WorldWideScience

Sample records for spent decontamination solutions

  1. Separation of radionuclides from spent decontamination solutions and/or evaporator concentrates

    International Nuclear Information System (INIS)

    Sebesta, F.; John, J.; Rosikova, K.; Motl, A.

    1999-01-01

    Separation of radionuclides from spent alkaline decontamination solutions has been tested in model experiments with strontium separation from simulant solution. The composite absorbers tested included TiO-PAN and NaTiO-PAN materials (titanium dioxide or sodium titanate incorporated into a matrix of polyacrylonitrile binder). As an alkaline simulant, solution of 1 M NaOH + 1 M NaNO 3 + 10 -4 M Ca(NO 3 ) 2 + 10 -5 M Sr(NO 3 ) 2 spiked with a carrier-free 85 Sr tracer, was used. The experiments were performed at a flow rate of 12.5 BV/hr. Some experiments with real and simulant spent decontamination solutions are described

  2. Bioremediation of 60Co from simulated spent decontamination solutions

    International Nuclear Information System (INIS)

    Rashmi, K.; Naga Sowjanya, T.; Maruthi Mohan, P.; Balaji, V.; Venkateswaran, G.

    2004-01-01

    Bioremediation of 60 Co from simulated spent decontamination solutions by utilizing different biomass of (Neurospora crassa, Trichoderma viridae, Mucor recemosus, Rhizopus chinensis, Penicillium citrinum, Aspergillus niger and, Aspergillus flavus) fungi is reported. Various fungal species were screened to evaluate their potential for removing cobalt from very low concentrations (0.03-0.16 μM) in presence of a high background of iron (9.33 mM) and nickel (0.93 mM) complexed with EDTA (10.3 mM). The different fungal isolates employed in this study showed a pickup of cobalt in the range 8-500 ng/g of dry biomass. The [Fe]/[Co] and [Ni]/[Co] ratios in the solutions before and after exposure to the fungi were also determined. At micromolar level the cobalt pickup by many fungi especially the mutants of N. crassa is seen to be proportional to the initial cobalt concentration taken in the solution. However, R. chinensis exhibits a low but iron concentration dependent cobalt pickup. Prior saturating the fungi with excess of iron during their growth showed the presence of selective cobalt pickup sites. The existence of cobalt specific sorption sites is shown by a model experiment with R. chinensis wherein at a constant cobalt concentration (0.034 μM) and varying iron concentrations so as to yield [Fe/Co] initial ratios in solution of 10, 100, 1000 and 287 000 have all yielded a definite Co pickup capacity in the range 8-47 ng/g. The presence of Cr(III)EDTA (3 mM) in solution along with complexed Fe and Ni has not influenced the cobalt removal. The significant feature of this study is that even when cobalt is present in trace level (sub-micromolar) in a matrix of high concentration (millimolar levels) of iron, nickel and chromium, a situation typically encountered in spent decontamination solutions arising from stainless steel based primary systems of nuclear reactors, a number of fungi studied in this work showed a good sensitivity for cobalt pickup

  3. Bioremediation of {sup 60}Co from simulated spent decontamination solutions

    Energy Technology Data Exchange (ETDEWEB)

    Rashmi, K.; Naga Sowjanya, T.; Maruthi Mohan, P.; Balaji, V.; Venkateswaran, G

    2004-07-26

    Bioremediation of {sup 60}Co from simulated spent decontamination solutions by utilizing different biomass of (Neurospora crassa, Trichoderma viridae, Mucor recemosus, Rhizopus chinensis, Penicillium citrinum, Aspergillus niger and, Aspergillus flavus) fungi is reported. Various fungal species were screened to evaluate their potential for removing cobalt from very low concentrations (0.03-0.16 {mu}M) in presence of a high background of iron (9.33 mM) and nickel (0.93 mM) complexed with EDTA (10.3 mM). The different fungal isolates employed in this study showed a pickup of cobalt in the range 8-500 ng/g of dry biomass. The [Fe]/[Co] and [Ni]/[Co] ratios in the solutions before and after exposure to the fungi were also determined. At micromolar level the cobalt pickup by many fungi especially the mutants of N. crassa is seen to be proportional to the initial cobalt concentration taken in the solution. However, R. chinensis exhibits a low but iron concentration dependent cobalt pickup. Prior saturating the fungi with excess of iron during their growth showed the presence of selective cobalt pickup sites. The existence of cobalt specific sorption sites is shown by a model experiment with R. chinensis wherein at a constant cobalt concentration (0.034 {mu}M) and varying iron concentrations so as to yield [Fe/Co]{sub initial} ratios in solution of 10, 100, 1000 and 287 000 have all yielded a definite Co pickup capacity in the range 8-47 ng/g. The presence of Cr(III)EDTA (3 mM) in solution along with complexed Fe and Ni has not influenced the cobalt removal. The significant feature of this study is that even when cobalt is present in trace level (sub-micromolar) in a matrix of high concentration (millimolar levels) of iron, nickel and chromium, a situation typically encountered in spent decontamination solutions arising from stainless steel based primary systems of nuclear reactors, a number of fungi studied in this work showed a good sensitivity for cobalt pickup.

  4. Determination of overall decontamination factors for common impurity elements in PHWR spent fuel reprocessing

    International Nuclear Information System (INIS)

    Pant, D.K.; Bhalerao, B.A.; Gupta, K.K.; Kulkarni, P.G.; Gurba, P.B.; Janardan, P.; Changrani, R.D.; Dey, P.K.

    2009-01-01

    An attempt has been made to determine overall decontamination factors for elemental impurities normally encountered in the U 3 O 8 product obtained by reprocessing of PHWR spent fuel. The solution obtained by dissolution of spent fuel and corresponding U 3 O 8 product were analyzed for 24 elemental impurities by ICP-AES for this purpose. Decontamination factors achieved for major neutron poisons are in the range of 200-400. (author)

  5. Electrodialytic decontamination of spent ion exchange resins

    International Nuclear Information System (INIS)

    Nott, B.R.

    1982-01-01

    Development of a novel electrodialytic decontamination process for the selective removal of radioactive Cs from spent ion exchange resins containing large amounts of Li is described. The process involves passage of a dc electric current through a bed of the spent ion exchange resin in a specially designed electrodialytic cell. The radiocesium so removed from a volume of the spent resin is concentrated onto a much smaller volume of a Cs selective sorbent to achieve a significant radioactive waste volume reduction. Technical feasibility of the electrodialytic resin decontamination process has been demonstrated on a bench scale with a batch of simulated spent ion exchange resin and using potassium cobalt ferrocyanide as the Cs selective sorbent. A volume reduction factor between 10 and 17 has been estimated. The process appears to be economically attractive. Improvements in process economics can be expected from optimization of the process. Other possible applications of the EDRD process have been identified

  6. DECONTAMINATION OF ZIRCALOY SPENT FUEL CLADDING HULLS

    International Nuclear Information System (INIS)

    Rudisill, T; John Mickalonis, J

    2006-01-01

    The reprocessing of commercial spent nuclear fuel (SNF) generates a Zircaloy cladding hull waste which requires disposal as a high level waste in the geologic repository. The hulls are primarily contaminated with fission products and actinides from the fuel. During fuel irradiation, these contaminants are deposited in a thin layer of zirconium oxide (ZrO 2 ) which forms on the cladding surface at the elevated temperatures present in a nuclear reactor. Therefore, if the hulls are treated to remove the ZrO 2 layer, a majority of the contamination will be removed and the hulls could potentially meet acceptance criteria for disposal as a low level waste (LLW). Discard of the hulls as a LLW would result in significant savings due to the high costs associated with geologic disposal. To assess the feasibility of decontaminating spent fuel cladding hulls, two treatment processes developed for dissolving fuels containing zirconium (Zr) metal or alloys were evaluated. Small-scale dissolution experiments were performed using the ZIRFLEX process which employs a boiling ammonium fluoride (NH 4 F)/ammonium nitrate (NH 4 NO 3 ) solution to dissolve Zr or Zircaloy cladding and a hydrofluoric acid (HF) process developed for complete dissolution of Zr-containing fuels. The feasibility experiments were performed using Zircaloy-4 metal coupons which were electrochemically oxidized to produce a thin ZrO 2 layer on the surface. Once the oxide layer was in place, the ease of removing the layer using methods based on the two processes was evaluated. The ZIRFLEX and HF dissolution processes were both successful in removing a 0.2 mm (thick) oxide layer from Zircaloy-4 coupons. Although the ZIRFLEX process was effective in removing the oxide layer, two potential shortcomings were identified. The formation of ammonium hexafluorozirconate ((NH 4 ) 2 ZrF 6 ) on the metal surface prior to dissolution in the bulk solution could hinder the decontamination process by obstructing the removal of

  7. Preparation of SiO2-KCoFC composite ion-exchanger for removal of Cs in the soil decontamination waste solution

    International Nuclear Information System (INIS)

    Lee, Jung Joon; Moon, Jei kwon; Lee, Kune Woo

    2009-01-01

    The soil decontamination process has been developed for remediate the soil wastes excavated from the TRIGA research reactor sites. Even though the process was proven to be very effective for decontaminate the radioactive nuclides such as cesium and cobalt, the secondary spent solution should be treated with an appropriate method to minimize the waste volume. There are mainly two components in the spent decontamination solution of Cs and Co. The Co in the waste solution can be removed easily by precipitation under a basic condition. However, since the Cs is hardly removed by precipitation, an appropriate selective removal method should be employed. In this study, an inorganic composite ion exchanger of SiO 2 -KCoFC was prepared by sol-gel method for a removal of Cs in the decontamination waste solution. An optimum condition for a preparation of the composite ion exchanger and the adsorption performances of the prepared composite ion exchangers were evaluated

  8. Research and development for decontamination system of spent resin in Hanbit Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Gi Hong [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2015-12-15

    When reactor coolant leaks occur due to cracks of a steam generator tube, radioactive materials contained in the primary cooling water in nuclear power plant are forced out toward the secondary systems. At this time the secondary water purification resin in the ion exchange resin tower of the steam generator blowdown system is contaminated by the radioactivity of the leaked radioactive materials, so we pack this in special containers and store temporarily because we could not dispose it by ourselves. If steam generator tube leakage occurs, it produces contaminated spent resins annually about 5,000-7,000 liters. This may increase the amount of nuclear waste productions, a disposal working cost and a unit price of generating electricity in the plant. For this reasons, it is required to develop a decontamination process technique for reducing the radioactive level of these resins enough to handle by the self-disposal method. In this research, First, Investigated the structure and properties of the ion exchange resin used in a steam generator blowdown system. Second, Checked for a occurrence status of contaminated spent resin and a disposal technology. Third, identified the chemical characteristics of the waste radionuclides of the spent resin, and examined ionic bonding and separation mechanism of radioactive nuclear species and a spent resin. Finally, we carried out the decontamination experiment using chemicals, ultrasound, microbubbles, supercritical carbon dioxide to process these spent resin. In the case of the spent resin decontamination method using chemicals, the higher the concentration of the drug decontamination efficiency was higher. In the ultrasound method, foreign matter of the spent resin was removed and was found that the level of radioactivity is below of the MDA. In the microbubbles method, we found that the concentration of the radioactivity decreased after the experiment, so it can be used to the decontamination process of the spent resin. In

  9. Research and development for decontamination system of spent resin in Hanbit Nuclear Power Plant

    International Nuclear Information System (INIS)

    Sung, Gi Hong

    2015-01-01

    When reactor coolant leaks occur due to cracks of a steam generator tube, radioactive materials contained in the primary cooling water in nuclear power plant are forced out toward the secondary systems. At this time the secondary water purification resin in the ion exchange resin tower of the steam generator blowdown system is contaminated by the radioactivity of the leaked radioactive materials, so we pack this in special containers and store temporarily because we could not dispose it by ourselves. If steam generator tube leakage occurs, it produces contaminated spent resins annually about 5,000-7,000 liters. This may increase the amount of nuclear waste productions, a disposal working cost and a unit price of generating electricity in the plant. For this reasons, it is required to develop a decontamination process technique for reducing the radioactive level of these resins enough to handle by the self-disposal method. In this research, First, Investigated the structure and properties of the ion exchange resin used in a steam generator blowdown system. Second, Checked for a occurrence status of contaminated spent resin and a disposal technology. Third, identified the chemical characteristics of the waste radionuclides of the spent resin, and examined ionic bonding and separation mechanism of radioactive nuclear species and a spent resin. Finally, we carried out the decontamination experiment using chemicals, ultrasound, microbubbles, supercritical carbon dioxide to process these spent resin. In the case of the spent resin decontamination method using chemicals, the higher the concentration of the drug decontamination efficiency was higher. In the ultrasound method, foreign matter of the spent resin was removed and was found that the level of radioactivity is below of the MDA. In the microbubbles method, we found that the concentration of the radioactivity decreased after the experiment, so it can be used to the decontamination process of the spent resin. In

  10. Method for Cs-137 separation from the decontamination solutions

    International Nuclear Information System (INIS)

    Toropov, I.G.; Efremenkov, V.M.; Toropova, V.V.; Satsukevich, V.M.; Davidov, Yu.P.

    1995-01-01

    In this work results of investigations are presented on separation of radiocaesium from the decontamination solutions containing reducing agents (thiocarbamide). The scientific basis for radiocaesium removal from the solution focuses on the state of the radionuclide and its sorption behavior in the solution with a complicated composition. Then using a combination of sorption and ultrafiltration methods it would be possible to concentrate the radionuclide in a small volume and to purify the main part of the solution. As a sorbent for radiocaesium removal from the solution, a ferrocyanide based sorbent is proposed. Use of this sorbent is justified since its high selectivity and effectiveness for radiocaesium sorption from the solutions of different composition is well known. When synthesis of the sorbent is performed directly in the treating solution, two components as a minimum should be added to it, namely K 4 Fe(CN) 6 and metal ions of Ni-II, Co-II, Cu-II, etc. The results are presented which show the possibility of radiocaesium separation from the decontamination solutions (containing 60--100 g/l of salts) using sorption and membrane separation methods without the use of metal salts. At the same time by using FE-2 in solution in the presence of cyanide ions and thiocarbamide, it is possible to avoid the addition of metal salts (Ni, Cu, etc.). Utilization of the proposed method for spent decontamination solution treatment allows a relatively easy way to reduce the concentration of radiocaesium in solution on 2--4 orders of magnitudes, and to exclude the utilization of relatively expensive metal salts

  11. Complexon Solutions in Freon for Decontamination of Solids and SNF Treatment

    International Nuclear Information System (INIS)

    Kamachev, V.; Shadrin, A.; Murzin, A.

    2008-01-01

    Full text of publication follows: The possibility of using complexon solutions in supercritical and compressed carbon dioxide for decontamination of solid surfaces and for spent nuclear fuel (SNF) treatment was demonstrated in the works of Japanese, Russian and American researchers. The obtained data showed that the use of complexon solutions in carbon dioxide sharply decreases the volume of secondary radioactive wastes because it can be easily evaporated, purified and recycled. Moreover, high penetrability of carbon dioxide allows decontamination of surfaces with complex shape. However, one of the disadvantages of carbon dioxide is its high working pressure (10-20 MPa for supercritical CO 2 and 7 MPa for compressed CO 2 ). Moreover, in case of SNF treatment, carbon dioxide solvent will be contaminated with 14 C, which in the course of SNF dissolution in CO 2 containing TBP*HNO 3 adduct stage will be oxidized into CO 2 . These main disadvantages can be eliminated by using complexon solutions in ozone-friendly Freon HFC-134a for decontamination and SNF treatment. Our experimental data for real contaminated materials showed that the decontamination factor for complexon solutions in liquid Freon HFC-134a at 1,2 MPa and 25 deg. C is close to that attained in carbon dioxide. Moreover, the possibility of SNF treatment in Freon HFC-134a was demonstrated in trials using real SNF and its imitators. (authors)

  12. Decontamination of spent ion-exchangers contaminated with cesium radionuclides using resorcinol-formaldehyde resins.

    Science.gov (United States)

    Palamarchuk, Marina; Egorin, Andrey; Tokar, Eduard; Tutov, Mikhail; Marinin, Dmitry; Avramenko, Valentin

    2017-01-05

    The origin of the emergence of radioactive contamination not removable in the process of acid-base regeneration of ion-exchange resins used in treatment of technological media and liquid radioactive waste streams has been determined. It has been shown that a majority of cesium radionuclides not removable by regeneration are bound to inorganic deposits on the surface and inside the ion-exchange resin beads. The nature of the above inorganic inclusions has been investigated by means of the methods of electron microscopy, IR spectrometry and X-ray diffraction. The method of decontamination of spent ion-exchange resins and zeolites contaminated with cesium radionuclides employing selective resorcinol-formaldehyde resins has been suggested. Good prospects of such an approach in deep decontamination of spent ion exchangers have been demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Comparative scrub solution tests for decontamination of transuranic radionuclides from soils

    International Nuclear Information System (INIS)

    Stevens, J.R.; Kochen, R.L.; Rutherford, D.W.; Riordan, G.A.; Delaney, I.C.

    1982-08-01

    Soil decontamination tests were done using three scrubbing solutions on five different transuranic-contaminated soils from Department of Energy sites. The soils came from Rocky Flats, Colorado; Hanford, Washington; Mound Facility, Ohio; Idaho National Engineering Laboratory, Idaho; and Los Alamos National Laboratory, New Mexico. Decontamination was effected by physical and chemical means. A pH 12.5 scrub effected decontamination by serving as a hydraulic grading and attrition scrub medium; this solution did not solubilize the actinide contamination. A 2% HNO 3 , 0.2% HF, 2% pine oil, and 5% Calgon solution effected decontamination by physical and chemical means; this solution solubilized particulate actinide and actinide dispersed on the surface of soil particles. A 2N HCl scrub was also used to effect decontamination by physical and chemical means; this reagent solubilized soil constituents, removing contamination that had migrated into mineral surfaces. Only Rocky Flats soil was effectively decontaminated by the high pH solution although all soils had an enrichment of the activity in the -150 mesh fraction. Attrition scrubbing with both acid solutions had a better decontamination ability for the +150 mesh fraction for Hanford, INEL, and LANL soils. In addition, the acid solutions solubilized some of the plutonium and had a decontamination effect on the fine fractions

  14. Spent fuel storage and transport cask decontamination and modification. An overview of management requirements and applications based on practical experience

    International Nuclear Information System (INIS)

    1999-04-01

    A large increase in the number of casks required for transport and/or storage of spent fuel is forecast into the next century. The principal requirement will be for increased number of storage and dual purpose (transport/storage) casks for interim storage of spent fuel prior to reprocessing or permanent disposal in both on-site and off-site storage facilities. Through contact with radioactive materials spent fuel casks will be contaminated on both internal and external surfaces. In broad terms, cask contamination management can be defined by three components: minimisation, prevention and decontamination. This publication is a compilation of international experience with cask contamination problems and decontamination practices. The objective is to present current knowledge and experience as well as developments, trends and potential for new applications in this field. Furthermore, the report may assist in new design or modification of existing casks, cask handling systems and decontamination equipment

  15. Method of continuously regenerating decontaminating electrolytic solution

    International Nuclear Information System (INIS)

    Sasaki, Takashi; Kobayashi, Toshio; Wada, Koichi.

    1985-01-01

    Purpose: To continuously recover radioactive metal ions from the electrolytic solution used for the electrolytic decontamination of radioactive equipment and increased with the radioactive dose, as well as regenerate the electrolytic solution to a high concentration acid. Method: A liquid in an auxiliary tank is recycled to a cathode chamber containing water of an electro depositing regeneration tank to render pH = 2 by way of a pH controller and a pH electrode. The electrolytic solution in an electrolytic decontaminating tank is introduced by way of an injection pump to an auxiliary tank and, interlocking therewith, a regenerating solution is introduced from a regenerating solution extracting pump by way of a extraction pipeway to an electrolytic decontaminating tank. Meanwhile, electric current is supplied to the electrode to deposit radioactive metal ions dissolved in the cathode chamber on the capturing electrode. While on the other hand, anions are transferred by way of a partition wall to an anode chamber to regenerate the electrolytic solution to high concentration acid solution. While on the other hand, water is supplied by way of an electromagnetic valve interlocking with the level meter to maintain the level meter constant. This can decrease the generation of the liquid wastes and also reduce the amount of the radioactive secondary wastes. (Horiuchi, T.)

  16. Sogin enriched uranium extraction (EUREX) plant spent fuel pool cleaning and decontamination utilizing the Smart Safe solution

    International Nuclear Information System (INIS)

    Denton, M.S.; Gili, M.; Nasta, M.; Quintiliani, R.; Caccia, G.; Botzen, W.; Forrester, K.

    2009-01-01

    SOGIN's EUREX facility in Italy was developed as a pilot plant functional testing laboratory for spent fuel reprocessing. This facility was operated successfully for many years since 1970 and was eventually shutdown consistent with Italy's suspension of all nuclear operations. At the time of suspension, the EUREX facility still had spent nuclear fuel assemblies in storage from a nearby PWR. Other fuel assemblies from an Italian AGR had remained stored in the spent fuel pool for the 20 years or so waiting for removal and reprocessing abroad. Being Magnox fuel elements, their recovery for the transport produced a huge amount of sludge in the pool. During this time, sediment, dirt, corrosion products, fuel cladding, etc. has collected within the fuel pool as a crud layer dispersed throughout. Most of this crud has accumulated on the horizontal surfaces of the pool and fuel element assemblies, while some remains as a suspended colloidal material. Furthermore many other contaminated metal components, used during the operation years, where still inside the pool. Due to a pool leak discovered in 2006, SOGIN speeded up its pool decommissioning program, making also available the transfer of the spent fuel to a nearby interim repository, with the goal to completely drain the pool in the shortest period of time. In order for SOGIN to successfully transfer the fuel assemblies from their current storage basket locations to the spent fuel transfer cask, the bulk of the crud needed to be removed. This cleanup operation was deemed necessary to minimize the suspension of contamination in the water during underwater handling operations. This would reduce the decontamination efforts on the transfer cask upon removal, once loaded with the spent fuel, and enhance safety by reducing potential underwater visibility issues. The operations were completed in July 2008 with the release to the environment of the pool water, thoroughly purified and without any relevant radiological impact. The

  17. Decomposition Technology Development of Organic Component in a Decontamination Waste Solution

    International Nuclear Information System (INIS)

    Jung, Chong Hun; Oh, W. Z.; Won, H. J.; Choi, W. K.; Kim, G. N.; Moon, J. K.

    2007-11-01

    Through the project of 'Decomposition Technology Development of Organic Component in a Decontamination Waste Solution', the followings were studied. 1. Investigation of decontamination characteristics of chemical decontamination process 2. Analysis of COD, ferrous ion concentration, hydrogen peroxide concentration 3. Decomposition tests of hardly decomposable organic compounds 4. Improvement of organic acid decomposition process by ultrasonic wave and UV light 5. Optimization of decomposition process using a surrogate decontamination waste solution

  18. Decomposition Technology Development of Organic Component in a Decontamination Waste Solution

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chong Hun; Oh, W. Z.; Won, H. J.; Choi, W. K.; Kim, G. N.; Moon, J. K

    2007-11-15

    Through the project of 'Decomposition Technology Development of Organic Component in a Decontamination Waste Solution', the followings were studied. 1. Investigation of decontamination characteristics of chemical decontamination process 2. Analysis of COD, ferrous ion concentration, hydrogen peroxide concentration 3. Decomposition tests of hardly decomposable organic compounds 4. Improvement of organic acid decomposition process by ultrasonic wave and UV light 5. Optimization of decomposition process using a surrogate decontamination waste solution.

  19. Pilot-scale decontamination solution test results HGTP-93-0702-02

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Allen, R.P.; Bagaasen, L.M.; Fetrow, L.K.

    1993-05-01

    Decontamination solution testing constitutes a task of the Hanford Grout Technology Program (HGTP) at Pacific Northwest Laboratory (PNL). The HGTP provides technical support to the Westinghouse Hanford Company (WHC) Grout Disposal Program. Cementitious grout has been identified as the waste form for low-level radioactive waste. Grout processing equipment, including mixers, pumps, and piping, will require periodic maintenance. Decontamination of components is needed to reduce radiation dose to maintenance workers. The purpose of this work was to develop and test methods for decontaminating grout processing equipment. The proposed method of decontamination is to use a mild chemical solution, such as a 6 N citric acid to dissolve the grout. The method should effectively remove grout without causing degradation of grout processing equipment

  20. Processing of waste solutions from electrochemical decontamination

    International Nuclear Information System (INIS)

    Charlot, L.A.; Allen, R.P.; Arrowsmith, H.W.; Hooper, J.L.

    1979-09-01

    The use of electropolishing as a decontamination technique will be effective only if we can minimize the amount of secondary waste requiring disposal and economically recycle part of the decontamination electrolyte. Consequently, a solution purification method is needed to remove the dissolved contamination and metal in the electrolyte. This report describes the selection of a purification method for a phosphoric acid electrolyte from the following possible acid reclamation processes: ion exchange, solvent extraction, precipitation, distillation, electrolysis, and membrane separation

  1. Decontamination solution development studies

    International Nuclear Information System (INIS)

    Allen, R.P.; Fetrow, L.K.; Kjarmo, H.E.; Pool, K.H.

    1993-09-01

    This study was conducted for the Westinghouse Hanford Company (WHC) by Pacific Northwest Laboratory (PNL) as part of the Hanford Grout Technology Program (HGTP). The objective of this study was to identify decontamination solutions capable of removing radioactive contaminants and grout from the Grout Treatment Facility (GTF) process equipment and to determine the impact of these solutions on equipment components and disposal options. The reference grout used in this study was prepared with simulated double-shell slurry feed (DSSF) and a dry blend consisting of 40 wt % limestone flour, 28 wt % blast furnace slag, 28 wt % fly ash, and 4 wt % type I/II Portland cement

  2. Equipment decontamination: A brief survey of the DOE complex

    International Nuclear Information System (INIS)

    Conner, C.; Chamberlain, D.B.; Chen, L.; Vandegrift, G.F.

    1995-03-01

    Deactivation at DOE facilities has left a tremendous amount of contaminated equipment behind. In-situ methods are needed to decontaminate the interiors of the equipment sufficiently to allow either free release or land disposal. A brief survey was completed of the DOE complex on their needs for equipment decontamination with in-situ technology to determine (1) the types of contamination problems within the DOE complex, (2) decontamination processes that are being used or are being developed within the DOE, and (3) the methods that are available to dispose of spent decontamination solutions. In addition, potential sites for testing decontamination methods were located. Based on the information obtained from these surveys, the Rocky Flats Plant and the Idaho National Engineering Laboratory appear to be best suited to complete the initial testing of the decontamination processes

  3. Feasibility study on decontamination of the contaminated stainless steel with HBF4 solution

    International Nuclear Information System (INIS)

    Dong Ruilin; Zhang Yuan; Qiu Dangui; Huang Yuying; Ren Xianwen

    2002-01-01

    Decontamination experiments were carried out with HBF 4 solution on the following four kinds of sample: 1Cr18Ni9Ti stainless steel with and without welding line, 1Cr18Ni9Ti stainless steel with oxide layer formed in boiling concentrated nitric acid solution, natural uranium and 230 Th contaminated stainless steel pipe sample from one decommissioning nuclear facility. The results indicated that the oxide layer, the welding line of the 1Cr18Ni9Ti stainless steel and itself can be dissolved in the HBF 4 decontamination solution. The solubility of the 1Cr18Ni9Ti stainless steel in the HBF 4 solution used in the test is more than 5 g/L, which means that the 0.13 m 2 stainless steel could be dissolved up to a thickness of 5 μm in one liter of decontamination solution. The decontamination efficiency is more than 85% in 30 minutes for the 230 Th contaminated sample, and 87% in 2 hours for the natural uranium contaminated sample. Both samples could be decontaminated to the background level after several runs of the decontamination

  4. Pilot Plant for treating of spent exchange resins

    International Nuclear Information System (INIS)

    Iglesias, Alberto M.; Raffo Calderon, Maria del C.; Varani, Jose L.

    2004-01-01

    Spent exchange resins that have been accumulating during the last operational 30 years in Atucha I nuclear power plant (NPP) are a 'problematic' waste. These spent resins conform an intermediate level waste due to the total content of alpha, beta and gamma emitters (some samples of spent resins were analyzed in 2003). For this reason its treatment is more expensive since it is necessary to add more safety barriers for its final disposition and also for the radioprotection actions that are involved. Using sulfuric acid solutions it is possible to elute from the spent resins the ions that are retained. In the same operation are eluted Cobalt, Cesium and alpha emitters since that all these elements react as cations in aqueous solution. Decontamination by electrochemical methods was analyzed as an interesting method to apply after elution operation to these spent resins since that with the decontamination process it is possible to obtain a solid without activity and concentrate the activity in cells that are small in volume and its manipulation doesn't present any extra complication. Experiments made with active samples taken from the deposit were successful. Because of these results it was built a small plant to treat a batch of 100 dm 3 of wet spent exchange resins. Some problems with the material that was in the deposit together with spent resins caused that we had to plan a more complex strategy to obtain a complete decontamination of the spent resins (in this stage we used the cobalt retention cell that was described in other paper to retain Cobalt and alpha emitters and a sample of zeolites from Argentina ores to retain Cesium). Due to alpha emitters act electrochemically like cations it was possible to retain altogether with ionic Cobalt on the copper amalgam electrode. Working in the non-active lab with alcoholic solutions it was possible to retain ionic Cesium on a copper electrode (copper is covered by mercury fine film which forms a solid amalgam) with a

  5. Treatment of Soil Decontamination Solution by the Cs{sup +} Ion Selective Ion Exchange Resin

    Energy Technology Data Exchange (ETDEWEB)

    Won, Hui Jun; Kim, Gye Nam; Jung, Chung Hun; Oh, Won Zin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    Occasionally, radioactively contaminated soils have been excavated and stored at the temporary storage facility. Cesium as a radionuclide is one of the most toxic elements and it has a long half decay life. During the operation of nuclear facility, soils near the facility would be contaminated with radioactive cesium and it will cause the deleterious effect to human body and environment. In this study, Cs{sup +} ion selective ion exchange resin was prepared by changing the functional group of commercial anion exchange resin for a ferrocyanide ion. Ion exchange capability of using the soil decontamination solution was investigated. We also performed the feasibility test of recycling the spent Cs ion selective ion exchange resin.

  6. Treatment of Simulated Soil Decontamination Waste Solution by Ferrocyanide-Anion Exchange Resin Beads

    Energy Technology Data Exchange (ETDEWEB)

    Won, Hui Jun; Kim, Min Gil; Kim, Gye Nam; Jung, Chung Hun; Park, Jin Ho; Oh, Won Zin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2005-03-15

    Preparation of ferrocyanide-anion exchange resin and adsorption test of the prepared resin on the Cs{sup -} ion were performed. Adsorption capability of the prepared resin on the Cs{sup -} ion in the simulated citric acid based soil decontamination waste solution was 4 times greater than that of the commercial cation exchange resin. Adsorption equilibrium of the prepared resin on the Cs{sup -} ion reached within 360 minutes. Adsorption capability on the Cs{sup -} ion became to decrease above the necessary Co{sup 2-} ion concentration in the experimental range. Recycling test of the spent ion exchange resin by the successive application of hydrogen peroxide and hydrazine was also performed. It was found that desorption of Cs{sup -} ion from the resin occurred to satisfy the electroneutrality condition without any degradation of the resin.

  7. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent.

    Science.gov (United States)

    Waysbort, Daniel; McGarvey, David J; Creasy, William R; Morrissey, Kevin M; Hendrickson, David M; Durst, H Dupont

    2009-01-30

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Greentrade mark, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO(4)(-2)) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t(1/2) decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.

  8. Environmental and occupational hazards associated with decontamination solutions (a)

    International Nuclear Information System (INIS)

    Levanthal, L.

    1985-01-01

    Some of the reagents employed in the decontamination of reactor coolant systems are potentially hazardous. Potential exposure to decontamination agents by operating personnel, or members of the general population, could occur during use, processing, transportation to, or disposal at a low-level waste site. Federal and state agencies have promulgated regulations relevant to the disposal of decontamination solution waste to prevent acute or chronic exposures. In particular, the Nuclear Regulatory Commission (NRC), U.S. Environmental Protection Agency (EPA), Department of Transportation (DOT), Department of Labor - Occupational Safety and Health Administration (OSHA), State of South Carolina, State of Nevada, and the State of Washington have such regulations. These regulations may impact on the choice of decontamination solutions, operations procedures, processing methods, or disposal methods. Laws and regulations relate to both chemically hazardous, or toxic materials and to radioactive hazards. Laws which regulate the exposure of workers and the general public to effluents and emissions during processing, disposal and transport have been abstracted. As a result of these regulations, utilities are required to obtain permits to perform monitoring and sampling of personnel and the on-site and off-site environment, provide proper protective clothing and ventilation, make certain the solutions are properly contained during use, storage and processing, and destroy and/or properly immobilize the residues for disposal. Waste treatment processes such as neutralization, ion exchange, evaporation, incineration, etc., must not produce, nor result in hazardous emissions, effluents, residues, or hazards to workers. The laws also stipulate record keeping and documentation

  9. Study on decontamination of radioactive ruthenium by steel wool in waste solution

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, S; Sakaki, T [Radia Industry Co. Ltd., Takasaki, Gunma (Japan)

    1979-06-01

    Tracer experiments were done in order to establish a decontamination process of /sup 106/Ru in radioactive waste solution by column method paying special attention on the solution of nitrato-nitrosyl complex of Ru which is often encountered as a low level radioactive solution. It turned out that metallic iron was the most effective decontaminating agent among the several tens of materials tested. The decontamination factor (DF) of /sup 106/Ru increased in proportion to the total surface area of iron and it sensitively depended on the oxidation state of the surface as revealed by the batchwise and columnwise tests. Iron samples with high corrosiveness gave a much larger DF than those with low corrosiveness. The decontamination process proceeded as iron was being oxidized via Fe(metal) ..-->.. Fe(II) ..-->.. Fe(III). As the results, the DF initially increased after initiating the passage of water through the column but it then decreased as the oxidation process became inactive. An excellent durability up to 10000 bed volumes was demonstrated by the column method at a high average DF of 150.

  10. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent

    International Nuclear Information System (INIS)

    Waysbort, Daniel; McGarvey, David J.; Creasy, William R.; Morrissey, Kevin M.; Hendrickson, David M.; Durst, H. Dupont

    2009-01-01

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Green TM , has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO 4 -2 ) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t 1/2 ≤ 4 min), 1:10 for HD (t 1/2 1/2 < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD

  11. Decontamination of waste radioactive polluted solutions in radiation treatment

    International Nuclear Information System (INIS)

    Simova, G.; Boyadzhiev, A.; Mikhajlov, M.G.; Shopov, N.

    1979-01-01

    The decontamination capacity of solutions of the trivial cleaning Bulgarian preparations ''Mipro'', ''Sana'', ''Synthek'' and ''Univer'' for different surfaces (steel, glass, PVC and linoleum) contaminated with cesium-134, strontium-85 or cerium-144 chlorides, was studied. Concentrations from 5 to 15 g/l of the solutions used in this study displayed a degree of cleaning over 90%. Higher concentration of the solution does not improve its cleaning capacity. For evaluation of foam formation by the solutions, the so called ''foam column stability coefficient'' has been adopted. This coefficient represents the ratio between the height of the foam column and the time of its half life, referred to the time for the foam column formation when blown through with a constant air current. On the basis of this index, solutions of the preparation ''Mipro'' proved to be the best ones for decontamination - in the whole investigated concentration span, the foam column stability coefficient for the solutions of this preparation is with two orders lower than the respective coefficient of the other preparations. It was experimentally established that radiation treatment of radio-contaminated solutions reduces the foam column stability coefficient. Radiation treatment should be carried out in a gamma field, realizing at least one megarad within an acceptable for the liquid wastes time period. (A.B.)

  12. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Waysbort, Daniel [Israel Institute for Biological Research, PO Box 19, Ness-Ziona 74100 (Israel); McGarvey, David J. [R and T Directorate, Edgewood Chemical and Biological Center (ECBC), Aberdeen Proving Ground-Edgewood Area, MD 21010 (United States)], E-mail: david.mcgarvey@us.army.mil; Creasy, William R.; Morrissey, Kevin M.; Hendrickson, David M. [SAIC, P.O. Box 68, Gunpowder Branch, Aberdeen Proving Ground, MD 21010 (United States); Durst, H. Dupont [R and T Directorate, Edgewood Chemical and Biological Center (ECBC), Aberdeen Proving Ground-Edgewood Area, MD 21010 (United States)

    2009-01-30

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Green{sup TM}, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO{sub 4}{sup -2}) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t{sub 1/2} {<=} 4 min), 1:10 for HD (t{sub 1/2} < 2 min with molybdate), and 1:10 for GD (t{sub 1/2} < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.

  13. Coolant system decontamination

    International Nuclear Information System (INIS)

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P.

    1981-01-01

    An improved method for decontaminating the coolant system of water cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution. (author)

  14. A study on the expulsion of iodine from spent-fuel solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Tsutomu; Takahashi, Akira; Ishikawa, Niroh [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)] [and others

    1995-02-01

    During dissolution of spent nuclear fuels, some radioiodine remains in spent-fuel solutions. Its expulsion to dissolver off-gas is important to minimize iodine escape to the environment. In our current work, the iodine remaining in spent-fuel solutions varied from 0 to 10% after dissolution of spent PWR-fuel specimens (approximately 3 g each). The amount remaining probably was dependent upon the dissolution time required. The cause is ascribable to the increased nitrous acid concentration that results from NOx generated during dissolution. The presence of nitrous acid was confirmed spectrophotometrically in an NO-HNO{sub 3} system at 100{degrees}C. Experiments examining NOx concentration versus the quantity of iodine in a simulated spent-fuel solution indicate that iodine (I{minus}) in spent fuels is subjected to the following three reactions: (1) oxidation into I{sub 2} by nitric acid, (2) oxidation into I{sub 2} by nitrous acid arising from NOx, and (3) formation of colloidal iodine (AgI, PdI{sub 2}), the major iodine species in a spent-fuel solution. Reaction (2) competes with reaction (3) to control the quantity of iodine remaining in solution. The following two-step expulsion process to remove iodine from a spent-fuel solution was derived from these experiments: Step One - Heat spent-fuel solutions without NOx sparging. When aged colloidal iodine is present, an excess amount of iodate should be added to the solution. Step Two - Sparge the fuel solution with NOx while heating. Effect of this new method was confirmed by use of a spent PWR-fuel solution.

  15. The feasibility study of hot cell decontamination by the PFC spray method

    International Nuclear Information System (INIS)

    Hui-Jun Won; Chong-Hun Jung; Jei-Kwon Moon

    2008-01-01

    The characteristics of per-fluorocarbon compounds (PFC) are colorless, non-toxic, easily vaporized and nonflammable. Also, some of them are liquids of a high density, low surface tension, low latent heat and low specific heat. These particular chemical and physical properties of fluoro-organic compounds permit their use in very different fields such as electronics, medicine, tribology, nuclear and material science. The Sonatol process was developed under a contract with the DOE. The Sonatol process uses an ultrasonic agitation in a PFC solution that contains a fluorinated surfactant to remove radioactive particles from surfaces. Filtering the suspended particles allows the solutions to be reused indefinitely. They applied the Sonatol process to the decontamination of a heterogeneous legacy Pu-238 waste that exhibited an excessive hydrogen gas generation, which prevents a transportation of such a waste to a Waste Isolation Pilot Plant. Korea Atomic Energy Research Institute (KAERI) is developing dry decontamination technologies applicable to a decontamination of a highly radioactive area loosely contaminated with radioactive particles. This contamination has occurred as a result of an examination of a post-irradiated material or the development of the DUPIC process. The dry decontamination technologies developed are the carbon dioxide pellet spray method and the PFC spray method. As a part of the project, PFC ultrasonic decontamination technology was developed in 2004. The PFC spray decontamination method which is based on the test results of the PFC ultrasonic method has been under development since 2005. The developed PFC spray decontamination equipment consists of four modules (spray, collection, filtration and distillation). Vacuum cup of the collection module gathers the contaminated PFC solution, then the solution is moved to the filtration module and it is recycled. After a multiple recycling of the spent PFC solution, it is purified in the distillation

  16. Bioremediation of trace cobalt from simulated spent decontamination solutions of nuclear power reactors using E. coli expressing NiCoT genes

    International Nuclear Information System (INIS)

    Raghu, G.; Maruthi Mohan, P.; Balaji, V.; Venkateswaran, G.; Rodrigue, A.; Lyon 1 Univ., 69

    2008-01-01

    Removal of radioactive cobalt at trace levels (∼nM) in the presence of large excess (10 6 -fold) of corrosion product ions of complexed Fe, Cr, and Ni in spent chemical decontamination formulations (simulated effluent) of nuclear reactors is currently done by using synthetic organic ion exchangers. A large volume of solid waste is generated due to the nonspecific nature of ion sorption. Our earlier work using various fungi and bacteria, with the aim of nuclear waste volume reduction, realized up to 30% of Co removal with specific capacities calculated up to 1 μg/g in 6-24 h. In the present study using engineered Escherichia coli expressing NiCoT genes from Rhodopseudomonas palustris CGA009 (RP) and Novosphingobium aromaticivorans F-199 (NA), we report a significant increase in the specific capacity for Co removal (12 μg/g) in 1-h exposure to simulated effluent. About 85% of Co removal was achieved in a two-cycle treatment with the cloned bacteria. Expression of NiCoT genes in the E. coli knockout mutant of NiCoT efflux gene (rcnA) was more efficient as compared to expression in wild-type E. coli MC4100, JM109 and BL21 (DE3) hosts. The viability of the E. coli strains in the formulation as well as at different doses of gamma rays exposure and the effect of gamma dose on their cobalt removal capacity are determined. The potential application scheme of the above process of bioremediation of cobalt from nuclear power reactor chemical decontamination effluents is discussed. (orig.)

  17. Process to decontaminate a superficial soil layer contaminated with radioactive particles and decontaminating solution

    International Nuclear Information System (INIS)

    Jouve, A.; Mary, N.

    1993-01-01

    The process consists to dissolve a micronised powder of anionic and crosslinked polyacrilamide, to spray the obtained decontamination solution on the floor to be traited allowing to dry to form a dry polyacrilamide film, to rehydrate the film by spraying with water and to recover the film bonded to the floor particles and the polluting particles by cleaning means. 1 fig

  18. SAFETY STUDIES TO MEASURE EXOTHERMIC REACTIONS OF SPENT PLUTONIUM DECONTAMINATION CHEMICALS USING WET AND DRY DECONTAMINATION METHODS

    International Nuclear Information System (INIS)

    HOPKINS, A.M.; JACKSON, G.W.; MINETTE, M.; EWALT, J.; COOPER, T.; SCOTT, P.; JONES, S.; SCHEELEY, R.

    2005-01-01

    The Plutonium Finishing Plant (PFP) at the Hanford site in Eastern Washington is currently being decommissioned by Fluor Hanford. Chemicals being considered for dccontamination of gloveboxes in PFP include cerium (IV) nitrate in a nitric acid solution, and proprietary commercial solutions that include acids and sequestering agents. Aggressive chemicals are commonly used to remove transuranic contaminants from process equipment to allow disposal of the equipment as low level waste. Fluor's decontamination procedure involves application of chemical solutions as a spray on the contaminated surfaces, followed by a wipe-down with rags. Alternatively, a process of applying oxidizing Ce IV ions contained in a gel matrix and vacuuming a dry gel material is being evaluated. These processes effectively transfer the transuranic materials to rags or a gel matrix which is then packaged as TRU waste and disposed

  19. Corrosion Compatibility Studies on Inconel-600 in NP Decontamination Solution

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Yoon; Jung, Jun Young; Won, Huijun; Choi, Wangkyu; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    It is well known that corrosion and contamination process in the primary cooling circuit of nuclear reactors are essentially interrelated: the contaminant isotopes are mostly corrosion products activated in the reactor core, and the contamination takes place on the out-core of Inconel-600 surface. This radionuclide uptake takes place up to the inner oxide layer and oxide/metal interface. So, it is necessary to remove inner oxide layer as well as outer oxide layer for excellent decontamination effects. The outer oxide layers are composed of Fe{sub 3}O{sub 4} and NiFe{sub 2}O{sub 4}. On the other hand, the inner oxide layers are composed of Cr{sub 2}O{sub 3}, (Ni{sub 1-x}Ni{sub x})(Cr{sub 1-y}Fe{sub y}){sub 2}O{sub 4}, and FeCr{sub 2}O{sub 4}. Because of chromium in the trivalent oxidation state which is difficult to dissolve, the oxide layer has an excellent protectiveness and become hard to be decontaminated. Alkaline permanganate (AP) or nitric permanganate (NP) oxidative phase has been used to dissolve the chromium-rich oxide. A disadvantage of AP process is the generation of a large volume of secondary waste. On the other hand, that of NP process is the high corrosion rate for Ni-base alloys. Therefore, for the safe use of oxidative phase in PWR system decontamination, it is necessary to reformulate the NP chemicals for decrease of corrosion rate. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications. To evaluate the general corrosion properties, weight change of NP treated specimens was measured. NP treated specimen surface was observed using optical microscope (OM) and scanning electron microscopy (SEM) for the evaluation of the localized corrosion. The effect of additives on the corrosion of the specimens was also evaluated. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications

  20. Corrosion Compatibility Studies on Inconel-600 in NP Decontamination Solution

    International Nuclear Information System (INIS)

    Park, Sang Yoon; Jung, Jun Young; Won, Huijun; Choi, Wangkyu; Moon, Jeikwon

    2013-01-01

    It is well known that corrosion and contamination process in the primary cooling circuit of nuclear reactors are essentially interrelated: the contaminant isotopes are mostly corrosion products activated in the reactor core, and the contamination takes place on the out-core of Inconel-600 surface. This radionuclide uptake takes place up to the inner oxide layer and oxide/metal interface. So, it is necessary to remove inner oxide layer as well as outer oxide layer for excellent decontamination effects. The outer oxide layers are composed of Fe 3 O 4 and NiFe 2 O 4 . On the other hand, the inner oxide layers are composed of Cr 2 O 3 , (Ni 1-x Ni x )(Cr 1-y Fe y ) 2 O 4 , and FeCr 2 O 4 . Because of chromium in the trivalent oxidation state which is difficult to dissolve, the oxide layer has an excellent protectiveness and become hard to be decontaminated. Alkaline permanganate (AP) or nitric permanganate (NP) oxidative phase has been used to dissolve the chromium-rich oxide. A disadvantage of AP process is the generation of a large volume of secondary waste. On the other hand, that of NP process is the high corrosion rate for Ni-base alloys. Therefore, for the safe use of oxidative phase in PWR system decontamination, it is necessary to reformulate the NP chemicals for decrease of corrosion rate. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications. To evaluate the general corrosion properties, weight change of NP treated specimens was measured. NP treated specimen surface was observed using optical microscope (OM) and scanning electron microscopy (SEM) for the evaluation of the localized corrosion. The effect of additives on the corrosion of the specimens was also evaluated. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications. It is revealed that Inconel-600 specimen is more

  1. Method for decontaminating radiation metal waste

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Tanaka, Akio; Akimoto, Hidetoshi

    1991-01-01

    This report describes a method for decontaminating radiation metal waste characterized by the following properties: in order to decontaminate radiation metal waste of various shapes produced by facilities involved with radioactive substances, non-complex shapes are decontaminated by electropolishing the materials in a neutral saline solution. Complex shapes are chemically decontaminated by means of an acid solution containing permanganic acid or an alkaline solution and a mineral acid solution. After neutralizing the solutions used for chemical decontamination, the radioactive material is separated and removed. Further, in the decontamination method for radioactive metal waste, a supernatant liquid is reused as the electrolyte in electropolishing decontamination. Permanganic ions (MnO 4 - ) are reduced to manganese dioxide (MnO 2 ) and deposited prior to neutralizing the solution used for chemical decontamination. Once manganese dioxide (MnO 2 ) has been separated and removed, it is re-used as the electrolyte in electropolishing decontamination by means of a process identical to the separation process for radioactive substances. 3 figs

  2. SODIUM ALUMINOSILICATE FOULING AND CLEANING OF DECONTAMINATED SALT SOLUTION COALESCERS

    International Nuclear Information System (INIS)

    Poirier, M.; Thomas Peters, T.; Fernando Fondeur, F.; Samuel Fink, S.

    2008-01-01

    During initial non-radioactive operations at the Modular Caustic Side Solvent Extraction Unit (MCU), the pressure drop across the decontaminated salt solution coalescer reached ∼10 psi while processing ∼1250 gallons of salt solution, indicating possible fouling or plugging of the coalescer. An analysis of the feed solution and the 'plugged coalescer' concluded that the plugging was due to sodium aluminosilicate solids. MCU personnel requested Savannah River National Laboratory (SRNL) to investigate the formation of the sodium aluminosilicate solids (NAS) and the impact of the solids on the decontaminated salt solution coalescer. Researchers performed developmental testing of the cleaning protocols with a bench-scale coalescer container 1-inch long segments of a new coalescer element fouled using simulant solution. In addition, the authors obtained a 'plugged' Decontaminated Salt Solution coalescer from non-radioactive testing in the MCU and cleaned it according to the proposed cleaning procedure. Conclusions from this testing include the following: (1) Testing with the bench-scale coalescer showed an increase in pressure drop from solid particles, but the increase was not as large as observed at MCU. (2) Cleaning the bench-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (11 g of bayerite if all aluminum is present in that form or 23 g of sodium aluminosilicate if all silicon is present in that form). (3) Based on analysis of the cleaning solutions from bench-scale test, the 'dirt capacity' of a 40 inch coalescer for the NAS solids tested is calculated as 450-950 grams. (4) Cleaning the full-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (60 g of aluminum and 5 g of silicon). (5) Piping holdup in the full-scale coalescer system caused the pH to differ from the target value. Comparable hold-up in the facility could lead to less effective cleaning and

  3. Chemical analysis of bleach and hydroxide-based solutions after decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX).

    Science.gov (United States)

    Hopkins, F B; Gravett, M R; Self, A J; Wang, M; Chua, Hoe-Chee; Hoe-Chee, C; Lee, H S Nancy; Sim, N Lee Hoi; Jones, J T A; Timperley, C M; Riches, J R

    2014-08-01

    Detailed chemical analysis of solutions used to decontaminate chemical warfare agents can be used to support verification and forensic attribution. Decontamination solutions are amongst the most difficult matrices for chemical analysis because of their corrosive and potentially emulsion-based nature. Consequently, there are relatively few publications that report their detailed chemical analysis. This paper describes the application of modern analytical techniques to the analysis of decontamination solutions following decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). We confirm the formation of N,N-diisopropylformamide and N,N-diisopropylamine following decontamination of VX with hypochlorite-based solution, whereas they were not detected in extracts of hydroxide-based decontamination solutions by nuclear magnetic resonance (NMR) spectroscopy or gas chromatography-mass spectrometry. We report the electron ionisation and chemical ionisation mass spectroscopic details, retention indices, and NMR spectra of N,N-diisopropylformamide and N,N-diisopropylamine, as well as analytical methods suitable for their analysis and identification in solvent extracts and decontamination residues.

  4. The Evaluation of Crevice Corrosion of Inconel-600 and 304 Stainless Steel in Reductive Decontamination Solutions

    International Nuclear Information System (INIS)

    Jung, Junyoung; Park, Sangyoon; Won, Huijun; Choi, Wangkyu; Moon, Jeikwon; Park, Sojin

    2014-01-01

    In this sturdy, we investigated the characteristics of corrosion to Inconel-600 and type 304 stainless steel which are mainly used for the steam generator and primary system of PWR reactor respectively. We conducted the corrosion test for the HYBRID (HYdrazine Based metal Ion Reductive decontamination) which was developed in KAERI, Citrox and Oxalic acid solutions used in reductive decontamination of the inner surface of PWR. Since Citrox and oxalic acid solution were well-known conventional decontamination solutions, it is meaningful to compare the corrosion result of HYBRID with those solutions to confirm the corrosion compatibility. In order to obtain visible results in a limited time, we conducted the crevice corrosion tests under harsh condition. According to the results of crevice corrosion tests, we can conclude that metals such as type 304 stainless steel and Inconel-600 in HYBRID are very stable against crevice corrosion. On the other hand, those metals in Citrox and oxalic acid solutions were very susceptible to the crevice corrosion. Especially when using the oxalic acid solution, severe corrosion was observed not only Inconel-600 but also 304 stainless steel. The degree of corrosion can be expressed as; HYBRID << Citrox < OA. Conclusively, our results support that the HYBRID is more stable to the corrosion of structural materials in primary system than other Citrox and oxalic acid solutions. This finding will appoint the HYBRID solution as a candidate to solve the corrosion problem which is often issued by existing chemical decontamination processes

  5. Skin decontamination

    International Nuclear Information System (INIS)

    Moehrle, G.

    1975-01-01

    A general survey of skin decontamination is given. The success of every decontamination treatments depends mainly on the speed, but also on the care, with which the action is taken. The best way to remove the skin contaminants is thorough washing under lukewarm running water with mild soap and a soft brush. This washing is to be repeated several times for a period of several minutes. If results are not satisfactory, light duty detergents and wetting agents available commercially may also be used. Some solutions which have proved useful are mentioned. The decontamination solutions are best used in the order given. When one has no satisfactory decontamination effect, the next one is to be used. If necessary, these agents must be used several times in the stated order as long as this does not involve too much strain for the skin. All the decontamination measures mentioned refer, of course, to intact healthy skin. After decontamination has been completed, the skin should be treated with a protective cream

  6. Low-waste electrochemical decontamination of stainless-steel surface

    International Nuclear Information System (INIS)

    Babain, V.A.; Smirnov, I.V.; Shadrin, A.Yu.; Firsin, N.G.; Zakharchuk, G.A.; Pavlov, A.B.; Shilov, V.V.

    2002-01-01

    An electrochemical decontamination method using a formic acid-based recycling electrolyte was proposed to remove firmly fixed contaminants from stainless-steel surfaces. The following provisions make for minimisation of the amounts of waste: (i) use of specially designed electrodes with vacuum removal of spent electrolyte; (ii) inter-cycle removal of radionuclides from the electrolyte by using an inorganic sorbent; (iii) periodic regeneration of the spent electrolyte. the dissolved metals (Fe, Cr, Ni) being transformed into acidic phosphates; (iv) solidification of residues arising from the regeneration of the electrolyte and spent sorbent into iron-phosphate ceramics. The technology and equipment developed were used for decontamination of a plutonium glove-box. The level of surface contamination was reduced 100-fold in two decontamination cycles. The depth of metal skimming was 1.5 μ for the ceiling and walls and 4.5 μ for the table top. Each square meter of stainless-steel surface provides about 100 g of solid radioactive waste in the form of iron-phosphate ceramic blocks

  7. Precipitation-filtering technology for uranium waste solution generated on washing-electrokinetic decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye-Nam, E-mail: kimsum@kaeri.re.kr; Park, Uk-Ryang; Kim, Seung-Soo; Moon, Jei-Kwon

    2015-05-15

    Graphical abstract: A recycling process diagram for the volume reduction of waste solution generated from washing-electrokinetic decontamination. - Highlights: • A process for recycling a waste solution generated was developed. • The total metal precipitation rate by NaOH in a supernatant after precipitation was the highest at pH 9. • The uranium radioactivity in the treated solution upon injection of 0.2 g of alum was lower. • After drying, the volume of sludge was reduced to 35% of the initial sludge volume. - Abstract: Large volumes of uranium waste solution are generated during the operation of washing-electrokinetic decontamination equipment used to remove uranium from radioactive soil. A treatment technology for uranium waste solution generated upon washing-electrokinetic decontamination for soil contaminated with uranium has been developed. The results of laboratory-size precipitation experiments were as follows. The total amount of metal precipitation by NaOH for waste solution was highest at pH 11. Ca(II), K(I), and Al(III) ions in the supernatant partially remained after precipitation, whereas the concentration of uranium in the supernatant was below 0.2 ppm. Also, when NaOH was used as a precipitant, the majority of the K(I) ions in the treated solution remained. The problem of CaO is to need a long dissolution time in the precipitation tank, while Ca(OH){sub 2} can save a dissolution time. However, the volume of the waste solution generated when using Ca(OH){sub 2} increased by 8 mL/100 mL (waste solution) compared to that generated when using CaO. NaOH precipitant required lower an injection volume lower than that required for Ca(OH){sub 2} or CaO. When CaO was used as a precipitant, the uranium radioactivity in the treated solution at pH 11 reached its lowest value, compared to values of uranium radioactivity at pH 9 and pH 5. Also, the uranium radioactivity in the treated solution upon injection of 0.2 g of alum with CaO or Ca(OH){sub 2} was

  8. Changes in the decontamination factor of cesium iodide on evaporation of a scrubbing solution in the Filtered Containment Venting System

    Energy Technology Data Exchange (ETDEWEB)

    Na, Young Su; Ha, Kwang Soon; Kim, Sungil; Cho, Song-Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    When the pressure in the containment building approaches a setting value, the FCVS(Filtered Containment Venting System) operates. The amount of steam and gas mixtures generated during a severe accident can be released into the FCVS. Non-condensable gases and fine aerosols can pass a scrubbing solution and the filters in the FCVS vessel. The decontaminated gases are finally discharged from the FCVS to the outside environment. Previous study observed that a scrubbing solution in the FCVS vessel was constantly evaporating owing to high-temperature steam released continuously from the containment building. A scrubbing solution in the FCVS vessel was completely evaporated at about 31 hours after the FCVS operation. Pool evaporation in the FCVS vessel can negatively affect the decontamination feature of the FCVS because it reduces the scrubbing depth for fission products in an aerosol form. This study carefully evaluated the decontamination factor of metal iodide aerosols especially cesium iodide (CsI), on a scrubbing solution in the FCVS. This paper summarizes the calculated results on the decontamination factor of CsI in the FCVS vessel, which was presented at the international OECD-NEA/NUGENIA-SARNET workshop. This study estimated the decontamination factor of CsI on a scrubbing solution in the FCVS. The MELCOR computer code simulated that an SBO occurred in the OPR 1000. The FCVS consists of a cylindrical vessel with a 3 m diameter and 6.5 m height, and it includes a scrubbing solution of 21 tons. Accumulated mass of CsI aerosol was calculated in a scrubbing solution and the atmosphere in the FCVS vessel and the outside environment. In the early FCVS operation, the decontamination factor of CsI aerosol rapidly increased owing to steam condensation in a scrubbing solution. When the temperature of a pool approached its saturation temperature, the decontamination factor of CsI aerosol started to decrease.

  9. Strippable gel for decontamination of contaminated metallic surfaces

    International Nuclear Information System (INIS)

    Banerjee, D.; Sandhya, U.; Khot, S.A.; Srinivas, C.; Wattal, P.K.

    2013-01-01

    Periodic decontamination of radioactive laboratories including fume hoods, glove boxes and all surfaces used for handling, processing and transporting radioactive materials is mandatory in all nuclear installations as this reduces spread of contamination and decreases total man rem exposure. Conventionally, chemical decontaminating agents or surfactant solutions are used for this purpose. However, this approach leads to generation of large volume of secondary radioactive waste. The use of strippable gel is an attractive alternative with low secondary waste generation particularly where removal of loose or weakly fixed contamination is necessary and also when the decontaminated material are to be reused, for e.g. decontamination of fume hoods, glove boxes, transport casks, spent fuel storage racks, control rod drive transport containers etc. Literature on gel formulations is scarce and mostly in the patent form. The sustained effort on gel formulation development has resulted in a basic gel formulation. The gel is a highly viscous water-based organic polymer, particularly suitable for application on vertical surfaces including difficult to reach metallic surfaces of complex geometry and not just limited to horizontal surfaces. The gel can be easily applied on contaminated surfaces by brushing or spraying. Curing of the gel is complete within 16-24 hours under ambient conditions and can then be removed by peeling as a dry sheet. While curing, the contaminants are trapped in gel either physically or chemically depending upon the nature of the contaminant. Salient features of cured gel include that it is water soluble and can be disposed off after immobilization in cement. Decontamination performance of the gel was initially evaluated by applying it on SS planchettes contaminated with known amount of radionuclides such as Cs(I), Co(II) and Ce(III). The measured decontamination factor was found to be in the range of 50-500, lowest for Ce(III) and highest for Co

  10. Pretreatment with U(IV) solution for improving the decontamination of ruthenium

    International Nuclear Information System (INIS)

    Huang Haoxin; Qi Zhanshun; Zhu Guohui

    1993-01-01

    The ruthenium decontamination factor in Purex process falls quickly in successive TBP cycles. So, it is necessary to change the chemical states of RuNO complexes in order to improve DF Ru in the uranium purification cycle. Hydrazine nitrate is being used to transform RuNO complexes into in-extractable Ru(III)and Ru(IV). However, hydrazine nitrate may be inverted into hydrazoic acid which is dangerous and can bring an unstable factor. Pretreatment using U(IV) solution provides another method to improve the decontamination of ruthenium in Purex process. 0.02 mol/lU(IV) solution can transform RuNO complexes into inextricable species by heating in water bath. The D Ru can be decreased by a factor of 10-20. U(IV) pretreatment does not bring any harmful chemical in process. The acidity has a very large influence on the effect of pretreatment. The higher the acidity is, the worse the effect will be

  11. Polysaccharide-thickened aqueous fluoride solutions for rapid destruction of the nerve agent VX. Introducing the opportunity for extensive decontamination scenarios.

    Science.gov (United States)

    Elias, Shlomi; Saphier, Sigal; Columbus, Ishay; Zafrani, Yossi

    2014-01-01

    Among the chemical warfare agents, the extremely toxic nerve agent VX (O-ethyl S-2-(diisopropylamino)ethyl methylphosphonothioate) is a target of high importance in the development of decontamination methods, due to its indefinite persistence on common environmental surfaces. Liquid decontaminants are mostly characterized by high corrosivity, usually offer poor coverage, and tend to flow and accumulate in low areas. Therefore, the development of a noncorrosive decontaminant, sufficiently viscous to resist dripping from the contaminated surface, is necessary. In the present paper we studied different polysaccharides-thickened fluoride aqueous solutions as noncorrosive decontaminants for rapid and efficient VX degradation to the nontoxic product EMPA (ethyl methylphosphonic acid). Polysaccharides are environmentally benign, natural, and inexpensive. Other known decontaminants cannot be thickened by polysaccharides, due to the sensitivity of the latter toward basic or oxidizing agents. We found that the efficiency of VX degradation in these viscous solutions in terms of kinetics and product identity is similar to that of KF aqueous solutions. Guar gum (1.5 wt %) with 4 wt % KF was chosen for further evaluation. The benign nature, rheological properties, adhering capabilities to different surfaces, and decontamination from a porous matrix were examined. This formulation showed promising properties for implementation as a spray decontaminant for common and sensitive environmental surfaces.

  12. Decontamination and decommissioning of laboratory solutions enriched uranium (IR-01 b)

    International Nuclear Information System (INIS)

    Diaz Arocas, P. P.; Sama Colao, J.; Garcia Diaz, A.; Torre Rodriguez, J.; Martinez, A.; Argiles, E.; Garrido Delgado, C.

    2010-01-01

    Completed actions decontamination and decommissioning of the Laboratory of Enriched Uranium Solutions, attached to the Radioactivity lR-0l CIEMAT, was carried out final radiological control of the laboratory. From the documentation generated proceeded to request modification of the IR-01 installation by closing its laboratory IR-01 b.

  13. Recovery of Tin and Nitric Acid from Spent Solder Stripping Solutions

    International Nuclear Information System (INIS)

    Ahn, Jae-Woo; Ryu, Seong-Hyung; Kim, Tae-young

    2015-01-01

    Spent solder-stripping solutions containing tin, copper, iron, and lead in nitric acid solution, are by-products of the manufacture of printed-circuit boards. The recovery of these metals and the nitric acid, for re-use has economic and environmental benefits. In the spent solder-stripping solution, a systematic method to determine a suitable process for recovery of valuable metals and nitric acid was developed. Initially, more than 90% of the tin was successfully recovered as high-purity SnO 2 by thermal precipitation at 80 ℃ for 3 hours. About 94% of the nitric acid was regenerated effectively from the spent solutions by diffusion dialysis, after which there remained copper, iron, and lead in solution. Leakage of tin through the anion-exchange membrane was the lowest (0.026%), whereas Pb-leakage was highest (4.26%). The concentration of the regenerated nitric acid was about 5.1 N.

  14. Decontamination of TRU glove boxes

    International Nuclear Information System (INIS)

    Crawford, J.H.

    1978-03-01

    Two glove boxes that had been used for work with transuranic nuclides (TRU) for about 12 years were decontaminated in a test program to collect data for developing a decontamination facility for large equipment highly contaminated with alpha emitters. A simple chemical technique consisting of a cycle of water flushes and alkaline permanganate and oxalic acid washes was used for both boxes. The test showed that glove boxes and similar equipment that are grossly contaminated with transuranic nuclides can be decontaminated to the current DIE nonretrievable disposal guide of <10 nCi TRU/g with a moderate amount of decontamination solution and manpower. Decontamination of the first box from an estimated 1.3 Ci to about 5 mCi (6 nCi/g) required 1.3 gallons of decontamination solution and 0.03 man-hour of work for each square foot of surface area. The second box was decontaminated from an estimated 3.4 Ci to about 2.8 mCi (4.2 nCi/g) using 0.9 gallon of decontamination solution and 0.02 man-hour for each square foot of surface area. Further reductions in contamination were achieved by repetitive decontamination cycles, but the effectiveness of the technique decreased sharply after the initial cycle

  15. Chemically reducing decontamination method for radioactive metal

    International Nuclear Information System (INIS)

    Tanaka, Akio; Onuma, Tsutomu; Sato, Hitoshi.

    1994-01-01

    The present invention concerns a decontamination method of electrolytically reducing radioactive metal wastes, then chemically dissolving the surface thereof with a strong acid decontaminating solution. This method utilizes dissolving characteristics of stainless steels in the strong acid solution. That is, in the electrolytic reduction operation, a portion of the metal wastes is brought into contact with a strong acid decontaminating solution, and voltage and current are applied to the portion and keep it for a long period of time so as to make the potential of the immersed portion of the metal wastes to an active soluble region. Then, the electrolytic reduction operation is stopped, and the metal wastes are entirely immersed in the decontaminating solution to decontaminate by chemical dissolution. As the decontaminating solution, strong acid such as sulfuric acid, nitric acid is used. Since DC current power source capacity required for causing reaction in the active soluble region can be decreased, the decontamination facility can be minimized and simplified, and necessary electric power can be saved even upon decontamination of radioactive metal wastes made of stainless steels and having a great area. Further, chemical dissolution can be conducted without adding an expensive oxidizing agent. (N.H.)

