WorldWideScience

Sample records for spectrum thermionic reactor

  1. Experimental detailed power distribution in a fast spectrum thermionic reactor fuel element at the core/BeO reflector interface region

    Science.gov (United States)

    Klann, P. G.; Lantz, E.

    1973-01-01

    A zero-power critical assembly was designed, constructed, and operated for the prupose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7-cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power conversion system. The critical assembly was modified to simulate a fast spectrum advanced thermionics reactor by: (1) using BeO as a reflector in place of some of the existing molybdenum, (2) substituting Nb-1Zr tubing for some of the existing Ta tubing, and (3) inserting four full-scale mockups of thermionic type fuel elements near the core and BeO reflector boundary. These mockups were surrounded with a buffer zone having the equivalent thermionic core composition. In addition to measuring the critical mass of this thermionic configuration, a detailed power distribution in one of the thermionic element stages in the mixed spectrum region was measured. A power peak to average ratio of two was observed for this fuel stage at the midplane of the core and adjacent to the reflector. Also, the power on the outer surface adjacent to the BeO was slightly more than a factor of two larger than the power on the inside surface of a 5.08 cm (2.0 in.) high annular fuel segment with a 2.52 cm (0.993 in. ) o.d. and a 1.86 cm (0.731 in.) i.d.

  2. Heat-pipe thermionic reactor concept

    DEFF Research Database (Denmark)

    Storm Pedersen, E.

    1967-01-01

    Main components are reactor core, heat pipe, thermionic converter, secondary cooling system, and waste heat radiator; thermal power generated in reactor core is transported by heat pipes to thermionic converters located outside reactor core behind radiation shield; thermionic emitters are in direct...... contact with outside envelope of heat pipes and collectors are in contact with liquid metal secondary cooling system that transfers waste heat to radiator....

  3. Control system studies for thermionic reactors

    Science.gov (United States)

    Hermsen, R. J.; Gronroos, H. G.

    1978-01-01

    In core thermionic reactor concepts are of interest for space missions that require electrical power in the range of a few tens of kilowatts up to several megawatts. The physical principle involved--thermionic direct conversion of heat to electricity at net efficiencies up to 15 percent--offers potential advantages when compared to other nuclear powerplant concepts. However, the integration of the thermionic diode electrode structure with high-temperature nuclear fuel materials presents new design problems and new reactor physical constraints. Among the topics that must be investigated are those associated with the control system. The results of analytical and simulation studies of thermionic reactor control performed at the Jet Propulsion Laboratory are discussed.

  4. Advanced thermionic reactor systems design code

    International Nuclear Information System (INIS)

    Lewis, B.R.; Pawlowski, R.A.; Greek, K.J.; Klein, A.C.

    1991-01-01

    An overall systems design code is under development to model an advanced in-core thermionic nuclear reactor system for space applications at power levels of 10 to 50 kWe. The design code is written in an object-oriented programming environment that allows the use of a series of design modules, each of which is responsible for the determination of specific system parameters. The code modules include a neutronics and core criticality module, a core thermal hydraulics module, a thermionic fuel element performance module, a radiation shielding module, a module for waste heat transfer and rejection, and modules for power conditioning and control. The neutronics and core criticality module determines critical core size, core lifetime, and shutdown margins using the criticality calculation capability of the Monte Carlo Neutron and Photon Transport Code System (MCNP). The remaining modules utilize results of the MCNP analysis along with FORTRAN programming to predict the overall system performance

  5. Electronic Temperature-Flattening of Thermionic Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1972-06-01

    A method for electronically temperature-flattening a "flashlight-type" thermionic reactor with both axial and radial heat generation nonuniformities is described. The method, which makes use of compensating electron cooling variation while satisfying the voltage- and current-matching constraints on the in-core series-parallel diode network, results in substantially uniform emitter temperatures throughout the reactor. Novel analytical techniques for temperature-flattening a nonuniform reactor are described and used to generate specific illustrative designs. It is shown that, even with severe nonuniformities, the temperature-flattened reactor exhibits almost as high a power density and conversion efficiency as a reactor using fuel-zoning for full power flattening. By eliminating the need for fuel-zoning, the concept described here reduces the critical size and system weight, and permits the use of thicker emitter walls for enhanced reliability.

  6. Sizing an external-fueled in-core thermionic reactor.

    Science.gov (United States)

    Nakashima, A. M.; Sawyer, C. D.

    1971-01-01

    Parametric studies on sizing of external-fueled in-core thermionic reactors are presented. Reactor physics results obtained for a variety of fuel element designs are used as a basis for nuclear criticality, power distribution, and control worth design. Thermionic performance results for a single fuel element for several sets of operating conditions are presented. An algorithm combining the electrical and reactor physics results in a form amenable to preliminary systems analysis is presented.

  7. Thermionic nuclear reactor with internal heat distribution and multiple duct cooling

    Science.gov (United States)

    Fisher, C.R.; Perry, L.W. Jr.

    1975-11-01

    A Thermionic Nuclear Reactor is described having multiple ribbon-like coolant ducts passing through the core, intertwined among the thermionic fuel elements to provide independent cooling paths. Heat pipes are disposed in the core between and adjacent to the thermionic fuel elements and the ribbon ducting, for the purpose of more uniformly distributing the heat of fission among the thermionic fuel elements and the ducts.

  8. Development of a thermionic-reactor space-power system. Final summary report

    Energy Technology Data Exchange (ETDEWEB)

    1973-06-30

    Initial experimental work led to the award of the first AEC thermionic contract on May 1, 1962, for the development of fission heated thermionic cells with an operating life of 10,000 hours or more. Two types of converters were fabricated: (1) electrically heated, and (2) fission heated where the fuel was either uranium carbide or uranium oxide. Competition between GGA and GE was climaxed on July 1, 1970 by the award to GGA of a contract to develop an in-core thermionic reactor. This report is divided into the following: thermionic research, materials technology, thermionic fuel element development, reactor technology, and systems technology.

  9. Completely modular Thermionic Reactor Ion Propulsion System (TRIPS)

    Science.gov (United States)

    Peelgren, M. L.; Kikin, G. M.; Sawyer, C. D.

    1972-01-01

    The nuclear reactor powered ion propulsion system described is an advanced completely modularized system which lends itself to development of prototype and/or flight type components without the need for complete system tests until late in the development program. This modularity is achieved in all of the subsystems and components of the electric propulsion system including (1) the thermionic fuel elements, (2) the heat rejection subsystem (heat pipes), (3) the power conditioning modules, and (4) the ion thrusters. Both flashlight and external fuel type in-core thermionic reactors are considered as the power source. The thermionic fuel elements would be useful over a range of reactor power levels. Electrical heated acceptance testing in their flight configuration is possible for the external fuel case. Nuclear heated testing by sampling methods could be used for acceptance testing of flashlight fuel elements. The use of heat pipes for cooling the collectors and as a means of heat transport to the radiator allows early prototype or flight configuration testing of a small module of the heat rejection subsystem as opposed to full scale liquid metal pumps and radiators in a large vacuum chamber. The power conditioner (p/c) is arranged in modules with passive cooling.

  10. Nuclear radiation problems, unmanned thermionic reactor ion propulsion spacecraft

    Science.gov (United States)

    Mondt, J. F.; Sawyer, C. D.; Nakashima, A.

    1972-01-01

    A nuclear thermionic reactor as the electric power source for an electric propulsion spacecraft introduces a nuclear radiation environment that affects the spacecraft configuration, the use and location of electrical insulators and the science experiments. The spacecraft is conceptually configured to minimize the nuclear shield weight by: (1) a large length to diameter spacecraft; (2) eliminating piping penetrations through the shield; and (3) using the mercury propellant as gamma shield. Since the alumina material is damaged by the high nuclear radiation environment in the reactor it is desirable to locate the alumina insulator outside the reflector or develop a more radiation resistant insulator.

  11. Shielding design aspects of thermionic space nuclear reactors

    International Nuclear Information System (INIS)

    Klein, A.C.

    1991-01-01

    It has been well documented that nuclear power sources will be required for the future exploration of space. Higher power levels [>10 kW (electric)] will be enabling, if not absolutely necessary, for the continued expansion of a human presence in the solar system and beyond. Space missions that will directly benefit continued life on Earth, including the monitoring for climate change and global warming, high-capacity communication satellites, and large, space-based radar systems to monitor the flow of airline traffic, will require progressively larger amounts of electrical power. Military applications, even with the ending of the Cold War, will continue to be needed for treaty verification activities. A thermionic energy conversion-based nuclear reactor system is one of the many different technologies proposed for the utilization of nuclear energy in space. How the energy conversion is accomplished and the equipment requiring shielding have a profound effect on the overall shielding requirements for the system. There exist two configurations of this technology that can be exploited and will have a significant effect on shielding needs. The paper discusses in-core thermionic conversion and out-of-core conversion concepts

  12. Small Externally-fueled Heat Pipe Thermionic Reactor (SEHPTR) for dual mode applications

    Science.gov (United States)

    Malloy, John; Jacox, Michael; Zubrin, Robert

    1992-07-01

    The Small Externally Fueled Heat-Pipe Thermionic Reactor (SEHPTR) is described in the context of applications as a dual-mode nuclear power source for satellites. The SEHPTR is a thermionic power system based on a reactor with modular fuel elements around cylindrical thermionic heat-pipe modules with diodes for heat rejection. The SEHPTR concept is theorized to be suitable for directly heating hydrogen gas in the core to increase propulsion and reduce orbit-transfer times. The advantages of dual-mode operation of the SEHPTR are listed including enhanced mission safety and performance at relatively low costs. The SEHPTR could provide direct thermal thrust and an integrated stage that symbiotically utilizes electric power, direct thrust, and hydrogen arcjets. The system is argued to be more effective than a nuclear power system designed solely for electrical power production.

  13. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  14. Prediction of the start-up characteristics of thermionic converter in a STAR-C reactor

    Science.gov (United States)

    Lieb, David P.; Witt, Carl A.; Miskolczy, Garbor; Lee, Celia C. M.; McVey, John

    1992-01-01

    The design for a Space Thermionic Advanced Reactor-Compact (STAR-C) power system with a baseline power of 40 kW(e) consisted of 1230 parallel planar thermionic converters surrounding a space reactor system. The converters were similar to the Solar Energy Thermionic (SET) converters. The collectors were coupled to sodium-filled heat pipes which rejected heat to heat pipe radiators. A cesium intercalated graphite reservior in each converter supplied cesium vapor. A computer thermal model was used to predict the start-up characteristics of a converter in the STAR-C system. During start-up, the reactor heat was radiated to the emitter. Heat was radiated across the cesium gap to the collector and conducted to the cesium-graphite reservoir located in the niobium of the collector heat pipe. Waste heat was removed by the heat pipe to the radiators. A transient, finite-element computer-model of the thermionic converter was developed to simulate the behavior of the STAR-C converter. The subject of this paper is the use of a computer thermal model Thermal Analysis Code-2 Dimensional, TAC-2D to predict the start-up characteristics of a SET type converter with a cesium-graphite reservoir in the collector heat pipe. When the reactor is started, electron cooling of the emitter will not occur until sufficient cesium vapor is introduced into the interelectrode gap. A transient finite element model of the thermionic converter, fuel, and the cesium-graphite reservior simulated the operating conditions. The model utilized special boundary conditions at the collector to simulate the behavior of a heat pipe. The heat loss from the radiator is stimulated by heat transfer proportional to the fourth power of the temperature. The start-up time of the TFE is limited by the availability of cesium pressure during heating. The model showed that the converter can be started up in less than 60 minutes without overheating the emitter. The calculation shows there is almost sufficient direct heating

  15. Modeling transient thermal hydraulic behavior of a thermionic fuel element for nuclear space reactors

    International Nuclear Information System (INIS)

    Al-Kheliewi, A.S.; Klein, A.C.

    1994-01-01

    A transient code (TFETC) for determining the temperature distribution throughout the radial and axial positions of a thermionic fuel element (TFE) during changes in operating conditions has been successfully developed and tested. A fully implicit method is used to solve the system of equations for temperatures at each time step. Presently, TFETC has the ability to handle the following transients: startup, loss of flow accidents, and shutdown. The code has been applied to the startup of the ATI single cell configuration which appears to start up and shut down in an orderly and reasonable fashion. No unexpected transient features were observed. The TFE also appears to function robustly under loss of flow accident conditions. It appears hat sufficient time is available to shut the reactor down safely without melting point the fuel. The model shows that during a complete loss of flow accident (without shutdown) the coolant reaches its boiling point in approximately 35 seconds. The fuel may exceed its melting point after this time as the NaK coolant will boil if the reactor is not shut down. For 1/2, 1/3, and 1/4 pump failures, the fuel temperatures never exceed the fuel melting point even if the reactor is not shut down

  16. Technology Status of Thermionic Fuel Elements for Space Nuclear Power

    Science.gov (United States)

    Holland, J. W.; Yang, L.

    1984-01-01

    Thermionic reactor power systems are discussed with respect to their suitability for space missions. The technology status of thermionic emitters and sheath insulator assemblies is described along with testing of the thermionic fuel elements.

  17. Fabrication and testing of full-length single-cell externally fueled converters for thermionic reactors

    International Nuclear Information System (INIS)

    Schock, A.

    1994-01-01

    The preceding paper described designs and analyses of thermionic reactors employing full-core-length single-cell converters with their heated emitters located on the outside of their internally cooled collectors, and it presented results of detailed parametric analyses which illustrate the benefits of this unconventional design. The present paper describes the fabrication and testing of full-length prototypical converters, both unfueled and fueled, and presents parametric results of electrically heated tests. The unfueled converter tests demonstrated the practicality of operating such long converters without shorting across a 0.3-mm interelectrode gap. They produced a measured peak output of 751 watts(e) from a single diode and a peak efficiency of 15.4%. The fueled converter tests measured the parametric performance of prototypic UO 2 -fueled converters designed for subsequent in-pile testing. They employed revolver-shaped tungsten elements with a central emitter hole surrounded by six fuel chambers. The full-length converters were heated by a water-cooled RF-induction coil inside an ion-pumped vacuum chamber. This required development of high-vacuum coaxial RF feedthroughs. In-pile test rules required multiple containment of the UO 2 -fuel, which complicated the fabrication of the test article and required successful development of techniques for welding tungsten and other refractory components. The tests measured a peak power output of 530 watts(e) or 7.1 watts/cm 2 at an efficiency of 11.5%

  18. Fast mixed spectrum reactor concept

    International Nuclear Information System (INIS)

    Kouts, H.J.C.; Fischer, G.J.; Cerbone, R.J.

    1979-04-01

    The Fast Mixed Spectrum Reactor is a highly promising concept for a fast reactor with improved features of proliferation resistance, and excellent utilization of uranium resources. In technology, it can be considered to be a branch of fast breeder development, though its operation and implications are different from those of FBR'S in important respects. Successful development programs are required in several areas to bring FMSR to reality, but the payoff from a successful program can be high

  19. Fabrication and Testing of Full-Length Single-Cell Externally Fueled Converters for Thermionic Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1994-06-01

    The preceding paper described designs and analyses of thermionic reactors employing full-core-length single-cell converters with their heated emitters located on the outside of their internally cooled collectors, and it presented results of detailed parametric analyses which illustrate the benefits of this unconventional design. The present paper describes the fabrication and testing of full-length prototypical converters, both unfueled and fueled, and presents parametric results of electrically heated tests. The unfueled converter tests demonstrated the practicality of operating such long converters without shorting across a 0.3-mm interelectrode gap. They produced a measured peak output of 751 watts(e) from a single diode and a peak efficiency of 15.4%. The fueled converter tests measured the parametric performance of prototypic UO(subscript 2)-fueled converters designed for subsequent in-pile testing. They employed revolver-shaped tungsten elements with a central emitter hole surrounded by six fuel chambers. The full-length converters were heated by a water-cooled RF-induction coil inside an ion-pumped vacuum chamber. This required development of high-vacuum coaxial RF feedthroughs. In-pile test rules required multiple containment of the UO (subscript 2)-fuel, which complicated the fabrication of the test article and required successful development of techniques for welding tungsten and other refractory components. The test measured a peak power output of 530 watts(e) or 7.1 watts/cm (superscript 2) at an efficiency of 11.5%. There are three copies in the file. Cross-Reference a copy FSC-ESD-217-94-529 in the ESD files with a CID #8574.

  20. A summary of USSR thermionic energy conversion activity

    Science.gov (United States)

    Rasor, N. S.

    1978-01-01

    The paper surveys the research and development associated with thermionic energy conversion in the USSR. Consideration is given to the basic physics of the thermionic converter, the development of thermionic nuclear reactors including the three TOPAZ models, radioisotope-heated generators, and the thermionic topping of fossil-fueled electric-power plants. Comparisons are made between U.S. and USSR capabilities in thermionic energy conversion and potential cooperative programs are noted.

  1. The use of dual mode thermionic reactors in supporting Earth orbital and space exploration missions

    International Nuclear Information System (INIS)

    Zubrin, R.M.; Sulmeisters, T.K.

    1993-01-01

    Missions requiring large amounts of electric power to support their payload functions can be enabled through the employment of nuclear electric power reactors, which in some cases can also assist the mission by making possible the employment of high specific impulse electric propulsion. However it is found that the practicality and versality of using a power reactor to provide advanced propulsion is enormously enhanced if the reactor is configured in such a way to allow it to generate a certain amount of direct thrust as well. The use of such a system allows the creation of a common bus upper stage that can provide both high power and high impulse (with short orbit transfer times). It is shown that such a system, termed an Integral Power and Propulsion Stage (IPAPS), is optimal for supporting many Earth, Lunar, planetary and asteroidal observation, exploration, and communication support missions, and it is therefore recommended that the nuclear power reactor ultimately selected by the government for development and production be one that can be configured for such a function

  2. An improved thermionic power conversion system for space propulsion

    Science.gov (United States)

    Hsieh, T. M.; Phillips, W. M.

    1978-01-01

    A concept of an out-of-core thermionic nuclear electric power conversion system for 400 Kwe power level is being investigated for space propulsion applications. Two key features distinguish the power system design from previous thermionic power conversion concepts. First, the thermionic converters are located outside a nuclear reactor with a neutron shield inserted to reduce the radiation level on the thermionic converter matrix. Second, multiple liquid-metal heat pipes are used exclusively for both thermal power transport (from the nuclear reactor to the thermionic converters) and waste heat removal (from the thermionic converters to the space radiator); no mechanical or electromagnetic pumps are involved. The system characteristics are are compared to those of the in-core thermionic reactor system concept. In many aspects, the system characteristics, including specific weight, lifetime, dynamics control and safety features are found to be more desirable than those of the in-core system concept.

  3. Thermionic fuel element technology status

    Science.gov (United States)

    Holland, J. W.; Horner, M. W.; Yang, L.

    1985-01-01

    The results of research, conducted between the mid-1960s and 1973, on the multiconverter thermionic fuel elements (TFEs) that comprise the reactor core of an SP-100 thermionic reactor system are presented. Fueled-emitter technology, insulator technology and cell and TFE assembly technology of the prototypical TFEs which were tested in-pile and out-of-pile during these years are described. The proto-TFEs have demonstrated reproducible performance within 5 percent and no premature failures within the 1.5 yr of operation (with projected 3-yr lifetimes). The two primary life-limiting factors had been identified as thermionic emitter dimensional increase due to interactions with the fuel and electrical insulator structural damage from fast neutrons. Multiple options for extending TFE lifetimes to 7 yr or longer are available and will be investigated in the 1984-1985 SP-100 program for resolution of critical technology issues. Design diagrams and test graphs are included.

  4. Burning actinides in very hard spectrum reactors

    International Nuclear Information System (INIS)

    Robinson, A.H.; Shirley, G.W.; Prichard, A.W.; Trapp, T.J.

    1978-01-01

    The major unresolved problem in the nuclear industry is the ultimate disposition of the waste products of light water reactors. The study demonstrates the feasibility of designing a very hard spectrum actinide burner reactor (ABR). A 1100 MW/sub t/ ABR design fueled entirely with actinides reprocessed from light water reactor (LWR) wastes is proposed as both an ultimate disposal mechanism for actinides and a means of concurrently producing usable power. Actinides from discharged ABR fuel are recycled to the ABR while fission products are routed to a permanent repository. As an integral part of a large energy park, each such ABR would dispose of the waste actinides from 2 LWRs

  5. Fuel elements of thermionic converters

    International Nuclear Information System (INIS)

    Hunter, R.L.

    1997-01-01

    Work on thermionic nuclear power systems has been performed in Russia within the framework of the TOPAZ reactor program since the early 1960s. In the TOPAZ in-core thermionic convertor reactor design, the fuel element's cladding is also the thermionic convertor's emitter. Deformation of the emitter can lead to short-circuiting and is the primary cause of premature TRC failure. Such deformation can be the result of fuel swelling, thermocycling, or increased unilateral pressure on the emitter due to the release of gaseous fission products. Much of the work on TRCs has concentrated on preventing or mitigating emitter deformation by improving the following materials and structures: nuclear fuel; emitter materials; electrical insulators; moderator and reflector materials; and gas-exhaust device. In addition, considerable effort has been directed toward the development of experimental techniques that accurately mimic operational conditions and toward the creation of analytical and numerical models that allow operational conditions and behavior to be predicted without the expense and time demands of in-pile tests. New and modified materials and structures for the cores of thermionic NPSs and new fabrication processes for the materials have ensured the possibility of creating thermionic NPSs for a wide range of powers, from tens to several hundreds of kilowatts, with life spans of 5 to 10 years

  6. Fast Spectrum Molten Salt Reactor Options

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  7. Frequency spectrum of Calder Hall reactor noise

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1960-01-01

    The frequency spectrum of the noise power of Calder Hall reactor No. 1 has been obtained by analysing a tape recording of the backed off power. The root mean square noise power due to all frequencies above 0.001 cycles per second was found to be 0.13%. The noise power for this reactor, is due mainly to modulations of the power level by reactivity variations caused in turn by gas temperature changes. These gas temperature changes are caused by a Cyclic variation in the feedwater regulator to the heat exchanger. The apparatus and method used to determine the noise power are described in this memorandum. It is shown that for frequencies in the range 0.001 to 0.030 cycles per second the noise spectrum falls at 60 decibels per decade of frequency. (author)

  8. Thermionic photovoltaic energy converter

    Science.gov (United States)

    Chubb, D. L. (Inventor)

    1985-01-01

    A thermionic photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or gallium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  9. A preliminary feasibility study of passive in-core thermionic reactors for highly compact space nuclear power systems

    International Nuclear Information System (INIS)

    Parlos, A.G.; Khan, E.U.; Frymire, R.; Negron, S.; Thomas, J.K.; Peddicord, K.L.

    1991-01-01

    Results of a preliminary feasibility study on a new concept for a highly compact space reactor power systems are presented. Notwithstanding the preliminary nature of the present study, the results which include a new space reactor configuration and its associated technologies indicate promising avenues for the devleopment of highly compact space reactors. The calculations reported in this study include a neutronic design trade-off study using a two-dimensioinal neutron transport model, as well as a simplified one-dimensional thermal analysis of the reactor core. In arriving at the most desirable configuration, various options have been considered and analyzed, and their advantages/disadvantages have been compared. However, because of space limitation, only the most favorable reactor configuration is presented in this summary

  10. Extending the Candu Nuclear Reactor Concept: The Multi-Spectrum Nuclear Reactor

    International Nuclear Information System (INIS)

    Allen, Francis; Bonin, Hugues

    2008-01-01

    The aim of this work is to examine the multi-spectrum nuclear reactor concept as an alternative to fast reactors and accelerator-driven systems for breeding fissile material and reducing the radiotoxicity of spent nuclear fuel. The design characteristics of the CANDU TM nuclear power reactor are shown to provide a basis for a novel approach to this concept. (authors)

  11. Effect of Cesium Pressure on Thermionic Stability

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1969-08-01

    It is shown that under certain conditions of heat input, reservoir temperature, and load voltage or resistance a thermionic converter can equilibrate at two radically different operation points, corresponding to conditions of high and low cesium coverage. Moreover, abrupt transitions between these operating regimes, accompanied by a temperature rise of hundreds of degrees, can occur whenever the critical heat generation rate for a given reservoir temperature is exceeded. To provide an adequate safety margin against such an occurrence, thermionic systems must be operated at relatively high cesium pressures, even though this may cause some performance degradation. This paper consists of two parts. The first explains the above effect with reference to a single converter. The second part illustrates the effect of cesium reservoir temperatures on the dynamic behavior of an open-loop thermionic reactor following a small reactivity perturbation.

  12. Cross section weighting spectrum for fast reactor analysis

    International Nuclear Information System (INIS)

    Nascimento, Jamil A. do; Ono, Shizuca; Guimaraes, Lamartine N.F.

    2009-01-01

    Preparation of a nuclear data library is the first task that a reactor analyst needs to perform a neutronic analysis of a reactor type. Today, in fast reactor area, the scheme used to generate this library includes the processing of an evaluated nuclear data file to obtain cross sections, in thousands of groups. Sequentially, the nuclear data are processed by a cell code to obtain neutron flux that is used to condense the large amount of energy groups to a practical calculation number of groups that can be used in reactor analysis. In the first step of the scheme it is necessary a weighting spectrum to generate the nuclear data. Here, it is proposed to use the flux estimated by Monte Carlo code using cell or the exact geometries and actual composition of the problem to obtain the main portion of the weighting spectrum instead of a code built-in function. As an example, it is presented the differences between selected pins spectrums obtained with MCNP5 calculation of a hexagonal fast reactor fuel assembly. Also, it is showed a comparison between these spectra and the one obtained in the representative unit-cell model of this fuel assembly. The comparisons support that the proposed procedure, problem dependent, may be more accurate and a good choice to generate weighting spectrum in ultra-fine energy structure for fast reactor analysis. The proposed method will be used in space reactor neutronic analysis. (author)

  13. Thermionic integrated circuit technology for high power space applications

    International Nuclear Information System (INIS)

    Yadavalli, S.R.

    1984-01-01

    Thermionic triode and integrated circuit technology is in its infancy and it is emerging. The Thermionic triode can operate at relatively high voltages (up to 2000V) and at least tens of amperes. These devices, including their use in integrated circuitry, operate at high temperatures (800 0 C) and are very tolerant to nuclear and other radiations. These properties can be very useful in large space power applications such as that represented by the SP-100 system which uses a nuclear reactor. This paper presents an assessment of the application of thermionic integrated circuitry with space nuclear power system technology. A comparison is made with conventional semiconductor circuitry considering a dissipative shunt regulator for SP-100 type nuclear power system rated at 100 kW. The particular advantages of thermionic circuitry are significant reductions in size and mass of heat dissipation and radiation shield subsystems

  14. Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Worrall, Andrew [ORNL; Todosow, Michael [Brookhaven National Laboratory (BNL)

    2016-01-01

    Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include: increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance

  15. Multilayer Thermionic Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Mahan, G.D.

    1999-08-30

    A review is presented of our program to construct an efficient solid state refrigerator based on thermionic emission of electrons over periodic barriers in the solid. The experimental program is to construct a simple device with one barrier layer using a three layers: metal-semiconductor-metal. The theoretical program is doing calculations to determine: (i) the optimal layer thickness, and (ii) the thermal conductivity.

  16. Search for the Neutrino Magnetic Moment in the Non-Equilibrium Reactor Antineutrino Energy Spectrum

    OpenAIRE

    Kopeikin, V. I.; Mikaelyan, L. A.; Sinev, V. V.

    1999-01-01

    We study the time evolution of the typical nuclear reactor antineutrino energy spectrum during reactor ON period and the decay of the residual antineutrino spectrum after reactor is stopped. We find that relevant variations of the soft recoil electron spectra produced via weak and magnetic ${\\widetilde {\

  17. Thermionics basic principles of electronics

    CERN Document Server

    Jenkins, J; Ashhurst, W

    2013-01-01

    Basic Principles of Electronics, Volume I : Thermionics serves as a textbook for students in physics. It focuses on thermionic devices. The book covers topics on electron dynamics, electron emission, and the themionic vacuum diode and triode. Power amplifiers, oscillators, and electronic measuring equipment are studied as well. The text will be of great use to physics and electronics students, and inventors.

  18. Fast-mixed spectrum reactor interim report initial feasibility study

    International Nuclear Information System (INIS)

    Fischer, G.J.; Cerbone, R.J.

    1979-01-01

    The report summarizes the results of an initial four-month feasibility study of the Fast-Mixed Spectrum Reactor (FMSR). Reactor physics, fuel cycle, and thermal-hydraulic analyses were performed on a reference design. These results when coupled to a fuel and materials evaluation performed in cooperation with the Argonne National Laboratory indicate that the FMSR is feasible provided the fuels, cladding, and subassembly ducts can survive a peak fuel burnup of 15 to 20 atom percent heavy metal and peak fluences of 8 x 10 23 (nvt > 0.1 MeV). The results of this short study have also provided a basis for exploring alternative designs requiring significantly lower peak burnup and fluences for their operation

  19. PROSPECT: The Precision Reactor Oscillation and Spectrum Experiment

    Science.gov (United States)

    Mumm, Pieter; Prospect Collaboration

    2017-09-01

    The PROSPECT short-baseline reactor experiment will perform a precision measurement of the antineutrino spectrum associated with 235-U and probe, to high-significance, sterile neutrino oscillation with mass states in the eV region. PROSPECT will operate at distances of 7-12 m in close proximity to the high-flux isotope reactor (HFIR) at ORNL . This presents several design challenges, particularly the need for excellent control of background. The PROSPECT detector consists of a 4 ton highly-segmented 6Li-loaded liquid scintillator volume with good in-situ calibration capabilities. Extensive prototyping has shown excellent light collection efficiency, uniformity of response, and background rejection capabilities. We will describe the experimental program, discovery potential, and progress in the construction of PROSPECT.

  20. Updated neutron spectrum characterization of SNL baseline reactor environments

    International Nuclear Information System (INIS)

    Griffin, P.J.; Kelly, J.G.; Vehar, D.W.

    1994-04-01

    The neutron spectrum characteristics of the primary reactor environments are defined for use by facility customers and to provide an audit trail in support of current quality assurance initiatives. The neutron and gamma environments in the four primary customer environments at SPR-III and ACRR facilities are characterized in detail. Enough detail is provided on other frequently-used environments to support the definition of the 3-MeV and 1-MeV(Si) fluence provided on the Radiation Metrology Laboratory dosimetry reports

  1. Isotopic Thermionic Generator

    International Nuclear Information System (INIS)

    Clemot, M.; Devin, B.; Durand, J.P.

    1967-01-01

    This report describes the general design of a thermionic direct conversion space generator. The power source used is a radioisotope. Two radioisotopes are considered: Pu 238 and Cm 244. The system is made up of a heat pipe concentrating the thermal flux from the isotope to the emitter, and of a second heat pipe evacuating the waste heat from the collector to the outer wall used as radiating panel. Calculations are given in the particular case of a 100 electrical watts output power. (authors) [fr

  2. Consolidation of the neutron spectrum in the RA-6 reactor

    International Nuclear Information System (INIS)

    Bazzana, S.; Chiaraviglio, N.

    2013-01-01

    Unfolding procedures can be used to determine the neutron or gamma spectrum in a multigroup structure from experimental and calculation results. In this way, it is possible to adjust with high reliability magnitudes that cannot be directly measured. For neutron unfolding it is necessary the use of a set of detectors with different energetic response. In this work we describe two unfolding experiences in different positions of the RA-6 reactor of the Bariloche Atomic Centre. One of them consisted in the unfolding in an incore position and the other one in the BNCT facility beam.Experimental techniques and neutron detectors for each experience are described along with the correction factors that must be taken into account for each experience. In both cases there is good agreement between measured and adjusted quantities. (author) [es

  3. Determination of spectrum hardness as a parameter of neutron field at WWR-M research reactor

    Directory of Open Access Journals (Sweden)

    P. M. Vorona

    2012-12-01

    Full Text Available New method for determination of spectrum hardness in thermal neutron reactors is proposed. Adequacy of received data to the real values of spectrum hardness had been confirmed by comparison with experimental data which were determined from cadmium relation measured at WWR-M research reactor.

  4. Analysis of output performance characteristics of cesium diode thermionic energy converters

    Science.gov (United States)

    Shimizu, Sadaaki

    1989-12-01

    The thermionic energy converter (TEC) is a device which can convert heat directly into electric work by thermionic emission. Here, the principle and application of the TEC are described, including a nuclear reactor application. The operating characteristics of the cesium diode TEC are examined, and comparison is made between the output current-voltage curves obtained experimentally and those calculated by the SIMCON computer code. Comparisons are also made for the electron temperature and ion density profiles across the interelectrode plasma.

  5. Comparative assessment of out-of-core nuclear thermionic power systems

    International Nuclear Information System (INIS)

    Estabrook, W.C.; Koenig, D.R.; Prickett, W.Z.

    1975-01-01

    The hardware selections available for fabrication of a nuclear electric propulsion stage for planetary exploration were explored. The investigation was centered around a heat-pipe-cooled, fast-spectrum nuclear reactor for an out-of-core power conversion system with sufficient detail for comparison with the in-core system studies completed previously. A survey of competing power conversion systems still indicated that the modular reliability of thermionic converters makes them the desirable choice to provide the 240-kWe end-of-life power for at least 20,000 full power hours. The electrical energy will be used to operate a number of mercury ion bombardment thrusters with a specific impulse in the range of about 4,000-5,000 seconds. (Author)

  6. Analysis of output performance characteristics of cesium diode thermionic energy converters

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Sadaaki (Electrotechnical Lab., Tsukuba, Ibaraki (Japan))

    1989-12-01

    Thermionic Energy Conversion (TEC) is a method for converting heat directly into electrical work through use of the phenomenon of thermionic emission. The purpose of this investigation is to evaluate the effectiveness of computer code SIMCON, and to understand the output current-voltage characteristics of thermionic energy converter. Chapter 1: Thermionic energy converter is attractive in making use of the heat produced as a topping system in the steam power plant or gas and steam turbine power plant. It describes also the nuclear reactor application for thermionic converter as a power sources in future satellite and space station systems. Chapter 2: The principle and the application of thermionic energy converter operation and its nuclear and fossil application are described. Chapter 3: An operating characteristics of either unignited or ignited mode and with physical phenomena on the arc discharge of ignited mode. Theoretical expression of thermionic energy converter operation and the structure of SIMCON program is outlined. Chapter 4: The comparison between the output current-voltage curves experimentally obtained and those calculated by SIMCON. Comparison is made also for several cases on the electron temperature and ion density profiles across the inter electrode plasma. The results of the comparison are discussed concerning to the converter operating characteristics. From those comparison the usefulness, the limitation of the application, and the data input problems of the SIMCON code are evaluated. Chapter 5: summarizes the preceding chapters. (J.P.N.) 119 refs.

  7. Low Power Reactor Comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Homeyer, W. G. [General Atomics Site, San Diego, CA (United States)

    1969-02-21

    Studies were made of a number of low power (< 300 kWe) thermionic reactors containing flashlight or unit cell thermionic fuel elements. The objective of these studies was to determine the feasibility of producing a net power of 50 to 100 kWe with a power plant weighing 3000 to 4000 lb (1360 to 1820 kg).

  8. Determining of the intermediate neutron spectrum in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1987-01-01

    The activation method for intermediate neutron spectrum determination is given in this paper. The intermediate neutron spectrum in experimental fuel channel (EFC) at the RB reactor is determined om the basis of this method. The results of measurements are treated with PRAG code and will be treated with KRIFIT and TENET codes that are also developed. (author)

  9. Studies on the properties of hard-spectrum, actinide fissioning reactors. Final report

    International Nuclear Information System (INIS)

    Nelson, J.B.; Prichard, A.W.; Schofield, P.E.; Robinson, A.H.; Spinrad, B.I.

    1980-01-01

    It is technically feasible to construct an operable (e.g., safe and stable) reactor to burn waste actinides rapidly. The heart of the concept is a driver core of EBR-II type, with a central radial target zone in which fuel elements, made entirely of waste actinides are exposed. This target fuel undergoes fission, as a result of which actinides are rapidly destroyed. Although the same result could be achieved in more conventionally designed LWR or LMFBR systems, the fast spectrum reactor does a much more efficient job, by virtue of the fact that in both LWR and LMFBR reactors, actinide fission is preceded by several captures before a fissile nuclide is formed. In the fast spectrum reactor that is called ABR (actinide burning reactor), these neutron captures are short-circuited

  10. Thermionic cooling in semiconductor multilayers

    International Nuclear Information System (INIS)

    Lee, S.; Lewis, R.A.; Lough, B.; Zhang, C.

    2000-01-01

    Full text: A solid-state refrigerator in which electrons transport heat has advantages over the conventional vapour-cycle, compressor-based domestic refrigerator since it has no moving parts, it is low-maintenance, silent, vibration-free and does not require the use of refrigerant gases. The usual approach to making an all-electrical refrigerator is by thermoelectric refrigeration. After a period of intense research in the 1950s and 60s it was realised that the efficiency of thermoelectric devices was less than, and unlikely to exceed, that of conventional compressor units. While thermoelectric cooling has found specialised applications in cases where reliability, compactness and weight are important considerations, it does not appear that thermo-electrics will ever successfully compete in the domestic market, in spite of recent advances in the design and fabrication of thermoelectric materials. A new approach to an all-electric refrigerator is to employ thermionic emission over potential barriers. A key difference between a thermoelectric device and a thermionic device is that in the former the electrons are scattered in their motion and in the latter they are not. Thus thermionic cooling, in principle, can be much more efficient than thermoelectric cooling. A radical new realisation of the thermionic refrigerator was suggested recently in which a multilayer semiconductor structure would be used. We discuss the optimisation of such a multilayer semiconductor cooling system by considering (1) electron-phonon interactions in the barriers and electrodes; (2) the detailed treatment of thermal conductivity; (3) an exact numerical solution of the heat and energy currents (in contrast to the previous approximate analytic solutions); (4) the effect of varying layer thickness across the device; and (5) the effect of varying current density across the device

  11. Advanced Thermionic Converter Technology Program

    Science.gov (United States)

    Luke, James R.

    2003-01-01

    A thermionic energy converter (TEC) is a direct energy conversion device, which converts heat to electricity with no moving parts. Thermionic converters are well suited to space nuclear power systems because of their high power density, high heat rejection temperature, and immunity to radiation. Several recent advances in thermionic energy conversion technology have greatly improved the efficiency of these devices. A research program was undertaken to independently confirm these advances, and to extend them to converters with practical geometry. The recent development of a stable cesium/oxygen vapor source has led to a significant improvement in performance. The addition of a small amount of oxygen to the cesium vapor can increase the emission current by a factor of three or more. The beneficial effects of oxygen are stable and reproducible. A TEC with a cold seal has been invented, which greatly simplifies construction, operation, and maintenance of the TEC. Electron reflection from the collector has been shown to reduce the performance of TEC's. Reflection suppressing materials were produced and tested. One sample showed evidence of reflection suppression, increasing the average output voltage by 0.16 V. Another sample did not. Research in this area is ongoing.

  12. MYRRHA – A multi-purpose fast spectrum research reactor

    International Nuclear Information System (INIS)

    Aït Abderrahim, Hamid; Baeten, Peter; De Bruyn, Didier; Fernandez, Rafael

    2012-01-01

    Highlights: ► Historical evolution of the MYRRHA project. ► Detail design of the MYRRHA Accelerator Driven System. ► Irradiation performance simulation of the MYRRHA ADS. - Abstract: MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is the flexible experimental Accelerator-Driven System (ADS) currently under development at SCK⋅CEN and will replace the Material Testing Reactor (MTR) BR2. The MYRRHA facility is currently being developed with the aid of the FP7-project “Central Design Team” and will be as a flexible irradiation facility, able to work in both subcritical and critical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV systems, material developments for fusion reactors, radioisotope production for medical and industrial applications, and Si-doping. MYRRHA will also demonstrate the full concept of Accelerator Driven Systems by coupling the requisite three components (accelerator, spallation target and subcritical reactor) at reasonable power level to allow operation feedback, scalable to an industrial demonstrator and allow for the study of efficient transmutation of high-level nuclear waste. Since MYRRHA is based on the heavy liquid metal technology, Lead–Bismuth Eutectic, it will be able to significantly contribute to the development of Lead Fast Reactor (LFR) technology. Further, in critical mode, MYRRHA will play the role of European Technology Pilot Plant in the path forward for LFR. In this paper we present the historical perspectives, international and high profile membership within the consortium of the MYRRHA project and the rationale for the design choices are presented. Also, the latest configuration of the reactor system is described together with the different irradiation capabilities. More specifically, the possibilities and performances for fuel irradiations are presented in detail.

  13. On similarity of various reactor spectra and235U prompt fission neutron spectrum.

    Science.gov (United States)

    Košťál, Michal; Matěj, Zdeněk; Losa, Evžen; Huml, Ondřej; Štefánik, Milan; Cvachovec, František; Schulc, Martin; Jánský, Bohumil; Novák, Evžen; Harutyunyan, Davit; Rypar, Vojtěch

    2018-05-01

    A well-defined neutron spectrum is an essential tool not only for calibration and testing of neutron detectors used in dosimetry and spectroscopy but also for validation and verification of evaluated cross sections. A new evaluation of thermal-neutron induced 235 U PFNS was performed by the International Atomic Energy Agency (IAEA) in the CIELO (Collaborative International Evaluated Library Organisation Project) project; new measurements of Spectral Averaged Cross sections averaged in the evaluated spectrum are to be obtained. In general, a neutron spectrum in the core is not identical to the pure fission one because fission neutrons undergo many scattering reactions, but it can be shown that PFNS and reactor spectra become undistinguishable from a certain energy boundary. This limit is important for experiments, because when the studied reaction threshold is over this limit, the spectral averaged cross sections in PFNS can be derived from the measured reactions in the reactor core. The evaluation of the neutron spectrum measurements in three different thermal-reactor cores shows that this lower limit is around the energy of 5.5 - 6 MeV. Above this energy the reactor spectra becomes identical with the 235 U PFNS. IAEA CIELO PFNS is within 5% of the measured PFNS from 10 to 14 MeV in a LR-0 reactor, while ENDF/B-VII evaluated PFNS underestimated measured neutron spectra. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Isotopic alloying to tailor helium production rates in mixed-spectrum reactors

    International Nuclear Information System (INIS)

    Mansur, L.K.; Rowcliffe, A.F.; Grossbeck, M.L.; Stoller, R.E.

    1986-01-01

    The insoluble inert gas helium has been found to produce significant changes in the irradiation response of structural materials when introduced at levels in the appm range and above. In the structural materials for future fusion reactors, (n,α) transmutation reactions induced at a high rate by the 14 MeV component of the neutron spectrum will lead to helium production rates of the order of 10 appm/dpa. However, until a fusion reactor is available, materials scientists must study radiation effects, including the interactions with helium, by means of accelerator and fission reactor irradiations

  15. Arizona State University research related to thermionic energy conversion

    International Nuclear Information System (INIS)

    Jacobson, D.L.; Morris, J.F.

    1983-01-01

    This paper presents a series of executive summaries on the organization and progress of the ongoing US TEC program. Current and proposed ASU research related to TEC for space and terrestrial power applications are given, and include: Thermionic Electrode Materials Evaluation, Investigation of Lanthanum-Hexaboride High-Index Planes at High Temperatures, and Direct Thermal Lasers, among others. An analysis of space-nuclear reactor power system design is included, and provides and accepts inputs to and from other related studies of high-level space power

  16. Impact induced response spectrum for the safety evaluation of the high flux isotope reactor

    International Nuclear Information System (INIS)

    Chang, S.J.

    1997-01-01

    The dynamic impact to the nearby HFIR reactor vessel caused by heavy load drop is analyzed. The impact calculation is carried out by applying the ABAQUS computer code. An impact-induced response spectrum is constructed in order to evaluate whether the HFIR vessel and the shutdown mechanism may be disabled. For the frequency range less than 10 Hz, the maximum spectral velocity of impact is approximately equal to that of the HFIR seismic design-basis spectrum. For the frequency range greater than 10 Hz, the impact-induced response spectrum is shown to cause no effect to the control rod and the shutdown mechanism. An earlier seismic safety assessment for the HFIR control and shutdown mechanism was made by EQE. Based on EQE modal solution that is combined with the impact-induced spectrum, it is concluded that the impact will not cause any damage to the shutdown mechanism, even while the reactor is in operation. The present method suggests a general approach for evaluating the impact induced damage to the reactor by applying the existing finite element modal solution that has been carried out for the seismic evaluation of the reactor

  17. Characterization of Detector Response for PROSPECT - A Precision Reactor Oscillation and SPECTrum Measurement

    Science.gov (United States)

    Goddard, Brian; Dolinski, Michelle; Prospect Collaboration

    2015-10-01

    Recently, several experiments have reported an approximately 5% deficit of antineutrinos from nuclear reactors when the measured flux is compared with that predicted by current nuclear models. This is termed the ``Reactor Antineutrino Anomaly''. Furthermore, the predicted shape of the antineutrino spectrum is not in agreement with measurements from those experiments. The PROSPECT (Precision Reactor Oscillation and SPECTrum Measurement) collaboration plans to investigate this anomaly and constrain the shape of the spectrum with a high precision, short baseline (7-20m) measurement of the antineutrino spectrum from Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) which will include a search for sterile neutrinos as one possible solution to the anomaly. PROSPECT will utilize a segmented, lithium-loaded liquid scintillator detector and is taking a phased approach to detector design by building progressively larger prototypes of this final detector with several prototypes already constructed and taking data. This poster will report on the ongoing analysis of the detector response of these prototypes including aspects such as position reconstruction, energy resolution, and pulse shape discrimination.

  18. Fast-mixed spectrum reactor. Progress report for 1980

    International Nuclear Information System (INIS)

    Fischer, G.J.; Galperin, A.; Shenoy, S.; Atefi, B.

    1980-10-01

    Reactor physics, fuel cycle, thermal-hydraulics and fuel cycle cost studies have been performed for this concept and are reported. The most serious drawback of previous FMSR designs, namely the level of irradiation damage to the stainless steel of the cladding and duct materials, has been greatly reduced by the new design. The peak fuel burnup level is also reduced. Work continued on earlier FMSR designs, and in particular, the centrally-moderated FMSR. Emphasis was placed on defining the first core and then the total sequence of core histories over the 30-year life of the reactor. It was found possible to define a two-year fuel cycle with limited reactivity swing over the cycle. Fuel cycle cost studies were begun. The results indicate a modest fuel cycle cost advantage for the FMSR, but the basic cost assumptions must be improved for metal fuel. Improved thermal-hydraulic analysis capabilities have greatly improved the understanding of heat transfer behavior, particularly where thter catalyst were synthesized, and seven were tested in the gas phase. In Task 3, the distributor plate foen conversion can be controlled by adjusting external variables of the coss two- fatigue stren obtained

  19. Hybrid thermionic-photovoltaic converter

    Energy Technology Data Exchange (ETDEWEB)

    Datas, A. [Instituto de Energía Solar, Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2016-04-04

    A conceptual device for the direct conversion of heat into electricity is presented. This concept hybridizes thermionic (TI) and thermophotovoltaic (TPV) energy conversion in a single thermionic-photovoltaic (TIPV) solid-state device. This device transforms into electricity both the electron and photon fluxes emitted by an incandescent surface. This letter presents an idealized analysis of this device in order to determine its theoretical potential. According to this analysis, the key advantage of this converter, with respect to either TPV or TI, is the higher power density in an extended temperature range. For low temperatures, TIPV performs like TPV due to the negligible electron flux. On the contrary, for high temperatures, TIPV performs like TI due to the great enhancement of the electron flux, which overshadows the photon flux contribution. At the intermediate temperatures, ∼1650 K in the case of this particular study, I show that the power density potential of TIPV converter is twice as great as that of TPV and TI. The greatest impact concerns applications in which the temperature varies in a relatively wide range, for which averaged power density enhancement above 500% is attainable.

