WorldWideScience

Sample records for spent fuel recycling

  1. Need for Asian regional spent fuel recycle center (ARRC)

    International Nuclear Information System (INIS)

    Yamamura, Osamu

    2009-01-01

    Energy demand is increasing rapidly in the Asia-Pacific region. From the viewpoint of preventing global warming, countries in the region are expected to introduce more nuclear power plants (NPPs) which do not emit greenhouse gases (GHGs). At the end of this century, the capacity for NPPs is estimated to reach around 1600 GWe and around 300,000 tons of uranium (TU) as spent fuel will be accumulated. The spent fuel from the NPPs should be reprocessed and fabricated into MOX fuel to decrease the amounts of radioactive wastes and future fuel recycling should be supported in the Asian Regional Spent Fuel Recycle Center (ARRC) under international regulation. The ARRC will include a reprocessing plant, an MOX fuel fabrication plant, a high-activity vitrified solid waste storage facility, and sea discharge pipes for extremely low activity liquid wastes etc. Furthermore, the ARRC should be operated as a component in an international organization scheme, an ASIATOM and it should accept the full scope of IAEA safeguards to verify the nonproliferation of nuclear materials. When the ARRC is designed, knowledge obtained through experiences in the Tokai and the Rokkasho reprocessing plants in Japan, which is a non-nuclear weapons country, will be used. (author)

  2. Conceptual design of a spent LWR fuel recycle complex

    International Nuclear Information System (INIS)

    Kirk, B.H.

    1980-01-01

    Purpose was to design a licensable facility, to make cost-benefit analyses of alternatives, and to aid in developing licensing criteria. The Savannah River Plant was taken to be the site for the recycle complex. The spent LWR fuel will be processed through the plant at the rate of 3000 metric tons of heavy metal per year. The following aspects of the complex are discussed: operation, maintenance, co-conversion (Coprecal), waste disposal, off-gas treatment, ventilation, safeguards, accounting, equipment and fuel fabrication. Differences between the co-processing case and the separated streams case are discussed. 44 figures

  3. Preliminary study on direct recycling of spent PWR fuel in PWR system

    International Nuclear Information System (INIS)

    Waris, Abdul; Nuha; Novitriana; Kurniadi, Rizal; Su'ud, Zaki

    2012-01-01

    Preliminary study on direct recycling of PWR spent fuel to support SUPEL (Straight Utilization of sPEnt LWR fuel in LWR system) scenario has been conducted. Several spent PWR fuel compositions in loaded PWR fuel has been evaluated to obtain the criticality of reactor. The reactor can achieve it criticality for U-235 enrichment in the loaded fresh fuel is at least 4.0 a% with the minimum fraction of the spent fuel in the core is 15.0 %. The neutron spectra become harder with the escalating of U-235 enrichment in the loaded fresh fuel as well as the amount of the spent fuel in the core.

  4. Fuel self-sufficient and low proliferation risk multi-recycling of spent fuel

    International Nuclear Information System (INIS)

    Cho, N. Z.; Hong, S. G.; Kim, T. H.; Greenspan, E.; Kastenberg, W. E.

    1998-01-01

    A preliminary feasibility study has been performed in search of promising nuclear energy systems which could make efficient use of the spent fuel from LWRs and be proliferation resistant. The energy considered consist of a dry process and a fuel-self-sufficient reactor which are synergistic. D 2 O, H 2 O and Pb (or Pb-Bi) are considered for the coolant. The most promising identified consists of Pb-cooled reactors with either an AIROX or an IFR-like reprocessing. H 2 O- (possibly mixed with D 2 O) cooled reactors can be designed to be fuel-self-sufficient and multi-recycle LWR spent fuel, provided they are accelerator driven. Moderator-free, D 2 O-cooled critical reactors can multi-recycle Th- 233 U fuel using IFR-type reprocessing; they are significantly more attractive than their thermal counterparts. H 2 O- (possibly mixed with D 2 O) cooled, accelerator-driven reactors appear attractive for converting Th into denatured 233 U using LWR spent fuel and the IFR process. The CANDU reactor technology appears highly synergistic with accelerator-driven systems. (author). 25 refs., 3 tabs., 6 figs

  5. Spent fuel management in France: Reprocessing, conditioning, recycling

    International Nuclear Information System (INIS)

    Giraud, J.P.; Montalembert, J.A. de

    1994-01-01

    The French energy policy has been based for 20 years on the development of nuclear power. The some 75% share of nuclear in the total electricity generation, representing an annual production of 317 TWh requires full fuel cycle control from the head-end to the waste management. This paper presents the RCR concept (Reprocessing, Conditioning, Recycling) with its industrial implementation. The long lasting experience acquired in reprocessing and MOX fuel fabrication leads to a comprehensive industrial organization with minimized impact on the environment and waste generation. Each 900 MWe PWR loaded with MOX fuel avoids piling up 2,500 m 3 per year of mine tailings. By the year 2000, less than 500 m 3 of high-level and long-lived waste will be annually produced at La Hague for the French program. The fuel cycle facilities and the associated MOX loading programs are ramping-up according to schedule. Thus, the RCR concept is a reality as well as a policy adopted in several countries. Last but not least, RCR represents a strong commitment to non-proliferation as it is the way to fully control and master the plutonium inventory

  6. Spent nuclear fuel recycling with plasma reduction and etching

    Science.gov (United States)

    Kim, Yong Ho

    2012-06-05

    A method of extracting uranium from spent nuclear fuel (SNF) particles is disclosed. Spent nuclear fuel (SNF) (containing oxides of uranium, oxides of fission products (FP) and oxides of transuranic (TRU) elements (including plutonium)) are subjected to a hydrogen plasma and a fluorine plasma. The hydrogen plasma reduces the uranium and plutonium oxides from their oxide state. The fluorine plasma etches the SNF metals to form UF6 and PuF4. During subjection of the SNF particles to the fluorine plasma, the temperature is maintained in the range of 1200-2000 deg K to: a) allow any PuF6 (gas) that is formed to decompose back to PuF4 (solid), and b) to maintain stability of the UF6. Uranium (in the form of gaseous UF6) is easily extracted and separated from the plutonium (in the form of solid PuF4). The use of plasmas instead of high temperature reactors or flames mitigates the high temperature corrosive atmosphere and the production of PuF6 (as a final product). Use of plasmas provide faster reaction rates, greater control over the individual electron and ion temperatures, and allow the use of CF4 or NF3 as the fluorine sources instead of F2 or HF.

  7. A proposal for an international program to develop dry recycle of spent nuclear fuel

    International Nuclear Information System (INIS)

    Feinroth, H.

    1999-01-01

    The dry oxidation-reduction process (called OREOX for Oxidation Reduction of Oxide Fuel) being developed by Korea and Canada, in cooperation with IAEA and the US State Department, is limited to recycle of spent LWR fuel into CANDU reactors (DUPIC). When first conceived and demonstrated via irradiation of test elements by Atomics International in 1965, (the process was called AIROX at that time) a wider range of applications was intended, including recycle of spent LWR fuel into LWRs. Studies sponsored by DOE's Idaho Office in 1992 confirmed the applicability of this technology to regions containing LWR's only, and described the potential advantages of such recycle from an environmental, waste management and economic point of view, as compared to the direct disposal option. Recent analyses conducted by the author indicates that such dry recycle may be one of the few acceptable paths remaining for resolution of the US spent fuel storage dilemma that remains consistent with US non-proliferation policy. It is proposed that a new US program be established to develop AIROX dry recycle for use in the US, and this become part of an international cooperative program, including the current Canadian - Korean program, and possibly including participation of other countries wishing to pursue alternatives to the once through cycle, and wet reprocessing. With shared funding of major project elements, such international cooperation would accelerate the demonstration and commercial deployment of dry recycle technology, as compared to separate and independent programs in each country. (author)

  8. Evaluation of the recycling costs, as a disposal form of the spent nuclear fuel

    International Nuclear Information System (INIS)

    Ramirez S, J.R.; Alonso V, G.; Palacios, J.C.

    2006-01-01

    At the moment there are 2 BWR reactors operating in the Nuclear Power station of Laguna Verde in Mexico. At the end of the programmed life of the reactors (40 years) its will have completed 26 operation cycles, with will have 6712 spent fuel assemblies will be in the pools of the power station. Up to now, the decision on the destination of the high level wastes (spent nuclear fuel) it has not been determined in Mexico, the same as in other countries, adopting a politics of 'to wait to see that it happens in the world', in this respect, in the world two practical alternatives exist, one is to store the fuel in repositories designed for that end, another is reprocess the fuel to recycle the plutonium contained in it, both solutions have their particular technical and economic problematic. In this work it is evaluated from the economic point of view the feasibility of having the spent fuel, using the one recycled fuel, for that which thinks about a consistent scenario of a BWR reactor in which the fuel discharged in each operation cycle is reprocessed and its are built fuel assemblies of the MOX type to replace partly to the conventional fuel. This scenario shows an alternative to the indefinite storage of the high level radioactive waste. The found results when comparing from the economic point of view both options, show that the one recycled, even with the current costs of the uranium it is of the order of 7% more expensive that the option of storing the fuel in repositories constructed for that purpose. However the volumes of spent fuel decrease in 66%. (Author)

  9. Recycling and transmutation of spent fuel as a sustainable option for the nuclear energy development

    International Nuclear Information System (INIS)

    Maiorino, Jose R.; Moreira, Joao M.L.

    2013-01-01

    The objective of this paper is to discuss the option of recycling and transmutation of radioactive waste against Once-through Fuel Cycle (OTC) based on uranium feed under the perspective of sustainability. We use a qualitative analysis to compare OTC with closed fuel cycles based on studies already performed such as the Red Impact Project and the comparative study on accelerator driven systems and fast reactors for advanced fuel cycles performed by the Nuclear Energy Agency. The results show that recycling and transmutation fuel cycles are more attractive than the OTC from the point of view of sustainability. The main conclusion is that the decision about the construction of a deep geological repository for spent fuel disposal must be reevaluated. (author)

  10. The reprocessing-recycling of spent nuclear fuel. Actinides separation - Application to wastes management

    International Nuclear Information System (INIS)

    2008-01-01

    After its use in the reactor, the spent fuel still contains lot of recoverable material for an energetic use (uranium, plutonium), but also fission products and minor actinides which represent the residues of nuclear reactions. The reprocessing-recycling of the spent fuel, as it is performed in France, implies the chemical separation of these materials. The development and the industrial implementation of this separation process represent a major contribution of the French science and technology. The reprocessing-recycling allows a good management of nuclear wastes and a significant saving of fissile materials. With the recent spectacular rise of uranium prices, this process will become indispensable with the development of the next generation of fast neutron reactors. This book takes stock of the present and future variants of the chemical process used for the reprocessing of spent fuels. It describes the researches in progress and presents the stakes and recent results obtained by the CEA. content: the separation of actinides, a key factor for a sustainable nuclear energy; the actinides, a discovery of the 20. century; the radionuclides in nuclear fuels; the aquo ions of actinides; some redox properties of actinides; some complexing properties of actinide cations; general considerations about treatment processes; some characteristics of nuclear fuels in relation with their reprocessing; technical goals and specific constraints of the PUREX process; front-end operations of the PUREX process; separation and purification operations of the PUREX process; elaboration of finite products in the framework of the PUREX process; management and treatment of liquid effluents; solid wastes of the PUREX process; towards a joint management of uranium and plutonium: the COEX TM process; technical options of treatment and recycling techniques; the fuels of generation IV reactors; front-end treatment processes of advanced fuels; hydrometallurgical processes for future fuel cycles

  11. Uranium-236 in light water reactor spent fuel recycled to an enriching plant

    International Nuclear Information System (INIS)

    de la Garza, A.

    1977-01-01

    The introduction of 236 U to an enriching plant by recycling spent fuel uranium results in enriched products containing 236 U, a parasitic neutron absorber in reactor fuel. Convenient approximate methodology determines 235 236 U, and total uranium flowsheets with associated separative work requirements in enriching plant operations for use by investigators of the light water reactor fuel cycle not having recourse to specialized multicomponent cascade technology. Application of the methodology has been made to compensation of an enriching plant product for 236 U content and to the value at an enriching plant of spent fuel uranium. The approximate methodology was also confirmed with more exact calculations and with some experience with 236 U in an enriching plant

  12. A comparative study on recycling spent fuels in gas-cooled fast reactors

    International Nuclear Information System (INIS)

    Choi, Hangbok; Baxter, Alan

    2010-01-01

    This study evaluates advanced Gas-cooled Fast Reactor (GFR) fuel cycle scenarios which are based on recycling spent nuclear fuel for the sustainability of nuclear energy. A 600 MWth GFR was used for the fuel cycle analysis, and the equilibrium core was searched with different fuel-to-matrix volume ratios such as 70/30 and 60/40. Two fuel cycle scenarios, i.e., a one-tier case combining a Light Water Reactor (LWR) and a GFR, and a two-tier case using an LWR, a Very High Temperature Reactor (VHTR), and a GFR, were evaluated for mass flow and fuel cycle cost, and the results were compared to those of LWR once-through fuel cycle. The mass flow calculations showed that the natural uranium consumption can be reduced by more than 57% and 27% for the one-tier and two-tier cycles, respectively, when compared to the once-through fuel cycle. The transuranics (TRU) which pose a long-term problem in a high-level waste repository, can be significantly reduced in the multiple recycle operation of these options, resulting in more than 110 and 220 times reduction of TRU inventory to be geologically disposed for the one-tier and two-tier fuel cycles, respectively. The fuel cycle costs were estimated to be 9.4 and 8.6 USD/MWh for the one-tier fuel cycle when the GFR fuel-to-matrix volume ratio was 70/30 and 60/40, respectively. However the fuel cycle cost is reduced to 7.3 and 7.1 USD/MWh for the two-tier fuel cycle, which is even smaller than that of the once-through fuel cycle. In conclusion the GFR can provide alternative fuel cycle options to the once-through and other fast reactor fuel cycle options, by increasing the natural uranium utilization and reducing the fuel cycle cost.

  13. Available Reprocessing and Recycling Services for Research Reactor Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    2017-01-01

    The high enriched uranium (HEU) take back programmes will soon have achieved their goals. When there are no longer HEU inventories at research reactors and no commerce in HEU for research reactors, the primary driver for the take back programmes will cease. However, research reactors will continue to operate in order to meet their various mission objectives. As a result, inventories of low enriched uranium spent nuclear fuel will continue to be created during the research reactors' lifetime and, therefore, there is a need to develop national final disposition routes. This publication is designed to address the issues of available reprocessing and recycling services for research reactor spent fuel and discusses the various back end management aspects of the research reactor fuel cycle.

  14. Treatment and recycling of spent nuclear fuel. Actinide partitioning - Application to waste management

    International Nuclear Information System (INIS)

    Abonneau, E.; Baron, P.; Berthon, C.; Berthon, L.; Beziat, A.; Bisel, I.; Bonin, L.; Bosse, E.; Boullis, B.; Broudic, J.C.; Charbonnel, M.C.; Chauvin, N.; Den Auwer, C.; Dinh, B.; Duhamet, J.; Escleine, J.M.; Grandjean, S.; Guilbaud, P.; Guillaneux, D.; Guillaumont, D.; Hill, C.; Lacquement, J.; Masson, M.; Miguirditchian, M.; Moisy, P.; Pelletier, M.; Ravenet, A.; Rostaing, C.; Royet, V.; Ruas, A.; Simoni, E.; Sorel, C.; Vaudano, A.; Venault, L.; Warin, D.; Zaetta, A.; Pradel, P.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Forestier, A.; Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Latge, C.; Limoge, Y.; Madic, C.; Santarini, G.; Seiler, J.M.; Sollogoob, P.; Vernaz, E.; Bazile, F.; Parisot, J.P.; Finot, P.; Roberts, J.F.

    2008-01-01

    subsequent to its in-reactor dwell time, spent fuel still contains large amounts of materials that are recoverable, for value-added energy purposes (uranium, plutonium), together with fission products, and minor actinides, making up the residues from nuclear reactions. The treatment and recycling of spent nuclear fuel, as implemented in France, entail that such materials be chemically partitioned. The development of the process involved, and its deployment on an industrial scale stand as a high achievement of French science, and technology. Treatment and recycling allow both a satisfactory management of nuclear waste to be implemented, and substantial savings, in terms of fissile material. Bolstered of late as it has been, due to spectacularly skyrocketing uranium prices, this strategy is bound to become indispensable, with the advent of the next generation of fast reactors. This Monograph surveys the chemical process used for spent fuel treatment, and its variants, both current, and future. It outlines currently ongoing investigations, setting out the challenges involved, and recent results obtained by CEA. (authors)

  15. Treatment and recycling of spent nuclear fuel. Actinide partitioning - Application to waste management

    Energy Technology Data Exchange (ETDEWEB)

    Abonneau, E.; Baron, P.; Berthon, C.; Berthon, L.; Beziat, A.; Bisel, I.; Bonin, L.; Bosse, E.; Boullis, B.; Broudic, J.C.; Charbonnel, M.C.; Chauvin, N.; Den Auwer, C.; Dinh, B.; Duhamet, J.; Escleine, J.M.; Grandjean, S.; Guilbaud, P.; Guillaneux, D.; Guillaumont, D.; Hill, C.; Lacquement, J.; Masson, M.; Miguirditchian, M.; Moisy, P.; Pelletier, M.; Ravenet, A.; Rostaing, C.; Royet, V.; Ruas, A.; Simoni, E.; Sorel, C.; Vaudano, A.; Venault, L.; Warin, D.; Zaetta, A.; Pradel, P.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Forestier, A.; Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Latge, C.; Limoge, Y.; Madic, C.; Santarini, G.; Seiler, J.M.; Sollogoob, P.; Vernaz, E.; Bazile, F.; Parisot, J.P.; Finot, P.; Roberts, J.F

    2008-07-01

    subsequent to its in-reactor dwell time, spent fuel still contains large amounts of materials that are recoverable, for value-added energy purposes (uranium, plutonium), together with fission products, and minor actinides, making up the residues from nuclear reactions. The treatment and recycling of spent nuclear fuel, as implemented in France, entail that such materials be chemically partitioned. The development of the process involved, and its deployment on an industrial scale stand as a high achievement of French science, and technology. Treatment and recycling allow both a satisfactory management of nuclear waste to be implemented, and substantial savings, in terms of fissile material. Bolstered of late as it has been, due to spectacularly skyrocketing uranium prices, this strategy is bound to become indispensable, with the advent of the next generation of fast reactors. This Monograph surveys the chemical process used for spent fuel treatment, and its variants, both current, and future. It outlines currently ongoing investigations, setting out the challenges involved, and recent results obtained by CEA. (authors)

  16. Available reprocessing and recycling services for research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, Sandor; Marshall, Frances M.; Adelfang, Pablo; Bradley, Edward [International Atomic Energy Agency, Vienna (Austria); Budu, Madalina Elena [SOSNY Research and Development Company, Moscow (Russian Federation); Chiguer, Mustapha [AREVA, Paris La Defense (France)

    2016-03-15

    International activities in the back end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. In the future inventories of LEU SNF will continue to be created and the back end solution of RR SNF remains a critical issue. The IAEA, based on the experience gained during the decade of international cooperation in supporting the objectives of the HEU take-back programmes, drew up a report presenting available reprocessing and recycling services for RR SNF. This paper gives an overview of the report, which will address all aspects of reprocessing and recycling services for RR SNF.

  17. Available reprocessing and recycling services for research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, Sandor Miklos; Adelfang, Pablo; Bradley, Ed [International Atomic Energy Agency, Vienna (Austria); Budu, Madalina [SOSNY Research and Development Company, Moscow (Russian Federation); Chiguer, Mustapha [AREVA, Paris (France)

    2015-05-15

    International activities in the back-end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. These programmes will soon have achieved their goals and the SNF take-back programmes will cease. However, the needs of the nuclear community dictate that the majority of the research reactors continue to operate using low enriched uranium (LEU) fuel in order to meet the varied mission objectives. As a result, inventories of LEU SNF will continue to be created and the back-end solution of RR SNF remains a critical issue. In view of this fact, the IAEA, based on the experience gained during the decade of international cooperation in supporting the objectives of the HEU take-back programmes, will draw up a report presenting available reprocessing and recycling services for research reactor spent nuclear fuel. This paper gives an overview of the guiding document which will address all aspects of Reprocessing and Recycling Services for RR SNF, including an overview of solutions, decision making support, service suppliers, conditions (prerequisites, options, etc.), services offered by the managerial and logistics support providers with a focus on available transport packages and applicable transport modes.

  18. Design of a PWR for long cycle and direct recycling of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Nader M.A., E-mail: mnader73@yahoo.com

    2015-12-15

    Highlights: • Single-batch loading PWR with a new fuel assembly for 36 calendar months cycle was designed. • The new fuel assembly is constructed from a number of CANDU fuel bundles. • This design enables to recycle the spent fuel directly in CANDU reactors for high burnup. • Around 56 MWd/kgU burnup is achieved from fuel that has average enrichment of 4.8 w/o U-235 using this strategy. • Safety parameters such as the power distribution and CANDU coolant void reactivity were considered. - Abstract: In a previous work, a new design was proposed for the Pressurized Water Reactor (PWR) fuel assembly for direct use of the PWR spent fuel without processing. The proposed assembly has four zircaloy-4 tubes contains a number of 61-element CANDU fuel bundles (8 bundles per tube) stacked end to end. The space between the tubes contains 44 lower enriched UO{sub 2} fuel rods and 12 guide tubes. In this paper, this assembly is used to build a single batch loading 36-month PWR and the spent CANDU bundles are recycled in the on power refueling CANDU reactors. The Advanced PWR (APWR) is considered as a reference design. The average enrichment in the core is 4.76%w U-235. IFBA and Gd{sub 2}O{sub 3} as burnable poisons are used for controlling the excess reactivity and to flatten the power distribution. The calculations using MCNPX showed that the PWR will discharge the fuel with average burnup of 31.8 MWd/kgU after 1000 effective full power days. Assuming a 95 days plant outage, 36 calendar months can be achieved with a capacity factor of 91.3%. Good power distribution in the core is obtained during the cycle and the required critical boron concentration is less than 1750 ppm. Recycling of the discharged CANDU fuel bundles that represents 85% of the fuel in the assembly, in CANDU-6 or in 700 MWe Advanced CANDU Reactor (ACR-700), an additional burnup of about 31 or 26 MWd/kgU burnup can be achieved, respectively. Averaging the fuel burnup on the all fuel in the PWR

  19. An analysis of the properties of levelized cost analysis of storage or recycling of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Vergueiro, Sophia M. C.; Ramos, Alexandre F., E-mail: alex.ramos@usp.br, E-mail: sophia.vergueiro@usp.br [Universidade de São Paulo (USP), SP (Brazil). Núcleo Interdisciplinar de Modelagem de Sistemas Complexos

    2017-07-01

    The demand for reduction of carbon dioxide emissions in the processes of electricity generation, plus the demand for firm energy matrices, make the nuclear matrix a central component to occupy the energy mix during the next hundred years. Increasing the share of nuclear power in electricity production in a multiple developing countries will lead to increased spent fuel production. Thus, the managing radioactive waste aiming to decide about storing or recycling it is a central issue to be addressed by environmental management and nuclear energy communities. In this manuscript we present our studies aiming to understand the levelized analysis of cost of electricity generation comparing storage or recycling of the spent fuel. (author)

  20. An analysis of the properties of levelized cost analysis of storage or recycling of spent nuclear fuel

    International Nuclear Information System (INIS)

    Vergueiro, Sophia M. C.; Ramos, Alexandre F.

    2017-01-01

    The demand for reduction of carbon dioxide emissions in the processes of electricity generation, plus the demand for firm energy matrices, make the nuclear matrix a central component to occupy the energy mix during the next hundred years. Increasing the share of nuclear power in electricity production in a multiple developing countries will lead to increased spent fuel production. Thus, the managing radioactive waste aiming to decide about storing or recycling it is a central issue to be addressed by environmental management and nuclear energy communities. In this manuscript we present our studies aiming to understand the levelized analysis of cost of electricity generation comparing storage or recycling of the spent fuel. (author)

  1. Recycling of nuclear matters. Myths and realities. Calculation of recycling rate of the plutonium and uranium produced by the French channel of spent fuel reprocessing

    International Nuclear Information System (INIS)

    Coeytaux, X.; Schneider, M.

    2000-05-01

    The recycling rate of plutonium and uranium are: from the whole of the plutonium separated from the spent fuel ( inferior to 1% of the nuclear matter content) attributed to France is under 50% (under 42 tons on 84 tons); from the whole of plutonium produced in the French reactors is less than 20% (42 tons on 224 tons); from the whole of the uranium separated from spent fuels attributed to France is about 10 % (1600 tons on 16000 tons); from the whole of the uranium contained in the spent fuel is slightly over 5%. (N.C.)

  2. Mox fuels recycling

    International Nuclear Information System (INIS)

    Gay, A.

    1998-01-01

    This paper will firstly emphasis that the first recycling of plutonium is already an industrial reality in France thanks to the high degree of performance of La Hague and MELOX COGEMA's plants. Secondly, recycling of spent Mixed OXide fuel, as a complete MOX fuel cycle, will be demonstrated through the ability of the existing plants and services which have been designed to proceed with such fuels. Each step of the MOX fuel cycle concept will be presented: transportation, reception and storage at La Hague and steps of spent MOX fuel reprocessing. (author)

  3. Improved Retrieval Technique of pin-wise composition for spent fuel recycling

    Energy Technology Data Exchange (ETDEWEB)

    Park, YunSeo; Kim, Myung Hyun [Kyung Hee University , Yongin (Korea, Republic of)

    2016-10-15

    New reutilization method which does not require fabrication processing was suggested and showed feasibility by Dr. Aung Tharn Daing. This new reutilization method is predict spent nuclear fuel pin composition, reconstruct new fuel assembly by spent nuclear pin, and directly reutilize in same PWR core. There are some limitation to predict spent nuclear fuel pin composition on his methodology such as spatial effect was not considered enough. This research suggests improving Dr. Aung Tharn Daing's retrieval technique of pin-wise composition. This new method classify fuel pin groups by its location effect in fuel assembly. Most of fuel pin composition along to burnup in fuel assembly is not highly dependent on location. However, compositions of few fuel pins where near water hole and corner of fuel assembly are quite different in same burnup. Required number of nuclide table is slightly increased from 3 to 6 for one fuel assembly with this new method. Despite of this little change, prediction of the pin-wise composition became more accurate. This new method guarantees two advantages than previous retrieving technique. First, accurate pin-wise isotope prediction is possible by considering location effect in a fuel assembly. Second, it requires much less nuclide tables than using full single assembly database. Retrieving technique of pin-wise composition can be applied on spent fuel management field useful. This technique can be used on direct use of spent fuel such as Dr. Aung Tharn Daing showed or applied on pin-wise waste management instead of conventional assembly-wise waste management.

  4. Development of spent fuel remote handling technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Sup; Park, B S; Park, Y S; Oh, S C; Kim, S H; Cho, M W; Hong, D H

    1997-12-01

    Since the nation`s policy on spent fuel management is not finalized, the technical items commonly required for safe management and recycling of spent fuel - remote technologies of transportation, inspection, maintenance, and disassembly of spent fuel - are selected and pursued. In this regards, the following R and D activities are carried out : collision free transportation of spent fuel assembly, mechanical disassembly of spent nuclear fuel and graphical simulation of fuel handling / disassembly process. (author). 36 refs., 16 tabs., 77 figs

  5. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, Ji Sup; Park, B. S.; Park, Y. S.; Oh, S. C.; Kim, S. H.; Cho, M. W.; Hong, D. H.

    1997-12-01

    Since the nation's policy on spent fuel management is not finalized, the technical items commonly required for safe management and recycling of spent fuel - remote technologies of transportation, inspection, maintenance, and disassembly of spent fuel - are selected and pursued. In this regards, the following R and D activities are carried out : collision free transportation of spent fuel assembly, mechanical disassembly of spent nuclear fuel and graphical simulation of fuel handling / disassembly process. (author). 36 refs., 16 tabs., 77 figs

  6. Evaluation of Spent Fuel Recycling Scenario using Pyro-SFR related System

    International Nuclear Information System (INIS)

    Lee, Yong Kyo; Kim, Sang Ji; Kim, Young Jin

    2014-01-01

    It is needed to validate whether the recycling scenario connecting pyro-processing and sodium-cooled fast reactor(SFR) is promising or not. The latest technologies of pyro-processing are applied to SFR and the recycling scenario is evaluated through the SFR's performance analysis. The analyzed SFR is KALIMER-600 TRU burner which purpose is to transmute transuranics (TRU). National policy of CANDU SF management has not been decided yet. However, the stored quantity of this SF is large enough not to be neglected. So this study includes additionally the recycling scenario of CANDU SF. Adopting the mass ratio of TRU and RE recovered in pyro-processing is 4 to 1 on PWR SF recycling, the sodium void reactivity is higher than design basis of metal fuel. So the current pyro-processing technology is may not be acceptable. If pyro-processing technology of CANDU SF is assumed to be the same as PWR's case, CANDU recycling scenario is acceptable. Transmutation performance is worse than PWR's, while the sodium void reactivity is within design limit

  7. Development and application of special instrumentation for materials accountancy and process control in spent fuel recycle plants

    International Nuclear Information System (INIS)

    Clark, P.A.; Gardner, N.; Merrill, N.H.; Whitehouse, K.R.

    1996-01-01

    Safe and optimum operations of spent fuel recycle plants rely on the availability of real time measurement systems at key points in the process. More than thirty types of special instrument systems have been developed and commissioned on the THORP reprocessing plant at Sellafield. These systems are compiled together with the associated information on measurement purpose, measurement technique and plant performance. A number of these measurement systems are of interest to support Safeguards arrangements on the plant. A more detailed overview of two such instrument systems respectively within the Head End and Product Finishing Stages of THORP is provided. The first of these is the Hulls Monitor, based on high resolution gamma spectrometry, as well as active and passive neutron measurements, of the basket of leached fuel cladding. This provides vital data for criticality assurance, nuclear material accountancy and inventory determination for ultimate disposal of the cladding waste. The second system is the Plutonium Inventory Monitoring System (PIMS) which employs passive neutron counting from a distributed array of neutron detectors within the Pu Finishing Line. This provides a near real time estimate of Pu inventories both during operations and at clean out of the Finishing Line. Both the Hulls Monitor and PIMS technologies are applicable to MOX Fuel recycle. Both systems enhance the control of fissile material in key areas of the recycle process which are of interest to the Safeguards authorities. (author)

  8. Spent fuel reprocessing options

    International Nuclear Information System (INIS)

    2008-08-01

    The objective of this publication is to provide an update on the latest developments in nuclear reprocessing technologies in the light of new developments on the global nuclear scene. The background information on spent fuel reprocessing is provided in Section One. Substantial global growth of nuclear electricity generation is expected to occur during this century, in response to environmental issues and to assure the sustainability of the electrical energy supply in both industrial and less-developed countries. This growth carries with it an increasing responsibility to ensure that nuclear fuel cycle technologies are used only for peaceful purposes. In Section Two, an overview of the options for spent fuel reprocessing and their level of development are provided. A number of options exist for the treatment of spent fuel. Some, including those that avoid separation of a pure plutonium stream, are at an advanced level of technological maturity. These could be deployed in the next generation of industrial-scale reprocessing plants, while others (such as dry methods) are at a pilot scale, laboratory scale or conceptual stage of development. In Section Three, research and development in support of advanced reprocessing options is described. Next-generation spent fuel reprocessing plants are likely to be based on aqueous extraction processes that can be designed to a country specific set of spent fuel partitioning criteria for recycling of fissile materials to advanced light water reactors or fast spectrum reactors. The physical design of these plants must incorporate effective means for materials accountancy, safeguards and physical protection. Section four deals with issues and challenges related to spent fuel reprocessing. The spent fuel reprocessing options assessment of economics, proliferation resistance, and environmental impact are discussed. The importance of public acceptance for a reprocessing strategy is discussed. A review of modelling tools to support the

  9. Spent fuel management in Japan

    International Nuclear Information System (INIS)

    Mineo, H.; Nomura, Y.; Sakamoto, K.

    1998-01-01

    In Japan 52 commercial nuclear power units are now operated, and the total power generation capacity is about 45 GWe. The cumulative amount of spent fuel arising is about 13,500 tU as of March 1997. Spent fuel is reprocessed, and recovered nuclear materials are to be recycled in LWRs and FBRs. In February 1997 short-term policy measures were announced by the Atomic Energy Commission, which addressed promotion of reprocessing programme in Rokkasho, plutonium utilization in LWRs, spent fuel management, backend measures and FBR development. With regard to the spent fuel management, the policy measures included expansion of spent fuel storage capacity at reactor sites and a study on spent fuel storage away from reactor sites, considering the increasing amount of spent fuel arising. Research and development on spent fuel storage has been carried out, particularly on dry storage technology. Fundamental studies are also conducted to implement the burnup credit into the criticality safety design of storage and transportation casks. Rokkasho reprocessing plant is being constructed towards its commencement in 2003, and Pu utilization in LWRs will be started in 1999. Research and development of future recycling technology are also continued for the establishment of nuclear fuel cycle based on FBRs and LWRs. (author)

  10. Reuse of spent fuel cladding Zr by molten salt toward advanced recycle society

    International Nuclear Information System (INIS)

    Amano, Osamu; Kobayashi, Hiroaki; Suzuki, Kazunori; Yasuike, Y.; Sato, Nobuaki

    2003-01-01

    Cladding tubes of zircaloy 95% generated from reprocessing process for spent nuclear fuels are to be chopped in about 3 cm length, compacted and solidified with cements. This paper reports the summary of investigation of the present possible techniques for zirconium recovery: (1) electrolysis of molten salts (Zr-chlorides and/or fluorides) and (2) separation as volatile zirconium chlorides (ZrCl 4 ) (chloride volatility process) followed by reaction with metallic magnesium at 900degC to produce sponged Zr (Kroll method). The feasibility are discussed from the point of view of reduction of secondary radioactive wastes, accumulation of such nuclides as Co-60 and Ni-63 in electrolytic basin, radioactivity estimation in the products, and also problems of cleaning and reducing chemicals. (S. Ohno)

  11. Spent fuel treatment in Japan

    International Nuclear Information System (INIS)

    Takahashi, K.

    1999-01-01

    In Japan, 52 nuclear power reactors are operating with a total power generation capacity of 45 GWe. The cumulative amount of spent fuel arising, as of March 1998, is about 14,700 W. Spent fuel is reprocessed and recovered nuclear materials are to be recycled in LWRs and FBRs. Pu utilization in LWRs will commence in 1999. In January 1997, short-term policy measures were announced by the Atomic Energy Commission, which addressed promotion of the reprocessing programme in Rokkasho, plutonium utilization in LWRs, spent fuel management, back-end measures and FBR development. With regard to the spent fuel management, the policy measures included expansion of spent fuel storage capacity at reactor sites and a study on spent fuel storage away-from-reactor sites, considering the increasing amount of spent fuel arising. Valuable experience was been accumulated at the Tokai Reprocessing Plant (TRP), from the start of hot operation in 1977 up to now. The role of the TRP will be changed from an operation-oriented to a more R and D oriented facility, when PNC is reorganized into the new organization JNC. The Rokkasho reprocessing plant is under construction and is expected to commence operation in 2003. R and D of future recycling technologies is also continued for the establishment of a nuclear fuel cycle based on FBRs and LWRs. (author)

  12. Spent fuel management in Japan

    International Nuclear Information System (INIS)

    Shirahashi, K.; Maeda, M.; Nakai, T.

    1996-01-01

    Japan has scarce energy resources and depends on foreign resources for 84% of its energy needs. Therefore, Japan has made efforts to utilize nuclear power as a key energy source since mid-1950's. Today, the nuclear energy produced from 49 nuclear power plants is responsible for about 31% of Japan's total electricity supply. The cumulative amount of spent fuel generated as of March 1995 was about 11,600 Mg U. Japan's policy of spent fuel management is to reprocess spent nuclear fuel and recycle recovered plutonium and uranium as nuclear fuel. The Tokai reprocessing plant continues stable operation keeping the annual treatment capacity or around 90 Mg U. A commercial reprocessing plant is under construction at Rokkasho, northern part of Japan. Although FBR is the principal reactor to use plutonium, LWR will be a major power source for some time and recycling of the fuel in LWRs will be prompted. (author). 3 figs

  13. Spent fuel management in Canada

    International Nuclear Information System (INIS)

    Khan, A.; Pattantyus, P.

    1999-01-01

    The current status of the Canadian spent fuel storage is presented. This includes wet and dry interim storage. Extension of wet interim storage facilities is nor planned, as dry technologies have found wide acceptance. The Canadian nuclear program is sustained by commercial Ontario Hydro CANDU type reactors, since 1971, representing 13600 MW(e) of installed capacity, able to produce 9200 spent fuel bundles (1800 tU) every year, and Hydro Quebec and New Brunswick CANDU reactors each producing 685 MW(e) and about 100 tU of spent fuel annually. The implementation of various interim (wt and dry) storage technologies resulted in simple, dense and low cost systems. Economical factors determined that the open cycle option be adopted for the CANDU type reactors rather that recycling the spent fuel. Research and development activities for immobilization and final disposal of nuclear waste are being undertaken in the Canadian Nuclear Fuel Waste Management Program

  14. Learning and education on environmental radioactivity by residents of Rokkasho Site for the spent fuel recycling facilities

    International Nuclear Information System (INIS)

    Kawauchi, Kiye; Itoh, Natsuko; Ishikawa, Tomiye; Nihonyanagi, Haruko; Aratani, Michi

    2005-01-01

    The neutron criticality accident at the JCO, a private company for nuclear fuel processing facilities in Tokai has drastically changed minds and attitudes of residents toward environmental radioactivity. The accident happened on September 30, 1999. Before the accident the residents of the Rokkasho Site were not anxious about environmental radioactivity, because they thought the facilities were safe enough concerning containment policy of the radioactivity inside the facilities. Residents, however, had not been taught on a neutron. It is an unfamiliar radiation for them. So, they promptly learnt on neutrons, and some of them began the fixed point measurement of neutrons at the nearest site of the Spent Fuel Recycling Facilities of Rokkasho by the help of Prof. Kazuhisa. Komura, Kanazawa University. Members of the Reading Cicle, Rokkasho Culture Society, mainly women, learnt measurements of environmental radioactivity using simplified counters for alpha-, beta-, and gamma-ray from natural radioactive elements and prepared various kinds of environmental samples. After learning of environmental radioactivity, they began educational activities on the environmental radioactivity for boys and girls in the region. Monitoring of environmental radioactivity is performed by different institutions and with their purposes. Here is reported learning of environmental radioactivity by the residents and education of environmental radioactivity toward the young. Even with the simplest counters, we think that the monitoring of environmental radioactivity by the residents themselves is the royal road to the safety of the regional society. (author)

  15. Status and prospects for spent fuel management in France

    International Nuclear Information System (INIS)

    Portal, R.; L'Epine, P. de

    1996-01-01

    The spent fuel arisings and storage capacities, the interface between fuel storage and transportation activities, the spent fuel storage technology, the reprocessing and recycling industrial activities in France are described in the paper. (author). 6 figs, 8 tabs

  16. Spent fuel management in France: Programme status

    International Nuclear Information System (INIS)

    Chaudat, J.P.

    1990-01-01

    France's programme is best characterized as a closed fuel cycle including reprocessing, Plutonium recycling in PWR and use of breeder reactors. The current installed nuclear capacity is 52.5 GWe from 55 units. The spent fuel management scheme chosen is reprocessing. This paper describes the national programme, spent nuclear fuel storage, reprocessing and contracts for reprocessing of spent fuel from various countries. (author). 5 figs, 2 tabs

  17. Spent fuels program

    International Nuclear Information System (INIS)

    Shappert, L.B.

    1983-01-01

    The goal of this task is to support the Domestic Spent Fuel Storage Program through studies involving the transport of spent fuel. A catalog was developed to provide authoritative, timely, and accessible transportation information for persons involved in the transport of irradiated reactor fuel. The catalog, drafted and submitted to the Transportation Technology Center, Sandia National Laboratories, for their review and approval, covers such topics as federal, state, and local regulations, spent fuel characteristics, cask characteristics, transportation costs, and emergency response information

  18. Spent nuclear fuel storage

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2005-01-01

    When a country becomes self-sufficient in part of the nuclear cycle, as production of fuel that will be used in nuclear power plants for energy generation, it is necessary to pay attention for the best method of storing the spent fuel. Temporary storage of spent nuclear fuel is a necessary practice and is applied nowadays all over the world, so much in countries that have not been defined their plan for a definitive repository, as well for those that already put in practice such storage form. There are two main aspects that involve the spent fuels: one regarding the spent nuclear fuel storage intended to reprocessing and the other in which the spent fuel will be sent for final deposition when the definitive place is defined, correctly located, appropriately characterized as to several technical aspects, and licentiate. This last aspect can involve decades of studies because of the technical and normative definitions at a given country. In Brazil, the interest is linked with the storage of spent fuels that will not be reprocessed. This work analyses possible types of storage, the international panorama and a proposal for future construction of a spent nuclear fuel temporary storage place in the country. (author)

  19. Spent fuel management

    International Nuclear Information System (INIS)

    2005-01-01

    The production of nuclear electricity results in the generation of spent fuel that requires safe, secure and efficient management. Appropriate management of the resulting spent fuel is a key issue for the steady and sustainable growth of nuclear energy. Currently about 10,000 tonnes heavy metal (HM) of spent fuel are unloaded every year from nuclear power reactors worldwide, of which 8,500 t HM need to be stored (after accounting for reprocessed fuel). This is the largest continuous source of civil radioactive material generated, and needs to be managed appropriately. Member States have referred to storage periods of 100 years and even beyond, and as storage quantities and durations extend, new challenges arise in the institutional as well as in the technical area. The IAEA gives high priority to safe and effective spent fuel management. As an example of continuing efforts, the 2003 International Conference on Storage of Spent Fuel from Power Reactors gathered 125 participants from 35 member states to exchange information on this important subject. With its large number of Member States, the IAEA is well-positioned to gather and share information useful in addressing Member State priorities. IAEA activities on this topic include plans to produce technical documents as resources for a range of priority topics: spent fuel performance assessment and research, burnup credit applications, cask maintenance, cask loading optimization, long term storage requirements including records maintenance, economics, spent fuel treatment, remote technology, and influence of fuel design on spent fuel storage. In addition to broader topics, the IAEA supports coordinated research projects and technical cooperation projects focused on specific needs

  20. Spent fuel workshop'2002

    International Nuclear Information System (INIS)

    Poinssot, Ch.

    2002-01-01

    This document gathers the transparencies of the presentations given at the 2002 spent fuel workshop: Session 1 - Research Projects: Overview on the IN CAN PROCESSES European project (M. Cowper), Overview on the SPENT FUEL STABILITY European project (C. Poinssot), Overview on the French R and D project on spent fuel long term evolution, PRECCI (C. Poinssot); Session 2 - Spent Fuel Oxidation: Oxidation of uranium dioxide single crystals (F. Garrido), Experimental results on SF oxidation and new modeling approach (L. Desgranges), LWR spent fuel oxidation - effects of burn-up and humidity (B. Hanson), An approach to modeling CANDU fuel oxidation under dry storage conditions (P. Taylor); Session 3 - Spent Fuel Dissolution Experiments: Overview on high burnup spent fuel dissolution studies at FZK/INE (A. Loida), Results on the influence of hydrogen on spent fuel leaching (K. Spahiu), Leaching of spent UO 2 fuel under inert and reducing conditions (Y. Albinsson), Fuel corrosion investigation by electrochemical techniques (D. Wegen), A reanalysis of LWR spent fuel flow through dissolution tests (B. Hanson), U-bearing secondary phases formed during fuel corrosion (R. Finch), The near-field chemical conditions and spent fuel leaching (D. Cui), The release of radionuclides from spent fuel in bentonite block (S.S. Kim), Trace actinide behavior in altered spent fuel (E. Buck, B. Hanson); Session 4 - Radiolysis Issues: The effect of radiolysis on UO 2 dissolution determined from electrochemical experiments with 238 Pu doped UO 2 M. Stroess-Gascoyne (F. King, J.S. Betteridge, F. Garisto), doped UO 2 studies (V. Rondinella), Preliminary results of static and dynamic dissolution tests with α doped UO 2 in Boom clay conditions (K. Lemmens), Studies of the behavior of UO 2 / water interfaces under He 2+ beam (C. Corbel), Alpha and gamma radiolysis effects on UO 2 alteration in water (C. Jegou), Behavior of Pu-doped pellets in brines (M. Kelm), On the potential catalytic behavior of

  1. HTGR spent fuel storage study

    International Nuclear Information System (INIS)

    Burgoyne, R.M.; Holder, N.D.

    1979-04-01

    This report documents a study of alternate methods of storing high-temperature gas-cooled reactor (HTGR) spent fuel. General requirements and design considerations are defined for a storage facility integral to a fuel recycle plant. Requirements for stand-alone storage are briefly considered. Three alternate water-cooled storage conceptual designs (plug well, portable well, and monolith) are considered and compared to a previous air-cooled design. A concept using portable storage wells in racks appears to be the most favorable, subject to seismic analysis and economic evaluation verification

  2. Disposal of spent fuel

    International Nuclear Information System (INIS)

    Blomeke, J.O.; Ferguson, D.E.; Croff, A.G.

    1978-01-01

    Based on preliminary analyses, spent fuel assemblies are an acceptable form for waste disposal. The following studies appear necessary to bring our knowledge of spent fuel as a final disposal form to a level comparable with that of the solidified wastes from reprocessing: 1. A complete systems analysis is needed of spent fuel disposition from reactor discharge to final isolation in a repository. 2. Since it appears desirable to encase the spent fuel assembly in a metal canister, candidate materials for this container need to be studied. 3. It is highly likely that some ''filler'' material will be needed between the fuel elements and the can. 4. Leachability, stability, and waste-rock interaction studies should be carried out on the fuels. The major disadvantages of spent fuel as a disposal form are the lower maximum heat loading, 60 kW/acre versus 150 kW/acre for high-level waste from a reprocessing plant; the greater long-term potential hazard due to the larger quantities of plutonium and uranium introduced into a repository; and the possibility of criticality in case the repository is breached. The major advantages are the lower cost and increased near-term safety resulting from eliminating reprocessing and the treatment and handling of the wastes therefrom

  3. Spent fuel storage facility, Kalpakkam

    International Nuclear Information System (INIS)

    Shreekumar, B.; Anthony, S.

    2017-01-01

    Spent Fuel Storage Facility (SFSF), Kalpakkam is designed to store spent fuel arising from PHWRs. Spent fuel is transported in AERB qualified/authorized shipping cask by NPCIL to SFSF by road or rail route. The spent fuel storage facility at Kalpakkam was hot commissioned in December 2006. All systems, structures and components (SSCs) related to safety are designed to meet the operational requirements

  4. Spent fuel storage and isolation

    International Nuclear Information System (INIS)

    Bensky, M.S.; Kurzeka, W.J.; Bauer, A.A.; Carr, J.A.; Matthews, S.C.

    1979-02-01

    The principal spent fuel activities conducted within the commercial waste and spent fuel within the Commercial Waste and Spent Fuel Packaging Program are: simulated near-surface (drywell) storage demonstrations at Hanford and the Nevada Test Site; surface (sealed storage cask) and drywell demonstrations at the Nevada Test Site; and spent fuel receiving and packaging facility conceptual design. These investigations are described

  5. Transport and storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Lung, M.; Lenail, B.

    1987-01-01

    From a safety standpoint, spent fuel is clearly not ideal for permanent disposal and reprocessing is the best method of preparing wastes for long-term storage in a repository. Furthermore, the future may demonstrate that some fission products recovered in reprocessing have economic applications. Many countries have in fact reached the point at which the recycling of plutonium and uranium from spent fuel is economical in LWR's. Even in countries where this is not yet evident, (i.e., the United States), the French example shows that the day will come when spent fuel will be retrieved for reprocessing and recycle. It is highly questionable whether spent fuel will ever be considered and treated as waste in the same sense as fission products and processed as such, i.e., packaged in a waste form for permanent disposal. Even when recycled fuel material can no longer be reused in LWR's because of poor reactivity, it will be usable in FBR's. Based on the considerable experience gained by SGN and Cogema, this paper has provided practical discussion and illustrations of spent fuel transport and storage of a very important step in the nuclear fuel management process. The best of spent fuel storage depends on technical, economic and policy considerations. Each design has a role to play and we hope that the above discussion will help clarify certain issues

  6. Development of spent fuel dry storage technology

    International Nuclear Information System (INIS)

    Maruoka, Kunio; Matsunaga, Kenichi; Kunishima, Shigeru

    2000-01-01

    The spent fuels are the recycle fuel resources, and it is very important to store the spent fuels in safety. There are two types of the spent fuel interim storage system. One is wet storage system and another is dry storage system. In this study, the dry storage technology, dual purpose metal cask storage and canister storage, has been developed. For the dual purpose metal cask storage, boronated aluminum basket cell, rational cask body shape and shaping process have been developed, and new type dual purpose metal cask has been designed. For the canister storage, new type concrete cask and high density vault storage technology have been developed. The results of this study will be useful for the spent fuel interim storage. Safety and economical spent fuel interim storage will be realized in the near future. (author)

  7. Guidebook on spent fuel storage

    International Nuclear Information System (INIS)

    1984-01-01

    The Guidebook summarizes the experience and information in various areas related to spent fuel storage: technological aspects, the transport of spent fuel, economical, regulatory and institutional aspects, international safeguards, evaluation criteria for the selection of a specific spent fuel storage concept, international cooperation on spent fuel storage. The last part of the Guidebook presents specific problems on the spent fuel storage in the United Kingdom, Sweden, USSR, USA, Federal Republic of Germany and Switzerland

  8. The cost of spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Palacios H, J. C.; Badillo, V.; Alonso, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    Spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments, constructing repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution?, or What is the best technology for an specific solution? Many countries have deferred the decision on selecting an option, while others works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However currently, the plants are under a process for extended power up-rate to 20% of original power and also there are plans to extended operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. (Author)

  9. Spent fuel pyroprocessing demonstration

    International Nuclear Information System (INIS)

    McFarlane, L.F.; Lineberry, M.J.

    1995-01-01

    A major element of the shutdown of the US liquid metal reactor development program is managing the sodium-bonded spent metallic fuel from the Experimental Breeder Reactor-II to meet US environmental laws. Argonne National Laboratory has refurbished and equipped an existing hot cell facility for treating the spent fuel by a high-temperature electrochemical process commonly called pyroprocessing. Four products will be produced for storage and disposal. Two high-level waste forms will be produced and qualified for disposal of the fission and activation products. Uranium and transuranium alloys will be produced for storage pending a decision by the US Department of Energy on the fate of its plutonium and enriched uranium. Together these activities will demonstrate a unique electrochemical treatment technology for spent nuclear fuel. This technology potentially has significant economic and technical advantages over either conventional reprocessing or direct disposal as a high-level waste option

  10. Spent Fuel in Chile

    International Nuclear Information System (INIS)

    López Lizana, F.

    2015-01-01

    The government has made a complete and serious study of many different aspects and possible road maps for nuclear electric power with strong emphasis on safety and energy independence. In the study, the chapter of SFM has not been a relevant issue at this early stage due to the fact that it has been left for later implementation stage. This paper deals with the options Chile might consider in managing its Spent Fuel taking into account foreign experience and factors related to safety, economics, public acceptance and possible novel approaches in spent fuel treatment. The country’s distinctiveness and past experience in this area taking into account that Chile has two research reactors which will have an influence in the design of the Spent Fuel option. (author)

  11. Japan's fuel recycling policy

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The Atomic Energy Commission (AEC) has formulated Japanese nuclear fuel recycling plan for the next 20 years, based on the idea that the supply and demand of plutonium should be balanced mainly through the utilization of plutonium for LWRs. The plan was approved by AEC, and is to be incorporated in the 'Long term program for development and utilization of nuclear energy' up for revision next year. The report on 'Nuclear fuel recycling in Japan' by the committee is characterized by Japanese nuclear fuel recycling plan and the supply-demand situation for plutonium, the principle of the possession of plutonium not more than the demand in conformity with nuclear nonproliferation attitude, and the establishment of a domestic fabrication system of uranium-plutonium mixed oxide fuel. The total plutonium supply up to 2010 is estimated to be about 85 t, on the other hand, the demand will be 80-90 t. The treatment of plutonium is the key to the recycling and utilization of nuclear fuel. By around 2000, the private sector will commercialize the fabrication of the MOX fuel for LWRs at the annual rate of about 100 t. Commitment to nuclear nonproliferation, future nuclear fuel recycling program in Japan, MOX fuel fabrication system in Japan and so on are reported. (K.I.)

  12. Spent fuel dissolution mechanisms

    International Nuclear Information System (INIS)

    Ollila, K.

    1993-11-01

    This study is a literature survey on the dissolution mechanisms of spent fuel under disposal conditions. First, the effects of radiolysis products on the oxidative dissolution mechanisms and rates of UO 2 are discussed. These effects have mainly been investigated by using electrochemical methods. Then the release mechanisms of soluble radionuclides and the dissolution of the UO 2 matrix including the actinides, are treated. Experimental methods have been developed for measuring the grain-boundary inventories of radionuclides. The behaviour of cesium, strontium and technetium in leaching tests shows different trends. Comparison of spent fuel leaching data strongly suggests that the release of 90 Sr into the leachant can be used as a measure of the oxidation/dissolution of the fuel matrix. Approaches to the modelling UO 2 , dissolution are briefly discussed in the next chapter. Lastly, the use of natural material, uraninite, in the evaluation of the long-term performance of spent fuel is discussed. (orig.). (81 ref., 37 figs., 8 tabs.)

  13. Nuclear fuel recycling system

    International Nuclear Information System (INIS)

    Lee, H.R.; Koch, A.K.; Krawczyk, A.

    1981-01-01

    A process is provided for recycling sintered uranium dioxide fuel pellets rejected during fuel manufacture and the swarf from pellet grinding. The scrap material is prepared mechanically by crushing and milling as a high solids content slurry, using scrap sintered UO 2 pellets as the grinding medium under an inert atmosophere

  14. Encapsulating spent nuclear fuel

    International Nuclear Information System (INIS)

    Fleischer, L.R.; Gunasekaran, M.

    1979-01-01

    A system is described for encapsulating spent nuclear fuel discharged from nuclear reactors in the form of rods or multi-rod assemblies. The rods are completely and contiguously enclosed in concrete in which metallic fibres are incorporated to increase thermal conductivity and polymers to decrease fluid permeability. This technique provides the advantage of acceptable long-term stability for storage over the conventional underwater storage method. Examples are given of suitable concrete compositions. (UK)

  15. Spent Fuel Management Newsletter. No. 1

    International Nuclear Information System (INIS)

    1990-03-01

    This Newsletter has been prepared in accordance with the recommendations of the International Regular Advisory Group on Spent Fuel Management and the Agency's programme (GC XXXII/837, Table 76, item 14). The main purpose of the Newsletter is to provide Member States with new information about the state-of-the-art in one of the most important parts of the nuclear fuel cycle - Spent Fuel Management. The contents of this publication consists of two parts: (1) IAEA Secretariat contribution -work and programme of the Nuclear Materials and Fuel Cycle Technology Section of the Division of Nuclear Fuel Cycle and Waste Management, recent and planned meetings and publications, Technical Co-operation projects, Co-ordinated Research programmes, etc. (2) Country reports - national programmes on spent fuel management: current and planned storage and reprocessing capacities, spent fuel arisings, safety, transportation, storage, treatment of spent fuel, some aspects of uranium and plutonium recycling, etc. The IAEA expects to publish the Newsletter once every two years between the publications of the Regular Advisory Group on Spent Fuel Management. Figs and tabs

  16. The spent fuel safety experiment

    International Nuclear Information System (INIS)

    Harmms, G.A.; Davis, F.J.; Ford, J.T.

    1995-01-01

    The Department of Energy is conducting an ongoing investigation of the consequences of taking fuel burnup into account in the design of spent fuel transportation packages. A series of experiments, collectively called the Spent Fuel Safety Experiment (SFSX), has been devised to provide integral benchmarks for testing computer-generated predictions of spent fuel behavior. A set of experiments is planned in which sections of unirradiated fuel rods are interchanged with similar sections of spent PWR fuel rods in a critical assembly. By determining the critical size of the arrays, one can obtain benchmark data for comparison with criticality safety calculations. The integral reactivity worth of the spent fuel can be assessed by comparing the measured delayed critical fuel loading with and without spent fuel. An analytical effort to model the experiments and anticipate the core loadings required to yield the delayed critical conditions runs in parallel with the experimental effort

  17. Spent fuel reprocessing method

    International Nuclear Information System (INIS)

    Shoji, Hirokazu; Mizuguchi, Koji; Kobayashi, Tsuguyuki.