  16. Decontamination of burns contaminated with radioactive materials

    International Nuclear Information System (INIS)

    Vykouril, L.

    1986-01-01

    The suitability of various solutions for the decontamination of burnt skin and their efficiency were tested by experiments on rats. Tested was the decontamination of undisturbed skin, second degree skin burns and third degree skin burns. Decontamination solutions used included: distilled water, jodonal (an aqueous solution of iodine, ethoxylated nonylphenols, the copolymer of ethylene oxide with propylene oxide, and phosphoric acid) and a decontamination mixture of Sapon, Komplexon (trade names of detergents) and sodium hexametaphosphate. Decontamination efficiency was 68.4% for second degree burns and 47.1% for third degree burns. Most effective was the decontamination solution with an efficiency of 72%; the efficiency of jodonal was 67% and of water - 54%. Jodonal is the most suitable: in addition, it acts as a disinfectant and antiseptic. (M.D.)

  17. A durable and dependable solution for RTR spent fuel management

    International Nuclear Information System (INIS)

    Thomasson, J.

    1999-01-01

    RTR Operators need efficient and cost-effective services for the management of their spent fuel and this, for the full lifetime of their facility. Thanks to the integration of transport, reprocessing and conditioning services, COGEMA provides a cogent solution, with the utmost respect for safety and preservation of the environment, for the short, medium and long terms. As demonstrated in this paper, this option offers the only durable and dependable solution for the RTR spent fuel management, leading to a conditioning for the final residues directly suitable for final disposal. The main advantage of such an option is obviously the significant reduction in terms of volume and radiotoxicity of the ultimate waste when compared to direct disposal of spent fuels. The efficiency of such a solution has been proven, some RTR operators having already trusted COGEMA for the management of their aluminide fuel. With its commitment in R and D activities for the development of a high performance and reprocessable LEU fuels, COGEMA will be able to propose a solution for all types of fuels, HEU and LEU

  18. Testing and evaluation of eight decontamination chemicals

    International Nuclear Information System (INIS)

    Demmer, R.

    1994-09-01

    This report covers experimental work comparing eight different decontamination chemicals. Seven of these chemicals have some novelty, or are not currently in use at the ICPP. The eighth is a common ICPP decontamination reagent used as a baseline for effective comparison. Decontamination factors, waste generation values, and corrosion rates are tabulated for these chemicals. Recommendations are given for effective methods of non-sodium or low-sodium decontamination chemicals. The two most effective chemical for decontamination found in these test were a dilute hydrofluoric and nitric acid (HF/HNO 3 ) mixture and a fluoroboric acid solution. The fluoroboric acid solution (1 molar) was by far the most effective decontamination reagent, but suffered the problem of generating significant final calcine volume. The HF/HNO 3 solution performed a very good decontamination of the SIMCON coupons while generating only small amounts of calcine volume. Concentration variables were also tested, and optimized for these two solutions. Several oxidation/reduction decon chemical systems were also tested. These systems were similar to the TURCO 4502 and TURCO 4521 solutions used for general decontamination at the ICPP. A low sodium alternative, nitric acid/potassium permanganate, to the ''high sodium'' TURCO 4502 was tested extensively, optimized and recommended for general ICPP use. A reductive chemical solution, oxalic acid/nitric acid was also shown to have significant advantages

  19. Selection and development of an easy to process electrolyte for decontamination by electropolishing

    International Nuclear Information System (INIS)

    Steringer, A.; Moser, T.

    1989-01-01

    Three different organic electrolytes: formic acid (E 1), oxalic acid (E 2) and acetylacetone (E 3) using potassium bromide (KBr) as the auxiliary electrolyte, were tested in the laboratory for electrochemically dissolving steel and stainless steel. The best results in the preliminary test series were attained with acetylacetone. It ranks among the first for current efficiency, with the produced acetylacetonates having the lowest solubility and thus they settle out of the solution in the form of coarse crystalline products. Tests were made on radioactive reactor components using acetylacetone in a 400 A test facility, to verify and optimize the decontamination factors, the electrolyte service life and the produced waste volume, as well as the respective process parameters. The surface activity of the components ranged from 2 to 10 Bq/cm 2 , and a decontamination factor of 30 was attained. The obtained specific waste volume is 1.1 litre/m 2 of decontaminated surface. A gamma-spectrometric evaluation revealed that the activity in the settled-out metallic acetylacetonate is five times higher than that in the electrolyte. It is only necessary to refill the spent acetylacetonate which makes it then possible to continue to use the electrolyte solution almost unrestrictedly

  20. Chemical decontamination solutions: Effects on PWR equipment

    International Nuclear Information System (INIS)

    Pezze, C.M.; Colvin, E.R.; Aspden, R.G.

    1992-01-01

    A critical objective for the nuclear industry is the reduction of personnel exposure to radiation. Reductions have been achieved through industry's radiation management programs including training and radiation awareness concepts. Increased plant maintenance and higher radiation fields at many sites continue to raise concerns. To alleviate the radiation exposure problem, the sources of radiation which contribute to personnel exposure must be removed from the plant. A feasible was of significantly reducing these sources from a Pressurized Water Reactor (PWR) is to chemically decontaminate the entire reactor coolant system (RCS). A program was conducted to determine the technical acceptability of using certain dilute chemical solvent processes for full RCS chemical decontamination. The two processes evaluated were CAN-DEREM and LOMI. The purpose of the program was to define and complete a systematic evaluation of the major issues that need to be addressed for the successful decontamination of the entire RCS and affected portions of the auxiliary systems of a four-loop PWR system. A test program was designed to evaluate the corrosion effects of the two decontamination processes under expected plant conditions. Materials and sample configurations dictated by generic PWR components were evaluated. The testing also included many standard corrosion coupons. The test data were then used to assess the impact of chemical decontamination on the physical condition and operability of the components, equipment and mechanical systems that make up the RCS. An overview of the test program, sample configurations, data and engineering evaluations is presented. The data demonstrate that through detailed engineering evaluations of corrosion data and equipment function, the impact of full RCS chemical decontamination on plant equipment is established

  1. Decontamination Data - Blister Agents

    Data.gov (United States)

    U.S. Environmental Protection Agency — Decontamination efficacy data for blister agents on various building materials using various decontamination solutions. This dataset is associated with the following...

  2. Contamination and decontamination of skin

    International Nuclear Information System (INIS)

    Severa, J.; Knajfl, J.

    1983-01-01

    In external contamination the beta radiation dose is the prevalent component of the total dose absorbed by the skin. There exist four types of radionUclide bonds to the skin: mechanical retention of solid particles or solution on the surface and in the pores, physical adsorption of nondissociated molecules or colloids, the ion exchange effect, and chemisorption. Radionuclides then penetrate the skin by transfollicular transfer. The total amount of radioactive substances absorbed into the skin depends on the condition of the skin. Skin is decontaminated by washing with lukewarm water and soap or with special decontamination solutions. The most widely used components of decontamination solutions are detergents, chelaton, sodium hexametaphosphate, oxalic acid, citric acid. The main principles of the decontamination of persons are given. (M.D.)

  3. Determination of trace amounts of chemical warfare agent degradation products in decontamination solutions with NMR spectroscopy.

    Science.gov (United States)

    Koskela, Harri; Rapinoja, Marja-Leena; Kuitunen, Marja-Leena; Vanninen, Paula

    2007-12-01

    Decontamination solutions are used for an efficient detoxification of chemical warfare agents (CWAs). As these solutions can be composed of strong alkaline chemicals with hydrolyzing and oxidizing properties, the analysis of CWA degradation products in trace levels from these solutions imposes a challenge for any analytical technique. Here, we present results of application of nuclear magnetic resonance spectroscopy for analysis of trace amounts of CWA degradation products in several untreated decontamination solutions. Degradation products of the nerve agents sarin, soman, and VX were selectively monitored with substantially reduced interference of background signals by 1D 1H-31P heteronuclear single quantum coherence (HSQC) spectrometry. The detection limit of the chemicals was at the low part-per-million level (2-10 microg/mL) in all studied solutions. In addition, the concentration of the degradation products was obtained with sufficient confidence with external standards.

  4. Anthrax Sampling and Decontamination: Technology Trade-Offs

    Energy Technology Data Exchange (ETDEWEB)

    Price, Phillip N.; Hamachi, Kristina; McWilliams, Jennifer; Sohn, Michael D.

    2008-09-12

    The goal of this project was to answer the following questions concerning response to a future anthrax release (or suspected release) in a building: 1. Based on past experience, what rules of thumb can be determined concerning: (a) the amount of sampling that may be needed to determine the extent of contamination within a given building; (b) what portions of a building should be sampled; (c) the cost per square foot to decontaminate a given type of building using a given method; (d) the time required to prepare for, and perform, decontamination; (e) the effectiveness of a given decontamination method in a given type of building? 2. Based on past experience, what resources will be spent on evaluating the extent of contamination, performing decontamination, and assessing the effectiveness of the decontamination in abuilding of a given type and size? 3. What are the trade-offs between cost, time, and effectiveness for the various sampling plans, sampling methods, and decontamination methods that have been used in the past?

  5. Sorption of lead from aqueous solutions by spent tea leaf | Yoshita ...

    African Journals Online (AJOL)

    Pb) from solution. The Pb removal by the spent tea leaf adsorbent depended on pretreatment of spent tea leaf, adsorption contact time and adsorbent dosage. The optimum pretreatment conditions were confirmed to be that tea leaf was ground ...

  6. Radioactive contamination of protective clothes made of textile and their decontamination in aqueous solutions

    International Nuclear Information System (INIS)

    Fukumori, D.T.

    1989-01-01

    This dissertation deals with the radioactive contamination, its prevention, control and decontamination, related to protective clothing made of textile and usually weared in normal working conditions, within the installations where radioactive materials are handled or processed, especially as unsealed sources. The features of textile materials and contaminants, contamination mechanisms, risks related to contaminated clothes, planning of working areas, monitoring and surface contamination limits are described. Concerning to decontamination, the reagents, their action mechanisms and methods of efficiency evaluation are emphasized. The selected reagents were experimentally tested and their efficiencies in decontaminating cotton cloth samples, contaminated with uranyl nitrate solution, were evaluated by means of counting rate determined with a Geiger-Muller provided counting system. In this way, complexing agents, surfactants and commercial cleanning products were tested. The results were analysed and interpreted considering statistical, radiochemical and Radiation Protection aspects. Both, the radiactive contamination and decontamination of protective clothes are extensive matters and they still could be developed and improved; thus, many suggestions were presented as further studies. (author) [pt

  7. Liquid waste processing from TRIGA spent fuel storage pits

    International Nuclear Information System (INIS)

    Buchtela, Karl

    1988-01-01

    At the Atominstitute of the Austrian Universities and also at other facilities running TRIGA reactors, storage pits for spent fuel elements are installed. During the last revision procedure, the reactor group of the Atominstitute decided to refill the storage pits and to get rid of any contaminated storage pit water. The liquid radioactive waste had been pumped to polyethylene vessels for intermediate storage before decontamination and release. The activity concentration of the storage pit water at the Aominstitute after a storage period of several years was about 40 kBq/l, the total amount of liquid in the storage pits was about 0.25 m 3 . It was attempted to find a simple and inexpensive method to remove especially the radioactive Cesium from the waste solution. Different methods for decontamination like distillation, precipitation and ion exchange are discussed

  8. Chemical decontaminating method for stainless steel

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi.

    1990-01-01

    Radioactive metal wastes comprising passivated stainless steels are chemically decontaminated to such a radioactivity level as that of usual wastes. The present invention for chemically decontaminating stainless steels comprises a first step of immersing decontaminates into a sulfuric acid solution and a second step of immersing them into an aqueous solution prepared by adding oxidative metal salts to sulfuric acid, in which a portion of the surface of stainless steels as decontaminates are chemically ground to partially expose substrate materials and then the above-mentioned decontamination steps are applied. More than 90% of radioactive materials are removed in this method by the dissolution of the exposed substrate materials and peeling of cruds secured to the surface of the materials upon dissolution. This method is applicable to decontamination of articles having complicate shapes, can reduce the amount of secondary wastes after decontamination and also remarkably shorten the time required for decontamination. (T.M.)

  9. A state of the art report on the decontamination technology for dry ice blasting

    International Nuclear Information System (INIS)

    Shin, J. M.; Kim, K. H.; Park, J. J.; Lee, H. H.; Yang, M. S.; Nam, S. H.; Kim, M. J.

    2000-05-01

    DUPIC fuel fabrication process is a dry processing technology to manufacture CANDU compatible fuel through a direct reprocessing fabrication process from spent PWR fuel. DUPIC fuel fabrication process consists of the slitting of the spent PWR fuel rods, OREOX processing, homogeneous mixing, pelletizing and sintering. All these processes should be conducted by remote means in a M6 hot cell at IMEF. Since DUPIC fuel fabrication process includes powder handling process of highly radioactive spent fuel, decontamination of highly radioactive particulates from all types of surfaces such as DUPIC fuel manufacturing equipment, hot cell floor, tools is very important to improve the safety of hot cell and reduce the dose exposure to operator, This report describes various technologies for dry ice blasting. It provides the fundamentals of dry ice blasting decontamination and technical review of dry ice blasting on the radioactive decontamination

  10. A state of the art report on the decontamination technology for dry ice blasting

    Energy Technology Data Exchange (ETDEWEB)

    Shin, J M; Kim, K H; Park, J J; Lee, H H; Yang, M S; Nam, S H; Kim, M J

    2000-05-01

    DUPIC fuel fabrication process is a dry processing technology to manufacture CANDU compatible fuel through a direct reprocessing fabrication process from spent PWR fuel. DUPIC fuel fabrication process consists of the slitting of the spent PWR fuel rods, OREOX processing, homogeneous mixing, pelletizing and sintering. All these processes should be conducted by remote means in a M6 hot cell at IMEF. Since DUPIC fuel fabrication process includes powder handling process of highly radioactive spent fuel, decontamination of highly radioactive particulates from all types of surfaces such as DUPIC fuel manufacturing equipment, hot cell floor, tools is very important to improve the safety of hot cell and reduce the dose exposure to operator, This report describes various technologies for dry ice blasting. It provides the fundamentals of dry ice blasting decontamination and technical review of dry ice blasting on the radioactive decontamination.

  11. Decontamination method for radiation contaminated metal

    International Nuclear Information System (INIS)

    Enda, Masami; Hosaka, Katsumi; Sakai, Hitoshi.

    1997-01-01

    An organic acid solution is used as a decontamination liquid, and base materials of radiation contaminated metals are dissolved in the solution. The concentration of the organic acid is measured, and the organic acid is supplied by an amount corresponding to the lowering of the concentration. The decontamination liquid wastes generated during the decontamination step are decomposed, and metals leached in the organic acid solution are separated. With such procedures, contamination intruded into the inside of the mother materials of the metals can be removed, and radioactivity of the contaminated metals such as stainless steels and carbon steels can be eliminated, or the radiation level thereof can be reduced. In addition, the amount of secondary wastes generated along with the decontamination can be suppressed. (T.M.)

  12. Fuel decontamination at Ringhals 1 with the new decontamination process IcedecTM

    International Nuclear Information System (INIS)

    Fredriksson, E.; Ivars, R.; Rosengren, A.; Granath, G.

    2003-01-01

    The new fuel decontamination technique ICEDEC TM , which has been developed by Westinghouse, is based on abrasion of fuel crud with ice particles. A mixture of ice and water is led continuously through the fuel assembly, which is placed in a specially designed fuel decontamination container connected to a closed loop recirculation system. The ice particles scrape off the loose crud from the fuel surfaces and a mixture of crud and water from the melted ice is then led to a filter unit were the crud is separated from the water. In this paper results of fuel decontamination tests of two-year-old and spent fuel assemblies during spring 2001 at Ringhals 1 are presented. The fuel crud was only released when ice particles passed through the fuel assembly and stopped within ten seconds after the feeding of ice particles had ceased. The activity release from the fuel could thus be performed in a controlled way making the process easy to manage and survey. Activity measurements confirmed that about 50% of the loose crud was removed from the fuel surfaces of the two-year-old assembly. Fuel inspection after the decontamination process showed no influence on the fuel integrity. Furthermore, no enhanced personnel radiation dose was involved with the fuel decontamination compared to normal fuel services. (authors)

  13. Investigations regarding the wet decontamination of fluorescent lamp waste using iodine in potassium iodide solutions

    International Nuclear Information System (INIS)

    Tunsu, Cristian; Ekberg, Christian; Foreman, Mark; Retegan, Teodora

    2015-01-01

    Highlights: • A wet-based decontamination process for fluorescent lamp waste is proposed. • Mercury can be leached using iodine in potassium iodide solution. • The efficiency of the process increases with an increase in leachant concentration. • Selective leaching of mercury from rare earth elements is achieved. • Mercury is furthered recovered using ion exchange, reduction or solvent extraction. - Abstract: With the rising popularity of fluorescent lighting, simple and efficient methods for the decontamination of discarded lamps are needed. Due to their mercury content end-of-life fluorescent lamps are classified as hazardous waste, requiring special treatment for disposal. A simple wet-based decontamination process is required, especially for streams where thermal desorption, a commonly used but energy demanding method, cannot be applied. In this study the potential of a wet-based process using iodine in potassium iodide solution was studied for the recovery of mercury from fluorescent lamp waste. The influence of the leaching agent’s concentration and solid/liquid ratio on the decontamination efficiency was investigated. The leaching behaviour of mercury was studied over time, as well as its recovery from the obtained leachates by means of anion exchange, reduction, and solvent extraction. Dissolution of more than 90% of the contained mercury was achieved using 0.025/0.05 M I 2 /KI solution at 21 °C for two hours. The efficiency of the process increased with an increase in leachant concentration. 97.3 ± 0.6% of the mercury contained was dissolved at 21 °C, in two hours, using a 0.25/0.5 M I 2 /KI solution and a solid to liquid ratio of 10% w/v. Iodine and mercury can be efficiently removed from the leachates using Dowex 1X8 anion exchange resin or reducing agents such as sodium hydrosulphite, allowing the disposal of the obtained solution as non-hazardous industrial wastewater. The extractant CyMe 4 BTBP showed good removal of mercury, with an

  14. Investigations regarding the wet decontamination of fluorescent lamp waste using iodine in potassium iodide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Tunsu, Cristian, E-mail: tunsu@chalmers.se; Ekberg, Christian; Foreman, Mark; Retegan, Teodora

    2015-02-15

    Highlights: • A wet-based decontamination process for fluorescent lamp waste is proposed. • Mercury can be leached using iodine in potassium iodide solution. • The efficiency of the process increases with an increase in leachant concentration. • Selective leaching of mercury from rare earth elements is achieved. • Mercury is furthered recovered using ion exchange, reduction or solvent extraction. - Abstract: With the rising popularity of fluorescent lighting, simple and efficient methods for the decontamination of discarded lamps are needed. Due to their mercury content end-of-life fluorescent lamps are classified as hazardous waste, requiring special treatment for disposal. A simple wet-based decontamination process is required, especially for streams where thermal desorption, a commonly used but energy demanding method, cannot be applied. In this study the potential of a wet-based process using iodine in potassium iodide solution was studied for the recovery of mercury from fluorescent lamp waste. The influence of the leaching agent’s concentration and solid/liquid ratio on the decontamination efficiency was investigated. The leaching behaviour of mercury was studied over time, as well as its recovery from the obtained leachates by means of anion exchange, reduction, and solvent extraction. Dissolution of more than 90% of the contained mercury was achieved using 0.025/0.05 M I{sub 2}/KI solution at 21 °C for two hours. The efficiency of the process increased with an increase in leachant concentration. 97.3 ± 0.6% of the mercury contained was dissolved at 21 °C, in two hours, using a 0.25/0.5 M I{sub 2}/KI solution and a solid to liquid ratio of 10% w/v. Iodine and mercury can be efficiently removed from the leachates using Dowex 1X8 anion exchange resin or reducing agents such as sodium hydrosulphite, allowing the disposal of the obtained solution as non-hazardous industrial wastewater. The extractant CyMe{sub 4}BTBP showed good removal of mercury

  15. Chemical hazards from decontamination solutions in low level waste

    International Nuclear Information System (INIS)

    Leventhal, L.; Miller, A.; Turney, J.; Naughton, M.; IMPELL Corp., Walnut Creek, CA; Electric Power Research Inst., Palo Alto, CA)

    1985-01-01

    Recent regulations are focussing more attention on the non-radioactive matrix materials associated with radioactive wastes. Decontamination of operating facilities is becoming a more significant source of low-level waste. This study reviewed the chemical and biological hazards of over 50 decontamination processes. Seventeen of the most prominent hard and soft decontamination processes were examined in detail. The chemical and biological hazards of these seventeen are presented in this paper. These hazards influence the choice of radwaste processing and packaging operations and methods. Federal, state and local regulations further impact on operations and waste disposal. Hazards to personnel, in plant and off-site, resulting from the decontamination cycle are evaluated. 1 fig., 5 tabs

  16. Chemical Gel for Surface Decontamination

    International Nuclear Information System (INIS)

    Jung, Chong Hun; Moon, J. K.; Won, H. J.; Lee, K. W.; Kim, C. K.

    2010-01-01

    Many chemical decontamination processes operate by immersing components in aggressive chemical solutions. In these applications chemical decontamination technique produce large amounts of radioactive liquid waste. Therefore it is necessary to develop processes using chemical gels instead of chemical solutions, to avoid the well-known disadvantages of chemical decontamination techniques while retaining their high efficiency. Chemical gels decontamination process consists of applying the gel by spraying it onto the surface of large area components (floors, walls, etc) to be decontaminated. The gel adheres to any vertical or complex surface due to their thixotropic properties and operates by dissolving the radioactive deposit, along with a thin layer of the gel support, so that the radioactivity trapped at the surface can be removed. Important aspects of the gels are that small quantities can be used and they show thixitropic properties : liquid during spraying, and solid when stationary, allowing for strong adherence to surfaces. This work investigates the decontamination behaviors of organic-based chemical gel for SS 304 metallic surfaces contaminated with radioactive materials

  17. Salt decontamination demonstration test results

    International Nuclear Information System (INIS)

    Snell, E.B.; Heng, C.J.

    1983-06-01

    The Salt Decontamination Demonstration confirmed that the precipitation process could be used for large-scale decontamination of radioactive waste sale solution. Although a number of refinements are necessary to safely process the long-term requirement of 5 million gallons of waste salt solution per year, there were no observations to suggest that any fundamentals of the process require re-evaluation. Major accomplishments were: (1) 518,000 gallons of decontaminated filtrate were produced from 427,000 gallons of waste salt solution from tank 24H. The demonstration goal was to produce a minimum of 200,000 gallons of decontaminated salt solution; (2) cesium activity in the filtrate was reduced by a factor of 43,000 below the cesium activity in the tank 24 solution. This decontamination factor (DF) exceeded the demonstration goal of a DF greater than 10,000; (3) average strontium-90 activity in the filtrate was reduced by a factor of 26 to less than 10 3 d/m/ml versus a goal of less than 10 4 d/m/ml; and (4) the concentrated precipitate was washed to a final sodium ion concentration of 0.15 M, well below the 0.225 M upper limit for DWPF feed. These accomplishments were achieved on schedule and without incident. Total radiation exposure to personnel was less than 350 mrem and resulted primarily from sampling precipitate slurry inside tank 48. 3 references, 6 figures, 2 tables

  18. Decontamination Efficacy and Skin Toxicity of Two Decontaminants against Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Chad W Stratilo

    Full Text Available Decontamination of bacterial endospores such as Bacillus anthracis has traditionally required the use of harsh or caustic chemicals. The aim of this study was to evaluate the efficacy of a chlorine dioxide decontaminant in killing Bacillus anthracis spores in solution and on a human skin simulant (porcine cadaver skin, compared to that of commonly used sodium hypochlorite or soapy water decontamination procedures. In addition, the relative toxicities of these decontaminants were compared in human skin keratinocyte primary cultures. The chlorine dioxide decontaminant was similarly effective to sodium hypochlorite in reducing spore numbers of Bacillus anthracis Ames in liquid suspension after a 10 minute exposure. After five minutes, the chlorine dioxide product was significantly more efficacious. Decontamination of isolated swine skin contaminated with Bacillus anthracis Sterne with the chlorine dioxide product resulted in no viable spores sampled. The toxicity of the chlorine dioxide decontaminant was up to two orders of magnitude less than that of sodium hypochlorite in human skin keratinocyte cultures. In summary, the chlorine dioxide based decontaminant efficiently killed Bacillus anthracis spores in liquid suspension, as well as on isolated swine skin, and was less toxic than sodium hypochlorite in cultures of human skin keratinocytes.

  19. Structural characterization of chemical warfare agent degradation products in decontamination solutions with proton band-selective (1)H-(31)P NMR spectroscopy.

    Science.gov (United States)

    Koskela, Harri; Hakala, Ullastiina; Vanninen, Paula

    2010-06-15

    Decontamination solutions, which are usually composed of strong alkaline chemicals, are used for efficient detoxification of chemical warfare agents (CWAs). The analysis of CWA degradation products directly in decontamination solutions is challenging due to the nature of the matrix. Furthermore, occasionally an unforeseen degradation pathway can result in degradation products which could be eluded to in standard analyses. Here, we present the results of the application of proton band-selective (1)H-(31)P NMR spectroscopy, i.e., band-selective 1D (1)H-(31)P heteronuclear single quantum coherence (HSQC) and band-selective 2D (1)H-(31)P HSQC-total correlation spectroscopy (TOCSY), for ester side chain characterization of organophosphorus nerve agent degradation products in decontamination solutions. The viability of the approach is demonstrated with a test mixture of typical degradation products of nerve agents sarin, soman, and VX. The proton band-selective (1)H-(31)P NMR spectroscopy is also applied in characterization of unusual degradation products of VX in GDS 2000 solution.

  20. Precipitation process for supernate decontamination

    International Nuclear Information System (INIS)

    Lee, L.M.; Kilpatrick, L.L.

    1982-11-01

    A precipitation and adsorption process has been developed to remove cesium, strontium, and plutonium from water-soluble, high-level radioactive waste. An existing waste tank serves as the reaction vessel and the process begins with the addition of a solution of sodium tetraphenylborate and a slurry of sodium titanate to the contained waste salt solution. Sodium tetraphenylborate precipitates the cesium and sodium titanate adsorbs the strontium and plutonium. The precipitate/adsorbate is then separated from the decontaminated salt solution by crossflow filtration. This new process offers significant capital savings over an earlier ion exchange process for salt decontamination. Chemical and small-scale engineering studies with actual waste are reported. The effect of many variables on the decontamination factors and filter performance are defined

  1. Development of advanced spent fuel management process. System analysis of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Ro, S.G.; Kang, D.S.; Seo, C.S.; Lee, H.H.; Shin, Y.J.; Park, S.W.

    1999-03-01

    The system analysis of an advanced spent fuel management process to establish a non-proliferation model for the long-term spent fuel management is performed by comparing the several dry processes, such as a salt transport process, a lithium process, the IFR process developed in America, and DDP developed in Russia. In our system analysis, the non-proliferation concept is focused on the separation factor between uranium and plutonium and decontamination factors of products in each process, and the non-proliferation model for the long-term spent fuel management has finally been introduced. (Author). 29 refs., 17 tabs., 12 figs

  2. Spent fuel transportation problems

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kosarev, Yu.A.; Yulikov, E.A.

    1977-01-01

    In this paper, problems of transportation of nuclear spent fuel to reprocessing plants are discussed. The solutions proposed are directed toward the achievement of the transportation as economic and safe as possible. The increase of the nuclear power plants number in the USSR and the great distances between these plants and the reprocessing plants involve an intensification of the spent fuel transportation. Higher burnup and holdup time reduction cause the necessity of more bulky casks. In this connection, the economic problems become still more important. One of the ways of the problem solution is the development of rational and cheap cask designs. Also, the enforcement in the world of the environmental and personnel health protection requires to increase the transportation reliability and safety. The paper summarizes safe transportation rules with clarifying the following questions: the increase of the transport unit quantity of the spent fuel; rational shipment organization that minimizes vehicle turnover cycle duration; development of the reliable calculation methods to determine strength, thermal conditions and nuclear safety of transport packaging as applied to the vehicles of high capacity; maximum unification of vehicles, calculation methods and documents; and cask testing on models and in pilot scale on specific test rigs to assure that they meet the international safe fuel shipment rules. Besides, some considerations on the choice and use of structural materials for casks are given, and problems of manufacturing such casks from uranium and lead are considered, as well as problems of the development of fireproof shells, control instrumentation, vehicles decontamination, etc. All the problems are considered from the point of view of normal and accidental shipment conditions. Conclusions are presented [ru

  3. Application of Ultrasonic for Decontamination of Contaminated Soil - 13142

    International Nuclear Information System (INIS)

    Vasilyev, A.P.; Lebedev, N.M.; Savkin, A.E.

    2013-01-01

    The trials of soil decontamination were carried out with the help of a pilot ultrasonic installation in different modes. The installation included a decontamination bath equipped with ultrasonic sources, a precipitator for solution purification from small particles (less than 80 micrometer), sorption filter for solution purification from radionuclides washing out from soil, a tank for decontamination solution, a pump for decontamination solution supply. The trials were carried out on artificially contaminated sand with specific activity of 4.5 10 5 Bk/kg and really contaminated soil from Russian Scientific Center 'Kurchatovsky Institute' (RSC'KI') with specific activity of 2.9 10 4 Bk/kg. It was established that application of ultrasonic intensify the process of soil reagent decontamination and increase its efficiency. The decontamination factor for the artificially contaminated soil was ∼200 and for soil from RSC'KI' ∼30. The flow-sheet diagram has been developed for the new installation as well as determined the main technological characteristics of the equipment. (authors)

  4. Potential problems associated with ion-exchange resins used in the decontamination of light-water reactor systems

    International Nuclear Information System (INIS)

    Soo, P.; Adams, J.W.; Kempf, C.R.

    1987-01-01

    During a typical decontamination event, ion-exchange resin beds are used to remove corrosion products (radioactive and nonradioactive) and excess decontamination reagents from waste streams. The spent resins may be solidified in a binder, such as cement, or sealed in a high-integrity container (HIC) in order to meet waste stability requirements specified by the Nuclear Regulatory Commission. Lack of stability of low-level waste in a shallow land burial trench may lead to trench subsidence, enhanced water infiltration and waste leaching, which would result in accelerated transport of radionuclides and the complexing agents used for decontamination. The current program is directed at investigating safety problems associated with the handling, solidification and containerization of decontamination resin wastes. The three tasks currently underway include freeze-thaw cycling of cementitious and vinyl ester-styrene forms to determine if mechanical integrity is compromised, a study of the corrosion of container materials by spent decontamination waste resins, and investigations of resin degradation mechanisms

  5. A study on dry decontamination using ion exchange polymer

    International Nuclear Information System (INIS)

    Jung, Ki Jung; Ahn, Byung Gil

    1997-12-01

    Through the project of A study on dry decontamination using ion exchange polymer , the followings were investigated. 1. Highly probable decontamination technologies for the decontamination were investigated. 2. Development of gel type decontamination agent using ion-exchange resin powder (mixed type) as an ion exchanger. 3. Manufacturing of contaminated specimens (5 kinds) with Cs-137 solution and dust / Cs-137 solution. 4. Decontamination performance evaluation of the manufactured agent. 5. Analysis of composition (XRF) and the structure of surface of specimens (optic micrography). (author). 20 refs., 11 figs

  6. Chemical decontamination and melt densification

    International Nuclear Information System (INIS)

    Dillon, R.L.; Griggs, B.; Kemper, R.S.; Nelson, R.G.

    1976-01-01

    Preliminary studies on the chemical decontamination and densification of Zircaloy, stainless steel, and Inconel undissolved residues remaining after dissolution of the UO 2 --PuO 2 spent fuel material from sheared fuel bundles are reported. The studies were made on cold or very small samples to demonstrate the feasibility of the processes developed before proceeding to hot cell demonstrations with kg level of the sources. A promising aqueous decontamination method for Zr alloy cladding was developed in which oxidized surfaces are conditioned with HF prior to leaching with ammonium oxalate, ammonium citrate, ammonium fluoride, and hydrogen peroxide. Feasibility of molten salt decontamination of oxidized Zircaloy was demonstrated. A low melting alloy of Zircaloy, stainless steel, and Inconel was obtained in induction heated graphite crucibles. Segregated Zircaloy cladding sections were directly melted by the inductoslag process to yield a metal ingot suitable for storage. Both Zircaloy and Zircaloy--stainless steel--Inconel alloys proved to be highly satisfactory getters and sinks for recovered tritium

  7. Presolidification treatment of decontamination wastes

    International Nuclear Information System (INIS)

    Habayeb, M.A.

    1982-02-01

    Unsatisfactory leaching performance of several solidified decontamination solutions indicated a need for presolidification treatments to reduce the water sensitivity of the active chemicals. Chemical treatments examined in this work include pH adjustment, precipitation and oxidation-reduction reactions. The reactions involved in these treatments are discussed. The most suitable presolidification treatment for each decontamination solution has been identified. Further research is needed to test the effectivenss of these treatments

  8. Investigations regarding the wet decontamination of fluorescent lamp waste using iodine in potassium iodide solutions.

    Science.gov (United States)

    Tunsu, Cristian; Ekberg, Christian; Foreman, Mark; Retegan, Teodora

    2015-02-01

    With the rising popularity of fluorescent lighting, simple and efficient methods for the decontamination of discarded lamps are needed. Due to their mercury content end-of-life fluorescent lamps are classified as hazardous waste, requiring special treatment for disposal. A simple wet-based decontamination process is required, especially for streams where thermal desorption, a commonly used but energy demanding method, cannot be applied. In this study the potential of a wet-based process using iodine in potassium iodide solution was studied for the recovery of mercury from fluorescent lamp waste. The influence of the leaching agent's concentration and solid/liquid ratio on the decontamination efficiency was investigated. The leaching behaviour of mercury was studied over time, as well as its recovery from the obtained leachates by means of anion exchange, reduction, and solvent extraction. Dissolution of more than 90% of the contained mercury was achieved using 0.025/0.05 M I2/KI solution at 21 °C for two hours. The efficiency of the process increased with an increase in leachant concentration. 97.3 ± 0.6% of the mercury contained was dissolved at 21 °C, in two hours, using a 0.25/0.5M I2/KI solution and a solid to liquid ratio of 10% w/v. Iodine and mercury can be efficiently removed from the leachates using Dowex 1X8 anion exchange resin or reducing agents such as sodium hydrosulphite, allowing the disposal of the obtained solution as non-hazardous industrial wastewater. The extractant CyMe4BTBP showed good removal of mercury, with an extraction efficiency of 97.5 ± 0.7% being achieved in a single stage. Better removal of mercury was achieved in a single stage using the extractants Cyanex 302 and Cyanex 923 in kerosene, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Pilot plant for the radioactive decontamination of spent oils

    International Nuclear Information System (INIS)

    Flores E, R.M.; Ortiz O, H.V.; Cisneros L, L.; Lopez G, R.

    2002-01-01

    In this work the operation parameters obtained in the laboratory of oil storage are presented, as well as the operations which shape the pilot plant, the design criteria and the basic design of the core equipment of the developed process. Finally, the comparative results obtained the decontamination process of oil are given as well as laboratory scale. (Author)

  10. A study on Cs decontamination characterisitcs of radioactively contaminated soil using soil washing

    International Nuclear Information System (INIS)

    Lee, K. W.; Son, J. K.; Kim, K. D.; Kim, H. S.; Choi, Y. C.; Kang, K. D.; Sin, S. W.

    2002-01-01

    To decontaminate radioactively contaminated soil, various characteristics of soil were investigated, and applied for the best decontamination method and requirement. The effects of several conditions such as decontamination solutions, temperature and time was investigated. Na 2 CO 3 , which is not toxic to environment, was used as primary decontamination solution. The efficiency of decontamination was increased approximately 9% when decontamination time was increased from 30 min to 120 min. The efficiency of decontamination was increased approximately 10% when decontamination temperature was increased from 25 .deg. C to 70 .deg. C. The efficiency of decontamination was increased approximately 7% when the ratio of decontamination solution and soil was increased from 5:1 to 10:1

  11. The dissolution of metal decontamination sludges stored in tanks and their management

    Energy Technology Data Exchange (ETDEWEB)

    Prokopowicz, R.A.; Phillips, B. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2011-07-01

    The decontamination of stainless steel components is accomplished by the use of alkaline permanganate solutions, followed by an application of solutions of complexing agents such as citric acid or oxalic acid. Spent decontamination solutions comprising residues from both steps were combined in several waste storage tanks, where they have been in storage for several years. In those tanks, a reaction between residual permanganate and unreacted complexing agents produced sludges, consisting mainly of manganese dioxide, that reside in the tanks along with supernatant liquid. In a campaign that was conducted a few years ago, the accumulated waste solution was partially treated and disposed. This treatment consisted of decanting only the supernatant liquid and transporting it to a liquid waste treatment facility that employed a Thin Film Evaporator (TFE) to concentrate the liquid and ultimately produce a bitumen-encapsulated solidified waste form for storage. A study of treatment options for the remaining sludge is reported here. The requirement was to determine a simple means of treating the sludge using existing routine processes and equipment. This will be a significant step toward the decommissioning of the decontamination waste storage tanks. The available equipment at the liquid waste treatment facility was not designed to process sludge or slurries containing a large volume fraction of solids. Laboratory testing was carried out to find a means of dissolving the decontamination waste sludges, preferably in situ, and filtering undissolved solids to meet the feed requirements of the TFE in the liquid waste treatment facility. A concentrated citric acid solution was applied to sludge samples, without the use of externally applied mixing of the reagent and sludge. In all of the samples of actual decontamination waste sludge that were tested, a quantity of undissolved material remained after treatment with citric acid. The quantities were relatively small in volume, and

  12. The dissolution of metal decontamination sludges stored in tanks and their management

    International Nuclear Information System (INIS)

    Prokopowicz, R.A.; Phillips, B.

    2011-01-01

    The decontamination of stainless steel components is accomplished by the use of alkaline permanganate solutions, followed by an application of solutions of complexing agents such as citric acid or oxalic acid. Spent decontamination solutions comprising residues from both steps were combined in several waste storage tanks, where they have been in storage for several years. In those tanks, a reaction between residual permanganate and unreacted complexing agents produced sludges, consisting mainly of manganese dioxide, that reside in the tanks along with supernatant liquid. In a campaign that was conducted a few years ago, the accumulated waste solution was partially treated and disposed. This treatment consisted of decanting only the supernatant liquid and transporting it to a liquid waste treatment facility that employed a Thin Film Evaporator (TFE) to concentrate the liquid and ultimately produce a bitumen-encapsulated solidified waste form for storage. A study of treatment options for the remaining sludge is reported here. The requirement was to determine a simple means of treating the sludge using existing routine processes and equipment. This will be a significant step toward the decommissioning of the decontamination waste storage tanks. The available equipment at the liquid waste treatment facility was not designed to process sludge or slurries containing a large volume fraction of solids. Laboratory testing was carried out to find a means of dissolving the decontamination waste sludges, preferably in situ, and filtering undissolved solids to meet the feed requirements of the TFE in the liquid waste treatment facility. A concentrated citric acid solution was applied to sludge samples, without the use of externally applied mixing of the reagent and sludge. In all of the samples of actual decontamination waste sludge that were tested, a quantity of undissolved material remained after treatment with citric acid. The quantities were relatively small in volume, and

  13. Decontamination of transport casks and of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1990-06-01

    The present document provides an analysis of the technical papers presented at the meeting as well as a summary of the panel discussion. Conclusions and Recommendations: The meeting agreed that the primary source of contamination of transport casks is the production of radioactive isotopes in nuclear fuel and activation products of fuel components in nuclear reactors. The type, amount of mechanism for the release of these isotopes depend on the reactor type and fuel handling process. The widespread use of pools for the storage and handling of fuel provides an easy path for the transfer of contamination. Control of pool water conditions is essential for limiting the spread of contamination. For plants where casks are immersed in pools for loading, the immersion times should be minimised. Casks should be designed for ease of decontamination. The meeting discussed the use of stainless steel and suitable paints for coating casks. Designers should consider the appropriate coating for specific applications. The use of pressurized water for decontamination is recommended whenever possible. A number of commercially available reagents exist for decontaminating cask external surfaces. More work, however, is needed to cope with Pressurized Water Reactor crud within casks. Leaking fuel should be identified and isolated before storage in pools. Basic studies of the uptake and release of contamination from cask surfaces should be initiated. Standardization of methods of contamination measurement and instrumentation should be instituted. Refs, figs and tabs

  14. Experimental studies on decontamination in first aid for contaminated wounds

    International Nuclear Information System (INIS)

    Kusama, Tomoko; Ogaki, Kazushi; Yoshizawa, Yasuo

    1982-01-01

    The present study was designed to investigate the decontamination procedures in first aid for wounds contaminated with radionuclides. Abrasion of mouse skin was contaminated with 58 CoCl 2 . Irrigation by decontamination fluids began at 2 min after administration of the radionuclide and continued for 14 min. Tap water, 0.5% Hyamine solution or 10% Ca-DTPA solution were used as the decontamination fluids. Radioactivities of whole body, wounded skin surface and washed solution were measured with an animal counter with 5 cm NaI(Tl) and a well-type auto-gamma-counter. Decontamination effectiveness were expressed as follows: (1) absorption rate of radionuclide through the wound and (2) residual rate of radionuclide on the wound. More than 20% of the radionuclide applied on the wounded skin was absorbed in 15 min after contamination. The absorption rate decreased to 2% by the decontamination procedures. The Ca-DTPA solution reduced the residual rate of radionuclide on the wounds. The results suggested that the decontamination for the contaminated wounds should begin as soon as possible. Irrigation with 0.5% Hyamine solution has been advocated for the decontamination in the first aid. (author)

  15. Chemical decontamination method for stainless steel

    International Nuclear Information System (INIS)

    Yomo, Nobuo; Onuma, Tsutomu; Akimoto, Hidetoshi.

    1991-01-01

    In a case where an object to be decontaminated has a restricted portion in which the passage of liquids is difficult, decontamination liquids are not circulated effectively upon decontamination for the inner surfaces, and it requires a quite long period of time. In view of the above, through holes are perforated by, for example, a drill in the restricted portion of metal wastes made of stainless steels. Then, they are immersed in a sulfuric acid solution, and further immersed in an aqueous solution in which oxidative metal salts are added to the sulfuric acid. With such procedures, substrates are exposed at the inner circumference of the holes even if they are fine holes, and a local cell is formed between the substrate and an oxidized membranes, which may cause dissolution due to the reduction of the oxidized membranes. Further, since it is possible to discharge bubbles formed upon the solution, even from such fine holes, decontamination can be conducted effectively. (T.M.)

  16. Kinetics and thermodynamics of Pb(II) adsorption onto modified spent grain from aqueous solutions

    International Nuclear Information System (INIS)

    Li Qingzhu; Chai Liyuan; Yang Zhihui; Wang Qingwei

    2009-01-01

    Spent grain, a main by-product of the brewing industry, is available in large quantities, but its main application has been limited to animal feeding. Nevertheless, in this study, spent grain modified with 1 M NaCl solution as a novel adsorbent has been used for the adsorption of Pb(II) in aqueous solutions. Isotherms, kinetics and thermodynamics of Pb(II) adsorption onto modified spent grain were studied. The equilibrium data were well fitted with Langmuir, Freundlich and Dubinin-Radushkevick (D-R) isotherm models. The kinetics of Pb(II) adsorption followed pseudo-second-order model, using the rate constants of pseudo-second-order model, the activation energy (E a ) of Pb(II) adsorption was determined as 12.33 kJ mol -1 according to the Arrhenius equation. Various thermodynamic parameters such as ΔG ads , ΔH ads and ΔS ads were also calculated. Thermodynamic results indicate that Pb(II) adsorption onto modified spent grain is a spontaneous and endothermic process. Therefore, it can be concluded that modified spent grain as a new effective adsorbent has potential for Pb(II) removal from aqueous solutions.

  17. Strategies and solutions in the temporary management of spent fuel in Spain

    International Nuclear Information System (INIS)

    Martinez Abad, J. E.; Rivera, M. I.

    2009-01-01

    The basic strategy for the spent fuel and HLW management contemplated in the Sixth General Radioactive Waste Plan focused on the centralised interim storage of spent fuel, based on proved dry storage system technologies, over the time periods required until their definitive or very long term management. Specially, the solution proposed as the most suitable for the Spanish case is the construction of a centralised interim spent fuel and HLW storage facility (ATC) for which as site is being searched. Until it becomes in operation, the interim spent fuel storage will be safety performed in the NPP reracked spent fuel pools or individual ISFSI constructed in the NPP site, in those cases additional storage capacity is required. (Author) 22 refs

  18. Application of Ultrasonic for Decontamination of Contaminated Soil - 13142

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyev, A.P. [JRC ' NIKIET' , Moscow (Russian Federation); Lebedev, N.M. [LLC ' Aleksandra-Plus' , Vologda (Russian Federation); Savkin, A.E. [SUE SIA ' Radon' , Moscow (Russian Federation)

    2013-07-01

    The trials of soil decontamination were carried out with the help of a pilot ultrasonic installation in different modes. The installation included a decontamination bath equipped with ultrasonic sources, a precipitator for solution purification from small particles (less than 80 micrometer), sorption filter for solution purification from radionuclides washing out from soil, a tank for decontamination solution, a pump for decontamination solution supply. The trials were carried out on artificially contaminated sand with specific activity of 4.5 10{sup 5} Bk/kg and really contaminated soil from Russian Scientific Center 'Kurchatovsky Institute' (RSC'KI') with specific activity of 2.9 10{sup 4} Bk/kg. It was established that application of ultrasonic intensify the process of soil reagent decontamination and increase its efficiency. The decontamination factor for the artificially contaminated soil was ∼200 and for soil from RSC'KI' ∼30. The flow-sheet diagram has been developed for the new installation as well as determined the main technological characteristics of the equipment. (authors)

  19. Model decontamination of PVC flooring specimens by wet method

    International Nuclear Information System (INIS)

    Severa, J.; Knajfl, J.; Bar, J.

    1981-01-01

    PVC flooring samples of 29 mm in diameter were used in experiments. The samples were degreased. Tested were the dependence of the degree of contamination on the duration of contact with the contaminant and the efficacy of decontamination by wiping with tampons and immersing in solutions. A mixture of fission products of 80 kBq/ml in specific activity was used for contamination. Higher decontamination efficacy was achieved by immersing the samples in decontamination solutions. Water was found to be the least efficacious medium; a high degree was only attained in the case when decontamination was effected within 1 minute after contamination. The highest decontamination values were achieved using solutions containing a chelating agent and a surfactant. The most efficacious solutions contained 0.5% of citric acid and 0.5% of detergents which are very potent at a concentration as low as 2 g/l. (J.P.)

  20. Electro-regeneration of Ce(IV) in real spent Cr-etching solutions

    International Nuclear Information System (INIS)

    Chen, Te-San; Huang, Kuo-Lin

    2013-01-01

    Highlights: • An electrochemical process is used to regenerate Ce(IV) in real (hazardous) spent TFT-LCD Cr-etching solutions. • The Ce(IV) yield on tested anodes was in order BDD > Pt > DSA. • A Neosepta CMX separator was better than Nafion ones to be used in the process. • The activation energy on Pt was 10.7 kJ/mol. • The obtained parameters are useful to design reactors for 100% Ce(IV) regeneration in real spent Cr-etching solutions. -- Abstract: This paper presents the electro-regeneration of Ce(IV) in real (hazardous) spent thin-film transistor liquid-crystal display (TFT-LCD) Cr-etching solutions. In addition to Ce(III) > Ce(IV) in diffusivity, a quasi-reversible behavior of Ce(III)/Ce(IV) was observed at both boron-doped diamond (BDD) and Pt disk electrodes. The Ce(IV) yield on Pt increased with increasing current density, and the best current efficiency (CE) was obtained at 2 A/2.25 cm 2 . The performance in terms of Ce(IV) yield and CE of tested anodes was in order BDD > Pt > dimensional stable anode (DSA). At 2 A/2.25 cm 2 on Pt and 40 °C for 90 min, the Ce(IV) yield, CE and apparent rate constant (k) for Ce(III) oxidation were 81.4%, 21.8% and 3.17 × 10 −4 s −1 , respectively. With the increase of temperature, the Ce(IV) yield, CE, and k increased (activation energy = 10.7 kJ/mol), but the specific electricity consumption decreased. The Neosepta CMX membrane was more suitable than Nafion-117 and Nafion-212 to be used as the separator of the Ce(IV) regeneration process. The obtained parameters are useful to design divided batch reactors for the Ce(IV) electro-regeneration in real spent Cr-etching solutions

  1. Chemical decontamination of stainless steel

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi

    1991-01-01

    The present invention concerns a method for chemical decontamination of radioactive metal waste materials contaminated with radioactive materials on the surface, generated in radioactive materials-handling facilities. The invention is comprised of a method of chemical decontamination of stainless steel, characterized by comprising a first process of immersing a stainless steel-based metal waste material contaminated by radioactive materials on the surface in a sulfuric acid solution and second process of immersing in an aqueous solution of sulfuric acid and oxidizing metal salt, in which a portion of the surface of the stainless steel to be decontaminated is polished mechanically to expose a portion of the base material before the above first and second processes. 1 figs., 2 tabs

  2. Electrolytic Recovery of Nickel from Spent Electroless Nickel Bath Solution

    Directory of Open Access Journals (Sweden)

    R. Idhayachander

    2010-01-01

    Full Text Available Plating industry is one of the largest polluting small scale industries and nickel plating is among the important surface finishing process in this industry. The waste generated during this operation contains toxic nickel. Nickel removal and recovery is of great interest from spent bath for environmental and economic reasons. Spent electroless nickel solution from a reed relay switch manufacturing industry situated in Chennai was taken for electrolytic recovery of nickel. Electrolytic experiment was carried out with mild steel and gold coated mild steel as cathode and the different parameters such as current density, time, mixing and pH of the solution were varied and recovery and current efficiency was studied. It was noticed that there was an increase in current efficiency up to 5 A/dm2 and after that it declines. There is no significant improvement with mixing but with modified cathode there was some improvement. Removal of nickel from the spent electroless nickel bath was 81.81% at 5 A/dm2 and pH 4.23. Under this condition, the content of nickel was reduced to 0.94 g/L from 5.16 g/L. with 62.97% current efficiency.

  3. Development of decontamination technology for the decommissioned Bohunice A-1 nuclear power plant

    International Nuclear Information System (INIS)

    Krejci, F.; Majersky, D.; Solcanyi, M.; Sekely, S.; Kucharik, D.

    1991-01-01

    The main results of investigation into the decontamination technology for the equipment and buildings of the decommissioned A-1 nuclear power plant, achieved by the Nuclear Power Plants Research Institute in Trnava over the 1988-1990 period, are summarized. Mobile decontamination and recirculation equipment has been developed for pre-disassembling decontamination. A solution containing formic acid (19 g/l), EDTA-Na 4 (6 g/l) and thiourea (0.5 g/l) was used for decontamination of low-alloy steels; for materials from the steam generators and turbo-compressors, the decontamination factor (DF) of this solution was 30 to 150 per decontamination cycle. For high-alloy steels, a two-stage process comprising the use of an oxidation solution and a reduction solution appeared suitable. The oxidation solution contained potassium permanganate (0.6 g/l) and nitric acid (0.4 g/l), whereas the reduction solution, viz. Citrox 21, contained citric acid (0.5 g/l), oxalic acid (1.0 g/l) and EDTA-NA 4 (2.5 g/l). The DF is 10 to 50 in one oxidation-reduction cycle and 50-100 in two cycles. For the post-disassembling chemical decontamination, the contaminated material was cut into pieces 70 to 80 cm long, freed from grease and decontaminated chemically by submerging in the solution while applying treatment by ultrasound. A technology of electrochemical decontamination has also been developed. It appeared particularly suitable for structural materials of the primary coolant circuit comprising austenitic stainless steels and low-alloy steels after pre-disassembling chemical decontamination with remainders of the corrosion layer, and for structural materials of the secondary coolant circuit after chemical post-disassembling decontamination. Research in the field of decontamination of the building parts and of the outer surfaces of the structural materials concentrated mainly on the use of decontamination foams. Foaming solutions have been developed for the decontamination of PESL floors and

  4. OPO fabric decontamination

    International Nuclear Information System (INIS)

    Severa, J.; Bar, J.; Grujbar, V.

    1978-01-01

    Samples of five polypropylene-based man-made fabrics were studied with regard to the degree of contamination and possibilities of decontamination in order to assess their suitability as material for protective clothing in the nuclear industry. The contamination degree of the fabrics in an aqueous solution of a fission product mixture was found to be low. Soaking in a mixture of the Sapon detergent and sodium hexametaphosphate at a concentration of both materials of 1 g/l with subsequent washing in a solution of the Zenit detergent at a concentration of 3 g/l was suggested as the most suitable decontamination procedure. It reduces the initial contamination by almost 99%. (Z.M.)

  5. Recovery of Mn as MnO2 from spent batteries leaching solutions

    Directory of Open Access Journals (Sweden)

    Manciulea A. L.

    2013-04-01

    Full Text Available The recycling of spent batteries and recovery of metals from them is of great scientific and economic interest, on account of recycling requirement of these wastes and recovery of valuable materials (De Michellis et al., 2007. Usage of recycled materials is diminishing the energy consumption and pollution. It is important that the recycling process to be environmentally friendly, practical and cost-effective. Tests for the process of manganese removal from spent battery leaching solutions, with ammonium peroxodisulfate, prior to recovery of zinc by electrolysis are presented. The experiments were carried out according to a 23 full factorial design as a function of ammonium peroxodisulfate concentration, temperature and pH. Because the excessive manganese in the spent batteries leach solutions can cause problems in the process of Zn recovery by electrolysis the main focus of this study is the manganese removal without altering the concentration of zinc in solutions. Data from XRF and AAS during the reaction at different time are presented. Manganese is obtained with high extraction degree as MnO2, which is economic and commercial important with applications in battery industry, water treatment plants, steel industry and chemicals (Pagnanelli et al., 2007. The analysis of variance (ANOVA was carried out on the extraction yields of Zn after 30min, 1h, 2h and 3h of reaction. The preliminary results denoted that by chemical oxidation with ammonium peroxodisulfate is a suitable method for manganese removal as MnO2 prior zinc recovery by electrolysis, from spent batteries solutions and it could be used in a plant for recycling batteries.

  6. Decontamination experiments for stainless steel decommissioned components

    International Nuclear Information System (INIS)

    Stefanescu, D.; Radulescu, M.; Dragomir, M.; Velciu, L.; Dinu, A.

    2001-01-01

    This paper presents the factors which influence the decontamination conditions using the steps of CONAP process. This four phases process (alkaline pre-treatment , an oxidation phase with potassium permanganate in acid environment, a dissolution phase using a complexing agent, a rinsing phase) has been used for decontamination to recycle the stainless steel 304 L and 403 m. The attraction of this process results from the following reasons: - the volume of radioactive sludge is low comparatively with the original volume of the solutions; - the separation of the activity from the solution is very effective; - time of exposure is reduced; - it is not necessary to process the solution through evaporators. During decommissioning decontamination is used to reduce radiation field by removing some of the fission and activation products contained in deposits and oxide films to minimize the radiation exposure of the personnel and public. In this context, this hard decontamination yields the materials at a radioactivity level fulfilling the repository requirements. (authors)

  7. Studies on residue-free decontaminants for chemical warfare agents.

    Science.gov (United States)

    Wagner, George W

    2015-03-17

    Residue-free decontaminants based on hydrogen peroxide, which decomposes to water and oxygen in the environment, are examined as decontaminants for chemical warfare agents (CWA). For the apparent special case of CWA on concrete, H2O2 alone, without any additives, effectively decontaminates S-2-(diisopropylamino)ethyl O-ethyl methylphosphonothioate (VX), pinacolyl methylphosphorofluoridate (GD), and bis(2-choroethyl) sulfide (HD) in a process thought to involve H2O2 activation by surface-bound carbonates/bicarbonates (known H2O2 activators for CWA decontamination). A plethora of products are formed during the H2O2 decontamination of HD on concrete, and these are characterized by comparison to synthesized authentic compounds. As a potential residue-free decontaminant for surfaces other than concrete (or those lacking adsorbed carbonate/bicarbonate) H2O2 activation for CWA decontamination is feasible using residue-free NH3 and CO2 as demonstrated by reaction studies for VX, GD, and HD in homogeneous solution. Although H2O2/NH3/CO2 ("HPAC") decontaminants are active for CWA decontamination in solution, they require testing on actual surfaces of interest to assess their true efficacy for surface decontamination.

  8. Study of the characterization and formulation of the decontamination gels

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youn Bong; Bang, In Bae; Bae, Bong Moon; Oh, Gyu Hwan [Chungnam National University, Daejeon (Korea, Republic of)

    2011-04-15

    To develop a chemical gel decontamination technology for a removal of non-fixed contaminants during the maintenance and decommissioning works of high radiation hot cells which have been used for a recycling or treatment of spent fuels we have prepare gels with CAB-O-SIL M-5 or Aerosil 380 as viscosifier and some non-ionic surfactants such as diethylene glycol hexyl ether, triethylene glycol dodecyl ether, polyethylene glycol 600, and triethylene glycol butyl ether. Surfactants are playing important roles in manipulating the properties of decontamination the gels. We have found the CAB-O-SIL with triethylene glycol butyl ether and Aerosil with triethylene glycol dodecyl ether systems promising for the decontamination work

  9. Study of the characterization and formulation of the decontamination gels

    International Nuclear Information System (INIS)

    Park, Youn Bong; Bang, In Bae; Bae, Bong Moon; Oh, Gyu Hwan

    2011-04-01

    To develop a chemical gel decontamination technology for a removal of non-fixed contaminants during the maintenance and decommissioning works of high radiation hot cells which have been used for a recycling or treatment of spent fuels we have prepare gels with CAB-O-SIL M-5 or Aerosil 380 as viscosifier and some non-ionic surfactants such as diethylene glycol hexyl ether, triethylene glycol dodecyl ether, polyethylene glycol 600, and triethylene glycol butyl ether. Surfactants are playing important roles in manipulating the properties of decontamination the gels. We have found the CAB-O-SIL with triethylene glycol butyl ether and Aerosil with triethylene glycol dodecyl ether systems promising for the decontamination work

  10. Decontamination of Belarus research reactor installation by strippable coatings

    International Nuclear Information System (INIS)

    Voronik, N.I.; Shatilo, N.N.

    2002-01-01

    The goal of this study was to develop new strippable coatings using water-based solutions of polyvinyl alcohol and active additives for decontamination of research reactor equipment. The employment of strippable coatings makes it possible to minimize the quantity of liquid radioactive waste. The selection of strippable decontaminating coatings was carried out on the basis of general requirements to decontaminating solutions: successfully dissolve corrosion deposits; ensure the desorption of radionuclides from the surfaces and the absence of resorption; introduce minimal corrosion effect of construction materials; to be relatively cheap and available in reagents. The decontaminating ability and adhesion properties of these coatings depending on metal and deposit sorts were investigated. Research on the chemical stability of solid wastes was carried out. The data obtained were the base for recommendations on waste management procedure for used films and pastes. A full-scale case-study analysis was performed for comparing strippable coatings with decontaminating solutions. (author)

  11. The ultrasonic copper and brass decontamination study; Etude de la decontamination du cuivre et des laitons en presence d'ultra-sons

    Energy Technology Data Exchange (ETDEWEB)

    Courtault, J; Kerdelleau, J de; Mestre, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The use of ultra-sounds as a decontamination technic does not bring an absolute solution. As a function of the materials it seemed necessary to find what was the optimum conditions for using the ultra-sounds and to define not only the ultra-sonic factors but also the chemical solutions which bring some appreciable decontamination factors without bringing any too important corrosion processus. This report gives the results of this study applied to copper and brass. This study allowed to select some effective treatment baths on the two types of contamination: plutonium and fission products. (authors) [French] L'emploi des ultra-sons comme technique de decontamination n'amene pas une solution absolue. Il est apparu necessaire de rechercher en fonction de la nature du materiau a decontaminer quelles etaient les conditions optimales d'utilisation des ultra-sons et de definir alors non seulement les facteurs ultrasoniques mais encore les solutions chimiques qui apportent des facteurs de decontamination appreciables sans amener des phenomenes de corrosion trop importants. Ce rapport donne les resultats de cette etude appliquee au cuivre et aux laitons. Cette etude a permis de selectionner des bains de traitement efficaces dans les deux cas de contamination: plutonium et produits de fission. (auteurs)

  12. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Tanaka, Akio; Shibuya, Sadao.

    1991-01-01

    When contaminants mainly composed of copper remained on the surface of stainless steel wastes sent from an electrolytic reduction as a first step are chemically decontaminated, metal wastes are discriminated to carbon steel wastes and stainless steel wastes. Then, the carbon steel wastes are applied only with the first step of immersing in a sulfuric acid solution, and stainless steel wastes are applied with a first step of immersing into a sulfuric acid solution for electrolytic reduction for a predetermined period of time and a second step of immersing into a liquid in which an oxidative metal salt is added to sulfuric acid. The decontamination liquid which is used for immersing the stainless steel wastes in the second step and the oxidation force of which is lowered is used as the sulfuric acid solution in the first step for the carbon steel wastes. In view of the above, the decontamination liquid of the second step can be utilized most effectively, enabling to greatly decrease the secondary wastes and to improve decontamination efficiency. (T.M.)

  13. Reactive skin decontamination lotion (RSDL) for the decontamination of chemical warfare agent (CWA) dermal exposure.

    Science.gov (United States)

    Schwartz, M D; Hurst, C G; Kirk, M A; Reedy, S J D; Braue, E H

    2012-08-01

    Rapid decontamination of the skin is the single most important action to prevent dermal absorption of chemical contaminants in persons exposed to chemical warfare agents (CWA) and toxic industrial chemicals (TICs) as a result of accidental or intentional release. Chemicals on the skin may be removed by mechanical means through the use of dry sorbents or water. Recent interest in decontamination systems which both partition contaminants away from the skin and actively neutralize the chemical has led to the development of several reactive decontamination solutions. This article will review the recently FDA-approved Reactive Skin Decontamination Lotion (RSDL) and will summarize the toxicity and efficacy studies conducted to date. Evidence of RSDL's superior performance against vesicant and organophosphorus chemical warfare agents compared to water, bleach, and dry sorbents, suggests that RSDL may have a role in mass human exposure chemical decontamination in both the military and civilian arenas.

  14. A complete NUHOMS {sup registered} solution for storage and transport of high burnup spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bondre, J. [Transnuclear, Inc. (AREVA Group), Fremont, CA (United States)

    2004-07-01

    The discharge burnups of spent fuel from nuclear power plants keep increasing with plants discharging or planning to discharge fuel with burnups in excess of 60,000 MWD/MTU. Due to limited capacity of spent fuel pools, transfer of older cooler spent fuel from fuel pool to dry storage, and very limited options for transport of spent fuel, there is a critical need for dry storage of high burnup, higher heat load spent fuel so that plants could maintain their full core offload reserve capability. A typical NUHOMS {sup registered} solution for dry spent fuel storage is shown in the Figure 1. Transnuclear, Inc. offers two advanced NUHOMS {sup registered} solutions for the storage and transportation of high burnup fuel. One includes the NUHOMS {sup registered} 24PTH system for plants with 90.7 Metric Ton (MT) crane capacity; the other offers the higher capacity NUHOMS {sup registered} 32PTH system for higher crane capacity. These systems include NUHOMS {sup registered} - 24PTH and -32PTH Transportable Canisters stored in a concrete storage overpack (HSM-H). These canisters are designed to meet all the requirements of both storage and transport regulations. They are designed to be transported off-site either directly from the spent fuel pool or from the storage overpack in a suitable transport cask.

  15. Decontamination of the equipment in the acids recovery cell in the fuel reprocessing plant

    International Nuclear Information System (INIS)

    Maki, Akira; Kusano, Toshitsugu

    1985-01-01

    In the cell where an acids recovery evaporator tank is set, there are also installed its associated components such as the solution feed system and a receiving tank. When maintenance etc. are to be conducted within the cell, the equipment etc. must be decontaminated to eliminate the personnel exposure. In the acid recovery process, there is involved ruthenium-106, for which the decontamination reagents must be selected. As such, the decontamination proceeded first with nitric acid + sodium hydroxide solution and then alkaline potassium permanganate solution + nitric acid + EDTA.2Na. Decontamination was made twice in 1979 and 1983. Described are the selection of decontamination reagents and decontamination works performed in the acids recovery cell. (Mori, K.)

  16. Method of chemical decontamination of stainless steel

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi.

    1989-01-01

    The present invention concerns a decontamination method of chemically decontaminating radioactive metal wastes of passivated stainless steels to a radioactivity level identical with usual wastes, in which the amount of oxidizable metal salts used is decreased. Metal wastes of stainless steels contaminated at their surface with radioactive materials are immersed in a sulfuric acid solution. In this case, a voltage is applied for a certain period of time so that the potential of the stainless steels comes to an active region. Then, oxidizable metal salt (tetravalent cerium) is added into the sulfuric acid solution. According to this method, since most of radioactive materials are removed in the immersing step to the sulfuric acid solution, the amount of the tetravalent cerium used is as less as 1/700 and the decontamination time is as short as 1/4 as compared with those in the conventional method. (K.M.)

  17. Decontamination of some urban surfaces

    International Nuclear Information System (INIS)

    Thornton, E.W.

    1988-04-01

    The long-term consequences of external radiation dose to the public could be a cause for concern in the event of a severe accident at a nuclear power plant leading to the release of fission products to the atmosphere and subsequent contamination of buildings, roads and other components of the urban environment. This study has concentrated on the decontamination of building materials contaminated under wet conditions with soluble, ionic radiocaesium. Results are given on the decontamination of building materials contaminated without run-off, on the effects of waiting between contamination and decontamination and on the effect of pre-treatment with an ammonium salt solution. (author)

  18. Precipitation-adsorption process for the decontamination of nuclear waste supernates

    Science.gov (United States)

    Lee, L.M.; Kilpatrick, L.L.

    1982-05-19

    High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.

  19. Transportation cask decontamination and maintenance at the potential Yucca Mountain repository

    International Nuclear Information System (INIS)

    Hartman, D.J.; Miller, D.D.; Hill, R.R.

