphagnum water content and all spectral indices, notably the water index (WI), normalized difference water index (NDWI), and relative depth index (RDI). The water index was chosen to regulate NDVI values. This paper described the indices that were tested in the field for CO 2 flux estimations. NDVI alone was found to be a poor predictor of net ecosystem exchange. The relationship between CO 2 fluxes and narrow band chlorophyll indices was reasonably well adjusted. It was concluded that the chlorophyll indices may be the most promising for mapping the spatial distribution of CO 2 fluxes in the future. 62 refs., 2 tabs., 4 figs

  1. Assessing environmental attributes and effects of climate change on Sphagnum peatland distributions in North America using single- and multi-species models.

    Science.gov (United States)

    Oke, Tobi A; Hager, Heather A

    2017-01-01

    The fate of Northern peatlands under climate change is important because of their contribution to global carbon (C) storage. Peatlands are maintained via greater plant productivity (especially of Sphagnum species) than decomposition, and the processes involved are strongly mediated by climate. Although some studies predict that warming will relax constraints on decomposition, leading to decreased C sequestration, others predict increases in productivity and thus increases in C sequestration. We explored the lack of congruence between these predictions using single-species and integrated species distribution models as proxies for understanding the environmental correlates of North American Sphagnum peatland occurrence and how projected changes to the environment might influence these peatlands under climate change. Using Maximum entropy and BIOMOD modelling platforms, we generated single and integrated species distribution models for four common Sphagnum species in North America under current climate and a 2050 climate scenario projected by three general circulation models. We evaluated the environmental correlates of the models and explored the disparities in niche breadth, niche overlap, and climate suitability among current and future models. The models consistently show that Sphagnum peatland distribution is influenced by the balance between soil moisture deficit and temperature of the driest quarter-year. The models identify the east and west coasts of North America as the core climate space for Sphagnum peatland distribution. The models show that, at least in the immediate future, the area of suitable climate for Sphagnum peatland could expand. This result suggests that projected warming would be balanced effectively by the anticipated increase in precipitation, which would increase Sphagnum productivity.

  2. Rendimento e concentração de nutrientes em alface, em função das adubações orgânica e mineral Yield and nutrient concentration in lettuce as a function of organic and mineral manuring

    Directory of Open Access Journals (Sweden)

    Edson Talarico Rodrigues

    1999-07-01

    Full Text Available O rendimento e a concentração de nutrientes na alface, cultivar Babá, foram quantificados em função das adubações orgânica e mineral, em solo distrófico. Utilizou-se o sistema de transplante de mudas em vasos de polietileno de 5 dm³, em casa de vegetação e o delineamento experimental inteiramente casualizado com três repetições. Os tratamentos foram dispostos no arranjo fatorial 4 x 3, com quatro doses de composto orgânico (0; 0,9; 1,8 e 2,7 dm³, equivalentes a 0, 33, 66 e 99 t/ha, na base seca e três níveis de adubação mineral (0, 1 e 2. O nível 2 veiculou as doses de macro e micronutrientes apropriadas e o nível 1 consistiu de metade do nível 2. As produtividades máximas foram estimadas em 119,5, 119,4 e 153,9 g/planta, com as doses de 37,7, 18,9 e 13 t/ha de composto, nos níveis 0, 1 e 2 de adubo mineral, respectivamente. As doses de composto orgânico promoveram aumentos menos acentuados que a adubação mineral nas concentrações foliares de N, elevaram as concentrações de P, K e Na e diminuíram as de Ca, demonstrando que doses altas de adubos orgânicos provocam excesso de cátions monovalentes, prejudicando a absorção do Ca.Nutrient accumulation in lettuce plants, cv. Babá, was quantified as a function of organic and mineral fertilisers, in a low fertility soil. The experiment was established by transplanting seedlings to 5 dm³ capacity pots in a greenhouse. The experiment was laid out in a complete randomised block design with three replications ordered in factorial arrangement (4 x 3 of four doses of organic compost (0, 0.9, 1.8 and 2.7 dm³; equivalent to 0, 33, 66, and 99 t/ha, in drought basis and three mineral fertiliser levels (0, 1 and 2. Level two carried doses of macro and micronutrients normally recommended for the culture, with level one carrying half the dose of level two. The maximum estimated yields were 119.5, 119.4 and 153.9 g/plant with 37.7, 18.9 and 13 t/ha compost doses, for levels 0

  3. Kinetics and thermodynamics of adsorption of azinphosmethyl from aqueous solution onto pyrolyzed (at 600 deg. C) ocean peat moss (Sphagnum sp.)

    International Nuclear Information System (INIS)

    Aroguz, A.Z.

    2006-01-01

    The removal of azinphosmethyl from aqueous solution onto pyrolyzed ocean peat moss (Sphagnum sp.), as a residue, from the Rhode Island coast (USA), has been investigated at different temperatures and initial concentrations. The ocean peat moss had been pyrolyzed at 600 deg. C in nitrogen atmosphere before the adsorption process. The kinetic data obtained from batch studies have been analyzed using pseudo-first order kinetic model. The rate constants were evaluated at different temperatures. The thermodynamic parameters (ΔG o , ΔH o , ΔS o ) for the adsorption process were calculated and the results suggest that the nature of adsorption is endothermic and the process is spontaneous and favorable. The activation energy for adsorption process was estimated, about 18.3 kJ mol -1 . According to this value the adsorption of azinphosmethyl onto pyrolyzed ocean peat moss is in the range of physical adsorption. The experimental data have been modeled using Langmuir, Freundlich and Temkin isotherms. It was found that Langmuir and Freundlich isotherms give the best correlation with the experimental data

  4. Acrotelm pedogenesis of a Sphagnum bog is reflected in effective unsaturated hydraulic properties

    Science.gov (United States)

    Weber, Tobias K. D.; Iden, Sascha C.; Durner, Wolfgang

    2017-04-01

    In ombrotrophic peatlands, the moisture content of the vadose zone (acrotelm) controls oxygen diffusion rates, redox state, and the turnover of organic matter. Whether peatlands act as sinks or sources of atmospheric carbon thus relies on variably saturated flow processes. Modeling of these processes is crucial in assessing effects of changed environmental conditions on the future development of these ecosystems. The Richards equation (RE) is the standard model for water flow in soils, but it is not clear whether it can be applied to simulate water flow in live Sphagnum moss. To check the suitability of the RE to describe the water dynamics in drying moss and peat we conducted transient laboratory evaporation experiments on undisturbed samples from the entire acrotelm. The experimental data consisted of measured pressure heads in two depths and water fluxes, and were evaluated by inverse modelling using the RE as process model. The results showed that the measurements could be matched very well only if the soil hydraulic properties (SHPs) were represented by a suitable model. A successful parameterisation of the SHPs of the moss was based on pore-size distributions (PSD) which combine three distinct pore systems of the Sphagnum moss, reflecting an inter-, intra-, and inner-plant pore space. We had to extend the traditional van Genuchten-Mualem model to account for non-capillary water storage and flow to obtain consistent descriptions of the observations. For the deeper samples, the pedogenesis of the acrotelm, a process of compaction and biochemical degradation of the solid matrix, had considerably impact on the shape of the SHPs. The collapse of the inter-plant pores and their filling with smaller particles led gradually to bi-modal PSDs with increasing depth. This coincides with a homogenisation and a considerably reduction in horizontal variability of SHPs at greater depths. We conclude that the RE with adequate representation of SHPs is a valid process

  5. Effect of Water Content Components on Desiccation and Recovery in Sphagnum Mosses

    Science.gov (United States)

    Hájek, Tomáš; Beckett, Richard P.