    1996-01-01

    Spent oxide fuels containing oxides of uranium and transuranium elements are dismantled and sheared, then oxide fuels are reduced into metals of uranium and transuranium elements in a molten salt with or without mechanical removal of coatings. The reduced metals of uranium and transuranium elements and the molten salts are subjected to phase separation. From the metals of uranium and transuranium elements subjected to phase separation, uranium is separated to a solid cathode and transuranium elements are separated to a cadmium cathode by an electrolytic method. Molten salts deposited together with uranium to the solid cathode, and uranium and transuranium elements deposited to the cadmium cathode are distilled to remove deposited molten salts and cadmium. As a result, TRU oxides (solid) such as UO 2 , Pu 2 in spent fuels can be reduced to U and TRU by a high temperature metallurgical method not using an aqueous solution to separate them in the form of metal from other ingredients, and further, metal fuels can be obtained through an injection molding step depending on the purpose. (N.H.)

  18. Spent fuel storage requirements

    International Nuclear Information System (INIS)

    Fletcher, J.

    1982-06-01

    Spent fuel storage requirements, as projected through the year 2000 for U.S. LWRs, were calculated using information supplied by the utilities reflecting plant status as of December 31, 1981. Projections through the year 2000 combined fuel discharge projections of the utilities with the assumed discharges of typical reactors required to meet the nuclear capacity of 165 GWe projected by the Energy Information Administration (EIA) for the year 2000. Three cases were developed and are summarized. A reference case, or maximum at-reactor (AR) capacity case, assumes that all reactor storage pools are increased to their maximum capacities as estimated by the utilities for spent fuel storage utilizing currently licensed technologies. The reference case assumes no transshipments between pools except as currently licensed by the Nuclear Regulatory Commission (NRC). This case identifies an initial requirement for 13 MTU of additional storage in 1984, and a cumulative requirement for 14,490 MTU additional storage in the year 2000. The reference case is bounded by two alternative cases. One, a current capacity case, assumes that only those pool storage capacity increases currently planned by the operating utilities will occur. The second, or maximum capacity with transshipment case, assumes maximum development of pool storage capacity as described above and also assumes no constraints on transshipment of spent fuel among pools of reactors of like type (BWR, PWR) within a given utility. In all cases, a full core discharge capability (full core reserve or FCR) is assumed to be maintained for each reactor, except that only one FCR is maintained when two reactors share a common pool. For the current AR capacity case the indicated storage requirements in the year 2000 are indicated to be 18,190 MTU; for the maximum capacity with transshipment case they are 11,320 MTU

  19. Spent fuel transportation problems

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kosarev, Yu.A.; Yulikov, E.A.

    1977-01-01

    In this paper, problems of transportation of nuclear spent fuel to reprocessing plants are discussed. The solutions proposed are directed toward the achievement of the transportation as economic and safe as possible. The increase of the nuclear power plants number in the USSR and the great distances between these plants and the reprocessing plants involve an intensification of the spent fuel transportation. Higher burnup and holdup time reduction cause the necessity of more bulky casks. In this connection, the economic problems become still more important. One of the ways of the problem solution is the development of rational and cheap cask designs. Also, the enforcement in the world of the environmental and personnel health protection requires to increase the transportation reliability and safety. The paper summarizes safe transportation rules with clarifying the following questions: the increase of the transport unit quantity of the spent fuel; rational shipment organization that minimizes vehicle turnover cycle duration; development of the reliable calculation methods to determine strength, thermal conditions and nuclear safety of transport packaging as applied to the vehicles of high capacity; maximum unification of vehicles, calculation methods and documents; and cask testing on models and in pilot scale on specific test rigs to assure that they meet the international safe fuel shipment rules. Besides, some considerations on the choice and use of structural materials for casks are given, and problems of manufacturing such casks from uranium and lead are considered, as well as problems of the development of fireproof shells, control instrumentation, vehicles decontamination, etc. All the problems are considered from the point of view of normal and accidental shipment conditions. Conclusions are presented [ru

  20. Spent fuel: prediction model development

    International Nuclear Information System (INIS)

    Almassy, M.Y.; Bosi, D.M.; Cantley, D.A.

    1979-07-01

    The need for spent fuel disposal performance modeling stems from a requirement to assess the risks involved with deep geologic disposal of spent fuel, and to support licensing and public acceptance of spent fuel repositories. Through the balanced program of analysis, diagnostic testing, and disposal demonstration tests, highlighted in this presentation, the goal of defining risks and of quantifying fuel performance during long-term disposal can be attained

  1. Overview of HTGR fuel recycle

    International Nuclear Information System (INIS)

    Notz, K.J.

    1976-01-01

    An overview of HTGR fuel recycle is presented, with emphasis placed on reprocessing and fuel kernel refabrication. Overall recycle operations include (1) shipment and storage, (2) reprocessing, (3) refabrication, (4) waste handling, and (5) accountability and safeguards

  2. Spent fuel management in India

    International Nuclear Information System (INIS)

    Balu, K.

    1998-01-01

    From Indian point of view, the spent fuel management by the reprocessing and plutonium recycle option is considered to be a superior and an inevitable option. The nuclear energy programme in Indian envisages three stages of implementation involving installation of thermal reactors in the first phase followed by recycling of plutonium from reprocessed fuel in fast breeder reactors and in the third phase utilization of its large thorium reserves in reactor system based on U-233-Th cycle. The Indian programme for Waste Management envisages disposal of low and intermediate level radioactive waste in near surface disposal facilities and deep geological disposal for high level and alpha bearing wastes. A Waste Immobilization Plant (WHIP), employing metallic melter for HLW vitrification is operational at Tarapur. Two more WIPs are being set up at Kalpakkam and Tarapur. A Solid waste Storage Surveillance Facility (SSSF) is also set up for interim storage of vitrified HLW. Site investigations are in progress for selecting site for ultimate disposal in igneous rock formations. R and D works is taken up on partitioning of HLW. Solvent extraction and extraction chromatographic studies are in progress. Presently emphasis is on separation of heat generating short lived nuclides like strontium and alpha emitters. (author)

  3. Evaluation of the recycling costs, as a disposal form of the spent nuclear fuel; Evaluacion de los costos del reciclado como una forma de disposicion del combustible nuclear gastado

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J.R.; Alonso V, G.; Palacios, J.C. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jrrs@nuclear.inin.mx

    2006-07-01

    At the moment there are 2 BWR reactors operating in the Nuclear Power station of Laguna Verde in Mexico. At the end of the programmed life of the reactors (40 years) its will have completed 26 operation cycles, with will have 6712 spent fuel assemblies will be in the pools of the power station. Up to now, the decision on the destination of the high level wastes (spent nuclear fuel) it has not been determined in Mexico, the same as in other countries, adopting a politics of 'to wait to see that it happens in the world', in this respect, in the world two practical alternatives exist, one is to store the fuel in repositories designed for that end, another is reprocess the fuel to recycle the plutonium contained in it, both solutions have their particular technical and economic problematic. In this work it is evaluated from the economic point of view the feasibility of having the spent fuel, using the one recycled fuel, for that which thinks about a consistent scenario of a BWR reactor in which the fuel discharged in each operation cycle is reprocessed and its are built fuel assemblies of the MOX type to replace partly to the conventional fuel. This scenario shows an alternative to the indefinite storage of the high level radioactive waste. The found results when comparing from the economic point of view both options, show that the one recycled, even with the current costs of the uranium it is of the order of 7% more expensive that the option of storing the fuel in repositories constructed for that purpose. However the volumes of spent fuel decrease in 66%. (Author)

  4. Preliminary design and analysis on nuclear fuel cycle for fission-fusion hybrid spent fuel burner

    International Nuclear Information System (INIS)

    Chen Yan; Wang Minghuang; Jiang Jieqiong

    2012-01-01

    A wet-processing-based fuel cycle and a dry-processing were designed for a fission-fusion hybrid spent fuel burner (FDS-SFB). Mass flow of SFB was preliminarily analyzed. The feasibility analysis of initial loaded fuel inventory, recycle fuel fabrication and spent fuel reprocessing were preliminarily evaluated. The results of mass flow of FDS-SFB demonstrated that the initial loaded fuel inventory, recycle fuel fabrication and spent fuel reprocessing of nuclear fuel cycle of FDS-SFB is preliminarily feasible. (authors)

  5. Spent fuel interim storage

    International Nuclear Information System (INIS)

    Bilegan, Iosif C.

    2003-01-01

    The official inauguration of the spent fuel interim storage took place on Monday July 28, 2003 at Cernavoda NNP. The inaugural event was attended by local and central public authority representatives, a Canadian Government delegation as well as newsmen from local and central mass media and numerous specialists from Cernavoda NPP compound. Mr Andrei Grigorescu, State Secretary with the Economy and Commerce Ministry, underlined in his talk the importance of this objective for the continuous development of nuclear power in Romania as well as for Romania's complying with the EU practice in this field. Also the excellent collaboration between the Canadian contractor AECL and the Romanian partners Nuclear Montaj, CITON, UTI, General Concret in the accomplishment of this unit at the planned terms and costs. On behalf of Canadian delegation, spoke Minister Don Boudria. He underlined the importance which the Canadian Government affords to the cooperation with Romania aiming at specific objectives in the field of nuclear power such as the Cernavoda NPP Unit 2 and spent fuel interim storage. After traditional cutting of the inaugural ribbon by the two Ministers the festivities continued on the Cernavoda NPP Compound with undersigning the documents regarding the project completion and a press conference

  6. Spent fuel storage rack

    International Nuclear Information System (INIS)

    Kurokawa, Hideaki; Kumagaya, Naomi; Oda, Masashi; Matsuda, Masami; Maruyama, Hiromi; Yamanaka, Tsuneyasu.

    1997-01-01

    The structure of a spent fuel storage rack is determined by the material, thickness, size of square cylindrical tubes (the gap between spent fuel assemblies and the square cylindrical tubes) and pitch of the arrangement (the gap between each of the square cylindrical tubes). In the present invention, the thickness and the pitch of the arrangement of the square tubes are optimized while evaluating subcriticality. Namely, when the sum of the thickness of the water gap at the outer side (the pitch of arrangement of the cylindrical tubes) and the thickness of the cylindrical tubes is made constant, the storage rack is formed by determining the thickness of the cylindrical tubes which is smaller than the optimum value among the combination of the thickness of the water gap at the outer side and that of the cylindrical tube under the effective multiplication factor to be performed. Then, the weight of the rack can be reduced, and the burden of the load on the bottom of the pool can be reduced. Further, the amount of the constitutional materials of the rack itself can be reduced thereby capable of reducing the cost for the materials of the rack. (T.M.)

  7. WWER spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Bower, C C; Lettington, C [GEC Alsthom Engineering Systems Ltd., Whetstone (United Kingdom)

    1994-12-31

    Selection criteria for PAKS NPP dry storage system are outlined. They include the following: fuel temperature in storage; sub-criticality assurance (avoidance of criticality for fuel in the unirradiated condition without having to take credit for burn-up); assurance of decay heat removal; dose uptake to the operators and public; protection of environment; volume of waste produced during operation and decommissioning; physical protection of stored irradiated fuel assemblies; IAEA safeguards assurance; storage system versus final disposal route; cost of construction and extent of technology transfer to Hungarian industry. Several available systems are evaluated against these criteria, and as a result the GEC ALSTHOM Modular Vault Dry Store (MVDS) system has been selected. The MVDS is a passively cooled dry storage facility. Its most important technical, safety, licensing and technology transfer characteristics are outlined. On the basis of the experience gained some key questions and considerations related to the East European perspective in the field of spent fuel storage are discussed. 8 figs.

  8. WWER spent fuel storage

    International Nuclear Information System (INIS)

    Bower, C.C.; Lettington, C.

    1994-01-01

    Selection criteria for PAKS NPP dry storage system are outlined. They include the following: fuel temperature in storage; sub-criticality assurance (avoidance of criticality for fuel in the unirradiated condition without having to take credit for burn-up); assurance of decay heat removal; dose uptake to the operators and public; protection of environment; volume of waste produced during operation and decommissioning; physical protection of stored irradiated fuel assemblies; IAEA safeguards assurance; storage system versus final disposal route; cost of construction and extent of technology transfer to Hungarian industry. Several available systems are evaluated against these criteria, and as a result the GEC ALSTHOM Modular Vault Dry Store (MVDS) system has been selected. The MVDS is a passively cooled dry storage facility. Its most important technical, safety, licensing and technology transfer characteristics are outlined. On the basis of the experience gained some key questions and considerations related to the East European perspective in the field of spent fuel storage are discussed. 8 figs

  9. Spent-fuel-storage alternatives

    International Nuclear Information System (INIS)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed

  10. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Park, Seong Won; Shin, Y. J.; Cho, S. H.

    2004-03-01

    The research on spent fuel management focuses on the maximization of the disposal efficiency by a volume reduction, the improvement of the environmental friendliness by the partitioning and transmutation of the long lived nuclides, and the recycling of the spent fuel for an efficient utilization of the uranium source. In the second phase which started in 2001, the performance test of the advanced spent fuel management process consisting of voloxidation, reduction of spent fuel and the lithium recovery process has been completed successfully on a laboratory scale. The world-premier spent fuel reduction hot test of a 5 kgHM/batch has been performed successfully by joint research with Russia and the valuable data on the actinides and FPs material balance and the characteristics of the metal product were obtained with experience to help design an engineering scale reduction system. The electrolytic reduction technology which integrates uranium oxide reduction in a molten LiCl-Li 2 O system and Li 2 O electrolysis is developed and a unique reaction system is also devised. Design data such as the treatment capacity, current density and mass transfer behavior obtained from the performance test of a 5 kgU/batch electrolytic reduction system pave the way for the third phase of the hot cell demonstration of the advanced spent fuel management technology

  11. Reprocessing flowsheet and material balance for MEU spent fuel

    International Nuclear Information System (INIS)

    Abraham, L.

    1978-10-01

    In response to nonproliferation concerns, the high-temperature gas-cooled reactor (HTGR) Fuel Recycle Development Program is investigating the processing requirements for a denatured medium-enriched uranium--thorium (MEU/Th) fuel cycle. Prior work emphasized the processing requirements for a high-enriched uranium--thorium (HEU/Th) fuel cycle. This report presents reprocessing flowsheets for an HTGR/MEU fuel recycle base case. Material balance data have been calculated for reprocessing of spent MEU and recycle fuels in the HTGR Recycle Reference Facility (HRRF). Flowsheet and mass flow effects in MEU-cycle reprocessing are discussed in comparison with prior HEU-cycle flowsheets

  12. Containing method for spent fuel and spent fuel containing vessel

    International Nuclear Information System (INIS)

    Maekawa, Hiromichi; Hanada, Yoshine.

    1996-01-01

    Upon containing spent fuels, a metal vessel main body and a support spacer having fuel containing holes are provided. The support spacer is disposed in the inside of the metal vessel main body, and spent fuel assemblies are loaded in the fuel containing holes. Then, a lid is welded at the opening of the metal vessel main body to provide a sealing state. In this state, heat released from the spent fuel assemblies is transferred to the wall of the metal vessel main body via the support spacer. Since the support spacer has a greater heat conductivity than gases, heat of the spent fuel assemblies tends to be released to the outside, thereby capable of removing heat of the spent fuel assemblies effectively. In addition, since the surfaces of the spent fuel assemblies are in contact with the inner surface of the fuel containing holes of the support spacer, impact-resistance and earthquake-resistance are ensured, and radiation from the spent fuel assemblies is decayed by passing through the layer of the support spacer. (T.M.)

  13. Spent fuel management overview: a global perspective

    International Nuclear Information System (INIS)

    Bonne, A.; Crijns, M.J.; Dyck, P.H.; Fukuda, K.; Mourogov, V.M.

    1999-01-01

    The paper defines the main spent fuel management strategies and options, highlights the challenges for spent fuel storage and gives an overview of the regional balances of spent fuel storage capacity and spent fuel arising. The relevant IAEA activities in the area of spent fuel management are summarised. (author)

  14. The reprocessing-recycling of spent nuclear fuel. Actinides separation - Application to wastes management; Le traitement-recyclage du combustible nucleaire use. La separation des actinides - Application a la gestion des dechets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    After its use in the reactor, the spent fuel still contains lot of recoverable material for an energetic use (uranium, plutonium), but also fission products and minor actinides which represent the residues of nuclear reactions. The reprocessing-recycling of the spent fuel, as it is performed in France, implies the chemical separation of these materials. The development and the industrial implementation of this separation process represent a major contribution of the French science and technology. The reprocessing-recycling allows a good management of nuclear wastes and a significant saving of fissile materials. With the recent spectacular rise of uranium prices, this process will become indispensable with the development of the next generation of fast neutron reactors. This book takes stock of the present and future variants of the chemical process used for the reprocessing of spent fuels. It describes the researches in progress and presents the stakes and recent results obtained by the CEA. content: the separation of actinides, a key factor for a sustainable nuclear energy; the actinides, a discovery of the 20. century; the radionuclides in nuclear fuels; the aquo ions of actinides; some redox properties of actinides; some complexing properties of actinide cations; general considerations about treatment processes; some characteristics of nuclear fuels in relation with their reprocessing; technical goals and specific constraints of the PUREX process; front-end operations of the PUREX process; separation and purification operations of the PUREX process; elaboration of finite products in the framework of the PUREX process; management and treatment of liquid effluents; solid wastes of the PUREX process; towards a joint management of uranium and plutonium: the COEX{sup TM} process; technical options of treatment and recycling techniques; the fuels of generation IV reactors; front-end treatment processes of advanced fuels; hydrometallurgical processes for future fuel

  15. Disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    1979-12-01

    This report addresses the topic of the mined geologic disposal of spent nuclear fuel from Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). Although some fuel processing options are identified, most of the information in this report relates to the isolation of spent fuel in the form it is removed from the reactor. The characteristics of the waste management system and research which relate to spent fuel isolation are discussed. The differences between spent fuel and processed HLW which impact the waste isolation system are defined and evaluated for the nature and extent of that impact. What is known and what needs to be determined about spent fuel as a waste form to design a viable waste isolation system is presented. Other waste forms and programs such as geologic exploration, site characterization and licensing which are generic to all waste forms are also discussed. R and D is being carried out to establish the technical information to develop the methods used for disposal of spent fuel. All evidence to date indicates that there is no reason, based on safety considerations, that spent fuel should not be disposed of as a waste

  16. Dry spent fuel storage licensing

    International Nuclear Information System (INIS)

    Sturz, F.C.

    1995-01-01

    In the US, at-reactor-site dry spent fuel storage in independent spent fuel storage installations (ISFSI) has become the principal option for utilities needing storage capacity outside of the reactor spent fuel pools. Delays in the geologic repository operational date at or beyond 2010, and the increasing uncertainty of the US Department of Energy's (DOE) being able to site and license a Monitored Retrievable Storage (MRS) facility by 1998 make at-reactor-site dry storage of spent nuclear fuel increasingly desirable to utilities and DOE to meet the need for additional spent fuel storage capacity until disposal, in a repository, is available. The past year has been another busy year for dry spent fuel storage licensing. The licensing staff has been reviewing 7 applications and 12 amendment requests, as well as participating in inspection-related activities. The authors have licensed, on a site-specific basis, a variety of dry technologies (cask, module, and vault). By using certified designs, site-specific licensing is no longer required. Another new cask has been certified. They have received one new application for cask certification and two amendments to a certified cask design. As they stand on the brink of receiving multiple applications from DOE for the MPC, they are preparing to meet the needs of this national program. With the range of technical and licensing options available to utilities, the authors believe that utilities can meet their need for additional spent fuel storage capacity for essentially all reactor sites through the next decade

  17. Spent fuel element storage facility

    International Nuclear Information System (INIS)

    Ukaji, Hideo; Yamashita, Rikuo.

    1981-01-01

    Purpose: To always keep water level of a spent fuel cask pit equal with water level of spent fuel storage pool by means of syphon principle. Constitution: The pool water of a spent fuel storage pool is airtightly communicated through a pipe with the pool water of a spent fuel cask, and a gate is provided between the pool and the cask. Since cask is conveyed into the cask pit as the gate close while conveying, the pool water level is raised an amount corresponding to the volume of the cask, and water flow through scattering pipe and the communication pipe to the storage pool. When the fuel is conveyed out of the cask, the water level is lowered in the amount corresponding to the volume in the cask pit, and the water in the pool flow through the communication pipe to the cask pit. (Sekiya, K.)

  18. Assessment of spent fuel cooling

    International Nuclear Information System (INIS)

    Ibarra, J.G.; Jones, W.R.; Lanik, G.F.

    1997-01-01

    The paper presents the methodology, the findings, and the conclusions of a study that was done by the Nuclear Regulatory Commission's Office for Analysis and Evaluation of Operational Data (AEOD) on loss of spent fuel pool cooling. The study involved an examination of spent fuel pool designs, operating experience, operating practices, and procedures. AEOD's work was augmented in the area of statistics and probabilistic risk assessment by experts from the Idaho Nuclear Engineering Laboratory. Operating experience was integrated into a probabilistic risk assessment to gain insight on the risks from spent fuel pools

  19. Spent-fuel-storage alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  20. Method of decladding spent fuel

    International Nuclear Information System (INIS)

    Fukutome, Kazuyuki; Kitagawa, Kazuo.

    1988-01-01

    Purpose: To enable to safety and easy decladding of nuclear fuels thereby reduce the processing cost. Constitution: Upon dismantling of a spent fuel rod, the fuel rod is heated at least to such a temperature that the ductility of a fuel can is recovered, then transported by using seizing rollers, by which the fuel rod is pressurized from the outer circumference to break the nuclear fuels at the inside thereof. Then, the destructed fuels are recovered from both ends of the fuel can. With such a constitution, since the ductility of the fuel can is recovered by heating, when the fuel rod is passed through the rollers in this state, the fuel can is deformed to destroy the nuclear fuels at the inside thereof. Since the nuclear fuels are destroyed into small pieces, they can be taken out easily from both ends of the fuel can. (Kawakami, Y.)

  1. Recycling of spent hydroprocessing catalysts: EURECAT technology

    Energy Technology Data Exchange (ETDEWEB)

    Berrebi, G.; Dufresne, P.; Jacquier, Y. (EURECAT-European Reprocessing Catalysts, La Voulte sur Rhone (France))

    1994-04-01

    Disposal of spent catalyst is a growing concern for all refiners. Environmental regulations are becoming stricter and stricter and there are State recommendations to develop disposal routes which would emphasize recycling as much as possible, and processing the wastes as near as possible to the production center. In this context, EURECAT has developed a recycling process for the hydroprocessing catalysts used in the oil refineries (NiMo, CoMo, NiW on alumina or mixed alumina silica). The process starts with a regeneration of the catalyst to eliminate hydrocarbons, carbon and sulfur. After a caustic roasting, the material is leached to obtain a solution containing mainly molybdenum (or tungsten) and vanadium, and a solid containing essentially alumina, cobalt and/or nickel. Molybdenum and vanadium are separated by an ion exchange resin technique. The solid is processed in an arc furnace to separate the alumina. Nickel and cobalt are separated by conventional solvent extraction to obtain pure metal. Alumina is disposed of as an inert slag. The strength of the process lies in the combination of proven technologies applied by companies whose reliability in their respective field is well known. The aspects concerning spent catalyst handling, packaging and transport are also discussed. 13 refs., 2 figs., 2 tabs.

  2. Spent fuel management in Spain

    International Nuclear Information System (INIS)

    Gonzalez, J.L.

    2002-01-01

    The spent fuel management strategy in Spain is presented. The strategy includes temporary solutions and plans for final disposal. The need for R and D including partitioning and transmutation, as well as the financial constraints are also addressed. (author)

  3. Intermodal transportation of spent fuel

    International Nuclear Information System (INIS)

    Elder, H.K.

    1983-09-01

    Concepts for transportation of spent fuel in rail casks from nuclear power plant sites with no rail service are under consideration by the US Department of Energy in the Commercial Spent Fuel Management program at the Pacific Northwest Laboratory. This report identifies and evaluates three alternative systems for intermodal transfer of spent fuel: heavy-haul truck to rail, barge to rail, and barge to heavy-haul truck. This report concludes that, with some modifications and provisions for new equipment, existing rail and marine systems can provide a transportation base for the intermodal transfer of spent fuel to federal interim storage facilities. Some needed land transportation support and loading and unloading equipment does not currently exist. There are insufficient shipping casks available at this time, but the industrial capability to meet projected needs appears adequate

  4. Transportation of spent MTR fuels

    International Nuclear Information System (INIS)

    Raisonnier, D.

    1997-01-01

    This paper gives an overview of the various aspects of MTR spent fuel transportation and provides in particular information about the on-going shipment of 4 spent fuel casks to the United States. Transnucleaire is a transport and Engineering Company created in 1963 at the request of the French Atomic Energy Commission. The company followed the growth of the world nuclear industry and has now six subsidiaries and affiliated companies established in countries with major nuclear programs

  5. Transportation of spent MTR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Raisonnier, D.

    1997-08-01

    This paper gives an overview of the various aspects of MTR spent fuel transportation and provides in particular information about the on-going shipment of 4 spent fuel casks to the United States. Transnucleaire is a transport and Engineering Company created in 1963 at the request of the French Atomic Energy Commission. The company followed the growth of the world nuclear industry and has now six subsidiaries and affiliated companies established in countries with major nuclear programs.

  6. HFIR spent fuel management alternatives

    International Nuclear Information System (INIS)

    Begovich, J.M.; Green, V.M.; Shappert, L.B.; Lotts, A.L.

    1992-01-01

    The High Flux Isotope Reactor (HFIR) at Martin Marietta Energy Systems' Oak Ridge National Laboratory (ORNL) has been unable to ship its spent fuel to Savannah River Site (SRS) for reprocessing since 1985. The HFIR storage pools are expected to fill up in the February 1994 to February 1995 time frame. If a management altemative to existing HFIR pool storage is not identified and implemented before the HFIR pools are full, the HFIR will be forced to shut down. This study investigated several alternatives for managing the HFIR spent fuel, attempting to identify options that could be implemented before the HFIR pools are full. The options investigated were: installing a dedicated dry cask storage facility at ORNL, increasing HFIR pool storage capacity by clearing the HFIR pools of debris and either close-packing or stacking the spent fuel elements, storing the spent fuel at another ORNL pool, storing the spent fuel in one or more hot cells at ORNL, and shipping the spent fuel offsite for reprocessing or storage elsewhere

  7. Transportation of spent nuclear fuels

    International Nuclear Information System (INIS)

    Meguro, Toshiichi

    1976-01-01

    The spent nuclear fuel taken out of reactors is cooled in the cooling pool in each power station for a definite time, then transported to a reprocessing plant. At present, there is no reprocessing plant in Japan, therefore the spent nuclear fuel is shipped abroad. In this paper, the experiences and the present situation in Japan are described on the transport of the spent nuclear fuel from light water reactors, centering around the works in Tsuruga Power Station, Japan Atomic Power Co. The spent nuclear fuel in Tsuruga Power Station was first transported in Apr. 1973, and since then, about 36 tons were shipped to Britain by 5 times of transport. The reprocessing plant in Japan is expected to start operation in Apr. 1977, accordingly the spent nuclear fuel used for the trial will be transported in Japan in the latter half of this year. Among the permission and approval required for the transport of spent nuclear fuel, the acquisition of the certificate for transport casks and the approval of land and sea transports are main tasks. The relevant laws are the law concerning the regulations of nuclear raw material, nuclear fuel and reactors and the law concerning the safety of ships. The casks used in Tsuruga Power Station and EXL III type, and the charging of spent nuclear fuel, the decontamination of the casks, the leak test, land transport with a self-running vehicle, loading on board an exclusive carrier and sea transport are briefly explained. The casks and the ship for domestic transport are being prepared. (Kato, I.)

  8. Spent Nuclear Fuel project, project management plan

    International Nuclear Information System (INIS)

    Fuquay, B.J.

    1995-01-01

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  9. Intermodal transfer of spent fuel

    International Nuclear Information System (INIS)

    Neuhauser, K.S.; Weiner, R.F.

    1991-01-01

    As a result of the international standardization of containerized cargo handling in ports around the world, maritime shipment handling is particularly uniform. Thus, handier exposure parameters will be relatively constant for ship-truck and ship-rail transfers at ports throughout the world. Inspectors' doses are expected to vary because of jurisdictional considerations. The results of this study should be applicable to truck-to-rail transfers. A study of the movement of spent fuel casks through ports, including the loading and unloading of containers from cargo vessels, afforded an opportunity to estimate the radiation doses to those individuals handling the spent fuels with doses to the public along subsequent transportation routes of the fuel. A number of states require redundant inspections and for escorts over long distances on highways; thus handlers, inspectors, escort personnel, and others who are not normally classified as radiation workers may sustain doses high enough to warrant concern about occupational safety. This paper addresses the question of radiation safety for these workers. Data were obtained during, observation of the offloading of reactor spent fuel (research reactor spent fuel, in this instance) which included estimates of exposure times and distances for handlers, inspectors and other workers during offloading and overnight storage. Exposure times and distance were also for other workers, including crane operators, scale operators, security personnel and truck drivers. RADTRAN calculational models and parameter values then facilitated estimation of the dose to workers during incident-free ship-to-truck transfer of spent fuel

  10. On recycling of nuclear fuel in Japan

    International Nuclear Information System (INIS)

    1992-01-01

    In Japan, atomic energy has become to accomplish the important role in energy supply. Recently the interest in the protection of global environment heightened, and the anxiety on oil supply has been felt due to the circumstances in Mideast. Therefore, the importance of atomic energy as an energy source for hereafter increased, and the future plan of nuclear fuel recycling in Japan must be promoted on such viewpoint. At present in Japan, the construction of nuclear fuel cycle facilities is in progress in Rokkasho, Aomori Prefecture. The prototype FBR 'Monju' started the general functional test in May, this year. The transport of the plutonium reprocessed in U.K. and France to Japan will be carried out in near future. This report presents the concrete measures of nuclear fuel recycling in Japan from the long term viewpoint up to 2010. The necessity and meaning of nuclear fuel recycling in Japan, the effort related to nuclear nonproliferation, the plan of nuclear fuel recycling for hereafter in Japan, the organization of MOX fuel fabrication in Japan and abroad, the method of utilizing recovered uranium and the reprocessing of spent MOX fuel are described. (K.I.)

  11. Transport device of spent fuel

    International Nuclear Information System (INIS)

    Watanabe, Takashi.

    1976-01-01

    Object: To provide a transport device of spent fuel particularly used in a fast breeder, which can enhance accessibility to travelling mechanism portions and exchangeability thereof to facilitate maintenance in the event of failure. Structure: On a travelling floor, which has a function to shield radioactive rays, extending in a direction of transporting spent fuel and being formed with a break passing through in a direction wall thickness, a travelling body is moved along the break. The travelling body has a support rod member mounted thereon, and the support rod member is moved within the break, the support rod member having a fuel support pocket suspended therefrom. (Furukawa, Y.)

  12. Spent fuel storage requirements, 1988

    International Nuclear Information System (INIS)

    1988-10-01

    Historical inventories of spent fuel and Department of Energy (DOE) estimates of future discharges from US commercial nuclear reactors are presented for the next 20 years, through the year 2007. The eventual needs for additional spent fuel storage capacity are estimated. These estimates are based on the maximum capacities within current and planned at-reactor facilities and on any planned transshipments of fuel to other reactors or facilities. Historical data through December 1987 and projected discharges through the end of reactor life are used in this analysis. The source data was supplied by the utilities to DOE through the 1988 RW-859 data survey and by DOE estimates of future nuclear capacity, generation, and spent fuel discharges. 12 refs., 3 figs., 28 tabs

  13. Safeguards and nonproliferation aspects of a dry fuel recycling technology

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1993-01-01

    Los Alamos National Laboratory undertook an independent assessment of the proliferation potentials and safeguardability of a dry fuel recycling technology, whereby spent pressurized-water reactor (PWR) fuels are used to fuel canadian deuterium uranium (CANDU) reactors. Objectives of this study included (1) the evaluation of presently available technologies that may be useful to safeguard technology options for dry fuel recycling (2) and identification of near-term and long-term research needs to develop process-specific safeguards requirements. The primary conclusion of this assessment is that like all other fuel cycle alternatives proposed in the past, the dry fuel recycle entails prolfferation risks and that there are no absolute technical fixes to eliminate such risks. This study further concludes that the proliferation risks of dry fuel recycling options are relatively minimal and presently known safeguards systems and technologies can be modified and/or adapted to meet the requirements of safeguarding such fuel recycle facilities

  14. Spent fuel storage

    International Nuclear Information System (INIS)

    Huppert

    1976-01-01

    To begin with, the author explains the reasons for intermediate storage of fuel elements in nuclear power stations and in a reprocessing plant and gives the temperature and radioactivity curves of LWR fuel elements after removal from the reactor. This is followed by a description of the facilities for fuel element storage in a reprocessing plant and of their functions. Futher topics are criticality and activity control, the problem of cooling time and safety systems. (HR) [de

  15. TMI-2 spent fuel shipping

    International Nuclear Information System (INIS)

    Quinn, G.J.; Burton, H.M.

    1985-01-01

    TMI-2 failed fuel will be shipped to the Idaho National Engineering Laboratory for use in the DOE Core Examination Program. The fuel debris will be loaded into three types of canisters during defueling and dry loaded into a spent fuel shipping cask. The cask design accommodates seven canisters per cask and has two separate containment vessels with ''leaktight'' seals. Shipments are expectd to begin in early 1986

  16. Container for spent fuel assembly

    International Nuclear Information System (INIS)

    Sawai, Takeshi.

    1996-01-01

    The container of the present invention comprises a container main body having a body portion which can contain spent fuel assemblies and a lid, and heat pipes having an evaporation portion disposed along the outer surface of the spent fuel assemblies to be contained and a condensation portion exposed to the outside of the container main body. Further, the heat pipe is formed spirally at the evaporation portions so as to surround the outer circumference of the spent fuel assemblies, branched into a plurality of portions at the condensation portion, each of the branched portion of the condensation portion being exposed to the outside of the container main body, and is tightly in contact with the periphery of the slit portions disposed to the container main body. Then, since released after heat is transferred to the outside of the container main body from the evaporation portion of the heat pipe along the outer surface of the spent fuel assemblies by way of the condensation portion of the heat pipes exposed to the outside of the container main body, the efficiency of the heat transfer is extremely improved to enhance the effect of removing heat of spent fuel assemblies. Further, cooling effect is enhanced by the spiral form of the evaporation portion and the branched condensation portion. (N.H.)

  17. MOX fuel reprocessing and recycling

    International Nuclear Information System (INIS)

    Guillet, J.L.

    1990-01-01

    This paper is devoted to the reprocessing of MOX fuel in UP2-800 plant at La Hague, and to the MOX successive reprocessing and recycling. 1. MOX fuel reprocessing. In a first step, the necessary modifications in UP2-800 to reprocess MOX fuel are set out. Early in the UP2-800 project, actions have been taken to reprocess MOX fuel without penalty. They consist in measures regarding: Dissolution; Radiological shieldings; Nuclear instrumentation; Criticality. 2. Mox successive reprocessing and recycling. The plutonium recycling in the LWR is now a reality and, as said before, the MOX fuel reprocessing is possible in UP2-800 plant at La Hague. The following actions in this field consist in verifying the MOX successive reprocessing and recycling possibilities. After irradiation, the fissile plutonium content of irradiated MOX fuel is decreased and, in this case, the re-use of plutonium in the LWR need an important increase of initial Pu enrichment inconsistent with the Safety reactor constraints. Cogema opted for reprocessing irradiated MOX fuel in dilution with the standard UO2 fuel in appropriate proportions (1 MOX for 4 UO2 fuel for instance) in order to save a fissile plutonium content compatible with MOX successive recycling (at least 3 recyclings) in LWR. (author). 2 figs

  18. Spent fuel storage pool

    International Nuclear Information System (INIS)

    Murakami, Naoshi.

    1996-01-01

    Fences are disposed to a fuel exchange floor surrounding the upper surface of a fuel pool for preventing overflow of pool water. The fences comprise a plurality of flat boards arranged in parallel with each other in the longitudinal direction while being vertically inclined, and slits are disposed between the boards for looking down the pool. Further, the fences comprise wide boards and are constituted so as to be laid horizontally on the fuel exchange floor in a normal state and uprisen by means of the signals from an earthquake sensing device. Even if pool water is overflow from the fuel pool by the vibrations occurred upon earthquake and flown out to the floor of the fuel exchange floor, the overflow from the fuel exchange floor is prevented by the fences. An operator who monitors the fuel pool can observe the inside of the fuel pool through the slits formed to the fences during normal operation. The fences act as resistance against overflowing water upon occurrence of an earthquake thereby capable of reducing the overflowing amount of water due to the vibrations of pool water. The effect of preventing overflowing water can be enhanced. (N.H.)

  19. Extended storage of spent fuel

    International Nuclear Information System (INIS)

    1992-10-01

    This document is the final report on the IAEA Co-ordinated Research Programme on the Behaviour of Spent Fuel and Storage Facility Components during Long Term Storage (BEFAST-II, 1986-1991). It contains the results on wet and dry spent fuel storage technologies obtained from 16 organizations representing 13 countries who participated in the co-ordinated research programme. Considerable quantities of spent fuel continue to arise and accumulate. Many countries are investigating the option of extended spent fuel storage prior to reprocessing or fuel disposal. Wet storage continues to predominate as an established technology with the construction of additional away-from-reactor storage pools. However, dry storage is increasingly used with most participants considering dry storage concepts for the longer term. Depending on the cladding type options of dry storage in air or inert gas are proposed. Dry storage is becoming widely used as a supplement to wet storage for zirconium alloy clad oxide fuels. Storage periods as long as under wet conditions appear to be feasible. Dry storage will also continue to be used for Al clad and Magnox type fuel. Enhancement of wet storage capacity will remain an important activity. Rod consolidation to increase wet storage capacity will continue in the UK and is being evaluated for LWR fuel in the USA, and may start in some other countries. High density storage racks have been successfully introduced in many existing pools and are planned for future facilities. For extremely long wet storage (≥50 years), there is a need to continue work on fuel integrity investigations and LWR fuel performance modelling. it might be that pool component performance in some cases could be more limiting than the FA storage performance. It is desirable to make concerted efforts in the field of corrosion monitoring and prediction of fuel cladding and poll component behaviour in order to maintain good experience of wet storage. Refs, figs and tabs

  20. Introduction on the recycling of spent and disused radioactive sources

    International Nuclear Information System (INIS)

    Zhao Mingqiang; Zang Ruihua

    2011-01-01

    It is not only a stress of environment safety, but also a waste of huge resources to send directly to store spent and disused radioactive sources. This article reviews some important aspects of management suggestions recommended by IAEA and requirements of regulations in China for disposing the spent and disused radioactive sources. The present condition and benefit of recycling spent and disused sources are analyzed. Some suggestions on carrying out recycling in China are put forward too. (authors)

  1. A scheme of better utilization of PWR spent fuels

    International Nuclear Information System (INIS)

    Chung, Bum Jin; Kang, Chang Soon

    1991-01-01

    The recycle of PWR spent fuels in a CANDU reactor, so called the tandem fuel cycle is investigated in this study. This scheme of utilizing PWR spent fuels will ease the shortage of spent fuel storage capacity as well as will improve the use of uranium resources. The minimum modification the design of present CANDU reactor is seeked in the recycle. Nine different fuel types are considered in this work and are classified into two categories: refabrication and reconfiguration. For refabrication, PWR spent fuels are processed and refabricated into the present 37 rod lattice structure of fuel bundle, and for reconfiguration, meanwhile, spent fuels are simply disassembled and rods are cut to fit into the present grid configuration of fuel bundle without refabrication. For each fuel option, the neutronics calculation of lattice was conducted to evaluate the allowable burn up and distribution. The fuel cycle cost of each option was also computed to assess the economic justification. The results show that most tandem fuel cycle option considered in this study are technically feasible as well as economically viable. (Author)

  2. Spent fuel management in Spain

    International Nuclear Information System (INIS)

    Gago, J.A.; Gravalos, J.M.

    1996-01-01

    There are presently nine Light Water Reactors in operation, representing around a 34% of the overall electricity production. In the early years, a small amount of spent fuel was sent to be reprocessed, although this policy was cancelled in favor of the open cycle option. A state owned company, ENRESA, was created in 1984, which was given the mandate to manage all kinds of radioactive wastes generated in the country. Under the present scenario, a rough overall amount of 7000 tU of spent fuel will be produced during the lifetime of the plants, which will go into final disposal. (author)

  3. Spent nuclear fuel transport problems

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kosarev, Yu.A.; Yulikov, E.I.

    1977-01-01

    The paper considers the problems of shipping spent fuel from nuclear power stations to reprocessing plants and also the principal ways of solving these problems with a view to achieving maximum economy and safety in transport. The increase in the number of nuclear power plants in the USSR will entail an intensification of spent-fuel shipments. Higher burnup and the need to reduce cooling time call for heavier and more complex shipping containers. The problem of shipping spent fuel should be tackled comprehensively, bearing in mind the requirements of safety and economy. One solution to these problems is to develop rational and cheap designs of such containers. In addition, the world-wide trend towards more thorough protection of the environment against pollution and of the health of the population requires the devotion of constant attention to improving the reliability and safety of shipments. The paper considers the prospects for nuclear power development in the USSR and in other member countries of the CMEA (1976-1980), the composition and design of some Soviet packaging assemblies, the appropriate cooling time for spent fuel from thermal reactor power stations, procedures for reducing fuel-shipping costs, some methodological problems of container calculation and design, and finally problems of testing and checking containers on test rigs. (author)

  4. Fissile Content Assay of Spent Fuel Using LSDS System

    International Nuclear Information System (INIS)

    Jeon, Ju Young; Lee, Yong Deok; Park, Chang Je

    2016-01-01

    About 1.5 % fissile materials still exist in the spent fuel. Therefore, for reutilization of fissile materials in spent fuel at SFR, resource material is produced through the pyro process. Fissile material contents in the resource material must be analyzed before fabricating SFR fuel for reactor safety and economics. The new technology for an isotopic fissile material content assay is under development at KAERI using a lead slowing down spectrometer (LSDS). LSDS is very sensitive to distinguish fission signals from each fissile isotope in spent and recycled fuel. In an assay of fissile content of spent fuel and recycled fuel, an intense radiation background gives limits the direct analysis of fissile materials. However, LSDS is not influenced by such a radiation background in a fissile assay. Based on the decided LSDS geometry set up, a self shielding parameter was calculated at the fuel assay zone by introducing spent fuel or pyro produced nuclear material. When nuclear material is inserted into the assay area, the spent fuel assembly or pyro recycled fuel material perturbs the spatial distribution of slowing down neutrons in lead and the prompt fast fission neutrons produced by fissile materials are also perturbed. The self shielding factor is interpreted as how much of the absorption is created inside the fuel area when it is in the lead. The self shielding effect provides a non-linear property in the isotopic fissile assay. When the self shielding is severe, the assay system becomes more complex and needs a special parameter to treat this non linear effect. Additionally, an assay of isotopic fissile content will contribute to an accuracy improvement of the burn-up code and increase the transparency and credibility for spent fuel storage and usage, as internationally increasing demand. The fissile contents result came out almost exactly with relative error ∼ 2% in case of Pu239, Pu241 for two different plutonium contents. In this study, meaningful results were

  5. Spent fuel management in Canada

    International Nuclear Information System (INIS)

    Pattantyus, P.

    1998-01-01

    The current status of the Canadian Spent Fuel Management is described. This includes wet and dry interim storage, transportation issues and future plans regarding final disposal based on deep underground emplacement in stable granite rock. Extension of wet interim storage facilities is not planned, as dry storage technologies have found wide acceptance. (author)

  6. Characteristics of spent nuclear fuel

    International Nuclear Information System (INIS)

    Notz, K.J.

    1988-04-01

    The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the spent fuels and other wastes that will, or may, eventually be disposed of in a geological repository. The two major sources of these materials are commercial light-water reactor (LWR) spent fuel and immobilized high-level waste (HLW). Other wastes that may require long-term isolation include non-LWR spent fuels and miscellaneous sources such as activated metals. This report deals with spent fuels, but for completeness, the other sources are described briefly. Detailed characterizations are required for all of these potential repository wastes. These characteristics include physical, chemical, and radiological properties. The latter must take into account decay as a function of time. In addition, the present inventories and projected quantities of the various wastes are needed. This information has been assembled in a Characteristics Data Base which provides data in four formats: hard copy standard reports, menu-driven personal computer (PC) data bases, program-level PC data bases, and mainframe computer files. 5 refs., 3 figs., 4 tabs

  7. Worldwide spent fuel transportation logistics

    International Nuclear Information System (INIS)

    Best, R.E.; Garrison, R.F.

    1978-01-01

    This paper presents an overview of the worldwide transportation requirements for spent fuel. Included are estimates of numbers and types of shipments by mode and cask type for 1985 and the year 2000. In addition, projected capital and transportation costs are presented. For the year 1977 and prior years inclusive, there is a cumulative worldwide requirement for approximately 300 MTU of spent fuel storage at away-from-reactor (AFR) facilities. The cumulative requirements for years through 1985 are projected to be nearly 10,000 MTU, and for the years through 2000 the requirements are conservatively expected to exceed 60,000 MTU. These AFR requirements may be related directly to spent fuel transportation requirements. In total nearly 77,000 total cask shipments of spent fuel will be required between 1977 and 2000. These shipments will include truck, rail, and intermodal moves with many ocean and coastal water shipments. A limited number of shipments by air may also occur. The US fraction of these is expected to include 39,000 truck shipments and 14,000 rail shipments. European shipments to regional facilities are expected to be primarily by rail or water mode and are projected to account for 16,000 moves. Pacific basin shipments will account for 4500 moves. The remaining are from other regions. Over 400 casks will be needed to meet the transportation demands. Capital investment is expected to reach $800,000,000 in 1977 dollars. Cumulative transport costs will be a staggering $4.4 billion dollars

  8. Overview of spent fuel management and problems

    International Nuclear Information System (INIS)

    Ritchie, I.G.; Ernst, P.C.

    1998-01-01

    Results compiled in the research reactor spent fuel database are used to assess the status of research reactor spent fuel worldwide. Fuel assemblies, their types, enrichment, origin of enrichment and geological distribution among the industrialized and developed countries of the world are discussed. Fuel management practices in wet and dry storage facilities and the concerns of reactor operators about long-term storage of their spent fuel are presented and some of the activities carried out by the International Atomic Energy Agency to address the issues associated with research reactor spent fuel are outlined. Some projections of spent fuel inventories to the year 2006 are presented and discussed. (author)

  9. Spent fuel storage rack

    International Nuclear Information System (INIS)

    Morikawa, Matsuo; Uchiyama, Yuichi.

    1983-01-01

    Purpose: To improve the safety and facilitate the design by limiting the relative displacement in a storage rack. Constitution: The outer wall of a storage rack disposed in water within a fuel pool, the pool wall opposing to the storage rack and the structure between the opposing storages racks are made as a space for confining the pool water or a structure formed with a slight gap, for example, a combination of a recessed structure and a protruded structure. In such a constitution, a space for confirming the pool water is established and the pool water thus confined forms a flow resistance when the storage rack vibrates upon earthquakes, serves as a damper and significantly reduces the responsivity. Furthermore, the relative displacement in the storage rack is limited to inhibit excess earthquake forces to exert on setting bolts and rack clamping bolts of the storage rack. (Sekiya, K.)

  10. Spent fuel storage criticality safety

    Energy Technology Data Exchange (ETDEWEB)

    Amin, E M; Elmessiry, A M [National center of nuclear safety and radiation control atomic energy authority, (Egypt)

    1995-10-01

    The safety aspects of the spent fuel storage pool of the Egyptian test and research reactor one (ET-R R-1) has to be assessed as part of a general overall safety evaluation to be included in a safety analysis report (SAR) for this reactor. The present work treats the criticality safety of the spent fuel storage pool. Conservative calculations based on using fresh fuel has been performed, as well as less conservative using burned fuel. The calculations include cross library generation for burned and fresh fuel for the ET-R R-1 fuel type. The WIMS-D 4 code has been used in library generation and burn up calculation the critically calculations are performed using the one dimensional transport code (ANISN) and the two dimensional diffusion code (DIXY2). The possibility of increasing the storage efficiency either by insertion of absorber sheets of soluble boron salts or by reduction of fuel rod separation has been studied. 8 figs., 2 tabs.

  11. Spent fuel storage criticality safety

    International Nuclear Information System (INIS)

    Amin, E.M.; Elmessiry, A.M.

    1995-01-01

    The safety aspects of the spent fuel storage pool of the Egyptian test and research reactor one (ET-R R-1) has to be assessed as part of a general overall safety evaluation to be included in a safety analysis report (SAR) for this reactor. The present work treats the criticality safety of the spent fuel storage pool. Conservative calculations based on using fresh fuel has been performed, as well as less conservative using burned fuel. The calculations include cross library generation for burned and fresh fuel for the ET-R R-1 fuel type. The WIMS-D 4 code has been used in library generation and burn up calculation the critically calculations are performed using the one dimensional transport code (ANISN) and the two dimensional diffusion code (DIXY2). The possibility of increasing the storage efficiency either by insertion of absorber sheets of soluble boron salts or by reduction of fuel rod separation has been studied. 8 figs., 2 tabs

  12. Collective processing device for spent fuel

    International Nuclear Information System (INIS)

    Irie, Hiroaki; Taniguchi, Noboru.

    1996-01-01

    The device of the present invention comprises a sealing vessel, a transporting device for transporting spent fuels to the sealing vessel, a laser beam cutting device for cutting the transported spent fuels, a dissolving device for dissolving the cut spent fuels, and a recovering device for recovering radioactive materials from the spent fuels during processing. Reprocessing treatments comprising each processing of dismantling, shearing and dissolving are conducted in the sealing vessel can ensure a sealing barrier for the radioactive materials (fissionable products and heavy nuclides). Then, since spent fuels can be processed in a state of assemblies, and the spent fuels are easily placed in the sealing vessel, operation efficiency is improved, as well as operation cost is saved. Further, since the spent fuels can be cut by a remote laser beam operation, there can be prevented operator's exposure due to radioactive materials released from the spent fuels during cutting operation. (T.M.)

  13. Electrometallurgical treatment of sodium-bonded spent nuclear fuel

    International Nuclear Information System (INIS)

    Benedict, R.W.; McFarlane, H.F.; Goff, K.M.

    2001-01-01

    For 20 years Argonne National Laboratory has been developing electrometallurgical technology for application to spent nuclear fuel. Progress has been rapid during the past 5 years as 1,6 tonnes spent fuel from the Experimental Breeder Reactor-II was treated and preparations were made for processing the remaining 25 tonnes of sodium-bonded fuel from the shutdown reactor. Two high level waste forms are being qualified for geologic disposal. Extension of the technology to oxide fuels or to actinide recycling has been on hold because of US policy on reprocessing. (author)

  14. Spent fuel management: Current status and prospects 1993

    International Nuclear Information System (INIS)

    1994-02-01

    Spent fuel management has always been one of the most important stages in the nuclear fuel cycle and it is still one of the most vital problems common to all countries with nuclear reactors. It begins with the discharge of spent fuel from a power or a research reactor and ends with its ultimate disposition, either by direct disposal or by reprocessing of the spent fuel. Two options exist at present - an open, once-through cycle with direct disposal of the spent fuel and a closed cycle with reprocessing of the spent fuel and recycling of plutonium and uranium in new mixed oxide fuels. The selection of a spent fuel strategy is a complex procedure in which many factors have to be weighed, including political, economic and safeguards issues as well as protection of the environment. Continuous attention is being given by the IAEA to the collection, analysis and exchange of information on spent fuel management. Its role in this area is to provide a forum for the exchange of information and to co-ordinate and to encourage closer co-operation among Member States in certain research an development activities that are of common interest. Refs, figs and tabs

  15. Spent nuclear fuel in Bulgaria

    International Nuclear Information System (INIS)

    Peev, P.; Kalimanov, N.

    1999-01-01

    The development of the nuclear energy sector in Bulgaria is characterized by two major stages. The first stage consisted of providing a scientific basis for the programme for development of the nuclear energy sector in the country and was completed with the construction of an experimental water-water reactor. At present, spent nuclear fuel from this reactor is placed in a water filled storage facility and will be transported back to Russia. The second stage consisted of the construction of the 6 NPP units at the Kozloduy site. The spent nuclear fuel from the six units is stored in at reactor pools and in an additional on-site storage facility which is nearly full. In order to engage the government of the country with the on-site storage problems, the new management of the National Electric Company elaborated a policy on nuclear fuel cycle and radioactive waste management. The underlying policy is de facto the selection of the 'deferred decision' option for its spent fuel management. (author)

  16. Modular dry storage of spent fuel

    International Nuclear Information System (INIS)

    Baxter, J.W.

    1982-01-01

    Long term uncertainties in US spent fuel reprocessing and storage policies and programs are forcing the electric utilities to consider means of storing spent fuel at the reactor site in increasing quantitities and for protracted periods. Utilities have taken initial steps in increasing storage capacity. Existing wet storage pools have in many cases been reracked to optimize their capacity for storing spent fuel assemblies

  17. Spent fuel storage process equipment development

    International Nuclear Information System (INIS)

    Park, Hyun Soo; Lee, Jae Sol; Yoo, Jae Hyung

    1990-02-01

    Nuclear energy which is a major energy source of national energy supply entails spent fuels. Spent fuels which are high level radioactive meterials, are tricky to manage and need high technology. The objectives of this study are to establish and develop key elements of spent fuel management technologies: handling equipment and maintenance, process automation technology, colling system, and cleanup system. (author)

  18. A cost-benefit analysis of spent fuel management

    International Nuclear Information System (INIS)

    Lamorlette, G.

    2001-01-01

    The back end of the fuel cycle is an area of economic risk for utilities having nuclear power plants to generate electricity. A cost-benefit analysis is a method by which utilities can evaluate advantages and drawbacks of alternative back end fuel cycle strategies. The present paper analyzes how spent fuel management can influence the risks and costs incurred by a utility over the lifetime of its power plants and recommends a recycling strategy. (author)

  19. Considerations Regarding ROK Spent Nuclear Fuel Management Options

    International Nuclear Information System (INIS)

    Braun, Chaim; Forrest, Robert

    2013-01-01

    In this paper we discuss spent fuel management options in the Republic of Korea (ROK) from two interrelated perspectives: Centralized dry cask storage and spent fuel pyroprocessing and burning in sodium fast reactors (SFRs). We argue that the ROK will run out of space for at-reactors spent fuel storage by about the year 2030 and will thus need to transition centralized dry cask storage. Pyroprocessing plant capacity, even if approved and successfully licensed and constructed by that time, will not suffice to handle all the spent fuel discharged annually. Hence centralized dry cask storage will be required even if the pyroprocessing option is successfully developed by 2030. Pyroprocessing is but an enabling technology on the path leading to fissile material recycling and burning in future SFRs. In this regard we discuss two SFR options under development in the U. S.: the Super Prism and the Travelling Wave Reactor (TWR). We note that the U. S. is further along in reactor development than the ROK. The ROK though has acquired more experience, recently in investigating fuel recycling options for SFRs. We thus call for two complementary joint R and D project to be conducted by U. S. and ROK scientists. One leading to the development of a demonstration centralized away-from-reactors spent fuel storage facility. The other involve further R and D on a combined SFR-fuel cycle complex based on the reactor and fuel cycle options discussed in the paper

  20. Spent fuel receipt scenarios study

    International Nuclear Information System (INIS)

    Ballou, L.B.; Montan, D.N.; Revelli, M.A.

    1990-09-01

    This study reports on the results of an assignment from the DOE Office of Civilian Radioactive Waste Management to evaluate of the effects of different scenarios for receipt of spent fuel on the potential performance of the waste packages in the proposed Yucca Mountain high-level waste repository. The initial evaluations were performed and an interim letter report was prepared during the fall of 1988. Subsequently, the scope of work was expanded and additional analyses were conducted in 1989. This report combines the results of the two phases of the activity. This study is a part of a broader effort to investigate the options available to the DOE and the nuclear utilities for selection of spent fuel for acceptance into the Federal Waste Management System for disposal. Each major element of the system has evaluated the effects of various options on its own operations, with the objective of providing the basis for performing system-wide trade-offs and determining an optimum acceptance scenario. Therefore, this study considers different scenarios for receipt of spent fuel by the repository only from the narrow perspective of their effect on the very-near-field temperatures in the repository following permanent closure. This report is organized into three main sections. The balance of this section is devoted to a statement of the study objective, a summary of the assumptions. The second section of the report contains a discussion of the major elements of the study. The third section summarizes the results of the study and draws some conclusions from them. The appendices include copies of the waste acceptance schedule and the existing and projected spent fuel inventory that were used in the study. 10 refs., 27 figs

  1. Spent nuclear fuel sampling strategy

    International Nuclear Information System (INIS)

    Bergmann, D.W.