  20. PROSPECT: A Short-baseline Reactor Precision Spectrum and Oscillation Experiment

    Science.gov (United States)

    Langford, Thomas; Prospect Collaboration

    2015-10-01

    PROSPECT is a phased experiment consisting of segmented Li-loaded liquid scintillator antineutrino detectors designed to probe short-baseline neutrino oscillations and precisely measure the reactor antineutrino spectrum. The experiment will be located at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab. The first phase is a movable 2.5 tonne detector located 7-9 m from the compact, highly enriched uranium (HEU) core. Over the past two years, PROSPECT has deployed multiple prototype detectors at HFIR to understand the local background environment and demonstrate active and passive background rejection. Measuring the neutrino spectrum from 235U will give insight to the recent spectral discrepancies and provide an important benchmark for future reactor experiments. As a high statistics experiment, PROSPECT will probe the sterile neutrino best-fit region within one year of operation at HFIR.

  1. Using activation method to measure neutron spectrum in an irradiation chamber of a research reactor

    International Nuclear Information System (INIS)

    Zhou Xuemei; Liu Guimin; Wang Xiaohe; Li Da; Meng Lingjie

    2014-01-01

    Neutron spectrum should be measured before test samples are irradiated. Neutron spectrum in an irradiation chamber of a research reactor was measured by using activation method when the reactor is in normal operation under 2 MW. Sixteen kinds of non-fission foils (19 reaction channels) were selected, of which 10 were sensitive to thermal and intermediate energy regions, while the others were of different threshold energy and sensitive to fast energy regions. By measuring the foil radioactivity, the neutron spectrum was unfolded with the iterative methods SAND-II and MSIT. Finally, shielding corrections of group cross-section and main factors affecting the calculation accuracy were studied and the uncertainty of solution was analyzed using the Monte Carlo method in the process of SAND-II. (authors)

  2. Use of fast-spectrum reactors for actinide burning

    International Nuclear Information System (INIS)

    Chang, Yoon I.

    1991-01-01

    Finally, Integral Fast Reactor (IFR) pyroprocessing has been developed only in recent years and it appears to have potential as a relatively uncomplicated, effective actinide recovery process. In fact, actinide recycling occurs naturally in the IFR fuel cycle. Although still very much developmental, the entire IFR fuel cycle will be demonstrated on prototype-scale in conjunction with the EBR-II and its refurbished Fuel Cycle Facility starting in late 1991. A logical extension to this work, therefore, is to establish whether this IFR pyrochemical processing can be applied to extracting actinides from LWR spent fuel. This paper summarizes current thinking on the rationale for actinide recycle, its ramifications on the geologic repository and the current high-level waste management plans, and the necessary development programs. 4 figs., 4 tabs

  3. Neutron energy spectrum in graphite blankets of fusion reactors

    International Nuclear Information System (INIS)

    Tsechanski, A.

    1981-09-01

    Neutron flux measurements were performed in a graphite stack and compared with calculations made with a two dimensional transport computer code. In the present work it is observed that the calculated spectrum in the elastic and inelastic scattering ranges (the first collision range in both cases), is sensitive to details of the angular distribution of these neutrons. Regarding the discrepancies in the elastic scattering range it is concluded that the microscopic cross section library ENDF/B-IV overestimates the large angle scattering (back scattering) as can be seen from comparison of measured and calculated spectra. The two most important conclusions of the present work are: 1. Inelastic scattering interaction of D-T neutrons in graphite cannot be calculated without a proper account of energy-angle correlation. 2. An experimental setup supplying monoenergetic collimated D-T neutrons constitutes a sensitive although indirect means for measuring angular distributions in inelastic and elastic scattering

  4. Reducing Back-Bombardment Effect Using Thermionic Cathode in IAE RF Gun

    CERN Document Server

    Kii, Toshiteru; Masuda, Kai; Murakami, Shio; Ohgaki, Hideaki; Yamazaki, Tetsuo; Yoshikawa, Kiyoshi; Zen, Heishun

    2004-01-01

    We have numerically studied on improvement of electron beam macro-pulse properties from thermionic RF gun [1,2]. Beam properties, such as energy spectrum, macro-pulse duration and emittance were measured with a 2 mm diameter slim thermionic dispenser cathode. Effect of the transverse magnetic field to reduce back-streaming electrons to these properties was studied experimentally. Comparison with measured and numerical results will be discussed. Effect of a non-flat RF input to compensate a decreasing beam energy during macropulse due to a back-bombardment effect will be also presented.

  5. Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay.

    Science.gov (United States)

    An, F P; Balantekin, A B; Band, H R; Bishai, M; Blyth, S; Butorov, I; Cao, D; Cao, G F; Cao, J; Cen, W R; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J H; Cheng, J; Cheng, Y P; Cherwinka, J J; Chu, M C; Cummings, J P; de Arcos, J; Deng, Z Y; Ding, X F; Ding, Y Y; Diwan, M V; Dove, J; Draeger, E; Dwyer, D A; Edwards, W R; Ely, S R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guan, M Y; Guo, L; Guo, X H; Hackenburg, R W; Han, R; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, L M; Hu, L J; Hu, T; Hu, W; Huang, E C; Huang, H X; Huang, X T; Huber, P; Hussain, G; Jaffe, D E; Jaffke, P; Jen, K L; Jetter, S; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Kang, L; Kettell, S H; Kohn, S; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lei, R T; Leitner, R; Leung, K Y; Leung, J K C; Lewis, C A; Li, D J; Li, F; Li, G S; Li, Q J; Li, S C; Li, W D; Li, X N; Li, X Q; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, P Y; Lin, S K; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, H; Liu, J L; Liu, J C; Liu, S S; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Ma, Q M; Ma, X Y; Ma, X B; Ma, Y Q; Martinez Caicedo, D A; McDonald, K T; McKeown, R D; Meng, Y; Mitchell, I; Monari Kebwaro, J; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ning, Z; Ochoa-Ricoux, J P; Olshevski, A; Pan, H-R; Park, J; Patton, S; Pec, V; Peng, J C; Piilonen, L E; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Ren, B; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Shao, B B; Steiner, H; Sun, G X; Sun, J L; Tang, W; Taychenachev, D; Tsang, K V; Tull, C E; Tung, Y C; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, W W; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, Q; Xia, D M; Xia, J K; Xia, X; Xing, Z Z; Xu, J Y; Xu, J L; Xu, J; Xu, Y; Xue, T; Yan, J; Yang, C G; Yang, L; Yang, M S; Yang, M T; Ye, M; Yeh, M; Young, B L; Yu, G Y; Yu, Z Y; Zang, S L; Zhan, L; Zhang, C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, Y M; Zhang, Y X; Zhang, Y M; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhao, Q W; Zhao, Y F; Zhao, Y B; Zheng, L; Zhong, W L; Zhou, L; Zhou, N; Zhuang, H L; Zou, J H

    2016-02-12

    This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9 GWth nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296 721 and 41 589 inverse β decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55±0.04) ×10(-18)  cm(2) GW(-1) day(-1) or (5.92±0.14) ×10(-43)  cm(2) fission(-1). This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is 0.946±0.022 (0.991±0.023) relative to the flux predicted with the Huber-Mueller (ILL-Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2σ over the full energy range with a local significance of up to ∼4σ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.

  6. Thermionic integrated circuits: electronics for hostile environments

    International Nuclear Information System (INIS)

    Lynn, D.K.; McCormick, J.B.; MacRoberts, M.D.J.; Wilde, D.K.; Dooley, G.R.; Brown, D.R.

    1985-01-01

    Thermionic integrated circuits combine vacuum tube technology with integrated circuit techniques to form integrated vacuum triode circuits. These circuits are capable of extended operation in both high-temperature and high-radiation environments

  7. Radioisotope thermionic converters for space applications

    International Nuclear Information System (INIS)

    Miskolczy, G.; Lieb, D.P.

    1990-01-01

    The recent history of radioisotope thermionics is reviewed, with emphasis on the U.S. programs, and the prospects for the future are assessed. In radioisotope thermionic converters the emitter heat is generated by the decay of a radioactive isotope. The thermionic converter emitter is mounted directly on a capsule containing the isotope. The rest of the capsule is generally insulated to reduce thermal loss. The development of isotope-fueled thermionic power systems for space application has been pursued since the late 1950's. The U.S. effort was concentrated on modular systems with alpha emitters as the isotope heat source. In the SNAP-13 program, the heat sources were Cerium isotopes and each module produced about 100 watts. The converters were planar diodes and the capsule was insulated with multi-foil insulation

  8. HEAT Sensor: Harsh Environment Adaptable Thermionic Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Limb, Scott J. [Palo Alto Research Center, Palo Alto, CA (United States)

    2016-05-31

    This document is the final report for the “HARSH ENVIRONMENT ADAPTABLE THERMIONIC SENSOR” project under NETL’s Crosscutting contract DE-FE0013062. This report addresses sensors that can be made with thermionic thin films along with the required high temperature hermetic packaging process. These sensors can be placed in harsh high temperature environments and potentially be wireless and self-powered.

  9. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    Directory of Open Access Journals (Sweden)

    Wagemans Jan

    2016-01-01

    Full Text Available The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  10. Fast neutron spectrum in the exposure room of the TRIGA Mark II reactor in Ljubljana

    International Nuclear Information System (INIS)

    Kristof, E.S.

    2003-01-01

    In this paper a description of the high energy neutrons at a usual position in the dry cell of our reactor is given. Neutrons emerging from the graphite reflector enter the exposure room through the horizontal shaft. At the irradiation position samples of detection materials were irradiated. After irradiation γ-ray spectra were measured and from the saturation activities the spectrum was calculated. (author)

  11. Method to Reduce Long-lived Fission Products by Nuclear Transmutations with Fast Spectrum Reactors.

    Science.gov (United States)

    Chiba, Satoshi; Wakabayashi, Toshio; Tachi, Yoshiaki; Takaki, Naoyuki; Terashima, Atsunori; Okumura, Shin; Yoshida, Tadashi

    2017-10-24

    Transmutation of long-lived fission products (LLFPs: 79 Se, 93 Zr, 99 Tc, 107 Pd, 129 I, and 135 Cs) into short-lived or non-radioactive nuclides by fast neutron spectrum reactors without isotope separation has been proposed as a solution to the problem of radioactive wastes disposal. Despite investigation of many methods, such transmutation remains technologically difficult. To establish an effective and efficient transmutation system, we propose a novel neutron moderator material, yttrium deuteride (YD 2 ), to soften the neutron spectrum leaking from the reactor core. Neutron energy spectra and effective half-lives of LLFPs, transmutation rates, and support ratios were evaluated with the continuous-energy Monte Carlo code MVP-II/MVP-BURN and the JENDL-4.0 cross section library. With the YD 2 moderator in the radial blanket and shield regions, effective half-lives drastically decreased from 106 to 102 years and the support ratios reached 1.0 for all six LLFPs. This successful development and implementation of a transmutation system for LLFPs without isotope separation contributes to a the ability of fast spectrum reactors to reduce radioactive waste by consuming their own LLFPs.

  12. Solid-State Thermionic Nuclear Power for Megawatt Propulsion, Planetary Surface and Commercial Power Project

    Science.gov (United States)

    George, Jeffrey

    2014-01-01

    Thermionic (TI) power conversion is a promising technology first investigated for power conversion in the 1960's, and of renewed interest due to modern advances in nanotechnology, MEMS, materials and manufacturing. Benefits include high conversion efficiency (20%), static operation with no moving parts and potential for high reliability, greatly reduced plant complexity, and the potential for reduced development costs. Thermionic emission, credited to Edison in 1880, forms the basis of vacuum tubes and much of 20th century electronics. Heat can be converted into electricity when electrons emitted from a hot surface are collected across a small gap. For example, two "small" (6 kWe) Thermionic Space Reactors were flown by the USSR in 1987-88 for ocean radar reconnaissance. Higher powered Nuclear-Thermionic power systems driving Electric Propulsion (Q-thruster, VASIMR, etc.) may offer the breakthrough necessary for human Mars missions of Power generation on Earth could benefit from simpler, moe economical nuclear plants, and "topping" of more fuel and emission efficient fossil-fuel plants.

  13. Experimental correlation of the thermionic conversion process

    International Nuclear Information System (INIS)

    Kitrilakis, S.S.

    1965-01-01

    The work reported here constitutes an approach to the thermionic conversion process usually associated with the engineer rather than the physicist. This approach recognises a certain number of significant variables and then proceeds to generate, in a systematic fashion, the experimental data necessary to define the dependence of each of these variables on all others. Finally, correlations of these dependencies are presented in a graphical form suitable to the practical user of thermionic conversion as well as the theoretician involved in the basic physics of the process. (author)

  14. Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay.

    Science.gov (United States)

    An, F P; Balantekin, A B; Band, H R; Bishai, M; Blyth, S; Cao, D; Cao, G F; Cao, J; Chan, Y L; Chang, J F; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J; Cheng, Z K; Cherwinka, J J; Chu, M C; Chukanov, A; Cummings, J P; Ding, Y Y; Diwan, M V; Dolgareva, M; Dove, J; Dwyer, D A; Edwards, W R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guo, L; Guo, X H; Guo, Y H; Guo, Z; Hackenburg, R W; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hsiung, Y B; Hu, B Z; Hu, T; Huang, E C; Huang, H X; Huang, X T; Huang, Y B; Huber, P; Huo, W; Hussain, G; Jaffe, D E; Jen, K L; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Jones, D; Kang, L; Kettell, S H; Khan, A; Kohn, S; Kramer, M; Kwan, K K; Kwok, M W; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lee, J H C; Lei, R T; Leitner, R; Leung, J K C; Li, C; Li, D J; Li, F; Li, G S; Li, Q J; Li, S; Li, S C; Li, W D; Li, X N; Li, X Q; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, S; Lin, S K; Lin, Y-C; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, J L; Liu, J C; Loh, C W; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Ma, X Y; Ma, X B; Ma, Y Q; Malyshkin, Y; Martinez Caicedo, D A; McDonald, K T; McKeown, R D; Mitchell, I; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ochoa-Ricoux, J P; Olshevskiy, A; Pan, H-R; Park, J; Patton, S; Pec, V; Peng, J C; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Qiu, R M; Raper, N; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Steiner, H; Stoler, P; Sun, J L; Tang, W; Taychenachev, D; Treskov, K; Tsang, K V; Tull, C E; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, C-H; Wu, Q; Wu, W J; Xia, D M; Xia, J K; Xing, Z Z; Xu, J L; Xu, Y; Xue, T; Yang, C G; Yang, H; Yang, L; Yang, M S; Yang, M T; Yang, Y Z; Ye, M; Ye, Z; Yeh, M; Young, B L; Yu, Z Y; Zeng, S; Zhan, L; Zhang, C; Zhang, C C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, R; Zhang, X T; Zhang, Y M; Zhang, Y X; Zhang, Y M; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhou, L; Zhuang, H L; Zou, J H

    2017-06-23

    The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 GW_{th} reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective ^{239}Pu fission fractions F_{239} from 0.25 to 0.35, Daya Bay measures an average IBD yield σ[over ¯]_{f} of (5.90±0.13)×10^{-43}  cm^{2}/fission and a fuel-dependent variation in the IBD yield, dσ_{f}/dF_{239}, of (-1.86±0.18)×10^{-43}  cm^{2}/fission. This observation rejects the hypothesis of a constant antineutrino flux as a function of the ^{239}Pu fission fraction at 10 standard deviations. The variation in IBD yield is found to be energy dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1σ. This discrepancy indicates that an overall deficit in the measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes ^{235}U, ^{239}Pu, ^{238}U, and ^{241}Pu. Based on measured IBD yield variations, yields of (6.17±0.17) and (4.27±0.26)×10^{-43}  cm^{2}/fission have been determined for the two dominant fission parent isotopes ^{235}U and ^{239}Pu. A 7.8% discrepancy between the observed and predicted ^{235}U yields suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly.

  15. Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    Science.gov (United States)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Chan, Y. L.; Chang, J. F.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guo, L.; Guo, X. H.; Guo, Y. H.; Guo, Z.; Hackenburg, R. W.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huang, Y. B.; Huber, P.; Huo, W.; Hussain, G.; Jaffe, D. E.; Jen, K. L.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Jones, D.; Kang, L.; Kettell, S. H.; Khan, A.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, J. L.; Liu, J. C.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Malyshkin, Y.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Qiu, R. M.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Steiner, H.; Stoler, P.; Sun, J. L.; Tang, W.; Taychenachev, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. L.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Yang, Y. Z.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, C. C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, R.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhou, L.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration

    2017-06-01

    The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 G Wth reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective 239Pu fission fractions F239 from 0.25 to 0.35, Daya Bay measures an average IBD yield σ¯f of (5.90 ±0.13 )×10-43 cm2/fission and a fuel-dependent variation in the IBD yield, d σf/d F239, of (-1.86 ±0.18 )×10-43 cm2/fission . This observation rejects the hypothesis of a constant antineutrino flux as a function of the 239Pu fission fraction at 10 standard deviations. The variation in IBD yield is found to be energy dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1 σ . This discrepancy indicates that an overall deficit in the measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes 235U, 239Pu, 238U, and 241Pu. Based on measured IBD yield variations, yields of (6.17 ±0.17 ) and (4.27 ±0.26 )×10-43 cm2 /fission have been determined for the two dominant fission parent isotopes 235U and 239Pu. A 7.8% discrepancy between the observed and predicted 235U yields suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly.

  16. A fast neutron spectrum unfolding method using activation measurements and its application of restoration of a thermonuclear reactor blanket neutron spectrum

    International Nuclear Information System (INIS)

    Novikov, V.M.; Shkurpelov, A.A.; Zagryadsky, V.A.; Chuvilin, D.Yu.; Shmonin, Yu.V.

    1982-01-01

    This article describes a fast neutron spectrum unfolding program. The program takes into account a priori information about the neutron spectrum, the experimental values of activation integrals errors and activation detector cross sections errors. The usefulness of the unfolding program was demonstrated by its application to the determination of neutron spectra from 1 to 14 MeV in the molten-salt blanket model of a thermonuclear reactor. (orig.)

  17. Updated neutron spectrum characterization of SNL baseline reactor environments. Volume 1, Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, P.J.; Kelly, J.G.; Vehar, D.W.

    1994-04-01

    The neutron spectrum characteristics of the primary reactor environments are defined for use by facility customers and to provide an audit trail in support of current quality assurance initiatives. The neutron and gamma environments in the four primary customer environments at SPR-III and ACRR facilities are characterized in detail. Enough detail is provided on other frequently-used environments to support the definition of the 3-MeV and 1-MeV(Si) fluence provided on the Radiation Metrology Laboratory dosimetry reports.

  18. Determination of the neutron spectrum in the well Naiade attached to the reactor Nereide

    International Nuclear Information System (INIS)

    Capgras, Andree; Clement, Christophe; Sueur, Maurice.

    1977-11-01

    The spectral distribution of neutrons in the centre of the well Naiade attached to the Fontenay-aux-Roses reactor Nereide is studied. In the thermal, epithermal and over 2.2 MeV regions, activation detectors are used: 197 Au and 55 Mn (bare and under cadmium), and 58 Ni. In the energy band from a few keV to 2.2 MeV two recoil proton proportional counters are employed. Under these conditions the whole spectrum is studied, but some comments are made on the difficulties of interpreting the results obtained by either of these methods [fr

  19. Accurate reactivity void coefficient calculation for the fast spectrum reactor FBR-IME

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Fabiano P.C.; Vellozo, Sergio de O.; Velozo, Marta J., E-mail: fabianopetruceli@outlook.com, E-mail: vellozo@cbpf.br, E-mail: martajann@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Militar

    2017-07-01

    This paper aims to present an accurate calculation of the void reactivity coefficient for the FBR-IME, a fast spectrum reactor in development at the Engineering Military Institute (IME). The main design peculiarity lies in using mixed oxide [MOX - PuO{sub 2} + U(natural uranium)O{sub 2}] as fuel core. For this task, SCALE system was used to calculate the reactivity for several voids distributions generated by bubbles in the sodium beyond its boiling point. The results show that although the void reactivity coefficient is positive and location dependent, they are offset by other feedback effects, resulting in a negative overall coefficient. (author)

  20. Measurements of actinide transmutation in the hard spectrum of a fast reactor

    International Nuclear Information System (INIS)

    Trybus, C.L.; Collins, P.J.; Maddison, D.W.; Bunde, K.A.; Pallmtag, S.; Palmiotti, G.

    1994-01-01

    Measurements of fission and capture in 235 U, 238 U, 239 Pu and 237 Np and in their product actinides have been made following irradiation in the metal-fuel core of EBR-II. The reactor has a peak flux around 500keV and the data complement measurements in the softer spectrum of an LMFBR. Irradiations were made at the same time for a set of standard dosimeter samples. These provide a test of calculated spectra and are also used for validation of steel activations and calculated atomic displacement rates. Calculation were made with modem transport codes using ENDF/B-5.2 data. Comparisons are made, using a simple homogeneous model, producing a similar spectrum, using ENDF/B-6.2 and JEFF-2 data

  1. High temperature cogeneration with thermionic burners

    Science.gov (United States)

    Fitzpatrick, G. O.; Britt, E. J.; Dick, R. S.

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging.

  2. Solar electron source and thermionic solar cell

    Directory of Open Access Journals (Sweden)

    Parham Yaghoobi

    2012-12-01

    Full Text Available Common solar technologies are either photovoltaic/thermophotovoltaic, or use indirect methods of electricity generation such as boiling water for a steam turbine. Thermionic energy conversion based on the emission of electrons from a hot cathode into vacuum and their collection by an anode is also a promising route. However, thermionic solar conversion is extremely challenging as the sunlight intensity is too low for heating a conventional cathode to thermionic emission temperatures in a practical manner. Therefore, compared to other technologies, little has been done in this area, and the devices have been mainly limited to large experimental apparatus investigated for space power applications. Based on a recently observed “Heat Trap” effect in carbon nanotube arrays, allowing their efficient heating with low-power light, we report the first compact thermionic solar cell. Even using a simple off-the-shelf focusing lens, the device delivered over 1 V across a load. The device also shows intrinsic storage capacity.

  3. Bayesian statistics applied to neutron activation data for reactor flux spectrum analysis

    International Nuclear Information System (INIS)

    Chiesa, Davide; Previtali, Ezio; Sisti, Monica

    2014-01-01

    Highlights: • Bayesian statistics to analyze the neutron flux spectrum from activation data. • Rigorous statistical approach for accurate evaluation of the neutron flux groups. • Cross section and activation data uncertainties included for the problem solution. • Flexible methodology applied to analyze different nuclear reactor flux spectra. • The results are in good agreement with the MCNP simulations of neutron fluxes. - Abstract: In this paper, we present a statistical method, based on Bayesian statistics, to analyze the neutron flux spectrum from the activation data of different isotopes. The experimental data were acquired during a neutron activation experiment performed at the TRIGA Mark II reactor of Pavia University (Italy) in four irradiation positions characterized by different neutron spectra. In order to evaluate the neutron flux spectrum, subdivided in energy groups, a system of linear equations, containing the group effective cross sections and the activation rate data, has to be solved. However, since the system’s coefficients are experimental data affected by uncertainties, a rigorous statistical approach is fundamental for an accurate evaluation of the neutron flux groups. For this purpose, we applied the Bayesian statistical analysis, that allows to include the uncertainties of the coefficients and the a priori information about the neutron flux. A program for the analysis of Bayesian hierarchical models, based on Markov Chain Monte Carlo (MCMC) simulations, was used to define the problem statistical model and solve it. The first analysis involved the determination of the thermal, resonance-intermediate and fast flux components and the dependence of the results on the Prior distribution choice was investigated to confirm the reliability of the Bayesian analysis. After that, the main resonances of the activation cross sections were analyzed to implement multi-group models with finer energy subdivisions that would allow to determine the

  4. Thermionic system evaluation test (TSET) facility construction: A United States and Russian effort

    International Nuclear Information System (INIS)

    Wold, S.K.

    1993-01-01

    The Thermionic System Evaluation Test (TSET) is a ground test of an unfueled Russian TOPAZ-II in-core thermionic space reactor powered by electric heaters. The facility that will be used for testing of the TOPAZ-II systems is located at the New Mexico Engineering Research Institute (NMERI) complex in Albuquerque, NM. The reassembly of the Russian test equipment is the responsibility of International Scientific Products (ISP), a San Jose, CA, company and Inertek, a Russian corporation, with support provided by engineers and technicians from Phillips Laboratory (PL), Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), and the University of New Mexico (UNM). This test is the first test to be performed under the New Mexico Strategic Alliance agreement. This alliance consists of the PL, SNL, LANL, and UNM. The testing is being funded by the Strategic Defense Initiative Organization (SDIO) with the PL responsible for project execution

  5. Status of CEA studies on the fast spectrum option for supercritical water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Marsault, Ph.; Thevenot, C.; Rimpault, G.; Antoni, O.; Arnoux, P.; Aniel, S. [CEA Cadarache, 13108 Saint-Paul-lez-Durance (France)

    2006-07-01

    Full text: The concepts of supercritical-pressure light water cooled reactors (SCWR) have been proposed and studied for almost 40 years. However, limited results are available on these concepts and in particular on the key technological points related to concept feasibility. CEA is conducting targeted R and D studies to be in a position to have a better judgment of the interest of these concepts. The paper reports on the work progress on the fast spectrum version of SCWR. The CEA R and D programme is focused on feasibility and conceptual design studies of a SCWR version with a fast neutron spectrum. The challenge is to determine a core design where high conversion ratio must also meet a negative void coefficient at end of cycle for a power range of about 1000 MWe and burnup near 60 GWd/t. First evaluations are performed with a pre-dimensioning tool (COPERNIC sheets) and followed by neutronic and thermal-hydraulic applications (ERANOS code system and CATHARE 2.5 code) Other parts of the programme are considered to be essential in order to be able to address the key points of SCWR feasibility: - extension to supercritical conditions of computer codes needed to make evaluations and limited conceptual design studies (reactor core physics, thermal-hydraulics). Neutronic studies have to take in account coupling effect with thermal-hydraulic relative to strong water density change along the fuel assembly: the CEA effort cover a generic reference calculation with coupling TRIPOLI and FLICA code (neutronic Monte-Carlo and thermalhydraulic) for the SCWR thermal spectrum option. Other main effort concern the adaptation of CATHARE 2.5 to fully describe depressurization from supercritical domain: adaptation of correlation, ability to perform computation in both supercritical and standard domain; - material studies, the cladding material being the major concern: tests are performed on selected material in despite of experimental difficulties dues to the high temperature range

  6. Photocathode operation of a thermionic RF gun

    International Nuclear Information System (INIS)

    Thorin, S.; Cutic, N.; Lindau, F.; Werin, S.; Curbis, F.

    2009-01-01

    The thermionic RF gun using a BaO cathode at the MAX-lab linac injector has been successfully commissioned for additional operation as a photocathode gun. By retaining the BaO cathode, lowering the temperature below thermal emission and illuminating it with a UV (263 nm) 9 ps laser pulse a reduced emittance and enhanced emission control has been achieved. Measurements show a normalised emittance of 5.5 mm mrad at 200 pC charge and a maximum quantum efficiency of 1.1x10 -4 . The gun is now routinely switched between storage ring injections in thermionic mode and providing a beam for the MAX-lab test FEL in photocathode mode.

  7. Improvement of inherent safety features in CSR (Coupled Spectrum Reactor) for treating MA

    International Nuclear Information System (INIS)

    Aziz, F.; Kitamoto, Asashi.

    1996-01-01

    Burning and/or transmutation (B/T) of MA is proposed here using a CSR (Coupled Spectrum Reactor) concept. CSR was based on a modified conventional 1150 MWe-PWR system, and consisted of two core regions for thermal and fast neutrons, respectively. The B/T fuel used was supposed such that MA discharged from 1 GWe-LWR were mixed homogeneously in LWR fuel. The geometry of B/T fuel in the outer region was left the same with that of PWR, while in the inner region the B/T fuel was arranged in a tight-lattice geometry that allowed a higher fuel to coolant volume ratio, (V m /V f ). In order to improve its inherent safety features, several cases of CSR were studied and compared, each case used different fuel type in the inner region. The result of the calculations showed that safety features can be improved by using composite fuel of ( 235 U-Pu- 238 U) in the inner region. The equilibrium of main isotopes in CSR can be achieved after about 5 recycle stages. This study also showed that the CSR can burn and transmute MA up to 808 kg/stage in a single reactor operated with a reactivity swing of 2.8 % Δk/kk'. (author)

  8. Advanced Thermionic Technology Program: summary report. Volume 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-01

    This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This Program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. The technology has previously been developed for astronautical applications. Volume 2 (Part C) concentrates on the progress made in developing and fabricating the ''current generation'' of chemical vapor deposited hot shell thermionic converters and is addressed to those primarily concerned with today's capabilities in terrestrial thermionic technology. 30 refs., 83 figs.

  9. Plasmadynamics and ionization kinetics of thermionic energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lawless, J.L. Jr.; Lam, S.H.

    1982-02-01

    To reduce the plasma arc-drop, thermionic energy conversion is studied with both analytical and numerical tools. Simplifications are made in both the plasmadynamic and ionization-recombination theories. These are applied to a scheme proposed presently using laser irradiation to enhance the ionization kinetics of the thermionic plasma and thereby reduce the arc-drop. It is also predicted that it is possible to generate the required laser light from a thermionic-type cesium plasma. The analysis takes advantage of theoretical simplifications derived for the ionization-recombination kinetics. It is shown that large laser ionization enhancements can occur and that collisional cesium recombination lasing is expected. To complement the kinetic theory, a numerical method is developed to solve the thermionic plasma dynamics. To combine the analysis of ionization-recombination kinetics with the plasma dynamics of thermionic conversion, a finite difference computer program is constructed. It is capable of solving for both unsteady and steady thermionic converter behavior including possible laser ionization enhancement or atomic recombination lasing. A proposal to improve thermionic converter performance using laser radiation is considered. In this proposed scheme, laser radiation impinging on a thermionic plasma enhances the ionization process thereby raising the plasma density and reducing the plasma arc-drop. A source for such radiation may possibly be a cesium recombination laser operating in a different thermionic converter. The possibility of this being an energy efficient process is discussed. (WHK)

  10. Thermionics. A bibliography with abstracts. Search period covered: 1970--Apr 1975. [190 references

    Energy Technology Data Exchange (ETDEWEB)

    Grooms, D.W.

    1975-04-01

    Research on thermionic power generation, power plant design, converter design, and basic research on thermionic materials are cited in the bibliography. Spacecraft applications are included. (Contains 190 abstracts).

  11. Design and testing of a 10B4C capsule for spectral-tailoring in mixed-spectrum reactors

    Science.gov (United States)

    Greenwood, L. R.; Wittman, R.; Metz, L. A.; Finn, E. C.; Friese, J. I.

    2014-04-01

    A boron carbide capsule highly enriched in 10B has been designed and used for spectral-tailoring experiments at the TRIGA reactor at Washington State University. New experiments show that enriching the boron to 96% B-10 results in additional absorption of neutrons in the resonance region thereby producing a neutron spectrum that is much closer to a pure 235U fission spectrum than measured previously with a natural boron carbide capsule. A cadmium outer cover was used to reduce thermal alpha heating. The neutron spectrum calculated with MCNP was found to be in very good agreement with measured activation rates from neutron fluence monitors.

  12. Verification of split spectrum technique for ultrasonic inspection of welded structures in nuclear reactors

    International Nuclear Information System (INIS)

    Ericsson, L.; Stepinski, T.

    1992-01-01

    Ultrasonic nondestructive inspection of materials is often limited by the presence of backscattered echoes from the material structure. A digital signal processing technique for removal of this material noise, referred to as split spectrum processing (SSP), has been developed and verified using simple laboratory experiments during the last decade. However, application of the split spectrum processing algorithm to industrial conditions has been rarely reported. In the paper the results of the practical evaluation of the SSP technique are presented. A number of different ultrasonic transducers were used for acquiring echoes from artificial flaws as well as natural cracks. The flaws were located in test blocks employed by the Swedish Nuclear Power Companies as reference during ultrasonic inspection of nuclear reactor vessels. The acquired ultrasonic A-scan signals were processed off-line using specially developed algorithms on a personal computer (PC). The experiments show evidence that properly tuned SSP algorithms result in a considerable improvement of the signal to material noise ratio. The enhancements were similar irrespective of the features of the transducer used or the nature of the inspected flaw. The problems related to the development of self-tuning SSP algorithms for on-line processing of B-scans are discussed. (author)

  13. Determination of neutron energy spectrum at a pneumatic rabbit station of a typical swimming pool type material test research reactor

    International Nuclear Information System (INIS)

    Malkawi, S.R.; Ahmad, N.

    2002-01-01

    The method of multiple foil activation was used to measure the neutron energy spectrum, experimentally, at a rabbit station of Pakistan Research Reactor-1 (PARR-1), which is a typical swimming pool type material test research reactor. The computer codes MSITER and SANDBP were used to adjust the spectrum. The pre-information required by the adjustment codes was obtained by modelling the core and its surroundings in three-dimensions by using the one dimensional transport theory code WIMS-D/4 and the multidimensional finite difference diffusion theory code CITATION. The input spectrum covariance information required by MSITER code was also calculated from the CITATION output. A comparison between calculated and adjusted spectra shows a good agreement

  14. maximum conversion efficiency of thermionic heat to electricity

    African Journals Online (AJOL)

    DJFLEX

    electron flow is called thermionic emission (Houston,. 1959 ; Baragiola and Bringa, 2006). The process of converting thermal energy (heat) to a useful electrical work by the phenomenon of thermionic emission is the fundamental concept applied to a cylindrical version of the planner converter, considered as the building ...

  15. Determination of the neutron spectrum at different locations in the Argentine RA-1 Reactor

    International Nuclear Information System (INIS)

    Lerner, A.M.; Madariaga, M.R.

    1998-01-01

    Full text: It is well known that the RA-1 reactor is used to irradiate different types of materials with neutrons. The Radio dosimetry Group (which belongs to the Nuclear Regulatory Authority) uses its fast column for the design, calibration and set up of criticality dosimeters as well as for a quick assessment of the dose to workers in case of an accident. With such purpose, Au(1), Au under Cd and In(2) foils were irradiated to estimate absolute thermal, epithermal and fast neutron fluxes at the irradiation location. The accuracy of this estimation is higher when the response to the present neutron spectrum of the different materials constituting the detectors is better known. This, in turn, requires the previous knowledge of such spectrum (a detailed energy dependence of neutron flux) at the analysed location. In this work a neutronic calculation is presented at the fast irradiation location. The whole calculation was carried out following two different methodologies, and considering a power of 40 kW. The reactor and its surroundings were represented by a simplified one-dimensional model, as a concentric cylindrical set of regions. Figures are drawn representing fast and thermal fluxes (with the cut at 0.4 eV) as a function of the distance to the core centre. The neutron flux (in n/cm 2 sec.eV) as a function of energy is also shown at the fast irradiation location. Values of flux (in n/cm 2 .sec.eV) are also provided as a function of energy in other typical locations, as well as the equivalent integrated flux values (in n/cm 2 .sec). ((1) According to the reaction Au 197 (n,γ)Au 198 , having a cross section of σ 0 =98.8b for thermal neutrons. (2) According to the reaction In 115 (n,n')In 115m , with a cross section of some 70 mb for neutrons with energies above 1.2MeV). (author) [es

  16. Determination of the energy spectrum of the neutrons in the central thimble of the reactor core TRIGA Mark III

    International Nuclear Information System (INIS)

    Parra M, M. A.

    2014-01-01

    This thesis presents the neutron spectrum measurements inside the core of the TRIGA Mark III reactor at 1 MW power in steady-state, with the bridge placed in the center of the swimming pool, using several metallic threshold foils. The activation detectors are inserted in the Central Thimble of the reactor core, all the foils are irradiated in the same position and irradiation conditions (one by one). The threshold detectors are made of different materials such as: Au 197 , Ni 58 , In 115 , Mg 24 , Al 27 , Fe 58 , Co 59 and Cu 63 , they were selected to cover the full range the energies (10 -10 to 20 MeV) of the neutron spectrum in the reactor core. After the irradiation, the activation detectors were measured by means of spectrometry gamma, using a high resolution counting system with a hyper pure Germanium crystal, in order to obtain the saturation activity per target nuclide. The saturation activity is one of the main input data together with the initial spectrum, for the computational code SANDBP (hungarian version of the code SAND-II), which through an iterative adjustment, gives the calculated spectrum. The different saturation activities are necessary for the unfolding method, used by the computational code SANDBP. This research work is very important, since the knowledge of the energetic and spatial distribution of the neutron flux in the irradiation facilities, allows to characterize properly the irradiation facilities, just like, to estimate with a good precision various physics parameters of the reactor such as: neutron fluxes (thermal, intermediate and fast), neutronic dose, neutron activation analysis (NAA), spectral indices (cadmium ratio), buckling, fuel burnup, safety parameters (reactivity, temperature distribution, peak factors). In addition, the knowledge of the already mentioned parameters can give a best use of reactor, optimizing the irradiations requested by the users for their production process or research projects. (Author)

  17. Deep underground reactor (passive heat removal of LWR with hard neutron energy spectrum)

    International Nuclear Information System (INIS)

    Hiroshi, Takahashi

    2001-01-01

    To run a high conversion reactor with Pu-Th fueled tight fueled assembly which has a long burn-up of a fuel, the reactor should be sited deep underground. By putting the reactor deep underground heat can be removed passively not only during a steady-state run and also in an emergency case of loss of coolant and loss of on-site power; hence the safety of the reactor can be much improved. Also, the evacuation area around the reactor can be minimized, and the reactor placed near the consumer area. This approach reduces the cost of generating electricity by eliminating the container building and shortening transmission lines. (author)

  18. Spectrum

    DEFF Research Database (Denmark)

    Høgfeldt Hansen, Leif

    2016-01-01

    The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum.......The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum....

  19. Assessment of quasi-linear effect of RF power spectrum for enabling lower hybrid current drive in reactor plasmas

    Science.gov (United States)

    Cesario, Roberto; Cardinali, Alessandro; Castaldo, Carmine; Amicucci, Luca; Ceccuzzi, Silvio; Galli, Alessandro; Napoli, Francesco; Panaccione, Luigi; Santini, Franco; Schettini, Giuseppe; Tuccillo, Angelo Antonio

    2017-10-01

    The main research on the energy from thermonuclear fusion uses deuterium plasmas magnetically trapped in toroidal devices. To suppress the turbulent eddies that impair thermal insulation and pressure tight of the plasma, current drive (CD) is necessary, but tools envisaged so far are unable accomplishing this task while efficiently and flexibly matching the natural current profiles self-generated at large radii of the plasma column [1-5]. The lower hybrid current drive (LHCD) [6] can satisfy this important need of a reactor [1], but the LHCD system has been unexpectedly mothballed on JET. The problematic extrapolation of the LHCD tool at reactor graded high values of, respectively, density and temperatures of plasma has been now solved. The high density problem is solved by the FTU (Frascati Tokamak Upgrade) method [7], and solution of the high temperature one is presented here. Model results based on quasi-linear (QL) theory evidence the capability, w.r.t linear theory, of suitable operating parameters of reducing the wave damping in hot reactor plasmas. Namely, using higher RF power densities [8], or a narrower antenna power spectrum in refractive index [9,10], the obstacle for LHCD represented by too high temperature of reactor plasmas should be overcome. The former method cannot be used for routinely, safe antenna operations, Thus, only the latter key is really exploitable in a reactor. The proposed solutions are ultimately necessary for viability of an economic reactor.

  20. Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Schnitzler; Stanley K. Borowski

    2012-07-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine

  1. Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

    Science.gov (United States)

    Schnitzler, Bruce G.; Borowski, Stanley K.

    2012-01-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine operations and the engine and stage design were

  2. Ultrafast Multiphoton Thermionic Photoemission from Graphite

    Directory of Open Access Journals (Sweden)

    Shijing Tan

    2017-01-01

    Full Text Available Electronic heating of cold crystal lattices in nonlinear multiphoton excitation can transiently alter their physical and chemical properties. In metals where free electron densities are high and the relative fraction of photoexcited hot electrons is low, the effects are small, but in semimetals, where the free electron densities are low and the photoexcited densities can overwhelm them, the intense femtosecond laser excitation can induce profound changes. In semimetal graphite and its derivatives, strong optical absorption, weak screening of the Coulomb potential, and high cohesive energy enable extreme hot electron generation and thermalization to be realized under femtosecond laser excitation. We investigate the nonlinear interactions within a hot electron gas in graphite through multiphoton-induced thermionic emission. Unlike the conventional photoelectric effect, within about 25 fs, the memory of the excitation process, where resonant dipole transitions absorb up to eight quanta of light, is erased to produce statistical Boltzmann electron distributions with temperatures exceeding 5000 K; this ultrafast electronic heating causes thermionic emission to occur from the interlayer band of graphite. The nearly instantaneous thermalization of the photoexcited carriers through Coulomb scattering to extreme electronic temperatures characterized by separate electron and hole chemical potentials can enhance hot electron surface femtochemistry, photovoltaic energy conversion, and incandescence, and drive graphite-to-diamond electronic phase transition.

  3. Present and Future Experiments in Non-equilibrium Reactor Antineutrino Energy Spectrum

    OpenAIRE

    Kopeikin, V. I.; Mikaelyan, L. A.

    2005-01-01

    Considerable efforts that have been undertaken in the recent years in low energy antineutrino experiments require further systematic investigations in line of reactor antineutrino spectroscopy as a metrological basis of these experiments. We consider some effects associated with the non-equilibrium of reactor antineutrino radiation and residual antineutrino emission from spent reactor fuel in contemporary antineutrino experiments.

  4. Measurement of 89Y(n,2n) spectral averaged cross section in LR-0 special core reactor spectrum

    Science.gov (United States)

    Košťál, Michal; Losa, Evžen; Baroň, Petr; Šolc, Jaroslav; Švadlenková, Marie; Koleška, Michal; Mareček, Martin; Uhlíř, Jan

    2017-12-01

    The present paper describes reaction rate measurement of 89Y(n,2n)88Y in a well-defined reactor spectrum of a special core assembled in the LR-0 reactor and compares this value with results of simulation. The reaction rate is derived from the measurement of activity of 88Y using gamma-ray spectrometry of irradiated Y2O3 sample. The resulting cross section value averaged in spectrum is 43.9 ± 1.5 μb, averaged in the 235U spectrum is 0.172 ± 0.006 mb. This cross-section is important as it is used as high energy neutron monitor and is therefore included in the International Reactor Dosimetry and Fusion File. Calculations of reaction rates were performed with the MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JEFF-3.2, JENDL-3.3, JENDL-4, ROSFOND-2010, CENDL-3.1 and IRDFF nuclear data libraries. The agreement with uranium description by CIELO library is very good, while in ENDF/B-VII.0 description of uranium, underprediction about 10% in average can be observed.

  5. Thermionic phenomena the collected works of Irving Langmuir

    CERN Document Server

    Suits, C Guy

    1961-01-01

    Thermionic Phenomena is the third volume of the series entitled The Collected Works of Irving Langmuir. This volume compiles articles written during the 1920's and early 1930's, the period when the science of thermionics is beginning to be of importance. This text is divided into two parts. The first part discusses vacuum pumps, specifically examining the effect of space charge and residual gases on thermionic currents in high vacuum. This part also explains fundamental phenomena in electron tubes having tungsten cathodes and the use of high-power vacuum tubes. The second part of this text loo

  6. Determination of the neutrons energy spectrum in the central thimble of the reactor core TRIGA Mark III

    International Nuclear Information System (INIS)

    Parra M, M. A.; Luis L, M. A.; Raya A, R.; Cruz G, H. S.

    2013-10-01

    This work presents the measurement of the neutrons spectrum in energies in the central thimble of the reactor TRIGA Mark III to a power of 1 MW in stationary state, with the core in the center of the pool. To achieve this objective, several thin sheets were irradiated (one at the time) in the same position of the core. The activation probes were selected in such a way that covered the energy range (1 x 10 -10 to 20 MeV) of the neutrons spectrum in the reactor core, for this purpose thin sheets were used of 197 Au, 58 Ni, 115 In, 24 Mg, 27 Al, 58 Fe, 59 Co and 63 Cu. After the irradiation, the high energy gamma emissions of the activated thin sheets were measured by means of gamma spectrometry, in a counting system of high resolution, with a Hyper pure Germanium detector, obtaining this way the activity induced in the thin sheets whose magnitude is proportional to the intensity of the neutrons flow, this activity together to a theoretical initial spectrum are the main entrance data of the computational code SANDBP (Hungarian version of the code Sand-II) that uses the unfolding method for the calculation of the spectrum. (Author)

  7. Nuclear reactor based space systems - 100 kW

    International Nuclear Information System (INIS)

    Miller, B.; Kurpanek, D.

    1987-01-01

    The 100-kW-output class nuclear space power reactors presently discussed are not only a cost-effective solution to energy requirements of that magnitude, but also viable in the near future. In the nuclear power systems envisioned, the reactor is used as a heat source for primary power; this thermal power output's conversion to electrical power can be accomplished by such means as the thermionic, thermoelectric, and thermodynamic (heat engine). Attention is presently given to in-reactor-core thermionic, out-of-reactor core thermoelectric, and Stirling cycle out-of-reactor heat engine systems. Each of the three approaches has inherent advantages and penalties

  8. Thermionic Power Cell To Harness Heat Energies for Geothermal Applications

    Science.gov (United States)

    Manohara, Harish; Mojarradi, Mohammad; Greer, Harold F.

    2011-01-01

    A unit thermionic power cell (TPC) concept has been developed that converts natural heat found in high-temperature environments (460 to 700 C) into electrical power for in situ instruments and electronics. Thermionic emission of electrons occurs when an emitter filament is heated to gwhite hot h temperatures (>1,000 C) allowing electrons to overcome the potential barrier and emit into the vacuum. These electrons are then collected by an anode, and transported to the external circuit for energy storage.

  9. Fast spectrum space reactor sizing code for calandria-type cores (CORSCO Code)

    Science.gov (United States)

    Specht, Eugene R.; Villalobos, Antonio

    1991-01-01

    The CORSCO code rapidly sizes reactor cores that have calandria-type geometry. The fuel configuration modeled is a large ceramic zone that contains numerous small cylindrical coolant channels spaced apart with a triangular pitch. A minimum reactor weight is obtained for a fixed set of constraints (peak fuel temperature, peak coolant velocity, etc.) by obtaining a unique solution to a set of five thermal/hydraulic equations, as well as a required excess reactivity which is specified by a core size dependent one-group criticality expression. Typical results are shown for a W-Re/UN cermet-fueled, lithium-cooled space reactor over a power range of 25 to 100 MWt. Reactor sensitivity coefficients are also shown for changes in reactor weight and number of coolant channels due to changes in core thermal/hydraulic constraints.

  10. Unfolding neutron spectrum with Markov Chain Monte Carlo at MIT research Reactor with He-3 Neutral Current Detectors

    Science.gov (United States)

    Leder, A.; Anderson, A. J.; Billard, J.; Figueroa-Feliciano, E.; Formaggio, J. A.; Hasselkus, C.; Newman, E.; Palladino, K.; Phuthi, M.; Winslow, L.; Zhang, L.