    2008-01-01

    Background and Aims The basic parameters of water relations were measured in Sphagnum mosses. The relationships of these parameters to the photosynthetic response to desiccation and the ecology of these mosses were then tested. Methods The water relations parameters of six Sphagnum species (mosses typical of wet habitats) and Atrichum androgynum (a moss more typical of mesophytic conditions) were calculated from pressure–volume isotherms. Photosynthetic properties during and after moderate desiccation were monitored by chlorophyll fluorescence. Key Results When desiccated, the hummock-forming species S. fuscum and S. magellanicum lost more water before turgor started dropping than other sphagna inhabiting less exposed habitats (73 % compared with 56 % on average). Osmotic potentials at full turgor were similar in all species, with an average value of −1·1 MPa. Hummock sphagna had clearly more rigid cell walls than species of wet habitats (ε = 3·55 compared with 1·93 MPa). As a result, their chlorophyllous cells lost turgor at higher relative water contents (RWCs) than species of wet habitats (0·61 compared with 0·46) and at less negative osmotic potentials (–2·28 compared with −3·00 MPa). During drying, ΦPSII started declining earlier in hummock species (at an RWC of 0·65 compared with 0·44), and Fv/Fm behaved similarly. Compared with other species, hummock sphagna desiccated to −20 or −40 MPa recovered more completely after rehydration. Atrichum androgynum responded to desiccation similarly to hummock sphagna, suggesting that their desiccation tolerance may have a similar physiological basis. Conclusions Assuming a fixed rate of desiccation, the higher water-holding capacities of hummock sphagna will allow them to continue metabolism for longer than other species. While this could be viewed as a form of ‘desiccation avoidance’, hummock species also recover faster than other species during rehydration, suggesting that they have higher

  6. Colonização micorrízica e concentração de nutrientes em três cultivares de bananeiras em um latossolo amarelo da Amazônia central Arbuscular mycorrhizal colonization and nutrient concentration of three cultivars of banana on a central Amazonian oxisol

    Directory of Open Access Journals (Sweden)

    Arlem Nascimento de Oliveira

    2003-01-01

    regional producers. Adaptation can be related to arbuscular mycorrhizae, that can increase the plant's capacity to absorb soil nutrients. This study was carried out in a banana plantation on a yellow Oxisol in the Agrarian Sciences Faculty (University of Amazonas Foundation, to verify the mycorrhizal colonization and the plant's nutrient status in the banana cultivars Maçã, Pacovan and Prata, during three months of evaluations (December/98, January and February/99. Samples of roots were collected to evaluate the rates of mycorrhizal colonization and leaves to verify the macro and micronutrient concentrations. The average of mycorrhizal colonization were 60.7% in the cultivar Maçã, 55.2% in Pacovan and 53.6% in Prata. Sampling done in December 1998 showed that the cultivar Maçã had lower fungal colonization (48.3% of the roots than Pacovan (73.6% and Prata (67.8%. In January 1999 the situation was inverted: Maçã presented the highest colonization (75.3% when compared with Pacovan (47.8% and Prata (40.3%. No difference in P and Fe concentrations was observed among cultivars, but there was significant variation among them for Ca, Mg, K, Zn, Cu and Mn. The mycorrhizal colonization was correlated positively with Ca, K and Zn in the cultivar Maçã, and Cu in Prata. These positive correlations allow us to infer that the mycorrhizal association was important to stimulate Ca, K and Zn absorption in the cultivar Maçã, and Cu in Prata in the commercial production stage of five years old banana trees.

  7. A comparison of nutrient density scores for 100% fruit juices.

    Science.gov (United States)

    Rampersaud, G C

    2007-05-01

    The 2005 Dietary Guidelines for Americans recommend that consumers choose a variety of nutrient-dense foods. Nutrient density is usually defined as the quantity of nutrients per calorie. Food and nutrition professionals should be aware of the concept of nutrient density, how it might be quantified, and its potential application in food labeling and dietary guidance. This article presents the concept of a nutrient density score and compares nutrient density scores for various 100% fruit juices. One hundred percent fruit juices are popular beverages in the United States, and although they can provide concentrated sources of a variety of nutrients, they can differ considerably in their nutrient profiles. Six methodologies were used to quantify nutrient density and 7 100% fruit juices were included in the analysis: apple, grape, pink grapefruit, white grapefruit, orange, pineapple, and prune. Food composition data were obtained from the USDA National Nutrient Database for Standard Reference, Release 18. Application of the methods resulted in nutrient density scores with a range of values and magnitudes. The relative scores indicated that citrus juices, particularly pink grapefruit and orange juice, were more nutrient dense compared to the other nonfortified 100% juices included in the analysis. Although the methods differed, the relative ranking of the juices based on nutrient density score was similar for each method. Issues to be addressed regarding the development and application of a nutrient density score include those related to food fortification, nutrient bioavailability, and consumer education and behavior.

  8. The effect of Sphagnum farming on the greenhouse gas balance of donor and propagation areas, irrigation polders and commercial cultivation sites

    Science.gov (United States)

    Oestmann, Jan; Tiemeyer, Bärbel

    2017-04-01

    Drainage of peatlands for agriculture, forestry and peat extraction turned these landscapes into hotspots of greenhouse gas emissions. Climate protection now fosters rewetting projects to restore the natural peatland function as a sink of atmospheric carbon. One possible way to combine ecological and economical goals is Sphagnum farming, i.e. the cultivation of Sphagnum mosses as high-quality substrates for horticulture. This project scientifically evaluates the attempt of commercial Sphagnum farming on former peat extraction sites in north-western Germany. The exchange of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) of the whole peatland-based production chain comprising a donor mire, a propagation area, an irrigation polder and a cultivation site will be determined in a high temporal resolution for two years using manual chambers. This will allow evaluating the greenhouse gas balance of Sphagnum farming sites in comparison to near-natural sites and the potential of Sphagnum farming for restoring drained peatlands to sinks of atmospheric carbon. The influence of different irrigation techniques will also be tested. Additionally, selected plots will be equipped with open top chambers in order to examine the greenhouse gas exchange under potential future climate change conditions. Finally, a 13C pulse labeling experiment will make it possible to trace the newly sequestered CO2 in biomass, soil, respiration and dissolved organic carbon.

  9. The narrow endemic Norwegian peat moss Sphagnum troendelagicum originated before the last glacial maximum.

    Science.gov (United States)

    Stenøien, H K; Shaw, A J; Stengrundet, K; Flatberg, K I

    2011-02-01

    It is commonly found that individual hybrid, polyploid species originate recurrently and that many polyploid species originated relatively recently. It has been previously hypothesized that the extremely rare allopolyploid peat moss Sphagnum troendelagicum has originated multiple times, possibly after the last glacial maximum in Scandinavia. This conclusion was based on low linkage disequilibrium in anonymous genetic markers within natural populations, in which sexual reproduction has never been observed. Here we employ microsatellite markers and chloroplast DNA (cpDNA)-encoded trnG sequence data to test hypotheses concerning the origin and evolution of this species. We find that S. tenellum is the maternal progenitor and S. balticum is the paternal progenitor of S. troendelagicum. Using various Bayesian approaches, we estimate that S. troendelagicum originated before the Holocene but not before c. 80,000 years ago (median expected time since speciation 40 000 years before present). The observed lack of complete linkage disequilibrium in the genome of this species suggests cryptic sexual reproduction and recombination. Several lines of evidence suggest multiple origins for S. troendelagicum, but a single origin is supported by approximate Bayesian computation analyses. We hypothesize that S. troendelagicum originated in a peat-dominated refugium before last glacial maximum, and subsequently immigrated to central Norway by means of spore flow during the last thousands of years.

  10. Peatland succession induces a shift in the community composition of Sphagnum-associated active methanotrophs.

    Science.gov (United States)

    Putkinen, Anuliina; Larmola, Tuula; Tuomivirta, Tero; Siljanen, Henri M P; Bodrossy, Levente; Tuittila, Eeva-Stiina; Fritze, Hannu

    2014-06-01

    Sphagnum-associated methanotrophs (SAM) are an important sink for the methane (CH4) formed in boreal peatlands. We aimed to reveal how peatland succession, which entails a directional change in several environmental variables, affects SAM and their activity. Based on the pmoA microarray results, SAM community structure changes when a peatland develops from a minerotrophic fen to an ombrotrophic bog. Methanotroph subtypes Ia, Ib, and II showed slightly contrasting patterns during succession, suggesting differences in their ecological niche adaptation. Although the direct DNA-based analysis revealed a high diversity of type Ib and II methanotrophs throughout the studied peatland chronosequence, stable isotope probing (SIP) of the pmoA gene indicated they were active mainly during the later stages of succession. In contrast, type Ia methanotrophs showed active CH4 consumption in all analyzed samples. SIP-derived (13)C-labeled 16S rRNA gene clone libraries revealed a high diversity of SAM in every succession stage including some putative Methylocella/Methyloferula methanotrophs that are not detectable with the pmoA-based approach. In addition, a high diversity of 16S rRNA gene sequences likely representing cross-labeled nonmethanotrophs was discovered, including a significant proportion of Verrucomicrobia-related sequences. These results help to predict the effects of changing environmental conditions on SAM communities and activity. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. Lateral extension in Sphagnum mires along the southern margin of the boreal region, Western Siberia

    International Nuclear Information System (INIS)

    Peregon, A; Uchida, M; Yamagata, Y

    2009-01-01

    Although recent studies have recognized Northern Eurasian ecosystems as an important carbon reservoir, little is known about the forest-peatland interactions in a boreal environment induced by ongoing climatic changes. This study focuses on the evaluation of both the long-term and contemporary trends of land-cover changes and rates of lateral extension of peat-accumulating wetlands toward the adjacent forests, estimated at the southern climatic range of the Sphagnum-dominated mires in Western Siberia. We used the radiocarbon dates and stratigraphy of peat sediments from seven peat cores, analyzed at two types of forest-peatland ecotones, which are located close to each other but differ by topography and composition of their plant communities. The rate of lateral extension was found in a wide range varying from 2.3 to 791.7 cm yr -1 . It was observed to be rapid during the initial stage of mire development, but to have slowed down over the last 2000-3000 yr. Our results, therefore, strongly contradict the concept of progressive peat accumulation throughout the late Holocene and contribute to our knowledge about ongoing land-cover change in the natural ecosystems of the Northern hemisphere.