    1995-01-01

    This report proposes a strategy for sampling the spent nuclear fuel (SNF) stored in the 105-K Basins (105-K East and 105-K West). This strategy will support decisions concerning the path forward SNF disposition efforts in the following areas: (1) SNF isolation activities such as repackaging/overpacking to a newly constructed staging facility; (2) conditioning processes for fuel stabilization; and (3) interim storage options. This strategy was developed without following the Data Quality Objective (DQO) methodology. It is, however, intended to augment the SNF project DQOS. The SNF sampling is derived by evaluating the current storage condition of the SNF and the factors that effected SNF corrosion/degradation

  2. Spent fuel canister docking station

    International Nuclear Information System (INIS)

    Suikki, M.

    2006-01-01

    The working report for the spent fuel canister docking station presents a design for the operation and structure of the docking equipment located in the fuel handling cell for the spent fuel in the encapsulation plant. The report contains a description of the basic requirements for the docking station equipment and their implementation, the operation of the equipment, maintenance and a cost estimate. In the designing of the equipment all the problems related with the operation have been solved at the level of principle, nevertheless, detailed designing and the selection of final components have not yet been carried out. In case of defects and failures, solutions have been considered for postulated problems, and furthermore, the entire equipment was gone through by the means of systematic risk analysis (PFMEA). During the docking station designing we came across with needs to influence the structure of the actual disposal canister for spent nuclear fuel, too. Proposed changes for the structure of the steel lid fastening screw were included in the report. The report also contains a description of installation with the fuel handling cell structures. The purpose of the docking station for the fuel handling cell is to position and to seal the disposal canister for spent nuclear fuel into a penetration located on the cell floor and to provide suitable means for executing the loading of the disposal canister and the changing of atmosphere. The designed docking station consists of a docking ring, a covering hatch, a protective cone and an atmosphere-changing cap as well as the vacuum technology pertaining to the changing of atmosphere and the inert gas system. As far as the solutions are concerned, we have arrived at rather simple structures and most of the actuators of the system are situated outside of the actual fuel handling cell. When necessary, the equipment can also be used for the dismantling of a faulty disposal canister, cut from its upper end by machining. The

  3. Spent fuel storage requirements 1987

    International Nuclear Information System (INIS)

    1987-09-01

    Historical inventories of spent fuel and utility estimates of future discharges from US commercial nuclear reactors are presented through the year 2005. The ultimate needs for additional storage capacity are estimated. These estimtes are based on the maximum capacities within current and planned at-reactor facilities and on any planned transshipments of fuel to other reactors or facilities. Historical data through December, 1986, and projected discharges through the end of reactor life are used in this analysis. The source data was supplied by the utilities to the DOE Energy Information Administration (EIA) through the 1987 RW-859 data survey. 14 refs., 4 figs., 9 tabs

  4. On-site concrete cask storage system for spent nuclear fuel

    International Nuclear Information System (INIS)

    Craig, P.A.; Haelsig, R.T.; Kent, J.D.; Schmoker, D.S.

    1989-01-01

    A method is described of storing spent nuclear fuel assemblies including the steps of: transferring the fuel assemblies from a spent-fuel pool to a moveable concrete storage cask located outside the spent-fuel pool; maintaining a barrier between the fuel and the concrete in the cask to prevent contamination of the concrete by the fuel; maintaining the concrete storage cask containing the spent-fuel on site at the reactor complex for some predetermined period; transferring the fuel assemblies from the concrete storage cask to a shipping container; and, recycling the concrete storage cask

  5. Spent Fuel Working Group Report

    International Nuclear Information System (INIS)

    O'Toole, T.

    1993-11-01

    The Department of Energy is storing large amounts of spent nuclear fuel and other reactor irradiated nuclear materials (herein referred to as RINM). In the past, the Department reprocessed RINM to recover plutonium, tritium, and other isotopes. However, the Department has ceased or is phasing out reprocessing operations. As a consequence, Department facilities designed, constructed, and operated to store RINM for relatively short periods of time now store RINM, pending decisions on the disposition of these materials. The extended use of the facilities, combined with their known degradation and that of their stored materials, has led to uncertainties about safety. To ensure that extended storage is safe (i.e., that protection exists for workers, the public, and the environment), the conditions of these storage facilities had to be assessed. The compelling need for such an assessment led to the Secretary's initiative on spent fuel, which is the subject of this report. This report comprises three volumes: Volume I; Summary Results of the Spent Fuel Working Group Evaluation; Volume II, Working Group Assessment Team Reports and Protocol; Volume III; Operating Contractor Site Team Reports. This volume presents the overall results of the Working Group's Evaluation. The group assessed 66 facilities spread across 11 sites. It identified: (1) facilities that should be considered for priority attention. (2) programmatic issues to be considered in decision making about interim storage plans and (3) specific vulnerabilities for some of these facilities

  6. Spent nuclear fuel storage vessel

    International Nuclear Information System (INIS)

    Watanabe, Yoshio; Kashiwagi, Eisuke; Sekikawa, Tsutomu.

    1997-01-01

    Containing tubes for containing spent nuclear fuels are arranged vertically in a chamber. Heat releasing fins are disposed horizontal to the outer circumference of the containing tubes for rectifying cooling air and promoting cooling of the containing tubes. Louvers and evaporation sides of heat pipes are disposed at a predetermined distance in the chamber. Cooling air flows from an air introduction port to the inside of the chamber and takes heat from the containing tubes incorporated with heat generating spent nuclear fuels, rising its temperature and flows off to an air exhaustion exit. The direction for the rectification plate of the louver is downward from a horizontal position while facing to the air exhaustion port. Since the evaporation sides of the heat pipes are disposed in the inside of the chamber and the condensation side of the heat pipes is disposed to the outside of the chamber, the thermal energy can be recovered from the containing tubes incorporated with spent nuclear fuels and utilized. (I.N.)

  7. Sealed can of spent fuel

    International Nuclear Information System (INIS)

    Suzuki, Yasuyuki.

    1976-01-01

    Object: To provide a seal plug cover with a gripping portion fitted to a canning machine and a gripping portion fitted to a gripper of the same configuration as a fuel body for handling the fuel body so as to facilitate the handling work. Structure: A sealed can comprises a vessel and a seal plug cover, said cover being substantially in the form of a bottomed cylinder, which is slipped on the vessel and air-tightly secured by a fastening bolt between it and a flange. The spent fuel body is received into the vessel together with coolant during the step of canning operation. Said seal plug cover has two gripping portions, one for opening and closing the plug cover of the canning machine as an exclusive use member, the other being in the form of a hook-shaped peripheral groove, whereby the gripping portions may be effectively used using the same gripper when the spent fuel body is transported while being received in the sealed can or when the fuel body is removed from the sealed can. (Kawakami, Y.)

  8. Spent fuel critical masses and supportive measurements

    International Nuclear Information System (INIS)

    Toffer, H.; Wells, A.H.

    1987-01-01

    Critical masses for spent fuel are larger than for green fuel and therefore use of the increased masses could result in improved handling, storage, and transport of such materials. To apply spent fuel critical masses requires an assessment of fuel exposure and the corresponding isotopic compositions. The paper discusses several approaches at the Hanford N Reactor in establishing fuel exposure, including a direct measurement of spent to green fuel critical masses. The benefits derived from the use of spent fuel critical masses are illustrated for cask designs at the Nuclear Assurance Corporation. (author)

  9. Radionuclide compositions of spent fuel and high level waste for the uranium and plutonium fuelled PWR

    International Nuclear Information System (INIS)

    Fairclough, M.P.; Tymons, B.J.

    1985-06-01

    The activities of a selection of radionuclides are presented for three types of reactor fuel of interest in radioactive waste management. The fuel types are for a uranium 'burning' PWR, a plutonium 'burning' PWR using plutonium recycled from spent uranium fuel and a plutonium 'burning' PWR using plutonium which has undergone multiple recycle. (author)

  10. Near surface spent fuel storage: environmental issues

    International Nuclear Information System (INIS)

    Nelson, I.C.; Shipler, D.B.; McKee, R.W.; Glenn, R.D.

    1979-01-01

    Interim storage of spent fuel appears inevitable because of the lack of reprocessing plants and spent fuel repositories. This paper examines the environmental issues potentially associated with management of spent fuel before disposal or reprocessing in a reference scenario. The radiological impacts of spent fuel storage are limited to low-level releases of noble gases and iodine. Water needed for water basin storage of spent fuel and transportation accidents are considered; the need to minimize the distance travelled is pointed out. Resource commitments for construction of the storage facilities are analyzed

  11. Surveillance instrumentation for spent-fuel safeguards

    International Nuclear Information System (INIS)

    McKenzie, J.M.; Holmes, J.P.; Gillman, L.K.; Schmitz, J.A.; McDaniel, P.J.

    1978-01-01

    The movement, in a facility, of spent reactor fuel may be tracked using simple instrumentation together with a real time unfolding algorithm. Experimental measurements, from multiple radiation monitors and crane weight and position monitors, were obtained during spent fuel movements at the G.E. Morris Spent-Fuel Storage Facility. These data and a preliminary version of an unfolding algorithm were used to estimate the position of the centroid and the magnitude of the spent fuel radiation source. Spatial location was estimated to +-1.5 m and source magnitude to +-10% of their true values. Application of this surveillance instrumentation to spent-fuel safeguards is discussed

  12. Probability of spent fuel transportation accidents

    International Nuclear Information System (INIS)

    McClure, J.D.

    1981-07-01

    The transported volume of spent fuel, incident/accident experience and accident environment probabilities were reviewed in order to provide an estimate of spent fuel accident probabilities. In particular, the accident review assessed the accident experience for large casks of the type that could transport spent (irradiated) nuclear fuel. This review determined that since 1971, the beginning of official US Department of Transportation record keeping for accidents/incidents, there has been one spent fuel transportation accident. This information, coupled with estimated annual shipping volumes for spent fuel, indicated an estimated annual probability of a spent fuel transport accident of 5 x 10 -7 spent fuel accidents per mile. This is consistent with ordinary truck accident rates. A comparison of accident environments and regulatory test environments suggests that the probability of truck accidents exceeding regulatory test for impact is approximately 10 -9 /mile

  13. Analysis of the impact of retrievable spent fuel storage

    International Nuclear Information System (INIS)

    Merrill, E.T.; White, M.K.; Fleischman, R.M.

    1978-03-01

    The impact of retrievably storing spent fuel is measurable in terms of the contribution the stored spent fuel makes to implementing the fuel management option selected. For the case of a decision to recycle LWR fuel in LWRs, a useful indicator of impact is the ratio of energy production with varying degrees of spent fuel retrievability to that achievable with total spent fuel retrievability. For a decision made in the year 2000, this ratio varies from 0.81 (10 yr storage in reactor basins) to 0.97 (retrievable storage for 25 years after fuel discharge). An earlier decision to recycle in LWRs results in both of these ratios being nearer to 1.0. If a decision is reached to implement a breeder reactor economy, the chosen comparison is the installed breeder capacity achievable with varying degrees of spent fuel retrievability. If a decision to build breeder reactors is reached in the year 2000, the maximum possible installed breeder capacity in 2040 varies from 490 GWe (10 yr storage in reactor basins) to 660 GWe (all fuel retrievably stored). If all fuel is retrievably stored 25 years, 635 GWe of breeder capacity is achievable by 2040. For an earlier decision date, such as 1985, the maximum possible installed breeder capacity in 2040 ranges from 740 GWe (no retrievable storage) to 800 GWe (all fuel retrievably stored). As long as a decision to reprocess is reached before 2000, most of the potential benefit of retrievable storage may be realized by implementing retrievable storage after such a decision is made. Neither providing retrievable spent fuel storage prior to a decision to reprocess, nor designing such storage for more than 25 years of retrievability appear to offer significant incremental benefit

  14. Processes and Technologies for the Recycling of Spent Fluorescent Lamps

    Directory of Open Access Journals (Sweden)

    Kujawski Wojciech

    2014-09-01

    Full Text Available The growing industrial application of rare earth metals led to great interest in the new technologies for the recycling and recovery of REEs from diverse sources. This work reviews the various methods for the recycling of spent fluorescent lamps. The spent fluorescent lamps are potential source of important rare earth elements (REEs such as: yttrium, terbium, europium, lanthanum and cerium. The characteristics of REEs properties and construction of typical fl uorescent lamps is described. The work compares also current technologies which can be utilized for an efficient recovery of REEs from phosphors powders coming from spent fluorescent lamps. The work is especially focused on the hydrometallurgical and pyrometallurgical processes. It was concluded that hydrometallurgical processes are especially useful for the recovery of REEs from spent fluorescent lamps. Moreover, the methods used for recycling of REEs are identical or very similar to those utilized for the raw ores processing.

  15. Regeneration of ammonia borane spent fuel

    International Nuclear Information System (INIS)

    Sutton, Andrew David; Davis, Benjamin L.; Gordon, John C.

    2009-01-01

    A necessary target in realizing a hydrogen (H 2 ) economy, especially for the transportation sector, is its storage for controlled delivery, presumably to an energy producing fuel cell. In this vein, the U.S. Department of Energy's Centers of Excellence (CoE) in Hydrogen Storage have pursued different methodologies, including metal hydrides, chemical hydrides, and sorbents, for the expressed purpose of supplanting gasoline's current > 300 mile driving range. Chemical H 2 storage has been dominated by one appealing material, ammonia borane (H 3 N-BH 3 , AB), due to its high gravimetric capacity of H 2 (19.6 wt %) and low molecular weight (30.7 g mol -1 ). In addition, AB has both hydridic and protic moieties, yielding a material from which H 2 can be readily released in contrast to the loss of H 2 from C 2 H 6 which is substantially endothermic. As such, a number of publications have described H 2 release from amine boranes, yielding various rates depending on the method applied. The viability of any chemical H 2 storage system is critically dependent on efficient recyclability, but reports on the latter subject are sparse, invoke the use of high energy reducing agents, and suffer from low yields. Our group is currently engaged in trying to find and fully demonstrate an energy efficient regeneration process for the spent fuel from H 2 depleted AB with a minimum number of steps. Although spent fuel composition depends on the dehydrogenation method, we have focused our efforts on the spent fuel resulting from metal-based catalysis, which has thus far shown the most promise. Metal-based catalysts have produced the fastest rates for a single equivalent of H 2 released from AB and up to 2.5 equiv. of H 2 can be produced within 2 hours. While ongoing work is being carried out to tailor the composition of spent AB fuel, a method has been developed for regenerating the predominant product, polyborazylene (PB) which can be obtained readily from the decomposition of borazine

  16. Spent nuclear fuel storage - Basic concept

    International Nuclear Information System (INIS)

    Krempel, Ascanio; Santos, Cicero D. Pacifici dos; Sato, Heitor Hitoshi; Magalhaes, Leonardo de

    2009-01-01

    According to the procedures adopted in others countries in the world, the spent nuclear fuel elements burned to produce electrical energy in the Brazilian Nuclear Power Plant of Angra do Reis, Central Nuclear Almirante Alvaro Alberto - CNAAA will be stored for a long time. Such procedure will allow the next generation to decide how they will handle those materials. In the future, the reprocessing of the nuclear fuel assemblies could be a good solution in order to have additional energy resource and also to decrease the volume of discarded materials. This decision will be done in the future according to the new studies and investigations that are being studied around the world. The present proposal to handle the nuclear spent fuel is to storage it for a long period of time, under institutional control. Therefore, the aim of this paper is to introduce a proposal of a basic concept of spent fuel storage, which involves the construction of a new storage building at site, in order to increase the present storage capacity of spent fuel assemblies in CNAAA installation; the concept of the spent fuel transportation casks that will transfer the spent fuel assemblies from the power plants to the Spent Fuel Complementary Storage Building and later on from this building to the Long Term Intermediate Storage of Spent Fuel; the concept of the spent fuel canister and finally the basic concept of the spent fuel long term storage. (author)

  17. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Schmitt, D.

    1985-01-01

    How should the decision in favour of reprocessing and against alternative waste management concepts be judged from an economic standpoint. Reprocessing is not imperative neither for resource-economic reasons nor for nuclear energy strategy reasons. On the contrary, the development of an ultimate storage concept representing a real alternative promising to close, within a short period of time, the nuclear fuel cycle at low cost. At least, this is the result of an extensive economic efficiency study recently submitted by the Energy Economics Institute which investigated all waste management concepts relevant for the Federal Republic of Germany in the long run, i.e. direct ultimate storage of spent fuel elements (''Other waste disposal technologies'' - AE) as well as reprocessing of spent fuel elements where re-usable plutonium and uranium are recovered and radioactive waste goes to ultimate storage (''Integrated disposal'' - IE). Despite such fairly evident results, the government of the Federal Republic of Germany has favoured the construction of a reprocessing plant. From an economic point of view there is no final answer to the question whether or not the argumentation is sufficient to justify the decision to construct a reprocessing plant. This is true for both the question of technical feasibility and issues of overriding significance of a political nature. (orig./HSCH) [de

  18. Cost benefit analysis of recycling nuclear fuel cycle in Korea

    International Nuclear Information System (INIS)

    Lee, Jewhan; Chang, Soonheung

    2012-01-01

    Nuclear power has become an essential part of electricity generation to meet the continuous growth of electricity demand. The importance if nuclear waste management has been the main issue since the beginning of nuclear history. The recycling nuclear fuel cycle includes the fast reactor, which can burn the nuclear wastes, and the pyro-processing technology, which can reprocess the spent nuclear fuel. In this study, a methodology using Linear Programming (LP) is employed to evaluate the cost and benefits of introducing the recycling strategy and thus, to see the competitiveness of recycling fuel cycle. The LP optimization involves tradeoffs between the fast reactor capital cost with pyro-processing cost premiums and the total system uranium price with spent nuclear fuel management cost premiums. With the help of LP and sensitivity analysis, the effect of important parameters is presented as well as the target values for each cost and price of key factors

  19. Fuel recycling and 4. generation reactors

    International Nuclear Information System (INIS)

    Devezeaux de Lavergne, J.G.; Gauche, F.; Mathonniere, G.

    2012-01-01

    The 4. generation reactors meet the demand for sustainability of nuclear power through the saving of the natural resources, the minimization of the volume of wastes, a high safety standard and a high reliability. In the framework of the GIF (Generation 4. International Forum) France has decided to study the sodium-cooled fast reactor. Fast reactors have the capacity to recycle plutonium efficiently and to burn actinides. The long history of reprocessing-recycling of spent fuels in France is an asset. A prototype reactor named ASTRID could be entered into operation in 2020. This article presents the research program on the sodium-cooled fast reactor, gives the status of the ASTRID project and present the scenario of the progressive implementation of 4. generation reactors in the French reactor fleet. (A.C.)

  20. Dry storage of spent fuel

    International Nuclear Information System (INIS)

    Jeffrey, R.

    1993-01-01

    Scottish Nuclear's plans to build and operate dry storage facilities at each of its two nuclear power station sites in Scotland are explained. An outline of where waste materials arise as part of the operation and decommissioning of nuclear power stations, the volumes for each category of high-, intermediate-and low-level wastes and the costs involved are given. The present procedure for the spent fuels from Hunterston-B and Torness stations is described and Scottish Nuclear's aims of driving output up and costs down are studied. (UK)

  1. Thermal model of spent fuel transport cask

    International Nuclear Information System (INIS)

    Ahmed, E.E.M.; Rahman, F.A.; Sultan, G.F.; Khalil, E.E.

    1996-01-01

    The investigation provides a theoretical model to represent the thermal behaviour of the spent fuel elements when transported in a dry shipping cask under normal transport conditions. The heat transfer process in the spent fuel elements and within the cask are modeled which include the radiant heat transfer within the cask and the heat transfer by thermal conduction within the spent fuel element. The model considers the net radiant method for radiant heat transfer process from the inner most heated element to the surrounding spent elements. The heat conduction through fuel interior, fuel-clad interface and on clad surface are also presented. (author) 6 figs., 9 refs

  2. Spent fuel's behavior under dynamic drip tests

    International Nuclear Information System (INIS)

    Finn, P.A.; Buck, E.C.; Hoh, J.C.; Bates, J.K.

    1995-01-01

    In the potential repository at Yucca Mountain, failure of the waste package container and the cladding of the spent nuclear fuel would expose the fuel to water under oxidizing conditions. To simulate the release behavior of radionuclides from spent fuel, dynamic drip and vapor tests with spent nuclear fuel have been ongoing for 2.5 years. Rapid alteration of the spent fuel has been noted with concurrent release of radionuclides. Colloidal species containing americium and plutonium have been found in the leachate. This observation suggests that colloidal transport of radionuclides should be included in the performance assessment of a potential repository

  3. Radiological impacts of spent nuclear fuel management options

    International Nuclear Information System (INIS)

    Riotte, H.; Lazo, T.; Mundigl, S.

    2000-01-01

    An important technical study on radiological impacts of spent nuclear fuel management options, recently completed by the NEA, is intended to facilitate informed international discussions on the nuclear fuel cycle. The study compares the radiological impacts on the public and on nuclear workers resulting from two approaches to handling spent fuel from nuclear power plants: - the reprocessing option, that includes the recycling of spent uranium fuel, the reuse of the separated plutonium in MOX fuel, and the direct disposal of spent MOX fuel; and the once-through option, with no reprocessing of spent fuel, and its direct disposal. Based on the detailed research of a group of 18 internationally recognised experts, under NEA sponsorship, the report concludes that: The radiological impacts of both the reprocessing and the non-reprocessing fuel cycles studied are small, well below any regulatory dose limits for the public and for workers, and insignificantly low as compared with exposures caused by natural radiation. The difference in the radiological impacts of the two fuel cycles studied does not provide a compelling argument in favour of one option or the other. The study also points out that other factors, such as resource utilisation efficiency, energy security, and social and economic considerations would tend to carry more weight than radiological impacts in decision-making processes. (authors)

  4. Japan's spent fuel and plutonium management challenge

    International Nuclear Information System (INIS)

    Katsuta, Tadahiro; Suzuki, Tatsujiro

    2011-01-01

    Japan's commitment to plutonium recycling has been explicitly stated in its long-term program since 1956. Despite the clear cost disadvantage compared with direct disposal or storage of spent fuel, the Rokkasho reprocessing plant started active testing in 2006. Japan's cumulative consumption of plutonium has been only 5 tons to date and its future consumption rate is still uncertain. But once the Rokkasho reprocessing plant starts its full operation, Japan will separate about 8 tons of plutonium annually. Our analysis shows that, with optimum use of available at-reactor and away-from-reactor storage capacity, there would be no need for reprocessing until the mid-2020s. With an additional 30,000 tons of away-from-reactor (AFR) spent-fuel storage capacity reprocessing could be avoided until 2050. Deferring operation of the Rokkasho plant, at least until the plutonium stockpile had been worked down to the minimum required level, would also minimize international concern about Japan's plutonium stockpile. The authors are happy to acknowledge Frank von Hippel, Harold Feiveson, Jungming Kang, Zia Mian, M.V. Ramana, and other IPFM members, as well as the generous grant from the MacArthur Foundation for helping make this research possible.

  5. Spent fuel. Dissolution and oxidation

    International Nuclear Information System (INIS)

    Grambow, B.

    1989-03-01

    Data from studies of the low temperature air oxidation of spent fuel were retrieved in order to provide a basis for comparison between the mechanism of oxidation in air and corrosion in water. U 3 O 7 is formed by diffusion of oxygen into the UO 2 lattice. A diffusion coefficient of oxygen in the fuel matric was calculated for 25 degree C to be in the range of 10 -23 to 10 -25 m 2 /s. The initial rates of U release from spent fuel and from UO 2 appear to be similar. The lowest rates (at 25 degree c >10 -4 g/(m 2 d)) were observed under reducing conditions. Under oxidizing conditions the rates depend mainly of the nature and concentraion of the oxidant and/or on corbonate. In contact with air, typical initial rates at room temperature were in the range between 0.001 and 0.1 g/(m 2 d). A study of apparent U solubility under oxidizing conditions was performed and it was suggested that the controlling factor is the redox potential at the UO 2 surface rather than the E h of the bulk solution. Electrochemical arguments were used to predict that at saturation, the surface potential will eventually reach a value given by the boundaries at either the U 3 O 7 /U 3 O 8 or the U 3 O 7 /schoepite stability field, and a comparison with spent fuel leach data showed that the solution concentration of uranium is close to the calculated U solubility at the U 3 O 7 /U 3 O 8 boundary. The difference in the cumulative Sr and U release was calculated from data from Studsvik laboratory. The results reveal that the rate of Sr release decreases with the square root of time under U-saturated conditions. This time dependence may be rationalized either by grain boundary diffusion or by diffusion into the fuel matrix. Hence, there seems to be a possibility of an agreement between the Sr release data, structural information and data for oxygen diffusion in UO 2 . (G.B.)

  6. Spent fuel receipt and lag storage facility for the spent fuel handling and packaging program

    International Nuclear Information System (INIS)

    Black, J.E.; King, F.D.

    1979-01-01

    Savannah River Laboratory (SRL) is participating in the Spent Fuel Handling and Packaging Program for retrievable, near-surface storage of spent light water reactor (LWR) fuel. One of SRL's responsibilities is to provide a technical description of the wet fuel receipt and lag storage part of the Spent Fuel Handling and Packaging (SFHP) facility. This document is the required technical description

  7. LSDS Development for Isotopic Fissile Assay in Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Deok; Park, Chang Je; Park, Geun Il; Lee, Jung Won; Song, Kee Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-07-01

    As an option to reduce a spent fuel and reuse an existing fissile material in spent fuel, sodium fast reactor SFR program linked with pyro-processing is under development in KAERI. A uranium-TRU mixture through a pyro-process is used to fabricate SFR fuel. An assay of isotopic fissile content plays an important role in an optimum design of storage site and reuse of fissile materials of spent fuel. Lead slowing down spectrometer LSDS is being developed in KAERI to analyze isotopic fissile material content. LSDS has several features: direct fissile assay, near real time fissile assay, no influence from radiation background, fissile isotopic assay and applicable to spent fuel and recycled fuel. Based on the designed geometry, neutron energy resolution was investigated. The neutron energy spectrum was analyzed as well. Spent fuel emits large number of neutrons by spontaneous fission. Neutron generator must overcome the neutron background to get the pure fission signals from fissile materials. Neutron generator is planned to have compact system with one section electron linac which is easy maintenance, less cost and high neutron yield. The LSD has the power to resolve the fission characteristics from each fissile material. This feature can analyze the content of isotopic fissile. From 1keV to 0.1eV energy range, the energy resolution is enough to get the individual fissile fission signatures. The dominant fission signature is shown below 1eV for each fissile isotope. The neutron generation system with target was designed to get fission signals by fissile materials. The system was decided to overcome neutron backgrounds and to get good counting statistics. Finally, an accurate fissile material content will contribute to safety of spent fuel reuse in future nuclear energy system and optimum design of spent fuel storage site. Additionally, an accurate fissile material content will increase international transparence and credibility for the reuse of PWR spent fuel.

  8. LSDS Development for Isotopic Fissile Assay in Spent Fuel

    International Nuclear Information System (INIS)

    Lee, Yong Deok; Park, Chang Je; Park, Geun Il; Lee, Jung Won; Song, Kee Chan

    2011-01-01

    As an option to reduce a spent fuel and reuse an existing fissile material in spent fuel, sodium fast reactor SFR program linked with pyro-processing is under development in KAERI. A uranium-TRU mixture through a pyro-process is used to fabricate SFR fuel. An assay of isotopic fissile content plays an important role in an optimum design of storage site and reuse of fissile materials of spent fuel. Lead slowing down spectrometer LSDS is being developed in KAERI to analyze isotopic fissile material content. LSDS has several features: direct fissile assay, near real time fissile assay, no influence from radiation background, fissile isotopic assay and applicable to spent fuel and recycled fuel. Based on the designed geometry, neutron energy resolution was investigated. The neutron energy spectrum was analyzed as well. Spent fuel emits large number of neutrons by spontaneous fission. Neutron generator must overcome the neutron background to get the pure fission signals from fissile materials. Neutron generator is planned to have compact system with one section electron linac which is easy maintenance, less cost and high neutron yield. The LSD has the power to resolve the fission characteristics from each fissile material. This feature can analyze the content of isotopic fissile. From 1keV to 0.1eV energy range, the energy resolution is enough to get the individual fissile fission signatures. The dominant fission signature is shown below 1eV for each fissile isotope. The neutron generation system with target was designed to get fission signals by fissile materials. The system was decided to overcome neutron backgrounds and to get good counting statistics. Finally, an accurate fissile material content will contribute to safety of spent fuel reuse in future nuclear energy system and optimum design of spent fuel storage site. Additionally, an accurate fissile material content will increase international transparence and credibility for the reuse of PWR spent fuel

  9. Intermodal transfer of spent fuel

    International Nuclear Information System (INIS)

    Neuhauser, K.S.; Weiner, R.F.

    1993-01-01

    This paper discusses RADTRAN calculational models and parameter values for describing dose to workers during incident-free ship-to-truck transfer of spent fuel. Data obtained during observation of the offloading of research reactor spent fuel at Newport News Terminal in the Port of Hampton Roads, Virginia, are described. These data include estimates of exposure times and distances for handlers, inspectors, and other workers during offloading and overnight storage. Other workers include crane operators, scale operators, security personnel, and truck drivers. The data are compared to the default data in RADTRAN 4, and the latter are found to be conservative. The casks were loaded under IAEA supervision at their point of origin, and three separate radiological inspections of each cask were performed at the entry to the port (Hampton Roads) by the U.S. Coast Guard, the state of Virginia, and the shipping firm. As a result of the international standardization of containerized cargo handling in ports around the world, maritime shipment handling is particularly uniform. Thus, handler exposure parameters will be relatively constant for ship-truck and ship-rail transfers at ports throughout the world. Inspectors' doses are expected to vary because of jurisdictional considerations. The results of this study should be applicable to truck-to-rail transfers. (author)

  10. A central spent fuel storage in Sweden

    International Nuclear Information System (INIS)

    Gustafsson, B.; Hagberth, R.

    1978-01-01

    A planned central spent fuel storage facility in Sweden is described. The nuclear power program and quantities of spent fuel generated in Sweden is discussed. A general description of the facility is given with emphasis on the lay-out of the buildings, transport casks and fuel handling. Finally a possible design of a Swedish transportation system is discussed. (author)

  11. Overview on spent fuel management strategies

    International Nuclear Information System (INIS)

    Dyck, P.

    2002-01-01

    This paper presents an overview on spent fuel management strategies which range from reprocessing to interim storage in a centralised facility followed by final disposal in a repository. In either case, more spent fuel storage capacity (wet or dry, at-reactor or away-from-reactor, national or regional) is required as spent fuel is continuously accumulated while most countries prefer to defer their decision to choose between these two strategies. (author)

  12. Spent fuel shipping cask accident evaluation

    International Nuclear Information System (INIS)

    Fields, S.R.

    1975-12-01

    Mathematical models have been developed to simulate the dynamic behavior, following a hypothetical accident and fire, of typical casks designed for the rail shipment of spent fuel from nuclear reactors, and to determine the extent of radioactive releases under postulated conditions. The casks modeled were the IF-300, designed by the General Electric Company for the shipment of spent LWR fuel, and a cask designed by the Aerojet Manufacturing Company for the shipment of spent LMFBR fuel

  13. Dry Refabrication Technology Development of Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Lee, Jung Won; Park, G. I.; Park, C. J.

    2010-04-01

    Key technical data on advanced nuclear fuel cycle technology development for the spent fuel recycling have been produced in this study. In the frame work of DUPIC, dry process oxide products fabrication, hot cell experimental data for decladding, powdering and oxide product fabrication from low and high burnup spent fuel have been produced, basic technology for fabrication of spent fuel standard material has been developed, and remote modulated welding equipment has been designed and fabricated. In the area of advanced pre-treatment process development, a rotary-type oxidizer and spherical particle fabrication process were developed by using SIMFUEL and off-gas treatment technology and zircalloy tube treatment technology were studied. In the area of the property characteristics of dry process products, fabrication technology of simulated dry process products was established and property models were developed based on reproducible property measurement data

  14. Overview of the spent fuel management policy in Finland

    International Nuclear Information System (INIS)

    Manninen, Jussi

    1985-01-01

    The basic factors affecting the spent fuel management policy are highlighted: small size of the nuclear programme in the worldwide scale, no recycling of plutonium envisaged, no governmental organizations for back-end operations foreseen. The prinsiple objective of the policy permanent disposal of high-level wastes irrevocably outside the domestic territory, and the limited success in its implementation are discussed. The preparations of the implementation of the back-up alternative, direct disposal of spent fuel in the Finnish bedrock are described. The basic philosophy behind the system of funding the future waste management costs is clarified. (author)

  15. Spent fuel storage for ISER plant

    International Nuclear Information System (INIS)

    Nakajima, Takasuke; Kimura, Yuzi

    1987-01-01

    ISER is an intrinsically safe reactor basing its safety only on physical laws, and uses a steel reactor vessel in order to be economical. For such a new type reactor, it is essentially important to be accepted by the society by showing that the reactor is more profitable than conventional reactors to the public in both technical and economic viewpoint. It is also important that the reactor raises no serious problem in the total fuel cycle. Reprocessing seems one of the major worldwide fuel cycle issues. Spent fuel storage is also one of the key technologies for fuel cycle back end. Various systems for ISER spent fuel storages are examined in the present report. Spent fuel specifications of ISER are similar to those of LWR and therefore, most of LWR spent fuel technologies are basically applicable to ISER spent fuel. Design requirements and examples of storage facilities are also discussed. Dry storage seems to be preferable for the relatively long cooling time spent fuel like ISER's one from economical viewpoint. Vault storage will possibly be the most advantageous for large storage capacity. Another point for discussion is the location and international collaboration for spent fuel storages: ISER expected to be a worldwide energy source and therefore, international spent fuel management seems to be fairly attractive way for an energy recipient country. (Nogami, K.)

  16. Spent fuel management in Japan - Facts and prospects

    International Nuclear Information System (INIS)

    Nagano, K.

    2002-01-01

    This paper discusses recent developments and future issues related to spent fuel management in Japan. With increasing pressure of spent fuel discharge from the power plants in operation and, in contrast, uncertainties in their processing and management services, spent fuel storage in short and medium terms has been receiving the highest priority in nuclear policy discussions in Japan. While small-scale interim storage devices, as well as capacity expansion (re-racking, etc.) and shared uses of existing devices, are introduced at number of power stations, large scale AFR (away from reactor) 'Storage of Recycle Fuel Resources' is expected to come in a medium and long-run. Commercial operation of 'Storage of Recycle Fuel Resources' is allowed its way, as the bill of amendment to the law for regulation of nuclear power reactors and other nuclear-related activities has passed in the Diet. In the meantime, the Atomic Energy Commission has launched working group discussions for revision of 'The Long-term Program of Research, Development and Utilization of Nuclear Energy' to be completed in 2000. This revision is hoped to set up a stage of national debate of nuclear policy, which might lead to fill conceptual gaps between bodies promoting nuclear development and general public. The author's attempt to illustrate the role of storage in spent fuel management is also presented from a theoretical point of view. (author)

  17. Spent fuels transportation coming from Australia

    International Nuclear Information System (INIS)

    2002-01-01

    Maritime transportation of spent fuels from Australia to France fits into the contract between COGEMA and ANSTO, signed in 1999. This document proposes nine information cards in this domain: HIFAR a key tool of the nuclear, scientific and technological australian program; a presentation of the ANSTO Australian Nuclear Science and Technology Organization; the HIFAR spent fuel management problem; the COGEMA expertise in favor of the research reactor spent fuel; the spent fuel reprocessing at La Hague; the transports management; the transport safety (2 cards); the regulatory framework of the transports. (A.L.B.)

  18. Safety analysis of spent fuel packaging

    International Nuclear Information System (INIS)

    Akamatsu, Hiroshi; Taniuchi, Hiroaki; Tai, Hideto

    1987-01-01

    Many types of spent fuel packagings have been manufactured and been used for transport of spent fuels discharged from nuclear power plant. These spent fuel packagings need to be assesed thoroughly about safety transportation because spent fuels loaded into the packaging have high radioactivity and generation of heat. This paper explains the outline of safety analysis of a packaging, Safety analysis is performed for structural, thermal, containment, shielding and criticality factors, and MARC-CDC, TRUMP, ORIGEN, QAD, ANISN, KENO, etc computer codes are used for such analysis. (author)

  19. Dry refabrication technology development of spent nuclear fuel

    International Nuclear Information System (INIS)

    Park, Geun Il; Lee, J. W.; Song, K. C.

    2012-04-01

    Key technologies highly applicable to the development of advanced nuclear fuel cycle for the spent fuel recycling were developed using spent fuel and simulated spent fuel (SIMFUEL). In the frame work of dry process oxide products fabrication and the property characteristics of dry process products, hot cell experimental data for decladding, powdering and oxide product fabrication from low and high burnup spent fuel have been produced, basic technology for fabrication of spent fuel standard material has been developed, and remotely modulated welding equipment has been designed and fabricated. Also, fabrication technology of simulated dry process products was established and property models were developed based on reproducible property measurement data. In the development of head-end technology for dry refabrication of spent nuclear fuel and key technologies for volume reduction of head-end process waste which are essential in back-end fuel cycle field including pyro-processing, advanced head-end unit process technology development includes the establishment of experimental conditions for synthesis of porous fuel particles using a granulating furnace and for preparation of UO2 pellets, and fabrication and performance demonstration of engineering scale equipment for off-gas treatment of semi-volatile nuclides, and development of phosphate ceramic technology for immobilization of used filters. Radioactivation characterization and treatment equipment design of metal wastes from pretreatment process was conducted, and preliminary experiments of chlorination/electrorefining techniques for the treatment of hull wastes were performed. Based on the verification of the key technologies for head-end process via the hot-cell tests using spent nuclear fuel, pre-conceptual design for the head-end equipments was performed

  20. Dry refabrication technology development of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Geun Il; Lee, J. W.; Song, K. C.; and others

    2012-04-15

    Key technologies highly applicable to the development of advanced nuclear fuel cycle for the spent fuel recycling were developed using spent fuel and simulated spent fuel (SIMFUEL). In the frame work of dry process oxide products fabrication and the property characteristics of dry process products, hot cell experimental data for decladding, powdering and oxide product fabrication from low and high burnup spent fuel have been produced, basic technology for fabrication of spent fuel standard material has been developed, and remotely modulated welding equipment has been designed and fabricated. Also, fabrication technology of simulated dry process products was established and property models were developed based on reproducible property measurement data. In the development of head-end technology for dry refabrication of spent nuclear fuel and key technologies for volume reduction of head-end process waste which are essential in back-end fuel cycle field including pyro-processing, advanced head-end unit process technology development includes the establishment of experimental conditions for synthesis of porous fuel particles using a granulating furnace and for preparation of UO2 pellets, and fabrication and performance demonstration of engineering scale equipment for off-gas treatment of semi-volatile nuclides, and development of phosphate ceramic technology for immobilization of used filters. Radioactivation characterization and treatment equipment design of metal wastes from pretreatment process was conducted, and preliminary experiments of chlorination/electrorefining techniques for the treatment of hull wastes were performed. Based on the verification of the key technologies for head-end process via the hot-cell tests using spent nuclear fuel, pre-conceptual design for the head-end equipments was performed.

  1. Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation

    International Nuclear Information System (INIS)

    Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki

    2012-01-01

    Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spent fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.

  2. Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Permana, Sidik; Suzuki, Mitsutoshi; Su' ud, Zaki [Department of Science and Technology for Nuclear Material Management (STNM), Japan Atomic Energy Agency (JAEA), 2-4 Shirane, Shirakata, Tokai Mura, Naka-gun, Ibaraki 319-1195 Nuclear Physics and Bio (Indonesia); Department of Science and Technology for Nuclear Material Management (STNM), Japan Atomic Energy Agency (JAEA), 2-4 Shirane, Shirakata, Tokai Mura, Naka-gun, Ibaraki 319-1195 (Japan); Nuclear Physics and Bio Physics Research Group, Department of Physics, Bandung Institute of Technology, Gedung Fisika, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2012-06-06

    Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spent fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.

  3. Reprocessing method for spent fuel

    International Nuclear Information System (INIS)

    Fujie, Makoto; Shoji, Yuichi; Kobayashi, Tsuguyuki.

    1997-01-01

    After reducing oxides of uranium (U), plutonium (Pu) and miner actinides in spent fuels by magnesium (Mg) in a molten salt, rear earth element oxides and salts of alkali metals and alkaline earth metals contained in the molten salt phase are separated and removed. Further, the Mg phase containing the reduced metals is evaporated to separate and remove Mg, thereby recovering U, Pu and minor actinides. In a lithium (Li) process, Li 2 O also generated in the reduction step is regenerated to Li simultaneously, and the reduction is conducted while suppressing the Li 2 O concentration in the molten salt low. This can improve the reduction rate of oxides of U, Pu and minor actinides compared with conventional cases. Since Li 2 O is regenerated into Li in the reduction step of the Li process, deposited Li 2 O is not carried to an electrolysis purification step, and recovering rate of U, Pu and minor actinides is not lowered. (T.M.)

  4. Spent Nuclear Fuel Project Safety Management Plan

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities

  5. Spent fuel management newsletter. No. 2

    International Nuclear Information System (INIS)

    1993-04-01

    This issue of the newsletter consists of two parts. The first part describes the IAEA Secretariat activities - work and programme of the Nuclear Materials and Fuel Cycle Technology Section of the Division of Nuclear Fuel Cycle and Waste Management, recent and planned meetings and publications, Technical Co-operation projects, Co-ordinated Research programmes. The second part contains country reports - national programmes on spent fuel management: current and planned storage and reprocessing capacities, spent fuel arisings, safety, transportation, storage and treatment of spent fuel

  6. Spent fuel management newsletter. No. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-04-01

    This issue of the newsletter consists of two parts. The first part describes the IAEA Secretariat activities - work and programme of the Nuclear Materials and Fuel Cycle Technology Section of the Division of Nuclear Fuel Cycle and Waste Management, recent and planned meetings and publications, Technical Co-operation projects, Co-ordinated Research programmes. The second part contains country reports - national programmes on spent fuel management: current and planned storage and reprocessing capacities, spent fuel arisings, safety, transportation, storage and treatment of spent fuel.

  7. The role of spent fuel test facilities in the fuel cycle strategy

    International Nuclear Information System (INIS)

    Huang, S. T.; Gross, D. L.; Snyder, N. W.; Woods, W. D.

    1988-01-01

    Disposal of commercial spent nuclear fuels in the major industrialized countries may be categorized into two broad approaches: a once-through policy which will dispose of spent fuels and recycle fissile materials. Within reprocess spent fuels and recycle fissile materials. Within each policy, various technical, licensing, institutional and public issues exist. These issues tend to complicate the formulation of an effective and acceptable fuel cycle strategy which will meet various cost, schedule, and legislative constraints. This paper examines overall fuel cycle strategies from the viewpoint of these underlying technical issues and assesses the roles of spent fuel test facilities in the overall fuel cycles steps. Basic functions of such test facilities are also discussed. The main emphasis is placed on the once-through policy although the reprocessing / recycle policy is also discussed. Benefits of utilizing test facilities in the fuel cycle strategies are explored. The results indicate that substantial benefits may be obtained in terms of minimizing programmatic risks, increasing public confidence, and more effective utilization of overall budgetary resources by structuring and highlighting the test facilities as an important element in the overall strategy

  8. Remote technology applications in spent fuel management

    International Nuclear Information System (INIS)

    2005-03-01

    Spent fuel management has become a prospective area for application of remote technology in recent years with a steadily growing inventory of spent fuel arising from nuclear power production. A remark that could be made from the review of technical information collected from the IAEA meetings was that remote technology in spent fuel management has matured well through the past decades of industrial experiences. Various remote technologies have been developed and applied in the past for facility operation and maintenance work in spent fuel examination, storage, transportation, reprocessing and radioactive waste treatment, among others, with significant accomplishments in dose reduction to workers, enhancement of reliability, etc. While some developmental activities are continuing for more advanced applications, industrial practices have made use of simple and robust designs for most of the remote systems technology applications to spent fuel management. In the current state of affairs, equipment and services in remote technology are available in the market for applications to most of the projects in spent fuel management. It can be concluded that the issue of critical importance in remote systems engineering is to make an optimal selection of technology and equipment that would best satisfy the as low as reasonably achievable (ALARA) requirements in terms of relevant criteria like dose reduction, reliability, costs, etc. In fact, good selection methodology is the key to efficient implementation of remote systems applications in the modern globalized market. This TECDOC gives a review of the current status of remote technology applications for spent fuel management, based on country reports from some Member States presented at the consultancy meetings, of which updated reports are attached in the annex. The scope of the review covers the series of spent fuel handling operations involved in spent fuel management, from discharge from reactor to reprocessing or

  9. New Technology For Fissile Assay In Spent Fuel Using LSDS

    International Nuclear Information System (INIS)

    Lee, Yongdeok; Park, Changje; Park, Geunil; Lee, Jungwon; Song, Keechan

    2012-01-01

    The principle of LSDS is very simple. The interrogated neutron induces energy dependent characteristic fission from fissile materials in spent fuel. The fission threshold detector screens the prompt fast fission neutrons from background and fissionable materials. However, intense source neutron is necessary to overcome radiation background. The detected signals have a direct relationship to the content of each fissile material. The isotopic fissile assay using LSDS is applicable for optimum design of spent fuel storage and management, quality assurance of recycled nuclear material, maximization of burnup credit. Another important application is verity burnup code and provide correction factor for improving the fissile material content, fission product correction factor for improving the fissile material content, fission product content and theoretical burnup. Additionally, the isotopic fissile content assay will increase the transparence and credibility for spent fuel storage and its re-utilization, as internationally demanded

  10. Research reactor spent fuel in Ukraine

    International Nuclear Information System (INIS)

    Trofimenko, A.P.

    1996-01-01

    This paper describes the research reactors in Ukraine, their spent fuel facilities and spent fuel management problems. Nuclear sciences, technology and industry are highly developed in Ukraine. There are 5 NPPs in the country with 14 operating reactors which have total power capacity of 12,800 MW

  11. Costing of spent nuclear fuel storage

    International Nuclear Information System (INIS)

    2009-01-01

    This report deals with economic analysis and cost estimation, based on exploration of relevant issues, including a survey of analytical tools for assessment and updated information on the market and financial issues associated with spent fuel storage. The development of new storage technologies and changes in some of the circumstances affecting the costs of spent fuel storage are also incorporated. This report aims to provide comprehensive information on spent fuel storage costs to engineers and nuclear professionals as well as other stakeholders in the nuclear industry. This report is meant to provide informative guidance on economic aspects involved in selecting a spent fuel storage system, including basic methods of analysis and cost data for project evaluation and comparison of storage options, together with financial and business aspects associated with spent fuel storage. After the review of technical options for spent fuel storage in Section 2, cost categories and components involved in the lifecycle of a storage facility are identified in Section 3 and factors affecting costs of spent fuel storage are then reviewed in the Section 4. Methods for cost estimation and analysis are introduced in Section 5, and other financial and business aspects associated with spent fuel storage are discussed in Section 6.

  12. Spent Nuclear Fuel (SNF) Project Execution Plan

    International Nuclear Information System (INIS)

    LEROY, P.G.

    2000-01-01

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities

  13. Spent Nuclear Fuel (SNF) Project Execution Plan

    Energy Technology Data Exchange (ETDEWEB)

    LEROY, P.G.

    2000-11-03

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

  14. Spent fuel characterization for the commercial waste and spent fuel packaging program

    International Nuclear Information System (INIS)

    Fish, R.L.; Davis, R.B.; Pasupathi, V.; Klingensmith, R.W.

    1980-03-01

    This document presents the rationale for spent fuel characterization and provides a detailed description of the characterization examinations. Pretest characterization examinations provide quantitative and qualitative descriptions of spent fuel assemblies and rods in their irradiated conditions prior to disposal testing. This information is essential in evaluating any subsequent changes that occur during disposal demonstration and laboratory tests. Interim examinations and post-test characterization will be used to identify fuel rod degradation mechanisms and quantify degradation kinetics. The nature and behavior of the spent fuel degradation will be defined in terms of mathematical rate equations from these and laboratory tests and incorporated into a spent fuel performance prediction model. Thus, spent fuel characterization is an essential activity in the development of a performance model to be used in evaluating the ability of spent fuel to meet specific waste acceptance criteria and in evaluating incentives for modification of the spent fuel assemblies for long-term disposal purposes

  15. Long term wet spent nuclear fuel storage

    International Nuclear Information System (INIS)

    1987-04-01

    The meeting showed that there is continuing confidence in the use of wet storage for spent nuclear fuel and that long-term wet storage of fuel clad in zirconium alloys can be readily achieved. The importance of maintaining good water chemistry has been identified. The long-term wet storage behaviour of sensitized stainless steel clad fuel involves, as yet, some uncertainties. However, great reliance will be placed on long-term wet storage of spent fuel into the future. The following topics were treated to some extent: Oxidation of the external surface of fuel clad, rod consolidation, radiation protection, optimum methods of treating spent fuel storage water, physical radiation effects, and the behaviour of spent fuel assemblies of long-term wet storage conditions. A number of papers on national experience are included

  16. Spent nuclear fuel disposal liability insurance

    International Nuclear Information System (INIS)

    Martin, D.W.

    1984-01-01

    This thesis examines the social efficiency of nuclear power when the risks of accidental releases of spent fuel radionuclides from a spent fuel disposal facility are considered. The analysis consists of two major parts. First, a theoretical economic model of the use of nuclear power including the risks associated with releases of radionuclides from a disposal facility is developed. Second, the costs of nuclear power, including the risks associated with a radionuclide release, are empirically compared to the costs of fossil fuel-fired generation of electricity. Under the provisions of the Nuclear Waste Policy Act of 1982, the federally owned and operated spent nuclear fuel disposal facility is not required to maintain a reserve fund to cover damages from an accidental radionuclide release. Thus, the risks of a harmful radionuclide release are not included in the spent nuclear fuel disposal fee charged to the electric utilities. Since the electric utilities do not pay the full, social costs of spent fuel disposal, they use nuclear fuel in excess of the social optimum. An insurance mechanism is proposed to internalize the risks associated with spent fueled disposal. Under this proposal, the Federal government is required to insure the disposal facility against any liabilities arising from accidental releases of spent fuel radionuclides

  17. Spent fuel management and closed nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kudryavtsev, E.G.

    2012-01-01

    Strategic objectives set by Rosatom Corporation in the field of spent fuel management are given. By 2030, Russia is to create technological infrastructure for innovative nuclear energy development, including complete closure of the nuclear fuel cycle. A target model of the spent NPP nuclear fuel management system until 2030 is analyzed. The schedule for key stages of putting in place the infrastructure for spent NPP fuel management is given. The financial aspect of the problem is also discussed [ru

  18. The Canadian research reactor spent fuel situation

    International Nuclear Information System (INIS)

    Ernst, P.C.

    1996-01-01

    This paper summarizes the present research reactor spent fuel situation in Canada. The research reactors currently operating are listed along with the types of fuel that they utilize. Other shut down research reactors contributing to the storage volume are included for completeness. The spent fuel storage facilities associated with these reactors and the methods used to determine criticality safety are described. Finally the current inventory of spent fuel and where it is stored is presented along with concerns for future storage. (author). 3 figs

  19. Method For Processing Spent (Trn,Zr)N Fuel

    Science.gov (United States)

    Miller, William E.; Richmann, Michael K.

    2004-07-27

    A new process for recycling spent nuclear fuels, in particular, mixed nitrides of transuranic elements and zirconium. The process consists of two electrorefiner cells in series configuration. A transuranic element such as plutonium is reduced at the cathode in the first cell, zirconium at the cathode in the second cell, and nitrogen-15 is released and captured for reuse to make transuranic and zirconium nitrides.

  20. ATR Spent Fuel Options Study

    International Nuclear Information System (INIS)

    Connolly, Michael James; Bean, Thomas E.; Brower, Jeffrey O.; Luke, Dale E.; Patterson, M. W.; Robb, Alan K.; Sindelar, Robert; Smith, Rebecca E.; Tonc, Vincent F.; Tripp, Julia L.; Winston, Philip L.

    2017-01-01

    The Advanced Test Reactor (ATR) is a materials and fuels test nuclear reactor that performs irradiation services for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Naval Reactors, the National Nuclear Security Administration (NNSA), and other research programs. ATR achieved initial criticality in 1967 and is expected to operate in support of needed missions until the year 2050 or beyond. It is anticipated that ATR will generate approximately 105 spent nuclear fuel (SNF) elements per year through the year 2050. Idaho National Laboratory (INL) currently stores 2,008 ATR SNF elements in dry storage, 976 in wet storage, and expects to have 1,000 elements in wet storage before January 2017. A capability gap exists at INL for long-term (greater than the year 2050) management, in compliance with the Idaho Settlement Agreement (ISA), of ATR SNF until a monitored retrievable geological repository is open. INL has significant wet and dry storage capabilities that are owned by the DOE Office of Environmental Management (EM) and operated and managed by Fluor Idaho, which include the Idaho Nuclear Technology and Engineering Center's (INTEC's) CPP-666, CPP-749, and CPP-603. In addition, INL has other capabilities owned by DOE-NE and operated and managed by Battelle Energy Alliance, LLC (BEA), which are located at the Materials and Fuel Complex (MFC). Additional storage capabilities are located on the INL Site at the Naval Reactors Facility (NRF). Current INL SNF management planning, as defined in the Fluor Idaho contract, shows INTEC dry fuel storage, which is currently used for ATR SNF, will be nearly full after transfer of an additional 1,000 ATR SNF from wet storage. DOE-NE tasked BEA with identifying and analyzing options that have the potential to fulfill this capability gap. BEA assembled a team comprised of SNF management experts from Fluor Idaho, Savannah River Site (SRS), INL/BEA, and the MITRE Corp with an objective of developing and analyzing

  1. ATR Spent Fuel Options Study

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Michael James [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bean, Thomas E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Brower, Jeffrey O. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Luke, Dale E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Patterson, M. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Robb, Alan K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sindelar, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Rebecca E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tonc, Vincent F. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tripp, Julia L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Winston, Philip L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    The Advanced Test Reactor (ATR) is a materials and fuels test nuclear reactor that performs irradiation services for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Naval Reactors, the National Nuclear Security Administration (NNSA), and other research programs. ATR achieved initial criticality in 1967 and is expected to operate in support of needed missions until the year 2050 or beyond. It is anticipated that ATR will generate approximately 105 spent nuclear fuel (SNF) elements per year through the year 2050. Idaho National Laboratory (INL) currently stores 2,008 ATR SNF elements in dry storage, 976 in wet storage, and expects to have 1,000 elements in wet storage before January 2017. A capability gap exists at INL for long-term (greater than the year 2050) management, in compliance with the Idaho Settlement Agreement (ISA), of ATR SNF until a monitored retrievable geological repository is open. INL has significant wet and dry storage capabilities that are owned by the DOE Office of Environmental Management (EM) and operated and managed by Fluor Idaho, which include the Idaho Nuclear Technology and Engineering Center’s (INTEC’s) CPP-666, CPP-749, and CPP-603. In addition, INL has other capabilities owned by DOE-NE and operated and managed by Battelle Energy Alliance, LLC (BEA), which are located at the Materials and Fuel Complex (MFC). Additional storage capabilities are located on the INL Site at the Naval Reactors Facility (NRF). Current INL SNF management planning, as defined in the Fluor Idaho contract, shows INTEC dry fuel storage, which is currently used for ATR SNF, will be nearly full after transfer of an additional 1,000 ATR SNF from wet storage. DOE-NE tasked BEA with identifying and analyzing options that have the potential to fulfill this capability gap. BEA assembled a team comprised of SNF management experts from Fluor Idaho, Savannah River Site (SRS), INL/BEA, and the MITRE Corp with an objective of developing and analyzing

  2. Electrochemical processing of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, M. A.; Willit, J. L.; Barnes, L. A.; Figueroa, J.; Limmer, S. L.; Blaskovitz, R. [Argonne National Laboratory, Argonne (United States)

    2008-08-15

    Our work in developing the fuel cycles and electrochemical technologies needed for the treatment of spent light water reactor and spent fast reactor fuel is progressing well. Baseline flowsheets along with a theoretical material balance have been developed for treatment of each type of fuel. A discussion about the flowsheets provides the opportunity to present the status of our technology development activities and future research and development directions.

  3. Electrochemical processing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Williamson, M. A.; Willit, J. L.; Barnes, L. A.; Figueroa, J.; Limmer, S. L.; Blaskovitz, R.

    2008-01-01

    Our work in developing the fuel cycles and electrochemical technologies needed for the treatment of spent light water reactor and spent fast reactor fuel is progressing well. Baseline flowsheets along with a theoretical material balance have been developed for treatment of each type of fuel. A discussion about the flowsheets provides the opportunity to present the status of our technology development activities and future research and development directions

  4. Nuclear spent fuel management. Experience and options

    International Nuclear Information System (INIS)

    1986-01-01

    Spent nuclear fuel can be stored safely for long periods at relatively low cost, but some form of permanent disposal will eventually be necessary. This report examines the options for spent fuel management, explores the future prospects for each stage of the back-end of the fuel cycle and provides a thorough review of past experience and the technical status of the alternatives. Current policies and practices in twelve OECD countries are surveyed

  5. German Approach to Spent Fuel Management

    International Nuclear Information System (INIS)

    Jussofie, A.; Graf, R.; Filbert, W.