    2018-02-01

    The Ricochet experiment seeks to measure Coherent (neutral-current) Elastic Neutrino-Nucleus Scattering (CEνNS) using dark-matter-style detectors with sub-keV thresholds placed near a neutrino source, such as the MIT (research) Reactor (MITR), which operates at 5.5 MW generating approximately 2.2 × 1018 ν/second in its core. Currently, Ricochet is characterizing the backgrounds at MITR, the main component of which comes in the form of neutrons emitted from the core simultaneous with the neutrino signal. To characterize this background, we wrapped Bonner cylinders around a 32He thermal neutron detector, whose data was then unfolded via a Markov Chain Monte Carlo (MCMC) to produce a neutron energy spectrum across several orders of magnitude. We discuss the resulting spectrum and its implications for deploying Ricochet at the MITR site as well as the feasibility of reducing this background level via the addition of polyethylene shielding around the detector setup.

  11. Measuring Neutron Spectrum at MIT Research Reactor Utilizing He-3 Bonner Cylinder Approach with an Unfolding Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Leder, A. [MIT; Anderson, A. J. [Chicago U., KICP; Billard, J. [Lyon, IPN; Figueroa-Feliciano, E. [Northwestern U.; Formaggio, J. A. [MIT; Hasselkus, C. [Wisconsin U., Madison; Newman, E. [MIT; Palladino, K. [Wisconsin U., Madison; Phuthi, M. [MIT; Winslow, L. [MIT; Zhang, L. [MIT

    2017-10-02

    The Ricochet experiment seeks to measure Coherent (neutral-current) Elastic Neutrino-Nucleus Scattering using dark-matter-style detectors with sub-keV thresholds placed near a neutrino source, such as the MIT (research) Reactor (MITR), which operates at 5.5 MW generating approximately 2.2e18 neutrinos/second at the core. Currently, Ricochet is characterizing the backgrounds at MITR, the main component of which comes in the form of neutrons emitted from the core simultaneous with the neutrino signal. To characterize this background, we wrapped a Bonner cylinder around a He-3 thermal neutron detector, whose data was then unfolded to produce a neutron energy spectrum across several orders of magnitude. We discuss the resulting spectrum and its implications for deploying Ricochet in the future at the MITR site as well as the feasibility of reducing this background level via the addition of polyethylene shielding around the detector setup.

  12. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  13. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  14. Progress in radiation immune thermionic integrated circuits

    International Nuclear Information System (INIS)

    Lynn, D.K.; McCormick, J.B.

    1985-08-01

    This report describes the results of a program directed at evaluating the thermionic integrated circuit (TIC) technology for applicability to military systems. Previous programs under the sponsorship of the Department of Energy, Office of Basic Energy Sciences, have developed an initial TIC technology base and demonstrated operation in high-temperature and high-radiation environments. The program described in this report has two parts: (1) a technical portion in which experiments and analyses were conducted to refine perceptions of near-term as well as ultimate performance levels of the TIC technology and (2) an applications portion in which the technical conclusions were to be evaluated against potential military applications. This report draws several conclusions that strongly suggest that (1) useful radiation-hard/high-temperature operable integrated circuits can be developed using the TIC technology; (2) because of their ability to survive and operate in hostile environments, a variety of potential military applications have been projected for this technology; and (3) based on the above two conclusions, an aggressive TIC development program should be initiated to provide the designers of future systems with integrated circuits and devices with the unique features of the TICs

  15. Application of a Virtual Reactivity Feedback Control Loop in Non-Nuclear Testing of a Fast Spectrum Reactor

    Science.gov (United States)

    Bragg-Sitton, Shannon M.; Forsbacka, Matthew

    2004-01-01

    For a compact, fast-spectrum reactor, reactivity feedback is dominated by core deformation at elevated temperature. Given the use of accurate deformation measurement techniques, it is possible to simulate nuclear feedback in non-nuclear electrically heated reactor tests. Implementation of simulated reactivity feedback in response to measured deflection is being tested at the NASA Marshall Space Flight Center Early Flight Fission Test Facility (EFF-TF). During tests of the SAFE-100 reactor prototype, core deflection was monitored using a high resolution camera. "virtual" reactivity feedback was accomplished by applying the results of Monte Carlo calculations (MCNPX) to core deflection measurements; the computational analysis was used to establish the reactivity worth of van'ous core deformations. The power delivered to the SAFE-100 prototype was then dusted accordingly via kinetics calculations, The work presented in this paper will demonstrate virtual reactivity feedback as core power was increased from 1 kilowatt(sub t), to 10 kilowatts(sub t), held approximately constant at 10 kilowatts (sub t), and then allowed to decrease based on the negative thermal reactivity coefficient.

  16. Potentialities of the molten salt reactor concept for a sustainable nuclear power production based on thorium cycle in epithermal spectrum

    International Nuclear Information System (INIS)

    Nuttin, Alexis

    2002-01-01

    In the case of a significant nuclear contribution to world energy needs, the problem of present nuclear waste management pose the sustainability of the PWR fuel cycle back into question. Studies on storage and incineration of these wastes should therefore go hand in hand with studies on innovative systems dedicated to a durable nuclear energy production, as reliable, clean and safe as possible. We are here interested in the concept of molten salt reactor, whose fuel is liquid. This particularity allows an online pyrochemical reprocessing which gives the possibility to overcome some neutronic limits. In the late sixties, the MSBR (Molten Salt Breeder Reactor) project of a graphite-moderated fluoride molten salt reactor proved thus that breeding is attainable with thorium in a thermal spectrum, provided that the online reprocessing is appropriate. By means of simulation tools developed around the Monte Carlo code MCNP, we first re-evaluate the performance of a reference system, which is inspired by the MSBR project. The complete study of the pre-equilibrium transient of this 2,500 MWth reactor, started with 232 Th/ 233 U fuel, allows us to validate our reference choices. The obtained equilibrium shows an important reduction of inventories and induced radio-toxicities in comparison with the other possible fuel cycles. The online reprocessing is efficient enough to make the system breed, with a doubling time of about thirty years at equilibrium. From the reference system, we then test different options in terms of neutron economy, transmutation and control of reactivity. We find that the online reprocessing brings most of its flexibility to this system, which is particularly well adapted to power generation with thorium. The study of transition scenarios to this fuel cycle quantifies the limits of a possible deployment from the present French power stock, and finally shows that a rational management of the available plutonium would be necessary in any case. (author)

  17. Experimental measurement of neutron spectrum in the reflector of a light water reactor

    International Nuclear Information System (INIS)

    Brethe, P.

    1963-09-01

    1. Thermal neutrons: The temperature of the thermal neutron spectrum was calculated using Au-Lu foils. This temperature varies from 300 deg. K (temperature of the moderator) at 30 cm of the core to 350 deg. K in a hole of the core. 2. Slowing down of neutron: Four resonance detectors have been used (Au, In, Co, Mn). We can write a 1/E form of the spectrum. The linking up energy E M between thermal neutron spectrum and slowing down spectrum is about 0.23 eV and is free from the Maxwell spectrum temperature. The decrease of slowing down flux regarding thermal flux, farther from the core, has been showed. 3. Fast neutrons: We used 3 threshold detectors (Ni, Al, Mg). We supposed a E 1/2 e -βE from of the spectrum above 3 MeV. The values of β are in a range from 0.775, at the centre of the core and in a loop-hole, to 0,64 at about 30 cm of the core. 4. Continuous shape of the spectrum: The following interpolations give useful informations between the field where measurements have been made: between 340 eV and 10 keV: 1/E form between 10 keV and 330 keV: 1/(E σ S (E)) form (σ S (E) elastic scattering section on hydrogen) between 330 keV and 3 MeV: calculated form by the moments method (ref. BSR). (author) [fr

  18. A NEW THERMIONIC RF ELECTRON GUN FOR SYNCHROTRON LIGHT SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Kutsaev, Sergey; Agustsson, R.; Hartzell, J; Murokh, A.; Nassiri, A.; Savin, E.; Smirnov, A.V.; Smirnov, A. Yu; Sun, Y.; Verma, A; Waldschmidt, Geoff; Zholents, A.

    2017-06-02

    A thermionic RF gun is a compact and efficient source of electrons used in many practical applications. RadiaBeam Systems and the Advanced Photon Source at Argonne National Laboratory collaborate in developing of a reliable and robust thermionic RF gun for synchrotron light sources which would offer substantial improvements over existing thermionic RF guns and allow stable operation with up to 1A of beam peak current at a 100 Hz pulse repetition rate and a 1.5 μs RF pulse length. In this paper, we discuss the electromagnetic and engineering design of the cavity and report the progress towards high power tests of the cathode assembly of the new gun.

  19. Effect of new cross-section evaluations on criticality and neutron energy spectrum of a typical material test research reactor

    International Nuclear Information System (INIS)

    Ahmad, Siraj-ul-Islam; Ahmad, Nasir; Aslam

    2004-01-01

    Several new WIMSD libraries based on recent cross-section evaluations such as IAEA, ENDFB-VI, JENDL, and JEF have been made available by IAEA. These libraries were used for the computation of multiplication factor and energy spectrum for Pakistan Research Reactor-1 (PARR-1). Methodology was validated for benchmark problems made available by IAEA and comparison with reference results. The value of effective multiplication factors for all newly released libraries are 1.8-3.2% less than that of 1981 WIMSD library. The effect of various cross-section libraries on neutron energy spectrum was also studied. Differences of about -10% to 12.5% were found in thermal flux using the newly released libraries as compared with that obtained using 1981 WIMSD library. From the analysis, it was found that the main source of the difference is the cross-sections of hydrogen bound in water. When these cross-sections of hydrogen (bound in water) from new libraries were used along with all other data in 1981 WIMSD library, the k eff obtained in this way has a difference of only 0.02-0.8% with that obtained from new libraries, while the flux spectrum agreed within 1% below 1 MeV with new libraries

  20. Regulating the Emission Spectrum of CsPbBr3 from Green to Blue via Controlling the Temperature and Velocity of Microchannel Reactor

    OpenAIRE

    Yong Tang; Hanguang Lu; Longshi Rao; Zongtao Li; Xinrui Ding; Caiman Yan; Binhai Yu

    2018-01-01

    The ability to precisely obtain tunable spectrum of lead halide perovskite quantum dots (QDs) is very important for applications, such as in lighting and display. Herein, we report a microchannel reactor method for synthesis of CsPbBr3 QDs with tunable spectrum. By adjusting the temperature and velocity of the microchannel reactor, the emission peaks of CsPbBr3 QDs ranging from 520 nm to 430 nm were obtained, which is wider than that of QDs obtained in a traditional flask without changing hal...

  1. Fast neutron spectrum in the reflector of swimming pool reactor behind metallics slabs

    International Nuclear Information System (INIS)

    Brousse, J.C.

    1970-01-01

    The large perturbations of fast neutron spectrum were measured behind lead, aluminium and iron slabs in the Siloette reflector at the CENG. The neutron slowing down is chiefly depending of the inelastic reaction. The reaction cross section increases with energy; a spectrum softening is deduced. This is verified. We tried to determine the spectrum shape by calculation to fit the measurements. Calculations were firstly made in unidimensional geometry by the NIOBE transport equation resolution code and by the SANE Monte-Carlo code. The results does not agree with the experimental determined values. Finally a semi-empirical method for studying a tridimensional geometry was chosen. We have obtained calculation results in a perfect agreement with measurements. The method is described. (author) [fr

  2. Advanced Thermionic Technology Program: summary report. Volume 4. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-01

    This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This Program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. Volume 4 (Part E) is a highly technical discussion of the attempts made by the Program to push the state-of-the-art beyond the current generation of converters and is directed toward potential researchers engaged in this same task. These technical discussions are complemented with Appendices where appropriate.

  3. Thermodynamics of photon-enhanced thermionic emission solar cells

    International Nuclear Information System (INIS)

    Reck, Kasper; Hansen, Ole

    2014-01-01

    Photon-enhanced thermionic emission (PETE) cells in which direct photon energy as well as thermal energy can be harvested have recently been suggested as a new candidate for high efficiency solar cells. Here, we present an analytic thermodynamical model for evaluation of the efficiency of PETE solar cells including an analysis of the entropy production due to thermionic emission of general validity. The model is applied to find the maximum efficiency of a PETE cell for given cathode and anode work functions and temperatures

  4. Thermodynamics of photon-enhanced thermionic emission solar cells

    DEFF Research Database (Denmark)

    Reck, Kasper; Hansen, Ole

    2014-01-01

    Photon-enhanced thermionic emission (PETE) cells in which direct photon energy as well as thermal energy can be harvested have recently been suggested as a new candidate for high efficiency solar cells. Here, we present an analytic thermodynamical model for evaluation of the efficiency of PETE...... solar cells including an analysis of the entropy production due to thermionic emission of general validity. The model is applied to find the maximum efficiency of a PETE cell for given cathode and anode work functions and temperatures. ©...

  5. Empirical relations for tensile properties of austenitic stainless steels irradiated in mixed-spectrum reactors

    International Nuclear Information System (INIS)

    Grossbeck, M.L.

    1991-01-01

    An assessment has been made of available tensile property data relevant to the design of fusion reactors, especially near term devices expected to operate at lower temperatures than power reactors. Empirical relations have been developed for the tensile properties as a functions of irradiation temperature for neutron exposures of 10-15, 20, 30, and 50 dpa. It was found that yield strength depends little on the particular austenitic alloy and little on the helium concentration. Strength depends upon initial condition of the alloy only for exposures of less than 30 dpa. Uniform elongation was found to be more sensitive to alloy and condition. It was also more sensitive than strength to helium level. However, below 500deg C, helium only appeared to have an efect at 10-15 dpa. At higher temperatures, helium embrittlement was apparent, and its threshold temperature decreased with increasing neutron exposure level. (orig.)

  6. Measurement of the energy spectrum of the neutrons inside the neutron flux trap assembled in the center of the reactor core IPEN/MB-01

    Energy Technology Data Exchange (ETDEWEB)

    Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto Credidio; Santos, Diogo Feliciano dos; Jerez, Rogerio; Mura, Luis Felipe Liamos, E-mail: ubitelli@ipen.br, E-mail: credidiomura@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    This paper presents the neutron energy spectrum in the central position of a neutron flux trap assembled in the core center of the research nuclear reactor IPEN/MB-01 obtained by an unfolding method. To this end, have been used several different types of activation foils (Au, Sc, Ti, Ni, and plates) which have been irradiated in the central position of the reactor core (setting number 203) at a reactor power level of 64.57 ±2.91 watts . The activation foils were counted by solid-state detector HPGe (gamma spectrometry). The experimental data of nuclear reaction rates (saturated activity per target nucleus) and a neutron spectrum estimated by a reactor physics computer code are the main input data to get the most suitable neutron spectrum in the irradiation position obtained through SANDBP code: a neutron spectra unfolding code that use an iterative adjustment method. The adjustment resulted in 3.85 ± 0.14 10{sup 9} n cm{sup -2} s{sup -1} for the integral neutron flux, 2.41 ± 0.01 10{sup 9} n cm{sup -2} s{sup -1} for the thermal neutron flux, 1.09 ± 0.02 10{sup 9} n cm{sup -2} s{sup -1} for intermediate neutron flux and 3.41± 0.02 10{sup 8} n cm{sup -2} s{sup -1} for the fast neutrons flux. These results can be used to verify and validate the nuclear reactor codes and its associated nuclear data libraries, besides show how much is effective the use of a neutron flux trap in the nuclear reactor core to increase the thermal neutron flux without increase the operation reactor power level. The thermal neutral flux increased 4.04 ± 0.21 times compared with the standard configuration of the reactor core. (author)

  7. Measurement of the energy spectrum of the neutrons inside the neutron flux trap assembled in the center of the reactor core IPEN/MB-01

    International Nuclear Information System (INIS)

    Bitelli, Ulysses d'Utra; Mura, Luiz Ernesto Credidio; Santos, Diogo Feliciano dos; Jerez, Rogerio; Mura, Luis Felipe Liamos

    2013-01-01

    This paper presents the neutron energy spectrum in the central position of a neutron flux trap assembled in the core center of the research nuclear reactor IPEN/MB-01 obtained by an unfolding method. To this end, have been used several different types of activation foils (Au, Sc, Ti, Ni, and plates) which have been irradiated in the central position of the reactor core (setting number 203) at a reactor power level of 64.57 ±2.91 watts . The activation foils were counted by solid-state detector HPGe (gamma spectrometry). The experimental data of nuclear reaction rates (saturated activity per target nucleus) and a neutron spectrum estimated by a reactor physics computer code are the main input data to get the most suitable neutron spectrum in the irradiation position obtained through SANDBP code: a neutron spectra unfolding code that use an iterative adjustment method. The adjustment resulted in 3.85 ± 0.14 10 9 n cm -2 s -1 for the integral neutron flux, 2.41 ± 0.01 10 9 n cm -2 s -1 for the thermal neutron flux, 1.09 ± 0.02 10 9 n cm -2 s -1 for intermediate neutron flux and 3.41± 0.02 10 8 n cm -2 s -1 for the fast neutrons flux. These results can be used to verify and validate the nuclear reactor codes and its associated nuclear data libraries, besides show how much is effective the use of a neutron flux trap in the nuclear reactor core to increase the thermal neutron flux without increase the operation reactor power level. The thermal neutral flux increased 4.04 ± 0.21 times compared with the standard configuration of the reactor core. (author)

  8. Neutron spectrum effects on TRU recycling in Pb-Bi cooled fast reactor core

    International Nuclear Information System (INIS)

    Kim, Yong Nam; Kim, Jong Kyung; Park, Won Seok

    2003-01-01

    This study is intended to evaluate the dependency of TRU recycling characteristics on the neutron spectrum shift in a Pb-Bi cooled core. Considering two Pb-Bi cooled cores with the soft and the hard spectrum, respectively, various characteristics of the recycled core are carefully examined and compared with each other. Assuming very simplified fuel cycle management with the homogeneous and single region fuel loading, the burnup calculations are performed until the recycled core reached to the (quasi-) equilibrium state. The mechanism of TRU recycling toward the equilibrium is analyzed in terms of burnup reactivity and the isotopic compositions of TRU fuel. In the comparative analyses, the difference in the recycling behavior between the two cores is clarified. In addition, the basic safety characteristics of the recycled core are also discussed in terms of the Doppler coefficient, the coolant loss reactivity coefficient, and the effective delayed neutron fraction

  9. Beta Radiation Enhanced Thermionic Emission from Diamond Thin Films

    Directory of Open Access Journals (Sweden)

    Alex Croot

    2017-11-01

    Full Text Available Diamond-based thermionic emission devices could provide a means to produce clean and renewable energy through direct heat-to-electrical energy conversion. Hindering progress of the technology are the thermionic output current and threshold temperature of the emitter cathode. In this report, we study the effects on thermionic emission caused by in situ exposure of the diamond cathode to beta radiation. Nitrogen-doped diamond thin films were grown by microwave plasma chemical vapor deposition on molybdenum substrates. The hydrogen-terminated nanocrystalline diamond was studied using a vacuum diode setup with a 63Ni beta radiation source-embedded anode, which produced a 2.7-fold increase in emission current compared to a 59Ni-embedded control. The emission threshold temperature was also examined to further assess the enhancement of thermionic emission, with 63Ni lowering the threshold temperature by an average of 58 ± 11 °C compared to the 59Ni control. Various mechanisms for the enhancement are discussed, with a satisfactory explanation remaining elusive. Nevertheless, one possibility is discussed involving excitation of preexisting conduction band electrons that may skew their energy distribution toward higher energies.

  10. Properties of carbon thin films deposited by thermionic vacuum arc

    Czech Academy of Sciences Publication Activity Database

    Vladoiu, R.; Ciupina, V.; Surdu-Bob, C.; Lungu, C.P.; Janík, J.; Skalný, J. D.; Buršíková, V.; Buršík, Jiří; Musa, G.

    2007-01-01

    Roč. 9, č. 4 (2007), s. 862-866 ISSN 1454-4164 Institutional research plan: CEZ:AV0Z20410507 Keywords : DLC * mechanical properties * thermionic vacuum arc Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.827, year: 2007

  11. Processes of preparation, deposition and analysis of thermionic emissive substances

    International Nuclear Information System (INIS)

    Romao, B.M. Verdelli; Muraro Junior, A.; Tessaroto, L.A.B.; Takahashi, J.

    1992-09-01

    This paper shows the results of the optimization of the process of preparation and deposition of thermionic emissive substances that are used in the oxide-cathodes which are utilized in the gun of the IEAv linear electron accelerator. (author). 5 refs., 5 figs

  12. Analysis of output-current characteristics of thermionic converters, 3

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Sadaaki; Kasuga, Yasuhiro

    1988-12-01

    This paper describes the results of comparison between the experimental Output Current-Voltage characteristics which two parallel plane thermionic Converters-So called G3 and G5-were tested by General Electric Research Laboratory and the calculated ones by the use of the computer code SIMCON. The results of the comparison show good agreement between the two.

  13. Calculations to Support On-line Neutron Spectrum Adjustment by Measurements with Miniature Fission Chambers in the JSI TRIGA Reactor

    Science.gov (United States)

    Kaiba, Tanja; Radulović, Vladimir; Žerovnik, Gašper; Snoj, Luka; Fourmentel, Damien; Barbot, LoÏc; Destouches, Christophe AE(; )

    2018-01-01

    Preliminary calculations were performed with the aim to establish optimal experimental conditions for the measurement campaign within the collaboration between the Jožef Stefan Institute (JSI) and Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA Cadarache). The goal of the project is to additionally characterize the neutron spectruminside the JSI TRIGA reactor core with focus on the measurement epi-thermal and fast part of the spectrum. Measurements will be performed with fission chambers containing different fissile materials (235U, 237Np and 242Pu) covered with thermal neutron filters (Cd and Gd). The changes in the detected signal and neutron flux spectrum with and without transmission filter were studied. Additional effort was put into evaluation of the effect of the filter geometry (e.g. opening on the top end of the filter) on the detector signal. After the analysis of the scoping calculations it was concluded to position the experiment in the outside core ring inside one of the empty fuel element positions.

  14. Calculations to Support On-line Neutron Spectrum Adjustment by Measurements with Miniature Fission Chambers in the JSI TRIGA Reactor

    Directory of Open Access Journals (Sweden)

    Kaiba Tanja

    2018-01-01

    Full Text Available Preliminary calculations were performed with the aim to establish optimal experimental conditions for the measurement campaign within the collaboration between the Jožef Stefan Institute (JSI and Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA Cadarache. The goal of the project is to additionally characterize the neutron spectruminside the JSI TRIGA reactor core with focus on the measurement epi-thermal and fast part of the spectrum. Measurements will be performed with fission chambers containing different fissile materials (235U, 237Np and 242Pu covered with thermal neutron filters (Cd and Gd. The changes in the detected signal and neutron flux spectrum with and without transmission filter were studied. Additional effort was put into evaluation of the effect of the filter geometry (e.g. opening on the top end of the filter on the detector signal. After the analysis of the scoping calculations it was concluded to position the experiment in the outside core ring inside one of the empty fuel element positions.

  15. Optimizing the Design of Small Fast Spectrum Battery-Type Nuclear Reactors

    Directory of Open Access Journals (Sweden)

    Staffan Qvist

    2014-07-01

    Full Text Available This study is focused on defining and optimizing the design parameters of inherently safe “battery” type sodium-cooled metallic-fueled nuclear reactor cores that operate on a single stationary fuel loading at full power for 30 years. A total of 29 core designs were developed with varying power and flow conditions, including detailed thermal-hydraulic, structural-mechanical and neutronic analysis. Given set constraints for irradiation damage, primary cycle pressure drop and inherent safety considerations, the attainable power range and performance characteristics of the systems are defined. The optimum power level for a core with a coolant pressure drop limit of 100 kPa and an irradiation damage limit of 200 DPA (displacements per atom is found to be 100 MWt/40 MWe. Raising the power level of an optimized core gives significantly higher attainable power densities and burnup, but severely decreases safety margins and increases the irradiation damage. A fully optimized inherently safe battery-type fast reactor core with an active height and diameter of 150 cm (2.6 m3, a pressure drop limit of 100 kPa and an irradiation damage limit of 300 DPA can be designed to operate at 150 MWt/60 MWe for 30 years, reaching an average discharge burnup of 100 MWd/kg-actinide.

  16. Power Management and Distribution System Developed for Thermionic Power Converters

    Science.gov (United States)

    Baez, Anastacio N.

    1998-01-01

    A spacecraft solar, bimodal system combines propulsion and power generation into a single integrated system. An Integrated Solar Upper Stage (ISUS) provides orbital transfer capabilities, power generation for payloads, and onboard propulsion to the spacecraft. A key benefit of a bimodal system is a greater payload-to-spacecraft mass ratio resulting in lower launch vehicle requirements. Scaling down to smaller launch vehicles increases space access by reducing overall mission cost. NASA has joined efforts with the Air Force Phillips Laboratory to develop enabling technologies for such a system. The NASA/Air Force bimodal concept uses solar concentrators to focus energy into an integrated power plant. This power plant consists of a graphite core that stores thermal energy within a cavity. An array of thermionic converters encircles the graphite cavity and provides electrical energy conversion functions. During the power generation phase of the bimodal system, the thermionic converters are exposed to the heated cavity and convert the thermal energy to electricity. Near-term efforts of the ISUS bimodal program are focused on a ground demonstration of key technologies in order to proceed to a full space flight test. Thermionic power generation is one key technology of the bimodal concept. Thermionic power converters impose unique operating requirements upon a power management and distribution (PMAD) system design. Single thermionic converters supply large currents at very low voltages. Operating voltages can vary over a range of up to 3 to 1 as a function of operating temperature. Most spacecraft loads require regulated 28-volts direct-current (Vdc) power. A combination of series-connected converters and powerprocessing boosters is required to deliver power to the spacecraft's payloads at this level.

  17. Response mechanisms of thermionic detectors with enhanced nitrogen selectivity.

    Science.gov (United States)

    Carlsson, H; Robertsson, G; Colmsjö, A

    2001-12-01

    The response mechanisms of a thermionic detector with enhanced nitrogen selectivity operating in an inert gas environment were investigated. According to accepted theory, the analyte has to contain electronegative functional groups in order for negative ions to be formed by the extraction of electrons from the thermionic source. This leads to a selective detector response for compounds containing nitro groups or multiple halogens. However, in the tests described here, polycyclic aromatic nitrogen hydrocarbons (PANHs), acridines, and carbazoles were used as reference substances. These compounds contain no electronegative functional groups. None of the investigated acridines exhibited any response from the detector, but carbazoles generated a strong structure-related detector response. By examining partial charges for all hydrogens of all individual carbazoles and acridine, it was demonstrated that the acidic hydrogen atom attached to the nitrogen heteroatom of the carbazoles has a strong influence on the detector response. Ionization of carbazoles may occur by dissociation of the nitrogen-hydrogen bond during contact with the thermionic surface. Support for this theory was provided by the linear relationship between the relative detector response and the deprotonization energy of the carbazoles (coefficients of determination of 0.90 and 0.98 for linear and quadratic models, respectively, were obtained). Further, there appeared to be no linear relationship between the detector response and electron affinity of the carbazoles, (R2 value, 0.32). Thus, the mechanism involved in ionization of the carbazoles is probably not direct electron transfer from the thermionic surface to the carbazoles. Principal component analysis (PCA) showed that the thermal conductivity of chemically inert detector gases also has an influence on the detector response. The investigated gases were helium, neon, nitrogen, carbon dioxide, and argon. It was found that thermal conductivity can be

  18. Thermionic Energy Conversion Based on Graphene van der Waals Heterostructures

    Science.gov (United States)

    Liang, Shi-Jun; Liu, Bo; Hu, Wei; Zhou, Kun; Ang, L. K.

    2017-04-01

    Seeking for thermoelectric (TE) materials with high figure of merit (or ZT), which can directly converts low-grade wasted heat (400 to 500 K) into electricity, has been a big challenge. Inspired by the concept of multilayer thermionic devices, we propose and design a solid-state thermionic devices (as a power generator or a refrigerator) in using van der Waals (vdW) heterostructure sandwiched between two graphene electrodes, to achieve high energy conversion efficiency in the temperature range of 400 to 500 K. The vdW heterostructure is composed of suitable multiple layers of transition metal dichalcogenides (TMDs), such as MoS2, MoSe2, WS2 and WSe2. From our calculations, WSe2 and MoSe2 are identified as two ideal TMDs (using the reported experimental material’s properties), which can harvest waste heat at 400 K with efficiencies about 7% to 8%. To our best knowledge, this design is the first in combining the advantages of graphene electrodes and TMDs to function as a thermionic-based device.

  19. Fast Neutron Spectrum Potassium Worth for Space Power Reactor Design Validation

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Marshall, Margaret A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tsiboulia, Anatoli [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rozhikhin, Yevgeniy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mihalczo, John T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    A variety of critical experiments were constructed of enriched uranium metal (oralloy ) during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Of the hundreds of delayed critical experiments, one was performed that consisted of uranium metal annuli surrounding a potassium-filled, stainless steel can. The outer diameter of the annuli was approximately 13 inches (33.02 cm) with an inner diameter of 7 inches (17.78 cm). The diameter of the stainless steel can was 7 inches (17.78 cm). The critical height of the configurations was approximately 5.6 inches (14.224 cm). The uranium annulus consisted of multiple stacked rings, each with radial thicknesses of 1 inch (2.54 cm) and varying heights. A companion measurement was performed using empty stainless steel cans; the primary purpose of these experiments was to test the fast neutron cross sections of potassium as it was a candidate for coolant in some early space power reactor designs.The experimental measurements were performed on July 11, 1963, by J. T. Mihalczo and M. S. Wyatt (Ref. 1) with additional information in its corresponding logbook. Unreflected and unmoderated experiments with the same set of highly enriched uranium metal parts were performed at the Oak Ridge Critical Experiments Facility in the 1960s and are evaluated in the International Handbook for Evaluated Criticality Safety Benchmark Experiments (ICSBEP Handbook) with the identifier HEU MET FAST 051. Thin

  20. Reactor Neutrinos

    OpenAIRE

    Kim, Soo-Bong; Lasserre, Thierry; Wang, Yifang

    2013-01-01

    We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very ...

  1. Reactor

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1976-01-01

    Object: To provide a boiling water reactor which can enhance a quake resisting strength and flatten power distribution. Structure: At least more than four fuel bundles, in which a plurality of fuel rods are arranged in lattice fashion which upper and lower portions are supported by tie-plates, are bundled and then covered by a square channel box. The control rod is movably arranged within a space formed by adjoining channel boxes. A spacer of trapezoidal section is disposed in the central portion on the side of the channel box over substantially full length in height direction, and a neutron instrumented tube is disposed in the central portion inside the channel box. Thus, where a horizontal load is exerted due to earthquake or the like, the spacers come into contact with each other to support the channel box and prevent it from abnormal vibrations. (Furukawa, Y.)

  2. Reactor

    International Nuclear Information System (INIS)

    Evans, R.M.

    1976-01-01

    Disclosed is a neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch. 1 claim, 16 figures

  3. Neutron Spectrum Parameters In Inner Irradiation Channel Of The Nigeria Research Reactor-1 (NIRR-1) For Use In Absolute And KO-NAA Methods

    International Nuclear Information System (INIS)

    Jonah, S.A; Balogun, G.I; Mayaki, M.C.

    2004-01-01

    In Nigeria, the first Nuclear Reactor achieved critically on February 03, 2004 at about 11:35 GMT and has been commissioned or training and research. It is a Miniature Neutron Source Reactor (MNSR), code-named Nigeria Research Reactor-1 (NIRR-1). NIRR-1 has a tan-in-pool structural configuration and a nominal thermal power rating of 30 Kw. With a built-in clean old core excess reactivity of 3.77 mk determined during the on-site zero and critically experimental, the reactor can operate for a n.cm-2 .s-1 in the inner irradiation channels). Under these conditions, the reactor can operate with the same fuel loading for over ten years with a burn-up of <1%. A detailed description of operating characteristics for NIRR-1, measured during the on-site zero-power and criticality experiments has been given elsewhere. In order to extend its utilization to include absolute and ko-NAA methods, the neutron spectrum parameters in the irradiation channels: power and critically experiments has been given elsewhere. In order to extend it's the irradiation channels: thermal-to-epithermal flux ration, F; and epithermal flux shape factor, a in both the inner and outer irradiation channels must be determined experimentally. In this work, we have developed and experimental procedure for monitoring the neutron spectrum parameters in an inner irradiation channel based on irradiation and gamma-ray counting of detector foils via (n,y), (n,p) and (n,a) dosimetry reactions. Results obtained indicate that a thermal neutron flux of (5.14+-0.02) x 1011 n/c m2.s determined by foil activation method in the inner irradiation channel, B2, at a power level of 15.5 kw corresponds to the flux indicators on the control console and the micro-computer control system respectively. Other parameters of the neutron spectrum determined for inner irradiation channel B2, are: a -0.0502+0.003; 18.92+-0.14; F = 3.87=0.23. The method was validated through the comparison of our result with published neutron spectrum

  4. Direct conversion nuclear reactor space power systems

    International Nuclear Information System (INIS)

    Britt, E.J.; Fitzpatrick, G.O.

    1982-01-01

    This paper presents the results of a study of space nuclear reactor power systems using either thermoelectric or thermionic energy converters. An in-core reactor design and two heat pipe cooled out-of-core reactor designs were considered. One of the out-of-core cases utilized, long heat pipes (LHP) directly coupled to the energy converter. The second utilized a larger number of smaller heat pipes (mini-pipe) radiatively coupled to the energy converter. In all cases the entire system, including power conditioning, was constrained to be launched in a single shuttle flight. Assuming presently available performance, both the LHP thermoelectric system and minipipe thermionic system, designed to produce 100 kWe for seven years, would have a specific mass near 22kg/kWe. The specific mass of the thermionic minipipe system designed for a one year mission is 165 kg/kWe due to less fuel swelling. Shuttle imposed growth limits are near 300 kWe and 1.2 MWe for the thermoelectric and thermionic systems, respectively. Converter performance improvements could double this potential, and over 10 MWe may be possible for very short missions

  5. Determination of the neutrons energy spectrum in the central thimble of the reactor core TRIGA Mark III; Determinacion del espectro de energia de los neutrones en el dedal central del nucleo del reactor TRIGA Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Parra M, M. A.; Luis L, M. A. [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Division de Ciencias Basicas, Av. San Pablo No. 180, Col. Reynosa Tamaulipas, 02200 Mexico D. F. (Mexico); Raya A, R.; Cruz G, H. S., E-mail: roberto.raya@inin.gob.mx [ININ, Departamento del Reactor, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    This work presents the measurement of the neutrons spectrum in energies in the central thimble of the reactor TRIGA Mark III to a power of 1 MW in stationary state, with the core in the center of the pool. To achieve this objective, several thin sheets were irradiated (one at the time) in the same position of the core. The activation probes were selected in such a way that covered the energy range (1 x 10{sup -10} to 20 MeV) of the neutrons spectrum in the reactor core, for this purpose thin sheets were used of {sup 197}Au, {sup 58}Ni, {sup 115}In, {sup 24}Mg, {sup 27}Al, {sup 58}Fe, {sup 59}Co and {sup 63}Cu. After the irradiation, the high energy gamma emissions of the activated thin sheets were measured by means of gamma spectrometry, in a counting system of high resolution, with a Hyper pure Germanium detector, obtaining this way the activity induced in the thin sheets whose magnitude is proportional to the intensity of the neutrons flow, this activity together to a theoretical initial spectrum are the main entrance data of the computational code SANDBP (Hungarian version of the code Sand-II) that uses the unfolding method for the calculation of the spectrum. (Author)

  6. Regulating the Emission Spectrum of CsPbBr3 from Green to Blue via Controlling the Temperature and Velocity of Microchannel Reactor

    Science.gov (United States)

    Tang, Yong; Lu, Hanguang; Rao, Longshi; Ding, Xinrui; Yan, Caiman; Yu, Binhai

    2018-01-01

    The ability to precisely obtain tunable spectrum of lead halide perovskite quantum dots (QDs) is very important for applications, such as in lighting and display. Herein, we report a microchannel reactor method for synthesis of CsPbBr3 QDs with tunable spectrum. By adjusting the temperature and velocity of the microchannel reactor, the emission peaks of CsPbBr3 QDs ranging from 520 nm to 430 nm were obtained, which is wider than that of QDs obtained in a traditional flask without changing halide component. The mechanism of photoluminescence (PL) spectral shift of CsPbBr3 QDs was investigated, the result shows that the supersaturation control enabled by the superior mass and heat transfer performance in the microchannel is the key to achieve the wide range of PL spectrum, with only a change in the setting of the temperature controller required. The wide spectrum of CsPbBr3 QDs can be applied to light-emitting diodes (LEDs), photoelectric sensors, lasers, etc. PMID:29498710

  7. Regulating the Emission Spectrum of CsPbBr₃ from Green to Blue via Controlling the Temperature and Velocity of Microchannel Reactor.

    Science.gov (United States)

    Tang, Yong; Lu, Hanguang; Rao, Longshi; Li, Zongtao; Ding, Xinrui; Yan, Caiman; Yu, Binhai

    2018-03-02

    The ability to precisely obtain tunable spectrum of lead halide perovskite quantum dots (QDs) is very important for applications, such as in lighting and display. Herein, we report a microchannel reactor method for synthesis of CsPbBr₃ QDs with tunable spectrum. By adjusting the temperature and velocity of the microchannel reactor, the emission peaks of CsPbBr₃ QDs ranging from 520 nm to 430 nm were obtained, which is wider than that of QDs obtained in a traditional flask without changing halide component. The mechanism of photoluminescence (PL) spectral shift of CsPbBr₃ QDs was investigated, the result shows that the supersaturation control enabled by the superior mass and heat transfer performance in the microchannel is the key to achieve the wide range of PL spectrum, with only a change in the setting of the temperature controller required. The wide spectrum of CsPbBr₃ QDs can be applied to light-emitting diodes (LEDs), photoelectric sensors, lasers, etc.

  8. Regulating the Emission Spectrum of CsPbBr3 from Green to Blue via Controlling the Temperature and Velocity of Microchannel Reactor

    Directory of Open Access Journals (Sweden)

    Yong Tang

    2018-03-01

    Full Text Available The ability to precisely obtain tunable spectrum of lead halide perovskite quantum dots (QDs is very important for applications, such as in lighting and display. Herein, we report a microchannel reactor method for synthesis of CsPbBr3 QDs with tunable spectrum. By adjusting the temperature and velocity of the microchannel reactor, the emission peaks of CsPbBr3 QDs ranging from 520 nm to 430 nm were obtained, which is wider than that of QDs obtained in a traditional flask without changing halide component. The mechanism of photoluminescence (PL spectral shift of CsPbBr3 QDs was investigated, the result shows that the supersaturation control enabled by the superior mass and heat transfer performance in the microchannel is the key to achieve the wide range of PL spectrum, with only a change in the setting of the temperature controller required. The wide spectrum of CsPbBr3 QDs can be applied to light-emitting diodes (LEDs, photoelectric sensors, lasers, etc.

  9. Near-field enhanced thermionic energy conversion for renewable energy recycling

    Science.gov (United States)

    Ghashami, Mohammad; Cho, Sung Kwon; Park, Keunhan

    2017-09-01

    This article proposes a new energy harvesting concept that greatly enhances thermionic power generation with high efficiency by exploiting the near-field enhancement of thermal radiation. The proposed near-field enhanced thermionic energy conversion (NETEC) system is uniquely configured with a low-bandgap semiconductor cathode separated from a thermal emitter with a subwavelength gap distance, such that a significant amount of electrons can be photoexcited by near-field thermal radiation to contribute to the enhancement of thermionic current density. We theoretically demonstrate that the NETEC system can generate electric power at a significantly lower temperature than the standard thermionic generator, and the energy conversion efficiency can exceed 40%. The obtained results reveal that near-field photoexcitation can enhance the thermionic power output by more than 10 times, making this hybrid system attractive for renewable energy recycling.

  10. Gridded thermionic gun and integral superconducting ballistic bunch compression cavity

    Energy Technology Data Exchange (ETDEWEB)

    Schultheiss, Thomas [Advanced Energy Systems, Inc., Medford, NY (United States)

    2015-11-16

    Electron-Ion colliders such as the Medium energy Electron Ion Collider (MEIC) being developed by JLAB require high current electrons with low energy spread for electron cooling of the collider ring. Accelerator techniques for improving bunch charge, average current, emittance, and energy spread are required for Energy Recovery Linacs (ERLs) and Circulator Rings (CR) for next generation colliders for nuclear physics experiments. Example candidates include thermionic-cathode electron guns with RF accelerating structures. Thermionic cathodes are known to produce high currents and have excellent lifetime. The success of the IR and THz Free-Electron Laser (FEL) designed and installed by Advanced Energy Systems at the Fritz Haber Institute (FHI) of the Max Planck Society in Berlin [1,2] demonstrates that gridded thermionic cathodes and rf systems be considered for next generation collider technology. In Phase 1 Advanced Energy Systems (AES) developed and analyzed a design concept using a superconducting cavity pair and gridded thermionic cathode. Analysis included Beam Dynamics and thermal analysis to show that a design of this type is feasible. The latest design goals for the MEIC electron cooler were for electron bunches of 420 pC at a frequency of 952.6 MHz with a magnetic field on the cathode of 2kG. This field magnetizes the beam imparting angular momentum that provides for helical motion of the electrons in the cooling solenoid. The helical motion increases the interaction time and improves the cooling efficiency. A coil positioned around the cathode providing 2kG field was developed. Beam dynamics simulations were run to develop the particle dynamics near the cathode and grid. Lloyd Young added capability to Tstep to include space charge effects between two plates and include image charge effects from the grid. He also added new pepper-pot geometry capability to account for honeycomb grids. These additions were used to develop the beam dynamics for this gun. The

  11. Multi-channel pulser for the SLC thermionic electron source

    International Nuclear Information System (INIS)

    Browne, M.J.; Clendenin, J.E.; Corredoura, P.L.; Jobe, R.K.; Koontz, R.F.; Sodja, J.

    1985-01-01

    A new pulser developed for the SLC thermionic gun has been operational since September 1984. It consists of two planar triode amplifiers with a common output triode driving the gun cathode to produce two independent pulses of up to 9A with a 3 nsec FWHM pulse width. Three long-pulse amplifiers are also connected to the cathode to produce pulses with widths controllable between 100 nsec and 1.6 μsec. Each amplifier has independent timing and amplitude control through a fiber optic link to the high voltage plane of the gun cathode-grid structure. The pulser and its operating characteristics are described. 15 refs., 3 figs

  12. Design and operation of a thermionic converter in air

    International Nuclear Information System (INIS)

    Horner, M.H.; Begg, L.L.; Smith, J.N. Jr.; Geller, C.B.; Kallnowski, J.E.

    1995-01-01

    An electrically heated thermionic converter has been designed, built and successfully tested in air. Several unique features were incorporated in this converter: an integral cesium reservoir, innovative ceramic-to-metal seals, a heat rejection system coupling the collector to a low temperature heat sink and an innovative cylindrical heater filament. The converter was operated for extended periods of time with the emitter at about 1900 K. the collector at about 700 K, and a power density of over 2 w(e)/sq. cm. Input power transients were run between 50% and 100% thermal power, at up to 1% per second, without instabilities in performance

  13. X-Band Thermionic Cathode RF Gun at UTNL

    CERN Document Server

    Fukasawa, Atsushi; Dobashi, Katsuhiro; Ebina, Futaro; Hayano, Hitoshi; Higo, Toshiyasu; Kaneyasu, Tatsuo; Matsuo, Kennichi; Ogino, Haruyuki; Sakae, Hisaharu; Sakamoto, Fumito; Uesaka, Mitsuru; Urakawa, Junji

    2005-01-01

    The X-band (11.424 GHz) linac for compact Compton scattering hard X-ray source are under construction at Nuclear Engineering Research Laboratory, University of Tokyo. This linac designed to accelerate up to 35 MeV, and this electron beam will be used to produce hard X-ray by colliding with laser. It consists of a thermionic cathode RF gun, an alpha magnet, and a traveling wave tube. The gun has 3.5 cells (unloaded Q is 8250) and will be operated at pi-mode. A dispenser cathode is introduced. Since the energy spread of the beam from the gun is predicted to be broad due to the continuous emission from the thermionic cathode, a slit is placed in the alpha magnet to eliminate low energy electrons. The simulation on the injector shows the beam energy 2.9 MeV, the charge 23 pC/bunch, and the emittance less than 10 mm.mrad. The experiment on the gun is planed in the beginning of 2005, and the details will be discussed on the spot.

  14. Adherence of diamond films on refractory metal substrates for thermionic applications

    International Nuclear Information System (INIS)

    Tsao, B.H.; Ramalingam, M.L.; Adams, S.F.; Cloyd, J.S.

    1991-01-01

    Diamond films are currently being considered as electrical insulation material for application in the thermionic fuel element of a power producing nuclear reactor system. The function of the diamond insulator in this application is to electrically isolate the collector of each cell in the TFE from the coolant and outer sheath. Deposition of diamond films on plane surfaces of Si/SiO 2 have already been demonstrated to be quite effective. However, the diamond films on refractory metal surfaces tend to spall off in the process of deposition revealing an inefficient adherence characteristic between the film and the substrate. This paper is geared towards explaining this deficiency by way of selected experimentation and the use of analytical tools to predict uncertainties such as the mismatch in coefficient of expansion, micrographic study of the interface between the film and the substrate and X-ray diffraction spectra. The investigation of the adherence characteristics of several diamond films on Mo and Nb substrates revealed that there was an allowable stress that resulted in the formation of the critical thickness for the diamond film

  15. Design, Fabrication, and Testing of an External-Fuel [UO2] Full-Length Thermionic Converter

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred; Raab, B; Giorgio, F.

    1971-09-01

    The development of a double-ended full-core-length external-fuel converter, a prototypical fuel module for a 200- to 300-ekw thermionic reactor, is described. The converter design is based on a revolver-shaped tungsten emitter body, with six peripheral fuel chambers loaded with enriched UO2 pellets. The columbium collector is water-cooled through a sub-atmospheric adjustable-pressure helium gap. The converter employs graded metal-ceramic seals, and its double-ended construction is made possible by bellows to compensate for differential axial expansion. Fission gases are vented from the fuel chambers and collected in an accumulator designed for continuous monitoring of the pressure buildup. Component fabrication, assembly sequence, and joining methods are described; also the test procedures, and the converter load control. All tests are performed in vacuum. During inpile testing, the fuel is triply contained, with thermal insulation between the secondary and tertiary containers. Before insertion inpile, the fully fueled converter is qualification-tested by rf-induction heating using a specially developed high vacuum rf-feedthrough.

  16. Thermionic and Photo-excited Electron Emission for Energy Conversion Processes

    Directory of Open Access Journals (Sweden)

    Patrick T. McCarthy

    2014-12-01

    Full Text Available This article describes advances in thermionic and photoemission materials and applications dating back to the work on thermionic emission by Guthrie in 1873 and the photoelectric effect by Hertz in 1887. Thermionic emission has been employed for electron beam generation from Edison’s work with the light bulb to modern day technologies such as scanning and transmission electron microscopy. The photoelectric effect has been utilized in common devices such as cameras and photocopiers while photovoltaic cells continue to be widely successful and further researched. Limitations in device efficiency and materials have thus far restricted large-scale energy generation sources based on thermionic and photoemission. However, recent advances in the fabrication of nanoscale emitters suggest promising routes for improving both thermionic and photo-enhanced electron emission along with newly developed research concepts, e.g., photonically enhanced thermionic emission. However, the abundance of new emitter materials and reduced dimensions of some nanoscale emitters increases the complexity of electron emission theory and engender new questions related to the dimensionality of the emitter. This work presents derivations of basic two and three-dimensional thermionic and photoemission theory along with comparisons to experimentally acquired data. The resulting theory can be applied to many different material types regardless of composition, bulk and surface structure.