    1992-04-01

    This study investigates spent fuel cask handling experience at existing nuclear facilities to determine appropriate cask decontamination and maintenance operations at the potential Yucca Mountain repository. These operations are categorized as either routine or nonroutine. Routine cask decontamination and maintenance tasks are performed in the cask preparation area at the repository. Casks are taken offline to a separate cask maintenance area for major nonroutine tasks. The study develops conceptual designs of the cask preparation area and cask maintenance area. The functions, layouts, and major features of these areas are also described

  20. Chemical decontamination of metals

    International Nuclear Information System (INIS)

    Partridge, J.A.; Lerch, R.E.

    1979-10-01

    A metal decontamination process based upon removal of contamination by treatment with a cerium (IV)-nitric acid solution (or other redox agent in nitric acid) is feasible and highly promising. The technique is effective in dissolving the surface layer of stainless steel. Dissolution rates of approximately 1.5 mils/h were demonstrated with cerium (IV)-nitric acid solutions. Removal of plutonium contamination from stainless steel was demonstrated in laboratory tests, in which activity levels were reduced from greater than 5 x 10 5 counts per minute to nondetectable levels in approximately one hour at 90 0 C. Removal of paint from stainless steel surfaces was also demonstrated. Advantages of this process over other chemical solutions include: (1) The solutions are not high salt systems; therefore, there is potentially less waste generated. (2) Cerium(IV) in nitric acid is a good dissolution agent for plutonium oxide. (3) Regeneration of Ce(IV) during the decontamination is accomplished by electrolysis. (4) The process should be effective for irregularly shaped equipment. (5) It could be effective as a spray or a flow-through system. 13 figures

  1. Mechanical and chemical decontamination of surfaces

    International Nuclear Information System (INIS)

    Kienhoefer, M.

    1982-01-01

    Decontamination does not mean more than a special technique of cleaning surfaces by methods well known in the industry. The main difference consists in the facts that more than just the visible dirt is to be removed and that radioactive contamination cannot be seen. Especially, intensive mechanical and chemical carry-off methods are applied to attack the surfaces. In order to minimize damages caused to the surfaces, the decontamination method is to adapt to the material and the required degree of decontamination. The various methods, their advantages and disadvantages are described, and the best known chemical solutions are shown. (orig./RW)

  2. Loop cleanup with redox decontamination technique

    International Nuclear Information System (INIS)

    Ren Xian Wen; Zhang Yuan

    1998-01-01

    The corrosion rate of stainless steel in nitric acid solution will be enhanced by existence of Ce 4+ . The goal of this study is to develop a circular decontamination process in medium of nitric acid, in order to use it in a loop clean up. That needs a specially designed electrolytic cell to oxidize the Ce 3+ into Ce 4+ . This regenerator's structure should be simple and easy to operate, and can meet the requirements of practical decontamination operation. The concentration of Ce 4+ in the nitric acid solution was selected to provide a suitable corrosion rate to contaminated stainless steel. The total concentration of cerium (III+IV) was also optimized to ensure that the regeneration rate of Ce 4+ could satisfy the consumption rate of Ce 4+ during decontaminating process. The operation parameters were selected strictly on the basis of our experimental results, so that the regeneration rate of Ce 4+ can be higher reasonably in proper operation conditions and not arise any problem related to safety of operation and nuclear aspects. It is considered that this decontamination process could be applied into either decommissioning or maintenance stage of nuclear facilities. The concentration of Ce 4+ and temperature are the main factors for corrosion rate, other factors should also be considered during decision of decontamination process. With the regenerator developed under contract No 7959/RB could obtain sufficient decontamination factors, when use following conditions: concentration of Ce 4+ is higher than 0.2 mol/1, the total concentration of cerium (III+IV) is higher than 0.4 mol/1, concentration of nitric acid is higher than 2 mol/1, temperature of decontamination operation is within 25 deg. C - 40 deg. C and temperature of regeneration is within 40 deg C - 50 deg.C

  3. Experiment on electrolysis decontamination of stainless steel pipes

    International Nuclear Information System (INIS)

    Wang Dongwen; Dou Tianjun; Zhao Yujie

    2004-01-01

    A new electrolytic decontamination method used metal balls as conducting anode was investigated. The influences of current density, solution property and diameter of pipes on efficiency of electrolytic decontamination were examined and the efficiency of this method was compared with that of common electrolytic method under the same experimental conditions. Decontamination of samples of stainless steel pipes contaminated by plutonium was performed. Experimental results indicate that decontamination of stainless steel pipes contaminated by plutonium can be achieved at the optimum conditions of greater than 0.2 A·cm -2 current density, 5% sulfuric acid electrolyte and 5 min electrolysis. This method can be used in the decontamination of a wide variety of decommissioned metal materials. (author)

  4. Chemical Decontamination at Browns Ferry Unit 1

    International Nuclear Information System (INIS)

    Hartwig, Ed; Reid, Richard

    2003-01-01

    In May, 2002, the Tennessee Valley Authority's (TVA) Board of Directors approved the recovery and restart of Unit 1 at Browns Ferry Nuclear Station. As an initial step in the site characterization and restart feasibility review, a majority of the primary reactor circuit was chemically decontaminated. Close cooperation between TVA and vendor personnel resulted in project completion ahead of schedule with outstanding results. The final average decontamination factors were excellent, and the final dose rates were very low, with contact readings on most points between one and three mRem/hr. In addition to allowing TVA to do a complete and thorough job of determining the feasibility of the Unit 1 restart, the decontamination effort will greatly reduce personnel exposure during plant recovery, both whole body exposure to gamma radiation and airborne exposure during pipe replacement efforts. The implementation of lessons learned from previous decontamination work performed at Browns Ferry, as well as decontamination efforts at other plants aided greatly in the success. Specific items of note are: (1) The initial leak check of the temporary decontamination system should include ancillary systems such as the spent resin system, as well as the main circulation loop. This could save time and dose exposure if leaks are discovered before the use of such systems is required. (2) Due to the quick turnaround time from the award of contract, a vendor representative was onsite early in the project to help with engineering efforts and procedures. This aided greatly in completing preparations for the decontamination. (3) The work was performed under a single maintenance activity. This resulted in great craft and plant support. (4) The constant coverage by the site's decontamination flush directors provided timely plant support and interface. (5) The FPC system isolation and back flushing to prevent residual chemicals from being left in the FPC system should have been addressed in more

  5. Prosopis juliflora--a green solution to decontaminate heavy metal (Cu and Cd) contaminated soils.

    Science.gov (United States)

    Senthilkumar, P; Prince, W S P M; Sivakumar, S; Subbhuraam, C V

    2005-09-01

    Soil and plant samples (root and shoot) of Prosopis juliflora were collected in the vicinity of metal based foundry units in Coimbatore and assessed for their heavy metal content (Cu and Cd) to ascertain the use of P. juliflora as a green solution to decontaminate soils contaminated with Cu and Cd. The results showed that Cu and Cd content was much higher in plant components compared to their extractable level in the soil. Furthermore, there exist a strong correlation between the distance of the sources of industrial units and accumulation of heavy metals in plants. Accumulation of Cd in roots is comparatively higher than that of shoots. However, in case of Cu no such clear trend is seen. Considering the accumulation efficiency and tolerance of P. juliflora to Cd and Cu, this plant can be explored further for the decontamination of metal polluted soils. On the other hand, in view of heavy metal accumulate the practice of providing foliage and pods as fodder for live stock should be avoided.

  6. Comparison of skin decontamination efficacy of commercial decontamination products following exposure to VX on human skin.

    Science.gov (United States)

    Thors, L; Koch, M; Wigenstam, E; Koch, B; Hägglund, L; Bucht, A

    2017-08-01

    The decontamination efficacy of four commercially available skin decontamination products following exposure to the nerve agent VX was evaluated in vitro utilizing a diffusion cell and dermatomed human skin. The products included were Reactive Skin Decontamination Lotion (RSDL), the Swedish decontamination powder 104 (PS104), the absorbent Fuller's Earth and the aqueous solution alldecontMED. In addition, various decontamination procedures were assessed to further investigate important mechanisms involved in the specific products, e.g. decontamination removal from skin, physical removal by sponge swabbing and activation of degradation mechanisms. The efficacy of each decontamination product was evaluated 5 or 30 min after dermal application of VX (neat or diluted to 20% in water). The RSDL-lotion was superior in reducing the penetration of VX through human skin, both when exposed as neat agent and when diluted to 20% in water. Swabbing with the RSDL-sponge during 2 min revealed decreased efficacy compared to applying the RSDL-lotion directly on the skin for 30 min. Decontamination with Fuller's Earth and alldecontMED significantly reduced the penetration of neat concentration of VX through human skin. PS104-powder was insufficient for decontamination of VX at both time-points, independently of the skin contact time of PS104. The PS104-slurry (a mixture of PS104-powder and water), slightly improved the decontamination efficacy. Comparing the time-points for initiated decontamination revealed less penetrated VX for RSDL and Fuller's Earth when decontamination was initiated after 5 min compared to 30 min post-exposure, while alldecontMED displayed similar efficacy at both time-points. Decontamination by washing with water only resulted in a significant reduction of penetrated VX when washing was performed 5 min after exposure, but not when decontamination was delayed to 30 min post-exposure of neat VX. In conclusion, early initiated decontamination with the

  7. Decontamination effectiveness of mixtures of citric acid, oxalic acid and EDTA

    International Nuclear Information System (INIS)

    Speranzini, R.A.

    1990-01-01

    An experimental study of the decontamination effectiveness of citric acid, oxalic acid and EDTA mixtures was conducted to assess whether oxalic acid could be removed from decontamination solutions to minimize corrosion. In loop experiments, radioactive specimens from two boiling water reactors and one pressurized water reactor were suspended in solutions of single acids or in mixtures of reagents at total reagent concentrations of less than 0.1 wt% under conditions similar to those used to decontaminate reactor systems. Rate constants for dissolution of oxides and decontamination factors were measured. Based on the results, it was concluded that under certain conditions, oxalic acid was the most effective reagent for the dissolution of oxides. It was also found, however, that conditions under which effective dissolution occurred in solutions of oxalic acid and/or citric acid were difficult to define and control. EDTA was found to be an effective reagent for dissolution of oxides such that rates of dissolution in EDTA containing solutions at 117 degrees Celsius were comparable to rates in oxalic acid containing solutions. At 90 degrees Celsius, EDTA acted synergistically with oxalic acid such that the rate of dissolution of oxides in citric-acid/oxalic-acid/EDTA solutions was higher than in citric-acid/EDTA solutions. The rates of dissolution of oxides were significantly reduced when 60 mg/kg of ferric ion was added to the citric-acid/oxalic-acid, citric-acid/EDTA and citric-acid/oxalic-acid/EDTA solutions. It was concluded that effective decontaminations of BWR and PWR systems could be achieved with mixtures of citric acid and EDTA

  8. Actual situation on the field of decontamination in Slovak and Czech NPPs

    International Nuclear Information System (INIS)

    Prazska, M.; Rezbarik, J.; Solcanyi, M.; Trtilek, R.

    2002-01-01

    Many decontamination methods for various applications have proved to provide good results at Slovak and Czech nuclear power plants. A number of mechanical, chemical and electrochemical decontamination methods are available. The selection of a suitable method and decontamination technology is the result of a multicriterial optimization. The plants use the decontamination procedures described in the design documentation. New decontamination procedures aiming to minimize secondary radioactive wastes and corrosion attack on the basic material are being developed. No standardized qualification process, however, exists for such new procedures and large efforts are to be made to introduce them into practice. Methods for decommissioning purposes are based on static or dynamic application of decontamination solutions such as a mixture of formic acid + complexing agent + corrosion inhibitor or dilute HNO 3 . A process consisting in treatment in a solution containing formic acid + complexing agent + corrosion inhibitor (total concentration 3 - 4 mass %, temperature 30 - 35 deg C), whose effect is enhanced by the application of ultrasound (0.4 - 0.5 W per cm 2 decontaminated area) in a specially designed bath, is recommended for segmented metallic parts, which can be then released into the environment and recycled. Electrochemical decontamination in a bath is another efficient decontamination method to achieve unrestricted release of the material into the environment. Efficient decontamination of various highly contaminated materials can be attained by using an electrolyte solution based on citric acid (100 g.dm -3 ) + nitric acid (20 g.dm -3 ) + NH 4 NO 3 (50 g.dm -3 ) and applying a current density of 100 - 200 mA.cm -2 , electrolyte temperature 25 - 50 deg C, with one decontamination cycle period not exceeding 30 minutes. The best results are obtained by electrolysis followed by mechanical treatment using ultrasound. Electrochemical decontamination using a spraying

  9. Impact of decontamination on LWR radioactive waste treatment systems

    International Nuclear Information System (INIS)

    Hoenes, G.R.; Perrigo, L.D.; Divine, J.R.; Faust, L.G.

    1979-01-01

    Only at N-Reactor is there a means to accommodate radwaste produced during decontamination. The Dresden system is expected to be ready to accommodate such solutions by the summer of 1979. Solidification of the processed decontamination waste may be a significant problem. There is doubt that the materials in current radwaste treatment systems can handle chemicals from a concentrated process. The total storage volume, for concentrated decontamination, is not sufficient in existing radwaste treatment systems. Greater attention should be placed on designing reactors and radwaste treatment systems for decontamination. A means of handling waste material resulting from leaks in the primary system during the decontamination must be developed. On-site storage of solidified decontamination wastes may be a viable option, but license amendments will be necessary

  10. Evaluation of six decontamination processes on actinide and fission product contamination

    International Nuclear Information System (INIS)

    Conner, C.; Chamberlain, D.B.; Chen, L.

    1995-01-01

    In-situ decontamination technologies were evaluated for their ability to: (1) reduce equipment contamination levels to allow either free release of the equipment or land disposal, (2) minimize residues generated by decontamination, and (3) generate residues that are compatible with existing disposal technologies. Six decontamination processes were selected. tested and compared to 4M nitric acid, a traditional decontamination agent: fluoroboric acid (HBF 4 ), nitric plus hydrofluoric acid, alkaline persulfate followed by citric acid plus oxalic acid, silver(II) plus sodium persulfate plus nitric acid, oxalic acid plus hydrogen peroxide plus hydrofluoric acid, and electropolishing using nitric acid electrolyte. The effectiveness of these solutions was tested using prepared 304 stainless steel couponds contaminated with uranium, plutonium, americium, or fission products. The decontamination factor for each of the solutions and tests conditions were determined; the results of these experiments are presented

  11. Decontaminating lead bricks and shielding

    International Nuclear Information System (INIS)

    Lussiez, G.W.

    1993-01-01

    Lead used for shielding is often surface contaminated with radionuclides and is therefore a Resource Conservation and Recovery Act (RCRA) D008 mixed waste. The technology-based standard for treatment is macroencapsulation. However, decontaminating and recycling the clean lead is a more attractive solution. Los Alamos National Lab. decontaminates material and equipment contaminated with radioisotopes. Decontaminating lead poses special problems because of the RCRA hazard classification and the size of the inventory, now about 100 metric tons and likely to grow substantially because of planned decommissioning operations. This lead, in the form of bricks and other shield shapes, is surface contaminated with fission products. One of the best methods for decontaminating lead is removing the thin superficial layer of contamination with an abrasive medium under pressure. For lead, a mixture of alumina with water and air at about 280 kPa (40 psig) rapidly and effectively decontaminates the lead. The abrasive medium is sprayed onto the lead in a sealed-off area. The slurry of abrasive and particles of lead falls through a floor grating and is collected in a pump. A pump sends the slurry mixture back to the spray gun, creating a continuous process

  12. Intervention and decontamination of hardware contaminated by tritium

    International Nuclear Information System (INIS)

    Cerre, Pierre; Mestre, Emile

    1964-10-01

    This report first describes the intervention process for teams intervening, either in case of accident or to modify or repair installations in which tritium is handled, i.e. in both cases in a contaminated atmosphere. Three main aspects are addressed: how to prepare and insulate the work place from the rest of the installation, how to protect the intervening personnel, and how to perform decontamination. The authors then present the various available decontamination techniques: decontamination bath at different temperatures and use of different chemical solutions at different temperatures, the degassing technique (temperature increase and vacuum, temperature hold during 30 to 45 minutes, return to atmospheric pressure), and mercury-based decontamination

  13. Development of remote electrochemical decontamination for hot cell applications

    International Nuclear Information System (INIS)

    Turner, A.D.; Junkison, A.R.; Pottinger, J.S.; Lain, M.J.; Neville, M.D.; Dawson, R.K.; Fletcher, P.A.; Fenn-Tye, I.A.

    1993-01-01

    Electrochemical dissolution into nitric acid has been developed as a decontamination process for metallic items, both for immersion and in-situ use. Not only is the spent electrolyte compatible with existing waste treatment routes, potentially yielding an immobilized product volume of 0.6 dm 3 /m 2 area treated, but it also suppresses any hydrogen production. Both processes have been developed from laboratory to microprocessor-controlled pilot-scale units, which have been demonstrated successfully for the treatment of genuine waste, reducing activity levels to background. For stainless steel substrates, the immersion tank process uses low current densities (10-50 A/m 2 ) in 1-5M HN0 3 for the treatment of extended areas. Decontamination factors > 10 4 can be achieved in two hours. The in-situ technique uses electropolishing in 6M HN0 3 at 1-2 A/cm 2 in an engineered head. Decontamination factors > 10 3 can be achieved in only 20 seconds. This device has also shown potential for incorporation into an integrated monitoring/decontaminating system under robotic control. Both techniques may be used remotely as a way of reducing man-dose and improving productivity during decontamination. Additional cost savings can be made over currently used techniques through the decategorization of the bulk of the waste volume, and the volume reduction of waste for interim storage and geological disposal

  14. Chemical decontamination of reactor components

    International Nuclear Information System (INIS)

    Riess, R.; Berthold, H.O.

    1977-08-01

    A solution for the decontamination of reactor components of the primary system was developed. This solution is a modification of the APAC- (Alkaline Permanganate Ammonium Citrate) system described in the literature. The most important advantage of the present solution over the APAC-method is that it does not induce any selective corrosion attack on materials like stainless steel (austenitic), Inconel 600 and Incoloy 800. (orig.) [de

  15. Decontaminating lead bricks and shielding

    International Nuclear Information System (INIS)

    Lussiez, G.W.

    1993-01-01

    Lead used for shielding is often surface contaminated with radioisotopes and is therefore a RCRA D008 mixed waste. The technology-based standard for treatment is macroencapsulation. However, decontaminating and recycling the clean lead is a more attractive solution. Los Alamos National Laboratory decontaminates material and equipment contaminated with radioisotopes. Decontaminating lead poses special problems because of the RCRA hazard classification and the size of the inventory, now about 50 tons and likely to grow substantially because of planned decommissioning operations. This lead, in the form of bricks and other shield shapes, is surface contaminated with fission products. One of the best methods for decontaminating lead is removing the thin superficial layer of contamination with an abrasive medium trader pressure. For lead, a mixture of alumina with water and air at about 40 psig rapidly and effectively decontaminates the lead. The abrasive medium is sprayed onto the lead in a sealed-off area. The slurry of abrasive and particles of lead falls through a floor grating and is collected in a sump. A pump sends the slurry mixture back to the spray gun, creating a continuous process. The process generates small volumes of contaminated lead slurry that can be solidified and, because it passes the TCLP, is not a mixed waste. The decontaminated lead can be released for recycling

  16. Development of filtration equipment to reuse PFC decontamination wastewater

    International Nuclear Information System (INIS)

    Kim, Gye Nam; Lee, Sung Yeol; Won, Hui Jun; Jung Chong Hun; Oh, Won Zin; Park, Jin Ho

    2005-01-01

    When PFC(Perfluorocarbonate) decontamination technology is applied to removal of radioactive contaminated particulate adhered at surface during the operation of nuclear research facilities, it is necessary to develop a filtration equipment to reuse of PFC solution due to high price, also to minimize the volume of second wastewater. Contaminated characteristics of hot particulate was investigated and a filtration process was presented to remove suspended radioactive particulate from PFC decontamination wastewater generated on PFC decontamination

  17. Cost studies concerning decontamination and dismantling. The interim store for spent fuel at Studsvik

    International Nuclear Information System (INIS)

    Sjoeblom, Rolf; Sjoeoe, Cecilia; Lindskog, Staffan; Cato, Anna

    2006-04-01

    The interim store for spent fuel at Studsvik was designed and constructed in 1962-64. It has been used for wet storage of fuel from the Aagesta Nuclear Power Plant as well as the R2 reactor at Studsvik. The interim store comprises three cylindrical pools for fuel storage as well as equipment for handling and decontamination. The purpose of the present work is to develop methodology for calculation of future costs for decontamination and dismantling of nuclear research facilities. The analysis is based on information from Studsvik as well as results from information searches. The requirements on precision of cost calculations is high, also at early stages. The reason for this is that the funds are to be collected now but are to be used some time in the future. At the same time they should neither be insufficient nor superfluous. It is apparent from the compilation and analysis that when methodology that has been developed for the purpose of cost calculations for power reactors is applied to research facilities certain drawbacks become apparent, e.g. difficulties to carry out variation analyses. Generally, feedback of data on incurred costs for the purpose of cost calculations can be achieved by using one or more scaling factors together with weighing factors which are established based on e.g. expert judgement. For development and utilisation of such tools it is necessary to have access to estimated costs together with incurred ones. In the report, the following combination of aspects is identified as being of primary significance for achieving a high precision: Calculations with the possibility to calibrate against incurred costs; Radiological surveying tailored to the needs for calculations; Technical planning including selection of techniques to be used; Identification of potential sources for systematic deviations. In the case of the interim store, some of the sources of uncertainty are as follows: Damaged surface layers in the pools; Maintenance status for the

  18. Decontamination of process equipment using recyclable chelating solvent

    International Nuclear Information System (INIS)

    Jevec, J.; Lenore, C.; Ulbricht, S.

    1995-01-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment. Current approaches to the decontamination of metals most often involve one of four basic process types: (1) chemical, (2) manual and mechanical, (3) electrochemical, and (4) ultrasonic. open-quotes Hardclose quotes chemical decontamination solutions, capable of achieving decontamination factors (Df's) of 50 to 100, generally involve reagent concentrations in excess of 5%, tend to physically degrade the surface treated, and generate relatively large volumes of secondary waste. open-quotes Softclose quotes chemical decontamination solutions, capable of achieving Df's of 5 to 10, normally consist of reagents at concentrations of 0.1 to 1%, generally leave treated surfaces in a usable condition, and generate relatively low secondary waste volumes. Under contract to the Department of Energy, the Babcock ampersand Wilcox Company is developing a chemical decontamination process using chelating agents to remove uranium compounds and other actinide species from process equipment

  19. Chemical decontamination for decommissioning purposes. (Vigorous decontamination tests of steel samples in a special test loop)

    International Nuclear Information System (INIS)

    Bregani, F.; Pascali, R.; Rizzi, R.

    1984-01-01

    The aim of the research activities described was to develop vigorous decontamination techniques for decommissioning purposes, taking into account the cost of treatment of the radwaste, to achieve possibly unrestricted release of the treated components, and to obtain know-how for in situ hard decontamination. The decontamination procedures for strong decontamination have been optimized in static and dynamic tests (DECO-loop). The best values have been found for: (i) hydrochloric acid: 4 to 5% vol. at low temperature, 0.7 to 1% vol. at high temperature (80 0 C); (ii) hydrofluoric plus nitric acid: 1.5% vol. HF + 5% vol. HNO 3 at low temperature; 0.3 to 0.5% vol. HF + 2.5 to 5% vol. HNO 3 at high temperature. High flow rates are not necessary, but a good re-circulation of the solution is needed. The final contamination levels, after total oxide removal, are in accordance with limits indicated for unrestricted release of materials in some countries. The arising of the secondary waste is estimated. Decontamination of a 10 m 2 surface would typically produce 0.5 to 3.0 kg of dry waste, corresponding to 1.6 to 10 kg of concrete conditioned waste

  20. Decontaminating lead bricks and shielding

    International Nuclear Information System (INIS)

    Lussiez, G.

    1994-01-01

    Lead used for shielding is often surface contaminated with radioisotopes and is therefore a RCRA D008 mixed waste. The technology-based standard for treatment is macroencapsulation. However, decontaminating and recycling the clean lead is a more attractive solution. Los Alamos National Laboratory decontaminates material and equipment contaminated with radioisotopes. Decontaminating lead poses special problems because of the RCRA hazard classification and the size of the inventory, now about 50 tons and likely to grow substantially of planned decommissioning operations. Thus lead, in the form of bricks and other shield shapes, is surface contaminated with fission products. One of the best methods for contaminated lead is removing the superficial layer of contamination with an abrasive medium under pressure. For lead, a mixture of alumina with water and air at about 40 psig rapidly and effectively decontaminates the lead. The abrasive medium is sprayed onto the lead in a scaled-off area. The slurry of abrasive and particles of lead falls through a floor and is collected in a sump. A pump sends the slurry mixture back to the spray gun, creating a continuous process. The process generates small volumes of lead slurry that can be solidified and, because it passes the TCLP, is not a mixed waste. The decontaminated lead can be released for recycling

  1. Sorption behaviour of Cs, Sr radionuclides in the presence of various anions and surfactants in solutions

    International Nuclear Information System (INIS)

    Davydov, Yu.P.; Toropov, I.G.; Vasilevskaya, T.V.

    1997-01-01

    The state of 137 Cs and 90 Sr radionuclides was studied in solutions of different compositions to develop appropriate methodology and technology for treatment of spent decontamination solutions. Complex physico-chemical methods were used for this study. Particular attention was paid to the sorption of 137 Cs and 90 Sr on different natural and synthetic inorganic sorbents, as the most specific and selective sorbents for separation of these radionuclides from different solutions. Sorption of CS and Sr on different fractions of soil was also studied in connection with development of rehabilitation methods for contaminated territories. (author). 2 refs, 20 tabs

  2. PROCESS OF DECONTAMINATING MATERIAL CONTAMINATED WITH RADIOACTIVITY

    Science.gov (United States)

    Overholt, D.C.; Peterson, M.D.; Acken, M.F.

    1958-09-16

    A process is described for decontaminating metallic objects, such as stainless steel equipment, which consists in contacting such objects with nltric acid in a concentration of 35 to 60% to remove the major portion of the contamination; and thereafter contacting the partially decontaminated object with a second solution containing up to 20% of alkali metal hydroxide and up to 20% sodium tartrate to remove the remaining radioactive contaminats.

  3. Health physics and industrial hygiene aspects of decontamination as a precursor to decontamination

    International Nuclear Information System (INIS)

    Card, C.J.; Hoenes, G.R.; Munson, L.F.; Halseth, G.A.

    1982-06-01

    The Pacific Northwest Laboratory is conducting a comprehensive study of the impacts, benefits and effects of decontamination as a precursor to decommissioning for the US Nuclear Regulatory Commission. The program deals primarily with chemical cleaning of light-water reactor (LWR) systems that will not be returned to operation. A major section of this study defines the health physics and industrial hygiene and safety concerns during decontamination operations. The primary health physics concerns include providing adequate protection for workers from radiation sources which are transported by the decontamination processes, estimating and limiting radioactive effluents to the environment and maintaining operations in accordance with the ALARA philosophy. Locating and identifying the areas of contamination and measuring the radiation exposure rates throughout the reactor primary system are fundamental to implementing these health physics goals. The principal industrial hygiene and safety concerns stem from the fact that a nuclear power plant is being converted for a time to a chemical plant which will contain large volumes of chemical solutions

  4. Hydrothermal Carbonization of Spent Osmotic Solution (SOS Generated from Osmotic Dehydration of Blueberries

    Directory of Open Access Journals (Sweden)

    Kaushlendra Singh

    2014-09-01

    Full Text Available Hydrothermal carbonization of spent osmotic solution (SOS, a waste generated from osmotic dehydration of fruits, has the potential of transformation into hydrochars, a value-added product, while reducing cost and overall greenhouse gas emissions associated with waste disposal. Osmotic solution (OS and spent osmotic solution (SOS generated from the osmotic dehydration of blueberries were compared for their thermo-chemical decomposition behavior and hydrothermal carbonization. OS and SOS samples were characterized for total solids, elemental composition, and thermo-gravimetric analysis (TGA. In addition, hydrothermal carbonization was performed at 250 °C and for 30 min to produce hydrochars. The hydrochars were characterized for elemental composition, Brunauer-Emmett-Teller (BET surface area, particle shape and surface morphology. TGA results show that the SOS sample loses more weight in the lower temperature range than the OS sample. Both samples produced, approximately, 40%–42% (wet-feed basis hydrochar during hydrothermal carbonization but with different properties. The OS sample produced hydrochar, which had spherical particles of 1.79 ± 1.30 μm diameter with a very smooth surface. In contrast, the SOS sample produced hydrochar with no definite particle shape but with a raspberry-like surface.

  5. The state of the art on the dry decontamination technologies applicable to highly radioactive contaminants and their needs for the national nuclear fuel cycle developent

    International Nuclear Information System (INIS)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. H.; Chol, W. K.; Kim, G. N.; Moon, J. K.

    2000-12-01

    This report is intended to establish their needs to support the dry decontamination activities applicable to highly radioactive contaminants based on the requirement of technologies development suggested from the national nuclear fuel cycle projects, such as DUPIC, advanced spent fuel management and long-lived radionuclides conversion. The technology needs associated with decontamination addressed the requirements associated with the efficiency of decontamination technology, the reduction of secondary wastes, applicabilities and the remote operation. And also, Characterization and decontamination technologies for various contaminants are reviewed and analysed. Based on the assessment, Unit dry decontamination processes are selected and the schematic flow diagram for decontamination of highly radioactive contaminants

  6. The state of the art on the dry decontamination technologies applicable to highly radioactive contaminants and their needs for the national nuclear fuel cycle developent

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Lee, K.W.; Won, H.J.; Jung, C.H.; Chol, W.K.; Kim, G.N.; Moon, J.K

    2000-12-01

    This report is intended to establish their needs to support the dry decontamination activities applicable to highly radioactive contaminants based on the requirement of technologies development suggested from the national nuclear fuel cycle projects, such as DUPIC, advanced spent fuel management and long-lived radionuclides conversion. The technology needs associated with decontamination addressed the requirements associated with the efficiency of decontamination technology, the reduction of secondary wastes, applicabilities and the remote operation. And also, Characterization and decontamination technologies for various contaminants are reviewed and analysed. Based on the assessment, Unit dry decontamination processes are selected and the schematic flow diagram for decontamination of highly radioactive contaminants.

  7. Potential Process for the Decontamination of Pyro-electrometallurgical LiCl-KCl Eutectic Salt Electrolyte

    International Nuclear Information System (INIS)

    Griffith, Christopher S.; Sizgek, Erden; Sizgek, Devlet; Luca, Vittorio

    2008-01-01

    Presented here is a potential option with experimental validation for the decontamination of LiCl-KCl eutectic salt electrolyte from a pyro-electrometallurgical process by employing already developed inorganic ion exchange materials. Adsorbent materials considered include titano-silicates and molybdo- and tungstophosphates for Cs extraction, Si-doped antimony pyrochlore for Sr extraction and hexagonal tungsten bronzes for lanthanide (LN) and minor actinide (MA) polishing. Encouraging results from recent investigations on the removal of target elements (Cs, Sr and LN) from aqueous solutions containing varying concentrations of alkali and alkali metal contaminants which would be akin to a solution formed from the dissolution of spent LiCl-KCl eutectic salt electrolyte are presented. Further investigations have also shown that the saturated adsorbents can be treated at relatively low temperatures to afford potential waste forms for the adsorbed elements. Efficient evaporation and drying of a solution of dissolved LiCl-KCl eutectic salt electrolyte (50 L, 5 L.h -1 ) has been demonstrated using a Microwave-Heated Mechanical Fluidized Bed (MWMFB) apparatus. (authors)

  8. Potential Process for the Decontamination of Pyro-electrometallurgical LiCl-KCl Eutectic Salt Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Christopher S.; Sizgek, Erden; Sizgek, Devlet; Luca, Vittorio [Australian Nuclear Science and Technology Organisation (ANSTO), Institute of Materials Engineering, New Illawarra Road, Lucas Heights, New South Wales, 2234 (Australia)

    2008-07-01

    Presented here is a potential option with experimental validation for the decontamination of LiCl-KCl eutectic salt electrolyte from a pyro-electrometallurgical process by employing already developed inorganic ion exchange materials. Adsorbent materials considered include titano-silicates and molybdo- and tungstophosphates for Cs extraction, Si-doped antimony pyrochlore for Sr extraction and hexagonal tungsten bronzes for lanthanide (LN) and minor actinide (MA) polishing. Encouraging results from recent investigations on the removal of target elements (Cs, Sr and LN) from aqueous solutions containing varying concentrations of alkali and alkali metal contaminants which would be akin to a solution formed from the dissolution of spent LiCl-KCl eutectic salt electrolyte are presented. Further investigations have also shown that the saturated adsorbents can be treated at relatively low temperatures to afford potential waste forms for the adsorbed elements. Efficient evaporation and drying of a solution of dissolved LiCl-KCl eutectic salt electrolyte (50 L, 5 L.h{sup -1}) has been demonstrated using a Microwave-Heated Mechanical Fluidized Bed (MWMFB) apparatus. (authors)

  9. Transportation of spent nuclear fuels

    International Nuclear Information System (INIS)

    Meguro, Toshiichi

    1976-01-01

    The spent nuclear fuel taken out of reactors is cooled in the cooling pool in each power station for a definite time, then transported to a reprocessing plant. At present, there is no reprocessing plant in Japan, therefore the spent nuclear fuel is shipped abroad. In this paper, the experiences and the present situation in Japan are described on the transport of the spent nuclear fuel from light water reactors, centering around the works in Tsuruga Power Station, Japan Atomic Power Co. The spent nuclear fuel in Tsuruga Power Station was first transported in Apr. 1973, and since then, about 36 tons were shipped to Britain by 5 times of transport. The reprocessing plant in Japan is expected to start operation in Apr. 1977, accordingly the spent nuclear fuel used for the trial will be transported in Japan in the latter half of this year. Among the permission and approval required for the transport of spent nuclear fuel, the acquisition of the certificate for transport casks and the approval of land and sea transports are main tasks. The relevant laws are the law concerning the regulations of nuclear raw material, nuclear fuel and reactors and the law concerning the safety of ships. The casks used in Tsuruga Power Station and EXL III type, and the charging of spent nuclear fuel, the decontamination of the casks, the leak test, land transport with a self-running vehicle, loading on board an exclusive carrier and sea transport are briefly explained. The casks and the ship for domestic transport are being prepared. (Kato, I.)

  10. Evaluation of commercially available decontamination chemicals

    International Nuclear Information System (INIS)

    Shurte, E.A.; Rankin, W.N.

    1988-01-01

    The effectiveness of commercially available decontamination solutions was compared with the effectiveness of 10% oxalic acid in controlled laboratory tests. Type 304L stainless steel and Inconel 625 specimens were used. Contamination was sludge from Savannah River Plant (SRP) high level waste tanks. Measured amounts of contamination were placed on each specimen. They were then heated to bond the contamination to the surface and cleaned according to the manufacturer's directions. The effectiveness of the product was determined by monitoring specimens before and after cleaning. Four of the 16 solutions evaluated removed all the contamination from Type 304L stainless steel. Inconel 625 was more difficult to decontaminate. Further tests are planned with the chemicals that were most effective in this test. 4 refs., 6 tabs

  11. Evaluation of commercially available decontamination chemicals

    International Nuclear Information System (INIS)

    Shurte, E.A.

    1988-01-01

    The effectiveness of commercially available decontamination solutions was compared with the effectiveness of 10% oxalic acid in controlled lab. tests. Type 304L stainless steel and Inconel 625 specimens were used. Contamination was sludge from Savannah River Plant (SRP) high level waste tanks. Measured amounts of contamination were placed on each specimen. They were then heated to bond the contamination to the surface and cleaned according to the manufacturer's directions. The effectiveness of the produce was determined by monitoring specimens before and after cleaning. Four of the 16 solutions evaluated removed all the contamination from Type 304L stainless steel. Inconel 625 was more difficult to decontaminate. Further tests are planned with the chemicals that were most effective in this test

  12. Wet-Oxidation of Spent Organic Waste Tri-butyl Phosphate/Diluents

    International Nuclear Information System (INIS)

    El-Dessouky, M.I.; Abed El-Aziz, M.M.; El-Mossalamy, E.H.; Aly, H.F.

    1999-01-01

    Tri-Butyl Phosphate was used in reprocessing of spent nuclear fuel in the purex process. The amount of uranium retained in the organic phase depends on the type of TBP/Diluent. Destruction of spent TBP is of high interest in waste management. In the present work, oxidative degradation of TBP diluted with kerosene, carbon tetrachloride, benzene and toluene using potassium permanganate as oxidant was carried out to produce stable inorganic dry particle residue which is then immobilized in different matrices. The different factors affecting the destruction of spent waste was investigated. The up take and decontamination factor for both 152 and 154 Eu and 181 Hf and the analysis of the final product have been studied

  13. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi

    1991-01-01

    The invention relates to a decontamination method for radioactive metal waste products derived from equipment that handles radioactive materials whose surfaces have been contaminated; in particular it concerns a decontamination method that reduces the amount of radioactive waste by decontaminating radioactive waste substances to a level of radioactivity in line with normal waste products. In order to apply chemical decontamination to metal waste products whose surfaces are divided into carbon steel waste and stainless steel waste; the carbon steel waste is treated using only a primary process in which the waste is immersed in a sulfuric acid solution, while the stainless steel waste must be treated with both the primary process and then electrolytically reduces it for a specific length of time and a secondary process that uses a solution of sulfuric acid mixed with oxidizing metal salts. The method used to categorize metal waste into carbon steel waste and stainless steel waste involves determining the presence, or absence, of magnetism. Voltage is applied for a fixed duration; once that has stopped, electrolytic reduction repeats the operative cycle of applying, then stopping voltage until the potential of the radioactive metal waste is retained in the active region. 1 fig. 2 tabs

  14. Pyroprocessing oxide spent nuclear fuels for efficient disposal

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Pierce, R.D.; Mulcahey, T.P.

    1994-01-01

    Pyrochemical processing as a means for conditioning spent nuclear fuels for disposal offers significant advantages over the direct disposal option. The advantages include reduction in high-level waste volume; conversion of most of the high-level waste to a low-level waste in which nearly all the transuranics (TRU) have been removed; and incorporation of the TRUs into a stable, highly radioactive waste form suitable for interim storage, ultimate destruction, or repository disposal. The lithium process has been under development at Argonne National Laboratory for use in pyrochemical conditioning of spent fuel for disposal. All of the process steps have been demonstrated in small-scale (0.5-kg simulated spent fuel) experiments. Engineering-scale (20-kg simulated spent fuel) demonstration of the process is underway, and small-scale experiments have been conducted with actual spent fuel from a light water reactor (LWR). The lithium process is simple, operates at relatively low temperatures, and can achieve high decontamination factors for the TRU elements. Ordinary materials, such as carbon steel, can be used for process containment

  15. Effect of Organic Solvents in Preparation of Silica-Based Chemical Gel Decontaminates for Decontamination of Nuclear Facilities

    International Nuclear Information System (INIS)

    Yoon, Suk Bon; Jung, Chong Hun; Kim, Chang Ki; Choi, Byung Seon; Lee, Kune Woo; Moon, Jei Kwon

    2011-01-01

    Decontamination of nuclear facilities is necessary to reduce the radiation field during normal operations and decommissioning of complex equipment such as stainless steel components, other iron-based steel and alloys, metal surfaces, structural materials and so on. Chemical decontamination technology in particular is a highly effective method to remove the radioactive contamination through a chemical dissolution or a redox reaction. However, this method has the serious drawback due to the generation of large amounts of the radioactive liquid wastes. Recently, a few literatures have been reported for the preparation of the chemical gel decontaminants to reduce the amount of the radioactive liquid wastes and to enhance the decontamination efficiency through increasing the contact time between the gels and the radioactive contaminants. In the preparation of the chemical gels, the control of the viscosity highly depends on the amount of a coviscosifier used among the components of the chemical gels consisted of a viscosifier, a coviscosifier, and a chemical decontaminant. In this works, a new effective method for the preparation of the chemical gel was investigated by introducing the organic solvents. The mixture solution of the coviscosifier and organic solvent was more effective in the control of the viscosity compared with that of the coviscosifier only in gels. Furthermore, the decontamination efficiency of the chemical gels measured by using the multi-channel analyzer (MCA) showed the high decontamination factor for Co-60 and Cs-137 contaminated on the surface of the stainless steel 304

  16. Decontamination of plutonium-contaminated surfaces; Essais de decontamination des surfaces contaminees par du plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, J; Clouet d' Orval, Ch; Tachon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The measure of the neutron distribution in the core of 'Proserpine', by means of activation detectors, requires no contact between the plutonium sulfate solution and the detectors. These detectors are put into PVC or polyethylene bags. This report describes the process used to decontaminate these bags. A washing by nitric acid followed by coating with plexiglass is kept, with this process we have no contamination on the detectors. (author) [French] La mesure de la distribution de neutrons par detecteurs a activation dans le coeur de Proserpine exige de proteger ces detecteurs contre tout contact avec la solution de plutonium. Les detecteurs sont places dans des gaines en polyvinyle ou en polyethylene. Ce rapport decrit le procede utilise pour decontaminer ces gaines. On a retenu un lavage a l'acide nitrique suivi du revetement d'une meme couche de plexiglass, ce qui permet d'eviter la contamination des detecteurs. (auteur)

  17. Radioactive decontamination

    International Nuclear Information System (INIS)

    1983-07-01

    This Code of Practice covers: (a) the decontamination of plant items, buildings and associated equipment; (b) decontamination of protective clothing; (c) simple personal decontamination; and (d) the basic mechanisms of contamination and their influence on decontaminability. (author)

  18. Effect of Cerium(IV)-Surfactant Reaction in Foam Decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Han Beom; Jung, Chong-Hun; Yoon, In-Ho; Kim, Chorong; Choi, Wang-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Using foams allows the decommissioning of complex shaped facilities. The decontamination foam comprises at least one surfactant to generate the foam and one or more chemical reactants to achieve the dissolution of the contaminants at the solid surface. In order to improve the efficiency of decontamination foam, the present study attempts to find the optimum condition of chemical reagents to the foaming solution. The corrosion rate of radioactive nuclides contaminated stainless steel metal is very important factor for the foam decontamination process. The goal of this study is to develop the decontamination process for contaminated stainless steel in medium of nitric acid. Stainless steel needs a strong oxidizing agent such as Ce(IV) ion and the effects of cerium(IV). Surfactant interaction involved in foam decontamination and finally the improvement brought by formulation science. The formulation of foams loaded with strong oxidizing reagents such as Ce(IV) is an important factor. The enhanced decontamination properties of nitric acid with Ce(IV) additive on stainless steel is well known in liquid mediums. stainless steel metal is an important aspect in the foam decontamination process.

  19. Effect of Cerium(IV)-Surfactant Reaction in Foam Decontamination

    International Nuclear Information System (INIS)

    Yang, Han Beom; Jung, Chong-Hun; Yoon, In-Ho; Kim, Chorong; Choi, Wang-Kyu

    2015-01-01

    Using foams allows the decommissioning of complex shaped facilities. The decontamination foam comprises at least one surfactant to generate the foam and one or more chemical reactants to achieve the dissolution of the contaminants at the solid surface. In order to improve the efficiency of decontamination foam, the present study attempts to find the optimum condition of chemical reagents to the foaming solution. The corrosion rate of radioactive nuclides contaminated stainless steel metal is very important factor for the foam decontamination process. The goal of this study is to develop the decontamination process for contaminated stainless steel in medium of nitric acid. Stainless steel needs a strong oxidizing agent such as Ce(IV) ion and the effects of cerium(IV). Surfactant interaction involved in foam decontamination and finally the improvement brought by formulation science. The formulation of foams loaded with strong oxidizing reagents such as Ce(IV) is an important factor. The enhanced decontamination properties of nitric acid with Ce(IV) additive on stainless steel is well known in liquid mediums. stainless steel metal is an important aspect in the foam decontamination process

  20. Decontamination by cleaning with fluorocarbon surfactant solutions

    International Nuclear Information System (INIS)

    Kaiser, R.; Benson, C.E.; Meyers, E.S.; Vaughen, V.C.A.

    1994-02-01

    In the nuclear industry, facilities and their components inevitably become contaminated with radioactive materials. This report documents the application of a novel particle-removal process developed by Entropic Systems, Inc. (ESI), to decontaminate critical instruments and parts that are contaminated with small radioactive particles that adhere to equipment surfaces. The tests were performed as a cooperative effort between ESI and the Chemical Technology Division of the Oak Ridge National Laboratory (ORNL). ESI developed a new, environmentally compatible process to remove small particles from solid surfaces that is more effective than spraying or sonicating with CFC-113. This process uses inert perfluorinated liquids as working media; the liquids have zero ozone-depleting potential, are nontoxic and nonflammnable, and are generally recognized as nonhazardous materials. In the ESI process, parts to be cleaned are first sprayed or sonicated with a dilute solution of a high-molecular-weight fluorocarbon surfactant in an inert perfluorinated liquid to effect particle removal. The parts are then rinsed with the perfluorinated liquid to remove the fluorocarbon surfactant applied in the first step, and the residual rinse liquid is then evaporated from the parts into an air or nitrogen stream from which it is recovered. Nuclear contamination is inherently a surface phenomenon. The presence of radioactive particles is responsible for all ''smearable'' contamination and, if the radioactive particles are small enough, for some of the fixed contamination. Because radioactivity does not influence the physical chemistry of particle adhesion, the ESI process should be just as effective in removing radioactive particles as it is in removing nonradioactive particles

  1. A study on decontamination and decommissioning of experimental DUPIC equipment at PIEF 9405 hot cell

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Yang, M. S.; Lee, H. S.; Lee, E. P.

    2000-09-01

    The characterization experiment for powder and sintered fuel had been performed using about 1 kg-U spent PWR fuel at No. 9405 hot-cell in PIEF(Post Irradiated Experiment Facility) since early in 1999. Currently, The experiments in PIEF have been completed. It is supposed to dismantle and decontaminate the installed equipment by the end of year 2000. Since all of DUPIC equipment in hot-cell are contaminated by high radioactive material, the decontamination and dismantlement must br performed remotely by M/S manipulator. During the radioactive waste packing and transportation, the reduction method of radiation exposure has to be considered. Firstly, This report describes the basic plan for dismantlement/decontamination of the characterization equipment(power and sintered fuel). And methods of measurement/packing/ transportation, method of dismantlement/decontamination of the experimental apparatus and the reduction method of radiation dose exposure, etc. are explained in order

  2. Low concentration NP preoxidation condition for PWR decontamination

    International Nuclear Information System (INIS)

    Huang Fuduan; Yu Degui; Lu Jingju; Ding Dejun; Zhao Yukun

    1991-02-01

    To use preoxidation condition with low concentration NP (nitric acid permanganate) instead of conventional high concentration AP (alkline permanganate ) for PWR oxidation decontamination (POD) was summarized. Experiments including three parts have been performed. The defilming performance and decontamination factor of preoxidation with low concentration NP, which is 100, 10 times lower than that of AP are better than that with high concentration AP. The reason has been studied with the aid of prefilmed specimens of corrosion potential measuring in NP solution and chromium release in NP and AP solutions. The behaviour of alloy 13 prefilmed specimen in NP preoxidation solution is different from 18-8 ss and Incoloy 800. In the low acidity, the corrosion potential moves toward positive direction as the acidity becomes high

  3. Neptunium control in co-decontamination step of purex process

    International Nuclear Information System (INIS)

    Zhang Zefu; He Jianyu; Zhu Zhaowu; Ye Guoan; Zhao Zhiqiang

    2002-01-01

    A new alternative method for separation of Np in the first co-decontamination step is proposed. It comprises two steps, namely, preconditioning of Np valence state in the dissolved solution of spent fuel by NO gas bubbling in HNO 3 medium to produce HNO 2 , which is considered as salt-free process to convert Np(VI) to Np(V) and stabilization of Np(V) with urea, finally, the demonstrative counter current cascade extraction of Np(IV) and Np(V) in a miniature mixer-settler was carried out. The batch experiments show that Np(V) produced after conditioning may be slowly oxidized again to Np(VI) during standing time. Addition of urea in the HNO 3 solution might enhance the stability of Np(V). On the other hand, the solvent extraction by 30% TBP/kerosene could greatly accelerate the oxidation rate of Np(V). The chemical flow sheet study at 25degC shows that, more than 98% of Np could be routed into HLLW if urea is added in the HNO 3 solution. The operating temperature has great influence on the kinetics of Np(V) oxidation. If operation temperature races to 36degC and urea is not added, about 38% of Np will go along with U and Pu into organic phase. The behavior of Np(IV) during extraction shows great accumulation in the middle stages of battery. (author)

  4. Active Waste Materials Corrosion and Decontamination Tests

    International Nuclear Information System (INIS)

    Danielson, M.J.; Elmore, M.R.; Pitman, S.G.

    2000-01-01

    Stainless steel alloys, 304L and 316L, were corrosion tested in representative radioactive samples of three actual Hanford tank waste solutions (Tanks AW-101, C-104, AN-107). Both the 304L and 316L exhibited good corrosion performance when immersed in boiling waste solutions. The maximum general corrosion rate was 0.015 mm/y (0.60 mils per year). Generally, the 304L had a slightly higher rate than the 316L. No localized attack was observed after 122 days of testing in the liquid phase, liquid/vapor phase, or vapor phase. Radioactive plate-out decontamination tests indicated that a 24-hour exposure to 1 und M HNO 3 could remove about 99% of the radioactive components in the metal film when exposed to the C-104 and AN-107 solutions. The decontamination results are less certain for the AW-101 solution, since the initial contamination readings exceeded the capacity of the meter used for this test

  5. Nuclear cost studies for decontamination and dismantling. The interim storage for spent fuels at Studsvik

    International Nuclear Information System (INIS)

    Sjoeblom, Rolf; Sjoeoe, Cecilia; Lindskog, Staffan; Cato, Anna

    2005-05-01

    The interim store for spent fuel (FA) at Studsvik was designed and constructed in 1962-64. It has been used for wet storage of fuel from the Aagesta Nuclear Power Plant as well as the R2 reactor at Studsvik. FA comprises three cylindrical pools for fuel storage as well as equipment for handling and decontamination. The purpose of the present work is to develop methodology for calculation of future costs for decontamination and dismantling of nuclear research facilities. The analysis is based on information from Studsvik as well as results from information searches. The requirements on precision of cost calculations is high, also at early stages. The reason for this is that the funds are to be collected now but are to be used some time in the future. At the same time they should neither be insufficient nor superfluous. It is apparent from the compilation and analysis that when methodology that has been developed for the purpose of cost calculations for power reactors is applied to research facilities certain drawbacks become apparent, e.g. difficulties to carry out variation analyses. Generally, feedback of data on incurred costs for the purpose of cost calculations can be achieved by using one or more scaling factors together with weighing factors which are established based on e g expert judgement. For development and utilisation of such tools it is necessary to have access to estimated costs together with incurred ones. In the report, the following combination of aspects is identified as being of primary significance for achieving a high precision: Calculations with the possibility to 'calibrate' against incurred costs; Radiological surveying tailored to the needs for calculations; Technical planning including selection of techniques to be used; Identification of potential sources for systematic deviations. In the case of FA, some of the sources of uncertainty are as follows: Damaged surface layers in the pools; Maintenance status for the drains; Radiological

  6. Comparison of four different fuller's earth formulations in skin decontamination.

    Science.gov (United States)

    Roul, Annick; Le, Cong-Anh-Khanh; Gustin, Marie-Paule; Clavaud, Emmanuel; Verrier, Bernard; Pirot, Fabrice; Falson, Françoise

    2017-12-01

    Industrial accidents, wars and terrorist threats are potential sources of skin contamination by highly toxic chemical warfare agents and manufacturing compounds. We have compared the time-dependent adsorption capacity and decontamination efficiency of fuller's earth (FE) for four different formulations for the molecular tracer, 4-cyanophenol (4-CP), in vitro and ex vivo using water decontamination as standard. The adsorption capacity of FE was assessed in vitro for 4-CP aqueous solutions whereas decontamination efficiency was investigated ex vivo by tracking porcine skin 4-CP content using attenuated total reflectance Fourier transform infrared spectroscopy. Decontamination was performed on short time, exposed porcine skin to 4-CP by application of FE: (1) as free powder; (2) loaded on adhesive tape; (3) on powdered glove; or (4) in suspension. Removal rate of 4-CP from aqueous solutions correlates with the amount of FE and its contact time. Decontamination efficiency estimated by the percentage of 4-CP recovery from contaminated porcine skin, achieved 54% with water, ranged between ~60 and 70% with dry FE and reached ~90% with FE suspension. Successful decontamination of the FE suspension, enabling a dramatic reduction of skin contamination after a brief exposure scenario, appears to be rapid, reliable and should be formulated in a new device ready to use for self-application. Copyright © 2017 John Wiley & Sons, Ltd.

  7. [Decontamination of chemical and biological warfare agents].

    Science.gov (United States)

    Seto, Yasuo

    2009-01-01

    Chemical and biological warfare agents (CBWA's) are diverse in nature; volatile acute low-molecular-weight toxic compounds, chemical warfare agents (CWA's, gaseous choking and blood agents, volatile nerve gases and blister agents, nonvolatile vomit agents and lacrymators), biological toxins (nonvolatile low-molecular-weight toxins, proteinous toxins) and microbes (bacteria, viruses, rickettsiae). In the consequence management against chemical and biological terrorism, speedy decontamination of victims, facilities and equipment is required for the minimization of the damage. In the present situation, washing victims and contaminated materials with large volumes of water is the basic way, and additionally hypochlorite salt solution is used for decomposition of CWA's. However, it still remains unsolved how to dispose large volumes of waste water, and the decontamination reagents have serious limitation of high toxicity, despoiling nature against the environments, long finishing time and non-durability in effective decontamination. Namely, the existing decontamination system is not effective, nonspecifically affecting the surrounding non-target materials. Therefore, it is the urgent matter to build up the usable decontamination system surpassing the present technologies. The symposiast presents the on-going joint project of research and development of the novel decontamination system against CBWA's, in the purpose of realizing nontoxic, fast, specific, effective and economical terrorism on-site decontamination. The projects consists of (1) establishment of the decontamination evaluation methods and verification of the existing technologies and adaptation of bacterial organophosphorus hydrolase, (2) development of adsorptive elimination technologies using molecular recognition tools, and (4) development of deactivation technologies using photocatalysis.

  8. Decontamination activities at the National Institute of Oncology and Radiobiology in Havana, Cuba

    International Nuclear Information System (INIS)

    Castillo, R.; Salgado, M.; Madrazo, S.; Flores, J.; Marcos, J.

    2002-01-01

    The National Institute of Oncology and Radiobiology had a facility contaminated with 137 Cs. The contamination was produced by a leaking source stored in the place. First decontamination work was performed in 1988. Some highly contaminated floor tiles and other contaminated items were removed. Spent sealed sources stored in the facility were collected. The facility was closed because of the remaining contamination. As the Regulatory Body allowed the unrestricted use of the facility, decontamination and decommissioning were needed. D and D activities were requested to the CPHR. Contamination surveys conducted in 1999 confirmed the extent of contamination with 137 Cs. Items inside the contaminated area were carefully monitored and segregated. Six Radium sources were recovered. Physical and chemical methods of decontamination were used. For different reasons, the requirements established by the Regulatory Authority for decommissioning could not be achieved, and therefore the facility could not be released from regulatory control. A Radiological Status Report was done explaining the high cost of decontamination according to the established clearance levels. New alternatives were then proposed for decommissioning of this facility. (author)

  9. Corrosion Characteristics of Inconel-600 at the NP(Cu)-HYBRID Decontamination Demonstration Test with HANARO FTL Specimen

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jun Young; Park, Sang Yoon; Won, Hui Jun; Kim, Seon Byeong; Choi, Wang Kyu; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    An alkaline permanganate (AP) or nitric permanganate (NP) oxidative phase has been generally used to dissolve the chromium-rich oxide. AP is advantageous for the corrosion resistance, but increases the volume of secondary waste during the decontamination procedure. On the other hand, NP has a high corrosion rate but reduces secondary waste. For the safe use of an oxidative decontamination solution with high corrosive resistance and less amount of secondary waste are required. In this study, we modified NP oxidative decontamination solution by adding Cu{sup 2+} to reduce the corrosion rate. To evaluate the general corrosion characteristics, we measured the weight losses of selected specimens in an NP(Cu) and other solutions. The localized corrosion was observed using an optical microscope (OM). To compare the decontamination performance, we measured the contact dose rate of specimens treated in NP-HYBRID and NP(Cu)-HYBRID systems. The reduced corrosion characteristics of the Inconel-600 specimen in a NP(Cu) oxidative solution was observed in terms of generalized corrosion as well as localized corrosion. Less corrosion characteristics do not affect the performance of the overall decontamination compared to the NP-HYBRID process. Therefore, our results support that the NP(Cu)-HYBRID decontamination process is appropriate for the decontamination of the primary coolant system in a nuclear reactor.

  10. Aggressive chemical decontamination tests on small valves from the Garigliano BWR

    International Nuclear Information System (INIS)

    Bregani, F.

    1990-01-01

    In order to check the effectiveness of direct chemical decontamination on small and complex components, usually considered for storage without decontamination because of the small amount, some tests were performed on the DECO experimental loop. Four small stainless steel valves from the primary system of the Garigliano BWR were decontaminated using mainly aggressive chemicals such as HC1, HF, HNO 3 and their mixtures. On two valves, before the treatment with aggressive chemicals, a step with soft chemical (oxalic and citric acid mixture) was performed in order to see whether a softening action enhances the following aggressive decontamination. Moreover, in order to increase as much as possible the decontamination effectiveness, a decontamination process using ultrasounds jointly with aggressive chemicals was investigated. After an intensive laboratory testing programme, two smaller stainless steel valves from the primary system of the Garigliano BWR were decontaminated using ultrasounds in aggressive chemical solutions

  11. The separation of silica nanoparticle by cetyltrimethylammonium bromide from decontamination foam waste

    International Nuclear Information System (INIS)

    Choi, Man Soo; Yoon, In Ho; Jung, Chong Hun; Moon, Jei Kwon; Choi, Wang Kyu

    2016-01-01

    Decontamination foam has been considered as a potential application for the cleaning of radioactive contaminant in the field of metallic walls, overhead surfaces, and complex components. Moreover, foam decontamination could generate the low secondary waste amount owing to its volume expansion. In order to increase the decontamination efficiency, it is essential to improve the foam stability with low amount of chemical decontamination agent. Yoon et al. reported that the silica nanoparticle containing surfactant increased the foam stability compared to only surfactant solution[3]. Nanoparticle has been used with surfactant, which they adsorb at fluid/fluid interface, to stabilize emulsions or bubbles in foams. Despite of improving foam stability, they still used the surfactant, silica nanoparticle (1 wt%), and viscosifier. In addition, it is difficult to separate silica nanoparticle from decontamination solution. Because nanoparticles differ from classical solid particles due to smaller particle size and their specific properties. Thus, the separation method for nanoparticle should be also developed with high recovery rates. The flocculation of silica nanoparticle added by CTAB could be quickly achieved for only 30 min. The particle size of SiO_2 was larger as CTAB amount increased, and SiO_2 contents in the top solution were decreased after centrifugation

  12. The separation of silica nanoparticle by cetyltrimethylammonium bromide from decontamination foam waste

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Man Soo; Yoon, In Ho; Jung, Chong Hun; Moon, Jei Kwon; Choi, Wang Kyu [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Decontamination foam has been considered as a potential application for the cleaning of radioactive contaminant in the field of metallic walls, overhead surfaces, and complex components. Moreover, foam decontamination could generate the low secondary waste amount owing to its volume expansion. In order to increase the decontamination efficiency, it is essential to improve the foam stability with low amount of chemical decontamination agent. Yoon et al. reported that the silica nanoparticle containing surfactant increased the foam stability compared to only surfactant solution[3]. Nanoparticle has been used with surfactant, which they adsorb at fluid/fluid interface, to stabilize emulsions or bubbles in foams. Despite of improving foam stability, they still used the surfactant, silica nanoparticle (1 wt%), and viscosifier. In addition, it is difficult to separate silica nanoparticle from decontamination solution. Because nanoparticles differ from classical solid particles due to smaller particle size and their specific properties. Thus, the separation method for nanoparticle should be also developed with high recovery rates. The flocculation of silica nanoparticle added by CTAB could be quickly achieved for only 30 min. The particle size of SiO{sub 2} was larger as CTAB amount increased, and SiO{sub 2} contents in the top solution were decreased after centrifugation.

  13. New decontamination processes for liquid effluents and solid materials

    International Nuclear Information System (INIS)

    Faure, S.

    2008-01-01

    New decontamination processes are being studied in order to protect workers and to reduce strongly the quantity of secondary wastes produced. 2 decontamination processes for liquid nuclear wastes are under studies. First, the coprecipitation process whose improvement is based on a better control of the 2 coupled mechanisms involved in the process: the formation of adsorbent particles and the uptake of radionuclides. Secondly, the column process whose development focuses on new materials that can be used to absorb cesium in a reversible way. 3 new decontamination processes for solid materials are being developed. First, processes using drying gels are under investigation in order to treat materials like lead, aluminium, iron and stainless steel. Real decontamination of hot cells by drying gel process has been performed and a decontamination factor between 16 and 25 has been obtained on stainless steels. Secondly, new foam decontamination processes have been developed, they are based on the use of new foams stabilized by biodegradable non-ionic surfactants: alkyl-poly-glucosides and viscofiers or nano-particles. The aim is to increase the foam lifetime. Thirdly, new surfactants in solution decontamination processes have been studied, the aim is to decontaminate through degreasing by using acidic surfactants. The idea is to combine emulsification and wetting power. (A.C.)

  14. Decontamination of Metal Ions in Soil by Supercritical CO2 Extraction with Crown Ether

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jihe; Park, Kwangheon [Kyunghee University, Yongin (Korea, Republic of)

    2015-05-15

    Previous decontamination methods have shortcomings in that they produce additional waste due to the usage of solutions with chemical toxicity. Hence, demand is strong for new decontamination methods that can guarantee effective decontamination while decreasing the chemical solution. In particular, methods using supercritical CO2 as a means of decontamination are currently in progress. This study examines the method of decontaminating metallic ions inside soil using supercritical CO2. This paper examined the effects of extracting metallic ions inside soil using supercritical CO2 and crown ether as the ligand. It was confirmed that extraction effectiveness increases following greater usage of ligand and co-ligand, with a drastic increase in extraction effectiveness when using extracts over a certain dose. Moreover, it was shown that if the usage of ligand and additive decreases, the extraction ratio also decreases.

  15. Decontamination of Metal Ions in Soil by Supercritical CO2 Extraction with Crown Ether

    International Nuclear Information System (INIS)

    Park, Jihe; Park, Kwangheon

    2015-01-01

    Previous decontamination methods have shortcomings in that they produce additional waste due to the usage of solutions with chemical toxicity. Hence, demand is strong for new decontamination methods that can guarantee effective decontamination while decreasing the chemical solution. In particular, methods using supercritical CO2 as a means of decontamination are currently in progress. This study examines the method of decontaminating metallic ions inside soil using supercritical CO2. This paper examined the effects of extracting metallic ions inside soil using supercritical CO2 and crown ether as the ligand. It was confirmed that extraction effectiveness increases following greater usage of ligand and co-ligand, with a drastic increase in extraction effectiveness when using extracts over a certain dose. Moreover, it was shown that if the usage of ligand and additive decreases, the extraction ratio also decreases

  16. Decontamination of radionuclides on construction materials

    International Nuclear Information System (INIS)

    Samuleev, P.V.; Andrews, W.S.; Creber, K.A.M.; Velicogna, D.

    2013-01-01

    A wide variety of materials can become contaminated by radionuclides, either from a terrorist attack or an industrial or nuclear accident. The final disposition of these materials depends, in large part, on the effectiveness of decontamination measures. This study reports on investigations into the decontamination of a selection of building materials. The aim has been to find an effective, easy-to-use and inexpensive decontamination system for radionuclides of cesium and cobalt, considering both the chemical and physical nature of these potential contaminants. The basic method investigated was surface washing, due to its ease and simplicity. In the present study, a basic decontamination formulation was modified by adding isotope-specific sequestering agents, to enhance the removal of cesium(I) and cobalt(II) from such construction materials as concrete, marble, aluminum and painted steel. Spiking solutions contained 134 Cs or 60 Co, which were prepared by neutron activation in the SLOWPOKE-2 nuclear reactor facility at the Royal Military College of Canada. Gamma spectroscopy was used to determine the decontamination efficiency. The results showed that the addition of sequestering agents generally improved the radiological decontamination. Although the washing of both cesium and cobalt from non-porous materials, such as aluminum and painted steel, achieved a 90-95 % removal, the decontamination of concrete and marble was more challenging, due to the porous nature of the materials. Nevertheless, the removal efficiency from 6-year-old concrete increased from 10 % to approximately 50 % for cobalt(II), and from 18 to 55 % for cesium(I), with the use of isotope binding agents, as opposed to a simple water wash. (author)

  17. Study on preparing the absorbent of potassium nickel hexacyanoferrate (II) loaded zeolite for removal of cesium from radioactive waste solutions and followed method for stable solidification of spent composites

    International Nuclear Information System (INIS)

    Pham Quynh Luong; Nguyen Hoang Lan; Nguyen Van Chinh; Nguyen Thu Trang; Vuong Huu Anh; Le Xuan Huu; Nguyen Thi Xuan; Le Van Duong

    2017-01-01

    The selective adsorption and stable immobilization of radioactive cesium, K-Ni-hexacyanoferrate (II) loaded zeolite (FC-zeolite) prepared by impregnation / precipitation method were studied. The uptake equilibrium of Cs + for composites FC-zeolite was attained within 8 h and estimated to be above 97% in Cs + 100 mg/l solution at pH 4-10. Maximum ion exchange capacity of Cs + ions (Q max ) for FC-zeoliteX was 112.5 and 69.7 mg/g in pure water and sea water, respectively. Those values for FC-zeolite A was 85.7 and 42.7 mg/g. Decontamination factor (DF) of FC-zeolite X for 134 Cs was 149.7 and 107.5 in pure water and sea water respectively. Study on synthesized zeolites (A and X) made of HUST was also conducted in similar manner. The values of Q max were 98.6 and 39.9 mg/g for zeolite A, and 69.5 and 20.8 mg/g for zeolite X in pure water and sea water, respectively. Decontamination factor (DF) of zeolite A and X for 134 Cs showed lower values. The spent CsFC-zeolite was solidificated in optimal experimental conditions: 5% Na 2 B 4 O 7 additives; calcination temperature at 900 o C for 2 h in air. Solid form was determined some of parameters: immobilization of Cs, compressive strength, volume reduction after calcination (%) and leaching rate of Cs + ions in deionization water. (author)

  18. Correlation Study of Magnetite Dissolution in Hybrid Decontamination Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon-Byeong; Won, Hui-Jun; Park, Jung-Sun; Park, Sang-Yoon; Moon, Jei-Kwon; Choi, Wang-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In the operating plants, the localized corrosion on SG tubes which are transporters of thermal energy to the secondary side lowers the reduction heat transfer efficiency as well as degrades the lifetime of SG. Magnetite, Fe3O4, is a commonly found corrosion product on the inner surface of reactor coolant system. Simply magnetite can be reduced to hematite, Fe{sub 2}O{sub 3}, and further to iron when oxygen is limited or ample reducing agents are supplied. Along this line, number of decontamination processes has been developed since 1970s and most of them contain organic acid and additive chelating agents. However, many reports have pointed out the negative environmental effect of those chemicals, and currently there are new approaches to overcome the limited decontamination efficiency and large volume of secondary waste from other alternate processes without using such those organic chemicals. In present study, we investigated the magnetite dissolution in HyBRID solution as newly developing decontamination process. As a preliminary study for empirical modeling of decontamination by HyBRID solution, simply correlation study between variable and magnetite dissolution was introduced with studied mechanism and experimental results.