    2010-01-01

    The management of spent fuel was based on two powerful columns until 30 June 2005, i. e. reprocessing and direct disposal. After this date any delivery of spent fuel to reprocessing plants was prohibited so that the direct disposal of unreprocessed spent fuel is the only available option in Germany today. The main steps of the current concept are: (i) Intermediate storage of spent fuel, which is the only step in practice. After the first cooling period in spent fuel storage pools it continues into cask-receiving dry storage facilities. Identification of casks, 'freezing' of inventories in terms of continuity of knowledge, monitoring the access to spent fuel, verifying nuclear material movements in terms of cask transfers and ensurance against diversion of nuclear material belong to the fundamental safeguards goals which have been achieved in the intermediate storage facilities by containment and surveillance techniques in unattended mode. (ii) Conditioning of spent fuel assemblies by separating the fuel rods from structural elements. Since the pilot conditioning facility in Gorleben has not yet come into operation, the underlying safeguards approach which focuses on safeguarding the key measurement points - the spent fuel related way in and out of the facility - has not been applied yet. (iii) Disposal in deep geological formations, but no decision has been made so far neither regarding the location of a geological repository nor regarding the safeguards approach for the disposal concept of spent fuel. The situation was complicated by a moratorium which suspended the underground exploration of the Gorleben salt dome as potential geological repository for spent fuel. The moratorium expires in October 2010. Nevertheless, considerable progress has been made in the development of disposal concepts. According to the basic, so-called POLLUX (registered) -concept spent fuel assemblies are to be conditioned after dry storage and reloaded into the POLLUX (registered) -cask

  6. COGEMA's national advertising campaign concerning nuclear fuel recycling

    International Nuclear Information System (INIS)

    Gallot, Christine

    1999-01-01

    Goals of COGEMA's advertising campaign concerning nuclear fuel recycling are to: speak out in an area where COGEMA has legitimacy and is expected; and to take part in the discussion to support and defend an activity that is important for COGEMA. Targets are: back up opinion relays by reaching the general public; and back COGEMA personnel. The advertising strategy can be defined as follows: what is recommended for other industries (sorting and then recycling) is COGEMA's practice for spent fuel, with very significant advantages for the community in terms of economy and ecology

  7. An Indian perspective for transportation and storage of spent fuel

    International Nuclear Information System (INIS)

    Dey, P.K.

    2005-01-01

    The spent fuel discharged from the reactors are temporarily stored at the reactor pool. After a certain cooling time, the spent fuel is moved to the storage locations either on or off reactor site depending on the spent fuel management strategy. As India has opted for a closed fuel cycle for its nuclear energy development, reprocessing of the spent fuel, recycling of the reprocessed plutonium and uranium and disposal of the wastes from the reprocessing operations forms the spent fuel management strategy. Since the reprocessing operations are planned to match the nuclear energy programme, storage of the spent fuel in ponds are adopted prior to reprocessing. Transport of the spent fuel to the storage locations are carried out adhering to international and national guide lines. India is having 14 operating power reactors and three research reactors. The spent fuel from the two safeguarded BWRs are stored at-reactor (AR) storage pond. A separate wet storage facility away-from-reactor (AFR) has been designed, constructed and made operational since 1991 for additional fuel storage. Storage facilities are provided in ARs at other reactor locations to cater to 10 reactor-years of operation. A much lower capacity spent fuel storage is provided in reprocessing plants on the same lines of AR fuel storage design. Since the reprocessing operations are carried out on a need basis, to cater to the increased storage needs two new spent fuel storage facilities (SFSF) are being designed and constructed near the existing nuclear plant sites. India has mastered the technology for design, construction and operation of wet spent fuel storage facility meeting all the international standards Wet storage of the spent fuel is the most commonly adopted mode all over the world. Recently an alternate mode viz. dry storage has also been considered. India has designed, constructed and operated lead shielded dry storage casks and is operational at one site. A dry storage cask made of concrete

  8. Japanese status-quo and our activities in the field of nuclear fuel recycle

    International Nuclear Information System (INIS)

    Sada, Masao; Imai, Osamu

    1983-01-01

    Nuclear energy is expected to take the place of current petroleum-base-energy in the near future. In order to effectively utilize the nuclear energy, nuclear fuel recycle system has to be established. The technology for reprocessing the spent fuel, which is a part of this recycle system, is very similar to the ones in chemical industry. Our company has been keeping its eyes on the field of such nuclear energy as one of the future promising businesses and recentrly established Nuclear Energy Department as a center for further expanding the business opportunity in the field of such spent fuel reprocessing as well as other fields of nuclear fuel recycle system. (author)

  9. Rock cavern storage of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Jin; Kim, Kyung Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kwon, Sang Ki [Inha University, Incheon (Korea, Republic of)

    2015-12-15

    The rock cavern storage for spent fuel has been assessed to apply in Korea with reviewing the state of the art of the technologies for surface storage and rock cavern storage of spent fuel. The technical feasibility and economic aspects of the rock cavern storage of spent fuel were also analyzed. A considerable area of flat land isolated from the exterior are needed to meet the requirement for the site of the surface storage facilities. It may, however, not be easy to secure such areas in the mountainous region of Korea. Instead, the spent fuel storage facilities constructed in the rock cavern moderate their demands for the suitable site. As a result, the rock cavern storage is a promising alternative for the storage of spent fuel in the aspect of natural and social environments. The rock cavern storage of spent fuel has several advantages compared with the surface storage, and there is no significant difference on the viewpoint of economy between the two alternatives. In addition, no great technical difficulties are present to apply the rock cavern storage technologies to the storage of domestic spent fuel.

  10. Modeling the highway transportation of spent fuel

    International Nuclear Information System (INIS)

    Harrison, I.G.

    1986-01-01

    There will be a substantial increase in the number of spent fuel shipments on the nation's highway system in the next thirty years. Most of the spent fuel will be moving from reactors to a spent fuel repository. This study develops two models that evaluate the risk and cost of moving the spent fuel. The Minimum Total Transport Risk Model (MTTRM) seeks an efficient solution for this problem by finding the minimum risk path through the network and sending all the spent fuel shipments over this one path. The Equilibrium Transport Risk Model (ETRM) finds an equitable solution by distributing the shipments over a number of paths in the network. This model decreases the risk along individual paths, but increases society's risk because the spent fuel shipments are traveling over more links in the network. The study finds that there is a trade off between path risk and societal risk. As path risk declines, societal risk rises. The cost of shipping also increases as the number of paths expand. The cost and risk of shipping spent fuel from ten reactors to four potential repository sites are evaluated using the MTTRM. The temporary monitored retrievable storage (MRS) facility in Tennessee is found to be the minimum cost and minimum risk solution. When direct shipment to the permanent sites is considered, Deaf Smith, Texas is the least cost and least incident free transport risk location. Yucca Mountain, Nevada is the least risk location when the focus is placed on the potential consequences of an accident

  11. Nuclear criticality safety studies applicable to spent fuel shipping cask designs and spent fuel storage

    International Nuclear Information System (INIS)

    Tang, J.S.

    1980-11-01

    Criticality analyses of water-moderated and reflected arrays of LWR fresh and spent fuel assemblies were carried out in this study. The calculated results indicate that using the assumption of fresh fuel loading in spent fuel shipping cask design leads to assembly spacings which are about twice the spacings of spent fuel loadings. Some shipping cask walls of composite lead and water are more effective neutron reflectors than water of 30.48 cm

  12. Spent fuel transport in fuel cycle

    International Nuclear Information System (INIS)

    Labrousse, M.

    1977-01-01

    The transport of radioactive substances is a minor part of the fuel cycle because the quantities of matter involved are very small. However the length and complexity of the cycle, the weight of the packing, the respective distances between stations, enrichment plants and reprocessing plants are such that the problem is not negligible. In addition these transports have considerable psychological importance. The most interesting is spent fuel transport which requires exceptionally efficient packaging, especially where thermal and mechanical resistance are concerned. To meet the safety criteria necessary for the protection of both public and users it was decided to use the maximum capacity consistent with rail transport and to avoid coolant fluids under pressure. Since no single type of packing is suitable for all existing stations an effort has been made to standardise handling accessories, and future trands are towards maximum automation. A discussion on the various technical solutions available for the construction of these packing systems is followed by a description of those used for the two types of packaging ordered by COGEMA [fr

  13. Power Reactor Fuel Reprocessing Plant-1: a stepping stone in Indian PHWR spent fuel reprocessing

    International Nuclear Information System (INIS)

    Pradhan, Sanjay; Dubey, K.; Qureshi, F.T.; Lokeswar, S.P.

    2017-01-01

    India has low reserves of uranium and high reserves of thorium. In order to optimize resource utilization India has adopted a closed fuel cycle to ensure long-term energy security. The optimum resource utilization is feasible only by adopting reprocessing, conditioning and recycle options. It is very much imperative to view spent fuel as a vital resource material and not a waste to be disposed off. Thus, spent nuclear fuel reprocessing forms an integral part of the Indian Nuclear Energy Programme. Aqueous reprocessing based on PUREX technology is in use for more than 50 years and has reached a matured status

  14. Spent fuel management of NPPs in Argentina

    International Nuclear Information System (INIS)

    Alvarez, D.E.; Lee Gonzalez, H.M.

    2010-01-01

    There are two Nuclear Power Plants in operation in Argentina: 'Atucha I' (unique PHWR design) in operation since 1974, and 'Embalse' (typical Candu reactor) which started operation in 1984. Both NPPs are operated by 'Nucleoelectrica Argentina S.A' which is responsible for the management and interim storage of spent fuel till the end of the operative life of the plants. A third NPP, 'Atucha II' is under construction, with a similar design of Atucha I. The legislative framework establishes that after final shutdown of a NPP the spent fuel will be transferred to the 'National Atomic Energy Commission', which is also responsible for the decommissioning of the Plants. In Atucha I, the spent fuel is stored underwater, until another option is implemented meanwhile in Embalse the spent fuel is stored during six years in pools and then it is moved to a dry storage. A decision about the fuel cycle back-end strategy will be taken before year 2030. (authors)

  15. International experience in conditioning spent fuel elements

    International Nuclear Information System (INIS)

    Ashton, P.

    1991-04-01

    The purpose of this report is to compile and present in a clear form international experience (USA, Canada, Sweden, FRG, UK, Japan, Switzerland) gained to date in conditioning spent fuel elements. The term conditioning is here taken to mean the handling and packaging of spent fuel elements for short- or long-term storage or final disposal. Plants of a varying nature fall within this scope, both in terms of the type of fuel element treated and the plant purpose eg. experimental or production plant. Emphasis is given to plants which bear some similarity to the concept developed in Germany for direct disposal of spent fuel elements. Worldwide, however, relatively few conditioning plants are in existence or have been conceived. Hence additional plants have been included where aspects of the experience gained are also of relevance eg. plants developed for the consolidation of spent fuel elements. (orig./HP) [de

  16. Advances in HTGR spent fuel treatment technology

    International Nuclear Information System (INIS)

    Holder, N.D.; Lessig, W.S.

    1984-08-01

    GA Technologies, Inc. has been investigating the burning of spent reactor graphite under Department of Energy sponsorship since 1969. Several deep fluidized bed burners have been used at the GA pilot plant to develop graphite burning techniques for both spent fuel recovery and volume reduction for waste disposal. Since 1982 this technology has been extended to include more efficient circulating bed burners. This paper includes updates on high-temperature gas-cooled reactor fuel cycle options and current results of spent fuel treatment testing for fluidized and advanced circulating bed burners

  17. Spent Nuclear Fuel Project dose management plan

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1996-03-01

    This dose management plan facilitates meeting the dose management and ALARA requirements applicable to the design activities of the Spent Nuclear Fuel Project, and establishes consistency of information used by multiple subprojects in ALARA evaluations. The method for meeting the ALARA requirements applicable to facility designs involves two components. The first is each Spent Nuclear Fuel Project subproject incorporating ALARA principles, ALARA design optimizations, and ALARA design reviews throughout the design of facilities and equipment. The second component is the Spent Nuclear Fuel Project management providing overall dose management guidance to the subprojects and oversight of the subproject dose management efforts

  18. Release of segregated nuclides from spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.H.; Tait, J.C. [Atomic Energy Canada Ltd., Pinawa, MB (Canada). Whiteshell Laboratories

    1997-10-01

    The potential release of fission and activation products from spent nuclear fuel into groundwater after container failure in the Swedish deep repository is discussed. Data from studies of fission gas release from representative Swedish BWR fuel are used to estimate the average fission gas release for the spent fuel population. Information from a variety of leaching studies on LWR and CANDU fuel are then reviewed as a basis for estimating the fraction of the inventory of key radionuclides that could be released preferentially (the Instant Release Fraction of IRF) upon failure of the fuel cladding. The uncertainties associated with these estimates are discussed. 33 refs, 6 figs, 3 tabs.

  19. Spent fuel transportation in the United States: commercial spent fuel shipments through December 1984

    International Nuclear Information System (INIS)

    1986-04-01

    This report has been prepared to provide updated transportation information on light water reactor (LWR) spent fuel in the United States. Historical data are presented on the quantities of spent fuel shipped from individual reactors on an annual basis and their shipping destinations. Specifically, a tabulation is provided for each present-fuel shipment that lists utility and plant of origin, destination and number of spent-fuel assemblies shipped. For all annual shipping campaigns between 1980 and 1984, the actual numbers of spent-fuel shipments are defined. The shipments are tabulated by year, and the mode of shipment and the casks utilized in shipment are included. The data consist of the current spent-fuel inventories at each of the operating reactors as of December 31, 1984. This report presents historical data on all commercial spent-fuel transportation shipments have occurred in the United States through December 31, 1984

  20. Spent fuel workshop'2002

    Energy Technology Data Exchange (ETDEWEB)

    Poinssot, Ch

    2002-07-01

    This document gathers the transparencies of the presentations given at the 2002 spent fuel workshop: Session 1 - Research Projects: Overview on the IN CAN PROCESSES European project (M. Cowper), Overview on the SPENT FUEL STABILITY European project (C. Poinssot), Overview on the French R and D project on spent fuel long term evolution, PRECCI (C. Poinssot); Session 2 - Spent Fuel Oxidation: Oxidation of uranium dioxide single crystals (F. Garrido), Experimental results on SF oxidation and new modeling approach (L. Desgranges), LWR spent fuel oxidation - effects of burn-up and humidity (B. Hanson), An approach to modeling CANDU fuel oxidation under dry storage conditions (P. Taylor); Session 3 - Spent Fuel Dissolution Experiments: Overview on high burnup spent fuel dissolution studies at FZK/INE (A. Loida), Results on the influence of hydrogen on spent fuel leaching (K. Spahiu), Leaching of spent UO{sub 2} fuel under inert and reducing conditions (Y. Albinsson), Fuel corrosion investigation by electrochemical techniques (D. Wegen), A reanalysis of LWR spent fuel flow through dissolution tests (B. Hanson), U-bearing secondary phases formed during fuel corrosion (R. Finch), The near-field chemical conditions and spent fuel leaching (D. Cui), The release of radionuclides from spent fuel in bentonite block (S.S. Kim), Trace actinide behavior in altered spent fuel (E. Buck, B. Hanson); Session 4 - Radiolysis Issues: The effect of radiolysis on UO{sub 2} dissolution determined from electrochemical experiments with {sup 238}Pu doped UO{sub 2} M. Stroess-Gascoyne (F. King, J.S. Betteridge, F. Garisto), doped UO{sub 2} studies (V. Rondinella), Preliminary results of static and dynamic dissolution tests with {alpha} doped UO{sub 2} in Boom clay conditions (K. Lemmens), Studies of the behavior of UO{sub 2} / water interfaces under He{sup 2+} beam (C. Corbel), Alpha and gamma radiolysis effects on UO{sub 2} alteration in water (C. Jegou), Behavior of Pu-doped pellets in brines

  1. Graphite Recycling from Spent Lithium-Ion Batteries.

    Science.gov (United States)

    Rothermel, Sergej; Evertz, Marco; Kasnatscheew, Johannes; Qi, Xin; Grützke, Martin; Winter, Martin; Nowak, Sascha

    2016-12-20

    The present work reports on challenges in utilization of spent lithium-ion batteries (LIBs)-an increasingly important aspect associated with a significantly rising demand for electric vehicles (EVs). In this context, the feasibility of anode recycling in combination with three different electrolyte extraction concepts is investigated. The first method is based on a thermal treatment of graphite without electrolyte recovery. The second method additionally utilizes a subcritical carbon-dioxide (subcritical CO 2 )-assisted electrolyte extraction prior to thermal treatment. And the final investigated approach uses supercritical carbon dioxide (scCO 2 ) as extractant, subsequently followed by the thermal treatment. It is demonstrated that the best performance of recycled graphite anodes can be achieved when electrolyte extraction is performed using subcritical CO 2 . Comparative studies reveal that, in the best case, the electrochemical performance of recycled graphite exceeds the benchmark consisting of a newly synthesized graphite anode. As essential efforts towards electrolyte extraction and cathode recycling have been made in the past, the electrochemical behavior of recycled graphite, demonstrating the best performance, is investigated in combination with a recycled LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Casette for storage of spent fuel assemblies

    International Nuclear Information System (INIS)

    Ericsson, S.

    1992-01-01

    Describes a design of a casette for spent fuel storage in a fuelstorage pool. The new design, based on flexible spacers, allows the fuel assemblies to be packed more compact and the fuel storage pool used in a more economic way

  3. The impact of spent fuel reprocessing facilities deployment rate on transuranics inventory in alternative fuel cycle strategies

    International Nuclear Information System (INIS)

    Aquien, A.; Kazimi, M.; Hejzlar, P.

    2007-01-01

    The depletion rate of transuranic inventories from spent fuel depends on both the deployment of advanced reactors that can be loaded with recycled transuranics, and on the deployment of the facilities that separate and reprocess spent fuel. In addition to tracking the mass allocation of TRU in the system and calculating a system cost, the fuel cycle simulation tool CAFCA includes a flexible recycling plant deployment model. This study analyses the impact of different recycling deployment schemes for various fuel cycle strategies in the US over the next hundred years under the assumption of a demand for nuclear energy growing at a rate of 2,4%. Recycling strategies explored in this study fall under two categories: recycling in thermal light water reactors using combined non-fertile and UO 2 fuel (CONFU) and recycling in fast reactors (either fertile-free actinide burner reactors, or self-sustaining gas-cooled fast reactors). Preliminary results show that the earlier deployment of recycling in the thermal reactors will limit the stored levels of TRU below those of fast reactors. However, the avoided accumulation of spent fuel interim storage depends on the deployment rate of the recycling facilities. In addition, by the end of the mid century, the TRU in cooling storage will exceed that in interim storage. (authors)

  4. Risk assessment in spent fuel storage and transportation

    International Nuclear Information System (INIS)

    Pandimani, S.

    1989-01-01

    Risk assessment in various stages of nuclear fuel cycle is still an active area of Nuclear safety studies. From the results of risk assessment available in literature, it can be determined that the risk resulting from shipments of plutonium and spent-fuel are much greater than that resulting from the transport of other materials within the nuclear fuel cycle. In India spent fuels are kept in Spent Fuel Storage Pool (SFSP) for about 240-400 days, which is relatively a longer period compared to the usual 120 days as recommended by regulatory authorities. After cooling spent fuels are transported to the reprocessing sites which are mostly situated close to the plants. India has two high level waste treatment facilities, one PREFRE (Plutonium Reprocessing and Fuel Recycling) at Tarapur and the other one, a unit of Nuclear Fuel Complex at Hyderabad. This paper presents the risk associated with spent fuel storage and transportation for the Indian conditions. All calculations are based on a typical CANDU reactor system. Simple fault tree models are evolved for SFSP and for Transportation Accident Mode (TAM) for both road and rail. Fault tree quantification and risk assessment are done to each of these models. All necessary data for SFSP are taken mostly from Reactor Safety Study, (1975). Similarly, the data for rail TAM are taken from Annual Statistical Statements, (1987-8) and that for road TAM from Special Issue on Motor Vehicle Accident Statistics in India, (1986). Simulation method is used wherever necessary. Risk is also estimated for normal/accident free transport

  5. Determination of enrichment of recycle uranium fuels for different burnup values

    International Nuclear Information System (INIS)

    Zabunoglu, Okan H.

    2008-01-01

    Uranium (U) recovered from spent LWR fuels by reprocessing, which contains small amounts of U-236, is to be enriched before being re-irradiated as the recycle U. During the enrichment of recovered U in U-235, the mass fraction of U-236 also increases. Since the existence of U-236 in the recycle U has a negative effect on neutron economy, a greater enrichment of U-235 in the recycle U is required for reaching the same burnup as can be reached by the fresh U fuel. Two burnup values play the most important role in determining the enrichment of recycle U: (1) discharge burnup of spent fuel from which the recycle U is obtained and (2) desired discharge burnup of the recycle U fuel. A step-by-step procedure for calculating the enrichment of the recycle U as a function of these two burnup values is introduced. The computer codes MONTEBURNS and ORIGEN-S are made use of and a three-component (U-235, U-236, U-238) enrichment scheme is applied for calculating the amount of U-236 in producing the recycle U from the recovered U. As was aimed, the resulting expression is simple enough for quick/hand calculations of the enrichment of the recycle U for any given discharge burnup of spent fuel and for any desired discharge burnup of the recycle U fuel, most accurately within the range of 33,000-50,000 MWd/tonU

  6. Automatic spent fuel ID number reader (I)

    International Nuclear Information System (INIS)

    Tanabe, S.; Kawamoto, H.; Fujimaki, K.; Kobe, A.

    1991-01-01

    An effective and efficient technique has been developed for facilitating identification works of LWR spent fuel stored in large scale spent fuel storage pools of such as processing plants. Experience shows that there are often difficulties in the implementation of operator's nuclear material accountancy and control works as well as safeguards inspections conducted on spent fuel assemblies stored in deep water pool. This paper reports that the technique is realized as an automatic spent fuel ID number reader system installed on fuel handling machine. The ID number reader system consists of an optical sub-system and an image processing sub-system. Thousands of spent fuel assemblies stored in under water open racks in each storage pool could be identified within relatively short time (e.g. within several hours) by using this combination. Various performance tests were carried out on image processing sub-system in 1990 using TV images obtained from different types of spent fuel assemblies stored in various storage pools of PWR and BWR power stations

  7. Spent fuel dry storage in Hungary

    International Nuclear Information System (INIS)

    Buday, G.; Szabo, B.; Oerdoegh, M.; Takats, F.

    1999-01-01

    Paks Nuclear Power Plant is the only NPP in Hungary. It has four WWER-440 type reactor units. Since 1989, approximately 40-50% of the total annual electricity generation of the country has been supplied by this plant. The fresh fuel is imported from Russia. Most of the spent fuel assemblies have been shipped back to Russia. Difficulties with spent fuel transportation to Russia have begun in 1992. Since that time, some of the shipments were delayed, some of them were completely cancelled, thus creating a backlog of spent fuel filling all storage positions of the plant. To provide assurance of the continued operation, Paks NPPs management decided to implement an independent spent fuel storage facility and chose GEC-Althom's MVDS design. The construction of the facility started in February 1995 and the first spent fuel assembly was placed in the store in September 1997. The paper gives an overview of the situation, describing the conditions leading to the construction of the dry storage facility at Paks and its implementation. Finally, some information is given about the new Public Agency for Radioactive Waste Management established this year and responsible for managing the issues related to spent fuel management. (author)

  8. Advanced spent fuel processing technologies for the United States GNEP programme

    International Nuclear Information System (INIS)

    Laidler, J.J.

    2007-01-01

    Spent fuel processing technologies for future advanced nuclear fuel cycles are being developed under the scope of the Global Nuclear Energy Partnership (GNEP). This effort seeks to make available for future deployment a fissile material recycling system that does not involve the separation of pure plutonium from spent fuel. In the nuclear system proposed by the United States under the GNEP initiative, light water reactor spent fuel is treated by means of a solvent extraction process that involves a group extraction of transuranic elements. The recovered transuranics are recycled as fuel material for advanced burner reactors, which can lead in the long term to fast reactors with conversion ratios greater than unity, helping to assure the sustainability of nuclear power systems. Both aqueous and pyrochemical methods are being considered for fast reactor spent fuel processing in the current US development programme. (author)

  9. Method of processing spent fuel cladding tubes

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi; Ouchi, Atsuhiro; Imahashi, Hiromichi.

    1986-01-01

    Purpose: To decrease the residual activity of spent fuel cladding tubes in a short period of time and enable safety storage with simple storage equipments. Constitution: Spent fuel cladding tubes made of zirconium alloys discharged from a nuclear fuel reprocessing step are exposed to a grain boundary embrittling atmosphere to cause grain boundary destruction. This causes grain boundary fractures to the zirconium crystal grains as the matrix of nuclear fuels and then precipitation products precipitated to the grain boundary fractures are removed. The zirconium constituting the nuclear fuel cladding tube and other ingredient elements contained in the precipitation products are separated in this removing step and they are separately stored respectively. As a result, zirconium constituting most part of the composition of the spent nuclear fuel cladding tubes can be stored safely at a low activity level. (Takahashi, M.)

  10. Spent fuel interim management: 1995 update

    International Nuclear Information System (INIS)

    Anderson, C.K.

    1995-01-01

    The problems of interim away-from-reactor spent fuel storage and storage in spent fuel pools at the reactor site are discussed. An overview of the state-of-the-art in the USA, Europe, and Japan is presented. The technical facilities for away-from-reactor storage are briefly described, including wet storage pools, interactive concrete systems, metallic containers, and passive concrete systems. Reprocessing technologies are mostly at the design stage only. It is predicted that during the 20 years to come, about 50 000 tonnes of spent fuel will be stored at reactor sites regardless of the advance of spent fuel reprocessing or interim storage projects. (J.B.). 4 tabs., 2 figs

  11. Effects of environments on spent fuel

    International Nuclear Information System (INIS)

    Funk, C.W.; Jacobson, L.D.; Menon, M.N.

    1979-07-01

    This report describes the influence of water storage environment and transportation on spent light water reactor (LWR) fuel assemblies. It also estimates the storage duration and capacity requirements for several assumed scenarios

  12. TRIGA Mark II Ljubljana - spent fuel transportation

    International Nuclear Information System (INIS)

    Ravnik, M.; Dimic, V.

    2008-01-01

    The most important activity in 1999 was shipment of the spent fuel elements back to the United States for final disposal. This activity started already in 1998 with some governmental support. In July 1999 all spent fuel elements (219 pieces) from the TRIGA research reactor in Ljubljana were shipped back to the United Stated by the ship from the port Koper in Slovenia. At the same time shipment of the spent fuel from the research reactor in Pitesti, Romania, and the research reactor in Rome, Italy, was conducted. During the loading the radiation exposure to the workers was rather low. The loading and shipment of the spent nuclear fuel went very smoothly and according the accepted time table. During the last two years the TRIGA research reactor in Ljubljana has been in operation about 1100 hours per year and without any undesired shut-down. (authors)

  13. Spent fuel storage requirements 1993--2040

    International Nuclear Information System (INIS)

    1994-09-01

    Historical inventories of spent fuel are combined with U.S. Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements through the year 2040. The needs are estimated for storage capacity beyond that presently available in the reactor storage pools. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of spent fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. The nuclear utilities provide historical data through December 1992 on the end of reactor life are based on the DOE/Energy Information Administration (EIA) estimates of future nuclear capacity, generation, and spent fuel discharges

  14. Choosing a spent fuel interim storage system

    International Nuclear Information System (INIS)

    Roland, V.; Hunter, I.

    2001-01-01

    The Transnucleaire Group has developed different modular solutions to address spent fuel interim storage needs of NPP. These solutions, that are present in Europe, USA and Asia are metal casks (dual purpose or storage only) of the TN 24 family and the NUHOMS canister based system. It is not always simple for an operator to sort out relevant choice criteria. After explaining the basic designs involved on the examples of the TN 120 WWER dual purpose cask and the NUHOMS 56 WWER for WWER 440 spent fuel, we shall discuss the criteria that govern the choice of a given spent fuel interim storage system from the stand point of the operator. In conclusion, choosing and implementing an interim storage system is a complex process, whose implications can be far reaching for the long-term success of a spent fuel management policy. (author)

  15. Probable leaching mechanisms for spent fuel

    International Nuclear Information System (INIS)

    Wang, R.; Katayama, Y.B.

    1981-01-01

    At the Pacific Northwest Laboratory, researchers in the Waste/Rock Interaction Technology Program are studying spent fuel as a possible waste form for the Office of Nuclear Waste Isolation. This paper presents probable leaching mechanisms for spent fuel and discusses current progress in identifying and understanding the leaching process. During the past year, experiments were begun to study the complex leaching mechanism of spent fuel. The initial work in this investigation was done with UO 2 , which provided the most information possible on the behavior of the spent-fuel matrix without encountering the very high radiation levels associated with spent fuel. Both single-crystal and polycrystalline UO 2 samples were used for this study, and techniques applicable to remote experimentation in a hot cell are being developed. The effects of radiation are being studied in terms of radiolysis of water and surface activation of the UO 2 . Dissolution behavior and kinetics of UO 2 were also investigated by electrochemical measurement techniques. These data will be correlated with those acquired when spent fuel is tested in a hot cell. Oxidation effects represent a major area of concern in evaluating the stability of spent fuel. Dissolution of UO 2 is greatly increased in an oxidizing solution because the dissolution is then controlled by the formation of hexavalent uranium. In solutions containing very low oxygen levels (i.e., reducing solutions), oxidation-induced dissolution may be possible via a previously oxidized surface, through exposure to air during storage, or by local oxidants such as O 2 and H 2 O 2 produced from radiolysis of water and radiation-activated UO 2 surfaces. The effects of oxidation not only increase the dissolution rate, but could lead to the disintegration of spent fuel into fine fragments

  16. Irradiation performance of HTGR recycle fissile fuel

    International Nuclear Information System (INIS)

    Homan, F.J.; Long, E.L. Jr.

    1976-08-01

    The irradiation performance of candidate HTGR recycle fissile fuel under accelerated testing conditions is reviewed. Failure modes for coated-particle fuels are described, and the performance of candidate recycle fissile fuels is discussed in terms of these failure modes. The bases on which UO 2 and (Th,U)O 2 were rejected as candidate recycle fissile fuels are outlined, along with the bases on which the weak-acid resin (WAR)-derived fissile fuel was selected as the reference recycle kernel. Comparisons are made relative to the irradiation behavior of WAR-derived fuels of varying stoichiometry and conclusions are drawn about the optimum stoichiometry and the range of acceptable values. Plans for future testing in support of specification development, confirmation of the results of accelerated testing by real-time experiments, and improvement in fuel performance and reliability are described

  17. Pyrochemical processing of DOE spent nuclear fuel

    International Nuclear Information System (INIS)

    Laidler, J.J.

    1995-01-01

    A compact, efficient method for conditioning spent nuclear fuel is under development. This method, known as pyrochemical processing, or open-quotes pyroprocessing,close quotes provides a separation of fission products from the actinide elements present in spent fuel and further separates pure uranium from the transuranic elements. The process can facilitate the timely and environmentally-sound treatment of the highly diverse collection of spent fuel currently in the inventory of the United States Department of Energy (DOE). The pyroprocess utilizes elevated-temperature processes to prepare spent fuel for fission product separation; that separation is accomplished by a molten salt electrorefining step that provides efficient (>99.9%) separation of transuranics. The resultant waste forms from the pyroprocess, are stable under envisioned repository environment conditions and highly leach-resistant. Treatment of any spent fuel type produces a set of common high-level waste forms, one a mineral and the other a metal alloy, that can be readily qualified for repository disposal and avoid the substantial costs that would be associated with the qualification of the numerous spent fuel types included in the DOE inventory

  18. Final environmental statement: US Spent Fuel Policy. Storage of foreign spent power reactor fuel

    International Nuclear Information System (INIS)

    1980-05-01

    In October 1977, the Department of Energy (DOE) announced a Spent Fuel Storage Policy for nuclear power reactors. Under this policy, as approved by the President, US utilities will be given the opportunity to deliver spent fuel to US Government custody in exchange for payment of a fee. The US Government will also be prepared to accept a limited amount of spent fuel from foreign sources when such action would contribute to meeting nonproliferation goals. Under the new policy, spent fuel transferred to the US Government will be delivered - at user expense - to a US Government-approved site. Foreign spent fuel would be stored in Interim Spent Fuel Storage (ISFS) facilities with domestic fuel. This volume of the environmental impact statement includes effects associated with implementing or not implementing the Spent Fuel Storage Policy for the foreign fuels. The analyses show that there are no substantial radiological health impacts whether the policy is implemented or not. In no case considered does the population dose commitment exceed 0.000006% of the world population dose commitment from natural radiation sources over the period analyzed. Full implementation of the US offer to accept a limited amount of foreign spent fuel for storage provides the greatest benefits for US nonproliferation policy. Acceptance of lesser quantities of foreign spent fuel in the US or less US support of foreign spent fuel storage abroad provides some nonproliferation benefits, but at a significantly lower level than full implementation of the offer. Not implementing the policy in regard to foreign spent fuel will be least productive in the context of US nonproliferation objectives. The remainder of the summary provides a brief description of the options that are evaluated, the facilities involved in these options, and the environmental impacts, including nonproliferation considerations, associated with each option

  19. Developing Spent Fuel Assembly for Advanced NDA Instrument Calibration - NGSI Spent Fuel Project

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Banfield, James [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Skutnik, Steven [Univ. of Tennessee, Knoxville, TN (United States)

    2014-02-01

    This report summarizes the work by Oak Ridge National Laboratory to investigate the application of modeling and simulation to support the performance assessment and calibration of the advanced nondestructive assay (NDA) instruments developed under the Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) Project. Advanced NDA instrument calibration will likely require reference spent fuel assemblies with well-characterized nuclide compositions that can serve as working standards. Because no reference spent fuel standard currently exists, and the practical ability to obtain direct measurement of nuclide compositions using destructive assay (DA) measurements of an entire fuel assembly is prohibitive in the near term due to the complexity and cost of spent fuel experiments, modeling and simulation will be required to construct such reference fuel assemblies. These calculations will be used to support instrument field tests at the Swedish Interim Storage Facility (Clab) for Spent Nuclear Fuel.

  20. Burnup credit demands for spent fuel management in Ukraine

    International Nuclear Information System (INIS)

    Medun, V.

    2001-01-01

    In fact, till now, burnup credit has not be applied in Ukrainian nuclear power for spent fuel management systems (storage and transport). However, application of advanced fuel at VVER reactors, arising spent fuel amounts, represent burnup credit as an important resource to decrease spent fuel management costs. The paper describes spent fuel management status in Ukraine from viewpoint of subcriticality assurance under spent fuel storage and transport. It also considers: 1. Regulation basis concerning subcriticality assurance, 2. Basic spent fuel and transport casks characteristics, 3. Possibilities and demands for burnup credit application at spent fuel management systems in Ukraine. (author)

  1. Evolution of spent fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Standring, Paul Nicholas [International Atomic Energy Agency, Vienna (Austria). Div. of Nuclear Fuel Cycle and Waste Technology; Takats, Ferenc [TS ENERCON KFT, Budapest (Hungary)

    2016-11-15

    Around 10,000 tHM of spent fuel is discharged per year from the nuclear power plants in operation. Whilst the bulk of spent fuel is still held in at reactor pools, 24 countries have developed storage facilities; either on the reactor site or away from the reactor site. Of the 146 operational AFR storage facilities about 80 % employ dry storage; the majority being deployed over the last 20 years. This reflects both the development of dry storage technology as well as changes in politics and trading relationships that have affected spent fuel management policies. The paper describes the various approaches to the back-end of the nuclear fuel cycle for power reactor fuels and provides data on deployed storage technologies.

  2. Spent fuel storage and transportation - ANSTO experience

    International Nuclear Information System (INIS)

    Irwin, Tony

    2002-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has operated the 10 MW DIDO class High Flux Materials Test Reactor (HIFAR) since 1958. Refuelling the reactor produces about 38 spent fuel elements each year. Australia has no power reactors and only one operating research reactor so that a reprocessing plant in Australia is not an economic proposition. The HEU fuel for HIFAR is manufactured at Dounreay using UK or US origin enriched uranium. Spent fuel was originally sent to Dounreay, UK for reprocessing but this plant was shutdown in 1998. ANSTO participates in the US Foreign Research Reactor Spent Fuel Return program and also has a contract with COGEMA for the reprocessing of non-US origin fuel

  3. Fact sheet on spent fuel management

    International Nuclear Information System (INIS)

    2006-01-01

    The IAEA gives high priority to safe and effective spent fuel management. As an example of continuing efforts, the 2003 International Conference on Storage of Spent Fuel from Power Reactors gathered 125 participants from 35 member states to exchange information on this important subject. With its large number of Member States, the IAEA is well-positioned to gather and share information useful in addressing Member State priorities. IAEA activities on this topic include plans to produce technical documents as resources for a range of priority topics: spent fuel performance assessment and research, burnup credit applications, cask maintenance, cask loading optimization, long term storage requirements including records maintenance, economics, spent fuel treatment, remote technology, and influence of fuel design on spent fuel storage. In addition to broader topics, the IAEA supports coordinated research projects and technical cooperation projects focused on specific needs. The proceedings of the 2003 IAEA conference on storage of spent fuel from power reactors has been ranked in the top twenty most accessed IAEA publications. These proceedings are available for free downloads at http://www-pub.iaea.org/MTCD/publications/PubDetails.asp?pubId=6924]. The IAEA organized and held a 2004 meeting focused on long term spent fuel storage provisions in Central and Eastern Europe, using technical cooperation funds to support participation by these Member States. Over ninety percent of the participants in this meeting rated its value as good or excellent, with participants noting that the IAEA is having a positive effect in stimulating communication, cooperation, and information dissemination on this important topic. The IAEA was advised in 2004 that results from a recent coordinated research project (IAEA-TECDOC-1343) were used by one Member State to justify higher clad temperatures for spent fuel in dry storage, leading to more efficient storage and reduced costs. Long term

  4. Plutonium recycle. In-core fuel management

    International Nuclear Information System (INIS)

    Vincent, F.; Berthet, A.; Le Bars, M.

    1985-01-01

    Plutonium recycle in France will concern a dozen of PWR 900 MWe controlled in gray mode till 1995. This paper presents the main characteristics of fuel management with plutonium recycle. The organization of management studies will be copied from this developed for classical management studies. Up these studies, a ''feasibility report'' aims at establishing at each stage of the fuel cycle, the impact of the utilization of fuel containing plutonium [fr

  5. Features and safety aspects of spent fuel storage facility, Tarapur

    International Nuclear Information System (INIS)

    Pradhan, Sanjay; Dubey, K.; Qureshi, F.T.; Lokeswar, S.P.

    2017-01-01

    Spent Fuel Storage Facility (SFSF), Tarapur is designed to store spent fuel arising from PHWRs in different parts of the country. Spent fuel is transported in AERB qualified/authorized shipping cask by NPCIL to SFSF by road or rail route. The spent fuel storage facility at Tarapur was hot commissioned after regulatory clearances

  6. Neutron intensity of fast reactor spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Misao; Aoyama, Takafumi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    Neutron intensity of spent fuel of the JOYO Mk-II core with a burnup of 62,500 MWd/t and cooling time of 5.2 years was measured at the spent fuel storage pond. The measured data were compared with the calculated values based on the JOYO core management code system `MAGI`, and the average C/E approximately 1.2 was obtained. It was found that the axial neutron intensity didn`t simply follow the burnup distribution, and the neutron intensity was locally increased at the bottom end of the fuel region due to an accumulation of {sup 244}Cm. (author)

  7. Dissolution studies of spent nuclear fuels

    International Nuclear Information System (INIS)

    1991-02-01

    To obtain quantitative data on the dissolution of high burnup spent nuclear fuel, dissolution study have been carried out at the Department of Chemistry, JAERI, from 1984 under the contract with STA entitled 'Reprocessing Test Study of High Burnup Fuel'. In this study PWR spent fuels of 8,400 to 36,100 MWd/t in averaged burnup were dissolved and the chemical composition and distribution of radioactive nuclides were measured for insoluble residue, cladding material (hull), off-gas and dissolved solution. With these analyses basic data concerning the dissolution and clarification process in the reprocessing plant were accumulated. (author)

  8. Integrated spent nuclear fuel database system

    International Nuclear Information System (INIS)

    Henline, S.P.; Klingler, K.G.; Schierman, B.H.

    1994-01-01

    The Distributed Information Systems software Unit at the Idaho National Engineering Laboratory has designed and developed an Integrated Spent Nuclear Fuel Database System (ISNFDS), which maintains a computerized inventory of all US Department of Energy (DOE) spent nuclear fuel (SNF). Commercial SNF is not included in the ISNFDS unless it is owned or stored by DOE. The ISNFDS is an integrated, single data source containing accurate, traceable, and consistent data and provides extensive data for each fuel, extensive facility data for every facility, and numerous data reports and queries

  9. Spent fuel storage practices and perspectives for WWER fuel in Eastern Europe

    International Nuclear Information System (INIS)

    Takats, F.

    1999-01-01

    In this lecture the general issues and options in spent fuel management and storage are reviewed. Quantities of spent fuel world-wide and spent fuel amounts in storage as well as spent fuel capacities are presented. Selected examples of typical spent fuel storage facilities are discussed. The storage technologies applied for WWER fuel is presented. Description of other relevant storage technologies is included

  10. Spent fuel storage requirements 1989--2020

    International Nuclear Information System (INIS)

    1989-10-01

    Historical inventories of spent fuel are combined with Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the US to provide estimates of spent fuel storage requirements over the next 32 years, through the year 2020. The needs for storage capacity beyond that presently available in the pools are estimated. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of fuel to other reactors or facilities. Historical data through December 1988 are derived from the 1989 Form RW-859 data survey of nuclear utilities. Projected discharges through the end of reactor life are based on DOE estimates of future nuclear capacity, generation, and spent fuel discharges. 14 refs., 3 figs., 28 tabs

  11. Spent fuel storage requirements, 1991--2040

    International Nuclear Information System (INIS)

    1991-12-01

    Historical inventories of spent fuel are combined with US Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements over the next 50 years, through the year 2040. The needs for storage capacity beyond that presently available in the pools are estimated. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. Historical data through December 1990 are derived from the 1991 Form RW-859 data survey of nuclear utilities. Projected discharges through the end of reactor life are based on DOE estimates of future nuclear capacity, generation, and spent fuel discharges

  12. Spent fuel storage requirements, 1990--2040

    International Nuclear Information System (INIS)

    Walling, R.; Bierschbach, M.

    1990-11-01

    Historical inventories of spent fuel are combined with US Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements over the next 51 years, through the year 2040. The needs for storage capacity beyond that presently available in the pools are estimated. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. Historical data through December 1989 are derived from the 1990 Form RW-859 data survey of nuclear utilities. Projected discharges through the end of reactor life are based on DOE estimates of future nuclear capacity, generation, and spent fuel discharges. 15 refs., 3 figs., 11 tabs

  13. Methodology for the economic evaluation of the strategies for spent fuel

    International Nuclear Information System (INIS)

    Zouain, D.M.

    1981-08-01

    A methodology for the economic evaluation of the spent fuel and a comparative analysis of the various available strategies for its treatment, is developed. For the realization of the proposed studies a computer program METACIR was developed, which incorporates the necessary computational methodology, and it was performed a analysis of the present situation and future tendencies of the stages that constitute a PWR nuclear fuel cycle. According to the obtained results, the eternal disposal of the spent fuel is less advantageous than the reprocessing and recycle options; between the last options, the uranium recycle in PWR's is the most attractive until nearly the end of the 1990's, when the uranium and plutonium recycle in LMFBR's becomes the most convenient. The economic value of the spent fuel varies with the reactor discharge date, being considered a onus during the 1980's, and a bonus only in the next decade. (Author) [pt

  14. Storage method for spent fuel assembly

    International Nuclear Information System (INIS)

    Tajiri, Hiroshi.

    1992-01-01

    In the present invention, spent fuel assemblies are arranged at a dense pitch in a storage rack by suppressing the reactivity of the assemblies, to increase storage capacity for the spent fuel assemblies. That is, neutron absorbers are filled in the cladding tube of an absorbing rod, and the diameter thereof is substantially equal with that of a fuel rod. A great amount of the absorbing rods are arranged at the outer circumference of the fuel assembly. Then, they are fixed integrally to the fuel assembly and stored in a storage rack. In this case, the storage rack may be constituted only with angle materials which are inexpensive and installed simply. With such a constitution, in the fuel assembly having absorbing rods wound therearound, neutrons are absorbed by absorbing rods and the reactivity is lowered. Accordingly, the assembly arrangement pitch in the storage rack can be made dense. As a result, the storage capacity for the assemblies is increased. (I.S.)

  15. Corrosion of spent Advanced Test Reactor fuel

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Croson, M.L.

    1994-01-01

    The results of a study of the condition of spent nuclear fuel elements from the Advanced Test Reactor (ATR) currently being stored underwater at the Idaho National Engineering Laboratory (INEL) are presented. This study was motivated by a need to estimate the corrosion behavior of dried, spent ATR fuel elements during dry storage for periods up to 50 years. The study indicated that the condition of spent ATR fuel elements currently stored underwater at the INEL is not very well known. Based on the limited data and observed corrosion behavior in the reactor and in underwater storage, it was concluded that many of the fuel elements currently stored under water in the facility called ICPP-603 FSF are in a degraded condition, and it is probable that many have breached cladding. The anticipated dehydration behavior of corroded spent ATR fuel elements was also studied, and a list of issues to be addressed by fuel element characterization before and after forced drying of the fuel elements and during dry storage is presented

  16. Hanford spent fuel inventory baseline

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1994-01-01

    This document compiles technical data on irradiated fuel stored at the Hanford Site in support of the Hanford SNF Management Environmental Impact Statement. Fuel included is from the Defense Production Reactors (N Reactor and the single-pass reactors; B, C, D, DR, F, H, KE and KW), the Hanford Fast Flux Test Facility Reactor, the Shipping port Pressurized Water Reactor, and small amounts of miscellaneous fuel from several commercial, research, and experimental reactors

  17. Storing the world's spent nuclear fuel

    International Nuclear Information System (INIS)

    Barkenbus, J.N.; Weinberg, A.M.; Alonso, M.

    1985-01-01

    Given the world's prodigious future energy requirements and the inevitable depletion of oil and gas, it would be foolhardy consciously to seek limitations on the growth of nuclear power. Indeed, the authors continue to believe that the global nuclear power enterprise, as measured by installed reactor capacity, can become much larger in the future without increasing proliferation risks. To accomplish this objective will require renewed dedication to the non-proliferation regime, and it will require some new initiatives. Foremost among these would be the establishment of a spent fuel take-back service, in which one or a few states would retrieve spent nuclear fuel from nations generating it. The centralized retrieval of spent fuel would remove accessible plutonium from the control of national leaders in non-nuclear-weapons states, thereby eliminating the temptation to use this material for weapons. The Soviets already implement a retrieval policy with the spent fuel generated by East European allies. The authors believe that it is time for the US to reopen the issue of spent-fuel retrieval, and thus to strengthen its non-proliferation policies and the nonproliferation regime in general. 7 references

  18. Spent Nuclear Fuel (SNF) Removal Campaign Plan

    International Nuclear Information System (INIS)

    PAJUNEN, A.L.

    2000-01-01

    The overall operation of the Spent Nuclear Fuel Project will include fuel removal, sludge removal, debris removal, and deactivation transition activities. Figure 1-1 provides an overview of the current baseline operating schedule for project sub-systems, indicating that a majority of fuel removal activities are performed over an approximately three-and-one-half year time period. The purpose of this document is to describe the strategy for operating the fuel removal process systems. The campaign plan scope includes: (1) identifying a fuel selection sequence during fuel removal activities, (2) identifying MCOs that are subjected to extra testing (process validation) and monitoring, and (3) discussion of initial MCO loading and monitoring in the Canister Storage Building (CSB). The campaign plan is intended to integrate fuel selection requirements for handling special groups of fuel within the basin (e.g., single pass reactor fuel), process validation activities identified for process systems, and monitoring activities during storage

  19. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, J. S.; Hong, H. D.; Kim, Y. H.

    2001-03-01

    Since the amount of the spent fuel rapidly increases, the current R and D activities are focused on the technology development related with the storage and utilization of the spent fuel. In this research, to provide such a technology, the mechanical head-end process has been developed. In detail, the swing and shock-free crane and the RCGLUD(Remote Cask Grappling and Lid Unbolting Device) were developed for the safe transportation of the spent fuel assembly, the LLW drum and the transportation cask. Also, the disassembly devices required for the head-end process were developed. This process consists of an assembly downender, a rod extractor, a rod cutter, a fuel decladding device, a skeleton compactor, a force-rectifiable manipulator for the abnormal spent fuel disassembly, and the gantry type telescopic transporter, etc. To provide reliability and safety of these devices, the 3 dimensional graphic design system is developed. In this system, the mechanical devices are modelled and their operation is simulated in the virtual environment using the graphic simulation tools. So that the performance and the operational mal-function can be investigated prior to the fabrication of the devices. All the devices are tested and verified by using the fuel prototype at the mockup facility

  20. Spent fuel management: Current status and prospects

    International Nuclear Information System (INIS)

    1988-12-01

    The main objective of the Advisory Group on Spent Fuel Management is to review the world-wide situation in Spent Fuel Management, to define the most important directions of national efforts and international cooperation in this area, to exchange information on the present status and progress in performing the back-end of Nuclear Fuel Cycle and to elaborate the general recommendations for future Agency programmes in the field of spent fuel management. This report which is a result of the third IAEA Advisory Group Meeting (the first and second were held in 1984 and 1986) is intended to provide the reader with an overview of the status of spent fuel management programmes in a number of leading countries, with a description of the past and present IAEA activities in this field of Nuclear Fuel Cycle and with the Agency's plans for the next years, based on the proposals and recommendations of Member States. A separate abstract was prepared for each of 14 papers presented at the advisory group meeting. Refs, figs and tabs

  1. Radioactivity of spent TRIGA fuel

    Energy Technology Data Exchange (ETDEWEB)

    Usang, M. D., E-mail: mark-dennis@nuclearmalaysia.gov.my; Nabil, A. R. A.; Alfred, S. L.; Hamzah, N. S.; Abi, M. J. B.; Rawi, M. Z. M.; Abu, M. P. [Reactor Department, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    Some of the oldest TRIGA fuel in the Malaysian Reaktor TRIGA PUSPATI (RTP) is approaching the limit of its end of life with burn-up of around 20%. Hence it is prudent for us to start planning on the replacement of the fuel in the reactor and other derivative activities associated with it. In this regard, we need to understand all of the risk associated with such operation and one of them is to predict the radioactivity of the fuel, so as to estimate the safety of our working conditions. The radioactivity of several fuels are measured and compared with simulation results to confirm the burnup levels of the selected fuels. The radioactivity measurement are conducted inside the water tank to reduce the risk of exposure and in this case the detector wrapped in plastics are lowered under water. In nuclear power plant, the general practice was to continuously burn the fuel. In research reactor, most operations are based on the immediate needs of the reactor and our RTP for example operate periodically. By integrating the burnup contribution for each core configuration, we simplify the simulation of burn up for each core configuration. Our results for two (2) fuel however indicates that the dose from simulation underestimate the actual dose from our measurements. Several postulates are investigated but the underlying reason remain inconclusive.

  2. Radioactivity of spent TRIGA fuel

    International Nuclear Information System (INIS)

    Usang, M. D.; Nabil, A. R. A.; Alfred, S. L.; Hamzah, N. S.; Abi, M. J. B.; Rawi, M. Z. M.; Abu, M. P.

    2015-01-01

    Some of the oldest TRIGA fuel in the Malaysian Reaktor TRIGA PUSPATI (RTP) is approaching the limit of its end of life with burn-up of around 20%. Hence it is prudent for us to start planning on the replacement of the fuel in the reactor and other derivative activities associated with it. In this regard, we need to understand all of the risk associated with such operation and one of them is to predict the radioactivity of the fuel, so as to estimate the safety of our working conditions. The radioactivity of several fuels are measured and compared with simulation results to confirm the burnup levels of the selected fuels. The radioactivity measurement are conducted inside the water tank to reduce the risk of exposure and in this case the detector wrapped in plastics are lowered under water. In nuclear power plant, the general practice was to continuously burn the fuel. In research reactor, most operations are based on the immediate needs of the reactor and our RTP for example operate periodically. By integrating the burnup contribution for each core configuration, we simplify the simulation of burn up for each core configuration. Our results for two (2) fuel however indicates that the dose from simulation underestimate the actual dose from our measurements. Several postulates are investigated but the underlying reason remain inconclusive

  3. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Kidd, S.

    2008-01-01

    The closed fuel cycle is the most sustainable approach for nuclear energy, as it reduces recourse to natural uranium resources and optimises waste management. The advantages and disadvantages of used nuclear fuel reprocessing have been debated since the dawn of the nuclear era. There is a range of issues involved, notably the sound management of wastes, the conservation of resources, economics, hazards of radioactive materials and potential proliferation of nuclear weapons. In recent years, the reprocessing advocates win, demonstrated by the apparent change in position of the USA under the Global Nuclear Energy Partnership (GNEP) program. A great deal of reprocessing has been going on since the fourties, originally for military purposes, to recover plutonium for weapons. So far, some 80000 tonnes of used fuel from commercial power reactors has been reprocessed. The article indicates the reprocessing activities and plants in the United Kigdom, France, India, Russia and USA. The aspect of plutonium that raises the ire of nuclear opponents is its alleged proliferation risk. Opponents of the use of MOX fuels state that such fuels represent a proliferation risk because the plutonium in the fuel is said to be 'weapon-use-able'. The reprocessing of used fuel should not give rise to any particular public concern and offers a number of potential benefits in terms of optimising both the use of natural resources and waste management.

  4. Spent Nuclear Fuel Alternative Technology Decision Analysis

    International Nuclear Information System (INIS)

    Shedrow, C.B.

    1999-01-01

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology

  5. Status of spent fuel shipping cask development

    International Nuclear Information System (INIS)

    Hall, I.K.; Hinschberger, S.T.

    1989-01-01

    This paper discusses how several new-generation shopping cask systems are being developed for safe and economical transport of commercial spent nuclear fuel and other radioactive wastes for the generating sites to a federal geologic repository or monitored retrievable storage (MRS) facility. Primary objectives of the from-reactor spent fuel cask development work are: to increase cask payloads by taking advantage of the increased at-reactor storage time under the current spent fuel management scenario, to facilitate more efficient cask handling operations with reduced occupational radiation exposure, and to promote standardization of the physical interfaces between casks and the shipping and receiving facilities. Increased cask payloads will significantly reduce the numbers of shipments, with corresponding reductions in transportation costs and risks to transportation workers, cask handling personnel, and the general public

  6. Spent Nuclear Fuel Alternative Technology Decision Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  7. Geomechanics of the Spent Fuel Test: Climax

    International Nuclear Information System (INIS)

    Wilder, D.G.; Yow, J.L. Jr.

    1987-07-01

    Three years of geomechanical measurements were made at the Spent Fuel Test-Climax (SFT-C) 1400 feet underground in fractured granitic rock. Heating of the rock mass resulted from emplacement of spent fuel as well as the heating by electrical heaters. Cooldown of the rock occurred after the spent fuel was removed and the heaters were turned off. The measurements program examines both gross and localized responses of the rock mass to thermal loading, to evaluate the thermomechanical response of sheared and fractured rock with that of relatively unfractured rock, to compare the magnitudes of displacements during mining with those induced by extensive heating of the rock mass, and to check assumptions regarding symmetry and damaged zones made in numerical modeling of the SFT-C. 28 refs., 113 figs., 10 tabs

  8. Laser surveillance system for spent fuel

    International Nuclear Information System (INIS)

    Fiarman, S.; Zucker, M.S.; Bieber, A.M. Jr.

    1980-01-01

    A laser surveillance system installed at spent fuel storage pools will provide the safeguard inspector with specific knowledge of spent fuel movement that cannot be obtained with current surveillance systems. The laser system will allow for the division of the pool's spent fuel inventory into two populations - those assemblies which have been moved and those which haven't - which is essential for maximizing the efficiency and effectiveness of the inspection effort. We have designed, constructed, and tested a laser system and have used it with a simulated BWR assembly. The reflected signal from the zircaloy rods depends on the position of the assembly, but in all cases is easily discernable from the reference scan of background with no assembly

  9. Laser surveillance system for spent fuel

    International Nuclear Information System (INIS)

    Fiarman, S.; Zucker, M.S.; Bieber, A.M. Jr.