  17. Simulations of thermionic suppression during tungsten transient melting experiments.

    Czech Academy of Sciences Publication Activity Database

    Komm, Michael; Tolias, P.; Ratynskaia, S.; Dejarnac, Renaud; Gunn, J. P.; Krieger, K.; Podolník, Aleš; Pitts, R.A.; Pánek, Radomír

    T170, December (2017), č. článku 014069. ISSN 0031-8949. [PFMC 2017: 16th International Conference on Plasma-Facing Materials and Components for Fusion Applications. Düsseldorf, 16.05.2017-19.05.2017] R&D Projects: GA ČR(CZ) GA16-14228S; GA MŠk(CZ) 8D15001 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : tokamak * thermionic emission * tungsten * melt * plasma-facing component Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: 1.3 Physical sciences Impact factor: 1.280, year: 2016 http://iopscience.iop.org/article/10.1088/1402-4896/aa9209

  18. Solid-State Thermionic Nuclear Power for Megawatt Propulsion, Planetary Surface and Commercial Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermionic (TI) power conversion is a promising technology first investigated for power conversion in the 1960’s, and of renewed interest due to modern...

  19. Using Carbon-Based Nanomaterials and Microscale Geometry for Enhanced Thermionic Energy Conversion in Space Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — The hypothesis of this research is that using carbon-based nanomaterials (CBN) electrodes in a microscale thermionic energy conversion (TEC) device operated at...

  20. SPACE-R Thermionic Space Nuclear Power System: Design and Technology Demonstration Program. Semiannual technical progress report for period ending March 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This Semiannual Technical Progress Report summarizes the technical progress and accomplishments for the Thermionic Space Nuclear Power System (TI-SNPS) Design and Technology Demonstration Program of the Prime Contractor, Space Power Incorporated (SPI), its subcontractors and supporting National Laboratories during the first half of the Government Fiscal Year (GFY) 1993. SPI`s subcontractors and supporting National Laboratories include: Babcock & Wilcox for the reactor core and externals; Space Systems/Loral for the spacecraft integration; Thermocore for the radiator heat pipes and the heat exchanger; INERTEK of CIS for the TFE, core elements and nuclear tests; Argonne National Laboratories for nuclear safety, physics and control verification; and Oak Ridge National laboratories for materials testing. Parametric trade studies are near completion. However, technical input from INERTEK has yet to be provided to determine some of the baseline design configurations. The INERTEK subcontract is expected to be initiated soon. The Point Design task has been initiated. The thermionic fuel element (TFE) is undergoing several design iterations. The reactor core vessel analysis and design has also been started.

  1. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine

    OpenAIRE

    Mboyi, Kalomba; Ren, Junxue; Liu, Yu

    2015-01-01

    A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the e...

  2. Study on the Evaluation of the Remnant Catalyst in the Desulfurization Reactor by Analyzing γ-Spectrum

    International Nuclear Information System (INIS)

    Jeon, Jong Kyu; Jung, Sung Hee; Kim, Jong Bum; Kim, Jin Seop

    2005-01-01

    Desulfurization of petroleum feedstocks is an important process with wide reaching implications for the petroleum industry and the environment. At this point of view, the diagnosis of desulfurizing process gives significant information to judge the optimal time to replace the spent catalyst by recognizing the efficiency and the amount used catalyst of the process. The evaluation of the catalyst lifetime in a desulfurizing process in a petrochemical plant has been carried out by chemical analysis of the specimen taken from the specific regions. However, it has a drawback that the estimation of the precise reaction zone is difficult and a number of gathering points for specimen are necessary. In addition, it is difficult to evaluate catalyst lifetime during the operation of the process because the collection of specimen is available after the shutdown of process. In order to evaluate its lifetime of on-line process, the introduction of application technology for the diagnosis of industrial process using gamma radiation was considered and a new measurement for the evaluation of reaction zone and density variation of catalyst in a desulfurizing vessel using scattered gamma radiation has been studied. Vertical density profile of packed materials in the reactor at various elevations can be plotted by detecting and analyzing scattered radiation, which shows different counts depending on the density of materials when traversing the reactor. The reaction zone between unused and used catalyst and relative amount of two materials can be evaluated by analysis of minute difference of scattered gamma radiation spectra at a specific energy region

  3. Measuring current emission and work functions of large thermionic cathodes

    International Nuclear Information System (INIS)

    Fortgang, C.M.

    2001-01-01

    As one component of the nations Stockpile Stewardship program, Los Alamos National Laboratory is constructing a 20 MeV, 2 kA (with a 4 kA upgrade capability), 3ps induction linac for doing x-ray radiography of explosive devices. The linac is one leg of a facility called the Dual-Axis Radiography Hydrodynamic Test Facility (DARHT). The electron gun is designed to operate at 3.2 MV. The gun is a Pierce type design and uses a 6.5' cathode for 2 kA operation and an 8' cathode for 4 kA operation. We have constructed a small facility called the Cathode Test Stand (CTS) to investigate engineering and physics issues regarding large thermionic dispenser-cathodes. In particular, we have looked at the issues of temperature uniformity on the cathode surface and cathode quality as measured by its work function. We have done thermal imaging of both 8' and 6.5' cathodes. Here we report on measurements of the cathode work function, both the average value and how it vanes across the face of the cathode.

  4. Development of an innovative neutron reactor dosimetry method for the characterization of neutron spectrum in the energy range of 1 keV - 1 MeV

    International Nuclear Information System (INIS)

    Sergeyeva, Viktoriya

    2016-01-01

    The subject of this PhD was carried out in the Instrumentation Sensors and Dosimetry Laboratory at CEA Cadarache research center. Different technical teams were involved in this research. all the chemical treatments for Zr were performed in Chemical and Radiochemical analyses Laboratory (CEA Cadarache). Post-irradiation measurements were performed on MADERE platform of Instrumentation Sensors and Dosimetry Laboratory (CEA Cadarache). accelerator Mass Spectrometry (AMS) measurements were performed by Maier-Leibnitz Laboratory (MLL TUM Munich, Germany). These PhD studies deal with the topic of neutron reactor dosimetry. The goal of reactor dosimetry is to reconstruct the neutron spectrum in a particular location inside or outside the reactor core. Classical applications are: neutron flux determination in order to anticipate embrittlement of the Pressurised Water Reactor vessel, study of material damage under high irradiation fluxes in Material Testing Reactors, perform experimental data and feed-back for cross sections evaluations such as JEFF, ENDF, IRDFF, etc. Today we can accurately reconstruct thermal (≅ eV) and fast (≅ MeV) parts of neutron spectrum by using activation detectors, also called dosimeters, with an adequate sensitivity. Nowadays there is no adequate dosimeter for the intermediate energy region between 1 keV and 1 MeV. Thus, the PhD goal is to select the 1 keV - 1 MeV sensitive target-isotope and associated nuclear reaction and verify our solution by experimental irradiation. The study started by checking the energy sensitivity of the isotopes and cross section level for neutron reactions. Finally we choose neutron capture reaction (n; γ) on 92 Zr and 94 Zr. The neutron irradiation will produce 2 isotopes: 93 Zr and 95 Zr, stable and radioactive respectively. The 2 reactions used in this work for the 1 keV - 1 MeV neutron detection are 92 Zr(n; γ) 93 Zr and 94 Zr(n; γ) 95 Zr → 95 Nb → 95 Mo. Zirconium capture reaction rate for thermal

  5. A sub-thermionic MoS2 FET with tunable transport

    Science.gov (United States)

    Bhattacharjee, Shubhadeep; Ganapathi, Kolla Lakshmi; Mohan, Sangeneni; Bhat, Navakanta

    2017-10-01

    The inability to scale supply voltage and hence reduce power consumption remains a serious challenge in modern nanotransistors. This arises primarily because the Sub-threshold Swing (SS) of the thermionic MOSFET, a measure of its switching efficiency, is restricted by the Boltzmann limit (kBT/q = 60 mV/dec at 300 K). Tunneling FETs, the most promising candidates to circumvent this limit, employ band-to-band tunneling, yielding very low OFF currents and steep SS but at the expense of severely degraded ON currents. In a completely different approach, by introducing concurrent tuning of thermionic and tunneling components through metal/semiconductor Schottky junctions, we achieve an amalgamation of steep SS and high ON currents in the same device. We demonstrate sub-thermionic transport sustained up to 4 decades with SSmin ˜ 8.3 mV/dec and SSavg ˜ 37.5(25) mV/dec for 4(3) dec in few layer MoS2 dual gated FETs (planar and CMOS compatible) using tunnel injected Schottky contacts for a highly scaled drain voltage of 10 mV, the lowest for any sub-thermionic devices. Furthermore, the same devices can be tuned to operate in the thermionic regime with a field effect mobility of ˜84.3 cm2 V-1 s-1. A detailed mechanism involving the independent control of the Schottky barrier height and width through efficient device architecture and material processing elucidates the functioning of these devices. The Gate Tunable Thermionic Tunnel FET can function at a supply voltage of as low as 0.5 V, reducing power consumption dramatically.

  6. Self-actuating reactor shutdown system

    Science.gov (United States)

    Barrus, Donald M.; Brummond, Willian A; Peterson, Leslie F.

    1988-01-01

    A control system for the automatic or self-actuated shutdown or "scram" of a nuclear reactor. The system is capable of initiating scram insertion by a signal from the plant protection system or by independent action directly sensing reactor conditions of low-flow or over-power. Self-actuation due to a loss of reactor coolant flow results from a decrease of pressure differential between the upper and lower ends of an absorber element. When the force due to this differential falls below the weight of the element, the element will fall by gravitational force to scram the reactor. Self-actuation due to high neutron flux is accomplished via a valve controlled by an electromagnet and a thermionic diode. In a reactor over-power, the diode will be heated to a change of state causing the electromagnet to be shorted thereby actuating the valve which provides the changed flow and pressure conditions required for scramming the absorber element.

  7. On thermionic emission from plasma-facing components in tokamak-relevant conditions.

    Czech Academy of Sciences Publication Activity Database

    Komm, Michael; Ratynskaia, S.; Tolias, P.; Cavalier, Jordan; Dejarnac, Renaud; Gunn, J. P.; Podolník, Aleš

    2017-01-01

    Roč. 59, č. 9 (2017), č. článku 094002. ISSN 0741-3335 R&D Projects: GA ČR(CZ) GA16-14228S; GA MŠk(CZ) 8D15001 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : thermionic * PIC * tungsten * tokamak * thermionic emission * plasma facing components * particle-in-cell Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.392, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6587/aa78c4/pdf

  8. Thermionic cogeneration burner assessment study. Third quarterly technical progress report, April-June, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The specific tasks of this study are to mathematically model the thermionic cogeneration burner, experimentally confirm the projected energy flows in a thermal mock-up, make a cost estimate of the burner, including manufacturing, installation and maintenance, review industries in general and determine what groups of industries would be able to use the electrical power generated in the process, select one or more industries out of those for an in-depth study, including determination of the performance required for a thermionic cogeneration system to be competitive in that industry. Progress is reported. (WHK)

  9. Status of CEA reactor studies for a 200 kWe turboelectric Space Power System

    International Nuclear Information System (INIS)

    Carre, F.; Gervaise, F.; Proust, E.; Schwartz, J.P.; Tilliette, Z.; Vrillon, B.

    1986-01-01

    A reference design for a 200 kWe Space Nuclear Power System has been developed by the CNES and CEA Agencies of the French Government in order to assess within a first study phase running from mid 1984 to mid 1986, the key feasibility issues and the development cost of a Space Power System compatible with the version of the European launcher (ARIANE V), that will be available after 1995, and with adequate power range and lifetime performances for the missions considered at that time. The heat from a fast spectrum lithium cooled reactor is converted by a turboelectric system, selected for its technological readiness and for its advantage over thermionics and thermoelectricity, of minimizing the total mass of 100 to 300 kWe power systems, considering the available radiator area afforded by the specific ARIANE V geometrical features. A heat pipe radiator is preferred to an equivalent gas cooled system, for the increased reliability brought by the large number of independent cooling elements. The successive topics addressed in the paper, include a description of the system main components and steady state operating conditions, and the present views about the start up procedure and the reactor control

  10. Reactor Neutrinos

    Directory of Open Access Journals (Sweden)

    Soo-Bong Kim

    2013-01-01

    Full Text Available We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very recently the most precise determination of the neutrino mixing angle θ13. This paper provides an overview of the upcoming experiments and of the projects under development, including the determination of the neutrino mass hierarchy and the possible use of neutrinos for society, for nonproliferation of nuclear materials, and geophysics.

  11. Simple model for the description of a thermionic Cs diode in operation

    International Nuclear Information System (INIS)

    Tschersich, K.G.

    1975-01-01

    Because of the small voltage loss in the space between the electrodes, Cs is the most common work medium in thermionic diodes. With the model calculations of the processes in the space between the electrodes, the author aims to explain the formation of Cs ions and the current transport through the electrode gap at these low voltages. (RW/AK) [de

  12. Measures to alleviate the back bombardment effect of thermionic rf electron gun

    International Nuclear Information System (INIS)

    Huang, Y.; Xie, J.

    1991-01-01

    Thermionic rf electron gun finds application as a high brightness electron source for rf linacs. However, cathode heating from back-bombardment effect causes a ramp in the macro-pulse beam current and limit the usable pulse width. Three methods: ring cathode, magnetic deflection and laser assisted heating are studied in theory and in experiment. The results of these studies are reported

  13. Numerical simulations of the thermionic electron gun for electron-beam welding and micromachining

    Czech Academy of Sciences Publication Activity Database

    Jánský, Pavel; Zlámal, J.; Lencová, Bohumila; Zobač, Martin; Vlček, Ivan; Radlička, Tomáš

    2009-01-01

    Roč. 84, č. 2 (2009), s. 357-362 ISSN 0042-207X R&D Projects: GA AV ČR IAA100650805 Institutional research plan: CEZ:AV0Z20650511 Keywords : Numerical simulation * Thermionic emission * Electron gun Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.975, year: 2009

  14. Specific power of liquid-metal-cooled reactors

    International Nuclear Information System (INIS)

    Dobranich, D.

    1987-10-01

    Calculations of the core specific power for conceptual space-based liquid-metal-cooled reactors, based on heat transfer considerations, are presented for three different fuel types: (1) pin-type fuel; (2) cermet fuel; and (3) thermionic fuel. The calculations are based on simple models and are intended to provide preliminary comparative results. The specific power is of interest because it is a measure of the core mass required to produce a given amount of power. Potential problems concerning zero-g critical heat flux and loss-of-coolant accidents are also discussed because these concerns may limit the core specific power. Insufficient experimental data exists to accurately determine the critical heat flux of liquid-metal-cooled reactors in space; however, preliminary calculations indicate that it may be a concern. Results also indicate that the specific power of the pin-type fuels can be increased significantly if the gap between the fuel and the clad is eliminated. Cermet reactors offer the highest specific power because of the excellent thermal conductivity of the core matrix material. However, it may not be possible to take fuel advantage of this characteristic when loss-of-coolant accidents are considered in the final core design. The specific power of the thermionic fuels is dependent mainly on the emitter temperature. The small diameter thermionic fuels have specific powers comparable to those of pin-type fuels. 11 refs., 12 figs, 2 tabs

  15. Fabrication and Testing of Full-Length Single-Cell Externally Fueled Converters for Thermionic Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1995-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes the fabrication and testing of full-length prototypcial converters, both unfueled and fueled, and presents parametric results of electrically heated tests.

  16. Experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source spectrum of the NBSR reactor at the NIST Center for Neutron Research

    Science.gov (United States)

    Cook, J. C.; Barker, J. G.; Rowe, J. M.; Williams, R. E.; Gagnon, C.; Lindstrom, R. M.; Ibberson, R. M.; Neumann, D. A.

    2015-08-01

    The recent expansion of the National Institute of Standards and Technology (NIST) Center for Neutron Research facility has offered a rare opportunity to perform an accurate measurement of the cold neutron spectrum at the exit of a newly-installed neutron guide. Using a combination of a neutron time-of-flight measurement, a gold foil activation measurement, and Monte Carlo simulation of the neutron guide transmission, we obtain the most reliable experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source brightness to date. Time-of-flight measurements were performed at three distinct fuel burnup intervals, including one immediately following reactor startup. Prior to the latter measurement, the hydrogen was maintained in a liquefied state for an extended period in an attempt to observe an initial radiation-induced increase of the ortho (o)-hydrogen fraction. Since para (p)-hydrogen has a small scattering cross-section for neutron energies below 15 meV (neutron wavelengths greater than about 2.3 Å), changes in the o- p hydrogen ratio and in the void distribution in the boiling hydrogen influence the spectral distribution. The nature of such changes is simulated with a continuous-energy, Monte Carlo radiation-transport code using 20 K o and p hydrogen scattering kernels and an estimated hydrogen density distribution derived from an analysis of localized heat loads. A comparison of the transport calculations with the mean brightness function resulting from the three measurements suggests an overall o- p ratio of about 17.5(±1) % o- 82.5% p for neutron energies<15 meV, a significantly lower ortho concentration than previously assumed.

  17. Fission Spectrum Related Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    G. Aliberti; I. Kodeli; G. Palmiotti; M. Salvatores

    2007-10-01

    The paper presents a preliminary uncertainty analysis related to potential uncertainties on the fission spectrum data. Consistent results are shown for a reference fast reactor design configuration and for experimental thermal configurations. However the results obtained indicate the need for further analysis, in particular in terms of fission spectrum uncertainty data assessment.

  18. Thorium fueled reactor

    Science.gov (United States)

    Sipaun, S.

    2017-01-01

    Current development in thorium fueled reactors shows that they can be designed to operate in the fast or thermal spectrum. The thorium/uranium fuel cycle converts fertile thorium-232 into fissile uranium-233, which fissions and releases energy. This paper analyses the characteristics of thorium fueled reactors and discusses the thermal reactor option. It is found that thorium fuel can be utilized in molten salt reactors through many configurations and designs. A balanced assessment on the feasibility of adopting one reactor technology versus another could lead to optimized benefits of having thorium resource.

  19. The direct conversion of heat into electricity in reactors

    International Nuclear Information System (INIS)

    Devin, B.; Bliaux, J.; Lesueur, R.

    1964-01-01

    The direct conversion of heat into electricity by thermionic emission in an atomic reactor has been studied with the triple aim of its utilisation: as an energy source for a space device, at the head of a conventional conversion system in power installations, or finally in association with the thermoelectric conversion in very low power installations. The laboratory experiments were mainly orientated towards the electron extraction of metals and compounds and their behaviour at high temperatures. Converters furnishing up to 50 amps at 0. 4 volts with an efficiency close to 10 p. 100 have been constructed in the laboratory; the emitters were heated by electron bombardment and were composed of tungsten covered with an uranium carbide deposit or molybdenum covered with cesium. The main aspects of the coupling between the converter and the reactor have been covered from the point of view of electronics: the influence of the mismatching of the load on the temperature of the emitter and the influence of thermal flux density on the temperature of the emitter and the stability of the converter. Converters using uranium carbide as the electron emitter have been tested in reactors. Tests have been made under dynamic conditions in order to determine the dynamic characteristics. The load matching curves have been constructed and the overall performances of several cells coupled in such a way as to form a reactor rod have been deduced. This information is fundamental to the design of a control system for a thermionic conversion reactor. The problems associated with the reliability of thermionic converters connected in series in the same reactor rod have been examined theoretically. Finally, the absorption isotherms have been drawn at the ambient temperatures for krypton and xenon on activated carbon with the aim of investigating the escape of fission products in a converter. (author) [fr

  20. The ERDA thermionic program. [for nuclear propulsion and utility power plants

    Science.gov (United States)

    Newby, G. A.

    1975-01-01

    A rationale for increased Federal support of thermionic research is considered and the objectives and milestones of the thermionic program of the U.S. Energy Research and Development Administration (ERDA) are examined. The ERDA program is to provide very high specific power systems needed for planned future NASA nuclear electric propulsion missions. Another objective is the enhancement of the overall thermal conversion efficiency of the present utility power plants from approximately 35% to 50% or more. Attention is given to key problem areas, taking into account inadequate analytical tools, the reduction of the plasma arc-drop losses, aspects of hot shell materials development, and the coordination of the participating groups programmatic activities.

  1. Measurement of back-bombardment temperature rise in microwave thermionic electron guns.

    Science.gov (United States)

    Kowalczyk, Jeremy M D; Hadmack, Michael R; Madey, John M J

    2013-08-01

    We describe a simple method to measure the back-bombardment heating temperature rise as a function of time in pulsed microwave thermionic guns using a fast rise-time InGaAs detector and optical pyrometer. Gaining knowledge of the nature of that temperature rise and the corresponding current out of the gun are the first steps in devising a scheme to counteract the back-bombardment heating which lengthens the micropulses, limits the macropulse length, and increases the energy spread of the emitted electron beam. We measured a temperature rise of 59 K in our LaB6 cathode which delivered a peak of 600 mA over a 5 μs RF pulse in our 0.33 MV/cm peak field, 2.856 GHz thermionic electron gun.

  2. Evaluation of precision in measurements of uranium isotope ratio by thermionic mass spectrometry

    International Nuclear Information System (INIS)

    Moraes, N.M.P. de; Rodrigues, C.

    1977-01-01

    The parameters which affect the precision and accuracy of uranium isotopic ratios measurements by thermionic mass spectrometry are discussed. A statistical designed program for the analysis of the internal and external variances are presented. It was done an application of this statistical methods, in order to get mass discrimination factor, and its standard mean deviation, by using some results already published for 235 U/ 238 U ratio in NBS uranium samples, and natural uranium [pt

  3. Theory of photoexcited and thermionic emission across a two-dimensional graphene-semiconductor Schottky junction

    OpenAIRE

    Trushin, Maxim

    2017-01-01

    We find that intrinsic graphene provides efficient photocarrier transport across a two-dimensional graphene-semiconductor Schottky junction as a linear response to monochromatic light with excitation energy well below the semiconductor bandgap. The operation mechanism relies both on zero-bias photoexcited and thermionic emission contributing to photoresponsivity, enabled by the extended photocarrier thermalization time in intrinsic graphene. The photoresponsivity rapidly increases with excita...

  4. Thermionic detection of the ionic fragments of continiuum-state pair absorption systems

    International Nuclear Information System (INIS)

    Hotop, R.; Niemax, K.; Richter, J.; Weber, K.H.

    1981-01-01

    Using a thermionic diode we have detected the ionic fragments formed by associative ionization and dissociation after continuum-state pair absorption processes in Cs-Cs and Cs-K systems. Assuming an ionization probability of unity of the excited species and calibrating the pair absorption bands by taking into account the known photoionization cross section of the atoms we found excellent agreement with data from classical absorption measurements. (orig.)

  5. In-pile experimental device for Sirene thermionic converters

    International Nuclear Information System (INIS)

    Bliaux, J.; Durand, J.; Lazare-Chopard, G.

    1969-01-01

    The irradiation device described here, was built for in pile life tests of 100 We SIRENE converters. The nuclear converter is located in a sealed vacuum chamber, which is plugged at the lower end of a coaxial tubing acting as electrical leads. The output power is available on a variable resistive load on the bank of the reactor pool. Thermal, electrical and neutronic parameters of the converter are recorded. Since 1967, two permanent devices allowed five experiments in the swimming pool TRITON (CEN-FAR) and the results, obtained till now, are presented. (authors) [fr

  6. A design study of reactor core optimization for direct nuclear heat-to-electricity conversion in a space power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Hidekazu; Takahashi, Makoto; Shimoda, Hiroshi; Takeoka, Satoshi [Kyoto Univ. (Japan); Nakagawa, Masayuki; Kugo, Teruhiko

    1998-01-01

    To propose a new design concept of a nuclear reactor used in the space, research has been conducted on the conceptual design of a new nuclear reactor on the basis of the following three main concepts: (1) Thermionic generation by thermionic fuel elements (TFE), (2) reactivity control by rotary reflector, and (3) reactor cooling by liquid metal. The outcomes of the research are: (1) A calculation algorithm was derived for obtaining convergent conditions by repeating nuclear characteristic calculation and thermal flow characteristic calculation for the space nuclear reactor. (2) Use of this algorithm and the parametric study established that a space nuclear reactor using 97% enriched uranium nitride as the fuel and lithium as the coolant and having a core with a radius of about 25 cm, a height of about 50 cm and a generation efficiency of about 7% can probably be operated continuously for at least more than ten years at 100 kW only by reactivity control by rotary reflector. (3) A new CAD/CAE system was developed to assist design work to optimize the core characteristics of the space nuclear reactor comprehensively. It is composed of the integrated design support system VINDS using virtual reality and the distributed system WINDS to collaboratively support design work using Internet. (N.H.)

  7. Simulation Study of a Thermionic RF Gun for High Brightness and Short Pulse Beam

    CERN Document Server

    Tanaka, Takumi; Hinode, Fujio; Kawai, Masayuki; Miyamoto, Atsushi; Shinto, Katsuhiro

    2005-01-01

    Characteristics of thermionic RF guns are not understood completely. In particular, measured intense beam emittances extracted from thermionic RF guns do not agree well with simulated values so far. Most of simulation codes solve the equation of electron motion in an intrinsic mode of the RF field calculated by a separated code. The way of such simulation codes is not self-consistent completely. That is probably a major reason for the discrepancy between the experiments and the simulations. One of the other way for a self-consistent simulation codes is to use an FDTD (Finite Difference Time Domain) method. Since the FDTD method can take into account the microwave propagation including the space charge effect and the beam loading self-consistently, we have developed an FDTD code as 3-D Maxwell's equation solver and applied for a study of beam dynamics in a thermionic RF gun. The main purpose of simulaiton study is to obtain overall properties of the beam dynamics at the time. The goal of this simulation study ...

  8. Thermionic combustor application to combined gas and steam turbine power plants

    Science.gov (United States)

    Miskolczy, G.; Wang, C. C.; Lieb, D. P.; Margulies, A. E.; Fusegni, L. J.; Lovell, B. J.

    A design for the insertion of thermionic converters into the wall of a conventional combustor to produce electricity in a topping cycle is described, and a study for applications in gas and steam generators of 70 and 30 MW is evaluated for engineering and economic feasibility. Waste heat from the thermionic elements is used to preheat the combustor air; the heat absorbed by the elements plus further quenching of the exhaust gases with ammonia is projected to reduce NO(x) emissions to acceptable levels. Schematics, flow diagrams, and components of a computer model for cost projections are provided. It was found that temperatures around the emitters must be maintained above 1,600 K, with maximum efficiency and allowable temperature at 1,800 K, while collectors generate maximally at 950 K, with a corresponding work function of 1.5 eV. Cost sensitive studies indicate an installed price of $475/kW for the topping cycle, with improvements in thermionic converter characteristics bringing the cost to $375/kW at a busbar figure of 500 mills/kWh.

  9. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  10. Multimegawatt Space Reactor Safety

    International Nuclear Information System (INIS)

    Stanley, M.L.

    1989-01-01

    The Multimegawatt (MMW) Space Reactor Project supports the Strategic Defense Initiative Office requirement to provide reliable, safe, cost-effective, electrical power in the MMW range. Specifically, power may be used for neutral particle beams, free electron lasers, electromagnetic launchers, and orbital transfer vehicles. This power plant technology may also apply to the electrical power required for other uses such as deep-space probes and planetary exploration. The Multimegawatt Space Reactor Project, the Thermionic Fuel Element Verification Program, and Centaurus Program all support the Multimegawatt Space Nuclear Power Program and form an important part of the US Department of Energy's (DOE's) space and defense power systems activities. A major objective of the MMW project is the development of a reference flight system design that provides the desired levels of public safety, health protection, and special nuclear material (SNM) protection when used during its designated missions. The safety requirements for the MMW project are a hierarchy of requirements that consist of safety requirements/regulations, a safety policy, general safety criteria, safety technical specifications, safety design specifications, and the system design. This paper describes the strategy and philosophy behind the development of the safety requirements imposed upon the MMW concept developers. The safety organization, safety policy, generic safety issues, general safety criteria, and the safety technical specifications are discussed

  11. Status report on nuclear reactors for space electric power

    International Nuclear Information System (INIS)

    Buden, D.

    1978-01-01

    The Los Alamos Scientific Laboratory is studying reactor power plants for space applications in the late 1980s and 1990s. The study is concentrating on high-temperature, compact, fast reactors that can be coupled with various radiation shielding systems and thermoelectric, dynamic, or thermionic electric power conversion systems, depending on the mission. Increased questions have been raised about safety since the COSMOS 954 incident. High orbits (above 400 to 500 nautical miles) have sufficient lifetimes to allow radioactive elements to decay to safe levels. The major proposed applications for satellites with reactors in Earth orbit are in geosynchronous orbit (19,400 nautical miles). In missions at geosynchronous orbit where orbital lifetimes are practically indefinite, the safety considerations are negligible. The potential missions, why reactors are being considered as a prime power candidate, reactor features, and safety considerations are discussed

  12. FASTER Test Reactor Preconceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-31

    The FASTER test reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  13. FASTER test reactor preconceptual design report summary

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, Steven [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-29

    The FASTER reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  14. The Thermionic System Evaluation Test (TSET): Descriptions, limitations, and the involvement of the space nuclear power community

    International Nuclear Information System (INIS)

    Morris, D.B.

    1993-01-01

    Project and test planning for the Thermionic System Evaluation Test (TSET) Project began in August 1990. Since the formalization of the contract agreement two years ago, the TOPAZ-II testing hardware was delivered in May 1992. In the months since the delivery of the test hardware, Russians and Americans working side-by-side installed the equipment and are preparing to begin testing in early 1993. The procurement of the Russian TOPAZ-II unfueled thermionic space nuclear power system (SNP) provides a unique opportunity to understand a complete thermionic system and enhances the possibility for further study of this type of power conversion for space applications. This paper will describe the program and test article, facility and test article limitations, and how the government and industry are encouraged to be involved in the program

  15. Summary of space nuclear reactor power systems, 1983--1992

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  16. Summary of space nuclear reactor power systems, 1983--1992

    International Nuclear Information System (INIS)

    Buden, D.

    1993-01-01

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power

  17. High Efficiency Thermionics (HET-IV) and Converter Advancement (CAP) programs. Final reports

    Energy Technology Data Exchange (ETDEWEB)

    Geller, C.B.; Murray, C.S.; Riley, D.R. [Bettis Atomic Power Lab., West Mifflin, PA (United States); Desplat, J.L.; Hansen, L.K.; Hatch, G.L.; McVey, J.B.; Rasor, N.S. [Rasor Associates, Inc., Sunnyvale, CA (United States)

    1996-04-01

    This report contains the final report of the High Efficiency Thermionics (HET-IV) Program, Attachment A, performed at Rasor Associates, Inc. (RAI); and the final report of the Converter Advancement Program (CAP), performed at the Bettis Atomic Power Laboratory, Attachment B. The phenomenology of cesium-oxygen thermionic converters was elucidated in these programs, and the factors that had prevented the achievement of stable, enhanced cesium-oxygen converter performance for the previous thirty years were identified. Based on these discoveries, cesium-oxygen vapor sources were developed that achieved stable performance with factor-of-two improvements in power density and thermal efficiency, relative to conventional, cesium-only ignited mode thermionic converters. Key achievements of the HET-IV/CAP programs are as follows: a new technique for measuring minute traces of oxygen in cesium atmospheres; the determination of the proper range of oxygen partial pressures for optimum converter performance--10{sup {minus}7} to 10{sup {minus}9} torr; the discovery, and analysis of the cesium-oxygen liquid migration and compositional segregation phenomena; the successful use of capillary forces to contain the migration phenomenon; the use of differential heating to control compositional segregation, and induce vapor circulation; the development of mechanically and chemically stable, porous reservoir structures; the development of precise, in situ oxygen charging methods; stable improvements in emitter performance, up to effective emitter bare work functions of 5.4 eV; stable improvements in barrier index, to value below 1.8 Volts; the development of detailed microscopic models for cesium-oxygen reservoir dynamics and collector work function behavior; and the discovery of new relationships between electrode geometry and Schock Instability.

  18. OBSERVATION OF REPETITION-RATE DEPENDANT EMISSION FROM AN UN-GATED THERMIONIC CATHODE RF GUN

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P. [Fermilab; Sun, Y. [Argonne; Harris, J. R. [AFRL, NM; Lewellen, J. W. [Los Alamos Natl. Lab.

    2016-09-28

    Recent work at Fermilab in collaboration with the Advanced Photon Source and members of other national labs, designed an experiment to study the relationship between the RF repetition rate and the average current per RF pulse. While existing models anticipate a direct relationship between these two parameters we observed an inverse relationship. We believe this is a result of damage to the barium coating on the cathode surface caused by a change in back-bombardment power that is unaccounted for in the existing theories. These observations shed new light on the challenges and fundamental limitations associated with scaling an ungated thermionic cathode RF gun to high average current machines.

  19. Transient and steady-state analyses of an electrically heated Topaz-II Thermionic Fuel Element

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Xue, H.

    1992-01-01

    Transient and steady-state analyses of electrically heated, Thermionic Fuel Elements (TFEs) for Topaz-II space power system are performed. The calculated emitter and collector temperatures, load electric power and conversion efficiency are in good agreement with reported data. In this paper the effects or Cs pressure, thermal power input, and load resistance on the steady-state performance of the TFE are also investigated. In addition, the thermal response of the ZrH moderator during a startup transient and following a change in the thermal power input is examined

  20. Photon-Enhanced Thermionic Emission in Cesiated p-Type and n-Type Silicon

    DEFF Research Database (Denmark)

    Reck, Kasper; Dionigi, Fabio; Hansen, Ole

    2014-01-01

    Photon-enhanced thermionic emission (PETE) is a relatively new concept for high efficiency solar cells that utilize not only the energy of electrons excited across the band gap by photons, as in conventional photovoltaic solar cells, but also the energy usual lost to thermalization of the excited...... to ideal band gap. The work function of silicon is, however, too high for practical PETE implementations. A well-known method for lowering the work function of silicon (and other materials) is to apply approximately a monolayer of cesium to the silicon surface. We present the first measurements of PETE...

  1. Observation of Repetition-Rate Dependent Emission From an Un-Gated Thermionic Cathode Rf Gun

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P.; Sun, Y.; Harris, J.R.; Lewellen, J.W.

    2017-06-02

    Recent work at Fermilab in collaboration with the Advanced Photon Source and members of other national labs, designed an experiment to study the relationship between the RF repetition rate and the average current per RF pulse. While existing models anticipate a direct relationship between these two parameters we observed an inverse relationship. We believe this is a result of damage to the barium coating on the cathode surface caused by a change in back-bombardment power that is unaccounted for in the existing theories. These observations shed new light on the challenges and fundamental limitations associated with scaling an ungated thermionic cathode RF gun to high average current.

  2. Design study on an independently-tunable-cells thermionic RF gun

    International Nuclear Information System (INIS)

    Hama, H.; Tanaka, T.; Hinode, F.; Kawai, M.

    2006-01-01

    Characteristics of a thermionic RF gun have been studied by a 3-D simulation code developed using an FDTD (Finite Difference Time Domain) method as a Maxwell's equations solver. The gun is consists of two independent power feeding cavities, so that we call it independently-tunable-cells (ITC)'-RF gun. The first cell is the cathode cell and the second one is an accelerating cell. The ITC gun can be operated at various modes of different RF-power ratio and phase between two cavities. Simulation study shows a velocity-bunching like effect may be occurred in the gun, so that the short pulse beam from the thermionic RF gun is a better candidate to produce the coherent THz synchrotron radiation. Expected bunch length with a total charge of ∼20 pC (1% energy width from the top energy) is around 200 fs (fwhm). Even the beam energy extracted from the gun is varied by which the input powers are changed, almost same shape of the longitudinal phase space can be produced by tuning the phase. (author)

  3. Analysis of instability growth and collisionless relaxation in thermionic converters using 1-D PIC simulations

    International Nuclear Information System (INIS)

    Kreh, B.B.

    1994-12-01

    This work investigates the role that the beam-plasma instability may play in a thermionic converter. The traditional assumption of collisionally dominated relaxation is questioned, and the beam-plasma instability is proposed as a possible dominant relaxation mechanism. Theory is developed to describe the beam-plasma instability in the cold-plasma approximation, and the theory is tested with two common Particle-in-Cell (PIC) simulation codes. The theory is first confirmed using an unbounded plasma PIC simulation employing periodic boundary conditions, ES1. The theoretically predicted growth rates are on the order of the plasma frequencies, and ES1 simulations verify these predictions within the order of 1%. For typical conditions encountered in thermionic converters, the resulting growth period is on the order of 7 x 10 -11 seconds. The bounded plasma simulation PDP1 was used to evaluate the influence of finite geometry and the electrode boundaries. For this bounded plasma, a two-stream interaction was supported and resulting in nearly complete thermalization in approximately 5 x 10 -10 seconds. Since the electron-electron collision rate of 10 9 Hz and the electron atom collision rate of 10 7 Hz are significantly slower than the rate of development of these instabilities, the instabilities appear to be an important relaxation mechanism

  4. Thermionic Properties of Carbon Based Nanomaterials Produced by Microhollow Cathode PECVD

    Science.gov (United States)

    Haase, John R.; Wolinksy, Jason J.; Bailey, Paul S.; George, Jeffrey A.; Go, David B.

    2015-01-01

    Thermionic emission is the process in which materials at sufficiently high temperature spontaneously emit electrons. This process occurs when electrons in a material gain sufficient thermal energy from heating to overcome the material's potential barrier, referred to as the work function. For most bulk materials very high temperatures (greater than 1500 K) are needed to produce appreciable emission. Carbon-based nanomaterials have shown significant promise as emission materials because of their low work functions, nanoscale geometry, and negative electron affinity. One method of producing these materials is through the process known as microhollow cathode PECVD. In a microhollow cathode plasma, high energy electrons oscillate at very high energies through the Pendel effect. These high energy electrons create numerous radical species and the technique has been shown to be an effective method of growing carbon based nanomaterials. In this work, we explore the thermionic emission properties of carbon based nanomaterials produced by microhollow cathode PECVD under a variety of synthesis conditions. Initial studies demonstrate measureable current at low temperatures (approximately 800 K) and work functions (approximately 3.3 eV) for these materials.

  5. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine

    Directory of Open Access Journals (Sweden)

    Kalomba Mboyi

    2015-04-01

    Full Text Available A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the emitting material with the radioisotope decay heat and by powering the different valves of the plasma rocket engine with the same radioisotope decay heat using a radioisotope thermoelectric generator. This rocket engine is then benchmarked against a 1 N hydrazine thruster configuration operated on one of the Pleiades-HR-1 constellation spacecraft. A maximal specific impulse and power saving of respectively 529 s and 32% are achieved with helium as propellant. Its advantages are its power saving capability, high specific impulses and simultaneous ease of storage and restart. It can however be extremely voluminous and potentially hazardous. The Kabila rocket is found to bring great benefits to the existing spacecraft and further research should optimize its geometric characteristics and investigate the physical principals of its operation.

  6. Reactor flux calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lhuillier, D. [Commissariat à l' Énergie Atomique et aux Énergies Alternatives, Centre de Saclay, IRFU/SPhN, 91191 Gif-sur-Yvette (France)

    2013-02-15

    The status of the prediction of reactor anti-neutrino spectra is presented. The most accurate method is still the conversion of total β spectra of fissionning isotopes as measured at research reactors. Recent re-evaluations of the conversion process led to an increased predicted flux by few percent and were at the origin of the so-called reactor anomaly. The up to date predictions are presented with their main sources of error. Perspectives are given on the complementary ab-initio predictions and upcoming experimental cross-checks of the predicted spectrum shape.

  7. Maximization of burning and/or transmutation (B/T) capacity in coupled spectrum reactor (CSR) by fuel and core adjustment

    International Nuclear Information System (INIS)

    Aziz, F.; Kitamoto, Asashi.

    1996-01-01

    A conceptual design of burning and/or transmutation (B/T) reactor, based on a modified conventional 1150 MWe-PWR system, consisted of two core regions for thermal and fast neutrons, respectively, was proposed herein for the treatments of minor actinides (MA). In the outer region 237 Np, 241 Am, and 243 Am burned by thermal neutrons, while in the inner region 244 Cm was burned mainly by fast neutrons. The geometry of B/T fuel in the outer region was left the same with that of PWR, while in the inner region the B/T fuel was arranged in a tight-lattice geometry that allowed a higher fuel to coolant volume ratio. The maximization of B/T capacity in CSR were done by, first, increasing the radius of the inner region. Second, reducing the coolant to fuel volume ratio, and third, choosing a suitable B/T fuel type. The result of the calculations showed that the equilibrium of main isotopes in CSR can be achieved after about 5 recycle stages. This study also showed that the CSR can burn and transmute up to 808 kg of MA in a single reactor core effectively and safely. (author)

  8. Americium-241 integral radiative capture cross section in over-moderated neutron spectrum from pile oscillator measurements in the Minerve reactor

    Directory of Open Access Journals (Sweden)

    Geslot Benoit

    2017-01-01

    Full Text Available An experimental program, called AMSTRAMGRAM, was recently conducted in the Minerve low power reactor operated by CEA Cadarache within the frame of the CHANDA initiative (Solving CHAllenges in Nuclear Data. Its aim was to measure the integral capture cross section of 241Am in the thermal domain. Motivation of this work is driven by large differences in this actinide thermal point reported by major nuclear data libraries. The AMSTRAMGRAM experiment, that made use of well characterized EC-JRC americium samples, was based on the oscillation technique commonly implemented in the Minerve reactor. First results are presented and discussed in this article. A preliminary calculation scheme was used to compare measured and calculated results. It is shown that this work confirms a bias previously observed with JEFF-3.1.1 (C/E-1 = −10.5 ± 2%. On the opposite, the experiment is in close agreement with 241Am thermal point reported in JEFF-3.2 (C/E-1 = 0.5 ± 2%.

  9. Liquid metal versus gas cooled reactor concepts for a turbo electric powered space vehicle

    International Nuclear Information System (INIS)

    Carre, F.; Proust, E.; Schwartz, J.P.

    1985-01-01

    Recent CNES/CEA prospective studies of an orbit transfer vehicule to be launched by ARIANE V, emphasize the advantage of the Brayton cycle over the thermionics and thermoelectricity, in minimizing the total mass of 100 to 300 kWsub(e) power systems under the constraint specific to ARIANE of a radiator area limited to 95 m 2 . The review of candidate reactor concepts for this application, finally recommends both liquid metal and gas cooled reactors, for their satisfactory adaptation to a reference Brayton cycle and for the available experience from the terrestrial operation of comparable systems

  10. Thermionic RF Gun and Linac Pre-Injector for SPEAR3

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.

    2003-08-11

    Preparations are underway to upgrade the Spear2 to the third generation light source. Installation of all the subsystems will start in April 2003. Although the Spear3 RF system is entirely different from the present form, the pre-injector gun/linac and booster synchrotron will remain the same even after the upgrade. The thermionic rf gun reliability and stability are to be improved to inject 500 mA of stored current in shortest possible time. When a top-up mode is enforced, where the stored beam decay is replenished to maintain the constant current and thus constant light intensity, the Spear3 will take injection every few minutes. In that case the gun, linac, and booster must stay on at all times. In this report we will describe some improvements made on the gun and linac in the recent past, as well as their present performance and future upgrade to be made.

  11. Modeling a short dc discharge with thermionic cathode and auxiliary anode

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, E. [St. Petersburg State University, St. Petersburg 199034 (Russian Federation); University ITMO, Kronverkskiy pr. 49, St. Petersburg 197101 (Russian Federation); Demidov, V. I. [St. Petersburg State University, St. Petersburg 199034 (Russian Federation); West Virginia University, Morgantown, West Virginia 26506 (United States); Kaganovich, I. D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Koepke, M. E. [West Virginia University, Morgantown, West Virginia 26506 (United States); Kudryavtsev, A. A. [St. Petersburg State University, St. Petersburg 199034 (Russian Federation)

    2013-10-15

    A short dc discharge with a thermionic cathode can be used as a current and voltage stabilizer, but is subject to current oscillation. If instead of one anode two anodes are used, the current oscillations can be reduced. We have developed a kinetic model of such a discharge with two anodes, where the primary anode has a small opening for passing a fraction of the discharge current to an auxiliary anode. The model demonstrates that the current-voltage relationship of the discharge with two anodes is characterized everywhere by positive slope, i.e., positive differential resistance. Therefore, the discharge with two anodes is expected to be stable to the spontaneous oscillation in current that is induced by negative differential resistance. As a result, such a discharge can be used in an engineering application that requires stable plasma, such as a current and voltage stabilizer.

  12. Thermionic cooling devices based on resonant-tunneling AlGaAs/GaAs heterostructure

    Science.gov (United States)

    Bescond, M.; Logoteta, D.; Michelini, F.; Cavassilas, N.; Yan, T.; Yangui, A.; Lannoo, M.; Hirakawa, K.

    2018-02-01

    We study by means of full quantum simulations the operating principle and performance of a semiconductor heterostructure refrigerator combining resonant tunneling filtering and thermionic emission. Our model takes into account the coupling between the electric and thermal currents by self-consistently solving the transport equations within the non-equilibrium Green’s function framework and the heat equation. We show that the device can achieve relatively high cooling power values, while in the considered implementation, the maximum lattice temperature drop is severely limited by the thermal conductivity of the constituting materials. In such an out-of-equilibrium structure, we then emphasize the significant deviation of the phonon temperature from its electronic counterpart which can vary over several hundred Kelvin. The interplay between those two temperatures and the impact on the electrochemical potential is also discussed. Finally, viable options toward an optimization of the device are proposed.

  13. Characterization of Pb-Doped GaN Thin Films Grown by Thermionic Vacuum Arc

    Science.gov (United States)

    Özen, Soner; Pat, Suat; Korkmaz, Şadan

    2018-03-01

    Undoped and lead (Pb)-doped gallium nitride (GaN) thin films have been deposited by a thermionic vacuum arc (TVA) method. Glass and polyethylene terephthalate were selected as optically transparent substrates. The structural, optical, morphological, and electrical properties of the deposited thin films were investigated. These physical properties were interpreted by comparison with related analysis methods. The crystalline structure of the deposited GaN thin films was hexagonal wurtzite. The optical bandgap energy of the GaN and Pb-doped GaN thin films was found to be 3.45 eV and 3.47 eV, respectively. The surface properties of the deposited thin films were imaged using atomic force microscopy and field-emission scanning electron microscopy, revealing a nanostructured, homogeneous, and granular surface structure. These results confirm that the TVA method is an alternative layer deposition system for Pb-doped GaN thin films.

  14. Generation of multi-branch beam with thermionic gun for the Japan linear collider

    International Nuclear Information System (INIS)

    Naito, T.; Akemoto, M.; Matsumonto, H.; Urakawa, J.; Yoshioka, M.; Akiyama, H.

    1992-01-01

    We report on the development of a thermionic gun that is capable of producing multi-bunch beam to be used at the KEK Accelerator Test Facility for the Japan Linear Collider project. Two types of grid pulse generators have been developed. One is an avalanche pulse generator. A Y-646E cathode was successfully operated to generate double-bunch beam with a pulse width shorter than 700 ps, bunch spacing 1.4 ns, and a peak current 4.3 A. The other grid pulse generator is a fast ECL circuit with an RF power amplifier. Generation of 20-pulse trains with 2.1 ns time spacing has been demonstrated. (Author) 4 refs., 6 figs

  15. Current transmission and nonlinear effects in un-gated thermionic cathode RF guns

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P. [Fermilab; Harris, J. R. [Air Force Weapons Lab

    2017-05-03

    Un-gated thermionic cathode RF guns are well known as a robust source of electrons for many accelerator applications. These sources are in principle scalable to high currents without degradation of the transverse emittance due to control grids but they are also known for being limited by back-bombardment. While back-bombardment presents a significant limitation, there is still a lack of general understanding on how emission over the whole RF period will affect the nature of the beams produced from these guns. In order to improve our understanding of how these guns can be used in general we develop analytical models that predict the transmission efficiency as a function of the design parameters, study how bunch compression and emission enhancement caused by Schottky barrier lowering affect the output current profile in the gun, and study the onset of space-charge limited effects and the resultant virtual cathode formation leading to a modulation in the output current distribution.