  19. Melting decontamination and recycling of radioactive polluted metals from uranium mining and metallurgy

    International Nuclear Information System (INIS)

    Chen Anquan

    2011-01-01

    Melting method is a primary method used for decontamination of radioactive polluted metal from uranium mining and metallurgy. The decontamination mechanism of the method, the way selection and its features are introduced. Taking the ten year's work of CNNC Uranium Mining and Metallurgy Radioactive Polluted Metal Melting Processing Center as example, the effects of processing radioactive polluted metals by smelting method are discussed. The surface pollution levels of radioactive polluted metal from uranium mining and metallurgy decreased from 4-48 Bq/cm 2 before decontamination to 0.004-0.016 Bq/cm 2 after decontamination, and the specific activity of its metal is less than 1 Bq/g, which is below the solution control level proposed by IAEARS-G1.7 'the application of the concepts of exclusion, immunity and solution control'. The metals after decontamination can be recycled by producing tooth plate and bucket teeth of excavator used in mines. (authors)

  20. The results of decontamination and decommissioning of experimental DUPIC equipment at PIEF 9405 hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Cho, K. H.; Yang, M. S.; Lee, E. P. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-02-01

    The characterization experiment for powder and sintered fuel had been performed using about 1 kg-U spent PWR fuel at No. 9405 hot-cell in PIEF(Post Irradiated Experiment Facility) since early in 1999. Currently, the experiments in PIEF have been completed. Since all DUPIC equipment in hot-cell are contaminated by high radioactive material, the decontamination and dismantlement must be performed remotely by M/S manipulator. During the radioactive waste packing and transportation, the reduction method of radiation exposure has to be considered. This report describes the basic plan for dismantlement/decontamination of the characterization equipment (power and sintered fuel). And methods of measurement/packing/transportation, method of dismantlement/decontamination of the experimental apparatus and the reduction method of radiation dose exposure, etc. are explained in order. 7 refs., 42 figs., 10 tabs. (Author)

  1. Decontamination of adsorbed chemical warfare agents on activated carbon using hydrogen peroxide solutions.

    Science.gov (United States)

    Osovsky, Ruth; Kaplan, Doron; Nir, Ido; Rotter, Hadar; Elisha, Shmuel; Columbus, Ishay

    2014-09-16

    Mild treatment with hydrogen peroxide solutions (3-30%) efficiently decomposes adsorbed chemical warfare agents (CWAs) on microporous activated carbons used in protective garments and air filters. Better than 95% decomposition of adsorbed sulfur mustard (HD), sarin, and VX was achieved at ambient temperatures within 1-24 h, depending on the H2O2 concentration. HD was oxidized to the nontoxic HD-sulfoxide. The nerve agents were perhydrolyzed to the respective nontoxic methylphosphonic acids. The relative rapidity of the oxidation and perhydrolysis under these conditions is attributed to the microenvironment of the micropores. Apparently, the reactions are favored due to basic sites on the carbon surface. Our findings suggest a potential environmentally friendly route for decontamination of adsorbed CWAs, using H2O2 without the need of cosolvents or activators.

  2. Treatability studies for decontamination of Melton Valley Storage Tank supernate

    International Nuclear Information System (INIS)

    Arnold, W.D.; Fowler, V.L.; Perona, J.J.; McTaggart, D.R.

    1992-08-01

    Liquid low-level waste, primarily nitric acid contaminated with radionuclides and minor concentrations of organics and heavy metals, is neutralized with sodium hydroxide, concentrated by evaporation, and stored for processing and disposal. The evaporator concentrate separates into sludge and supernate phases upon cooling. The supernate is 4 to 5 mol/L sodium nitrate contaminated with soluble radionuclides, principally 137 Cs, 90 Sr, and 14 C, while the sludge consists of precipitated carbonates and hydroxides of metals and transuranic elements. Methods for treatment and disposal of this waste are being developed. In studies to determine the feasibility of removing 137 Cs from the supernates before solidification campaigns, batch sorption measurements were made from four simulated supernate solutions with four different samples of potassium hexacyanocobalt ferrate (KCCF). Cesium decontamination factors of 1 to 8 were obtained with different KCCF batches from a highly-salted supernate at pH 13. Decontamination factors as high as 50 were measured from supernates with lower salt content and pH, in fact, the pH had a greater effect than the solution composition on the decontamination factors. The decontamination factors were highest after 1 to 2 d of mixing and decreased with longer mixing times due to decomposition of the KCCF in the alkaline solution. The decontamination factors decreased with settling time and were lower for the same total contact time (mixing + settling) for the longer mixing times, indicating more rapid KCCF decomposition during mixing than during settling. There was no stratification of cesium in the tubes as the KCCF decomposed

  3. Cadmium decontamination using in-house resin

    International Nuclear Information System (INIS)

    Pal, Sangita; Thalor, K.L; Prabhakar, S.; Srivastava, V.K.; Goswami, J.L.; Tewari, P.K.; Dhanpal, Pranav; Goswami, J.L.

    2010-01-01

    A selective and strong in-house chelator has been studied w.r.t. basic parameters like concentration, time, and elution. De-contamination of cadmium, mercury, chromium, lead etc by using high uptake values fro cadmium ions proves its selectivity with high elution ratio ensures further decontamination of run-off water during natural calamities. In three step cascade use the concentration of original cadmium solution (500 ppm) decocted to safe disposable attribute. This polymeric ligand exchanger displayed outlet effluent concentration to 1 ppm and less than 200 ppb when treated for inlet feed concentration of 50 ppm and 500 ppm respectively. (author)

  4. Decontamination Study for Mixed Waste Storage Tanks RCRA Closure

    International Nuclear Information System (INIS)

    Leaphart, D.M.; Reed, S.R.; Rankin, W.N.

    1995-01-01

    The Savannah River Site (SRS) plans to close six underground tanks storing mixed waste under RCRA regulations. In support of this closure effort, a study was performed to determine the optimal method of decontaminating these tanks to meet the closure requirements. Items consaidered in the evaluation of the decontamination methods included effectiveness, compatibility with existing waste residues, possible cleaning solution disposal methods, and cost

  5. The Efficiency of Strontium-90 Desorption Using Iron (III) Solutions in the Decontamination Process of Radioactive Soils

    OpenAIRE

    Olga Vladimirovna Cheremisina; Vasiliy Sergeev; Varvara Alabusheva; Alexander Fedorov; Alexandra Iliyna

    2018-01-01

    The paper presents the investigation on the estimated efficiency of iron (III) chloride solutions in the decontamination process of radioactive soils with 90 Sr, according to kinetic and thermodynamic characteristics of the desorption process. The specific 90 Sr radioactivity of soil samples was (3.9±0.3)·104 Bq·g. The adsorption isotherms of Sr 2+ and Fe 3+ are described with the Langmuir equation. The values of Gibbs energy G0298 = -4.65 kJ·mol -1 and equilibrium ion exchange constant ...

  6. Environmental decontamination

    International Nuclear Information System (INIS)

    Cristy, G.A.; Jernigan, H.C.

    1981-02-01

    The record of the proceedings of the workshop on environmental decontamination contains twenty-seven presentations. Emphasis is placed upon soil and surface decontamination, the decommissioning of nuclear facilities, and assessments of instrumentation and equipment used in decontamination

  7. Environmental decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Cristy, G.A.; Jernigan, H.C. (eds.)

    1981-02-01

    The record of the proceedings of the workshop on environmental decontamination contains twenty-seven presentations. Emphasis is placed upon soil and surface decontamination, the decommissioning of nuclear facilities, and assessments of instrumentation and equipment used in decontamination. (DLS)

  8. Surface decontamination using dry ice snow

    International Nuclear Information System (INIS)

    Ryu, Jungdong; Park, Kwangheon; Lee, Bumsik; Kim Yangeun

    1999-01-01

    An adjustable nozzle for controlling the size of dry ice snow was developed. The converging/diverging nozzle can control the size of snows from sub-microns to 10 micron size. Using the nozzle, a surface decontamination device was made. The removal mechanisms of surface contaminants are mechanical impact, partial dissolving and evaporation process, and viscous flow. A heat supply system is added for the prevention of surface ice layer formation. The cleaning power is slightly dependent on the size of snow. Small snows are the better in viscous flow cleaning, while large snows are slightly better in dissolving and sublimation process. Human oils like fingerprints on glass were easy to remove. Decontamination ability was tested using a contaminated pump-housing surface. About 40 to 80% of radioactivity was removed. This device is effective in surface-decontamination of any electrical devices like detector, controllers which cannot be cleaned in aqueous solution. (author)

  9. Reaction-diffusion models of decontamination

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    A contaminant, which also contains a polymer is in the form of droplets on a solid surface. It is to be removed by the action of a decontaminant, which is applied in aqueous solution. The contaminant is only sparingly soluble in water, so the reaction mechanism is that it slowly dissolves...

  10. Decontamination of the main circulation loap equipment together with the core of a boiling channel-type reactor

    International Nuclear Information System (INIS)

    Boguslavskij, V.B.; Gruzdev, N.I.; Kocharin, V.E.; Matskevich, G.V.; Mel'nikov, A.P.; Petrov, V.A.; Petukhov, Yu.I.; Sklyarov, V.P.; Shiryaev, V.N.; Shchapov, G.A.

    1977-01-01

    Presented herein are the results of decontamination of the main circulation loop together with the core in Beloyarskaya nuclear power plant. A double-bath reduction-oxidation decontamination process has been employed by alternately using alkaline solution of potassium permanganate and oxalic acid at 90 deg C. Standard cation-exchange filters, filled with Ky-2 resin, have been used to purify the acid solutions at all the stages of decontamination from s.lurry and radionuclide 60 Co. The total quantity of corrosion products removed from the loop in the decontamination cycles amountes cobalt-60 - 2340 c; chrome-51 - 275 c; magnanese-54 - 12 c; iron-59 - 65 c; cobalt-58 - 50 c; zinc-65 - 13 c. The new adopted technology of decontamination together with purification of the decontaminating solution enables to remove practically all the metal oxide deposits from fuel elements, to enhance operational reliability of the evaporative channels and improve the radiation conditions in the unit as well as reduce the operational duty as compared to the conventional technology

  11. Decontamination of steam generators at Loviisa NPS - The decision making and the results

    International Nuclear Information System (INIS)

    Wahlstroem, Bjoern G.

    1984-01-01

    In 1980, during the annual inspections at Loviisa 1, 440 MWe PWR unit, some minor faults in the welding seams of the water chambers in two of the six steam generators were indicated. This led to enlarged inspection work and to thousands of working hours inside the steam generators. The plant had been three years in operation, so the dose rates in the steam generators were rather high. In this case it turned out, that a formal radiation protection optimization procedure would not give the answer on how to go ahead, as there were several practical and psychological factors influencing the decision making process. Anyhow, the result was that a decontamination apparatus was urgently planned and constructed, and advice on tested decontamination chemicals was received from the plant supplier. Using the decontamination machine with alternating basic and acid solutions, a decontamination factor of DF = 300 was reached, and the repair work could be performed without any restrictions on working time. This paper points out some limiting factors in the decision making process and describes the decontamination equipment, the decontamination solutions and the programme. The cost per saved collective dose unit is also calculated. (author)

  12. Chemical decontamination method

    International Nuclear Information System (INIS)

    Nishiwaki, Hitoshi.

    1996-01-01

    Metal wastes contaminated by radioactive materials are contained in a rotational decontamination vessel, and the metal wastes are rotated therein while being in contact with a slight amount of a decontamination liquid comprising a mineral acid. As the mineral acid, a mixed acid of nitric acid, hydrochloric acid and fluoric acid is preferably used. Alternatively, chemical decontamination can also be conducted by charging an acid resistant stirring medium in the rotational decontamination vessel. The surface of the metal wastes is uniformly covered by the slight amount of decontamination liquid to dissolve the surface layer. In addition, heat of dissolution generated in this case is accumulated in the inside of the rotational decontamination vessel, the temperature is elevated with no particular heating, thereby enabling to obtain an excellent decontamination effect substantially at the same level as in the case of heating the liquid to 70degC in a conventional immersion decontamination method. Further, although contact areas between the metal wastes and the immersion vessel are difficult to be decontaminated in the immersion decontamination method, all of areas can be dissolved uniformly in the present invention. (T.M.)

  13. Testing of methods for decontamination of stainless steels and carbon steels conformably to demountable equipment of nuclear power plant with WWR type reactor

    International Nuclear Information System (INIS)

    Dergunova, G.M.; Nazarov, V.K.; Ozolin, A.B.; Smirnov, L.M.; Stel'mashuk, V.P.; Yulikov, E.I.; Vlasov, I.N.

    1978-01-01

    Results are given of experiments on decontamination of stainless steel by the oxidation-reduction method and also results of decontamination of carbon steel by means of solutions based on oxalic acid, citric acid and phosphoric acid. Investigations of efficiency of oxidation-reduction treatment were done on samples of stainless steel cut from the pipeline of the primary coolant circuit of reactor. Comparison is given of efficiency of oxidation-reduction methods of contamination of stainless steel in the case of application of different compositions of decontaminating solutions. Dependences are given for decontamination completeness on duration of operations, on temperature and on ratio of volume of decontaminating solutions to surface are of the sample. For carbon steels parameters are given for decontamination process by means of oxalic, citric and phosphoric acid solutions. (I.T.) [ru

  14. Full system decontamination. AREVAs experience in decontamination prior to decommissioning

    International Nuclear Information System (INIS)

    Topf, Christian

    2010-01-01

    Minimizing collective radiation exposure and producing free-release material are two of the highest priorities in the decommissioning of a Nuclear Power Plant (NPP). Full System Decontamination (FSD) is the most effective measure to reduce source term and remove oxide layer contamination within the plant systems. FSD is typically a decontamination of the primary coolant circuit and the auxiliary systems. In recent years AREVA NP has performed several FSDs in PWRs and BWRs prior to decommissioning by applying the proprietary CORD copyright family and AMDA copyright technology. Chemical Oxidation Reduction Decontamination or CORD represents the chemical decontamination process while AMDA stands for Automated Mobile Decontamination Appliance, AREVA NPs decontamination equipment. Described herein are the excellent results achieved for the FSDs applied at the German PWRs Stade in 2004 and Obrigheim in 2007 and for the FSDs performed at the Swedish BWRs, Barsebaeck Unit 1 in 2007 and Barsebaeck Unit 2 in 2008. All four FSDs were performed using the AREVA NP CORD family decontamination technology in combination with the AREVA NP decontamination equipment, AMDA. (orig.)

  15. Decontaminated salt disposal as saltcrete in a landfill. Technical data summary

    International Nuclear Information System (INIS)

    1982-01-01

    This technical data summary presents a reference process for immobilizing decontaminated salt solution from the 200-Area waste storage tanks with cement, and disposing of the final waste material (called saltcrete) by burial in trenches. The saltcrete will be protected from leaching by clay and will be placed at least 3 meters above the historic high water table and beneath at least 5 meters of soil overburden. The decontaminated salt solution is a waste material which remains after the bulk of the radionuclides have been removed from waste tank supernate. This removal is effected by contacting the waste supernate with sodium tetraphenyl boron (Na-TPB) and sodium titanate (NaTi 2 O 5 H). These materials remove (by precipitation) most of the 137 Cs and 90 Sr as well as many other radioactive and non-radioactive elements. These precipitates, along with many other sludges which reside in the HLW tanks will be incorporated in borosilicate glass for eventual disposal in a geologic repository. An ion exchange process will also be used for removal of 99 Tc. The decontaminated salt solution has sufficiently low levels of radioactivity that it can be disposed of on-site. The scope of the curent effort is to describe a process for blending decontaminated salt solution with cement to form a saltcrete product which has dimensional stability and relatively low leachability. The process is to be capable of solidifying 10 gpm of supernate. About 100 million gallons of salt solution is to be solidified

  16. Investigation on safety of gel decontamination technology

    International Nuclear Information System (INIS)

    Liu Zhihui; Song Fengli; Wang Yongxian; Zhang Taoge

    2014-01-01

    Gel decontamination technology is an advanced decontamination process of metal contaminated by radionuclide. It has the advantages such as simple operation process, high decontaminating factor, etc. But the disadvantages are that it has high spraying pressure and is strongly corrosive, which has safety risk to the operator and equipment. The effect of such factors as spraying pressure on operators was analyzed based on process feature, and it is proposed that it be worthwhile to make further study on the corrosion of gels to spraying equipment, taking into account corrosion feature of gels to stainless steel. Meanwhile, the safety issue was demonstrated on collecting and handling wastes from gel decontamination process. And then, protective measures, study methods, and solutions are put forward. The results show that protection should be strengthened during spraying to reduce the effect of splashing and fogging on workers; the equipment should be cleaned in time to reduce the effect of corrosion, and reducers should be added into waste liquid to eliminate the effect of residual detergent. (authors)

  17. Developing technique for waste water cleaning of a division for equipment decontamination

    International Nuclear Information System (INIS)

    Gromoglasov, A.A.; Solyakov, V.K.; Novikov, V.N.; Pil'shchikov, A.P.; Chekalov, A.G.; Sinyukov, M.A.; Pshenichnykh, V.N.

    1989-01-01

    Results are described of developing technique for radionuclide cleaning solutions after metal product decontamination. The method is based on the adagulation with usage of quicklime. The conclusion is method permits to consider it as the main technique for waste water decontamination. 3 refs.; 2 figs.; 3 tabs

  18. Method of recovering phosphoric acid type decontaminating electrolytes by electrodeposition

    International Nuclear Information System (INIS)

    Sasaki, Takashi; Wada, Koichi; Kobayashi, Toshio.

    1985-01-01

    Purpose: To recoving phosphoric acid type highly concentrated decontaminating liquid used for the electrolytic decontamination of contaminated equipments, components, etc in nuclear power plants or the like through electrodeposition by diaphragm electrolysis. Method: Before supplying phosphoric acid decontaminating liquid at high concentration used in the electrolytic decontaminating step to an electrodeposition recovering tank, phosphoric acid in the decontaminating electrolyte is extracted with solvents and decomposed liquid extracts (electrolyte reduced with the phosphoric acid component) are supplied to the cathode chamber of the electrodeposition recovering tank, where phosphoric acid is back-extracted with water from the solvents after extraction of phosphoric acid. Then, the back-extracted liquids (aqueous phosphoric acid solution scarcely containing metal ions) are sent to the anode chamber of the electrodeposition recovering tank. Metal ions in the liquid are captured by electrodeposition in the cathode chamber, as well as phosphoric acid in the liquids is concentrated to the initial concentration of the electrolyte in the anode chamber for reuse as the decontaminating electrolyte. As the phosphoric acid extracting agent used in the electrodeposition recovering step for the decontaminating electrolyte, water-insoluble and non-combustible tributyl phosphate (TBP) is most effective. (Horiuchi, T.)

  19. The separation of particulate within PFC decontamination wastewater generated by PFC decontamination

    International Nuclear Information System (INIS)

    Kim, Gye Nam; Lee, Sung Yeol; Won, Hui Jun; Jung, Chong Hun; Oh, Won Zin; Park, Jin Ho; Narayan, M.

    2005-01-01

    When PFC(Perfluoro carbonate) decontamination technology is applied to removal of radioactive contaminated particulate adhered at surface during the operation of nuclear research facilities, it is necessary to develop a filtration equipment to reuse of PFC solution due to high price, also to minimize the volume of second wastewater. Contaminated characteristics of hot particulate was investigated and a filtration process was presented to remove suspended radioactive particulate from PFC decontamination wastewater generated on PFC decontamination. The range of size of hot particulate adhered at the surface of research facilities measured by SEM was 0.1∼10μm. Hot particulate of more than 2μm in PFC contamination wastewater was removed by first filter and then hot particulate of more than 0.2μm was removed by second filter. Results of filter experiments showed that filtration efficiency of PVDF(Poly vinylidene fluoride), PP(Polypropylene), Ceramic filter was 95∼97%. A ceramic filter showed a higher filtration efficiency with a little low permeate volume. Also, a ceramic of inorganic compound could be broken easily on experiment and has a high price but was highly stable at radioactivity in comparison of PVDF and PP of a macromolecule which generate H 2 gas in alpha radioactivity environment

  20. [Thermodynamic forecasting of reagents composition for soils decontamination].

    Science.gov (United States)

    Nikolaev, V P; Nikolaevskiĭ, V B; Chirkina, I V; Shcheglov, M Iu

    2009-01-01

    Based on thermodynamic studies, the authors conducted laboratory experiments on searching optimal composition of leaching reagents solution for soils decontamination, when contaminated with Cs-137, of activity coefficient for caesium sulfate microquantities in macrocomponents solutions. The method could be used for modelling the radionuclides phase equillibrium and relocations in soils.

  1. Electrochemical treatment of spent tan bath solution for reuse

    Directory of Open Access Journals (Sweden)

    Amel Benhadji

    2018-03-01

    Full Text Available A spent tanning bath contains high concentration of salts, chromium and protein. The treatment system for removal of chlorides or chromium from this effluent is expensive. In this context this waste has to be reused. Our study focuses on the application of advanced oxidation processes for protein removal present in a tanning bath. To improve the quality of the chromium tanning bath, two electrochemical processes (electrooxidation and peroxi-electrocoagulation process, PEP are investigated in a batch reactor. The effects of operational parameters such as reactor configuration, current density and electrolysis time on chemical oxygen demand (COD and protein removal efficiency are examined. Results indicated that under the optimum operating range for process, the COD and protein removal efficiency reached 53 and 100%, respectively. The optimum values are determined for the hybrid process (PEP under 0.13 A·cm−2 over 2 h. The treated tanning bath is used as a tanning solution in leather processing. The influence of chromium salt dose, pH solution, stirring time and contact time on the leather characteristic is evaluated. The hides tanned after the addition of 0.25% of commercial chromium salt, at pH solution, leaving them stirring for 4 h with a contact time of 2 days, and showed good hydrothermal stability and physical characteristics of leather.

  2. Development of complex electrokinetic decontamination method for soil contaminated with uranium

    International Nuclear Information System (INIS)

    Kim, Gye-Nam; Kim, Seung-Soo; Park, Hye-Min; Kim, Wan-Suk; Moon, Jei-Kwon; Hyeon, Jay-Hyeok

    2012-01-01

    520L complex electrokinetic soil decontamination equipment was manufactured to clean up uranium contaminated soils from Korean nuclear facilities. To remove uranium at more than 95% from the radioactive soil through soil washing and electrokinetic technology, decontamination experiments were carried out. To reduce the generation of large quantities of metal oxides in cathode, a pH controller is used to control the pH of the electrolyte waste solution between 0.5 and 1 for the formation of UO 2+ . More than 80% metal oxides were removed through pre-washing, an electrolyte waste solution was circulated by a pump, and a metal oxide separator filtered the metal oxide particles. 80–85% of the uranium was removed from the soil by soil washing as part of the pre-treatment. When the initial uranium concentration of the soil was 21.7 Bq/g, the required electrokinetic decontamination time was 25 days. When the initial concentration of 238 U in the soil was higher, a longer decontamination time was needed, but the removal rate of 238 U from the soil was higher.

  3. Efficacy of liquid and foam decontamination technologies for chemical warfare agents on indoor surfaces.

    Science.gov (United States)

    Love, Adam H; Bailey, Christopher G; Hanna, M Leslie; Hok, Saphon; Vu, Alex K; Reutter, Dennis J; Raber, Ellen

    2011-11-30

    Bench-scale testing was used to evaluate the efficacy of four decontamination formulations on typical indoor surfaces following exposure to the liquid chemical warfare agents sarin (GB), soman (GD), sulfur mustard (HD), and VX. Residual surface contamination on coupons was periodically measured for up to 24h after applying one of four selected decontamination technologies [0.5% bleach solution with trisodium phosphate, Allen Vanguard Surface Decontamination Foam (SDF™), U.S. military Decon Green™, and Modec Inc. and EnviroFoam Technologies Sandia Decontamination Foam (DF-200)]. All decontamination technologies tested, except for the bleach solution, performed well on nonporous and nonpermeable glass and stainless-steel surfaces. However, chemical agent residual contamination typically remained on porous and permeable surfaces, especially for the more persistent agents, HD and VX. Solvent-based Decon Green™ performed better than aqueous-based bleach or foams on polymeric surfaces, possibly because the solvent is able to penetrate the polymer matrix. Bleach and foams out-performed Decon Green for penetrating the highly polar concrete surface. Results suggest that the different characteristics needed for an ideal and universal decontamination technology may be incompatible in a single formulation and a strategy for decontaminating a complex facility will require a range of technologies. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. A rapid and inexpensive bioassay to evaluate the decontamination of organophosphates.

    Science.gov (United States)

    Claborn, David M; Martin-Brown, Skylar A; Sagar, Sanjay Gupta; Durham, Paul

    2012-01-01

    An inexpensive and rapid bioassay using adult red flour beetles was developed for use in assessing the decontamination of environments containing organophosphates and related chemicals. A decontamination protocol was developed which demonstrated that 2 to 3 applications of 5% bleach solution were required to obtain nearly complete decontamination of malathion. The bioassay was also used to screen common household cleaners as potential decontaminating agents, but only 5% bleach was effective at improving survival of insects on steel plates treated with 25% malathion. A toxic degradation product (malaoxon) was detected using gas chromatography/mass spectrophotometry; this toxin affected the decontamination efficacy and resulted in continued toxicity to the beetles until subsequent decontaminations. The bioassay provides evidence to support the use of red flour beetles as a sensitive, less expensive method for determining safety levels of environments contaminated with malathion and other toxins, and may have application in the study of chemical warfare agents.

  5. Method to chemically decontaminate nuclear reactor components

    International Nuclear Information System (INIS)

    Bertholdt, H.O.

    1984-01-01

    The large decontamination of components of the primary circuit of activated corrosion products in the oxide layer of the structure materials firstly involves an approx. 1 hour oxidation treatment with alkali permanganate solution. Following intermediate rinsing with deionate, they are etched with an inhibited citrate-oxalate solution for 5-20 hours. This is followed by post-treatment with a citric acid/H2O2 solution containing suspended fiber particles. (orig./PW)

  6. Study to produce polymer gel for decontamination on the surface of steel, ceramic, plastic, glass

    International Nuclear Information System (INIS)

    Pham Quynh Luong; Nguyen Van Chinh; Nguyen Thu Trang; Nguyen An Thai; Nguyen Dinh Lam

    2015-01-01

    Strippable polymer coating is one of the methods for effective surface decontamination. A gel solution of a water soluble polymer, preferably polyvinyl alcohol (PVA) and chelating agent is applied to remove radioisotopes of Cs"1"3"7, Sr"8"5, I"1"3"1, P"3"2 and Tc"9"9"m on the surface of stainless steel, mild steel, ceramic, PVC plastic. After cleaning is completed, the gel solution is dried, formed a strong thin film, which is easily peeled off from a contaminated surface and can be disposed of as radioactive solid waste. Decontamination efficient of this gel polymer for radioisotopes have been studied on the surfaces and compared with Decongel 1101. The influence of decontamination agents, activity, film thickness to decontamination factor have been studied. The infrared spectrophotometer has been conducted to study mechanism of the decontamination for this radioisotope. (author)

  7. Decontamination Experiments on Intact Pig Skin Contaminated with Beta-Gamma- Emitting Nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Edvardsson, K A; Hagsgaard, S [AB Atomenergi, Nykoeping (Sweden); Swensson, A [Dept. of Occupational Medicine, Karolinska Sjukhuset, Stockholm (Sweden)

    1966-11-15

    A number of decontamination experiments have been performed on intact pig skin. In most of the experiments NaI-131 in water solution has been utilized because this nuclide is widely used within the Studsvik research establishment, is easy to detect and relatively harmless, and is practical to use in these experiments. Among the {beta} {gamma}-nuclides studied 1-131 has furthermore proved to be the one most difficult to remove from the skin. The following conclusions and recommendations regarding the decontamination of skin are therefore valid primarily for iodine in the form of Nal, but are probably also applicable to many other {beta} {gamma}-nuclides. a) A prolonged interval between contamination and decontamination has a negative effect on the result of the decontamination. Therefore start decontamination as soon as possible after the contamination. b) Soap and water has proved to be the most suitable decontamination agent. A number of other agents have appeared to be harmful to the skin. Therefore, first of all use only soap and water in connection with gentle rubbing. c) No clear connection between the temperature of the water for washing and the result of the decontamination has been demonstrated. d) Skin not degreased before the contamination seems to be somewhat easier to decontaminate than degreased skin, particularly if the activity has been on the skin for a long time. Therefore do not remove the sebum of the skin when engaged on radioactive work involving contamination risks. e) Irrigation of the contaminated surface with a solution containing the corresponding inactive ions or ordinary water in large quantities may considerably decrease the skin contamination. f) In radioactive work of long duration involving high risks of contamination prophylactic measures in the form of a protective substance ('invisible glove'), type Kerodex, may make decontamination easier.

  8. Decontamination Experiments on Intact Pig Skin Contaminated with Beta-Gamma- Emitting Nuclides

    International Nuclear Information System (INIS)

    Edvardsson, K.A.; Hagsgaard, S.; Swensson, A.

    1966-11-01

    A number of decontamination experiments have been performed on intact pig skin. In most of the experiments NaI-131 in water solution has been utilized because this nuclide is widely used within the Studsvik research establishment, is easy to detect and relatively harmless, and is practical to use in these experiments. Among the β γ-nuclides studied 1-131 has furthermore proved to be the one most difficult to remove from the skin. The following conclusions and recommendations regarding the decontamination of skin are therefore valid primarily for iodine in the form of Nal, but are probably also applicable to many other β γ-nuclides. a) A prolonged interval between contamination and decontamination has a negative effect on the result of the decontamination. Therefore start decontamination as soon as possible after the contamination. b) Soap and water has proved to be the most suitable decontamination agent. A number of other agents have appeared to be harmful to the skin. Therefore, first of all use only soap and water in connection with gentle rubbing. c) No clear connection between the temperature of the water for washing and the result of the decontamination has been demonstrated. d) Skin not degreased before the contamination seems to be somewhat easier to decontaminate than degreased skin, particularly if the activity has been on the skin for a long time. Therefore do not remove the sebum of the skin when engaged on radioactive work involving contamination risks. e) Irrigation of the contaminated surface with a solution containing the corresponding inactive ions or ordinary water in large quantities may considerably decrease the skin contamination. f) In radioactive work of long duration involving high risks of contamination prophylactic measures in the form of a protective substance ('invisible glove'), type Kerodex, may make decontamination easier

  9. Decontamination

    International Nuclear Information System (INIS)

    Montford, B.

    1975-01-01

    Development of special techniques has permitted the use of mild decontamination processes for the CANDU type reactor primary coolant circuit, overcoming many of the problems associated with conventional decontamination processes, which use strong, acidic reagents. (Author)

  10. Innovative ways of decontaminating nuclear facilities

    International Nuclear Information System (INIS)

    Bremmer, Jan; Gentes, Sascha; Ambos, Frank

    2009-01-01

    The great variety of surfaces to be decontaminated in a nuclear power plant increases demand for economic solutions and efficient processing systems. The Institute for Technology and Management in Building (TMB) of the University of Karlsruhe (TH) is working on this task in the new professorship of Sascha Gentes and, together with sat Kerntechnik GmbH, developing innovative techniques and tools for surface decontamination. In this effort, sat.Kerntechnik GmbH contributes 50% to the funding of the new professorship at the Karlsruhe Institute of Technology, the merger of the University of Karlsruhe and the Karlsruhe Research Center. The new professorship will extend its work also to various other innovative concepts to be employed not only in demolition but also in maintenance and operation of nuclear facilities. Above and beyond theoretical approaches, practical solutions are in the focus of work. For this reason, new developments are elaborated in close cooperation with the respective users. (orig.)

  11. Thermoelastic analysis of spent fuel and high level radioactive waste repositories in salt. A semi-analytical solution

    International Nuclear Information System (INIS)

    St John, C.M.

    1977-04-01

    An underground repository containing heat generating, High Level Waste or Spent Unreprocessed Fuel may be approximated as a finite number of heat sources distributed across the plane of the repository. The resulting temperature, displacement and stress changes may be calculated using analytical solutions, providing linear thermoelasticity is assumed. This report documents a computer program based on this approach and gives results that form the basis for a comparison between the effects of disposing of High Level Waste and Spent Unreprocessed Fuel

  12. Dry storage technologies: Optimized solutions for spent fuels and vitrified residues

    International Nuclear Information System (INIS)

    Roland, Vincent; Verdier, Antoine; Sicard, Damien; Neider, Tara

    2006-01-01

    In many countries, fuel cycle and waste policies influence the way operators organize waste management. These policies help drive progress and improvements in areas such as waste minimization programs, conditioning or industrial transformation before final or intermediate conditioning. The criteria that lead to different choices include economic factors, the presence or absence of a wide range of options such as transport, and reprocessing and recycling policies. The current international trend towards expanding Spent Fuel Interim Dry Storage capabilities goes with an improvement of the performance of the proposed systems which have to accommodate Spent fuel Assemblies characterized by ever increasing burn-up, fissile isotopes contents, thermal releases, and total inventory. Due to heterogeneous worldwide reactor pools and specific local constraints the proposed solutions have also to cope with a wide variety of fuel design. The Spent Fuel Assemblies stored temporarily for cooling may have to be transported either to reprocessing facilities or to interim storage facilities before direct disposal; it is the reason why the retrievability, including or not the need of transportation of the proposed systems, is often specified by the utilities for the design of their storage systems and sometimes required by law. In most cases, the producers of spent fuel require a large capacity that is cumulated over many years, each reload at a time. Then the key criterion is maximum modularity. Furthermore, the up front capital costs required for this type of solution has to be attractive for the investor. Two solutions, dual purpose metal casks of the TN TM 24 family or dual purpose or single purpose concrete shielded welded canisters such as NUHOMS R , implemented by COGEMA LOGISTICS, and TRANSNUCLEAR Inc. offer flexibility and modularity and have been adapted also to quite different fuels. Among what influences the choice, we can consider: - In favor of metal casks: Minimal

  13. Effect of decontamination on nuclear power plant primary circuit materials

    International Nuclear Information System (INIS)

    Brezina, M.; Kupca, L.

    1991-01-01

    The effect of repeated decontamination on the properties of structural materials of the WWER-440 primary coolant circuit was examined. Three kinds of specimens of 08Kh18Ni10T steel were used for radioactivity-free laboratory experiments; they included material obtained from assembly additions to the V-2 nuclear power plant primary piping, and a sheet of the CSN 17247 steel. Various chemical, electrochemical and semi-dry electrochemical decontamination procedures were tested. Chemical decontamination was based on the conventional AP(20/5)-CITROX(20/20) procedure and its variants; NP-CITROX type procedures with various compositions were also employed. Solutions based on oxalic acid were tested for the electrochemical and semi-dry electrochemical decontamination. The results of measurements of mass losses of the surfaces, of changes in the corrosion resistance and in the mechanical properties of the materials due to repeated decontamination are summarized. (Z.S.). 12 figs., 1 tab., 8 refs

  14. Planning guidance for nuclear-power-plant decontamination. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Munson, L.F.; Divine, J.R.; Martin, J.B.

    1983-06-01

    Direct and indirect costs of decontamination are considered in the benefit-cost analysis. A generic form of the benefit-cost ratio is evaluated in monetary and nonmonetary terms, and values of dollar per man-rem are cited. Federal and state agencies that may have jurisiction over various aspects of decontamination and waste disposal activities are identified. Methods of decontamination, their general effectiveness, and the advantages and disadvantages of each are outlined. Dilute or concentrated chemical solutions are usually used in-situ to dissolve the contamination layer and a thin layer of the underlying substrate. Electrochemical techniques are generally limited to components but show high decontamination effectiveness with uniform corrosion. Mechanical agents are particularly appropriate for certain out-of-system surfaces and disassembled parts. These processes are catagorized and specific concerns are discussed. The treatment, storage, and disposal or discharge or discharge of liquid, gaseous, and solid wastes generated during the decontamination process are discussed. Radioactive and other hazardous chemical wastes are considered. The monitoring, treatment, and control of radioactive and nonradioactive effluents, from both routine operations and possible accidents, are discussed. Protecting the health and safety of personnel onsite during decontamination is of prime importance and should be considered in each facet of the decontamination process. The radiation protection philosophy of reducing exposure to levels as low as reasonably achievable should be stressed. These issues are discussed.

  15. Magnetite Dissolution Performance of HYBRID-II Decontamination Process

    International Nuclear Information System (INIS)

    Kim, Seonbyeong; Lee, Woosung; Won, Huijun; Moon, Jeikwon; Choi, Wangkyu

    2014-01-01

    In this study, we conducted the magnetite dissolution performance test of HYBRID-II (Hydrazine Based Reductive metal Ion Decontamination with sulfuric acid) as a part of decontamination process development. Decontamination performance of HYBRID process was successfully tested with the results of the acceptable decontamination factor (DF) in the previous study. While following-up studies such as the decomposition of the post-decontamination HYBRID solution and corrosion compatibility on the substrate metals of the target reactor coolant system have been continued, we also seek for an alternate version of HYBRID process suitable especially for decommissioning. Inspired by the relationship between the radius of reacting ion and the reactivity, we replaced the nitrate ion in HYBRID with bigger sulfate ion to accommodate the dissolution reaction and named HYBRID-II process. As a preliminary step for the decontamination performance, we tested the magnetite dissolution performance of developing HYBRID-II process and compared the results with those of HYBRID process. HYBRID process developed previously is known have the acceptable decontamination performance, but the relatively larger volume of secondary waste induced by anion exchange resin to treat nitrate ion is the one of the problems related in the development of HYBRID process to be applicable. Therefore we alternatively devised HYBRID-II process using sulfuric acid and tested its dissolution of magnetite in numerous conditions. From the results shown in this study, we can conclude that HYBRID-II process improves the decontamination performance and potentially reduces the volume of secondary waste. Rigorous tests with metal oxide coupons obtained from reactor coolant system will be followed to prove the robustness of HYBRID-II process in the future

  16. Conceptual design report for the away from reactor spent fuel storage facility, Savannah River Plant

    International Nuclear Information System (INIS)

    1978-12-01

    The Department of Energy (DOE) requested that Du Pont prepare a conceptual design and appraisal of cost for Federal budget planning for an away from reactor spent fuel storage facility that could be ready to store fuel by December 1982. This report describes the basis of the appraisal of cost in the amount of $270,000,000 for all facilities. The proposed action is to provide a facility at the Savannah River Plant. The facility will have an initial storage capacity of 5000 metric tons of spent fuel and will be capable of receiving 1000 metric tons per year. The spent fuel will be stored in water-filled concrete basins that are lined with stainless steel. The modular construction of the facility will allow future expansion of the storage basins and auxiliary services in a cost-effective manner. The facility will be designed to receive, handle, decontaminate and reship spent fuel casks; to remove irradiated fuel from casks; to place the fuel in a storage basin; and to cool and control the quality of the water. The facility will also be designed to remove spent fuel from storage basins, load the spent fuel into shipping casks, decontaminated loaded casks and ship spent fuel. The facility requires a license by the Nuclear Regulatory Commission (NRC). Features of the design, construction and operations that may affect the health and safety of the workforce and the public will conform with NRC requirements. The facility would be ready to store fuel by January 1983, based on normal Du Pont design and construction practices for DOE. The schedule does not include the effect of licensing by the NRC. To maintain this option, preparation of the documents and investigation of a site at the Savannah River Plant, as required for licensing, were started in FY '78

  17. Local strategies for decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, P [Institut de Protection et de Surete Nucleaire, Fontenay-aux-Roses cedex (France); Ramzaev, V [Branch of Institute of Radiation Hygiene, Novozybkov, Bryansk region (Russian Federation); Antsypov, G [Chernnobyl State Committee of the Republic of Belarus, Minsk (Belarus); Sobotovich, E [Institute of Geochemistry, Mineralogy and Ore formation, Kiev (Ukraine); Anisimova, L [EMERCOM, Moscow (Russian Federation)

    1996-07-01

    The efficiencies of a great number of techniques for decontamination or dose reduction in contaminated areas have been investigated by several teams of E.C. and CIS scientists (ECP4 project). Modelling, laboratory and field experiments, t and return from experience allowed to assess radiological efficiencies (e.g. 'decontamination factor') and requirements for the operation of numerous practical solutions. Then, those data were supplemented with data on cost and waste generation in order to elaborate all the information for the optimization of decontamination strategies. Results will be presented for about 70 techniques. However, a technique cannot be compared to another from a generic point of view. Rather it is designed for a specific target and the best technology depends on the objectives. It has been decided to implement decision analyses on case studies, and the local conditions and objectives have been investigated. Individual doses ranged from 1 to 5 mSv, with contrasted contributions of internal and external doses. The desire to restore a normal activity in a partially depopulated settlement, and concerns about the recent increase in internal doses were typical incentives for action. The decision aiding analysis illustrated that actions can be usually recommended. Results are outlined here.

  18. Local strategies for decontamination

    International Nuclear Information System (INIS)

    Hubert, P.; Ramzaev, V.; Antsypov, G.; Sobotovich, E.; Anisimova, L.

    1996-01-01

    The efficiencies of a great number of techniques for decontamination or dose reduction in contaminated areas have been investigated by several teams of E.C. and CIS scientists (ECP4 project). Modelling, laboratory and field experiments, t and return from experience allowed to assess radiological efficiencies (e.g. 'decontamination factor') and requirements for the operation of numerous practical solutions. Then, those data were supplemented with data on cost and waste generation in order to elaborate all the information for the optimization of decontamination strategies. Results will be presented for about 70 techniques. However, a technique cannot be compared to another from a generic point of view. Rather it is designed for a specific target and the best technology depends on the objectives. It has been decided to implement decision analyses on case studies, and the local conditions and objectives have been investigated. Individual doses ranged from 1 to 5 mSv, with contrasted contributions of internal and external doses. The desire to restore a normal activity in a partially depopulated settlement, and concerns about the recent increase in internal doses were typical incentives for action. The decision aiding analysis illustrated that actions can be usually recommended. Results are outlined here

  19. Removal of Methylene Blue from aqueous solution using spent bleaching earth

    Science.gov (United States)

    Saputra, E.; Saputra, R.; Nugraha, M. W.; Irianty, R. S.; Utama, P. S.

    2018-04-01

    The waste from industrial textile waste is one of the environmental problems, it is required effective and efficient processing. In this study spent bleaching earth was used as absorbent. It was found that the absorbent was effective to remove methylene blue from aqueous solution with removal efficiency 99.97 % in 120 min. Several parameters such as pH, amount of absorbent loading, stirring speed are found as key factor influencing removal of methylene blue. The mechanism of adsorption was also studied, and it was found that Langmuir isotherm fitted to data of experiment with adsorption capacity 0.5 mg/g.

  20. Chemical decontamination and melt densification of chop-leach fuel hulls

    International Nuclear Information System (INIS)

    Dillon, R.L.; Griggs, B.; Kemper, R.S.; Nelson, R.G.

    1976-01-01

    This paper reports on decontamination and densification studies of chop-leach fuel hull residues designed to minimize the transuranic element (TRU) contaminated waste stream. Decontamination requirements have been established from studies of TRU element distribution in the fuel hull residues. Effective surface decontamination of Zircaloy requires removal of zirconium oxide corrosion products. Good decontamination factors have been achieved with aqueous solutions following high temperature HF conditioning of oxide films. Molten fluoride salt mixtures are effective decontaminants, but pose problems in metal loss and salt dragout. Molten metal decontamination methods are highly preliminary, but may be required to reduce TRU originating from tramp uranium in Zircaloy. Low melting (1300 0 C) alloy of Zircaloy, stainless steel, and Inconel have been prepared in induction heated graphite crucibles. High quality ingots of Zircaloy-2 have been prepared directly from short sections of descaled fuel clad tubing using the Inductoslag process. This material is readily capable of refabrication. Inductoslag melts have also been prepared from heavily oxidized Zircaloy tubing demonstrating melt densification without prior decontamination is technically feasible. Hydrogen absorption kinetics have been demonstrated with cast Zircaloy-2 and cast Zircaloy-stainless steel-Inconel alloys. Metallic fuel hull residues have been proposed as a storage medium for tritium released from fuel during reprocessing. (author)

  1. An experimental study on decontamination by surface condition

    International Nuclear Information System (INIS)

    Lee, Young Hae

    1974-01-01

    Surface decontamination is one of the very important problem to be completely solved in the isotope laboratory where there is always the possibility of radioactive contamination, i.e., on the floors, walls, working tables and benches etc., Isotope laboratories require surface covering of material which can be easily and effectively decontaminated. These experiment were done to find an effective decontamination procedure for kind of surfaces which usually are found in radioisotope laboratories and the best type of surface material, that is, one which is easily decontaminated from the point of view of radiation health and safely. This study is presented to guide radioisotope laboratories in Korea which may need to renovate existing unsafe facilities. In some contaminated facilities entirely new installations may be required. Twelve types of surface material are used for study in this experiment. These include 10 cm square of stainless steel, aluminum, ceramic and mosaic tiles, glass, acrylic, formica board, asphalt tile and coated wood with 4 kinds of paints. Stepwise decontamination was performed with various decontamination procedures following a spill of I 1 31 on the center of the surface material being tested. Twelve different decontamination procedures were tested. These included wet wiping with water and detergent, or dry wiping, or removing with gummed paper. Additional chemical procedures used 10% solution of hydrochloric acid, or surface acid, or ammonium citrate, or potassium iodide, or acetone or carbon tetrachloride. The final testing method was abrasion of the test surfaces. Brief analysis of experimental results on the decontaminability on the tested surface showed: 1. Metallic surfaces such as stainless steel or aluminum, or glass, or a piece of ceramic tile or acrylic are recommended as the surface materials for isotope laboratories because these are easily decontaminated by wet wiping only. 2. Formica board, asphalt tile and wood are not easily

  2. A State of the Art Report on the Case Study of Hot Cell Decontamination and Refurbishment

    Energy Technology Data Exchange (ETDEWEB)

    Won, H. J.; Jung, C. H.; Moon, J. K.; Park, G. I.; Song, K. C

    2008-08-15

    As the increase of the operation age of the domestic high radiation facilities such as IMEF, PIEF and DFDF, the necessity of decontamination and refurbishment of hot cells in these facilities is also increased. In the near future, the possibilities of refurbishment of hot cells in compliance with the new regulations, the reuse of hot cells for the other purposes and the decommissioning of the facilities also exist. To prepare against the decontamination and refurbishment of hot cells, the reports on the refurbishment, decommissioning and decontamination experiences of hot cells in USA, Japan, France, Belgium and Great Britain were investigated. ANL of USA performed the project on the decontamination of hot cells. The purpose of the project was to practically eliminate the radioactive emissions of Rn-220 to the environment and to restore the hot cells to an empty restricted use condition. The five hot cells were emptied and decontaminated for restricted use. Chemical processing facility in JAEA of Japan was used for the reprocessing study of spent fuels, hot cells in CPF were refurbished from 1995 for the tests of the newly developed reprocessing process. In a first stage, decommissioning and decontamination were fully performed by the remote operation Then, decommissioning and decontamination were performed manually. By the newly developed process, they reported that the radiation exposure of workers were satisfactorily reduced. In the other countries, they also make an effort for the refurbishment and decontamination of hot cells and it is inferred that they accumulate experiences in these fields.

  3. Polymeric compositions for “dry” decontamination of NPP equipment and premises

    International Nuclear Information System (INIS)

    Voronik, N.I.; Toropova, V.V.

    2015-01-01

    In JIPNR – “Sosny” NASB developed decontaminating polymeric compositions based on binder – polyvinyl alcohol solution with active additives such as nitric and borohydrofluoric acids, 1-hydroxyethylidene diphosphonic acid and its salts, detergents and fillers - natural tripoli; tripoli modified by ferrocyanides of nickel and copper; pulverized dolomite modified by manganese oxides, ferrocyanides of nickel and copper; clinoptilolite modified by iron chlorides (III) and calcium sodium phosphate and potassium ferrocyanide; hydrolytic lignin. It is shown that the developed decontaminating polymeric compositions (pastes) possess high decontaminating capacity (FD 102 – 103) and low adhesion to the surfaces of stainless and carbon steels, including painted, plastic, self-leveling floors, teflon-surface. Prolonged leaching method allowed determine the chemical resistance of “dry” decontamination wastes, strength of "1"3"7Cs and "6"0Co fixations in wastes obtained in result of using new decontamination pastes [ru

  4. Decontamination and decarburization of stainless and carbon steel by melt refining

    International Nuclear Information System (INIS)

    Mizia, R.E.; Worcester, S.A.; Twidwell, L.G.; Webber, D.; Paolini, D.J.; Weldon, T.A.

    1996-01-01

    With many nuclear reactors and facilities being decommissioned in the next ten to twenty years the concern for handling and storing Radioactive Scrap Metal (RSM) is growing. Upon direction of the DOE Office of Environmental Restoration and Waste Management, Lockheed Idaho Technology Company (LITCO) is developing technologies for the conditioning of spent fuels and high-level wastes for interim storage and repository acceptance, including the recycling of Radioactive Scrap Metals (RSM) for beneficial reuse with the DOE complex. In February 1993, Montana Tech of the University of Montana was contracted to develop and demonstrate technologies for the decontamination of stainless steel RSM. The general objectives of the Montana Tech research program included conducting a literature survey, performing laboratory scale melt refining experiments to optimize decontaminating slag compositions, performing an analysis of preferred melting techniques, coordinating pilot scale and commercial scale demonstrations, and producing sufficient quantities of surrogate-containing material for all of the laboratory, pilot and commercial scale test programs. Later on, the program was expanded to include decontamination of carbon steel RSM. Each research program has been completed, and results are presented in this report

  5. Large-Scale Urban Decontamination; Developments, Historical Examples and Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Rick Demmer

    2007-02-01

    Recent terrorist threats and actual events have lead to a renewed interest in the technical field of large scale, urban environment decontamination. One of the driving forces for this interest is the real potential for the cleanup and removal of radioactive dispersal device (RDD or “dirty bomb”) residues. In response the U. S. Government has spent many millions of dollars investigating RDD contamination and novel decontamination methodologies. Interest in chemical and biological (CB) cleanup has also peaked with the threat of terrorist action like the anthrax attack at the Hart Senate Office Building and with catastrophic natural events such as Hurricane Katrina. The efficiency of cleanup response will be improved with these new developments and a better understanding of the “old reliable” methodologies. Perhaps the most interesting area of investigation for large area decontamination is that of the RDD. While primarily an economic and psychological weapon, the need to cleanup and return valuable or culturally significant resources to the public is nonetheless valid. Several private companies, universities and National Laboratories are currently developing novel RDD cleanup technologies. Because of its longstanding association with radioactive facilities, the U. S. Department of Energy National Laboratories are at the forefront in developing and testing new RDD decontamination methods. However, such cleanup technologies are likely to be fairly task specific; while many different contamination mechanisms, substrate and environmental conditions will make actual application more complicated. Some major efforts have also been made to model potential contamination, to evaluate both old and new decontamination techniques and to assess their readiness for use. Non-radioactive, CB threats each have unique decontamination challenges and recent events have provided some examples. The U. S. Environmental Protection Agency (EPA), as lead agency for these emergency

  6. Decontamination of nuclear facilities

    International Nuclear Information System (INIS)

    1982-01-01

    Thirty-seven papers were presented at this conference in five sessions. Topics covered include regulation, control and consequences of decontamination; decontamination of components and facilities; chemical and non-chemical methods of decontamination; and TMI decontamination experience

  7. A study on the alkalimetric titration with gran plot in noncomplexing media for the determination of free acid in spent fuel solutions

    International Nuclear Information System (INIS)

    Suh, Moo Yul; Lee, Chang Heon; Sohn, Se Chul; Kim, Jung Suk; Kim, Won Ho; Eom, Tae Yoon

    1999-01-01

    Based on the study of hydrolysis behaviour of U(VI) ion and major fission product metal ions such as Cs(I), Ce(III), Nd(III), Mo(VI), Ru(II), and Zr(VI) in the titration media, the performance of noncomplexing-alkalimetric titration method for the determination of free acid in the presence of these metal ions was investigated and its results were compared to those from the complexing methods. The free acidities could be determined as low as 0.05 meq in uranium solutions in which the molar ratio of U(VI)/H + was less than 5, when the end-point of titration was estimated by Gran plot. The biases in the determinations were less than ±1% and about +3% respectively for 0.4 meq and 0.05 meq of free acid at the U(VI)/H + molar ratio of up to 5. Applicability of this method to the determination of free acid in spent fuel solutions was confirmed by the analysis of nitric acid content in simulated spent fuel solutions and in a real spent fuel solution

  8. Electrolytic decontamination of conductive materials for hazardous waste management

    International Nuclear Information System (INIS)

    Wedman, D.E.; Martinez, H.E.; Nelson, T.O.

    1996-01-01

    Electrolytic removal of plutonium and americium from stainless steel and uranium surfaces has been demonstrated. Preliminary experiments were performed on the electrochemically based decontamination of type 304L stainless steel in sodium nitrate solutions to better understand the metal removal effects of varying cur-rent density, pH, and nitrate concentration parameters. Material removal rates and changes in surface morphology under these varying conditions are reported. Experimental results indicate that an electropolishing step before contamination removes surface roughness, thereby simplifying later electrolytic decontamination. Sodium nitrate based electrolytic decontamination produced the most uniform stripping of material at low to intermediate pH and at sodium nitrate concentrations of 200 g L -1 and higher. Stirring was also observed to increase the uniformity of the stripping process

  9. Surface decontamination

    International Nuclear Information System (INIS)

    Silva, S. da; Teixeira, M.V.

    1986-06-01

    The general methods of surface decontamination used in laboratory and others nuclear installations areas, as well as the procedures for handling radioactive materials and surfaces of work are presented. Some methods for decontamination of body external parts are mentioned. The medical supervision and assistance are required for internal or external contamination involving or not lesion in persons. From this medical radiation protection decontamination procedures are determined. (M.C.K.) [pt

  10. Reactive decontamination formulation

    Science.gov (United States)

    Giletto, Anthony [College Station, TX; White, William [College Station, TX; Cisar, Alan J [Cypress, TX; Hitchens, G Duncan [Bryan, TX; Fyffe, James [Bryan, TX

    2003-05-27

    The present invention provides a universal decontamination formulation and method for detoxifying chemical warfare agents (CWA's) and biological warfare agents (BWA's) without producing any toxic by-products, as well as, decontaminating surfaces that have come into contact with these agents. The formulation includes a sorbent material or gel, a peroxide source, a peroxide activator, and a compound containing a mixture of KHSO.sub.5, KHSO.sub.4 and K.sub.2 SO.sub.4. The formulation is self-decontaminating and once dried can easily be wiped from the surface being decontaminated. A method for decontaminating a surface exposed to chemical or biological agents is also disclosed.

  11. Radioactive wastes. The groundwork of current solutions

    International Nuclear Information System (INIS)

    Grevoz, A.; Boullis, B.; Devezeaux de Lavergne, J.G.; Butez, M.; Bordier, G.; Vitart, X.; Hablot, I.; Chastagnet, F.

    2005-01-01

    Today the groundwork laid down by research has made processes available for the durable treatment and conditioning of all types of radioactive waste. This document illustrates the today situations in five presentations. Now standing as a national reference, the french inventory of radioactive waste, drawn up by ANDRA, has not only expanded to cover recoverable material but also features predictions of waste arisings for 2010 and 2020, including waste from the decommissioning of current installations. The current process used for spent fuel reprocessing allows extraction for recycling purpose, of uranium and plutonium, with very high recovery and purification rates. Advances in characterization and decontamination allow improvements in sorting and retrieval and conditioning to be considered for older wastes. The french National radioactive waste management agency (ANDRA) is already providing optimum industrial solutions for all short-lived, low and very low level waste on its Soulaines and Morvillers sites. For several decades, Areva has been reprocessing spent fuel and conditioning ultimate waste in its La Hague plants. (A.L.B.)

  12. Efficacy studies of Reactive Skin Decontamination Lotion, M291 Skin Decontamination Kit, 0.5% bleach, 1% soapy water, and Skin Exposure Reduction Paste Against Chemical Warfare Agents, part 2: guinea pigs challenged with soman.

    Science.gov (United States)

    Braue, Ernest H; Smith, Kelly H; Doxzon, Bryce F; Lumpkin, Horace L; Clarkson, Edward D

    2011-03-01

    This report, the second in a series of five, directly compares the efficacy of Reactive Skin Decontamination Lotion (RSDL), the M291 Skin Decontamination Kit (SDK), 0.5% bleach (sodium or calcium hypochlorite solution), 1% soapy water, and Skin Exposure Reduction Paste Against Chemical Warfare Agents (SERPACWA) in the haired guinea pig model following exposure to soman (GD). In all experiments, guinea pigs were close-clipped and given anesthesia. In the decontamination experiments, the animals were challenged with GD and decontaminated after a 2-minute delay for the standard procedure or at longer times for the delayed-decontamination experiments. Positive control animals were challenged with GD in the same manner as the treated animals, except that they received no treatment. All animals were observed during the first 4 hours and again at 24 hours after exposure for signs of toxicity and death. The protective ratio (PR, defined as the median lethal dose [LD(50)] of the treatment group divided by the LD(50) of the untreated positive control animals) was calculated from the derived probit dose-response curves established for each treatment group and nontreated control animals. SERPACWA was applied as a thin coating (0.1 mm thick), allowed to dry for 15 minutes, and challenged with GD. After a 2-hour challenge, any remaining GD was blotted off the animal, but no additional decontamination was done. Significance in this report is defined as p decontamination experiments, the calculated PRs for RSDL, 0.5% bleach, 1% soapy water, and M291 SDK were 14, 2.7, 2.2, and 2.6, respectively. RSDL was by far the most effective decontamination product tested and significantly better than any of the other products. Bleach, soapy water, and the M291 SDK provided equivalent and modest protection. Since only RSDL provided at least good protection (PR > 5), it was the only decontamination product evaluated for delayed decontamination. In the GD delayed-decontamination experiments

  13. Decontamination of some liquid wastes of medium activity with a new solvent type

    International Nuclear Information System (INIS)

    Gasparini, G.

    1986-01-01

    The decontamination of a reference MAWsub(s) (an alkaline solution coming from the solvent washing and an acidic solution consisting of the mixture of aqueous raffinates deriving from uranium and plutonium purification cycles) by hydroxamic acid is reported. The results of the ''in batch'' decontamination tests, using extraction chromatography techniques, are given. The extraction chromatography techniques do not give the expected performances for the tests in column. Discontinuous liquid extraction tests using traced solutions show that Pu, Am, Zr, Nb are extracted but not U and Ru. The strip of Pu, Am and Zr with an oxalic acid solution is quantitative. Continuous tests using mixer settler batteries, and a simulated alkaline solution and complete extraction-reextraction runs using a simulated solution are conducted. The results of a discontinuous conclusive experiments using a true alkaline solution coming from a reprocessing plant are given

  14. Development and assessment of two decontamination processes: closed electropolishing system for decontamination of underwater surfaces -vibratory decontamination with abrasives

    International Nuclear Information System (INIS)

    Benavides, E.; Fajardo, M.

    1992-01-01

    Two decontamination processes have been developed to decontaminate the stainless steel components of nuclear power plants. The first process uses an underwater closed electropolishing system for the decontamination of large stainless steel surfaces in flooded systems without loss of electrolyte. Large underwater contaminated areas can be treated with an electropolishing head covering an area of 2 m 2 in one step. The decontamination factors achieved with this technique range between 100 and 1000. The second process consists in the decontamination of nuclear components using vibratory equipment with self-cleaning abrasives generating a minimum quantity of waste. This technique may reach contamination factors similar to those obtained with other abrasive methods (brush abrasion, abrasive blasting, etc...). The obtained decontamination factors range between 5 and 50. Only a small quantity of waste is generated, which is treated and reduced in volume by filtration and evaporation

  15. Decontamination before dismantling a fast breeder reactor primary cooling system

    International Nuclear Information System (INIS)

    Costes, J.R.; Antoine, P.; Gauchon, J.P.

    1997-01-01

    The large-scale decontamination of FBR sodium loops is a novel task, as only a limited number of laboratory-scale results are available to date. The principal objective of this work is to develop a suitable decontamination procedure for application to the primary loops of the RAPSODIE fast breeder reactor as part of decommissioning to Stage 2. After disconnecting the piping from the main vessel, the pipes were treated by circulating chemical solutions and the vessels by spraying. The dose rate in the areas to be dismantled was divided by ten. A decontamination factor of about 300 was obtained, and should allow austenitic steel parts to be melted in special furnaces for unrestricted release. (author)

  16. Decontamination of radionuclides in food

    Energy Technology Data Exchange (ETDEWEB)

    Ohmomo, Yoichiro [Institute for Environmental Sciences, Aomori (Japan)

    1994-03-01

    The release of radionuclides arising from the Chernobyle accident led to widespread contamination of the northern hemisphere through fallout. This accident provided again an opportunity to investigate how and to what extent the radionuclides contamination in crops and animal derived foods could be reduced. The following topics are included in this paper. (1) How to reduce the transfer of radiostrontium and/or cesium from soil to crops: A pH increase of soil is effective for reducing their plant uptake. (2) How to reduce the transfer of radiocesium to animal derived foods: Ammonium-ferric-cyanoferrate (AFCF) should be the most effective compound for radiocesium excretion in the feces. Experiments with lactating cows and/or poultry gave extremely good results with respect to low radiocesium concentrations in milk, meat and eggs. (3) Removal coefficients of radiostrontium, cesium and iodine from contaminated leaf vegetables and cereals during food processing and culinary preparation: Though different by species, more than 80% of cesium and about 50% of strontium and iodine can be removed during culinary preparation of washing and boiling. (4) Simultaneous decontamination of radiocesium and iodine from drinking water and liquid milk: Metal ferrocyanide-anion exchange resin, specifically Fe ferrocyanide one, was successfully used for a rapid and simple decontamination of radiocesium and iodine in the liquid samples arising from the Chernobyle accident. (5) Removal of radiocesium from meat: The meat structurally contaminated with radiocesium is easily and very successfully decontaminated by pickling in NaCl solution and the decontamination is much speeded up by freezing meat before pickling. (author).

  17. Decontamination of radionuclides in food

    International Nuclear Information System (INIS)

    Ohmomo, Yoichiro

    1994-01-01

    The release of radionuclides arising from the Chernobyle accident led to widespread contamination of the northern hemisphere through fallout. This accident provided again an opportunity to investigate how and to what extent the radionuclides contamination in crops and animal derived foods could be reduced. The following topics are included in this paper. (1) How to reduce the transfer of radiostrontium and/or cesium from soil to crops: A pH increase of soil is effective for reducing their plant uptake. (2) How to reduce the transfer of radiocesium to animal derived foods: Ammonium-ferric-cyanoferrate (AFCF) should be the most effective compound for radiocesium excretion in the feces. Experiments with lactating cows and/or poultry gave extremely good results with respect to low radiocesium concentrations in milk, meat and eggs. (3) Removal coefficients of radiostrontium, cesium and iodine from contaminated leaf vegetables and cereals during food processing and culinary preparation: Though different by species, more than 80% of cesium and about 50% of strontium and iodine can be removed during culinary preparation of washing and boiling. (4) Simultaneous decontamination of radiocesium and iodine from drinking water and liquid milk: Metal ferrocyanide-anion exchange resin, specifically Fe ferrocyanide one, was successfully used for a rapid and simple decontamination of radiocesium and iodine in the liquid samples arising from the Chernobyle accident. (5) Removal of radiocesium from meat: The meat structurally contaminated with radiocesium is easily and very successfully decontaminated by pickling in NaCl solution and the decontamination is much speeded up by freezing meat before pickling. (author)

  18. Application of a modified electrochemical system for surface decontamination of radioactive metal waste

    International Nuclear Information System (INIS)

    Lee, J.H.; Lim, Y.K.; Yang, H.Y.; Shin, S.W.; Song, M.J.

    2003-01-01

    Conventional and modified electrolytic decontamination experiments were performed in a solution of sodium sulfate for the decontamination of carbon steel as the simulated metal wastes which are generated in large amounts from nuclear power plants. The effect of reaction time, current density and concentration of electrolytes in the modified electrolytic decontamination system were examined to remove the surface contamination of the simulated radioactive metal wastes. As for the results of this research, the modified electrochemical decontamination process can decontaminate more effectively than the conventional decontamination process by applying different anode material which causes higher induced electro-motive forces. When 0.5 M sodium sulfate, 0.4 A/cm 2 current density and 30 minutes reaction time were applied in the modified process, a 16 μm thickness change that is expected to remove most surface contamination in radioactive metal wastes was achieved on carbon steel which is the main material of radioactive metal waste in nuclear power plants. The decontamination efficiency of metal waste showed similar results with the small and large lab-scale modified electrochemical system. The application of this modified electrolytic decontamination system is expected to play a considerable role for decontamination of radioactive metal waste in nuclear power plants in the near future. (author)

  19. A study of the decontamination effect of commercial detergents on the skin

    International Nuclear Information System (INIS)

    Takasaki, Koji; Miyabe, Kenjiro

    2003-01-01

    Titanium dioxide paste is generally used as the radiological skin decontaminant in the radiation control area at Japan Nuclear Cycle Development Institute (JNC) Tokai works. It is a typical and proven skin decontaminant in the nuclear industry, but there is a disadvantage in that it has a short shelf life. Recently, many detergents applicable as skin decontaminants have become available in non-nuclear industries such as cosmetics and sanitation. They are easily acquired and have an advantage in that stimulus to the skin is mild, because these products have been developed for the human body. In this study, the decontamination factor of the commercial detergents for each nuclide was examined using imitation skin. Sheets of raw pig skins were contaminated with a nitric-acid solution containing 144 Ce, 137 Cs, 106 Ru or 60 Co, and then washed with various detergents such as a neutral detergent, cleansing cream and orange oil. The nuclide removal rates of some of the commercial detergents examined were nearly equal to that of titanium dioxide, thus proving that they show satisfactory decontamination performance as a skin decontaminant. (author)

  20. Decontamination of transvaginal ultrasound probes: Review of national practice and need for national guidelines

    International Nuclear Information System (INIS)

    Gray, R.A.; Williams, P.L.; Dubbins, P.A.; Jenks, P.J.