  12. Abiotic reaction of iodate with sphagnum peat and other natural organic matter

    International Nuclear Information System (INIS)

    Steinberg, S.M.; Kimble, G.; Schmett, G.T.; Emerson, D.W.; Turner, M.F.; Rudin, M.

    2008-01-01

    Previous studies have shown that iodine (including 129 I) can be strongly retained in organic-rich surface soils and sediment and that a large fraction of soluble iodine may be associated with dissolved humic material. Iodate (IO 3 - ) reacts with natural organic matter (NOM) producing either hypoiodous acid (HIO) or I 2 as an intermediate. This intermediate is subsequently incorporated into the organic matter. Based on reactions of model compounds, we infer that iodine reacts with peat by aromatic substitution of hydrogen on phenolic constituents of the peat. Alternatively, the intermediate, HIO or I 2 , may be reduced to iodide (I - ). The pH (and temperature) dependence of the IO 3 - reaction (reduction) has been explored with sphagnum peat, alkali lignin, and several model compounds. The incorporation of iodine into NOM has been verified by pyrolysis gas chromatography/mass spectrometry (GC/MS). Model compound studies indicate that reduction of IO 3 - to HIO may result from reaction with hydroquinone (or semiquinone) moieties of the peat. (author)

  13. Mycobacterium minnesotense sp. nov., a photochromogenic bacterium isolated from sphagnum peat bogs.

    Science.gov (United States)

    Hannigan, Geoffrey D; Krivogorsky, Bogdana; Fordice, Daniel; Welch, Jacqueline B; Dahl, John L

    2013-01-01

    Several intermediate-growing, photochromogenic bacteria were isolated from sphagnum peat bogs in northern Minnesota, USA. Acid-fast staining and 16S rRNA gene sequence analysis placed these environmental isolates in the genus Mycobacterium, and colony morphologies and PCR restriction analysis patterns of the isolates were similar. Partial sequences of hsp65 and dnaJ1 from these isolates showed that Mycobacterium arupense ATCC BAA-1242(T) was the closest mycobacterial relative, and common biochemical characteristics and antibiotic susceptibilities existed between the isolates and M. arupense ATCC BAA-1242(T). However, compared to nonchromogenic M. arupense ATCC BAA-1242(T), the environmental isolates were photochromogenic, had a different mycolic acid profile and had reduced cell-surface hydrophobicity in liquid culture. The data reported here support the conclusion that the isolates are representatives of a novel mycobacterial species, for which the name Mycobacterium minnesotense sp. nov. is proposed. The type strain is DL49(T) (=DSM 45633(T) = JCM 17932(T) = NCCB 100399(T)).

  14. Origin and diversity of testate amoebae shell composition: Example of Bullinularia indica living in Sphagnum capillifolium.

    Science.gov (United States)

    Delaine, Maxence; Bernard, Nadine; Gilbert, Daniel; Recourt, Philippe; Armynot du Châtelet, Eric

    2017-06-01

    Testate amoebae are free-living shelled protists that build a wide range of shells with various sizes, shapes, and compositions. Recent studies showed that xenosomic testate amoebae shells could be indicators of atmospheric particulate matter (PM) deposition. However, no study has yet been conducted to assess the intra-specific mineral, organic, and biologic grain diversity of a single xenosomic species in a natural undisturbed environment. This study aims at providing new information about grain selection to develop the potential use of xenosomic testate amoebae shells as bioindicators of the multiple-origin mineral/organic diversity of their proximal environment. To fulfil these objectives, we analysed the shell content of 38 Bullinularia indica individuals, a single xenosomic testate amoeba species living in Sphagnum capillifolium, by scanning electron microscope (SEM) coupled with X-ray spectroscopy. The shells exhibited high diversities of mineral, organic, and biomineral grains, which confirms their capability to recycle xenosomes. Mineral grain diversity and size of B. indica matched those of the atmospheric natural mineral PM deposited in the peatbog. Calculation of grain size sorting revealed a discrete selection of grains agglutinated by B. indica. These results are a first step towards understanding the mechanisms of particle selection by xenosomic testate amoebae in natural conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. The narrow endemic Norwegian peat moss Sphagnum troendelagicum originated before the last glacial maximum

    Science.gov (United States)

    Stenøien, H K; Shaw, A J; Stengrundet, K; Flatberg, K I

    2011-01-01

    It is commonly found that individual hybrid, polyploid species originate recurrently and that many polyploid species originated relatively recently. It has been previously hypothesized that the extremely rare allopolyploid peat moss Sphagnum troendelagicum has originated multiple times, possibly after the last glacial maximum in Scandinavia. This conclusion was based on low linkage disequilibrium in anonymous genetic markers within natural populations, in which sexual reproduction has never been observed. Here we employ microsatellite markers and chloroplast DNA (cpDNA)-encoded trnG sequence data to test hypotheses concerning the origin and evolution of this species. We find that S. tenellum is the maternal progenitor and S. balticum is the paternal progenitor of S. troendelagicum. Using various Bayesian approaches, we estimate that S. troendelagicum originated before the Holocene but not before c. 80 000 years ago (median expected time since speciation 40 000 years before present). The observed lack of complete linkage disequilibrium in the genome of this species suggests cryptic sexual reproduction and recombination. Several lines of evidence suggest multiple origins for S. troendelagicum, but a single origin is supported by approximate Bayesian computation analyses. We hypothesize that S. troendelagicum originated in a peat-dominated refugium before last glacial maximum, and subsequently immigrated to central Norway by means of spore flow during the last thousands of years. PMID:20717162

  16. Lateral extension in Sphagnum mires along the southern margin of the boreal region, Western Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Peregon, A; Uchida, M; Yamagata, Y, E-mail: anna.peregon@nies.go.j [Center for Global Environmental Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan)

    2009-10-15

    Although recent studies have recognized Northern Eurasian ecosystems as an important carbon reservoir, little is known about the forest-peatland interactions in a boreal environment induced by ongoing climatic changes. This study focuses on the evaluation of both the long-term and contemporary trends of land-cover changes and rates of lateral extension of peat-accumulating wetlands toward the adjacent forests, estimated at the southern climatic range of the Sphagnum-dominated mires in Western Siberia. We used the radiocarbon dates and stratigraphy of peat sediments from seven peat cores, analyzed at two types of forest-peatland ecotones, which are located close to each other but differ by topography and composition of their plant communities. The rate of lateral extension was found in a wide range varying from 2.3 to 791.7 cm yr{sup -1}. It was observed to be rapid during the initial stage of mire development, but to have slowed down over the last 2000-3000 yr. Our results, therefore, strongly contradict the concept of progressive peat accumulation throughout the late Holocene and contribute to our knowledge about ongoing land-cover change in the natural ecosystems of the Northern hemisphere.

  17. Chromobacterium sphagni sp. nov., an insecticidal bacterium isolated from Sphagnum bogs.

    Science.gov (United States)

    Blackburn, Michael B; Farrar, Robert R; Sparks, Michael E; Kuhar, Daniel; Mitchell, Ashaki; Gundersen-Rindal, Dawn E

    2017-09-01

    Sixteen isolates of Gram-reaction-negative, motile, violet-pigmented bacteria were isolated from Sphagnum bogs in West Virginia and Maine, USA. 16S rRNA gene sequences and fatty acid analysis revealed a high degree of relatedness among the isolates, and genome sequencing of two isolates, IIBBL 14B-1T and IIBBL 37-2 (from West Virginia and Maine, respectively), revealed highly similar genomic sequences. The average nucleotide identity (gANI) calculated for these two isolates was found to be in excess of 99 %, but did not exceed 88 % when comparing either isolate with genomic sequences of Chromobacterium violaceum ATCC 12472T, C. haemolyticum DSM 19808T, C. piscinae ND17, C. subtsugae PRAA4-1T, C. vaccinii MWU205T or C. amazonense CBMAI 310T. Collectively, gANI and 16S rRNA gene sequence comparisons suggested that isolates IIBBL 14B-1T and IIBBL 37-2 were most closely related to C. subtsugae, but represented a distinct species. We propose the name Chromobacterium sphagni sp. nov. for this taxon; the type strain is IIBBL 14B-1T (=NRRL B-67130T=JCM 31882T).