    1980-01-01

    A laser surveillance system installed at spent fuel storage pools (SFSP's) will provide the safeguard inspector with specific knowledge of spent fuel movement that cannot be obtained with current surveillance systems. The laser system will allow for the division of the pool's spent fuel inventory into two populations - those assemblies which have been moved and those which haven't - which is essential for maximizing the efficiency and effectiveness of the inspection effort. We have designed, constructed, and tested a full size laser system operating in air and have used an array of 6 zircaloy BWR tubes to simulate an assembly. The reflective signal from the zircaloy rods is a strong function of position of the assembly, but in all cases is easily discernable from the reference scan of the background with no assembly. A design for a SFSP laser surveillance system incorporating laser ranging is discussed. 10 figures

  10. Spent fuel container alignment device and method

    Science.gov (United States)

    Jones, Stewart D.; Chapek, George V.

    1996-01-01

    An alignment device is used with a spent fuel shipping container including a plurality of fuel pockets for spent fuel arranged in an annular array and having a rotatable cover including an access opening therein. The alignment device includes a lightweight plate which is installed over the access opening of the cover. A laser device is mounted on the plate so as to emit a laser beam through a laser admittance window in the cover into the container in the direction of a pre-established target associated with a particular fuel pocket. An indexing arrangement on the container provides an indication of the angular position of the rotatable cover when the laser beam produced by the laser is brought into alignment with the target of the associated fuel pocket.

  11. Impact Analysis for Fuel Assemblies in Spent Fuel Storage Rack

    International Nuclear Information System (INIS)

    Oh, Jinho

    2013-01-01

    The design and structural integrity evaluation of a spent fuel storage rack (SFSR) utilized for storing and protecting the spent fuel assemblies generated during the operation of a reactor are very important in terms of nuclear safety and waste management. The objective of this study is to show the validity of the SFSR design as well as fuel assembly through a structural integrity evaluation based on a numerical analysis. In particular, a dynamic time history analysis considering the gaps between the fuel assemblies and the walls of the storage cell pipes in the SFSR was performed to check the structural integrity of the fuel assembly and storage cell pipe

  12. Impact Analysis for Fuel Assemblies in Spent Fuel Storage Rack

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jinho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    The design and structural integrity evaluation of a spent fuel storage rack (SFSR) utilized for storing and protecting the spent fuel assemblies generated during the operation of a reactor are very important in terms of nuclear safety and waste management. The objective of this study is to show the validity of the SFSR design as well as fuel assembly through a structural integrity evaluation based on a numerical analysis. In particular, a dynamic time history analysis considering the gaps between the fuel assemblies and the walls of the storage cell pipes in the SFSR was performed to check the structural integrity of the fuel assembly and storage cell pipe.

  13. Heterogeneous Recycle of Transuranics Fuels in Fast Reactors

    International Nuclear Information System (INIS)

    Hoffman, Edward; Taiwo, Temitope; Hill, Robert

    2008-01-01

    A preliminary physics evaluation of the impacts of heterogeneous recycle using Pu+Np driver and minor actinide target fuel assemblies in fast reactor cores has been performed by comparing results to those obtained for a reference homogeneous recycle core using driver assemblies containing grouped transuranic (TRU) fuel. Parametric studies are performed on the reference heterogeneous recycle core to evaluate the impacts of variations in the pre- and post-separation cooling times, target material type (uranium and non-uranium based), target amount and location, and other parameters on the system performance. This study focused on startup, single-pass cores for the purpose of quantifying impacts and also included comparisons to the option of simply storing the LWR spent nuclear fuel over a 50-year period. An evaluation of homogeneous recycle cores with elevated minor actinide contents is presented to illustrate the impact of using progressively higher TRU content on the core and transmutation performance, as a means of starting with known fuel technology with the aim of ultimately employing grouped TRU fuel in such cores. Reactivity coefficients and safety parameters are presented to indicate that the cores evaluated appear workable from a safety perspective, though more detailed safety and systems evaluations are required. (authors)

  14. Spent fuel management in South Africa

    International Nuclear Information System (INIS)

    Bredell, P.J.; Stott, A.K.

    1998-01-01

    Eskom, the South African utility, operates one of the largest electricity networks in the world. However, only 6% of the South African generating capacity is nuclear; the remainder is coal fired and hydroelectric. The nuclear component consists of the Koeberg Nuclear Power Plant, comprising two French supplied PWRs of 920 MWe each, situated approximately 45 kilometres from cape Town. Construction started in 1976 and the two reactors reached criticality in 1984 and 1985 respectively. South Africa also has an Oak Ridge type research reactor, called SAFARI, operated by the South African Atomic Energy Corporation (AEC) at their Pelindaba site near Pretoria. This research reactor was commissioned in 1965, and has been in operation ever since. South Africa has a National Radioactive Waste Disposal facility called Vaalputs, some 600 km north of Cape Town. The facility, operated by AEC, is presently licensed only for the disposal of low and intermediate radioactive level wastes. Vaalputs offers unique features as a potential interim spent fuel storage and final disposal site, such as favorable geology (granite), low seismicity, low population density, remoteness from industrial centres and and conditions. Therefore, this site has been investigated by the AEC as a potential interim spent fuel storage site, but has not yet been licensed for this purpose. Hence, all spent fuel is currently stored on the two sites at Koeberg and Pelindaba respectively. The spent fuel storage pools at Koeberg have recently been enlarged to accommodate the lifetime spent fuel arisings of the plant. Since late 1997, the Safari spent fuel is stored in a pipe storage facility, constructed away from the reactor on the Pelindaba site. (author)

  15. Alternative Concept to Enhance the Disposal Efficiency for CANDU Spent Fuel Disposal System

    International Nuclear Information System (INIS)

    Lee, Jong Youl; Cho, Dong Geun; Kook, Dong Hak; Lee, Min Soo; Choi, Heui Joo

    2011-01-01

    There are two types of nuclear reactors in Korea and they are PWR type and CANDU type. The safe management of the spent fuels from these reactors is very important factor to maintain the sustainable energy supply with nuclear power plant. In Korea, a reference disposal system for the spent fuels has been developed through a study on the direct disposal of the PWR and CANDU spent fuel. Recently, the research on the demonstration and the efficiency analyses of the disposal system has been performed to make the disposal system safer and more economic. PWR spent fuels which include a lot of reusable material can be considered being recycled and a study on the disposal of HLW from this recycling process is being performed. CANDU spent fuels are considered being disposed of directly in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System (KRS) which was to dispose of both PWR type and CANDU type, the more effective CANDU spent fuel disposal systems were developed. To do this, the disposal canister for CANDU spent fuels was modified to hold the storage basket for 60 bundles which is used in nuclear power plant. With these modified disposal canister concepts, the disposal concepts to meet the thermal requirement that the temperature of the buffer materials should not be over 100 .deg. C were developed. These disposal concepts were reviewed and analyzed in terms of disposal effective factors which were thermal effectiveness, U-density, disposal area, excavation volume, material volume etc. and the most effective concept was proposed. The results of this study will be used in the development of various wastes disposal system together with the HLW wastes from the PWR spent fuel recycling process.

  16. Development and engineering plan for graphite spent fuels conditioning program

    International Nuclear Information System (INIS)

    Bendixsen, C.L.; Fillmore, D.L.; Kirkham, R.J.; Lord, D.L.; Phillips, M.B.; Pinto, A.P.; Staiger, M.D.

    1993-09-01

    Irradiated (or spent) graphite fuel stored at the Idaho Chemical Processing Plant (ICPP) includes Fort St. Vrain (FSV) reactor and Peach Bottom reactor spent fuels. Conditioning and disposal of spent graphite fuels presently includes three broad alternatives: (1) direct disposal with minimum fuel packaging or conditioning, (2) mechanical disassembly of spent fuel into high-level waste and low-level waste portions to minimize geologic repository requirements, and (3) waste-volume reduction via burning of bulk graphite and other spent fuel chemical processing of the spent fuel. A multi-year program for the engineering development and demonstration of conditioning processes is described. Program costs, schedules, and facility requirements are estimated

  17. Acceptance of spent fuel of varying characteristics

    International Nuclear Information System (INIS)

    Short, S.M.

    1990-03-01

    This paper is a preliminary overview of a study with the primary objective of establishing a set of acceptance selection criteria and corresponding spent fuel characteristics to be incorporated as a component of requirements for the Federal Waste Management System (FWMS). A number of alternative acceptance allocations and selection rules were analyzed to determine the operational sensitivity of each element of the FWMS to the resultant spent fuel characteristics. Preliminary recommendations of the study include three different sets of selection rules to be included in the FWMS design basis. 2 refs., 4 figs., 4 tabs

  18. Array Detector Modules for Spent Fuel Verification

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, Aleksey

    2018-05-07

    Brookhaven National Laboratory (BNL) proposes to evaluate the arrays of position-sensitive virtual Frisch-grid (VFG) detectors for passive gamma-ray emission tomography (ET) to verify the spent fuel in storage casks before storing them in geo-repositories. Our primary objective is to conduct a preliminary analysis of the arrays capabilities and to perform field measurements to validate the effectiveness of the proposed array modules. The outcome of this proposal will consist of baseline designs for the future ET system which can ultimately be used together with neutrons detectors. This will demonstrate the usage of this technology in spent fuel storage casks.

  19. Transporting spent nuclear fuel: an overview

    International Nuclear Information System (INIS)

    1986-03-01

    Although high-level radioactive waste from both commercial and defense activities will be shipped to the repository, this booklet focuses on various aspects of transporting commercial spent fuel, which accounts for the majority of the material to be shipped. The booklet is intended to give the reader a basic understanding of the following: the reasons for transportation of spent nuclear fuel, the methods by which it is shipped, the safety and security precautions taken for its transportation, emergency response procedures in the event of an accident, and the DOE program to develop a system uniquely appropriate to NWPA transportation requirements

  20. Significance of campaigned spent fuel shipments

    International Nuclear Information System (INIS)

    Doman, J.W.; Tehan, T.E.

    1993-01-01

    Operational experience associated with spent fuel or irradiated hardware shipments to or from the General Electric Morris Facility is presented. The following specific areas are addressed: Problems and difficulties associated with meeting security and safeguard requirements of 10 CFR Part 73; problems associated with routing via railroad; problems associated with scheduling and impact on affected parties when a shipment is delayed or cancelled; and impact on training when shipments spread over many years. The lessons learned from these experiences indicate that spent fuel shipments are best conducted in dedicated open-quotes campaignsclose quotes that concentrate as much consecutive shipping activity as possible into one continuous time frame

  1. Current status of the first interim spent fuel storage facility in Japan

    International Nuclear Information System (INIS)

    Shinbo, Hitoshi; Kondo, Mitsuru

    2008-01-01

    In Japan, storage of spent fuels outside nuclear power plants was enabled as a result of partial amendments to the Nuclear Reactor Regulation Law in June 2000. Five months later, Mutsu City in Aomori Prefecture asked the Tokyo Electric Power Company (TEPCO) to conduct technical surveys on siting of the interim spent fuel storage facility (we call it 'Recyclable-Fuel Storage Center'). In April 2003, TEPCO submitted the report on siting feasibility examination, concluded that no improper engineering data for siting, construction of the facility will be possible from engineering viewpoint. Siting Activities for publicity and public acceptance have been continued since then. After these activities, Aomori Prefecture and Mutsu City approved siting of the Recyclable Fuel Storage Center in October 2005. Aomori Prefecture, Mutsu City, TEPCO and Japan Atomic Power Company (JAPC) signed an agreement on the interim spent fuel storage Facility. A month later, TEPCO and JAPC established Recyclable-Fuel Storage Company (RFS) in Mutsu City through joint capital investment, specialized in the first interim spent fuel storage Facility in Japan. In May 2007, we made an application for establishment permit, following safety review by regulatory authorities. In March 2008, we started the preparatory construction. RFS will safely store of spent fuels of TEPCO and JAPC until they will be reprocessed. Final storage capacity will be 5,000 ton-U. First we will construct the storage building of 3,000 ton-U to be followed by second building. We aim to start operation by 2010. (author)

  2. Spent fuel disposal problem in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Milanov, M; Stefanova, I [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika

    1994-12-31

    The internationally agreed basic safety principles and criteria for spent fuel (SF) and high level waste (HLW) disposal are outlined. In the framework of these principles the specific problems of Bulgaria described in the `National Concept for Radioactive Waste Management and Disposal in Republic of Bulgaria` are discussed. The possible alternatives for spent fuel management are: (1) sending the spent fuel for disposal in other country; (2) once-through cycle and (3) closed fuel cycle. A mixed solution of the problem is implemented in Bulgaria. According to the agreement between Bulgaria and former Soviet Union a part of the spent fuel has been returned to Russia. The once-through and closed-fuel cycle are also considered. The projected cumulated amount of spent fuel is estimated for two cases: (1) the six units of Kozloduy NPP are in operation till the end of their lifetime (3300 tHM) and (2) low estimate (2700 tHM) - only units 5 and 6 are operated till the end of their lifetime. The reprocessing of the total amount of 3300 tHM will lead to the production of about 370 m{sup 3} vitrified high level wastes. Together with the HLW about 1850 m{sup 3} cladding hulls and 7800 m{sup 3} intermediate-level wastes will be generated, which should be disposed off in deep geological repository. The total production of radioactive waste in once-through cycle is 181 000 m{sup 3}, and in closed cycle - 190 000 m{sup 3}. Geological investigations are performed resulting in categorization of the territory of the country based on geological, geotechnical and hydrogeological conditions. This will facilitate the choice of the most suitable location for deep geological repository. 7 figs., 11 refs.

  3. Spent fuel surveillance and monitoring methods

    International Nuclear Information System (INIS)

    1988-05-01

    The Technical Committee Meeting on ''Spent Fuel Surveillance and Monitoring Methods'' (27-30 October 1987) has been organized in accordance with recommendations of the International Standing Advisory Group on Spent Fuel Management during its second meeting in 1986. The aim of the meeting was to discuss the above questions with emphasis on current design and operation criteria, safety principles and licensing requirements and procedures in order to prevent: inadvertent criticality, undue radiation exposure, unacceptable release of radioactivity as well as control for loss of storage pool water, crud impact, water chemistry, distribution and behaviour of particulates in cooling water, oxidation of intact and failed fuel rods as a function of temperature and burnup; distribution of radiation and temperature through dry cask wall, monitoring of leakages from pools and gas escapes from dry storage facilities, periodical integrity tests of the containment barriers, responsibilities of organizations for the required operation, structure, staff and subordination, etc. The presentations of the Meeting were divided into two sessions: Spent fuel surveillance programmes and practice in Member States (4 papers); Experimental methods developed in support of spent fuel surveillance programmes (5 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  4. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, J. S.; Hong, H. D.; Kim, S. H.

    2004-02-01

    In this research, the remote handling technology is developed for the advanced spent fuel conditioning process which gives a possible solution to deal with the rapidly increasing spent fuels. In detail, a fuel rod slitting device is developed for the decladding of the spent fuel. A series of experiments has been performed to find out the optimal condition of the spent fuel voloxidation which converts the UO 2 pellet into U 3 O 8 powder. The design requirements of the ACP equipment for hot test is established by analysing the modular requirement, radiation hardening and thermal protection of the process equipment, etc. The prototype of the servo manipulator is developed. The manipulator has an excellent performance in terms of the payload to weight ratio that is 30 % higher than that of existing manipulators. To provide reliability and safety of the ACP, the 3 dimensional graphic simulator is developed. Using the simulator the remote handling operation is simulated and as a result, the optimal layout of ACP is obtained. The supervisory control system is designed to control and monitor the several different unit processes. Also the failure monitoring system is developed to detect the possible accidents of the reduction reactor

  5. Spent Fuel Storage Operation - Lessons Learned

    International Nuclear Information System (INIS)

    2013-12-01

    Experience gained in planning, constructing, licensing, operating, managing and modifying spent fuel storage facilities in some Member States now exceeds 50 years. Continual improvement is only achieved through post-project review and ongoing evaluation of operations and processes. This publication is aimed at collating and sharing lessons learned. Hopefully, the information provided will assist Member States that already have a developed storage capability and also those considering development of a spent nuclear fuel storage capability in making informed decisions when managing their spent nuclear fuel. This publication is expected to complement the ongoing Coordinated Research Project on Spent Fuel Performance Assessment and Research (SPAR-III); the scope of which prioritizes facility operational practices in lieu of fuel and structural components behaviour over extended durations. The origins of the current publication stem from a consultants meeting held on 10-12 December 2007 in Vienna, with three participants from the IAEA, Slovenia and USA, where an initial questionnaire on spent fuel storage was formulated (Annex I). The resultant questionnaire was circulated to participants of a technical meeting, Spent Fuel Storage Operations - Lessons Learned. The technical meeting was held in Vienna on 13-16 October 2008, and sixteen participants from ten countries attended. A consultants meeting took place on 18-20 May 2009 in Vienna, with five participants from the IAEA, Slovenia, UK and USA. The participants reviewed the completed questionnaires and produced an initial draft of this publication. A third consultants meeting took place on 9-11 March 2010, which six participants from Canada, Hungary, IAEA, Slovenia and the USA attended. The meeting formulated a second questionnaire (Annex II) as a mechanism for gaining further input for this publication. A final consultants meeting was arranged on 20-22 June 2011 in Vienna. Six participants from Hungary, IAEA, Japan

  6. Electrometallurgical treatment of oxide spent fuels

    International Nuclear Information System (INIS)

    Karell, E. J.

    1999-01-01

    The Department of Energy (DOE) inventory of spent nuclear fuel contains a wide variety of oxide fuel types that may be unsuitable for direct repository disposal in their current form. The molten-salt electrometallurgical treatment technique developed by Argonne National Laboratory (ANL) has the potential to simplify preparing and qualifying these fuels for disposal by converting them into three uniform product streams: uranium metal, a metal waste form, and a ceramic waste form. This paper describes the major steps in the electrometallurgical treatment process for oxide fuels and provides the results of recent experiments performed to develop and scale up the process

  7. Spent fuel treatment at ANL-West

    International Nuclear Information System (INIS)

    Goff, K.M.; Benedict, R.W.; Levinskas, D.

    1994-01-01

    At Argonne National Laboratory-West (ANL-West) there are several thousand kilograms of metallic spent nuclear fuel containing bond sodium. This fuel will be treated in the Fuel Cycle Facility at ANL-West to produce stable waste forms for storage and disposal. The treatment operations will employ a pyrochemical process that also has applications for treating most of the fuel types within the Department of Energy complex. The treatment equipment is in its last stage of readiness, and operations will begin in the Fall of 1994

  8. Storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Machado, O.J.; Moore, J.T.; Cooney, B.F.

    1989-01-01

    This patent describes a rack for storing nuclear fuel assemblies. The rack including a base, an array of side-by-side fuel-storage locations, each location being a hollow body of rectangular transverse cross section formed of metallic sheet means which is readily bent, each body having a volume therein dimensioned to receive a fuel assembly. The bodies being mounted on the base with each body secured to bodies adjacent each body along welded joints, each joint joining directly the respective contiguous corners of each body and of bodies adjacent to each body and being formed by a series of separate welds spaced longitudinally between the tops and bottoms of the secured bodies along each joint. The spacings of the separate welds being such that the response of the rack when it is subjected to the anticipated seismic acceleration of the rack, characteristic of the geographical regions where the rack is installed, is minimized

  9. Spent nuclear fuel shipping basket

    International Nuclear Information System (INIS)

    Wells, A.H.

    1990-01-01

    This patent describes a basket for a cask for transporting nuclear fuel elements. It comprises: sleeve members, each of the sleeve members having interior cross-section dimensions for receiving a nuclear fuel assembly such that the assembly is restrained from lateral movement within the sleeve member, apertured disk members, means for axially aligning the apertures in the disk members, and means for maintaining the disk members in fixed spaced relationship to form a disk assembly, comprising an array of disks, the aligned apertures of the disks being adapted to receive the sleeve members and maintain them in fixed spaced relationship

  10. Development of the down-ender and the spent fuel rod cutting device

    International Nuclear Information System (INIS)

    Kim, S. H.; Yoon, Ji Sup; Kim, Young Hwan; Hoo, Jung Jae; Hong, Dong Hee; Kim, Do Woo

    2000-07-01

    It is necessary to disassemble the spent fuel assembly for the recycling of the PWR spent fuels. The spent fuel disassembling process includes transportation and handling of the spent fuel assembly, extraction and cutting of the spent fuel rods, and extraction of the spent fuel pellets(decladding). In this study, the downender of the spent fuel assembly and the spent fuel rod cutting device have been developed. The downender is used to change the posture of the spent fuel assembly from the vertical to the horizontal directions, prior to extracting the fuel rods. The concepts of the remote operation and maintenance has been introduced in the design of the downender. Also, the several design consideration has been given such as the reliable adaptation of the vertically accessing the assembly to the device, the minimization of the shock force when settling down the assembly, and the interface with the rod extraction device without intermittent operation. The spent fuel rod cutting device using a tube cutter is developed for cutting the fuel rods to the suitable size. In designing this device, the mechanical property of the spent fuel rod is examined such as the strength of the clad material and the optimal size of the rod for the extracting process. Also, several cutting methods, which are commercially available, are investigated and tested in terms of the durability, the deformation on the cutting surface of the rods, and the amount of the generated debris, and the fire risk. As like the downender, the design of this device accommodates the concepts of the remote operation and maintenance

  11. BR-100 spent fuel shipping cask development

    International Nuclear Information System (INIS)

    McGuinn, E.J.; Childress, P.C.

    1990-01-01

    Continued public acceptance of commercial nuclear power is contingent to a large degree on the US Department of Energy (DOE) establishing an integrated waste management system for spent nuclear fuel. As part of the from-reactor transportation segment of this system, the B ampersand W Fuel Company (BWFC) is under contract to the DOE to develop a spent-fuel cask that is compatible with both rail and barge modes of transportation. Innovative design approaches were the keys to achieving a cask design that maximizes payload capacity and cask performance. The result is the BR-100, a 100-ton rail/barge cask with a capacity of 21 PWR or 52 BWR ten-year cooled, intact fuel assemblies. 3 figs

  12. Robotic cleaning of a spent fuel pool

    International Nuclear Information System (INIS)

    Roman, H.T.; Marian, F.A.; Silverman, E.B.; Barkley, V.P.

    1987-01-01

    Spent fuel pools at nuclear power plants are not cleaned routinely, other than by purifying the water that they contain. Yet, debris can collect on the bottom of a pool and should be removed prior to fuel transfer. At Public Service Electric and Gas Company's Hope Creek Nuclear Power Plant, a submersible mobile robot - ARD Corporation's SCAVENGER - was used to clean the bottom of the spent fuel pool prior to initial fuel loading. The robotic device was operated remotely (as opposed to autonomously) with a simple forward/reverse control, and it cleaned 70-80% of the pool bottom. This paper reports that a simple cost-benefit analysis shows that the robotic device would be less expensive, on a per mission basis, than other cleaning alternatives, especially if it were used for other similar cleaning operations throughout the plant

  13. Spent nuclear fuel project product specification

    International Nuclear Information System (INIS)

    Pajunen, A.L.

    1998-01-01

    Product specifications are limits and controls established for each significant parameter that potentially affects safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for transport to dry storage. The product specifications in this document cover the spent fuel packaged in MultiCanister Overpacks (MCOs) to be transported throughout the SNF Project. The SNF includes N Reactor fuel and single-pass reactor fuel. The FRS removes the SNF from the storage canisters, cleans it, and places it into baskets. The MCO loading system places the baskets into MCO/Cask assembly packages. These packages are then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the MCO cask packages are transferred to the Canister Storage Building (CSB), where the MCOs are removed from the casks, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The key criteria necessary to achieve these goals are documented in this specification

  14. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Gal, I.

    1964-12-01

    This volume contains the following reports: Experimental facility for testing and development of pulsed columns and auxiliary devices; Chemical-technology study of the modified 'Purex' process; Chemical and radiometric control analyses; Chromatographic separation of rare earth elements on paper treated by di-n butylphosphate; Preliminary study of some organic nitrogen extracts significant in fuel reprocessing

  15. Spent nuclear fuel project integrated schedule plan

    International Nuclear Information System (INIS)

    Squires, K.G.

    1995-01-01

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel

  16. Spent nuclear fuel project integrated schedule plan

    Energy Technology Data Exchange (ETDEWEB)

    Squires, K.G.

    1995-03-06

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

  17. Development of advanced spent fuel management process. System analysis of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Ro, S.G.; Kang, D.S.; Seo, C.S.; Lee, H.H.; Shin, Y.J.; Park, S.W.

    1999-03-01

    The system analysis of an advanced spent fuel management process to establish a non-proliferation model for the long-term spent fuel management is performed by comparing the several dry processes, such as a salt transport process, a lithium process, the IFR process developed in America, and DDP developed in Russia. In our system analysis, the non-proliferation concept is focused on the separation factor between uranium and plutonium and decontamination factors of products in each process, and the non-proliferation model for the long-term spent fuel management has finally been introduced. (Author). 29 refs., 17 tabs., 12 figs

  18. Burnup simulations and spent fuel characteristics of ZrO{sub 2} based inert matrix fuels

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.A. [Department of Mechanical Engineering, University of Texas, Austin, TX (United States); Deinert, M.R. [Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY (United States)]. E-mail: mrd6@cornell.edu; Herring, S.T. [Idaho National Laboratory, Idaho Falls, ID (United States); Cady, K.B. [Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY (United States)

    2007-03-31

    Reducing the inventory of long lived isotopes that are contained in spent nuclear fuel is essential for maximizing repository capacity and extending the lifetime of related storage. Because of their non-fertile matrices, inert matrix fuels (IMF's) could be an ideal vehicle for using light-water reactors to help decrease the inventory of plutonium and other transuranics (neptunium, americium, curium) that are contained within spent uranium oxide fuel (UOX). Quantifying the characteristics of spent IMF is therefore of fundamental importance to determining its effect on repository design and capacity. We consider six ZrO{sub 2} based IMF formulations with different transuranic loadings in a 1-8 IMF to UOX pin-cell arrangement. Burnup calculations are performed using a collision probability model where transport of neutrons through space is modeled using fuel to moderator transport and escape probabilities. The lethargy dependent neutron flux is treated with a high resolution multigroup thermalization method. The results of the reactor physics model are compared to a benchmark case performed with Montebruns and indicate that the approach yields reliable results applicable to high-level analyses of spent fuel isotopics. The data generated show that a fourfold reduction in the radiological and integrated thermal output is achievable in single recycle using IMF, as compared to direct disposal of an energy equivalent spent UOX.

  19. The cascad spent fuel dry storage facility

    International Nuclear Information System (INIS)

    Guay, P.; Bonnet, C.

    1991-01-01

    France has a wide variety of experimental spent fuels different from LWR spent fuel discharged from commercial reactors. Reprocessing such fuels would thus require the development and construction of special facilities. The French Atomic Energy Commission (CEA) has consequently opted for long-term interim storage of these spent fuels over a period of 50 years. Comparative studies of different storage concepts have been conducted on the basis of safety (mainly containment barriers and cooling), economic, modular design and operating flexibility criteria. These studies have shown that dry storage in a concrete vault cooled by natural convection is the best solution. A research and development program including theoretical investigations and mock-up tests confirmed the feasibility of cooling by natural convection and the validity of design rules applied for fuel storage. A facility called CASCAD was built at the CEA's Cadarache Nuclear Research Center, where it has been operational since mid-1990. This paper describes the CASCAD facility and indicates how its concept can be applied to storage of LWR fuel assemblies

  20. Safeguardability of advanced spent fuel conditioning process

    Energy Technology Data Exchange (ETDEWEB)

    Li, T. K. (Tien K.); Lee, S. Y. (Sang Yoon); Burr, Tom; Russo, P. A. (Phyllis A.); Menlove, Howard O.; Kim, H. D.; Ko, W. I. (Won Il); Park, S. W.; Park, H. S.

    2004-01-01

    The Advanced Spent Fuel Conditioning Process (ACP) is an electro-metallurgical treatment technique to convert oxide-type spent nuclear fuel into a metallic form. The Korea Atomic Energy Research Institute (KAERI) has been developing this technology since 1977 for the purpose of spent fuel management and is planning to perform a lab-scale demonstration in 2006. By using of this technology, a significant reduction of the volume and heat load of spent fuel is expected, which would lighten the burden of final disposal in terms of disposal size, safety and economics. In the framework of collaboration agreement to develop the safeguards system for the ACP, a joint study on the safeguardability of the ACP technology has been performed by the Los Alamos National Laboratory (LANL) and the KAERI since 2002. In this study, the safeguardability of the ACP technology was examined for the pilot-scale facility. The process and material flows were conceptually designed, and the uncertainties in material accounting were estimated with international target values.

  1. Spent fuel and waste inventories and projections

    International Nuclear Information System (INIS)

    Carter, W.L.; Finney, B.C.; Alexander, C.W.; Blomeke, J.O.; McNair, J.M.

    1980-08-01

    Current inventories of commercial spent fuels and both commercial and US Department of Energy radioactive wastes were compiled, based on judgments of the most reliable information available from Government sources and the open literature. Future waste generation rates and quantities to be accumulated over the remainder of this century are also presented, based on a present projection of US commercial nuclear power growth and expected defense-related activities. Spent fuel projections are based on the current DOE/EIA estimate of nuclear growth, which projects 180 GW(e) in the year 2000. It is recognized that the calculated spent fuel discharges are probably high in view of recent reactor cancellations; hence adjustments will be made in future updates of this report. Wastes considered, on a chapter-by-chapter basis, are: spent fuel, high-level wastes, transuranic wastes, low-level wastes, mill tailings (active sites), and remedial action wastes. The latter category includes mill tailings (inactive sites), surplus facilities, formerly utilized sites, and the Grand Junction Project. For each category, waste volume inventories and projections are given through the year 2000. The land usage requirements are given for storage/disposal of low-level and transuranic wastes, and for present inventories of mill tailings

  2. Regional spent fuel storage facility (RSFSF)

    International Nuclear Information System (INIS)

    Dyck, H.P.

    1999-01-01

    The paper gives an overview of the meetings held on the technology and safety aspects of regional spent fuel storage facilities. The questions of technique, economy and key public and political issues will be covered as well as the aspects to be considered for implementation of a regional facility. (author)

  3. Total quality in spent fuel pool reracking

    International Nuclear Information System (INIS)

    Cranston, J.S.; Bradbury, R.B.; Cacciapouti, R.J.

    1993-01-01

    The nuclear utility environment is one of strict cost control under prescriptive regulations and increasing public scrutiny. This paper presents the results of A Total Quality approach, by a dedicated team, that addresses the need for increased on-site spent fuel storage in this environment. Innovations to spent fuel pool reracking, driven by utilities' specific technical needs and shrinking budgets, have resulted in both product improvements and lower prices. A Total Quality approach to the entire turnkey project is taken, thereby creating synergism and process efficiency in each of the major phases of the project: design and analysis, licensing, fabrication, installation and disposal. Specific technical advances and the proven quality of the team members minimizes risk to the utility and its shareholders and provides a complete, cost effective service. Proper evaluation of spent fuel storage methods and vendors requires a full understanding of currently available customer driven initiatives that reduce cost while improving quality. In all phases of a spent fuel reracking project, from new rack design and analysis through old rack disposal, the integration of diverse experts, at all levels and throughout all phases of a reracking project, better serves utility needs. This Total Quality environment in conjunction with many technical improvements results in a higher quality product at a lower cost

  4. Spent-fuel-stabilizer screening studies

    International Nuclear Information System (INIS)

    Wynhoff, N.; Girault, S.E.; Fish, R.L.

    1980-11-01

    A broad range of potential stabilizer materials was identified and screened for packaging spent fuel assemblies for underground storage. The screening took into consideration the thermal gradient, stress, differential thermal expansion, nuclear criticality, radiation shielding, cost, and availability. Recommended stabilizer materials for further testing include silica, quartz, mullite, zircon, bentonite, graphite, gases, lead, Zn alloys, Cu alloys, etc

  5. Comparison of spent nuclear fuel management alternatives

    International Nuclear Information System (INIS)

    Beebe, C.L.; Caldwell, M.A.

    1996-01-01

    This paper reports the process an results of a trade study of spent nuclear fuel (SNF)management alternatives. The purpose of the trade study was to provide: (1) a summary of various SNF management alternatives, (2) an objective comparison of the various alternatives to facilitate the decision making process, and (3) documentation of trade study rational and the basis for decisions

  6. Operation of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide was prepared as part of the IAEA's programme on safety of spent fuel storage. This is for interim spent fuel storage facilities that are not integral part of an operating nuclear power plant. Following the introduction, Section 2 describes key activities in the operation of spent fuel storage facilities. Section 3 lists the basic safety considerations for storage facility operation, the fundamental safety objectives being subcriticality, heat removal and radiation protection. Recommendations for organizing the management of a facility are contained in Section 4. Section 5 deals with aspects of training and qualification; Section 6 describes the phases of the commissioning of a spent fuel storage facility. Section 7 describes operational limits and conditions, while Section 8 deals with operating procedures and instructions. Section 9 deals with maintenance, testing, examination and inspection. Section 10 presents recommendations for radiation and environmental protection. Recommendations for the quality assurance (QA) system are presented in Section 11. Section 12 describes the aspects of safeguards and physical protection to be taken into account during operations; Section 13 gives guidance for decommissioning. 15 refs, 5 tabs

  7. Method for processing spent nuclear reactor fuel

    International Nuclear Information System (INIS)

    Levenson, M.; Zebroski, E.L.

    1981-01-01

    A method and apparatus are claimed for processing spent nuclear reactor fuel wherein plutonium is continuously contaminated with radioactive fission products and diluted with uranium. Plutonium of sufficient purity to fabricate nuclear weapons cannot be produced by the process or in the disclosed reprocessing plant. Diversion of plutonium is prevented by radiation hazards and ease of detection

  8. High density aseismic spent fuel storage racks

    International Nuclear Information System (INIS)

    Louvat, J.P.

    1985-05-01

    After the reasons of the development of high density aseismic spent fuel racks by FRAMATOME and LEMER, a description is presented, as also the codes, standards and regulations used to design this FRAMATOME storage rack. Tests have been carried out concerning criticality, irradiation of Cadminox, corrosion of the cell, and the seismic behaviour

  9. Spent nuclear fuel project product specification

    International Nuclear Information System (INIS)

    PAJUNEN, A.L.

    1999-01-01

    This document establishes the limits and controls for the significant parameters that could potentially affect the safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for processing, transport, and storage. The product specifications in this document cover the SNF packaged in Multi-Canister Overpacks to be transported throughout the SNF Project

  10. Past and future IAEA spent fuel management activities

    International Nuclear Information System (INIS)

    Grigoriev, A.

    1993-01-01

    The main objectives and strategies of the Agency's activities in the area of spent fuel management are to promote the exchange of information between Member States on technical, safety, environmental and economic aspects of spent fuel management technology, including storage, transport and treatment of spent fuel, and to provide assistance to Member States in the planning, implementation and operation of nuclear fuel cycle facilities. This paper give a list of the meetings held since the last issue of the Spent Fuel Management Newsletter

  11. NAC international dry spent fuel transfer technology

    International Nuclear Information System (INIS)

    Shelton, Thomas A.; Malone, James P.; Patterson, John R.

    1996-01-01

    Full text: For more than ten years NAC International (NAC) has designed, fabricated, tested and operated a variety of Dry Transfer Systems (DTS's) to transfer spent nuclear fuel from facilities with limited crane capabilities, limited accesses or limiting features to IAEA and USNRC licensed spent fuel transport casks or vice-versa. These DTS's have been operated in diverse environments in the United States and throughout the world and have proven to be a significant enhancement in transferring fuel between spent fuel pools, dry storage and hot cell facilities and spent fuel transport casks. Over the years, NAC has successfully and safely transferred more than two thousand fuel assemblies in DTS's. Our latest generation DTS incorporates years of extensive design and operating experience. It consists of a transfer cask with integrated fuel canister grapple, fuel canisters, and facility and cask adapters as well as a complement of related tools and equipment. The transfer cask is used to move irradiated HEU and LEU MTR fuel onsite in those instances where direct loading or unloading of the shipping cask is not possible due to dimensional, weight or other restrictions. The transfer cask is used to move canisters of fuel from the fuel storage location to the shipping cask. Adapters are employed to ensure proper interfacing of the transfer cask with fuel storage locations and shipping casks (NAC-LWT and NLI-1/2). Our existing fuel storage location adapter is designed for use with a storage pool; however, site or equipment specific adapters can easily be developed to allow interfacing with virtually any storage facility. Prior to movement of the first fuel canister in the transfer cask, the shipping cask is prepared for loading by proper set up of the base plate, shipping cask and shipping cask adapter. The fuel canisters are loaded with fuel and then retracted into the transfer cask via the fuel storage location adapter. The transfer cask is then moved to the shipping

  12. The psychosocial consequences of spent fuel disposal

    International Nuclear Information System (INIS)

    Paavola, J.; Eraenen, L.

    1999-03-01

    In this report the potential psychosocial consequences of spent fuel disposal to inhabitants of a community are assessed on the basis of earlier research. In studying the situation, different interpretations and meanings given to nuclear power are considered. First, spent fuel disposal is studied as fear-arousing and consequently stressful situation. Psychosomatic effects of stress and coping strategies used by an individual are presented. Stress as a collective phenomenon and coping mechanisms available for a community are also assessed. Stress reactions caused by natural disasters and technological disasters are compared. Consequences of nuclear power plant accidents are reviewed, e.g. research done on the accident at Three Mile Island power plant. Reasons for the disorganising effect on a community caused by a technological disaster are compared to the altruistic community often seen after natural disasters. The potential reactions that a spent fuel disposal plant can arouse in inhabitants are evaluated. Both short-term and long-term reactions are evaluated as well as reactions under normal functioning, after an incident and as a consequence of an accident. Finally an evaluation of how the decision-making system and citizens' opportunity to influence the decision-making affect the experience of threat is expressed. As a conclusion we see that spent fuel disposal can arouse fear and stress in people. However, the level of the stress is probably low. The stress is at strongest at the time of the starting of the spent fuel disposal plant. With time people get used to the presence of the plant and the threat experienced gets smaller. (orig.)

  13. US spent fuel research and experience

    Energy Technology Data Exchange (ETDEWEB)

    Machiels, A [EPRI and USDOE (United States)

    2012-07-01

    The structural performance of high-burnup spent fuel cladding during dry storage and transportation has been the subject of research and evaluation at EPRI for several years. The major issues addressed in this research program have included the following: Characterization and development of predictive models for damage mechanisms perceived to be potentially active during dry storage; Modeling and analysis of deformation processes during long-term dry storage; Development of cladding failure models and failure criteria, considering cladding material and physical conditions during dry storage and transportation; Failure analysis, considering end-of-dry-storage conditions, of spent fuel systems subjected to normal and accident conditions of transport, prescribed in Part 71 of Title 10 of the Code of Federal Regulations (10CFR71) While issues related to dry storage have largely been resolved, transportation issues have not, at least for spent fuel with discharge burnups greater than 45 GWd/MTU. A research program was launched in late 2002 following two NRC-industry meetings held on September 6, 2002 and October 23, 2002. The aim of the research program was to assess the performance of high-burnup spent fuel cladding under normal and accident conditions of transportation, as prescribed by 10CFR71, considering the physical characteristics and mechanical properties of cladding at the end of dry storage. The objective is to present a synthesis of the information that collectively forms a part of a technical basis intended to facilitate resolution of regulatory issues associated with the transportation of spent nuclear fuel characterized by discharge burnups greater than 45 GWd/MTU.

  14. Spent fuel and HLW transportation the French experience

    International Nuclear Information System (INIS)

    Giraud, J.P.; Charles, J.L.

    1995-01-01

    With 53 nuclear power plants in operation at EDF and a fuel cycle with recycling policy of the valuable materials, COGEMA is faced with the transport of a wide range of radioactive materials. In this framework, the transport activity is a key link in closing the fuel cycle. COGEMA has developed a comprehensive Transport Organization System dealing with all the sectors of the fuel cycle. The paper will describe the status of transportation of spent fuel and HLW in France and the experience gathered. The Transport Organization System clearly defines the role of all actors where COGEMA, acting as the general coordinator, specifies the tasks to be performed and brings technical and commercial support to its various subcontractors: TRANSNUCLEAIRE, specialized in casks engineering and transport operations, supplies packaging and performs transport operations, LEMARECHAL and CELESTIN operate transport by truck in the Vicinity of the nuclear sites while French Railways are in charge of spent fuel transport by train. HLW issued from the French nuclear program is stored for 30 years in an intermediate storage installation located at the La Hague reprocessing plant. Ultimately, these canisters will be transported to the disposal site. COGEMA has set up a comprehensive transport organization covering all operational aspects including adapted procedures, maintenance programs and personnel qualification

  15. Safety aspects of dry spent fuel storage and spent fuel management

    International Nuclear Information System (INIS)

    Botsch, W.; Smalian, S.; Hinterding, P.; Voelzke, H.; Wolff, D.; Kasparek, E.

    2014-01-01

    The storage of spent nuclear fuel (SF) and high-level radioactive waste (HLW) must conform to safety requirements. Safety aspects like safe enclosure of radioactive materials, safe removal of decay heat, nuclear criticality safety and avoidance of unnecessary radiation exposure must be achieved throughout the storage period. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. In Germany dual purpose casks for SF or HLW are used for safe transportation and interim storage. TUV and BAM, who work as independent experts for the competent authorities, present the storage licensing process including sites and casks and inform about spent nuclear fuel management and issues concerning dry storage of spent nuclear fuel, based on their long experience in these fields (authors)

  16. Spent fuel assembly source term parameters

    International Nuclear Information System (INIS)

    Barrett, P.R.; Foadian, H.; Rashid, Y.R.; Seager, K.D.; Gianoulakis, S.E.

    1993-01-01

    Containment of cask contents by a transport cask is a function of the cask body, one or more closure lids, and various bolting hardware, and seals associated with the cavity closure and other containment penetrations. In addition, characteristics of cask contents that impede the ability of radionuclides to move from an origin to the external environment also provide containment. In essence, multiple release barriers exist in series in transport casks, and the magnitude of the releasable activity in the cask is considerably lower than the total activity of its contents. A source term approach accounts for the magnitude of the releasable activity available in the cask by assessing the degree of barrier resistance to release provided by material characteristics and inherent barriers that impede the release of radioactive contents. Standardized methodologies for defining the spent-fuel transport packages with specified regulations have recently been developed. An essential part of applying the source term methodology involves characterizing the response of the spent fuel under regulatory conditions of transport. Thermal and structural models of the cask and fuel are analyzed and used to predict fuel rod failure probabilities. Input to these analyses and failure evaluations cover a wide range of geometrical and material properties. An important issue in the development of these models is the sensitivity of the radioactive source term generated during transport to individual parameters such as temperature and fluence level. This paper provides a summary of sensitivity analyses concentrating on the structural response and failure predictions of the spent fuel assemblies

  17. Economics of spent LWR fuel storage

    International Nuclear Information System (INIS)

    Clark, H.J.; O'Neill, G.F.

    1980-01-01

    A power reactor operator, confronted with rising spent fuel inventories that would soon exceed his storage capacity, has to decide what to do with this fuel if he wants to continue reactor operations. A low cost option would be to ship excess fuel from the overburdened reactor to another reactor in the utility's system that has available space. The only cost would be for cask leasing and shipping. Three other alternatives all require considerable capital expenditures: reracking, new at-reactor (AR) basins for storage, and away-from-reactor (AFR) basins for storage. Economic considerations for each of the alternatives are compared

  18. Reracking to increase spent fuel storage capacity

    International Nuclear Information System (INIS)

    1980-05-01

    Many utilities have already increased their spent fuel pool storage capacity by replacing aluminum racks having storage densities as low as 0.2 MTU/ft 2 with stainless steel racks which can more than double storage densities. Use of boron-stainless steel racks or thin stainless steel cans containing reassembled fuel rods allows even higher fuel storage densities (up to approximately 1.25 MTU/ft 2 ). This report evaluates the economics of smaller storage gains that occur if pools, already converted to high density storage, are further reracked

  19. Subsurface storage of commercial spent nuclear fuel

    International Nuclear Information System (INIS)

    Richards, L.M.; Szulinski, M.J.

    1979-01-01

    The Atlantic Richfield Company has developed the concept of storing spent fuel in dry caissons. Cooling is passive; safety and safeguard features appear promising. The capacity of a caisson to dissipate heat depends on site-specific soil characteristics and on the diameter of the caisson. It is estimated that approx. 2 kW can be dissipated in the length of one fuel element. Fuel elements can be stacked with little effect on temperature. A spacing of approx. 7.5 m (25 ft) between caissons appears rasonable. Business planning indicates a cost of approx. 0.2 mill/kWh for a 15-yr storage period. 12 figures, 4 tables

  20. Historical overview of domestic spent fuel shipments

    International Nuclear Information System (INIS)

    Pope, R.B.; Wankerl, M.W.; Armstrong, S.; Hamberger, C.; Schmid, S.

    1991-01-01

    The purpose of this paper is to provide available historical data on most commercial and research reactor spent fuel shipments that have been completed in the United States between 1964 and 1989. This information includes data on the sources of spent fuel that has been shipped, the types of shipping casks used, the number of fuel assemblies that have been shipped, and the number of shipments that have been made. The data are updated periodically to keep abreast of changes. Information on shipments is provided for planning purposes; to support program decisions of the US Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM); and to inform interested members of the public, federal, state, and local government, Indian tribes, and the transportation community. 5 refs., 7 figs., 2 tabs

  1. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Shin, Y. J.; Do, J. B.; You, G. S.; Seo, J. S.; Lee, H. G.

    1998-03-01

    This study is to develop an advanced spent fuel management process for countries which have not yet decided a back-end nuclear fuel cycle policy. The aims of this process development based on the pyroreduction technology of PWR spent fuels with molten lithium, are to reduce the storage volume by a quarter and to reduce the storage cooling load in half by the preferential removal of highly radioactive decay-heat elements such as Cs-137 and Sr-90 only. From the experimental results which confirm the feasibility of metallization technology, it is concluded that there are no problems in aspects of reaction kinetics and equilibrium. However, the operating performance test of each equipment on an engineering scale still remain and will be conducted in 1999. (author). 21 refs., 45 tabs., 119 figs

  2. Corrosion surveillance in spent fuel storage pools

    International Nuclear Information System (INIS)

    Howell, J.P.

    1996-01-01

    In mid-1991, corrosion of aluminum-clad spent nuclear fuel was observed in the light-water filled basins at the Savannah River site. A corrosion surveillance program was initiated in the P, K, L-Reactor basins and in the Receiving Basin for Offsite Fuels (RBOF). This program verified the aggressive nature of the pitting corrosion and provided recommendations for changes in basin operations to permit extended longer term interim storage. The changes were implemented during 1994--1996 and have resulted in significantly improved basin water quality with conductivity in the 1--3 microS/cm range. Under these improved conditions, no new pitting has been observed over the last three years. This paper describes the corrosion surveillance program at SRS and what has been learned about the corrosion of aluminum-clad in spent fuel storage pools

  3. Impact analysis of spent fuel jacket assemblies

    International Nuclear Information System (INIS)

    Aramayo, G.A.

    1994-01-01

    As part of the analyses performed in support of the reracking of the High Flux Isotope Reactor pool, it became necessary to prove the structural integrity of the spent fuel jacket assemblies subjected to gravity drop that result from postulated accidents associated with the handling of these assemblies while submerged in the pool. The spent fuel jacket assemblies are an integral part of the reracking project, and serve to house fuel assemblies. The structure integrity of the jacket assemblies from loads that result from impact from a height of 10 feet onto specified targets has been performed analytically using the computer program LS-DYNA3D. Nine attitudes of the assembly at the time of impact have been considered. Results of the analyses show that there is no failure of the assemblies as a result of the impact scenarios considered

  4. The Spent Fuel Management in Finland and Modifications of Spent Fuel Storages

    International Nuclear Information System (INIS)

    Maaranen, Paeivi

    2014-01-01

    The objective of this presentation is to share the Finnish regulator's (STUK) experiences on regulatory oversight of the enlargement of a spent fuel interim storage. An overview of the current situation of spent fuel management in Finland will also be given. In addition, the planned modifications and requirements set for spent fuel storages due to the Fukushima accident are discussed. In Finland, there are four operating reactors, one under construction and two reactors that have a Council of State's Decision-in-Principle to proceed with the planning and licensing of a new reactor. In Olkiluoto, the two operating ASEA-Atom BWR units and the Areva EPR under construction have a shared interim storage for the spent fuel. The storage was designed and constructed in 1980's. The option for enlarging the storage was foreseen in the original design. Considering three operating units to produce their spent fuel and the final disposal to begin in 2022, extra space in the spent fuel storage is estimated to be needed in around 2014. The operator decided to double the number of the spent fuel pools of the storage and the construction began in 2010. The capacity of the enlarged spent fuel storage is considered to be sufficient for the three Olkiluoto units. The enlargement of the interim storage was included in Olkiluoto NPP 1 and 2 operating license. The licensing of the enlargement was conducted as a major plant modification. The operator needed the approval from STUK to conduct the enlargement. Prior to the construction of this modification, the operator was required to submit the similar documentation as needed for applying for the construction license of a nuclear facility. When conducting changes in an old nuclear facility, the new safety requirements have to be followed. The major challenge in the designing the enlargement of the spent fuel storage was to modify it to withstand a large airplane crash. The operator chose to cover the pools with protecting slabs and also to

  5. THE POSSIBILITY OF DISPOSING OF SPENT COFFEE GROUND WITH ENERGY RECYCLING

    Directory of Open Access Journals (Sweden)

    Tomasz Ciesielczuk

    2015-09-01

    Full Text Available The current policy of waste management requires, above all, a gradual reduction of waste amount and, to a larger extent, forces us to seek new methods of waste disposal. Recycling the energy contained in biomass waste is a more and more universally applied method of thermal converting. Biomass combustion allows saving fossil fuels which fits into sustainable development. This paper checks the possibility of using spent coffee ground (SCG in energy recycling using a combustion process. This particular biomass type up to now has not been widely examined, which inclines to consider its usage as a potential additive to alternative fuels. In the study, we examined the quality of fuel, which was in a form of briquette, made of beech shavings with 10 and 25% of post-exploitation waste obtained during the process of coffee infusion. This waste, if fresh, is distinguished by its high hydration. However, after drying it may constitute a valuable additive to alternative fuels. It increases the calorific value of fuel and reduces briquettes’ hardness what contributes to reducing resistance of conveying screw in stoves.

  6. Present status of JMTR spent fuel shipment

    International Nuclear Information System (INIS)

    Miyazawa, Masataka; Watanabe, Masao; Yokokawa, Makoto; Sato, Hiroshi; Ito, Haruhiko

    2002-01-01

    The Japan Atomic Energy Research Institute (JAERI) has been consistently making the enrichment reduction of reactor fuels in cooperation with RERTR Program and FRR SNF Acceptance Program both conducted along with the U.S. Nuclear Non-Proliferation Policy and JMTR, 50 MW test reactor in Oarai Research Establishment, has achieved core conversion, from its initial 93% enriched UAl alloy to 45% enriched uranium-aluminide fuel, and then to the current 19.8% enriched uranium-silicide fuel. In order to return all of JMTR spent fuels, to be discharged from the reactor by May 12, 2006, to the U.S.A. by May 12, 2009, JAERI is planning the transportation schedule based on one shipment per year. The sixth shipment of spent fuels to U.S. was carried out as scheduled this year, where the total number of fuels shipped amounts to 651 elements. All of the UAl alloy elements have so far been shipped and now shipments of 45% enriched uranium-aluminide type fuels are in progress. Thus far the JMTR SFs have been transported on schedule. From 2003 onward are scheduled more then 850 elements to be shipped. In this paper, we describe our activities on the transportation in general and the schedule for the SFs shipments. (author)

  7. Integrated scheme of long-term for spent fuel management of power nuclear reactors

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Palacios H, J. C.; Martinez C, E.

    2015-09-01

    After of irradiation of the nuclear fuel in the reactor core, is necessary to store it for their cooling in the fuel pools of the reactor. This is the first step in a processes series before the fuel can reach its final destination. Until now there are two options that are most commonly accepted for the end of the nuclear fuel cycle, one is the open nuclear fuel cycle, requiring a deep geological repository for the fuel final disposal. The other option is the fuel reprocessing to extract the plutonium and uranium as valuable materials that remaining in the spent fuel. In this study the alternatives for the final part of the fuel cycle, which involves the recycling of plutonium and the minor actinides in the same reactor that generated them are shown. The results shown that this is possible in a thermal reactor and that there are significant reductions in actinides if they are recycled into reactor fuel. (Author)

  8. Nuclear fuel transport and particularly spent fuel transport

    International Nuclear Information System (INIS)

    Lenail, B.

    1986-01-01

    Nuclear material transport is an essential activity for COGEMA linking the different steps of the fuel cycle transport systems have to be safe and reliable. Spent fuel transport is more particularly examined in this paper because the development of reprocessing plant. Industrial, techmical and economical aspects are reviewed [fr

  9. Centralized disassembly and packaging of spent fuel in the DOE spent fuel management system

    International Nuclear Information System (INIS)

    Johnson, E.R.

    1986-01-01

    In October 1984, E.R. Johnson Associates, Inc. (JAI) initiated a study of the prospective use of a centralized facility for the disassembly and packaging of spent fuel to support the various elements of the US Dept. of Energy (DOE) spent fuel management system, including facilities for monitored retrievable storage (MRS) and repositories. It was DOE's original plan to receive spent fuel at each repository where it would be disassembled and packaged (overpacked) for disposal purposes. Subsequently, DOE considered the prospective use of MRS of spent fuel as an option for providing safe and reliable management of spent fuel. This study was designed to consider possible advantages of the use of centralized facilities for disassembly and packaging of spent fuel at whose location storage facilities could be added as required. The study was divided into three principal technical tasks that covered: (a) development of requirements and criteria for the central disassembly and packaging facility and associated systems. (2) Development of conceptual designs for the central disassembly and packaging facility and associated systems. (3) Estimation of capital and operating costs involved for all system facilities and determination of life cycle costs for various scenarios of operation - for comparison with the reference system

  10. Spent oxide fuel regeneration by crystallization in molybdate melts

    International Nuclear Information System (INIS)

    Ustinov, O.A.; Sukhanov, L.P.; Yakunin, S.A.

    2006-01-01

    Paper describes a procedure to regenerate spent oxide fuel by its crystallization in molybdate melts. Paper presents the process procedures to regenerate spent fuel of both fast and thermal neutron reactors. One analyzes the advantages of the elaborated procedure [ru

  11. Management and storage of spent fuel from CEA research reactors

    International Nuclear Information System (INIS)

    Merchie, F.

    1996-01-01

    CEA research reactors and their interim spent fuel storage facilities are described. Long-term solutions for spent fuel storage problems, involving wet storage at PEGASE or dry storage at CASCAD, are outlined in some detail. (author)

  12. Spent fuel management: Current status and prospects 1995. Proceedings of a regular advisory group meeting

    International Nuclear Information System (INIS)

    1996-08-01

    Spent fuel management has always been one of the important stages in the nuclear fuel cycle and it is still one of the most vital problems common to all countries with nuclear reactors. It begins with the discharge of spent fuel from a power or a research reactor and ends with its ultimate disposition, either by direct disposal or by reprocessing of the spent fuel. Two options exist - an open, once-through cycle with direct disposal of the spent fuel and a closed cycle with reprocessing of the spent fuel and recycling of plutonium and uranium in new mixed oxide fuels. The selection of a spent fuel strategy is a complex procedure in which many factors have to be weighed, including political, economic and safeguards issues as well as protection of the environment. This report gives an overview of the status of spent fuel management programmes in a number of countries, a description of the current status and prospects of activities in this field and recommendations of the participants. Refs, figs, tabs

  13. New developments in dry spent fuel storage

    International Nuclear Information System (INIS)

    Bonnet, C.; Chevalier, Ph.

    2001-01-01

    As shown in various new examples, HABOG facility (Netherlands), CERNAVODA (Candu - Romania), KOZLODUY (WWER - Bulgaria), CHERNOBYL ( RMBK - Ukraine), MAYAK (Spent Fuel from submarine and Icebreakers - Russia), recent studies allow to confirm the flexibility and performances of the CASCAD system proposed by SGN, both in safety and operability, for the dry storage of main kinds of spent fuel. The main features are: A multiple containment barrier system: as required by international regulation, 2 independent barriers are provided (tight canister and storage pit); Passive cooling, while the Fuel Assemblies are stored in an inert atmosphere and under conditions of temperature preventing from degradation of rod cladding; Sub-criticality controlled by adequate arrangements in any conditions; Safe facility meeting ICPR 60 Requirements as well as all applicable regulations (including severe weather conditions and earthquake); Safe handling operations; Retrievability of the spent fuel either during storage period or at the end of planned storage period (100 years); Future Decommissioning of the facility facilitated through design optimisation; Construction and operating cost-effectiveness. (author)

  14. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Shin, Young Joon; Cho, S. H.; You, G. S.