    2012-01-01

    Aim: To determine the national practice of transvaginal ultrasound (TVUS) probe decontamination in English hospitals and to develop recommendations for guidance. Materials and methods: A literature review was undertaken to clarify best practice and evaluate methods of decontamination of TVUS probes. A questionnaire was developed to ascertain TVUS probe decontamination programmes in current use within English hospitals. This was sent to ultrasound leads of 100 English hospitals; 68 hospitals responded. Results: There is a wide variation in TVUS probe decontamination across English hospitals. Although the majority of respondents (87%, 59/68) reported having clear and practical written guidelines for TVUS decontamination, the frequency, methods, and types of decontamination solutions utilized were widely variable and none meet the standards required to achieve high-level disinfection. Conclusion: While the decontamination of other endoluminal medical devices (e.g., flexible endoscopes) is well defined and regulated, the decontamination of TVUS probes has no such guidance. There appears to be incomplete understanding of the level of risk posed by TVUS probes, and in some cases, this has resulted in highly questionable practices regarding TVUS hygiene. There is an urgent need to develop evidence-based national guidance for TVUS probe decontamination.

  1. A decontamination technique for decommissioning waste

    International Nuclear Information System (INIS)

    Heki, H.; Hosaka, K.; Kuribayashi, N.; Ishikura, T.

    1993-01-01

    A large amount of radioactive metallic waste is generated from decommissioned commercial nuclear reactors. It is necessary from the point of environmental protection and resource utilization to decontaminate the contaminated metallic waste. A decommissioning waste processing system has been previously proposed considering such decommissioning waste characteristics as its large quantity, large radioactivity range, and various shapes and materials. The decontamination process in this system was carried out by abrasive blasting as pretreatment, electrochemical decontamination as the main process, and ultrasonic cleaning in water as post-treatment. For electrochemical decontamination, electrolytic decontamination for simple shaped waste and REDOX decontamination for complicated shaped waste were used as effective decontamination processing. This time, various kinds of actual radioactive contaminated samples were taken from operating power plants to simulate the decontamination of decommissioning waste. After analyzing the composition, morphogenesis and surface observation, electrolytic decontamination, REDOX decontamination, and ultrasonic cleaning experiments were carried out by using these samples. As a result, all the samples were decontaminated below the assumed exemption level(=4 x 10 -2 Bq/g). A maximum decontamination factor of over 104 was obtained by both electrolytic and REDOX decontamination. The stainless steel sample was easy to decontaminate in both electrochemical decontaminations because of its thin oxidized layer. The ultrasonic cleaning process after electrochemical decontamination worked effectively for removing adhesive sludge and the contaminated liquid. It has been concluded from the results mentioned above that electrolytic decontamination and REDOX decontamination are effective decontamination process for decontaminating decommissioning waste

  2. Decontamination of plutonium-contaminated surfaces

    International Nuclear Information System (INIS)

    Bertrand, J.; Clouet d'Orval, Ch.; Tachon, J.

    1958-01-01

    The measure of the neutron distribution in the core of 'Proserpine', by means of activation detectors, requires no contact between the plutonium sulfate solution and the detectors. These detectors are put into PVC or polyethylene bags. This report describes the process used to decontaminate these bags. A washing by nitric acid followed by coating with plexiglass is kept, with this process we have no contamination on the detectors. (author) [fr

  3. Contamination, decontamination and radiochemical safety analyses of the RA reactor (Report 1966)

    International Nuclear Information System (INIS)

    Maksimovic, Z.

    1966-12-01

    This contract is concerned with development of methods for detection of fission products i the heavy water and quantitative radiochemical analysis for detecting one fission product which enables reliable verification of heavy water contamination by fission products and estimation of contamination level. Qualitative and quantitative radiometry measurements of fission products in water are shown on page 4. Page 6 shows study of contamination and decontamination of water on the laboratory level. Experiments have shown that the majority of fission products was adsorbed on the uranium oxide and that the iodine isotopes are partly in water (non-adsorbed). Gamma spectrometry analyses showed 131 I moves to distillate with the initial quantities of distilled water. decontamination factors compared to the total activity of fission products in distillator and distillate are not higher than ∼10 3 . Decontamination of water contaminated by uranium oxide and fission products in the distillation device of the RA reactor is shown on page 8. Experiments demanded special preparation due to high activity of uranium (1.7 g of uranium irradiated in the reactor for 10 days at neutron flux 1.10 13 n.cm 2 /s. Prior preparations for transport and dissolution of irradiated metal uranium as well as sampling were needed. Distillation was done under lower pressure and temperature to avoid possible contamination of the environment bu fission products and iodine. Decontamination factors are shown in Table. Contamination and decontamination of stainless steel on the laboratory level are described on page 5. It was found that the deposition of activity on the stainless steel plates is inhomogeneous showing that the uranium oxide and fission products are deposited on the rough metal surfaces. According to literature data and our laboratory studies decontamination was done by nitric acid solution (2MHNO 3 ). Since the heavy water system of the RA reactor was made of stainless teel (except the

  4. Decontaminating agents and decontamination processes for nuclear industry and for plant demolition

    International Nuclear Information System (INIS)

    Henning, Klaus; Gojowczyk, Peter

    2012-01-01

    Decontamination of surfaces of materials in nuclear facilities or in nuclear power plants under demolition can be carried out successfully if surface treatment is performed by dipping or in an ultrasonic bath by alternating between alkaline and acid baths with intermediate rinsing in demineralized water. Decontaminating aluminium surfaces sensitive to corrosion requires further treatment in an ultrasonic bath, after the first 2 ultrasonic baths, with a weak alkaline decontaminating agent. This applies alike to components to be decontaminated for re-use and parts of materials to be disposed of. The decontamination action depends on the surfaces either being free from corrosion or else showing pronounced corrosion. (orig.)

  5. The cost of spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Palacios H, J. C.; Badillo, V.; Alonso, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    Spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments, constructing repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution?, or What is the best technology for an specific solution? Many countries have deferred the decision on selecting an option, while others works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However currently, the plants are under a process for extended power up-rate to 20% of original power and also there are plans to extended operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. (Author)

  6. Effect of HNO3-cerium(IV) decontamination on stainless steel canister materials

    International Nuclear Information System (INIS)

    Westerman, R.E.; Mackey, D.B.

    1991-01-01

    Stainless steel canisters will be filled with vitrified radioactive waste at the West Valley Demonstration Project (WVDP), West Valley, NY. After they are filled, the sealed canisters will be decontaminated by immersion in a HNO 3 -Ce(IV) solution, which will remove the oxide film and a small amount of metal from the surface of the canisters. Studies were undertaken in support of waste form qualification activities to determine the effect of this decontamination treatment on the legibility of the weld-bead canister identification label, and to determine whether this decontamination treatment could induce stress-corrosion cracking (SCC) in the AISI 304L stainless steel (SS) canister material. Neither the label legibility nor the canister integrity with regard to SCC were found to be prejudiced by the simulated decontamination treatment

  7. Characterization of primary coolant purification system samples for assay of spent ion exchanger radionuclide inventor

    International Nuclear Information System (INIS)

    Sajin Prasad, S.; Pant, Amar; Sharma, Ranjit; Pal, Sanjit

    2018-01-01

    The primary coolant system water of a research reactor contains various fission and activation products and the water is circulated continuously through ion exchange resin cartridges, to reduce the radioactive ionic impurity present in it. The coolant purification system comprises of an ion exchange cooler, two micro filters, and a battery of six ion exchanger beds, associated valves, piping and instrumentation (Heavy water System Operating manual, 2014). The spent cartridge is finally disposed off as active solid waste which contains predominantly long lived fission and activation products. The heavy water coolant is also used to cool the structural assemblies after passing through primary heat exchanger and a metallic strainer, which accumulates the fission and activation products. When there is a reduction of coolant flow through these strainers, they are removed for cleaning and decontamination. This paper describes the characterization of ion exchange resin samples and liquid effluent generated during ultra sonic decontamination of strainer. The results obtained can be used as a methodology for the assay of the spent ion exchanger cartridges radionuclide inventory, during its disposal

  8. The Efficiency of Strontium-90 Desorption Using Iron (III Solutions in the Decontamination Process of Radioactive Soils

    Directory of Open Access Journals (Sweden)

    Olga Vladimirovna Cheremisina

    2018-03-01

    Full Text Available The paper presents the investigation on the estimated efficiency of iron (III chloride solutions in the decontamination process of radioactive soils with 90 Sr, according to kinetic and thermodynamic characteristics of the desorption process. The specific 90 Sr radioactivity of soil samples was (3.9±0.3·104 Bq·g. The adsorption isotherms of Sr 2+ and Fe 3+ are described with the Langmuir equation. The values of Gibbs energy G0298 = -4.65 kJ·mol -1 and equilibrium ion exchange constant Keq = 6,5 confirm the hypothesis of strontium removal from soils with iron (III cations. The effectiveness of the method is substantiated by experimental and calculated results of this study samples of radioactive soils are deactivated in 90% after 9.5 hours, whereas the kinetic constant is 6.77·10 s -1 . The suggested method of soil cleanup with 0.2 M Fe 3+ solutions is optimal and complies with the environmental requirements.

  9. New sorption-reagent materials for decontamination of liquid radioactive waste

    International Nuclear Information System (INIS)

    Avramenko, V.A.; Golikov, A.P.; Zheleznov, V.V.; Kaplun, E.V.; Marinin, D.V.; Sokolnitskaya, T.A.

    2001-01-01

    Full text: Use of selective sorbents in liquid radioactive waste (LRW) management is widely spread in the field of nuclear power objects liquid waste decontamination, since the main objective there is to remove long-lived radionuclides of the nuclear cycle. The latter include, first of all, cesium-137, strontium-90, cobalt-60 and a number of α-irradiators. In this case LRW composition for most of the nuclear power objects is rather simple, except acidic deactivation solutions. At the same time, liquid radioactive wastes of different research centers have a variable chemical and radiochemical composition depending on objectives and tasks of a given center research activities. As a result, application of sorption technologies in such waste decontamination determines special requirements to these sorbents selectivity: a wide spectrum of radionuclides that can be removed and fairly high selectivity enabling to remove radionuclides from solutions of complex chemical composition (containing surfactants, complexing agents etc.). This paper is concerned with studying properties of new materials selective to different radionuclides. These materials are capable to interact with solution components whether already contained in the waste or deliberately added into resulting solution. Such sorption-reagent materials combine universal character of co-precipitation methods with simplicity of sorption methods. In this work we studied sorption-reagent inorganic ion-exchange materials interacting with sulfate-, carbonate-, oxalate-, sulfide-, and permanganate-ions. Insoluble compounds formed as a result of this interaction increase tens- and hundreds-fold the sorption selectivity of different radionuclides - strontium, cobalt, mercury, iron, and manganese as compared to conventional ion-exchange system. By means of X-ray phase analysis, IR-spectroscopy, chemical and radiochemical analysis, we have studied the mechanism of radionuclide sorption on different sorption

  10. Lessons Learned from Decontamination Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, JH

    2000-11-16

    This interim report describes a DOE project currently underway to establish what is known about decontamination of buildings and people and the procedures and protocols used to determine when and how people or buildings are considered ''clean'' following decontamination. To fulfill this objective, the study systematically examined reported decontamination experiences to determine what procedures and protocols are currently employed for decontamination, the timeframe involved to initiate and complete the decontamination process, how the contaminants were identified, the problems encountered during the decontamination process, how response efforts of agencies were coordinated, and the perceived social psychological effects on people who were decontaminated or who participated in the decontamination process. Findings and recommendations from the study are intended to aid decision-making and to improve the basis for determining appropriate decontamination protocols for recovery planners and policy makers for responding to chemical and biological events.

  11. Basic study on decontamination of TRU wastes with cerium mediated electrolytic oxidation method

    International Nuclear Information System (INIS)

    Ishii, Junichi; Kobayashi, Fuyumi; Uchida, Shoji; Sumiya, Masato; Kida, Takashi; Shirahashi, Koichi; Umeda, Miki; Sakuraba, Koichi

    2010-03-01

    At Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF), the cerium mediated electrolytic oxidation method which is a decontamination technique to decrease the radioactivity of TRU wastes to the clearance-level has been developed for the effective reduction of TRU wastes generated from the decommissioning of a nuclear fuel reprocessing facility and so on. This method corrodes the oxide layer and the surface of metallic TRU metal wastes by the strong oxidation power of Ce 4+ in nitric acid. In this study, parameter tests were conducted to optimize the solution condition of Ce 3+ initial concentrations and nitric acid concentrations. The target corrosion rate of metallic TRU wastes set to be 2 - 4 μm/h for the practical use of this method. Under the optimized solution condition, a dissolution test of stainless steel simulating wastes was carried out. From the result of the dissolution test, the average corrosion rate was 3.3 μm/h during the test time of 90 hours. Based on the supposition that the corrosion depth of metallic TRU wastes was 20 μm enough to achieve the clearance-level, the treatment time for the decontamination was about 6 hours. It was confirmed from the result that the decontamination could be performed within one day and the decontamination solution could repeatedly reuse 15 times. (author)

  12. Decontamination of body surface

    International Nuclear Information System (INIS)

    Harase, Chieko.

    1989-01-01

    There are two important points for an effective application of decontamination procedures. One is the organizing method of responsible decontamination teams. The team should be directed by medical doctor with the knowledge of decontamination of radionuclides. The other point is the place of application of the decontamination. Hospitals and clinics, especially with a department of nuclear medicine, or specialized units such as an emergency medical center are preferable. Before decontamination procedures are initiated, adequate monitoring of the body surface should be undertaken by a competent person in order to demarcate the areas which are contaminated. There are fundamental principles which are applicable to all decontamination procedures. (1) Precautions must always be taken to prevent further spread of contamination during decontamination operations. (2) Mild decontamination methods should be tried before resorting to treatment which can damage the body surface. The specific feature of each contamination varies widely in radionuclides involved, place and area of the contamination, condition of the contaminated skin such as whether the skin is wounded or not, and others. Soap and water are usually good detergents in most cases. If they fail, orange oil cream (SUPERDECONCREAM, available from Tokyo Engineering Co.) specially prepared for decontamination of radionuclides of most fission and corrosion products may be used. Contaminated hair should be washed several times with an efficient shampoo. (author)

  13. Heavy metal decontamination of sludges and soils. Pt. 2

    International Nuclear Information System (INIS)

    Niemann, J.

    1993-06-01

    This research project deals with decontamination technology for contaminated soil and sediments. A pilot plant for the decontamination of soil contaminated with heavy metals has been erected and is operated. The process is arranged in two steps: - heavy metal contaminated solid is decontaminted with acidic extraction. - the heavy metals are separated in a recyclable formation from the process solution you gain in the first process step. Heavy metal contaminated soil, heavy metal contaminated sediments (habour sediments) as well as residue from a soil regeneration plant have been successfully decontaminated in the pilot plan. An adaption of the process is necessary for various materials. High rates of mobilisation of heavy metals (e.g. lead, cadmium, chromium, copper, nickel, zinc) were obtained, especially with soil which contains less organic matter. (orig.). 54 figs., 30 tabs., 45 refs [de

  14. Skin decontamination of G, V, H L agents by Canadian reactive skin decontaminant lotion

    Energy Technology Data Exchange (ETDEWEB)

    Bide, R.W.; Sawyer, T.W.; DiNinno, V.L.; Armour, S.J.; Risk, D.J.

    1993-05-13

    The Canadian Reactive Skin Decontaminant Lotion (RSDL) is a reactive solution designed to be applied directly to skin for the decontamination and destruction of the classical chemical warfare agents. The solvent of the RSDL is very effective in dissolving liquid agents from the skin surface and the differential solubility of agents in the RSDL and the skin strongly favors retention of agents in the lotion. The active ingredient in the RSDL reacts rapidly and completely with G-agents, V-agents, mustard Lewisite producing relatively nontoxic products. The RSDL will dissolve and destroy agent thickened with acrylate polymers. The lotion is water soluble and readily removed from the skin. Since the RSDL is water soluble, it is active against water soluble agents even at high dilutions. For water insoluble agents, the activity is reduced as the water content rises above abrasive 50% due to insolubility of the agents. Skin and eye irritancy trials indicate that the RSDL is only a mild irritant to the eyes (equivalent to a chlorinated swimming pool) and to abraded skin. Acute toxicity trials showed that large oral and intraperitoneal doses were essentially non-toxic. The RSDL was fielded by the Canadian Forces for the Gulf Conflict. The RSDL may be used in open wounds for short periods. Wound decontamination and irrigation with RSDL diluted 1:1 with isotonic saline was recommended for the Gulf conflict.

  15. Dry decontamination for tritiated wastes

    International Nuclear Information System (INIS)

    Shi Zhengkun; Wu Tao; Dan Guiping; Xie Yun

    2009-01-01

    To aim at decontamination of tritiated wastes, we have developed and fabricated a dry tritium decontamination system, which is designed to reduce tritium surface contamination of various alloy by UV, ozone and heating. The result indicates that the elevation of temperature can obviously improve decontamination effect. With 3 h irradiation by 365 nm UV at 220 degree C, it has a decontamination rate of 99% to stainless steel surface. Ozone can more obviously improve decontamination effect when metal was heated. Ozone has a decontamination effect beyond 95% to stainless steel, aluminum and brass at 220 degree C. Tritium surface concentration of metal has a little increase after decontamination. (authors)

  16. Accurate determination of 41Ca concentrations in spent resins from the nuclear industry by Accelerator Mass Spectrometry

    International Nuclear Information System (INIS)

    Nottoli, Emmanuelle; Bourlès, Didier; Bienvenu, Philippe; Labet, Alexandre; Arnold, Maurice; Bertaux, Maité

    2013-01-01

    The radiological characterisation of nuclear waste is essential for managing storage sites. Determining the concentration of Long‐Lived RadioNuclides (LLRN) is fundamental for their long-term management. This paper focuses on the measurement of low 41 Ca concentrations in ions exchange resins used for primary fluid purification in Pressurised Water Reactors (PWR). 41 Ca concentrations were successfully measured by Accelerator Mass Spectrometry (AMS) after the acid digestion of resin samples, followed by radioactive decontamination and isobaric suppression through successive hydroxide, carbonate, nitrate and final CaF 2 precipitations. Measured 41 Ca concentrations ranged from 0.02 to 0.03 ng/g, i.e. from 0.06 to 0.09 Bq/g. The 41 Ca/ 60 Co activity ratios obtained were remarkably reproducible and in good agreement with the current ratio used for resins management. - Highlights: • In the context of radioactive waste management, this study aimed at measuring 41 Ca in spent resins using Accelerator Mass Spectrometry. • A chemical treatment procedure was developed to quantitatively recover calcium in solution and selectively extract it. • Developed firstly on synthetic matrices, the chemical treatment procedure was then successfully applied to real resin samples. • Accelerator mass spectrometry allowed measuring concentrations of 41 Ca in spent resins as low as 0.02 ng/g of dry resin. • Final results are in agreement with current data used for spent resins management

  17. Ontario Hydro decontamination experience

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, C S; Patterson, R W; Upton, M S [Chemistry and Metallurgy Department, Central Production Services, Ontario Hydro, ON (Canada)

    1991-04-01

    Ontario Hydro currently operates 18 nuclear electric generating units of the CANDU design with a net capacity of 12,402 MW(e). An additional 1,762 MW(e) is under construction. The operation of these facilities has underlined the need to have decontamination capability both to reduce radiation fields, as well as to control and reduce contamination during component maintenance. This paper presents Ontario Hydro decontamination experience in two key areas - full heat transport decontamination to reduce system radiation fields, and component decontamination to reduce loose contamination particularly as practised in maintenance and decontamination centres. (author)

  18. Ontario Hydro decontamination experience

    International Nuclear Information System (INIS)

    Lacy, C.S.; Patterson, R.W.; Upton, M.S.

    1991-01-01

    Ontario Hydro currently operates 18 nuclear electric generating units of the CANDU design with a net capacity of 12,402 MW(e). An additional 1,762 MW(e) is under construction. The operation of these facilities has underlined the need to have decontamination capability both to reduce radiation fields, as well as to control and reduce contamination during component maintenance. This paper presents Ontario Hydro decontamination experience in two key areas - full heat transport decontamination to reduce system radiation fields, and component decontamination to reduce loose contamination particularly as practised in maintenance and decontamination centres. (author)

  19. Method of bituminization equipment decontamination

    International Nuclear Information System (INIS)

    Alexa, J.

    1982-01-01

    Overheated water vapour is fed into the contaminated area containing substances insoluble in water but soluble in organic solvents. Prior to entry into the decontaminated area the vapour bubbles through the aqueous solution layer of suitable detergents and a layer of suitable organic solvent. In this process the distillation takes place of the solvent and the aerosols of the aqueous solution are carried away with the vapour stream, condense on the inner surface of the vessel and thus wash it. The condensate flows down the walls and in its place condense other fractions of pure solvent and the aqueous solution. The walls of the vessel are slowly heated and the liquid waste is discharged via a mud discharge pipe. (J.B.)

  20. Decontamination process and device of a radioactive surface with a coherent light beam. Procede et installation de decontamination d'une surface radioactive au moyen d'un faisceau de lumiere coherente

    Energy Technology Data Exchange (ETDEWEB)

    Gauchon, J.P.; Bournot, P.; Caminat, P.; Dupont, A.

    1994-07-29

    To decontaminate a radioactive surface, this one is swept with a focused laser beam and a liquid such as water or preferably a nitric acid solution on the whole surface. The liquid may be a film running on the surface and is recycled advantageously. The resulting decontamination is very efficient. 6 refs., 2 figs., 5 tabs.

  1. Decontamination impacts on solidification and waste disposal

    International Nuclear Information System (INIS)

    Kempf, C.R.; Soo, P.

    1988-01-01

    Research to determine chemical and physical conditions which could lead to thermal excursions, gas generation, and/or general degradation of decontamination-reagent-loaded resins has shown that IRN-78, IONAC A-365, and IRN-77 organic ion exchange resin moisture contents vary significantly depending on the counter ion ''loading.'' The extent/vigor of the reaction is very highly dependent on the degree of dewatering of the resins and on the method of solution addition. The heat generation may be due, in part, to the heat of neutralization. In studies of the long-term compatibility effects of decontamination waste resins in contact with waste package container materials in the presence of decontamination reagents, radiolysis products and gamma irradiation, it has been found that the corrosion of carbon steel and austenitic stainless steel in mixed bed resins is enhanced by gamma irradiation. However, cracking in high density polyethylene is essentially eliminated because of the rapid removal of oxygen from the environment by gamma-induced oxidation of the large resin mass. 13 refs., 10 figs., 3 tabs

  2. Gross decontamination experiment report

    International Nuclear Information System (INIS)

    Mason, R.; Kinney, K.; Dettorre, J.; Gilbert, V.

    1983-07-01

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established for the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment

  3. Gross decontamination experiment report

    Energy Technology Data Exchange (ETDEWEB)

    Mason, R.; Kinney, K.; Dettorre, J.; Gilbert, V.

    1983-07-01

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established for the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment.

  4. Electroosmotic decontamination of concrete

    International Nuclear Information System (INIS)

    Bostick, W.D.; Bush, S.A.; Marsh, G.C.; Henson, H.M.; Box, W.D.; Morgan, I.L.

    1993-03-01

    A method is described for the electroosmotic decontamination of concrete surfaces, in which an electrical field is used to induce migration of ionic contaminants from porous concrete into an electrolyte solution that may be disposed of as a low-level liquid radioactive waste (LLRW); alternately, the contaminants from the solution can be sorbed onto anion exchange media in order to prevent contaminant buildup in the solution and to minimize the amount of LLRW generated. We have confirmed the removal of uranium (and infer the removal of 99 Tc) from previously contaminated concrete surfaces. In a typical experimental configuration, a stainless steel mesh is placed in an electrolyte solution contained within a diked cell to serve as the negative electrode (cathode) and contaminant collection medium, respectively, and an existing metal penetration (e.g., piping, conduit, or rebar reinforcement within the concrete surface) serves as the positive electrode (anode) to complete the cell. Typically we have achieved 70 to >90% reductions in surface activity by applying 2 )

  5. Toshiba's decontamination technologies for the decommissioning

    International Nuclear Information System (INIS)

    Inoue, Yuki; Yaita, Yumi; Sakai, Hitoshi

    2011-01-01

    For the decommissioning, two types of decontamination process are necessary, 1) system decontamination before dismantling and 2) decontamination of dismantling waste. Toshiba has been developing the decontamination technologies for the both purposes from the viewpoint of minimizing the secondary waste. For the system decontamination before dismantling, chemical decontamination process, such as T-OZON, can be applicable for stainless steel or carbon steel piping. For the decontamination of dismantling waste, several types of process have been developed to apply variety of shapes and materials. For the simple shape materials, physical decontamination process, such as blast decontamination, is effective. We have developed new blast decontamination process with highly durable zirconia particle. It can be used repeatedly and secondary waste can be reduced compared with conventional blast particle. For the complex shape materials, chemical decontamination process can be applied that formic acid decontamination process for carbon steel and electrolytic reduction decontamination process with organic acid for stainless steel. These chemicals can be decomposed to carbon dioxide and water and amount of secondary waste can be small. (author)

  6. Decontamination sheet

    International Nuclear Information System (INIS)

    Hirose, Emiko; Kanesaki, Ken.

    1995-01-01

    The decontamination sheet of the present invention is formed by applying an adhesive on one surface of a polymer sheet and releasably appending a plurality of curing sheets. In addition, perforated lines are formed on the sheet, and a decontaminating agent is incorporated in the adhesive. This can reduce the number of curing operation steps when a plurality steps of operations for radiation decontamination equipments are performed, and further, the amount of wastes of the cured sheets, and operator's exposure are reduced, as well as an efficiency of the curing operation can be improved, and propagation of contamination can be prevented. (T.M.)

  7. Development of decontamination methods

    International Nuclear Information System (INIS)

    Kunze, S.; Dippel, T.; Hentschel, D.

    1976-01-01

    PVC floorings, fabricated by mixing of the basic components, showed no relation between content of fillers and decontamination results. Decontamination results are partly poorer, if the flooring contains a high concentration of the filler, especially if the latter consists mainly of hydrophilic materials. The coloring of the floorings seems to have no influence on the decontamination. Rubber floorings, fabricated by chemical reactions between polymers, vulcanization materials and fillers, show decontamination results depending definitely from the proper choice of the filler. Flooring types, containing lampblack, graphite, kaoline, barium sulfate and titanium oxide are easy to decontaminate. Increasing contents of hydrophilic filler cause a fall off in the decontamination results. The decontamination effectiveness and the homogenity of cleaning pastes based on hydrochloric acid, nitric acid, titanium oxide and polyethylene powders is strongly depended on the content of hydrochloric acid. Reduction of the content of this component to less than 2 w/O remains the effectiveness unchanged only if the titanium oxide-polyethylene powder mixture is substituted by a high density, highly surface active powder material. This type of paste containing no hydrochloric acid shows nearly the same decontamination effectiveness as standard pickling pastes containing about 30% hydrochlorid acid. Properly prepared salt powder turn out to be easily and successfully applied to metal surfaces by a flame spray technique. The thin layer of molten salts is a very effective decontamination to samples contaminated in the primary loop of a PWR. (orig.) [de

  8. Development of practical decontamination process for the removal of uranium from gravel.

    Science.gov (United States)

    Kim, Ilgook; Kim, Gye-Nam; Kim, Seung-Soo; Choi, Jong-Won

    2018-01-01

    In this study, a practical decontamination process was developed to remove uranium from gravel using a soil washing method. The effects of critical parameters including particle size, H 2 SO 4 concentration, temperature, and reaction time on uranium removal were evaluated. The optimal condition for two-stage washing of gravel was found to be particle size of 1-2 mm, 1.0 M H 2 SO 4 , temperature of 60°C, and reaction time of 3 h, which satisfied the required uranium concentration for self-disposal. Furthermore, most of the extracted uranium was removed from the waste solution by precipitation, implying that the treated solution can be reused as washing solution. These results clearly demonstrated that our proposed process can be indeed a practical technique to decontaminate uranium-polluted gravel.

  9. Decontamination method

    International Nuclear Information System (INIS)

    Tsujimura, Hiroshi; Ono, Shigeki; Tada, Nobuo; Tamai, Yasumasa; Okada, Masaya; Kurihara, Masayuki; Onuki, Toyomitsu; Toyota, Seiichi

    1998-01-01

    Before contamination of materials to be decontaminated, a surface of a region where a strippable paint is to be coated is smoothed by an epoxy resin previously. Then, a waterproof sheet is extended to the material to be decontaminated, and the strippable paint is applied to the periphery or the entire surface of the sheet. In order to facilitate peeling, the strippable paint is not applied to a portion of the outer circumference of the sheet. Even if the contaminating circumstance is an air atmosphere or a liquid such as reactor water, since the sheet itself has waterproofness and the strippable paint excellent in gas and water tightness is applied to the periphery, contamination is eliminated. When decontaminating the material to be decontaminated having contaminated surfaces, if the sheet for the start of peeling is picked up and the sheet is peeled, the strippable paint at the periphery thereof can be peeled off together with the sheet. (N.H.)

  10. Decontamination method

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Hiroshi; Ono, Shigeki; Tada, Nobuo; Tamai, Yasumasa; Okada, Masaya; Kurihara, Masayuki [Hitachi Ltd., Tokyo (Japan); Onuki, Toyomitsu; Toyota, Seiichi

    1998-10-27

    Before contamination of materials to be decontaminated, a surface of a region where a strippable paint is to be coated is smoothed by an epoxy resin previously. Then, a waterproof sheet is extended to the material to be decontaminated, and the strippable paint is applied to the periphery or the entire surface of the sheet. In order to facilitate peeling, the strippable paint is not applied to a portion of the outer circumference of the sheet. Even if the contaminating circumstance is an air atmosphere or a liquid such as reactor water, since the sheet itself has waterproofness and the strippable paint excellent in gas and water tightness is applied to the periphery, contamination is eliminated. When decontaminating the material to be decontaminated having contaminated surfaces, if the sheet for the start of peeling is picked up and the sheet is peeled, the strippable paint at the periphery thereof can be peeled off together with the sheet. (N.H.)

  11. Geologic disposal as optimal solution of managing the spent nuclear fuel and high-level radioactive waste

    International Nuclear Information System (INIS)

    Ilie, P.; Didita, L.; Ionescu, A.; Deaconu, V.

    2002-01-01

    To date there exist three alternatives for the concept of geological disposal: 1. storing the high-level waste (HLW) and spent nuclear fuel (SNF) on ground repositories; 2. solutions implying advanced separation processes including partitioning and transmutation (P and T) and eventual disposal in outer space; 3. geological disposal in repositories excavated in rocks. Ground storing seems to be advantageous as it ensures a secure sustainable storing system over many centuries (about 300 years). On the other hand ground storing would be only a postponement in decision making and will be eventually followed by geological disposal. Research in the P and T field is expected to entail a significant reduction of the amount of long-lived radioactive waste although the long term geological disposal will be not eliminated. Having in view the high cost, as well as the diversity of conditions in the countries owning power reactors it appears as a reasonable regional solution of HLW disposal that of sharing a common geological disposal. In Romania legislation concerning of radioactive waste is based on the Law concerning Spent Nuclear Fuel and Radioactive Waste Management in View of Final Disposal. One admits at present that for Romania geological disposal is not yet a stressing issue and hence intermediate ground storing of SNF will allow time for finding a better final solution

  12. Influence of Decontamination

    International Nuclear Information System (INIS)

    Knaack, Michael

    2016-01-01

    This paper describes the influence of several decontamination techniques on the decommissioning of nuclear facilities. There are different kinds of decontamination methods like mechanical and chemical processes. The techniques specified, and their potential to change measured characteristics like the isotope vector of the contamination is demonstrated. It is common for all these processes, that the contamination is removed from the surface. Slightly adhered nuclides can be removed more effectively than strongly sticking nuclides. Usually a mixture of these nuclides forms the contamination. Problematically any kind of decontamination will influence the nuclide distribution and the isotope vector. On the one hand it is helpful to know the nuclide distribution and the isotope vector for the radiological characterization of the nuclear facility and on the other hand this information will be changed in the decontamination process. This is important especially for free release procedures, radiation protection and waste management. Some questions on the need of decontamination have been discussed. (authors)

  13. Probable leaching mechanisms for spent fuel

    International Nuclear Information System (INIS)

    Wang, R.; Katayama, Y.B.

    1981-01-01

    At the Pacific Northwest Laboratory, researchers in the Waste/Rock Interaction Technology Program are studying spent fuel as a possible waste form for the Office of Nuclear Waste Isolation. This paper presents probable leaching mechanisms for spent fuel and discusses current progress in identifying and understanding the leaching process. During the past year, experiments were begun to study the complex leaching mechanism of spent fuel. The initial work in this investigation was done with UO 2 , which provided the most information possible on the behavior of the spent-fuel matrix without encountering the very high radiation levels associated with spent fuel. Both single-crystal and polycrystalline UO 2 samples were used for this study, and techniques applicable to remote experimentation in a hot cell are being developed. The effects of radiation are being studied in terms of radiolysis of water and surface activation of the UO 2 . Dissolution behavior and kinetics of UO 2 were also investigated by electrochemical measurement techniques. These data will be correlated with those acquired when spent fuel is tested in a hot cell. Oxidation effects represent a major area of concern in evaluating the stability of spent fuel. Dissolution of UO 2 is greatly increased in an oxidizing solution because the dissolution is then controlled by the formation of hexavalent uranium. In solutions containing very low oxygen levels (i.e., reducing solutions), oxidation-induced dissolution may be possible via a previously oxidized surface, through exposure to air during storage, or by local oxidants such as O 2 and H 2 O 2 produced from radiolysis of water and radiation-activated UO 2 surfaces. The effects of oxidation not only increase the dissolution rate, but could lead to the disintegration of spent fuel into fine fragments

  14. Spent fuel and fuel pool component integrity. Annual report, FY 1979

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Bailey, W.J.; Schreiber, R.E.; Kustas, F.M.

    1980-05-01

    International meetings under the BEFAST program and under INFCE Working Group No. 6 during 1978 and 1979 continue to indicate that no cases of fuel cladding degradation have developed on pool-stored fuel from water reactors. A section from a spent fuel rack stand, exposed for 1.5 y in the Yankee Rowe (PWR) pool had 0.001- to 0.003-in.-deep (25- to 75-μm) intergranular corrosion in weld heat-affected zones but no evidence of stress corrosion cracking. A section of a 304 stainless steel spent fuel storage rack exposed 6.67 y in the Point Beach reactor (PWR) spent fuel pool showed no significant corrosion. A section of 304 stainless steel 8-in.-dia pipe from the Three Mile Island No. 1 (PWR) spent fuel pool heat exchanger plumbing developed a through-wall crack. The crack was intergranular, initiating from the inside surface in a weld heat-affected zone. The zone where the crack occurred was severely sensitized during field welding. The Kraftwerk Union (Erlangen, GFR) disassembled a stainless-steel fuel-handling machine that operated for 12 y in a PWR (boric acid) spent fuel pool. There was no evidence of deterioration, and the fuel-handling machine was reassembled for further use. A spent fuel pool at a Swedish PWR was decontaminated. The procedure is outlined in this report

  15. Decontamination device for pipeline

    International Nuclear Information System (INIS)

    Harashina, Heihachi.

    1994-01-01

    Pipelines to be decontaminated are parts of pipelines contaminated with radioactive materials, and they are connected to a fluid transfer means (for example, a bladeless pump) and a ball collector by way of a connector. The fluid of a mixture of chemical decontaminating liquid and spheres is sent into pipelines to be decontaminated. The spheres are, for example, heat resistant porous hard or soft rubber spheres. The fluid discharged from the pipelines to be decontaminated are circulated by way of bypassing means. The inner surface of the pipelines is decontaminated by the circulation of the fluid. When the bypass means is closed, the fluid discharged from the pipelines to be decontaminated is sent to the ball collector, and the spheres are captured by a hopper. Further, the liquid is sent to the filtrating means to filter the chemical contaminating liquid, and sludges contained in the liquid are captured. (I.N.)

  16. Electrochemical decontamination of metallic surfaces by means of a movable electrode

    International Nuclear Information System (INIS)

    Mihai, F.; Nicu, M.; Cazan, L.; Turcanu, C.

    1998-01-01

    Electrochemical decontamination can be considered to be a decontamination assisted by an electrochemical field. The method is applied to the metallic surface decontamination for contaminants of any physico-chemical nature. The physico-chemical phenomenon that is the basis for the electrochemical methods is the anodic layer dissolution. By dissolution of the superficial layer any radioactive contaminant on the surface or entrapped within the surface oxide is eliminated. Electrochemical decontamination, also known as electropolishing, involves the use of the object to be cleaned as an anode in an electrochemical cell. The passage of current results in anodic dissolution of the surface material. Generally, there are many methods of application for electropolishing. The most common method is immersing the object to be decontaminated in a tank filled with a suitable electrolyte. The electrochemical method with movable electrode involves the use of 'in situ' mobile devices that are able to electropolish punctual surfaces in places difficult to access. The advantages are the simplicity of the setup, short times of application and reduced waste volumes. Phosphoric and sulphuric acid mixture is used as the electrolyte in electropolishing because of its stability, safety and applicability to a variety of alloy systems. The method was applied to decontaminate carbon steel, aluminium and copper. Used contaminants are mixtures of 60 Co and 134 Cs; 60 Co and 65 Zn; 60 Co, 65 Zn and 134 Cs. After preparation, the samples were kept in laboratory conditions about one month, to simulate real conditions and to let the chemical reactions between contaminant and sample material constitution to complete. To calculate decontamination factor characteristic for each studied decontamination method the following radiometric measurements are necessary: - activity measurement after radioisotope solution contamination representing initial activity Λ in ; - activity measurement after

  17. Decontamination factor of the commercial detergents for the skin (part 3)

    Energy Technology Data Exchange (ETDEWEB)

    Miyabe, Kenjiro; Takasaki, Koji [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Yasunaka, Hideo; Izumi, Yuichi [Japan Environment Research Corporation, Tokyo (Japan)

    2000-08-01

    The commercial detergents, which are cleansing cream, shampoo, neutral detergent, etc., were examined in order to select the body cleaners that are substitutes for the titanium dioxide paste. JNC entrusted Japan Environment Research Corporation Limited with these examinations since 1997. In 1997 and 1998, the commercial detergents were examined for Ce-144, Cs-137 and Ru-106. In 1999, 22 detergents were examined for Co-60 from the result of the past examinations. In this examination, the radioactive solution of Co-60 was dropped on the pig-skin samples. These samples were washed with each detergent after 5 minutes and 40 minutes. The decontamination factors of detergents were estimated by the radioactive ratio of the samples before and after washing. As a result of this examination, the decontamination factors for Co-60 was the same as the decontamination factors for Ce-144 and Cs-137, and 11 detergents were nominated as the cleaner that have the decontamination factor more than that of titanium dioxide paste. (author)

  18. Decontamination efficiency of detergents on the market for the skin contaminated with radioactive materials. The comparative test (1)

    International Nuclear Information System (INIS)

    Miyabe, Kenjiro; Ninomiya, Kazushi; Takasaki, Koji; Horiuchi, Nobuharu; Yasunaka, Hideo; Izumi, Yuichi

    1999-04-01

    Contamination incidence on human body and skin happens sometimes during radiation works in controlled area. The radioactive surface contamination should be removed from the skin as soon as possible for radiation control and exposure management. Titanium oxide paste, which is reserved as a detergent for decontamination, has a satisfactory and reliable result for decontamination effects. The titanium oxide paste, however, has a short preservation period, and must be updated and supplied every serenal months. Decontamination tests for about 60 kinds of detergents on the market were carried out with swine and radioactive material, Ce-144. Radioactive solution of Ce-144 was dropped on the test samples of swine skin, which were left for 5 min or 40 min as it is. Radioactivities of the samples were measured before and after washing by the detergents. As a result of the decontamination tests, 22 kinds of detergents on the market which have a similar decontamination efficiency to the titanium oxide paste were selected. It was also ascertained that the decontamination efficiency of all the detergents decreased on the test samples which were immersed in the radioactive solution for 40 min and wounded on skin surface. (Suetake, M.)

  19. Decontamination of radioactive isotopes

    International Nuclear Information System (INIS)

    Despotovic, R.; Music, S.; Subotic, B.; Wolf, R.H.H.

    1979-01-01

    Removal of radioactive isotopes under controlled conditions is determined by a number of physical and chemical properties considered radiocontaminating and by the characteristics of the contaminated object. Determination of quantitative and qualitative factors for equilibrium in a contamination-decontamination system provides the basis for rational and successful decontamination. The decontamination of various ''solid/liquid'' systems is interesting from the scientific and technological point of view. These systems are of great importance in radiation protection (decontamination of various surfaces, liquids, drinking water, fixation or collection of radiocontaminants). Different types of decontamination systems are discussed. The dependence of rate and efficiency of the preparation conditions and on the ageing of the scavenger is described. The influence of coagulating electrolyte on radioactive isotope fixation efficiency was also determined. The fixation of fission radionuclide on oxide scavengers has been studied. The connection between fundamental investigations and practical decontamination of the ''solid/liquid'' systems is discussed. (author)

  20. Decontamination of the RA reactor heavy water system, Annex 9

    International Nuclear Information System (INIS)

    Maksimovic, Z.B.; Nikolic, R.M.; Marinkovic, M.D.; Jelic, Lj.M.

    1963-01-01

    Both stainless steel and aluminium parts of the RA reactor heavy water system system were decontaminated as well as the heavy water itself. System was contaminated with 60 Co. Decontamination factor was determined by activity measurements during distillation. Concentration of the corrosion products in the heavy water was measured by spectrochemical analysis, and found to be 0.1 - 1 mg/l. Chemical analyses of the aluminium and stainless steel surfaces showed that cobalt was adsorbed on the aluminium oxide layer. Water solution of 7%H 3 PO 4 + 2% CrO 3 was used for decontamination of the heavy water system and distillation device. This was found to be the most efficient solvent which does not affect stainless steel corrosion. Decontamination factors achieved were from 60 - 100. Decontamination results enabled determining the distribution of cobalt in the system: 10 Ci on the stainless steel parts, 50 Ci in the heavy water; and above 600 Ci on the fuel and experimental channels. Specific activity of 60 Co was calculated to be 15 Ci/g on the reactor channels, 8 Ci/g on the stainless steel parts and 3 Ci/g in the heavy water. Decontamination of the aluminium parts was not done because it was considered it could initiate corrosion. Since the efficiency of distillation is increased it was expected that permanent distillation would remove most of the activity in the reactor channels

  1. Separations canyon decontamination facilities

    International Nuclear Information System (INIS)

    Hershey, J.H.

    1975-01-01

    Highly radioactive process equipment is decontaminated at the Savannah River Plant in specially equipped areas of the separations canyon building so that direct mechanical repairs or alterations can be made. Using these facilities it is possible to decontaminate and repair equipment such as 10- x 11-ft storage tanks, 8- x 8-ft batch evaporator pots and columns, 40-in. Bird centrifuges, canyon pumps and agitators, and various canyon piping systems or ''jumpers.'' For example, centrifuge or evaporator pots can be decontaminated and rebuilt for about 60 percent of the 1974 replacement cost. The combined facilities can decontaminate and repair 6 to 10 pieces of major equipment per year. Decontamination time varies with type of equipment and radioactivity levels encountered

  2. Separations canyon decontamination facilities

    International Nuclear Information System (INIS)

    Hershey, J.H.

    1975-05-01

    Highly radioactive process equipment is decontaminated at the Savannah River Plant in specially equipped areas of the separations canyon buildings so that direct mechanical repairs or alterations can be made. Using these facilities it is possible to decontaminate and repair equipment such as 10- x 11-ft storage tanks, 8- x 8-ft batch evaporator pots and columns, 40-in. Bird centrifuges, canyon pumps and agitators, and various canyon piping systems or ''jumpers.'' For example, centrifuge or evaporator pots can be decontaminated and rebuilt for about 60 percent of the 1974 replacement cost. The combined facilities can decontaminate and repair 6 to 10 pieces of major equipment per year. Decontamination time varies with type of equipment and radioactivity levels encountered. (U.S.)

  3. Chemical decontamination method in nuclear facility system

    International Nuclear Information System (INIS)

    Takahashi, Ryota; Sakai, Hitoshi; Oka, Shigehiro.

    1996-01-01

    Pumps and valves in a closed recycling loop system incorporating materials to be chemically decontaminated are decomposed, a guide plate having the decomposed parts as an exit/inlet of a decontaminating liquid is formed, and a decontaminating liquid recycling loop comprising a recycling pump and a heater is connected to the guide plate. Decontaminating liquid from a decontaminating liquid storage tank is supplied to the decontaminating liquid recycling loop. With such constitutions, the decontaminating liquid is filled in the recycling closed loop system incorporating materials to be decontaminated, and the materials to be decontaminated are chemically decontaminated. The decontaminating liquid after the decontamination is discharged and flows, if necessary, in a recycling system channel for repeating supply and discharge. After the decontamination, the guide plate is removed and returned to the original recycling loop. When pipelines of a reactor recycling system are decontaminated, the amount of decontaminations can be decreased, and reforming construction for assembling the recycling loop again, which requires cutting for pipelines in the system is no more necessary. Accordingly, the amount of wastes can be decreased, and therefore, the decontamination operation is facilitated and radiation dose can be reduced. (T.M.)

  4. RSDL decontamination of human skin contaminated with the nerve agent VX.

    Science.gov (United States)

    Thors, L; Lindberg, S; Johansson, S; Koch, B; Koch, M; Hägglund, L; Bucht, A

    2017-03-05

    Dermal exposure to low volatile organophosphorus compounds (OPC) may lead to penetration through the skin and uptake in the blood circulation. Skin decontamination of toxic OPCs, such as pesticides and chemical warfare nerve agents, might therefore be crucial for mitigating the systemic toxicity following dermal exposure. Reactive skin decontamination lotion (RSDL) has been shown to reduce toxic effects in animals dermally exposed to the nerve agent VX. In the present study, an in vitro flow-through diffusion cell was utilized to evaluate the efficacy of RSDL for decontamination of VX exposed to human epidermis. In particular, the impact of timing in the initiation of decontamination and agent dilution in water was studied. The impact of the lipophilic properties of VX in the RSDL decontamination was additionally addressed by comparing chemical degradation in RSDL and decontamination efficacy between the VX and the hydrophilic OPC triethyl phosphonoacetate (TEPA). The epidermal membrane was exposed to 20, 75 or 90% OPC diluted in deionized water and the decontamination was initiated 5, 10, 30, 60 or 120min post-exposure. Early decontamination of VX with RSDL, initiated 5-10min after skin exposure, was very effective. Delayed decontamination initiated 30-60min post-exposure was less effective but still the amount of penetrated agent was significantly reduced, while further delayed start of decontamination to 120min resulted in very low efficacy. Comparing RSDL decontamination of VX with that of TEPA showed that the decontamination efficacy at high agent concentrations was higher for VX. The degradation mechanism of VX and TEPA during decontamination was dissected by 31 P NMR spectroscopy of the OPCs following reactions with RSDL and its three nucleophile components. The degradation rate was clearly associated with the high pH of the specific solution investigated; i.e. increased pH resulted in a more rapid degradation. In addition, the solubility of the OPC in RSDL

  5. Decontamination of radioisotope production facility

    International Nuclear Information System (INIS)

    Daryoko, M.; Yatim, S.; Suseno, H.; Wiratmo, M.

    1998-01-01

    The strippable coating method use phosphoric glycerol and irradiated latex as supporting agents have been investigated. The investigation used some decontaminating agents: EDTA, citric acid, oxalic acid and potassium permanganate were combined with phosphoric glycerol supporting agent, then EDTA Na 2 , sodium citric, sodium oxalic and potassium permanganate were combined with irradiated latex supporting agent. The study was needed to obtain the representative operating data, will be implemented to decontamination the Hot Cell for radioisotope production. The experiment used 50x50x1 mm stainless steel samples and contaminated by Cs-137 about 1.1x10 -3 μCi/cm 2 . This samples according to inner cover of Hot Cell material, and Hot Cell activities. The decontamination factor results of the investigation were: phosphoric glycerol as supporting agent, about 20 (EDTA as decontaminating agent) to 47 (oxalic acid as decontaminating agent), and irradiated latex as supporting agent, about 11.5 (without decontamination agent) to 27 (KMnO 4 as decontaminating agent). All composition of the investigation have been obtained the good results, and can be implemented for decontamination of Hot Cell for radioisotope production. The irradiated latex could be recommended as supporting agent without decontaminating agent, because it is very easy to operate and very cheap cost. (author)

  6. Decontamination of medical radioisotopes from hard surfaces using peelable polymer-based decontamination agents

    International Nuclear Information System (INIS)

    Draine, Amanda E.; Walter, Ken J.; Johnson, Thomas E.

    2008-01-01

    Full text: Medical radioisotopes used to treat and diagnose patients often contaminate surfaces in patient treatment rooms. They are typically short-lived and decay within a matter of days or weeks. However, down time in a medical facility related to radioisotope contamination is costly and can impact patient care. Most liquid or solid spills can be contained and disposed in radioactive wastes fairly completely and quickly; however residual contamination may remain on the contacted surface. Although liquid decontamination agents can be used to address the issue of residual contamination, they often require multiple applications with attendant scrubbing and wiping. Liquid decontamination can also produce large volumes of low-level radioactive waste. To look at reducing radioactive waste volumes, research was conducted on the efficacy of three low-volume peel able decontamination agents. Testing was performed on hard surfaces, such as vinyl composition floor tiles and stainless steel, which are found in many hospitals, research laboratories, and universities. The tiles were contaminated with the medical use isotopes of 99m Tc, Tl-201, and I-131 and subsequently decontaminated with one of the three decontamination agents. Quantitative and qualitative data were obtained for each of three different peel able decontamination agent formulations. Quantitative data included environmental temperature and relative humidity, application thickness, dry time, contact time, and decontamination efficacy of the agents on the tested surfaces. Qualitative factors included ease of application and pee lability, as well as sag resistance and odor of each agent. Initial studies showed that under standard conditions there were reproducible differences in the decontamination efficacies among the three different decontamination formulations. (author)

  7. Instructions for RA reactor decontamination - Annex 10; Prilog 10 - Uputstvo za dekontaminaciju Reaktora RA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-12-15

    Instructions for RA reactor decontamination includes: action plan for decontamination of the heavy water system by 7% water solution of H{sub 3}PO{sub 4} + 2% CrO{sub 3} acid; description of the preparatory work including calculation of the pipes volume and installation of special pipes; detailed instructions for decontamination procedure. [Serbo-Croat] Uputstvo za dekontaminaciju Reaktora RA sadrzi: plan operacija za dekontaminaciju sistema teske vode 7% vodenim rastvorom kiseline H{sub 3}PO{sub 4} + 2% CrO{sub 3}; opis pripremnih radova ukljucujuci proracun zapremine covovoda i montiranje posebnih cevovoda; detaljno uputstvo za izvodjenje operacija pri dekontaminaciji.

  8. Bioinspired Surface Treatments for Improved Decontamination: Handling andDecontamination Considerations

    Science.gov (United States)

    2018-03-16

    and Decontamination Considerations Brandy J. White Martin H. Moore Brian J. Melde Laboratory for the Study of Molecular Interfacial Interactions...Decontamination Considerations Brandy J. White, Martin H. Moore, Brian J. Melde, Anthony P. Malanoksi, and Chanté Campbell1 Center for Bio/Molecular

  9. Fluorescent Lamp Glass Waste Incorporation into Clay Ceramic: A Perfect Solution

    Science.gov (United States)

    Morais, Alline Sardinha Cordeiro; Vieira, Carlos Maurício Fontes; Rodriguez, Rubén Jesus Sanchez; Monteiro, Sergio Neves; Candido, Veronica Scarpini; Ferreira, Carlos Luiz

    2016-09-01

    The mandatory use of fluorescent lamps as part of a Brazilian energy-saving program generates a huge number of spent fluorescent lamps (SFLs). After operational life, SFLs cannot be disposed as common garbage owing to mercury and lead contamination. Recycling methods separate contaminated glass tubes and promote cleaning for reuse. In this work, glass from decontaminated SFLs was incorporated into clay ceramics, not only as an environmental solution for such glass wastes and clay mining reduction but also due to technical and economical advantages. Up to 30 wt.% of incorporation, a significant improvement in fired ceramic flexural strength and a decrease in water absorption was observed. A prospective analysis showed clay ceramic incorporation as an environmentally correct and technical alternative for recycling the enormous amount of SFLs disposed of in Brazil. This could also be a solution for other world clay ceramic producers, such as US, China and some European countries.

  10. New decontamination process using foams containing particles

    International Nuclear Information System (INIS)

    Guignot, S.; Faure, S.

    2008-01-01

    One key point in the dismantling of nuclear facilities is the thorough cleaning of radiation- exposed surfaces on which radioactive deposits have formed. This cleaning step is often achieved by successive liquid rinses with specific solutions containing alkaline, acidic, or even oxidizing species depending on whether the aim is to dissolve greasy deposits (like ter-butylphosphate) or to corrode surfaces on micrometric thicknesses. An alternative process to reduce the amount of chemicals and the volume of the resulting nuclear wastes consists in using the same but foamed solutions (1). Carrying less liquid, the resulting foams still display similar kinetics of dissolution rates and their efficiency is determined by their ability to hold sufficient wetnesses during the time required for the decontamination. Classical foam decontamination process illustrated by foam pulverization or circulation in the 90 turned five years ago into a specific static process using high-lifetime viscosified foam at a steady state. One way to slow down the liquid drainage is to raise liquid viscosity by adding organic viscosifiers like xanthan gum (2). In 2005, new studies started on an innovative process proposed by S. Faure and based on triphasic foams containing particles [3]. The aim is to generate new decontamination foams containing less quantities of organics materials (surfactants and viscosifiers). Silica particles are obviously known to stabilize or destabilize foams (4). In the frame of S. Guignot Ph.D., new fundamental studies are initiated in order to clarify the role of silica solid microparticles in these foams. Our final goal is to determine whether this kind of new foam can be stable for several hours for a decontamination process. The results we will report focus on wet foams used for nuclear decontamination and incorporating fumed silica. The study is conducted on a vertical foam column in a pseudo-free drainage configuration, and aims at investigating the influence of

  11. Overview of nonchemical decontamination techniques

    International Nuclear Information System (INIS)

    Allen, R.P.

    1984-09-01

    The decontamination techniques summarized in this paper represent a variety of surface cleaning methods developed or adapted for component and facility-type decontamination applications ranging from small hand tools to reactor cavities and other large surface areas. The major conclusion is that decontamination is a complex, demanding technical discipline. It requires knowledgeable, experienced and well-trained personnel to select proper techniques and combinations of techniques for the varied plant applications and to realize their full performance potential. Unfortunately, decontamination in many plants has the lowest priority of almost any activity. Operators are unskilled and turnover is so frequent that expensive decontamination capabilities remain unused while decontamination operations revert to the most rudimentary type of hand scrubbing and water spray cleaning

  12. Modeling the highway transportation of spent fuel

    International Nuclear Information System (INIS)

    Harrison, I.G.

    1986-01-01

    There will be a substantial increase in the number of spent fuel shipments on the nation's highway system in the next thirty years. Most of the spent fuel will be moving from reactors to a spent fuel repository. This study develops two models that evaluate the risk and cost of moving the spent fuel. The Minimum Total Transport Risk Model (MTTRM) seeks an efficient solution for this problem by finding the minimum risk path through the network and sending all the spent fuel shipments over this one path. The Equilibrium Transport Risk Model (ETRM) finds an equitable solution by distributing the shipments over a number of paths in the network. This model decreases the risk along individual paths, but increases society's risk because the spent fuel shipments are traveling over more links in the network. The study finds that there is a trade off between path risk and societal risk. As path risk declines, societal risk rises. The cost of shipping also increases as the number of paths expand. The cost and risk of shipping spent fuel from ten reactors to four potential repository sites are evaluated using the MTTRM. The temporary monitored retrievable storage (MRS) facility in Tennessee is found to be the minimum cost and minimum risk solution. When direct shipment to the permanent sites is considered, Deaf Smith, Texas is the least cost and least incident free transport risk location. Yucca Mountain, Nevada is the least risk location when the focus is placed on the potential consequences of an accident

  13. Electrolytic decontamination of the 3013 inner can

    International Nuclear Information System (INIS)

    Wedman, D.E.; Nelson, T.O.; Rivera, Y.; Weisbrod, K.; Martinez, H.E.; Limback, S.

    1998-01-01

    Disposition of plutonium recovered from nuclear weapons or production residues must be stored in a manner that ensures safety. The criteria that has been established to assure the safety of stored materials for a minimum of 50 years is DOE-STD-3013. Los Alamos National Laboratory (LANL) has designed a containment package in accordance with the DOE standard. The package consists of an optional convenience (food pack) can, a welded type 304L stainless steel inner (primary) can, and a welded type 304L stainless steel outer (secondary) can. With or without the food pack can, the material is placed inside the primary can and welded shut under a helium atmosphere. This activity takes place totally within the confinement of the glove box line. Following the welding process, the can is checked for leaks and then sent down the line for decontamination. Once decontaminated, the sealed primary can may be removed from the glove box line. Welding of the secondary container takes place outside the glove box line. The highly automated decontamination process that has been developed to support the packaging of Special Nuclear Materials is based on an electrolytic process similar to the wide spread industrial technique of electropolishing. The can is placed within a specially designed stainless steel fixture built within a partition of a glove box. This fixture is then filled with a flowing electrolyte solution. A low DC electric current is made to flow between the can, acting as the anode, and the fixture, acting as the cathode. Following the decontamination, the system provides a flow of rinse water through the fixture to rinse the can of remaining salt residues. The system then carried out a drying cycle. Finally, the fixture is opened from the opposite side of the partition and the can surface monitored directly and through surface smears to assure that decontamination is adequate

  14. A Simple Decontamination Approach Using Hydrogen ...

    Science.gov (United States)

    Journal article To evaluate the use of relatively low levels of hydrogen peroxide vapor (HPV) for the inactivation of Bacillus anthracis spores within an indoor environment. Methods and Results: Laboratory-scale decontamination tests were conducted using bacterial spores of both B. anthracis Ames and Bacillus atrophaeus inoculated onto several types of materials. Pilot-scale tests were also conducted using a larger chamber furnished as an indoor office. Commercial off-the-shelf (COTS) humidifiers filled with aqueous solutions of 3% or 8% hydrogen peroxide were used to generate the HPV inside the mock office. The spores were exposed to the HPV for periods ranging from 8 hours up to one week. Conclusions: Four to seven day exposures to low levels of HPV (average air concentrations of approximately 5-10 parts per million) were effective in inactivating B. anthracis spores on multiple materials. The HPV can be generated with COTS humidifiers and household H2O2 solutions. With the exception of one test/material, B. atrophaeus spores were equally or more resistant to HPV inactivation compared to those from B. anthracis Ames. Significance and Impact of Study: This simple and effective decontamination method is another option that could be widely applied in the event of a B. anthracis spore release.

  15. Development of chemical decontamination for low level radioactive wastes

    International Nuclear Information System (INIS)

    Ichikawa, Seigo; Omata, Kazuo; Obinata, Hiroshi; Nakajima, Yoshihiko; Kanamori, Osamu.

    1995-01-01

    During routine intermittent inspection and maintenance at nuclear power plants, a considerable quantity of low level radioactive waste is generated requiring release from the nuclear site or treating additionally. To decontaminate this waste for safe release from the nuclear power plant, the first step could be washing the waste in Methylene chloride, CH 2 Cl 2 , to remove most of the paint coating. However, CH 2 Cl 2 washing does not completely remove the paint coating from the waste, which in the next step is shot blasted with plastic bead media to loose and remove the remaining paint coating. Following in succession, in the third step, the waste is washed in a chelate solution, after which most waste is decontaminated and suitable to be released for recycling. The residual chelate solution may be decomposed into nontoxic carbon dioxide and water by an electrolysis process and then safely discharged into the environment. (author)

  16. Experience with dilute chemical decontamination in Indian Pressurized Heavy Water Reactors

    International Nuclear Information System (INIS)

    Velmurugan, S.; Rufus, A.L.; Sathyaseelan, V.S.; Subramanian, Veena; Mittal, V.K.; Narasimhan, S.V.

    2010-01-01

    Dilute Chemical Decontamination (DCD) process has been used in several full system and components of nuclear coolant systems to effectively remove the radioactive contaminants that causes radiation field and consequent MANREM problem. The DCD process uses chemicals in very low concentrations (millimolar) and dissolves the oxide film along with the activity incorporated in the oxide film. In DCD process operated under the regenerative mode, the chemical formulation spent in the process of oxide dissolution is replenished by passing through cation exchange columns. Finally, after achieving sufficient decontamination of the system/component, the added decontamination chemicals along with the activities and metal ions released during the process are removed by mixed bed ion exchange columns and the system is restored to normal operating condition in few days time. In PHWRs, the regenerative DCD process is applied for full primary coolant system decontamination. The chemicals are added directly to the heavy water coolant with the fuel in the core. In Indian PHWRs (MAPS-1 and 2, RAPS-1 and 2, NAPS-1 and 2 and KAPS-1), the process has been applied eleven times. A chemical formulation based on NTA, Citric acid and Ascorbic acid has been applied seven times with good results. Decontamination factors in the range 2-30 have been obtained in different components with good MANREM savings in the subsequent maintenance works. Efforts are on to modify the process to take care of the challenges posed by antimony isotope. An inhibitor (Rodine-92B) based process was successfully tested in NAPS-2 for removing antimony isotopes ( 122 Sb and 124 Sb). Further refining of the antimony removal process is being worked out. Similarly, the process is being modified to effectively remove the hotspot causing stellite particles in the moderator system of PHWRs. A permanganate based process has been developed and tested in several adjustor rod drive mechanisms in KAPS and NAPS. The experience of

  17. Decontamination method and device for radiation contaminated product

    International Nuclear Information System (INIS)

    Morikawa, Kenji; Ohinata, Hiroshi; Omata, Kazuo; Sato, Toshihiko; Nakajima, Yoshihiko; Ichikawa, Seigo.

    1996-01-01

    In the present invention, radiation contaminated products generated during shot peening are decontaminated by a chelating agent, and the chelating agent is removed from the radiation contaminated products. Then the temperature of the radiation contaminated products is elevated by hot blowing at a temperature higher than a boiling point of the solvent. Then, a solvent is added to the radiation contaminated products and the solvent is evaporated abruptly. The solution of the chelating agent remained while being deposited thereto is removed by evaporation to remove it from the radiation contaminated products together with the solvent. With such procedures, all of the decontamination steps can be completed in one device without requiring a large space or not moving the radiation contaminated products on every step. (T.M.)

  18. Prospect of spent fuel reprocessing and back-end cycling in China in 1990's

    International Nuclear Information System (INIS)

    Ke Youzhi; Wang Rengtao

    1987-01-01

    According to the CHinese Program of nuclear energy in 1990's, the amount of spent fuel by the year 2000 is estimated in this paper. Reprocessing is considered as an important link in the back-end fuel cycle. A pilot plant is scheduled for hot start up in 1996. The main goal of the study is LWR spent fuel reprocessing. We will use the experience gained from reprocessing of production reactor fuel and last research results. The advanced foreign technigue and experience will be introduced. The study emphasizes on the test of technology, equipments, instrumentation and automation, development of remote maintenance and decontamination. China will start to demonstrate the way for fuel cycle. (author)

  19. Verification of wet blasting decontamination technology

    International Nuclear Information System (INIS)

    Matsubara, Sachito; Murayama, Kazunari; Yoshida, Hirohisa; Igei, Shigemitsu; Izumida, Tatsuo

    2013-01-01

    Macoho Co., Ltd. participated in the projects of 'Decontamination Verification Test FY 2011 by the Ministry of the Environment' and 'Decontamination Verification Test FY 2011 by the Cabinet Office.' And we tested verification to use a wet blasting technology for decontamination of rubble and roads contaminated by the accident of Fukushima Daiichi Nuclear Power Plant of the Tokyo Electric Power Company. As a results of the verification test, the wet blasting decontamination technology showed that a decontamination rate became 60-80% for concrete paving, interlocking, dense-grated asphalt pavement when applied to the decontamination of the road. When it was applied to rubble decontamination, a decontamination rate was 50-60% for gravel and approximately 90% for concrete and wood. It was thought that Cs-134 and Cs-137 attached to the fine sludge scraped off from a decontamination object and the sludge was found to be separated from abrasives by wet cyclene classification: the activity concentration of the abrasives is 1/30 or less than the sludge. The result shows that the abrasives can be reused without problems when the wet blasting decontamination technology is used. (author)

  20. Attapulgite, a decontaminating medium, research tool in the radioprotection field

    International Nuclear Information System (INIS)

    Panciatici, G.; Belfiore, A.; Poggianti, M.

    1993-01-01

    Gels based on attapulgite, obtained by mixing attapulgite, a clay, with water or chemicals have been used as decontaminating agents. The method has been optimized through extensive scale laboratory experiments carried out under standard conditions. A wide variety of materials, used in nuclear technologies, and significant radionuclides have been tested. Gels obtained with water only in some cases allow full decontamination, when acids are added to clay, complete contamination removal, is possible except for extreme pHs radionuclides solution and on non-passivated or porous surfaces. The optimized decontaminating technique has successively been set up and applied on materials contaminated by routine or accident. Laboratory scale results have been confirmed through practical use. Process data are reported. This method is simple to perform and requires no special equipment. No liquid radioactive waste arises from the process and the resulting solid waste can be conditioned with cement

  1. New decontamination technologies for environmental applications

    International Nuclear Information System (INIS)

    Allen, R.P.; Arrowsmith, H.W.; McCoy, M.W.