  18. Abundance, diversity and depth distribution of Planctomycetes in northern Sphagnum-dominated wetlands

    Directory of Open Access Journals (Sweden)

    Svetlana N. Dedysh

    2012-01-01

    Full Text Available Members of the bacterial phylum Planctomycetes inhabit various aquatic and terrestrial environments. In this study, fluorescence in situ hybridization (FISH was applied to assess the abundance and depth distribution of these bacteria in nine different Sphagnum-dominated wetlands of Northern Russia. Planctomycetes were most abundant in the oxic part of peat bog profiles. The respective cell numbers were in the range 1.1-6.7×107 cells per gram of wet peat, comprising 2 to 14% of total bacterial cells and displaying linear correlation to the peat water pH. Most peatland sites showed a sharp decline of planctomycete abundance with depth, while in two particular sites this decline was followed by a second population maximum in an anoxic part of the bog profile. Oxic peat layers were dominated by representatives of the Isosphaera-Singulisphaera group, while anoxic part of the bog profile was inhabited mostly by Zavarzinella- and Pirellula-like planctomycetes. Phylogenetically related bacteria of the candidate division OP3 were detected in both oxic and anoxic peat with cell densities of 0.6-4.6×106 cells per gram of wet peat.

  19. Spectral Quantitation Of Hydroponic Nutrients

    Science.gov (United States)

    Schlager, Kenneth J.; Kahle, Scott J.; Wilson, Monica A.; Boehlen, Michelle

    1996-01-01

    Instrument continuously monitors hydroponic solution by use of absorption and emission spectrometry to determine concentrations of principal nutrients, including nitrate, iron, potassium, calcium, magnesium, phosphorus, sodium, and others. Does not depend on extraction and processing of samples, use of such surrograte parameters as pH or electrical conductivity for control, or addition of analytical reagents to solution. Solution not chemically altered by analysis and can be returned to hydroponic process stream after analysis.

  20. Hyperspectral remote sensing techniques for grass nutrient estimations in savannah ecosystems

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2010-03-01

    Full Text Available Information on the distribution of grass quality (nutrient concentration) is crucial in understanding rangeland vitality and facilitates effective management of wildlife and livestock. The spatial distribution of grass nutrient concentration occurs...

  1. Upland and in-stream controls on baseflow nutrient dynamics in tile-drained agroecosystem watersheds

    Science.gov (United States)

    Controls on baseflow nutrient concentrations in agroecosystems are poorly characterized in comparison with storm events. However, in landscapes with low residence times (e.g., rivers and reservoirs), baseflow nutrient concentration dynamics during sensitive timeframes can drive deleterious environm...

  2. Water quality in the Anacostia River, Maryland and Rock Creek, Washington, D.C.: Continuous and discrete monitoring with simulations to estimate concentrations and yields of nutrients, suspended sediment, and bacteria

    Science.gov (United States)

    Miller, Cherie V.; Chanat, Jeffrey G.; Bell, Joseph M.

    2013-01-01

    Concentrations and loading estimates for nutrients, suspended sediment, and E. coli bacteria were summarized for three water-quality monitoring stations on the Anacostia River in Maryland and one station on Rock Creek in Washington, D.C. Both streams are tributaries to the Potomac River in the Washington, D.C. metropolitan area and contribute to the Chesapeake Bay estuary. Two stations on the Anacostia River, Northeast Branch at Riverdale, Maryland and Northwest Branch near Hyattsville, Maryland, have been monitored for water quality during the study period from 2003 to 2011 and are located near the shift from nontidal to tidal conditions near Bladensburg, Maryland. A station on Paint Branch is nested above the station on the Northeast Branch Anacostia River, and has slightly less developed land cover than the Northeast and Northwest Branch stations. The Rock Creek station is located in Rock Creek Park, but the land cover in the watershed surrounding the park is urbanized. Stepwise log-linear regression models were developed to estimate the concentrations of suspended sediment, total nitrogen, total phosphorus, and E. coli bacteria from continuous field monitors. Turbidity was the strongest predictor variable for all water-quality parameters. For bacteria, water temperature improved the models enough to be included as a second predictor variable due to the strong dependence of stream metabolism on temperature. Coefficients of determination (R2) for the models were highest for log concentrations of suspended sediment (0.9) and total phosphorus (0.8 to 0.9), followed by E. coli bacteria (0.75 to 0.8), and total nitrogen (0.6). Water-quality data provided baselines for conditions prior to accelerated implementation of multiple stormwater controls in the watersheds. Counties are currently in the process of enhancing stormwater controls in both watersheds. Annual yields were estimated for suspended sediment, total nitrogen, total phosphorus, and E. coli bacteria using

  3. Integrated combined effects of temperature, pH and sodium chloride concentration on biofilm formation by Salmonella enterica ser. Enteritidis and Typhimurium under low nutrient food-related conditions.

    Science.gov (United States)

    Iliadis, Ioannis; Daskalopoulou, Aikaterini; Simões, Manuel; Giaouris, Efstathios

    2018-05-01

    Salmonella enterica is a major foodborne bacterial pathogen. This forms biofilms on surfaces and persists, depending on the strain and the environment. The integrative interaction of temperature (T; 13-39 °C), pH (5-8) and sodium chloride (NaCl) concentration (0.5-8.5%) on biofilm formation by two S. enterica strains (ser. Enteritidis and Typhimurium) was here evaluated under low nutrient conditions. This was achieved using response surface methodology to model the combined effect of each factor on the response, through mathematical quadratic fitting of the outcomes of a sequence of designed experiments. These last were executed by incubating stainless steel coupons carrying sessile bacteria, for 24 h, in 1:10 diluted tryptone soya broth, under 15 different combinations of three independent factors (T, pH and NaCl). For each strain, a second order polynomial model, describing the relationship between biofilm formation (log CFU/cm 2 ) and the factors (T, pH and NaCl), was developed using least square regression analysis. Both derived models predicted the combined influences of these factors on biofilm formation, with agreement between predictions and experimental observations (R 2  ≥ 0.96, P ≤ 0.0001). For both strains, the increase of NaCl content restricted their sessile growth, while under low salinity conditions (NaCl formation was favored as pH increased, regardless of T. Interestingly, under low salt content, and depending on the strain, biofilm formation was either favored or hindered by increasing T. Thus, 34.5 and 13 °C were the T predicted to maximize biofilm formation by strains Enteritidis and Typhimurium, respectively, something which was also experimentally verified. To sum, these models can predict the interactive influences of crucial food-related factors on biofilm growth of a significant foodborne pathogen towards the efforts to limit its persistence in food industry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. PCA and multidimensional visualization techniques united to aid in the bioindication of elements from transplanted Sphagnum palustre moss exposed in the Gdańsk City area.

    Science.gov (United States)

    Astel, Aleksander; Astel, Karolina; Biziuk, Marek

    2008-01-01

    During the last decades, a technique for assessing atmospheric deposition of heavy elements was developed based on the principle that samples of moss are able to accumulate elements and airborne particles from rain, melting snow and dry deposition. Despite a broad interest in bioindication there are still ongoing works aimed at the preparation of a standard procedure allowing for a comparison of research carried out in various areas. This is why the comparison of living and dry moss of the same species and growth site seems to be interesting, logical and promising. A most reliable approach seems to be the application of bioindication connected with multivariate statistics and efficient visualization techniques in the interpretation of monitoring data. The aim of this study was: (i) to present cumulative properties of transplanted Sphagnum palustre moss with differentiation into dry and living biomaterial; (ii) to determine and geographically locate types of pollution sources responsible for a structure of the monitoring data set; (iii) to visualize geographical distribution of analytes in the Gdańsk metropolitan area and to identify the high-risk areas which can be targeted for environmental hazards and public health. A six month air pollution study based on Sphagnum palustre bioindication is presented and a simplified procedure of the experiment is given. The study area was located at the mouth of the Vistula River on the Baltic Sea, in Gdańsk City (Poland). Sphagnum palustre was selected for research because of its extraordinary morphological properties and its ease in being raised. The capability of dry and living moss to accumulate elements characteristic for anthropogenic and natural sources was shown by application of Principal Component Analysis. The high-risk areas and pollution profiles are detected and visualized using surface maps based on Kriging algorithm. The original selection of elements included all those that could be reliably determined by

  5. Sensitivity of spectral indices to CO{sub 2} fluxes for several plant communities in a Sphagnum-dominated peatland

    Energy Technology Data Exchange (ETDEWEB)

    Letendre, J.; Poulin, M.; Rochefort, L. [Laval Univ., Quebec City, PQ (Canada). Dept. de Phytologie, Peatland Ecology and Research Group

    2008-07-01

    A study was conducted in which the relationship between spectral indices and carbon dioxide (CO{sub 2}) fluxes was tested for different communities in a Sphagnum-dominated peatland. This paper focused on the remote sensing approach that was used to directly link spectral indices to CO{sub 2} fluxes to highlight the potential of remote sensing for mapping the spatial distribution of CO{sub 2} fluxes. Carbon exchange in these ecosystems has become an environmental concern since peatlands play a key role in the global carbon cycle. A portable climate-controlled chamber was used to measure fluxes while simultaneously recording reflectance with a hand-held spectroradiometer. A laboratory experiment was also conducted to find a water-related index that most correlated with Sphagnum water content in order to regulate the normalized difference vegetation index (NDVI) values obtained in the field. The laboratory experiment showed a strong correlation between Sphagnum water content and all spectral indices, notably the water index (WI), normalized difference water index (NDWI), and relative depth index (RDI). The water index was chosen to regulate NDVI values. This paper described the indices that were tested in the field for CO{sub 2} flux estimations. NDVI alone was found to be a poor predictor of net ecosystem exchange. The relationship between CO{sub 2} fluxes and narrow band chlorophyll indices was reasonably well adjusted. It was concluded that the chlorophyll indices may be the most promising for mapping the spatial distribution of CO{sub 2} fluxes in the future. 62 refs., 2 tabs., 4 figs.