  16. Nuclear reactors

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-10-01

    After some remarks on the nuclear fuel, on the chain reaction control, on fuel loading and unloading, this article proposes descriptions of the design, principles and operations of different types of nuclear reactors as well as comments on their presence and use in different countries: pressurized water reactors (design of the primary and secondary circuits, volume and chemistry control, backup injection circuits), boiling water reactors, heavy water reactors, graphite and boiling water reactors, graphite-gas reactors, fast breeder reactors, and fourth generation reactors (definition, fast breeding). For these last ones, six concepts are presented: sodium-cooled fast reactor, lead-cooled fast reactor, gas-cooled fast reactor, high temperature gas-cooled reactor, supercritical water-cooled reactor, and molten salt reactor

  17. Design study of a low-emittance high-repetition rate thermionic rf gun

    Science.gov (United States)

    Opanasenko, A.; Mytrochenko, V.; Zhaunerchyk, V.; Goryashko, V. A.

    2017-05-01

    We propose a novel gridless continuous-wave radiofrequency (rf) thermionic gun capable of generating nC ns electron bunches with a rms normalized slice emittance close to the thermal level of 0.3 mm mrad. In order to gate the electron emission, an externally heated thermionic cathode is installed into a stripline-loop conductor. Two high-voltage pulses propagating towards each other in the stripline-loop overlap in the cathode region and create a quasielectrostatic field gating the electron emission. The repetition rate of pulses is variable and can reach up to one MHz with modern solid-state pulsers. The stripline attached to a rf gun cavity wall has with the wall a common aperture that allows the electrons to be injected into the rf cavity for further acceleration. Thanks to this innovative gridless design, simulations suggest that the bunch emittance is approximately at the thermal level after the bunch injection into the cavity provided that the geometry of the cathode and aperture are properly designed. Specifically, a concave cathode is adopted to imprint an Ƨ-shaped distribution onto the beam transverse phase-space to compensate for an S-shaped beam distribution created by the spherical aberration of the aperture-cavity region. In order to compensate for the energy spread caused by rf fields of the rf gun cavity, a 3rd harmonic cavity is used. A detailed study of the electrodynamics of the stripline and rf gun cavity as well as the beam optics and bunch dynamics are presented.

  18. Flame exposure time on Langmuir probe degradation, ion density, and thermionic emission for flame temperature

    Science.gov (United States)

    Doyle, S. J.; Salvador, P. R.; Xu, K. G.

    2017-11-01

    The paper examines the effect of exposure time of Langmuir probes in an atmospheric premixed methane-air flame. The effects of probe size and material composition on current measurements were investigated, with molybdenum and tungsten probe tips ranging in diameter from 0.0508 to 0.1651 mm. Repeated prolonged exposures to the flame, with five runs of 60 s, resulted in gradual probe degradations (-6% to -62% area loss) which affected the measurements. Due to long flame exposures, two ion saturation currents were observed, resulting in significantly different ion densities ranging from 1.16 × 1016 to 2.71 × 1019 m-3. The difference between the saturation currents is caused by thermionic emissions from the probe tip. As thermionic emission is temperature dependent, the flame temperature could thus be estimated from the change in current. The flame temperatures calculated from the difference in saturation currents (1734-1887 K) were compared to those from a conventional thermocouple (1580-1908 K). Temperature measurements obtained from tungsten probes placed in rich flames yielded the highest percent error (9.66%-18.70%) due to smaller emission current densities at lower temperatures. The molybdenum probe yielded an accurate temperature value with only 1.29% error. Molybdenum also demonstrated very low probe degradation in comparison to the tungsten probe tips (area reductions of 6% vs. 58%, respectively). The results also show that very little exposure time (<5 s) is needed to obtain a valid ion density measurement and that prolonged flame exposures can yield the flame temperature but also risks damage to the Langmuir probe tip.

  19. Nuclear reactors for space electric power

    International Nuclear Information System (INIS)

    Buden, D.

    1978-06-01

    The Los Alamos Scientific Laboratory is studying reactor power plants for space applications in the late 1980s and 1990s. The study is concentrating on high-temperature, compact, fast reactors that can be coupled with various radiation shielding systems and thermoelectric, dynamic, or thermionic electric power conversion systems, depending on the mission. Lifetimes of 7 to 10 yr at full power, at converter operating temperatures of 1275 to 1675 0 K, are being studied. The systems are being designed such that no single-failure modes exist that will cause a complete loss of power. In fact, to meet the long lifetimes, highly redundant design features are being emphasized. Questions have been raised about safety since the COSMOS 954 incident. ''Fail-safe'' means to prevent exposure of the population to radioactive material, meeting the environmental guidelines established by the U.S. Government have been and continue to be a necessary requirement for any space reactor program. The major safety feature to prevent prelaunch and launch radioactive material hazards is not operating the reactor before achieving the prescribed orbit. Design features in the reactor ensure that accidental criticality cannot occur. High orbits (above 400 to 500 nautical miles) have sufficient lifetimes to allow radioactive elements to decay to safe levels. The major proposed applications for satellites with reactors in Earth orbit are in geosynchronous orbit (19,400 nautical miles). In missions at geosynchronous orbit, where orbital lifetimes are practically indefinite, the safety considerations are negligible. Orbits below 400 to 500 nautical miles are the ones where a safety issue is involved in case of satellite malfunction. The potential missions, the question of why reactors are being considered as a prime power candidate, reactor features, and safety considerations will be discussed

  20. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  1. MgB{sub 2} superconducting thin films sequentially fabricated using DC magnetron sputtering and thermionic vacuum arc method

    Energy Technology Data Exchange (ETDEWEB)

    Okur, S. [Physics Department, Izmir Institute of Technology (Turkey)], E-mail: salihokur@iyte.edu.tr; Kalkanci, M. [Material Science Program, Izmir Institute of Technology (Turkey); Pat, S.; Ekem, N.; Akan, T. [Physics Department, Osmangazi University (Turkey); Balbag, Z. [Department of Science and Mathematics Education, Osmangazi University (Turkey); Musa, G. [Plasma and Radiation, National Institute for Physics of Laser (Romania); Tanoglu, M. [Mechanical Engineering Department, Izmir Institute of Technology (Turkey)

    2007-11-01

    In this work, we discuss fabrication and characterization of MgB{sub 2} thin films obtained by sequential deposition and annealing of sandwich like Mg/B/Mg thin films on glass substrates. Mg and B films were prepared using DC magnetron sputtering and thermionic vacuum arc techniques, respectively. The MgB{sub 2} thin films showed superconducting critical transition at 33 K after annealing at 650 deg. C.

  2. Thermal conductivity of the electrode gap of a thermionic converter, filled with inert gases, at low pressures

    Science.gov (United States)

    Modin, V. A.; Nikolaev, Iu. V.

    1986-05-01

    Experimental data are presented on the thermal conductivity of the electrode gap of a thermionic converter filled with He, Ar, and Xe in the pressure range 40-550 Pa. The need to account for the coefficients of thermal accommodation of the emitter - inert-gas - collector system in this range is shown. The accommodation coefficients for different temperature regimes are measured and expressions are obtained for calculating the heat flux transported by the inert gases into the electrode gap.

  3. Thermal conductivity of the electrode gap of a thermionic converter, filled with inert gases, at low pressures

    International Nuclear Information System (INIS)

    Modin, V.A.; Nikolaev, Y.V.

    1985-01-01

    Experimental data is presented on the thermal conductivity of the electrode gap of a thermionic converter filled with He, Ar, and Xe in the pressure range 40--550 Pa. The need to account for the coefficients of thermal accommodation of the emitter-inert-gas-collector system in this range is shown. The accommodation coefficients for different temperature regimes are measured and expressions are obtained to calculate the heat flux transported by the inert gases in the electrode gap

  4. An Independently Tunable Cells Thermionic RF Gun (ITC-RF GUN) for Sub-Picosecond Short Pulse

    CERN Document Server

    Hama, H; Kawai, M; Tanaka, T

    2005-01-01

    As a result of simulation study so far, a specific feature has been found in the longitudinal dynamics in thermionic RF guns. At the beginning of beam extraction, the head of the electrons from a cathode is followed immediately by the electrons just behind, which is extracted by the higher electric field than that at the head of the beam train. Thus later electrons would get velocity faster than the head of the electrons, so that the electrons are expected to concentrates onto the head of the beam under certain conditions such as the gun geometry and the strength of the RF field. In order to investigate this velocity-bunching like effect, a prototype thermionic RF gun was designed and its characteristics have been studied by a 3-D simulation code based on a FDTD (finite difference time demain) method. The gun is consists of two independentlly power feeding S-band RF cavities, and can be operated at modes with different power ratio and phase between two RFs. This paper report the thermionic RF gun is expected ...

  5. Reactor BR2. Introduction

    International Nuclear Information System (INIS)

    Gubel, P.

    2002-01-01

    The BR2 materials testing reactor is one of SCK-CEN's most important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. In 2001, the reactor was operated for a total of 123 days at a mean power of 59 MW in order to satisfy the irradiation conditions of the internal and external programmes using mainly the CALLISTO PWR loop. The mean consumption of fresh fuel elements was 5.26 per 1000 MWd. Main achievements in 2001 included the development of a three-dimensional full-scale model of the BR2 reactor for simulation and prediction of irradiation conditions for various experiments; the construction of the FUTURE-MT device designed for the irradiation of fuel plates under representative conditions of geometry, neutron spectrum, heat flux and thermal-hydraulic conditions and the development of in-pile instrumentation and a data acquisition system

  6. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2002-04-01

    The BR2 materials testing reactor is one of SCK-CEN's most important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. In 2001, the reactor was operated for a total of 123 days at a mean power of 59 MW in order to satisfy the irradiation conditions of the internal and external programmes using mainly the CALLISTO PWR loop. The mean consumption of fresh fuel elements was 5.26 per 1000 MWd. Main achievements in 2001 included the development of a three-dimensional full-scale model of the BR2 reactor for simulation and prediction of irradiation conditions for various experiments; the construction of the FUTURE-MT device designed for the irradiation of fuel plates under representative conditions of geometry, neutron spectrum, heat flux and thermal-hydraulic conditions and the development of in-pile instrumentation and a data acquisition system.

  7. Development of supercritical water reactors in Russia and abroad

    International Nuclear Information System (INIS)

    Glebov, A.P.; Klushin, A.V.

    2014-01-01

    The results of Russian and foreign studies on the water-cooled high critical parameters reactors are analyzed. Developments on this subject are conducted in more than 15 countries. The advantages of WWER- SCP and characteristics of experimental reactor of WWER-SCP-30 are discussed. It is noted that priority task is to develop a reactor with thermal neutron spectrum with a subsequent transition to the reactor with a fast neutron spectrum [ru

  8. Selection of power plant elements for future reactor space electric power systems

    International Nuclear Information System (INIS)

    Buden, D.; Bennett, G.A.; Copper, K.

    1979-09-01

    Various types of reactor designs, electric power conversion equipment, and reject-heat systems to be used in nuclear reactor power plants for future space missions were studied. The designs included gas-cooled, liquid-cooled, and heat-pipe reactors. For the power converters, passive types such as thermoelectric and thermionic converters and dynamic types such as Brayton, potassium Rankine, and Stirling cycles were considered. For the radiators, heat pipes for transfer and radiating surface, pumped fluid for heat transfer with fins as the radiating surface, and pumped fluid for heat transfer with heat pipes as the radiating surface were considered. After careful consideration of weights, sizes, reliabilities, safety, and development cost and time, a heat-pipe reactor design, thermoelectric converters, and a heat-pipe radiator for an experimental program were selected

  9. Selection of power plant elements for future reactor space electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Bennett, G.A.; Copper, K.

    1979-09-01

    Various types of reactor designs, electric power conversion equipment, and reject-heat systems to be used in nuclear reactor power plants for future space missions were studied. The designs included gas-cooled, liquid-cooled, and heat-pipe reactors. For the power converters, passive types such as thermoelectric and thermionic converters and dynamic types such as Brayton, potassium Rankine, and Stirling cycles were considered. For the radiators, heat pipes for transfer and radiating surface, pumped fluid for heat transfer with fins as the radiating surface, and pumped fluid for heat transfer with heat pipes as the radiating surface were considered. After careful consideration of weights, sizes, reliabilities, safety, and development cost and time, a heat-pipe reactor design, thermoelectric converters, and a heat-pipe radiator for an experimental program were selected.

  10. Surface properties of ceramic/metal composite materials for thermionic converter applications

    International Nuclear Information System (INIS)

    Davis, P.R.; Bozack, M.J.; Swanson, L.W.

    1983-01-01

    Ceramic/metal composite electrode materials are of interest for thermionic energy conversion (TEC) applications for several reasons. These materials consist of submicron metal fibers or islands in an oxide matrix and therefore provide a basis for fabricating finely structured electrodes, with projecting or recessed metallic regions for more efficient electron emission or collection. Furthermore, evaporation and surface diffusion of matrix oxides may provide oxygen enhancement of cesium adsorption and work function lowering at both the collecting and emitting electrode surfaces of the TEC. Finally, the high work function oxide matrix or oxide-metal interfaces may provide efficient surface ionization of cesium for space-charge reduction in the device. The authors are investigating two types of ceramic/metal composite materials. One type is a directionally solidified eutectic consisting of a bulk oxide matrix such as UO 2 or stabilized ZrO 2 with parallel metal fibers (W) running through the oxide being exposed at the surface by cutting perpendicular to the fiber direction. The second type of material, called a surface eutectic, consists of a refractory substrate (Mo) with a thin layer of deposited and segregated material (Mo-Cr 2 O 3 -A1 2 O 3 ) on the surface. The final configuration of this layer is an oxide matrix with metallic islands scattered throughout

  11. Cross-plane Thermoelectric and Thermionic Transport across Au/h-BN/Graphene Heterostructures.

    Science.gov (United States)

    Poudel, Nirakar; Liang, Shi-Jun; Choi, David; Hou, Bingya; Shen, Lang; Shi, Haotian; Ang, Lay Kee; Shi, Li; Cronin, Stephen

    2017-10-26

    The thermoelectric voltage generated at an atomically abrupt interface has not been studied exclusively because of the lack of established measurement tools and techniques. Atomically thin 2D materials provide an excellent platform for studying the thermoelectric transport at these interfaces. Here, we report a novel technique and device structure to probe the thermoelectric transport across Au/h-BN/graphene heterostructures. An indium tin oxide (ITO) transparent electrical heater is patterned on top of this heterostructure, enabling Raman spectroscopy and thermometry to be obtained from the graphene top electrode in situ under device operating conditions. Here, an AC voltage V(ω) is applied to the ITO heater and the thermoelectric voltage across the Au/h-BN/graphene heterostructure is measured at 2ω using a lock-in amplifier. We report the Seebeck coefficient for our thermoelectric structure to be -215 μV/K. The Au/graphene/h-BN heterostructures enable us to explore thermoelectric and thermal transport on nanometer length scales in a regime of extremely short length scales. The thermoelectric voltage generated at the graphene/h-BN interface is due to thermionic emission rather than bulk diffusive transport. As such, this should be thought of as an interfacial Seebeck coefficient rather than a Seebeck coefficient of the constituent materials.

  12. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    International Nuclear Information System (INIS)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-01-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012 © . RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance

  13. Development of a novel thermionic RF electron gun applied on a compact THz-FEL facility

    Science.gov (United States)

    Hu, T. N.; Pei, Y. J.; Qin, B.; Liu, K. F.; Feng, G. Y.

    2018-04-01

    The current requirements from civil and commercial applications lead to the development of compact free-electron laser (FEL)-based terahertz (THz) radiation sources. A picosecond electron gun plays an important role in an FEL-THz facility and attracts significant attention, as machine performance is very sensitive to initial conditions. A novel thermionic gun with an external cathode (EC) and two independently tunable cavities (ITCs) has been found to be a promising alternative to conventional electron sources due to its remarkable characteristics, and correspondingly an FEL injector can achieve a balance between a compact layout and high brightness benefitting from the velocity bunching properties and RF focusing effects in the EC-ITC gun. Nevertheless, the EC-ITC gun has not been extensively examined as part of the FEL injector in the past years. In this regard, to fill this gap, a development focusing on the experimental setup of an FEL injector based on an EC-ITC gun is described in detail. Before assembly, dynamic beam simulations were performed to investigate the optimal mounting position for the Linac associated with the focusing coils, and a suitable radio-frequency (RF) system was established based on a power coupling design and allocation. The testing bench proved to be fully functional through basic experiments using typical diagnostic approaches for estimating primary parameters. Associated with dynamic beam calculations, a performance evaluation for an EC-ITC gun was established while providing indirect testing results for an FEL injector.

  14. Development of a thermionic magnicon amplifier at 11.4 GHz

    International Nuclear Information System (INIS)

    Gold, S.H.; Hafizi, B.; Fliflet, A.W.; Kinkead, A.K.; True, R.

    1997-01-01

    The magnicon is a scanning-beam microwave amplifier tube that is being developed as an rf source for the proposed TeV Next Linear Collider. In it, a solid electron beam is spun up to high transverse momentum in a series of deflection cavities containing synchronously rotating TM modes, and then spun down again in an output cavity whose mode is synchronous with that of the deflection cavities. A recent magnicon experiment at NRL, using a ∼ 650 kV, 225 A, 5.5-mm-diam. electron beam produced from a cold cathode driven by a single-shot Marx generator, demonstrated 14 MW (±3 dB) at 11.12 GHz with 105 efficiency in the synchronous magnicon mode, but was limited by plasma loading in the deflection cavities to a regime in which the last cavity of the deflection system (the penultimate cavity) was unstable. A new 11.4 GHz rep-rated thermionic magnicon experiment is being assembled, using an advanced ultra-high-convergence electron gun driven by a 10 Hz, 1.5 microsecond modulator top produce a 500 kV, 210 A, 2-mm diameter electron beam. The magnicon circuit has been optimized for minimum surface rf fields and maximum efficiency, and will be engineered for high temperature bakeout and high vacuum operation. This experiment should begin operation in the Summer of 1997. The predicted power is 60 MW at ∼ 60% efficiency

  15. A flat-cathode thermionic injector for the PHERMEX Radiographic Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kauppila, T.; Builta, L.; Burns, M.; Gregory, W.; Honaberger, D.; Watson, S. (Los Alamos National Lab., NM (United States)); Hughes, T. (Mission Research Corp., Albuquerque, NM (United States))

    1993-01-01

    The PHERMEX (Pulsed High-Energy Radiographic Machine Emitting X-rays) standing-wave linear accelerator is a high-current electron beam generator used for flash-radiography. An improved electron gun has been designed employing a flat-thermionic cathode to replace the existing Pierce-geometry gun. The flat cathode yields increased current with the same applied voltage and cathode area as the Pierce gun. The ISIS code simulations indicate a beam current of 1.5 kA at 600 kV. The new geometry also reduces the probability for high voltage breakdown in the A-K gap. A reentrant magnet captures the expanding electron beam and a bucking coil nulls cathode-tinge field. A third coil is used to optimize the extraction field profile and reduce the effect of nonlinear space charge on the beam emittance. Time-resolved measurements of beam current and voltage have been made. In addition, a streak camera was used to measure beam emittance and spatial profile. Comparisons of measurements with simulations are presented.

  16. A flat-cathode thermionic injector for the PHERMEX Radiographic Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kauppila, T.; Builta, L.; Burns, M.; Gregory, W.; Honaberger, D.; Watson, S. [Los Alamos National Lab., NM (United States); Hughes, T. [Mission Research Corp., Albuquerque, NM (United States)

    1993-06-01

    The PHERMEX (Pulsed High-Energy Radiographic Machine Emitting X-rays) standing-wave linear accelerator is a high-current electron beam generator used for flash-radiography. An improved electron gun has been designed employing a flat-thermionic cathode to replace the existing Pierce-geometry gun. The flat cathode yields increased current with the same applied voltage and cathode area as the Pierce gun. The ISIS code simulations indicate a beam current of 1.5 kA at 600 kV. The new geometry also reduces the probability for high voltage breakdown in the A-K gap. A reentrant magnet captures the expanding electron beam and a bucking coil nulls cathode-tinge field. A third coil is used to optimize the extraction field profile and reduce the effect of nonlinear space charge on the beam emittance. Time-resolved measurements of beam current and voltage have been made. In addition, a streak camera was used to measure beam emittance and spatial profile. Comparisons of measurements with simulations are presented.

  17. FFTF and CRBRP reactor vessels

    International Nuclear Information System (INIS)

    Morgan, R.E.

    1977-01-01

    The Fast Flux Test Facility (FFTF) reactor vessel and the Clinch River Breeder Reactor Plant (CRBRP) reactor vessel each serve to enclose a fast spectrum reactor core, contain the sodium coolant, and provide support and positioning for the closure head and internal structure. Each vessel is located in its reactor cavity and is protected by a guard vessel which would ensure continued decay heat removal capability should a major system leak develop. Although the two plants have significantly different thermal power ratings, 400 megawatts for FFTF and 975 megawatts for CRBRP, the two reactor vessels are comparable in size, the CRBRP vessel being approximately 28% longer than the FFTF vessel. The FFTF vessel diameter was controlled by the space required for the three individual In-Vessel Handling Machines and Instrument Trees. Utilization of the triple rotating plug scheme for CRBRP refueling enables packaging of the larger CRBRP core in a vessel the same diameter as the FFTF vessel

  18. Thorium utilisation in thermal reactors

    International Nuclear Information System (INIS)

    Balakrishnan, K.

    1997-01-01

    It is now more or less accepted that the best way to use thorium is in thermal reactors. This is due to the fact that U233 is a good material in the thermal spectrum. Studies of different thorium cycles in various reactor concepts had been carried out in the early days of nuclear power. After three decades of neglect, the world is once again looking at thorium with some interest. We in India have been studying thorium cycles in most of the existing thermal reactor concepts, with greater emphasis on heavy water reactors. In this paper, we report some of the work done in India on different thorium cycles in the Indian pressurized heavy water reactor (PHWR), and also give a description of the design of the advanced heavy water reactor (AHWR). (author). 1 ref., 2 tabs., 5 figs

  19. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  20. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  1. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  2. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  3. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  4. Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode.

    Science.gov (United States)

    Kumar, Ashutosh; Kashid, Ranjit; Ghosh, Arindam; Kumar, Vikram; Singh, Rajendra

    2016-03-01

    Temperature-dependent electrical transport characteristics of exfoliated graphene/GaN Schottky diodes are investigated and compared with conventional Ni/GaN Schottky diodes. The ideality factor of graphene/GaN and Ni/GaN diodes are measured to be 1.33 and 1.51, respectively, which is suggestive of comparatively higher thermionic emission current in graphene/GaN diode. The barrier height values for graphene/GaN diode obtained using thermionic emission model and Richardson plots are found to be 0.60 and 0.72 eV, respectively, which are higher than predicted barrier height ∼0.40 eV as per the Schottky-Mott model. The higher barrier height is attributed to hole doping of graphene due to graphene-Au interaction which shifts the Fermi level in graphene by ∼0.3 eV. The magnitude of flicker noise of graphene/GaN Schottky diode increases up to 175 K followed by its decrease at higher temperatures. This indicates that diffusion currents and barrier inhomogeneities dominate the electronic transport at lower and higher temperatures, respectively. The exfoliated graphene/GaN diode is found to have lower level of barrier inhomogeneities than conventional Ni/GaN diode, as well as earlier reported graphene/GaN diode fabricated using chemical vapor deposited graphene. The lesser barrier inhomogeneities in graphene/GaN diode results in lower flicker noise by 2 orders of magnitude as compared to Ni/GaN diode. Enhanced thermionic emission current, lower level of inhomogeneities, and reduced flicker noise suggests that graphene-GaN Schottky diodes may have the underlying trend for replacing metal-GaN Schottky diodes.

  5. The resonance absorption controlled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Caro, R.

    1977-07-01

    In this report a new method of reactor control based on tho isotopic moderator composition variation is studied, taking as a reference a D{sub 2}O/H{sub 2}O system. With this method an spectacular increment in the burn-up degree and a sensible reduction of the conventional control system is obtained. An important part of this work has been the detailed analysis of the parameters affecting the neutron spectrum in a heterogeneous reactor. (Author) 50 refs.

  6. The resonance absorption controlled reactor

    International Nuclear Information System (INIS)

    Caro, R.

    1977-01-01

    In this report a new method of reactor control based on tho isotopic moderator composition variation is studied, taking as a reference a D 2 O/H 2 O system. With this method an spectacular increment in the burn-up degree and a sensible reduction of the conventional control system is obtained. An important part of this work has been the detailed analysis of the parameters affecting the neutron spectrum in a heterogeneous reactor. (Author) 50 refs

  7. GaN thin film deposition on glass and PET substrates by thermionic vacuum arc (TVA)

    Energy Technology Data Exchange (ETDEWEB)

    Pat, Suat, E-mail: suatpat@ogu.edu.tr [Eskisehir Osmangazi University, Physics Department, 26480 (Turkey); Korkmaz, Şadan; Özen, Soner [Eskisehir Osmangazi University, Physics Department, 26480 (Turkey); Şenay, Volkan [Bayburt University, Primary Science Education Department, 69000 (Turkey)

    2015-06-01

    In this paper, GaN thin film production was realized by thermionic vacuum arc (TVA), a plasma deposition technique, for the first time. We present a new deposition mechanism for GaN thin films with a very short production time. Microstructure properties of samples were analyzed by X-ray diffractometry. The peak at 2θ = 72.88° corresponding to GaN (0004) was detected in XRD spectra. The surface morphology of the deposited GaN films was analyzed using field emission scanning electron microscopy and atomic force microscopy. The surface properties of the produced samples are quite different. The average roughness values were determined to be 0.48 nm for GaN/PET and 1.17 nm for GaN/glass. The optical properties (i.e., refractive index and reflection) were determined using an interferometer. Moreover, the obtained optical data were compared with bulk GaN materials. The refractive indexes were measured as 2.2, 3,0 and 2,5 for the GaN/glass, GaN/PET and bulk GaN, respectively. The transparencies of the different GaN-coated substrates are nearly the same. The obtained band gap values were measured in the energy range of 3.3–3.5 eV. TVA is a novel non-reactive plasma technique for the generation of metal organic thin films. The main advantage of this method is its fast deposition rate without any loss in the quality of the films. - Highlights: • A new GaN thin film growth method is introduced. • Microstructure, surface and optical properties were characterized. • GaN/glass and GaN/PET were produced by a different plasma deposition method.

  8. GaN thin film deposition on glass and PET substrates by thermionic vacuum arc (TVA)

    International Nuclear Information System (INIS)

    Pat, Suat; Korkmaz, Şadan; Özen, Soner; Şenay, Volkan

    2015-01-01

    In this paper, GaN thin film production was realized by thermionic vacuum arc (TVA), a plasma deposition technique, for the first time. We present a new deposition mechanism for GaN thin films with a very short production time. Microstructure properties of samples were analyzed by X-ray diffractometry. The peak at 2θ = 72.88° corresponding to GaN (0004) was detected in XRD spectra. The surface morphology of the deposited GaN films was analyzed using field emission scanning electron microscopy and atomic force microscopy. The surface properties of the produced samples are quite different. The average roughness values were determined to be 0.48 nm for GaN/PET and 1.17 nm for GaN/glass. The optical properties (i.e., refractive index and reflection) were determined using an interferometer. Moreover, the obtained optical data were compared with bulk GaN materials. The refractive indexes were measured as 2.2, 3,0 and 2,5 for the GaN/glass, GaN/PET and bulk GaN, respectively. The transparencies of the different GaN-coated substrates are nearly the same. The obtained band gap values were measured in the energy range of 3.3–3.5 eV. TVA is a novel non-reactive plasma technique for the generation of metal organic thin films. The main advantage of this method is its fast deposition rate without any loss in the quality of the films. - Highlights: • A new GaN thin film growth method is introduced. • Microstructure, surface and optical properties were characterized. • GaN/glass and GaN/PET were produced by a different plasma deposition method

  9. Design of a power management and distribution system for a thermionic-diode powered spacecraft

    Science.gov (United States)

    Kimnach, Greg L.

    1996-01-01

    The Electrical Systems Development Branch of the Power Technology Division at the NASA Lewis Research Center in Cleveland, Ohio is designing a Power Management and Distribution (PMAD) System for the Air Force's Integrated Solar Upper Stage (ISUS) Engine Ground Test Demonstration (EGD). The ISUS program uses solar-thermal propulsion to perform orbit transfers from Low Earth Orbit (LEO) to Geosynchronous Orbit (GEO) and from LEO to Molnya. The ISUS uses the same energy conversion receiver to perform the LEO to High Earth Orbit (HEO) transfer and to generate on-orbit electric power for the payloads. On-orbit power generation is accomplished via two solar concentrators heating a dual-cavity graphite-core which has Thermionic Diodes (TMD's) encircling each cavity. The graphite core and concentrators together are called the Receiver and Concentrator (RAC). The TDM-emitters reach peak temperatures of approximately 2200K, and the TID-collectors are run at approximately 1000K. Because of the high Specific Impulse (I(sup sp)) of solar thermal propulsion relative to chemical propulsion, and because a common bus is used for communications, GN&C, power, etc., a substantial increase in payload weight is possible. This potentially allows for a stepdown in the required launch vehicle size or class for similar payload weight using conventional chemical propulsion and a separate spacecraft bus. The ISUS power system is to provide 1000W(sub e) at 28+/-6V(sub dc) to the payload/spacecraft from a maximum TID generation capability of 1070W(sub e) at 2200K. Producing power with this quality, protecting the spacecraft from electrical faults and accommodating operational constraints of the TID's are the responsibilities of the PMAD system. The design strategy and system options examined along with the proposed designs for the Flight and EGD configurations are discussed herein.

  10. A program-management plan with critical-path definition for Combustion Augmentation with Thermionic Energy Conversion (CATEC)

    Science.gov (United States)

    Morris, J. F.; Merrill, O. S.; Reddy, H. K.

    1981-01-01

    Thermionic energy conversion (TEC) is discussed. In recent TEC-topping analyses, overall plant efficiency (OPE) and cost of electricity (COE) improved slightly with current capabilities and substantially with fully matured technologies. Enhanced credibility derives from proven hot-corrosion protection for TEC by silicon-carbide clads in fossil fuel combustion products. Combustion augmentation with TEC (CATEC) affords minimal cost and plant perturbation, but with smaller OPE and COE improvements than more conventional topping applications. Risk minimization as well as comparative simplicity and convenience, favor CATEC for early market penetration. A program-management plan is proposed. Inputs, characteristics, outputs and capabilities are discussed.

  11. ANALYTICAL MODELING OF ELECTRON BACK-BOMBARDMENT INDUCED CURRENT INCREASE IN UN-GATED THERMIONIC CATHODE RF GUNS

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P. [Fermilab; Sun, Y. [Argonne; Harris, J. R. [AFRL, NM; Lewellen, J. W. [Los Alamos Natl. Lab.

    2016-09-28

    In this paper we derive analytical expressions for the output current of an un-gated thermionic cathode RF gun in the presence of back-bombardment heating. We provide a brief overview of back-bombardment theory and discuss comparisons between the analytical back-bombardment predictions and simulation models. We then derive an expression for the output current as a function of the RF repetition rate and discuss relationships between back-bombardment, fieldenhancement, and output current. We discuss in detail the relevant approximations and then provide predictions about how the output current should vary as a function of repetition rate for some given system configurations.

  12. Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Frederick H. [Argonne National Laboratory; Jacobson, Norman H.

    1968-09-01

    This booklet discusses research reactors - reactors designed to provide a source of neutrons and/or gamma radiation for research, or to aid in the investigation of the effects of radiation on any type of material.

  13. Nuclear reactors

    International Nuclear Information System (INIS)

    Middleton, J.E.

    1977-01-01

    Reference is made to water cooled reactors and in particular to the cooling system of steam generating heavy water reactors (SGHWR). A two-coolant circuit is described for the latter. Full constructural details are given. (U.K.)

  14. Design, construction and measurements of an alpha magnet as a solution for compact bunch compressor for the electron beam from Thermionic RF Gun

    Science.gov (United States)

    Rajabi, A.; Jazini, J.; Fathi, M.; Sharifian, M.; Shokri, B.

    2018-03-01

    The beam produced by a thermionic RF gun has wide energy spread that makes it unsuitable for direct usage in photon sources. Here in the present work, we optimize the extracted beam from a thermionic RF gun by a compact economical bunch compressor. A compact magnetic bunch compressor (Alpha magnet) is designed and constructed. A comparison between simulation results and experimental measurements shows acceptable conformity. The beam dynamics simulation results show a reduction of the energy spread as well as a compression of length less than 1 ps with 2.3 mm-mrad emittance.

  15. BOILING REACTORS

    Science.gov (United States)

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  16. Reactor vessel

    NARCIS (Netherlands)

    Makkee, M.; Kapteijn, F.; Moulijn, J.A.

    1999-01-01

    A reactor vessel (1) comprises a reactor body (2) through which channels (3) are provided whose surface comprises longitudinal inwardly directed parts (4) and is provided with a catalyst (6), as well as buffer bodies (8, 12) connected to the channels (3) on both sides of the reactor body (2) and

  17. Criticality-safety analyses of compacted and water-flooded. SP-100 reactors

    International Nuclear Information System (INIS)

    Brandon, D.I.; Sapir, J.L.

    1986-01-01

    Reactivity calculations were performed to determine the sensitivity of three liquid metal-cooled, fast reactor designs to various accident environments. The concepts, proposed for the SP-100 Space Nuclear Power Program, included one thermionic and two fuel-pin designs. Numerous models of each core were developed to analyze the effect of core compaction and of water-flooded lattice spreading. Results indicate that those designs incorporating in-core control are least affected by core compaction and that the thermonic concept can best withstand expansion of the flooded fuel element array

  18. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  19. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Ronen, Y.; Elias, E.

    1994-01-01

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  20. Research reactors

    International Nuclear Information System (INIS)

    Merchie, Francois

    2015-10-01

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  1. Reactor container

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Nagatomi, Shozo.

    1976-01-01

    Object: To provide a jet and missile protective wall of a configuration being inflated toward the center of a reactor container on the inside of a body of the reactor container disposed within a biological shield wall to thereby increase safety of the reactor container. Structure: A jet and missile protective wall comprised of curved surfaces internally formed with a plurality of arch inflations filled with concrete between inner and outer iron plates and shape steel beam is provided between a reactor container surrounded by a biological shield wall and a thermal shield wall surrounding the reactor pressure vessel, and an adiabatic heat insulating material is filled in space therebetween. (Yoshino, Y.)

  2. Measuring of fissile isotopes partial antineutrino spectra in direct experiment at nuclear reactor

    OpenAIRE

    Sinev, V. V.

    2009-01-01

    The direct measuring method is considered to get nuclear reactor antineutrino spectrum. We suppose to isolate partial spectra of the fissile isotopes by using the method of antineutrino spectrum extraction from the inverse beta decay positron spectrum applied at Rovno experiment. This admits to increase the accuracy of partial antineutrino spectra forming the total nuclear reactor spectrum. It is important for the analysis of the reactor core fuel composition and could be applied for non-prol...

  3. PROSPECT - A precision oscillation and spectrum experiment

    Science.gov (United States)

    Langford, T. J.; PROSPECT Collaboration

    2015-08-01

    Segmented antineutrino detectors placed near a compact research reactor provide an excellent opportunity to probe short-baseline neutrino oscillations and precisely measure the reactor antineutrino spectrum. Close proximity to a reactor combined with minimal overburden yield a high background environment that must be managed through shielding and detector technology. PROSPECT is a new experimental effort to detect reactor antineutrinos from the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, managed by UT Battelle for the U.S. Department of Energy. The detector will use novel lithium-loaded liquid scintillator capable of neutron/gamma pulse shape discrimination and neutron capture tagging. These enhancements improve the ability to identify neutrino inverse-beta decays (IBD) and reject background events in analysis. Results from these efforts will be covered along with their implications for an oscillation search and a precision spectrum measurement.

  4. Particle Simulations of a Thermionic RF Gun with Gridded Triode Structure for Reduction of Back-Bombardment

    CERN Document Server

    Kusukame, K; Kii, T; Masuda, K; Nakai, Y; Ohgaki, H; Yamazaki, T; Yoshikawa, K; Zen, H

    2005-01-01

    Thermionic RF guns show advantageous features compared with photocathode ones such as easy operation and much higher repetition rate of micropulses, both of which are suitable for their application to high average power FELs. They however suffer from the back-bombardment effect [1], i.e., in conventional RF guns, electrons are extracted from cathode also in the latter half of accelerating phase and tend to back-stream to hit the cathode, and as a result the macropulse duration is limited down to severalμsec Against this adverse effect in thermionic RF guns, introduction of the triode structure has been proposed [2], where the accelerating phase and amplitude nearby the cathode can be controlled regardless of the phase of the first accelerating cell in the conventional RF gun. Our one-dimensional particle simulation results predict that the back-bombardment power can be reduced by 99 % only with 30-40 kW RF power fed to the grid in the present triode structure with an optimal phase difference from th...

  5. Research reactors

    International Nuclear Information System (INIS)

    Kowarski, L.

    1955-01-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  6. Minor actinide transmutation using minor actinide burner reactors

    International Nuclear Information System (INIS)

    Mukaiyama, T.; Yoshida, H.; Gunji, Y.

    1991-01-01

    The concept of minor actinide burner reactor is proposed as an efficient way to transmute long-lived minor actinides in order to ease the burden of high-level radioactive waste disposal problem. Conceptual design study of minor actinide burner reactors was performed to obtain a reactor model with very hard neutron spectrum and very high neutron flux in which minor actinides can be fissioned efficiently. Two models of burner reactors were obtained, one with metal fuel core and the other with particle fuel core. Minor actinide transmutation by the actinide burner reactors is compared with that by power reactors from both the reactor physics and fuel cycle facilities view point. (author)

  7. Processes of preparation, deposition and analysis of thermionic emissive substances; Processos de preparacao, deposicao e analise de substancias emissoras de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Romao, B.M. Verdelli; Muraro Junior, A.; Tessaroto, L.A.B. [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados; Takahashi, J. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    1992-09-01

    This paper shows the results of the optimization of the process of preparation and deposition of thermionic emissive substances that are used in the oxide-cathodes which are utilized in the gun of the IEAv linear electron accelerator. (author). 5 refs., 5 figs.

  8. Hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1980-01-01

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of 233 U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m -2 , and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid

  9. Heterogeneous reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Nair, R.P.K.

    1979-08-01

    The microscopic study of a cell is meant for the determination of the infinite multiplication factor of the cell, which is given by the four factor formula: K(infinite) = n(epsilon)pf. The analysis of an homogeneous reactor is similar to that of an heterogeneous reactor, but each factor of the four factor formula can not be calculated by the formulas developed in the case of an homogeneous reactor. A great number of methods was developed for the calculation of heterogeneous reactors and some of them are discussed. (Author) [pt

  10. Nuclear reactor

    International Nuclear Information System (INIS)

    Mysels, K.J.; Shenoy, A.S.

    1976-01-01

    A nuclear reactor is described in which the core consists of a number of fuel regions through each of which regulated coolant flows. The coolant from neighbouring fuel regions is combined in a manner which results in an averaging of the coolant temperature at the outlet of the core. By this method the presence of hot streaks in the reactor is reduced. (UK)

  11. Reactor operational transient analysis

    International Nuclear Information System (INIS)

    Shin, W.K.; Chae, S.K.; Han, K.I.; Yang, K.S.; Chung, H. D.; Kim, H.G.; Moon, H.J.; Ryu, Y.H.

    1983-01-01

    To build up efficient capability of safety review and inspection for the nuclear power plants, four area of studies have performed as follows: 1) In order to search the most optimized operating method during load follow operating schemes, automatic control and normal control, are compared each other under the CAOC condition. The analysis performed by DDID code has shown that the reactor has to be controlled by the operator manually during load follow operation. 2) Through the sensitivity analysis by COBRA code, the operating parameters, such as coolant pressure, flow rate, inlet temperature, and power distribution are shown to be important to the determination of DNBR. Expecially, inlet temperature of primary coolant system is appeared as the most senstive parameter on DNBR. 3) FRAPCON code is adapted to study the sensitivity of several operational parameters on the mechanical properties of reactor fuel rod. 4) The calculations procedure which is required to be obtained the neutron fluence at the reactor vessel and the spectrum at the surveillance capsule is established. The results of computation are conpared with those of FSAR and SWRI report and proved its applicability to reactor surveillance program. (Author)

  12. Cermet fuel reactors

    International Nuclear Information System (INIS)

    Cowan, C.L.; Palmer, R.S.; Van Hoomissen, J.E.; Bhattacharyya, S.K.; Barner, J.O.

    1987-09-01

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs

  13. Nuclear reactor

    International Nuclear Information System (INIS)

    Tilliette, Z.

    1975-01-01

    A description is given of a nuclear reactor and especially a high-temperature reactor in which provision is made within a pressure vessel for a main cavity containing the reactor core and a series of vertical cylindrical pods arranged in spaced relation around the main cavity and each adapted to communicate with the cavity through two collector ducts or headers for the primary fluid which flows downwards through the reactor core. Each pod contains two superposed steam-generator and circulator sets disposed in substantially symmetrical relation on each side of the hot primary-fluid header which conveys the primary fluid from the reactor cavity to the pod, the circulators of both sets being mounted respectively at the bottom and top ends of the pod

  14. Study of thermionic RF-gun phase-space dynamics and slice emittance under influence of external electromagnetic fields

    International Nuclear Information System (INIS)

    Kusoljariyakul, K.; Thongbai, C.

    2011-01-01

    A high brightness electron source of ultra-small emittance and high-average current is one of the most important components for future accelerators. In a RF-electron-gun, rapid acceleration can reduce emittance growth due to space charge effects. However, twisting or rotation of the transverse phase-space distribution as a function of time is observed in thermionic RF-electron-guns and may set a lower limit to the projected beam emittance. Such rotation being caused by the variation of the RF field with time may be compensated by fields from a specific cavity. In this work, we study RF-electron-gun phase-space dynamics and emittance under the influence of external fields to evaluate the compensation schemes.

  15. Optical and Surface Characteristics of Mg-Doped GaAs Nanocrystalline Thin Film Deposited by Thermionic Vacuum Arc Technique

    Science.gov (United States)

    Pat, Suat; Özen, Soner; Şenay, Volkan; Korkmaz, Şadan

    2017-01-01

    Magnesium (Mg) is the most promising p-type dopant for gallium arsenide (GaAs) semiconductor technology. Mg-doped GaAs nanocrystalline thin film has been deposited at room temperature by the thermionic vacuum arc technique, a rapid deposition method for production of doped GaAs material. The microstructure and surface and optical properties of the deposited sample were investigated by x-ray diffraction analysis, scanning electron microscopy, energy-dispersive x-ray spectroscopy, atomic force microscopy, ultraviolet-visible spectrophotometry, and interferometry. The crystalline direction of the deposited sample was determined to be (220) plane and (331) plane at 44.53° and 72.30°, respectively. The Mg-doped GaAs nanocrystalline sample showed high transmittance.

  16. The investigation of the Cr doped ZnO thin films deposited by thermionic vacuum arc technique

    Science.gov (United States)

    Mohammadigharehbagh, Reza; Pat, Suat; Musaoglu, Caner; Korkmaz, Şadan; Özen, Soner

    2018-02-01

    Cr doped ZnO thin films were prepared onto glass and polyethylene terephthalate (PET) substrates using thermionic vacuum arc. XRD patterns show the polycrystalline nature of the films. Cr, Zn, ZnO and Cr2O3 were detected in the layers. The mean crystallite sizes of the films were calculated about 20 nm for the films onto glass and PET substrates. The maximum dislocation density and internal strain values of the films are calculated. According to the optical analysis, the average transmittance and reflectance of the films were found to be approximately 53% and 16% for glass and PET substrates, respectively. The mean refractive index of the layer decreased to 2.15 from 2.38 for the PET substrate. The band gap values of the Cr-doped ZnO thin films were determined as 3.10 and 3.13 eV for glass and PET substrates.

  17. Energy conversion options for ARIES-III - A conceptual D-3He tokamak reactor

    International Nuclear Information System (INIS)

    Santarius, J.F.; Blanchard, J.P.; Emmert, G.A.; Sviatoslavsky, I.N.; Wittenberg, L.J.; Ghoneim, N.M.; Hasan, M.Z.; Mau, T.K.; Greenspan, E.; Herring, J.S.; Kernbichler, W.; Klein, A.C.; Miley, G.H.; Miller, R.L.; Peng, Y.K.M.

    1989-01-01

    The potential for highly efficient conversion of fusion power to electricity provides one motivation for investigating D- 3 He fusion reactors. This stems from: (1) the large fraction of D- 3 He power produced in the forms of charged particles and synchrotron radiation which are amenable to direct conversion, and (2) the low neutron fluence and lack of tritium breeding constraints, which increase design flexibility. The design team for a conceptual D- 3 He tokamak reactor, ARIES-III, has investigated numerous energy conversion options at a scoping level in attempting to realize high efficiency. The energy conversion systems have been studied in the context of their use on one or more of three versions of a D- 3 He tokamak: a first stability regime device, a second stability regime device, and a spherical torus. The set of energy conversion options investigated includes bootstrap current conversion, compression-expansion cycles, direct electrodynamic conversion, electrostatic direct conversion, internal electric generator, liquid metal heat engine blanket, liquid metal MHD, plasma MHD, radiation boiler, scrape-off layer thermoelectric, synchrotron radiation conversion by rectennas, synchrotron radiation conversion by thermal cycles, thermionic/AMTEC/thermal systems, and traveling wave conversion. The original set of options is briefly discussed, and those selected for further study are described in more detail. The four selected are liquid metal MHD, plasma MHD, rectenna conversion, and direct electrodynamic conversion. Thermionic energy conversion is being considered, and some options may require a thermal cycle in parallel or series. 17 refs., 3 figs., 1 tab

  18. Surface trapping phenomena in thermionic emission generating l/f noise

    International Nuclear Information System (INIS)

    Stepanescu, A.

    1975-01-01

    A general expression of the power spectrum of''flicker noise'', involving stochastic trapping phenomena and calculated on the basis of a two parameter model, is applied in the case of thermoionic emission from cathode surface. The fluctuation of the work function over the cathode surface is interpreted as being due to a trapping process of foreign atoms by the cathode. Taking into account the very physical nature of the trapping mechanism, under self-consistent assumptions, a 1/f power spectrum is obtained in a certain range of frequency. The two parameter model removes some discrepancies involved in the preceding theories. (author)

  19. SLOWPOKE reactor

    International Nuclear Information System (INIS)

    Evans, D.J.R.; Downs, W.E.

    1974-01-01

    The SLOWPOKE reactor is described, which is a small pool type with thermal neutron fluxes ranging from 10 11 -10 12 n cm -2 sec -1 . It differs in many ways from conventional pool type, namely small critical mass, beryllium reflector and a closed reactor container. The reactor is designed as small and simply as possible, and consistently with safety and good operating practice. Access to the present model is via pneumatic irradiation tubes only, which limits the use of the facility to activation analysis, tracer production and training. (Mori, K.)