    1981-01-01

    The technologies discussed represent a versatile collection of tools and approaches for environmental decontamination applications. The fixatives provide a means for gaining and maintaining control of large contaminated areas, for decontaminating large surface areas, and for protecting equipment and supplies used in decontamination operations. The other decontamination techniques together provide a method for removing loose surface contamination from almost all classes of materials and surfaces. These techniques should have wide application both as direct decontamination processes and for the cleaning of tools and equipment used in the decontamination operations

  2. Decontamination process applied to radioactive solid wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Franco, Milton B.; Kastner, Geraldo F.; Monteiro, Roberto Pellacani G.

    2009-01-01

    The process of decontamination is an important step in the economic operation of nuclear facilities. A large number of protective clothing, metallic parts and equipment get contaminated during the handling of radioactive materials in laboratory, plants and reactors. Safe and economic operation of these nuclear facilities will have a bearing on the extent to which these materials are reclaimed by the process of decontamination. The most common radioactive contaminants are fission products, corrosion products, uranium and thorium. The principles involved in decontamination are the same as those for an industrial cleaning process. However, the main difference is in the degree of cleaning required and at times special techniques have to be employed for removing even trace quantities of radioactive materials. This paper relate decontaminations experiences using acids and acids mixtures (HCl, HF, HNO 3 , KMnO 4 , C 2 H 2 O 4 , HBF 4 ) in several kinds of radioactive solid wastes from nuclear power plants. The result solutions were monitored by nuclear analytical techniques, in order to contribute for radiochemical characterization of these wastes. (author)

  3. Safety substantiation for underground isolation of spent nuclear fuel or spent nuclear materials as a basis to develop reliable technological solutions

    International Nuclear Information System (INIS)

    Gupalo, T.A.; Beygul, V.P.; Gupalo, M.S.; Kudinov, K.G.

    2000-01-01

    Major issues of the technique for mining and ecological safety substantiation of multi-barrier systems for long-term underground isolation of spent nuclear materials and solidified wastes containing long-lived radionuclides have been presented. The experience with the use of this technique for assessment of ecological safety for the long-term storage of plutonium-containing intermediate level wastes in underground facilities existing in the crystalline rock mass has been considered. The probabilistic evaluations of events of the emergency sequences of abnormal situations are based on the results of 40-year in-situ investigations in the rock mass. Feasibility of optimization has been shown for technological design solutions on storage facilities by the ''risk-costs'' principle. (authors)

  4. Non-destructive decontamination of building materials

    Science.gov (United States)

    Holecek, Josef; Otahal, Petr

    2015-11-01

    For nondestructive radiation decontamination of surfaces it is necessary to use varnishes, such as ARGONNE, DG1101, DG1108, etc. This text evaluates the use of manufactured strippable coatings for radiation decontamination. To evaluate decontamination capability of such coatings the following varnishes were selected and subsequently used: AZ 1-700 and AXAL 1807S. The varnishes were tested on different building materials surfaces contaminated by short-term radioisotopes of Na-24 or La-140, in water soluble or water insoluble forms. Decontamination quality was assessed by the decontamination efficiency value, defined as the proportion of removed activity to the applied activity. It was found that decontamination efficiency of both used varnishes depends not only on the form of contaminant, but in the case of application of AXAL 1807S varnish it also depends on the method of its application on the contaminated surface. The values of the decontamination efficiency for AZ1-700 varnish range from 46% for decontamination of a soluble form of the radioisotope from concrete surface to 98% for the decontamination of a soluble form of the radioisotope from ceramic tile surface. The decontamination efficiency values determined for AXAL 1807S varnish range from 48% for decontamination of a soluble form of the radioisotope from concrete surface to 96% for decontamination of an insoluble form of the radioisotope from ceramic tile surface. Comparing these values to the values given for the decontaminating varnishes we can conclude that AXAL 1807S varnish is possible to use on all materials, except highly porous materials, such as plasterboard or breeze blocks, or plastic materials. AZ 1-700 varnish can be used for all dry materials except plasterboard.

  5. Choosing a spent fuel interim storage system

    International Nuclear Information System (INIS)

    Roland, V.; Hunter, I.

    2001-01-01

    The Transnucleaire Group has developed different modular solutions to address spent fuel interim storage needs of NPP. These solutions, that are present in Europe, USA and Asia are metal casks (dual purpose or storage only) of the TN 24 family and the NUHOMS canister based system. It is not always simple for an operator to sort out relevant choice criteria. After explaining the basic designs involved on the examples of the TN 120 WWER dual purpose cask and the NUHOMS 56 WWER for WWER 440 spent fuel, we shall discuss the criteria that govern the choice of a given spent fuel interim storage system from the stand point of the operator. In conclusion, choosing and implementing an interim storage system is a complex process, whose implications can be far reaching for the long-term success of a spent fuel management policy. (author)

  6. Large-bore pipe decontamination

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system

  7. Method for electrochemical decontamination of radioactive metal

    Science.gov (United States)

    Ekechukwu, Amy A [Augusta, GA

    2008-06-10

    A decontamination method for stripping radionuclides from the surface of stainless steel or aluminum material comprising the steps of contacting the metal with a moderately acidic carbonate/bicarbonate electrolyte solution containing sodium or potassium ions and thereafter electrolytically removing the radionuclides from the surface of the metal whereby radionuclides are caused to be stripped off of the material without corrosion or etching of the material surface.

  8. Nuclear criticality safety evaluation of the passage of decontaminated salt solution from the ITP filters into tank 50H for interim storage

    International Nuclear Information System (INIS)

    Hobbs, D.T.; Davis, J.R.

    1994-01-01

    This report assesses the nuclear criticality safety associated with the decontaminated salt solution after passing through the In-Tank Precipitation (ITP) filters, through the stripper columns and into Tank 50H for interim storage until transfer to the Saltstone facility. The criticality safety basis for the ITP process is documented. Criticality safety in the ITP filtrate has been analyzed under normal and process upset conditions. This report evaluates the potential for criticality due to the precipitation or crystallization of fissionable material from solution and an ITP process filter failure in which insoluble material carryover from salt dissolution is present. It is concluded that no single inadvertent error will cause criticality and that the process will remain subcritical under normal and credible abnormal conditions

  9. Decontamination liquid waste processing method

    International Nuclear Information System (INIS)

    Enda, Masami; Hosaka, Katsumi.

    1992-01-01

    Liquid wastes after electrolytic reduction are caused to flow through an anionic exchange membrane in a diffusion dialysis step, and liquid wastes and dialyzed water are passed in a countercurrent manner. Since acids in the liquid wastes transfer on the side of the dialyzed water due to the difference of concentration between the liquid wastes and the dialyzed water, acids can be easily recovered from the liquid wastes. If the acid-removed liquid wastes are put to electrodeposition in an electrodepositing step, the electrodepositing reactions between radioactive materials such as Co ion, Mn ion and leached metals such as Fe ions and Cr ions are caused preferentially to hydrogen generation reaction on a metal deposition cathode. Accordingly, metal ions can be easily separated from the liquid wastes. Since the separated liquid wastes are an aqueous solution in which cerium ions as a decontaminant and an acid at low concentration are dissolved, the concentration thereof is controlled by mixing them to acid recovering water after the diffusion dialysis and they can be reused as the decontaminant. (T.M.)

  10. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-06-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  11. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-01-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  12. Comparison of four decontamination treatments on porcine renal decellularized extracellular matrix structure, composition, and support of human renal cortical tubular epithelium cells.

    Science.gov (United States)

    Poornejad, Nafiseh; Nielsen, Jeffery J; Morris, Ryan J; Gassman, Jason R; Reynolds, Paul R; Roeder, Beverly L; Cook, Alonzo D

    2016-03-01

    Engineering whole organs from porcine decellularized extracellular matrix and human cells may lead to a plentiful source of implantable organs. Decontaminating the porcine decellularized extracellular matrix scaffolds is an essential step prior to introducing human cells. However, decontamination of whole porcine kidneys is a major challenge because the decontamination agent or irradiation needs to diffuse deep into the structure to eliminate all microbial contamination while minimizing damage to the structure and composition of the decellularized extracellular matrix. In this study, we compared four decontamination treatments that could be applicable to whole porcine kidneys: 70% ethanol, 0.2% peracetic acid in 1 M NaCl, 0.2% peracetic acid in 4% ethanol, and gamma (γ)-irradiation. Porcine kidneys were decellularized by perfusion of 0.5% (w/v) aqueous solution of sodium dodecyl sulfate and the four decontamination treatments were optimized using segments (n = 60) of renal tissue to ensure a consistent comparison. Although all four methods were successful in decontamination, γ-irradiation was very damaging to collagen fibers and glycosaminoglycans, leading to less proliferation of human renal cortical tubular epithelium cells within the porcine decellularized extracellular matrix. The effectiveness of the other three optimized solution treatments were then all confirmed using whole decellularized porcine kidneys (n = 3). An aqueous solution of 0.2% peracetic acid in 1 M NaCl was determined to be the best method for decontamination of porcine decellularized extracellular matrix. © The Author(s) 2015.

  13. Capabilities for processing shipping casks at spent fuel storage facilities

    International Nuclear Information System (INIS)

    Baker, W.H.; Arnett, L.M.

    1978-01-01

    Spent fuel is received at a storage facility in heavily shielded casks transported either by rail or truck. The casks are inspected, cooled, emptied, decontaminated, and reshipped. The spent fuel is transferred to storage. The number of locations or space inside the building provided to perform each function in cask processing will determine the rate at which the facility can process shipping casks and transfer spent fuel to storage. Because of the high cost of construction of licensed spent fuel handling and storage facilities and the difficulty in retrofitting, it is desirable to correctly specify the space required. In this paper, the size of the cask handling facilities is specified as a function of rate at which spent fuel is received for storage. The minimum number of handling locations to achieve a given throughput of shipping casks has been determined by computer simulation of the process. The simulation program uses a Monte Carlo technique in which a large number of casks are received at a facility with a fixed number of handling locations in each process area. As a cask enters a handling location, the time to process the cask at that location is selected at random from the distribution of process time. Shipping cask handling times are based on experience at the General Electric Storage Facility, Morris, Illinois. Shipping cask capacity is based on the most recent survey available of the expected capability of reactors to handle existing rail or truck casks

  14. Selection of dissolution process for spent fuels and preparation of corrosion test solution simulated to dissolver (contract research)

    International Nuclear Information System (INIS)

    Motooka, Takafumi; Terakado, Shogo; Koya, Toshio; Hamada, Shozo; Kiuchi, Kiyoshi

    2001-03-01

    In order to evaluate the reliability of reprocessing equipment materials used in the Rokkasho Reprocessing Plant, we have proceeded a mock-up test and laboratory tests for getting corrosion parameters. In a dissolver made of zirconium, the simulation of test solutions to the practical solution which includes the high concentration of radioactive elements such as FP and TRU is one of the important issues with respect to the life prediction. On this experiment, the dissolution process of spent fuels and the preparation of test solution for evaluating the corrosion resistance of dissolver materials were selected. These processes were tested in the No.3 cell of WASTEF. The test solution for corrosion tests was prepared by adjusting the uranium and nitric acid concentrations. (author)

  15. Decontamination of main coolant pumps

    International Nuclear Information System (INIS)

    Roofthooft, R.

    1988-01-01

    Last year a number of main coolant pumps in Belgian nuclear power plants were decontaminated. A new method has been developed to reduce the time taken for decontamination and the volume of waste to be treated. The method comprises two phases: Oxidation with permanganate in nitric acid and dissolution in oxalic acid. The decontamination of main coolant pumps can now be achieved in less than one day. The decontamination factors attained range between 15 and 150. (orig.) [de

  16. Gentilly 1: decontamination program

    International Nuclear Information System (INIS)

    Le, H.; Denault, P.

    1985-01-01

    The Gentilly 1 station, a 250-MW(e) light-water-cooled and heavy-water-moderated nuclear reactor, is being decommissioned to a static state (variant of stage 1) condition by Atomic Energy of Canada Limited (AECL). The scope of the decontamination program at the Gentilly 1 site includes the fuel pool and associated systems, the decontamination center, the laundry, the feedwater pumps and piping systems, the service building ventilation and drainage systems, and miscellaneous floor and wall areas. After an extensive literature review for acceptable decontamination methods, it was decided that the decontamination equipment used at Gentilly 1 during the program would include a hydrolaser, a scarifier, chipping hammers, a steam cleaner, an ultrasonic bath, and cutting tools. In addition, various foams, acids, detergents, surfactants, and abrasives are used alone and in tandem with the above equipment. This paper highlights the result of these decontaminations, their effectiveness, and the recommendation for future application. The methodology in performing these operations are also presented

  17. Interface agreement for the management of 308 Building Spent Nuclear Fuel. Revision 1

    International Nuclear Information System (INIS)

    Danko, A.D.

    1995-01-01

    The Hanford Site Spent Nuclear Fuel (SNF) Project was formed to manage the SNF at Hanford. Specifically, the mission of the SNF Project on the Hanford Site is to ''provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it for final disposition.'' The current mission of the Fuel Fabrication Facilities Transition Project (FFFTP) is to transition the 308 Building for turn over to the Environmental Restoration Contractor for decontamination and decommissioning

  18. Decontaminating products for routine decontamination in nuclear power plants

    International Nuclear Information System (INIS)

    Henning, K.

    2001-01-01

    Routine decontamination work that has to be carried out in practical operation includes the cleaning of all kinds of surfaces such as floors, walls and apparatus, the decontamination of professional clothes and of the personnel. In order to ensure a trouble-free functioning of plants for the treatment of waste water and concentrate in nuclear power plants, radioactive liquid wastes appearing in the controlled area should be compatible with the treatment methods in practice. Radioactive concentrates and resides obtained from the treatment methods are mixed with matrix materials like cement or bitumen or treated by roller frame drying and thus are conditioned for intermediate or final storage. Several requirements should be made on decontaminating agents used in the controlled area. Some of these physical-chemical criteria will be described in detail. (R.P.)

  19. Recommendations for skin decontamination

    International Nuclear Information System (INIS)

    1989-01-01

    Further to the reecommendations for determining the surface contamination of the skin and estimating the radiation exposure of the skin after contamination (SAAS-Mitt--89-16), measures for skin decontamination are recommended. They are necessary if (1) after simple decontamination by means of water, soap and brush without damaging the skin the surface contamination limits are exceeded and the radiation exposure to be expected for the undamaged healthy skin is estimated as to high, and if (2) a wound is contaminated. To remove skin contaminations, in general universally applicable, non-aggressive decontamination means and methods are sufficient. In special cases, nuclide-specific decontamination is required taking into account the properties of the radioactive substance

  20. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 4. Pacific basin spent fuel logistics system

    International Nuclear Information System (INIS)

    1978-06-01

    This report summarizes the conceptual framework for a Pacific Basin Spent Fuel Logistics System (PBSFLS); and preliminarily describes programatic steps that might be taken to implement such a system. The PBSFLS concept is described in terms of its technical and institutional components. The preferred PBSFLS concept embodies the rationale of emplacing a fuel cycle system which can adjust to the technical and institutional non-proliferation solutions as they are developed and accepted by nations. The concept is structured on the basis of initially implementing a regional spent fuel storage and transportation system which can technically and institutionally accommodate downstream needs for energy recovery and long-term waste management solutions

  1. Role of alkyl alcohol on viscosity of silica-based chemical gels for decontamination of highly radioactive nuclear facilities

    International Nuclear Information System (INIS)

    Choi, B. S.; Yoon, S. B.; Jung, C. H.; Lee, K. W.; Moon, J. K.

    2012-01-01

    Silica-based chemical gel for the decontamination of nuclear facilities was prepared by using fumed silica as a viscosifier, a 0.5 M Ce (IV) solution dissolved in concentrated nitric acid as a chemical decontamination agent, and tripropylene glycol butyl ether (TPGBE) as a co-viscosifier. A new effective strategy for the preparation of the chemical gel was investigated by introducing the alkyl alcohols as organic solvents to effectively dissolve the co-viscosifier. The mixture solution of the co-viscosifier and alkyl alcohols was more effective in the control of viscosity than that of the co-viscosifier only in gel. Here, the alkyl alcohols played a key role as an effective dissolution solvent for the co-viscosifier in the preparation of the chemical gel, resulting in a reducing of the amount of the co-viscosifier and gel time compared with that of the chemical gel prepared without the alkyl alcohols. It was considered that the alkyl alcohols contributed to the effective dissolution of the co-viscosifier as well as the homogeneous mixing in the formation of the gel, while the co-viscosifier in an aqueous media of the chemical decontamination agent solution showed a lower solubility. The decontamination efficiency of the chemical gels prepared in this work using a multi-channel analyzer (MCA) showed a high decontamination efficiency of over ca. 94% and ca. 92% for Co-60 and Cs-137 contaminated on surface of the stainless steel 304, respectively. (authors)

  2. Decontamination Options for Drinking Water Contaminated with Bacillus anthracis Spores

    Energy Technology Data Exchange (ETDEWEB)

    Raber, E; Burklund, A

    2010-02-16

    Five parameters were evaluated with surrogates of Bacillus anthracis spores to determine effective decontamination options for use in a contaminated drinking water supply. The parameters were: (1) type of Bacillus spore surrogate (B. thuringiensis or B. atrophaeus); (2) spore concentration in suspension (10{sup 2} to 10{sup 6} spores/ml); (3) chemical characteristics of decontaminant [sodium dicholor-s-triazinetrione dihydrate (Dichlor), hydrogen peroxide, potassium peroxymonosulfate (Oxone), sodium hypochlorite, and VirkonS{reg_sign}]; (4) decontaminant concentration (0.01% to 5%); and (5) decontaminant exposure time (10 min to 24 hr). Results from 162 suspension tests with appropriate controls are reported. Hydrogen peroxide at a concentration of 5%, and Dichlor and sodium hypochlorite at a concentration of 2%, were effective at spore inactivation regardless of spore type tested, spore exposure time, or spore concentration evaluated. This is the first reported study of Dichlor as an effective decontaminant for B. anthracis spore surrogates. Dichlor's desirable characteristics of high oxidation potential, high level of free chlorine, and more neutral pH than that of other oxidizers evaluated appear to make it an excellent alternative. All three oxidizers were effective against B. atrophaeus spores in meeting EPA's biocide standard of greater than a 6 log kill after a 10-minute exposure time and at lower concentrations than typically reported for biocide use. Solutions of 5% VirkonS{reg_sign} and Oxone were less effective decontaminants than other options evaluated in this study and did not meet the EPA's efficacy standard for biocides. Differences in methods and procedures reported by other investigators make quantitative comparisons among studies difficult.

  3. Method of heat decomposition for chemical decontaminating resin waste

    International Nuclear Information System (INIS)

    Kikuchi, Akira.

    1988-01-01

    Purpose: To make resin wastes into non-deleterious state, discharge them into a resin waste storage tank of existent radioactive waste processing facility and store and dispose them. Constitution: In the processing of chemical decontaminating resin wastes, iron exchange resins adsorbing chemical decontaminating agents comprising a solution of citric acid, oxalic acid, formic acid and EDTA alone or as a mixture of them are heated to dry, thermally decomposed and then separated from the ion exchange resins. That is, the main ingredients of the chemical decontaminating agents are heat-decomposed when heated and dried at about 250 deg C in air and converted into non-toxic gases such as CO, CO 2 , NO, NO 2 or H 2 O. Further, since combustion or carbonization of the basic materials for the resin is not caused at such a level of temperature, the resin wastes removed with organic acid and chelating agents are transferred to an existent resin waste storage tank and stored therein. In this way, facility cost and radiation exposure can remarkably be decreased. (Kamimura, M.)

  4. Problems and solutions of the spent nuclear fuel (SNF) at Kozloduy NPP

    International Nuclear Information System (INIS)

    Jordanov, J.

    2003-01-01

    There are two options concerning spent nuclear fuel: to return it back to Russia for reprocessing or to store it on the site until we decide what to do with it. In both options prior to the shutting down of each reactor the Spent Fuel Pool thereto should be vacated (the filling in of the equipment at present is illustrated) and the Spent Fuel Storage Facility (SFSF) should also be vacated after the stop of the last nuclear facility on the site in order to be reequipped for permanent storage of the highly active wastes which will be returned in the country, if we submit the fuel for reprocessing; or of SNF, if we decide to leave them ultimately in Bulgaria. The difference is mainly in the quantities which will permanently remain here, respectively the volumes required for their storage and the funds necessary for the implementation of the processes. The pool volumes filling in both variants is also illustrated and the SFSF will be filled by 2008, if no fuel is transported.Costs of the SNF transport to Russia and investment costs of dry storage of SNF from pools 1 - 4 are present. The costs are visibly lower compared to those in the case of return of the fuel. However, these are only investments for construction and equipment of the buildings and storage containers. The costs related to their servicing are not included, and it should be taken into account that in approximately 50 years we will have to seek solution for their permanent storage. Despite the material costs to be incurred now for the implementation of the option with the return of the fuel, this is the more worthy way to resolve the problem. In accordance with the ethic principles in the nuclear energy, the burdens arising as a result of the use of nuclear facilities should be covered by the generation consuming the benefits from it

  5. Properties and solidification of decontamination wastes

    International Nuclear Information System (INIS)

    Davis, M.S.; Piciulo, P.L.; Bowerman, B.S.; Adams, J.W.; Milian, L.

    1983-01-01

    LWRs will require one or more chemical decontaminations to achieve their designed lifetimes. Primary system decontamination is designed to lower radiation fields in areas where plant maintenance personnel must work. Chemical decontamination methods are either hard (concentrated chemicals, approximately 5 to 25 weight percent) or soft (dilute chemicals less than 1 percent by weight). These methods may have different chemical reagents, some tailor-made to the crud composition and many methods are and will be proprietary. One factor common to most commercially available processes is the presence of organic acids and chelates. These types of organic reagents are known to enhance the migration of radionuclides after disposal in a shallow land burial site. The NRC sponsors two programs at Brookhaven National Laboratory that are concerned with the management of decontamination wastes which will be generated by the full system decontamination of LWRs. These two programs focus on potential methods for degrading or converting decontamination wastes to more acceptable forms prior to disposal and the impact of disposing of solidified decontamination wastes. The results of the solidification of simulated decontamination resin wastes will be presented. Recent results on combustion of simulated decontamintion wastes will be described and procedures for evaluating the release of decontamination reagents from solidified wastes will be summarized

  6. Eurochemic reprocessing plant decommissioning. Decontamination of contaminated metal

    International Nuclear Information System (INIS)

    Walthery, R.; Teunckens, L.; Lewandowski, P.

    1998-01-01

    When decommissioning nuclear installations, large quantifies of metal components are produced as well as significant amounts of other radioactive materials, which mostly show low surface contamination. Having been used or having been brought for a while in a controlled area, marks them as 'suspected material'. In view of the very high costs for radioactive waste processing and disposal, alternatives have been considered, and much effort has been spent in recycling through decontamination, melting and unconditional release of metals. In a broader context, recycling of materials can be considered as a first order ecological priority to limit the quantities of radioactive wastes to be disposed of, to reduce the technical and economic problems involved with the management of radioactive wastes, and to make economic use of primary material and conserve natural resources of basic material for future generations. Other evaluations as the environmental impact of recycling compared to non recycling (mining or production of new material) and waste treatment, with the associated risks involved, can also be considered, as well as social and political impacts of recycling. This document gives an overview of the current practices in recycling of materials at the decommissioning of the Eurochemic reprocessing plant in Dessel, Belgium. It deals with the decontamination and measurement techniques in use, and considers related technical and economic aspects and constraints. (author)

  7. Some remarks about decontamination

    International Nuclear Information System (INIS)

    Bertini, A.

    1990-01-01

    Decontamination in itself is not the elimination of a problem, but corresponds to move that problem from one place to another. It is beneficial only if the contamination is less of a nuisance when moved to the ''other place''. Therefore any prospective decontamination process is to be considered essentially in terms of cost-benefit, and in particular in terms of reducing the burden on the waste management systems. The paper is not intended to deal with and to review critically the technical aspects of the various decontamination processes which are currently available. Its aim is to call the attention of those who may be faced with the problem of large-scale decontamination, so that this operation is carried out after all practical aspects have been examined. (author)

  8. Surface decontamination by heterogeneous foams and suspensions

    International Nuclear Information System (INIS)

    Polyakov, A.; Poluektov, P.; Emets, E.; Kuchumov, V.; Rybakov, K.; Teterin, E.

    2000-01-01

    A variety of methods was used to investigate the surface of stainless steel as delivered or treated (electrochemically polished, machine ground). Micro X-ray spectral analysis evidenced a uniform distribution of alloying elements. Auger spectroscopy revealed the layer-by-layer composition by elements and the thickness of the superficial oxide film. The distribution of heterogeneous uranium dioxide powders on the stainless steel surface was examined by microprobe analysis (using Comebax). In the order of increasing contamination by uranium dioxide, the surfaces can be arranged as: untreated - polished - ground. The behaviour of hydrogen peroxide in alkaline solutions was studied by spectrophotometry and laser analysis. Decontamination of stainless steel surfaces from UO 2 by microgaseous emulsions in alkaline media with surfactants present was tested. The decontamination factor was determined as a function of the size and volume of gas bubbles. It was shown to rise with increasing gas content. (author)

  9. Decontamination in the Republic of Belarus

    International Nuclear Information System (INIS)

    Antsipov, G.V.; Matveenko, S.A.; Mirkhaidarov, A.Kh.

    2002-01-01

    To continue the decontamination work in the Republic of Belarus, which was carried out by the military troops, the state specialized enterprises were formed in Gomel and Mogilev in 1991. The organization and regulations were developed inside the country: instructions, rules, radiological and hygienic criteria and norms. The enterprises concentrated on decontamination of the most socially significant facilities: kindergartens, schools, medical institutions and industrial enterprises. During 9 years Gomel State Specialized Enterprise 'Polessje' decontaminated 130 kindergartens, schools and hospitals. The total decontaminated area was 450 000 m 2 . The ventilation systems and equipment at 27 industrial enterprises in Gomel were decontaminated. The practical decontamination methods for areas, buildings, roofs, industrial equipment, ventilation systems were developed and tested. The special rules for handling wastes contaminated with Cs were elaborated. The paper analyzes and sums up the acquired experience which is important for implementation of rehabilitation programs and improvement of decontamination methods. (author)

  10. Factors determining the stainless steel decontamination efficiency for the steam generator heat exchanger tubes at NPPs with the WWERs

    International Nuclear Information System (INIS)

    Kamenskij, A.N.; Balaban-Irmenin, Yu.V.

    1983-01-01

    To raise the efficiency of the redox method and decrease the amount of radioactive wastes, a possibility of improving the decontamination process for NPP heat exchanger tubes made of stainless steel is studied. In the home practice the redox method of equipment decontamination is carried out as a multi-cycle process. In each cycle the surface is treated first with a permanganate alkaline solution ther with an oxalic acid solution, with a condensate washing-at between the treatments. Using samples cut out of the steam generator pipelines of the first and third power units of the Novovoronezh NPP the effect of the oXalic acid concentration, as well as washout time and conditions on the decontamination factor are studied. On the basis of analysis of the obtained data a conclusion is drawn that using oxalic acid of low concentrations and increasing its concentrations from cycle to cycle maximum decontamination factor values can be obtained at a minimum salt content in radioactive wastes

  11. Efficacy studies of Reactive Skin Decontamination Lotion, M291 Skin Decontamination Kit, 0.5% bleach, 1% soapy water, and Skin Exposure Reduction Paste Against Chemical Warfare Agents, part 1: guinea pigs challenged with VX.

    Science.gov (United States)

    Braue, Ernest H; Smith, Kelly H; Doxzon, Bryce F; Lumpkin, Horace L; Clarkson, Edward D

    2011-03-01

    This report, first in a series of five, directly compares the efficacy of 4 decontamination products and Skin Exposure Reduction Paste Against Chemical Warfare Agents (SERPACWA) in the haired guinea pig model following exposure to VX. In all experiments, guinea pigs were close-clipped and given anesthesia. In the decontamination experiments, the animals were challenged with VX and decontaminated after a 2-minute delay for the standard procedure or at longer times for the delayed-decontamination experiments. Skin Exposure Reduction Paste Against Chemical Warfare Agents was applied as a thin coating (0.1 mm thick), allowed to dry for 15 minutes, and challenged with VX. After a 2-hour challenge, any remaining VX was blotted off the animal, but no additional decontamination was done. Positive control animals were challenged with VX in the same manner as the treated animals, except that they received no treatment. In addition, the positive control animals were always challenged with 5% VX in isopropyl alcohol (IPA) solution, whereas the treatment animals received either neat (undiluted) VX or 5% VX in IPA solution. All animals were observed during the first 4 hours and again at 24 hours after exposure for signs of toxicity and death. The protective ratio (PR, defined as the median lethal dose [LD(50)] of the treatment group divided by the LD(50) of the untreated positive control animals) was calculated from the probit dose-response curves established for each treatment group and nontreated control animals. Significance in this report was defined as p decontamination experiments, the calculated PRs for Reactive Skin Decontamination Lotion (RSDL), 0.5% bleach, 1% soapy water, and the M291 Skin Decontamination Kit (SDK) were 66, 17, 16, and 1.1, respectively. Reactive Skin Decontamination Lotion was by far the most effective decontamination product tested and was significantly better than any of the other products. Bleach and soapy water provided equivalent and good (PR

  12. Low level radioactive liquid waste decontamination by electrochemical way

    International Nuclear Information System (INIS)

    Tronche, E.

    1994-10-01

    As part of the work on decontamination treatments for low level radioactive aqueous liquid wastes, the study of an electro-chemical process has been chosen by the C.E.A. at the Cadarache research centre. The first part of this report describes the main methods used for the decontamination of aqueous solutions. Then an electro-deposition process and an electro-dissolution process are compared on the basis of the decontamination results using genuine radioactive aqueous liquid waste. For ruthenium decontamination, the former process led to very high yields (99.9 percent eliminated). But the elimination of all the other radionuclides (antimony, strontium, cesium, alpha emitters) was only favoured by the latter process (90 percent eliminated). In order to decrease the total radioactivity level of the waste to be treated, we have optimized the electro-dissolution process. That is why the chemical composition of the dissolved anode has been investigated by a mixture experimental design. The radionuclides have been adsorbed on the precipitating products. The separation of the precipitates from the aqueous liquid enabled us to remove the major part of the initial activity. On the overall process some operations have been investigated to minimize waste embedding. Finally, a pilot device (laboratory scale) has been built and tested with genuine radioactive liquid waste. (author). 77 refs., 41 tabs., 55 figs., 4 appendixes

  13. Commercial solutions [for dry spent fuel storage casks

    International Nuclear Information System (INIS)

    Howe, W.F.; Pennington, C.W.; Hobbs, J.; Lee, W.; Thomas, B.D.; Dibert, D.J.

    1996-01-01

    In the aftermath of the termination of the DOE's MPC (Multi-Purpose Canister) programme, commercial suppliers are coming forward with new or updated systems to meet utility needs. Leading vendors describe the advantages of their systems for dry spent fuel storage and transport. (Author)

  14. Decontamination of the HFR dismantling cell

    International Nuclear Information System (INIS)

    Cloes, K.; Husmann, K.; Hardt, P. von der.

    1976-05-01

    The Commission of the European Communities operates in the Petten Establishment of the Joint Research Centre (EURATOM), a 45 MW light-water cooled materials testing reactor, the HFR. Inside the reactor containment building, on top of a side wing of the main pool, a hot cell had been constructed for the dismantling, of irradiated equipment, and brought into active service in July 1966. Early in 1973, the cell was contaminated by 0.1 to 1 Ci of Po 210 , originating from an irradiation capsule containing Bi impregnated graphite specimens. Due to the elevated radiotoxicity of this isotope, and to numerous potential ways of spreading out the contamination it was decided to stop routine operation of the cell until a satisfactory degree of decontamination had been reached. Two years have been spent for preparation of specialized equipment and thorough clean-up and overhaul work of the cell. It went back into normal operation on February 21st, 1975 and has since then been working very successfully

  15. Long lasting decontamination foam

    Science.gov (United States)

    Demmer, Ricky L.; Peterman, Dean R.; Tripp, Julia L.; Cooper, David C.; Wright, Karen E.

    2010-12-07

    Compositions and methods for decontaminating surfaces are disclosed. More specifically, compositions and methods for decontamination using a composition capable of generating a long lasting foam are disclosed. Compositions may include a surfactant and gelatin and have a pH of less than about 6. Such compositions may further include affinity-shifting chemicals. Methods may include decontaminating a contaminated surface with a composition or a foam that may include a surfactant and gelatin and have a pH of less than about 6.

  16. Decontamination manual of RI handling laboratory

    International Nuclear Information System (INIS)

    Wadachi, Yoshiki

    2004-01-01

    Based on experiences in Japan Atomic Energy Research Institute (JAERI), the essential and practical knowledge of radioactive contamination and its decontamination, and the method and procedure of floor decontamination are described for researcher and managing person in charge of handling radioisotopes (RI) in RI handling laboratories. Essential knowledge concerns the uniqueness of solid surface contamination derived from RI half lives and quantities, surface contamination density limit, and mode/mechanism of contamination. The principle of decontamination is a single conduct with recognition of chemical form of the RI under use. As the practical knowledge, there are physical and chemical methods of solid surface decontamination. The latter involves use of inorganic acids, chelaters and surfactants. Removal and replacement of contaminated solid like floor material are often effective. Distribution mapping of surface contamination can be done by measuring the radioactivity in possibly contaminated areas, and is useful for planning of effective decontamination. Floor surface decontamination is for the partial and spread areas of the floor. It is essential to conduct the decontamination with reagent from the highly to less contaminated areas. Skin decontamination with either neutral detergent or titanium oxide is also described. (N.I.)

  17. Chemical decontamination: an overview

    International Nuclear Information System (INIS)

    Shaw, R.A.; Wood, C.J.

    1985-01-01

    The source of radioactive contamination in various types of power reactors is discussed. The methods of chemical decontamination vary with the manner in which the radioactive contaminants are deposited on the surface. Two types of dilute decontamination systems are available. One system uses organic acids and chelating agents, which are mildly reducing in nature. In this process, the oxide contaminants are removed by simple acidic dissolution and reductive dissolution. The second type of decontamination process is based on low oxidation state metal ions, which are more strongly reducing and do not require a corrosion inhibitor. All processes commercially available for decontamination of power reactors are not detailed here, but a few key issues to be considered in the selection of a process are highlighted. 2 figures, 2 tables

  18. Personnel decontamination and preventive skin care

    International Nuclear Information System (INIS)

    Henning, Klaus; Gojowczyk, Peter

    2010-01-01

    Skin contamination arises from contact with contaminated aqueous solutions and from transmission of radioactively contaminated dirt particles. As long as the surface of the skin is neither inflamed nor showing any lesions, normally only a limited part of the top layer (epidermis), i.e. the upper layers of the stratum corneum, is contaminated. The intact horny layer has a barrier function protecting against the penetration of chemicals and dirt particles. The horny layer can be damaged by water, solvents, alkaline substances, and acids. In general, it is safe to say that the horny layer acts as a natural barrier to the penetration of liquid and particulate impurities into lower layers of the skin. As long as the horny layer is intact and free from lesions, the risk of incorporation can be considered low. When decontaminating and cleansing the skin, also in daily skin cleansing, care must be taken to prevent the acid protective layer and the horny layer from being compromised. Daily cleansing and cleansing for decontamination must be carried out with a mild, weakly acidic detergent. In addition, prevention should be achieved daily by applying a non-greasy skin lotion to protect the skin. Following a systematic regular regimen in skin cleansing and preventive skin care as well as a specific approach in skin decontamination and cleansing will avoid damage to the skin and remove any contamination incurred. This approach comprises a three-pronged concept, namely skin protection, cleansing and care. (orig.)

  19. Pilot plant for the radioactive decontamination of spent oils; Planta piloto para la descontaminacion radiactiva de aceites gastados

    Energy Technology Data Exchange (ETDEWEB)

    Flores E, R.M.; Ortiz O, H.V.; Cisneros L, L.; Lopez G, R. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    In this work the operation parameters obtained in the laboratory of oil storage are presented, as well as the operations which shape the pilot plant, the design criteria and the basic design of the core equipment of the developed process. Finally, the comparative results obtained the decontamination process of oil are given as well as laboratory scale. (Author)

  20. Situations of decontamination promotion activities. Efforts by Tokyo Electric Power Company, Fukushima Revitalization Headquarters, Decontamination Promotion Office

    International Nuclear Information System (INIS)

    Takano, Takahiko; Ito, Kei; Takizawa, Koichi

    2015-01-01

    As for the decontamination of the soil contaminated with radioactive materials, decontamination is on the way in compliance with the 'Act on Special Measures Concerning the Handling of Environmental Pollution by Radioactive Materials by the NPS Accident Associated with the Tohoku District - Off the Pacific Ocean' (hereinafter, the Act on Special Measures). Tokyo Electric Power Company (TEPCO), as the party concerned to the accident, is cooperating with decontamination activities conducted by countries and municipalities under the Act on Special Measures. Total number of people cooperated by the Decontamination Promotion Office amounts to about 120,000 people. The cooperation to the decontamination by countries and municipalities covers the following fields: provision of knowledge of radiation, training of site management and supervisors, and proposal such as the decontamination method suitable for the site. As cooperation to various monitoring, there is a traveling monitoring that performs radiation measurement from the vehicles. As cooperation in the farming and industrial resumption toward the reconstruction, the group has implemented support for the distribution promotion of the holdup that was stuck in distribution due to contamination with radioactive substances. As decontamination related technology, the following are performed: (1) preparation of radiation understanding promotion tool, (2) development of precise individual dose measurement technology, and (3) development and utilization of decontamination effect analysis program. In the future, this group will perform the follow-up for decontamination, and measures toward the lifting of evacuation order. It will install the basis to perform various technical analyses on decontamination, and will further intensify technical cooperation. (A.O.)

  1. Removal of Neutral Red from aqueous solution by adsorption on spent cottonseed hull substrate

    International Nuclear Information System (INIS)

    Zhou Qi; Gong Wenqi; Xie Chuanxin; Yang Dongjiang; Ling Xiaoqing; Yuan Xiao; Chen Shaohua; Liu Xiaofang

    2011-01-01

    Cottonseed hull, a low-cost widely available agricultural waste in China, after used as substrate for the white rot fungus Pleurotus ostreatus cultivation, was tested for the removal of Neutral Red (NR), a cationic dye, from aqueous solution. A batch adsorption study was carried out with varied solution pH, adsorbent dosage, reaction time and initial NR concentration. The results show that the kinetics of dye removal by the spent cottonseed hull substrate (SCHS) is prompt in the first 5 min and the adsorption equilibrium can be attained after 240 min. The biosorption kinetics and equilibrium follow typical pseudo-second-order and Langmuir adsorption models. Thermodynamic parameters of ΔG o , ΔH o and ΔS o show that the adsorption is a spontaneous and endothermic process. Fourier transform infrared (FTIR) spectroscopy was used for the characterization of possible dye-biosorbent interaction. This study provides a facile method to produce low-cost biosorbent for the purification of dye contaminated water.

  2. Influence of antimicrobial solutions in the decontamination and adhesion of glass-fiber posts to root canals

    Science.gov (United States)

    HARAGUSHIKU, Gisele Aihara; BACK, Eduardo Donato Eing Engelke; TOMAZINHO, Paulo Henrique; BARATTO, Flares; FURUSE, Adilson Yoshio

    2015-01-01

    Objective This study evaluated the effect of root canal disinfectants on the elimination of bacteria from the root canals, as well as their effect on glass-fiber posts bond strength. Material and Methods Fifty-three endodontically treated root canals had post spaces of 11 mm in length prepared and contaminated with E. faecalis. For CFU/ml analysis, eight teeth were contaminated for 1 h or 30 days (n=4). Teeth were decontaminated with 5% NaOCl, 2% CHX, or distilled water. As control, no decontamination was conducted. After decontamination, sterile paper points were used to collect samples, and CFU/ml were counted. For push-out, three groups were evaluated (n=15): irrigation with 2.5% NaOCl, 2% CHX, or sterile distilled water. A bonding agent was applied to root canal dentin, and a glass-fiber post was cemented with a dual-cured cement. After 24 h, 1-mm-thick slices of the middle portion of root canals were obtained and submitted to the push-out evaluation. Three specimens of each group were evaluated in scanning electron microscopy (SEM). Data were analyzed with one-way ANOVA and Dunnett’s T3 test (α=0.05). Results The number of CFU/ml increased from 1 h to 30 days of contamination in control and sterile distilled water groups. Decontamination with NaOCl was effective only when teeth were contaminated for 1 h. CHX was effective at both contamination times. NaOCl did not influence the bond strength (p>0.05). Higher values were observed with CHX (pcontaminated root canals both in reducing the bacterial contamination and in improving the glass-fiber post bonding. PMID:26398518

  3. Organophosphate degrading microorganisms and enzymes as biocatalysts in environmental and personal decontamination applications.

    Science.gov (United States)

    Yair, Simo; Ofer, Butnaro; Arik, Eisenkraft; Shai, Shrot; Yossi, Rosman; Tzvika, Dushnitsky; Amir, Krivoy

    2008-01-01

    One of the major challenges in dealing with chemical warfare agent (CWA) dispersal, whether in the battlefield or after a terror act, is decontamination and rehabilitation of any contaminated area. Organophosphates (OPs) are considered to be among the deadliest CWAs to date. Other OPs are used as pesticides in modern agriculture, and are considered environmentally hazardous. Current methods for OP decontamination are either dangerous or insufficiently effective. As a promising solution for this problem, bioremediation--the use of biocomponents for environmental remediation--is a potentially effective, safe, and environment-friendly method. The technology relies on several enzymatic mechanisms, and can be applied in various ways. We will review recent achievements and potential applications, such as biocatalyst-containing foams and an enzymatic sponge, for environmental as well as personal exterior decontamination.

  4. Resorption of radionuclides through the surface of thermal burns and problems of decontamination

    International Nuclear Information System (INIS)

    Il'in, L.A.; Ivannikov, A.T.; Popov, B.A.; Parfenova, I.M.

    1981-01-01

    Resorption of sup(137)Cs, sup(89)Sr, sup(131)I, sup(241)Am during thermal burns of 1-3 degrees and choice of a decontamination method used simultaneously for decontamination and disinfection of burn wounds were studied. It is shown that a degree of burns effects in a certain form on skin penetrability: through burns of 1-2 degrees the resorption increases 1 5-3 times, through burns of the thir degree the resorption decreases slightly as compared to the resorption through intact skin. High efficiency of 3% soap solution for removing radionuclides from burn csurfae of skin has been established. For burns accompanied with the disturbance of epidermis integrality, when considerable absorption of radionuclides is possible, decontamination must be accomplished as soon and complete as possible [ru

  5. Chemical decontamination process and device therefor

    International Nuclear Information System (INIS)

    Takahashi, Ryota; Sakai, Hitoshi

    1998-01-01

    The present invention provides a process and a device for chemical decontamination, which can suppress corrosion of low corrosion resistant materials, keep decontamination properties substantially as same as before and further, reduce the volume of secondary wastes. In a step of reductively melting oxide membranes on an objective material to be decontaminated, a mixture of oxalic acid and a salt thereof is used as a reducing agent, and the reductive melting is conducted while suppressing hydrogen ion concentration of an aqueous liquid system. In order to enhance the reducibility of the oxalic acid ions, it is desirable to add a cyclic hetero compound thereto. The device of the present invention comprises, a decontamination loop including a member to be decontaminated, a heater and a pH meter, a medical injection pump for injecting a reducing agent to the decontamination loop, a metal ion recovering loop including an ion exchange resin tower, a reducing agent decomposing loop including an electrolytic vessel and/or a UV ray irradiation cell, a circulation pump for circulating the decontamination liquid to each of the loops and a plurality of opening/closing valves for switching the loop in which the decontamination liquid is circulated. (T.M.)

  6. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Tanaka, Akio; Onuma, Tsutomu; Yamazaki, Sei; Miura, Haruki.

    1993-01-01

    The present invention provides a chemical decontamination method for radioactive metal wastes, which are generated from radioactive material handling facilities and the surfaces of which are contaminated by radioactive materials. That is, it has a feature of applying acid dissolution simultaneously with mechanical grinding. The radioactive metal wastes are contained in a vessel such as a barrel together with abrasives in a sulfuric acid solution and rotated at several tens rotation per minute. By such procedures for the radioactive metal wastes, (1) cruds and passive membranes are mechanically removed, (2) exposed mother metal materials are uniformly brought into contact with sulfuric acid and further (3) the mother metal materials dissolve the cruds and the passive membranes also chemically by a reducing dissolution (so-called local cell effect). According to the method of the present invention, stainless steel metal wastes having cruds and passive membranes can rapidly and efficiently be decontaminated to a radiation level equal with that of ordinary wastes. (I.S.)

  7. PWR decontamination feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Silliman, P.L.

    1978-12-18

    The decontamination work which has been accomplished is reviewed and it is concluded that it is worthwhile to investigate further four methods for decontamination for future demonstration. These are: dilute chemical; single stage strong chemical; redox processes; and redox/chemical in combination. Laboratory work is recommended to define the agents and processes for demonstration and to determine the effect of the solvents on PWR materials. The feasibility of Indian Point 1 for decontamination demonstrations is discussed, and it is shown that the system components of Indian Point 1 are well suited for use in demonstrations.

  8. PWR decontamination feasibility study

    International Nuclear Information System (INIS)

    Silliman, P.L.

    1978-01-01

    The decontamination work which has been accomplished is reviewed and it is concluded that it is worthwhile to investigate further four methods for decontamination for future demonstration. These are: dilute chemical; single stage strong chemical; redox processes; and redox/chemical in combination. Laboratory work is recommended to define the agents and processes for demonstration and to determine the effect of the solvents on PWR materials. The feasibility of Indian Point 1 for decontamination demonstrations is discussed, and it is shown that the system components of Indian Point 1 are well suited for use in demonstrations

  9. The removal of Cs-137 from soil using washing-electrokinetic decontamination equipment

    International Nuclear Information System (INIS)

    Kim, Gyenam; Kim, Seungsoo; Kim, Geunho; Park, Hyemin; Kim, Wansuk; Park, Ukryang; Kwon, Hyeokju; Ryu, Ohha; Moon, Jeikwon

    2012-01-01

    The radioactive soil at the KAERI radioactive waste storage facility has slightly high hydro-conductivity, and was mainly contaminated with 137 Cs 30-35 years ago. Recently, a soil washing method has been applied to remove 137 Cs from radioactive soil, but it appears that the removal efficiency of 137 Cs had low and a lot of waste solution was generated. Meanwhile, an electrokinetic decontamination method provides high removal efficiency of 137 Cs and generates little waste effluent. Thus, it is suggested that an electrokinetic decontamination method is a suitable technology in consideration of the soil characteristics near South Korean nuclear facilities

  10. A comparison of decontamination effects of commercially available detergents in rats pre-exposed to topical sulphur mustard.

    Science.gov (United States)

    Misik, Jan; Jost, Petr; Pavlikova, Ruzena; Vodakova, Eva; Cabal, Jiri; Kuca, Kamil

    2013-06-01

    The genotoxic vesicant sulphur mustard [bis-2-(chloroethyl)sulphide] is a chemical warfare agent which is easily available due to its relatively simple synthesis. Thus, sulphur mustard is a potential agent for mass contamination. In this study, we focused on sulphur mustard toxicity and decontamination in a rat model using commercially available detergent mixtures for dermal decontamination. Male Wistar rats were percutaneously treated with sulphur mustard and subjected to wet decontamination 2 min postexposure. Commercially produced detergents Neodekont™, Argos™, Dermogel™ and FloraFree™ were tested for their decontamination efficacy against an exposed group and their protective ratios determined. The results showed that all tested detergent solutions produced an increase in the median lethal dose [LD(50) = 9.83 (5.87-13.63) mg·kg(-1)] in comparison to controls, which led to increased survival of experimental animals. In general, all tested detergents provided modest decontamination efficacy (PR = 2.0-5.7). The highest protective ratio (5.7) was consistently achieved with Argos™. Accordingly, Argos™ should be considered in further investigation of mass casualty decontamination.

  11. Dilute chemical decontamination program review

    International Nuclear Information System (INIS)

    Anstine, L.D.; Blomgren, J.C.; Pettit, P.J.

    1980-01-01

    The objective of the Dilute Chemical Decontamination Program is to develop and evaluate a process which utilizes reagents in dilute concentrations for the decontamination of BWR primary systems and for the maintenance of dose rates on the out-of-core surfaces at acceptable levels. A discussion is presented of the process concept, solvent development, advantages and disadvantages of reagent systems, and VNC loop tests. Based on the work completed to date it is concluded that (1) rapid decontamination of BWRs using dilute reagents is feasible; (2) reasonable reagent conditions for rapid chemical decontamination are: 0.01M oxalic acid + 0.005M citric acid, pH3.0, 90/degree/C, 0.5 to 1.0 ppm dissolved oxygen; (3) control of dissolved oxygen concentration is important, since high levels suppress the rate of decontamination and low levels allow precipitation of ferrous oxalate. 4 refs

  12. Study on LOMI decontamination technology

    International Nuclear Information System (INIS)

    Huang Fuduan; Yu Degui; Lu Jingju; Xie Yinyan

    1993-10-01

    The results of decontamination technique of Low-Oxidation-State Metal-Ion (LOMI) reagents developed from 1986 to 1991 in the laboratory are introduced. The experiments included preparation of LOMI reagents, de-filming efficiency, corrosion behavior of typical alloys, decontamination factors of reagents for contaminated materials and components have proved that the NP/LOMI decontamination method and treatment technique of waste water are feasible and have some advantages. The preparation of LOMI reagent with low concentration of formic acid by reduced pressure distilling technique and the utilization ratio of vanadium reached to 95% by second electrolysis are the main contributions of the study to the decontamination technique

  13. Manual on decontamination of surfaces

    International Nuclear Information System (INIS)

    1979-01-01

    The manual is intended for those who are responsible for the organization and implementation of decontamination programmes for facilities where radioactive materials are handled mainly on a laboratory scale. It contains information and guidelines on practical methods for decontaminating working spaces, equipment, laboratory benches and protective clothing. Useful information is also provided on the removal of loose skin contamination from personnel by mild, non-medical processes. Methods of removing skin contamination needing medical supervision, or of internal decontamination, which is entirely a medical process, are not covered in this manual. Large-scale decontamination of big nuclear facilities is also considered as outside its scope

  14. Decontamination tests on cotton materials; Essais de decontamination sur tissus de coton

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P; Pelletier, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    It is shown that versene gives the best decontamination results on cotton materials soiled by a mixture of fission products. (author) [French] On a montre que le versene donne les meilleurs resultats de decontamination sur des tissus de coton souilles par un melange de produits de fission. (auteur)

  15. On-Site Decontamination System for Liquid Low Level Radioactive Waste - 13010

    Energy Technology Data Exchange (ETDEWEB)

    OSMANLIOGLU, Ahmet Erdal [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)

    2013-07-01

    This study is based on an evaluation of purification methods for liquid low-level radioactive waste (LLLW) by using natural zeolite. Generally the volume of liquid low-level waste is relatively large and the specific activity is rather low when compared to other radioactive waste types. In this study, a pilot scale column was used with natural zeolite as an ion exchanger media. Decontamination and minimization of LLLW especially at the generation site decrease operational cost in waste management operations. Portable pilot scale column was constructed for decontamination of LLW on site. Effect of temperature on the radionuclide adsorption of the zeolite was determined to optimize the waste solution temperature for the plant scale operations. In addition, effect of pH on the radionuclide uptake of the zeolite column was determined to optimize the waste solution pH for the plant scale operations. The advantages of this method used for the processing of LLLW are discussed in this paper. (authors)

  16. Financial assurance for decontamination and decommissioning: a Texas perspective

    International Nuclear Information System (INIS)

    Rao, C.D.; Etter, S.D.; Dziuk, T.W.

    1986-01-01

    The Texas Department of Health (TDH) has the regulatory responsibility to ensure that funds are available for decontamination, decommissioning, and reclamation of uranium recovery facilities in Texas. Uranium recovery licensees are required to post financial security with the Agency for that purpose. Texas uranium facilities include (1) conventional surface mining and milling plants, including tailings ponds, and (2) in situ solution mining plants, each with somewhat different cost elements for decontamination, decommissioning, reclamation, and closure. Cost estimates for decontamination, decommissioning, and reclamation, along with a facility closure plan, are initially submitted to the Agency by the licensees. These are verified and compared with detailed independent cost estimates prepared by Agency staff. Significant differences between the two estimates are examined and resolved by negotiation and/or recalculation to the satisfaction of the state. The Texas philosophy for maintaining financial security permits flexibility in the closure plan without jeopardizing or compromising the ultimate long-term objectives of closure. Review of closure plans incorporates new technological developments In contrast, financial security is established expeditiously by applying the best available cost data to necessarily conservative estimates of the work involved. Financial security cost estimates are subject to annual review and adjustment

  17. Decontamination of floor surfaces

    International Nuclear Information System (INIS)

    Smirous, F.

    1983-01-01

    Requirements are presented put on the surfaces of floors of radiochemical workplaces. The mechanism is described of retaining the contaminant in the surface of the flooring, ways of reducing the hazards of floor surface contamination, decontamination techniques and used decontamination agents. (J.P.)

  18. Decontamination measures for Fukushima prefecture. Fukushima prefecture measures for promoting decontamination

    International Nuclear Information System (INIS)

    Endo, Kouzou

    2013-01-01

    For Fukushima prefecture having suffered from significant damage associated with the Great East Japan Earthquake and the nuclear power plant accident, the decontamination work is the most urgent issue. The paper reports the present situation of the remediation acts of Fukushima Government done since the accident, particular emphasis on the removal of radioactive substances due to cesium 137 in the residential area. Government supports to promote the decontamination work and its operators, and encourages employers and employees in their efforts, to set up temporary storages of the produced radioactive wastes, to cultivate and improve technical supports for decontamination work and strengthen understanding and support of the local resident, thus providing the training course for the site supervisors, the person engaged in the work and management. (S. Ohno)

  19. Summary of decontamination cover manufacturing experience

    International Nuclear Information System (INIS)

    Ulrich, G.B.; Berry, H.W.

    1995-02-01

    Decontamination cover forming cracks and vent cup assembly leaks through the decontamination covers were early manufacturing problems. The decontamination cover total manufacturing process yield was as low as 55%. Applicable tooling and procedures were examined. All manufacturing steps from foil fabrication to final assembly leak testing were considered as possible causes or contributing factors to these problems. The following principal changes were made to correct these problems: (1) the foil annealing temperature was reduced from 1375 degrees to 1250 degrees C, (2) the decontamination cover fabrication procedure (including visual inspection for surface imperfections and elimination of superfluous operations) was improved, (3) the postforming dye penetrant inspection procedure was revised for increased sensitivity, (4) a postforming (prewelding) 1250 degrees C/1 h vacuum stress-relief operation was added, (5) a poststress relief (prewelding) decontamination cover piece-part leak test was implemented, (6) the hold-down fixture used during the decontamination cover-to-cup weld was modified, and concomitantly, and (7) the foil fabrication process was changed from the extruding and rolling of 63-mm-diam vacuum arc-remelted ingots (extrusion process) to the rolling of 19-mm-square arc-melted drop castings (drop cast process). Since these changes were incorporated, the decontamination cover total manufacturing process yield has been 91 %. Most importantly, more than 99% of the decontamination covers welded onto vent cup assemblies were acceptable. The drastic yield improvement is attributed primarily to the change in the foil annealing temperature from 1375 degrees to 1250 degrees C and secondarily to the improvements in the decontamination cover fabrication procedure

  20. Full system decontamination feasibility studies

    International Nuclear Information System (INIS)

    Denault, R.P.; LeSurf, J.E.; Walschot, F.W.

    1988-01-01

    Many chemical decontaminations have been performed on subsystems in light water reactors (BWRs and PWRs) but none on the full system (including the fuel) of large, (>500 MWe) investor owned reactors. Full system decontaminations on pressure-tubed reactors have been shown to facilitate maintenance, inspection, repair and replacement of reactor components. Further advantages are increased reactor availability and plant life extension. A conceptual study has been performed for EPRI (for PWRs) and Commonwealth Edison Co (for BWRs) into the applicability and cost benefit of full system decontaminations (FSD). The joint study showed that FSDs in both PWRs and BWRs, with or without the fuel included in the decontamination, are feasible and cost beneficial provided a large amount of work is to be done following the decontamination. The large amounts of radioactive waste generated can be managed using current technologies. Considerable improvements in waste handling, and consequent cost savings, can be obtained if new techniques which are now reaching commercial application are used. (author)

  1. Numerical simulation of minor actinide recovery behaviour in batch processing of spent metallic fuel by electrorefining

    Energy Technology Data Exchange (ETDEWEB)

    Nawada, H P; Bhat, N P [Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Balasubramanian, G R [Atomic Energy Commission, Mumbai (India)

    1994-06-01

    Numerical simulation of electro-transport of fuel actinides (FAs), minor actinides (MAs) and rare earths (REs) in the electro-refiner (ER) for pyrochemical reprocessing of a typical spent IFR metallic fuel has been attempted based on improved thermo-chemical model developed for application to multi-component system in the ER. Optimization of MA recovery and decontamination factors (DFs) for MAs and REs in batch processing is presented. (author). 7 refs., 4 figs., 1 tab.

  2. Influence of antimicrobial solutions in the decontamination and adhesion of glass-fiber posts to root canals

    Directory of Open Access Journals (Sweden)

    Gisele Aihara HARAGUSHIKU

    2015-08-01

    Full Text Available AbstractObjective This study evaluated the effect of root canal disinfectants on the elimination of bacteria from the root canals, as well as their effect on glass-fiber posts bond strength.Material and Methods Fifty-three endodontically treated root canals had post spaces of 11 mm in length prepared and contaminated with E. faecalis. For CFU/ml analysis, eight teeth were contaminated for 1 h or 30 days (n=4. Teeth were decontaminated with 5% NaOCl, 2% CHX, or distilled water. As control, no decontamination was conducted. After decontamination, sterile paper points were used to collect samples, and CFU/ml were counted. For push-out, three groups were evaluated (n=15: irrigation with 2.5% NaOCl, 2% CHX, or sterile distilled water. A bonding agent was applied to root canal dentin, and a glass-fiber post was cemented with a dual-cured cement. After 24 h, 1-mm-thick slices of the middle portion of root canals were obtained and submitted to the push-out evaluation. Three specimens of each group were evaluated in scanning electron microscopy (SEM. Data were analyzed with one-way ANOVA and Dunnett’s T3 test (α=0.05.Results The number of CFU/ml increased from 1 h to 30 days of contamination in control and sterile distilled water groups. Decontamination with NaOCl was effective only when teeth were contaminated for 1 h. CHX was effective at both contamination times. NaOCl did not influence the bond strength (p>0.05. Higher values were observed with CHX (p<0.05. SEM showed formation of resin tags in all groups.Conclusion CHX showed better results for the irrigation of contaminated root canals both in reducing the bacterial contamination and in improving the glass-fiber post bonding.

  3. Decontamination Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Oh, Won Zin; Jung, Chong Hun; Choi, Wang Kyu; Won, Hui Jun; Kim, Gye Nam

    2004-02-01

    Technology development of surface decontamination in the uranium conversion facility before decommissioning, technology development of component decontamination in the uranium conversion facility after decommissioning, uranium sludge treatment technology development, radioactive waste soil decontamination technology development at the aim of the temporary storage soil of KAERI, Optimum fixation methodology derivation on the soil and uranium waste, and safety assessment methodology development of self disposal of the soil and uranium waste after decontamination have been performed in this study. The unique decontamination technology applicable to the component of the nuclear facility at room temperature was developed. Low concentration chemical decontamination technology which is very powerful so as to decrease the radioactivity of specimen surface under the self disposal level was developed. The component decontamination technology applicable to the nuclear facility after decommissioning by neutral salt electro-polishing was also developed. The volume of the sludge waste could be decreased over 80% by the sludge waste separation method by water. The electrosorption method on selective removal of U(VI) to 1 ppm of unrestricted release level using the uranium-containing lagoon sludge waste was tested and identified. Soil decontamination process and equipment which can reduce the soil volume over 90% were developed. A pilot size of soil decontamination equipment which will be used to development of real scale soil decontamination equipment was designed, fabricated and demonstrated. Optimized fixation methodology on soil and uranium sludge was derived from tests and evaluation of the results. Safety scenario and safety evaluation model were development on soil and uranium sludge aiming at self disposal after decontamination

  4. Decontamination with pasty pickling agents forming a strippable foil

    International Nuclear Information System (INIS)

    Weichselgartner, H.

    1991-01-01

    This paper describes the development of an in-situ decontamination procedure by applying onto the contaminated surface (in an one-step or multi-step process) pasty, chemically aggressive agents causing dilution and adsorption of the contaminant and then hardening to form a strippable foil. The use of such a foil will result in following advantages, with respect to usual techniques: - sensibly shorter operation duration resulting in lower personnel doses; - reduction of the arising secondary waste volume because there is no need for washing; the volume of the spent strippable foil is much smaller than currently used water volumes; - optimal conditioning of the radioactive waste due to its fixation in a solid (foil); - an accidental contamination in a controlled area can easily be fixed and covered avoiding its propagation

  5. Decontamination around the site of Chernobylsk; Decontamination autour du site de Tchernobyl

    Energy Technology Data Exchange (ETDEWEB)

    Manesse, D; Rzepka, J P; Maubert, H

    1990-12-01

    This report describes the decontamination of the site around the nuclear plant of Chernobylsk after the reactor accident of 1986. The work of decontamination in urban areas, buildings, fields and vegetation are detailed. The interventions to reduce the contamination of surface waters and to protect ground waters are also given. (N.C.).

  6. Decontamination of stainless steel canisters that contain high-level waste

    International Nuclear Information System (INIS)

    Bray, L.A.

    1987-01-01

    At the West Valley Nuclear Services Company (WVNSC) in West Valley, New York, high-level radioactive waste (HLW) will be vitrified into a borosilicate glass form and poured into large, stainless steel canisters. During the filling process, volatile fission products, principally 137 Cs, condense on the exterior of the canisters. The smearable contamination that remains on the canisters after they are filled and partially cooled must be removed from the canisters' exterior surfaces prior to their storage and ultimate shipment to a US Department of Energy (DOE) repository for disposal. A simple and effective method was developed for decontamination of HLW canisters. This method of chemical decontamination is applicable to a wide variety of contaminated equipment found in the nuclear industry. The process employs a reduction-oxidation system [Ce(III)/Ce(IV)] in nitric acid solution to chemically mill the surface of stainless steel, similar to the electropolishing process, but without the need for an applied electrical current. Contaminated canisters are simply immersed in the solution at controlled temperature and Ce(IV) concentration levels

  7. Education - path towards solution regarding disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Klein, D.E.

    1991-01-01

    Education, not emotional reaction, is the path to take in the safe disposal of spent nuclear fuel. Education is needed at all levels: Elementary schools, secondary schools, two-year colleges, four-year colleges, graduate schools, and adult education. The Office of Civilian Radioactive Waste Management (OCRWM) should not be expected to tackle this problem alone. Assistance is needed from local communities, schools, and state and federal governments. However, OCRWM can lay the foundation for a comprehensive educational plan directed specifically at educating the public on the spent nuclear fuel issue and OCRWM can begin the implementation of this plan

  8. Demonstration of a SANEX Process in Centrifugal Contactors using the CyMe{sub 4}-BTBP Molecule on a Genuine Fuel Solution

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, D.; Christiansen, B.; Glatz, J.P.; Malmbeck, R.; Serrano-Purroy, D. [European Commiss, Joint Res Ctr, Inst Transuranium Elements, D-76125 Karlsruhe, (Germany); Foreman, M.R.S. [Univ Reading, Dept Chem, Reading RG6 6AD, Berks, (United Kingdom); Geist, A. [Forschungszentrum Karlsruhe, Inst Nukl Entsorgung, D-76021 Karlsruhe, (Germany); Modolo, G. [Forschungszentrum Julich, Inst Energy Res Safety Res and Reactor Technol, D-52425 Julich, (Germany); Sorel, C. [Commissariat Energie Atom Valrho, CEA, DRCP SCPS, F-30207 Bagnols Sur Ceze, (France)

    2009-07-01

    Efficient recovery of minor actinides from a genuine spent fuel solution has been successfully demonstrated by the CyMe{sub 4}-BTBP/DMDOHEMA extractant mixture dissolved in octanol. The continuous countercurrent process, in which actinides(III) were separated from lanthanides(III), was carried out in laboratory centrifugal contactors using an optimized flow-sheet involving a total of 16 stages. The process was divided into 9 stages for extraction from a 2 M nitric acid feed solution, 3 stages for lanthanide scrubbing, and 4 stages for actinide back-extraction. Excellent feed decontamination factors for Am (7000) and Cm (1000) were obtained and the recoveries of these elements were higher than 99.9%. More than 99.9% of the lanthanides were directed to the raffinate except Gd for which 0.32% was recovered in the product. (authors)

  9. Development of strippable gel for surface decontamination applications

    International Nuclear Information System (INIS)

    Banerjee, D.; Sandhya, U.; Khot, S.A.; Srinivas, C.

    2015-07-01

    Strippable gels are an attractive option for decontamination of surfaces particularly when materials are to be reused after decontamination. The process in general results in good decontamination performance with minimal secondary waste generation. This paper reports on development of strippable gel formulation using polyvinyl alcohol as the gel former. Peeling behavior of the gel film improved when glycerol was used as plasticizer. Incorporation of decontaminating agents is essential for the gel to be effective, so a number of decontaminating agents were screened based on their miscibility with the gel, smooth peeling, and good decontamination performance. Based on this study, a strippable gel, ‘INDIGEL’ was formulated as a potential candidate for surface decontamination applications. Extensive trials on evaluation of decontamination performance of Indigel were done on simulated surfaces like stainless steel tray, stainless steel fume hood, PVC floor, granite and ceramic table tops. Results show that Indigel is highly effective for decontamination of surfaces contaminated with all types of radionuclides. Simplicity of its use coupled with good decontamination ability will find application in nuclear and other chemical industries. (author)

  10. Removal of fission product ruthenium from purex process solutions: thiourea as complexing agent

    International Nuclear Information System (INIS)

    Floh, B.; Abrao, A.