  6. Sphagnum-dominated bog systems are highly effective yet variable sources of bio-available iron to marine waters

    International Nuclear Information System (INIS)

    Krachler, Regina; Krachler, Rudolf F.; Wallner, Gabriele; Steier, Peter; El Abiead, Yasin; Wiesinger, Hubert; Jirsa, Franz; Keppler, Bernhard K.

    2016-01-01

    Iron is a micronutrient of particular interest as low levels of iron limit primary production of phytoplankton and carbon fluxes in extended regions of the world's oceans. Sphagnum-peatland runoff is extraordinarily rich in dissolved humic-bound iron. Given that several of the world's largest wetlands are Sphagnum-dominated peatlands, this ecosystem type may serve as one of the major sources of iron to the ocean. Here, we studied five near-coastal creeks in North Scotland using freshwater/seawater mixing experiments of natural creek water and synthetic seawater based on a "5"9Fe radiotracer technique combined with isotopic characterization of dissolved organic carbon by Accelerator Mass Spectrometry. Three of the creeks meander through healthy Sphagnum-dominated peat bogs and the two others through modified peatlands which have been subject to artificial drainage for centuries. The results revealed that, at the time of sampling (August 16–24, 2014), the creeks that run through modified peatlands delivered 11–15 μg iron per liter creek water to seawater, whereas the creeks that run through intact peatlands delivered 350–470 μg iron per liter creek water to seawater. To find out whether this humic-bound iron is bio-available to marine algae, we performed algal growth tests using the unicellular flagellated marine prymnesiophyte Diacronema lutheri and the unicellular marine green alga Chlorella salina, respectively. In both cases, the riverine humic material provided a highly bio-available source of iron to the marine algae. These results add a new item to the list of ecosystem services of Sphagnum-peatlands. - Highlights: • We report that peat-bogs are sources of bio-available iron to marine algae. • This iron is effectively chelated with aquatic humic acids. • The radiocarbon age of the iron-carrying aquatic humic acids was up to 550 years. • Analysis was focused on mixing experiments of iron-rich creek water with seawater. • Drained peatlands with

  7. A comparison of PCR-based markers for the molecular identification of Sphagnum species of the section Acutifolia

    Directory of Open Access Journals (Sweden)

    Jakub Sawicki

    2011-07-01

    Full Text Available RAPDs, ISJs, ISSRs, ITS and katGs were applied to determine genetic relationships between common Sphagnum species of the section Acutifolia. Twenty populations were genotyped using ten ISJ primers, 12 pairs of katG primers, 10 ISSR and 10 RAPD primers, and a restriction analysis of ITS1 and ITS2. ISSR and katG markers revealed the greatest number of species-specific bands. An analysis of ITS1 and ITS2 regions with restriction enzymes also proved to be a highly effective tool for species identification.

  8. A new Cernosvitoviella species (Clitellata: Enchytraeidae) and its comparison with other Cernosvitoviella species from Sphagnum mires in Hungary.

    Science.gov (United States)

    Dózsa-Farkas, Klára; Csitári, Bianka; Felföldi, Tamás

    2017-04-18

    Results of a comparative investigation on five Cernosvitoviella species from Hungarian Sphagnum mires including their distribution and the description of a new species, Cernosvitoviella farkasi sp. n., are presented in this paper. Cernosvitoviella atrata, C. aggtelekiensis, C. crassoductus and C. farkasi sp. n. could be easily distinguished from each other based on both morphological and molecular taxonomic analyses. However, C. minor seems to be a species complex on the basis of these investigations, so it was referred as C. minor sensu lato. The status of the C. minor variants requires further studies.

  9. Net photosynthesis in Sphagnum mosses has increased in response to the last century's 100 ppm increase in atmospheric CO2

    Science.gov (United States)

    Serk, Henrik; Nilsson, Mats; Schleucher, Jurgen

    2017-04-01

    Peatlands store >25% of the global soil C pool, corresponding to 1/3 of the contemporary CO2-C in the atmosphere. The majority of the accumulated peat is made up by remains of Sphagnum peat mosses. Thus, understanding how various Sphagnum functional groups respond, and have responded, to increasing atmospheric CO2 and temperature constitutes a major challenge for our understanding of the role of peatlands under a changing climate. We have recently demonstrated (Ehlers et al., 2015, PNAS) that the abundance ratio of two deuterium isotopomers (molecules carrying D at specific intramolecular positions, here D6R/S) of photosynthetic glucose reflects the ratio of oxygenation to carboxylation metabolic fluxes at Rubisco. The photosynthetic glucose is prepared from various plant carbohydrates including cellulose. This finding has been established in CO2 manipulation experiments and observed in carbohydrate derived glucose isolated from herbarium samples of all investigated C-3 species. The isotopomer ratio is connected to specific enzymatic processes thus allowing for mechanistic implicit interpretations. Here we demonstrate a clear increase in net photosynthesis of Sphagnum fuscum in response to the increase of 100 ppm CO2 during the last century as deduced from analysis on S. fuscum remains from peat cores. The D6R/S ratio declines from bottom to top in peat cores, indicating CO2-driven reduction of photorespiration in contemporary moss biomass. In contrast to the hummock-forming S. fuscum, hollow-growing species, e.g. S. majus did not show this response or gave significantly weaker response, suggesting important ecological consequences of rising CO2 on peatland ecosystem services. We hypothesize that photosynthesis in hollow-growing species under water saturation is fully or partly disconnected from the atmospheric CO2 partial pressure and thus showing weaker or no response to increased atmospheric CO2. To further test the field observations we grow both hummock and

  10. Sphagnum-dominated bog systems are highly effective yet variable sources of bio-available iron to marine waters

    Energy Technology Data Exchange (ETDEWEB)

    Krachler, Regina, E-mail: regina.krachler@univie.ac.at [Institute of Inorganic Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna (Austria); Krachler, Rudolf F.; Wallner, Gabriele [Institute of Inorganic Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna (Austria); Steier, Peter [Isotope Research and Nuclear Physics, University of Vienna, Währingerstraße 17, 1090 Vienna (Austria); El Abiead, Yasin; Wiesinger, Hubert [Institute of Inorganic Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna (Austria); Jirsa, Franz [Institute of Inorganic Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna (Austria); University of Johannesburg, Department of Zoology, P. O. Box 524, Auckland Park 2006 (South Africa); Keppler, Bernhard K. [Institute of Inorganic Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna (Austria)

    2016-06-15

    Iron is a micronutrient of particular interest as low levels of iron limit primary production of phytoplankton and carbon fluxes in extended regions of the world's oceans. Sphagnum-peatland runoff is extraordinarily rich in dissolved humic-bound iron. Given that several of the world's largest wetlands are Sphagnum-dominated peatlands, this ecosystem type may serve as one of the major sources of iron to the ocean. Here, we studied five near-coastal creeks in North Scotland using freshwater/seawater mixing experiments of natural creek water and synthetic seawater based on a {sup 59}Fe radiotracer technique combined with isotopic characterization of dissolved organic carbon by Accelerator Mass Spectrometry. Three of the creeks meander through healthy Sphagnum-dominated peat bogs and the two others through modified peatlands which have been subject to artificial drainage for centuries. The results revealed that, at the time of sampling (August 16–24, 2014), the creeks that run through modified peatlands delivered 11–15 μg iron per liter creek water to seawater, whereas the creeks that run through intact peatlands delivered 350–470 μg iron per liter creek water to seawater. To find out whether this humic-bound iron is bio-available to marine algae, we performed algal growth tests using the unicellular flagellated marine prymnesiophyte Diacronema lutheri and the unicellular marine green alga Chlorella salina, respectively. In both cases, the riverine humic material provided a highly bio-available source of iron to the marine algae. These results add a new item to the list of ecosystem services of Sphagnum-peatlands. - Highlights: • We report that peat-bogs are sources of bio-available iron to marine algae. • This iron is effectively chelated with aquatic humic acids. • The radiocarbon age of the iron-carrying aquatic humic acids was up to 550 years. • Analysis was focused on mixing experiments of iron-rich creek water with seawater. • Drained