    2001-04-01

    Currently, the economic advantage of any known approach to the back end fuel cycle of a nuclear power reactor has not been well established. Thus the long term storage of the spent fuel in a safe manner is one of the important issues to be resolved in countries where the nuclear power has a relatively heavy weight in power production of that country. At KAERI, as a solution to this particular issue midterm storage of the spent fuel, an alternative approach has been developed. This approach includes the decladding and pulverization process of the spent PWR fuel rod, the reducing process from the uranium oxide to a metallic uranium powder using Li metal in a LiCl salt, the continuous casting process of the reduced metal, and the recovery process of Li from mixed salts by the electrolysis. We conducted the laboratory scale tests of each processes for the technical feasibility and determination for the operational conditions for this approach. Also, we performed the theoretical safety analysis and conducted integral tests for the equipment integration through the Mock-up facility with non-radioactive samples. There were no major issues in the approach, however, material incompatibility of the alkaline metal and oxide in a salt at a high temperature and the reactor that contains the salt became a show stopper of the process. Also the difficulty of the clear separation of the salt with metals reduced from the oxide became a major issue

  15. Development of spent fuel remote handling technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, B. S.; Yoon, J. S.; Hong, H. D. (and others)

    2007-02-15

    In this research, the remote handling technology was developed for the ACP application. The ACP gives a possible solution to reduce the rapidly cumulative amount of spent fuels generated from the nuclear power plants in Korea. The remote technologies developed in this work are a slitting device, a voloxidizer, a modified telescopic servo manipulator and a digital mock-up. A slitting device was developed to declad the spent fuel rod-cuts and collect the spent fuel UO{sub 2} pellets. A voloxidizer was developed to convert the spent fuel UO{sub 2} pellets obtained from the slitting process in to U{sub 3}O{sub 8} powder. Experiments were performed to test the capabilities and remote operation of the developed slitting device and voloxidizer by using simulated rod-cuts and fuel in the ACP hot cell. A telescopic servo manipulator was redesigned and manufactured improving the structure of the prototype. This servo manipulator was installed in the ACP hot cell, and the target module for maintenance of the process equipment was selected. The optimal procedures for remote operation were made through the maintenance tests by using the servo manipulator. The ACP digital mockup in a virtual environment was established to secure a reliability and safety of remote operation and maintenance. The simulation for the remote operation and maintenance was implemented and the operability was analyzed. A digital mockup about the preliminary conceptual design of an enginnering-scale ACP was established, and an analysis about a scale of facility and remote handling was accomplished. The real-time diagnostic technique was developed to detect the possible fault accidents of the slitting device. An assessment of radiation effect for various sensors was also conducted in the radiation environment.

  16. Final environmental impact statement: US Spent Fuel Policy. Charge for spent fuel storage

    International Nuclear Information System (INIS)

    1980-05-01

    The United States Government policy relating to nuclear fuel reprocessing, which was announced by President Carter on April 7, 1977, provides for an indefinite deferral of reprocessing, and thus commits light water reactor (LWR) plants to a once-through fuel cycle during that indefinite period. In a subsequent action implementing that policy, the Department of Energy (DOE) on October 18, 1977 announced a spent fuel policy which would enable domestic, and on a selective basis, foreign utilities to deliver spent fuel to the US Government for interim storage and final geologic disposal, and pay the Government a fee for such services. This volume addresses itself to whether the fee charged for these services, by its level or its structure, would have any effect on the environmental impacts of implementing the Spent Fuel Policy itself. This volume thus analyzes the fee and various alternatives to determine the interaction between the fee and the degree of participation by domestic utilities and foreign countries in the proposed spent fuel program for implementing the Spent Fuel Policy. It also analyzes the effect, if any, of the fee on the growth of nuclear power

  17. Study of the radiotoxicity of actinides recycling in boiling water reactors fuel

    International Nuclear Information System (INIS)

    Francois, J.L.; Guzman, J.R.; Martin-del-Campo, C.

    2009-01-01

    In this paper the production and destruction, as well as the radiotoxicity of plutonium and minor actinides (MA) obtained from the multi-recycling of boiling water reactors (BWR) fuel are analyzed. A BWR MOX fuel assembly, with uranium (from enrichment tails), plutonium and minor actinides is designed and studied using the HELIOS code. The actinides mass and the radiotoxicity of the spent fuel are compared with those of the once-through or direct cycle. Other type of fuel assembly is also analyzed: an assembly with enriched uranium and minor actinides; without plutonium. For this study, the fuel remains in the reactor for four cycles, where each cycle is 18 months length, with a discharge burnup of 48 MWd/kg. After this time, the fuel is placed in the spent fuel pool to be cooled during 5 years. Afterwards, the fuel is recycled for the next fuel cycle; 2 years are considered for recycle and fuel fabrication. Two recycles are taken into account in this study. Regarding radiotoxicity, results show that in the period from the spent fuel discharge until 1000 years, the highest reduction in the radiotoxicity related to the direct cycle is obtained with a fuel composed of MA and enriched uranium. However, in the period after few thousands of years, the lowest radiotoxicity is obtained using the fuel with plutonium and MA. The reduction in the radiotoxicity of the spent fuel after one or two recycling in a BWR is however very small for the studied MOX assemblies, reaching a maximum reduction factor of 2.

  18. Development of on-site spent fuel transfer system designs

    International Nuclear Information System (INIS)

    Lambert, R.W.; Pennington, C.W.; Guerra, G.V.

    1993-01-01

    The Electric Power Research Institute (EPRI) of the United States has sponsored development of conceptual designs for accomplishing spent fuel transfer from spent fuel pools to casks and from one cask to another. Under an EPRI research contract, transnuclear has developed several concepts for spent fuel transfer systems. (J.P.N.)

  19. Radioactive waste management decommissioning spent fuel storage. V. 3. Waste transport, handling and disposal spent fuel storage

    International Nuclear Information System (INIS)

    1985-01-01

    As part of the book entitled Radioactive waste management decommissioning spent fuel storage, vol. 3 dealts with waste transport, handling and disposal, spent fuel storage. Twelve articles are presented concerning the industrial aspects of nuclear waste management in France [fr

  20. Remote technologies for handling spent fuel

    International Nuclear Information System (INIS)

    Ramakumar, M.S.

    1999-01-01

    The nuclear programme in India involves building and operating power and research reactors, production and use of isotopes, fabrication of reactor fuel, reprocessing of irradiated fuel, recovery of plutonium and uranium-233, fabrication of fuel containing plutonium-239, uranium-233, post-irradiation examination of fuel and hardware and handling solid and liquid radioactive wastes. Fuel that could be termed 'spent' in thermal reactors is a source for second generation fuel (plutonium and uranium-233). Therefore, it is only logical to extend remote techniques beyond handling fuel from thermal reactors to fuel from fast reactors, post-irradiation examination etc. Fabrication of fuel containing plutonium and uranium-233 poses challenges in view of restriction on human exposure to radiation. Hence, automation will serve as a step towards remotisation. Automated systems, both rigid and flexible (using robots) need to be developed and implemented. Accounting of fissile material handled by robots in local area networks with appropriate access codes will be possible. While dealing with all these activities, it is essential to pay attention to maintenance and repair of the facilities. Remote techniques are essential here. There are a number of commonalities in these requirements and so development of modularized subsystems, and integration of different configurations should receive attention. On a long-term basis, activities like decontamination, decommissioning of facilities and handling of waste generated have to be addressed. While robotized remote systems have to be designed for existing facilities, future designs of facilities should take into account total operation with robotic remote systems. (author)

  1. Labeling of the spent fuel waste package

    International Nuclear Information System (INIS)

    Culbreth, W.G.; Chagari, A.K.

    1992-01-01

    This paper reports that the containers used to store spent fuel in an underground repository must meet federal guidelines that call for unique labels that identify the contents and processing history. Existing standards in the nuclear power industry and relevant ASME/ANSI codes have been reviewed for possible application to the spent-fuel container labeling. An Array of labeling techniques were found that include recommendations for: fonts, word spacing, color combinations, label materials and mounting methods, placement, and content. The use of bar code, optical character recognition, and RF labels were also studied to meet the requirement that the container labels be consistent with the methods used to maintain the repository records

  2. Cost analysis methodology of spent fuel storage

    International Nuclear Information System (INIS)

    1994-01-01

    The report deals with the cost analysis of interim spent fuel storage; however, it is not intended either to give a detailed cost analysis or to compare the costs of the different options. This report provides a methodology for calculating the costs of different options for interim storage of the spent fuel produced in the reactor cores. Different technical features and storage options (dry and wet, away from reactor and at reactor) are considered and the factors affecting all options defined. The major cost categories are analysed. Then the net present value of each option is calculated and the levelized cost determined. Finally, a sensitivity analysis is conducted taking into account the uncertainty in the different cost estimates. Examples of current storage practices in some countries are included in the Appendices, with description of the most relevant technical and economic aspects. 16 figs, 14 tabs

  3. International safeguards for spent fuel storage

    International Nuclear Information System (INIS)

    Kratzer, M.; Wonder, E.; Immerman, W.; Crane, F.

    1981-08-01

    This report analyzes the nonproliferation effectiveness and political and economic acceptability of prospective improvements in international safeguard techniques for LWR spent fuel storage. Although the applicability of item accounting considerably eases the safeguarding of stored spent fuel, the problem of verification is potentially serious. A number of simple gamma and neutron nondestructive assay techniques were found to offer considerable improvements, of a qualitative rather than quantitative nature, in verification-related data and information, and possess the major advantage of intruding very little on facility operations. A number of improved seals and monitors appear feasible as well, but improvements in the timeliness of detection will not occur unless the frequency of inspection is increased or a remote monitoring capability is established. Limitations on IAEA Safeguards resources and on the integration of results from material accounting and containment and surveillance remain problems

  4. Design of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide is for interim spent fuel storage facilities that are not integral part of an operating nuclear power plant. Following the introduction, Section 2 describes the general safety requirements applicable to the design of both wet and dry spent fuel storage facilities; Section 3 deals with the design requirements specific to either wet or dry storage. Recommendations for the auxiliary systems of any storage facility are contained in Section 4; these are necessary to ensure the safety of the system and its safe operation. Section 5 provides recommendations for establishing the quality assurance system for a storage facility. Section 6 discusses the requirements for inspection and maintenance that must be considered during the design. Finally, Section 7 provides guidance on design features to be considered to facilitate eventual decommissioning. 18 refs

  5. Spent-fuel transport: available as needed

    International Nuclear Information System (INIS)

    Macklin, L.

    1976-01-01

    As a result of the general uncertainty as to when commercial reprocessing will actually take place in the United States (U.S.) and the long lead times now required before bringing a spent-fuel cask system in operation, it appears that serious problems can arise by 1979-1980 in cask capacity availability. Compounding the uncertainty with respect to cask capacity availability is the position taken by some of the U.S. railroad systems and some state and local governmental agencies in imposing restraints in the movement of spent fuel. By utility companies taking risk in committing to casks in advance of the actual requirement dates and by cask suppliers assuming the risks of licensing, costs, and delivery schedules, this potential bottleneck could be minimized

  6. Research reactor spent fuel management in Argentina

    International Nuclear Information System (INIS)

    Audero, M.A.; Bevilacqua, A.M.; Mehlich, A.M.; Novara, O.

    2002-01-01

    The research reactor spent fuel (RRSF) management strategy will be presented as well as the interim storage experience. Currently, low-enriched uranium RRSF is in wet interim storage either at reactor site or away from reactor site in a centralized storage facility. High-enriched uranium RRSF from the centralized storage facility has been sent to the USA in the framework of the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The strategy for the management of the RRSF could implement the encapsulation for interim dry storage. As an alternative to encapsulation for dry storage some conditioning processes are being studied which include decladding, isotopic dilution, oxidation and immobilization. The immobilized material will be suitable for final disposal. (author)

  7. National Option of China's Nuclear Energy Systems for Spent Fuel Management

    Energy Technology Data Exchange (ETDEWEB)

    Gao, R.X. [University of Science and Technology, Daejeon (Korea, Republic of); Ko, W. I.; Lee, S. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Along with safety concerns, these long standing environmental challenges are the major factors influencing the public acceptance of nuclear power. Although nuclear power plays an important role in reducing carbon emissions from energy generation, this could not fully prove it as a sustainable energy source unless we find a consensus approach to treat the nuclear wastes. There are currently no countries that have completed a whole nuclear fuel cycle, and the relative comparison of the reprocessing spent fuel options versus direct disposal option is always a controversial issue. Without exception, nowadays, China is implementing many R and D projects on spent fuel management to find a long-term solution for nuclear fuel cycle system transition, such as deep geological repositories for High Level Waste (HLW), Pu Reduction by Solvent Extraction (PUREX) technology, and fast reactor recycling Mixed U-Pu Oxide (MOX) fuels, etc. This paper integrates the current nation's projects of back-end fuel cycle, analyzes the consequences of potential successes, failures and delays in the project development to future nuclear fuel cycle transition up to 2100. We compared the dynamic results of four scenarios and then assessed relative impact on spent fuel management. The result revealed that the fuel cycle transition of reprocessing and recycling of spent fuel would bring advantages to overall nuclear systems by reducing high level waste inventory, saving natural uranium resources, and reducing plutonium management risk.

  8. Spent fuel transportation regulatory and institutional issues

    International Nuclear Information System (INIS)

    Lippek, H.E.

    1978-01-01

    The problems that could result from state and local governments and other groups with relation to regulations concerning the transportation of spent nuclear fuels are discussed. The powers of the individual states as spelled out in the Clean Air Act Amendments of 1977 are set forth in some detail. The possibility of transportation employees gaining a position to demand and receive more stringent protections from hazards of radiation is pointed out

  9. Towards a Swedish repository for spent fuel

    International Nuclear Information System (INIS)

    Ahlstroem, P.-E.

    1997-01-01

    Nuclear power is producing electricity for the benefit of society but is also leaving radioactive residues behind. It is our responsibility to handle these residues in a safe and proper manner. The development of a system for handling spent fuel from nuclear power plants has proceeded in steps. The same is true for the actual construction of facilities and will continue to be the case for the final repository for spent fuel and other types of long-lived wastes. The primary objective in constructing the repository will be to isolate and contain the radioactive waste. In case the isolation fails for some reason the multibarrier system should retain and retard the radionuclides that might come into contact with the groundwater. A repository is now planned to be built in two steps where the first step will include deposition of about 400 canisters with spent fuel. This first step should be finished in about 20 years from now and be followed by an extensive evaluation of the results from not only this particular step but also from the development of alternative routes before deciding on how to proceed. A special facility to encapsulate the spent fuel is also required. Such an encapsulation plant is proposed to be constructed as an extension of the existing interim storage CLAB. Finding a site for the repository is a critical issue in the implementation of any repository. The siting process started a few years ago and made some progress but is by no means yet completed. It will go on at least into the early part of the next decade. When the present nuclear power plants begin to be due for retirement there should also be some facilities in place to take permanent care of the long-lived radioactive residues. Progress in siting will be a prerequisite for success in our responsibility to make progress towards a safe permanent solution of the waste issue. (orig.)

  10. Management and disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    1987-05-01

    The programme consists of the long-term and short-term programme, the continued bedrock investigations, the underground research laboratory, the decision-making procedure in the site selection process and information questions during the site selection process. The National Board for Spent Nuclear Fuel hereby subunits both the SKB's R and D Programme 86 and the Board's statement concerning the programme. Decisions in the matter have been made by the Board's executive committee. (DG)

  11. Safety assessment for spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Practice has been prepared as part of the IAEA's programme on the safety assessment of interim spent fuel storage facilities which are not an integral part of an operating nuclear power plant. This report provides general guidance on the safety assessment process, discussing both deterministic and probabilistic assessment methods. It describes the safety assessment process for normal operation and anticipated operational occurrences and also related to accident conditions. 10 refs, 2 tabs

  12. Spent fuel packaging and its safety analysis

    International Nuclear Information System (INIS)

    Takada, Kimitaka; Nakaoki, Kozo; Tamamura, Tadao; Matsuda, Fumio; Fukudome, Kazuyuki

    1983-01-01

    An all stainless steel B(U) type packaging is proposed to transport spent fuels discharged from research reactors and other radioactive materials. The package is used dry and provided with surface fins to absorb drop shock and to dissipate decay heat. Safety was analyzed for structural, thermal, containment shielding and criticality factors, and the integrity of the package was confirmed with the MARC-CDC, TRUMP, ORIGEN, QAD, ANISN, and KENO computer codes. (author)

  13. Storage racks for spent nuclear fuels

    International Nuclear Information System (INIS)

    Matsumoto, Takashi; Ukaji, Hideo; Okino, Yoshiyuki; Ishihara, Jo; Ikuta, Isao.

    1983-01-01

    Purpose: To facilitate the mounting of neutron absorbers made of amorphous alloys to fuel racks. Constitution: Neutron absorbers are mounted to a cylindrical member of a square cross section for containing to retain spent fuels only on paired opposing sides by means of machine screws or the likes. Then, such cylindrical members are disposed so that their sides attached with the neutron absorbers are not in adjacent with each other. In this way, mounting of the neutron absorbers over the entire surface of the cylindrical members is no more necessary thereby enabling to simplify the mounting work. (Ikeda, J.)

  14. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 4. Pacific basin spent fuel logistics system

    International Nuclear Information System (INIS)

    1978-06-01

    This report summarizes the conceptual framework for a Pacific Basin Spent Fuel Logistics System (PBSFLS); and preliminarily describes programatic steps that might be taken to implement such a system. The PBSFLS concept is described in terms of its technical and institutional components. The preferred PBSFLS concept embodies the rationale of emplacing a fuel cycle system which can adjust to the technical and institutional non-proliferation solutions as they are developed and accepted by nations. The concept is structured on the basis of initially implementing a regional spent fuel storage and transportation system which can technically and institutionally accommodate downstream needs for energy recovery and long-term waste management solutions

  15. Considerations for the transportation of spent fuel

    International Nuclear Information System (INIS)

    Jefferson, R.M.

    1984-01-01

    In our society today the transportation of radioactive materials, and most particularly spent reactor fuel, is surrounded by considerable emotion and a wealth of information, good and bad. The transportation of these materials is viewed as unique and distinct from the transportation of other hazardous materials and as a particularly vulnerable component of the nuclear power activities of this nation. Added to this is the concept, widely held, that almost everyone is an expert on the transportation of radioactive materials. One significant contribution to this level of emotion is the notion that all roads (rail and highway), on which these goods will be transported, somehow traverse everyone's backyard. The issue of the transportation of spent fuel has thus become a political battleground. Perhaps this should not be surprising since it has all of the right characteristics for such politicization in that it is pervasive, emotional, and visible. In order that those involved in the discussion of this activity might be able to reach some rational conclusions, this paper offers some background information which might be useful to a broad range of individuals in developing their own perspectives. The intent is to address the safety of transporting spent fuel from a technical standpoint without the emotional content which is frequently a part of this argument

  16. Problems of the Spent Nuclear Fuel Storage

    International Nuclear Information System (INIS)

    Negrivoda, G.

    1997-01-01

    Approximately 99% of the radioactivity in waste, produced in the process of operating a nuclear power plant, is contained in spent nuclear fuel. Safe handling and storage of the spent nuclear fuel is an important factor of a nuclear plant safety. Today at Ignalina NPP the spent fuel is stored in special water pools, located in the same buildings as the reactors. The volume of the pools is limited, for unit one the pool will be fully loaded in 1998, for unit 2 - in 2000. The further operation of the plant will only be possible if new storage is constructed. In 1994 contract with German company GNB was signed for the supply of 20 containers of the CASTOR type. Containers were delivered in accordance with agreed schedule. In the end of 1995 a new tender for new storage options was announced in order to minimize the storage costs. A proposal from Canadian company AECL now is being considered as one of the most suitable and negotiations to sign the contract started. (author)

  17. Spent fuel performance in geologic repository environments

    International Nuclear Information System (INIS)

    Bradley, D.J.

    1985-10-01

    The performance assessment of the waste package is a current area of study in the United States program to develop a geologic repository for nuclear waste isolation. The waste package is presently envisioned as the waste form and its surrounding containers and possibly a packing material composed of crushed host rock or mixtures of that rock with clays. This waste package is tied to performance criteria set forth in recent legislation. It is the goal of the Civilian Radioactive Waste Management Program to obtain the necessary information on the waste package, in several geologic environments, to show that the waste package provides reasonable assurance of meeting established performance criteria. This paper discusses the United States program directed toward managing high-level radioactive waste, with emphasis on the current effort to define the behavior of irradiated spent fuel in repository groundwaters. Current studies are directed toward understanding the rate and nature (such as valence state, colloid form if any, solid phase controlling solubility) of radionuclide release from the spent fuel. Due to the strong interactive effect of radiation, thermal fields, and waste package components on this release, current spent fuel studies are being conducted primarily in the presence of waste package components over a wide range of potential environments

  18. Spent-fuel transportation - a success story

    International Nuclear Information System (INIS)

    Gertz, C.P.; Schoonen, D.H.; Wakeman, B.H.

    1986-01-01

    Spent nuclear fuel research and development (R and D) demonstrations and associated transportation activities are being performed as a part of the storage cask performance testing programs at the Idaho National Engineering Laboratory (INEL). These spent-fuel programs support the Nuclear Waste Policy Act (NWPA) and US Department of Energy (DOE) objectives for cooperative demonstrations with the utilities, testing at federal sites, and alternatives for viable transportation systems. A cooperative demonstration program with the private sector to develop dry storage technologies that the US Nuclear Regulatory Commission (NRC) can generically approve is in place as well as cost-shared dry storage R and D program at a federal facility to collect the necessary licensing data. In addition to the accomplishments in the cask performance and testing demonstrations, the long-distance transportation of a large number of spent-fuel assemblies is considered a success story. The evaluation and implementation of applicable requirements, industry perspective, and extensive planning all contributed to this achievement

  19. Spent Nuclear Fuel Alternative Technology Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Perella, V.F.

    1999-11-29

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment.

  20. Spent Nuclear Fuel Alternative Technology Risk Assessment

    International Nuclear Information System (INIS)

    Perella, V.F.

    1999-01-01

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment

  1. European experience with spent fuel transport

    International Nuclear Information System (INIS)

    Hunter, I.A.

    1995-01-01

    Nuclear Transport Ltd has transported 5000 tonnes of spent fuel from 35 reactors in 8 European countries since 1972. Transport management is governed by the Quality Plan for: transport administration, packaging and shipment procedures at the shipping plant, operations at the power plant, and packaging and shipment organization at the power plant. Selection of a suitable carrier device is made with regard to the shipping plant requirements, physical limitations of the reactor, fuel characteristics, and transport route constraints. The transport plan is set up taking into account exploitation of the casks, reactor shut-down requirements, fuel acceptance plans at the reprocessing plant, and cask maintenance periods. A transport cycle involving spent fuel shipment to La Hague or to Sellafield takes typically two or four weeks, respectively. Most transports through Europe are by rail. A special-design railway ferry boat serves transports to the United Kingdom. Both wet or dry casks are employed. Modern casks are designed for high burnups and for oxide fuels. (J.B.)

  2. Apparatus for lifting spent fuel assembly

    International Nuclear Information System (INIS)

    Hirasawa, Yoshinari; Sato, Isao; Yoneda, Yoshiyuki.

    1976-01-01

    Object: To increase the efficiency of cooling of a used fuel assembly being moved within a guide tube in the axial direction thereof by directly cooling the assembly with cooling gas fed into the guide tube, thus facilitating the handling of the spent fuel assembly. Structure: An end of a lock portion is inserted into the top portion of a spent fuel assembly, the assembly being hooked on the lock portion. The lock portion is provided on its outer periphery with a seal member and a centering member and at its tip with a pawl capable of being projected and retracted in the radial direction. Thus, when the lock portion is moved along the guide tube, the used fuel assembly can be moved along the guide tube by maintaining the concentric relation thereto. Meanwhile, when cooling gas is fed into the guide tube, it is blown into the used fuel assembly to directly cool the same. Thus, the cooling efficiency can be increased. (Moriyama, M.)

  3. Preliminary concepts: safeguards for spent light-water reactor fuels

    International Nuclear Information System (INIS)

    Cobb, D.D.; Dayem, H.A.; Dietz, R.J.

    1979-06-01

    The technology available for safeguarding spent nuclear fuels from light-water power reactors is reviewed, and preliminary concepts for a spent-fuel safeguards system are presented. Essential elements of a spent-fuel safeguards system are infrequent on-site inspections, containment and surveillance systems to assure the integrity of stored fuel between inspections, and nondestructive measurements of the fuel assemblies. Key safeguards research and development activities necessary to implement such a system are identified. These activities include the development of tamper-indicating fuel-assembly identification systems and the design and development of nondestructive spent-fuel measurement systems

  4. Investigation of novel spent fuel verification system for safeguard application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Radioactive waste, especially spent fuel, is generated from the operation of nuclear power plants. The final stage of radioactive waste management is disposal which isolates radioactive waste from the accessible environment and allows it to decay. The safety, security, and safeguard of a spent fuel repository have to be evaluated before its operation. Many researchers have evaluated the safety of a repository. These researchers calculated dose to public after the repository is closed depending on their scenario. Because most spent fuel repositories are non-retrievable, research on security or safeguards of spent fuel repositories have to be performed. Design based security or safeguard have to be developed for future repository designs. This study summarizes the requirements of future spent fuel repositories especially safeguards, and suggests a novel system which meets the safeguard requirements. Applying safeguards to a spent fuel repository is becoming increasingly important. The future requirements for a spent fuel repository are suggested by several expert groups, such as ASTOR in IAEA. The requirements emphasizes surveillance and verification. The surveillance and verification of spent fuel is currently accomplished by using the Cerenkov radiation detector while spent fuel is being stored in a fuel pool. This research investigated an advanced spent fuel verification system using a system which converts spent fuel radiation into electricity. The system generates electricity while it is conveyed from a transportation cask to a disposal cask. The electricity conversion system was verified in a lab scale experiment using an 8.51GBq Cs-137 gamma source.

  5. Fabrication of the Spent Fuel Elements Rack on the ISFSF

    International Nuclear Information System (INIS)

    Slamet Wiranto; Sigit Purwanto; Safrul, H.

    2004-01-01

    The Interim Storage For Spent Fuel elements (ISFSF) was designed to be able to store the 33 spent fuel element racks with capacity of 1386 of normal spent fuel elements and 2 racks for 36 of defected ones. Until now, only 9 out of 33 racks of normal spent fuel elements and lout of 2 racks of defected fuel elements are available. Five of them have suffered from corrosion so that they are not fulfilled the requirements of the spent fuel elements storage anymore. Meanwhile, the spent fuel storage racks in the reactor are almost full. It means, the transfer of the spent fuel from reactor spent fuel storage to the ISFSF pool are compulsory needed. Therefore, it is necessary to provide the new ISFSF spent fuel storage rack with better material and fabrication method than the old one. In this design all materials consist of SS 316 L that are welded with the Argon TIG-welding. Right now there has been one new spent fuel storage rack fabricated with capacity of 42 normal spent fuel elements. (author)

  6. Investigation of novel spent fuel verification system for safeguard application

    International Nuclear Information System (INIS)

    Lee, Haneol; Yim, Man-Sung

    2016-01-01

    Radioactive waste, especially spent fuel, is generated from the operation of nuclear power plants. The final stage of radioactive waste management is disposal which isolates radioactive waste from the accessible environment and allows it to decay. The safety, security, and safeguard of a spent fuel repository have to be evaluated before its operation. Many researchers have evaluated the safety of a repository. These researchers calculated dose to public after the repository is closed depending on their scenario. Because most spent fuel repositories are non-retrievable, research on security or safeguards of spent fuel repositories have to be performed. Design based security or safeguard have to be developed for future repository designs. This study summarizes the requirements of future spent fuel repositories especially safeguards, and suggests a novel system which meets the safeguard requirements. Applying safeguards to a spent fuel repository is becoming increasingly important. The future requirements for a spent fuel repository are suggested by several expert groups, such as ASTOR in IAEA. The requirements emphasizes surveillance and verification. The surveillance and verification of spent fuel is currently accomplished by using the Cerenkov radiation detector while spent fuel is being stored in a fuel pool. This research investigated an advanced spent fuel verification system using a system which converts spent fuel radiation into electricity. The system generates electricity while it is conveyed from a transportation cask to a disposal cask. The electricity conversion system was verified in a lab scale experiment using an 8.51GBq Cs-137 gamma source

  7. Nuclear Fuel Leasing, Recycling and proliferation: Modeling a Global View

    International Nuclear Information System (INIS)

    Crozat, M P; Choi, J; Reis, V H; Hill, R

    2004-01-01

    On February 11, 2004, U.S. President George W. Bush, in a speech to the National Defense University stated: ''The world must create a safe, orderly system to field civilian nuclear plants without adding to the danger of weapons proliferation. The world's leading nuclear exporters should ensure that states have reliable access at reasonable cost to fuel for civilian reactors, so long as those states renounce enrichment and reprocessing. Enrichment and reprocessing are not necessary for nations seeking to harness nuclear energy for peaceful purposes.'' This concept would require nations to choose one of two paths for civilian nuclear development: those that only have reactors and those that contain one or more elements of the nuclear fuel cycle, including recycling. ''Fuel cycle'' states would enrich uranium, manufacture and lease fuel to ''reactor'' states and receive the reactor states' spent fuel. All parties would accede to stringent security and safeguard standards, embedded within a newly invigorated international regime. Reactor states would be relieved of the financial, environmental (and political) burden of enriching and manufacturing fuel and dealing with spent fuel. Fuel cycle states would potentially earn money on leasing the fuel and perhaps on sales of reactors to the reactor states. Such a leasing concept is especially interesting in scenarios which envision growth in nuclear power, and an important consideration for such a nuclear growth regime is the role of recycling of civilian spent fuel. Recycling holds promise for improved management of spent fuel and efficient utilization of resources, but continues to raise the specter of a world with uncontrolled nuclear weapons proliferation. If done effectively, a fuel-leasing concept could help create a political and economic foundation for significant growth of clean, carbon-free nuclear power while providing a mechanism for significant international cooperation to reduce proliferation concern. This

  8. Radionuclide release from research reactor spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Curtius, H., E-mail: h.curtius@fz-juelich.de [Forschungszentrum Juelich, Institut fuer Energieforschung, IEF-6 Sicherheitsforschung und Reaktortechnik, Geb. 05.3, D-52425 Juelich (Germany); Kaiser, G.; Mueller, E.; Bosbach, D. [Forschungszentrum Juelich, Institut fuer Energieforschung, IEF-6 Sicherheitsforschung und Reaktortechnik, Geb. 05.3, D-52425 Juelich (Germany)

    2011-09-01

    Numerous investigations with respect to LWR fuel under non oxidizing repository relevant conditions were performed. The results obtained indicate slow corrosion rates for the UO{sub 2} fuel matrix. Special fuel-types (mostly dispersed fuels, high enriched in {sup 235}U, cladded with aluminium) are used in German research reactors, whereas in German nuclear power plants, UO{sub 2}-fuel (LWR fuel, enrichment in {sup 235}U up to 5%, zircaloy as cladding) is used. Irradiated research reactor fuels contribute less than 1% to the total waste volume. In Germany, the state is responsible for fuel operation and for fuel back-end options. The institute for energy research (IEF-6) at the Research Center Juelich performs investigation with irradiated research reactor spent fuels under repository relevant conditions. In the study, the corrosion of research reactor spent fuel has been investigated in MgCl{sub 2}-rich salt brine and the radionuclide release fractions have been determined. Leaching experiments in brine with two different research reactor fuel-types were performed in a hot cell facility in order to determine the corrosion behaviour and the radionuclide release fractions. The corrosion of two dispersed research reactor fuel-types (UAl{sub x}-Al and U{sub 3}Si{sub 2}-Al) was studied in 400 mL MgCl{sub 2}-rich salt brine in the presence of Fe{sup 2+} under static and initially anoxic conditions. Within these experimental parameters, both fuel types corroded in the experimental time period of 3.5 years completely, and secondary alteration phases were formed. After complete corrosion of the used research reactor fuel samples, the inventories of Cs and Sr were quantitatively detected in solution. Solution concentrations of Am and Eu were lower than the solubility of Am(OH){sub 3}(s) and Eu(OH){sub 3}(s) solid phases respectively, and may be controlled by sorption processes. Pu concentrations may be controlled by Pu(IV) polymer species, but the presence of Pu(V) and Pu

  9. Trends for minimization of radioactive waste arising from spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Polyakov, A.S.; Koltunov, V.S.; Marchenko, V.I.; Ilozhev, A.P.; Mukhin, I.V.

    2000-01-01

    Research and development of technologies for radioactive waste (RAW) minimization arising from spent nuclear fuel reprocessing are discussed. Novel reductants of Pu and Np ions, reagents of purification recycled extractant, possibility of the electrochemical methods are studied. The partitioning of high activity level waste are considered. Examples of microbiological methods decomposition of radioactive waste presented. (authors)

  10. What's the rest of the world doing with its spent nuclear fuel?

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, T. [Stanford Univ. and Lawrence Livermore National Laboratory, Palo Alto, California (United States)], E-mail: Isaacs2@llnl.gov

    2008-07-01

    This paper discusses the storage of spent nuclear fuel by countries around the world. At the present time, all countries are storing it. A small number of countries are reprocessing it for recycling. Essentially all countries are preparing for eventual disposal of end waste form. There is much uncertainty and controversy over what should and will happen.

  11. Status and trends in spent fuel reprocessing

    International Nuclear Information System (INIS)

    2005-09-01

    The management of spent fuel arising from nuclear power production is a crucial issue for the sustainable development of nuclear energy. The IAEA has issued several publications in the past that provide technical information on the global status and trends in spent fuel reprocessing and associated topics, and one reason for this present publication is to provide an update of this information which has mostly focused on the conventional technology applied in the industry. However, the scope of this publication has been significantly expanded in an attempt to make it more comprehensive and by including a section on emerging technologies applicable to future innovative nuclear systems, as are being addressed in such international initiatives as INPRO, Gen IV and MICANET. In an effort to be informative, this publication attempts to provide a state-of-the-art review of these technologies, and to identify major issues associated with reprocessing as an option for spent fuel management. It does not, however, provide any detailed information on some of the related issues such as safety or safeguards, which are addressed in other relevant publications. This report provides an overview of the status of reprocessing technology and its future prospects in terms of various criteria in Section 2. Section 3 provides a review of emerging technologies which have been attracting the interest of Member States, especially in the international initiatives for future development of innovative nuclear systems. A historical review of IAEA activities associated with spent fuel reprocessing, traceable back to the mid-1970s, is provided in Section 4, and conclusions in Section 5. A list of references is provided at the end the main text for readers interested in further information on the related topics. Annex I summarizes the current status of reprocessing facilities around the world, including the civil operational statistics of Purex-based plants, progress with decommissioning and

  12. Disposal of defense spent fuel and HLW from the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Ermold, L.F.; Loo, H.H.; Klingler, R.D.; Herzog, J.D.; Knecht, D.A.

    1992-12-01

    Acid high-level radioactive waste (HLW) resulting from fuel reprocessing at the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy (DOE) has been solidified to a calcine since 1963 and stored in stainless steel bins enclosed by concrete vaults. Several different types of unprocessed irradiated DOE-owned fuels are also in storage ate the ICPP. In April, 1992, DOE announced that spent fuel would no longer be reprocessed to recover enriched uranium and called for a shutdown of the reprocessing facilities at the ICPP. A new Spent Fuel and HLW Technology Development program was subsequently initiated to develop technologies for immobilizing ICPP spent fuels and HLW for disposal, in accordance with the Nuclear Waste Policy Act. The Program elements include Systems Analysis, Graphite Fuel Disposal, Other Spent Fuel Disposal, Sodium-Bearing Liquid Waste Processing, Calcine Immobilization, and Metal Recycle/Waste Minimization. This paper presents an overview of the ICPP radioactive wastes and current spent fuels, with an emphasis on the description of HLW and spent fuels requiring repository disposal

  13. Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-07-01

    Topics covered during the 'Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment' were as follows: Selection of constructions and materials, fuel element development concepts; Fabrication of spherical coated fuel particles and fuel element on their base; investigation of fuel properties; Spent fuel treatment and storage; Head-end processing of HTGR fuel elements; investigation of HTGR fuel regeneration process; applicability of gas-fluorine technology of regeneration of spent HTGR fuel elements.

  14. Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment

    International Nuclear Information System (INIS)

    1985-01-01

    Topics covered during the 'Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment' were as follows: Selection of constructions and materials, fuel element development concepts; Fabrication of spherical coated fuel particles and fuel element on their base; investigation of fuel properties; Spent fuel treatment and storage; Head-end processing of HTGR fuel elements; investigation of HTGR fuel regeneration process; applicability of gas-fluorine technology of regeneration of spent HTGR fuel elements

  15. Economics of spent LWR fuel storage

    International Nuclear Information System (INIS)

    Clark, H.J.

    1980-01-01

    A low cost option for spent fuel inventories would be to ship excess fuel from the overburdened reactor to another reactor in the utility's system that has available space. The only cost would be for cask leasing and shipping. Three other alternatives all require considerable capital expenditures: reracking, new at-reactor (AR) storage facilities, and away-from-reactor (AFR) storage facilities. Fuel storage requirements will be met best by transfer of fuel or by re-racking existing reactor basins whenever these options are available. These alternatives represent not only the lowest cost storage options but also the most timely. Fuel can be shipped to other storage pools for about $10/kg depending on the distance, while costs for reracking range from $18 to 25/kg depending on the approach. These alternatives are recognized to face environmental and regulatory obstacles. However, such obstacles should be less severe than similar issues that would be encountered with AR or AFR basin storage. When storage requirements cannot be met by the first two options, the next least costly alternative for most utilities will be use of a Federal AFR. Storage cost of about $137/kg at an AFR are less costly than charges of up to $350/kg that could be incurred by the use of AR basins. AR basins are practical only when a utility requires storage capacity to accommodate annual additions of 100 MT or more of spent fuel. The large reactor complexes discharging this much feul are not currently those that require relief from fuel storage problems. A recent development in Germany may offer an AR alternative of dry storage in transportation/storage casks at a cost of $200/kg; however, this method has not yet been accepted and licensed for use in the US

  16. Spent fuel management: Current status and prospects 1997. Proceedings of a regular advisory group meeting

    International Nuclear Information System (INIS)

    1998-03-01

    Spent fuel management has always been one of the important stages in the nuclear fuel cycle and it is still most vital problems common to all countries with nuclear reactors. It begins with the discharge of spent fuel from a power or a research reactor and ends with its ultimate disposition. Two options exist - an open, once-through cycle with direct disposal of the spent fuel and a closed cycle with reprocessing of the spent fuel, recycling of reprocessed plutonium and uranium in new mixed oxide fuels and disposal of the radioactive waste. Continuous attention is being given by the IAEA to the collection, analysis and exchange of information on spent fuel management. Its role in this area is to provide a forum for exchanging information and to co-ordinate and to encourage closer co-operation among Member States in certain research and development activities that are of common interest. Spent fuel management is recognized as a high priority IAEA activity. The Regular Advisory Group on Spent Fuel Management was established in 1982. The objective of the Regular Advisory Group is to serve as a means of exchanging information on the current status and progress of national programmes on spent fuel management and to provide advice to the IAEA. The results of the last Regular Advisory Group meeting (9-12 September 1997) are reflected in this report. It gives an overview of the status of spent fuel management programmes in a number of countries, a description of the current status and prospects of activities in this field and recommendations of the participants

  17. A present status for dry storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Park, H. Y.; Seo, K. S

    2003-04-01

    National policy for management of a spent nuclear fuel does not establish in Korea yet. A storage capacity of a storage pool that is to store the spent nuclear fuel will be exceeded an amount of accumulation from the first Woljin nuclear power plant in 2007. Therefore it is necessary that dry storage facility is secured to store safely the spent nuclear fuel on site of the nuclear power plant until national policy for a back-end spent nuclear fuel cycle is established. In order to store safely spent nuclear fuel, it is important that the present status and technology on dry storage of spent nuclear fuel is looked over. Therefore, the present status on dry storage of spent nuclear fuel was analyzed so as to develop dry storage system and choose a proper dry storage method domestic.

  18. Main attributes influencing spent nuclear fuel management

    International Nuclear Information System (INIS)

    Andreescu, N.; Ohai, D.

    1997-01-01

    All activities regarding nuclear fuel, following its discharge from the NPP, constitute the spent fuel management and are grouped in two possible back end variants, namely reprocessing (including HLW vitrification and geological disposal) and direct disposal of spent fuel. In order to select the appropriate variant it is necessary to analyse the aggregate fulfillment of the imposed requirements, particularly of the derived attributes, defined as distinguishing characteristics of the factors used in the decision making process. The main identified attributes are the following: - environmental impact, - availability of suitable sites, - non-proliferation degree, -strategy of energy, - technological complexity and technical maturity, -possible further technical improvements, - size of nuclear programme, - total costs, - public acceptance, - peculiarity of CANDU fuel. The significance of the attributes in the Romanian case, taking into consideration the present situation, as a low scenario and a high scenario corresponding to an important development of the nuclear power, after the year 2010, is presented. According to their importance the ranking of attributes is proposed . Subsequently, the ranking could be used for adequate weighing of attributes in order to realize a multi-criteria analysis and a relevant comparison of back end variants. (authors)

  19. Spent fuel pool cleanup and stabilization

    International Nuclear Information System (INIS)

    Miller, R.L.

    1987-06-01

    Each of the plutonium production reactors at Hanford had a large water-filled spent fuel pool to provide interim storage of irradiated fuel while awaiting shipment to the separation facilities. After cessation of reactor operations the fuel was removed from the pools and the water levels were drawn down to a 5- to 10-foot depth. The pools were maintained with the water to provide shielding and radiological control. What appeared to be a straightforward project to process the water, remove the sediments from the basin, and stabilize the contamination on the floors and walls became a very complex and time consuming operation. The sediment characteristics varied from pool to pool, the ion exchange system required modification, areas of hard-pack sediments were discovered on the floors, special arrangements to handle and package high dose rate items for shipment were required, and contract problems ensued with the subcontractor. The original schedule to complete the project from preliminary engineering to final stabilization of the pools was 15 months. The actual time required was about 25 months. The original cost estimate to perform the work was $2,651,000. The actual cost of the project was $5,120,000, which included $150,000 for payment of claims to the subcontractor. This paper summarizes the experiences associated with the cleanup and radiological stabilization of the 100-B, -C, -D, and -DR spent fuel pools, and discusses a number of lessons learned items

  20. Potential information requirements for spent nuclear fuel

    International Nuclear Information System (INIS)

    Disbrow, J.A.

    1991-01-01

    This paper reports that the Energy Information Administration (EIA) has performed analyses of the requirements for data and information for the management of commercial spent nuclear fuel (SNF) designated for disposal under the Nuclear Waste Policy Act (NWPA). Subsequently, the EIA collected data on the amounts and characteristics of SNF stored at commercial nuclear facilities. Most recently, the EIA performed an analysis of the international and domestic laws and regulations which have been established to ensure the safeguarding, accountability, and safe management of special nuclear materials (SNM). The SNM of interest are those designated for permanent disposal by the NWPA. This analysis was performed to determine what data and information may be needed to fulfill the specific accountability responsibilities of the Department of Energy (DOE) related to SNF handling, transportation, storage and disposal; to work toward achieving a consistency between nuclear fuel assembly identifiers and material weights as reported by the various responsible parties; and to assist in the revision of the Nuclear Fuel Data Form RW-859 used to obtain spent nuclear fuel characteristics data from the nuclear utilities

  1. Spent Nuclear Fuel Project operational staffing plan

    International Nuclear Information System (INIS)

    Debban, B.L.

    1996-03-01

    Using the Spent Nuclear Fuel (SNF) Project's current process flow concepts and knowledge from cognizant engineering and operational personnel, an initial assessment of the SNF Project radiological exposure and resource requirements was completed. A small project team completed a step by step analysis of fuel movement in the K Basins to the new interim storage location, the Canister Storage Building (CSB). This analysis looked at fuel retrieval, conditioning of the fuel, and transportation of the fuel. This plan describes the staffing structure for fuel processing, fuel movement, and the maintenance and operation (M ampersand O) staffing requirements of the facilities. This initial draft does not identify the support function resources required for M ampersand O, i.e., administrative and engineering (technical support). These will be included in future revisions to the plan. This plan looks at the resource requirements for the SNF subprojects, specifically, the operations of the facilities, balances resources where applicable, rotates crews where applicable, and attempts to use individuals in multi-task assignments. This plan does not apply to the construction phase of planned projects that affect staffing levels of K Basins

  2. Preliminary Calculation on a Spent Fuel Pool Accident using GOTHIC

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaehwan; Choi, Yu Jung; Hong, Tae Hyub; Kim, Hyeong-Taek [KHNP-CRI, Daejeon (Korea, Republic of)

    2015-10-15

    The probability of an accident happening at the spent fuel pool was believed to be quite low until the 2011 Fukushima accident occurred. Notably, large amount of spent fuel are normally stored in the spent fuel pool for a long time compared to the amount of fuel in the reactor core and the total heat released from the spent fuel is high enough to boil the water of the spent fuel pool when the cooling system does not operate. In addition, the enrichment and the burnup of the fuel have both increased in the past decade and heat generation from the spent fuel thereby has also increased. The failure of the cooling system at the spent fuel pool (hereafter, a loss-of-cooling accident) is one of the principal hypothetical causes of an accident that could occur at the spent fuel pool. In this paper, the preliminary calculation of a loss-of-cooling accident was performed. In this paper, the preliminary calculation of a loss-of cooling accident was performed with GOTHIC. The calculation results show boiling away of water in the spent fuel pool due to the loss-of-cooling accident and similar thermal performance of the spent fuel pool with previous research results.

  3. Advanced waste forms from spent nuclear fuel

    International Nuclear Information System (INIS)

    Ackerman, J.P.; McPheeters, C.C.

    1995-01-01

    More than one hundred spent nuclear fuel types, having an aggregate mass of more than 5000 metric tons (2700 metric tons of heavy metal), are stored by the United States Department of Energy. This paper proposes a method for converting this wide variety of fuel types into two waste forms for geologic disposal. The method is based on a molten salt electrorefining technique that was developed for conditioning the sodium-bonded, metallic fuel from the Experimental Breeder Reactor-II (EBR-II) for geologic disposal. The electrorefining method produces two stable, optionally actinide-free, high-level waste forms: an alloy formed from stainless steel, zirconium, and noble metal fission products, and a ceramic waste form containing the reactive metal fission products. Electrorefining and its accompanying head-end process are briefly described, and methods for isolating fission products and fabricating waste forms are discussed

  4. Status of research reactor spent fuel world-wide

    International Nuclear Information System (INIS)

    Ritchie, I.G.

    2004-01-01

    Results compiled in the research reactor spent fuel database are used to assess the status of research reactor spent fuel world-wide. Fuel assemblies, their types, enrichment, origin of enrichment and geological distribution among the industrialised and developed countries of the world are discussed. Fuel management practices in wet and dry storage facilities and the concerns of reactor operators about long-term storage of their spent fuel are presented and some of the activities carried out by the International Atomic Energy Agency to address the issues associated with research reactor spent fuel are outlined. (author)

  5. A study on the safety of spent fuel management. A scenario study on spent fuel management

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Kwan Sik; Park, Hyun Soo; Ahn, Jin Soo; Hwang, Joo Ho; Choi, Jong Won; Kim, Yeon Soo; Park, Ju Hwan; Chung, Choong Hwan [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of)

    1992-03-01

    In order to produce data applicable for the long-term policy making of spent fuel management and to suggest a basic scenario suitable to domestic situation, the pre-conceptual design of reference disposal facilities for the spent fuel and the vitrified high level radioactive waste from its reprocessing, has been performed. From the results of the pre-conceptual study, further research and development areas to accumulate the disposal technology are suggested. In addition, the physico-chemical properties and functional characteristics of domestic bentonite are analyzed to assess its applicability as a buffer material which would play a major role for the safe disposal of highly active waste including spent fuels. (Author).

  6. Nondestructive verification and assay systems for spent fuels

    International Nuclear Information System (INIS)

    Cobb, D.D.; Phillips, J.R.; Bosler, G.E.; Eccleston, G.W.; Halbig, J.K.; Hatcher, C.R.; Hsue, S.T.

    1982-04-01

    This is an interim report of a study concerning the potential application of nondestructive measurements on irradiated light-water-reactor (LWR) fuels at spent-fuel storage facilities. It describes nondestructive measurement techniques and instruments that can provide useful data for more effective in-plant nuclear materials management, better safeguards and criticality safety, and more efficient storage of spent LWR fuel. In particular, several nondestructive measurement devices are already available so that utilities can implement new fuel-management and storage technologies for better use of existing spent-fuel storage capacity. The design of an engineered prototype in-plant spent-fuel measurement system is approx. 80% complete. This system would support improved spent-fuel storage and also efficient fissile recovery if spent-fuel reprocessing becomes a reality

  7. A drying system for spent fuel assemblies

    International Nuclear Information System (INIS)

    Suikki, M.; Warinowski, M.; Nieminen, J.

    2007-06-01

    The report presents a proposed drying apparatus for spent fuel assemblies. The apparatus is used for removing the moisture left in fuel assemblies during intermediate storage and transport. The apparatus shall be installed in connection with the fuel handling cell of an encapsulation plant. The report presents basic requirements for and implementation of the drying system, calculation of the drying process, operation, service and maintenance of the equipment, as well as a cost estimate. Some aspects of the apparatus design are quite specified, but the actual detailed planning and final selection of components have not been included. The report also describes actions for possible malfunction and fault conditions. An objective of the drying system for fuel assemblies is to remove moisture from the assemblies prior to placing the same in a disposal canister for spent nuclear fuel. Drying is performed as a vacuum drying process for vaporizing and draining the moisture present on the surface of the assemblies. The apparatus comprises two pieces of drying equipment. One of the chambers is equipped to take up Lo1-2 fuel assemblies and the other OL1-2 fuel assemblies. The chambers have an internal space sufficient to accommodate also OL3 fuel assemblies, but this requires replacing the internal chamber structure for laying down the assemblies to be dried. The drying chambers can be closed with hatches facing the fuel handling cell. Water vapour pumped out of the chamber is collected in a controlled manner, first by condensing with a heat exchanger and further by freezing in a cold trap. For reasons of safety, the exhaust air of vacuum pumps is further delivered into the ventilation outlet duct of a controlled area. The adequate drying result is ascertained by a low final pressure of about 100 Pa, as well as by a sufficient holding time. The chamber is built for making its cleaning as easy as possible in the event of a fuel rod breaking during a drying, loading or unloading

  8. Hanford spent nuclear fuel project update

    Energy Technology Data Exchange (ETDEWEB)

    Williams, N.H.

    1997-08-19

    Twenty one hundred metric tons of spent nuclear fuel (SNF) are currently stored in the Hanford Site K Basins near the Columbia River. The deteriorating conditions of the fuel and the basins provide engineering and management challenges to assure safe current and future storage. DE and S Hanford, Inc., part of the Fluor Daniel Hanford, Inc. lead team on the Project Hanford Management Contract, is constructing facilities and systems to move the fuel from current pool storage to a dry interim storage facility away from the Columbia River, and to treat and dispose of K Basins sludge, debris and water. The process starts in K Basins where fuel elements will be removed from existing canisters, washed, and separated from sludge and scrap fuel pieces. Fuel elements will be placed in baskets and loaded into Multi-Canister Overpacks (MCOs) and into transportation casks. The MCO and cask will be transported to the Cold Vacuum Drying Facility, where free water within the MCO will be removed under vacuum at slightly elevated temperatures. The MCOs will be sealed and transported via the transport cask to the Canister Storage Building.

  9. Calibration of spent fuel measurement assembly

    International Nuclear Information System (INIS)

    Koleska, Michal; Viererbl, Ladislav; Marek, Milan

    2014-01-01

    The LVR-15 research reactor (Czech Republic) had been converted from the highly enriched IRT-2M to the low enriched IRT-4M fuel. For the possibility of the independent pre-transport evaluation of IRT-2M burnup, a spectrometric system was developed. This spectrometric system consists of the fuel holder, the collimator and the portable Canberra Big MAC HPGe (High Purity Germanium) detector. In order to have well reproducible and reliable experimental data for modeling of the measurement system, calibration with the 110m Ag isotope with known activity was performed. This isotope was chosen for having energies similar to isotopes measured in fuel assemblies. The 110m Ag isotope was prepared by irradiating of the silver foil in LVR-15 research reactor; its activity was evaluated in the LVR-15's spectrometric laboratory. From the measured data, an efficiency curve of the spectrometric system has been determined. The experimental data were compared to the calculation results with the MCNPX model of the spectrometric system. - Highlights: • Calibration of research reactor spent fuel measurement assembly. • On-site prepared 110m Ag isotope used for the measurement. • Calculated self-shielding factor for the IRT-2M fuel. • Applicable to other research reactor fuel geometries

  10. Spent fuel storage options: a critical appraisal

    International Nuclear Information System (INIS)

    Singh, K.P.; Bale, M.G.

    1990-01-01

    The delayed decisions on nuclear fuel reprocessing strategies in the USA and other countries have forced the development of new long-term irradiated fuel storage techniques, to allow a larger volume of fuel to be held on the nuclear station site after removal from the reactor. The nuclear power industry has responded to the challenge by developing several viable options for long-term onsite storage, which can be employed individually or in tandem. They are: densification of storage in the existing spent fuel pool; building another fuel pool facility at the plant site; onsite cask park, and on site vault clusters. Desirable attributes of a storage option are: Safety: minimise the number of fuel handling steps; Economy: minimise total installed, and O and M cost; Security: protection from anti-nuclear protesters; Site adaptability: available site space, earthquake characteristics of the region and so on; Non-intrusiveness: minimise required modifications to existing plant systems; Modularisation: afford the option to adapt a modular approach for staged capital outlays; and Maturity: extent of industry experience with the technology. A critical appraisal is made of each of the four aforementioned storage options in the light of these criteria. (2 figures, 1 table, 4 references) (Author)

  11. The risks of the Taiwan research reactor spent fuel project

    International Nuclear Information System (INIS)

    1991-06-01

    The proposed action is to transport up to 118 spent fuel rods, to include canned spent fuel rod particulates immobilized on filters, from a research reactor in Taiwan by sea to Hampton Roads, Virginia, and then overland by truck to the Receiving Basin for Offsite Fuels at the Savannah River Site (SRS). At SRS, the spent fuel will be reprocessed to recover uranium and plutonium. 55 refs., 8 tabs

  12. Expansion of capacity of spent fuel pools and associated problems

    International Nuclear Information System (INIS)

    Francisco, J.L. De; Lopez-Cotarelo, J.; Ramos, J.M.

    1978-01-01

    Expanding the spent fuel storage pool capacity is a good solution for utilities facing the current shortage in fuel reprocessing capacity. The problems more likely to be found when expanding a spent fuel storage facility by using high density storage racks are reviewed. Basically three types of problems arise: 1) Problems related with the characteristics of the new facility. 2) Problems related with the works of expansion. 3) Problems related with the long term storage of large quantities of spent fuel. (author)

  13. Techniques for laser processing, assay, and examination of spent fuel

    International Nuclear Information System (INIS)

    Gray, J.H.; Mitchell, R.C.; Rogell, M.L.

    1981-11-01

    Fuel examination studies were performed which have application to interim spent fuel storage. These studies were in three areas, i.e., laser drilling and rewelding demonstration, nondestructive assay techniques survey, and fuel examination techniques survey

  14. Management and disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    1987-05-01

    The National Board for Spent Nuclear Fuel, in submitting its statement of comment to the Government on the Swedish Nuclear Fuel and Waste Management Company's (Svensk Kaernbraenslehantering AB, SKB) research programme, R and D Programme 86, has also put forward recommendations on the decision-making procedure and on the question of public information during the site selection process. In summary the Board proposes: * that the Government instruct the National Board for Spent Nuclear Fuel to issue certain directives concerning additions to and changes in R and D Programme 86, * that the Board's views on the decision-making procedure in the site selection process be taken into account in the Government's review of the so-called municipal veto in accordance with Chapter 4, Section 3 of the Act (1987:12) on the conservation of natural resources etc., NRL, * that the Board's views on the decision-making procedure and information questions during the site selection process serve as a basis for the continued work. Three appendices are added to the report: 1. Swedish review statements (SV), 2. International Reviews, 3. Report from the site selection group (SV)

  15. Burnup degree measuring device for spent fuel

    International Nuclear Information System (INIS)

    Doi, Hideo; Imaizumi, Hideki; Endo, Yasumi; Itahara, Kuniyuki.