    1980-01-01

    A new method for the treatment of spent uranium fuel is presented. It is based on the Purex Process using thiourea to increase the ruthenium decontamination factor. Thiourea exhibits a strong tendency for the formation of coordination compounds in acidic media. This tendency serves as a basis to transform nitrosyl-ruthenium species into Ru /SC(NH)(NH 2 )/ 2+ and Ru /SC(NH)(NH 2 )/ 3 complexes which are unextractable by TBP-varsol. The best conditions for the ruthenium-thiourea complex formation were found to be: thiourea-ruthenium ratio (mass/mass) close to 42, at 75 0 C, 30 minutes reaction time and aging period of 60 minutes. The ruthenium decontamination factor for a single uranium extraction are ca. 80-100, not interfering with extraction of actinides. These values are rather high in comparison to those obtained using the conventional Purex Process (e.g. F.D. sub(Ru)=10). By this reason the method developed here is suitable for the treatment of spent uranium fuels. Thiourea (100g/l) scrubbing experiments of ruthenium, partially co-extracted with actinides, confirmed the possibility of its removal from the extract. A decontamination greater than 83,5% for ruthenium as fission product is obtained in two stages with this procedure. (Author) [pt

  11. Decontaminating method

    International Nuclear Information System (INIS)

    Furukawa, Toshiharu; Shibuya, Kiichiro.

    1985-01-01

    Purpose: To provide a method of eliminating radioactive contaminations capable of ease treatment for decontaminated liquid wastes and grinding materials. Method: Those organic grinding materials such as fine wall nuts shell pieces cause no secondary contaminations since they are softer as compared with inorganic grinding materials, less pulverizable upon collision against the surface to be treated, being capable of reusing and producing no fine scattering powder. In addition, they can be treated by burning. The organic grinding material and water are sprayed by a nozzle to the surface to be treated, and decontaminated liquid wastes are separated into solid components mainly composed of organic grinding materials and liquid components mainly composed of water by filtering. The thus separated solid components are recovered in a storage tank for reuse as the grinding material and, after repeating use, subjected to burning treatment. While on the other hand, water is recovered into a storage tank and, after repeating use, purified by passing through an ion exchange resin-packed column and decontaminated to discharge. (Horiuchi, T.)

  12. Removal of radioactive cesium from surface soils solidified using polyion complex. Rapid communication for decontamination test at Iitate-mura in Fukushima Prefecture

    International Nuclear Information System (INIS)

    Naganawa, Hirochika; Yanase, Nobuyuki; Mitamura, Hisayoshi; Nagano, Tetsushi; Yoshida, Zenko; Kumazawa, Noriyuki; Saitoh, Hiroshi; Kashima, Kaoru; Fukuda, Tatsuya; Tanaka, Shun-ichi

    2011-01-01

    We tried the decontamination of surface soils for three types of agricultural land at Nagadoro district of Iitate-mura (village) in Fukushima Prefecture, which is highly contaminated by deposits of radionuclides from the plume released from the Fukushima Daiichi nuclear power plant. The decontamination method consisted of the peeling of surface soils solidified using a polyion complex, which was formed from a salt solution of polycations and polyanions. Two types of polyion complex solution were applied to an upland field in a plastic greenhouse, a pasture, and a paddy field. The decontamination efficiency of the surface soils reached 90%, and dust release was effectively suppressed during the removal of surface soils. (author)

  13. Advance in radioactive decontamination

    International Nuclear Information System (INIS)

    Basteris M, J. A.; Farrera V, R.

    2010-09-01

    The objective of the present work was to determine if the application of the Na hypochlorite has some utility in the radioactive decontamination, in comparison with the water, detergent and alcohol. Several methods were compared for decontaminate the iodine 131 and technetium 99, the work table and the skin it was carried out an initial count with the Geiger Muller. Later on, in a single occasion, the areas were washed with abundant water, alcohol, clothes detergent and sodium hypochlorite (used commercially as domestic bleacher) without diluting. Observing that the percentage in the decrease of the counted radioactivity by the Geiger Muller, decreased in the following way: It was demonstrated that the Na hypochlorite presents the highest index of radioactive decontamination with 100% of effectiveness. The Na hypochlorite is an excellent substance that can be used with effectiveness and efficiency like decontamination element in the accident cases of radioactive contamination in the clinical laboratories of nuclear medicine. (Author)

  14. Regulation of spent nuclear fuel shipment: A state perspective

    International Nuclear Information System (INIS)

    Halstead, R.J.; Sinderbrand, C.; Woodbury, D.

    1987-01-01

    In 1985, the Wisconsin Department of Natural Resources (WDNR) sought to regulate rail shipments of spent nuclear fuel through the state, because federal regulations did not adequately protect the environmentally sensitive corridor along the route of the shipments. A state interagency working group identified five serious deficiencies in overall federal regulatory scheme: 1) failure to consider the safety or environmental risks associated with selected routes; 2) abscence of route-specific emergency response planning; 3) failure of the NRC to regulate the carrier of spent nuclear fuel or consider its safety record; 4) abscence of requirements for determination of need for, or the propriety of, specific shipments of spent nuclear fuel; and 5) the lack of any opportunity for meaningful public participation with respect to the decision to transport spent nuclear fuel. Pursuant to Wisconsin's hazardous substance statutes, the WDNR issues an order requiring the utility to file a spill prevention and mitigation plan or cease shipping through Wisconsin. A state trial court judge upheld the utility's challenge to Wisconsin's spill plan requirements, based on federal preemption of state authority. The state is now proposing federal legislation which would require: 1) NRC determination of need prior to approval of offsite shipment of spent fuel by the licensees; 2) NRC assessment of the potential environmental impacts of shipments along the proposed route, and comparative evaluation of alternative modes and routes; and 3) NRC approval of a route-specific emergency response and mitigation plan, including local training and periodic exercises. Additionally, the proposed legislation would authorize States and Indian Tribes to establish regulatory programs providing for permits, inspection, contingency plans for monitoring, containments, cleanup and decontamination, surveillance, enforcement and reasonable fees. 15 refs

  15. Progress in the development and application of methods for cleaning and decontamination of components exposed to sodium

    International Nuclear Information System (INIS)

    Msika, D.; Lafon, A.

    1978-01-01

    In the technology of liquid sodium cooled fast reactors, the necessary processes for washing and decontamination have been demonstrated. For sodium removal, different solutions have been considered and tested in France. The studies have been progressively oriented toward defining a process using a fine dispersion of water in a gas (atomization). The results obtained by that method on non-radioactive components were satisfactory insofar as the efficiency and safety of the operation was concerned. The purpose of decontaminating components from the reactor primary circuits is to reduce the level of surface activity to a level compatible with personnel access without biological shielding. The treatment Is comprised of two stages: (i) washing, to remove any residual sodium, and (ii) decontamination which alternately applies alkaline and acid solutions, to dissolve the deposited radionuclides without significant attack on the surface. The treatment, recently applied to components from in-service reactors, generally met the design objective. (author)

  16. Soil decontamination criteria report, November 1980

    International Nuclear Information System (INIS)

    Riordan, G.A.

    1980-01-01

    A program to access the extent of transuranic soil contamination at DOE sites and to develop methods for their decontamination is underway at Rocky Flats. As part of this program, acceptable soil contamination levels for plutonium proposed by a number of authorities over the past couple of decades were reviewed. From this review, goals for soil decontamination work are proposed. These goals, which relate to the disposition of the products of a decontamination process, are summarized as follows (dpm/g will refer to disintegrations per minute of transuranic nuclides per gram of soil): soil fractions having less than 30 dpm can be disposed of as surface soil with unrestricted usage. Fine soil fractions (less than 100 μm) that have less than 500 dpm and coarse soil fractions that have less than 1000 dpm can be disposed of as subsurface soil as long as usage is controlled to ensure compliance with EPA dosage guidance. Soil concentrates that have an activity greater than the above values but less than 22,000 dpm should be interred in an approved, low level waste burial site. Soil concentrates that are greater than 22,000 dpm should be stored as retrievable waste. Changes in the technical and legal areas of soil decontamination are rapid. Permissible soil decontamination levels will change as will decontamination technology and the ability to monitor the effectiveness of the decontamination processes. As a result, annual updates of decontamination criteria, goals, and monitoring are expected

  17. Decontamination of polyvinylchloride- and rubber type flooring

    International Nuclear Information System (INIS)

    Kunze, S.

    1975-01-01

    These types, fabricated by mixing of the basic components, showed no relation between content of fillers and decontamination results. Decontamination results are partly poorer, if the flooring contains a high concentration of the filler, especially if the latter consists mainly of hydrophilic materials. The coloring of the floorings seems to have no influence on the decontamination but floorings with clearly separated patterns can not be recommended for nuclear facilities. Fabricated by chemical reactions between polymeres, vulcanization materials and fillers, the decontamination results depend definitely from the proper choice of the filler. Flooring types, containing lampblack, graphite, kaoline, barium sulfate and titanium oxide are easy to decontamine. Again, increasing contents of hydrophilic filler cause a fall off in the decontamination results. (orig.) [de

  18. UV-decontamination of potable and sewage water in the city with population over one million

    Directory of Open Access Journals (Sweden)

    Smirnov Aleksandr

    2016-01-01

    Full Text Available The waterworks system in a modern city is a complex challenge. From the one hand, it is necessary to provide high-quality potable water to the residents with observance of all sanitary and hygienic requirements; from the other hand, the sewage water discharged from the city should not affect the environment. Meanwhile, the microbiological safety is the top-priority and crucial parameter for evaluation of any work and any project. In Novosibirsk, solutions have been found for both of them by using the cutting-edge approaches in the decontamination technologies. The UV-decontamination enabled to create a multi-barrier efficient protection when dealing with the potable water treatment and ensure environmentally-friendly decontamination of the sewage water.

  19. Long-term decontamination engineering study. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Geuther, W.J.

    1995-04-03

    This report was prepared by Westinghouse Hanford Company (WHC) with technical and cost estimating support from Pacific Northwest Laboratories (PNL) and Parsons Environmental Services, Inc. (Parsons). This engineering study evaluates the requirements and alternatives for decontamination/treatment of contaminated equipment at the Hanford Site. The purpose of this study is to determine the decontamination/treatment strategy that best supports the Hanford Site environmental restoration mission. It describes the potential waste streams requiring treatment or decontamination, develops the alternatives under consideration establishes the criteria for comparison, evaluates the alternatives, and draws conclusions (i.e., the optimum strategy for decontamination). Although two primary alternatives are discussed, this study does identify other alternatives that may warrant additional study. hanford Site solid waste management program activities include storage, special processing, decontamination/treatment, and disposal facilities. This study focuses on the decontamination/treatment processes (e.g., waste decontamination, size reduction, immobilization, and packaging) that support the environmental restoration mission at the Hanford Site.

  20. Long-term decontamination engineering study. Volume 1

    International Nuclear Information System (INIS)

    Geuther, W.J.

    1995-01-01

    This report was prepared by Westinghouse Hanford Company (WHC) with technical and cost estimating support from Pacific Northwest Laboratories (PNL) and Parsons Environmental Services, Inc. (Parsons). This engineering study evaluates the requirements and alternatives for decontamination/treatment of contaminated equipment at the Hanford Site. The purpose of this study is to determine the decontamination/treatment strategy that best supports the Hanford Site environmental restoration mission. It describes the potential waste streams requiring treatment or decontamination, develops the alternatives under consideration establishes the criteria for comparison, evaluates the alternatives, and draws conclusions (i.e., the optimum strategy for decontamination). Although two primary alternatives are discussed, this study does identify other alternatives that may warrant additional study. hanford Site solid waste management program activities include storage, special processing, decontamination/treatment, and disposal facilities. This study focuses on the decontamination/treatment processes (e.g., waste decontamination, size reduction, immobilization, and packaging) that support the environmental restoration mission at the Hanford Site

  1. EDF/CIDEN - ONECTRA: PWR decontamination

    International Nuclear Information System (INIS)

    Fayolle, P.; Orcel, H.; Wertz, L.

    2010-01-01

    In the context of PWR circuit renewal (expected in 2011) and their decontamination, an analysis of data coming from cartography and on site decontamination measurements as well as from premise modelling by means of the PANTHERE radioprotection code, is presented. Several French PWRs have been studied. After a presentation of code principles and operation, the authors discuss the radiological context of a workstation, and give an assessment of the annual dose associated with maintenance operations with or without decontamination

  2. The removal of Cs-137 from soil using washing-electrokinetic decontamination equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyenam; Kim, Seungsoo; Kim, Geunho; Park, Hyemin; Kim, Wansuk; Park, Ukryang; Kwon, Hyeokju; Ryu, Ohha; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    The radioactive soil at the KAERI radioactive waste storage facility has slightly high hydro-conductivity, and was mainly contaminated with {sup 137}Cs 30-35 years ago. Recently, a soil washing method has been applied to remove {sup 137}Cs from radioactive soil, but it appears that the removal efficiency of {sup 137}Cs had low and a lot of waste solution was generated. Meanwhile, an electrokinetic decontamination method provides high removal efficiency of {sup 137}Cs and generates little waste effluent. Thus, it is suggested that an electrokinetic decontamination method is a suitable technology in consideration of the soil characteristics near South Korean nuclear facilities.

  3. TMI-2 containment decontamination plans

    International Nuclear Information System (INIS)

    McDougall, F.

    1980-01-01

    Because of other priorities such as reentry, purging, and recovery, containment decontamination is only in the preliminary planning stages. This paper summarizes the study with emphasis on the remote decontamination techniques

  4. Commercial Cleaning Products for Chemical Decontamination: A Scoping Study

    Science.gov (United States)

    2014-05-01

    and may injure human skin without dilution), although this approach is less favoured in a mass casualty decontamination situation than soap and water...commercial cleaning products, full strength K-O-K® liquid bleach (5.25% aqueous solution of NaOCl), dish-washing detergent Cascade® with Extra...Bleach Action Gel, OxiClean® Versatile Stain Remover Powder, and ZEP® Industrial Purple liquid cleaner (proprietary caustic cleaner containing

  5. Decontamination Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Choi, W. K.; Jung, C. H.; Oh, W. Z.

    2007-06-01

    The originative CO 2 pellet blasting equipment was developed by improving additional components such as feed screw, idle roller and air-lock feeder to clear up the problems of freezing and discontinuity of blasting and by adopting pneumatically operated vacuum suction head and vacuum cup to prevent recontamination by collecting contaminant particulates simultaneously with the decontamination. The optimum decontamination process was established according to the kind of materials such as metal, concrete and plastic and the type of contaminants such as particulate, fixed chemical compound and oil. An excellent decontamination performances were verified by means of the lab-scale hot test with radioactive specimen and the technology demonstration in IMEF hot cell. The PFC dry decontamination equipment applicable to the surface contaminated with high radioactive particulate was developed. This equipment consists of the unit processes such as spray, collection, filtration and dry distillation designed originatively applicable to inside of dry hot cell. Through the demonstration of PFC spray decontamination process in IMEF hot cell, we secured on-site applicability and the decontamination efficiency more than 90 %. We investigated the characteristics of dismantled metal waste melting and the radionuclide(Co, Cs, U) distribution into ingot and slag by melting decontamination experiments using electric arc melter. We obtained the decontamination factors greater than 100 for Cs and of 10∼100 for uranium. The pilot scale(200 kg/batch) demonstration for melting decontamination was carried out successfully using high temperature melting facility at KAERI. The volume reduction factor of 1/7 and the economical feasibility of the melting decontamination were verified.

  6. Spent nuclear fuel storage - Basic concept

    International Nuclear Information System (INIS)

    Krempel, Ascanio; Santos, Cicero D. Pacifici dos; Sato, Heitor Hitoshi; Magalhaes, Leonardo de

    2009-01-01

    According to the procedures adopted in others countries in the world, the spent nuclear fuel elements burned to produce electrical energy in the Brazilian Nuclear Power Plant of Angra do Reis, Central Nuclear Almirante Alvaro Alberto - CNAAA will be stored for a long time. Such procedure will allow the next generation to decide how they will handle those materials. In the future, the reprocessing of the nuclear fuel assemblies could be a good solution in order to have additional energy resource and also to decrease the volume of discarded materials. This decision will be done in the future according to the new studies and investigations that are being studied around the world. The present proposal to handle the nuclear spent fuel is to storage it for a long period of time, under institutional control. Therefore, the aim of this paper is to introduce a proposal of a basic concept of spent fuel storage, which involves the construction of a new storage building at site, in order to increase the present storage capacity of spent fuel assemblies in CNAAA installation; the concept of the spent fuel transportation casks that will transfer the spent fuel assemblies from the power plants to the Spent Fuel Complementary Storage Building and later on from this building to the Long Term Intermediate Storage of Spent Fuel; the concept of the spent fuel canister and finally the basic concept of the spent fuel long term storage. (author)

  7. Applications of genetic algorithms to optimization problems in the solvent extraction process for spent nuclear fuel

    International Nuclear Information System (INIS)

    Omori, Ryota, Sakakibara, Yasushi; Suzuki, Atsuyuki

    1997-01-01

    Applications of genetic algorithms (GAs) to optimization problems in the solvent extraction process for spent nuclear fuel are described. Genetic algorithms have been considered a promising tool for use in solving optimization problems in complicated and nonlinear systems because they require no derivatives of the objective function. In addition, they have the ability to treat a set of many possible solutions and consider multiple objectives simultaneously, so they can calculate many pareto optimal points on the trade-off curve between the competing objectives in a single iteration, which leads to small computing time. Genetic algorithms were applied to two optimization problems. First, process variables in the partitioning process were optimized using a weighted objective function. It was observed that the average fitness of a generation increased steadily as the generation proceeded and satisfactory solutions were obtained in all cases, which means that GAs are an appropriate method to obtain such an optimization. Secondly, GAs were applied to a multiobjective optimization problem in the co-decontamination process, and the trade-off curve between the loss of uranium and the solvent flow rate was successfully obtained. For both optimization problems, CPU time with the present method was estimated to be several tens of times smaller than with the random search method

  8. Decontamination of radioruthenium from TRUEX Solvent

    International Nuclear Information System (INIS)

    Kumaresan, R.; Nayak, Prasant; Venkatesan, K.A.; Antony, M.P.; Rao, P.R. Vasudeva

    2012-01-01

    A procedure has been developed for the decontamination of radioruthenium from the lean organic phase composed of a solution 0.2 M n-octyl(phenyl)-N,N-diisobutylcarbamoylmethylyphosphineoxide (CMPO) and 1.2 M tri-n-butylphosphate (TBP) in n-dodecane (n-DD), which was used for the partitioning of minor actinides from actual high active waste solution (155 GWd/Te). For this purpose, the stripping behavior of radioruthenium from 0.2 M CMPO-1.2 M TBP in n-DD was studied at 298 K by using various aqueous reagents and adsorbents. Among the different reagents investigated, the aqueous solution of sodium hydroxide and sodium carbonate and adsorbents such as neutral alumina and anion exchange resin (OH - form) were identified as the promising candidates. Nearly 90-95% of radioruthenium was removed from the lean organic phase in seven contacts using sodium carbonate or sodium hydroxide solution. The residual radioactivity in the organic phase was removed by treatment with neutral alumina or anion exchange resin. The quality of the organic phase was ascertained by 241 Am(III) retention test. (orig.)

  9. An evaluation of selected methods for the decontamination of cattle hides prior to skinning.

    Science.gov (United States)

    Small, A; Wells-Burr, B; Buncic, S

    2005-02-01

    The effectiveness of different decontamination treatments in reducing microbial loads on cattle hides was assessed. The 10-s hide treatments were conducted using a wet-and-dry vacuum cleaner filled with one of the liquids (heated to 50 °C) indicated below, followed or not by 10-min drying in the air. Also, the hide was clipped, followed or not by 10-s singeing using a hand-held blowtorch. Before and after each decontamination treatment, the hide was sampled (100 cm(2) areas) by a sponge-swabbing method to compare the total viable counts of bacteria (TVC). The largest bacterial reduction (Psanitizer solution (10% Betane Plus) resulted in significant reductions of 1.80 (Peffects. Since hide contamination is associated with microbial contamination of the carcasses, the results indicate that post-killing/pre-skinning hide decontamination (used alone, or in combination with carcass decontamination) has a potential to improve microbial meat safety. Nevertheless, further research is required to optimise the efficacy of these treatments in the reduction of specific pathogens under commercial conditions.

  10. Studies of radioactive deposition on farm buildings and testing of some methods for decontamination

    International Nuclear Information System (INIS)

    Andersson, Inger; Erlandsson, B.; Hansson, J.; Dolby, C.M.

    1993-01-01

    Studies were made of radioactive fallout on roofs of farm buildings and of some methods of decontamination. The aim was to find ways of reducing the external radiation dose to farmers working and farm animals housed in stables in a fallout situation. The roof material studied was steel plate (A) and tile (B,C, D), each with four sample areas of ca. 1 m 2 . The roof samples were collected at three places and from totally four building in regions which in 1986 (after the Chernobyl fallout) has a 137 Cs ground depositions of 3040 kBq/m 2 (A, B, C) and > 100 kBq/m 2 (D). Four different decontamination methods were tested: 1. High pressure washing with water. 2. Repeated high pressure washing with water. 3. Application of foam of a sanitizing chemical for livestock buildings followed by high pressure washing with water. 4. Application of a solution of KCl followed by high pressure washing with water. In C, the effect of decontamination expressed as the percentage decrease of the 137 Cs activity was on average for all methods, 55%. This material was coated before the decontamination by a marked growth of algae or moss, which was effectively washed off during the sanitizing procedure. In B, the average activity decontamination effect was 25%, while in D (with the highest original activity, but without growth of organic material) the effect was very small, 3%. In A, the activity level before decontamination was so low that measurements after decontamination were considered unnecessary. Method number 4 was the most effective in B and C, 32% and 64%, respectively, while method number 3 was the most effective in D, 5.7%. The results indicate that good effects can be achieved in radioactivity decontamination of roof material with equipment and chemicals which are normally available on farms

  11. Complexing properties of the main organic acids used in decontamination solutions and reactions involved in their degradation or elimination

    International Nuclear Information System (INIS)

    Noel, D.; Kerrec, O.; Lantes, B.; Rosset, R.; Bayri, B.; Desbarres, J.; Jardy, A.

    1994-09-01

    This paper presents a study that, parallel with the industrial development of the decontamination chemical process, has been performed more fundamentally on the chemical properties of used products: degradation reaction during process or after decontamination and during wastes treatment. In particular, results show that the organic compounds used have no interaction with resins during radioactive wastes storage and therefore they do not present leaching risk. (authors). 8 refs., 3 figs., 4 tabs

  12. Overview of the spent nuclear fuel storage facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Conatser, E.R.; Thomas, J.E.

    2000-01-01

    The May 1996 Record of Decision on a Proposed Nuclear Weapons Nonproliferation Policy concerning Foreign Research Reactor Spent Nuclear Fuel initiated a 13 year campaign renewing a policy to support the return of spent nuclear fuel containing uranium of U.S. origin from foreign research reactors to the United States. As of December 1999, over 22% of the approximately 13,000 spent nuclear fuel assemblies from participating countries have been returned to the Savannah River Site (SRS). These ∼2650 assemblies are currently stored in two dedicated SRS wet storage facilities. One is the Receiving Basin for Off-site Fuels (RBOF) and the other as L-Basin. RBOF, built in the early 60's to support the 'Atoms for Peace' program, has been receiving off-site fuel for over 35 years. RBOF has received approximately 1950 casks since startup and has the capability of handling all of the casks currently used in the FRR program. However, RBOF is 90% filled to capacity and is not capable of storing all of the fuel to be received in the program. L-Basin was originally used as temporary storage for materials irradiated in SRS's L-Reactor. New storage racks and other modifications were completed in 1996 that improved water quality and allowed the L-Basin to receive, handle and store spent nuclear fuel assemblies and components from off-site. The first foreign cask was received into the L-Area in April 1997 and approximately 105 foreign and domestic casks have been received since that time. This paper provides an overview of activities related to fuel receipt and storage in both the Receiving Basin for Off-site Fuels (RBOF) and L-Basin facilities. It will illustrate each step of the fuel receipt program from arrival of casks at SRS through cask unloading and decontamination. It will follow the fuel handling process, from fuel unloading, through the cropping and bundling stages, and final placement in the wet storage rack. Decontamination methods and equipment will be explained to show

  13. Overview of the spent nuclear fuel storage facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Thomas, Jay

    1999-01-01

    The May 1996 Record of Decision on a Proposed Nuclear Weapons Nonproliferation Policy concerning Foreign Research Reactor Spent Nuclear Fuel initiated a 13 year campaign renewing a policy to support the return of spent nuclear fuel containing uranium of U.S.-origin from foreign research reactors to the United States. As of July 1999, over 18% of the approximately 13,000 spent nuclear fuel assemblies from participating countries have been returned to the Savannah River Site (SRS). These 2400 assemblies are currently stored in two dedicated SRS wet storage facilities. One is the Receiving Basin for Off-site Fuels (RBOF) and the other as L-Basin. RBOF, built in the early 60's to support the 'Atoms for Peace' program, has been receiving off-site fuel for over 35 years. RBOF has received approximately 1950 casks since startup and has the capability of handling all of the casks currently used in the FRR program. However, RBOF is 90% filled to capacity and is not capable of storing all of the fuel to be received in the program. L-Basin was originally used as temporary storage for materials irradiated in SRS's L-Reactor. New storage racks and other modifications were completed in 1996 that improved water quality and allowed L-Basin to receive, handle and store spent nuclear fuel assemblies and components from off-site. The first foreign cask was received into L-Area in April 1997 and approximately 86 foreign and domestic casks have been received since that time. This paper provides an overview of activities related to fuel receipt and storage in both the Receiving Basin for Off-site Fuels (RBOF) and L-Basin facilities. It will illustrate each step of the fuel receipt program from arrival of casks at SRS through cask unloading and decontamination. It will follow the fuel handling process, from fuel unloading, through the cropping and bundling stages, and final placement in the wet storage rack. Decontamination methods and equipment will be explained to show how the empty

  14. Overview of the spent nuclear fuel storage facilities at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Conatser, E.R.; Thomas, J.E. [Westinghouse Savannah River Company, Aiken, SC 29808 (United States)

    2000-07-01

    The May 1996 Record of Decision on a Proposed Nuclear Weapons Nonproliferation Policy concerning Foreign Research Reactor Spent Nuclear Fuel initiated a 13 year campaign renewing a policy to support the return of spent nuclear fuel containing uranium of U.S. origin from foreign research reactors to the United States. As of December 1999, over 22% of the approximately 13,000 spent nuclear fuel assemblies from participating countries have been returned to the Savannah River Site (SRS). These {approx}2650 assemblies are currently stored in two dedicated SRS wet storage facilities. One is the Receiving Basin for Off-site Fuels (RBOF) and the other as L-Basin. RBOF, built in the early 60's to support the 'Atoms for Peace' program, has been receiving off-site fuel for over 35 years. RBOF has received approximately 1950 casks since startup and has the capability of handling all of the casks currently used in the FRR program. However, RBOF is 90% filled to capacity and is not capable of storing all of the fuel to be received in the program. L-Basin was originally used as temporary storage for materials irradiated in SRS's L-Reactor. New storage racks and other modifications were completed in 1996 that improved water quality and allowed the L-Basin to receive, handle and store spent nuclear fuel assemblies and components from off-site. The first foreign cask was received into the L-Area in April 1997 and approximately 105 foreign and domestic casks have been received since that time. This paper provides an overview of activities related to fuel receipt and storage in both the Receiving Basin for Off-site Fuels (RBOF) and L-Basin facilities. It will illustrate each step of the fuel receipt program from arrival of casks at SRS through cask unloading and decontamination. It will follow the fuel handling process, from fuel unloading, through the cropping and bundling stages, and final placement in the wet storage rack. Decontamination methods and equipment

  15. Decontaminating method for radioactive contaminant

    International Nuclear Information System (INIS)

    Suzuki, Ken-ichi.

    1994-01-01

    After decontamination of radioactive contaminates with d-limonene, a radioactive material separating agent not compatible with liquid wastes caused by decontamination is added to the liquid wastes. Then after stirring, they are stood still to be separated into two phases, and the radioactive materials in the liquid waste phase caused by decontamination are transferred to the phase of the radioactive material separating agent. With such procedures, they can satisfactorily be separated into two phases of d-limonene and the radioactive material separating agent. Further, d-limonene remaining after the separation can be used again as a decontaminating agent for radioactive contaminates. Therefore, the amount of d-limonene to be used can be reduced, to lower the cost for cleaning, thereby enabling to reduce the amount of radioactive wastes formed. (T.M.)

  16. Removal of Uranium in Soil Using Large-scale Electrokinetic Decontamination Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye Nam; Kim, Il gook; Jeong, Jung Whan; Kim, Seung Soo; Choi, Jong Won [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    A method to remediate a large volume of radioactive soil should be developed. Until now the soil washing method has been studied to remediate soil contaminated with uranium, cobalt, cesium, and so on. However, it has a lower removal efficiency of nuclide from soils and generated a large volume of waste-solution. In addition, its application to the soil composed of fine particle is impossible. Thus, the electrokinetic method has been studied as a new technology for soil remediation recently. In this study, for a reduction of the waste electrolyte volume, the reuse period of waste electrolyte in the electrokinetic decontamination experiment through several experiments with the manufactured 1.2 ton electrokinetic decontamination equipment. In addition, the time required to reach below the clearance concentration level for self- disposal was estimated through several experiments using the manufactured electrokinetic decontamination equipment. When the initial uranium concentrations in the soils were 7.0-20.0 Bq/g, the times required to reach below the clearance concentration level for self-disposal were 25-40 days with the waste and reclaimed electrolytes.

  17. Long Term Management of Spent Fuel from NEK

    International Nuclear Information System (INIS)

    Kegel, L.; Zeleznik, N.; Lokner, V.

    2012-01-01

    In 2008 Slovenian national agency for radioactive waste management ARAO started together with Croatian sister organization APO elaboration of a new revision of Decommissioning, Radioactive waste and Spent fuel management program for NPP Krsko. In scope of this work also new studies for spent fuel storage and disposal were prepared in which technical solutions were analyzed and proposed for specific spent fuel (SF) from NPP Krsko. Time schedules for main activities of SF disposal development were elaborated for two alternative scenarios which correspond to normal NPP Krsko operation and 20 - year lifetime extension. All technical activities were financially assessed and costs estimates of SF storage and geological disposal development provided. The prepared studies were verified by international experts in order to confirm the correctness of technical inputs, proposed solutions, time schedules of activities and costs evaluations. The calculated nominal and discounted costs of spent fuel management served for the recalculation of annuities in the integral scenarios of interrelated activities on NPP Krsko decommissioning, LILW and SF management. Besides new first proposal of long-term management of spent fuel from NPP Krsko the joint work also opened additional questions. One of this is time schedule of proposed activities for long term SF management - what were the criteria used in the determination of actions and are they optimal for both countries. How the process of site selection for SF storage or disposal should be prepared having in mind that it will bring many questions in both countries? Is direct disposal of SF still the best solution in current development of nuclear prospects? The paper will present the current development and solutions for SF management from NPP Krsko and will try to answer questions which need to be solved and future development in the SF management.(author).

  18. Specific decontamination methods: water nozzle, cavitation erosion

    International Nuclear Information System (INIS)

    Boulitrop, D.; Gauchon, J.P.; Lecoffre, Y.

    1984-05-01

    The erosion and decontamination tests carried out in the framework of this study, allowed to specify the fields favourable to the use of the high pressure jet taking into account the determinant parameters that are the pressure and the target-nozzle distance. The previous spraying of gels with chemical reagents (sulfuric acid anf hydrazine) allows to get better decontamination factors. Then, the feasibility study of a decontamination method by cavitation erosion is presented. Gelled compounds for decontamination have been developed; their decontamination quality has been evaluated by comparative contamination tests in laboratory and decontamination tests of samples of materials used in nuclear industry; this last method is adapted to remote handling devices and produces a low quantity of secondary effluents, so it allows to clean high contaminated installation on the site without additional exposure of the personnel [fr

  19. New decontamination techniques generating a low volume of effluent

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document presents some decontamination techniques, their principles, characteristics and advantages and provides references on the subject. Techniques as foam and spray foam decontamination, dry steam decontamination, electro-decontamination and gel decontamination are presented. A presentation of TRIADE, cleanup dismantling servicing, is also provided. (A.L.B.)

  20. New decontamination techniques generating a low volume of effluent

    International Nuclear Information System (INIS)

    2002-01-01

    This document presents some decontamination techniques, their principles, characteristics and advantages and provides references on the subject. Techniques as foam and spray foam decontamination, dry steam decontamination, electro-decontamination and gel decontamination are presented. A presentation of TRIADE, cleanup dismantling servicing, is also provided. (A.L.B.)

  1. Site decontamination

    International Nuclear Information System (INIS)

    Bicker, A.E.

    1981-01-01

    Among the several DOE sites that have been radiologically decontaminated under the auspices of the Nevada Operations Office are three whose physical characteristics are unique. These are the Tatum Dome Test Site (TDTS) near Hattiesburg, Mississippi; a location of mountainous terrain (Pahute Mesa) on the Nevada Test Site; and the GNOME site near Carlsbad, New Mexico. In each case the contamination, the terrain, and the climate conditions were different. This presentation includes a brief description of each site, the methods used to perform radiological surveys, the logistics required to support the decontamination (including health physics and sample analysis), and the specific techniques used to reduce or remove the contamination

  2. Management and storage of spent fuel from CEA research reactors

    International Nuclear Information System (INIS)

    Merchie, F.

    1996-01-01

    CEA research reactors and their interim spent fuel storage facilities are described. Long-term solutions for spent fuel storage problems, involving wet storage at PEGASE or dry storage at CASCAD, are outlined in some detail. (author)

  3. Low-decontamination approach to a proliferation-resistant fuel cycle

    International Nuclear Information System (INIS)

    Asquith, J.G.; Grantham, L.F.

    1978-01-01

    To prevent the diversion of nuclear material from power production to weapon production either by a nation or by clandestine groups within a nation, the nuclear fuel cycle must be proliferation-resistant and safeguarded. Potentially proliferation-resistant and safeguarded fuel cycles based on low-decontamination pyroreprocessing have been developed for the light water reactor (LWR), fast breeder reactor (FBR), and FBR-LWR combination. The major penalty for recycling fission products to the LWR is that fuel enrichment must be somewhat greater to overcome parasitic fission product absorption of neutrons. In the FBR, the major penalty is a slight reduction in breeding ratio due to the displacement of fertile material by fission products. Preliminary cost analysis indicates that these fuel cycles are economically competitive with fuel cycles using conventional reprocessing or those using virgin uranium if spent fuel storage costs are considered

  4. Treatment of wastes arising from decontamination process using citric acid as a decontaminate agent

    International Nuclear Information System (INIS)

    Mierzwa, J.C.; Riella, H.G.; Carvalho, E.U. de

    1993-01-01

    Wastes arising from equipment decontamination processes from nuclear fuel cycle facilities at Coordenacao de Projetos Especiais - Comissao Nacional de Energia Nuclear, Sao Paulo (COPESP-CNEN/SP) has been studied after using citric acid as a decontaminate agent. Precipitation of uranium and metallic impurities resulted from use of sodium hydroxide or calcium oxide plus a flocculation agent. The removal efficient of uranium was 95% and 99% for sodium hydroxide and calcium oxide respectively. The results shows that this process can be used to test wastes from decontamination processes which use citric acid. (B.C.A.). 03 refs, 08 figs, 04 tabs

  5. CB decontamination for first responders

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, M.D.G.; Purdon, J.G.; Burczyk, A. [Defence Research and Development Canada Suffield, Ralston, AB (Canada)

    2006-07-01

    The Universal Containment System (UCS) is designed to contain, mitigate and decontaminate chemical, biological and radiological warfare agents. The UCS consists of a lightweight, tent-like enclosure filled with a water-based surface decontaminating foam (SDF). The Canadian government funded a project to advance the understanding of the behaviour of the UCS. This paper described the success of the project as well as the technological advances in the UCS formulation and equipment. Vapour desorption experiments were conducted in which SDF was applied onto 12 surfaces found in a typical office environment. Both mustard and nerve agent were studied on the test surfaces. Both scrubbing and non-scrubbing decontamination methods were tested. SDF effectively decontaminated the non-porous substances, particularly when the scrubbing procedure was used. Results were more complicated for the non-porous samples. A dye added to the agent was useful for determining the fate of the agent. Liquid phase studies were conducted in which the reaction between SDF and various agents were studied in the liquid phase in order to estimate the rate of reaction, the stoichiometry and the reaction products formed. Both SDF and the commercial decontamination agent CASCAD were found to effectively kill 100 per cent of anthrax spores. The significance of this project to first responders was considerable. Changes to the formulation and equipment of UCS will increase its usefulness and safety. Users will also have a better knowledge of the amount of decontamination needed for complete effectiveness in specific situations. Recommendations have been made for use of the product on a range of indoor surfaces. Field trials have shown the blast mitigation and agent decontamination ability of the foam under explosive situations. 15 refs., 4 tabs.

  6. Spent fuel management in Spain

    International Nuclear Information System (INIS)

    Gonzalez, J.L.

    2002-01-01

    The spent fuel management strategy in Spain is presented. The strategy includes temporary solutions and plans for final disposal. The need for R and D including partitioning and transmutation, as well as the financial constraints are also addressed. (author)

  7. Radioactive characteristics of spent fuels and reprocessing products in thorium fueled alternative cycles

    International Nuclear Information System (INIS)

    Maeda, Mitsuru

    1978-09-01

    In order to provide one fundamental material for the evaluation of Th cycle, compositions of the spent fuels were calculated with the ORIGEN code on following fuel cycles: (1) PWR fueled with Th- enriched U, (2) PWR fueled with Th-denatured U, (3) CANDU fueled with Th-enriched U and (4) HTGR fueled with Th-enriched U. Using these data, product specifications on radioactivity for their reprocessing were calculated, based on a criterion that radioactivities due to foreign elements do not exceed those inherent in nuclear fuel elements, due to 232 U in bred U or 228 Th in recovered Th, respectively. Conclusions are as the following: (1) Because of very high contents of 232 U and 228 Th in the Th cycle fuels from water moderated reactors, especially from PWR, required decontamination factors for their reprocessing will be smaller by a factor of 10 3 to 10 4 , compared with those from U-Pu fueled LWR cycle. (2) These less stringent product specifications on the radioactivity of bred U and recovered Th will justify introduction of some low decontaminating process, with additional advantage of increased proliferation resistance. (3) Decontamination factors required for HTGR fuel will be 10 to 30 times higher than for the other fuels, because of less 232 U and 228 Th generation, and higher burn-up in the fuel. (author)

  8. DECONTAMINATION TECHNOLOGIES FOR FACILITY REUSE

    International Nuclear Information System (INIS)

    Bossart, Steven J.; Blair, Danielle M.

    2003-01-01

    As nuclear research and production facilities across the U.S. Department of Energy (DOE) nuclear weapons complex are slated for deactivation and decommissioning (D and D), there is a need to decontaminate some facilities for reuse for another mission or continued use for the same mission. Improved technologies available in the commercial sector and tested by the DOE can help solve the DOE's decontamination problems. Decontamination technologies include mechanical methods, such as shaving, scabbling, and blasting; application of chemicals; biological methods; and electrochemical techniques. Materials to be decontaminated are primarily concrete or metal. Concrete materials include walls, floors, ceilings, bio-shields, and fuel pools. Metallic materials include structural steel, valves, pipes, gloveboxes, reactors, and other equipment. Porous materials such as concrete can be contaminated throughout their structure, although contamination in concrete normally resides in the top quarter-inch below the surface. Metals are normally only contaminated on the surface. Contamination includes a variety of alpha, beta, and gamma-emitting radionuclides and can sometimes include heavy metals and organic contamination regulated by the Resource Conservation and Recovery Act (RCRA). This paper describes several advanced mechanical, chemical, and other methods to decontaminate structures, equipment, and materials

  9. Liquid decontaminants for nuclear applications

    International Nuclear Information System (INIS)

    Henning, Klaus; Gojowczyk, Peter

    2011-01-01

    Decontaminants used in the nuclear field must meet a variety of requirements. On the one hand, the washing process must remove radioactive contamination and conventional dirt from the items washed. On the other hand, subsequent disposal of the washing water arisings must be feasible by the usual waste disposal pathway. One aspect of particular importance is unproblematic treatment of the radioactively contaminated waste water, as a rule low to medium active, whose final storage must be ensured. Decontaminants must not impair waste treatment processes, such as evaporation, filtration, and centrifuging, as well as further treatment of the concentrates and residues arising which are worked into matrix materials (cementation, bituminization), in drum drying or roller mill drying. For reasons of safety at work and environmental quality, also aspects of human toxicology and ecotoxicology must be taken into account. In this way, handling decontaminants will not jeopardize the health of personnel or cause potential long-term environmental damage. Liquid decontaminants, compared to powders, offer the advantage of automatic dosage. The liquid product is dosed accurately as a function of the washing program used. Liquid decontaminants can be handled safely in hot laundries without causing skin and eye contacts. (orig.)

  10. Decontamination of skin in emergency situation

    International Nuclear Information System (INIS)

    Harase, Chieko

    1988-01-01

    The report briefly discusses the organization of decontamination personnel and facilities to be used for decontamination in the event of an emergency, and outlines the author's experience in carrying out decontamination of the skin of tourists who came back to Japan after staying in Kiev at the time of the accident at Chernobyl (about 150 km away from Kiev). In Japan at present, no nuclear facilities seem to have sufficient personnel who are in charge of skin decontamination activities required in the event of an emergency, and emergency measures are generally limited to the development of emergency plans and implementation of drills. It is necessary to establish training courses for medical doctors and other medical personnel. Each plant has plans for skin decontamination procedures designed for professional workers in the plant. Plans should also be established for general people who might suffer skin decontamination in the event of an accident. What is the most important is to ease their anxiety about the contamination of their skin. The procedures, including washing and shampooing, used for the tourist returning from Kiev are described, and some problems encountered or expected to occur in similar cases are outlined and discussed. (Nogami, K.)

  11. Decontamination strategies in contaminated settlement

    International Nuclear Information System (INIS)

    Hubert, P.; Jouve, A.; Tallec, V. Le

    1996-01-01

    Six years after the Chernobyl accident, decontamination actions had been completed in many places, the contamination could be considered as fixed, especially on urban surfaces and the social situation was felt to be stabilized. Under those conditions the efficiency of the 'classical' decontamination techniques was under question, it was worthwhile to look at new specific techniques. Besides it was necessary to discuss the interest of new decontamination actions in settlements. The European Union (EU) sponsored a project ECP 4 in order to look at the opportunities for further dose reduction actions in the contaminated territories of the three republics affected by the accident. The objective was to provide a local decision maker, faced with many alternatives for decontamination, with all the elements for determining what to do according to the various objectives he might pursue. The main results are presented here. (author)

  12. Immobilization of citric acid solutions in portland cement

    International Nuclear Information System (INIS)

    Lopes, Valdir M.; Rzyski, Barbara M.

    1997-01-01

    Decontamination processes by using citric acid on certain items used in the nuclear area, can result in large volumes of liquid wastes with low activity or effluents, contaminated with uranium and some elements dangerous to the environment. A great number of installations that have decontamination processes adopt the zero discharge philosophy. So, one of the forms to isolate the solutions is by reducing its volume through the evaporation process. The generated must can be neutralized and encapsulated or immobilized in Portland cement. This work propose a chemical technique to destroy the citric acid in the decontamination solutions instead of neutralization and, depending on the installation convenience, a direct cement immobilization of these solutions or of the evaporation mud. The results obtained in this work involve data about the workability, setting time and mechanical resistance, after 28 days of sealed cure, for samples with water-cement ratios of 4, 0.5 and 0.6, by weight. (author). 5 refs., 2 tabs

  13. Random Vibration Analysis of the XM2l Decontaminant Pumper Module of the Modular Decontamination System

    National Research Council Canada - National Science Library

    Colclough, Stephen

    1998-01-01

    The XM21 Decontaminant Pumper module of the Modular Decontamination System was analyzed using finite element analysis techniques to show why the first design iteration passed transportation vibration...

  14. Electrocoagulation applied to the decontamination of stainless steel parts contaminated with uranium

    International Nuclear Information System (INIS)

    Pujol P, A. A.; Monroy G, F.; Bustos B, E.

    2017-09-01

    The decontamination of non-compact able radioactive waste, such as tools and equipment, has the purpose of removing surface radioactive waste from waste, in order to reduce its volume to be conditioned and stored. The application of treatment techniques based on electrochemistry, such as electro-coagulation (Ec) in the decontamination of waste or non-compact able radioactive materials of stainless steel containing uranium, was studied in the present work and its technical feasibility was evaluated. For this, tests were carried out, first with stainless steel plates coated with WO 3 , to simulate a fixed contamination and to determine the best conditions of tungsten removal by Ec as: ph, support electrolyte, cell potential, type of counter electrode material and distance between the anode/cathode electrodes. In addition, different arrangements of configurations were tested for a rectangular acrylic cell and for a circular configuration cell, using flat plate electrodes and cylindrical electrodes to perform the removal process of the contaminant with the best conditions. In the case of the Ec, the mechanism that occurs is an electrodisolution of the iron plate, with the release of oxygen at the anode and detachment of the WO 3 layer, all the material passing to the solution with the formation of iron hydroxides. Subsequently, from the best experimental conditions to remove WO 3 , UO 2 (NO 3 ) 2 was used as radioactive contaminant to evaluate the feasibility of the decontamination process. Removal efficiencies of 90% uranium were obtained in 1 hour, ph = 1, using a molar solution of H 2 SO 4 as support electrolyte and potential of 2.4 V. Finally, after testing the different electrochemical cell (Ec) arrays at the laboratory level, radioactive decontamination of real pieces contaminated with U-238 was performed using the circular configuration arrangement under the best experimental conditions previously determined. (Author)

  15. Surface Decontamination Studies of Cs-137 and Sr-85 Using Polymer Gel

    International Nuclear Information System (INIS)

    Pham, L.; Nguyen, C.; Nguyen, L.

    2015-01-01

    Strippable polymer coating is one of the methods for effective surface decontamination to remove isotopes on the contaminated surface. This method is applying in nuclear facilities on the World. In this paper, we present the results obtained in our laboratory from product the polymer coating to apply to remove radioisotopes of "1"3"7Cs and "8"5Sr from surface of glass, stainless steel, mild steel, ceramic, PVC plastic. This polymer gel solution consist of water soluble polymer preferably polyvinyl alcohol (PVA), plasticizing agent (glycerine) and chelating agents, (citric acid) which can be sprayed or pasted on to contaminated surface. After some hours, these gel solutions was dried to form a strong thin film and it was easily peeled off from a contaminated surface with the radioactive isotopes and can be disposed off as radioactive solid waste. In this study infrared spectrophotometry technique was used to examine the interaction of the cesium and strontium ions with polyvinyl alcohol (PVA), polymer gel and the results of the study were also presented. The results showed that decontamination efficiency of "1"3"7Cs and "8"5Sr strongly depended on property, porosity and smoothness of the contaminated surface and obtained from 95-99% on glass and stainless steel, ceramic and PVC plastic surfaces. The decontamination efficiency also depended on activity and coating thickness. Optimization of film thickness is around 0.2 mm. Decontamination efficiency of Polymer gel were compared with Decongel 1101 (product from USA) on surfaces. IR spectra studies indicated that Cs and Sr ions interacted with PVA and citric acid in Polymer gel through cacboxyl (C = O) group. Polymer gel could remove of "1"3"7Cs and "8"5Sr better than PVA gel does because of citric acid, which can form chelating complex with Cs and Sr ion. (author)

  16. Decommissioning and Decontamination

    International Nuclear Information System (INIS)

    Massaut, V.

    2000-01-01

    The objectives of SCK-CEN's decommissioning and decontamination programme are (1) to develop, test and optimise the technologies and procedures for decommissioning and decontamination of nuclear installations in order to minimise the waste arising and the distributed dose; (2) to optimise the environmental impact; (3) to reduce the cost of the end-of-life of the installation; (4) to make these new techniques available to the industry; (5) to share skills and competences. The programme and achievements in 1999 are summarised

  17. Nova target chamber decontamination study

    International Nuclear Information System (INIS)

    1979-05-01

    An engineering study was performed to determine the most effective method for decontamination of the Nova target chamber. Manual and remote decontamination methods currently being used were surveyed. In addition, a concept that may not require in-situ decontamination was investigated. Based on the presently available information concerning material and system compatibility and particle penetration, it is recommended that a system of removable aluminum shields be considered. It is also recommended that a series of tests be performed to more precisely determine the vacuum compatibility and penetrability of other materials discussed in this report

  18. Skin decontamination: principles and perspectives.

    Science.gov (United States)

    Chan, Heidi P; Zhai, Hongbo; Hui, Xiaoying; Maibach, Howard I

    2013-11-01

    Skin decontamination is the primary intervention needed in chemical, biological and radiological exposures, involving immediate removal of the contaminant from the skin performed in the most efficient way. The most readily available decontamination system on a practical basis is washing with soap and water or water only. Timely use of flushing with copious amounts of water may physically remove the contaminant. However, this traditional method may not be completely effective, and contaminants left on the skin after traditional washing procedures can have toxic consequences. This article focuses on the principles and practices of skin decontamination.

  19. Government--utility interaction on spent fuel disposition

    International Nuclear Information System (INIS)

    Mills, L.E.

    1978-01-01

    The question of the needs of the electrical power industry for spent fuel storage in light of the moratorium on fuel reprocessing is addressed. The author feels that since the Federal government has assumed the responsibility for spent fuel storage, it is imperative that a firm plan, program, legislation, and funding be forthcoming immediately. Designation of an existing government site with existing nuclear activities in order to expedite the establishment of a storage facility is recommended. It is felt that the timing for such a site should be ''at the earliest possible date.'' Without storage facilities being provided by the government, utilities will be forced to build storage facilities at the reactor sites. This course of action is not considered cost effective but certainly preferable to shutting down the reactors. It is emphasized that spent fuel storage must be an interim solution and certainly not a final solution to the fuel reprocessing and waste disposal aspects of nuclear technology

  20. Building surface decontamination for chemical counter-terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, S.; Thouin, G.; Kuang, W. [SAIC Canada, Ottawa, ON (Canada); Volchek, K.; Fingas, M.; Li, K. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division, Environmental Technology Centre, Science and Technology Branch

    2006-07-01

    A test method to compare and evaluate surface decontamination methods for buildings affected by chemical attacks was developed. Decontamination techniques generally depend on the nature and quantity of the weapon agent, the type of construction material and the location. Cleanup methods can be either physical, chemical or biological. This paper addressed chemical decontamination methods which use reactants to change the molecular structure of the contaminant. Peroxycarboxylic and peroxyacetic acids (PAA) are being used increasingly for both disinfection and environmental protection. In this study, 4 materials were chosen to represent common building materials. Samples were spiked with 10 mg of pesticides such as malathion and diazinon. Decontamination agents included the commercial decontamination agent CASCAD prepared in liquid form, a chemical preparation of PAA, and reagent grade peroxypropionic acid (PPA). The newly developed surface decontamination procedure can evaluate and compare the effectiveness of different chemical decontamination agents. The procedures were used on porous ceiling tile and carpet as well as on non-porous floor tile and painted steel surfaces. Rinse water was collected and analyzed in order to determine if decontamination was a result of chemical destruction or mechanical removal. The extraction efficiencies were found to be acceptable for all materials, with the exception of the highly porous ceiling tile. The extraction of diazinon from all surfaces was less efficient than the extraction of malathion. Results suggest that the performance of decontamination agents can be improved by repeated application of the decontamination agent, along with greater volumes and a combination of chemical and mechanical actions. It was also suggested that breakdown methods and wastewater treatment procedures should be developed because hazardous byproducts were detected in many samples. 18 refs., 1 tab., 17 figs.

  1. Study of Thorium Phosphate Diphosphate (TPD) formation in nitric medium for the decontamination of high activity actinides bearing effluents

    International Nuclear Information System (INIS)

    Rousselle, Jerome

    2004-01-01

    Considering several activities in the nuclear industry and research, several low-level liquids wastes (LLLW) containing actinides in nitric medium must be decontaminated before being released in the environment. These liquid wastes mainly contain significant amounts of uranium(VI), neptunium(V) and plutonium(IV). In this work, two chemical ways were studied to decontaminate LLLW then to incorporate simultaneously uranium, neptunium and plutonium in the Thorium Phosphate Diphosphate (TPD). Both ways started from a nitric solution containing thorium and the actinides considered, present at their lower stable oxidation state. The first way consisted in the initial precipitation of actinide and thorium mixed oxalate. After drying the mixture containing the powder and phosphoric acid under dried argon, a poly-phase system was obtained. It was mainly composed by a thorium-actinide oxalate-phosphate. This mixture was transformed into a TPDAn solid solution (An = U, Np and/or Pu) by heating treatment at 1200 deg. C under inert atmosphere. The second way consisted in the precipitation of a precursor of TPD, identified as the Thorium Phosphate Hydrogen Phosphate loaded with the actinides considered. The gel initially formed by mixing concentrated phosphoric acid solution with the nitric actinide solution was heated at 90 - 160 deg. C in a closed PTFE container for several weeks. It led to the TPDAn solid solutions after heating at 1100 deg. C in air or under inert argon. The efficiency of both processes was evaluated through the determination of the decontamination for each actinide considered. Considering the encouraging results obtained for both kinds of processes, some complementary studies are now required before performing the effective decontamination of real Low-Level Liquid Waste using one of the methods proposed. (author) [fr

  2. Excimer laser decontamination

    Science.gov (United States)

    Sentis, Marc L.; Delaporte, Philippe C.; Marine, Wladimir; Uteza, Olivier P.

    2000-04-01

    The application of excimer laser ablation process to the decontamination of radioactive surfaces is discussed. This technology is very attractive because it allows to efficiently remove the contaminated particles without secondary waste production. To demonstrate the capability of such technology to efficiently decontaminate large area, we studied and developed a prototype which include a XeCl laser, an optical fiber delivery system and an ablated particles collection cell. The main physical processes taking place during UV laser ablation will be explained. The influence of laser wavelength, pulse duration and absorption coefficient of material will be discussed. Special studies have been performed to understand the processes which limit the transmission of high average power excimer laser through optical fiber, and to determine the laser conditions to optimize the value of this transmission. An in-situ spectroscopic analysis of laser ablation plasma allows the real time control of the decontamination. The results obtained for painting or metallic oxides removal from stainless steel surfaces will be presented.

  3. RTR spent fuel treatment and final waste storage

    International Nuclear Information System (INIS)

    Thomasson, J.

    2000-01-01

    A number of RTR operators have chosen in the past to send their spent fuel to the US in the framework of the US take back program. However, this possibility ends as of May 12th, 2006. 3 different strategies are left for managing RTR spent fuel: extended storage, direct disposal and treatment-conditioning through reprocessing. Whilst former strategies raise a number of uncertainties, the latter already offers a management solution. It features two advantages. It benefits from the long experience of existing flexible industrial facilities from countries like France. Secondly, it offers a dramatic volume reduction of the ultimate waste to be stored under well-characterized, stable and durable forms. RTR spent fuel management through reprocessing-conditioning offers a durable management solution that can be fully integrated in whatever global radioactive waste management policy, including ultimate disposal

  4. New quaternary ammonium salts based decontaminants

    Directory of Open Access Journals (Sweden)

    Diana M. Popescu

    2014-06-01

    Full Text Available Decontamination after terrorist attacks or industrial accidents with biological and/or chemical agents („bio-chem“ must be fast and efficient, in order to reduce the number of victims and to eliminate the consequent damages. The decontamination of living biological agents (bacteria, viruses or nonliving ones (toxins, regulators and toxic chemicals could be accomplished by reactions of hydrolysis in various experimental conditions, in particular in alkaline medium, reactions with amines or ammonia, alcohols, phenols etc. and by their transformation into less toxic degradation products. “Bio-chem” intentional or unintentional contamination is a real risk, towards which an effective management must be available to prevent and control it. Decontamination is an essential measure to protect the personnel and the environment. Synthesis and testing of new „bio-chem“ decontaminants, based on quaternary ammonium salts, complete the arsenal of protection against chemical and biological agents. The most effective selected substances could be produced and used for decontamination in accordance with legal procedures

  5. NRC regulations and positions concerning decontamination

    International Nuclear Information System (INIS)

    McCracken, C.

    1982-09-01

    The U.S. Nuclear Regulatory Commission encourages the use of decontamination to reduce man-rem exposure. The Commission feels that there are several processes developed to the point where soft decontamination can be applied to an entire plant in the near future. A utility can do a decontamination under its own licence without coming in for regulatory review if the process does not involve a change in technical specifications for the plant or does not involve unreviewed safety questions. Prior verbal notification is required for some steam generator secondary side cleaning or for decontamination of individual components that have not been removed from the reactor using chemicals not normally added to the reactor coolant. Prior written notification is required for steam generator secondary side crevice cleaning or sludge removal at a dented unit, or for chemical decontamination of reactor coolant systems or safety-related systems using chemicals not normally added to the coolant

  6. Decontamination of radioactive clothing using microemulsion in carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jaeryong; Jang, Jina; Park, Kwangheon; Kim, Hongdoo; Kim, Hakwon [Kyunghee Univ., Seoul (Korea, Republic of); Yim, Sanghak; Yoon, Weonseob [Ulchin Nuclear Power Site, Ulchin (Korea, Republic of)

    2006-07-01

    Nuclear power is intrinsically a clean energy source due to its high energy density and low generation of waste. However, as the nuclear industry grows, a variety of radioactive wastes are increased gradually. Major subjects include contaminated components, tools, equipment, containers and facilities as well as nuclear waste such as uranium scrap and radioactive clothing. The radioactive waste can be classified by its creation. There are Trans-Uranium Nuclides (TRU), Fission Products (FP) and corrosion products. Nuclear decontamination has become an important issue in the nuclear industry. The conventional methods have some problems such as the production of secondary wastes and the use of toxic solvents. We need to develop a new method of decontamination and suggest a use of microemulsion in carbon dioxide to overcome these disadvantages. The microemulsion is the clear solution that contains the water, surfactant and carbon dioxide. The surfactant surrounded the droplet into carbon dioxide and this state is thermodynamically stable. That is, the microemulsion has a structure similar to that of a conventional water-based surfactant system. Generally, the size of droplet is about 5 {approx} 10nm. The microemulsion is able to decontaminate radioactive waste so that the polar substance is removed by water and the non-polar substance is removed by carbon dioxide. After the decontamination process, the microemulsion is separated easily to surfactant and water by decreasing the pressure under the cloud point. This way, only radioactive wastes are left in the system. Cleaned carbon dioxide is then collected and reused. Thus, there are no secondary wastes. Carbon dioxide is considered an alternative process medium. This is because it is non-toxic, non-flammable, inexpensive and easy to handle. Additionally, the tunable properties of carbon dioxide through pressure and temperature control are versatile for use in extracting organic materials. In this paper, we examine the

  7. Decontamination of radioactive clothing using microemulsion in carbon dioxide

    International Nuclear Information System (INIS)

    Yoo, Jaeryong; Jang, Jina; Park, Kwangheon; Kim, Hongdoo; Kim, Hakwon; Yim, Sanghak; Yoon, Weonseob

    2006-01-01

    Nuclear power is intrinsically a clean energy source due to its high energy density and low generation of waste. However, as the nuclear industry grows, a variety of radioactive wastes are increased gradually. Major subjects include contaminated components, tools, equipment, containers and facilities as well as nuclear waste such as uranium scrap and radioactive clothing. The radioactive waste can be classified by its creation. There are Trans-Uranium Nuclides (TRU), Fission Products (FP) and corrosion products. Nuclear decontamination has become an important issue in the nuclear industry. The conventional methods have some problems such as the production of secondary wastes and the use of toxic solvents. We need to develop a new method of decontamination and suggest a use of microemulsion in carbon dioxide to overcome these disadvantages. The microemulsion is the clear solution that contains the water, surfactant and carbon dioxide. The surfactant surrounded the droplet into carbon dioxide and this state is thermodynamically stable. That is, the microemulsion has a structure similar to that of a conventional water-based surfactant system. Generally, the size of droplet is about 5 ∼ 10nm. The microemulsion is able to decontaminate radioactive waste so that the polar substance is removed by water and the non-polar substance is removed by carbon dioxide. After the decontamination process, the microemulsion is separated easily to surfactant and water by decreasing the pressure under the cloud point. This way, only radioactive wastes are left in the system. Cleaned carbon dioxide is then collected and reused. Thus, there are no secondary wastes. Carbon dioxide is considered an alternative process medium. This is because it is non-toxic, non-flammable, inexpensive and easy to handle. Additionally, the tunable properties of carbon dioxide through pressure and temperature control are versatile for use in extracting organic materials. In this paper, we examine the

  8. Spent fuel disposal: is the underground the sole solution?

    International Nuclear Information System (INIS)

    Nachmilner, L.

    1997-01-01

    The following 4 major approaches to spent fuel disposal are discussed: permanent storage in an underground repository, reprocessing, partitioning and transmutation, and accelerator driven transmutation. It is concluded that underground disposal will remain the basic option for the near future, although pursuing the other methods is certainly worth while. (P.A.)

  9. Comparison of different decontaminant delivery methods for sterilizing unoccupied commercial airliner cabins

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi; Chen, Qingyan [National Air Transport Center of Excellence for Research in the Intermodal Transport Environment (RITE), School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47905 (United States)

    2010-09-15

    Effective decontamination is crucial if an airliner cabin is contaminated by biological contaminants, such as infectious disease viruses or intentionally released biological agents. This study used computational fluid dynamics (CFD) method as a tool and vaporized hydrogen peroxide (VHP) as an exemplary decontaminant and Geobacillus stearothermophilus spores as a simulant contaminant to investigate three VHP delivery methods for sterilizing two different airliner cabins. The CFD first determined the airflow and the transient distributions of the contaminant and decontaminant in cabins. Auxiliary equations were implemented into the CFD model for evaluating efficacy of the sterilization process. The improved CFD model was validated by the measured airflow and simulated contaminant distributions obtained from a cabin mockup and the measured efficacy data from the literature. The three decontaminant delivery methods were (1) to supply the mixed VHP and air through the environmental control system of a cabin, (2) to send mixed VHP and air through a front door and to extract them from a back door of a cabin, and (3) to send directly VHP to a cabin and enhance the mixing with air in the cabin by fans. The two air cabins studied were a single-aisle and a twin-aisle airliner one. The results show that the second decontaminant delivery method (displacement method) was the best because the VHP distributions in the cabins were most uniform, the sterilization time was moderate, and the corrosion risk was low. The method displaced the existing air by the air/disinfectant solution, rather than dispersive mixing as the other two methods. (author)

  10. Possibility of Localized Corrosion of PWR primary side materials in oxidative decontamination condition

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Yoon; Jung, Jun Young; Won, Huijun; Kim, Seon Byeong; Choi, Wangkyu; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Primary circuit of a PWR (radionuclides uptake in the inner oxide layer and oxide/metal interface occurred inevitably. Therefore, it is necessary to remove the inner oxide layer as well as the outer oxide layer to achieve excellent decontamination effects. It is known that the outer oxide layers are typically composed of Fe{sub 3}O{sub 4} and NiFe{sub 2}O{sub 4}. On the other hand, the inner oxide layers are composed of Cr{sub 2}O{sub 3}, (Ni{sub 1-x}Ni{sub x})(Cr{sub 1-y}Fe{sub y}){sub 2}O{sub 4}, and FeCr{sub 2}O{sub 4}. Because of chromium in the trivalent oxidation state which is difficult to dissolve, the oxide layer has an excellent protectiveness and is hard to decontaminate. For the dissolution of chromium-rich oxide, there have been developed an alkaline permanganate (AP) or nitric permanganate (NP). A disadvantage of the AP process is the generation of a large volume of secondary waste. On the other hand, NP process is highly incompatible to the corrosion of the structure materials. In this study as a part of developing decontamination process, we investigated the corrosion behavior of the structure materials such as Inconel-600 and type 304 stainless steel in NP and AP oxidative decontamination conditions for the safe use of an oxidative phase in PWR system decontamination. The corrosion behavior was analyzed through the potential-pH equilibrium for the system of Cr-H{sub 2}O / Mn-H{sub 2}O at 90 .deg. C and potentiodynamic polarization in a typical AP and NP solution were evaluated. The AP or NP treated specimen surface was observed using an optical microscope and scanning electron microscopy (SEM) for an evaluation of the localized corrosion. The possibility of localized corrosion of PWR primary side materials under oxidative decontamination condition was evaluated using a potentiodynamic polarization technique, observation of localized corrosion morphology, and consideration of potential-pH diagrams at 90 .deg. C. From the results of these tests, we

  11. Large-scale demonstration of disposal of decontaminated salt as saltstone. Part I. Construction, loading, and capping of lysimeters

    International Nuclear Information System (INIS)

    Wolf, H.C.

    1984-06-01

    The installation phase of a large-scale demonstration of the disposal concept for decontaminated, low-level radioactive salt waste at the Savannah River Plant was completed in December 1983 and January 1984. The installation entailed immobilizing 7500 gallons of decontaminated salt solution with a blended cement formulation and pouring the resulting grout, saltstone, into three specially designed lysimeters for extended in-field leaching tests under natural conditions. 4 references, 35 figures, 4 tables

  12. Decontamination and decommissioning techniques for research reactors

    International Nuclear Information System (INIS)

    Oh, Won Zin; Won, H. J.; Jung, C. H.; Choi, W. K.; Kim, G. N.; Lee, K. W.

    2002-05-01

    Evaluation of soil decontamination process and the liquid decontamination waste treatment technology are investigation of organic acid as a decontamination agent, investigation of the liquid waste purification process and identification of recycling the decontamination agents. Participation on IAEA CRP meeting are preparation of IAEA technical report on 'studies on decommissioning of TRIGA reactors and site restoration technologies' and exchange the research result, technology, experience and safety regulation of the research reactor D and D of USA, Great Britain, Canada, Belgium, Italy, India and so forth

  13. Theory of soil decontamination in mixing liquid

    International Nuclear Information System (INIS)

    Polyakov, A.S.; Emets, E.P.; Poluehktov, P.P.; Rybakov, K.A.

    1997-01-01

    The theory of soil decontamination from radioactive pollution in mixing liquid flow is described. It is shown that there exists the threshold intensity of liquid mixing up to which there is no decontamination. Beyond the threshold and by increasing the mixing intensity the decontamination of large soil fractions is allowable whereby the higher is the mixing intensity and lower is the soil contamination, the laser is the characteristic decontamination time. The above theory is related to cases of uniform pollution of the particles surface

  14. Organic decontamination by ion exchange

    International Nuclear Information System (INIS)

    Wilson, T.R.