  20. Nuclear reactor

    International Nuclear Information System (INIS)

    Rau, P.

    1980-01-01

    The reactor core of nuclear reactors usually is composed of individual elongated fuel elements that may be vertically arranged and through which coolant flows in axial direction, preferably from bottom to top. With their lower end the fuel elements gear in an opening of a lower support grid forming part of the core structure. According to the invention a locking is provided there, part of which is a control element that is movable along the fuel element axis. The corresponding locking element is engaged behind a lateral projection in the opening of the support grid. The invention is particularly suitable for breeder or converter reactors. (orig.) [de

  1. Experimental determination of the antineutrino spectrum of the fission products of 238U

    International Nuclear Information System (INIS)

    Haag, Nils-Holger

    2013-01-01

    Fission of 238 U contributes about 10 % to the antineutrino emission of a pressurized water reactor. In the present thesis, the beta spectrum of the fission products of 238 U was determined in an experiment at the neutron source FRM II. This beta spectrum was subsequently converted into an antineutrino spectrum. This first measurement of the antineutrino spectrum supports all current and future reactor antineutrino experiments.

  2. Experimental determination of the antineutrino spectrum of the fission products of {sup 238}U

    Energy Technology Data Exchange (ETDEWEB)

    Haag, Nils-Holger

    2013-10-09

    Fission of {sup 238}U contributes about 10 % to the antineutrino emission of a pressurized water reactor. In the present thesis, the beta spectrum of the fission products of {sup 238}U was determined in an experiment at the neutron source FRM II. This beta spectrum was subsequently converted into an antineutrino spectrum. This first measurement of the antineutrino spectrum supports all current and future reactor antineutrino experiments.

  3. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  4. REACTOR SHIELD

    Science.gov (United States)

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  5. NEUTRONIC REACTOR

    Science.gov (United States)

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  6. Chemical Reactors.

    Science.gov (United States)

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  7. Reactor technology

    International Nuclear Information System (INIS)

    Erdoes, P.

    1977-01-01

    This is one of a series of articles discussing aspects of nuclear engineering ranging from a survey of various reactor types for static and mobile use to mention of atomic thermo-electric batteries of atomic thermo-electric batteries for cardiac pacemakers. Various statistics are presented on power generation in Europe and U.S.A. and economics are discussed in some detail. Molten salt reactors and research machines are also described. (G.M.E.)

  8. Propulsion reactors

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    A nuclear reactor equips the recently constructed French aircraft- carrier Charles-De-Gaulle, in a few months the second nuclear submarine (SNLE) of new generation will be operational. In last october the government launched the program Barracuda which consists of 6 submarines (SNA) whose series head will be operational in 2010. The main asset of nuclear propulsion is to allow an almost unlimited autonomy: soft water, air are produced inside the submarine and the maximum time spent underwater is only limited by human capacity to cope with confinement. CEA has 3 missions concerning country defence. First the designing, the fabrication and the maintenance of weapons, secondly the supplying of fissile materials and thirdly the nuclear propulsion. A new generation of propulsion reactors is being studied and a ground installation involving a test reactor equivalent to that on board is being built. This test reactor (RES) will simulate any type of on-board reactors by adjusting temperature, pressure, flowrate and even equipment such as steam generator. This reactor will validate the technological choices for the Barracuda program. (A.C.)

  9. Study Of Thermal Spectrum in PWR

    International Nuclear Information System (INIS)

    Al-Kheliewi, A.S

    1998-01-01

    The thermal spectrum for commercial pressurized water reactor determined at different energy distribution and position. Two computer codes namely: ARCHEB and LEOPARD are used to find thermal spectrum throughout the core and the throughout the fuel pin respectively. Effectiveness of fuel, resonance, resonance, and moderator temperatures has been carefully studied and it was noticed that moderator temperature has a substantial effect on thermal spectrum. Another of remarkable effect on thermal spectrum was found to be boron concentration. Other factors as enrichment, fuel pellet radius and fuel channel pitch and their effectiveness on thermal spectrum are also studied. It has been observed that thermal spectrum, at different radial positions in the core, increases in the core, increases in the inner core while decreases in the intermediate and outer core at BOC and EOC

  10. Automated thermionic analyses of U and Pu standards and reprocessing plant solutions

    International Nuclear Information System (INIS)

    Brunnee, C.; Rache, H.; Berg, R.; Damerow, H.

    At the reprocessing plant in Karlsruhe highly radioactive solutions from dissolved reactor fuel elements must be analyzed with high accuracy. The remote handling of these solutions and the impurity level, generated by fission products makes conventional analyses impossible. Therefore the isotope dilution technique is usually employed. As spikes, U-233 and Pu-242 are used. The isotope ratio measurements have been performed with an automated mass spectrometer, type MAT 260. All main functions of the instrument including change of the samples are controlled by a desk top calculator. (Auth.)

  11. Research reactors - an overview

    International Nuclear Information System (INIS)

    West, C.D.

    1997-01-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs

  12. Development of a high temperature solar receiver for high-efficient thermionic conversion systems; Fukugo netsuden henkan system yo chokoon taiyo junetsuki no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Umeoka, T.; Naito, H.; Yugami, H.; Arashi, H. [Tohoku University, Sendai (Japan). Faculty of Engineering

    1996-10-27

    For thermionic conversion systems (TIC) using concentrated sunlight as heat source, the newly developed solar receiver was tested. Concentrated sunlight aims at the inner surface of the cavity type solar receiver. The emitter of TIC installed in the rear of the solar receiver is uniformly heated over 1700K by thermal radiation from the rear of the solar receiver, emitting thermion. Electric power is generated by collecting the thermion by collector. Mo is used as emitter material, however, because of poor heat absorption of Mo, high-absorptive TiC is used for heat absorption surface to heat Mo by thermal conduction from high-temperature TiC. Functionally gradient material (FGM) with an intermediate layer of gradient TiC/Mo ratios between TiC and Mo is used as emitter material. The emitter is thus uniformly heated at high temperatures of 1723{plus_minus}12K. As a result, the developed solar receiver is applicable to heat the emitter of TIC. Heat flux measurement at the graphite cavity clarified that cavity temperature of as high as 1780K and heat flow of 50W/cm{sup 2} are obtained at 4.7kW in input. 6 figs.

  13. BWR type reactor core

    International Nuclear Information System (INIS)

    Tatemichi, Shin-ichiro.

    1981-01-01

    Purpose: To eliminate the variation in the power distribution of a BWR type reactor core in the axial direction even if the flow rate is increased or decreased by providing a difference in the void coefficient between the upper part and the lower parts of the reactor core, and increasing the void coefficient at the lower part of the reactor core. Constitution: The void coefficient of the lower region from the center to the lower part along the axial direction of a nuclear fuel assembly is increased to decrease the dependence on the flow rate of the axial power distribution of the nuclear fuel assembly. That is, a water/fuel ratio is varied, the water in non-boiled region is increased or the neutron spectrum is varied so as to vary the void coefficient. In order to exemplify it, the rate of the internal pellets of the fuel rod of the nuclear fuel assembly or the shape of the channel box is varied. Accordingly, the power does not considerably vary even if the flow rate is altered since the power is varied in the power operation. (Yoshihara, H.)

  14. Transient analysis of space reactors

    International Nuclear Information System (INIS)

    Giap, H.Q.; Best, F.

    1985-01-01

    Nuclear reactors are being considered as the primary energy source for an increasing number of space missions including the National Aeronautics and Space Administration's space station and the Strategic Defense Initiative's SP-100. Conceptual reactor designs include fast and thermal spectrum reactors with liquid-metal or gas cooling delivering thermal energy to Brayton, Stirling, thermoelectric, thermoionic, or Rankine cycle power conversion systems. Almost all designs utilize a thermal radiator for waste heat rejection, although the radiator may assume such exotic forms as fans of liquid-metal droplets or metal filaments floating in free space. The reactor, power conversion, and heat rejection systems must operate in zero gravity, be uniformly small and lightweight, and utilize exotic materials compared with terrestrial technology. Therefore, the problems of system design and analysis are unique to space applications, and new analysis tools must be developed. With this motivation, the Transient Analysis of Space Reactors (TASR) computer code has been developed to predict system performance under steady-state and transient conditions. The SP-100 space reactor system, being designed by General Electric (GE) Company, was used as the test system for the TASR code. At full power, the SP-100 produces 110 kW(e) from 2.21 MW(t) via a thermoelectric conversion system

  15. Industrial structure at research reactor suppliers

    International Nuclear Information System (INIS)

    Roegler, H.-J.; Bogusch, E.; Friebe, T.

    2001-01-01

    Due to the recent joining of the forces of Framatome S. A. from France and the Nuclear Division of Siemens AG Power Generation (KWU) from Germany to a Joint Venture named Framatome Advanced Nuclear Power S.A.S., the issue of the necessary and of the optimal industrial structure for nuclear projects as a research reactor is, was discussed internally often and intensively. That discussion took place also in the other technical fields such as Services for NPPs but also in the field of interest here, i. e. Research Reactors. In summarizing the statements of this presentation one can about state that: Research Reactors are easier to build than NPPs, but not standardised; Research Reactors need a wide spectrum of skills and experiences; to design and build Research Reactors needs an experienced team especially in terms of management and interfaces; Research Reactors need background from built reference plants more than from operating plants; Research Reactors need knowledge of suitable experienced subsuppliers. Two more essential conclusions as industry involved in constructing and upgrading research reactors are: Research Reactors by far are more than a suitable core that generates a high neutron flux; every institution that designs and builds a Research Reactor lacks quality or causes safety problems, damages the reputation of the entire community

  16. Advanced Safeguards Approaches for New Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  17. Nuclear reactors

    International Nuclear Information System (INIS)

    Prescott, R.F.; George, B.V.; Baglin, C.J.

    1978-01-01

    Reference is made to thermal insulation on the inner surfaces of containment vessels of fluid cooled nuclear reactors and particularly in situations where the thermal insulation must also serve a structural function and transmit substantial load forces to the surface which it covers. An arrangement is described that meets this requirement and also provides for core support means that favourably influences the flow of hot coolant from the lower end of the core into a plenum space in the hearth of the reactor. The arrangement comprises a course of thermally insulating bricks arranged as a mosaic covering a wall of the reactor and a course of thermally insulating tiles arranged as a mosaic covering the course of bricks. Full constructional details are given. (UK)

  18. Reactor utilization

    International Nuclear Information System (INIS)

    Zecevic, V.

    1963-01-01

    In 1962, the RA reactor was operated almost three times more than in 1961, producing total of 25 555 MWh. Diagram containing comparative data about reactor operation for 1960, 1961, and 1962, percent of fuel used and U-235 burnup shows increase in reactor operation. Number of samples irradiated was 659, number of experiments done was 16. mean powered level was 5.93 MW. Fuel was added into the core twice during the reporting year. In fact the core was increased from 56 to 68 fuel channels and later to 84 fuel channels. Fuel was added to the core when the reactivity worth decreased to the minimum operation level due to burnup. In addition to this 5 central fuel channels were exchanged with fresh fuel in february for the purpose of irradiation in the VISA-2 channel

  19. Bioconversion reactor

    Science.gov (United States)

    McCarty, Perry L.; Bachmann, Andre

    1992-01-01

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  20. Thermonuclear reactor

    International Nuclear Information System (INIS)

    Araki, Takao; Saito, Yasushi.

    1987-01-01

    Purpose: To reduce the seismic wave responsivity of an exhaust duct shields thereby preventing the release of tritium in an evacuating device due to failures upon earthquakes. Constitution: The ends on the cutting side of upper outer exhaust duct shields of a thermonuclear reactor are connected with a plurality of support beams. In a case where seismic vibrations are exerted to such a thermonuclear reactor, since the ends on the cutting side are coupled with the support beams, vibrations of the upper outer exhaust duct shields are greatly restricted. Thus, since there is no more such a possibility, for example, that an exhaust duct connected to the upper portion of a reactor main body is greatly distorted due to the seismic response of the upper outside exhaust duct shields to result in the failure of the connection portion with a vacuum pump, the release of tritium due to failure of the evacuating device can be prevented. (Yoshino, Y.)

  1. Study of beam transverse properties of a thermionic electron gun for application to a compact THz free electron laser

    International Nuclear Information System (INIS)

    Hu, Tongning; Qin, Bin; Tan, Ping; Chen, Qushan; Yang, Lei; Pei, Yuanji; Li, Ji

    2014-01-01

    A novel thermionic electron gun adopted for use in a high power THz free electron laser (FEL) is proposed in this paper. By optimization of the structural and radiofrequency (RF) parameters, the physical design of the gun is performed using dynamic calculations. Velocity bunching is used to minimize the bunch's energy spread, and the dynamic calculation results indicate that high quality beams can be provided. The transverse properties of the beams generated by the gun are also analyzed. The novel RF focusing effects of the resonance cavity are investigated precisely and are used to establish emittance compensation, which enables the injector length to be reduced. In addition, the causes of the extrema of the beam radius and the normalized transverse emittance are analyzed and interpreted, respectively, and slice simulations are performed to illustrate how the RF focusing varies along the bunch length and to determine the effects of that variation on the emittance compensation. Finally, by observation of the variations of the beam properties in the drift tube behind the electron gun, prospective assembly scenarios for the complete THz-FEL injector are discussed, and a joint-debugging process for the injector is implemented

  2. AlGaAs film growth using thermionic vacuum arc (TVA) and determination of its physical properties

    Science.gov (United States)

    Özen, Soner; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan

    2015-06-01

    In this research, an AlGaAs film was deposited on a microscope slide by means of the thermionic vacuum arc (TVA) technique which is a novel plasma production technique. AlGaAs structures were grown by this deposition technique for the first time and this process occurred in a very short period of time. In order to characterize the produced film, nano-structural, nano-mechanical, optical, and surface properties were determined by field emission scanning electron microscope (FESEM), atomic force microscope (AFM), X-ray diffractometer (XRD) and interferometer. According to the results of the measurements, the mean thickness value of the produced film was obtained as 1.8 μm. The band gap value was determined as 2eV from the Kubelka-Munk plot. The refractive index value was obtained as approximately 3.4. Hardness value was determined as 2 GPa from the Oliver-Pharr method. All these values are consistent with the reported values in the literature for the AlGaAs films produced by different methods. TVA technique appeared as a suitable and promising technique for the production of AlGaAs films.

  3. Surface, Nanomechanical, and Optical Properties of Mo-Doped GeGaAs Thin Film Deposited by Thermionic Vacuum Arc

    Science.gov (United States)

    Pat, Suat; Şenay, Volkan; Özen, Soner; Korkmaz, Şadan

    2016-01-01

    Mo-doped and undoped GeGaAs layers have been deposited by the thermionic vacuum arc (TVA) method, an alternative, fast plasma deposition technique. The thicknesses of the deposited layers were identical. The surface, mechanical, and optical properties of the deposited layers were studied to determine the influence of Mo doping on GeGaAs. The transparency of GeGaAs was shifted towards the near-infrared region by Mo doping. Bandgap values shifted by approximately 0.3 eV. In other words, the bandgap value of Mo-doped GeGaAs was nearly equal to that of GaAs materials. The average roughness and grain size of the Mo-doped material were smaller than for the GeGaAs layer. The particle distributions of the Mo-doped and undoped GeGaAs were almost perfect Gaussians. However, the mean height of the Mo-doped GeGaAs grains was six times that for undoped GeGaAs. The surface was homogeneous. The Mo-doped layer showed greater absorbance than the GeGaAs material. The produced Mo-doped sample showed hybrid properties.

  4. Investigation of barium-calcium aluminate process to manufacture and characterize impregnated thermionic cathode for power microwave devices

    International Nuclear Information System (INIS)

    Higashi, Cristiane

    2006-01-01

    In the present work it is described the barium calcium aluminate manufacture processes employed to produce impregnated cathodes to be used in a traveling-wave tube (TWT). The cathodes were developed using a tungsten body impregnated with barium and calcium aluminate with a 5:3:2 proportion (molar). Three different processes were investigated to obtain this material: solid-state reaction, precipitation and crystallization. Thermal analysis, thermogravimetry specifically, supported to determine an adequate preparation procedure (taking into account temperature, time and pyrolysis atmosphere). It was verified that the crystallization showed a better result when compared to those investigated (solid-state reaction and precipitation techniques - formation temperature is about 1000 deg C in hydrogen atmosphere), whereas it presented the lower formation temperature (800 deg C) in oxidizing atmosphere (O 2 ). It was used the practical work function distribution theory (PWFD) of Miram to characterize thermionic impregnated cathode. The PWFD curves were used to characterize the barium-calcium aluminate cathode. PWFD curves shown that the aluminate cathode work function is about 2,00 eV. (author)

  5. Structural and Mechanical Properties of Nanostructured C-Ag Thin Films Synthesized by Thermionic Vacuum Arc Method

    Directory of Open Access Journals (Sweden)

    Rodica Vladoiu

    2018-01-01

    Full Text Available Nanostructured C-Ag thin films of 200 nm thickness were successfully synthesized by the Thermionic Vacuum Arc (TVA method. The influence of different substrates (glass, silicon wafers, and stainless steel on the microstructure, morphology, and mechanical properties of nanostructured C-Ag thin films was characterized by High-Resolution Transmission Electron Microscopy (HRTEM, Scanning Electron Microscopy (SEM, Atomic Force Microscopy (AFM, and TI 950 (Hysitron nanoindenter equipped with Berkovich indenter, respectively. The film’s hardness deposited on glass (HC-Ag/Gl = 1.8 GPa was slightly lower than in the case of the C-Ag film deposited on a silicon substrate (HC-Ag/Si = 2.2 GPa. Also the apparent elastic modulus Eeff was lower for C-Ag/Gl sample (Eeff = 100 GPa than for C-Ag/Si (Eeff = 170 GPa, while the values for average roughness are Ra=2.9 nm (C-Ag/Si and Ra=10.6 (C-Ag/Gl. Using the modulus mapping mode, spontaneous and indentation-induced aggregation of the silver nanoparticles was observed for both C-Ag/Gl and C-Ag/Si samples. The nanocomposite C-Ag film exhibited not only higher hardness and effective elastic modulus, but also a higher fracture resistance toughness to the silicon substrate compared to the glass substrate.

  6. THz and Sub-THz Capabilities of a Table-Top Radiation Source Driven by an RF Thermionic Electron Gun

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Alexei V.; Agustsson, R.; Boucher, S.; Campese, Tara; Chen, Y.C.; Hartzell, Josiah J.; Jocobson, B.T.; Murokh, A.; O' Shea, F.H.; Spranza, E.; Berg, W.; Borland, M.; Dooling, J. C.; Erwin, L.; Lindberg, R. R.; Pasky, S.J.; Sereno, N.; Sun, Y.; Zholents, A.

    2017-06-01

    Design features and experimental results are presented for a sub-mm wave source [1] based on APS RF thermionic electron gun. The setup includes compact alpha-magnet, quadrupoles, sub-mm-wave radiators, and THz optics. The sub-THz radiator is a planar, oversized structure with gratings. Source upgrade for generation frequencies above 1 THz is discussed. The THz radiator will use a short-period undulator having 1 T field amplitude, ~20 cm length, and integrated with a low-loss oversized waveguide. Both radiators are integrated with a miniature horn antenna and a small ~90°-degree in-vacuum bending magnet. The electron beamline is designed to operate different modes including conversion to a flat beam interacting efficiently with the radiator. The source can be used for cancer diagnostics, surface defectoscopy, and non-destructive testing. Sub-THz experiment demonstrated a good potential of a robust, table-top system for generation of a narrow bandwidth THz radiation. This setup can be considered as a prototype of a compact, laser-free, flexible source capable of generation of long trains of Sub-THz and THz pulses with repetition rates not available with laser-driven sources.

  7. Parametric performance analysis of steam-injected gas turbine with a thermionic-energy-converter-lined combustor

    Science.gov (United States)

    Choo, Y. K.; Burns, R. K.

    1982-01-01

    The performance of steam-injected gas turbines having combustors lined with thermionic energy converters (STIG/TEC systems) was analyzed and compared with that of two baseline systems; a steam-injected gas turbine (without a TEC-lined combustor) and a conventional combined gas turbine/steam turbine cycle. Common gas turbine parameters were assumed for all of the systems. Two configurations of the STIG/TEC system were investigated. In both cases, steam produced in an exhaust-heat-recovery boiler cools the TEC collectors. It is then injected into the gas combustion stream and expanded through the gas turbine. The STIG/TEC system combines the advantage of gas turbine steam injection with the conversion of high-temperature combustion heat by TEC's. The addition of TEC's to the baseline steam-injected gas turbine improves both its efficiency and specific power. Depending on system configuration and design parameters, the STIG/TEC system can also achieve higher efficiency and specific power than the baseline combined cycle.

  8. Nuclear reactor

    International Nuclear Information System (INIS)

    Gilroy, J.E.

    1980-01-01

    An improved cover structure for liquid metal cooled fast breeder type reactors is described which it is claimed reduces the temperature differential across the intermediate grid plate of the core cover structure and thereby reduces its subjection to thermal stresses. (UK)

  9. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    The method of operating a water-cooled neutronic reactor having a graphite moderator is described which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40--60 volume percent of the mixture, in contact with the graphite moderator. 2 claims, 4 figures

  10. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield

  11. Reactor licensing

    International Nuclear Information System (INIS)

    Harvie, J.D.

    2002-01-01

    This presentation discusses reactor licensing and includes the legislative basis for licensing, other relevant legislation , the purpose of the Nuclear Safety and Control Act, important regulations, regulatory document, policies, and standards. It also discusses the role of the CNSC, its mandate and safety philosophy

  12. Neutronic reactor

    International Nuclear Information System (INIS)

    Carleton, J.T.

    1977-01-01

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment. 3 claims, 6 figures

  13. Smaller sized reactors can be economically attractive

    International Nuclear Information System (INIS)

    Carelli, M.D.; Petrovic, B.; Mycoff, C.W.; Trucco, P.; Ricotti, M.E.; Locatelli, G.

    2007-01-01

    Smaller size reactors are going to be an important component of the worldwide nuclear renaissance. However, a misguided interpretation of the economy of scale would label these reactors as not economically competitive with larger plants because of their allegedly higher capital cost (dollar/kWe). Economy of scale does apply only if the considered designs are similar, which is not the case here. This paper identifies and briefly discusses the various factors which, beside size (power produced), contribute to determining the capital cost of smaller reactors and provides a preliminary evaluation for a few of these factors. When they are accounted for, in a set of realistic and comparable configurations, the final capital costs of small and large plants are practically equivalent. The Iris reactor is used as the example of smaller reactors, but the analysis and conclusions are applicable to the whole spectrum of small nuclear plants. (authors)

  14. A new advanced safe nuclear reactor concept

    International Nuclear Information System (INIS)

    Sefidvash, Farhang

    1999-01-01

    The reactor design is based on fluidized bed concept and utilizes pressurized water reactor technology. The fuel is automatically removed from the reactor by gravity under any accident condition. The reactor demonstrates the characteristics of inherent safety and passive cooling. Here two options for modification to the original design are proposed in order to increase the stability and thermal efficiency of the reactor. A modified version of the reactor involves the choice of supercritical steam as the coolant to produce a plant thermal efficiency of about 40%. Another is to modify the shape of the reactor core to produce a non-fluctuating bed and consequently guarantee the dynamic stability of the reactor. The mixing of Tantalum in the fuel is also proposed as an additional inhibition to power excursion. The spent fuel pellets may not be considered nuclear waste since they are in the shape and size that can easily be used as a a radioactive source for food irradiation and industrial applications. The reactor can easily operate with any desired spectrum by varying the porosity in order to be a plutonium burner or utilize a thorium fuel cycle. (author)

  15. Surface morphology influence on deuterium retention in beryllium films prepared by thermionic vacuum arc method

    International Nuclear Information System (INIS)

    Anghel, A.; Porosnicu, C.; Badulescu, M.; Mustata, I.; Lungu, C.P.; Sugiyama, K.; Lindig, S.; Krieger, K.; Roth, J.; Nastuta, A.; Rusu, G.; Popa, G.

    2009-01-01

    In a plasma-confinement device, material eroded from plasma facing components will be transported and re-deposited at other locations inside the reaction chamber. Since beryllium from the first wall of the ITER fusion reactor will be eroded, ionized in the scrape-off layer plasma and finally re-deposited on divertor surfaces flowing along the magnetic field, it is important to study the properties of divertor armour materials (C, W) coated with beryllium. By applying different bias voltages (-200 V to +700 V) to the substrates during deposition, the morphology of the obtained films was modified. The films' morphology was characterized by means of AFM and SEM, and it was found that the coatings prepared using negative bias voltage at the substrate during deposition are more compact and have a smoother surface compared to the samples prepared with positive bias voltage. The thickness and composition of each film were measured using Rutherford backscattering spectrometry (RBS). A study of deuterium implantation and retention into the prepared films was performed at IPP Garching in the high current ion source.

  16. Reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Sasagawa, Masaru; Masuda, Hiroyuki; Mogi, Toshihiko; Kanazawa, Nobuhiro.

    1994-01-01

    In a reactor core, a fuel inventory at an outer peripheral region is made smaller than that at a central region. Fuel assemblies comprising a small number of large-diameter fuel rods are used at the central region and fuel assemblies comprising a great number of smalldiameter fuel rods are used at the outer peripheral region. Since a burning degradation rate of the fuels at the outer peripheral region can be increased, the burning degradation rate at the infinite multiplication factor of fuels at the outer region can substantially be made identical with that of the fuels in the inner region. As a result, the power distribution in the direction of the reactor core can be flattened throughout the entire period of the burning cycle. Further, it is also possible to make the degradation rate of fuels at the outer region substantially identical with that of fuels at the inner side. A power peak formed at the outer circumferential portion of the reactor core of advanced burning can be lowered to improve the fuel integrity, and also improve the reactor safety and operation efficiency. (N.H.)

  17. Modular Lead-Bismuth Fast Reactors in Nuclear Power

    OpenAIRE

    Georgy Toshinsky; Vladimir Petrochenko

    2012-01-01

    On the basis of the unique experience of operating reactors with heavy liquid metal coolant–eutectic lead-bismuth alloy in nuclear submarines, the concept of modular small fast reactors SVBR-100 for civilian nuclear power has been developed and validated. The features of this innovative technology are as follows: a monoblock (integral) design of the reactor with fast neutron spectrum, which can operate using different types of fuel in various fuel cycles including MOX fuel in a self-providing...

  18. Nuclear reactor

    International Nuclear Information System (INIS)

    Gibbons, J.F.; McLaughlin, D.J.

    1978-01-01

    In the pressure vessel of the water-cooled nuclear reactor there is provided an internal flange on which the one- or two-part core barrel is hanging by means of an external flange. A cylinder is extending from the reactor vessel closure downwards to a seat on the core cupport structure and serves as compression element for the transmission of the clamping load from the closure head to the core barrel (upper guide structure). With the core barrel, subject to tensile stress, between the vessel internal flange and its seat on one hand and the compression of the cylinder resp. hold-down element between the closure head and the seat on the other a very strong, elastic sprung structure is obtained. (DG) [de

  19. Nuclear reactor

    International Nuclear Information System (INIS)

    Aleite, W.; Bock, H.W.; Struensee, S.

    1976-01-01

    The invention concerns the use of burnable poisons in a nuclear reactor, especially in PWRs, in order to improve the controllability of the reactor. An unsymmetrical arrangement in the lattice is provided, if necessary also by insertion of special rods for these additions. It is proposed to arrange the burnable poisons in fuel elements taken over from a previous burn-up cycle and to distribute them, going out from the side facing the control rods, over not more than 20% of the lenth of the fuel elements. It seems sufficient, for the burnable poisons to bind an initial reactivity of only 0.1% and to become ineffective after normal operation of 3 to 4 months. (ORU) [de

  20. Reactor container

    International Nuclear Information System (INIS)

    Otsuka, Hiroaki; Yoshida, Takashi.

    1979-01-01

    Purpose: To prevent rain water falling along the outer wall of the container during the construction work of an atomic power plant from making ingress into the inner part of a reactor container through a large size material carry-in port. Constitution: A weir for preventing the ingress of rain water is provided on the border between the foot floor of a large material carry-in port provided on the side surface at the bottom part of the reactor container and the floor surface of the building. This weir is of a semi-circular plate shape, and formed so that the lower semi-circular part of the carry-in port is tightly closed. (Kamimura, M.)

  1. Reactor container

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Saba, Kazuhisa.

    1979-01-01

    Purpose: To improve the earthquake resistance as well as reduce the size of a container for a nuclear reactor with no adverse effects on the decrease of impact shock to the container and shortening of construction step. Constitution: Reinforcing profile steel materials are welded longitudinally and transversely to the inner surface of a container, and inner steel plates are secured to the above profile steel materials while keeping a gap between the materials and the container. Reactor shielding wall planted to the base concrete of the container is mounted to the pressure vessel, and main steam pipeways secured by the transverse beams and led to the outside of container is connected. This can improve the rigidity earthquake strength and the safetiness against the increase in the inside pressure upon failures of the container. (Yoshino, Y.)

  2. Reactor container

    International Nuclear Information System (INIS)

    Oyamada, Osamu; Furukawa, Hideyasu; Uozumi, Hiroto.

    1979-01-01

    Purpose: To lower the position of an intermediate slab within a reactor container and fitting a heat insulating material to the inner wall of said intermediate slab, whereby a space for a control rod exchanging device and thermal stresses of the inner peripheral wall are lowered. Constitution: In the pedestal at the lower part of a reactor pressure vessel there is formed an intermediate slab at a position lower than diaphragm floor slab of the outer periphery of the pedestal thereby to secure a space for providing automatic exchanging device of a control rod driving device. Futhermore, a heat insulating material is fitted to the inner peripheral wall at the upper side of the intermediate slab part, and the temperature gradient in the wall thickness direction at the time of a piping rupture trouble is made gentle, and thermal stresses at the inner peripheral wall are lowered. (Sekiya, K.)

  3. Neutronic reactor

    International Nuclear Information System (INIS)

    Lewis, W.R.

    1978-01-01

    Disclosed is a graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels

  4. Nuclear reactor

    International Nuclear Information System (INIS)

    Shirakawa, Toshihisa.

    1979-01-01

    Purpose: To prevent cladding tube injuries due to thermal expansion of each of the pellets by successively extracting each of the control rods loaded in the reactor core from those having less number of notches, as well as facilitate the handling work for the control rods. Constitution: A recycle flow control device is provided to a circulation pump for forcibly circulating coolants in the reactor container and an operational device is provided for receiving each of the signals concerning number of notches for each of the control rods and flow control depending on the xenon poisoning effect obtained from the signals derived from the in-core instrument system connected to the reactor core. The operational device is connected with a control rod drive for moving each of the control rods up and down and a recycle flow control device. The operational device is set with a pattern for the aimed control rod power and the sequence of extraction. Upon extraction of the control rods, they are extracted successively from those having less notch numbers. (Moriyama, K.)

  5. Reactor building

    International Nuclear Information System (INIS)

    Ebata, Sakae.

    1990-01-01

    At least one valve rack is disposed in a reactor building, on which pipeways to a main closure valve, valves and bypasses of turbines are placed and contained. The valve rack is fixed to the main body of the building or to a base mat. Since the reactor building is designed as class A earthquake-proofness and for maintaining the S 1 function, the valve rack can be fixed to the building main body or to the base mat. With such a constitution, the portions for maintaining the S 1 function are concentrated to the reactor building. As a result, the dispersion of structures of earthquake-proof portion corresponding to the reference earthquake vibration S 1 can be prevented. Accordingly, the conditions for the earthquake-proof design of the turbine building and the turbine/electric generator supporting rack are defined as only the class B earthquake-proof design conditions. In view of the above, the amount of building materials can be saved and the time for construction can be shortened. (I.S.)

  6. Physical experiments. Reactor theory

    International Nuclear Information System (INIS)

    Korn, H.; Werle, H.; Bluhm, H.; Fieg, G.; Kappler, F.; Kuhn, D.; Lalovic, M.; Woll, D.; Kuefner, K.; Woznicki, Z.; Buckel, G.; Stehle, B.; Borgwaldt, H.

    1975-01-01

    The γ-spectrum in SNEAK 9C-1 and 9C-2 was measured by means of Si(Li) solid state detectors for verification of methods of shielding calculation. The blanket spectra turned out to be slightly harder than the spectra in the fissile zone; the plutonium spectra are slightly harder than the respective uranium spectra. This result is expected to be explained by studies to be carried out on the basis of a γ-transport program. For reactor theoretical calculations two 2-dimensional diffusion programs were compared with each other, and a 3-dimensional diffusion program was compared with a flux synthesis program. An improved source iteration scheme was drafted for the Karlsruhe Monte Carlo code. (orig.) [de

  7. Evaluation of the neutrons spectrum near the Venus reactor: use of MCNPX-2.5C; Evaluation du spectre des neutrons pres du reacteur venus - utilisation de MCNPX-2.5C

    Energy Technology Data Exchange (ETDEWEB)

    Verboomen, B.; Coeck, M.; Baeten, P. [SCK.CEN, Centre d' Etude de l' Energie Nucleaire, Mol (Belgium)

    2003-07-01

    The present study has been justified by the choice of the Venus reactor (SCK-CEN) as a true work environment for the project of the fifth programme - frame E.V.I.D.O.S.. The objective of this programme is the evaluation, in neutron-photon combined field, and in true environment (nuclear industry), of the different methods of measurement used in neutron dosimetry. The project aims to the determination of abilities and limits of dosemeters and to establish methods to get doses equivalents from data gotten by spectrometry, personal and ambient dosimetry. For each environment, reference values have to be determined by spectrometry (energy and angle). The knowledge of the distribution in energy and in angle of neutrons allows then the calculation of the different doses equivalents. The determination of these references values by direct neutron calculation allows the validation of the Monte Carlo model. (N.C.)

  8. Growth and characterization of GaN thin film on Si substrate by thermionic vacuum arc (TVA)

    Science.gov (United States)

    Kundakçı, Mutlu; Mantarcı, Asim; Erdoğan, Erman

    2017-01-01

    Gallium nitride (GaN) is an attractive material with a wide-direct band gap (3.4 eV) and is one of the significant III-nitride materials, with many advantageous device applications such as high electron mobility transistors, lasers, sensors, LEDs, detectors, and solar cells, and has found applications in optoelectronic devices. GaN could also be useful for industrial research in the future. Chemical vapor deposition (CVD), molecular beam epitaxy (MBE), sputter, and pulsed laser deposition (PLD) are some of the methods used to fabricate GaN thin film. In this research, a GaN thin film grown on a silicon substrate using the thermionic vacuum arc (TVA) technique has been extensively studied. Fast deposition, short production time, homogeneity, and uniform nanostructure with low roughness can be seen as some of the merits of this method. The growth of the GaN was conducted at an operating pressure of 1× {{10}-6} \\text{Torr} , a plasma current 0.6 \\text{A} and for a very short period of time of 40 s. For the characterization process, scanning electron microscopy (SEM) was conducted to determine the structure and surface morphology of the material. Energy dispersive x-ray spectroscopy (EDX) was used to comprehend the elemental analysis characterization of the film. X-ray diffraction (XRD) was used to analyze the structure of the film. Raman measurements were taken to investigate the phonon modes of the material. The morphological properties of the material were analyzed in detail by atomic force microscopy (AFM).

  9. Nuclear research reactors

    International Nuclear Information System (INIS)

    1985-01-01

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.) [pt

  10. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  11. Photocatalytic reactor

    Science.gov (United States)

    Bischoff, Brian L.; Fain, Douglas E.; Stockdale, John A. D.

    1999-01-01

    A photocatalytic reactor for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane.

  12. Nuclear reactor

    International Nuclear Information System (INIS)

    Anthony, A.J.; Gruber, E.A.

    1979-01-01

    A nuclear reactor with control rods in channels between fuel assemblies wherein the fuel assemblies incorporate guide rods which protrude outwardly into the control rod channels to prevent the control rods from engaging the fuel elements. The guide rods also extend back into the fuel assembly such that they are relatively rigid members. The guide rods are tied to the fuel assembly end or support plates and serve as structural members which are supported independently of the fuel element. Fuel element spacing and support means may be attached to the guide rods. 9 claims

  13. D and DR Reactors

    Data.gov (United States)

    Federal Laboratory Consortium — The world's second full-scale nuclear reactor was the D Reactor at Hanford which was built in the early 1940's and went operational in December of 1944.D Reactor ran...

  14. Reactor core fuel management

    International Nuclear Information System (INIS)

    Silvennoinen, P.

    1976-01-01

    The subject is covered in chapters, entitled: concepts of reactor physics; neutron diffusion; core heat transfer; reactivity; reactor operation; variables of core management; computer code modules; alternative reactor concepts; methods of optimization; general system aspects. (U.K.)

  15. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  16. TESTING OF GAS REACTOR MATERIALS AND FUEL IN THE ADVANCED TEST REACTOR

    International Nuclear Information System (INIS)

    Grover, S.B.

    2004-01-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations

  17. Reactor container

    International Nuclear Information System (INIS)

    Oikawa, Hirohide; Otonari, Jun-ichiro; Tozaki, Yuka.

    1993-01-01

    Partition walls are disposed between a reactor pressure vessel and a suppression chamber to separate a dry well to an upper portion and a lower portion. A communication pipe is disposed to the partition walls. One end of the communication pipe is opened in an upper portion of the dry well at a position higher than a hole disposed to a bent tube of the suppression chamber. When coolants overflow from a depressurization valve by an erroneous operation of an emergency reactor core cooling device, the coolants accumulate in the upper portion of the dry well. When the pipeline is ruptured at the upper portion of the pressure vessel, only the inside of the pressure vessel and the upper portion of the dry well are submerged in water. In this case, the water level of the coolants does not elevate to the opening of the commuication pipe but they flow into the suppression chamber from the hole disposed to the bent tube. Since the coolants do not flow out to the lower portion of the dry well, important equipments such as control rod drives disposed at the lower portion of the dry wall can be prevented from submerging in water. (I.N.)

  18. Reactor container

    Energy Technology Data Exchange (ETDEWEB)

    Oikawa, Hirohide; Otonari, Jun-ichiro; Tozaki, Yuka.

    1993-09-07

    Partition walls are disposed between a reactor pressure vessel and a suppression chamber to separate a dry well to an upper portion and a lower portion. A communication pipe is disposed to the partition walls. One end of the communication pipe is opened in an upper portion of the dry well at a position higher than a hole disposed to a bent tube of the suppression chamber. When coolants overflow from a depressurization valve by an erroneous operation of an emergency reactor core cooling device, the coolants accumulate in the upper portion of the dry well. When the pipeline is ruptured at the upper portion of the pressure vessel, only the inside of the pressure vessel and the upper portion of the dry well are submerged in water. In this case, the water level of the coolants does not elevate to the opening of the commuication pipe but they flow into the suppression chamber from the hole disposed to the bent tube. Since the coolants do not flow out to the lower portion of the dry well, important equipments such as control rod drives disposed at the lower portion of the dry wall can be prevented from submerging in water. (I.N.).

  19. Reactor monitor

    International Nuclear Information System (INIS)

    Takada, Tamotsu.

    1992-01-01

    The device of the present invention monitors a reactor so that each of the operations for the relocation of fuel assemblies and the withdrawal and the insertion of control rods upon exchange of fuel assemblies and control rods in the reactor. That is, when an operator conducts relocating operation by way of a fuel assembly operation section, the device of the present invention judges whether the operation indication is adequate or not, based on the information of control rod arrangement in a control rod memory section. When the operation indication is wrong, a stop signal is sent to a fuel assembly relocating device. Further, when the operator conducts control rod operation by way of a control rod operation section, the device of the present invention judges in the control rod withdrawal judging section, as to whether the operation indication given by the operator is adequate or not by comparing it with fuel assembly arrangement information. When the operation indication is wrong, a stop signal is sent to control rod drives. With such procedures, increase of nuclear heating upon occurrence of erroneous operation can be prevented. (I.S.)

  20. Water and Regolith Shielding for Surface Reactor Missions

    Science.gov (United States)

    Poston, David I.; Ade, Brian J.; Sadasivan, Pratap; Leichliter, Katrina J.; Dixon, David D.

    2006-01-01

    This paper investigates potential shielding options for surface power fission reactors. The majority of work is focused on a lunar shield that uses a combination of water in stainless-steel cans and lunar regolith. The major advantage of a water-based shield is that development, testing, and deployment should be relatively inexpensive. This shielding approach is used for three surface reactor concepts: (1) a moderated spectrum, NaK cooled, Hastalloy/UZrH reactor, (2) a fast-spectrum, NaK-cooled, SS/UO2 reactor, and (3) a fast-spectrum, K-heat-pipe-cooled, SS/UO2 reactor. For this study, each of these reactors is coupled to a 25-kWt Stirling power system, designed for 5 year life. The shields are designed to limit the dose both to the Stirling alternators and potential astronauts on the surface. The general configuration used is to bury the reactor, but several other options exist as well. Dose calculations are presented as a function of distance from reactor, depth of buried hole, water boron concentration (if any), and regolith repacked density.

  1. Water and Regolith Shielding for Surface Reactor Missions

    International Nuclear Information System (INIS)

    Poston, David I.; Sadasivan, Pratap; Dixon, David D.; Ade, Brian J.; Leichliter, Katrina J.

    2006-01-01

    This paper investigates potential shielding options for surface power fission reactors. The majority of work is focused on a lunar shield that uses a combination of water in stainless-steel cans and lunar regolith. The major advantage of a water-based shield is that development, testing, and deployment should be relatively inexpensive. This shielding approach is used for three surface reactor concepts: (1) a moderated spectrum, NaK cooled, Hastalloy/UZrH reactor, (2) a fast-spectrum, NaK-cooled, SS/UO2 reactor, and (3) a fast-spectrum, K-heat-pipe-cooled, SS/UO2 reactor. For this study, each of these reactors is coupled to a 25-kWt Stirling power system, designed for 5 year life. The shields are designed to limit the dose both to the Stirling alternators and potential astronauts on the surface. The general configuration used is to bury the reactor, but several other options exist as well. Dose calculations are presented as a function of distance from reactor, depth of buried hole, water boron concentration (if any), and regolith repacked density

  2. High-efficiency AlxGa1-xAs/GaAs cathode for photon-enhanced thermionic emission solar energy converters

    Science.gov (United States)

    Feng, Cheng; Zhang, Yijun; Qian, Yunsheng; Wang, Ziheng; Liu, Jian; Chang, Benkang; Shi, Feng; Jiao, Gangcheng

    2018-04-01

    A theoretical emission model for AlxGa1-xAs/GaAs cathode with complex structure based on photon-enhanced thermionic emission is developed by utilizing one-dimensional steady-state continuity equations. The cathode structure comprises a graded-composition AlxGa1-xAs window layer and an exponential-doping GaAs absorber layer. In the deduced model, the physical properties changing with the Al composition are taken into consideration. Simulated current-voltage characteristics are presented and some important factors affecting the conversion efficiency are also illustrated. Compared with the graded-composition and uniform-doping cathode structure, and the uniform-composition and uniform-doping cathode structure, the graded-composition and exponential-doping cathode structure can effectively improve the conversion efficiency, which is ascribed to the twofold built-in electric fields. More strikingly, this graded bandgap structure is especially suitable for photon-enhanced thermionic emission devices since a higher conversion efficiency can be achieved at a lower temperature.

  3. Research and Development of a New Field Enhanced Low Temperature Thermionic Cathode that Enables Fluorescent Dimming and Loan Shedding without Auxiliary Cathode Heating

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jin

    2009-01-07

    This is the final report for project entitled 'Research and development of a new field enhanced low temperature thermionic cathode that enables fluorescent dimming and load shedding without auxiliary cathode heating', under Agreement Number: DE-FC26-04NT-42329. Under this project, a highly efficient CNT based thermionic cathode was demonstrated. This cathode is capable of emitting electron at a current density two order of magnitude stronger then a typical fluorescent cathode at same temperatures, or capable of emitting at same current density but at temperature about 300 C lower than that of a fluorescent cathode. Detailed fabrication techniques were developed including CVD growth of CNTs and sputter deposition of oxide thin films on CNTs. These are mature technologies that have been widely used in industry for large scale materials processing and device fabrications, thus, with further development work, the techniques developed in this project can be scaled-up in manufacturing environment. The prototype cathodes developed in this project were tested in lighting plasma discharge environment. In many cases, they not only lit and sustain the plasma, but also out perform the fluorescent cathodes in key parameters such like cathode fall voltages. More work will be needed to further evaluate more detailed and longer term performance of the prototype cathode in lighting plasma.

  4. Physics design of the upgraded TREAT reactor

    International Nuclear Information System (INIS)

    Bhattacharyya, S.K.; Lell, R.M.; Liaw, J.R.; Ulrich, A.J.; Wade, D.C.; Yang, S.T.

    1980-01-01

    With the deferral of the Safety Test Facility (STF), the TREAT Upgrade (TU) reactor has assumed a lead role in the US LMFBR safety test program for the foreseeable future. The functional requirements on TU require a significant enhancement of the capability of the current TREAT reactor. A design of the TU reactor has been developed that modifies the central 11 x 11 fuel assembly array of the TREAT reactor such as to provide the increased source of hard spectrum neutrons necessary to meet the functional requirements. A safety consequence of the increased demands on TU is that the self limiting operation capability of TREAT has proved unattainable, and reliance on a safety grade Plant Protection System is necessary to ensure that no clad damage occurs under postulated low-probability reactivity accidents. With that constraint, the physics design of TU provides a means of meeting the functional requirements with a high degree of confidence

  5. Antineutrino and gamma emission from the OSIRIS research reactor

    Directory of Open Access Journals (Sweden)

    Giot Lydie

    2017-01-01

    Full Text Available For the first time, the summation method has been coupled with a complete reactor model, in order to predict the antineutrino emission of a research reactor. This work, discussed in the first part of this paper, allows us to predict the low energy part of the antineutrino spectrum, evidencing the important contribution of actinides to the antineutrino emission. Experimental conditions at short distance from research reactors are challenging, because the reactor itself produces huge gamma background that induce accidental and correlated backgrounds in an antineutrino target. The understanding of this background is of utmost importance and triggered the second part of the work presented here.

  6. Low-power lead-cooled fast reactor for education purposes

    OpenAIRE

    D.S. Samokhin; G.L. Khorasanov; I.V. Tormyshev; E.A. Zemskov; A.L. Gostev; A.M. Terekhova; S.A. Kuzmichyov

    2015-01-01

    The possibility is examined to develop fast reactor for the purpose of implementation of research, education of undergraduate and doctoral students in handling innovative fast reactors and training specialists for atomic research centers and nuclear power plants. Main characteristics of liquid lead-cooled reactor using commercially implemented uranium dioxide with 19.7% enrichment with 235U isotope as the fuel load are examined. Hard neutron spectrum achieved in the fast reactor with compact ...

  7. The U238 antineutrino spectrum in the Double Chooz experiment

    Energy Technology Data Exchange (ETDEWEB)

    Haag, Nils; Oberauer, Lothar; Potzel, Walter; Schreckenbach, Klaus [Technische Universitaet, Muenchen (Germany); Lachenmaier, Tobias [Eberhard Karls Universitaet, Tuebingen (Germany)

    2011-07-01

    The DoubleChooz experiment aims at the determination of the unknown neutrino mixing parameter {Theta}{sub 13}. Two liquid scintillator detectors will measure an electron antineutrino disappearance at the Chooz site in the French ardennes. In order to improve the sensitivity, the antineutrino spectrum emitted by the Chooz reactor cores has to be determined with high accuracy. This talk focusses on the U238 spectrum, which is the only contributing spectrum, that was not measured until now. The final U238 beta spectrum is presented, and its implementation into the analysis framework is shown.