  11. Soil temperature synchronisation improves estimation of daily variation of ecosystem respiration in Sphagnum peatlands

    Science.gov (United States)

    D'Angelo, Benoît; Gogo, Sébastien; Le Moing, Franck; Jégou, Fabrice; Guimbaud, Christophe; Laggoun, Fatima

    2015-04-01

    Ecosystem respiration (ER) is a key process in the global C cycle and thus, plays an important role in the climate regulation. Peatlands contain a third of the world soil C in spite of their relatively low global area (3% of land area). Although these ecosystems represent potentially a significant source of C under global change, they are still not taken into account accordingly in global climatic models. Therefore, ER variations have to be accounted for, especially by estimating its dependence to temperature.s The relationship between ER and temperature often relies only on one soil temperature depth and the latter is generally taken in the first 10 centimetres. Previous studies showed that the temperature dependence of ER depends on the depth at which the temperature is recorded. The depth selection for temperature measurement is thus a predominant issue. A way to deal with this is to analyse the time-delay between ER and temperature. The aim of this work is to assess whether using synchronised data in models leads to a better ER daily variation estimation than using non-synchronised data. ER measurements were undertaken in 2013 in 4 Sphagnum peatlands across France: La Guette (N 47°19'44', E 2°17'04', 154m) in July, Landemarais (N 48°26'30', E -1°10'54', 145m) in August, Frasne (N 46°49'35', E 6°10'20', 836m) in September, and Bernadouze (N 42°48'09', E 1°25'24', 1500m) in October. A closed method chamber was used to measure ER hourly during 72 hours in each of the 4 replicates installed in each site. Average ER ranged from 1.75 μmol m-2 s-1 to 6.13 μmol m-2 s-1. A weather station was used to record meteorological data and soil temperature profiles (5, 10, 20 and 30 cm). Synchronised data were determined for each depth by selecting the time-delay leading to the best correlation between ER and soil temperature. The data were used to simulate ER according to commonly used equations: linear, exponential with Q10, Arrhenius, Lloyd and Taylor. Models

  12. Influence of genotype and feeding strategy on pig performance, plasma concentrations of micro nutrients, immune responses and faecal microbiota composition of growing-finishing pigs in a forage-based system

    DEFF Research Database (Denmark)

    Kongsted, Anne Grete; Nørgaard, Jan Værum; Jensen, Søren Krogh

    2015-01-01

    In free-range pig production it is important to reduce the input of nutrients from supplementary feed to reduce nutrient leaching and improve the resource efficiency of the system. A promising development might be to encourage foraging behaviour of the pigs. However, very little is known about pi...... significantly to the nutritional supply of pigs fed restrictedly with supplementary feed. There are indications that the mineral content of the premix is not needed in a forage-based free-range system but cautious need to be taken with regards to the vitamin A, D, E supply.......In free-range pig production it is important to reduce the input of nutrients from supplementary feed to reduce nutrient leaching and improve the resource efficiency of the system. A promising development might be to encourage foraging behaviour of the pigs. However, very little is known about pigs......) of either a traditional (Tamworth×(Landrace×Yorkshire)) or a ‘modern’ crossbreed (Duroc×(Landrace×Yorkshire)) fed a pelleted diet as supplementary feed either according to recommendations (NORM), or restrictedly with (RES+) or without (RES–) a supplementary vitamin and mineral mixture. The pigs ‘strip...

  13. Rhizosphere priming: a nutrient perspective

    Directory of Open Access Journals (Sweden)

    Feike Auke Dijkstra

    2013-07-01

    Full Text Available Rhizosphere priming is the change in decomposition of soil organic matter (SOM caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizosphere priming itself can also affect nutrient supply to plants. These interactive effects may be of particular relevance in understanding the sustained increase in plant growth and nutrient supply in response to a rise in atmospheric CO2 concentration. We examined how these interactions were affected by elevated CO2 in two similar semiarid grassland field studies. We found that an increase in rhizosphere priming enhanced the release of nitrogen (N through decomposition of a larger fraction of SOM in one study, but not in the other. We postulate that rhizosphere priming may enhance N supply to plants in systems that are N limited, but that rhizosphere priming may not occur in systems that are phosphorus (P limited. Under P limitation, rhizodeposition may be used for mobilisation of P, rather than for decomposition of SOM. Therefore, with increasing atmospheric CO2 concentrations, rhizosphere priming may play a larger role in affecting C sequestration in N poor than in P poor soils.

  14. Oxygen and diverse nutrients influence the water kefir fermentation process.

    Science.gov (United States)

    Laureys, David; Aerts, Maarten; Vandamme, Peter; De Vuyst, Luc

    2018-08-01

    Eight water kefir fermentation series differing in the presence of oxygen, the nutrient concentration, and the nutrient source were studied during eight consecutive backslopping steps. The presence of oxygen allowed the proliferation of acetic acid bacteria, resulting in high concentrations of acetic acid, and decreased the relative abundance of Bifidobacterium aquikefiri. Low nutrient concentrations resulted in slow water kefir fermentation and high pH values, which allowed the growth of Comamonas testosteroni/thiooxydans. Further, low nutrient concentrations favored the growth of Lactobacillus hilgardii and Dekkera bruxellensis, whereas high nutrient concentrations favored the growth of Lactobacillus nagelii and Saccharomyces cerevisiae. Dried figs, dried apricots, and raisins resulted in stable water kefir fermentation. Water kefir fermentation with dried apricots resulted in the highest pH and water kefir grain growth, whereas that with raisins resulted in the lowest pH and water kefir grain growth. Further, water kefir fermentation with raisins resembled fermentations with low nutrient concentrations, that with dried apricots resembled fermentations with normal nutrient concentrations, and that with fresh figs or a mixture of yeast extract and peptone resembled fermentations with high nutrient concentrations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Investigating the internal structure of four Azorean Sphagnum bogs using ground-penetrating radar

    Directory of Open Access Journals (Sweden)

    D. Pereira

    2017-08-01

    Full Text Available This study evaluates the applicability of ground penetrating radar (GPR as a technique for determining the thickness and internal structure of four peat deposits on Terceira Island (Azores archipelago, mid-Atlantic region. The peatlands studied are all Sphagnum mires located above 500 m a.s.l., but they differ hydrogenetically and in their degree of naturalness. Radargrams for all four bogs, obtained using both 100 MHz and 500 MHz GPR antennae, are presented and compared. The radargram data were validated against peat characteristics (bulk density, von Post H, US method obtained by direct sampling (‘open cores’ across the whole peat profile at each site. A scheme of ‘soft scoring’ for degree of naturalness (DN of the peatland was developed and used as an additional validation factor. The GPR data were positively correlated with DN, and relationships between GPR data, peat bulk density and degree of humification (H were also found. From the radargrams it was possible to distinguish the interface between the peat and the mineral substratum as well as some of the internal structure of the peat deposit, and thus to derive the total thickness of the peat deposit and (in some cases the thicknesses of its constituent layers. The first evaluation of the propagation velocity of electromagnetic waves in Azorean peat yielded a value of 0.04 m ns-1 for 100 MHz and 500 MHz radar antennae. For one of the study sites, the GPR data were analysed using GIS software to produce tridimensional models and thus to estimate the volumes of peat layers. This type of analysis has potential utility for quantifying some of the ecosystem services provided by peatlands.

  16. Diagnosis of the nutrient compositional space of fruit crops

    Directory of Open Access Journals (Sweden)

    Léon-Étienne Parent

    2011-03-01

    Full Text Available Tissue analysis is a useful tool for the nutrient management of fruit orchards. The mineral composition of diagnostic tissues expressed as nutrient concentration on a dry weight basis has long been used to assess the status of 'pure' nutrients. When nutrients are mixed and interact in plant tissues, their proportions or concentrations change relatively to each other as a result of synergism, antagonism, or neutrality, hence producing resonance within the closed space of tissue composition. Ternary diagrams and nutrient ratios are early representations of interacting nutrients in the compositional space. Dual and multiple interactions were integrated by the Diagnosis and Recommendation Integrated System (DRIS into nutrient indexes and by Compositional Nutrient Diagnosis into centered log ratios (CND-clr. DRIS has some computational flaws such as using a dry matter index that is not a part as well as nutrient products (e.g. NxCa instead of ratios. DRIS and CND-clr integrate all possible nutrient interactions without defining an ad hoc interactive model. They diagnose D components while D-1 could be diagnosed in the D-compositional Hilbert space. The isometric log ratio (ilr coordinates overcome these problems using orthonormal binary nutrient partitions instead of dual ratios. In this study, it is presented a nutrient interactive model as well as computation methods for DRIS and CND-clr and CND-ilr coordinates (CND-ilr using leaf analytical data from an experimental apple orchard in Southwestern Quebec, Canada. It was computed the Aitchison and Mahalanobis distances across ilr coordinates as measures of nutrient imbalance. The effect of changing nutrient concentrations on ilr coordinates are simulated to identify the ones contributing the most to nutrient imbalance.