    1994-01-01

    This study has successfully identified ion exchanger media suitable for decontaminating the 5500-gallon organic layer in Tank 241-C-103. Decontamination of radionuclides is necessary to meet shipping, incinerator site storage, and incineration feed requirements. The exchanger media were identified through a literature search and experiments at the Russian Institute for Physical Chemistry. The principal radionuclides addressed are Cs-137 and Sr-90. Recommendations for an experimental program plan conclude the discussion. The experimental program would provide the data necessary for plant design specifications for a column and for ion exchange media to be used in decontaminating the organic layer

  15. Electrochemical decontamination system for actinide processing gloveboxes

    International Nuclear Information System (INIS)

    Wedman, D.E.; Lugo, J.L.; Ford, D.K.; Nelson, T.O.; Trujillo, V.L.; Martinez, H.E.

    1998-03-01

    An electrolytic decontamination technology has been developed and successfully demonstrated at Los Alamos National Laboratory (LANL) for the decontamination of actinide processing gloveboxes. The technique decontaminates the interior surfaces of stainless steel gloveboxes utilizing a process similar to electropolishing. The decontamination device is compact and transportable allowing it to be placed entirely within the glovebox line. In this way, decontamination does not require the operator to wear any additional personal protective equipment and there is no need for additional air handling or containment systems. Decontamination prior to glovebox decommissioning reduces the potential for worker exposure and environmental releases during the decommissioning, transport, and size reduction procedures which follow. The goal of this effort is to reduce contamination levels of alpha emitting nuclides for a resultant reduction in waste level category from High Level Transuranic (TRU) to low Specific Activity (LSA, less than or equal 100 nCi/g). This reduction in category results in a 95% reduction in disposal and disposition costs for the decontaminated gloveboxes. The resulting contamination levels following decontamination by this method are generally five orders of magnitude below the LSA specification. Additionally, the sodium sulfate based electrolyte utilized in the process is fully recyclable which results in the minimum of secondary waste. The process bas been implemented on seven gloveboxes within LANL's Plutonium Facility at Technical Area 55. Of these gloveboxes, two have been discarded as low level waste items and the remaining five have been reused

  16. New decontamination techniques: chemical gels, electropolishing and abrasives

    International Nuclear Information System (INIS)

    Brunel, G.; Gauchon, J.P.; Kervegant, Y.; Josso, F.

    1991-01-01

    The decommissioning of nuclear installations requires decontamination techniques that are efficient, simple to apply and producing a small amount of wastes, which are easy to process. With a view to this, three decontamination methods, which appear to be particularly suited to decommissioning, have been studied. These three methods are: - spraying of gels carrying chemical decontaminating agents, - electropolishing with a swab device, - abrasives blasting. After parametric tests on non-radioactive and active samples, the industrial application of these methods in the dismantling of installations was studied. These industrial applications concern: - decontamination of pieces coming from the German BWR ISAR by immersion and gel spraying, - decontamination, mainly by gel spraying, and dismantling of the BRENNILIS bituminisation plant, - decontamination of part of the cooling circuit of the graphite gas reactor G2 by gel spraying, - decontamination of a component of the FBR SuperPhenix, using dry abrasives blasting. During the first three applications, generated secondary wastes volume and form were determined. 33 tabs., 16 figs., 12 refs

  17. Decontamination & decommissioning focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  18. Decontamination by ultrafiltration of low radioactivity waste water from fuel element fabrication

    International Nuclear Information System (INIS)

    Muller, H.M.

    1984-01-01

    It could be demonstrated that waste waters which contain uranium in a filterable form, such as laundry and floor-cleaning waste, can be sufficiently decontaminated by means of ultra-filtration. In the case of process waste solutions, which contain uranium in a dissolved form, high decontamination factors could be achieved by means of flocculation or coprecipitation. The following methods were tested: - flocculation with Fe (OH) 3 , - coprecipitation with CaHPO 4 , - precipitation with K 4 (Fe(CN) 6 ). The phosphate precipitation, whereby the uranium is probably coprecipitated as Ca(UO 2 ) 2 (PO 4 ) 2 , was found to be the most reliable method. Difficulties were encountered when complex-forming anions, notably carbonate, oxalate and fluoride were present. These necessitate specific pretreatment steps. Whether ultrafiltration then still remains an economical option must be judged in each individual case. The application of the methods so far developed on combined waste streams remains an object for further research. In combination with a phosphate precipitation, ultrafiltration is a suitable method for the decontamination of low-activity, uranium-contaminated waste waters

  19. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior

  20. Effect of the ODS-4 surfactant and its components on the efficiency of decontamination of solid surfaces

    International Nuclear Information System (INIS)

    Dvorak, J.; Duris, P.

    1994-01-01

    The efficiency was examined of the desorption of carrier-free traces of 147 Pm adsorbed from an acid aqueous solution at pH 2.6 in static conditions on a paint routinely applied to military facilities. The desorption was performed by using the ODS-4 decontamination and deactivation mixture and its components at various concentrations. It is concluded that the surfactant is not very well suited to the decontamination of solid surfaces contaminated with radionuclides which form the water-soluble component of radioactive contamination (in dependence on pH). This is due to the composition and the associated high alkalinity of the ODS-4 agent, which, however, is necessary if detoxication of toxic agents is required. In practice, however, the efficiency of decontamination will be appreciably higher because the military decontamination procedures involve dynamic (mechanical) treatment of the surfaces using brushes with flowing liquid, pressure application of the surfactant and water, moving baths, etc. (P.A.). 7 tabs., 2 figs., 10 refs

  1. Decontamination of liquid radioactive waste by thorium phosphate

    International Nuclear Information System (INIS)

    Rousselle, J.; Grandjean, S.; Dacheux, N.; Genet, M.

    2004-01-01

    In the field of the complete reexamination of the chemistry of thorium phosphate and of the improvement of the homogeneity of Thorium Phosphate Diphosphate (TPD, Th 4 (PO 4 ) 4 P 2 O 7 ) prepared at high temperature, several crystallized compounds were prepared as initial powdered precursors. Due to the very low solubility products associated to these phases, their use in the field of the efficient decontamination of high-level radioactive liquid waste containing actinides (An) was carefully considered. Two main processes (called 'oxalate' and 'hydrothermal' chemical routes) were developed through a new concept combining the decontamination of liquid waste and the immobilization of the actinides in a ceramic matrix (TPD). In phosphoric media ('hydrothermal route'), the key-precursor was the Thorium Phosphate Hydrogen Phosphate hydrate (Th 2 (PO 4 ) 2 (HPO 4 ). H 2 O, TPHP, solubility product log(K S,0 0 ) ∼ - 67). The replacement of thorium by other tetravalent actinides (U, Np, Pu) in the structure, leading to the preparation of Th 2-x/2 An x/2 (PO 4 ) 2 (HPO 4 ). H 2 O solid solutions, was examined. A second method was also considered in parallel to illustrate this concept using the more well-known precipitation of oxalate as the initial decontamination step. For this method, the final transformation to single phase TPD containing actinides was purchased by heating a mixture of phosphate ions with the oxalate precipitate at high temperature. (authors)

  2. Evaluation of three different decontamination techniques on biofilm formation, and on physical and chemical properties of resin composites.

    Science.gov (United States)

    André, Carolina Bosso; Dos Santos, Andressa; Pfeifer, Carmem Silvia; Giannini, Marcelo; Girotto, Emerson Marcelo; Ferracane, Jack Liborio

    2018-04-01

    This study evaluated three different sterilization/disinfection techniques for resin composites on bacterial growth and surface modification after decontamination. Two resin composites were sterilized/disinfected with three different techniques: UV light, 1% chloramine T, and 70% ethanol. Four different times were used for each technique to determine the shortest time that the solution or UV light was effective. The influence of sterilization/disinfection technique on bacterial growth was evaluated by analyzing the metabolic activity, using the AlamarBlue™ assay, bacterial viability, and SEM images from biofilms of Streptococcus mutans. The surface change, after the process, was analyzed with ATR/FTIR and SEM images. The solutions used for decontamination (1% chloramine-T and 70% ethanol) were analyzed with 1 H-NMR to identify any resin compounds leached during the process. One minute of decontamination was efficient for all three methods tested. Chloramine-T increased the surface porosity on resin composites, no changes were observed for UV light and 70% ethanol, however, 1 H-NMR identified leached monomers only when 70% ethanol was used. No chemical change of the materials was found under ATR/FTIR analyses after the decontamination process. Chloramine-T, with no previous wash, increased the bacterial viability for both resin composites and increased the bacterial metabolism for the resin composite without fluoride. UV light had no interference on the resin composites properties tested using 1 min of exposure compared to the other decontamination methods. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 945-953, 2018. © 2017 Wiley Periodicals, Inc.

  3. Cs+ and Sr2+ adsorption selectivity of zeolites in relation to radioactive decontamination

    Directory of Open Access Journals (Sweden)

    M.W. Munthali

    2015-09-01

    Full Text Available Zeolites are used as adsorbents of cationic elements in the radioactive decontamination process of water, soil and others. We determined Cs+ and Sr2+ adsorption selectivity of some zeolites to know effective zeolite species for the decontamination of radioactive Cs and Sr. A 30 mL mixed solution containing up to 15 mg L−1 of non-radioactive Cs+ or Sr+ and up to 0.50 M of Na+ or K+ was mixed with 0.5 g of Linde-type A, Na-P1, faujasite X, faujasite Y and mordenite. Among the zeolites, mordenite had the highest Cs+ adsorption selectivity, and the selectivity had no correlation to the cation exchange capacity (CEC of the zeolites. In contrast, Sr2+ adsorption selectivity of the zeolites positively correlated with the CEC of the zeolites; Linde-type A with the highest CEC showed the highest adsorption selectivity, and its adsorption rate was more than 99.9% even in the presence of 0.5 M K+. A simulated soil decontamination experiment of Cs from a Cs-retaining vermiculite by using mordenite and that of Sr from a Sr-retaining vermiculite by using Linde-type A showed decontamination rates of more than 90%.

  4. Geographic assistance of decontamination strategy elaboration

    International Nuclear Information System (INIS)

    Davydchuk, V.; Arapis, G.

    1996-01-01

    Those who elaborates the strategy of decontamination of vast territories is to take into consideration the heterogeneity of such elements of landscape as relief, lithology, humidity and types of soils and, vegetation, both on local and regional level. Geographic assistance includes evaluation of efficacy of decontamination technologies in different natural conditions, identification of areas of their effective application and definition of ecological damage, estimation of balances of the radionuclides in the landscapes to create background of the decontamination strategy

  5. Facility decontamination technology workshop

    International Nuclear Information System (INIS)

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted

  6. Special zone territory decontamination

    International Nuclear Information System (INIS)

    Samojlenko, Yu.N.; Golubev, V.V.

    1989-01-01

    Special zone is the Chernobyl' NPP operating site (OS). OS decontamination is described including reactor ruins from the accident moment. The process was begun from reactor bombardment with absorbing and filtering materials (sand, clay, lead, boron compounds). Then were produced soil shovelling, territory filling by dry concrete and laying concrete layer with thickness up to 300 mm. NPP room and equipment decontamination is described. 3 figs.; 3 tabs

  7. Facility decontamination technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted. (DLC)

  8. Criteria and evaluation of three decontamination techniques

    Energy Technology Data Exchange (ETDEWEB)

    Tripp, J.L.

    1994-01-01

    Past decontamination and solvent recovery activities at the Idaho Chemical Processing Plant (ICPP), which is part of the Idaho National Engineering Laboratory (INEL), have resulted in the accumulation of 1.5 million gallons of radioactively contaminated sodium-bearing liquid waste. Future decontamination activities at the ICPP could result in the production of 5 million gallons or more of sodium-bearing waste using the current decontamination techniques of chemical/water flushes and steam jet cleaning. This waste requires a large amount of cold chemical additive to process because the low melting temperatures of sodium and potassium salts cause agglomeration in the bed of the calciner vessel. Criteria have been established for evaluating methods and technologies available for decontaminating equipment and facilities. The criteria were weighted according to their relative importance using a Kepner-Tregoe Problem Solving process. These criteria were used to rank three decontamination techniques new to the ICPP: laser ablation, liquid abrasive blasting and CO{sub 2} pellet blasting, against the standard decontamination techniques of sodium-based chemical cleaning and water/steam jets used.

  9. Criteria and evaluation of three decontamination techniques

    International Nuclear Information System (INIS)

    Tripp, J.L.

    1994-01-01

    Past decontamination and solvent recovery activities at the Idaho Chemical Processing Plant (ICPP), which is part of the Idaho National Engineering Laboratory (INEL), have resulted in the accumulation of 1.5 million gallons of radioactively contaminated sodium-bearing liquid waste. Future decontamination activities at the ICPP could result in the production of 5 million gallons or more of sodium-bearing waste using the current decontamination techniques of chemical/water flushes and steam jet cleaning. This waste requires a large amount of cold chemical additive to process because the low melting temperatures of sodium and potassium salts cause agglomeration in the bed of the calciner vessel. Criteria have been established for evaluating methods and technologies available for decontaminating equipment and facilities. The criteria were weighted according to their relative importance using a Kepner-Tregoe Problem Solving process. These criteria were used to rank three decontamination techniques new to the ICPP: laser ablation, liquid abrasive blasting and CO 2 pellet blasting, against the standard decontamination techniques of sodium-based chemical cleaning and water/steam jets used

  10. Oxidative decontamination of chemical and biological warfare agents using L-Gel.

    Science.gov (United States)

    Raber, Ellen; McGuire, Raymond

    2002-08-05

    A decontamination method has been developed using a single reagent that is effective both against chemical warfare (CW) and biological warfare (BW) agents. The new reagent, "L-Gel", consists of an aqueous solution of a mild commercial oxidizer, Oxone, together with a commercial fumed silica gelling agent, Cab-O-Sil EH-5. L-Gel is non-toxic, environmentally friendly, relatively non-corrosive, maximizes contact time because of its thixotropic nature, clings to walls and ceilings, and does not harm carpets or painted surfaces. The new reagent also addresses the most demanding requirements for decontamination in the civilian sector, including availability, low maintenance, ease of application and deployment by a variety of dispersal mechanisms, minimal training and acceptable expense. Experiments to test the effectiveness of L-Gel were conducted at Lawrence Livermore National Laboratory and independently at four other locations. L-Gel was tested against all classes of chemical warfare agents and against various biological warfare agent surrogates, including spore-forming bacteria and non-virulent strains of real biological agents. Testing showed that L-Gel is as effective against chemical agents and biological materials, including spores, as the best military decontaminants.

  11. Decontamination method for radiation-contaminated metal waste

    International Nuclear Information System (INIS)

    Suwa, Takeshi; Kuribayashi, Nobuhide; Yasumune, Taketoshi.

    1991-01-01

    In immersing radiation-contaminated metal wastes into a sulfuric acid solution thereby peeling and removing radioactive deposition cruds and dissolving the surface of the matrix metals to eliminate radioactive contaminants, when the potential of the sulfuric acid solution is shifted to a higher direction by more than a certain level due to the increase of the amount of metal ions leached from the cruds and the matrix material, the leached metal ions are electrolytically reduced to control the potential of the sulfuric acid solution to less than a predetermined potential level. Although the dissolving rate is increased as the concentration of the sulfuric acid solution is higher, it is preferably from 0.5 to 2 mol/l, since higher concentration increases the load on the waste liquid processing. Further, the temperature for solution is set to higher than a room temperature and, preferably from 50 to 90degC. Further, the potential level of the solution, although varies somewhat depending on the concentration of the leached metal ions and the temperature, is preferably controlled to less than 0.1 to 0.2 V. This can attain high decontaminating effect in a short period of time by using a sulfuric acid solution alone. (T.M.)

  12. Decontamination and coating of lead

    International Nuclear Information System (INIS)

    Rankin, W.N.; Bush, S.P.; Lyon, C.E.; Walker, V.

    1988-01-01

    Technology is being developed to decontaminate lead used in shielding applications in contaminated environments for recycle as shieldings. Technology is also being developed to coat either decontaminated lead or new lead before it is used in contaminated environments. The surface of the coating is expected to be much easier to decontaminate than the original lead surface. If contamination becomes severely embedded in the coating and cannot be removed, it can be easily cut with a knife and removed from the lead. The used coating can be disposed of as radioactive (hot hazardous) waste. The lead can then be recoated for further use as a shielding material

  13. Impact of Cesium decontamination on performances of high activity sample analysis

    Energy Technology Data Exchange (ETDEWEB)

    Maillard, Christophe; Boyer-Deslys, Valerie; Dautheribes, Jean L.; Esbelin, Eric; Beres, Andre; Jan, Steve; Baghdadi, Sarah; Rivier, Cedric [CEA, Nuclear Energy Division, Bagnols sur Ceze (France). RadioChemistry and Processes Dept.

    2017-09-01

    Experiments in the ATALANTE facility can lead to high activity samples (for example the dissolution of hulls and spent fuels), essentially coming from the presence of {sup 137}Cs. Usually, these samples are handled in a shielded cell. The removal of this radionuclide from the sample would make it possible to handle it in glove boxes without having to perform an important dilution in the shielded cells beforehand. It would allow to analyze samples using techniques usually implemented in glove boxes (such as ICP, α spectrometry..) and to reach lower detection and quantification limits. To do so, a separation by extraction chromatography using a Triskem AMP-PAN column was developed. A cesium decontamination factor higher than 5 x 10{sup 4} and detection limits improvement up to a factor 100 were obtained.

  14. Review of decommissioning, spent fuel and radwaste management in Slovakia

    International Nuclear Information System (INIS)

    Jamrich, J.

    2000-01-01

    Two nuclear power plants with two WWER reactors are currently under operation in Jaslovske Bohunice and NPP A-1 is under decommissioning on the same site. At the second nuclear site in the Slovak Republic in Mochovce third nuclear power plant with two units is in operation. In accordance with the basic Slovak legislation (Act on Peaceful Utilisation of Nuclear Energy) defining the responsibilities, roles and authorities for all organisations involved in the decommissioning of nuclear installations Nuclear Regulatory Authority requires submission of conceptual decommissioning plans by the licensee. The term 'decommissioning' is used to describe the set of actions to be taken at the end of the useful life of a facility, in order to retire the facility from service while, simultaneously, ensuring proper protection of the workers, the general public and the environment. This set of activities is in principle comprised of planning and organisation of decommissioning inclusive strategy development, post-operational activities, implementation of decommissioning (physical and radiological characterisation, decontamination, dismantling and demolition, waste and spent fuel management), radiological, aspects, completion of decommissioning as well as ensuring of funding for these activities. Responsibility for nuclear installations decommissioning, radwaste and spent fuel, management in Slovakia is with a subsidiary of Slovak Electric called Nuclear Installations Decommissioning Radwaste and Spent Fuel Management (acronym SE VYZ), established on January 1, 1996. This paper provides description of an approach to planning of the NPP A-1 and NPPs with WWER reactors decommissioning, realisation of treatment, conditioning and disposal of radwaste, as well as spent fuel management in Slovakia. It takes into account that detail papers on all these issues will follow later during this meeting. (author)

  15. Proportioning of 79Se and 126Sn long life radionuclides in the fission products solutions coming from spent fuels processing

    International Nuclear Information System (INIS)

    Comte, J.

    2001-11-01

    The determination of radionuclides present in waste resulting from the nuclear fuel reprocessing is a request from the regulatory authorities to ensure an optimal management of the storage sites. Long-lived radionuclides (T 1/2 > 30 years) are particularly concerned owing to the fact that their impact must be considered for the long term. Safety studies have established a list of long-lived radionuclides (LLRN) whose quantification is essential for the management of the disposal site. Among these, several are pure β emitters, present at low concentration levels in complex matrices. Their determination, by radiochemical method or mass spectrometry, involves selective chemical separations from the others β/γ emitters and from the measurement interfering elements. The work undertaken in this thesis relates to the development of analytical methods for the determination of two long-lived radionuclides: selenium 79 and tin 126, in acid solutions of fission products present in nuclear fuel reprocessing plant. For selenium 79, a β emitter with a half live estimated to be 10 6 years, the bibliography describes different chemical separation methods including precipitation, liquid-liquid extraction and chromatography on ionic resins. After optimisation on a synthetic solution, two of these techniques, precipitation by potassium iodine and separation with ion exchange resins were applied to a genuine solution of fission products at Cogema La Hague. The results showed that only the ion exchange method allows us to obtain a solution sufficiently decontaminated (FDβγ = 250) with a significant selenium recovery yield (85%). This separation allows the measurement of the 79 Se by electrothermal vaporization coupled with inductively coupled plasma mass spectrometry (ETV-ICP/MS), after transfer of the samples to CEA/Cadarache. The concentration of 79 Se measured is 0,42 mg/L in the solution of fission products with an isotopic ratio 79 Se/ 82 Se equal to that recommended by the

  16. Municipalities' opinions about decontamination in special decontamination area. Records from four and a half years after the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Kawasaki, Kota

    2016-01-01

    This study discusses opinions of 11 municipalities in Fukushima Prefecture designated as Special Decontamination Area as of the end of September 2015, about four and a half years afters the Fukushima Daiichi Nuclear Power Plant accident. This study shows that (1) more than half of the municipalities recognize that decontamination activities of the national government which is responsible for decontamination in Special Decontamination Area are inadequate, (2) most municipalities recognize that residents cannot live their lives with a sense of safety and security unless air radiation dose is reduced to the level before the accident or less than 0.23 μSv/h, (3) many municipalities recognize that residents will not be able to live their lives with a sense of safety and security even if the national government implements decontamination, (4) municipalities points out 'decontamination of forests or rivers and reconsideration of decontamination methods of forests or rivers', 'securement and maintenance of temporary storage site' and 'setting forth a numeric target concerning decontamination and implementation of additional decontamination after the first decontamination' as issues for the promotion of decontamination, and (5) all the municipalities recognize that that there are a lot of problems concerning the installation of interim storage facilities by the national government. (author)

  17. System for chemical decontamination of nuclear reactor primary systems

    International Nuclear Information System (INIS)

    Schlonski, J.S.; McGiure, M.F.; Corpora, G.J.

    1992-01-01

    This patent describes a method of chemically decontaminating a nuclear reactor primary system, having a residual heat removal system with one or more residual heat removal heat exchangers, each having an upstream and a downstream side, at or above ambient pressure. It comprises: injecting decontamination chemicals using an injection means; circulating the injected decontamination chemicals throughout the primary system; directing the circulated decontamination chemicals and process fluids to a means for removing suspended solids and dissolved materials after the circulated chemicals and process fluids have passed through the residual heat removal heat exchanger; decontaminating the process fluids; and feeding the decontaminated process fluids to the injection means. This patent also describes a chemical decontamination system for use at, or above, ambient pressure in a nuclear reactor primary system having a residual heat removal system. It comprises: means for injecting decontamination chemicals into the primary system; means for removing dissolved and suspended materials and decontamination chemicals from the primary system; one or more residual heat removal pumps; means located downstream of one of the residual heat removal heat exchangers; and a return line connecting the means

  18. Oxidizing dissolution of spent MOX47 fuel subjected to water radiolysis: Solution chemistry and surface characterization by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jegou, C., E-mail: christophe.jegou@cea.f [Commissariat a l' Energie Atomique (CEA), Marcoule Reasearch Center, B.P. 17171, F-30207 Bagnols-sur-Ceze Cedex (France); Caraballo, R.; De Bonfils, J.; Broudic, V.; Peuget, S. [Commissariat a l' Energie Atomique (CEA), Marcoule Reasearch Center, B.P. 17171, F-30207 Bagnols-sur-Ceze Cedex (France); Vercouter, T. [Commissariat a l' Energie Atomique (CEA), Saclay Reasearch Center, B.P. 11, F-91191 Gif-sur-Yvette Cedex (France); Roudil, D. [Commissariat a l' Energie Atomique (CEA), Marcoule Reasearch Center, B.P. 17171, F-30207 Bagnols-sur-Ceze Cedex (France)

    2010-04-01

    The mechanisms of oxidizing dissolution of spent MOX fuel (MIMAS TU2 (registered) ) subjected to water radiolysis were investigated experimentally by leaching spent MOX47 fuel samples in pure water at 25 deg. C under different oxidizing conditions (with and without external gamma irradiation); the leached surfaces were characterized by Raman spectroscopy. The highly oxidizing conditions resulting from external gamma irradiation significantly increased the concentration of plutonium (Pu(V)) and uranium (U(VI)) compared with a benchmark experiment (without external irradiation). The oxidation behavior of the plutonium-enriched aggregates differed significantly from that of the UO{sub 2} matrix after several months of leaching in water under gamma irradiation. The plutonium in the aggregates appears to limit fuel oxidation. The only secondary phases formed and identified to date by Raman spectroscopy are uranium peroxides that generally precipitate on the surface of the UO{sub 2} grains. Concerning the behavior of plutonium, solution analysis results appear to be compatible with a conventional explanation based on an equilibrium with a Pu(OH){sub 4(am)} phase. The fission product release - considered as a general indicator of matrix alteration - from MOX47 fuel also increases under external gamma irradiation and a change in the leaching mode is observed. Diffusive leaching was clearly identified, coinciding with the rapid onset of steady-state actinide concentrations in the bulk solution.

  19. Decontamination of soil from the research reactor site

    International Nuclear Information System (INIS)

    Won, H. Z.; Kim, K. N.; Choi, W. K.; Jeong, J. H.; Oh, W. J.

    2002-01-01

    The two research reactors (TRIGA MARK II and III) in Korea are to be decommissioned in the near future. When the reactors are completely dismantled, the site may remain contaminated due to the long period of operation. We assume that the site is radioactively contaminated by Co-60. Soils gathered from the research reactor site were artificially contaminated with Co 2+ ion. The desorption characteristics of Co 2+ ion from the soil surface by citric acid solution were investigated. Decontamination performances of citric acid and EDTA on soil stored in the radioactive waste drums was examined. The feasibility test of recycling the citric acid was also performed. We concluded that the radioactive waste volume could be reduced significantly by soil washing with a citric acid solution

  20. Decontamination of soils and materials containing medium-fired PuO{sub 2} using inhibited fluorides with polymer filtration technology

    Energy Technology Data Exchange (ETDEWEB)

    Temer, D.J.; Villarreal, R.; Smith, B.F. [Los Alamos National Lab., NM (United States)

    1997-10-01

    The decontamination of soils and/or materials from medium-fired plutonium oxide (PuO{sub 2}) with an effective and efficient decontamination agent that will not significantly dissolve the matrix requires a new and innovative technology. After testing several decontamination agents and solutions for dissolution of medium-fired PuO{sub 2}, the most successful decontamination solutions were fluoride compounds, which were effective in breaking the Pu-oxide bond but would not extensively dissolve soil constituents and other materials. The fluoride compounds, tetra fluoboric acid (HBF{sub 4}) and hydrofluorosilicic acid (H{sub 2}F{sub 6}Si), were effective in dissolving medium-fired PuO{sub 2}, and did not seem to have the potential to dissolve the matrix. In both compounds, the fluoride atom is attached to a boron or silicon atom that inhibits the reactivity of the fluoride towards other compounds or materials containing atoms less attracted to the fluoride atom in an acid solution. Because of this inhibition of the reactivity of the fluoride ion, these compounds are termed inhibited fluoride compounds or agents. Both inhibited fluorides studied effectively dissolved medium-fired PuO{sub 2} but exhibited a tendency to not attack stainless steel or soil. The basis for selecting inhibited fluorides was confirmed during leaching tests of medium-fired PuO{sub 2} spiked into soil taken from the Idaho National Engineering Laboratory (INEL). When dissolved in dilute HNO{sub 3}, HCl, or HBr, both inhibited fluoride compounds were effective at solubilizing the medium-fired PuO{sub 2} from spiked INEL soil.

  1. A study on implementation plan of decontamination and decommissioning R and D and evaluation of KAERI soil decontamination process

    International Nuclear Information System (INIS)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. H.; Choi, W. K.; Kim, G. N.

    2001-08-01

    A. Decontamination Technology Development of Uranium Conversion Facility. Understanding of uranium conversion facility and related decontamination technologies, and analysis of current status of decontamination technologies. Establishment of the objective and research items of the middle and long term R and D project. Discussion of the erformance plan and about the methodology for connection with the project of environmental restoration of uranium conversion facility B. Treatment Technology Development of Uranium Sludge Analysis of the domestic and overseas research development status. Suggestion of treatment methodology of uranium slurry and cooperative R and D among industries, universities and research institute. Establishment of the objective and research items of the middle and long term R and D project. Discussion about the performance plan and about the methodology for connection with the project of environmental restoration of uranium conversion facility C. Decommissioning Technology Development Analysis of the domestic and overseas research development status and the overview of decommissioning technologies. Establishment of the objective and research items of the middle and long term R and D project. Discussion about the performance plan and about the methodology for connection with the project of TRIGA decommissioning D. Evaluation of KAERI Soil Decontamination Technology. Evaluation of soil decontamination process and the liquid decontamination waste treatment technology. Performance of soil decontamination test using solvent flushing test equipment for evaluation of residual radioactivity after decontami- nation and modeling of the results

  2. A study on implementation plan of decontamination and decommissioning R and D and evaluation of KAERI soil decontamination process

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. H.; Choi, W. K.; Kim, G. N

    2001-08-01

    A. Decontamination Technology Development of Uranium Conversion Facility. Understanding of uranium conversion facility and related decontamination technologies, and analysis of current status of decontamination technologies. Establishment of the objective and research items of the middle and long term R and D project. Discussion of the erformance plan and about the methodology for connection with the project of environmental restoration of uranium conversion facility B. Treatment Technology Development of Uranium Sludge Analysis of the domestic and overseas research development status. Suggestion of treatment methodology of uranium slurry and cooperative R and D among industries, universities and research institute. Establishment of the objective and research items of the middle and long term R and D project. Discussion about the performance plan and about the methodology for connection with the project of environmental restoration of uranium conversion facility C. Decommissioning Technology Development Analysis of the domestic and overseas research development status and the overview of decommissioning technologies. Establishment of the objective and research items of the middle and long term R and D project. Discussion about the performance plan and about the methodology for connection with the project of TRIGA decommissioning D. Evaluation of KAERI Soil Decontamination Technology. Evaluation of soil decontamination process and the liquid decontamination waste treatment technology. Performance of soil decontamination test using solvent flushing test equipment for evaluation of residual radioactivity after decontami- nation and modeling of the results.

  3. Nuclear reactor vessel decontamination systems

    International Nuclear Information System (INIS)

    McGuire, P. J.

    1985-01-01

    There is disclosed in the present application, a decontamination system for reactor vessels. The system is operatable without entry by personnel into the contaminated vessel before the decontamination operation is carried out and comprises an assembly which is introduced into the vertical cylindrical vessel of the typical boiling water reactor through the open top. The assembly includes a circular track which is centered by guideways permanently installed in the reactor vessel and the track guides opposed pairs of nozzles through which water under very high pressure is directed at the wall for progressively cutting and sweeping a tenacious radioactive coating as the nozzles are driven around the track in close proximity to the vessel wall. The whole assembly is hoisted to a level above the top of the vessel by a crane, outboard slides on the assembly brought into engagement with the permanent guideways and the assembly progressively lowered in the vessel as the decontamination operation progresses. The assembly also includes a low pressure nozzle which forms a spray umbrella above the high pressure nozzles to contain radioactive particles dislodged during the decontamination

  4. Radioactive decontamination through UV laser

    International Nuclear Information System (INIS)

    Delaporte, Ph.; Gastaud, M.; Sentis, M.; Uteza, O.; Marine, W.; Thouvenot, P.; Alcaraz, J.L.; Le Samedy, J.M.; Blin, D.

    2003-01-01

    A device allowing the radioactive decontamination of metal surfaces through the use of a pulsed UV laser has been designed and tested. This device is composed of a 1 kW excimer laser linked to a bundle of optic fibers and of a system to recover particles and can operate in active zones. Metal surfaces have the peculiarities to trap radio-elements in a superficial layer of oxide that can be eaten away by laser radiation. Different contaminated metals (stainless steels, INCONEL and aluminium) issued from the nuclear industry have been used for the testing. The most important contaminants were 60 Co, 137 Cs, 154-155 Eu and 125 Sb. The ratio of decontamination was generally of 10 and the volume of secondary wastes generating during the process was very low compared with other decontamination techniques. A decontamination speed of 1 m 2 /h has been reached for aluminium. The state of the surface is an important parameter because radio-elements trapped in micro-cracks are very difficult to remove. (A.C.)

  5. A comparative study of infrared and microwave heating for microbial decontamination of paprika powder

    Directory of Open Access Journals (Sweden)

    Lovisa eEliasson

    2015-09-01

    Full Text Available There is currently a need in developing new decontamination technologies for spices due to limitations of existing technologies, mainly regarding their effects on spices’ sensory quality. In the search of new decontamination solutions, it is of interest to compare different technologies, to provide the industry with knowledge for taking decisions concerning appropriate decontamination technologies for spices. The present study compares infrared and microwave decontamination of naturally contaminated paprika powder after adjustment of water activity to 0.88. Infrared respectively microwave heating was applied to quickly heat up paprika powder to 98°C, after which the paprika sample was transferred to a conventional oven set at 98°C to keep the temperature constant during a holding time up to 20 min. In the present experimental set-up microwave treatment at 98°C for 20 min resulted in a reduction of 4.8 log units of the total number of mesophilic bacteria, while the infrared treatment showed a 1 log unit lower reduction for the corresponding temperature and treatment time. Microwave and infrared heating created different temperature profiles and moisture distribution within the paprika sample during the heating up part of the process, which is likely to have influenced the decontamination efficiency. The results of this study are used to discuss the difficulties in comparing two thermal technologies on equal conditions due to differences in their heating mechanisms.

  6. An electrochemical and high-speed imaging study of micropore decontamination by acoustic bubble entrapment.

    Science.gov (United States)

    Offin, Douglas G; Birkin, Peter R; Leighton, Timothy G

    2014-03-14

    Electrochemical and high-speed imaging techniques are used to study the abilities of ultrasonically-activated bubbles to clean out micropores. Cylindrical pores with dimensions (diameter × depth) of 500 μm × 400 μm (aspect ratio 0.8), 125 μm × 350 μm (aspect ratio 2.8) and 50 μm × 200 μm (aspect ratio 4.0) are fabricated in glass substrates. Each pore is contaminated by filling it with an electrochemically inactive blocking organic material (thickened methyl salicylate) before the substrate is placed in a solution containing an electroactive species (Fe(CN)6(3-)). An electrode is fabricated at the base of each pore and the Faradaic current is used to monitor the decontamination as a function of time. For the largest pore, decontamination driven by ultrasound (generated by a horn type transducer) and bulk fluid flow are compared. It is shown that ultrasound is much more effective than flow alone, and that bulk fluid flow at the rates used cannot decontaminate the pore completely, but that ultrasound can. In the case of the 125 μm pore, high-speed imaging is used to elucidate the cleaning mechanisms involved in ultrasonic decontamination and reveals that acoustic bubble entrapment is a key feature. The smallest pore is used to explore the limits of decontamination and it is found that ultrasound is still effective at this size under the conditions employed.

  7. Method of decontaminating radioactive-contaminated instruments

    Energy Technology Data Exchange (ETDEWEB)

    Urata, M; Fujii, M; Kitaguchi, H

    1982-03-29

    Purpose: To enable safety processing of liquid wastes by recovering radioactive metal ions remaining in the electrolytes after the decontamination procedure thereby decreasing the radioactivity. Method: In a decontamination tank containing electrolytes consisting of diluted hydrochloric acid and diluted sulfuric acid, are provided a radioactive contaminated instrument connected to an anode and a collector electrode made of stainless steel connected to a cathode respectively. Upon applying electrical current, the portion of the mother material to be decontaminated is polished electrolytically into metal ions and they are deposited as metal on the collection electrode. After completion of the decontamination, an ultrasonic wave generator is operated to strip and remove the oxide films. Thereafter, the anode is replaced with the carbon electrode and electrical current is supplied continuously, whereby the remaining metal ions are deposited and recovered as the metal on the collection electrode.

  8. Cement waste form qualification report: WVDP [West Valley Demonstration Project] PUREX decontaminated supernatant

    International Nuclear Information System (INIS)

    McVay, C.W.; Stimmel, J.R.; Marchetti, S.

    1988-08-01

    This report provides a summary of work performed to develop a cement-based, low-level waste formulation suitable for the solidification of decontaminated high-level waste liquid produced as a by-product of PUREX spent fuel reprocessing. The resultant waste form is suitable for interim storage and is intended for ultimate disposal as low-level Class C waste; it also meets the stability requirements of the NRC Branch Technical Position on Waste Form Qualification, May 1983 and the requirements of 10 CFR 61. A recipe was developed utilizing only Portland Type I cement based on an inorganic salts simulant of the PUREX supernatant. The qualified recipe was tested full scale in the production facility and was observed to produce a product with entrained air, low density, and lower-than-expected compressive strength. Further laboratory scale testing with actual decontaminated supernatant revealed that set retarders were present in the supernatant, precluding setting of the product and allowing the production of ''bleed water.'' Calcium nitrate and sodium silicate were added to overcome the set retarding effect and produced a final product with improved performance when compared to the original formulation. This report describes the qualification process and qualification test results for the final product formulation. 7 refs., 38 figs., 21 tabs

  9. Deactivation, Decontamination and Decommissioning Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David Shane; Webber, Frank Laverne

    2001-07-01

    This report is a compilation of summary descriptions of Deactivation, Decontamination and Decommissioning, and Surveillance and Maintenance projects planned for inactive facilities and sites at the INEEL from FY-2002 through FY-2010. Deactivations of contaminated facilities will produce safe and stable facilities requiring minimal surveillance and maintenance pending further decontamination and decommissioning. Decontamination and decommissioning actions remove contaminated facilities, thus eliminating long-term surveillance and maintenance. The projects are prioritized based on risk to DOE-ID, the public, and the environment, and the reduction of DOE-ID mortgage costs and liability at the INEEL.

  10. In vitro skin permeation and decontamination of the organophosphorus pesticide paraoxon under various physical conditions--evidence for a wash-in effect.

    Science.gov (United States)

    Misik, Jan; Pavlikova, Ruzena; Josse, Denis; Cabal, Jiri; Kuca, Kamil

    2012-09-01

    Misuse of various chemicals, such as chemical warfare agents, industrial chemicals or pesticides during warfare or terrorists attacks requires adequate protection. Thus, development and evaluation of novel decontamination dispositives and techniques are needed. In this study, in vitro permeation and decontamination of a potentially hazardous compound paraoxon, an active metabolite of organophosphorus pesticide parathion, was investigated. Skin permeation and decontamination experiments were carried out in modified Franz diffusion cells. Pig skin was used as a human skin model. Commercially produced detergent-based washing solutions FloraFree(™) and ArgosTM were used as decontamination means. The experiments were done under "warm", "cold", "dry" and "wet" skin conditions in order to determine an effect of various physical conditions on skin permeation of paraoxon and on a subsequent decontamination process. There was no significant difference in skin permeation of paraoxon under warm, cold and dry conditions, whereas wet conditions provided significantly higher permeation rates. In the selected conditions, decontamination treatments performed 1 h after a skin exposure did not decrease the agent volume that permeated through the skin. An exception were wet skin conditions with non-significant decontamination efficacy 18 and 28% for the FloraFree(™) and Argos(™) treatment, respectively. In contrast, the skin permeation of paraoxon under warm, cold and dry conditions increased up to 60-290% following decontamination compared to non-decontaminated controls. This has previously been described as a skin wash-in effect.

  11. Use of ferric- and ferrous-salts in liquid waste treatment processes

    International Nuclear Information System (INIS)

    Efremenkov, V.M.; Toropov, I.G.; Toropova, V.V.; Satsukevich, V.M.; Davidov, J.P.; Jabrodsky, V.N.; Prokshin, N.E.

    1995-01-01

    Treatment of spent decontamination solutions is the most complicated task in the whole problem of management of liquid radioactive waste, because quite often they have complex compositions, which makes it difficult to find for them effective and non-expensive treatment technology. New methods of treatment of such a waste is proposed based on use of specific sorption ability of ferro- and ferri-species in solution. These species are often present in solution as the by-products, and in combination with other components of decontamination solution they can be used as initial substances for synthesis of valuable sorbents directly in treating solution. Using specific compositions and conditions in solution, it is possible to make liquid waste treatment process more effective and less expensive. Particular examples of this process is presented in this work

  12. Radioactive Decontamination by Strippable Paint

    International Nuclear Information System (INIS)

    Chantaraparprachoom, N.; Mishima, K.

    1998-01-01

    The strippable paint, one of the adhesion method, is to decontaminate solid surface of materials or/and a large area. Two kinds of specimen planchet, SUS 304 stainless steel and polycarbonate plastic, contaminated with radioactive 137 Cs were studied under various conditions. It included surface bottom types, the flat and convex concentric circle type, normal condition at room temperature and overheat condition (∼80 degree celsius). This method used coating paints which contains some elements to have a reaction with radioactive materials selectively. ALARA-Decon clear, Rempack-X200 clear, JD-P5-Mrs.Coat and Pro-Blue-color guard were selected to use as the coating paints. The contaminated surface was coated by the strippable paint under the optimum time, followed by peeling the paint seal. The Rempack-X200 showed the best result, the highest decontamination efficiency which are about 99-100% for all conditions of specimens. The JD-P5 and ALARA-Decon showed good results, which are 98-99% decontamination efficiency for the normal condition set of specimens and about 94-97% for the overheat set of specimens. They can decontaminate polycarbonate specimens better than stainless steel specimens. The Pro-Blue-color guard showed the lowest decontamination efficiency of which 60% for polycarbonate specimens at normal condition and 40%, 30% for stainless steel specimens at normal and overheat conditions respectively. There was no effects of surface bottom types significantly

  13. Decontamination of lead by fusion (1962); Decontamination du plomb par fusion (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Boutot, P; Giachetto, L; Capitaine, A [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1962-07-01

    Various attempts to decontaminate using mechanical and chemical methods having given questionable results, a fusion method has been developed. The apparatus consists of a propane-heated oven fitted with a steel crucible of 1 400 kg capacity, with two ventilation systems, and with a vacuum gauge for preventing the diffusion of toxic gases. There are three operational controls : 1. On the samples taken before during and after the operation, 2. On the plugs taken from the ingots, 3. On the ingot itself. The continuous sanitary control is done by a radioactive aerosol recorder and by periodic sampling. This decontamination process will be improved, especially as far as the productivity and the safety precautions are concerned. (authors) [French] Divers essais de decontamination par voies mecaniques et chimiques ayant donne des resultats discutables, un procede par fusion a ete mis au point. L'appareil se compose d'un four, chauffe au propane, muni d'un creuset en acier d'une capacite de 1 400 kg, de deux systemes de ventilation et d'un deprimometre afin d'eviter la diffusion de vapeurs nocives. Trois controles d'activite sont effectues: 1. sur des echantillons preleves avant, pendant et apres l'operation, 2. sur des carottages realises sur les lingots, 3. sur le lingot lui-meme. Le controle sanitaire permanent est assure par un enregistreur d'aerosols radioactifs et par des prelevements periodiques. Ce procede de decontamination doit encore etre ameliore, principalement en ce qui concerne la productivite et la securite. (auteurs)

  14. Investigation of electro-kinetic methods for soil decontamination

    International Nuclear Information System (INIS)

    Shabanova, A.N.

    2000-01-01

    The choices of effective methods for ecological system decontamination, their perfection and introduction into practical use have been actual tasks for the Ural region. The objective of this work has been to study the potentials of electrical kinetics method of ISOTRON Corporation (US) for decontamination of the Urals soils. Results obtained have shown the method proposed to be usable for decontaminating some types of soils from strontium and plutonium; it is low effective for decontamination in the area of South-Urals radioactive plume. Thus, a low effectiveness can be expected in podsolic and leached laterite characterized by a high content of loamy sand and sandy soils, as well as for sobby-podsolic ones. The method can be promising for decontamination of soils and wastes from chemical contaminants, such as Zn, Ni, Cu, Pb, Hg, and others. Important advantages of this method compared to others have been its simplicity, small amount of wastes, and feasibility of decontamination in areas difficult to access. (authors)

  15. Current state of knowledge in radiolysis effects on spent fuel corrosion

    International Nuclear Information System (INIS)

    Christensen, H.; Sunder, S.

    1998-09-01

    Literature data on the effect of water radiolysis products on spent fuel oxidation and dissolution have been reviewed. Effects of γ-radiolysis, α-radiolysis and dissolved O 2 or H 2 O 2 in unirradiated solutions have been discussed separately. Also the effect of carbonate in γ-irradiated solutions and radiolysis effects on leaching of spent fuels have been reviewed. In addition a radiolysis model for calculation of corrosion rates of UO 2 , presented previously, has been discussed. The model has been shown to give a good agreement between calculated and measured corrosion rates in the case of γ-radiolysis and in unirradiated solutions of dissolved oxygen or hydrogen peroxide. The model has failed to predict the results of α-radiolysis. In a recent study it was shown that the model gave a good agreement with measured corrosion rates of spent fuel exposed in deionized water

  16. Decontamination of 125I in Medical Laboratory

    International Nuclear Information System (INIS)

    Abdel Geleel, M.; Tawfeek, A.A.

    2009-01-01

    A radiological laboratory for diagnoses was contaminated by 125 I. A large-scale survey of gamma-radiation has been made in different locations of the floors and walls of the lab to determine the contaminated area and its activity. The activity level before decontamination for the wall and floor was 1400 and 2000 Bq/cm 2 respectively. Decontamination was carried out by using ethyl alcohol, potassium permanganate, ethylene diamine tetracetic acid and tissue papers. Decontamination factor has been calculated and it was 175 and 200 for the wall and floor respectively. D and D computer code has been used to calculate Total Effective Dose Equivalent (TEDE). TEDE from the wall and floor before decontamination were 3.05 and 4.35 ( mSv/yr ) while after decontamination were 18 and 23μSv/yr respectively. These results are lower than the Egyptian and the international regulations (10 mSv/y for the public ) according to International Atomic Energy agency, IAEA, Safety Series, SS, no. 115 (1994).

  17. EDF guide book for decontamination at power plant

    International Nuclear Information System (INIS)

    Glorennec, C.; Bemer, J.P.

    1988-01-01

    Nuclear Power Plant components or equipment often need to be more or less decontaminated before undergoing maintenance. In order to coordinate the activities of the different maintenance specialists belonging to the corporate or site organizations, the management of EDF/Nuclear and Fossil Division has created a decontamination task force. One of the objectives of this task force was to elaborate the present Guide Book for Decontamination at Power Plants. This paper provides assistance to nuclear plants operators in the very specific field of decontamination

  18. A thermodynamic study of decontamination of soils contaminated with 137Cs radionuclide as the results of accident at Chernobyl NPP

    International Nuclear Information System (INIS)

    Chirkst, D.Eh.; Chaliyan, K.N.; Chaliyan, A.G.

    1994-01-01

    Thermodynamic characteristics of the process of soil decontamination from 137 Cs by the their washing with eluting solution, Fe(3) and ammonium being included in its composition, have been determined. The decontamination process is 137 Cs desorption as a result of destruction of cesium chelate complexes with humic acids. Fe 3+ and Fe(OH) 2+ substitution for Cs + in the soils occurs spontaneously as a thermodynamically efficient process. 3 refs.; 1 fig

  19. Decontamination of Soil Contaminated with Bacillus anthracis ...

    Science.gov (United States)

    Technical Brief This technical summary will provide decontamination personnel rapid access to information on which decontamination approaches are most effective for soils contaminated with B anthracis.

  20. Decontamination flowsheet development for a waste oil containing mixed radioactive contaminants

    International Nuclear Information System (INIS)

    Vijayan, S.; Buckley, L.P.

    1993-01-01

    The majority of waste oils contaminated with both radioactive and hazardous components are generated in nuclear power plant, research lab. and uranium-refinery operations. The waste oils are complex, requiring a detailed examination of the waste management strategies and technology options. It may appear that incineration offers a total solution, but this may not be true in all cases. An alternative approach is to decontaminate the waste oils to very low contaminant levels, so that the treated oils can be reused, burned as fuel in boilers, or disposed of by commercial incineration. This paper presents selected experimental data and evaluation results gathered during the development of a decontamination flowsheet for a specific waste oil stores at Chalk River Labs. (CRL). The waste oil contains varying amounts of lube oils, grease, paint, water, particulates, sludge, light chloro- and fluoro-solvents, polychlorinated biphenyls (PCB), complexing chemicals, uranium, chromium, iron, arsenic and manganese. To achieve safe management of this radioactive and hazardous waste, several treatment and disposal methods were screened. Key experiments were performed at the laboratory-scale to confirm and select the most appropriate waste-management scheme based on technical, environmental and economic criteria. The waste-oil-decontamination flowsheet uses a combination of unit operations, including prefiltration, acid scrubbing, and aqueous-leachage treatment by precipitation, microfiltration, filter pressing and carbon adsorption. The decontaminated oil containing open-quotes de minimisclose quotes levels of contaminants will undergo chemical destruction of PCBs and final disposal by incineration. The recovered uranium will be recycled to a uranium milling process

  1. Decontamination Procedure for Sorghum and Coffee Leaves Sprayed With Zinc and a Surfactant

    OpenAIRE

    Caione, Gustavo; Guirra, Ana Paula Pires Maciel; Prado, Renato de Mello; Klar, Antonio Evaldo

    2014-01-01

    Decontaminating leaf samples from crops sprayed with pesticides and nutrient solutions is important for foliar analysis. This study evaluated the effect of different washing methods in coffee and sorghum foliage that had been sprayed with zinc (with or without surfactant). The plants were sprayed with a 3 g L-1 zinc sulfate solution, with and without surfactant. Seven days later, leaves were collected and washed. The experiment was completely randomized in a 2 x 2 x 3 + 2 factorial, with thre...

  2. Evaluation of a process for the decontamination of radioactive hotspots due to activated stellite particles

    International Nuclear Information System (INIS)

    Subramanian, V.; Chandramohan, P.; Srinivasan, M.P.; Rangarajan, S.; Velmurugan, S.; Narasimhan, S.V.; Khandelwal, R.C.

    2010-01-01

    Some of the Indian PHWRs which used stellite balls in the ball and screw mechanism of the adjustor rod drive mechanism in the moderator circuit encountered high radiation field in moderator system due to 60 Co. Release of particulate stellite was responsible for the hotspots besides the general uniform contamination of internal surfaces with 60 Co. Extensive laboratory studies have shown that it is possible to dissolve these stellite particles by adopting a three step redox process with permanganic acid as the oxidizing agent. These investigations with inactive stellite in powder form helped to optimize the process conditions. Permanganic acid was found to have the highest dissolution efficiency as compared to alkaline and nitric acid permanganate. The concentration of the permanganate was also found to be an important factor in deciding the efficiency of the dissolution of stellite. The efficiency of dissolution as a function of permanganic acid concentration showed a maximum. This process was evaluated for its effectiveness on components from nuclear power plants. Component decontamination was carried out on adjustor rod drive assemblies which had 60 Co activity due to stellite particles with the radiation field ranging from 3 R/h to 20 R/h. They were subjected to decontamination with permanganic acid as oxidizing agent, followed by citric acid and a solution containing EDTA, ascorbic acid and citric acid in 4:3:3 ratio by weight (EAC) as reducing formulations. A test rig was fabricated for this purpose. In the first trial, one adjustor rod drive mechanism was subjected to decontamination. After two cycles of treatment, an average decontamination factor (DF) of 6.8, with a maximum DF of 11.7 was achieved. The same process but one cycle was repeated on eight more adjustor rod drive mechanisms. 60 Co activity in the range of 13 - 93 mCi was removed from these adjustor rods. Loose contamination of the order of 30000 - 40000 dpm/cm 2 observed before decontamination

  3. Method of processing decontaminating liquid waste

    International Nuclear Information System (INIS)

    Kusaka, Ken-ichi

    1989-01-01

    When decontaminating liquid wastes are processed by ion exchange resins, radioactive nuclides, metals, decontaminating agents in the liquid wastes are captured in the ion exchange resins. When the exchange resins are oxidatively deomposed, most of the ingredients are decomposed into water and gaseous carbonic acid and discharged, while sulfur ingredient in the resins is converted into sulfuric acid. In this case, even less oxidizable ingredients in the decontaminating agent made easily decomposable by oxidative decomposition together with the resins. The radioactive nuclides and a great amount of iron dissolved upon decontamination in the liquid wastes are dissolved in sulfuric acid formed. When the sulfuric acid wastes are nuetralized with sodium hydroxide, since they are formed into sodium sulfate, which is most popular as wastes from nuclear facilities, they can be condensated and solidified by existent waste processing systms to thereby facilitate the waste processing. (K.M.)

  4. Method of decontaminating radioactive-contaminated instruments

    International Nuclear Information System (INIS)

    Urata, Megumu; Fujii, Masaaki; Kitaguchi, Hiroshi.

    1982-01-01

    Purpose: To enable safety processing of liquid wastes by recovering radioactive metal ions remaining in the electrolytes after the decontamination procedure thereby decreasing the radioactivity. Method: In a decontamination tank containing electrolytes consisting of diluted hydrochloric acid and diluted sulfuric acid, are provided a radioactive contaminated instrument connected to an anode and a collector electrode made of stainless steel connected to a cathode respectively. Upon applying electrical current, the portion of the mother material to be decontaminated is polished electrolytically into metal ions and they are deposited as metal on the collection electrode. After completion of the decontamination, an ultrasonic wave generator is operated to strip and remove the oxide films. Thereafter, the anode is replaced with the carbon electrode and electrical current is supplied continuously, whereby the remaining metal ions are deposited and recovered as the metal on the collection electrode. (Yoshino, Y.)

  5. Electrochemical generation of fentons reagent to treat spent caustic wastewater

    International Nuclear Information System (INIS)

    Hansen, H. K.; Nunez, P.; Rodriguez, N.; Guzman, J.

    2009-01-01

    An important wastewater stream from oil refineries is the spent caustic. Caustic solutions are used as scrubbing agent during the desulphurization process to eliminate sulphur an mercaptans from oil and gasses. Spent caustic is classified as DOO3 (reactive sulphide) hazardous waste under the US Resource Conservation and Recovery Act (RCRA). (Author)

  6. Radioactive decontamination of equipment

    International Nuclear Information System (INIS)

    1982-03-01

    After a recall of some definitions relating to decontamination techniques and of the regulation into effect, the principles to be respected to arrange rationally work zones are quoted while insisting more particularly on the types of coatings which facilitate maintenance operations and the dismantling of these installations. Then, the processes and equipments to use in decontamination units for routine or particular operations are described; the list of recommended chemical products to decontaminate the equipment is given. The influence of these treatments on the state and the duration of life of equipments is studied, and some perfectible methods are quoted. In the appendix, are given: the limits of surface contamination accepted in the centers; a standard project which defines the criteria of admissible residual contamination in wastes considered as cold wastes; some remarks on the interest that certain special ventilation and air curtain devices for the protection of operators working on apparatus generating contaminated dusts [fr

  7. Corrosion response of nuclear reactor materials to mixtures of decontamination reagents

    International Nuclear Information System (INIS)

    Speranzini, R.A.; Burchart, P.A.; Kanhai, K.A.

    1989-01-01

    An experimental study of the corrosiveness of mixtures of citric acid, oxalic acid, and EDTA to nuclear reactor materials was undertaken. Specimens of type 304 stainless steel (SS), type 410 SS, carbon steel (CS) 1018 and A508, and heat-treated alloy 600 were suspended in recirculating mixtures of two or more combinations of citric acid, oxalic acid, and EDTA at temperatures of 90 C or 117 C for 22 hours. The results suggest that removal of oxalic acid from decontamination solutions should lower the corrosiveness of the solutions to nuclear reactor materials, particularly types 304 SS and 410 SS

  8. Thermal-hydraulic analysis of spent fuel storage systems

    International Nuclear Information System (INIS)

    Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.

    1987-01-01

    This paper describes the COBRA-SFS (Spent Fuel Storage) computer code, which is designed to predict flow and temperature distributions in spent nuclear fuel storage and transportation systems. The decay heat generated by spent fuel in a dry storage cask is removed through a combination of conduction, natural convection, and thermal radiation. One major advantage of COBRA-SFS is that fluid recirculation within the cask is computed directly by solving the mass and momentum conservation equations. In addition, thermal radiation heat transfer is modeled using detailed radiation exchange factors based on quarter-rod segments. The equations governing mass, momentum, and energy conservation for incompressible flows are presented, and the semi-implicit solution method is described. COBRA-SFS predictions are compared to temperature data from a spent fuel storage cask test and the effect of different fill media on the cladding temperature distribution is discussed. The effect of spent fuel consolidation on cask thermal performance is also investigated. 16 refs., 6 figs., 2 tabs

  9. Implant decontamination with 2% chlorhexidine during surgical peri-implantitis treatment : a randomized, double-blind, controlled trial

    NARCIS (Netherlands)

    de Waal, Y. C. M.; Raghoebar, G. M.; Meijer, H. J. A.; Winkel, E. G.; van Winkelhoff, A. J.

    ObjectiveThe objective of this randomized, double-blind, controlled trial was to evaluate the clinical, radiographic, and microbiological effects of implant surface decontamination with a 2% chlorhexidine (CHX) solution in comparison with a 0.12% chlorhexidine+0.05% cetylpyridinium chloride (CPC)

  10. Decontamination and materials corrosion concerns in the BWR

    International Nuclear Information System (INIS)

    Gordon, B.M.; Gordon, G.M.

    1988-01-01

    The qualification of chemical decontamination processes to decontaminate complete systems or individual components in essential if effective inspection, maintenance, repair or replacement of plant components is to be achieved with minimum exposure of workers to ionizing radiation. However, it is critical that the benefits of decontamination processes are not overshadowed by deleterious materials/ corrosion side effects during the application of the process or during subsequent operation. This paper discusses such potential corrosion/materials problems in the BWR and presents relevant available corrosion data for the various commercial decontamination processes. (author)

  11. Uranium enrichment decontamination and decommissioning fund

    International Nuclear Information System (INIS)

    1994-01-01

    One of the most challenging issues facing the Department of Energy's Office of Environmental Management is the cleanup of the three gaseous diffusion plants. In October 1992, Congress passed the Energy Policy Act of 1992 and established the Uranium Enrichment Decontamination and Decommissioning Fund to accomplish this task. This mission is being undertaken in an environmentally and financially responsible way by: devising cost-effective technical solutions; producing realistic life-cycle cost estimates, based on practical assumptions and thorough analysis; generating coherent long-term plans which are based on risk assessments, land use, and input from stakeholders; and, showing near-term progress in the cleanup of the gaseous diffusion facilities at Oak Ridge

  12. Use of citric acid for large parts decontamination

    International Nuclear Information System (INIS)

    Holland, M.E.

    1979-01-01

    Laboratory and field studies have been performed to identify and evaluate chemical decontamination agents to replace ammonium carbonate, an environmentally unacceptable compound, in the decontamination facility for large process equipment at the Portsmouth Gaseous Diffusion Plant. Preliminary screening of over 40 possible decontamination agents on the basis of efficiency, availability, toxicity, cost, corrosiveness, and practicality indicated sodium carbonate and citric acid to be the most promising. Extensive laboratory studies were performed with these two reagents. Corrosion rates, decontamination factors, uranium recovery efficiencies, technetium ( 99 Tc)/ion exchange removal effects, and possible environmental impacts were determined or investigated. Favorable results were found in all areas. Detailed monitoring and analysis during two-week trial periods in which sodium carbonate and citric acid were used in the large parts decontamination facility resulted in similar evaluation and conclusions. Because it has cleaning properties not possessed by sodium carbonate, and because it eliminated several operational problems by incorporating two acidic decontamination reagents (citric and nitric acids) instead of one basic reagent (sodium or ammonium carbonate) and one acidic reagent (nitric acid), citric acid was selected for one-year field testing. On the basis of its excellent performance in the field tests, citric acid is recommended as a permanent replacement for ammonium carbonate in the decontamination facility for large process equipment

  13. Development of calculation system for decontamination effect, CDE

    International Nuclear Information System (INIS)

    Satoh, Daiki; Kojima, Kensuke; Oizumi, Akito; Matsuda, Norihiro; Kugo, Teruhiko; Sakamoto, Yukio; Endo, Akira; Okajima, Shigeaki

    2012-08-01

    Large amount of radionuclides had been discharged to environment in the accident of the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Plant caused by the 2011 off the Pacific coast of Tohoku Earthquake. The radionuclides deposited on the ground elevate dose rates in large area around the Fukushima site. For the reduction of the dose rate and recovery of the environment, decontamination based on a rational plan is an important and urgent subject. A computer software, named CDE (Calculation system for Decontamination Effect), has been developed to support planning the decontamination. CDE calculates the dose rates before the decontamination by using a database of dose contributions by radioactive cesium. The decontamination factor is utilized in the prediction of the dose rates after the decontamination, and dose rate reduction factor is evaluated to express the decontamination effect. The results are visualized on the image of a target zone with color map. In this paper, the overview of the software and the dose calculation method are reported. The comparison with the calculation results by a three-dimensional radiation transport code PHITS is also presented. In addition, the source code of the dose calculation program and user's manual of CDE are attached as appendices. (author)

  14. Expansion of capacity of spent fuel pools and associated problems

    International Nuclear Information System (INIS)

    Francisco, J.L. De; Lopez-Cotarelo, J.; Ramos, J.M.

    1978-01-01

    Expanding the spent fuel storage pool capacity is a good solution for utilities facing the current shortage in fuel reprocessing capacity. The problems more likely to be found when expanding a spent fuel storage facility by using high density storage racks are reviewed. Basically three types of problems arise: 1) Problems related with the characteristics of the new facility. 2) Problems related with the works of expansion. 3) Problems related with the long term storage of large quantities of spent fuel. (author)

  15. Decontamination of CANDU primary coolant system

    International Nuclear Information System (INIS)

    Pettit, P.J.

    1975-01-01

    Decontamination of radioactive systems is necessary to reduce personnel radiation exposures and also to reduce exposure during special work. Mechanical decontamination methods are sometimes useful, but most contaminated surfaces are inaccessible, so chemical decontamination often is preferred. The A-P Citrox method will remove most contaminants from CANDU systems, but is costly and long, damages components, and produces large quantities of radioactive liquid waste. The Redox cycling process is fast and inexpensive, produces only solid wastes, but removes small quantities of deposit from Monel only. The CAN-DECON process removes deposits from most materials including fuel cladding and has many other advantages. (author)

  16. Decontamination of stainless steel using cerium(IV): Material recycle and reuse

    International Nuclear Information System (INIS)

    Kurath, D.E.; Bray, L.A.; Jarrett, J.H.

    1997-01-01

    It has been demonstrated that the Cerium(IV) process can effectively remove radioactive contamination from stainless steel. Ce(IV) is a powerful oxidizing agent that is applied in an inorganic acid solution or as an atomized spray by injection into steam directed at the contaminated surface. Ce(IV) attacks the oxide layer and underlying metal surface to remove a 0.5-μm to 3-μm layer. This process has been implemented in a number of actual operations. In one application, a Ce(IV) steam decontamination process was instrumental in renovating hot cells at the High-Level Radiochemistry Facility (325-A building) at the Hanford site. The initial dose rate of approximately 100,000 mR/h was reduced to <50 mR/h and allowed manned entry during hot cell renovation activities. These valuable facilities have been returned to full operation. In an application at the West Valley Nuclear Services Co., Inc., the surfaces of stainless steel canisters that had been filled with vitrified high-level waste have been decontaminated. In some cases the free release levels for surface contamination have been achieved. In another application, five plutonium contaminated stainless steel vessels were decontaminated during decommissioning of the Critical Mass Facility at Hanford

  17. Dissolution studies of spent nuclear fuels

    International Nuclear Information System (INIS)

    1991-02-01

    To obtain quantitative data on the dissolution of high burnup spent nuclear fuel, dissolution study have been carried out at the Department of Chemistry, JAERI, from 1984 under the contract with STA entitled 'Reprocessing Test Study of High Burnup Fuel'. In this study PWR spent fuels of 8,400 to 36,100 MWd/t in averaged burnup were dissolved and the chemical composition and distribution of radioactive nuclides were measured for insoluble residue, cladding material (hull), off-gas and dissolved solution. With these analyses basic data concerning the dissolution and clarification process in the reprocessing plant were accumulated. (author)

  18. Decontamination system study for the Tank Waste Retrieval System

    International Nuclear Information System (INIS)

    Reutzel, T.; Manhardt, J.

    1994-05-01

    This report summarizes the findings of the Idaho National Engineering Laboratory's decontamination study in support of the Tank Waste Retrieval System (TWRS) development program. Problems associated with waste stored in existing single shell tanks are discussed as well as the justification for the TWRS program. The TWRS requires a decontamination system. The subsystems of the TWRS are discussed, and a list of assumptions pertinent to the TWRS decontamination system were developed. This information was used to develop the functional and operational requirements of the TWRS decontamination system. The requirements were combined with a comprehensive review of currently available decontamination techniques to produced a set of evaluation criteria. The cleaning technologies and techniques were evaluated, and the CO 2 blasting decontamination technique was chosen as the best technology for the TWRS

  19. Decontamination of contaminated oils with radio nuclides using magnetic fields

    International Nuclear Information System (INIS)

    Gutierrez R, C. E.

    2011-01-01

    The present work is focused in to find a solution to the wastes treatment that are generated during the maintenance to the nuclear power industry, the specify case of the contaminated oils with radio nuclides, for this purpose was necessary to make a meticulous characterization of the oils before the treatment proposal using advanced techniques, being determined the activity of them, as well as their physical-chemical characteristics. By means of the developed procedure that combines the use of magnetic fields and filtration to remove the contaminated material with radioactive particles, is possible to diminish the activity of the oils from values that oscillate between 6,00 and 10,00 up to 0,00 to 0,0003 Bq/ml. The decontamination factor of the process is of 99.00%. The proposal of the necessary technology for to decontaminate the oils is also made and is carried out the economic analysis based on the reuse of these, as well as the calculation of the avoided damages. (Author)

  20. Pipe and hose decontamination apparatus

    International Nuclear Information System (INIS)

    Fowler, D.E.

    1985-01-01

    A pipe and hose decontamination apparatus is disclosed using freshly filtered high pressure Freon solvent in an integrated closed loop to remove radioactive particles or other contaminants from items having a long cylindrical geometry such as hoses, pipes, cables and the like. The pipe and hose decontamination apparatus comprises a chamber capable of accomodating a long cylindrical work piece to be decontaminated. The chamber has a downward sloped bottom draining to a solvent holding tank. An entrance zone, a cleaning zone and an exit drying zone are defined within the chamber by removable partitions having slotted rubber gaskets in their centers. The entrance and exit drying zones contain a horizontally mounted cylindrical housing which supports in combination a plurality of slotted rubber gaskets and circular brushes to initiate mechanical decontamination. Solvent is delivered at high pressure to a spray ring located in the cleaning zone having a plurality of nozzles surrounding the work piece. The solvent drains into a solvent holding tank located below the nozzles and means are provided for circulating the solvent to and from a solvent cleaning, distilling and filter unit