  8. Nuclear reactor

    International Nuclear Information System (INIS)

    Schabert, H.P.; Weber, R.; Bauer, A.

    1975-01-01

    The refuelling of a PWR power reactor of about 1,200 MWe is performed by a transport pipe in the containment leading from an external to an internal fuel pit. A wagon to transport the fuel elements can go from a vertical loading position to an also vertical deloading position in the inner fuel pit via guide rollers. The necessary horizontal movement is effected by means of a cable line through the transport pipe which is inclined at least 10 0 . Gravity thus helps in the movement to the deloading position. The cable line with winch is fastened outside the containment. Swivelling devices tip the wagon from the horizontal to the vertical position or vice versa. Loading and deloading are done laterally. (TK/LH) [de

  9. NEUTRONIC REACTOR

    Science.gov (United States)

    McGarry, R.J.

    1958-04-22

    Fluid-cooled nuclear reactors of the type that utilize finned uranium fuel elements disposed in coolant channels in a moderater are described. The coolant channels are provided with removable bushings composed of a non- fissionable material. The interior walls of the bushings have a plurality of spaced, longtudinal ribs separated by grooves which receive the fins on the fuel elements. The lands between the grooves are spaced from the fuel elements to form flow passages, and the size of the now passages progressively decreases as the dlstance from the center of the core increases for the purpose of producing a greater cooling effect at the center to maintain a uniform temperature throughout the core.

  10. Nuclear reactor

    International Nuclear Information System (INIS)

    Schweiger, F.; Glahe, E.

    1976-01-01

    In a nuclear reactor of the kind which is charged with spherical reaction elements and in which control rods are arranged to be thrust directly into the charge, each control rod has at least one screw thread on its external surface so that as the rod is thrust into the charge it is caused to rotate and thus make penetration easier. The length of each control rod may have two distinct portions, a latter portion which carries a screw thread and a lead-in portion which is shorter than the latter portion and which may carry a thread of greater pitch than that on the latter portion or may have a number of axially extending ribs instead of a thread

  11. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  12. Measurement of 235U fission spectrum-averaged cross sections and neutron spectrum adjusted with the activation data

    International Nuclear Information System (INIS)

    Kobayashi, Katsuhei; Kobayashi, Tooru

    1992-01-01

    The 235 U fission spectrum-averaged cross sections for 13 threshold reactions were measured with the fission plate (27 cm in diameter and 1.1 cm thick) at the heavy water thermal neutron facility of the Kyoto University Reactor. The Monte Carlo code MCNP was applied to check the deviation from the 235 U fission neutron spectrum due to the room-scattered neutrons, and it was found that the resultant spectrum was close to that of 235 U fission neutrons. Supplementally, the relations to derive the absorbed dose rates with the fission plate were also given using the calculated neutron spectra and the neutron Kerma factors. Finally, the present values of the fission spectrum-averaged cross sections were employed to adjust the 235 U fission neutron spectrum with the NEUPAC code. The adjusted spectrum showed a good agreement with the Watt-type fission neutron spectrum. (author)

  13. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  14. Vibration-proof FBR type reactor

    International Nuclear Information System (INIS)

    Kawamura, Yutaka.

    1992-01-01

    In a reactor container in an FBR type reactor, an outer building and upper and lower portions of a reactor container are connected by a load transmission device made of a laminated material of rubber and steel plates. Each of the reactor container and the outer building is disposed on a lower raft disposed on a rock by way of a vibration-proof device made of a laminated material of rubber and steel plates. Vibration-proof elements for providing vertical eigen frequency of the vibration-proof system comprising the reactor building and the vibration-proof device within a range of 3Hz to 5Hz are used. That is, the peak of designed acceleration for response spectrum in the horizontal direction of the reactor structural portions is shifted to side of shorter period from the main frequency region of the reactor structure. Alternatively, rigidity of the vibration-proof elements is decreased to shift the peak to the side of long period from the main frequency region. Designed seismic force can be greatly reduced both horizontally and vertically, to reduce the wall thickness of the structural members, improve the plant economy and to ensure the safety against earthquakes. (N.H.)

  15. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    International Nuclear Information System (INIS)

    Neil Todreas; Pavel Hejzlar

    2008-01-01

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores treated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcome the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better thermal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor

  16. Status report of Indonesian research reactor

    International Nuclear Information System (INIS)

    Arbie, B.; Supadi, S.

    1992-01-01

    A general description of three Indonesian research reactor, its irradiation facilities and its future prospect are described. Since 1965 Triga Mark II 250 KW Bandung, has been in operation and in 1972 the design powers were increased to 1000 KW. Using core grid form Triga 250 KW BATAN has designed and constructed Kartini Reactor in Yogyakarta which started its operation in 1979. Both of this Triga type reactors have served a wide spectrum of utilization such as training manpower in nuclear engineering, radiochemistry, isotope production and beam research in solid state physics. Each of this reactor have strong cooperation with Bandung Institute of Technology at Bandung and Gajah Mada University at Yogyakarta which has a faculty of Nuclear Engineering. Since 1976 the idea to have high flux reactor has been foreseen appropriate to Indonesian intention to prepare infrastructure for nuclear industry for both energy and non-energy related activities. The idea come to realization with the first criticality of RSG-GAS (Multipurpose Reactor G.A. Siwabessy) in July 1987 at PUSPIPTEK Serpong area. It is expected that by early 1992 the reactor will reached its full power of 30 MW and by end 1992 its expected that irradiation facilities will be utilized in the future for nuclear scientific and engineering work. (author)

  17. Department of reactor technology

    International Nuclear Information System (INIS)

    1980-01-01

    The activities of the Department of Reactor Technology at Risoe during 1979 are described. The work is presented in five chapters: Reactor Engineering, Reactor Physics and Dynamics, Heat Transfer and Hydraulics, The DR 1 Reactor, and Non-Nuclear Activities. A list of the staff and of publications is included. (author)

  18. Survey of research reactors

    International Nuclear Information System (INIS)

    Boek, H.; Villa, M.

    2004-06-01

    A survey of reasearch reactors based on the IAEA Nuclear Research Reactor Data Base (RRDB) was done. This database includes information on 273 operating research reactors ranging in power from zero to several hundred MW. From these 273 operating research reactors 205 reactors have a power level below 5 MW, the remaining 68 reactors range from 5 MW up to several 100 MW thermal power. The major reactor types with common design are: Siemens Unterrichtsreaktors, 1.2 Argonaut reactors, Slowpoke reactors, the miniature neutron source reactors, TRIGA reactors, material testing reactors and high flux reactors. Technical data such as: power, fuel material, fuel type, enrichment, maximum neutron flux density and experimental facilities for each reactor type as well as a description of their utilization in physics and chemistry, medicine and biology, academic research and teaching, training purposes (students and physicists, operating personnel), industrial application (neutron radiography, silicon neutron transmutation doping facilities) are provided. The geographically distribution of these reactors is also shown. As conclusions the author discussed the advantages (low capital cost, low operating cost, low burn up, simple to operate, safe, less restrictive containment and sitting requirements, versatility) and disadvantages (lower sensitivity for NAA, limited radioisotope production, limited use of neutron beams, limited access to the core, licensing) of low power research reactors. 24 figs., refs. 15, Tab. 1 (nevyjel)

  19. FBR type reactor

    International Nuclear Information System (INIS)

    Kimura, Kimitaka; Fukuie, Ken; Iijima, Tooru; Shimpo, Masakazu.

    1994-01-01

    In an FBR type reactor for exchanging fuels by pulling up reactor core upper mechanisms, a connection mechanism is disposed for connecting the top of the reactor core and the lower end of the reactor core upper mechanisms. In addition, a cylindrical body is disposed surrounding the reactor core upper mechanisms, and a support member is disposed to the cylindrical body for supporting an intermediate portion of the reactor core upper mechanisms. Then, the lower end of the reactor core upper mechanisms is connected to the top of the reactor core. Same displacements are caused to both of them upon occurrence of earthquakes and, as a result, it is possible to eliminate mutual horizontal displacement between a control rod guide hole of the reactor core upper mechanisms and a control rod insertion hole of the reactor core. In addition, since the intermediate portion of the reactor core upper mechanisms is supported by the support member disposed to the cylindrical body surrounding the reactor core upper mechanisms, deformation caused to the lower end of the reactor core upper mechanisms is reduced, so that the mutual horizontal displacement with respect to the control rod insertion hole of the reactor core can be reduced. As a result, performance of control rod insertion upon occurrence of the earthquakes is improved, so that reactor shutdown is conducted more reliably to improve reactor safety. (N.H.)

  20. Licensing open spectrum systems

    OpenAIRE

    Vázquez, Miguel Angel; Pérez Neira, Ana Isabel; Lagunas Hernandez, Miguel A.

    2012-01-01

    This paper studies how the spectrum regulation could change in the future open spectrum communication systems. Due to their huge success in short-range communication systems (WiFi, Zigbee, ...), broader area telecommunication providers might mimic the open spectrum philosophy to their systems. Nevertheless, current wireless open spectrum systems are not designed for wide areas and they do not provide QoS to their users. This work proposes an alternative to the nowadays open spectrum systems i...

  1. Fast breeder reactors

    International Nuclear Information System (INIS)

    Heinzel, V.

    1975-01-01

    The author gives a survey of 'fast breeder reactors'. In detail the process of breeding, the reasons for the development of fast breeders, the possible breeder reactors, the design criteria, fuels, cladding, coolant, and safety aspects are reported on. Design data of some experimental reactors already in operation are summarized in stabular form. 300 MWe Prototype-Reactors SNR-300 and PFR are explained in detail and data of KWU helium-cooled fast breeder reactors are given. (HR) [de

  2. Determining Reactor Neutrino Flux

    OpenAIRE

    Cao, Jun

    2011-01-01

    Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understa...

  3. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    A nuclear reactor coolant channel is described that is suitable for sub-cooled reactors as in pressurised water reactors as well as for bulk boiling, as in boiling water reactors and steam generating nuclear reactors. The arrangement aims to improve heat transfer between the fuel elements and the coolant. Full constructional details are given. See also other similar patents by the author. (U.K.)

  4. Nuclear reactor

    International Nuclear Information System (INIS)

    Irion, L.; Tautz, J.; Ulrych, G.

    1976-01-01

    This additional patent complements the arrangement of non-return valves to prevent loss of cooling water on fracture of external tubes in the main coolant circuit (according to PS 24 24 427.7) by ensuring that the easily movable valves only operate in case of a fault, but do not flutter in operation, because the direction of flow is not the same at each location where they are installed. The remedy for this undesirable effect consists of allocating 1 non-return valve unit with 5 to 10 valves to each (of several) ducts for the cooling water intake. These units are installed in the annular space between the reactor vessel and the pressure vessel below the inlet of the ducts. Due to flow guidance surfaces in the same space, the incoming cooling water is deflected downwards and as the guiding surfaces are closed at the sides, must pass parallel to the valves of the non-return valve unit. On fracture of the external cooling water inlet pipe concerned, all valves of this unit close due to reversal of flow on the outlet side. (TK) [de

  5. Reactor container

    International Nuclear Information System (INIS)

    Kagawa, Tatsuo; Yanai, Ryoichi.

    1976-01-01

    Object: To provide a reactor container which is free from water shock action or condensing vibrations and cannot be readily broken by a missile from a pump impeller, pipe whipping, steam jet reaction, etc., and which also quickly condenses issuing steam and possesses a large vibration-proof strength. Structure: A high pressure containment vessel accommodating a pressure container includes a plurality of pressurized water tanks arranged along its inner periphery, and a pneumatic valve is provided in a lower portion of each of these pressurized water tanks. If an accident occurs, vapor is caused to issue from the pressure container into the vessel. When a certain value is reached, the pneumatic valves are opened, whereby the gas within the pressurized water tanks causes pressurized water to flow through the pipe and be ejected from spray nozzles to cause condensation of water within the vessel. Further, water of a pool within the container is circulated to allow heat release to the outside. (Horiuchi, T.)

  6. Multi-megawatt pin core space reactor

    International Nuclear Information System (INIS)

    Hornung, R.J.; Normand, E.; Stevens, A.; Teare, K.R.

    1989-01-01

    Boeing has assembled an experienced team to perform a concept definition study of a multi-megawatt (MMW) nuclear power system designed to provide burst power for a space based platform. The design uses the hydrogen needed for platform cooling as the working fluid in an open thermodynamic cycle. The hydrogen is heated by a pin-fuel, fast spectrum reactor and generates power through a pair of counter-rotating turbines which drive four wound rotor alternators. This paper gives an overview of the system, concentrating on features of the reactor design and operation

  7. Advanced Burner Reactor 1000MWth Reference Concept

    Energy Technology Data Exchange (ETDEWEB)

    Cahalan, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Fanning, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Farmer, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Kim, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Kellogg, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Krajtl, L. [Argonne National Lab. (ANL), Argonne, IL (United States); Lomperski, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Momozaki, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Park, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Reed, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Salev, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Seidensticker, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Tang, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Tzanos, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Wei, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Yang, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Chikazawa, Y. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2007-09-30

    The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence, to validate the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat.

  8. Status report of Indonesian research reactors

    International Nuclear Information System (INIS)

    Arbie, B.; Supadi, S.

    1995-01-01

    A general description of the three Indonesia research reactors, their irradiation facilities and future prospect are given. The 250 kW Triga Mark II in Bandung has been in operation since 1965 and in 1972 its designed power was increased to 1000 kW. The core grid from the previous 250 kW Triga Mark II was then used by Batan for designing and constructing the Kartini reactor in Yogyakarta. This reactor commenced its operation in 1979. Both Triga reactors have served a wide spectrum of utilization such as for manpower training in nuclear engineering, radiochemistry, isotope production, and beam research in solid state physics. The Triga reactor management in Bandung has a strong cooperation with the Bandung Institute of Technology and the one in Yogyakarta with the Gadjah Mada University which has a Nuclear Engineering Department at its Faculty of Engineering. In 1976 there emerged an idea to have a high flux reactor appropriate for Indonesia's intention to prepare an infrastructure for both nuclear energy and non-energy industry era. Such an idea was then realized with the achievement of the first criticality of the RSG-GAS reactor at the Serpong area. It is now expected that by early 1992 the reactor will reach its full 30 MW power level and by the end of 1992 the irradiation facilities be utilizable fully for future scientific and engineering work. As a part of the national LEU fuel development program a study has been underway since early 1989 to convert the RSG-GAS reactor core from using oxide fuel to using higher loading silicide fuel. (author)

  9. Reactor Physics Training

    International Nuclear Information System (INIS)

    Baeten, P.

    2007-01-01

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  10. European supercritical water cooled reactor

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.; Marsault, P.; Bittermann, D.; Maraczy, C.; Laurien, E.; Lycklama a Nijeholt, J.A.; Anglart, H.; Andreani, M.; Ruzickova, M.; Toivonen, A.

    2011-01-01

    Highlights: → The HPLWR reactor design is an example of a supercritical water cooled reactor. → Cladding material tests have started but materials are not yet satisfactory. → Numerical heat transfer predictions are promising but need further validation. → The research project is most suited for nuclear education and training. - Abstract: The High Performance Light Water Reactor (HPLWR), how the European Supercritical Water Cooled Reactor is called, is a pressure vessel type reactor operated with supercritical water at 25 MPa feedwater pressure and 500 o C average core outlet temperature. It is designed and analyzed by a European consortium of 10 partners and 3 active supporters from 8 Euratom member states in the second phase of the HPLWR project. Most emphasis has been laid on a core with a thermal neutron spectrum, consisting of small fuel assemblies in boxes with 40 fuel pins each and a central water box to improve the neutron moderation despite the low coolant density. Peak cladding temperatures of the fuel rods have been minimized by heating up the coolant in three steps with intermediate coolant mixing. The containment design with its safety and residual heat removal systems is based on the latest boiling water reactor concept, but with different passive high pressure coolant injection systems to cause a forced convection through the core. The design concept of the steam cycle is indicating the envisaged efficiency increase to around 44%. Moreover, it provides the constraints to design the components of the balance of the plant. The project is accompanied by numerical studies of heat transfer of supercritical water in fuel assemblies and by material tests of candidate cladding alloys, performed by the consortium and supported by additional tests of the Joint Research Centre of the European Commission. Besides the scientific and technical progress, the HPLWR project turned out to be most successful in training the young generation of nuclear engineers

  11. Thermionic source design

    International Nuclear Information System (INIS)

    True, R.

    1988-01-01

    This paper describes codes and methods used to design high quality diode and gridded Pierce guns. Such guns are used in travelling wave tubes, klystrons, linear accelerators, free-electron lasers, and other E-beam devices. PC code TMLBMC is discussed. Either this code (or PRCGUN) can be used to obtain a preliminary gun design. Two methods useful in determining the electrode contours external to the beam (focus electrode and anode with hole) are presented. These are based on matching the fields along the beam edge and in the center of the Pierce gun. An analytic method, and a numerical method based on the solution of Laplace's equation (in combination with data from TMLBMC), are presented

  12. Research on Thermionic Plasmas.

    Science.gov (United States)

    1984-06-13

    TE ,PHIW,NCS ,NCSP,NPO ,SURMULT, Bi ,DBDT,CHITEM,UZERO,SMR,LOSSION, CCHI ,ACHI ,OCHI ,AlAO ,TAU,RTAU ,TAUIN,NO ,Nl, DELCHII ,DELCHIF,DELCHIS,VD,VOUTr...SMALLJ*RTEM; PUT FILECISOPLOT) EDIT(’OCHI(1 ,ICASE, (A(5) ,F(2) ,A(2) ,E(13,5) ,A(1)); -5- APPENDIX B PUT FILECISOPLOT) EDIT(’ CCHI (’,ICASE, r(A(S...TPHIMl+CHI )*EXP(TPHIM-1TPHIZ)*2. +EXP CCHI )*IZMXI -SQPI/2. -SQRT(CHI)+EXPCCHI)*IZMXX)/SQPI +TRAPPED*(2.*EXP(CHI)*IXZM1 0 END; 2.*EXP(TPHIM-TPHIZ)*SQXZM

  13. Effect of reactor coolant radioactivity upon configuration feasibility for a nuclear electric propulsion vehicle

    Science.gov (United States)

    Soffer, L.; Wright, G. N.

    1973-01-01

    A preliminary shielding analysis was carried out for a conceptual nuclear electric propulsion vehicle designed to transport payloads from low earth orbit to synchronous orbit. The vehicle employed a thermionic nuclear reactor operating at 1575 kilowatts and generated 120 kilowatts of electricity for a round-trip mission time of 2000 hours. Propulsion was via axially directed ion engines employing 3300 pounds of mercury as a propellant. The vehicle configuration permitted a reactor shadow shield geometry using LiH and the mercury propellant for shielding. However, much of the radioactive NaK reactor coolant was unshielded and in close proximity to the power conditioning electronics. An estimate of the radioactivity of the NaK coolant was made and its unshielded dose rate to the power conditioning equipment calculated. It was found that the activated NaK contributed about three-fourths of the gamma dose constraint. The NaK dose was considered a sufficiently high fraction of the allowable gamma dose to necessitate modifications in configuration.

  14. Performance of the thermionic RF gun injector for the linac-based IR free electron laser at the FEL-SUT

    CERN Document Server

    Oda, F; Kawai, M; Koike, H; Sobajima, M

    2001-01-01

    Kawasaki Heavy Industries, Ltd. (KHI) has developed a linac-based compact IR free electron laser device and has installed it in the FEL-SUT (IR FEL Research Center of Science University of Tokyo). The FEL device adopts a combination of a multi-cell RF gun with a thermionic cathode and an alpha-magnet as an injector. The fundamental design of this RF gun is the pi/2 mode standing wave structure. It has two accelerating cells and a coupling cell located on the beam axis, a so-called 'on axis coupled structure' (OCS). Characteristics of momentum distribution and micropulse bunch length of the electron beam are compared with beam dynamics simulation results in this paper. We succeeded in obtaining sufficient peak current for FEL lasing with this injector, and the first lasing was achieved on 6 July 2000.

  15. The fast breeder reactor

    International Nuclear Information System (INIS)

    Collier, J.

    1990-01-01

    The arguments for and against the fast breeder reactor are debated. The case for the fast reactor is that the world energy demand will increase due to increasing population over the next forty years and that the damage to the global environment from burning fossil fuels which contribute to the greenhouse effect. Nuclear fission is the only large scale energy source which can achieve a cut in the use of carbon based fuels although energy conservation and renewable sources will also be important. Fast reactors produce more energy from uranium than other types of (thermal) reactors such as AGRs and PWRs. Fast reactors would be important from about 2020 onwards especially as by then many thermal reactors will need to be replaced. Fast reactors are also safer than normal reactors. The arguments against fast reactors are largely economic. The cost, especially the capital cost is very high. The viability of the technology is also questioned. (UK)

  16. Safeguarding research reactors

    International Nuclear Information System (INIS)

    Powers, J.A.

    1983-03-01

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  17. Nuclear reactor instrumentation at research reactor renewal

    International Nuclear Information System (INIS)

    Baers, B.; Pellionisz, P.

    1981-10-01

    The paper overviews the state-of-the-art of research reactor renewals. As a case study the instrumentation reconstruction of the Finnish 250 kW TRIGA reactor is described, with particular emphasis on the nuclear control instrumentation and equipment which has been developed and manufactured by the Central Research Institute for Physics, Budapest. Beside the presentation of the nuclear instrument family developed primarily for research reactor reconstructions, the quality assurance policy conducted during the manufacturing process is also discussed. (author)

  18. Strategic Vision for Spectrum

    Science.gov (United States)

    2010-01-01

    that defines spectrum requirements consistent with emerging tech- proactive spectrum nologies, commercial trends , and increasing market demands...Integration, Capital Planning, Competency Management, Computing and Communications Infrastructure, Critical Infrastructure Protection, eBusiness

  19. Pulsar Emission Spectrum

    OpenAIRE

    Gruzinov, Andrei

    2013-01-01

    Emission spectrum is calculated for a weak axisymmetric pulsar. Also calculated are the observed spectrum, efficiency, and the observed efficiency. The underlying flow of electrons and positrons turns out to be curiously intricate.

  20. Numerical study on seismic response of the reactor coolant pump in Advanced Passive Pressurized Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    De, Cheng, E-mail: 0100209064@sjtu.edu.cn; Zhen-Qiang, Yao, E-mail: zqyaosjtu@gmail.com; Ya-bo, Xue; Hong, Shen

    2014-10-15

    Highlights: • An artificial accelerogram of the specified SSE is generated. • A dynamic FE model of the RCP in AP1000 (with gyroscopic and FSI effects) is developed. • The displacement, force, moment and stress in the RCP during the earthquake are summarized. - Abstract: The reactor coolant pump in the Advanced Passive Pressurized Water Reactor is a kind of nuclear canned-motor pump. The pump is classified as Seismic Category I, which must function normally during the Safe Shutdown Earthquake. When the nuclear power plant is located in seismically active region, the seismic response of the reactor coolant pump may become very important for the safety assessment of the whole nuclear power plant. In this article, an artificial accelerogram is generated. The response spectrum of the artificial accelerogram fits well with the design acceleration spectrum of the Safe Shutdown Earthquake. By applying the finite element modeling method, the dynamic finite element models of the rotor and stator in the reactor coolant pump are created separately. The rotor and stator are coupled by the journal bearings and the annular flow between the rotor and stator. Then the whole dynamic model of the reactor coolant pump is developed. Time domain analysis which uses the improved state-space Newmark method of a direct time integration scheme is carried out to investigate the response of the reactor coolant pump under the horizontal seismic load. The results show that the reactor coolant pump responds differently in the direction of the seismic load and in the perpendicular direction. During the Safe Shutdown Earthquake, the displacement response, the shear force, the moment and the journal bearing reaction forces in the reactor coolant pump are analyzed.

  1. Advanced burner test reactor preconceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  2. Reactor Physics Programme

    International Nuclear Information System (INIS)

    De Raedt, C.

    2000-01-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies

  3. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  4. Microstructural study of high irradiated reactor steels

    Energy Technology Data Exchange (ETDEWEB)

    Slugen, Vladimir; Petriska, Martin; Sojak, Stanislav; Veternikova, Jana [Slovak University of Technology, FEI, Bratislava (Slovakia); Krsjak, Vladimir [Institute for Energy, Joint Research Centre of the European Commission, Petten (Netherlands)

    2009-11-15

    Positron Annihilation Spectroscopy (PAS) techniques in combination with other techniques were effectively used in the testing and selection process of optimal reactor steels for use in Generation III and IV reactors or thermonuclear fusion facilities. Conventional PAS lifetime technique and pulsed low energy positron system were applied on wide spectrum of reactor steels together with other techniques viz., Transmission Electron Microscopy and Moessbauer Spectroscopy focused on the role of Nickel in the steel microstructure. Experimental experiences in this area collected over the last twenty years were very useful in the actual study by avoiding many mistakes in handling with specimens or in careful interpretation of the results. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Research reactor instrumentation

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2001-02-01

    This is a textbook on research reactor instrumentation for training purposes, it gives a survey on research reactor instrumentation requirements and eight exercises covering the major aspects of this topic are presented. (author)

  6. Nuclear reactors; graphical symbols

    International Nuclear Information System (INIS)

    1987-11-01

    This standard contains graphical symbols that reveal the type of nuclear reactor and is used to design graphical and technical presentations. Distinguishing features for nuclear reactors are laid down in graphical symbols. (orig.) [de

  7. Hybrid plasmachemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lelevkin, V. M., E-mail: lelevkin44@mail.ru; Smirnova, Yu. G.; Tokarev, A. V. [Kyrgyz-Russian Slavic University (Kyrgyzstan)

    2015-04-15

    A hybrid plasmachemical reactor on the basis of a dielectric barrier discharge in a transformer is developed. The characteristics of the reactor as functions of the dielectric barrier discharge parameters are determined.

  8. Ship propulsion reactors technology

    International Nuclear Information System (INIS)

    Fribourg, Ch.

    2002-01-01

    This paper takes the state of the art on ship propulsion reactors technology. The french research programs with the corresponding technological stakes, the reactors specifications and advantages are detailed. (A.L.B.)

  9. Fusion reactor design studies

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Santarius, J.F.

    1990-01-01

    This report discusses the following topics on the ARIES tokamak: systems; plasma power balance; impurity control and fusion ash removal; fusion product ripple loss; energy conversion; reactor fueling; first wall design; shield design; reactor safety; and fuel cost and resources

  10. Reactor shutdown method

    International Nuclear Information System (INIS)

    Nishino, Yoshitaka; Sawa, Toshio; Matsumoto, Takayuki; Osumi, Katsumi; Usui, Naoshi.

    1991-01-01

    A device for injecting a hydrogen gas, a chelating agent or a reducing agent is disposed in a reactor water recycling system. Upon reactor shutdown, the hydrogen gas, the chelating agent or the reducing agent is injected to primary coolants. With such a procedure, radioactive ions formed by the dissolution of oxide layers at the surface of pipelines and equipments in a reactor water recycling system and a reactor water cleanup system are removed from the primary coolants by a reactor water cleanup device. Accordingly, since the dose rate at the surface of the pipelines can be reduced, the operator's radiation dose can be reduced upon periodical inspection for a power plant. Further, the inner pressure of the reactor is kept higher than the saturated steam pressure at the reactor water temperature to suppress boiling of the reactor water. This can suppress the peeling of cruds deposited to the surface of the fuel cladding tube. (I.N.)

  11. Undergraduate reactor control experiment

    International Nuclear Information System (INIS)

    Edwards, R.M.; Power, M.A.; Bryan, M.

    1992-01-01

    A sequence of reactor and related experiments has been a central element of a senior-level laboratory course at Pennsylvania State University (Penn State) for more than 20 yr. A new experiment has been developed where the students program and operate a computer controller that manipulates the speed of a secondary control rod to regulate TRIGA reactor power. Elementary feedback control theory is introduced to explain the experiment, which emphasizes the nonlinear aspect of reactor control where power level changes are equivalent to a change in control loop gain. Digital control of nuclear reactors has become more visible at Penn State with the replacement of the original analog-based TRIGA reactor control console with a modern computer-based digital control console. Several TRIGA reactor dynamics experiments, which comprise half of the three-credit laboratory course, lead to the control experiment finale: (a) digital simulation, (b) control rod calibration, (c) reactor pulsing, (d) reactivity oscillator, and (e) reactor noise

  12. Reactor System Design

    International Nuclear Information System (INIS)

    Chi, S. K.; Kim, G. K.; Yeo, J. W.

    2006-08-01

    SMART NPP(Nuclear Power Plant) has been developed for duel purpose, electricity generation and energy supply for seawater desalination. The objective of this project IS to design the reactor system of SMART pilot plant(SMART-P) which will be built and operated for the integrated technology verification of SMART. SMART-P is an integral reactor in which primary components of reactor coolant system are enclosed in single pressure vessel without connecting pipes. The major components installed within a vessel includes a core, twelve steam generator cassettes, a low-temperature self pressurizer, twelve control rod drives, and two main coolant pumps. SMART-P reactor system design was categorized to the reactor coe design, fluid system design, reactor mechanical design, major component design and MMIS design. Reactor safety -analysis and performance analysis were performed for developed SMART=P reactor system. Also, the preparation of safety analysis report, and the technical support for licensing acquisition are performed

  13. Nuclear reactor shutdown system

    International Nuclear Information System (INIS)

    Mangus, J.D.; Cooper, M.H.

    1982-01-01

    An improved nuclear reactor shutdown system is described comprising a temperature sensitive device connected to control the electric power supply to a magnetic latch holding a body of a neutron absorbing material. The temperature sensitive device is exposed to the reactor coolant so that when the reactor coolant temperature rises above a specific level, the temperature sensitive device will cause deenergization of the magnetic latch to allow the body of neutron absorbing material to enter the reactor core. (author)

  14. PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Masood, Z.

    2016-01-01

    The PUSPATI TRIGA Reactor is the only research reactor in Malaysia. This 1 MW TRIGA Mk II reactor first reached criticality on 28 June 1982 and is located at the Malaysian Nuclear Agency premise in Bangi, Malaysia. This reactor has been mainly utilised for research, training and education and isotope production. Over the years several systems have been refurbished or modernised to overcome ageing and obsolescence problems. Major achievements and milestones will also be elaborated in this paper. (author)

  15. Contribution to the study of {sup 233}U production with MOX-ThPu fuel in PWR reactor. Transition scenarios towards Th/{sup 233}U iso-generating concepts in thermal spectrum. Development of the MURE fuel evolution code; Contribution a l'etude de la production d'{sup 233}U en combustible MOX-ThPu en reacteur a eau sous pression. Scenarios de transition vers des concepts isogenerateurs Th/{sup 233}U en spectre thermique. Developpement du code MURE d'evolution du combustible

    Energy Technology Data Exchange (ETDEWEB)

    Michel-Sendis, F

    2006-12-15

    If nuclear power is to provide a significant fraction of the growing world energy demand, only through the breeding concept can the development of sustainable nuclear energy become a reality. The study of such a transition, from present-day nuclear technologies to future breeding concepts is therefore pertinent. Among these future concepts, those using the thorium cycle Th/U-233 in a thermal neutron spectrum are of particular interest; molten-salt type thermal reactors would allow for breeding while requiring comparatively low initial inventories of U-233. The upstream production of U-233 can be obtained through the use of thorium-plutonium mixed oxide fuel in present-day light water reactors. This work presents, firstly, the development of the MURE evolution code system, a C++ object-oriented code that allows the study, through Monte Carlo (M.C.) simulation, of nuclear reactors and the evolution of their fuel under neutron irradiation. The M.C. methods are well-suited for the study of any reactor, whether it'd be an existing reactor using a new kind of fuel or a future concept altogether, the simulation is only dependent on nuclear data. Exact and complex geometries can be simulated and continuous energy particle transport is performed. MURE is an interface with MCNP, the well-known and validated transport code, that allows, among other functionalities, to simulate constant power and constant reactivity evolutions. Secondly, the study of MOX ThPu fuel in a conventional light water reactor (REP) is presented; it explores different plutonium concentrations and isotopic qualities in order to evaluate their safety characteristics. Simulation of their evolution allows us to quantify the production of U-233 at the end of burnup. Last, different french scenarios validating a possible transition towards a park of thermal Th/U-233 breeders, are presented. In these scenarios, U-233 is produced in ThPu moxed light water reactors. (author)

  16. Reactor power measuring device

    International Nuclear Information System (INIS)

    Izumi, Mikio; Sano, Yuji; Seki, Eiji; Yoshida, Toshifumi; Ito, Toshiaki.

    1993-01-01

    The present invention provides a self-powered long detector having a sensitivity over the entire length of a reactor core as an entire control rod withdrawal range of a BWR type reactor, and a reactor power measuring device using a gamma ray thermometer which scarcely causes sensitivity degradation. That is, a hollow protection pipe is disposed passing through the reactor core from the outside of a reactor pressure vessel. The self-powered long detectors and the gamma ray thermometers are inserted and installed in the protection pipe. An average reactor power in an axial direction of the reactor relative to a certain position in the horizontal cross section of the reactor core is determined based on the power of the self-powered long detector over the entire length of the reactor core. Since the response of the self-powered detector relative to a local power change is rapid, the output is used as an input signal to a safety protection device of the reactor core. Further, a gamma ray thermometer secured in the reactor and having scarce sensitivity degradation is used instead of an incore travelling neutron monitor used for relative calibration of an existent neutron monitor secured in the reactor. (I.S.)

  17. Ulysse, mentor reactor

    International Nuclear Information System (INIS)

    Bouquin, B.; Rio, I.; Safieh, J.

    1997-01-01

    On July 23, 1961, the ULYSSE reactor began its first power rise. Designed at that time to train nuclear engineering students and reactor operators, this reactor still remains an indispensable tool for nuclear teaching and a choice instrument for scientists. (author)

  18. Towards nuclear fusion reactors

    International Nuclear Information System (INIS)

    1993-11-01

    The results of nuclear fusion researches in JAERI are summarized. In this report, following themes are collected: the concept of fusion reactor (including ITER), fusion reactor safety, plasma confinement, fusion reactor equipment, and so on. Includes glossary. (J.P.N.)

  19. Refuelling nuclear reactors

    International Nuclear Information System (INIS)

    Stacey, J.; Webb, J.; White, W.P.; McLaren, N.H.

    1981-01-01

    An improved nuclear reactor refuelling machine is described which can be left in the reactor vault to reduce the off-load refuelling time for the reactor. The system comprises a gripper device rangeable within a tubular chute, the gripper device being movable by a pantograph. (U.K.)

  20. The Jules Horowitz reactor

    International Nuclear Information System (INIS)

    2003-01-01

    The Jules Horowitz reactor is the future european reactor for irradiation. It will be used for materials and new fuels irradiation. Experiments for the safety and the validation of neutronics calculation will be also realized. This paper presents the design and the performance of the reactor and the schedule of the remaining design studies. (A.L.B.)

  1. Pulsed sphere measurements for weapons and fusion reactor design

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Pulsed sphere measurements provide a way of validating the Monte Carlo transport codes and the input cross sections used in the design of thermonuclear weapons and fusion reactors. In these measurements pulsed 14-MeV neutrons are generated at the center of spheres of materials to be investigated, and the emitted neutron spectrum is measured by time-of-flight techniques. The measurements described in this article cannot reproduce the complex conditions found in weapons and fusion reactors. However, agreement between measurement and calculations for a simple geometry and one material (or simple composites) is a necessary prerequisite to reliable fusion reactor calculations

  2. Calculations on neutron irradiation damage in reactor materials

    International Nuclear Information System (INIS)

    Sone, Kazuho; Shiraishi, Kensuke

    1976-01-01

    Neutron irradiation damage calculations were made for Mo, Nb, V, Fe, Ni and Cr. Firstly, damage functions were calculated as a function of neutron energy with neutron cross sections of elastic and inelastic scatterings, and (n,2n) and (n,γ) reactions filed in ENDF/B-III. Secondly, displacement damage expressed in displacements per atom (DPA) was estimated for neutron environments such as fission spectrum, thermal neutron reactor (JMTR), fast breeder reactor (MONJU) and two fusion reactors (The Conceptual Design of Fusion Reactor in JAERI and ORNL-Benchmark). then, damage cross section in units of dpa. barn was defined as a factor to convert a given neutron fluence to the DPA value, and was calculated for the materials in the above neutron environments. Finally, production rates of helium and hydrogen atoms were calculated with (n,α) and (n,p) cross sections in ENDF/B-III for the materials irradiated in the above reactors. (auth.)

  3. Advanced core physics and thermal hydraulics analysis of boiling water reactors using innovative fuel concepts

    OpenAIRE

    Winter, Dominik

    2014-01-01

    The economical operation of a boiling water reactor (BWR) is mainly achieved by the axially uniform utilization of the nuclear fuel in the assemblies which is challenging because the neutron spectrum in the active reactor core varies with the axial position. More precisely, the neutron spectrum becomes harder the higher the position is resulting in a decrease of the fuel utilization because the microscopic fission cross section is smaller by several orders of magnitude. In this work, the use ...

  4. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  5. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  6. Fundamentals of reactor chemistry

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1981-12-01

    In the Nuclear Engineering School of JAERI, many courses are presented for the people working in and around the nuclear reactors. The curricula of the courses contain also the subject material of chemistry. With reference to the foreign curricula, a plan of educational subject material of chemistry in the Nuclear Engineering School of JAERI was considered, and the fundamental part of reactor chemistry was reviewed in this report. Since the students of the Nuclear Engineering School are not chemists, the knowledge necessary in and around the nuclear reactors was emphasized in order to familiarize the students with the reactor chemistry. The teaching experience of the fundamentals of reactor chemistry is also given. (author)

  7. Opportunities for applied measurements using the PROSPECT antineutrino detector: reactor physics and safeguards

    Science.gov (United States)

    Bowden, Nathaniel; Prospect Collaboration

    2015-10-01

    Disagreement of reactor antineutrino spectrum and flux measurements with updated predictions indicates that we have much to learn about the complicated processes underlying antineutrino production in reactors, as well as hinting at new physics. A number of new efforts seek to address these questions, including the PROSPECT experiment planned at the HFIR research reactor. In addition to greatly advancing our understanding of reactor antineutrino emissions, PROSPECT can support a rich applied physics program. The detection technology developed for PROSPECT will enable precision antineutrino spectrum measurements close to essentially any reactor type. Here we describe how such measurements provide opportunities to probe fissile isotope and fission daughter distributions, and their potential use for reactor physics and safeguards applications. LLNL-ABS-673983. Prepared by LLNL under Contract DE-AC52-07NA27344.

  8. Generation III+ Reactor Portfolio

    International Nuclear Information System (INIS)

    2010-03-01

    While the power generation needs of utilities are unique and diverse, they are all faced with the double challenge of meeting growing electricity needs while curbing CO 2 emissions. To answer these diverse needs and help tackle this challenge, AREVA has developed several reactor models which are briefly described in this document: The EPR TM Reactor: designed on the basis of the Konvoi (Germany) and N4 (France) reactors, the EPRTM reactor is an evolutionary model designed to achieve best-in-class safety and operational performance levels. The ATMEA1 TM reactor: jointly designed by Mitsubishi Heavy Industries and AREVA through ATMEA, their common company. This reactor design benefits from the competencies and expertise of the two mother companies, which have commissioned close to 130 reactor units. The KERENA TM reactor: Designed on the basis of the most recent German BWR reactors (Gundremmingen) the KERENA TM reactor relies on proven technology while also including innovative, yet thoroughly tested, features. The optimal combination of active and passive safety systems for a boiling water reactor achieves a very low probability of severe accident

  9. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  10. Reactor power monitoring device

    International Nuclear Information System (INIS)

    Dogen, Ayumi; Ozawa, Michihiro.

    1983-01-01

    Purpose: To significantly improve the working efficiency of a nuclear reactor by reflecting the control rod history effect on thermal variants required for the monitoring of the reactor operation. Constitution: An incore power distribution calculation section reads the incore neutron fluxes detected by neutron detectors disposed in the reactor to calculate the incore power distribution. A burnup degree distribution calculation section calculates the burnup degree distribution in the reactor based on the thus calculated incore power distribution. A control rod history date store device supplied with the burnup degree distribution renews the stored control rod history data based on the present control rod pattern and the burnup degree distribution. Then, thermal variants of the nuclear reactor are calculated based on the thus renewed control rod history data. Since the control rod history effect is reflected on the thermal variants required for the monitoring of the reactor operation, the working efficiency of the nuclear reactor can be improved significantly. (Seki, T.)

  11. Reactor power control device

    International Nuclear Information System (INIS)

    Ishii, Yoshihiko; Arita, Setsuo; Miyamoto, Yoshiyuki; Fukazawa, Yukihisa; Ishii, Kazuhiko

    1998-01-01

    The present invention provides a reactor power control device capable of enhancing an operation efficiency while keeping high reliability and safety in a BWR type nuclear power plant. Namely, the device of the present invention comprises (1) a means for inputting a set value of a generator power and a set value of a reactor power, (2) a means for controlling the reactor power to either smaller one of the reactor power corresponding to the set value of the generator power and the set value of the reactor power. With such procedures, even if the nuclear power plant is set so as to operate it to make the reactor power 100%, when the generator power reaches the upper limit, the reactor power is controlled with a preference given to the upper limit value of the generator power. Accordingly, safety and reliability are not deteriorated. The operation efficiency of the plant can be improved. (I.S.)

  12. One piece reactor removal

    International Nuclear Information System (INIS)

    Chia, Wei-Min; Wang, Song-Feng

    1993-01-01

    The strategy of Taiwan Research Reactor Renewal plan is to remove the old reactor block with One Piece Reactor Removal (OPRR) method for installing a new research reactor in original building. In this paper, the engineering design of each transportation works including the work method, the major equipments, the design policy and design criteria is described and discussed. In addition, to ensure the reactor block is safety transported for storage and to guarantee the integrity of reactor base mat is maintained for new reactor, operation safety is drawn special attention, particularly under seismic condition, to warrant safe operation of OPRR. ALARA principle and Below Regulatory Concern (BRC) practice were also incorporated in the planning to minimize the collective dose and the total amount of radioactive wastes. All these activities are introduced in this paper. (J.P.N.)

  13. Transport calculation of neutron flux distribution in reflector of PW reactor

    International Nuclear Information System (INIS)

    Remec, I.

    1982-01-01

    Two-dimensional transport calculation of the neutron flux and spectrum in the equatorial plain of PW reactor, using computer program DOT 3, is presented. Results show significant differences between neutron fields in which test samples and reactor vessel are exposed. (author)

  14. Homogeneous fast reactor benchmark testing of CENDL-2 and ENDF/B-6

    International Nuclear Information System (INIS)

    Liu Guisheng

    1995-11-01

    How to choose correct weighting spectrum has been studied to produce multigroup constants for fast reactor benchmark calculations. A correct weighting option makes us obtain satisfying results of K eff and central reaction rate ratios for nine fast reactor benchmark testing of CENDL-2 and ENDF/B-6. (author). 8 refs, 2 figs, 4 tabs

  15. Homogeneous fast reactor benchmark testing of CENDL-2 and ENDF/B-6

    International Nuclear Information System (INIS)

    Liu Guisheng

    1995-01-01

    How to choose correct weighting spectrum has been studied to produce multigroup constants for fast reactor benchmark calculations. A correct weighting option makes us obtain satisfying results of K eff and central reaction rate ratios for nine fast reactor benchmark testings of CENDL-2 and ENDF/B-6. (4 tabs., 2 figs.)

  16. Measurements of neutron spectrum from uranium converter

    International Nuclear Information System (INIS)

    Ninkovic, M.; Sotic, O.; Marinkovic, S.

    1978-01-01

    The procedure for determination of energetic distribution of neutrons by the multisphere technique is given. The theoretical basis and features of the method are explained. The spectral distribution of neutrons emerging from the neutron converter constructed at the bare reactor assembly RB, has been determined applying the existing computer programme and literature data for the energetic dependence functions of spheres of various diameters. The obtained spectral distribution has a specific maximum in the domain of fast neutrons, justifying thus the reacton for the construction of the converter. The neutron spectrum data obtained and given in this report are very important for the use of the converter in neutron dosimetry and radiation protection, as well as in the radiobiology, shielding, reactor physics etc. (author)

  17. Fast spectrum transmutation in a BWR

    International Nuclear Information System (INIS)

    Wallenius, J.; Westlen, D.

    2007-01-01

    We propose an innovative fuel design for boiling water reactors, where the use of metallic alloy fuel and hafnium clad results in a fast neutron spectrum, suitable for transmutation of minor actinides. Monte Carlo calculations made with the JEFF3.1 data library show that in the top of an up-rated BWR, it is possible to achieve fission probabilities for even neutron number nuclides similar to those of sodium-cooled reactors. Thus, from a strict neutronic perspective, multi-recycling of americium and curium could be performed in the top of BWRs. Fuel and coolant temperature feedbacks remain within acceptable ranges, but control rod worths are reduced to the extent that enriched boron might have to be used to ensure sufficient shutdown margins. (authors)

  18. Isotope Mixes, Corresponding Nuclear Properties and Reactor Design Implications of Naturally Occurring Lead Sources

    Science.gov (United States)

    2013-06-01

    as the coolant (i.e., water, helium, molten salt , sodium or lead) [1]. One of the promising Generation IV systems, suitable especially for small...physics, nuclear engineering, nuclear reactor, SSTAR, MCNP, MCNP5, monte carlo transport, geochemistry, lead, uranium , thorium 15. NUMBER OF PAGES 75...compact nuclear power systems, is the Lead-cooled Fast Reactor (LFR), a fast- spectrum reactor concept in which the coolant is molten lead or a related

  19. Reactor coolant pump for a nuclear reactor

    International Nuclear Information System (INIS)

    Burkhardt, W.; Richter, G.

    1976-01-01

    The invention deals with disengaging the coupling of a reactor coolant pump of a nuclear reactor feeding pressurized coolant. The disengaging coupling has two parts joined by bolts, at least one of them containing a driving agent within a bore. This is provided with a speed-depending ignition device in such manner that, if the critical speed is reached, the driving charge is ignited and the coupling is disengaged by destroying the bolts. (UWI) [de

  20. Neutron fluxes in test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  1. Thai research reactor

    International Nuclear Information System (INIS)

    Aramrattana, M.

    1987-01-01

    The Office of Atomic Energy for Peace (OAEP) was established in 1962, as a reactor center, by the virtue of the Atomic Energy for Peace Act, under operational policy and authority of the Thai Atomic Energy for Peace Commission (TAEPC); and under administration of Ministry of Science, Technology and Energy. It owns and operates the only Thai Research Reactor (TRR-1/M1). The TRR-1/M1 is a mixed reactor system constituting of the old MTR type swimming pool, irradiation facilities and cooling system; and TRIGA Mark III core and control instrumentation. The general performance of TRR-1/M1 is summarized in Table I. The safe operation of TRR-1/M1 is regulated by Reactor Safety Committee (RSC), established under TAEPC, and Health Physics Group of OAEP. The RCS has responsibility and duty to review of and make recommendations on Reactor Standing Orders, Reactor Operation Procedures, Reactor Core Loading and Requests for Reactor Experiments. In addition,there also exist of Emergency Procedures which is administered by OAEP. The Reactor Operation Procedures constitute of reactor operating procedures, system operating procedures and reactor maintenance procedures. At the level of reactor routine operating procedures, there is a set of Specifications on Safety and Operation Limits and Code of Practice from which reactor shift supervisor and operators must follow in order to assure the safe operation of TRR-1/M1. Table II is the summary of such specifications. The OAEP is now upgrading certain major components of the TRR-1/M1 such as the cooling system, the ventilation system and monitoring equipment to ensure their adequately safe and reliable performance under normal and emergency conditions. Furthermore, the International Atomic Energy Agency has been providing assistance in areas of operation and maintenance and safety analysis. (author)

  2. Trends on R and D of the innovative nuclear reactors in Japan

    International Nuclear Information System (INIS)

    Kinoshita, Izumi

    2002-01-01

    In Japan, since LWRs introduced from U.S.A. began their business operations one by one from 1970 and 1971, their scale-up were carried out, to reach, at present, a condition on developments of ABWR-2 of 1700 MW class in output and APWR+. They are on a line of large scale LWR development aiming at further upgrading of their economical efficiency, safety, operability and maintenance by improving and developing conventional reactors. On the other hand, an innovative small scale reactor capable of siting at proximity of its markets and flexibly responsible to needs, a low decelerated spectrum reactor intending to effectively use the resources, an super-critical pressure reactor aiming at upgrading of thermal efficiency, a high temperature gas reactor aiming at hydrogen production using nuclear heat , and so on, and so forth, are investigated at a number of institutes. And, on the fast breeder reactor, some innovative investigations such as small-scale reactor, reactor using coolant except metal sodium, and so on, in addition to development of sodium cooling large-scale reactor, under the 'Actual use strategy survey research' progressed at a center of the Japan Nuclear Cycle Development Institute, are promoted. Here were outlined on trends of R and D on various innovative reactors under classification of water cooling reactor, gas cooling reactor, and liquid metal cooling reactor. (G.K.)