    1994-01-01

    The present invention provides a small-sized and convenient device for measuring a burnup degree of spent fuels, which can be installed without remodelling an existent fuel storage pool. Namely, a gamma-ray detecting portion incorporates a Cd-Te detector for measuring intensity ratio of gamma-rays. A neutron detecting portion incorporates a fission counter tube. The Cd-Te detector comprises a neutron shielding member for reducing radiation damages and a background controlling plate for reducing low energy gamma-rays entering from a collimator. Since the Cd-Td detector for use in a gamma-ray spectroscopy can be used at a normal temperature and can measure even a relatively strong radiation field, it can measure the intensity of gamma-rays from Cs-137 and Cs-134 in spent fuels accurately at a resolving power of less than 10 keV. Further, in a case where a cooling period is less than one year, gamma-rays from Rh-106 and Nb-95 can also be measured. (I.S.)

  16. Systems impacts of spent fuel disassembly alternatives

    International Nuclear Information System (INIS)

    1984-07-01

    Three studies were completed to evaluate four alternatives to the disposal of intact spent fuel assemblies in a geologic repository. A preferred spent fuel waste form for disposal was recommended on consideration of (1) package design and fuel/package interaction, (2) long-term, in-repository performance of the waste form, and (3) overall process performance and costs for packaging, handling, and emplacement. The four basic alternative waste forms considered were (1) end fitting removal, (2) fission gas venting, (3) disassembly and close packing, and (4) shearing/immobilization. None of the findings ruled out any alternative on the basis of waste package considerations or long-term performance of the waste form. The third alternative offers flexibility in loading that may prove attractive in the various geologic media under consideration, greatly reduces the number of packages, and has the lowest unit cost. These studies were completed in October, 1981. Since then Westinghouse Electric Corporation and the Office of Nuclear Waste Isolation have completed studies in related fields. This report is now being published to provide publicly the background material that is contained within. 47 references, 28 figures, 31 tables

  17. A Preliminary Study on the Reuse of the Recovered Uranium from the Spent CANDU Fuel Using Pyroprocessing

    International Nuclear Information System (INIS)

    Park, C. J.; Na, S. H.; Yang, J. H.; Kang, K. H.; Lee, J. W.

    2009-01-01

    During the pyroprocessing, most of the uranium is gathered in metallic form around a solid cathode during an electro-refining process, which is composed of about 94 weight percent of the spent fuel. In the previous study, a feasibility study has been done to reuse the recovered uranium for the CANDU reactor fuel following the traditional DUPIC (direct use of spent pressurized water reactor fuel into CANDU reactor) fuel fabrication process. However, the weight percent of U-235 in the recovered uranium is about 1 wt% and it is sufficiently re-utilized in a heavy water reactor which uses a natural uranium fuel. The reuse of recovered uranium will bring not only a huge economic profit and saving of uranium resources but also an alleviation of the burden on the management and the disposal of the spent fuel. The research on recycling of recovered uranium was carried out 10 years ago and most of the recovered uranium was assumed to be imported from abroad at that time. The preliminary results showed there is the sufficient possibility to recycle recovered uranium in terms of a reactor's characteristics as well as the fuel performance. However, the spent CANDU fuel is another issue in the storage and disposal problem. At present, most countries are considering that the spent CANDU fuel is disposed directly due to the low enrichment (∼0.5 wt%) of the discharge fissile content and lots of fission products. If mixing the spent CANDU fuel and the spent PWR fuel, the estimated uranium fissile enrichment will be about 0.6 wt% ∼ 1.0 wt% depending on the mixing ratio, which is sufficiently reusable in a CANDU reactor. Therefore, this paper deals with a feasibility study on the recovered uranium of the mixed spent fuel from the pyroprocessing. With the various mixing ratios between the PWR spent fuel and the CANDU spent fuel, a reactor characteristics including the safety parameters of the CANDU reactor was evaluated

  18. Trunnions for spent fuel element shipping casks

    International Nuclear Information System (INIS)

    Cooke, B.

    1989-01-01

    Trunnions are used on spent fuel element shipping casks for one or more of a combination of lifting, tilting or securing to a transport vehicle. Within the nuclear transportation industry there are many different philosophies on trunnions, concerning the shape, manufacture, attachment, inspection, maintenance and repair. With the volume of international transport of spent fuel now taking place, it is recognized that problems are occurring with casks in international traffic due to the variance of the philosophies, national standards, and the lack of an international standard. It was agreed through the ISO that an international standard was required to harmonize. It was not possible to evolve an international standard. It was only possible to evolve an international guide. To evolve a standard would mean superseding any existing national standards which already cover particular aspects of trunnions i.e. deceleration forces imposed on trunnions used as tie down features. Therefore the document is a guide only and allows existing national standards to take precedence where they exist. The guide covers design, manufacture, maintenance, repair and quality assurance. The guide covers trunnions used on spent fuel casks transported by road, rail and sea. The guide details the considerations which should be taken account of by cask designers, i.e. stress intensity, design features, inspection and test methods etc. Manufacture, attachment and pre-service testing is also covered. The guide details user requirements which should also be taken account of, i.e. servicing frequency, content, maintenance and repair. The application of quality assurance is described separately although the principles are used throughout the guide

  19. Multinational approaches relevant to spent fuel management

    International Nuclear Information System (INIS)

    Pellaud, B.

    2007-01-01

    The storage of spent fuel is a suitable candidate for a multilateral approach, primarily at the regional level. Small countries with only a few nuclear power plants would benefit economically from large joint facilities. The storage of special nuclear materials in a few safe and secure facilities would also enhance safeguards and physical protection. However, the final disposal of spent fuel and high level radioactive waste is the best candidate for a multilateral approach. It would offer major economic benefits and substantial non-proliferation benefits in spite of the legal, political and public acceptance challenges to be expected in most countries. The transfer of nuclear waste from the exporting country to the host country of an interim storage facility or of a final repository would be done under bilateral or multilateral agreements at the commercial and governmental levels, in accordance with the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Bilateral or international oversight of joint facilities should be arranged, as needed, to achieve the confidence of the partners as to the safety and physical security of the proposed facility. Such monitoring should cover the adequacy of the technical design, its safety features, its environmental impact, the physical security of nuclear materials and possibly the financial management of the joint venture. After the initial choice of bilateral arrangements, some kind of international monitoring may become appropriate. Various organizations could fulfil such a function, in particular, the IAEA. Such monitoring would have nothing to do with nuclear safeguards; repository monitoring would be a parallel but independent activity of the IAEA. (author)

  20. Some factors to consider in handling and storing spent fuel

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1985-11-01

    This report includes information from various studies performed under the Wet Storage Task of the Behavior of Spent Fuel in Storage Project of the Commercial Spent Fuel Management (CSFM) Program at Pacific Northwest Laboratory. Wet storage experience has been summarized earlier in several other reports. This report summarizes pertinent items noted during FY 1985 concerning recent developments in the handling and storage of spent fuel and associated considerations. The subjects discussed include recent publications, findings, and developments associated with: (1) storage of water reactor spent fuel in water pools, (2) extended-burnup fuel, (3) fuel assembly reconstitution and reinsertion, (4) rod consolidation, (5) variations in the US Nuclear Regulatory Commission's definition of failed fuel, (6) detection of failed fuel rods, and (7) extended integrity of spent fuel. A list of pertinent publications is included

  1. The spent fuel disposal program in Taiwan

    International Nuclear Information System (INIS)

    Li, K.K.

    1994-01-01

    It is important, especially for countries with plan to develop nuclear power, to recognize that two key factors to the future prosperity of nuclear power are the safety of nuclear power plants and the appropriate management of backend activities. This paper described the financial, managerial, technical, and political status of the spent fuel disposal program in a newly industrialized country. It is concluded that the R ampersand D works and operational practices associated with the backend activities must be carried out in parallel with the development of nuclear power

  2. Recovery of decommissioning and spent fuel charges

    International Nuclear Information System (INIS)

    Bermanis, G.

    1982-01-01

    The licensing and financial aspects of NPP decommissioning, deactivation and dismantling of radioactive equipment in the USA are considered. Data on the costs of spent fuel transport and conservation are given. The state of the problem development in other countries is briefly described. It is pointed out that the technical aspect of the problem is much better studied than that of license-financial problem. At the same time in contrast to TPP NPP use is connected with considerable expenses after the end of a power plant sevice time

  3. Safeguards instrument to monitor spent reactor fuel

    International Nuclear Information System (INIS)

    Nicholson, N.; Dowdy, E.J.; Holt, D.M.; Stump, C.

    1981-01-01

    A hand-held instrument for monitoring irradiated nuclear fuel inventories located in water-filled storage ponds has been developed. This instrument provides sufficient precise qualitative and quantitative information to be useful as a confirmatory technique to International Atomic Energy Agency inspectors, and is believed to be of potential use to nuclear fuel managers and to operators of spent-fuel storage facilities, both at reactor and away-from-reactor, and to operators of nuclear fuel reprocessing plants. Because the Cerenkov radiation glow can barely be seen by the unaided eye under darkened conditions, a night vision device is incorporated to aid the operator in locating the fuel assembly to be measured. Beam splitting optics placed in front of the image intensifier and a preset aperture select a predetermined portion of the observed scene for measurement of the light intensity using a photomultiplier (PM) tube and digital readout. The PM tube gain is adjusted by use of an internal optical reference source, providing long term repeatability and instrument-to-instrument cnsistency. Interchangeable lenses accommodate various viewing and measuring conditions

  4. Transportation capabilities study of DOE-owned spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.L.; Johnson, R.A.; Smith, R.W. [Packaging Technology, Inc., Tacoma, WA (United States); Abbott, D.G.; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1994-10-01

    This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

  5. Radiation Templates of Spent Fuel in Casks

    Energy Technology Data Exchange (ETDEWEB)

    Vanier, Peter

    2018-05-07

    BNL and INL propose to perform a scoping study, using heavily collimated gamma and fast neutron detectors, to obtain passive radiation templates of dry storage casks containing spent fuel. The goal is to demonstrate sufficient spatial resolution and sensitivity to detect a missing fuel assembly. Such measurements, combined with detailed modeling and decay corrections should provide confidence that the cask contents have not been altered, despite loss of continuity of knowledge (CoK). The concept relies on the leakage of high energy gammas and neutrons through the shielding of the casks. Tests will emphasize organic scintillators with pulse shape discrimination, but baseline comparisons will be made to high purity germanium (HPGe) and collimated moderated 3He detectors deployed in the same locations. Commercial off-the-shelf (COTS) detectors and data acquisition electronics will be used with custom-built collimators and shielding.

  6. Potential Interface Issues in Spent Fuel Management

    International Nuclear Information System (INIS)

    2015-10-01

    This publication is an output of a series of meetings to identify and evaluate issues and opportunities associated with interfaces in the back end of the fuel cycle (BEFC) and to describe effective management approaches based on the experience of Member States. During the meetings, participants from Member States and other international organizations shared and evaluated the main interfaces and potential interface issues among the spent fuel storage, transport, reprocessing and disposal of the BEFC, and also reviewed the national approaches to addressing these issues. The aim of this publication is to provide an approach to identify the interfaces in the BEFC as well as the potential issues that should be addressed. It also aims at responding to the solutions Member States most often find to be effective and, in some cases, were adjusted or revisited to reach the fixed target. Most of the interfaces and issues are country specific, as evidenced by the variety and diversity of examples provided in this publication

  7. Method of reprocessing spent nuclear fuels

    International Nuclear Information System (INIS)

    Kamiyama, Hiroaki; Inoue, Tadashi; Miyashiro, Hajime.

    1987-01-01

    Purpose: To facilitate the storage management for the wastes resulting from reprocessing by chemically separating transuranium elements such as actionoid elements together with uranium and plutonium. Method: Spent fuels from a nuclear reactor are separated into two groups, that is, a mixture of uranium, plutonium and transuranium elements and cesium, strontium and other nuclear fission products. Virgin uranium is mixed to adjust the mixture of uranium, plutonium and transuranium elements in the first group, which is used as the fuels for the nuclear reactor. After separating to recover useful metals such as cesium and strontium are separated from short half-decay nuclear fission products of the second group, other nuclear fission products are stored and managed. This enables to shorten the storage period and safety storage and management for the wastes. (Takahashi, M.)

  8. Spent fuel management: reprocessing or storage

    International Nuclear Information System (INIS)

    Lima Soares, M.L. de; Oliveira Lopes, M.J. de

    1986-01-01

    A review of the spent fuel management concepts generally adopted in several countries is presented, including an analysis of the brazilian situation. The alternatives are the reprocessing, the interim storage and the final disposal in a repository after appropriate conditioning. The commercial operating reprocessing facilities in the Western World are located in France and in the United Kingdom. In the USA the anti-reprocessing policy from 1977 changed in 1981, when the government supported the resumption of commercial reprocessing and designated the private sector as responsible for providing these services. Small scale facilities are operating in India, Italy, Japan and West Germany. Pilot plants for LWR fuel are being planned by Spain, Pakistan and Argentina. (Author) [pt

  9. Spent fuel management: reprocessing or storage

    International Nuclear Information System (INIS)

    Lima Soares, M.L. de; Oliveira Lopes, M.J. de.

    1986-01-01

    A review of the spent fuel management concepts generally adopted in several countries is presented, including an analysis of the brazilian situation. The alternatives are the reprocessing, the interim storage and the final disposal in a repository after appropriate conditioning. The commercial operating reprocessing facilities in the Western World are located in France and in the United Kingdom. In the USA the anti-reprocessing policy from 1977 changed in 1981, when the Government supported the resumption of commercial reprocessing and designated the private sector as responsible for providing these services. Small scale facilities are operating in India, Italy, Japan and West Germany. Pilot plant for LWR fuel are being planned by Spain, Pakistan and Argentina. (Author) [pt

  10. Preliminary plan for decommissioning - repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Hallberg, Bengt; Tiberg, Liselotte

    2010-06-01

    The final disposal facility for spent nuclear fuel is part of the KBS-3 system, which also consists of a central facility for interim storage and encapsulation of the spent nuclear fuel and a transport system. The nuclear fuel repository will be a nuclear facility. Regulation SSMFS 2008:1 (Swedish Radiation Safety Authority's regulations on safety of nuclear facilities) requires that the licensee must have a current decommissioning plan throughout the facility lifecycle. Before the facility is constructed, a preliminary decommissioning plan should be reported to the Swedish Radiation Safety Authority. This document is a preliminary decommissioning plan, and submitted as an attachment to SKB's application for a license under the Nuclear Activities Act to construct, own and operate the facility. The final disposal facility for spent nuclear fuel consists of an above ground part and a below ground part and will be built near Forsmark and the final repository for radioactive operational waste, SFR. The parts above and below ground are connected by a ramp and several shafts, e.g. for ventilation. The below ground part consists of a central area, and several landfill sites. The latter form the repository area. The sealed below ground part constitutes the final repository. The decommissioning is taking place after the main operation has ended, that is, when all spent nuclear fuel has been deposited and the deposition tunnels have been backfilled and plugged. The decommissioning involves sealing of the remaining parts of the below ground part and demolition of above ground part. When decommissioning begins, there will be no contamination in the facility. The demolition is therefore performed as for a conventional plant. Demolition waste is sorted and recycled whenever possible or placed in landfill. Hazardous waste is managed in accordance with current regulations. A ground investigation is performed and is the basis for after-treatment of the site. The timetable for the

  11. Development of Spent Fuel Examination Technology

    International Nuclear Information System (INIS)

    Kim, Ho Dong; Park, K. J.; Shin, H. S.

    2007-04-01

    For the official operation of ACPF Facility Attachment based on facility declared DIQ was issued by IAEA and officialized upon ROK government approval. This procedure gives an essential ground to negotiate Joint Determination between governments of ROK and US. For ACPF process material accountability a neutron coincidence counting system was developed and calibrated with Cf-252 source. Its performance test demonstrated that over-all counting efficiency was about 21% with random error, 1.5% against calibration source, which found to be satisfactory to the expected design specification. A calibration curve derived by MCNP code with relationship between ASNC doublet counts vs. neutron activity of Cm-244 showed calibration constant to be 2.78x10E5 counts/s.g which would be used for initial ACP hot operation test. Nuclear material transportation and temporary storage system was established for active demonstration of advanced spent fuel management process line and would be directly applied to the effective management of wastes arising from active demonstration and would later contribute as a base data to development of inter hot-cell movement system in pyro-processing line. In addition, an optimal spent fuel for the ACP demonstration was selected and a computer code was developed as a tool to estimate the expected source term at each key measurement point of ACP

  12. Spent nuclear fuel assembly storage vessel

    International Nuclear Information System (INIS)

    Yagishita, Takuya

    1998-01-01

    The vessel of the present invention promotes an effect of removing after heat of spent nuclear fuel assemblies so as not to give force to the storage vessel caused by expansion of heat removing partitioning plates. Namely, the vessel of the present invention comprises a cylinder body having closed upper and lower portions and a plurality of heat removing partitioning cylinders disposed each at a predetermined interval in the circumferential direction of the above-mentioned cylinder body. The heat removing partitioning cylinders comprises (1) first heat removing partitioning plates extended in the radial direction of the cylinder body and opposed at a predetermined gap in the circumferential direction of the cylinder body, and having the base ends on the side of the inner wall of the cylinder body being secured to the inner wall of the cylinder body and (2) a second heat removing plate for connecting the top ends of both opposed heat removing partitioning plates on the central side of the cylinder body with each other. Spent nuclear fuel assemblies are contained in a plurality of closed spaces surrounded by the first heat removing partitioning plates and the second heat removing partitioning plate. With such constitution, since after heat is partially transferred from the heat removing partitioning plates to the cylindrical body directly by heat conduction, the heat removing effect can be promoted compared with the prior art. (I.S.)

  13. Spent fuel shipping cask development status

    International Nuclear Information System (INIS)

    Henry, K.H.; Lattin, W.C.

    1989-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) authorized the US Department of Energy (DOE) to establish a national system for the disposal of spent nuclear fuel and high-level radioactive waste from commercial power generation, and established the Office of Civilian Radioactive Waste Management (OCRWM) within the DOE-Headquarters (DOE-HQ) to carry out these duties. A 1985 presidential decision added the disposal of high-level radioactive waste generated by defense programs to the national disposal system. A primary element of the disposal program is the development and operation of a transportation system to move the waste from its present locations to the facilities that will be included in the waste management system. The primary type of disposal facility to be established is a geologic repository; a Monitored Retrievable Storage (MRS) facility may also be included as an intermediate step in the nuclear waste disposal process. This paper focuses on the progress and status of one facet of the transportation program--the development of a family of shipping casks for transporting spent fuel from nuclear power reactor sites to the repository of MRS facility

  14. Development of Spent Fuel Examination Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Dong; Park, K. J.; Shin, H. S. (and others)

    2007-04-15

    For the official operation of ACPF Facility Attachment based on facility declared DIQ was issued by IAEA and officialized upon ROK government approval. This procedure gives an essential ground to negotiate Joint Determination between governments of ROK and US. For ACPF process material accountability a neutron coincidence counting system was developed and calibrated with Cf-252 source. Its performance test demonstrated that over-all counting efficiency was about 21% with random error, 1.5% against calibration source, which found to be satisfactory to the expected design specification. A calibration curve derived by MCNP code with relationship between ASNC doublet counts vs. neutron activity of Cm-244 showed calibration constant to be 2.78x10E5 counts/s.g which would be used for initial ACP hot operation test. Nuclear material transportation and temporary storage system was established for active demonstration of advanced spent fuel management process line and would be directly applied to the effective management of wastes arising from active demonstration and would later contribute as a base data to development of inter hot-cell movement system in pyro-processing line. In addition, an optimal spent fuel for the ACP demonstration was selected and a computer code was developed as a tool to estimate the expected source term at each key measurement point of ACP.

  15. Providing flexibility in spent fuel and vitrified waste management

    International Nuclear Information System (INIS)

    Bradley, N.; O'Tallamhain, C.; Brown, G.A.

    1986-01-01

    The UK Central Electricity Generating Board is pondering a decision to build a dry vault store as a buffer in its overall AGR spent fuel management programme. The application of the dry vault is not limited to fuel from gas cooled reactors, it can be used for spent LWR fuel and vitrified waste. A cutaway diagram of such a vault is presented. (UK)

  16. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P. N.; Bobrov, E. A., E-mail: evgeniybobrov89@rambler.ru; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A. [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U–Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium–plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: {sup 235}U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or {sup 233}U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.

  17. Safe transport of spent fuels after long-term storage

    International Nuclear Information System (INIS)

    Aritomi, M.; Takeda, T.; Ozaki, S.

    2004-01-01

    Considering the scarcity of energy resources in Japan, a nuclear energy policy pertaining to the spent fuel storage has been adopted. The nuclear energy policy sets the rules that spent fuels generated from LWRs shall be reprocessed and that plutonium and unburnt uranium shall be recovered and reused. For this purpose, a reprocessing plant, which has a reprocessing capability of 800 ton/yr, is under construction at Rokkasho Village. However, it is anticipated that the start of its operation will be delayed. In addition, the amount of spent fuels generated from nuclear power plants exceeds its reprocessing capability. Therefore, the establishment of storage technology for spent fuels becomes an urgent problem in Japan in order to continue smoothly the LWR operations. In this paper, the background of nuclear power generation in Japan is introduced at first. Next, the policy of spent fuel storage in Japan and circumstances surrounding the spent fuels in Japan are mentioned. Furthermore, the major subjects for discussions to settle and improve 'Standard for Safety Design and Inspection of Metal Casks for Spent Fuel Interim Storage Facility' in Atomic Energy Society of Japan are discussed, such as the integrity of fuel cladding, basket, shielding material and metal gasket for the long term storage for achieving safe transport of spent fuels after the storage. Finally, solutions to the unsolved subject in establishing the spent fuel interim storage technologies ase introduced accordingly

  18. Investigation of the condition of spent-fuel pool components

    International Nuclear Information System (INIS)

    Kustas, F.M.; Bates, S.O.; Opitz, B.E.; Johnson, A.B. Jr.; Perez, J.M. Jr.; Farnsworth, R.K.

    1981-09-01

    It is currently projected that spent nuclear fuel, which is discharged from the reactor and then stored in water pools, may remain in those pools for several decades. Other studies have addressed the expected integrity of the spent fuel during extended water storage; this study assesses the integrity of metallic spent fuel pool components. Results from metallurgical examinations of specimens taken from stainless steel and aluminum components exposed in spent fuel pools are presented. Licensee Event Reports (LERs) relating to problems with spent fuel components were assessed and are summarized to define the types of operational problems that have occurred. The major conclusions of this study are: aluminum and stainless steel spent fuel pool components have a good history of performance in both deionized and borated water pools. Although some operational problems involving pool components have occurred, these problems have had minimal impacts

  19. Investigation of the condition of spent-fuel pool components

    Energy Technology Data Exchange (ETDEWEB)

    Kustas, F.M.; Bates, S.O.; Opitz, B.E.; Johnson, A.B. Jr.; Perez, J.M. Jr.; Farnsworth, R.K.

    1981-09-01

    It is currently projected that spent nuclear fuel, which is discharged from the reactor and then stored in water pools, may remain in those pools for several decades. Other studies have addressed the expected integrity of the spent fuel during extended water storage; this study assesses the integrity of metallic spent fuel pool components. Results from metallurgical examinations of specimens taken from stainless steel and aluminum components exposed in spent fuel pools are presented. Licensee Event Reports (LERs) relating to problems with spent fuel components were assessed and are summarized to define the types of operational problems that have occurred. The major conclusions of this study are: aluminum and stainless steel spent fuel pool components have a good history of performance in both deionized and borated water pools. Although some operational problems involving pool components have occurred, these problems have had minimal impacts.

  20. Spent fuel management fee methodology and computer code user's manual

    International Nuclear Information System (INIS)

    Engel, R.L.; White, M.K.

    1982-01-01

    The methodology and computer model described here were developed to analyze the cash flows for the federal government taking title to and managing spent nuclear fuel. The methodology has been used by the US Department of Energy (DOE) to estimate the spent fuel disposal fee that will provide full cost recovery. Although the methodology was designed to analyze interim storage followed by spent fuel disposal, it could be used to calculate a fee for reprocessing spent fuel and disposing of the waste. The methodology consists of two phases. The first phase estimates government expenditures for spent fuel management. The second phase determines the fees that will result in revenues such that the government attains full cost recovery assuming various revenue collection philosophies. These two phases are discussed in detail in subsequent sections of this report. Each of the two phases constitute a computer module, called SPADE (SPent fuel Analysis and Disposal Economics) and FEAN (FEe ANalysis), respectively

  1. Effects of spent nuclear fuel aging on disposal requirements

    International Nuclear Information System (INIS)

    McKee, R.W.; Johnson, K.I.; Huber, H.D.; Bierschbach, M.C.

    1991-10-01

    This paper describes results of a study to analyze the waste management systems effects of extended spent fuel aging on spent fuel disposal requirements. The analysis considers additional spent fuel aging up to a maximum of 50 years relative to the currently planned 2010 repository startup in the United States. As part of the analysis, an equal energy disposition (EED) methodology was developed for determining allowable waste emplacement densities and waste container loading in a geologic repository. Results of this analysis indicate that substantial benefits of spent fuel aging will already have been achieved by a repository startup in 2010 (spent fuel average age will be 28 years). Even so, further significant aging benefits, in terms of reduced emplacement areas and mining requirements and reduced number of waste containers, will continue to accrue for at least another 50 years when the average spent fuel age would be 78 years, if the repository startup is further delayed

  2. Quantitative Analysis of Kr-85 Fission Gas Release from Dry Process for the Treatment of Spent PWR Fuel

    International Nuclear Information System (INIS)

    Park, Geun Il; Cho, Kwang Hun; Lee, Dou Youn; Lee, Jung Won; Park, Jang Jin; Song, Kee Chan

    2007-01-01

    As spent UO 2 fuel oxidizes to U 3 O 8 by air oxidation, a corresponding volume expansion separate grains, releasing the grain-boundary inventory of fission gases. Fission products in spent UO 2 fuel can be distributed in three major regions : the inventory in fuel-sheath gap, the inventory on grain boundaries and the inventory in UO 2 matrix. Release characteristic of fission gases depends on its distribution amount in three regions as well as spent fuel burn-up. Oxidation experiments of spent fuel at 500 .deg. C gives the information of fission gases inventory in spent fuel, and further annealing experiments at higher temperature produces matrix inventory of fission gases on segregated grain. In previous study, fractional release characteristics of Kr- 85 during OREOX (Oxidation and REduction of Oxide fuel) treatment as principal key process for recycling spent PWR fuel via DUPIC cycle have already evaluated as a function of fuel burn-up with 27.3, 35 and 65 MWd/tU. In this paper, new release experiment results of Kr-85 using spent fuel with burn- up of 58 GWd/tU are included to evaluate the fission gas release behavior. As a point of summary in fission gases release behavior, the quantitative analysis of Kr- 85 release characteristics from various spent fuels with different burn-up during voloxidation and OREOX process were reviewed

  3. Nuclear Spent Fuel Management in Spain

    International Nuclear Information System (INIS)

    Zuloaga, P.

    2015-01-01

    The radioactive waste management policy is established by the Spanish Government through the Ministry of Industry, Tourism and Commerce. This policy is described in the Cabinet-approved General Radioactive Waste Plan. ENRESA is the Spanish organization in charge of radioactive waste and nuclear SFM and nuclear installations decommissioning. The priority goal in SFM is the construction of the centralized storage facility named Almacén Temporal Centralizado (ATC), whose generic design was approved by the safety authority, Consejo de Seguridad Nuclear. This facility is planned for some 6.700 tons of heavy metal. The ATC site selection process, based on a volunteer community’s scheme, has been launched by the Government in December 2009. After the selection of a site in a participative and transparent process, the site characterization and licensing activities will support the construction of the facility. Meanwhile, extension of the on-site storage capacity has been implemented at the seven nuclear power plants sites, including past reracking at all sites. More recent activities are: reracking performed at Cofrentes NPP; dual purpose casks re-licensing for higher burnup at Trillo NPP; transfer of the spent fuel inventory at Jose Cabrera NPP to a dry-storage system, to allow decommissioning operations; and licence application of a dry-storage installation at Ascó NPP, to provide the needed capacity until the ATC facility operation. For financing planning purposes, the long-term management of spent fuel is based on direct disposal. A final decision about major fuel management options is not made yet. To assist the decision makers a number of activities are under way, including basic designs of a geological disposal facility for clay and granite host rocks, together with associated performance assessment, and supported by a R&D programme, which also includes research projects in other options like advanced separation and transmutation. (author)

  4. Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries

    Science.gov (United States)

    for Solar Power Yellowstone Park Recycles Vehicle Batteries for Solar Power to someone by E -mail Share Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries for Solar Power on Facebook Tweet about Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries

  5. Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel

    Science.gov (United States)

    Vehicles in Vermont Recycled Cooking Oil Powers Biodiesel Vehicles in Vermont to someone by E -mail Share Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel Vehicles in Vermont on Facebook Tweet about Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel Vehicles in

  6. Light water reactor fuel reprocessing and recycling

    International Nuclear Information System (INIS)

    1977-07-01

    This document was originally intended to provide the basis for an environmental impact statement to assist ERDA in making decisions with respect to possible LWR fuel reprocessing and recycling programs. Since the Administration has recently made a decision to indefinitely defer reprocessing, this environmental impact statement is no longer needed. Nevertheless, this document is issued as a report to assist the public in its consideration of nuclear power issues. The statement compares the various alternatives for the LWR fuel cycle. Costs and environmental effects are compared. Safeguards for plutonium from sabotage and theft are analyzed

  7. Spent fuel heatup following loss of water during storage

    International Nuclear Information System (INIS)

    Benjamin, A.S.; McCloskey, D.J.

    1978-01-01

    Spent fuel assemblies from light water reactors are typically stored for one year or more in the reactor spent fuel pool and then transported for long-term storage at an off-site location. Because of the design, construction, and operation features of spent fuel storage pools, an accident that might drain most of the water from a pool is assessed as being extremely improbable. As a limiting case, however, a hypothetical incident involving instantaneous draining of all the water from a storage pool has been postulated, and the subsequent heatup of the spent fuel elements has been evaluated. The model is analyzed, and results are summarized

  8. Remarks on the transportation of spent fuel elements

    International Nuclear Information System (INIS)

    Krull, W.

    1992-01-01

    Information and data are provided on several aspects of the transportation of spent fuel elements. These aspects include contract, transportation, reprocessing batch size, and economical considerations. (author)

  9. Status of Away From Reactor spent fuel storage program

    International Nuclear Information System (INIS)

    King, F.D.

    1979-07-01

    The Away From Reactor (AFR) Spent Fuel Program that the US Department of Energy established in 1977 is intended to preclude the shutting down of commercial nuclear power reactors because of lack of storage space for spent fuel. Legislation now being considered by Congress includes plans to provide storage space for commercial spent fuel beginning in 1983. Utilities are being encouraged to provide as much storage space as possible in their existing storage facilities, but projections indicate that a significant amount of AFR storage will be required. The government is evaluating the use of both existing and new storage facilities to solve this forecasted storage problem for commercial spent fuel

  10. Transportation and storage of foreign spent power reactor fuel

    International Nuclear Information System (INIS)

    1979-01-01

    This report describes the generic actions to be taken by the Department of Energy, in cooperation with other US government agencies, foreign governments, and international organizations, in support of the implementation of Administration policies with respect to the following international spent fuel management activities: bilateral cooperation related to expansion of foreign national storage capacities; multilateral and international cooperation related to development of multinational and international spent fuel storage regimes; fee-based transfer of foreign spent power reactor fuel to the US for storage; and emergency transfer of foreign spent power reactor fuel to the US for storage

  11. Legal questions concerning the termination of spent fuel element reprocessing

    International Nuclear Information System (INIS)

    John, Michele

    2005-01-01

    The thesis on legal aspects of the terminated spent fuel reprocessing in Germany is based on the legislation, jurisdiction and literature until January 2004. The five chapters cover the following topics: description of the problem; reprocessing of spent fuel elements in foreign countries - practical and legal aspects; operators' responsibilities according to the atomic law with respect to the reprocessing of Geman spent fuel elements in foreign countries; compatibility of the prohibition of Geman spent fuel element reprocessing in foreign countries with international law, European law and German constitutional law; results of the evaluation

  12. Arrival condition of spent fuel after storage, handling, and transportation

    International Nuclear Information System (INIS)

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables

  13. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mertyurek, Ugur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  14. Improving of spent fuel monitoring in condition of Slovak wet interim spent fuel storage facility

    International Nuclear Information System (INIS)

    Miklos, M.; Krsjak, V.; Bozik, M.; Vasina, D.

    2008-01-01

    Monitoring of WWER fuel assemblies condition in Slovakia is presented in the paper. The leak tightness results of fuel assemblies used in Slovak WWER units in last 20 years are analyzed. Good experiences with the 'Sipping system' are described. The Slovak wet interim spent fuel storage facility in NPP Jaslovske Bohunice was build and put in operation in 1986. Since 1999, leak tests of WWER-440 fuel assemblies are provided by special leak tightness detection system 'Sipping in Pool' delivered by Framatome-ANP facility with external heating for the precise detection of active specimens. Another system for monitoring of fuel assemblies condition was implemented in December 2006 under the name 'SVYPP-440'. First non-active tests started at February 2007 and are described in the paper. Although those systems seems to be very effective, the detection time of all fuel assemblies in one storage pool is too long (several months). Therefore, a new 'on-line' detection system, based on new sorbent KNiFC-PAN for effective 134 Cs and 137 Cs activity was developed. This sorbent was compared with another type of sorbent NIFSIL and results are presented. The design of this detection system and its possible application in the Slovak wet spent fuel storage facility is discussed. For completeness, the initial results of the new system are also presented. (authors)

  15. Survey of wet and dry spent fuel storage

    International Nuclear Information System (INIS)

    1999-07-01

    Spent fuel storage is one of the important stages in the nuclear fuel cycle and stands among the most vital challenges for countries operating nuclear power plants. Continuous attention is being given by the IAEA to the collection, analysis and exchange of information on spent fuel management. Its role in this area is to provide a forum for exchanging information and for coordinating and encouraging closer co-operation among Member States. Spent fuel management is recognized as a high priority IAEA activity. In 1997, the annual spent fuel arising from all types of power reactors worldwide amounted to about 10,500 tonnes heavy metal (t HM). The total amount of spent fuel accumulated worldwide at the end of 1997 was about 200,000 t HM of which about 130,000 t HM of spent fuel is presently being stored in at-reactor (AR) or away-from-reactor (AFR) storage facilities awaiting either reprocessing or final disposal and 70,000 t HM has been reprocessed. Projections indicate that the cumulative amount generated by 2010 may surpass 340,000 t HM and by the year 2015 395,000 t HM. Part of the spent fuel will be reprocessed and some countries took the option to dispose their spent fuel in a repository. Most countries with nuclear programmes are using the deferral of a decision approach, a 'wait and see' strategy with interim storage, which provides the ability to monitor the storage continuously and to retrieve the spent fuel later for either direct disposal or reprocessing. Some countries use different approaches for different types of fuel. Today the worldwide reprocessing capacity is only a fraction of the total spent fuel arising and since no final repository has yet been constructed, there will be an increasing demand for interim storage. The present survey contains information on the basic storage technologies and facility types, experience with wet and dry storage of spent fuel and international experience in spent fuel transport. The main aim is to provide spent fuel

  16. DECONTAMINATION OF ZIRCALOY SPENT FUEL CLADDING HULLS

    International Nuclear Information System (INIS)

    Rudisill, T; John Mickalonis, J

    2006-01-01

    The reprocessing of commercial spent nuclear fuel (SNF) generates a Zircaloy cladding hull waste which requires disposal as a high level waste in the geologic repository. The hulls are primarily contaminated with fission products and actinides from the fuel. During fuel irradiation, these contaminants are deposited in a thin layer of zirconium oxide (ZrO 2 ) which forms on the cladding surface at the elevated temperatures present in a nuclear reactor. Therefore, if the hulls are treated to remove the ZrO 2 layer, a majority of the contamination will be removed and the hulls could potentially meet acceptance criteria for disposal as a low level waste (LLW). Discard of the hulls as a LLW would result in significant savings due to the high costs associated with geologic disposal. To assess the feasibility of decontaminating spent fuel cladding hulls, two treatment processes developed for dissolving fuels containing zirconium (Zr) metal or alloys were evaluated. Small-scale dissolution experiments were performed using the ZIRFLEX process which employs a boiling ammonium fluoride (NH 4 F)/ammonium nitrate (NH 4 NO 3 ) solution to dissolve Zr or Zircaloy cladding and a hydrofluoric acid (HF) process developed for complete dissolution of Zr-containing fuels. The feasibility experiments were performed using Zircaloy-4 metal coupons which were electrochemically oxidized to produce a thin ZrO 2 layer on the surface. Once the oxide layer was in place, the ease of removing the layer using methods based on the two processes was evaluated. The ZIRFLEX and HF dissolution processes were both successful in removing a 0.2 mm (thick) oxide layer from Zircaloy-4 coupons. Although the ZIRFLEX process was effective in removing the oxide layer, two potential shortcomings were identified. The formation of ammonium hexafluorozirconate ((NH 4 ) 2 ZrF 6 ) on the metal surface prior to dissolution in the bulk solution could hinder the decontamination process by obstructing the removal of

  17. Recycling of MOX fuel for LWRs

    International Nuclear Information System (INIS)

    Joo, Hyung Kook; Oh, Soo Youl

    1992-01-01

    The status and issues related to the thermal recycling of reprocessed nuclear fuels have been reviewed. It is focused on the use of reprecessed plutonium in the form of mixed oxide (MOX) for a light water reactor and the review on reprocessing and fabrication processes is beyond the scope. In spite of the difference in the nuclear characteristics between plutonium and uranium isotopes, the neutronics behavior in a core with MOX fuels is similar to that with normal uranium fuels. However, since the neutron spectrum is hardened in a core with MOX, the Doppler, viod, and moderator temperature coefficients become more negative and the control rod and boron worths are slightly reduced. Therefore, the safety will be evaluated carefully in addition to the core neutronics analysis. The MOX fuel rod behavior related to the rod performance such as the pellet to clad interaction and fission gas release is also similar to that of uranium rods, and no specific problem arises. Substituting MOX fuels for a portion of uranium fuels, it is estimated that the savings be about 25% in uranium ore and 10% in uranium enrichment service requirements. The use of MOX fuel in LWRs has been commercialized in European countries including Germany, France, Belgium, etc., and a demonstration program has been pursued in Japan for the commercial utilization in the late 1990s. Such a worldwide trend indicates that the utilization of MOX fuel in LWRs is a proven technology and meets economics criteria. (Author)

  18. Spent nuclear fuel storage device and spent nuclear fuel storage method using the device

    International Nuclear Information System (INIS)

    Tani, Yutaro

    1998-01-01

    Storage cells attachably/detachably support nuclear fuel containing vessels while keeping the vertical posture of them. A ventilation pipe which forms air channels for ventilating air to the outer circumference of the nuclear fuel containing vessel is disposed at the outer circumference of the nuclear fuel containing vessel contained in the storage cell. A shielding port for keeping the support openings gas tightly is moved, and a communication port thereof can be aligned with the upper portion of the support opening. The lower end of the transporting and containing vessel is placed on the shielding port, and an opening/closing shutter is opened. The gas tightness is kept by the shielding port, the nuclear fuel containing vessel filled with spent nuclear fuels is inserted to the support opening and supported. Then, the support opening is closed by a sealing lid. (I.N.)

  19. Effects of actinide compositional variability in the US spent fuel inventory on partitioning-transmutation systems

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Michaels, G.E.; Hanson, B.D.

    1992-01-01

    Partitioning and transmutation (P-T) is an advanced waste management concept by which certain undesirable nuclides in spent fuel are first isolated (partitioned) and later destroyed (transmuted) in a nuclear reactor or other transmutation device. There are wide variabilities in the nuclide composition of spent fuel. This implies that there will also be wide variabilities in the transmutation device feed. As a waste management system, P-T must be able to accept (all) spent fuel. Variability of nuclide composition (i.e., the feed material for transmutation devices) may be important because virtually all transmutation systems propose to configure transuranic (TRU) nuclides recovered from discharged lightwater reactor (LWR) spent fuel in critical or near-critical cores. To date, all transmutation system core analyses assume invariant nuclide concentrations for startup and recycle cores. Using the US Department of Energy's (DOE's) Characteristics Data Base (CDB) and the ORIGEN2 computer code, the current and projected spent fuel discharges until the year 2016 have been categorized according to combinations of fuel burnup, initial enrichment, fuel age (cooling time) and reactor type (boiling-water or pressurized-water reactors). The variability of the infinite multiplication factor (k ∞ ) is calculated for both fast (ALMR) and thermal (accelerator-based) transmuter systems

  20. Storage of Spent Nuclear Fuel. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide provides recommendations and guidance on the storage of spent nuclear fuel. It covers all types of storage facilities and all types of spent fuel from nuclear power plants and research reactors. It takes into consideration the longer storage periods that have become necessary owing to delays in the development of disposal facilities and the decrease in reprocessing activities. It also considers developments associated with nuclear fuel, such as higher enrichment, mixed oxide fuels and higher burnup. The Safety Guide is not intended to cover the storage of spent fuel if this is part of the operation of a nuclear power plant or spent fuel reprocessing facility. Guidance is provided on all stages for spent fuel storage facilities, from planning through siting and design to operation and decommissioning, and in particular retrieval of spent fuel. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Roles and responsibilities; 4. Management system; 5. Safety case and safety assessment; 6. General safety considerations for storage of spent fuel. Appendix I: Specific safety considerations for wet or dry storage of spent fuel; Appendix II: Conditions for specific types of fuel and additional considerations; Annex: I: Short term and long term storage; Annex II: Operational and safety considerations for wet and dry spent fuel storage facilities; Annex III: Examples of sections of operating procedures for a spent fuel storage facility; Annex IV: Site conditions, processes and events for consideration in a safety assessment (external human induced phenomena); Annex V: Site conditions, processes and events for consideration in a safety assessment (external natural phenomena); Annex VI: Site conditions, processes and events for consideration in a safety assessment (external human induced phenomena); Annex VII: Postulated initiating events for consideration in a safety assessment (internal phenomena).

  1. Nevada commercial spent nuclear fuel transportation experience

    International Nuclear Information System (INIS)

    1991-09-01

    The purpose of this report is to present an historic overview of commercial reactor spent nuclear fuel (SNF) shipments that have occurred in the state of Nevada, and to review the accident and incident experience for this type of shipments. Results show that between 1964 and 1990, 309 truck shipments covering approximately 40,000 miles moved through Nevada; this level of activity places Nevada tenth among the states in the number of truck shipments of SNF. For the same period, 15 rail shipments moving through the State covered approximately 6,500 miles, making Nevada 20th among the states in terms of number of rail shipments. None of these shipments had an accident or an incident associated with them. Because the data for Nevada are so limited, national data on SNF transportation and the safety of truck and rail transportation in general were also assessed

  2. Characterization plan for Hanford spent nuclear fuel

    International Nuclear Information System (INIS)

    Abrefah, J.; Thornton, T.A.; Thomas, L.E.; Berting, F.M.; Marschman, S.C.

    1994-12-01

    Reprocessing of spent nuclear fuel (SNF) at the Hanford Site Plutonium-Uranium Extraction Plant (PUREX) was terminated in 1972. Since that time a significant quantity of N Reactor and Single-Pass Reactor SNF has been stored in the 100 Area K-East (KE) and K-West (KW) reactor basins. Approximately 80% of all US Department of Energy (DOE)-owned SNF resides at Hanford, the largest portion of which is in the water-filled KE and KW reactor basins. The basins were not designed for long-term storage of the SNF and it has become a priority to move the SNF to a more suitable location. As part of the project plan, SNF inventories will be chemically and physically characterized to provide information that will be used to resolve safety and technical issues for development of an environmentally benign and efficient extended interim storage and final disposition strategy for this defense production-reactor SNF

  3. Calculating the plutonium in spent fuel elements

    International Nuclear Information System (INIS)

    Barnham, Keith

    1992-01-01

    Many members of the public are concerned about plutonium. They are worried about its environmental, health and proliferation risks. Fundamental to all such considerations are two related questions: how much plutonium do nuclear reactors produce ? and how accurately do the relevant authorities know these production figures ? These two questions have been studied with particular reference to the UK civil Magnox reactors. In 1990 these were still the only UK civil reactors whose spent fuel had been reprocessed to extract plutonium in routine production. It has not been possible to conclude that the relevant government industry and safeguard authorities are aware of how much plutonium these reactors produce and that the figures are known to the highest achievable accuracy. To understand why, this chapter will outline some of the history of the attempts to get answers to these two questions. (author)

  4. Spent fuel shipping cask sealing concepts

    International Nuclear Information System (INIS)

    Sonnier, C.S.

    1989-05-01

    In late 1985, the International Atomic Energy Agency (IAEA) requested the US Program for Technical Assistance to IAEA Safeguards (POTAS) to provide a study which examined sealing concepts for application to spent fuel shipping casks. This request was approved, and assigned to Sandia National Laboratories (Sandia). In the course of this study, discussions were held with personnel in the International Safeguards Community who were familiar with the shipping casks used in their States. A number of shipping casks were examined, and discussions were held with two shipping cask manufacturers in the US. As a result of these efforts, it was concluded that the shipping casks provided an extremely good containment, and that many of the existing casks can be effectively sealed by applying the seal to the cask closure bolts/nuts

  5. Spent fuel cladding containment credit test

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1983-01-01

    As an initial step in addressing the effectiveness of breached cladding as a barrier to radionuclide release from the repository during the post-containment period, preliminary scoping tests have been initiated which compare radionuclide releases from spent fuel specimens with artificially induced cladding defects of various severities. The artificially induced defects are all more severe than the typical in-reactor type breaches which are expected to be the principal type of breach entering the repository for terminal storage. These preliminary scoping tests being conducted by Westinghouse Hanford Company for the Lawrence Livermore National Laboratory Waste Package Development Program in support of the Tuff repository project at the Nevada Test Site are described. Also included in this presentation are selected initial results from these tests. 22 figures

  6. Spent and fresh fuel shipping cask considerations

    International Nuclear Information System (INIS)

    Shappert, L.B.; Unger, W.E.; Freedman, J.M.

    1975-01-01

    A program to provide basic information for cask design and safety has been conducted for over ten years at Oak Ridge National Laboratory. Principal problem areas in Liquid Metal Fast Breeder Reactor (LMFBR) casks are identified as heat transfer, structures and containment, criticality and shielding. Solutions in the problem areas, as well as the need for future work, are addressed by describing an LMFBR conceptual design cask. A new program, which is underway at Sandia Laboratories, Albuquerque, New Mexico, is aimed at producing technology useful to industry and government. Technologies are being developed in areas of hazards analysis, heat transfer, shielding, structures and containment, and spent fuel characterization, substantiated by hot laboratory verification. Particular emphasis will be placed on establishing qualification tests based on accident experience. Handling requirements and limitations are discussed. (auth)

  7. Spent nuclear fuel project technical databook

    International Nuclear Information System (INIS)

    Reilly, M.A.

    1998-01-01

    The Spent Nuclear Fuel (SNF) project technical databook provides project-approved summary tables of selected parameters and derived physical quantities, with nominal design and safety basis values. It contains the parameters necessary for a complete documentation basis of the SNF Project technical and safety baseline. The databook is presented in two volumes. Volume 1 presents K Basins SNF related information. Volume 2 (not yet available) will present selected sludge and water information, as it relates to the sludge and water removal projects. The values, within this databook, shall be used as the foundation for analyses, modeling, assumptions, or other input to SNF project safety analyses or design. All analysis and modeling using a parameter available in this databook are required to use and cite the appropriate associated value, and document any changes to those values (i.e., analysis assumptions, equipment conditions, etc). Characterization and analysis efforts are ongoing to validate, or update these values

  8. Spent nuclear fuel project technical databook

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, M.A.

    1998-07-22

    The Spent Nuclear Fuel (SNF) project technical databook provides project-approved summary tables of selected parameters and derived physical quantities, with nominal design and safety basis values. It contains the parameters necessary for a complete documentation basis of the SNF Project technical and safety baseline. The databook is presented in two volumes. Volume 1 presents K Basins SNF related information. Volume 2 (not yet available) will present selected sludge and water information, as it relates to the sludge and water removal projects. The values, within this databook, shall be used as the foundation for analyses, modeling, assumptions, or other input to SNF project safety analyses or design. All analysis and modeling using a parameter available in this databook are required to use and cite the appropriate associated value, and document any changes to those values (i.e., analysis assumptions, equipment conditions, etc). Characterization and analysis efforts are ongoing to validate, or update these values.

  9. Storage of spent fuel from light water reactors

    International Nuclear Information System (INIS)

    Wolkenhauer, W.C.

    1976-01-01

    The effects of possible inadequate nuclear fuel reprocessing capability upon a public utility, Washington Public Power Supply System, are studied. The possible alternatives for storing spent fuel are reviewed

  10. Comparison of concepts for independent spent fuel storage facilities

    International Nuclear Information System (INIS)

    Held, Ch.; Hintermayer, H.P.

    1978-01-01

    The design and the construction costs of independent spent fuel storage facilities show significant differences, reflecting the fuel receiving rate (during the lifetime of the power plant or within a very short period), the individual national policies and the design requirements in those countries. Major incremental construction expenditures for storage facilities originate from the capacity and the type of the facilities (casks or buildings), the method of fuel cooling (water or air), from the different design of buildings, the redundancy of equipment, an elaborate quality assurance program, and a single or multipurpose design (i.e. interim or long-term storage of spent fuel, interim storage of high level waste after fuel storage). The specific costs of different designs vary by a factor of 30 to 60 which might in the high case increase the nuclear generating costs remarkably. The paper also discusses the effect of spent fuel storage on fuel cycle alternatives with reprocessing or disposal of spent fuel. (author)

  11. International development within the spent nuclear fuel cycle

    International Nuclear Information System (INIS)

    Aggeryd, I.; Broden, K.; Gelin, R.

    1990-06-01

    The report gives a survey of the newest international development of the fuel processing and the spent nuclear fuel cycle. The transmutation technology of long lived nuclides is discussed in more details. (K.A.E)

  12. Analytical methodology and facility description spent fuel policy

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    Three generic environmental impact statements (GEISs) on domestic fuels, foreign fuels, and storage charges are being prepared to provide environmental input into decisions on whether, and if so how the 1977 Presidential policy on spent fuel storage should be implmented. This report provides background information for two of these environmental impact statements: Storage of U.S. Spent Power Reactor Fuel and Storage of Foreign Spent Power Reactor Fuel. It includes the analytical methodology used in GEISs to assess the environmental effects and a description of the facilities used in the two GEISs.

  13. Analytical methodology and facility description spent fuel policy

    International Nuclear Information System (INIS)

    1978-08-01

    Three generic environmental impact statements (GEISs) on domestic fuels, foreign fuels, and storage charges are being prepared to provide environmental input into decisions on whether, and if so how the 1977 Presidential policy on spent fuel storage should be implmented. This report provides background information for two of these environmental impact statements: Storage of U.S. Spent Power Reactor Fuel and Storage of Foreign Spent Power Reactor Fuel. It includes the analytical methodology used in GEISs to assess the environmental effects and a description of the facilities used in the two GEISs

  14. Overview of the US spent nuclear fuel program

    International Nuclear Information System (INIS)

    Hurt, W.L.

    1999-01-01

    This report, Overview of the United States Spent Nuclear Fuel Program, December, 1997, summarizes the U.S. strategy for interim management and ultimate disposition of spent nuclear fuel from research and test reactors. The key elements of this strategy include consolidation of this spent nuclear fuel at three sites, preparation of the fuel for geologic disposal in road-ready packages, and low-cost dry interim storage until the planned geologic repository is opened. The U.S. has a number of research programs in place that are intended to Provide data and technologies to support both characterization and disposition of the fuel. (author)

  15. Materials behavior in interim storage of spent fuel

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Bailey, W.J.; Gilbert, E.R.; Inman, S.C.

    1982-01-01

    Interim storage has emerged as the only current spent-fuel management method in the US and is essential in all countries with nuclear reactors. Materials behavior is a key aspect in licensing interim-storage facilities for several decades of spent-fuel storage. This paper reviews materials behavior in wet storage, which is licensed for light-water reactor (LWR) fuel, and dry storage, for which a licensing position for LWR fuel is developing

  16. Studies and research concerning BNFP: LWR spent fuel storage

    International Nuclear Information System (INIS)

    Shallo, F.A.

    1978-08-01

    This report describes potential spent fuel storage expansion programs using the Barnwell Nuclear Fuel Plant--Fuel Receiving and Storage Station (BNFP-FRSS) as a model. Three basic storage arrangements are evaluated with cost and schedule estimates being provided for each configuration. A general description of the existing facility is included with emphasis on the technical and equipment requirements which would be necessary to achieve increased spent fuel storage capacity at BNFP-FRSS

  17. Yugoslav spent nuclear fuel management program and international perspectives

    International Nuclear Information System (INIS)

    Pesic, M.; Subotic, K.; Sotic, O.; Plecas, I.; Ljubenov, V.; Peric, A.; Milosevic, M.

    2002-01-01

    Spent nuclear fuel stored in the Vinca Institute of Nuclear Sciences, Yugoslavia, consists of about 2.5 tons of metal uranium (initial enrichment 2%) and about 20 kg uranium dioxide (dispersed in aluminum matrix, initial fuel uranium enrichment 80%). This spent nuclear fuel is generated in operation of the RA heavy water research reactor during 1959-1984 period. Both types of fuel are of ex-USSR origin, have the same shape and dimensions and approximately the same initial mass of 235 nuclide. They are known as the TVR-S type of fuel elements. The total of 8030 spent fuel elements are stored at the RA research reactor premises, almost all in the spent fuel pool filled by ordinary water. The last used 480 high-enriched uranium spent fuel elements are kept in the drained RA reactor core since 1984. Fuel layer of both enrichments is covered with thin aluminium cladding. Due to non-suitable chemical parameters of water in the spent fuel storage pool, the corrosion processes penetrated aluminium cladding and aluminium walls od storage containers during storage period long from 20 to 40 years. Activity of fission products ( 137 Cs) is detected in water samples during water inspection in 1996 and experts of the lAEA Russia and USA were invited to help. By end of 2001, some remediation of the water transparency of the storage pool and inspections of water samples taken from the storage containers with the spent fuel elements were carried out by the Vinca Institute staff and with the help of experts from the Russia and the IAEA. Following new initiatives on international perspective on spent fuel management, a proposal was set by the IAEA, and was supported by the governments of the USA and the Russian Federation to ship the spent fuel elements of the RA research reactor to Mayak spent fuel processing plant in Russia. This paper describes current status of the reactor RA spent fuel elements, initiative for new Yugoslav spent fuel management program speculates on some of the

  18. Conceptual development of a test facility for spent fuel management

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.W.; Lee, H.H.; Lee, J.Y.; Lee, J.S.; Ro, S.G. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Spent fuel management is an important issue for nuclear power program, requiring careful planning and implementation. With the wait-and-see policy on spent fuel management in Korea, research efforts are directed at KAERI to develop advanced technologies for safer and more efficient management of the accumulating spent fuels. In support of these research perspectives, a test facility of pilot scale is being developed with provisions for integral demonstration of a multitude of technical functions required for spent fuel management. The facility, baptized SMART (Spent fuel MAnagement technology Research and Test facility), is to be capable of handling full size assembly of spent PWR fuel (as well as CANDU fuel) with a maximum capacity of 10 MTU/y (about 24 assemblies of PWR type). Major functions of the facility are consolidation of spent PWR fuel assembly into a half-volume package and optionally transformation of the fuel rod into a fuel of CANDU type (called DUPIC). Objectives of these functions are to demonstrate volume reduction of spent fuel (for either longer-term dry storage or direct disposal ) in the former case and direct refabrication of the spent PWR fuel into CANDU-type DUPIC fuel for reuse in CANDU reactors in the latter case, respectively. In addition to these major functions, there are other associated technologies to be demonstrated : such as waste treatment, remote maintenance, safeguards, etc. As the facility is to demonstrate not only the functional processes but also the safety and efficiency of the test operations, engineering criteria equivalent to industrial standards are incorporated in the design concept. The hot cell structure enclosing the radioactive materials is configured in such way to maximize costs within the given functional and operational requirements. (author). 3 tabs., 4 figs.

  19. Conceptual development of a test facility for spent fuel management

    International Nuclear Information System (INIS)

    Park, S.W.; Lee, H.H.; Lee, J.Y.; Lee, J.S.; Ro, S.G.