  17. Produção de castanha e de folhada e concentração de nutrientes nas folhas de soutos submetidos a diferentes sistemas de mobilização do solo Chestnut and litterfall production and leaf nutrient concentration in chestnut groves submitted to different soil tillage systems

    Directory of Open Access Journals (Sweden)

    F. Raimundo

    2009-01-01

    Full Text Available Estudou-se o efeito de vários sistemas de preparação do solo na produção das componentes caducas da biomassa (folhas, ouriços, castanhas e inflorescências e no teor de nutrientes nas folhas, num souto com árvores de 50 anos de idade média localizado no Nordeste de Portugal. O sistema experimental foi instalado no início de 1996 e incluiu os seguintes tratamentos: mobilização tradicional com escarificador a uma profundidade média de 15 cm (MT, mobilização com grade de discos até 7 cm de profundidade (GD, pastagem semeada plurianual de sequeiro (PS e não-mobilização com vegetação herbácea espontânea (NM. A produção média da biomassa caduca (folhas, ouriços, castanhas e inflorescências, durante o período de 1999 a 2004, expressa por m² de área de projecção vertical da copa, foi máxima no tratamento NM (755 g m-2, seguida do PS (729 g m-2, do GD (708 g m-2 e por último do MT (627 g m-2, não se observando diferenças significativas entre os tratamentos. Durante o período de estudo, os ouriços (36,7% foram a componente mais importante do total da biomassa caduca, seguidos pelas folhas (32,5%, castanhas (24,7% e inflorescências (6,1%. A produção de castanhas, também para aquele período, no tratamento MT (133 g m-2 foi significativamente inferior à observada nos tratamentos NM (193 g m-2 e PS (191 g m². O teor de N, P e Mg das folhas, em 2003 e 2004, foi significativamente menor no tratamento MT do que nos restantes; o teor de K, por seu turno, foi significativamente menor nos tratamentos MT e PS do que no GD; o teor de Ca nos tratamentos GD e PS foi significativamente maior do que no tratamento MT. As alternativas de gestão à mobilização tradicional revelaram-se mais promissoras para a produtividade dos soutos e para a redução dos custos de produção.The effects of several soil management systems on litterfall production (leaves, burs, chestnuts and inflorescences and leaf nutrient concentration were

  18. Dynamics of Viral Abundance and Diversity in a Sphagnum-Dominated Peatland: Temporal Fluctuations Prevail Over Habitat.

    Science.gov (United States)

    Ballaud, Flore; Dufresne, Alexis; Francez, André-Jean; Colombet, Jonathan; Sime-Ngando, Télesphore; Quaiser, Achim

    2015-01-01

    Viruses impact microbial activity and carbon cycling in various environments, but their diversity and ecological importance in Sphagnum-peatlands are unknown. Abundances of viral particles and prokaryotes were monitored bi-monthly at a fen and a bog at two different layers of the peat surface. Viral particle abundance ranged from 1.7 x 10(6) to 5.6 x 10(8) particles mL(-1), and did not differ between fen and bog but showed seasonal fluctuations. These fluctuations were positively correlated with prokaryote abundance and dissolved organic carbon, and negatively correlated with water-table height and dissolved oxygen. Using shotgun metagenomics we observed a shift in viral diversity between winter/spring and summer/autumn, indicating a seasonal succession of viral communities, mainly driven by weather-related environmental changes. Based on the seasonal asynchrony between viral and microbial diversity, we hypothesize a seasonal shift in the active microbial communities associated with a shift from lysogenic to lytic lifestyles. Our results suggest that temporal variations of environmental conditions rather than current habitat differences control the dynamics of virus-host interactions in Sphagnum-dominated peatlands.

  19. Sulphur, nitrogen and carbon content of Sphagnum capillifolium and Pseudevernia furfuracea exposed in bags in the Naples urban area

    International Nuclear Information System (INIS)

    Vingiani, S.; Adamo, P.; Giordano, S.

    2004-01-01

    The accumulation ability of the major elements sulphur, nitrogen and carbon by the moss Sphagnum capillifolium (Ehrh.) Hedw. and the lichen Pseudevernia furfuracea (L.) Zopf exposed in bags in Naples urban area,was investigated. Bags were exposed at the beginning of July 1999 and gathered in two subsequent moments: at the end of the dry season (after 10 weeks of exposure) and during the wet season (after 17 weeks of exposure), to include the effects of rainy conditions. Sulphur and N content of the lichen increased all over the exposure period, while the level of C did not change significantly either after 10 or 17 weeks of exposition. For the moss the S accumulation was limited to the dry period of exposure, whereas N and C content decreased with exposure. Results, in contrast with those obtained in a previous study on trace elements bioaccumulation [Adamo et al., Environmental Pollution, (2003) 122, 91-103], suggest that accumulation of gaseous pollutants is strongly influenced by biomonitor vitality and that lichen bags are a more reliable and effective tool for monitoring S, N and C atmospheric depositions in urban areas compared to moss bags, because of greater lichen resistance to dry and stressing conditions of urban environment. - The lichen Pseudevernia furfuracea is more effective than the moss Sphagnum capillifolium as S and N pollutants biomonitor

  20. Contrasting diversity of testate amoebae communities in Sphagnum and brown-moss dominated patches in relation to shell counts.

    Science.gov (United States)

    Lizoňová, Zuzana; Horsák, Michal

    2017-04-01

    Ecological studies of peatland testate amoebae are generally based on totals of 150 individuals per sample. However, the suitability of this standard has never been assessed for alkaline habitats such as spring fens. We explored the differences in testate amoeba diversity between Sphagnum and brown-moss microhabitats at a mire site with a highly diversified moss layer which reflects the small-scale heterogeneity in groundwater chemistry. Relationships between sampling efficiency and sample completeness were explored using individual-based species accumulation curves and the effort required to gain an extra species was assessed. Testate amoeba diversity differed substantially between microhabitats, with brown mosses hosting on average twice as many species and requiring greater shell totals to reach comparable sample analysis efficiency as for Sphagnum. Thus, for samples from alkaline conditions an increase in shell totals would be required and even an overall doubling up to 300 individuals might be considered for reliable community description. Our small-scale data are likely not robust enough to provide an ultimate solution for the optimization of shell totals. However, the results proved that testate amoebae communities from acidic and alkaline environments differ sharply in both species richness and composition and they might call for different methodological approaches. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. To what extent do food preferences explain the trophic position of heterotrophic and mixotrophic microbial consumers in a Sphagnum peatland?

    Science.gov (United States)

    Jassey, Vincent E J; Meyer, Caroline; Dupuy, Christine; Bernard, Nadine; Mitchell, Edward A D; Toussaint, Marie-Laure; Metian, Marc; Chatelain, Auriel P; Gilbert, Daniel

    2013-10-01

    Although microorganisms are the primary drivers of biogeochemical cycles, the structure and functioning of microbial food webs are poorly studied. This is the case in Sphagnum peatlands, where microbial communities play a key role in the global carbon cycle. Here, we explored the structure of the microbial food web from a Sphagnum peatland by analyzing (1) the density and biomass of different microbial functional groups, (2) the natural stable isotope (δ(13)C and δ(15)N) signatures of key microbial consumers (testate amoebae), and (3) the digestive vacuole contents of Hyalosphenia papilio, the dominant testate amoeba species in our system. Our results showed that the feeding type of testate amoeba species (bacterivory, algivory, or both) translates into their trophic position as assessed by isotopic signatures. Our study further demonstrates, for H. papilio, the energetic benefits of mixotrophy when the density of its preferential prey is low. Overall, our results show that testate amoebae occupy different trophic levels within the microbial food web, depending on their feeding behavior, the density of their food resources, and their metabolism (i.e., mixotrophy vs. heterotrophy). Combined analyses of predation, community structure, and stable isotopes now allow the structure of microbial food webs to be more completely described, which should lead to improved models of microbial community function.

  2. Origins, genetic structure, and systematics of the narrow endemic peatmosses (Sphagnum): S. guwassanense and S. triseriporum (Sphagnaceae).