  3. Compressive Multispectral Spectrum Sensing for Spectrum Cartography

    Directory of Open Access Journals (Sweden)

    Jeison Marín Alfonso

    2018-01-01

    Full Text Available In the process of spectrum sensing applied to wireless communications, it is possible to build interference maps based on acquired power spectral values. This allows the characterization of spectral occupation, which is crucial to take management spectrum decisions. However, the amount of information both in the space and frequency domains that needs to be processed generates an enormous amount of data with high transmission delays and high memory requirements. Meanwhile, compressive sensing is a technique that allows the reconstruction of sparse or compressible signals using fewer samples than those required by the Nyquist criterion. This paper presents a new model that uses compressed multispectral sampling for spectrum sensing. The aim is to reduce the number of data required for the storage and the subsequent construction of power spectral maps with geo-referenced information in different frequency bands. This model is based on architectures that use compressive sensing to analyze multispectral images. The operation of a centralized manager is presented in order to select the power data of different sensors by binary patterns. These sensors are located in different geographical positions. The centralized manager reconstructs a data cube with the transmitted power and frequency of operation of all the sensors based on the samples taken and applying multispectral sensing techniques. The results show that this multispectral data cube can be built with 50% of the samples generated by the devices, and the spectrum cartography information can be stored using only 6.25% of the original data.

  4. Compressive Multispectral Spectrum Sensing for Spectrum Cartography.

    Science.gov (United States)

    Marín Alfonso, Jeison; Martínez Torre, Jose Ignacio; Arguello Fuentes, Henry; Agudelo, Leonardo Betancur

    2018-01-29

    In the process of spectrum sensing applied to wireless communications, it is possible to build interference maps based on acquired power spectral values. This allows the characterization of spectral occupation, which is crucial to take management spectrum decisions. However, the amount of information both in the space and frequency domains that needs to be processed generates an enormous amount of data with high transmission delays and high memory requirements. Meanwhile, compressive sensing is a technique that allows the reconstruction of sparse or compressible signals using fewer samples than those required by the Nyquist criterion. This paper presents a new model that uses compressed multispectral sampling for spectrum sensing. The aim is to reduce the number of data required for the storage and the subsequent construction of power spectral maps with geo-referenced information in different frequency bands. This model is based on architectures that use compressive sensing to analyze multispectral images. The operation of a centralized manager is presented in order to select the power data of different sensors by binary patterns. These sensors are located in different geographical positions. The centralized manager reconstructs a data cube with the transmitted power and frequency of operation of all the sensors based on the samples taken and applying multispectral sensing techniques. The results show that this multispectral data cube can be built with 50% of the samples generated by the devices, and the spectrum cartography information can be stored using only 6.25% of the original data.

  5. Atomic spectrum of neptunium

    International Nuclear Information System (INIS)

    Fred, M.; Tomkins, F.S.; Blaise, J.E.; Camus, P.; Verges, J.

    1976-05-01

    A description and interpretation of the atomic spectrum of neptunium are given. Wavelengths were measured for 6096 spectrum lines in the range 3793 to 38,812 cm -1 (26,353 to 2575 A), of which 2526 were classified as transitions between 329 odd levels and 130 even levels of neutral neptunium (Np I). The data are presented in five tables

  6. Autism Spectrum Disorder (ASD)

    Science.gov (United States)

    ... Español (Spanish) Recommend on Facebook Tweet Share Compartir Autism spectrum disorder (ASD) is a developmental disability that can cause ... of CDC’s work. Autism: What's New Prevalence of Autism Spectrum Disorder Data Community Report Press Release Learn the Signs. ...

  7. Safety aspects of designs for future light water reactors (evolutionary reactors)

    International Nuclear Information System (INIS)

    1993-07-01

    The main purpose of this document is to describe the major innovations of proposed designs of future light water reactors, to describe specific safety characteristics and safety analysis methodologies, and to give a general overview of the most important safety aspects related to future reactors. The reactors considered in this report are limited to those intended for fixed station electrical power production, excluding most revolutionary concepts. More in depth discussion is devoted to those designs that are in a more advanced state of completion and have been more extensively described and analysed in the open literature. Other designs will be briefly described, as evidence of the large spectrum of new proposals. Some designs are similar; others implement unique features and require specific discussion (not all aspects of designs with unique features are fully discussed in this document). 131 refs, 22 figs

  8. Hybrid reactors. [Fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.

    1980-09-09

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.

  9. Multipurpose research reactors

    International Nuclear Information System (INIS)

    1988-01-01

    The international symposium on the utilization of multipurpose research reactors and related international co-operation was organized by the IAEA to provide for information exchange on current uses of research reactors and international co-operative projects. The symposium was attended by about 140 participants from 36 countries and two international organizations. There were 49 oral presentations of papers and 24 poster presentations. The presentations were divided into 7 sessions devoted to the following topics: neutron beam research and applications of neutron scattering (6 papers and 1 poster), reactor engineering (6 papers and 5 posters), irradiation testing of fuel and material for fission and fusion reactors (6 papers and 10 posters), research reactor utilization programmes (13 papers and 4 posters), neutron capture therapy (4 papers), neutron activation analysis (3 papers and 4 posters), application of small reactors in research and training (11 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  10. Seismic analysis of the core of a PWR reactor

    International Nuclear Information System (INIS)

    Preumont, A.

    1981-01-01

    The author develops successively: - a method for the generation of accelerograms compatible with the response spectrum; a model for the analysis of lateral deformations of the core of a PWR reactor under seismic excitation; a simple dynamic model of the fuel assembly including a vibration model. (MD)

  11. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Matsuura, Shojiro; Nakahara, Yasuaki; Takano, Hideki

    1982-09-01

    Research and development activities in the Division of Reactor Engineering in fiscal 1981 are described. The work of the Division is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committee on Reactor Physics. (author)

  12. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    1985-08-01

    Research and development activities in the Department of Reactor Engineering in fiscal 1984 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, reactor physics experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, safeguards technology, and activities of the Committee on Reactor Physics. (author)

  13. Spectral shift reactor control method

    International Nuclear Information System (INIS)

    Impink, A.J. Jr.

    1981-01-01

    A method of operating a nuclear reactor having a core and coolant displacer elements arranged in the core wherein is established a reator coolant temperature set point at which it is desired to operate said reactor and first reactor coolant temperature band limits are provided within which said set point is located and it is desired to operate said reactor charactrized in that said reactor coolant displacer elements are moved relative to the reactor core for adjusting the volume of reactor coolant in said core as said reactor coolant temperature approaches said first band limits thereby to maintain said reactor coolant temperature near said set point and within said first band limits

  14. Seals in nuclear reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The aim of this invention is the provision of improved seals for reactor vessels in which fuel assemblies are located together with inlets and outlets for the circulation of a coolant. The object is to provide a seal arrangement for the rotatable plugs of nuclear reactor closure heads which has good sealing capacities over a wide gap during operation of the reactor but which also permits uninhibited rotation of the plugs for maintenance. (U.K.)

  15. Power reactors operational diagnosis

    International Nuclear Information System (INIS)

    Dach, K.; Pecinka, L.

    1976-01-01

    The definition of reactor operational diagnostics is presented and the fundamental trends of research are determined. The possible sources of power reactor malfunctions, the methods of defect detection, the data evaluation and the analysis of the results are discussed in detail. In view of scarcity of a theoretical basis and of insufficient in-core instrumentation, operational diagnostics cannot be as yet incorporated in a computer-aided reactor control system. (author)

  16. Pressurised water reactor operation

    International Nuclear Information System (INIS)

    Birnie, S.; Lamonby, J.K.

    1987-01-01

    The operation of a pressurized water reactor (PWR) is described with respect to the procedure for a unit start-up. The systems details and numerical data are for a four loop PWR station of the design proposed for Sizewell-'B', United Kingdom. A description is given of: the initial conditions, filling the reactor coolant system (RCS), heat-up and pressurisation of the RCS, secondary system preparations, reactor start-up, and reactivity control at power. (UK)

  17. Reactor BR2

    International Nuclear Information System (INIS)

    Gubel, P.

    2000-01-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported

  18. Reactor BR2

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2000-07-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported.

  19. TRIGA reactor characteristics

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2007-01-01

    This module describes the general design, characteristics and parameters of TRIGA reactors and fuels. It is recommended that most of this information should be incorporated into any reactor operator training program and, in many cases, the facility Safety Analysis Report. It is oriented to teach the basics of the physics and mechanical design of the TRIGA fuel as well as its unique operational characteristics and the differences between TRIGA fuels and others more traditional reactor fuels. (nevyjel)

  20. The replacement research reactor

    International Nuclear Information System (INIS)

    Cameron, R.

    1999-01-01

    As a consequences of the government decision in September 1997. ANSTO established a replacement research reactor project to manage the procurement of the replacement reactor through the necessary approval, tendering and contract management stages This paper provides an update of the status of the project including the completion of the Environmental Impact Statement. Prequalification and Public Works Committee processes. The aims of the project, management organisation, reactor type and expected capabilities are also described

  1. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1988-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics. 3 refs., 4 figs., 1 tab

  2. Research reactor status for future nuclear research in Europe

    International Nuclear Information System (INIS)

    Raymond, P.; Guidez, J.; Bignan, G.

    2010-01-01

    Due mainly to nuclear renaissance and its needs in material testing, but also to new needs in nano sciences and bio sciences, research reactors appear to be an essential tool for the future. There is also an increasing worldwide demand for radio-isotopes. The fleet of experimental reactors is dwindling in Europe. For instance, all the European experimental fast reactors have been shut down. To face these challenges, new projects have been launched: the RJH (Jules Horowitz reactor) that is being built in France and that will meet the industry and public needs related to safety, competitiveness and innovations for the existing generations and the future systems; the Pallas reactor for securing the production of radio-nuclides for medical applications; a fast spectrum project for addressing the next generation energy systems and actinides recycling; and ASTRID that is a prototype sodium cooled fast reactor. We have to pinpoint the fact that these research reactors are more and more international reactors used as international user's platform. For instance 10 countries are now members of the RJH consortium. (A.C.)

  3. The seismic assessment of fast reactor cores in the UK

    International Nuclear Information System (INIS)

    Duthie, J.C.; Dostal, M.

    1988-01-01

    The design of the UK Commercial Demonstration Fast Reactor (CDFR) has evolved over a number of years. The design has to meet two seismic requirements: (i) the reactor must cause no hazard to the public during or after the Safe Shutdown Earthquake (SSE); (ii) there must be no sudden reduction in safety for an earthquake exceeding the SSE. The core is a complicated component in the whole reactor. It is usually represented in a very simplified manner in the seismic assessment of the whole reactor station. From this calculation, a time history or response spectrum can be generated for the diagrid, which supports the core, and for the above core structure, which supports the main absorber rods. These data may then be used to perform a detailed assessment of the reactor core. A new simplified model of the core response may then be made and used in a further calculation of the whole reactor. The calculation of the core response only, is considered in the remainder of this paper. One important feature of the fast reactor core, compared with other reactors, is that the components are relatively thin and flexible to promote neutron economy and heat transfer. A further important feature is that there are very small gaps between the wrapper tubes. This leads to very strong fluid-coupling effects. These effects are likely to be beneficial, but adequate techniques to calculate them are only just being developed. 9 refs, figs

  4. New reactor concepts

    International Nuclear Information System (INIS)

    Meskens, G.; Govaerts, P.; Baugnet, J.-M.; Delbrassine, A.

    1998-11-01

    The document gives a summary of new nuclear reactor concepts from a technological point of view. Belgium supports the development of the European Pressurized-Water Reactor, which is an evolutionary concept based on the European experience in Pressurized-Water Reactors. A reorientation of the Belgian choice for this evolutionary concept may be required in case that a decision is taken to burn plutonium, when the need for flexible nuclear power plants arises or when new reactor concepts can demonstrate proved benefits in terms of safety and cost

  5. Remote Reactor Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dazeley, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dobie, Doug [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marleau, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brennan, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerling, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sumner, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sweany, Melinda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-21

    The overall goal of the WATCHMAN project is to experimentally demonstrate the potential of water Cerenkov antineutrino detectors as a tool for remote monitoring of nuclear reactors. In particular, the project seeks to field a large prototype gadolinium-doped, water-based antineutrino detector to demonstrate sensitivity to a power reactor at ~10 kilometer standoff using a kiloton scale detector. The technology under development, when fully realized at large scale, could provide remote near-real-time information about reactor existence and operational status for small operating nuclear reactors out to distances of many hundreds of kilometers.

  6. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Conceptual design studies were made of fusion reactors based on the three current mirror-confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fuel for fission reactors. We have designed a large commercial hybrid and a small pilot-plant hybrid based on standard mirror confinement. Tandem mirror designs include a commercial 1000-MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single-cell pilot plant

  7. Multi purpose research reactor

    International Nuclear Information System (INIS)

    Raina, V.K.; Sasidharan, K.; Sengupta, Samiran; Singh, Tej

    2006-01-01

    At present Dhruva and Cirus reactors provide the majority of research reactor based facilities to cater to the various needs of a vast pool of researchers in the field of material sciences, physics, chemistry, bio sciences, research and development work for nuclear power plants and production of radio isotopes. With a view to further consolidate and expand the scope of research and development in nuclear and allied sciences, a new 20 MWt multi purpose research reactor is being designed. This paper describes some of the design features and safety aspects of this reactor

  8. Trench reactor: an overview

    International Nuclear Information System (INIS)

    Spinrad, B.I.; Rohach, A.F.; Razzaque, M.M.; Sankoorikal, J.T.; Schmidt, R.S.; Lofshult, J.; Ramin, T.; Sokmen, N.; Lin, L.C.

    1988-01-01

    Recent fast, sodium-cooled reactor designs reflect new conditions. In nuclear energy these conditions are (a) emphasis on maintainability and operability, (b) design for more transparent safety, and (c) a surplus of uranium and enrichment availability that eases concerns about light water reactor fueling costs. In utility practice the demand is for less capital exposure, short construction time, smaller new unit sizes, and low capital cost. The PRISM, SAFR, and integral fast reactor (IFR) concepts are responses to these conditions. Fast reactors will not soon be deployed commercially, so more radical designs can be considered. The trench reactor is the product of such thinking. Its concepts are intended as contributions to the literature, which may be picked up by one of the existing programs or used in a new experimental project. The trench reactor is a thin-slab, pool-type reactor operated at very low power density and- for sodium-modest temperature. The thin slab is repeated in the sodium tank and the reactor core. The low power density permits a longer than conventional core height and a large-diameter fuel pin. Control is by borated steel slabs that can be lowered between the core and lateral sodium reflector. Shutdown is by semaphore slabs that can be swung into place just outside the control slabs. The paper presents major characteristics of the trench reactor that have been changed since the last report

  9. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed

  10. Nuclear reactor safety systems

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1980-01-01

    A safety system for shutting down a nuclear reactor under overload conditions is described. The system includes a series of parallel-connected computer memory type look-up tables each of which receives data on a particular reactor parameter and in each of which a precalculated functional value for that parameter is stored indicative of the percentage of maximum reactor load that the parameter contributes. The various functional values corresponding to the actual measured parameters are added together to provide a control signal used to shut down the reactor under overload conditions. (U.K.)

  11. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1978-01-01

    We have carried out conceptual design studies of fusion reactors based on the three current mirror confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fission fuel for fission reactors. We have designed a large commercial hybrid based on standard mirror confinement, and also a small pilot plant hybrid. Tandem mirror designs include a commercial 1000 MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single cell pilot plant

  12. Nuclear reactor internals arrangement

    International Nuclear Information System (INIS)

    Frisch, E.; Andrews, H.N.

    1976-01-01

    A nuclear reactor internals arrangement is disclosed which facilitates reactor refueling. A reactor vessel and a nuclear core is utilized in conjunction with an upper core support arrangement having means for storing withdrawn control rods therein. The upper core support is mounted to the underside of the reactor vessel closure head so that upon withdrawal of the control rods into the upper core support, the closure head, the upper core support and the control rods are removed as a single unit thereby directly exposing the core for purposes of refueling

  13. Investigation of the structural, surface, optical and electrical properties of the Indium doped CuxO thin films deposited by a thermionic vacuum arc

    Science.gov (United States)

    Musaoğlu, Caner; Pat, Suat; Özen, Soner; Korkmaz, Şadan; Mohammadigharehbagh, Reza

    2018-03-01

    In this study, investigation of some physical properties of In-doped CuxO thin films onto amorphous glass substrates were done. The thin films were depsoied by thermionic vacuum arc technique (TVA). TVA technique gives a thin film with lower precursor impurity according to the other chemical and physical depsoition methods. The microstructural properties of the produced thin films was determined by x-ray diffraction device (XRD). The thickness values were measured as to be 30 nm and 60 nm, respectively. The miller indices of the thin films’ crystalline planes were determined as to be Cu (111), CuO (\\bar{1} 12), CuInO2 (107) and Cu2O (200), Cu (111), CuO (\\bar{1} 12), CuO (\\bar{2} 02), CuInO2 (015) for sample C1 and C2, respectively. The produced In-doped CuO thin films are in polycrystalline structure. The surface properties of produced In doped CuO thin films were determined by using an atomic force microscope (AFM) and field emission scanning electron microscope (FESEM) tools. The optical properties of the In doped CuO thin films were determined by UV–vis spectrophotometer, interferometer, and photoluminescence devices. p-type semiconductor thin film was obtained by TVA depsoition.

  14. Global numerical model for the assessment of the effect of geometry and operation conditions on insert and orifice region plasmas of a thermionic hollow cathode electron source

    International Nuclear Information System (INIS)

    Korkmaz, O.; Celik, M.

    2014-01-01

    Thermionic hollow cathodes have been widely used in wide variety of areas such as spacecraft electric propulsion systems, material processing and lasers for more than half a century as efficient electron sources. Especially in electric propulsion systems, hollow cathodes are being used as electron sources for propellant ionization and ion beam neutralization. Moreover, it is also a promising candidate for utilization as a stand-alone propulsion system in microsatellites or nanosatellites due to its small physical size, low power consumption and ease of operation. On the other hand, the small geometry of the typical orificed hollow cathodes makes the plasma diagnostics difficult which is why numerical studies become important for understanding the driving physical processes behind their operation, and the effects of the geometry and the operation parameters on cathode performance. In this paper, a global numerical model for the insert and orifice plasma of a hollow cathode is presented where volume averaged plasma parameters are considered for both regions. The results of this study show that the developed model can be used for designing and sizing orificed hollow cathodes as comparisons with the results of experimental and other numerical studies are in good agreement with the ones obtained from the developed model. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Global numerical model for the assessment of the effect of geometry and operation conditions on insert and orifice region plasmas of a thermionic hollow cathode electron source

    Energy Technology Data Exchange (ETDEWEB)

    Korkmaz, O.; Celik, M. [Department of Mechanical Engineering, Bogazici University, Istanbul (Turkey)

    2014-11-15

    Thermionic hollow cathodes have been widely used in wide variety of areas such as spacecraft electric propulsion systems, material processing and lasers for more than half a century as efficient electron sources. Especially in electric propulsion systems, hollow cathodes are being used as electron sources for propellant ionization and ion beam neutralization. Moreover, it is also a promising candidate for utilization as a stand-alone propulsion system in microsatellites or nanosatellites due to its small physical size, low power consumption and ease of operation. On the other hand, the small geometry of the typical orificed hollow cathodes makes the plasma diagnostics difficult which is why numerical studies become important for understanding the driving physical processes behind their operation, and the effects of the geometry and the operation parameters on cathode performance. In this paper, a global numerical model for the insert and orifice plasma of a hollow cathode is presented where volume averaged plasma parameters are considered for both regions. The results of this study show that the developed model can be used for designing and sizing orificed hollow cathodes as comparisons with the results of experimental and other numerical studies are in good agreement with the ones obtained from the developed model. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Reactor core monitor for nuclear reactor

    International Nuclear Information System (INIS)

    Azekura, Kazuo; Kurihara, Kunitoshi.

    1992-01-01

    The device of the present invention provides a various information of a wide adaptability, such as a power distribution, to an operator by determining a reactor core performance of the reactor by a performance calculation with improved accuracy. That is, a calculation means determines a neutron flux distribution of the reactor and coolant temperature based on the neutron flux distribution. A measuring means measures a cooled temperature of a reactor core inlet and a temperature at the exit of a fuel assembly. The result of coolant temperature by the measuring means and the result of the calculation by the calculation means are compared. The result of the calculation for the neutron flux distribution obtained by the calculation means is corrected based on the result of the comparison. The calculation means introduces calculation at higher accuracy by adopting two-dimensional balance in the fuel assembly. Further, a more accurate three-dimensional neutron diffusion calculation model is introduced in an on-line computer. Then, the accuracy of the calculation for the neutron flux distribution, power distribution, temperature distribution, etc. is improved. In view of the above, adaptability of a reactor core monitor is widened. (I.S.)

  17. RB Research nuclear reactor RB reactor, Annual report for 2000

    International Nuclear Information System (INIS)

    Milosevic, M.

    2000-12-01

    Report on RB reactor operation during 2000 contains 3 parts. Part one contains a brief description of reactor operation and reactor components, relevant dosimetry data and radiation protection issues, personnel and financial data. Part two is devoted to maintenance of the reactor components, namely, fuel, heavy water, reactor vessel, heavy water circulation system, absorption rods and heavy water level-meters, maintenance of electronic, mechanical, electrical and auxiliary equipment. Part three contains data concerned with reactor operation and utilization with a comprehensive list of publications resulting from experiments done at the RB reactor. It contains data about reactor operation during previous 14 years, i.e. from 1986 - 2000

  18. The Traveling Wave Reactor: Design and Development

    Directory of Open Access Journals (Sweden)

    John Gilleland

    2016-03-01

    Full Text Available The traveling wave reactor (TWR is a once-through reactor that uses in situ breeding to greatly reduce the need for enrichment and reprocessing. Breeding converts incoming subcritical reload fuel into new critical fuel, allowing a breed-burn wave to propagate. The concept works on the basis that breed-burn waves and the fuel move relative to one another. Thus either the fuel or the waves may move relative to the stationary observer. The most practical embodiments of the TWR involve moving the fuel while keeping the nuclear reactions in one place−sometimes referred to as the standing wave reactor (SWR. TWRs can operate with uranium reload fuels including totally depleted uranium, natural uranium, and low-enriched fuel (e.g., 5.5% 235U and below, which ordinarily would not be critical in a fast spectrum. Spent light water reactor (LWR fuel may also serve as TWR reload fuel. In each of these cases, very efficient fuel usage and significant reduction of waste volumes are achieved without the need for reprocessing. The ultimate advantages of the TWR are realized when the reload fuel is depleted uranium, where after the startup period, no enrichment facilities are needed to sustain the first reactor and a chain of successor reactors. TerraPower's conceptual and engineering design and associated technology development activities have been underway since late 2006, with over 50 institutions working in a highly coordinated effort to place the first unit in operation by 2026. This paper summarizes the TWR technology: its development program, its progress, and an analysis of its social and economic benefits.

  19. Technical specifications, Hanford production reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, W.D. [comp.

    1962-06-25

    These technical specifications are applicable to the eight operating production reactor facilities, B, C, D, DR, F, H, KE, and KW. Covered are operating and performance restrictions and administrative procedures. Areas covered by the operating and performance restrictions are reactivity, reactor control and safety elements, power level, temperature and heat flux, reactor fuel loadings, reactor coolant systems, reactor confinement, test facilities, code compliance, and reactor scram set points. Administrative procedures include process control procedures, training programs, audits and inspections, and reports and records.

  20. A nuclear power reactor

    International Nuclear Information System (INIS)

    Borrman, B.E.; Broden, P.; Lundin, N.

    1979-12-01

    The invention consists of shock absorbing support beams fastened to the underside of the reactor tank lid of a BWR type reactor, whose purpose is to provide support to the steam separator and dryer unit against accelerations due to earthquakes, without causing undue thermal stresses in the unit due to differential expansion. (J.I.W.)

  1. Reactor cost driving items

    International Nuclear Information System (INIS)

    Spears, W.R.

    1987-01-01

    Assuming that the design solutions presently perceived for NET can be extrapolated for use in a power reactor, and using costing experience with present day fusion experiments and with fission power plants, the major components of the cost of a tokamak fusion power reactor are described. The analysis shows the emphasis worth placing on various areas of plant design to reduce costs

  2. Reactor Materials Research

    International Nuclear Information System (INIS)

    Van Walle, E.

    2001-01-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  3. CAREM 25 nuclear reactor

    International Nuclear Information System (INIS)

    Rossini, A.A.; Ordonez, J.P.; Rajoy, J.E.; Durione, C.

    1990-01-01

    This work describes the CAREM project reactor, its design philosophy, its main characteristics and its advantages with respect to similar reactors. The main objective is to use the nuclear energy at lower costs than those applied up to now. (Author) [es

  4. Molten salt reactor concept

    International Nuclear Information System (INIS)

    Sood, D.D.

    1980-01-01

    Molten salt reactor is an advanced breeder concept which is suited for the utilization of thorium for nuclear power production. This reactor is based on the use of solutions of uranium or plutonium fluorides in LiF-BeF 2 -ThF 4 as fuel. Unlike the conventional reactors, no external coolant is used in the reactor core and the fuel salt itself is circulated through heat exchangers to transfer the fission produced heat to a secondary salt (NaF-NaBF 4 ) for steam generation. A part of the fuel stream is continuously processed to isolate 233 Pa, so that it can decay to fissile 233 U without getting converted to 234 Pa, and for the removal of neutron absorbing fission products. This on-line processing scheme makes this reactor concept to achieve a breeding ratio of 1.07 which is the highest for any thermal breeder reactor. Experimental studies at the Bhabha Atomic Research Centre, Bombay, have established the use of plutonium as fuel for this reactor. This molten salt reactor concept is described and the work conducted at the Bhabha Atomic Research Centre is summarised. (auth.)

  5. International thermal reactor development

    International Nuclear Information System (INIS)

    Zebroski, E.L.

    1977-01-01

    The worldwide development of nuclear power plants is reviewed. Charts are presented which show the commitment to light-water reactor capacity construction with breakdown by region and country. Additional charts show the major nuclear research centers which have substantial scope in light water reactor development and extensive international activities

  6. The fusion reactor

    International Nuclear Information System (INIS)

    Brennan, M.H.

    1974-01-01

    Basic principles of the fusion reactor are outlined. Plasma heating and confinement schemes are described. These confinement systems include the linear Z pinch, magnetic mirrors and Tokamaks. A fusion reactor is described and a discussion is given of its environmental impact and its fuel situation. (R.L.)

  7. Advanced converter reactors

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1979-01-01

    Advanced converter reactors (ACRs) of primary US interest are those which can be commercialized within about 20 years, and are: Advanced Light-Water Reactors, Spectral-Shift-Control Reactors, Heavy-Water Reactors (CANDU type), and High-Temperature Gas-Cooled Reactors. These reactors can operate on uranium, thorium, or uranium-thorium fuel cycles, but have the greatest fuel utilization on thorium type cycles. The water reactors tend to operate more economically on uranium cycles, while the HTGR is more economical on thorium cycles. Thus, the HTGR had the greatest practical potential for improving fuel utilization. If the US has 3.4 to 4 million tons U 3 O 8 at reasonable costs, ACRs can make important contributions to maintaining a high nuclear power level for many decades; further, they work well with fast breeder reactors in the long term under symbiotic fueling conditions. Primary nuclear data needs of ACRs are integral measurements of reactivity coefficients and resonance absorption integrals

  8. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  9. Space Nuclear Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  10. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Lineberry, M.J.

    1990-01-01

    Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs

  11. Nuclear reactor instrumentation method

    International Nuclear Information System (INIS)

    Handa, Hiroyuki; Hayashi, Katsumi; Nemesawa, Shigeki; Nemoto, Yuji; Ohashi, Masahisa.

    1993-01-01

    The present invention can appropriately monitor the state of a reactor core in an FBR type reactor which has a system of storing spent fuel assemblies in a reactor container while reducing the weight and making the structure compact in the reactor. That is, a fuel assembly having a shield lacking portion in upper axial shields is disposed. The shield lacking portion defines neutrons' leaking path from the reactor core. The leakage of neutrons from the path is detected by a neutron monitor disposed just above the fuel assembly. With such a constitution, influence of neutrons from stored spent fuel assemblies disposed to the out side of the radial shields can be reduced by a shielding effect of the existent radial shields around the reactor core. Further, if a shield lacking portion is locally disposed in the region of the upper axial shields just below the neutron monitor, neutrons from the reactor core can be monitored while suppressing excessive neutron leakage. As a result, it is unnecessary to dispose shields on the outer side of the spent fuel assembly disposed in the reactor core. (I.S.)

  12. Reactor building for a nuclear reactor

    International Nuclear Information System (INIS)

    Haidlen, F.

    1976-01-01

    The invention concerns the improvement of the design of a liner, supported by a latticed steel girder structure and destined for guaranteeing a gastight closure for the plant compartments in the reactor building of a pressurized water reactor. It is intended to provide the steel girder structure on their top side with grates, being suited for walking upon, and to hang on their lower side diaphragms in modular construction as a liner. At the edges they may be sealed with bellows in order to avoid thermal stresses. The steel girder structure may at the same time serve as supports for parts of the steam pipe. (RW) [de

  13. Reactor coolant pump for a nuclear reactor

    International Nuclear Information System (INIS)

    Burkhardt, W.; Richter, G.

    1976-01-01

    An improvement is proposed concerning the easier disengagement of the coupling at the reactor coolant pump for a nuclear reactor transporting a pressurized coolant. According to the invention the disengaging coupling consists of two parts separated by screws. At least one of the screws contains a propellent charge ananged within a bore and provided with a speed-dependent ignition device in such a way that by separation of the screws at overspeeds the coupling is disengaged. The sub-claims are concerned with the kind of ignition ot the propellent charge. (UWI) [de

  14. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    Energy Technology Data Exchange (ETDEWEB)

    Asner, David M.; Burns, Kimberly A.; Campbell, Luke W.; Greenfield, Bryce A.; Kos, Marek S.; Orrell, John L.; Schram, Malachi; VanDevender, Brent A.; Wood, Lynn S.; Wootan, David W.

    2015-03-01

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  15. Mirror reactor surface study

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A. L.; Damm, C. C.; Futch, A. H.; Hiskes, J. R.; Meisenheimer, R. G.; Moir, R. W.; Simonen, T. C.; Stallard, B. W.; Taylor, C. E.

    1976-09-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included.

  16. Iris reactor conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Carelli, M.D.; Conway, L.E.; Petrovic, B.; Paramonov, D.V. [Westinghouse Electric Comp., Pittsburgh, PA (United States); Galvin, M.; Todreas, N.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Lombardi, C.V.; Maldari, F.; Ricotti, M.E. [Politecnico di Milano, Milan (Italy); Cinotti, L. [Ansaldo SpA, Genoa (Italy)

    2001-07-01

    IRIS (International Reactor Innovative and Secure) is a modular, integral, light water cooled, low-to-medium power (100-350 MWe) reactor which addresses the requirements defined by the US DOE for Generation IV reactors, i.e., proliferation resistance, enhanced safety, improved economics and fuel cycle sustainability. It relies on the proven technology of light water reactors and features innovative engineering, but it does not require new technology development. This paper discusses the current reference IRIS design, which features a 1000 MWt thermal core with proven 5%-enriched uranium oxide fuel and five-year long straight burn fuel cycle, integral reactor vessel housing helical tube steam generators and immersed spool pumps. Other major contributors to the high level of safety and economic attractiveness are the safety by design and optimized maintenance approaches, which allow elimination of some classes of accidents, lower capital cost, long operating cycle, and high capacity factors. (author)

  17. Reactor control device

    International Nuclear Information System (INIS)

    Fukami, Haruo; Morimoto, Yoshinori.

    1981-01-01

    Purpose: To operate a reactor always with safety operation while eliminating the danger of tripping. Constitution: In a reactor control device adapted to detect the process variants of a reactor, control a control rod drive controlling system based on the detected signal to thereby control the driving the control rods, control the reactor power and control the electric power generated from an electric generator by the output from the reactor, detection means is provided for the detection of the electric power from said electric generator, and a compensation device is provided for outputting control rod driving compensation signals to the control rod driving controlling system in accordance with the amount of variation in the detected value. (Seki, T.)

  18. Mirror reactor surface study

    International Nuclear Information System (INIS)

    Hunt, A.L.; Damm, C.C.; Futch, A.H.; Hiskes, J.R.; Meisenheimer, R.G.; Moir, R.W.; Simonen, T.C.; Stallard, B.W.; Taylor, C.E.

    1976-01-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included

  19. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  20. Reactor power control device

    International Nuclear Information System (INIS)

    Kobayashi, Akira.

    1980-01-01

    Purpose: To prevent misoperation in a control system for the adjustment of core coolant flow rate, and the increase in the neutron flux density caused from the misoperation in BWR type reactors. Constitution: In a reactor power control system adapted to control the reactor power by the adjustment of core flow rate, average neutron flux signals of a reactor core, entire core flow rate signals and operation state signals for coolant recycling system are inputted to a microcomputer. The outputs from the computer are sent to a recycling MG set speed controller to control the reactor core flow rate. The computer calculates the change ratio with time in the average neutron flux signals, correlation between the average neutron flux signals and the entire core flow rate signals, change ratio with time in the operation state signals for the coolant recycling system and the like and judges the abnormality in the coolant recycling system based on the calculated results. (Ikeda, J.)

  1. Status of French reactors

    International Nuclear Information System (INIS)

    Ballagny, A.

    1997-01-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm 3 . The OSIRIS reactor has already been converted to LEU. It will use U 3 Si 2 as soon as its present stock of UO 2 fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU

  2. The marine diversity spectrum

    DEFF Research Database (Denmark)

    Reuman, Daniel C.; Gislason, Henrik; Barnes, Carolyn

    2014-01-01

    of taxonomy (all the species in a region regardless of clade) are much less studied but are equally important and will illuminate a different set of ecological and evolutionary processes. We develop and test a mechanistic model of how diversity varies with body mass in marine ecosystems. The model predicts...... the form of the diversity spectrum', which quantifies the distribution of species' asymptotic body masses, is a species analogue of the classic size spectrum of individuals, and which we have found to be a new and widely applicable description of diversity patterns. The marine diversity spectrum...... is predicted to be approximately linear across an asymptotic mass range spanning seven orders of magnitude. Slope -0 center dot 5 is predicted for the global marine diversity spectrum for all combined pelagic zones of continental shelf seas, and slopes for large regions are predicted to lie between -0 center...

  3. Fetal Alcohol Spectrum Disorders

    Science.gov (United States)

    Alcohol can harm your baby at any stage during a pregnancy. That includes the earliest stages, before ... can cause a group of conditions called fetal alcohol spectrum disorders (FASDs). Children who are born with ...

  4. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    1984-08-01

    Research and development activities in the Department of Reactor Engineering in fiscal 1983 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and safeguards technology, and activities of the Committee on Reactor Physics. (author)

  5. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Hirota, Jitsuya; Asaoka, Takumi; Suzuki, Tomoo; Mitani, Hiroshi; Akino, Fujiyoshi

    1977-09-01

    Research activities in the Division of Reactor Engineering in fiscal 1976 are described. Works of the division concern mainly the development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and the development of Liquid Metal Fast Breeder Reactor in Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and activities of the Committee on Reactor Physics. (auth.)

  6. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1976-09-01

    Research activities conducted in Reactor Engineering Division in fiscal 1975 are summarized in this report. Works in the division are closely related to the development of multi-purpose High-temperature Gas Cooled Reactor, the development of Liquid Metal Fast Breeder Reactor by Power Reactor and Nuclear Fuel Development Corporation, and engineering research of thermonuclear fusion reactor. Many achievements are described concerning nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of the Committee on Reactor Physics. (auth.)

  7. Assessment of the high performance light water reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Starflinger, J. [Univ. of Stuttgart, IKE, (Germany); Schulenberg, T. [Karlsruhe Inst. of Tech., Karlsruhe (Germany); Bittermann, D. [AREVA NP GmbH, Erlangen (Germany); Andreani, M. [Paul Scherrer Inst., Villigen (Switzerland); Maraczy, C. [AEKI-KFKI, Budapest (Hungary)

    2011-07-01

    From 2006-2010, the High Performance Light Water Reactor (HPLWR) was investigated within a European Funded project called HPLWR Phase 2. Operated at 25MPa with a heat-up rate in the core from 280{sup o}C to 500{sup o}C, this reactor concept provides a technological challenge in the fields of design, neutronics, thermal-hydraulics and heat transfer, materials, and safety. The assessment of the concept with respect to the goals of the technology roadmap for Generation IV Nuclear Reactors of the Generation IV International Forum shows that the HPLWR has a potential to fulfil the goals of economics, safety and proliferation resistance and physical protection. In terms of sustainability, the HPLWR with a thermal neutron spectrum investigated within this project, does not differ from existing Light Water Reactors in terms of usage of fuel and waste production. (author)

  8. The reactor antineutrino anomaly and low energy threshold neutrino experiments

    Science.gov (United States)

    Cañas, B. C.; Garcés, E. A.; Miranda, O. G.; Parada, A.

    2018-01-01

    Short distance reactor antineutrino experiments measure an antineutrino spectrum a few percent lower than expected from theoretical predictions. In this work we study the potential of low energy threshold reactor experiments in the context of a light sterile neutrino signal. We discuss the perspectives of the recently detected coherent elastic neutrino-nucleus scattering in future reactor antineutrino experiments. We find that the expectations to improve the current constraints on the mixing with sterile neutrinos are promising. We also analyze the measurements of antineutrino scattering off electrons from short distance reactor experiments. In this case, the statistics is not competitive with inverse beta decay experiments, although future experiments might play a role when compare it with the Gallium anomaly.

  9. Mirror reactor studies

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Bender, D.J.

    1977-01-01

    Design studies of a fusion mirror reactor, a fusion-fission mirror reactor, and two small mirror reactors are summarized. The fusion reactor uses 150-keV neutral-beam injectors based on the acceleration of negative ions. The injectors provide over 1 GW of continuous power at an efficiency greater than 80%. The fusion reactor has three-stage, modularized, Venetian blind, plasma direct converter with a predicted efficiency of 59% and a new concept for removal of the lune-shaped blanket: a crane is brought between the two halves of the Yin-Yang magnet, which are separated by a float. The design has desirable features such as steady-state operation, minimal impurity problems, and low first-wall thermal stress. The major disadvantage is low Q resulting in high re-circulating power and hence high cost of electrical power. However, the direct capital cost per unit of gross electrical power is reasonable [$1000/kW(e)]. By contrast, the fusion-fission reactor design is not penalized by re-circulating power and uses relatively near-term fusion technology being developed for the fusion power program. New results are presented on the Th- 233 U and the U- 239 Pu fuel cycles. The purpose of this hybrid is fuel production, with projected costs at $55/g of Pu or $127/g of 233 U. Blanket and cooling system designs, including an emergency cooling system, by General Atomic Company, lead us to the opinion that the reactor can meet expected safety standards for licensing. The smallest mirror reactor having only a shield between the plasma and the coil is the 4.2-m long fusion engineering research facility (FERF) designed for material irradiation. The smallest mirror reactor having both a blanket and shield is the 7.5-m long experimental power reactor (EPR), which has both a fusion and a fusion-fission version. (author)

  10. Multi-purpose reactor

    International Nuclear Information System (INIS)

    1991-05-01

    The Multi-Purpose-Reactor (MPR), is a pool-type reactor with an open water surface and variable core arrangement. Its main feature is plant safety and reliability. Its power is 22MW t h, cooled by light water and moderated by beryllium. It has platetype fuel elements (MTR type, approx. 20%. enriched uranium) clad in aluminium. Its cobalt (Co 60 ) production capacity is 50000 Ci/yr, 200 Ci/gr. The distribution of the reactor core and associated control and safety systems is essentially based on the following design criteria: - upwards cooling flow, to waive the need for cooling flow inversion in case the reactor is cooled by natural convection if confronted with a loss of pumping power, and in order to establish a superior heat transfer potential (a higher coolant saturation temperature); - easy access to the reactor core from top of pool level with the reactor operating at full power, in order to facilitate actual implementation of experiments. Consequently, mechanisms associated to control and safety rods s,re located underneath the reactor tank; - free access of reactor personnel to top of pool level with the reactor operating at full power. This aids in the training of personnel and the actual carrying out of experiments, hence: - a vast water column was placed over the core to act as radiation shielding; - the core's external area is cooled by a downwards flow which leads to a decay tank beyond the pool (for N 16 to decay); - a small downwards flow was directed to stream downwards from above the reactor core in order to drag along any possibly active element; and - a stagnant hot layer system was placed at top of pool level so as to minimize the upwards coolant flow rising towards pool level

  11. Development of PC-based FFT system for reactor dynamic analysis

    International Nuclear Information System (INIS)

    Ansari, S.; Baig, A.R.

    1993-03-01

    A personal computer based fast fourier transform (FFT) analyzer has been developed for frequency spectrum analysis of signals from nuclear reactor. The system can perform window smoothing, computation of auto- and cross-power spectral density, coherence and auto and cross-correlation functions. The feature of 16 analogue signals acquisition with high precision and high sampling frequency makes the analyzer suitable for malfunction diagnosis of nuclear reactors using reactor noise analysis. The development work for the fourier analyzer was undertaken as a part of IAEA research contract no. 5925/RB. The applications of the FFT analyzer are described in reactor transfer function measurements and nuclear instrumentation channels frequency response testing. (author)

  12. Reactor Dosimetry State of the Art 2008

    Science.gov (United States)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G

  13. Autism spectrum disorder - Asperger syndrome

    Science.gov (United States)

    ... part of the larger developmental disorder category of autism spectrum disorder . ... American Psychiatric Association. Autism spectrum disorder. ... VA: American Psychiatric Publishing: 2013;50-59. Raviola GJ, ...

  14. Reactor performance calculations for water reactors

    International Nuclear Information System (INIS)

    Hicks, D.

    1970-04-01

    The principles of nuclear, thermal and hydraulic performance calculations for water cooled reactors are discussed. The principles are illustrated by describing their implementation in the UKAEA PATRIARCH scheme of computer codes. This material was originally delivered as a course of lectures at the Technical University of Helsinki in Summer of 1969.

  15. Reactor scram device for FBR type reactor

    International Nuclear Information System (INIS)

    Kumasaka, Katsuyuki; Arashida, Genji; Itooka, Satoshi.

    1991-01-01

    In a control rod attaching structure in a reactor scram device of an FBR type reactor, an anti-rising mechanism proposed so far against external upward force upon occurrence of earthquakes relies on the engagement of a mechanical structure but temperature condition is not taken into consideration. Then, in the present invention, a material having curie temperature characteristics and which exhibits ferromagnetism only under low temperature condition and a magnet device are disposed to one of a movable control rod and a portion secured to the reactor. Alternatively, a bimetal member or a shape memory alloy which actuates to fix to the mating member only under low temperature condition is secured. The fixing device is adapted to operate so as to secure the control rods when the low temperature state is caused depending on the temperature condition. With such a constitution, when the control rods are separated from a driving device, they are prevented from rising even if they undergo external upward force due to earthquakes and so on, which can improve the reactor safety. (N.H.)

  16. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    1993-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1992 (April 1, 1992-March 31, 1993). The major Department's programs promoted in the year are the assessment of the high conversion light water reactor, the design activities of advanced reactor system and development of a high energy proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project were also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  17. Reactor engineering department annual report

    International Nuclear Information System (INIS)

    1990-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1989 (April 1, 1989 - March 31, 1990). One of major Department's programs is the assessment of the high conversion light water reactor and the design activities of advanced reactor system. Development of a high energy proton linear accelerator for the nuclear engineering including is also TRU incineration promoted. Other major tasks of the Department are various basic researches on nuclear data and group constants, theoretical methods and code development, on reactor physics experiments and analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics, technology assessment of nuclear energy and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  18. Further investigation of the "reactor anomaly"

    Science.gov (United States)

    Garvey, G. T.; Hayes, A. C.; Jungman, Gerard; Jonkmans, G.

    2015-07-01

    The effect of a more realistic and extensive inclusion of first forbidden beta decay into the determination of the reactor neutrino flux is investigated. Forbidden decays make up approximately 30% of all fission product decays so their possible impact on the neutrino flux should not be neglected. Because of an incomplete knowledge of the requisite nuclear structure it is not possible to incorporate the forbidden decays in an exact fashion thus a variety of scenarios are investigated. It appears that including first forbidden decays measurably modifies the anti-neutrino spectrum, and the uncertainty on the neutrino flux should be expanded beyond 4%.

  19. Reactor water sampling device

    International Nuclear Information System (INIS)

    Sakamaki, Kazuo.

    1992-01-01

    The present invention concerns a reactor water sampling device for sampling reactor water in an in-core monitor (neutron measuring tube) housing in a BWR type reactor. The upper end portion of a drain pipe of the reactor water sampling device is attached detachably to an in-core monitor flange. A push-up rod is inserted in the drain pipe vertically movably. A sampling vessel and a vacuum pump are connected to the lower end of the drain pipe. A vacuum pump is operated to depressurize the inside of the device and move the push-up rod upwardly. Reactor water in the in-core monitor housing flows between the drain pipe and the push-up rod and flows into the sampling vessel. With such a constitution, reactor water in the in-core monitor housing can be sampled rapidly with neither opening the lid of the reactor pressure vessel nor being in contact with air. Accordingly, operator's exposure dose can be reduced. (I.N.)

  20. Reactor safety protection system

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Yokoyama, Tsuguo.

    1989-01-01

    A plurality of neutron detectors are disposed around a reactor core and detection signals from optional two neutron detectors are inputted into a ratio calculation device. If the ratio between both of the neutron flux level signals exceeds a predetermined value, a reactor trip signal is generated from an alarm setting device. Further, detection signals from all of the neutron detection devices are inputted into an average calculation device and the reactor trip signal is generated also in a case where the average value exceeds a predetermined set value. That is, when the reactor core power is increased locally, the detection signal from the neutron detector nearer to the point of power increase is greater than the increase rate for the entire reactor core power, while the detection signal from the neutron detector remote from the point of power increase is smaller. Thus, the local power increase ratio in the FBR reactor core can be detected efficiently by calculating the ratio for the neutron flux level signals from two neutron detectors, thereby enabling to exactly recognize the local power increase rate in the reactor core. (N.H.)