    1997-01-01

    Spent fuel management is an important issue for nuclear power program, requiring careful planning and implementation. With the wait-and-see policy on spent fuel management in Korea, research efforts are directed at KAERI to develop advanced technologies for safer and more efficient management of the accumulating spent fuels. In support of these research perspectives, a test facility of pilot scale is being developed with provisions for integral demonstration of a multitude of technical functions required for spent fuel management. The facility, baptized SMART (Spent fuel MAnagement technology Research and Test facility), is to be capable of handling full size assembly of spent PWR fuel (as well as CANDU fuel) with a maximum capacity of 10 MTU/y (about 24 assemblies of PWR type). Major functions of the facility are consolidation of spent PWR fuel assembly into a half-volume package and optionally transformation of the fuel rod into a fuel of CANDU type (called DUPIC). Objectives of these functions are to demonstrate volume reduction of spent fuel (for either longer-term dry storage or direct disposal ) in the former case and direct refabrication of the spent PWR fuel into CANDU-type DUPIC fuel for reuse in CANDU reactors in the latter case, respectively. In addition to these major functions, there are other associated technologies to be demonstrated : such as waste treatment, remote maintenance, safeguards, etc. As the facility is to demonstrate not only the functional processes but also the safety and efficiency of the test operations, engineering criteria equivalent to industrial standards are incorporated in the design concept. The hot cell structure enclosing the radioactive materials is configured in such way to maximize costs within the given functional and operational requirements. (author). 3 tabs., 4 figs

  20. An approach to meeting the spent fuel standard

    Energy Technology Data Exchange (ETDEWEB)

    Makhijani, A. [Institute for Energy and Environmental Research, Takoma Park, MD (United States)

    1996-05-01

    The idea of the spent fuel standard is that there should be a high surface gamma radiation to prevent theft. For purposes of preventing theft, containers should be massive, and the plutonium should be difficult to extract. This report discusses issues associated with the spent fuel standard.

  1. Anticipated corrosion in the Vermont Yankee spent fuel pool

    International Nuclear Information System (INIS)

    Weeks, J.R.

    1977-06-01

    The report provides additional information relating to a proposed modification to the spent fuel pool at the Vermont Yankee Nuclear Power Station (VYNPS) and addresses corrosion of spent fuel pool storage materials and zircaloy, and provides an analysis of the effectiveness of the Boral sealing

  2. Monitoring instrumentation spent fuel management program. Final report

    International Nuclear Information System (INIS)

    1979-01-01

    Preliminary monitoring system methodologies are identified as an input to the risk assessment of spent fuel management. Conceptual approaches to instrumentation for surveillance of canister position and orientation, vault deformation, spent fuel dissolution, temperature, and health physics conditions are presented. In future studies, the resolution, reliability, and uncertainty associated with these monitoring system methodologies will be evaluated

  3. Integrated data base for spent fuel and radwaste: inventories

    International Nuclear Information System (INIS)

    Notz, K.J.; Carter, W.L.; Kibbey, A.H.

    1982-01-01

    The Integrated Data Base (IDB) program provides and maintains current, integrated data on spent reactor fuel and radwaste, including historical data, current inventories, projected inventories, and material characteristics. The IDB program collects, organizes, integrates, and - where necessary - reconciles inventory and projection (I/P) and characteristics information to provide a coherent, self-consistent data base on spent fuel and radwaste

  4. Spent nuclear fuel project quality assurance program plan

    International Nuclear Information System (INIS)

    Lacey, R.E.

    1997-01-01

    This main body of this document describes how the requirements of 10 CFR 830.120 are met by the Spent Nuclear Fuel Project through implementation of WHC-SP-1131. Appendix A describes how the requirements of DOE/RW-0333P are met by the Spent Nuclear Fuel Project through implementation of specific policies, manuals, and procedures

  5. Radwaste management and spent fuel management in JAVYS

    International Nuclear Information System (INIS)

    Bozik, M.; Strazovec, R.

    2010-01-01

    In this work authors present radwaste management and spent fuel management in JAVYS, a.s. Processing of radioactive wastes (RAW) in the Bohunice Radioactive Waste Processing Center and surface storage of RAW in National RAW Repository as well as Interim Spent fuel storage in Jaslovske Bohunice are presented.

  6. Extension technology of store ability of spent fuel

    International Nuclear Information System (INIS)

    1991-05-01

    It is the introduction of the extension technology of store ability of spent fuel including metal store cask, transport and store cask, concrete cask, NUHOMS and MVDS. It explains of technology of recombination of spent fuel including the purpose and real application, demonstration, presumption of expense, major interesting issue and the present condition of relevant licences permit and approvals.

  7. The development of spent fuel storage process equipment

    International Nuclear Information System (INIS)

    Yoon, Wan Ki; Kim, Ho Dong; Kim, Ki Joon; Kim, Bum Hoe

    1992-02-01

    A nuclear material accounting system were designed to track the transitions of nuclear materials at the spent-fuel technology research facility. It is embedded in a distributed control system real-time structure of the system gives timely on-line accountancy. And performance of AC servo motor with fuzzy logic control and its applicability to spent fuel management were experimentally evaluated. (Author)

  8. Reracking Possibilities of the NPP Krsko Spent Fuel Pool

    International Nuclear Information System (INIS)

    Bace, M.; Pevec, D.; Smuc, T.

    1998-01-01

    Using the SCALE-4 code package reracking possibilities of the NPP Krsko spent fuel pool were analyzed. Two cases were considered: the first case assuming the 40 years lifetime of the plant, and the second case assuming the 50 years lifetime of the plant. It was shown that it is possible to design the additional racks in free space of the spent fuel pool with the sufficient total capacity to store all the spent fuel generated during the 40 years lifetime of the plant. In the case of 50 years plant lifetime, completely new racks (capacity of 1890 spent fuel assemblies), containing 4mm boral in storage cell walls, were proposed for the NPP Krsko spent fuel pool. The effective multiplication factor of the spent fuel pool fully loaded with new racks containing spent fuel assemblies of initial enrichment 4.3 w/o, burned to 40 GWd/tU and cooled 2 years is lower than the value required by standard. It showed the possibility of the safe disposal of all spent fuel accumulated during more than 50 years lifetime of the plant. (author)

  9. IEA-R1 reactor - Spent fuel management

    International Nuclear Information System (INIS)

    Mattos, J.R.L. De

    1996-01-01

    Brazil currently has one Swimming Pool Research Reactor (IEA-R1) at the Instituto de Pesquisas Energeticas e Nucleares - Sao Paulo. The spent fuel produced is stored both at the Reactor Pool Storage Compartment and at the Dry Well System. The present situation and future plans for spent fuel storage are described. (author). 3 refs, 2 figs, 2 tabs

  10. An approach to meeting the spent fuel standard

    International Nuclear Information System (INIS)

    Makhijani, A.

    1996-01-01

    The idea of the spent fuel standard is that there should be a high surface gamma radiation to prevent theft. For purposes of preventing theft, containers should be massive, and the plutonium should be difficult to extract. This report discusses issues associated with the spent fuel standard

  11. Background and planning requirements for spent fuel shipments to DOE

    Energy Technology Data Exchange (ETDEWEB)

    Ravenscroft, Norman [Edlow International Company, 1666 Connecticut Avenue, NW, Suite 201, Washington, DC 20009 (United States)

    1996-10-01

    Information is provided on the planning required and the factors that must be included in the planning process for spent fuel shipments to DOE. A summary is also provided on the background concerning renewal of the DOE spent fuel acceptance policy in May 1996. (author)

  12. Contributions to LWR spent fuel storage and transport

    International Nuclear Information System (INIS)

    The papers included in this document describe the aspects of spent LWR fuel storage and transport-behaviour of spent fuel during storage; use of compact storage packs; safety of storage; design of storage facilities AR and AFR; description of transport casks and transport procedures

  13. Spent LWR fuel-storage costs

    International Nuclear Information System (INIS)

    Clark, H.J.

    1981-01-01

    Expanded use of existing storage basins is clearly the most economic solution to the spent fuel storage problem. The use of high-density racks followed by fuel disassembly and rod storage is an order of magnitude cheaper than building new facilities adjacent to the reactor. The choice of a new storage facility is not as obvious; however, if the timing of expenditures and risk allowance are to be considered, then modular concepts such as silos, drywells, and storage casks may cost less than water basins and air-cooled vaults. A comparison of the costs of the various storage techniques without allowances for timing or risk is shown. The impact of allowances for discounting and early resumption of reprocessing is also shown. Economics is not the only issue to be considered in selecting a storage facility. The licensing, environmental impact, timing, and social responses must also be considered. Each utility must assess all of these issues for their particular reactors before the best storage solution can be selected

  14. Storage rack for spent nuclear fuels

    International Nuclear Information System (INIS)

    Kiyama, Yoichi.

    1996-01-01

    A storage rack comprises a number of rack cells for containing spent nuclear fuels and two upper and lower rack support plates. Small through holes are formed to lateral walls of the rack cell each at a position slightly above the position of the upper rack support plate. Finger members each having a protrusion which fits the small through hole is secured at the upper surface of the upper rack support plate. The finger member is a metal leaf-spring erected at the periphery of a rack insertion hole of the rack support plate. Gaps for allowing thermal expansion of the rack cell are formed each between the edge of the rack cell insertion hole of the rack support plate and the rack cell, and between the lower edge of the small through hole on a side wall of the rack cell and the lower portion of the protrusion of the finger member. If the rack cell is inserted to a bottom, the protrusion of the finger member fits the small through hole on the side of the rack cell. With such a constitution, the rack cell is prevented from withdrawing in conjunction with removal of fuels. (I.N.)

  15. Existing and near future practices of spent fuel storage in Slovak Republic

    International Nuclear Information System (INIS)

    Mizov, J.

    1999-01-01

    In this paper existing and near future practices of spent fuel storage in Slovak Republic are discussed: (1) Reactor operation and spent fuel production; (2) Past policy in spent fuel storage; (3) Away-from-reactor (AFR) storage facility at Bohunice NPP site; (4) Present policy in spent fuel storage; (5) Final disposal of spent fuel

  16. Storage of LWR spent fuel in air: Volume 1: Design and operation of a spent fuel oxidation test facility

    International Nuclear Information System (INIS)

    Thornhill, C.K.; Campbell, T.K.; Thornhill, R.E.

    1988-12-01

    This report describes the design and operation and technical accomplishments of a spent-fuel oxidation test facility at the Pacific Northwest Laboratory. The objective of the experiments conducted in this facility was to develop a data base for determining spent-fuel dry storage temperature limits by characterizing the oxidation behavior of light-water reactor (LWR) spent fuels in air. These data are needed to support licensing of dry storage in air as an alternative to spent-fuel storage in water pools. They are to be used to develop and validate predictive models of spent-fuel behavior during dry air storage in an Independent Spent Fuel Storage Installation (ISFSI). The present licensed alternative to pool storage of spent fuel is dry storage in an inert gas environment, which is called inerted dry storage (IDS). Licensed air storage, however, would not require monitoring for maintenance of an inert-gas environment (which IDS requires) but does require the development of allowable temperature limits below which UO 2 oxidation in breached fuel rods would not become a problem. Scoping tests at PNL with nonirradiated UO 2 pellets and spent-fuel fragment specimens identified the need for a statistically designed test matrix with test temperatures bounding anticipated maximum acceptable air-storage temperatures. This facility was designed and operated to satisfy that need. 7 refs

  17. Case histories of West Valley spent fuel shipments: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    In 1983, NRC/FC initiated a study on institutional issues related to spent fuel shipments originating at the former spent fuel processing facility in West Valley, New York. FC staff viewed the shipment campaigns as a one-time opportunity to document the institutional issues that may arise with a substantial increase in spent fuel shipping activity. NRC subsequently contracted with the Aerospace Corporation for the West Valley Study. This report contains a detailed description of the events which took place prior to and during the spent fuel shipments. The report also contains a discussion of the shipment issues that arose, and presents general findings. Most of the institutional issues discussed in the report do not fall under NRC's transportation authority. The case histories provide a reference to agencies and other institutions that may be involved in future spent fuel shipping campaigns. 130 refs., 7 figs., 19 tabs.

  18. Case histories of West Valley spent fuel shipments: Final report

    International Nuclear Information System (INIS)

    1987-01-01

    In 1983, NRC/FC initiated a study on institutional issues related to spent fuel shipments originating at the former spent fuel processing facility in West Valley, New York. FC staff viewed the shipment campaigns as a one-time opportunity to document the institutional issues that may arise with a substantial increase in spent fuel shipping activity. NRC subsequently contracted with the Aerospace Corporation for the West Valley Study. This report contains a detailed description of the events which took place prior to and during the spent fuel shipments. The report also contains a discussion of the shipment issues that arose, and presents general findings. Most of the institutional issues discussed in the report do not fall under NRC's transportation authority. The case histories provide a reference to agencies and other institutions that may be involved in future spent fuel shipping campaigns. 130 refs., 7 figs., 19 tabs

  19. Benefit analysis of reprocessing and recycling light water reactor fuel

    International Nuclear Information System (INIS)

    1976-12-01

    The macro-economic impact of reprocessing and recycling fuel for nuclear power reactors is examined, and the impact of reprocessing on the conservation of natural uranium resources is assessed. The LWR fuel recycle is compared with a throwaway cycle, and it is concluded that fuel recycle is favorable on the basis of economics, as well as being highly desirable from the standpoint of utilization of uranium resources

  20. Shippingport Spent Fuel Canister System Description

    International Nuclear Information System (INIS)

    JOHNSON, D.M.

    2000-01-01

    In 1978 and 1979, a total of 72 blanket fuel assemblies (BFAs), irradiated during the operating cycles of the Shippingport Atomic Power Station's Pressurized Water Reactor (PWR) Core 2 from April 1965 to February 1974, were transferred to the Hanford Site and stored in underwater storage racks in Cell 2R at the 221-T Canyon (T-Plant). The initial objective was to recover the produced plutonium in the BFAs, but this never occurred and the fuel assemblies have remained within the water storage pool to the present time. The Shippingport Spent Fuel Canister (SSFC) is a confinement system that provides safe transport functions (in conjunction with the TN-WHC cask) and storage for the BFAs at the Canister Storage Building (CSB). The current plan is for these BFAs to be retrieved from wet storage and loaded into SSFCs for dry storage. The sealed SSFCs containing BFAs will be vacuum dried, internally backfilled with helium, and leak tested to provide suitable confinement for the BFAs during transport and storage. Following completion of the drying and inerting process, the SSFCs are to be delivered to the CSB for closure welding and long-term interim storage. The CSB will provide safe handling and dry storage for the SSFCs containing the BFAs. The purpose of this document is to describe the SSFC system and interface equipment, including the technical basis for the system, design descriptions, and operations requirements. It is intended that this document will be periodically updated as more equipment design and performance specification information becomes available

  1. Recycling versus Long-Term Storage of Nuclear Fuel: Economic Factors

    Directory of Open Access Journals (Sweden)

    B. Yolanda Moratilla Soria

    2013-01-01

    Full Text Available The objective of the present study is to compare the associated costs of long-term storage of spent nuclear fuel—open cycle strategy—with the associated cost of reprocessing and recycling strategy of spent fuel—closed cycle strategy—based on the current international studies. The analysis presents cost trends for both strategies. Also, to point out the fact that the total cost of spent nuclear fuel management (open cycle is impossible to establish at present, while the related costs of the closed cycle are stable and known, averting uncertainties.

  2. MTR radiological database for SRS spent nuclear fuel facilities

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    A database for radiological characterization of incoming Material Test Reactor (MTR) fuel has been developed for application to the Receiving Basin for Offsite Fuels (RBOF) and L-Basin spent fuel storage facilities at the Savannah River Site (SRS). This database provides a quick quantitative check to determine if SRS bound spent fuel is radiologically bounded by the Reference Fuel Assembly used in the L-Basin and RBOF authorization bases. The developed database considers pertinent characteristics of domestic and foreign research reactor fuel including exposure, fuel enrichment, irradiation time, cooling time, and fuel-to-moderator ratio. The supplied tables replace the time-consuming studies associated with authorization of SRS bound spent fuel with simple hand calculations. Additionally, the comprehensive database provides the means to overcome resource limitations, since a series of simple, yet conservative, hand calculations can now be performed in a timely manner and replace computational and technical staff requirements

  3. Analysis of the Reuse of Uranium Recovered from the Reprocessing of Commercial LWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    DelCul, Guillermo Daniel [ORNL; Trowbridge, Lee D [ORNL; Renier, John-Paul [ORNL; Ellis, Ronald James [ORNL; Williams, Kent Alan [ORNL; Spencer, Barry B [ORNL; Collins, Emory D [ORNL

    2009-02-01

    This report provides an analysis of the factors involved in the reuse of uranium recovered from commercial light-water-reactor (LWR) spent fuels (1) by reenrichment and recycling as fuel to LWRs and/or (2) by recycling directly as fuel to heavy-water-reactors (HWRs), such as the CANDU (registered trade name for the Canadian Deuterium Uranium Reactor). Reuse is an attractive alternative to the current Advanced Fuel Cycle Initiative (AFCI) Global Nuclear Energy Partnership (GNEP) baseline plan, which stores the reprocessed uranium (RU) for an uncertain future or attempts to dispose of it as 'greater-than-Class C' waste. Considering that the open fuel cycle currently deployed in the United States already creates a huge excess quantity of depleted uranium, the closed fuel cycle should enable the recycle of the major components of spent fuel, such as the uranium and the hazardous, long-lived transuranic (TRU) actinides, as well as the managed disposal of fission product wastes. Compared with the GNEP baseline scenario, the reuse of RU in the uranium fuel cycle has a number of potential advantages: (1) avoidance of purchase costs of 11-20% of the natural uranium feed; (2) avoidance of disposal costs for a large majority of the volume of spent fuel that is reprocessed; (3) avoidance of disposal costs for a portion of the depleted uranium from the enrichment step; (4) depending on the {sup 235}U assay of the RU, possible avoidance of separative work costs; and (5) a significant increase in the production of {sup 238}Pu due to the presence of {sup 236}U, which benefits somewhat the transmutation value of the plutonium and also provides some proliferation resistance.

  4. Analysis of the Reuse of Uranium Recovered from the Reprocessing of Commercial LWR Spent Fuel

    International Nuclear Information System (INIS)

    DelCul, Guillermo D.; Trowbridge, Lee D.; Renier, John-Paul; Ellis, Ronald James; Williams, Kent Alan; Spencer, Barry B.; Collins, Emory D.

    2009-01-01

    This report provides an analysis of the factors involved in the reuse of uranium recovered from commercial light-water-reactor (LWR) spent fuels (1) by reenrichment and recycling as fuel to LWRs and/or (2) by recycling directly as fuel to heavy-water-reactors (HWRs), such as the CANDU (registered trade name for the Canadian Deuterium Uranium Reactor). Reuse is an attractive alternative to the current Advanced Fuel Cycle Initiative (AFCI) Global Nuclear Energy Partnership (GNEP) baseline plan, which stores the reprocessed uranium (RU) for an uncertain future or attempts to dispose of it as 'greater-than-Class C' waste. Considering that the open fuel cycle currently deployed in the United States already creates a huge excess quantity of depleted uranium, the closed fuel cycle should enable the recycle of the major components of spent fuel, such as the uranium and the hazardous, long-lived transuranic (TRU) actinides, as well as the managed disposal of fission product wastes. Compared with the GNEP baseline scenario, the reuse of RU in the uranium fuel cycle has a number of potential advantages: (1) avoidance of purchase costs of 11-20% of the natural uranium feed; (2) avoidance of disposal costs for a large majority of the volume of spent fuel that is reprocessed; (3) avoidance of disposal costs for a portion of the depleted uranium from the enrichment step; (4) depending on the 235 U assay of the RU, possible avoidance of separative work costs; and (5) a significant increase in the production of 238 Pu due to the presence of 236 U, which benefits somewhat the transmutation value of the plutonium and also provides some proliferation resistance

  5. Thermal dimensioning of spent fuel repository

    International Nuclear Information System (INIS)

    Ikonen, K.

    2009-09-01

    This report contains the temperature dimensioning of the KBS-3V type nuclear fuel repository in Olkiluoto for the BWR, VVER and EPR fuel canisters, which are disposed at vertical position in the horizontal tunnels in a rectangular geometry according to the preliminary Posiva plan. This report concerns only the temperature dimensioning of the repository and does not take into account the possible restrictions caused by the stresses induced in the rock. The maximum temperature on the canister-bentonite interface is limited to the design temperature of +100 deg C. However, due to uncertainties in thermal analysis parameters (like scattering in rock conductivity or in predicted decay power) the allowable calculated maximum canister temperature is set to 90 deg C causing a safety margin of 10 deg C. The allowable temperature is controlled by adjusting the space between adjacent canisters, adjacent tunnels and the pre-cooling time affecting on power of the canisters. The temperature of canister surfaces can be determined by superposing analytic line heat source models much more efficiently than by numerical analysis, if the analytic model is first calibrated by numerical analysis (by control volume method). This was done by comparing the surface temperatures of a single canister calculated numerically and analytically. For the Olkiluoto repository of one panel having 900 canisters of BWR, VVER and EPR spent fuel was analyzed. The analyses were performed with an initial canister power of 1 700 W, 1 370 W and 1 830 W, respectively. These decay heats are obtained when the pre-cooling times of the fuels are 32.9, 29.6 and 50.3 years (the burn-up values 40, 40 and 50 MWd/kgU, respectively). The analyses gave as a result the canister spacing (6.0-10.8 m), when the tunnel spacing was 25 m, 30 m or 40 m. On the edge areas of the panel with constant canister spacing the temperatures of the canisters are lower than in the middle area of the repository. Thus it is possible to pack

  6. Spent fuel data base: commercial light water reactors. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel.

  7. Spent fuel data base: commercial light water reactors

    International Nuclear Information System (INIS)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel

  8. Development of advanced spent fuel management process. The fabrication and oxidation behavior of simulated metallized spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Seung Gy; Shin, Y.J.; You, G.S.; Joo, J.S.; Min, D.K.; Chun, Y.B.; Lee, E.P.; Seo, H.S.; Ahn, S.B

    1999-03-01

    The simulated metallized spent fuel ingots were fabricated and evaluated the oxidation rates and the activation energies under several temperature conditions to develop an advanced spent fuel management process. It was also checked the alloying characteristics of the some elements with metal uranium. (Author). 3 refs., 1 tab., 36 figs.

  9. Efficient regeneration of partially spent ammonia borane fuel

    International Nuclear Information System (INIS)

    Davis, Benjamin Lee; Gordon, John C.; Stephens, Frances; Dixon, David A.; Matus, Myrna H.

    2008-01-01

    A necessary target in realizing a hydrogen (H 2 ) economy, especially for the transportation sector, is its storage for controlled delivery, presumably to an energy producing fuel cell. In this vein, the U.S. Department of Energy's (DOE) Centers of Excellence (CoE) in Hydrogen Storage have pursued different methodologies, including metal hydrides, chemical hydrides, and sorbents, for the expressed purpose of supplanting gasoline's current > 300 mile driving range. Chemical hydrogen storage has been dominated by one appealing material, ammonia borane (H 3 B-NH 3 , AB), due to its high gravimetric capacity of hydrogen (19.6 wt %) and low molecular weight (30.7 g mol -1 ). In addition, AB has both hydridic and protic moieties, yielding a material from which H2 can be readily released. As such, a number of publications have described H 2 release from amine boranes, yielding various rates depending on the method applied. Even though the viability of any chemical hydrogen storage system is critically dependent on efficient recyclability, reports on the latter subject are sparse, invoke the use of high energy reducing agents, and suffer from low yields. For example, the DOE recently decided to no longer pursue the use of NaBH 4 as a H 2 storage material, in part because of inefficient regeneration. We thus endeavored to find an energy efficient regeneration process for the spent fuel from H 2 depleted AB with a minimum number of steps.

  10. Methods for expanding the capacity of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1990-06-01

    At the beginning of 1989 more than 55,000 metric tonnes of heavy metal (MTHM) of spent Light Water Reactor (LWR) and Heavy Water Reactor (HWR) fuel had been discharged worldwide from nuclear power plants. Only a small fraction of this fuel has been reprocessed. The majority of the spent fuel assemblies are currently held at-reactor (AR) or away-from-reactor (AFR) in storage awaiting either chemical processing or final disposal depending on the fuel concept chosen by individual countries. Studies made by NEA and IAEA have projected that annual spent fuel arising will reach about 10,000 t HM in the year 2000 and cumulative arising will be more than 200,000 t HM. Taking into account the large quantity of spent fuel discharged from NPP and that the first demonstrations of the direct disposal of spent fuel or HLW are expected only after the year 2020, long-term storage will be the primary option for management of spent fuel until well into the next century. There are several options to expand storage capacity: (1) to construct new away-from-reactor storage facilities, (2) to transport spent fuel from a full at-reactor pool to another site for storage in a pool that has sufficient space to accommodate it, (3) to expand the capacity of existing AR pools by using compact racks, double-tierce, rod consolidation and by increasing the dimensions of existing pools. The purpose of the meeting was: to exchange new information on the international level on the subject connected with the expansion of storage capacities for spent fuel; to elaborate the state-of-the-art of this problem; to define the most important areas for future activity; on the basis of the above information to give recommendations to potential users for selection and application of the most suitable methods for expanding spent fuel facilities taking into account the relevant country's conditions. Refs, figs and tabs

  11. Multi-recycling of transuranic elements in a PWR assembly with reduced fuel rod diameter

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, Alex, E-mail: acchamb@gmail.com; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu

    2014-04-01

    Highlights: • Study of multiple recycling passes of transuranic elements: (a) without exceeding 5 wt.% on U-235 enrichment; (b) using PWR fuel assemblies compatible with current reactor core internals. • Isotopic concentrations tend towards an equilibrium after 15 recycle passes, suggesting that thermal recycling may be continued beyond that point. • Radiotoxicity comparisons for once-through UOX, once-recycle MOX-Pu, and multiple recycle passes of MOX-PuNpAm and MOX-PuNpAmCm are presented. - Abstract: This paper examines the multi-recycling of transuranic (TRU) elements (Pu-Np-Am-Cm) in standard Pressurized Water Reactor (PWR) assemblies. The original feed of TRU comes from legacy spent UOX fuel. For all subsequent recycling passes, TRU elements from the previous generation are employed, supplemented by TRU from legacy UOX fuel, as needed. The design criteria include: {sup 235}U enrichment requirements to remain below 5 w/o, TRU loading limits to avoid return to criticality under voided conditions, and assembly power peaking factors. In order to carry out multiple recycling passes within the design envelope, additional neutron moderation is required and achieved by reducing the fuel pellet diameter by about 13%, thus keeping the assembly design compatible with current PWR core internals. TRU transmutation rates and long-term ingestion radiotoxicity results are presented for 15 recycling passes and compared to standard UOX and MOX once-through cycles. The results also show that TRU fuel isotopics and radiotoxicity tend towards an equilibrium, enabling further additional recycling passes.

  12. Multi-recycling of transuranic elements in a PWR assembly with reduced fuel rod diameter

    International Nuclear Information System (INIS)

    Chambers, Alex; Ragusa, Jean C.

    2014-01-01

    Highlights: • Study of multiple recycling passes of transuranic elements: (a) without exceeding 5 wt.% on U-235 enrichment; (b) using PWR fuel assemblies compatible with current reactor core internals. • Isotopic concentrations tend towards an equilibrium after 15 recycle passes, suggesting that thermal recycling may be continued beyond that point. • Radiotoxicity comparisons for once-through UOX, once-recycle MOX-Pu, and multiple recycle passes of MOX-PuNpAm and MOX-PuNpAmCm are presented. - Abstract: This paper examines the multi-recycling of transuranic (TRU) elements (Pu-Np-Am-Cm) in standard Pressurized Water Reactor (PWR) assemblies. The original feed of TRU comes from legacy spent UOX fuel. For all subsequent recycling passes, TRU elements from the previous generation are employed, supplemented by TRU from legacy UOX fuel, as needed. The design criteria include: 235 U enrichment requirements to remain below 5 w/o, TRU loading limits to avoid return to criticality under voided conditions, and assembly power peaking factors. In order to carry out multiple recycling passes within the design envelope, additional neutron moderation is required and achieved by reducing the fuel pellet diameter by about 13%, thus keeping the assembly design compatible with current PWR core internals. TRU transmutation rates and long-term ingestion radiotoxicity results are presented for 15 recycling passes and compared to standard UOX and MOX once-through cycles. The results also show that TRU fuel isotopics and radiotoxicity tend towards an equilibrium, enabling further additional recycling passes

  13. Pu-recycling in light water reactors: calculation of fuel burn-up data for the design of reprocessing plants as well as the influence on the demand of uranium

    International Nuclear Information System (INIS)

    Gasteiger, R.

    1977-02-01

    This report gives a detailed review on the composition of radionuclides in spent LWR fuel in the case of Pu-recycling. These calculations are necessary for the design of spent fuel reprocessing plants. Furthermore the influence of Pu-recycling on the demand of uranium for a single LWR as well as for a certain growing LWR-population is shown. (orig.) [de

  14. Nuclear spent fuel dry storage in the EWA reactor shaft

    International Nuclear Information System (INIS)

    Mieleszczenko, W.; Moldysz, A.; Hryczuk, A.; Matysiak, T.

    2001-01-01

    The EWA reactor was in operation from 1958 until February 1995. Then it was subjected to the decommissioning procedure. Resulting from a prolonged operation of Polish research reactors a substantial amount of nuclear spent fuel of various types, enrichment and degree of burnup have been accumulated. The technology of storage of spent nuclear fuel foresees the two stages of wet storing in a water pool (deferral period from tens to several dozens years) and dry storing (deferral period from 50 to 80 years). In our case the deferral time in the water environment is pretty significant (the oldest fuel elements have been stored in water for more than 40 years). Though the state of stored fuel elements is satisfactory, there is a real need for changing the storage conditions of spent fuel. The paper is covering the description of philosophy and conceptual design for construction of the spent fuel dry storage in the decommissioned EWA reactor shaft. (author)

  15. Current status of IAEA activities in spent fuel management

    International Nuclear Information System (INIS)

    Danker, W.J.

    2003-01-01

    Spent fuel storage is a common issue in all IAEA Member States with nuclear reactors. Whatever strategy is selected for the back-end of the nuclear fuel cycle, the storage of spent fuel will be an increasingly significant consideration. Notwithstanding considerable efforts to increase the efficient use of nuclear fuel and to optimize storage capacity, delays in plans for geological repositories or in implementing reprocessing result in increased spent fuel storage capacity needs in combination with longer storage durations over the foreseeable future. As storage inventories and durations increase, issues associated with long term storage compel more attention...monitoring for potential degradation mechanisms, records retention, maintenance, efficiencies through burnup credit. Since the IAEA contribution to ICNC'99 focused exclusively on IAEA burnup credit activities including requirements and methods, this paper provides a broader perspective on IAEA activities in response to the above trends in spent fuel management, while also describing efforts to disseminate information regarding burnup credit applications. (author)

  16. Spent fuel characteristics provided by the CDB: An update

    International Nuclear Information System (INIS)

    Notz, K.J.; Salmon, R.; Welch, T.D.; Reich, W.J.; Moore, R.S.

    1992-01-01

    The Characteristics Data Base (CDB) task provides OCRWM with the detailed technical characteristics of potential repository wastes, which consist primarily of commercial spent nuclear fuel, but also includes other spent fuel (and also high-level and miscellaneous wastes). A major revision of the original CDB report and PC data bases has just been completed under formal QA peer review guidelines and Revision 1 is ready to be issued. This paper describes the classification scheme developed for LWR fuel assemblies and the five PC data bases for LWR spent fuel, which provide data on quantities, assemblies, radiological properties, non-fuel assembly hardware, and serial numbers. The future role of other (i.e., non-LWR) spent fuel is also cited

  17. A Neutronic Feasibility Study on the Recycling of an Oxide Fuel in Sodium-Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyu Hong; Choi, Hang Bok

    2006-06-15

    Neutronic feasibility was implemented for the recycling of a mixed oxide fuel in sodium-cooled fast reactors (SFR) through a thermal/mechanical dry process, which is recognized as one of the most proliferation- resistant recycling processes. In order to assess the applicability of a simple dry process which is not capable of completely removing all the fission products from a spent fuel, sensitivity calculations were performed for the reactor physics parameters with a dependency on the fission product removal rate of the recycled spent fuel. The equilibrium core calculations were performed by the REBUS-3 code for a BN-600 core without blanket fuels and a modified core with an increased fuel volume fraction. The reactor performance parameters such as the transuranic content, breeding ratio, peak linear power, burnup reactivity swing and reactivity coefficients were calculated for an equilibrium core under a fixed fuel management scheme. The results showed that a recycling of the oxide fuel in the SFR is feasible if the fission products are removed by more than 70% through the dry process as far as the material balance is concerned. However the physics analysis also showed that some of the physics design parameters are slightly deteriorated. The results of this study indicate that the recycling characteristics can be improved if the dry process can remove more fission products, and the reactor configuration is further optimized or the spent fuel composition is adjusted.

  18. A Neutronic Feasibility Study on the Recycling of an Oxide Fuel in Sodium-Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Choi, Hang Bok

    2006-06-01

    Neutronic feasibility was implemented for the recycling of a mixed oxide fuel in sodium-cooled fast reactors (SFR) through a thermal/mechanical dry process, which is recognized as one of the most proliferation- resistant recycling processes. In order to assess the applicability of a simple dry process which is not capable of completely removing all the fission products from a spent fuel, sensitivity calculations were performed for the reactor physics parameters with a dependency on the fission product removal rate of the recycled spent fuel. The equilibrium core calculations were performed by the REBUS-3 code for a BN-600 core without blanket fuels and a modified core with an increased fuel volume fraction. The reactor performance parameters such as the transuranic content, breeding ratio, peak linear power, burnup reactivity swing and reactivity coefficients were calculated for an equilibrium core under a fixed fuel management scheme. The results showed that a recycling of the oxide fuel in the SFR is feasible if the fission products are removed by more than 70% through the dry process as far as the material balance is concerned. However the physics analysis also showed that some of the physics design parameters are slightly deteriorated. The results of this study indicate that the recycling characteristics can be improved if the dry process can remove more fission products, and the reactor configuration is further optimized or the spent fuel composition is adjusted

  19. Storage of spent nuclear fuel: the problem of spent nuclear fuel in Bulgaria

    International Nuclear Information System (INIS)

    Boyadzhiev, Z.; Vapirev, E.

    1995-01-01

    A review of existing technologies for wet and dry storage of spent nuclear fuel (SNF) and the reprocessing policies is presented. The problem of SNF in Bulgaria is arising from nonobservance of the obligation to return SNF back to the former Soviet Union as agreed in the construction contract. In November 1994 approximately 1800 fuel assemblies have been stored in away-from-reactor (AFR) facility and another 1060 in at-reactor (AR) pools. The national policy is to export SNF out of the country. The AFR facility has a limited capacity and it is designed only for WWER-440 fuel although work is going on to extend it in order to store WWER-1000 SNF. 14 refs

  20. Storage of spent nuclear fuel: the problem of spent nuclear fuel in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Boyadzhiev, Z; Vapirev, E [Kombinat Atomna Energetika, Kozloduj (Bulgaria)

    1996-12-31

    A review of existing technologies for wet and dry storage of spent nuclear fuel (SNF) and the reprocessing policies is presented. The problem of SNF in Bulgaria is arising from nonobservance of the obligation to return SNF back to the former Soviet Union as agreed in the construction contract. In November 1994 approximately 1800 fuel assemblies have been stored in away-from-reactor (AFR) facility and another 1060 in at-reactor (AR) pools. The national policy is to export SNF out of the country. The AFR facility has a limited capacity and it is designed only for WWER-440 fuel although work is going on to extend it in order to store WWER-1000 SNF. 14 refs.

  1. Spent fuel storage at the Rancho Seco Nuclear Generation Station

    International Nuclear Information System (INIS)

    Miller, K.R.; Field, J.J.

    1995-01-01

    The Sacramento Municipal Utility District (SMUD) has developed a strategy for the storage and transport of spent nuclear fuel and is now in the process of licensing and manufacturing a Transportable Storage System (TSS). Staff has also engaged in impact limiter testing, non-fuel bearing component reinsertion, storage and disposal of GTCC waste, and site specific upgrades in support of spent fuel dry storage

  2. Equipment designs for the spent LWR fuel dry storage demonstration

    International Nuclear Information System (INIS)

    Steffen, R.J.; Kurasch, D.H.; Hardin, R.T.; Schmitten, P.F.

    1980-01-01

    In conjunction with the Spent Fuel Handling and Packaging Program (SFHPP) equipment has been designed, fabricated and successfully utilized to demonstrate the packaging and interim dry storage of spent LWR fuel. Surface and near surface storage configurations containing PWR fuel assemblies are currently on test and generating baseline data. Specific areas of hardware design focused upon include storage cell components and the support related equipment associated with encapsulation, leak testing, lag storage, and emplacement operations

  3. Optimization of spent fuel pool weir gate driving mechanism

    Science.gov (United States)

    Liu, Chao; Du, Lin; Tao, Xinlei; Wang, Shijie; Shang, Ertao; Yu, Jianjiang

    2018-04-01

    Spent fuel pool is crucial facility for fuel storage and nuclear safety, and the spent fuel pool weir gate is the key related equipment. In order to achieve a goal of more efficient driving force transfer, loading during the opening/closing process is analyzed and an optimized calculation method for dimensions of driving mechanism is proposed. The result of optimizing example shows that the method can be applied to weir gates' design with similar driving mechanism.

  4. Nondestructive verification and assay systems for spent fuels. Technical appendixes

    International Nuclear Information System (INIS)

    Cobb, D.D.; Phillips, J.R.; Baker, M.P.

    1982-04-01

    Six technical appendixes are presented that provide important supporting technical information for the study of the application of nondestructive measurements to spent-fuel storage. Each appendix addresses a particular technical subject in a reasonably self-contained fashion. Appendix A is a comparison of spent-fuel data predicted by reactor operators with measured data from reprocessors. This comparison indicates a rather high level of uncertainty in previous burnup calculations. Appendix B describes a series of nondestructive measurements at the GE-Morris Operation Spent-Fuel Storage Facility. This series of experiments successfully demonstrated a technique for reproducible positioning of fuel assemblies for nondestructive measurement. The experimental results indicate the importance of measuring the axial and angular burnup profiles of irradiated fuel assemblies for quantitative determination of spent-fuel parameters. Appendix C is a reasonably comprehensive bibliography of reports and symposia papers on spent-fuel nondestructive measurements to April 1981. Appendix D is a compendium of spent-fuel calculations that includes isotope production and depletion calculations using the EPRI-CINDER code, calculations of neutron and gamma-ray source terms, and correlations of these sources with burnup and plutonium content. Appendix E describes the pulsed-neutron technique and its potential application to spent-fuel measurements. Although not yet developed, the technique holds the promise of providing separate measurements of the uranium and plutonium fissile isotopes. Appendix F describes the experimental program and facilities at Los Alamos for the development of spent-fuel nondestructive measurement systems. Measurements are reported showing that the active neutron method is sensitive to the replacement of a single fuel rod with a dummy rod in an unirradiated uranium fuel assembly

  5. Thermal Cooling Limits of Sbotaged Spent Fuel Pools

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Thomas G. Hughes; Dr. Thomas F. Lin

    2010-09-10

    To develop the understanding and predictive measures of the post “loss of water inventory” hazardous conditions as a result of the natural and/or terrorist acts to the spent fuel pool of a nuclear plant. This includes the thermal cooling limits to the spent fuel assembly (before the onset of the zircaloy ignition and combustion), and the ignition, combustion, and the subsequent propagation of zircaloy fire from one fuel assembly to others

  6. Spent nuclear fuel discharges from U.S. reactors 1994

    International Nuclear Information System (INIS)

    1996-02-01

    Spent Nuclear Fuel Discharges from US Reactors 1994 provides current statistical data on fuel assemblies irradiated at commercial nuclear reactors operating in the US. This year's report provides data on the current inventories and storage capacities at these reactors. Detailed statistics on the data are presented in four chapters that highlight 1994 spent fuel discharges, storage capacities and inventories, canister and nonfuel component data, and assembly characteristics. Five appendices, a glossary, and bibliography are also included. 10 figs., 34 tabs

  7. Recycle and reuse of materials and components from waste streams of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    2000-01-01

    All nuclear fuel cycle processes utilize a wide range of equipment and materials to produce the final products they are designed for. However, as at any other industrial facility, during operation of the nuclear fuel cycle facilities, apart from the main products some byproducts, spent materials and waste are generated. A lot of these materials, byproducts or some components of waste have a potential value and may be recycled within the original process or reused outside either directly or after appropriate treatment. The issue of recycle and reuse of valuable material is important for all industries including the nuclear fuel cycle. The level of different materials involvement and opportunities for their recycle and reuse in nuclear industry are different at different stages of nuclear fuel cycle activity, generally increasing from the front end to the back end processes and decommissioning. Minimization of waste arisings and the practice of recycle and reuse can improve process economics and can minimize the potential environmental impact. Recognizing the importance of this subject, the International Atomic Energy Agency initiated the preparation of this report aiming to review and summarize the information on the existing recycling and reuse practice for both radioactive and non-radioactive components of waste streams at nuclear fuel cycle facilities. This report analyses the existing options, approaches and developments in recycle and reuse in nuclear industry

  8. Energy Return on Investment - Fuel Recycle

    International Nuclear Information System (INIS)

    Halsey, W.; Simon, A.J.; Fratoni, M.; Smith, C.; Schwab, P.; Murray, P.

    2012-01-01

    This report provides a methodology and requisite data to assess the potential Energy Return On Investment (EROI) for nuclear fuel cycle alternatives, and applies that methodology to a limited set of used fuel recycle scenarios. This paper is based on a study by Lawrence Livermore National Laboratory and a parallel evaluation by AREVA Federal Services LLC, both of which were sponsored by the DOE Fuel Cycle Technologies (FCT) Program. The focus of the LLNL effort was to develop a methodology that can be used by the FCT program for such analysis that is consistent with the broader energy modeling community, and the focus of the AREVA effort was to bring industrial experience and operational data into the analysis. This cooperative effort successfully combined expertise from the energy modeling community with expertise from the nuclear industry. Energy Return on Investment is one of many figures of merit on which investment in a new energy facility or process may be judged. EROI is the ratio of the energy delivered by a facility divided by the energy used to construct, operate and decommission that facility. While EROI is not the only criterion used to make an investment decision, it has been shown that, in technologically advanced societies, energy supplies must exceed a minimum EROI. Furthermore, technological history shows a trend towards higher EROI energy supplies. EROI calculations have been performed for many components of energy technology: oil wells, wind turbines, photovoltaic modules, biofuels, and nuclear reactors. This report represents the first standalone EROI analysis of nuclear fuel reprocessing (or recycling) facilities.

  9. Economics of National Waste Terminal Storage Spent Fuel Pricing Study

    International Nuclear Information System (INIS)

    1978-05-01

    The methodology for equitably pricing commercial nuclear spent fuel management is developed, and the results of four sample calculations are presented. The spent fuel management program analyzed places encapsulated spent fuel in bedded salt while maintaining long-term retrievability. System design was reasonable but not optimum. When required, privately-owned Away From Reactor (AFR) storage is provided and the spent fuel placed in AFR storage is eventually transported to final storage. Applicable Research and Development and Government Overhead are included. The cost of each component by year was estimated from the most recent applicable data source available. These costs were input to the pricing methodology to establish a one-time charge whose present value exactly recovered the present value of the expenditure flow. The four cases exercised were combinations of a high and a low quantity of spent fuel managed, with a single repository (venture) or a multiple repository (campaign) approach to system financial structure. The price for spent fuel management calculated ranged from 116 to 152 dollars (1978) per kilogram charged initially to the reactor. The effect of spent fuel receiving rate on price is illustrated by the fact that the extremes of price did not coincide with the cases having the extremes of undiscounted cost. These prices for spent fuel management are comparable in magnitude to other fuel cycle costs. The range of variation is small because of compensating effects, i.e., additional costs for high early deliveries (AFR and transportation) versus lower present value of future revenue for later delivery cases. The methodology contains numerous conservative assumptions, provisions for contingencies, and covers the complete set of spent fuel management expenses

  10. Management of spent oxide fuel from thermal reactors: the environmental and radiological effects of alternative approaches

    International Nuclear Information System (INIS)

    Martin, A.; Fry, T.M.; Edmunds, J.

    1983-07-01

    The report presents the results of a study of the environmental and radiological effects of alternative approaches to the management of spent oxide fuel from the UK nuclear power programme. The two main alternatives are extended storage of the fuel, pending decisions on fissile material recycle, and reprocessing of the fuel commencing in the early 1990s. A review is made of experience in spent fuel storage, of the technical issues in long-term storage and of the possible needs of the UK nuclear programme. The main environmental and radiological effects of reprocessing considered in the study are the generation of radioactive wastes, the release of radioactivity in effluents with the resulting radiation exposure of the public, and occupational radiation exposure. The influence of the delay between reprocessing and fabrication of mixed oxide fuel on the environmental and radiological effects of plutonium recycle is investigated and it is shown that the effects would be minimised if reprocessing were delayed until there was a requirement for recycle. Strategies for the management of heavy elements other than plutonium are discussed and results are presented illustrating aspects of actinide management. (author)

  11. Compaction of spent nuclear fuel cans

    International Nuclear Information System (INIS)

    Sullivan, H.

    1985-01-01

    Hydraulic press apparatus for compacting waste material eg. spent nuclear fuel cans comprises a fixed frame, a movable cross head, a press crown and three groups of piston/cylinder devices; having their pistons connected to the cross head and their cylinders secured to the press crown. A control means connects the first group of devices to hydraulic fluid in a reservoir which is pressurised initially by gas from gas accumulators to move the cross head and a quill secured thereto towards the frame base to compact the waste at a first high rate under a first high loading. Compaction then proceeds at a lower second rate at a lower second loading as the hydraulic fluid in the reservoir is pressurised by a pump. At two subsequent stages of compaction of the waste at which resistance increases causing a pressure rise in cylinders the control means causes hydraulic fluid to be passed to the second group of devices and thence to the third group of devices, the compaction rate reducing at each stage but the compaction force increasing. (author)

  12. Transporting spent reactor fuel: allegations and responses

    International Nuclear Information System (INIS)

    Jefferson, R.M.

    1983-03-01

    A January 1982 monthly newsletter from the Council on Economic Priorities (CEP) was entirely devoted to the presentation of a broad-ranging series of allegations that the transportation of spent fuel in particular, and other high-level radioactive materials by inference is currently being conducted in this country in an unsafe manner. This newsletter preceded the release of a book authored by Marvin Resnikoff on the same subject by over a year. This book titled The Next Nuclear Gamble contained substantially the same allegations as the newsletter, although the book devoted space to a greatly increased number of specific examples. This paper reduces those allegations contained in the executive summary and the recommendations contained in the last chapter of the book to a manageable number by combining the many specific issues into a few topics. Each of these topics is then addressed. As such, this is an abbreviated analysis of The Next Nuclear Gamble and does not address much of the fine detail. In spite of that, it would be possible to address each of the details within the book on a similar basis. The intent of this document is to provide background information for those who are questioned on the validity of the allegations made by the CEp

  13. Development of Advanced Spent Fuel Management Process

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chung Seok; Choi, I. K.; Kwon, S. G. (and others)

    2007-06-15

    As a part of research efforts to develop an advanced spent fuel management process, this project focused on the electrochemical reduction technology which can replace the original Li reduction technology of ANL, and we have successfully built a 20 kgHM/batch scale demonstration system. The performance tests of the system in the ACPF hot cell showed more than a 99% reduction yield of SIMFUEL, a current density of 100 mA/cm{sup 2} and a current efficiency of 80%. For an optimization of the process, the prevention of a voltage drop in an integrated cathode, a minimization of the anodic effect and an improvement of the hot cell operability by a modulation and simplization of the unit apparatuses were achieved. Basic research using a bench-scale system was also carried out by focusing on a measurement of the electrochemical reduction rate of the surrogates, an elucidation of the reaction mechanism, collecting data on the partition coefficients of the major nuclides, quantitative measurement of mass transfer rates and diffusion coefficients of oxygen and metal ions in molten salts. When compared to the PYROX process of INL, the electrochemical reduction system developed in this project has comparative advantages in its application of a flexible reaction mechanism, relatively short reaction times and increased process yields.

  14. Development of Advanced Spent Fuel Management Process

    International Nuclear Information System (INIS)

    Seo, Chung Seok; Choi, I. K.; Kwon, S. G.

    2007-06-01

    As a part of research efforts to develop an advanced spent fuel management process, this project focused on the electrochemical reduction technology which can replace the original Li reduction technology of ANL, and we have successfully built a 20 kgHM/batch scale demonstration system. The performance tests of the system in the ACPF hot cell showed more than a 99% reduction yield of SIMFUEL, a current density of 100 mA/cm 2 and a current efficiency of 80%. For an optimization of the process, the prevention of a voltage drop in an integrated cathode, a minimization of the anodic effect and an improvement of the hot cell operability by a modulation and simplization of the unit apparatuses were achieved. Basic research using a bench-scale system was also carried out by focusing on a measurement of the electrochemical reduction rate of the surrogates, an elucidation of the reaction mechanism, collecting data on the partition coefficients of the major nuclides, quantitative measurement of mass transfer rates and diffusion coefficients of oxygen and metal ions in molten salts. When compared to the PYROX process of INL, the electrochemical reduction system developed in this project has comparative advantages in its application of a flexible reaction mechanism, relatively short reaction times and increased process yields

  15. Software to improve spent fuel measurements using the FDET

    International Nuclear Information System (INIS)

    Staples, P.; Beddingfield, D.; Lestone, J.; Pelowitz, D.; Sprinkle, J.; Bytchkov, V.; Starovich, Z.; Harizanov, I.; Vellejo-Luna, J.; Lavender, C.

    2001-01-01

    Full text: Vast quantities of spent fuel are available for safeguard measurements, primarily in Commonwealth of Independent States (CIS) of the former Soviet Union. This spent fuel, much of which consists of long cooling time material, is going to become less unique in the world safeguards arena as reprocessing projects or permanent repositories continue to be delayed or postponed. The long cooling time of many of the spent fuel assemblies in the CIS countries being prepared for intermediate term storage promotes the possibility of increased accuracy in spent fuel assays. An important point to consider for the future that could advance safeguards measurements for re-verification and inspection measurements would be to determine what safeguards requirements should be imposed upon this 'new' class of spent fuel. Improvements in measurement capability will obviously affect the safeguards requirements. What most significantly enables this progress in spent fuel measurements is the improvement in computer processing power and software enhancements leading to user-friendly Graphical User Interfaces (GUI's). The software used for these projects significantly reduces the IAEA inspector's time both learning and operating computer and data acquisition systems. While at the same time by standardizing the spent fuel measurements it is possible to increase reproducibility and reliability of the measurement data. The inclusion of various analysis algorithms into the operating environment, which can be performed in real time upon the measurement data, can also lead to increases in safeguard reliability and improvements in efficiency to plant operations. (author)

  16. Loss of spent fuel pool cooling PRA: Model and results

    International Nuclear Information System (INIS)

    Siu, N.; Khericha, S.; Conroy, S.; Beck, S.; Blackman, H.

    1996-09-01

    This letter report documents models for quantifying the likelihood of loss of spent fuel pool cooling; models for identifying post-boiling scenarios that lead to core damage; qualitative and quantitative results generated for a selected plant that account for plant design and operational practices; a comparison of these results and those generated from earlier studies; and a review of available data on spent fuel pool accidents. The results of this study show that for a representative two-unit boiling water reactor, the annual probability of spent fuel pool boiling is 5 x 10 -5 and the annual probability of flooding associated with loss of spent fuel pool cooling scenarios is 1 x 10 -3 . Qualitative arguments are provided to show that the likelihood of core damage due to spent fuel pool boiling accidents is low for most US commercial nuclear power plants. It is also shown that, depending on the design characteristics of a given plant, the likelihood of either: (a) core damage due to spent fuel pool-associated flooding, or (b) spent fuel damage due to pool dryout, may not be negligible

  17. Spent Fuel Transportation Package Performance Study - Experimental Design Challenges

    International Nuclear Information System (INIS)

    Snyder, A. M.; Murphy, A. J.; Sprung, J. L.; Ammerman, D. J.; Lopez, C.

    2003-01-01

    Numerous studies of spent nuclear fuel transportation accident risks have been performed since the late seventies that considered shipping container design and performance. Based in part on these studies, NRC has concluded that the level of protection provided by spent nuclear fuel transportation package designs under accident conditions is adequate. [1] Furthermore, actual spent nuclear fuel transport experience showcase a safety record that is exceptional and unparalleled when compared to other hazardous materials transportation shipments. There has never been a known or suspected release of the radioactive contents from an NRC-certified spent nuclear fuel cask as a result of a transportation accident. In 1999 the United States Nuclear Regulatory Commission (NRC) initiated a study, the Package Performance Study, to demonstrate the performance of spent fuel and spent fuel packages during severe transportation accidents. NRC is not studying or testing its current regulations, a s the rigorous regulatory accident conditions specified in 10 CFR Part 71 are adequate to ensure safe packaging and use. As part of this study, NRC currently plans on using detailed modeling followed by experimental testing to increase public confidence in the safety of spent nuclear fuel shipments. One of the aspects of this confirmatory research study is the commitment to solicit and consider public comment during the scoping phase and experimental design planning phase of this research

  18. China's spent nuclear fuel management: Current practices and future strategies

    International Nuclear Information System (INIS)

    Zhou Yun

    2011-01-01

    Although China's nuclear power industry is relatively young and the management of its spent nuclear fuel is not yet a concern, China's commitment to nuclear energy and its rapid pace of development require detailed analyses of its future spent fuel management policies. The purpose of this study is to provide an overview of China's fuel cycle program and its reprocessing policy, and to suggest strategies for managing its future fuel cycle program. The study is broken into four sections. The first reviews China's current nuclear fuel cycle program and facilities. The second discusses China's current spent fuel management methods and the storage capability of China's 13 operational nuclear power plants. The third estimates China's total accumulated spent fuel, its required spent fuel storage from present day until 2035, when China expects its first commercialized fast neutron reactors to be operational, and its likely demand for uranium resources. The fourth examines several spent fuel management scenarios for the present period up until 2035; the financial cost and proliferation risk of each scenario is evaluated. The study concludes that China can and should maintain a reprocessing operation to meet its R and D activities before its fast reactor program is further developed. - Highlights: → This study provides an overview of China's fuel cycle program and its reprocessing policy.→ This study suggests strategies for managing its future fuel cycle program.→ China will experience no pressure to lessen the burden of spent fuel storage in the next 30 years.→ China should maintain sufficient reprocessing operations to meet its demands for R and D activities.→ China should actively invest on R and D activities of both fuel cycling and fast reactor programs.

  19. Spent Nuclear Fuel (SNF) Project Product Specification

    International Nuclear Information System (INIS)

    PAJUNEN, A.L.

    2000-01-01

    The process for removal of Spent Nuclear Fuel (SNF) from the K Basins has been divided into major sub-systems. The Fuel Retrieval System (FRS) removes fuel from the existing storage canisters, cleans it, and places it into baskets. The multi-canister overpack (MCO) loading system places the baskets into an MCO that has been pre-loaded in a cask. The cask, containing a loaded MCO, is then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the cask, and MCO, are transferred to the Canister Storage Building (CSB), where the MCO is removed from the cask, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The purpose of this document is to specify the process related characteristics of an MCO at the interface between major process systems. The characteristics are derived from the primary technical documents that form the basis for safety analysis and design calculations. This document translates the calculation assumptions into implementation requirements and describes the method of verifying that the requirement is achieved. These requirements are used to define validation test requirements and describe requirements that influence multiple sub-project safety analysis reports. This product specification establishes limits and controls for each significant process parameter at interfaces between major sub-systems that potentially affect the overall safety and/or quality of the SNF packaged for processing, transport, and interim dry storage. The product specifications in this document cover the SNF packaged in MCOs to be transported throughout the SNF Project. The description of the product specifications are organized in the document as follows: Section 2.0--Summary listing of product specifications at each major sub-system interface. Section 3.0--Summary description providing guidance as to how specifications are complied with by equipment design or processing within a major

  20. Spent Nuclear Fuel (SNF) Project Product Specification

    Energy Technology Data Exchange (ETDEWEB)

    PAJUNEN, A.L.

    2000-12-07

    The process for removal of Spent Nuclear Fuel (SNF) from the K Basins has been divided into major sub-systems. The Fuel Retrieval System (FRS) removes fuel from the existing storage canisters, cleans it, and places it into baskets. The multi-canister overpack (MCO) loading system places the baskets into an MCO that has been pre-loaded in a cask. The cask, containing a loaded MCO, is then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the cask, and MCO, are transferred to the Canister Storage Building (CSB), where the MCO is removed from the cask, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The purpose of this document is to specify the process related characteristics of an MCO at the interface between major process systems. The characteristics are derived from the primary technical documents that form the basis for safety analysis and design calculations. This document translates the calculation assumptions into implementation requirements and describes the method of verifying that the requirement is achieved. These requirements are used to define validation test requirements and describe requirements that influence multiple sub-project safety analysis reports. This product specification establishes limits and controls for each significant process parameter at interfaces between major sub-systems that potentially affect the overall safety and/or quality of the SNF packaged for processing, transport, and interim dry storage. The product specifications in this document cover the SNF packaged in MCOs to be transported throughout the SNF Project. The description of the product specifications are organized in the document as follows: Section 2.0--Summary listing of product specifications at each major sub-system interface. Section 3.0--Summary description providing guidance as to how specifications are complied with by equipment design or processing within a major