    Science.gov (United States)

    Shaw, A Jonathan; Shaw, Blanka; Johnson, Matthew G; Higuchi, Masanobu; Arikawa, Tomotsugu; Ueno, Takeshi; Devos, Nicolas

    2013-06-01

    Sphagnum dominates vast expanses of wetland habitats throughout the northern hemisphere and species delimitation within the genus is important because floristic changes associated with a warming global climate may have measureable impacts on large-scale ecological processes. Most northern hemisphere peatmoss species (Sphagnum) have circumboreal ranges, but the Japanese species generally known as S. calymmatophyllum is endemic to Honshu Island. This prompted a population genetic and phylogenetic analysis to resolve the origin(s), population structure, and phylogenetic relationships of this morphologically variable species. • Sixty plants collected from Mt. Gassan and Mt. Hakkoda were genotyped for 12 microsatellite loci. Two plastid loci and three anonymous nuclear loci were sequenced in a subset of the plants, plus representatives from 10 closely related species. • Gametophytes exhibited fixed or nearly fixed heterozygosity at 9-10 of the 12 microsatellite loci. Two genetic groups were resolved by the microsatellite data, individuals showed no evidence of admixture, and the two groups of plants differ in morphology. They are heterozygous for different sets of alleles. The two taxa share plastid DNA sequences with two species that are common in Alaska. • Two taxa were distinguished: S. guwassanense and S. triseriporum. Both are allopolyploids; they originated independently from different but closely related progenitors. The maternal progenitor was likely either S. orientale or S. inexspectatum. The two allopolyploid taxa are heterozygous for (different) private microsatellite alleles, and one progenitor could be extinct.

  3. Nitrous oxide emission potentials of Burkholderia species isolated from the leaves of a boreal peat moss Sphagnum fuscum.

    Science.gov (United States)

    Nie, Yanxia; Li, Li; Wang, Mengcen; Tahvanainen, Teemu; Hashidoko, Yasuyuki

    2015-01-01

    Using a culture-based nitrous oxide (N2O) emission assay, three active N2O emitters were isolated from Sphagnum fuscum leaves and all identified as members of Burkholderia. These isolates showed N2O emission in the medium supplemented with [Formula: see text] but not with [Formula: see text], and Burkholderia sp. SF-E2 showed the most efficient N2O emission (0.20 μg·vial(-1)·day(-1)) at 1.0 mM KNO3. In Burkholderia sp. SF-E2, the optimum pH for N2O production was 5.0, close to that of the phyllosphere of Sphagnum mosses, while the optimum temperature was uniquely over 30 °C. The stimulating effect of additional 1.5 mM sucrose on N2O emission was ignorable, but Burkholderia sp. SF-E2 upon exposure to 100 mg·L(-1) E-caffeic acid showed uniquely 67-fold higher N2O emission. All of the three N2O emitters were negative in both acetylene inhibition assay and PCR assay for nosZ-detection, suggesting that N2O reductase or the gene itself is missing in the N2O-emitting Burkholderia.

  4. A comparison of lead pollution record in Sphagnum peat with known historical Pb emission rates in the British isles and the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Novak, M.; Erel, Y.; Zemanova, L.; Bottrell, S.H.; Adamova, M. [Czech Geological Survey, Prague (Czech Republic)

    2008-12-15

    Vertical Pb concentration gradients and isotope ratios (Pb-206/Pb-207, Pb-208/Pb-207) are reported for five Pb-210-dated Sphagnum peat profiles. The studied peat bogs are in the British Isles (Thorne Moors, England; Mull, Scotland; and Connemara, Eire) and central Europe (Ocean, northern Czech Republic: Rybarenska slat, southern Czech Republic). Both the U.K. and the Czech Republic experienced maximum Pb emissions from Ag-Pb smelting around 1880. Pb emissions from coal burning peaked in 1955 in the U.K, and in the 1980s in the Czech Republic. In both countries, use of alkyl-lead additives to gasoline resulted in large Pb emissions between 1950 and 2000. We hypothesized that peaks in Pb emissions from smelting, coal burning and gasoline burning, respectively, should be mirrored in the peat profiles. However, a more complicated pattern emerged. Maximum annual Pb accumulation rates occurred in 1870 at Ocean, 1940 at Thorne Moors, 1988 at Rybarenska slat, and 1990 at Mull and Connemara. Atmospheric Pb inputs decreased in the order Thorne Moors {ge} Ocean > Rybarenska slat > Mull > Connemara. The Ocean bog was unique in the central European region in that its maximum Pb pollution dated back to the 19th century and coincided with maximum Pb smelting at Freiberg and Pribram. In contrast, numerous previously studied sites showed no Pb accumulation maximum in the 19th century, but increasing pollution until the 1980s. It remains unclear why Ocean did not record the regional peak in Pb emissions caused by high coal and gasoline burning around 1980, while an array of nearby bogs studied previously did record the 1980 coal/gasoline peak, but no 1880 smelting peak. Mean Pb-206/Pb-207 ratios of potential pollution sources were 1.07 and 1.11 for gasoline, 1.17 and 1.17 for local ores, and 1.18 and 1.19 for coal in the U.K. and the Czech Republic, respectively.

  5. Nutrient fluxes at the landscape level and the R* rule

    Science.gov (United States)

    Ju, Shu; DeAngelis, Donald L.

    2010-01-01

    Nutrient cycling in terrestrial ecosystems involves not only the vertical recycling of nutrients at specific locations in space, but also biologically driven horizontal fluxes between different areas of the landscape. This latter process can result in net accumulation of nutrients in some places and net losses in others. We examined the effects of such nutrient-concentrating fluxes on the R* rule, which predicts that the species that can survive in steady state at the lowest level of limiting resource, R*, can exclude all competing species. To study the R* rule in this context, we used a literature model of plant growth and nutrient cycling in which both nutrients and light may limit growth, with plants allocating carbon and nutrients between foliage and roots according to different strategies. We incorporated the assumption that biological processes may concentrate nutrients in some parts of the landscape. We assumed further that these processes draw nutrients from outside the zone of local recycling at a rate proportional to the local biomass density. Analysis showed that at sites where there is a sufficient biomass-dependent accumulation of nutrients, the plant species with the highest biomass production rates (roughly corresponding to the best competitors) do not reduce locally available nutrients to a minimum concentration level (that is, minimum R*), as expected from the R* rule, but instead maximize local nutrient concentration. These new results require broadening of our understanding of the relationships between nutrients and vegetation competition on the landscape level. The R* rule is replaced by a more complex criterion that varies across a landscape and reduces to the R* rule only under certain limiting conditions.

  6. Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland.

    Science.gov (United States)

    Yu, Ri-Qing; Adatto, Isaac; Montesdeoca, Mario R; Driscoll, Charles T; Hines, Mark E; Barkay, Tamar

    2010-12-01

    Processes leading to the bioaccumulation of methylmercury (MeHg) in northern wetlands are largely unknown. We have studied various ecological niches within a remote, acidic forested lake ecosystem in the southwestern Adirondacks, NY, to discover that mats comprised of Sphagnum moss were a hot spot for mercury (Hg) and MeHg accumulation (190.5 and 18.6 ng g⁻¹ dw, respectively). Furthermore, significantly higher potential methylation rates were measured in Sphagnum mats as compared with other sites within Sunday Lake's ecosystem. Although MPN estimates showed a low biomass of sulfate-reducing bacteria (SRB), 2.8 × 10⁴ cells mL⁻¹ in mat samples, evidence consisting of (1) a twofold stimulation of potential methylation by the addition of sulfate, (2) a significant decrease in Hg methylation in the presence of the sulfate reduction inhibitor molybdate, and (3) presence of dsrAB-like genes in mat DNA extracts, suggested that SRB were involved in Hg methylation. Sequencing of dsrB genes indicated that novel SRB, incomplete oxidizers including Desulfobulbus spp. and Desulfovibrio spp., and syntrophs dominated the sulfate-reducing guild in the Sphagnum moss mat. Sphagnum, a bryophyte dominating boreal peatlands, and its associated microbial communities appear to play an important role in the production and accumulation of MeHg in high-latitude ecosystems. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Freezing cytorrhysis and critical temperature thresholds for photosystem II in the peat moss Sphagnum capillifolium.

    Science.gov (United States)

    Buchner, Othmar; Neuner, Gilbert

    2010-07-01

    Leaflets of Sphagnum capillifolium were exposed to temperatures from -5 degrees C to +60 degrees C under controlled conditions while mounted on a microscope stage. The resultant cytological response to these temperature treatments was successfully monitored using a light and fluorescence microscope. In addition to the observable cytological changes during freezing cytorrhysis and heat exposure on the leaflets, the concomitant critical temperature thresholds for inactivation of photosystem II (PS II) were studied using a micro fibre optic and a chlorophyll fluorometer mounted to the microscope stage. Chlorophyllous cells of S. capillifolium showed extended freezing cytorrhysis immediately after ice nucleation at -1.1 degrees C in the water in which the leaflets were submersed during the measurement. The occurrence of freezing cytorrhysis, which was visually manifested by cell shrinkage, was highly dynamic and was completed within 2 s. A total reduction of the mean projected diameter of the chloroplast containing area during freezing cytorrhysis from 8.9 to 3.8 m